
Attila Csenki

Prolog Techniques

Download free books at

Download free eBooks at bookboon.com

2

Attila Csenki

Prolog Techniques

http://bookboon.com/

Download free eBooks at bookboon.com

3

Prolog Techniques
© 2009 Attila Csenki & Ventus Publishing ApS
ISBN 978-87-7681-476-2

To my wife Ágnes who patiently endured me working on this book for most of my
spare time during last two years.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

4

Contents

Contents
 Preface

1 Accumulator Technique
1.1 A Simple Example
1.2 Hand Computations
1.3 Further Examples
1.4 Pseudocodes
1.5 Generalization
1.6 Case Study: The Perceptron Training Algorithm
1.6.1 Classifi cation Problem
1.6.2 Algorithm
1.6.3 Implementation

2 Difference Lists
2.1 Implementations of List Concatenation
2.2 Implementations of List Flattening
2.2.1 Project: Lists as Trees & fl atten/2
2.2.2 Flattening Lists by append/3
2.2.3 fl atten/2 by the Difference List Technique
2.2.4 Comparing Different Versions
2.3 Implementations of List Reversal
2.3.1 Program Transformations

11

13
13
14
14
23
26
27
27
27
29

37
37
42
43
48
49
49
50
51

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

5

Contents

2.3.2 Difference Lists as Accumulators
2.4 Case Study: Dijkstra’s Dutch Flag Problem
2.4.1 Basic Implementation Using append/3
2.4.2 A More Concise Version
2.4.3 Using Difference Lists
2.5 Rotations
2.5.1 Rotating a List
2.5.2 The Perceptron Training Algorithm Revisited
2.5.3 Planar Rotations
2.5.4 Application: The Gauss–Seidel Method

3 Program Manipulations
3.1 Simple Database Operations
3.1.1 Basic Database Manipulation
3.1.2 Changing the Database
3.1.3 File Modifi cations
3.1.4 Updating right_to/2 and people.pl
3.1.5 Automated Saving of Selected Predicates
3.1.6 Miniproject: Modelling a Stamp Collection
3.2 Case Study: Automated Unfolding
3.2.1 Elementary Unfolding
3.2.2 Complete One Step Unfolding
3.2.3 Rearranging Clauses
3.3 Dijkstra’s Dutch Flag Problem Revisited

57
57
58
58
59
61
61
64
65
69

75
75
79
80
85
87
87
91
95
95
104
106
108

EADS unites a leading aircraft manufacturer, the world’s largest
helicopter supplier, a global leader in space programmes and a
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments
during your studies. Given a high level of responsibility, plenty of

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across
disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also
find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

6

Contents

3.3.1 Problem Generalization and First Solution
3.3.2 Enhanced Implementations

4 Exploratory Code Development
4.1 A Nursery Rhyme
4.1.1 First Preliminary Implementation
4.1.2 Another Preliminary Implementation
4.1.3 The Final Version
4.1.4 Other Approaches
4.2 Project: ’One Man Went to Mow . . .’
4.3 Chapter Notes

A Solutions of Selected Exercises
A.1 Chapter 1 Exercises
A.2 Chapter 2 Exercises
A.3 Chapter 3 Exercises
A.4 Chapter 4 Exercises

B Software

C Glossary

 References

 Index

108
111

117
117
119
124
125
127
132
139

141
141
145
157
167

177

179

183

 185

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

7

List of Figures

List of Figures
1.1 Hand Computations for new sum/2
1.2 Hand Computations for rev/2
1.3 Hand Computations for min/2
1.4 Suggested Hand Computations for from to/3
1.5 Hand Computations for cnt/3
1.6 Hand Computations for palin/1 — success
1.7 Hand Computations for palin/1 — failure
1.8 Typical Clause Structures of a Predicate with an Accumulator
1.9 Generalized Clause Structures
1.10 A Linearly Separable Data Set
1.11 Classifying a Point
1.12 A Single Updating Step
1.13 Applying the Perceptron Training Algorithm

2.1 Difference List
2.2 List Concatenation by Difference Lists
2.3 Tree Representation of [a,[b,[],[c,a],e]]
2.4 Declarative Reading of (P-2.3)
2.5 Illustrating Clause (b2) in (P-2.6)
2.6 Illustrating Exercise 2.9
2.7 Rotating by Difference Lists
2.8 Hand Computations for averages/2

15
16
17
18
19
21
21
27
27
28
29
30
31

39
40
44
50
56
57
61
62

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

8

List of Figures

2.9 Rotating a List with Four Entries
2.10 The Original List and its Rotated Image
2.11 The Original Matrix A and its Rotated Image A(rot)
2.12 Hand Computations for Rotation in the Plane

3.1 The Initial Seating Arrangement
3.2 Rectangular Table
3.3 After George’s Departure
3.4 After Tracy’s and Joe’s arrival
3.5 File Organization for the Round Table Example
3.6 The File people.pl after the Interactive Session
3.7 The File committee.pl
3.8 The File committee.pl
3.9 Interactive Prolog–Assisted Program Transformation: Session I
3.10 Interactive Prolog–Assisted Program Transformation: Session II
3.11 Unfolding, Experiment 1: Disassembling clause 4 of a/5
3.12 Unfolding, Experiment 2: Disassembling clause 3 of c/2
3.13 Unfolding, Experiment 3: Experiments 1 & 2 followed by appropriate
 unifi cation
3.14 Unfolding, Experiment 4: Experiment 3 followed by new clause creation and
 database update
3.15 Illustrative Example of Intended Database Updates
3.16 Top Level Defi nition of def_encolour dl/1
3.17 Example Session for Exercise 3.19

64
65
66
67

76
77
81
82
85
87
89
89
97
98
99
99

100

101
111
112
116

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

9

List of Figures

4.1 The Rhyme’s Simplifi ed Pattern
4.2 Exploring Details of the Rhyme’s Structure
4.3 Desired Behaviour of song/0

A.1 Annotated Hand Computations for from to/3
A.2 Hand Computations for mult/3
A.3 Illustrating the Second Clause of dl/2
A.4 The Last Two Customers Swap Places
A.5 Automated Solution of Exercise 2.9, Part (c)
A.6 Database Changes Brought About by cosu/3
A.7 Search Tree of the Query ?- int(1,I)

118
124
133

141
144
154
159
163
166
172

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

10

List of Tables

List of Tables
1.1 Algorithm 1.4.1 and Related Hand Computations (Fig. 1.2)
1.2 Algorithm 1.4.2 and Related Hand Computations (Fig. 1.5)
1.3 Algorithm 1.4.3 and Related Hand Computations (Figs. 1.6 & 1.7)
1.4 Co-ordinates of Points in the Plane with Class Labels

2.1 Gauss–Seidel Iterations

3.1 Cases for swap_neighbours/2

4.1 Rhyme Structure
4.2 CPU Times for Versions of the Query ?- rhyme_prel(V, R)

A.1 Algorithm A.1.1 & Prolog Clause Correspondence (Example 1.6)

24
26
26
27

70

84

127
129

144

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

Download free eBooks at bookboon.com

Prolog Techniques

11

Preface

Preface

Prolog is considered difficult by students. Usually, by the time they learn Prolog, which is most likely to happen
in preparation for a course in Artificial Intelligence (AI) or Expert Systems, they will have studied imperative
programming and/or the object oriented paradigm. Unfortunately, this prior experience is not always conducive
to learning Prolog. Even though there is a good provision of traditional Prolog textbooks (for example [2]),
students still find it hard to write solutions in Prolog to problems of any notable complexity. In my experience
this holds also (and in particular) for problems for which Prolog should be the natural choice.

This book is intended to relieve the problem by providing a good collection of programming projects, case
studies and exercises of various complexity. It will be useful for three kinds of students.

• Those whose prime source of information is a traditional introductory lecture course in Prolog. For these
people my book will serve to show in context how the various programming techniques and language
elements may be employed. The book may be used to accompany such a course as a workbook and the
student should find in it a wealth of information to answer questions concerning the aspects of Prolog
taught in the course.

• Those who want to refresh and extend their knowledge of Prolog, perhaps with some field of application
in mind.

• Students of AI learning about search algorithms in particular. Most AI books present search algorithms by
pseudocode and are not concerned with details of implementation. In my experience, however, anything
seen implemented is more likely to be retained (beyond the exam).

There is a deeper reason also why such a book is felt timely. Programming is a creative activity and it is
an innate human need to take pleasure (and pride) in the object of one’s creation, be it a sculpture, a painting,
a piece of music, or indeed, a computer program. The opportunity is provided here for students to learn (and
experience the said intellectual satisfaction) by creating their own solutions in Prolog to a host of interesting,
challenging and varied programming problems. Many of the problems and the way they are approached here
are believed to be novel.

Sadly, it is felt that the creative aspect of learning is not given enough room in today’s educational envi-
ronment in the UK.1 It is hoped that this book will help the student to rediscover Prolog programming as a

1There is ample evidence to support this thesis. In degree courses, we tend to focus on the ‘engineering’ aspects of and tools for
writing (large scale) software; this activity tends to be team-based, procedure-bound and offers little scope for the kind of pleasure
felt by completing a working ‘whole’. Learning by students tends to be assessment driven and many never experience the creative
feedback. The tasks they have to complete for the exams are (by their very nature) not intended to create anything sizable or
ambitious. Coursework assignments do not attract many marks for fear of plagiarism. Finally, modularization does not encourage
students to take an interest beyond what is in the module descriptor. The only time where creativity is really called for will be the
final year project by which time many will lack the practice to complete the task to their supervisor’s (and, equally importantly,
their own) satisfaction.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

12

Preface

worthwhile and enjoyable activity.
The core of the material in this book grew out of laboratory classes and coursework prepared by the author

for second year computer science students at Bradford University, as part of the lecture course Symbolic and
Declarative Computing – Artificial Intelligence. This is a two-semester course with an introduction to Functional
Programming with Haskell, Logic Programming with Prolog and the basics of AI. The choice of examples and
topics for this book is of course tinged by the context in which Prolog was presented. For example, I discuss the
functional programming style since it is useful in producing concise, readable and elegant implementations also
in Prolog. The selection of topics for the examples was influenced in part by the AI element of the course though
much new material has found its way into the book. To make set problems more easily accessible for the reader,
I subdivide the overall task into managable portions indicating in each the desired outcome (if applicable, in
form of a sample session in Prolog) with suggestions for how best to attack the subtasks.

The working style advocated here is best described by the following attributes:

• example based,

• interactive,

• exploratory and experimental,

• incremental,

• progressing from the specific to the more general,

• identifying patterns of computation with a view to generalization.

It will be seen from the list of contents that the material, by its very nature, is not ordered in a linear fashion
but is grouped in topics deemed important for programming in Prolog.

The work comprises two parts: the present volume Prolog Techniques and the forthcoming Applications of
Prolog. This first volume is in four chapters and illustrates special Prolog programming techniques. The second
volume will concentrate on applications of Prolog, mainly from Artificial Intelligence.

The order in which the books may be studied is fairly free even though an example introduced somewhere
may serve in a later chapter to illustrate the generalization or improvement afforded by the material just covered.

The SWI-Prolog compiler is used throughout: it has been around for quite some time; it is well documented;
it is free; and, it is being maintained with new, improved versions becoming available all the time. Furthermore,
there is an object oriented extension to SWI-Prolog (XPCE) for building graphical applications, useful if one
wants to pursue this line further.

Solutions for a selection of exercises are discussed in the appendices. All Prolog source code produced in the
course of this book project (including model solutions for all the exercises) can be downloaded from the Ventus
website.

I am grateful to Dr. Coxhead of Birmingham University for discussions and extensive comments on initial
versions of several of the chapters. My colleague Dr. Fretwell gave me many tips concerning LATEX, the
typesetting system used to produce the books.

Bradford, Attila Csenki
April 2009

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

13

Accumulator Technique

Chapter 1

Accumulator Technique

One of the features of Prolog which beginners may find difficult to cope with is the absence of a language
construct for writing loops such as the while and for loops known from imperative programming. In Prolog,
repetition is accomplished by recursion which holds some pitfalls for the novice user. In this chapter, we
introduce the accumulator technique for defining predicates by recursion.

1.1 A Simple Example

Let us start with the simple problem of calculating the sum of the (integer) entries in a list. A näıve definition
is as follows.

Prolog Code P-1.1: Definition of sum/2

1 sum([],0). % clause 1

2 sum([H|T],S) :- sum(T,S0), S is H + S0. % clause 2

The definition of sum/2 in (P-1.1) is by recursion: clause 1 is the Base Case, clause 2 is the Recursive Step. It
is a viable definition for lists of moderate length, as shown below.

?- from to(1,100,L), sum(L,S). 1

L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...]

S = 5050

For longer lists, however, error by stack overflow is observed:

?- from to(1,100000,L), sum(L,S).

ERROR: Out of local stack2

How should sum/2 be restructured to avoid this problem? The answer lies in what is called a tail recursive
definition:

1For a definition of the predicate from to(+Low,+High,-List) , see Exercise 1.1, p. 17 and the solution of Exercise 3.16, p. 167.
from to/3 returns in List the list of integers between the bounds Low and High .

2The query below shows that stack overflow is caused here by sum/2 and not by from to/3 .

?- from to(1,100000,L).

L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...]

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

14

Accumulator Technique

For a predicate defined by a recursive clause, the self-invocation should be the last goal in its body.
And, for the Prolog system to discard all references to the goals preceding the last one (and thereby
freeing up memory), a cut (!) should be introduced just before the self-invocation.

There is no immediate way of rewriting the second clause of sum/2 along these lines (The order of the goals in
its body can’t be interchanged since the tail needs summing before the final sum is computed.) The problem
is solved by augmenting the old version by an accumulator argument for holding intermediate results of the
computation. The new version, sum/3 , is defined by

Prolog Code P-1.2: Definition of sum/3

1 sum([],S,S). % clause 1

2 sum([H|T],Acc,S) :- NewAcc is Acc + H, !, sum(T,NewAcc,S). % clause 2

The second argument of sum/3 serves as an accumulator that holds a value which could be termed ‘the sum
accrued thus far’. The third argument is carried (in clause 2) as an uninstantiated variable until eventually (in
clause 1) it is unified with the accumulator. By the time clause 1 applies, the accumulator will have received
the sum of all entries of the initial list provided that the accumulator argument has been initialized to zero;
this latter step is carried out when invoking sum/3 :

?- from to(1,100000,L), sum(L,0,S).

L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...]

S = 5.00005e+009

(There is no error due to stack overflow this time!)
We may define new sum/2 by

Prolog Code P-1.3: Definition of new sum/2

1 new_sum(L,S) :- sum(L,0,S). % clause 0

The predicate sum/3 is used by new sum/2 as an auxiliary predicate. The accumulator argument in sum/3 is
initialised by new sum/2 in clause 1 to zero.

1.2 Hand Computations

It is instructive to examine the workings of new sum/2 and sum/3 by a sequence of hand computations (see,
[3], pp. 116). To consider a specific case, we trace in Fig. 1.1 the computation by new sum/2 of the sum of the
entries of [1,2,3] . The wavy arrow (�) is used to indicate transitions, interrelating one stage with the next.
The details of how a transition is (or should be) accomplished are elaborated upon in the clause as marked
above the arrow.

1.3 Further Examples

Hand computations can be carried out to test code already written but they are also useful for defining new
predicates. It is this latter rôle in which we are going to illustrate their use here in several examples. The
following steps will be involved.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

15

Accumulator Technique

new sum([1,2,3],S)
0©

�� sum([1,2,3],0,S)
2©

�� sum([2,3],1,S)
2©

��

sum([3],3,S)
2©

�� sum([],6,S)
1©

�� S = 6
0©

�� success

Figure 1.1: Hand Computations for new sum/2

• State the algorithm to be employed. This may take various forms, most likely, it will be in plain English.3

• Construct an example (or examples) typifying all conceivable situations.

• Carry out hand computations for the examples chosen. Transitions of a similar kind (i.e. those intended
to be covered by the same clause) receive identical labels.

• Inspect the hand computations and define a clause for each label.

3In Sect. 1.4, pseudocodes will be introduced for describing algorithms.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Prolog Techniques

16

Accumulator Technique

Example 1.1. Define a new version of the built-in predicate reverse/2 for reversing a list.
Our approach is easily visualized by thinking of the list entries as a pack of cards whose order has to be

reversed. Put the pack, face down, on the table and build up a second pack by moving the cards from the top
of the first, one by one, to the top of the second. The stopping criterion is also obvious: stop when the first pile
is used up, i.e. if the first list is empty. The hand computations in Fig. 1.2 have been carried out using this
idea. The definition (P-1.4) is based on them.

rev([1,2,3],R)
0©

�� rev([1,2,3],[],R)
2©

�� rev([2,3],[1],R)
2©

��

rev([3],[2,1],R)
2©

�� rev([],[3,2,1],R)
1©

�� R = [3,2,1]
0©

�� success

Figure 1.2: Hand Computations for rev/2

Prolog Code P-1.4: Definition of rev/2

1 rev(L,R) :- rev(L,[],R). % clause 0

2 rev([],R,R). % clause 1

3 rev([H|T],Acc,R) :- rev(T,[H|Acc],R). % clause 2

�

Example 1.2. Define a predicate min/2 for computing the smallest entry of an (integer) list as shown
below.

?- min([7,-3,2,5],S).

S = -3

The idea is again readily illustrated by using a pack of cards. We are now looking for the card with the
smallest value.

1. Take the top one and set it aside.

2. Inspect the top card and compare its value with the one set aside. Retain the smaller of the two, set it
aside while discarding the other.

3. Repeat step 2 until you run out of cards. The one set aside will be a one with the minimum value.

From the hand computations in Fig. 1.3 it is seen that there should be two recursive clauses: in the case marked
2©, the head of the list is smaller than the current value of the accumulator and thus it will be replaced by the
former; in the case marked 3©, this condition does not apply and therefore the old accumulator value is retained.
Fig. 1.3 also shows that the initial value of the accumulator in min/3 is the head of the input list (step 0©).4

4There is an alternative to this. Use the built-in predicate current prolog flag/2 to find the largest integer Prolog can
represent and initialize the accumulator to this value:

?- current prolog flag(max integer,Large), min([7,-3,2,5],Large,M).

Large = 2147483647

M = -3

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

17

Accumulator Technique

min([7,-3,2,5],M)
0©

�� min([-3,2,5],7,M)
2©

�� min([2,5],-3,M)
3©

��

min([5],-3,M)
3©

�� min([],-3,M)
1©

�� M = -3
0©

�� success

Figure 1.3: Hand Computations for min/2

Prolog Code P-1.5: Definition of min/2

1 min([H|T],M) :- min(T,H,M). % clause 0

2 min([],M,M). % clause 1

3 min([H|T],Acc,M) :- H < Acc, !, min(T,H,M). % clause 2

4 min([_|T],Acc,M) :- min(T,Acc,M). % clause 3

(Notice that in clause 3 the goal H >= Acc is omitted as it would always succeed by the time that clause is
tried. Here we rely on the clauses’ particular order.)

�

Exercise 1.1. Define a predicate from to(?Low,?High,?List) for producing in List all the natural
numbers in ascending order between Low and High . The various modes of operation of from to/3 are illustrated
below.

?- from to(6,9,L). 5

L = [6, 7, 8, 9]

?- from to(6,9,[, ,E|]). 6

E = 8

?- from to(Low,High,[6, 7, 8, 9]). 7

Low = 6 High = 9

?- from to(6,9,[6, 7, 8, 9]).

Yes

?- from to(9,6,L).

No

Some suggested hand computations are shown in Fig. 1.4.

�

Example 1.3. (Several accumulators) Define cnt(+Atom,-U,-L) for counting the number of upper and
lower case letters in an atom. The query below illustrates the intended behaviour of cnt/3 .

?- cnt(’’’The Magic Flute’’ is Mozart’’s last opera.’,U,L). 8

U = 4

L = 27

5Use the built-in predicates var/1 and integer/1 when implementing this functionality.
6Here we pick out the third entry of the result list by pattern matching. The built-in predicate is list/1 should be used to al-

low for such behaviour.
7To implement this functionality, you will need the built-in predicate last/2 .
8The outside quotes mark the atom. Inside the atom, the characters ’’ stand for the quote.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

18

Accumulator Technique

from to(6,9,L) �� from to acc(6,[9],L) ��

from to acc(6,[8,9],L) �� from to acc(6,[7,8,9],L) ��

from to acc(6,[6,7,8,9],L) �� L = [6,7,8,9] �� success

Figure 1.4: Suggested Hand Computations for from to/3

Instead of inspecting the atom’s characters directly, we will convert them by the built-in predicate atom codes/2

to the list of their corresponding ASCII values and then class each entry according to whether it is

• Between 65 and 90 (⇒ upper case, increment first accumulator),

• Between 97 and 122 (⇒ lower case, increment second accumulator),

• None of the above (⇒ non-alphabetic, no incrementation).

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Prolog Techniques

19

Accumulator Technique

Built-in Predicate: atom codes(?Atom,?List)

It converts Atom into the corresponding List of ASCII values and vice versa.
Example:

?- atom codes(’Way Out’,L).

L = [87, 97, 121, 32, 79, 117, 116]

Hand computations for cnt/3 on the atom ’Way Out’ are shown in Fig. 1.5. The code shown in (P-1.6)

cnt(’Way Out’,U,L)
0©

��

cnt([87,97,121,32,79,117,116],0,0,U,L)
2©

��

cnt([97,121,32,79,117,116],1,0,U,L)
3©

��

cnt([121,32,79,117,116],1,1,U,L)
3©

��

cnt([32,79,117,116],1,2,U,L)
4©

�� cnt([79,117,116],1,2,U,L)
2©

��

cnt([117,116],2,2,U,L)
3©

�� cnt([116],2,3,U,L)
3©

��

cnt([],2,4,U,L)
1©

�� U = 2, L = 4
0©

�� success

Figure 1.5: Hand Computations for cnt/3

mirrors the hand computations.

Prolog Code P-1.6: Definition of cnt/3

1 cnt(Atom,U,L) :- atom_codes(Atom,Values), % clause 0

2 cnt(Values,0,0,U,L), !. %

3 cnt([],U,L,U,L). % clause 1

4 cnt([H|T],AccU,AccL,U,L) :- upper(H), % clause 2

5 NewAccU is AccU + 1, %

6 !, cnt(T,NewAccU,AccL,U,L). %

7 cnt([H|T],AccU,AccL,U,L) :- lower(H), % clause 3

8 NewAccL is AccL + 1, %

9 !, cnt(T,AccU,NewAccL,U,L). %

10 cnt([_|T],AccU,AccL,U,L) :- cnt(T,AccU,AccL,U,L). % clause 4

The auxiliary predicates used in (P-1.6) are upper/1 and lower/1 ; they are defined in (P-1.7).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

20

Accumulator Technique

Q

Prolog Code P-1.7: Definitions of upper/1 and lower/1

1 upper(C) :- C >= 65, C =< 90.

2 lower(C) :- C >= 97, C =< 122.

�

Example 1.4. (Grouping of arguments) For better readibility, arguments may be grouped by using com-
pound terms. The name of the term’s functor is chosen to reflect the arguments’ common rôle. For example, a
new version of cnt/3 from Example 1.3, called count/2 , is shown in (P-1.8)

Prolog Code P-1.8: Definition of count/2

1 count(Atom,cases(U,L)) :- atom_codes(Atom,Values), % clause 0

2 count(Values,acc(0,0),acc(U,L)), !. %

3 count([],Acc,Acc). % clause 1

4 count([H|T],acc(U,L),Result) :- upper(H), % clause 2

5 NewU is U + 1, !, %

6 count(T,acc(NewU,L),Result). %

7 count([H|T],acc(U,L),Result) :- lower(H), % clause 3

8 NewL is L + 1, !, %

9 count(T,acc(U,NewL),Result). %

10 count([_|T],acc(U,L),Result) :- count(T,acc(U,L),Result). % clause 4

count/2 will behave as cnt/3 does:

?- count(’Way Out’,cases(U,L)).

U = 2

L = 4

count/2 is essentially the same predicate as cnt/3 but the number of arguments is reduced to two via the
term cases/2 . The auxiliary predicate count/3 has been derived from cnt/5 by merging the two accumulator
arguments and the two output arguments each. The accumulators are grouped by the compound term acc/2 ;
the now single output argument is reproduced in the recursive clauses 2–4 by a variable until upon satisfying
the stopping criterion in clause 1, it is unified with the term in the accumulator argument. The call to count/3

in clause 0 initialises the accumulator to acc(0,0) ; the result is received in the variables U and L by unifying
the third argument with the acc(U,L) .

This example shows that argument grouping allows the arity of a predicate to be reduced. This observation
will be useful in our discussion of a generalization of the accumulator technique in Sect. 1.5.

By repeatedly applying this technique, more elaborate hierarchical groupings of arguments may be achieved
by nesting terms.

�

Example 1.5. (Test for success or failure only) A palindrome is a list (of atoms) which is identical to its
reverse. We can use rev/2 from Example 1.1 to test if a list is a palindrome:

?- rev([m,a,d,a,m],[m,a,d,a,m]).

Yes

?- rev([a,d,a,m],[a,d,a,m]).

No

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

21

Accumulator Technique

Clearly, in both cases the entire reverse of the first argument had to be computed for subsequent matching with
the original by way of unification. (P-1.9) shows a more efficient solution ([8], p. 110).

Prolog Code P-1.9: Definition of palin/1

1 palin(L) :- palin(L,[]). % clause 0

2 palin(L,L). % clause 1

3 palin([_|T],T). % clause 2

4 palin([H|T],Acc) :- palin(T,[H|Acc]). % clause 3

If palin/1 succeeds, only the front of the list will be worked through as illustrated in Fig. 1.6. (Clauses
like 1 and 2 will be executed by unification.) For cases which fail, still the whole list will have to be scanned
(Fig. 1.7).

palin([m,a,d,a,m])
0©

�� palin([m,a,d,a,m],[])
3©

��

palin([a,d,a,m],[m])
3©

�� palin([d,a,m],[a,m])
2©

�� success

palin([o,t,t,o])
0©

�� palin([o,t,t,o],[])
3©

�� palin([t,t,o],[o])
3©

��

palin([t,o],[t,o])
1©

�� success

Figure 1.6: Hand Computations for palin/1 — success

palin([a,d,a,m])
0©

�� palin([a,d,a,m],[])
3©

��

palin([d,a,m],[a])
3©

�� palin([a,m],[d,a])
3©

��

palin([m],[a,d,a])
3©

�� palin([],[m,a,d,a]) �� failure

Figure 1.7: Hand Computations for palin/1 — failure

�

Example 1.6. (Switches as accumulators) Define numbers(+Atom,-N) for finding out how many numbers
there are in an Atom . Example:

?- numbers(’Elisabeth the 1st reigned between 1558 and 1603.’,N).

N = 3

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

22

Accumulator Technique

This task can be solved in various ways but we are interested in a solution which makes only a single pass
through the list of the (encoded) characters of Atom .

We can view our problem as having to count the number of sequences of digits in Atom . We shall of course
work with the characters’ encoded values; the ASCII values of the ten digits are 48, . . . , 57. digit/1 in (P-1.10)
succeeds for encoded digits.

Prolog Code P-1.10: Definition of the auxiliary predicate digit/1

1 digit(C) :- 48 =< C, C =< 57.

As we progress through the list of (encoded) characters, the beginning of a new sequence of digits will be
recognized by the condition

• The previous character was not a digit

• The current character is a digit.

We employ a dedicated, two-valued argument, called a switch, to save the information about the digit read.
The switch has two alternative states: digit and nodigit ; it will be initialized to nodigit . We also use an
accumulator argument for the number of digit sequences ‘encountered thus far’. The accumulator is incremented
every time the switch changes state from nodigit to digit .

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Prolog Techniques

23

Accumulator Technique

The predicate numbers(+List,+Switch,+Acc,-N) in (P-1.11) is an implementation of these ideas.9

Prolog Code P-1.11: Definition of numbers/2

1 numbers(Atom,N) :- atom_codes(Atom,Values), % clause 0

2 numbers(Values,nodigit,0,N), !. %

3 numbers([],_,N,N). % clause 1

4 numbers([H|T],nodigit,Acc,N) :- digit(H), % clause 2

5 NewAcc is Acc + 1, !, %

6 numbers(T,digit,NewAcc,N). %

7 numbers([H|T],digit,Acc,N) :- digit(H), !, % clause 3

8 numbers(T,digit,Acc,N). %

9 numbers([_|T],_,Acc,N) :- !, numbers(T,nodigit,Acc,N). % clause 4

�

Exercise 1.2. Solve the problem from Example 1.6 as before (i.e. by a single pass through the data), now
without using a switch.10

�

1.4 Pseudocodes

Programming (in any language) is a creative activity and the accompanying thought processes may be difficult
to formalize and will ultimately remain a personal experience. Nevertheless, there are tools intended to assist
the programmer in the software production process. Here the notion of an algorithm plays a central rôle.
Indeed, one view of the (procedural) software production process is that it is a series of steps in each of which
an algorithm is derived from a previous one by refinement until a working implementation is obtained.

Ideally, when programming in Prolog we should be less concerned with algorithms and be allowed to concen-
trate on a declarative description of the problem in the hope that the Prolog system will arrive at a solution from
our specification. In practice, however, both viewpoints are useful and the accumulator technique obviously
favours the procedural style.

Therefore, as an adjunct to our discussion of the accumulator technique, we want to look at here a particular
way of describing algorithms, namely by pseudocodes. Pseudocodes are of interest in particular when using
Prolog as an implementation language for Artificial Intelligence (AI) since books in AI use pseudocode for
specifying algorithms (e.g. [7, 13, 14]).

We start with the algorithm for reversing lists by rev/2 in Example 1.1. Algorithm 1.4.1, shown below, is
inspired by the hand computations in Fig. 1.2. It is formulated in terms of iteration and would be implemented
by a while loop if we were to use an imperative programming language. It is seen that the pseudocode mimics
the workings of an abstract procedural language and that the depth to which individual steps are detailed may
be varied. When the pseudocode is finally ‘translated’ to Prolog, recursion is used to implement iteration.
Table 1.1 interrelates the steps in the hand computations with the pseudocode statements.

9Reference will be made to (P-1.11) in Exercise 1.3, p. 26.
10Hint. Employ a ‘look ahead’ strategy to see what (encoded) character will be read after the present one. (This plan allows a

concise implementation to be achieved.)

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

24

Accumulator Technique

Algorithm 1.4.1: Reverse(List)

Accumulator ← [] (1)
while List �= []

do

⎧⎨
⎩

[H |T] ← List (2)
Accumulator ← [H |Accumulator] (3)
List ← T (4)

Rev ← Accumulator (5)
return (Rev)

Statement (1) (2) (3) (4) (5)
Hand Computation Step 0© 2© 2© 2© 1©

Table 1.1: Algorithm 1.4.1 and Related Hand Computations (Fig. 1.2)

A slightly more complex case is illustrated by Example 1.3 whose pseudocode, inspired by the hand com-
putations in Fig. 1.5, is shown as Algorithm 1.4.2. (The correspondence between pseudocode statements and
steps in the hand computations is displayed in Table 1.2.)

These examples illustrate the following points.

• The while loop is implemented by recursion and by using Prolog’s control flow model.

• The if-then-else construct is implemented by putting the clauses in the right order and by pattern
matching using unification.

• Named memory locations (variables) in the pseudocode are implemented by specific arguments of predi-
cates or of compound terms.

• Assignment (indicated in the pseudocode by ←) is accomplished by unification.

• In general, Prolog implementations tend to be more concise than the corresponding program written in a
conventional language.

We conclude this section with the pseudocode for Example 1.5, shown as Algorithm 1.4.3, p. 26. This is of
special interest for two reasons. First, the algorithm is not expected to produce any ’output’ in the procedural
sense except for Prolog’s Yes –No response. This should be no cause for concern, however; proceed as before
except that the predicate now has no ’output’ argument. The second noteworthy property of Algorithm 1.4.3 is
that it contains a mid-loop exit and therefore it does not comply with the princiles of Structured Programming
(one entry – one exit), a style normally adhered to in procedural programming. Thus, Nassi-Shneiderman
Diagrams (also called Structograms) [12], would not be a suitable alternative for specifying this algorithm even
though palin/1 is a good example of a perfectly acceptable Prolog definition. This shows that Prolog allows
code to be written whose logic would be frowned upon under different circumstances and whose use would be
out of bounds for users of Structograms.11

11We note in passing that the German Code of Practice DIN 66261 [6] describes the use of Structograms.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

25

Accumulator Technique

Algorithm 1.4.2: Count(Atom)

V alues ← list of ASCII values of characters in Atom (1)
AccU ← 0 (2)
AccL ← 0 (3)
while V alues �= []

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[H |T] ← V alues (4)
if H is an upper case letter

then
{
AccU ← AccU + 1 (5)

else if H is a lower case letter
then

{
AccL ← AccL + 1 (6)

V alues ← T (7)
Uppers ← AccU (8)
Lowers ← AccL (9)
return (Uppers, Lowers)

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2014

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

Download free eBooks at bookboon.com

Prolog Techniques

26

Accumulator Technique

Statement (1) (2) (3) (4) (5) (6) (7) (8) (9)

Hand Compn

Step
0© 0© 0© 2© 3© 4© 2© 3© 2© 3© 4© 1© 1©

Table 1.2: Algorithm 1.4.2 and Related Hand Computations (Fig. 1.5)

Algorithm 1.4.3: Palindrome(List)

Accumulator ← [] (1)
while List �= []

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

if List = Accumulator (2)
then

{
return (success)

else

⎧⎨
⎩

[H |T] ← List (3)
if T = Accumulator (4)
then

{
return (success)

List ← T (5)
Accumulator ← [H |Accumulator] (6)

return (failure)

Statement (1) (2) (3) (4) (5) (6)
Hand Computation Step 0© 1© 2© 3© 2© 3© 3©

Table 1.3: Algorithm 1.4.3 and Related Hand Computations (Figs. 1.6 & 1.7)

Exercise 1.3. Construct the pseudocode for the Prolog code in Example 1.6. Also establish the correspon-
dence between the Prolog clauses and the statements of your pseudocode.

�

1.5 Generalization

Each clause of the predicates seen thus far with accumulator arguments fits one of the two patterns shown in
Fig. 1.8.12, 13

Fig. 1.9 shows a more general scheme where we group Input and Accumulator into Argument which then
is subjected to some transformations until a stopping criterion applies.

12For palin/2 from Example 1.5 also to fit this mould, the Result argument is to be ignored.
13If necessary, apply first the technique from Example 1.4 to reduce the arity of predicate to 3.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

27

Accumulator Technique

predicate(Input,Accumulator,Accumulator) :-

stopping-condition(Input,Accumulator).

predicate(Input,Accumulator,Result) :-

carry-on-condition(Input,Accumulator),

transform(Input,Accumulator,NewInput,NewAccumulator),

!, predicate(NewInput,NewAccumulator,Result).

Figure 1.8: Typical Clause Structures of a Predicate with an Accumulator

predicate(Argument,Result) :- stopping-condition(Argument),

extract-info-from(Argument,Result).

predicate(Argument,Result) :- carry-on-condition(Argument),

transform(Argument,NewArgument),

!, predicate(NewArgument,Result).

Figure 1.9: Generalized Clause Structures

1.6 Case Study: The Perceptron Training Algorithm

1.6.1 Classification Problem

A basic problem in connectionist AI is that of finding a linear classifier for two groups of data in the space of
n–tuples of real numbers. As an illustrative example, we consider the two-dimensional data in Table 1.4.

x1 6.981 14.414 2.337 8.500 9.190 1.149 14.786 7.842
x2 0.554 4.466 4.040 3.496 2.000 6.100 2.179 6.331

Label d −1 +1 −1 +1 −1 −1 +1 +1

Table 1.4: Co-ordinates of Points in the Plane with Class Labels

Each of the 8 points belongs to one of the two classes labelled +1 or −1. A plot of the data with a separating
straight line is shown in Fig. 1.10. The Perceptron Training Algorithm allows a separating straight line to be
found if it exists (e.g. [7, 13, 14]); the data then is said to be linearly separable.

1.6.2 Algorithm

A simple decision rule for linearly separable data is based on the perceptron which in the two–dimensional case
can be written in the form

d(x1, x2) =

{
+1 if w1x1 + w2x2 ≥ t,

−1 if w1x1 + w2x2 < t,
(1.1)

with weights w1, w2 and threshold t. The decision rule (1.1) generalizes for n–dimensional data to

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

28

Accumulator Technique

◦

•
◦

•

◦

◦

•

•

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

Labels
• = +1
◦ = −1

Figure 1.10: A Linearly Separable Data Set

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Prolog Techniques

29

Accumulator Technique

d(x1, · · · , xn, xn+1) =

{
+1 if w1x1 + · · · + wnxn + wn+1xn+1 ≥ 0,

−1 if w1x1 + · · · + wnxn + wn+1xn+1 < 0,
(1.2)

with weights w1, · · · , wn+1 and unit bias xn+1 = 1.14 For later reference, (1.2) is presented in Fig. 1.11 as a
procedure. �

�

�

�
procedure Classify([x1, · · · , xn+1], [w1, · · · , wn+1])

class ← sign
(∑n+1

k=1 wkxk

)
return (class)

Figure 1.11: Classifying a Point

The sign function in Fig. 1.11 is defined by

sign(s) =

{
+1 if s ≥ 0,

−1 if s < 0.

In Fig. 1.12 it is shown how a single updating step is carried out by the perceptron. It takes a sample point
x from the training data with the corresponding desired class label d, the current (list of) weights w and returns
the updated weights, w(new). The positive constant c, the learning rate, is arbitrary but fixed throughout the
whole training session.

To find a set of weights for which the decision rule correctly classifies all training points, the updating step
from Fig. 1.12 is repeated as indicated in Fig. 1.13, p. 31. The weights’ initial values and the learning rate are
arbitrary; we have chosen w(0) = [−0.51,−0.35, 0.13] and c = 0.25 in our example. After each iteration step, it
is checked whether any of the training data points is misclassified, in which case iteration continues. Iteration
is stopped as soon as all training data points are correctly classified. This is shown in Algorithm 1.6.3, p. 32.

1.6.3 Implementation

We represent (the by the unit bias augmented version of) Table 1.4 and the weights’ initial values by the facts

ps([[6.981, 0.554, 1], ..., [7.842, 6.331, 1]]). % points

ds([-1, 1, -1, 1, -1, -1, 1, 1]). % classes

ws([-0.51, -0.35, 0.13]). % weights

The Perceptron Training Algorithm 1.6.3 will be implemented by the predicate pta/6 with argument pattern

pta(+LearningRate,+Points,+DesiredOutputs,+Weights,

-FinalWeights,-Iterations)

It calls in (P-1.12) the auxiliary predicate pta/2 , which itself is structured according to Fig. 1.9.

Prolog Code P-1.12: Definition of pta/6

1 pta(LRate, Points, DesiredOutputs, Weights, FinalWeights,Iters) :-

2 pta(in(LRate,Points,DesiredOutputs,Weights,0),

3 out(FinalWeights,Iters)).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

30

Accumulator Technique

[x1, · · · , xn+1] d −−−−→
�� �	Perceptron

←−
−−
−

−−−−→

[w1, · · · , wn+1]

[w
(new)
1 , · · · , w

(new)
n+1]

�

�

procedure Perceptron([x1, · · · , xn+1], d, [w1, · · · , wn+1])
for j ← 1 to (n + 1)

do

⎧⎨
⎩

class ← Classify([x1, · · · , xn+1], [w1, · · · , wn+1])
Δwj ← c (d − class)xj

w
(new)
j ← wj + Δwj

return ([w
(new)
1 , · · · , w

(new)
n+1])

Figure 1.12: A Single Updating Step

The rôles of the arguments of in/5 and out/2 are obvious from the names chosen. (The last argument of
in/5 is an accumulator for the iteration number. It is initialized to zero in (P-1.12).) The definition in (P-1.13)
follows the layout from Fig. 1.9.

Prolog Code P-1.13: Definition of pta/2

1 pta(in(_,Ps,Ds,Ws,I),out(Ws,I)) :- classify_all(Ps,Ws,Ds), !. % clause 1

2 pta(Arg,Result) :- transform(Arg,NewArg), % clause 2

3 !, pta(NewArg,Result). %

With reference to Fig. 1.9 it is seen that

14Equation (1.2) thereby subsumes (1.1) by putting n = 2 and t = −wn+1.
15The symbol ++ stands for list concatenation.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

31

Accumulator Technique

F
ir

st
T
ra

in
in

g
E

p
o
ch

�

�

S
ec

o
n
d

T
ra

in
in

g
E

p
o
ch

�

�

w(0)

[6.981, 0.554, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(1)

[14.414, 4.466, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(2)

[2.337, 4.040, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(3)

[8.500, 3.496, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(4)

[9.190, 2.000, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(5)

[1.149, 6.100, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(6)

[14.786, 2.179, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(7)

[7.842, 6.331, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(8)

[6.981, 0.554, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(9)

[14.414, 4.466, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(10)

[2.337, 4.040, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(11)

[8.500, 3.496, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(12)

[9.190, 2.000, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(13)

[1.149, 6.100, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(14)

[14.786, 2.179, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(15)

[7.842, 6.331, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(16)

�
�
�

Figure 1.13: Applying the Perceptron Training Algorithm

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

32

Accumulator Technique

Algorithm 1.6.3: PTA([x(1), · · · ,x(N)], [d1, · · · , dN],w)

comment: Perceptron Training Algorithm.
Iterate until all points are correctly classified.

procedure ClassifyAll([x(1), · · · ,x(N)],w)
for i ← 1 to N

do
{
ci ← Classify(x(i),w)

return ([c1, · · · , cN])

main
Weights ← w

Points ← [x(1), · · · ,x(N)]
DesiredOutputs ← [d1, · · · , dN]
ActualOutputs ← ClassifyAll(Points, Weights)
Iterations ← 0
while ActualOutputs �= DesiredOutputs

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[P |OtherPs] ← Points

[D|OtherDs] ← DesiredOutputs

Weights ← Perceptron(c, P, D, Weights)
Points ← OtherPs ++ 15 [P]
DesiredOutputs ← OtherDs ++ [D]
ActualOutputs ← ClassifyAll(Points, Weights)
Iterations ← Iterations + 1

output (Iterations, Weights)

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Prolog Techniques

33

Accumulator Technique

• In clause 1, stopping-condition is implemented by classify all/3 , defined by recursion in (P-1.14).

Prolog Code P-1.14: Definition of classify all/3

1 classify_all([],_,[]). % clause 1

2 classify_all([P|OtherPs],Weights,[Class|OtherCs]) :- % clause 2

3 classify(P,Weights,Class), !, %

4 classify_all(OtherPs,Weights,OtherCs). %

(The predicate classify/3 is a straightforward implementation of the procedure in Fig. 1.11; for its
definition, see the file accumulator.pl.)

• In clause 1, extract-info-from is realized by unification of the last two arguments of in/5 with those
of out/2 .

• In clause 2, the carry-on-condition is implicitly defined by failure of the predicate classify all/3 in
clause 1.

• Finally, the predicate transform/2 is defined by (P-1.15).

Prolog Code P-1.15: Definition of transform/2

1 transform(in(C,[P|OtherPs],[D|OtherDs],Ws,Acc),

2 in(C,NewPs,NewDs,NewWs,NewAcc)) :-

3 append(OtherPs,[P],NewPs),

4 append(OtherDs,[D],NewDs),

5 perceptron(C,P,D,Ws,NewWs),

6 NewAcc is Acc + 1.

The predicate perceptron/5 in (P-1.15), line 5, is a straightforward implementation of the weight up-
dating step from Fig. 1.12. It is defined in (P-1.16).

Prolog Code P-1.16: Definition of perceptron/5

1 perceptron(C,Point,D,Weights,NewWeights) :-

2 classify(Point,Weights,Class),

3 Const is C * (D - Class),

4 mult(Const,Point,DeltaWs),

5 add(Weights,DeltaWs,NewWeights).

The implementation thus defined we use to find after 801 iterations a correct classifier.

?- ps(Ps), ds(Ds), ws(W0), pta(0.25, Ps, Ds,W0,W,I). 16

W0 = [-0.51, -0.35, 0.13]

W = [3.018, 4.1935, -39.87]

I = 801

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

34

Accumulator Technique

While the initial weights give rise to some incorrect classifications,

?- ps(Ps), classify all(Ps, [-0.51, -0.35, 0.13], Classes).

Classes = [-1, -1, -1, -1, -1, -1, -1, -1]

the new weights define a correct classifier,

?- ps(Ps), classify all(Ps, [3.018, 4.1935, -39.87], Classes).

Classes = [-1, 1, -1, 1, -1, -1, 1, 1]

(The corresponding separating straight line

{ (x1, x2) : 3.018x1 + 4.1935x2 − 39.87 = 0 }

is shown in Fig. 1.10.)

16In the version of SWI–Prolog used here (version 3.4.5), variables whose name starts with an underscore (such as Ps) won’t
be displayed. Issue the query

?- set prolog flag(toplevel print anon, false).

Yes

at the beginning of the session to achieve the same effect with version 5.2.7 (the most recent version at the time of writing).

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

35

Accumulator Technique

Exercise 1.4. To make the definition of perceptron/5 in (P-1.16) complete, define mult/3 and add/3

thus implementing scalar multiplication and addition of vectors, respectively. Your definitions should be by
both simple recursion and the accumulator technique. Reflect on the performance of each implementation.

�

Exercise 1.5. The Perceptron Training Algorithm may be carried out for a fixed number of iterations
rather than until all points are correctly classified. Augment the definition of pta/6 to cover this case too.
Thus the argument pattern of pta/6 is now

pta(+LearningRate,+Points,+DesiredOutputs,+Weights,

-FinalWeights,?Iterations)

This modification is useful for instance in our example for confirming that the least number of iterations needed
to classify all points correctly is indeed 801:17

?- ps(Ps), ds(Ds), ws(W0), pta(0.25, Ps,_Ds,W0,W,800).

W0 = [-0.51, -0.35, 0.13]

W = [6.5085, 4.4705, -39.37]

?- ps(Ps), classify all(Ps,[6.5085, 4.4705, -39.37],Classes).

Classes = [1, 1, -1, 1, 1, -1, 1, 1]

Hint. Use Algorithm 1.6.4 (p. 35) in lieu of Algorithm 1.6.3. A minimal change to clause 1 of pta/2 (p. 30)
will do.

�

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

36

Accumulator Technique

Algorithm 1.6.4: PTA(c, [x(1), · · · ,x(N)], [d1, · · · , dN],w, m)

comment: Perceptron Training Algorithm.
Iterate m(> 0) number of times.

main
Weights ← w
Points ← [x(1), · · · ,x(N)]
DesiredOutputs ← [d1, · · · , dN]
Iterations ← m

repeat⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[P |OtherPs] ← Points

[D|OtherDs] ← DesiredOutputs

Weights ← Perceptron(c, P, D, Weights)
Points ← OtherPs ++ [P]
DesiredOutputs ← OtherDs ++ [D]
Iterations ← Iterations − 1

until Iterations = 0
output (Weights)

17From the procedure Perceptron in Fig. 1.12 it is seen that once a set of weights has been found which gives rise to correct
classification for all points, further iterations won’t change the weights’ values. Thus, the fact that after 800 iterations some of
the points are misclassified, shows that any lesser number of iterations won’t do either. 801 is therefore the minimum number of
iterations needed for correct classification.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Prolog Techniques

37

Difference Lists

Chapter 2

Difference Lists

Owing to the availability of unification in Prolog, there is a useful technique that allows predicates involving
certain list operations to be implemented very efficiently. Because at the conceptual level the technique appears
to be manipulating ’differences of lists’, it is known as the Difference List Technique.

2.1 Implementations of List Concatenation

Suppose we want to concatenate the two lists [a,b,c] and [d,e] to give us the new list [a,b,c,d,e]; in other
words, we want to append the list [d,e] to the list [a,b,c]. We can do this by the built-in predicate append/3
as follows:

?- append([a,b,c],[d,e],L).

L = [a, b, c, d, e]

We use Prolog’s listing/1 to display the definition of append/3 :

?- listing(append/3).

append([], A, A).

append([A|B], C, [A|D]) :- append(B, C, D).

Due to its recursive definition, append/3 will be invoked four times when running our example. In general, the
depth of the proof tree will be proportional to the length of the list in the first argument.

We want to explore a computationally more economical approach to the problem of list concatenation. Let
us place in the database the following one-line definition of app dl1/4 :1

app_dl1(A,B,B,A).

Let us carry out the following experiment:

?- app_dl1([a,b,c|X],X,[d,e],Z).

X = [d, e]

Z = [a, b, c, d, e]

1Notation: app stands for append ; dl stands for difference list ; and, 1 indicates that it is the first version – other (improved)
versions soon to follow.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

38

Difference Lists

We have accomplished the intended append operation once again! Let us examine how. The following unifica-
tions have taken place:

1. A is unified with [a,b,c|X].

2. B is unified with X.

3. B is instantiated to [d,e].

4. A is unified with Z.

It is easily seen that the net result of 1–4 is that Z is instantiated to [a,b,c,d,e]. We now define a new
predicate app dl2/3 which is slightly different but still equivalent to app dl1/4 :

app_dl2(A-B,B,A).

(We have chosen, for reasons to be explained soon, to reduce the arity by one by ’merging’ the first two arguments
of app dl1/4 to a hyphenated term.2) Let us see how app dl2/3 behaves:

?- app dl2([a,b,c|X]-X,[d,e],Z).

X = [d, e]

Z = [a, b, c, d, e]

We get the earlier response since the unification steps carried out are as before. The hyphen notation chosen in
app dl2/3 is more customary, however, and it lends itself to the following interpretation.

The term [a,b,c|X]-X is interpreted as a representation of the list [a,b,c] in difference list nota-
tion. The variable X stands for any list. If we unify this term with Y-[], then Y will be instantiated
to [a,b,c] in the usual list notation:

?- [a,b,c|X]-X = Y-[].

X = []

Y = [a, b, c] ;

No

Fig. 2.1 shows how the three conceptual lists are interrelated. It must be emphasized that the above interpre-
tation is a mere working model for what is actually taking place inside Prolog. It turns out, however, that it is
unnecessary to look beyond this conceptual model when working with ’difference lists’. To reinforce this point,
let us consider yet another (the fourth) version of append :

app_dl4(A-B,B-C,A-C).

2We could have chosen some other operator for the term in the first argument of the new predicate; for example, the same
effect is achieved by:

:- op(50,xfx,&).

...

app dl3(A&B,B,A).

The first line – a directive – declares & as an infix operator of precedence 50. In the first argument of app dl3/3 a term A&B replaces
the former A-B. The response will be as before:

?- app dl3([a,b,c|X]&X,[d,e],Z).

X = [d, e]

Z = [a, b, c, d, e]

If the hyphen (-) is chosen to denote difference lists, however, no operator declaration is required since it is a Prolog built-in.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

39

Difference Lists

[a,b,c|X]︷ ︸︸ ︷

︸ ︷︷ ︸
X

︸ ︷︷ ︸
[a,b,c|X] - X

Figure 2.1: Difference List

All arguments of app dl4/3 are difference lists; the earlier query now reads as follows.

?- app_dl4([a,b,c|X]-X,[d,e|Y]-Y,Z1-Z2).

X = [d, e|_G370]

Y = _G370

Z1 = [a, b, c, d, e|_G370] Z2 = _G370 ;

No

The (difference) lists involved here are interrelated as shown in Fig. 2.2. The concatenated list is returned in
the last argument of app dl4/3 in the form of [a, b, c, d, e| G370]- G370.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

40

Difference Lists

(G370 is some internally chosen variable name.) It is easily seen that this is accomplished in one unification

[a,b,c]

A︷ ︸︸ ︷

︸ ︷︷ ︸
B

︸ ︷︷ ︸
A - B

[d,e]

︸ ︷︷ ︸
C

︸ ︷︷ ︸
B - C︸ ︷︷ ︸

A - C = [a,b,c,d,e]

Figure 2.2: List Concatenation by Difference Lists

step irrespective of the lengths of the lists to be concatenated. (Appending difference lists is therefore a constant
time operation.)

We now want to confirm all this experimentally, too. To get started, we need some method for creating
difference lists. One way forward is by means of append/3 . For example, in

?- setof(N,between(1,5, N),Ns), append(Ns,X,L), DL = L-X.

Ns = [1, 2, 3, 4, 5]

X = G468

L = [1, 2, 3, 4, 5| G468]

DL = [1, 2, 3, 4, 5| G468]- G468

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

41

Difference Lists

Built-in Predicates: bagof/3 and setof/3

bagof(+Item,+Goal,?Items) is used to collect in the list Items instances of
Item for which Goal is satisfied. Free variables in Goal will be instantiated
to values for which Goal succeeds. Example: Throw two dice to record all
possible results whose sum does not exceed 3.

?- bagof((D1, D2),(between(1,6, D1), between(1,6, D2),

S is D1 + D2, S =< 3), Pairs).

S = 2 Pairs = [(1, 1)] ;

S = 3 Pairs = [(1, 2), (2, 1)] ;

No

We collect the pairs irrespective of the values taken by S by

?- bagof((D1, D2), S^(between(1,6, D1), between(1,6, D2),

S is D1 + D2, S =< 3), Pairs).

Pairs = [(1, 1), (1, 2), (2, 1)] ;

No

setof/3 is used in a similar fashion except that the entries in Items are sorted

in ascending order and there are no multiple entries in Items .

the list [1,2,3,4,5] is written as a difference list DL using the internal variable G468.

Built-in Predicate: between(+Low,+High,?Value)

On backtracking, the variable Value is unified with all integer values between
Low and High . Example:

?- between(-1,3,V).

V = -1 ;

V = 0 ;

...

We now append to DL the difference list form of [d,e] and also measure the number of inferences by time/1 :

?- setof(N,between(1,5, N),Ns), append(Ns,X,L), DL = L-X,

time(app_dl4(DL,[d,e|Y]-Y,Z1-Z2)).

% 1 inferences in 0.00 seconds (Infinite Lips)

Ns = [1, 2, 3, 4, 5]

X = [d, e| G691]

L = [1, 2, 3, 4, 5, d, e| G691]

DL = [1, 2, 3, 4, 5, d, e| G691]-[d, e| G691]

Y = G691

Z1 = [1, 2, 3, 4, 5, d, e| G691]

Z2 = G691

We need one single inference step only. On the other hand, the corresponding operation with proper lists is
more expensive (6 inferences):

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

42

Difference Lists

?- setof(N,between(1,5, N),Ns), time(append(Ns,[d,e],Z)).

% 6 inferences in 0.00 seconds (Infinite Lips)

Ns = [1, 2, 3, 4, 5]

Z = [1, 2, 3, 4, 5, d, e]

(You may wish to repeat the experiment with larger lists by adjusting the second argument in between/3

above.)

2.2 Implementations of List Flattening

Lists in Prolog can have a nested structure; for example, [a,[b,[],[c,a],e]] is a valid list. The built-in
predicate flatten/2 is designed to ‘linearize’ lists as indicated below:

?- flatten([a,[b,[],[c,a],e]],L).

L = [a, b, c, a, e]

In this section, we are going to explore several implementations of flatten/2 the most efficient of which will
turn out to be the one based on the difference list technique.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Prolog Techniques

43

Difference Lists

2.2.1 Project: Lists as Trees & flatten/2

The usual square bracket notation for lists is just a notational convenience. The underlying (but not immediately
obvious) structure is that of a term with the functor ‘. ’ (dot). This may be demonstrated by using the triad
of built-in predicates functor/3 , arg/3 and=../2 3. For example,

?- functor([a,b,c],F,A).

F = ’.’

A = 2

shows that the list [a,b,c] (as any list) is represented as a term with arity 2 and functor ‘.’. We may find the
values of the term’s first and second argument respectively by

?- arg(1,[a,b,c],A).

A = a

and

?- arg(2,[a,b,c],A).

A = [b, c]

The same may be gleaned from using univ :

?- [a,b,c] =.. L.

L = [’.’, a, [b, c]]

Finally, we may even use the dot-notation when working with lists; for example, [b,c] may be appended to
[a] by

?- append(.(a,[]),.(b,.(c,[])),L).

L = [a, b, c]

Even though lists are not written in practice in this way (since the square bracket notation is more suited
to human use), the dot-notation is useful for representing the structure of lists (and that of nested lists in
particular) as a tree of terms. As an example, the tree representation of the list [a,[b,[],[c,a],e]] is shown
in Fig. 2.3. The following is easily observed:

• The flattened list [a,b,c,a,e] may be formed from the tree representation of [a,[b,[],[c,a],e]] by
visiting all leaf terms in turn in a counter-clockwise direction and by collecting those leaves from left-hand
branches which are not the empty list [] .

This process will flatten any list. Exercises 2.1– 2.3 below elaborate on this idea, leading to an implementation
of flatten/2 .

We can easily convert from the dot-notation to the square bracket notation; for example,

?- L = .(a, .(.(b, .([], .(.(c, .(a, [])), .(e, [])))), [])).

L = [a, [b, [], [c, a], e]]

The reverse process has to be programmed.
Exercise 2.1. Define a predicate sharp/2 for converting lists into terms with functor #/2 as exemplified

by the following query.4

3This is an infix predicate and is called univ.
4Ideally, we would like to have a predicate for converting lists in the square bracket notation to a (possibly nested) term with

functor ’. ’. However, this is not immediately achievable since as soon as Prolog sees a term whose functor is ’. ’ it will automatically
display it in the square bracket notation.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

44

Difference Lists

a

b

[]

c

a []

�
�

�

�
�
�

•

�
�

�
�

�
�
�

•

e []

�
�

�

�
�
�

•

�
�

�
�

������

•

����������

	
	
	

•

�
�
�

•

���������������

�
�
�

•

Figure 2.3: Tree Representation of [a,[b,[],[c,a],e]]

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Prolog Techniques

45

Difference Lists

?- sharp([a,[b,[],[c,a],e]],S).

S = #(a, #(#(b, #([], #(#(c, #(a, [])), #(e, [])))), []))

�

Hint. The definition should be recursive and the ‘boundary case’ may be verified by using the built-in predicate
proper list/1 .

If we now had a predicate lf/2 for returning the leaf nodes from the # -tree of a list (as specified earlier),
we could easily implement flatten/2 , as indicated by

?- sharp([a,[b,[],[c,a],e]], S), bagof(L,lf(S, L),Ls).

Ls = [a, b, c, a, e]

Exercise 2.2. Define a predicate lf(+S,-L) which on backtracking unifies L with the left-hand leaves (not
equal to []) of the # -tree S :

?- lf(#(a, #(#(b, #([], #(#(c, #(a, [])), #(e, [])))), [])),L).

L = a ;

L = b ;

L = c ;

L = a ;

L = e ;

No

�

Note. Your implementations of sharp/2 and lf/2 should be able to cope with lists involving variables, too:

?- sharp([a,[Y,[b,X]],c,f(X)],S).

Y = G315

X = G321

S = #(a,#(#(G315,#(#(b,#(G321,[])),[])),#(c,#(f(G321),[]))))

?- sharp([a,[Y,[b, X]],c,f(X)],_S), !, lf(S,Leaf).

Leaf = a ;

Leaf = G435 ;

Leaf = b ;

Leaf = G441 ;

Leaf = c ;

Leaf = f(G441) ;

No

Exercise 2.3. Now define a first version of flatten/2 :

?- flatten 1([a, [b, [], [c, a], e]],L).

L = [a, b, c, a, e]

?- flatten 1([a,[Y,[b,X]],c,f(X)],L).

Y = G339

X = G345

L = [a, G339, b, G345, c, f(G345)]

�

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

46

Difference Lists

As indicated in Exercise 2.1, in the first instance Prolog won’t convert a list to a term whose functor is
the dot; more precisely, such a conversion won’t be visible since Prolog automatically shows lists in the square
bracket notation. There are two ways, however, to instruct the Prolog system to suppress this conversion
automatism.

• The built-in predicate write term/2 may be used to display a term such that any list within it will be
shown in the generic term-representation using the ‘. ’ functor:

?- write term([a,[b,[],fun([c,a]),e]],[ignore ops = true]).

.(a,.(.(b,.([],.(fun(.(c,.(a,[]))),.(e,[])))),[]))

The second argument of write term/2 is a list-of-options where the flag ignore ops is set to true ; the
default is false .

• We may achieve the same effect for the entire interactive session by the built-in predicate set prolog flag/2 ;
this is exemplified below:

?- L = [a, [b, [], fun([c, a]), e]].

L = [a, [b, [], fun([c, a]), e]]

?- set prolog flag(toplevel print options,[ignore ops=true]).

Yes

?- L = [a, [b, [], fun([c, a]), e]].

L = .(a,.(.(b,.([],.(fun(.(c,.(a,[]))),.(e,[])))),[]))

Once it has been set by the user with set prolog flag/2 , the state of ignore ops is checked by the
built-in predicate current prolog flag/2 :

?- current prolog flag(toplevel print options,[ignore ops=V]).

V = true

In the next exercise, you are asked to implement a predicate allowing lists to be shown in the dot-notation.
Exercise 2.4. Based on sharp/2 from Exercise 2.1, define a predicate dot/1 for displaying lists in the

dot-notation as exemplified by the following query.

?- dot([a, [b, [], [c, a], e]]).

.(a, .(.(b, .([], .(.(c, .(a, [])), .(e, [])))), []))

Thus the predicate dot/1 will be something akin to write term/2 (with the flag ignore ops set to true).
However, lists within Prolog terms with other than the dot-functor should be displayed by dot/1 in the square
bracket notation:

?- dot([a, [b, [], fun([c, a]), e]]).

.(a, .(.(b, .([], .(fun([c, a]), .(e, [])))), []))

Hint. Proceed along the following lines.

• Use the built-in predicate term to atom/2 to convert the list in the sharp-notation to an atom.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

47

Difference Lists

Built-in Predicate: term to atom(?Term,?Atom)

The atom Atom corresponds to the term Term . Example:

?- term to atom(fun1(a,fun2(c),d),A).

A = ’fun1(a, fun2(c), d)’

• Convert the atom into a list of one-character atoms by using the built-in predicate atom chars/2 (c.f.
p. 126).

• Define a predicate sharps to dots/2 by the accumulator technique for converting sharps to dots.5 Ex-
ample:

?- sharps_to_dots([#, ’(’, a, ’,’, ’[’, ’]’, ’)’],D).

D = [’.’, ’(’, a, (’,’), ’[’, ’]’, ’)’]

5Alternatively, the built-in function maplist/3 from p. 127 may be used to define sharps to dots/2 .

EADS unites a leading aircraft manufacturer, the world’s largest
helicopter supplier, a global leader in space programmes and a
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments
during your studies. Given a high level of responsibility, plenty of

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across
disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also
find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

Download free eBooks at bookboon.com

Prolog Techniques

48

Difference Lists

• Finally, concatenate the list of one-character atoms thus obtained to an atom by using concat atom/2

from p. 126. Also show the result.

�

2.2.2 Flattening Lists by append/3

Another implementation6 of flatten/2 , proposed by Clocksin in [1], p. 58, uses the predicate append/3 :

Prolog Code P-2.1: Clocksin’s definition of flatten/2

1 flatten_3([],[]). % clause 1

2 flatten_3([H|T],L1) :- flatten_3(H,L2), % clause 2

3 flatten_3(T,L3), %

4 append(L2,L3,L1). %

5 flatten_3(X,[X]). % clause 3

This definition is easily understood through a declarative reading:

• Clause 1: This is the base case. It says that an empty list is flattened into an empty list.

• Clause 2: This is the recursive step. A list [H|T] (whose head H is possibly a list itself) is flattened in
the following steps.

1. Flatten the head H .

2. Flatten the tail T .

3. Concatenate the latter two flattened lists.

• Clause 3: The flattened version of a term that unifies neither with [] nor with [H|T] is the term itself.
This clause is intended to cater for the case of list entries which are not themselves lists; a ground atom
(i.e. a one without a variable) is an example thereof.

List flattening defined by (P-2.1) works as intended for (nested) lists whose tree representation has leaves
which are ground atoms or are terms with other than the dot functor; for example,

?- flatten_3([a,[b,[f(X,d),[]],[c,f(X),a],e]],L).

X = _G414

L = [a, b, f(_G414, d), c, f(_G414), a, e]

However, lists some of whose leaves are free variables, won’t be correctly flattened by flatten 3/2 :

?- flatten_3([a,[Y,[b,X]],c,f(X)],L).

Y = []

X = []

L = [a, b, c, f([])]

Exercise 2.5. Augment the definition of flatten 3/2 such that it correctly handles also lists involving
free variables. Another (though easy to rectify) shortcoming of flatten 3/2 is that on backtracking it will
return spurious solutions:

6We count this implementation as version 3 as you will find, in connection with the solution of Exercise 2.3, a ‘version 2’ is
discussed in Appendix A.2 on p. 147.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

49

Difference Lists

?- flatten 3([a, [b, [], [c, a], e]],L).

L = [a, b, c, a, e] ;

L = [a, b, c, a, e, []]

Your improved implementation (version 4) should solve also this problem.

�

2.2.3 flatten/2 by the Difference List Technique

(P-2.2) shows a clause-by-clause ‘translation’ of the definition of flatten 3/2 in terms of difference lists ([1],
p. 58).

Prolog Code P-2.2: Difference list based definition of flatten/2

1 flatten_5(L,F) :- flatten_dl(L,F-[]), !. % clause 1

2 %

3 flatten_dl([],L-L). % clause 2

4 flatten_dl([H|T],L1-L3) :- flatten_dl(H,L1-L2), % clause 3

5 flatten_dl(T,L2-L3). %

6 flatten_dl(X,[X|Z]-Z). % clause 4

The append goal does not appear in (P-2.2) as list concatenation is now accomplished by difference lists.
flatten 5/2 will behave identically to flatten 3/2 except that its solution is unique because of the cut (!)
in clause 1.

Exercise 2.6. The predicate flatten 5/2 in (P-2.2) won’t correctly flatten lists involving free variables.
Modify (P-2.2) to resolve this problem.

�

2.2.4 Comparing Different Versions

We have developed several versions of flatten/2 in the previous section and now their relative performance
will be assessed. To do this, we need a way of generating nested lists which are ‘complicated’ enough to cause
a noticeable amount of computing time when flattened. A predicate nested(+Num,-List) will prove useful for
this purpose: given the positive integer Num , List should be unified with a nested list in the following fashion:

?- nested(9,L).

L = [[[[[[[[[1], 2], 3], 4], 5], 6], 7], 8], 9]

Exercise 2.7. Define the predicate nested/2 by the accumulator technique and then use it to time the
performance of the various versions of flatten/2 by the built-in predicate time/1 .

�

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

50

Difference Lists

2.3 Implementations of List Reversal

There are several ways we can define our own version of the built-in predicate reverse/2 . Its first implemen-
tation (P-2.3) uses append/2 .

Prolog Code P-2.3: First implementation of reverse/2

1 reverse_1([],[]). % clause 1

2 reverse_1([H|T],R) :- reverse_1(T,L), % clause 2

3 append(L,[H],R). %

A declarative reading of clause 2 in (P-2.3) is suggested in Fig. 2.4.

H T� �

T H

︸ ︷︷ ︸
L︸ ︷︷ ︸

R

� �
�

Figure 2.4: Declarative Reading of (P-2.3)

Another implementation of list reversal, now by the accumulator technique, is by (P-2.4) (see Example 1.1,
p. 16):

Prolog Code P-2.4: A second implementation of reverse/2

1 reverse([],R,R). % clause 1

2 reverse([H|T],Acc,R) :- reverse(T,[H|Acc],R). % clause 2

3 reverse_2(L,R) :- reverse(L,[],R). % clause 3

(P-2.3) may be rewritten in terms of difference lists as follows:

Prolog Code P-2.5: Definition of reverse/2 by difference lists

1 rev_dl([],L-L). % clause (a1)

2 rev_dl([X],[X|L]-L). % clause (a2)

3 rev_dl([H|T],L1-L3) :- rev_dl(T,L1-L2), % clause (a3)

4 rev_dl([H],L2-L3). %

5 reverse_3(L,R) :- rev_dl(L,R-[]), !.

Notice that clause (a2) in (P-2.5) does not directly correspond to any of the clauses in (P-2.3); it simply defines
the difference list representation of (the reverse of) a list with a single entry.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

51

Difference Lists

2.3.1 Program Transformations

The performance of a predicate with a given definition can sometimes be enhanced by employing certain trans-
formations leading to a new but logically equivalent form. Even though this topic is not directly related to the
difference list technique, it is opportune to address this issue here. Specifically, we are going to demonstrate how
the three clauses (a1)–(a3) in (P-2.5) can be transformed by folding and unfolding into the logically equivalent
clauses (b1)–(b2) in (P-2.6):

Prolog Code P-2.6: Concise definition of rev dl/2

1 rev_dl([],L-L). % clause (b1)

2 rev_dl([H|T],L1-L2) :- rev_dl(T,L1-[H|L2]). % clause (b2)

(For an in-depth exposition of both folding and unfolding, see [9].)

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Prolog Techniques

52

Difference Lists

Unfolding

Let us assume that we have in our Prolog knowledge base two clauses of the following form:

A : − B1, ..., Bm, C, Bm+1, ..., Bn. (2.1)

C : − D1, ..., Dk. (2.2)

Then the clause

A : − B1, ..., Bm, D1, ..., Dk, Bm+1, ..., Bn. (2.3)

is a logical consequence of (2.1)–(2.2), inferred by an Elementary Unfolding Operation. Equation (2.3) is said
to have been obtained by unfolding (2.1) upon the goal C. We note that,

• The requirement that the head of one clause be identical to one of the goals in the body of another clause
can be relaxed to the two unifying. (This is a mere reflection on Prolog’s inference mechanism.)

• In general, the new clause (2.3) won’t be a replacement for (2.1) since in the database there may be other
clauses whose head is identical to (or unifies with) the goal C in (2.1). To replace a clause like (2.1), we
would have to carry out each and every possible elementary unfolding operation on the goal C in (2.1);
in such a case, a Complete One Step Unfolding (COSU) is said to have been carried out.

• Finally, the two clauses (2.1) and (2.2) need not be distinct; they may be replicas of one and the same
clause from the database. In fact, for a COSU, also such ’self-unfoldings’ have to be considered. (This
may be of interest for recursively defined predicates.)

Let us now turn to our specific example: we want to do a COSU on the call rev dl([H],L2-L3) in clause (a3)
of (P-2.5). We represent the clauses (a1)–(a3) in (P-2.5) equivalently by (P-2.7)

Prolog Code P-2.7: Equivalent form of (a1)–(a3) in (P-2.5)

1 rev_dl([],L-L) :- true.

2 rev_dl([X],[X|L]-L) :- true.

3 rev_dl([U|V],W1-W3) :- rev_dl(V,W1-W2),

4 rev_dl([U],W2-W3).

and then seek to unify in turn the head of each with the term rev dl([H],L2-L3) . This can be done ‘by hand’,
or, more reliably, by using Prolog’s unification mechanism:

?- rev_dl([],L-L) = rev_dl([H],L2-L3).

No

?- rev_dl([X],[X|L]-L) = rev_dl([H],L2-L3).

X = _G372

L = _G376

H = _G372

L2 = [_G372|_G376]

L3 = _G376

Yes

?- rev_dl([U|V],W1-W3) = rev_dl([H],L2-L3).

U = _G372

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

53

Difference Lists

V = []

W1 = _G375

W3 = _G376

H = _G372

L2 = _G375

L3 = _G376

Yes

The first unification attempt fails. The second unification succeeds and gives rise to the clause

rev_dl([_G372|T],L1-_G376) :- rev_dl(T,L1-[_G372|_G376]), true.

The third unification also succeeds, giving rise to the clause

rev_dl([_G372|T],L1-_G376) :- rev_dl(T,L1-_G375),

rev_dl([],_G375-W2),

rev_dl([_G372],W2-_G376).

(This last step is an instance of an elementary unfolding operation involving self-unfolding.) The one step
unfolding operation is now complete and the last two clauses thus obtained may replace clause (a3) in (P-2.5).
The new database is shown in (P-2.8).7

Prolog Code P-2.8: Partially transformed clauses

1 rev_dl([],L-L). % clause (a1)

2 rev_dl([X],[X|L]-L). % clause (a2)

3 rev_dl([H|T],L1-L2) :- rev_dl(T,L1-[H|L2]). % clause (a3.1)

4 rev_dl([H|T],L1-L3) :- rev_dl(T,L1-L2), % clause (a3.2)

5 rev_dl([],L2-W), %

6 rev_dl([H],W-L3). %

As is illustrated here, the new database after unfolding is not smaller than the initial one. We shall, however,
shortly identify the clauses (a2) and (a3.2) in (P-2.8) as redundant.

Clause (a2) in (P-2.8) is redundant for it may be inferred from (a1) and (a3.1) in an elementary unfolding
operation on the call rev dl(T,L1-[H|L2]) in clause (a3.1).8 The requisite unification is

?- rev_dl([],L-L) = rev_dl(T,L1-[H|L2]).

L = [_G360|_G361]

T = []

L1 = [_G360|_G361]

H = _G360

L2 = _G361

Yes

It gives rise to the clause

rev_dl([_G360|[]],[_G360|_G361]-_G361) :- true.

which, after some variable renaming, is recognized as clause (a2) in (P-2.8).
It is seen that sometimes the database may be reduced by showing that one of its clauses can be inferred

from the other ones by unfolding. Here, for a further reduction of the database we need another technique,
called folding.

7Notice that some of the variables are renamed when writing down (P-2.8).
8As before, read clause (a1) in (P-2.8) as rev dl([],L-L):- true.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

54

Difference Lists

Folding

Let us assume that we have two clauses in the Prolog database that are of the form

A : − B1, ..., Bm, C, Bm+1, ..., Bn. (2.4)

D : − C. (2.5)

Let us furthermore assume that (2.5) is the only clause in the database whose head is the term D. Then, if
during the computation it is found that the goal D succeeds, we can infer that also C holds.9 We can therefore
augment the database by the clause

A : − B1, ..., Bm, D, Bm+1, ..., Bn. (2.6)

called the folding of clause (2.4). A more general formulation says that if some term D′ is found to hold which
unifies with D, then

A : − B1, ..., Bm, D′, Bm+1, ..., Bn.

may be inferred in lieu of clause (2.6).
We now want to apply these ideas to eliminate clause (a3.2) in (P-2.8). As a first step, we show that the

clauses

L1 = L2 :- rev_dl([],L1-L2). % clause (c1)

W1 = [E|W2] :- rev_dl([E],W1-W2). % clause (c2)

are a logical consequence of (a1) and (a3.1) in (P-2.8).10

To justify (c1), we observe that

• Clause (a1) is equivalent to

rev_dl([],L1-L2) :- L1 = L2. % clause (d)

• The term rev dl([],L1-L2) does not unify with any of the heads in (a1) and (a3.1) hence we may infer
clause (c1) from clause (d). (This reasoning is identical to that for justifying folding.)

To justify (c2), we observe that

• rev dl([E],W1-W2) will unify with the head of clause (a3.1) only:

?- rev dl([E],W1-W2) = rev dl([H|T],L1-L2).

E = _G372

W1 = _G375

W2 = _G376

H = _G372

T = []

L1 = _G375

L2 = _G376

Yes

9In the absence of clause (2.5), the query ?- not(D). would succeed by the Closed World Assumption which states that the
negation of anything which cannot be inferred from the database is deemed true. Therefore, D can only hold if C holds.

10More precisely, (c1) and (c2) are a consequence of the completion of (a.1) and (a3.1).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

55

Difference Lists

• We may therefore infer the ‘reverse’ of clause (a3.1) with the above instantiation pattern as

rev_dl([],_G375-[_G372|_G376]) :- rev_dl([_G372|[]],_G375-_G376).

or, in a more readable format,

rev_dl([],W1-[E|W2]) :- rev_dl([E],W1-W2). % clause (e)

• Finally, we use clause (e) to obtain clause (c2) by unfolding on the call
rev dl([],L1-L2) in clause (c1).

To infer now clause (a3.2) from (a1) and (a3.1) we hypothesize the body (i.e. the conjunction of the goals)
of (a3.2):

rev_dl(T,L1-L2), rev_dl([],L2-W), rev_dl([H],W-L3).

We infer by clause (c1) that

L2 = W.

and therefore

rev_dl([H],L2-L3).

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Prolog Techniques

56

Difference Lists

from which by clause (c2)

L2 = [H|L3].

and therefore

rev_dl(T,L1-[H|L3]) :- true.

Unfold now clause (a3.1) to get

rev_dl([H|T],L1-L3).

which is indeed the head of clause (a3.2).11

An interpretation of clause (b2) in (P-2.6) is shown in Fig. 2.5. It admits the following declarative interpre-

H T� �

T H

L2︷ ︸︸ ︷

︸ ︷︷ ︸
[H|L2]

︸ ︷︷ ︸
L1 - [H|L2]︸ ︷︷ ︸

L1

� �
�

Figure 2.5: Illustrating Clause (b2) in (P-2.6)

tation:

The difference list L1-L2 is the reverse of the list [H|T] if the difference list L1-[H|L2] is the
reverse of T .

(This shows once again that we can think of difference lists as if they were true differences of lists!)
Exercise 2.8. Time the performance of the four versions of reverse/2 and comment on the results. You

should generate long lists (of consecutive integers) by using the built-in predicates between/3 and findall/3 .12

�

Exercise 2.9. Fig. 2.6 is an analogue of Fig. 2.5 for an enhanced implementation of reverse/2 , also based
on the difference list technique.

(a) Give a declarative reading of Fig. 2.6.

(b) Define a new version of reverse/2 based on Fig. 2.6.

(c) Obtain your new version also by unfolding clause (b2).

11The foregoing reasoning is an instance of the application of the Implication Introduction Rule in Propositional Calculus.
12findall/3 is identical to bagof/3 (see p. 41) except that findall/3 will return the empty list and succeed in cases where

bagof/3 fails.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

57

Difference Lists

(d) Assess the new version’s behaviour as in Exercise 2.8.

(e) What would be a further enhancement to this implementation and how could the idea be generalized?

�

E1 E2 T� �

T E2 E1

L2︷ ︸︸ ︷

︸ ︷︷ ︸
[E2,E1|L2]

︸ ︷︷ ︸
L1 - [E2,E1|L2]︸ ︷︷ ︸

L1

� �
�

� �
�

Figure 2.6: Illustrating Exercise 2.9

2.3.2 Difference Lists as Accumulators

Close inspection of clause (b2) in (P-2.6) reveals another interesting feature. If rev dl is interpreted as a
predicate with arity 3 then its third argument may be thought of as an accumulator akin to the second argument
of reverse/3 in (P-2.4), p. 50. The other two arguments also correspond to each other accordingly. This
shows, perhaps surprisingly, that two techniques based on entirely different approaches may result in the same
implementation. (You will find some other examples on the similarity of the two techniques in [16], pp. 243–244.)

2.4 Case Study: Dijkstra’s Dutch Flag Problem

We use Dijkstra’s Dutch Flag Problem (e.g. [16]) to illustrate how a predicate defined in terms of append/3

can be recast to a more efficient form by the difference list technique.
A list of terms of the form col(Object,Colour) is defined by the predicate items/1 where Colour is one

of the Dutch national colours, i.e. red, white or blue.

items([col(sky,blue), col(tomato,red), col(milk,white),

col(blood,red), col(ocean,blue), col(cherry,red),

col(snow,white)]).

We want to define a predicate dijkstra/2 for arranging the items in the order of the Dutch flag’s colours.
Within each colour group, the original order should be retained:

?- items(Items), dijkstra(Items,Grouped).

Grouped = [col(tomato, red), col(blood, red), col(cherry, red),

col(milk, white), col(snow, white), col(sky, blue),

col(ocean, blue)]

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

58

Difference Lists

2.4.1 Basic Implementation Using append/3

The idea for a basic version of dijkstra/2 is as follows. We define three predicates — one for each colour —
for returning the list of items of that particular colour. These lists are then concatenated to a list of grouped
items.

Below is shown the definition of reds(+Items,-Reds) ; the other two predicates are defined in an analogous
manner.

Prolog Code P-2.9: Definition of reds/2

1 reds([],[]). % clause 1

2 reds([col(Object,red)|T],[col(Object,red)|L]) :- reds(T,L). % clause 2

3 reds([col(_,Colour)|T],L) :- Colour \= red, % clause 3

4 reds(T,L). %

(P-2.9) is a straightforward recursive definition supported by the following declarative reading:

• Clause 1: If Items is the empty list then Reds will be empty.

• Clause 2: Assume that the list L comprises all red entries of T . Then, the same relationship holds for the
lists [Item|L] and [Item|T] if Item is red.

• Clause 3: Assume again that the list L comprises all red entries of T . Also assume that Item is not red.
Then, L comprises all red entries of the augmented list [Item|T] .

reds/2 behaves as expected,

?- items(Items), reds(Items,Reds).

Reds = [col(tomato, red), col(blood, red), col(cherry, red)]

dijkstra/2 may now be defined by (P-2.10).

Prolog Code P-2.10: A first definition of dijkstra/2

1 dijkstra(Items,Grouped) :- reds(Items,R),

2 whites(Items,W),

3 blues(Items,B),

4 append(R,W,RandW),

5 append(RandW,B,Grouped).

2.4.2 A More Concise Version

The predicates reds/2 , whites/2 and blues/2 from Sect. 2.4.1 are structurally identical; their structure is
captured by that of colour/3 in (P-2.11).

Prolog Code P-2.11: Definition of colour/3

1 colour(_,[],[]).

2 colour(Clr,[col(Object,Clr)|T],[col(Object,Clr)|L]) :- colour(Clr,T,L).

3 colour(Clr,[col(_,Colour)|T],L) :- Colour \= Clr,

4 colour(Clr,T,L).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

59

Difference Lists

It is clear that once the first argument of colour/3 is instantiated to a particular colour, it will behave as the
predicate for the corresponding colour; for example,

?- items(Items), colour(red, Items,Reds).

Reds = [col(tomato, red), col(blood, red), col(cherry, red)]

This suggests a second implementation of dijkstra/2 , shown in (P-2.12).

Prolog Code P-2.12: A second definition of dijkstra/2

1 dijkstra(Items,Grouped) :- colour(red,Items,R),

2 colour(white,Items,W),

3 colour(blue,Items,B),

4 append(R,W,RandW),

5 append(RandW,B,Grouped).

2.4.3 Using Difference Lists

As dijkstra/2 uses list concatenation by append/3 , it is a candidate for being recast in terms of difference
lists.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Prolog Techniques

60

Difference Lists

• First, we define colour dl/3 in (P-2.13) by using difference lists.

Prolog Code P-2.13: Definition of colour dl/3

1 colour_dl(_,[],L-L).

2 colour_dl(Clr,[col(Object,Clr)|T],[col(Object,Clr)|L1]-L2) :-

3 colour_dl(Clr,T,L1-L2).

4 colour_dl(Clr,[col(_,Colour)|T],L1-L2) :-

5 Colour \= Clr,

6 colour_dl(Clr,T,L1-L2).

• Then, we concatenate in (P-2.14) the three lists of groups by dijkstra dl/2 .

Prolog Code P-2.14: Definition of dijkstra dl/2

1 dijkstra_dl(Items,L1-L4) :- colour_dl(red,Items,L1-L2),

2 colour_dl(white,Items,L2-L3),

3 colour_dl(blue,Items,L3-L4).

• Finally, in (P-2.15) the grouped list Grouped (as a true list) is obtained by unifying the difference list
with Grouped-[] .

Prolog Code P-2.15: dijkstra/2 based on difference lists

1 dijkstra(Items,Grouped) :- dijkstra_dl(Items,Grouped-[]).

Exercise 2.10. All versions of dijkstra/2 discussed thus far need three passes through the input list, one
for each colour. This inefficiency is avoided by the version defined by (P-2.16)–(P-2.17).

Prolog Code P-2.16: Definition of colour/4

1 colour([],[],[],[]).

2 colour([col(Object,red)|T],[col(Object,red)|R],W,B) :- colour(T,R,W,B).

3 colour([col(Object,white)|T],R,[col(Object,white)|W],B) :- colour(T,R,W,B).

4 colour([col(Object,blue)|T],R,W,[col(Object,blue)|B]) :- colour(T,R,W,B).

Prolog Code P-2.17: dijkstra/2 based on colour/4

1 dijkstra(Items,Grouped) :- colour(Items,R,W,B),

2 append(R,W,RandW),

3 append(RandW,B,Grouped).

(colour/4 features as an ‘amalgamation’ of the predicates reds/2 , whites/2 and blues/2 from Sect. 2.4.1.)

(a) Rewrite colour/4 and dijkstra/2 (from (P-2.17)) by using difference lists. Compare the performance
of all versions of dijkstra/2 available thus far by using time/1 .

(b) The version of dijkstra/2 from (P-2.17) as well as its difference list based version from (a) will fail if
one of the entries in Items is not coloured red, white or blue. Augment both predicates to avoid failure
for such inputs. (As before, Grouped should comprise exactly the items in the Dutch national colours.)

�

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

61

Difference Lists

2.5 Rotations

2.5.1 Rotating a List

Sometimes it is required to create a new (output) list by rotating some input list. We have met an example
thereof in Sect. 1.6 where in the course of the Perceptron Training Algorithm, the predicate transform/2 ,
defined in (P-1.15), p. 33, subjected some list of P s to a rotation. This meant that if [P|OtherPs] is unified
with the list of training points [p1,p2, · · · ,pN], say, then transform/2 will return in NewPs the ’rotated’
list [p2, · · · ,pN ,p1]. (The list of desired class labels [D|OtherDs] is subjected by transform/2 to the same
transformation.)

In (P-1.15), rotation was achieved by using append/3 . Difference lists offer a constant–time alternative to
accomplish the same (e.g. [1]) if the original list is a difference list; example:

?- [a1,a2,a3,a4|X]-X = [H|Y]-[H|Z], R = Y-Z.

X = [a1|_G397]

H = a1

Y = [a2, a3, a4, a1|_G397]

Z = _G397

R = [a2, a3, a4, a1|_G397]-_G397

Fig. 2.7 spells out how the above result can be modelled in terms of differences of lists.

a1 a2 a3 a4 X

[a1,a2,a3,a4|X]-X︷ ︸︸ ︷
︸ ︷︷ ︸

[H|Y]-[H|Z] [H|Z]︷ ︸︸ ︷
H Z

Y-[H|Z] = [a2,a3,a4]︷ ︸︸ ︷
H Y︸︷︷︸

[a1]

︸ ︷︷ ︸
Y-Z = [a2,a3,a4,a1]︸ ︷︷ ︸

[H|Y]

Figure 2.7: Rotating by Difference Lists

This idea easily carries over to more sophisticated schemes of computation where the result is based on some
input from the ‘front’ being transformed and placed to the ‘back’. For example, the core for computing the
averages of consecutive entries in a list of numbers may look like this:

?- [1,2,3,4|X]-X = [H1,H2|Y]-[Last|Z], Last is (H1 + H2)/2,

R = [H2|Y]-Z.

...

R = [2, 3, 4, 1.5|_G574]-_G574

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

62

Difference Lists

Exercise 2.11. Based on the above query, define averages dl(+DL,-ADL) for computing the pairwise
averages of adjacent numbers in a list of positive integers. Both, DL and ADL are represented in the difference
list format. Example:

?- averages dl([4,8,16,32| X]- X,ADL).

ADL = [6, 12, 24| G426]- G426 ;

No

Outline Idea. A version based on ordinary lists is shown in (P-2.18).

Prolog Code P-2.18: Definition of averages/2

1 averages(L,A) :- aver([-1,1|L],A), !. % clause 1

2 aver([_,0,_|T],T). % clause 2

3 aver(X,Result) :- av_rotate(X,Y), % clause 3

4 aver(Y,Result). %

5 av_rotate([H1,H2|Y],L) :- Last is (H1 + H2)/2, % clause 4

6 append([H2|Y],[Last],L). %

The auxiliary predicate av rotate/2 is the ordinary list based version of the ‘compute-the-average-and-rotate’
function. Let us show an example of how averages/2 will behave:

?- averages([4,8,16,32],A).

A = [6, 12, 24] ;

No

It is seen that the list for which the averages are to be computed is first appended to [-1,1]. This augmented
list is then transformed by repeated application of av rotate/2 (via a recursive call to aver/2) until the zero
(i.e. the average of the first two entries) moves to the second position. The final result is then obtained by
removing the first three entries of the list thus returned. (See also the hand computations in Fig. 2.8.) Rewrite
the above definition in terms of difference lists.

averages([4,8,16,32], A)
1©

��

aver([-1,1,4,8,16,32], A)
3©

�� aver([1,4,8,16,32,0], A)
3©

��

aver([4,8,16,32,0,2.5], A)
3©

�� aver([8,16,32,0,2.5,6], A)
3©

��

aver([16,32,0,2.5,6,12], A)
3©

�� aver([32,0,2.5,6,12,24], A) ��

aver([32,0,2.5 | [6,12,24]], A)
2©

�� A = [6,12,24])
1©

�� success

Figure 2.8: Hand Computations for averages/2

Notes.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

63

Difference Lists

❶ We may use this definition to implement afresh the averaging of ordinary lists of positive integers. We do
this by first converting the original list to a difference list by dl/2 , defined in (P-2.19).

Prolog Code P-2.19: dl/2 for list to difference list

1 dl([],L-L). % clause 1

2 dl([H|T],[H|L1]-L2) :- dl(T,L1-L2). % clause 2

Then, the list of averages may be computed thus.

?- dl([4,8,16,32], DL), averages dl(DL,A-[]).

A = [6, 12, 24] ;

No

❷ The difference list based version is faster than the one using append/3 . Faster still is the predicate defined
by simple recursion in (P-2.20).

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Prolog Techniques

64

Difference Lists

Prolog Code P-2.20: averages/2 by recursion

1 averages2([_],[]).

2 averages2([H1,H2|T],[A|AS]) :- A is (H1 + H2) / 2,

3 averages2([H2|T],AS).

�

Exercise 2.12. Give a pictorial illustration of clause 2 of dl/2 in (P-2.19). Based on this illustration, give
it a declarative reading.

�

The term ‘rotation’ is justified by the following consideration. We imagine the list entries to be labels to
movable beads threaded onto a circular wire. Our ‘rotation’ corresponds to each bead moving one position to
the left. The crucial step here is the identification (or ‘glueing together’) of both ends of the list. (See Fig. 2.9.)

�a3

a1

a2

a4

→

←
→

→

Figure 2.9: Rotating a List with Four Entries

2.5.2 The Perceptron Training Algorithm Revisited

As indicated before, there is scope for improving the Prolog implementation of the Perceptron Training Algo-
rithm from Sect. 1.6 by using difference lists. Carrying out the two rotations via difference lists, we now have
a new clause of transform/2 in (P-2.21).13

Prolog Code P-2.21: An additional clause for transform/2

1 transform(in(C,[P|TP1]-[P|TP2],[D|TD1]-[D|TD2],Ws,Acc),

2 in(C,TP1-TP2,TD1-TD2,NewWs,NewAcc)) :-

3 perceptron(C,P,D,Ws,NewWs),

4 NewAcc is Acc + 1.

The stopping criterion, originally implemented by classify all/3 in (P-1.14), p. 33, is also rewritten to acco-
modate difference lists; this is in (P-2.22).

Prolog Code P-2.22: Additional clauses for classify/3

1 classify_all(L-_,_,L1-L1) :- var(L).

2 classify_all([P|TP1]-TP2,Weights,[Class|TC1]-TC2) :-

3 classify(P,Weights,Class), !,

4 classify_all(TP1-TP2,Weights,TC1-TC2).

13See (P-1.15), p. 33, for the original definition of transform/2 .

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

65

Difference Lists

(P-2.21) and (P-2.22) are placed in the file where the earlier definitions are, as all previous definitions should
still apply.14 (The new clauses won’t clash with existing definitions.) To convert the list of training points and
the list of desired class labels to difference lists, we use the predicate dl/2 from Exercise 2.11. With these
additions then, we are now ready to run and confirm the computational advantage of the new version:15

?- ws(Ws), ps(_Ps), ds(_Ds), time(pta(0.25,_Ps,_Ds,Ws,W,801)).

% 41,335 inferences in 0.38 seconds (108776 Lips)

Ws = [-0.51, -0.35, 0.13] W = [3.018, 4.1935, -39.87]

?- ws(Ws), ps(_Ps), ds(_Ds), dl(_Ps,_PsDL), dl(_Ds,_DsDL),

time(pta(0.25,_PsDL,_DsDL,Ws,W,801)).

% 28,519 inferences in 0.28 seconds (101854 Lips)

Ws = [-0.51, -0.35, 0.13] W = [3.018, 4.1935, -39.87]

(We have excluded from the timing the conversions to difference lists by dl/2 as they present a constant
computational overhead whose relative contributions will be negligible as the number of iterations is increased.)

2.5.3 Planar Rotations16

To extend the notion of ‘rotation’ from lists to matrices, we consider list rotations once again. One way to
rotate the list L = [a1, a2, a3, a4] is indicated in Fig. 2.10:

1. Copy L infinitely many times along the line.

2. Shift the frame of L by one cell to the right. The framed entries form the rotated list.

3. Several successive rotations will be achieved by shifting the frame the requisite number of cells to the
right.

· · · a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 · · ·

�

Figure 2.10: The Original List and its Rotated Image

We want to consider the analogous construction in the plane. A two–dimensional rectangular pattern (i.e.
a matrix) of entries is given; this may be, for example, the three by four matrix

A =

⎡
⎣ a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎦ (2.7)

We tile the entire plane with copies of A and shift a three by four frame from A to South–East to obtain the
rotated matrix

A(rot) =

⎡
⎣ a22 a23 a24 a21

a32 a33 a34 a31

a12 a13 a14 a11

⎤
⎦

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

66

Difference Lists

··
·

··
·

··
·

··
·

··
·

··
·

··
·

· · · a34 a31 a32 a33 a34 a31 a32 · · ·

· · · a14 a11 a12 a13 a14 a11 a12 · · ·

· · · a24 a21 a22 a23 a24 a21 a22 · · ·

· · · a34 a31 a32 a33 a34 a31 a32 · · ·

· · · a14 a11 a12 a13 a14 a11 a12 · · ·

· · · a24 a21 a22 a23 a24 a21 a22 · · ·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

�
��

�
��

Figure 2.11: The Original Matrix A and its Rotated Image A(rot)

This is illustrated in Fig. 2.11. (Several such moves may be used for successive rotations.)

The argument to justify the term ‘rotation’ is now more involved. We first identify the two horizontal edges
of the matrix and glue them together. The result is a tube which then is treated as a flexible pipe. Then, both
ends of the pipe are glued together such that the first and last entries of each matrix row meet. What we then
have is a torus covered with the mesh of the matrix entries. Our ‘rotation’ corresponds to each entry moving
to its neighbouring North–Western cell.

Implementation

Initially, a matrix will be represented as a list of its rows which themselves are written as lists. Therefore, for
example, the matrix A in (2.7) may be defined by (P-2.23).

Prolog Code P-2.23: Definition of matrix a/1

1 matrix_a([[a11, a12, a13, a14],

2 [a21, a22, a23, a24],

3 [a31, a32, a33, a34]]).

(This is then a list of lists of Prolog atoms.)

Using Proper Lists. Rotations will be carried out in two stages as indicated in Fig. 2.12. First, in step 1©,
the list representations of rows undergo a rotation each; this is implemented by rot rows/2 in (P-2.24).

14All code pertinent to the Perceptron Training Algorithm is replicated in the file dl.pl.
15A similar result applies when calling pta/6 with a variable in its last argument.
16This section and the next are based on [4]. The author thankfully acknowledges the permission by Elsevier to republish this

material here.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

67

Difference Lists

1©
��

2©
��

[[a11, a12, a13, a14],

[a21, a22, a23, a24],

[a31, a32, a33, a34]]

[[a12, a13, a14, a11],
[a22, a23, a24, a21],
[a32, a33, a34, a31]]

[[a22, a23, a24, a21],

[a32, a33, a34, a31],

[a12, a13, a14, a11]]

Figure 2.12: Hand Computations for Rotation in the Plane

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

Download free eBooks at bookboon.com

Prolog Techniques

68

Difference Lists

Prolog Code P-2.24: Definition of rot rows/2

1 rot_rows([],[]). % clause 1

2 rot_rows([[H|T]|Ls],[R|Rs]) :- append(T,[H],R), !, % clause 2

3 rot_rows(Ls,Rs). %

Then, in step 2©, the ‘outside’ list is rotated by the predicate rot matrix/2 in (P-2.25).

Prolog Code P-2.25: Definition of rot matrix/2

1 rot_matrix(M,R) :- rot_rows(M,[H|T]), % clause 1

2 append(T,[H],R). %

The timed rotation of A will look like this:

?- matrix a(A), time(rot matrix(A,R)).

% 20 inferences in 0.00 seconds (Infinite Lips)

A = [[a11,a12,a13,a14], [a21,a22,a23,a24], [a31,a32,a33,a34]]

R = [[a22,a23,a24,a21], [a32,a33,a34,a31], [a12,a13,a14,a11]]

Using Difference Lists. All lists will be replaced by difference lists; in particular, matrices are now difference
lists of difference lists. We need a way of converting the old matrix representation to its new equivalent. This
will be achieved by the predicate dl2(+LOfLs,-DLOfDLs) in (P-2.26).

Prolog Code P-2.26: Definition of dl2/2

1 dl2([],L-L).

2 dl2([H|T],[HDL|L1]-L2) :- dl(H,HDL), !,

3 dl2(T,L1-L2).

Exercise 2.13. Define a predicate show matrix dl/1 for displaying the original matrix rows via the new
difference list representation as shown below.

?- matrix a(A), dl2(A, ADL), show matrix dl(ADL).

[a11, a12, a13, a14] [a21, a22, a23, a24] [a31, a32, a33, a34]

�

The new, difference lists based implementations (P-2.27) and (P-2.28) are obtained by a straightforward
clause by clause ‘translation’ of (P-2.24) and (P-2.25), respectively.

Prolog Code P-2.27: Definition of rot rows dl/2

1 rot_rows_dl(L-_,Y-Y) :- var(L).

2 rot_rows_dl([[H|T1]-[H|T2]|Ls1]-Ls2,[T1-T2|R1]-R2) :-

3 rot_rows_dl(Ls1-Ls2,R1-R2).

Prolog Code P-2.28: Definition of rot matrix dl/2

1 rot_matrix_dl(MDL,T1-T2) :- rot_rows_dl(MDL,[H|T1]-[H|T2]).

The test below confirms the computational advantage of using difference lists.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

69

Difference Lists

?- matrix a(A), dl2(A, DLA), time(rot matrix dl(DLA, DLR)),

show matrix dl(DLR).

% 12 inferences in 0.00 seconds (Infinite Lips)

[a22, a23, a24, a21] [a32, a33, a34, a31] [a12, a13, a14, a11]

Exercise 2.14. Your predicate show matrix dl/1 from Exercise 2.13 will in all likelihood interfere with
predicates invoked after its call. You may find, for example, that you can’t produce the rotated matrix after
you have used show matrix dl/1 for displaying the original matrix:

?- matrix a(A), dl2(A, DLA), show matrix dl(DLA),

rot matrix dl(DLA, DLR), show matrix dl(DLR).

[a11, a12, a13, a14] [a21, a22, a23, a24] [a31, a32, a33, a34]

No

What is the reason for this? Try to remedy the situation.

�

2.5.4 Application: The Gauss–Seidel Method

We want to solve iteratively the system of linear equations

u + αv + βw = r (2.8)

γu + v + δw = s (2.9)

λu + ρv + w = t (2.10)

in the three unknowns u, v and w. Given some initial approximate solutions u(0), v(0), w(0), we calculate a new
value for u from (2.8) by

u(1) = r − αv(0) − βw(0) (2.11)

This then is used with (2.9) to calculate a new value for v:

v(1) = s − γu(1) − δw(0) (2.12)

Finally, an updated value for w is obtained by using u(1), v(1) in (2.10):

w(1) = t − λu(1) − ρv(1) (2.13)

We have thus completed one cycle of the iteration scheme known as the Gauss–Seidel Method17 (e.g. [10], [17]).
In each updating step, one of the equations (2.11)–(2.13) is used to recompute the variable concerned. The

following observations will be crucial.

• All three updating equations (2.11)–(2.13) take the form

x1 = b1 − a12x2 − a13x3 (2.14)

if before each iteration step the system (2.8)–(2.10) is recast in matrix form as Ax = b where A, b and
x are as shown in Table 2.1.

• In Table 2.1, each of the entries for A, b and x is obtained from the one above it by rotation.18

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

70

Difference Lists

Iterations A b x Updating . . .

1, 4, 7, . . .

⎡
⎣ 1 α β

γ 1 δ

λ ρ 1

⎤
⎦

⎡
⎣ r

s

t

⎤
⎦

⎡
⎣ u

v

w

⎤
⎦ u

2, 5, 8, . . .

⎡
⎣ 1 δ γ

ρ 1 λ

α β 1

⎤
⎦

⎡
⎣ s

t

r

⎤
⎦

⎡
⎣ v

w

u

⎤
⎦ v

3, 6, 9, . . .

⎡
⎣ 1 λ ρ

β 1 α

δ γ 1

⎤
⎦

⎡
⎣ t

r

s

⎤
⎦

⎡
⎣ w

u

v

⎤
⎦ w

Table 2.1: Gauss–Seidel Iterations

The method and the above observations carry over to linear systems of any size. The n–dimensional analogue
of (2.14) is

x1 = b1 − a12x2 − . . . − a1nxn (2.15)

Equation (2.15) is the centrepiece in our formulation of the Gauss–Seidel algorithm and it is very easily
implemented in Prolog. In fact, if A, b and x are respectively represented by [[First|Rest]|OtherRows] ,
[B|OtherBs] and [X|OtherXs] , the code fragment implementing (2.15) will read

...

dot_product(Rest,OtherXs,P),

NewX is B - P,

...

where dot product/3 defines the scalar product of two vectors (not shown here).

Algorithm 2.5.1 shows the pseudocode in the form ready for implementation in Prolog using the present
formulation. (The output Subscripts indicates the permutation which the components of x have been put
through and is the list of subscripts thereof.)

17The special feature of this iteration scheme is that updated values are used as soon as they become available.
18By observing the iteration numbers, row three is found to be ‘above’ row one.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

71

Difference Lists

Algorithm 2.5.1: Gauss-Seidel(A,b,x, s, i)

comment: A is the n×n coefficient matrix with unit diagonals.
b is the n–vector of r.h.s. constants.
x is the n–vector of guessed solutions.
s is the list of subscripts of the components of x.
i is the required number of iterations.

Subscripts ← s
Iterations ← i

while Iterations �= 0

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Update (the first entry of) x by (2.15)
A ← RotateMatrix(A)
b ← RotateList(b)
x ← RotateList(x)
Subscripts ← RotateList(Subscripts)
Iterations ← Iterations − 1

output (x, Subscripts)

The core predicate in our implementation is g seidel/2 with arguments in/4 and out/4 . It is defined in
(P-2.29) and implements all but the last action specified inside the while loop in Algorithm 2.5.1.

Prolog Code P-2.29: Definition of g seidel/2

1 g_seidel(in([[First|Rest]|OtherRows],

2 [B|OtherBs],[_|OtherXs],[S|OtherSs]),

3 out(NewAs,NewBs,NewXs,NewSs)) :-

4 dot_product(Rest,OtherXs,P),

5 NewX is B - P,

6 rot_matrix([[First|Rest]|OtherRows],NewAs),

7 append(OtherBs,[B],NewBs),

8 append(OtherXs,[NewX],NewXs),

9 append(OtherSs,[S],NewSs).

g seidel/2 is used by g seidel/7 , the top level predicate defined in (P-2.30), to complete the requisite number
of iterations.

Prolog Code P-2.30: Definition of g seidel/7

1 g_seidel(_,_,Xs,Ss,0,Xs,Ss).

2 g_seidel(As,Bs,Xs,Ss,I,FinalXs,FinalSs) :-

3 g_seidel(in(As,Bs,Xs,Ss),out(NewAs,NewBs,NewXs,NewSs)),

4 NewI is I - 1, !,

5 g_seidel(NewAs,NewBs,NewXs,NewSs,NewI,FinalXs,FinalSs).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

72

Difference Lists

Example 2.1.19 We want to solve the system Ax = b where

A =

⎡
⎢⎢⎣

1 −0.25 −0.25 0
−0.25 1 0 −0.25
−0.25 0 1 −0.25

0 −0.25 −0.25 1

⎤
⎥⎥⎦ ,b =

⎡
⎢⎢⎣

50
50
25
25

⎤
⎥⎥⎦ .

The above system is defined by the Prolog facts

a([[1, -0.25, -0.25, 0],

[-0.25, 1, 0, -0.25],

[-0.25, 0, 1, -0.25],

[0, -0.25, -0.25, 1]]).

and

b([50, 50, 25, 25]).

The initial approximate solution x
(0)
1 = . . . = x

(0)
4 = 100 is defined in Prolog by

x0([100, 100, 100, 100]). s([1, 2, 3, 4]).

The exact solution, x1 = x2 = 87.5, x3 = x4 = 62.5, is obtained after 50 iterations thus

19Source: [10].

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Prolog Techniques

73

Difference Lists

?- a(A), b(B), x0(X), s(S), g seidel(A,B,X,S,50,NewX,NewS).

A = [[1, -0.25, -0.25, 0], [-0.25, 1, 0, -0.25],

[-0.25, 0, 1, -0.25], [0, -0.25, -0.25, 1]]

B = [50, 50, 25, 25]

X = [100, 100, 100, 100]

S = [1, 2, 3, 4]

NewX = [62.5, 62.5, 87.5, 87.5]

NewS = [3, 4, 1, 2]

�

Exercise 2.15. Re-implement Gauss–Seidel by using difference lists and compare the performances of the
implementations. You should use the predicates dl/2 (defined by (P-2.19) in Sect. 2.5.1) and dl2/2 and
rot matrix dl/2 (defined respectively by (P-2.26) and (P-2.28) in Sect. 2.5.3).

�

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

74

Difference Lists

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Prolog Techniques

75

Program Manipulations

Chapter 3

Program Manipulations

In Prolog, unlike in most other programming languages, there is no clear distinction between program code and
data. In this chapter, we are going to demonstrate how this feature of Prolog can be made use of in practice. In
Sect. 3.1 we discuss the built-in Prolog predicates for basic database maintenance work. In Sect. 3.2 we present
a tool for automated program unfolding, a program transformation technique the ‘manual’ form of which we
met in Sect. 2.3.1. Finally, in Sect. 3.3 we show how Prolog can be used to define a Prolog program some
features of which are specified at runtime.

3.1 Simple Database Operations

In this section, we illustrate by a simple example how the Prolog database can be modified from within the
Prolog system.

The Round Table

Six people are seated at a round table as shown in Fig. 3.1. The predicate right to/2 , defined in (P-3.1) by
six facts, describes the seating arrangement in an obvious fashion.

Prolog Code P-3.1: Initial definition of right to/2

1 right_to(martin,lisa). right_to(lisa,george).

2 right_to(george,clara). right_to(clara,adam).

3 right_to(adam,susan). right_to(susan,martin).

Exercise 3.1. Write queries to answer the following questions:

(a) Who is seated to the right of Adam?

(b) To whom is Clara the right neighbour?

(c) Who are the neighbours of George?

Define Prolog rules for

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

76

Program Manipulations

�
��

�
� �

Susan

Martin

Adam

Lisa

Clara

George

Figure 3.1: The Initial Seating Arrangement

(d) ”... is seated to the left of ...”

(e) ”... are the neighbours of ...”

(f) ”... is seated opposite to ...”

Hints. The envisaged solution for this exercise is elementary and concise and should make no use of lists. The
following is suggested for solving part (f):

• If we want to find the person seated opposite to Adam, say, it will help to imagine that the party are
seated not at a round table but at a long rectangular one at the head of which is seated Adam (Fig. 3.2).

• Define an auxiliary predicate facing/3 returning all pairs of people facing each other from one particular
person’s point of view (here: Adam’s), and, eventually, facing that person himself. facing/3 should
respond as follows.

?- facing(adam,Left,Right).

Left = clara Right = susan ;

Left = george Right = martin ;

Left = lisa Right = lisa ;

No

• Now implement opposite to/2 using facing/3 .

• opposite to/2 should fail if the number of people around the table is odd.

�

Exercise 3.2. Further useful predicates may be defined for the Round Table example.

(a) Write a predicate guests/0 for displaying the names of all those at the table. (Use a failure driven loop;
see inset on p. 77.) guests/0 should fail only if there aren’t any people at the table.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

77

Program Manipulations

� �

� �
� �

George Clara

Martin Susan

AdamLisa

Figure 3.2: Rectangular Table

Built-in Predicates: fail/0 and true/0

fail/0 always fails. true/0 always succeeds. Failure driven loops may be
defined by fail/0 . Example:

?- right to(X,), write(X), write(’ ’), fail; true.

martin lisa george clara adam susan

Yes

(b) Use a failure driven loop to define a predicate opposites/0 for displaying all pairs seated opposite each
other:

?- opposites.

martin, clara

lisa, adam

george, susan

adam, lisa

susan, george

clara, martin

Yes

?- joins(fred,clara,adam). 1

fred has joined the table.

Yes

?- opposites.

No

(c) Use the accumulator technique to define a predicate look right(+Person) for displaying all the guests’
names counterclockwise, starting with a particular person. Example:

?- look right(george).

1See Sects. 3.1.3 and 3.1.4for how to implement joins/3 . Here it is used only to indicate that opposites/0 should fail for an
odd number of guests in the database.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

78

Program Manipulations

george clara adam susan martin lisa

Yes

�

Departures and Arrivals

Initially, we will have read the facts in (P-3.1), p. 75, into memory by consult/1 (or by some equivalent thereof).
It is important at this stage to remember that the database comprises all predicates loaded in memory; these
will be those defined by the user as well as the built-in ones. Let us now assume that we want to model the
departure from, and the arrival to, the table of people by updating the database.

Departures. Departures will obviously involve removal of clauses from the database. To model, for example,
George’s departure, we shall have to remove all facts referencing George. In addition, former neighbours
of George will now be seated next to each other, necessitating additions to the database. Thus, to record
departures, we shall need both deletion from, and addition to, the database.

Arrivals. Arrivals will clearly involve an augmentation of the definition of right to/2 by new facts. To
model for example the arrival of Tracy and Joe, to be seated between Adam and Susan, we will have to add
the three facts in (P-3.2) to the database.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Prolog Techniques

79

Program Manipulations

Prolog Code P-3.2: New facts for right to/2

1 right_to(adam,tracy). right_to(tracy,joe). right_to(joe,susan).

And, we will have to remove the fact indicating that Susan is Adam’s right-hand neighbour:

right_to(adam,susan).

Therefore, to account for arrivals, both deletion from, and addition to the database will need to be done.

3.1.1 Basic Database Manipulation

We now review a few basic built-in predicates for modifying the database.

• We use retract/1 (or retractall/1) to remove a clause (or all clauses of a predicate) from the database.
The predicate whose clause is retracted has to be declared dynamic , implemented either as a directive in
one of the source files or by calling dynamic/1 as a goal just before retract ing. This is achieved in our
example either by including in one of the files consulted the directive

:- dynamic(right to/2).

or interactively by

?- dynamic(right to/2), retract(right to(X,Y)).

Built-in Predicate: retract(+Term)

Removes from the database the first clause unifying with Term . Example:

?- listing(right to(X,Y)).

right to(martin, lisa).

right to(lisa, george).

...

?- retract(right to(,)).

Yes

?- listing(right to(X,Y)).

right to(lisa, george).

...

• We use assert/1 to add a new clause to the database.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

80

Program Manipulations

Built-in Predicate: assert(+Term)

Adds to the database the clause in Term . Example: a possible (reasonable)
definition by assert/2 of a predicate near/2 for the Round Table example
may be achieved by2

?- assert(near(X,Y) :- (right to(X,Z), right to(Z,Y))).

?- assert(near(Y,X) :- (right to(X,Z), right to(Z,Y))).

Notice that, as shown above, the conjunctive body of the clause asserted should

be written in parenthesis.

A predicate newly introduced by assert/1 is deemed dynamic. An existing static (i.e. non-dynamic)
predicate may be augmented by a new clause via assert/1 only after declaring it dynamic.

• retractall/1 is used to remove from the database all clauses whose head unifies with the pattern in its
argument. As with retract/1 , retractall/1 may revoke dynamic predicates only.

Built-in Predicate: retractall(+Term)

Removes from the database all clauses whose head unifies with Term . For
example, both clauses of the predicate near/2 asserted earlier may be removed
in a single step by

?- retractall(near(,)).

Yes

3.1.2 Changing the Database

The following queries may be used to achieve the intended changes to the database.

• George leaves the table (Fig. 3.3).

?- dynamic(right to/2), right to(X,george),

right to(george,Y), assert(right to(X,Y)),

retract(right to(X,george)), retract(right to(george,Y)).

X = lisa

Y = clara

Yes

As is easily confirmed by the query ?- listing(right to/2). , the predicate right to/2 is now defined
in the database by the facts in (P-3.3).

2An interactive definition of a clause by assert/1 has the same effect as defining the same clause via consult(user) except
that in the latter case a newly defined predicate is static.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

81

Program Manipulations

�

�
�

�
�

Adam

Lisa

Susan

Clara

Martin

Figure 3.3: After George’s Departure

Prolog Code P-3.3: Updated definition of right to/2

1 right_to(martin, lisa). right_to(clara, adam).

2 right_to(adam, susan). right_to(susan, martin).

3 right_to(lisa, clara).

(Notice, however, that the definition of right to/2 in its Prolog source file is not yet affected.)

• Tracy and Joe join the table and are seated between Adam and Susan (Fig. 3.4).

?- right to(adam,X), retract(right to(adam,X)),

assert(right to(adam,tracy)), assert(right to(tracy,joe)),

assert(right to(joe,X)).

X = susan

Yes

Notice that due to the previous query the predicate right to/2 is now dynamic. It is now defined in the
database by the facts in (P-3.4).3

Prolog Code P-3.4: Final definition of right to/2

1 right_to(martin, lisa). right_to(clara, adam).

2 right_to(susan, martin). right_to(lisa, clara).

3 right_to(adam, tracy). right_to(tracy, joe).

4 right_to(joe, susan).

It is seen that assert/1 places the new clause behind the existing ones for the same predicate.4

3As before, we may confirm this by the query ?- listing(right to/2). .
4The related predicate asserta/1 (not used here) behaves exactly as assert/1 except that it places the new clause in front of

all existing ones for the same predicate.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

82

Program Manipulations

�
��

�
�

� �

Martin
Susan

Joe

Tracy
Adam

Lisa

Clara

Figure 3.4: After Tracy’s and Joe’s arrival

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2014

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

Download free eBooks at bookboon.com

Prolog Techniques

83

Program Manipulations

Exercise 3.3. Thus far, we have carried out (for reasons of transparency) database changes interactively
only. In this exercise, you are asked to define some predicates for manipulating the database.

(a) Define a predicate swap neighbours(+Left,+Right) for recording in the database of two neighbours
swapping places. (For this predicate to succeed, prior to the swap, the person named in Left should be
seated to the left of the person named in Right .) If we assume, for example, that the seating arrangement
is initially as shown in Fig. 3.1, then the swap of Clara and Adam will be accomplished by

?- swap neighbours(clara,adam).

Yes

After this, the database will look as follows.

right_to(martin, lisa). right_to(lisa, george).

right_to(susan, martin). right_to(adam, clara).

right_to(george, adam). right_to(clara, susan).

(b) Define a predicate swap(+Person1,+Person2) for recording in the database of two people swapping places
who need not be neighbours. To exemplify, assume again that the database is initially as shown in Fig. 3.1.
Then, Adam and George’s swap is carried out by

?- swap(adam,george).

Yes

upon which the database is as shown below.

right_to(martin, lisa). right_to(susan, martin).

right_to(adam, clara). right_to(lisa, adam).

right_to(george, susan). right_to(clara, george).

Note. You may use the predicate swap neighbours/2 from part (a) in your definition of swap/2 .

�

Exercise 3.4. (Modelling a queue)5 A queue with at least two customers at a checkout is modelled by
the Prolog predicate behind/2 which is defined in the file queue.pl as shown below. (behind/2 is declared a
dynamic predicate in queue.pl.)

behind(lisa,george). behind(george,clara). behind(clara,adam).

behind(adam,susan). behind(susan,peter).

(These facts have an obvious interpretation: the person named in the second argument stands behind the person
named in the first argument.)

(a) Define a predicate swap neighbours(+Person1,+Person2) for recording in the database of two neighbours
swapping places. (For this predicate to succeed, prior to the swap, the person named in Person2 should
be standing behind the person named in Person1 .) Example:

5The ideas involved here will be similar to those in Exercise 3.3 but now we have also to identify the first and the last person
in the queue.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

84

Program Manipulations

?- swap neighbours(clara,adam).

Yes

After this query, the database will look as follows. After this, the database will look as follows.

behind(lisa,george). behind(george,adam). behind(adam,clara).

behind(clara,susan). behind(susan,peter).

Hint. You should define swap neighbours(+Person1,+Person2) by four clauses, each of them covering
one of the cases indicated in the Table 3.1 where the two questions concerned are defined by

1. Is Person1 the first person in the queue? (Yes/No)

2. Is Person2 the last person in the queue? (Yes/No)

‘Yes’ to 1 and ‘Yes’ to 2 ‘Yes’ to 1 and ‘No’ to 2
‘No’ to 1 and ‘Yes’ to 2 ‘No’ to 1 and ‘No’ to 2

Table 3.1: Cases for swap neighbours/2

(b) (Queue jumping) Using swap neighbours/2 , now define by recursion a predicate to front(+P) for
recording in the database of person P moving to the front of the queue. Example:

?- to front(adam).

Yes

After this query, the database will look as follows.

behind(adam,lisa). behind(lisa,george). behind(george,clara).

behind(clara,susan). behind(susan,peter).

(c) Define by recursion a predicate before(+Person1,?Person2) for finding the names of all those who will
be served before Person1 . On backtracking, Person2 should be unified with the names of all those to be
served before Person1 . For example, assuming that the database is as given initially, we should find the
names of all customers to be served before Adam by the query:

?- before(adam,P).

P = clara ; P = george ; P = lisa ;

No

You will find the solution of this exercise in queue.pl.

�

Exercise 3.5. The predicate lives in/2 is defined by (P-3.5).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

85

Program Manipulations

Prolog Code P-3.5: Initial definition of lives in/2

1 lives_in(london, paul). lives_in(birmingham, adam).

2 lives_in(leeds, susan). lives_in(york, george).

3 lives_in(london, tracy). lives_in(birmingham, david).

4 lives_in(york, peter). lives_in(york, jane).

5 lives_in(leeds, joe). lives_in(london, jack).

They form part of an employer’s database concerning employees’ locations. Let us now assume that the London
branch and all its employees move to York due to relocation. Write a query which will change the Prolog
database accordingly. After issuing the query, lives in/2 is defined by (P-3.6).

Prolog Code P-3.6: Final definition of lives in/2

1 lives_in(birmingham, adam). lives_in(leeds, susan).

2 lives_in(york, george). lives_in(birmingham, david).

3 lives_in(york, peter). lives_in(york, jane).

4 lives_in(leeds, joe). lives_in(york, paul).

5 lives_in(york, tracy). lives_in(york, jack).

�

3.1.3 File Modifications

We may want to modify clauses in the Prolog source file(s) as a permanent record of the changes in the
database. With a view to doing this, we have distributed the Prolog source code to three separate files as
shown in Fig. 3.5. It is seen that the Prolog source proper (in arrange.pl) is separated from what could

:- consult([people, arrange]).

:- dynamic(right to/2).

��� ���
party.pl

right to(martin,lisa).

right to(lisa,george).

right to(george,clara).

right to(clara,adam).

right to(adam,susan).

right to(susan,martin).

people.pl6

leaves(Person) :-

report leaves(Person), !,

left to(Person,X),

right to(Person,Y),

assert(right to(X,Y)),

remove(Person),

write back.

...

arrange.pl

Figure 3.5: File Organization for the Round Table Example

be considered the input data (in people.pl). We hasten to add, though, that this separation is not necessary

6This is the initial state of people.pl. By the end of the Prolog session it will have changed to its updated version, Fig. 3.6.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

86

Program Manipulations

since, as said earlier, Prolog does not distinguish between ‘program’ and ‘data’. Separation of program and
data will prove expedient, however, since predicates whose definition is kept separate from the rest of the source
code are easier to manipulate. The masterfile party.pl comprises a mere two directives: the first one causes
the other two files to be consulted while the second one indicates that right to/2 is a dynamic predicate.

How shall we conclude the interactive session in Sect. 3.1.2 to make the changes in the database also to be
mirrored in the file people.pl? To do this, we issue the query

?- tell(’people.pl’), listing(right to/2), told.

Yes

after which people.pl will be as shown in Fig. 3.6.
To understand the above query, we note that

• listing/1 uses the current output stream.

• At the beginning of an interactive session, the current output stream is the screen.

• The current output stream can be directed to a file by using the built-in predicate tell(+Filename) .

• The current output stream can be redirected to the screen by the predicate told/0 .

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Prolog Techniques

87

Program Manipulations

right to(martin, lisa). right to(clara, adam). right to(susan, martin).

right to(lisa, clara). right to(adam, tracy). right to(tracy, joe).

right to(joe, susan).

Figure 3.6: The File people.pl after the Interactive Session

• If an existing file is used in the argument of tell/1 , it will be overwritten. Therefore, to avoid accidental
loss of Prolog source code, program and dynamic data are best kept in separate files.

3.1.4 Updating right to/2 and people.pl

The work done interactively before (database and file changes), is more conveniently performed by some dedi-
cated predicates leaves/1 and joins/3 . Their definition parallels the respective interactive session and can
be found in the file arrange.pl.

Exercise 3.6. joins/3 in arrange.pl does not allow for a guest to join the empty table. Define join/1
to make this possible. Example:

?- guests.

No

?- joins(fred).

fred has joined the table.

Yes

?- guests.

fred

Yes

�

3.1.5 Automated Saving of Selected Predicates

We may wish to save to a file all (or some) predicate definitions loaded in memory. This is easily accomplished in
a piecemeal fashion as indicated in Sect. 3.1.3. Such a ‘manual’ approach is, however, tedious and therefore an
automated solution is called for. save predicates to(+Filename,+Choice) , to be studied below, is designed
to do this task.

The collection of all predicates in memory at any given time comprises

• those explicitly loaded by consult/1 (or by one of its equivalents),

• some built-in predicates depending on prior usage in the same session.

We are interested here in the first group, the user-defined predicates. The predicate my predicate(?Functor/?Arity,?C
will name each of them with the respective number of clauses in ClauseCount :

?- my_predicate(Pred,ClauseCount).

Pred = my_predicate/2

ClauseCount = 1 ;

Pred = opposites/0

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

88

Program Manipulations

ClauseCount = 1 ;

Pred = right_to/2

ClauseCount = 6 ;

...

my predicate/2 will serve as an auxiliary for save predicates to/2 and it is defined in (P-3.7).

Prolog Code P-3.7: Definition of my predicate/2

1 my_predicate(Fun/Arity,ClauseCount) :-

2 current_predicate(Fun,Head),

3 not(predicate_property(Head,built_in)),

4 not(predicate_property(Head,imported_from(_))),

5 not(predicate_property(Head,foreign)),

6 predicate_property(Head,number_of_clauses(ClauseCount)),

7 functor(Head,Fun,Arity).

The built-in predicates current predicate/2 , predicate property/2 and functor/3 are used in this largely
self-documenting definition.7 The goals 2–4 in the body of my predicate/2 are designed to filter out names of
predicates which are not user-defined.

Embedding my predicate/2 into a failure driven loop (see p. 77) gives rise to (P-3.8), the first clause of
save predicates to/2 .

Prolog Code P-3.8: First clause of save predicates to/2

1 save_predicates_to(Filename,all) :- tell(Filename),

2 ((my_predicate(Fun/Arity,_),

3 Fun \= ’my_predicate’,

4 Fun \= ’save_predicates_to’,

5 listing(Fun/Arity),

6 fail); true),

7 told.

It will write to the specified file all user-defined predicates except its own and its auxiliary’s definition.8 Example:
After the query

?- save_predicates to(’committee.pl’,all).

the file committee.pl will be as indicated in Fig. 3.7. This copy of the database will be inferior to the original
source because of

(1) User-defined (usually mnemonic) variable names will be replaced by system-assigned ones (due to listing/1),
making the code less readable.

(2) Clause layout may be lost.

(3) Comments will be lost.

(4) The order of the predicates may be different.

7functor/3 is known from Sect. 2.2.1. Consult the SWI–manual [18] for detailed information on the other two predicates.
8This is a sensible design decision since these two definitions won’t usually be relevant to the broader context.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

89

Program Manipulations

opposites :- right to(A, B),

opposite to(A, C),

write(A),

write(’, ’),

write(C),

nl,

fail.

right to(martin, lisa).

right to(lisa, george).

...

Figure 3.7: The File committee.pl

(5) Directives will be lost.

While the first four of these shortcomings could be tolerated, there will be some manual work needed to rectify
the last one.

Another clause of save predicates to(+Filename,+Choice) will define the case when Choice unifies with
a list of entries of the form Functor/Arity ; for example, upon the query

?- save predicates to(’committee.pl’,[remove/1,left to/2]).

the file committee.pl should comprise the definitions of the specified predicates remove/1 and left to/2

(Fig. 3.8). We define the second clause of save predicates to/2 in (P-3.9) along the lines of (P-3.8) except

remove(A) :- retract(right to(A, B)),

retract(right to(C, A)).

left to(A, B) :- right to(B, A).

Figure 3.8: The File committee.pl

for the additional filtering with the built-in predicate member/2 .

Prolog Code P-3.9: Second clause of save predicates to/2

1 save_predicates_to(Filename,List) :- tell(Filename),

2 ((my_predicate(Fun/Arity,_),

3 member(Fun/Arity,List),

4 listing(Fun/Arity),

5 fail); true),

6 told.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

90

Program Manipulations

Built-in Predicate: member(?Elem,?List)

Succeeds when Elem unifies with one of the elements of List . Example:

?- member(penguin,[sparrow,stork,magpie]).

No

?- member(Bird,[sparrow,stork,magpie]).

Bird = sparrow ;

Bird = stork

Yes

Exercise 3.7. The above version of save predicates to/2 will silently skip all entries in the list argument
which do not refer to a predicate in the database. An improved version will recognize this and return an error
message:

?- save predicates to(’committee.pl’,[remove/1,left to/3]).

Error: some predicates not in the database

No

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Prolog Techniques

91

Program Manipulations

(This shows that there is no predicate left to/3 in the database.) Define such an enhanced version of
save predicates to/2 . It should not write anything to the file unless all list entries refer to existing user-
defined predicates. Hint. A rather concise solution is possible by using the built-in predicate ->/2 .9

�

Built-in Predicate: ->/2

The predicate ->/2 (written in the operator form) is used to define the condi-
tional statement. Syntax: (+Condition -> +Action ; +Alternative Action) .
A property buyer’s example:

?- member(Capital,[1,4,10]),

((member(Mortgage,[1,2,5]),Capital + Mortgage < 9) ->

(Capital + Mortgage > 4,member(Property,[cottage,house]));

member(Property,[mansion,villa])).

Capital = 4 Mortgage = 1 Property = cottage ;

Capital = 4 Mortgage = 1 Property = house ;

Capital = 10 Mortgage = G1170 Property = mansion ;

Capital = 10 Mortgage = G1170 Property = villa ;

No

Notice in particular that

• ->/2 fails if Condition succeeds and Action fails (Capital = 1).

• Once Condition succeeds it won’t be re-satisfied on backtracking. (No
move from Mortgage = 1 to Mortgage = 2 when Capital = 4.)

• ->/2 succeeds if Condition fails and Alternative Action can be proved
(Capital = 10).

3.1.6 Miniproject: Modelling a Stamp Collection

The solutions of the exercises in this section are in the source file stamps.pl save for Exercise 3.9 which is
solved in Appendix A.3.

A stamp collection is modelled by the predicate album/1 in (P-3.10).

9This corresponds to the if–then–else language construct familiar from imperative programming. (Observe though the Prolog-
specific subtleties as exemplified in the inset.)

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

92

Program Manipulations

Prolog Code P-3.10: Facts defining album/1

1 album([stamp(’Britain’,’Queen’,1965,20),

2 stamp(’Britain’,’Queen’,1967,50),

3 stamp(’Britain’,’Queen’,1963,120)]).

4 album([stamp(’Britain’,’Poets’,1978,19),

5 stamp(’Britain’,’Poets’,1979,20),

6 stamp(’Britain’,’Poets’,1978,22),

7 stamp(’Britain’,’Poets’,1977,40),

8 stamp(’Britain’,’Poets’,1978,100)]).

9 album([stamp(’Germany’,’Kaiser’,1882,5),

10 stamp(’Germany’,’Kaiser’,1879,20),

11 stamp(’Germany’,’Kaiser’,1885,50)]).

12 album([stamp(’Germany’,’Castles’,1885,10),

13 stamp(’Germany’,’Castles’,1879,50),

14 stamp(’Germany’,’Castles’,1885,60)]).

The arguments in stamp/4 refer respectively to: country of origin, the set’s name, year of issue, denomination.
Within a set, the stamps are in ascending order of denomination.

Exercise 3.8. (Pattern matching) Define a predicate collection/1 for displaying on the terminal all
stamps conforming to a certain criterion. Examples:

• Show all stamps with denomination 50.

?- collection(stamp(, , ,50)).

stamp(Britain, Queen, 1967, 50)

stamp(Germany, Kaiser, 1885, 50)

stamp(Germany, Castles, 1879, 50)

Yes

• Show all stamps from the set Castles.

?- collection(stamp(,’Castles’, ,)).

stamp(Germany, Castles, 1885, 10)

stamp(Germany, Castles, 1879, 50)

stamp(Germany, Castles, 1885, 60)

Yes

• Show all stamps issued between 1875 and 1883.

?- between(1875,1883,Y), collection(stamp(, ,Y,)), fail.

stamp(Germany, Kaiser, 1879, 20)

stamp(Germany, Castles, 1879, 50)

stamp(Germany, Kaiser, 1882, 5)

No

�

Exercise 3.9. Assume that the stamp collector wants to sell the German Kaiser set of stamps. Construct
a Prolog query to achieve the corresponding database modification interactively.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

93

Program Manipulations

�

Exercise 3.10. (This is a task in preparation for Exercise 3.11.) Define a predicate remove all/3 for
removing all entries from a list which match a given pattern. Example:

?- remove all(item(,5),

[item(6,9),item(1,5),item(7,1),item(9,5)],L).

L = [item(6, 9), item(7, 1)]

(The original order is retained in the third argument of remove all/3 .)

�

Exercise 3.11. Use remove all/3 from Exercise 3.10 to define sell/1 for removing from the database all
stamps conforming to a given criterion. For example, all British stamps from the set Poets issued in 1978 may
be removed interactively thus

?- sell(stamp(’Britain’,’Poets’,1978,)).

Yes

?- collection(stamp(,’Poets’, ,)).

stamp(Britain, Poets, 1979, 20)

stamp(Britain, Poets, 1977, 40)

Yes

�

Exercise 3.12. Define insert/3 for inserting into a list of stamps a new stamp. Requirements:

• The new stamp has to be positioned according to its denomination.

• The new stamp has to fit into the existing set supplied in the second argument of insert/3 .

(Notice that insert/3 won’t affect the database.) Examples:

?- insert(stamp(’Britain’,’Flowers’,2001,70),

[stamp(’Britain’,’Flowers’,2000,40),

stamp(’Britain’,’Flowers’,2000,60),

stamp(’Britain’,’Flowers’,1991,100)],L).

L = [stamp(’Britain’, ’Flowers’, 2000, 40),

stamp(’Britain’, ’Flowers’, 2000, 60),

stamp(’Britain’, ’Flowers’, 2001, 70),

stamp(’Britain’, ’Flowers’, 1991, 100)]

Yes

?- insert(stamp(’Britain’,’Sports’,2001,70),

[stamp(’Britain’,’Flowers’,2000,40),

stamp(’Britain’,’Flowers’,2000,60),

stamp(’Britain’,’Flowers’,1991,100)],L).

No

(A concise recursive solution is sought.)

�

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

94

Program Manipulations

Exercise 3.13. Define buy/1 for including a new stamp into the database. If the new stamp fits into an
existing set, it should be included in there. Otherwise, a new set should be created with just this new stamp in
it. For example, the 25 Pence stamp from the 1966 issue of the Queen set may be included in the database by

?- buy(stamp(’Britain’,’Queen’,1966,25)).

Yes

?- collection(stamp(,’Queen’, ,)).

stamp(Britain, Queen, 1965, 20)

stamp(Britain, Queen, 1966, 25)

stamp(Britain, Queen, 1967, 50)

stamp(Britain, Queen, 1963, 120)

Yes

And, record the purchase of the 50 Öre stamp from the 1956 issue of the Swedish Nobel Laureates set by

?- buy(stamp(’Sweden’,’Nobel Laureates’,1956,50)).

Yes

?- collection(stamp(’Sweden’, , ,)).

stamp(Sweden, Nobel Laureates, 1956, 50)

Yes

�

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

95

Program Manipulations

3.2 Case Study: Automated Unfolding

We have introduced in Sect. 2.3.1 the program transformation technique unfolding and saw by way of an example
that it can enhance a program’s performance. There, the transformation was carried out essentially ‘manually’
though with some assistance (for unification) from the Prolog system. We now want to examine an automated
tool for unfolding, written in Prolog. Figs. 3.9–3.10 (pp. 97–98) show an annotated session for solving by this
tool the example from Sect. 2.3.1 interactively.

The tool comprises the predicates elementary unfolding/5 , unfold/3 and clause arrange/2 , the first
two of which are implementations of Elementary and Complete One Step Unfolding, respectively. The mean-
ing and use of their arguments is easily gleaned from the sample sessions. The third of these predicates,
clause arrange/2 , is used to retain in the Prolog database a specified set of clauses of a predicate as indicated
by the clause numbers in the second (list) argument. It thereby allows redundant clauses to be discarded and
the others be sorted as deemed necessary.

The steps involved in implementing elementary Unfolding and Complete One Step Unfolding will be demon-
strated with reference to the definitions of some predicates a/5 and c/2 shown respectively in (P-3.11) and
(P-3.12).

Prolog Code P-3.11: Definition of a/5

1 a(U,U,U,U,U).

2 a(U,V,U,V,U) :- m(U,V).

3 a(U,V,W,V,U) :- n(U,n(V,W)), b(U,V), e(V,U).

4 a(U,V,W,X,Y) :- b(U,V), c(V,W), d(W,X), e(X,Y).

Prolog Code P-3.12: Definition of c/2

1 c(A,B) :- f(A), m(A,B).

2 c(A,B) :- A is B + 1.

3 c(A,A) :- f(A), g(A).

3.2.1 Elementary Unfolding

Let us unfold goal 2 in clause 4 of a/5 by using clause 3 of c/2 :

?- elementary unfolding(a/5,4,2,c/2,3).

Yes

Thereafter the database will contain an additional clause for a/5 :

?- listing(a/5).

...

a(A, B, B, C, D) :- b(A, B), f(B), g(B), d(B, C), e(C, D).

Yes

We show a series of queries in Figs. 3.11–3.14 (pp. 99–101) to illustrate the idea behind the definition of
elementary unfolding/5 .

The following observations on these figures are in order.

• Fig. 3.11: The query comprises three phases.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

96

Program Manipulations

1. The built-in predicates functor/3 , nth clause/3 and clause/3 are used to split up the fourth
clause of a/5 into its building blocks: in particular, Body1 is unified with a term which is the
conjunction of the clause’s goals. (For nth clause/3 and clause/3 , see inset on p. 102.)

2. The user-defined predicate conj/2 then returns the list of conjuncts of Body1 in L1 .

3. Finally, the user-defined predicate splitlist/5 is used to disassemble the list of conjuncts L1 around
its second entry into three parts. Notice in particular that Entry1 is unified with the goal to be
unfolded later.

• Fig. 3.12: Here we disassemble the third clause of c/2 in a similar manner to steps 1 and 2 above.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Prolog Techniques

97

Program Manipulations

�

�

�

�

?- [dl,transformations].

% dl compiled 0.11 sec, 18,044 bytes

% transformations compiled 0.06 sec, 9,224 bytes

Yes

?- listing(rev dl/2).

rev dl([], A-A).

rev dl([A], [A|B]-B).

rev dl([A|B], C-D) :- rev dl(B, C-E),

rev dl([A], E-D).

Yes

?- unfold(rev dl/2,3,2).

Clause(s) used:

Clause 2 of predicate rev dl/2

Clause 3 of predicate rev dl/2

rev dl([], A-A).

rev dl([A], [A|B]-B).

rev dl([A|B], C-D) :- rev dl(B, C-E),

rev dl([A], E-D).

rev dl([A|B], C-D) :- rev dl(B, C-[A|D]),

true.

rev dl([A|B], C-D) :- rev dl(B, C-E),

rev dl([], E-F),

rev dl([A], F-D).

Clause removed:

Clause 3 of predicate rev dl/2

rev dl([], A-A).

rev dl([A], [A|B]-B).

rev dl([A|B], C-D) :- rev dl(B, C-[A|D]),

true.

rev dl([A|B], C-D) :- rev dl(B, C-E),

rev dl([], E-F),

rev dl([A], F-D).

Yes

?- clause arrange(rev dl/2,[1,3]).

Yes

?- listing(rev dl/2).

rev dl([], A-A).

rev dl([A|B], C-D) :- rev dl(B, C-[A|D]),

true.

Yes

⎫⎪⎪⎬
⎪⎪⎭

Predicate to be

transformed

� ︸︷︷︸
� COSU on goal 2 of clause 3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Replacing, new

clauses

}
Clause to be

replaced

�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Clauses of

rev dl/2 after

a COSU

Redundant

clause; see

Fig. 3.10}

Redundant

clause; see

Sect. 2.3.1

⎫⎬
⎭

Retain clauses

1 and 3 only

}

New definition

of rev dl/2

⎫⎬
⎭

Figure 3.9: Interactive Prolog–Assisted Program Transformation: Session I

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

98

Program Manipulations

�

�

�

�

?- consult(user).

|: :- consult(transformations).

% transformations compiled 0.06 sec, 9,584 bytes

|: rev dl([],L-L).

|: rev dl([H|T],L1-L2) :- rev dl(T,L1-[H|L2]).

|:
	
 ��Ctrl +

	
 ��Z

% user compiled 86.18 sec, 10,128 bytes

Yes

?- elementary unfolding(rev dl/2,2,1,rev dl/2,1).

Yes

?- listing(rev dl/2).

rev dl([], A-A).

rev dl([A|B], C-D) :- rev dl(B, C-[A|D]).

rev dl([A], [A|B]-B).

Yes

⎫⎬
⎭ Manual input

of rev dl/2

} Unfold on

goal 1 of

clause 2 using

clause 1

}
Old clauses}
New clause

Figure 3.10: Interactive Prolog–Assisted Program Transformation: Session II

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

99

Program Manipulations

� �

� �

?
-

f
u
n
c
t
o
r
(
P
r
e
d
1
,
a
,
5
)
,

n
t
h
c
l
a
u
s
e
(
P
r
e
d
1
,
4
,
R
e
f
1
)
,

c
l
a
u
s
e
(
H
e
a
d
1
,
B
o
d
y
1
,
R
e
f
1
)
,

c
o
n
j
(
B
o
d
y
1
,
L
1
)
,

s
p
l
i
t
l
i
s
t
(
2
,
L
1
,
F
r
o
n
t
1
,
E
n
t
r
y
1
,
B
e
h
i
n
d
1
)
.

P
r
e
d
1

=
a
(
G
1
1
2
3
,

G
1
1
2
4
,

G
1
1
2
5
,

G
1
1
2
6
,

G
1
1
2
7
)

R
e
f
1

=
1
7
9
4
7
3
1

H
e
a
d
1

=
a
(
G
1
1
3
2
,

G
1
1
3
3
,

G
1
1
3
4
,

G
1
1
3
5
,

G
1
1
3
6
)

B
o
d
y
1

=
b
(
G
1
1
3
2
,

G
1
1
3
3
)
,

c
(
G
1
1
3
3
,

G
1
1
3
4
)
,

d
(
G
1
1
3
4
,

G
1
1
3
5
)
,

e
(
G
1
1
3
5
,

G
1
1
3
6
)

L
1

=
[
b
(
G
1
1
3
2
,

G
1
1
3
3
)
,

c
(
G
1
1
3
3
,

G
1
1
3
4
)
,

d
(
G
1
1
3
4
,

G
1
1
3
5
)
,

e
(
G
1
1
3
5
,

G
1
1
3
6
)
]

F
r
o
n
t
1

=
[
b
(
G
1
1
3
2
,

G
1
1
3
3
)
]

E
n
t
r
y
1

=
c
(
G
1
1
3
3
,

G
1
1
3
4
)

B
e
h
i
n
d
1

=
[
d
(
G
1
1
3
4
,

G
1
1
3
5
)
,

e
(
G
1
1
3
5
,

G
1
1
3
6
)
]

Y
e
s

F
ig

u
re

3
.1

1
:

U
n
fo

ld
in

g
,
E

x
p
er

im
en

t
1
:

D
is

a
ss

em
b
li
n
g

cl
a
u
se

4
o
f
a
/
5

� �

� �

?
-

f
u
n
c
t
o
r
(
P
r
e
d
2
,
c
,
2
)
,

n
t
h
c
l
a
u
s
e
(
P
r
e
d
2
,
3
,
R
e
f
2
)
,

c
l
a
u
s
e
(
H
e
a
d
2
,
B
o
d
y
2
,
R
e
f
2
)
,

c
o
n
j
(
B
o
d
y
2
,
L
2
)
.

P
r
e
d
2

=
c
(
G
8
2
0
,
G
8
2
1
)

R
e
f
2

=
1
7
9
4
8
7
7

H
e
a
d
2

=
c
(
G
8
2
6
,
G
8
2
6
)

B
o
d
y
2

=
f
(
G
8
2
6
)
,
g
(
G
8
2
6
)

L
2

=
[
f
(
G
8
2
6
)
,
g
(
G
8
2
6
)
]

Y
e
s

F
ig

u
re

3
.1

2
:

U
n
fo

ld
in

g
,
E

x
p
er

im
en

t
2
:

D
is

a
ss

em
b
li
n
g

cl
a
u
se

3
o
f
c
/
2

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

100

Program Manipulations

� �

� �

?
-

f
u
n
c
t
o
r
(
P
r
e
d
1
,
a
,
5
)
,

.
.
.
,

f
u
n
c
t
o
r
(
P
r
e
d
2
,
c
,
2
)
,

.
.
.
,

H
e
a
d
2

=
E
n
t
r
y
1
.

P
r
e
d
1

=
a
(
G
1
9
0
8
,

G
1
9
0
9
,

G
1
9
1
0
,

G
1
9
1
1
,

G
1
9
1
2
)

R
e
f
1

=
1
7
9
4
7
3
1

H
e
a
d
1

=
a
(
G
1
9
1
7
,

G
1
9
1
8
,

G
1
9
1
8
,

G
1
9
2
0
,

G
1
9
2
1
)

B
o
d
y
1

=
b
(
G
1
9
1
7
,

G
1
9
1
8
)
,

c
(
G
1
9
1
8
,

G
1
9
1
8
)
,

d
(
G
1
9
1
8
,

G
1
9
2
0
)
,

e
(
G
1
9
2
0
,

G
1
9
2
1
)

L
1

=
[
b
(
G
1
9
1
7
,

G
1
9
1
8
)
,

c
(
G
1
9
1
8
,

G
1
9
1
8
)
,

d
(
G
1
9
1
8
,

G
1
9
2
0
)
,

e
(
G
1
9
2
0
,

G
1
9
2
1
)
]

F
r
o
n
t
1

=
[
b
(
G
1
9
1
7
,

G
1
9
1
8
)
]

E
n
t
r
y
1

=
c
(
G
1
9
1
8
,

G
1
9
1
8
)

B
e
h
i
n
d
1

=
[
d
(
G
1
9
1
8
,

G
1
9
2
0
)
,

e
(
G
1
9
2
0
,

G
1
9
2
1
)
]

P
r
e
d
2

=
c
(
G
1
9
8
8
,

G
1
9
8
9
)

R
e
f
2

=
1
7
9
4
8
7
7

H
e
a
d
2

=
c
(
G
1
9
1
8
,

G
1
9
1
8
)

B
o
d
y
2

=
f
(
G
1
9
1
8
)
,

g
(
G
1
9
1
8
)

L
2

=
[
f
(
G
1
9
1
8
)
,

g
(
G
1
9
1
8
)
]

Y
e
s

F
ig

u
re

3
.1

3
:

U
n
fo

ld
in

g
,
E

x
p
er

im
en

t
3
:

E
x
p
er

im
en

ts
1

&
2

fo
ll
ow

ed
b
y

a
p
p
ro

p
ri

a
te

u
n
ifi

ca
ti
o
n

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

101

Program Manipulations

� �

� �

?
-

f
u
n
c
t
o
r
(
P
r
e
d
1
,
a
,
5
)
,

.
.
.
,

f
u
n
c
t
o
r
(
P
r
e
d
2
,
c
,
2
)
,

.
.
.
,

H
e
a
d
2

=
E
n
t
r
y
1
,

c
o
n
c
a
t
3
(
F
r
o
n
t
1
,
L
2
,
B
e
h
i
n
d
1
,
L
)
,

c
o
n
j
(
N
e
w
B
o
d
y
,
L
)
,

d
y
n
a
m
i
c
(
a
/
5
)
,

a
s
s
e
r
t
(
H
e
a
d
1

:
-
N
e
w
B
o
d
y
)
.

P
r
e
d
1

=
a
(
G
2
5
3
4
,

G
2
5
3
5
,

G
2
5
3
6
,

G
2
5
3
7
,

G
2
5
3
8
)

R
e
f
1

=
1
7
9
4
7
3
1

H
e
a
d
1

=
a
(
G
2
5
4
3
,

G
2
5
4
4
,

G
2
5
4
4
,

G
2
5
4
6
,

G
2
5
4
7
)

B
o
d
y
1

=
b
(
G
2
5
4
3
,

G
2
5
4
4
)
,

c
(
G
2
5
4
4
,

G
2
5
4
4
)
,

d
(
G
2
5
4
4
,

G
2
5
4
6
)
,

e
(
G
2
5
4
6
,

G
2
5
4
7
)

L
1

=
[
b
(
G
2
5
4
3
,

G
2
5
4
4
)
,

c
(
G
2
5
4
4
,

G
2
5
4
4
)
,

d
(
G
2
5
4
4
,

G
2
5
4
6
)
,

e
(
G
2
5
4
6
,

G
2
5
4
7
)
]

F
r
o
n
t
1

=
[
b
(
G
2
5
4
3
,

G
2
5
4
4
)
]

E
n
t
r
y
1

=
c
(
G
2
5
4
4
,

G
2
5
4
4
)

B
e
h
i
n
d
1

=
[
d
(
G
2
5
4
4
,

G
2
5
4
6
)
,

e
(
G
2
5
4
6
,

G
2
5
4
7
)
]

P
r
e
d
2

=
c
(
G
2
6
1
4
,

G
2
6
1
5
)

R
e
f
2

=
1
7
9
4
8
7
7

H
e
a
d
2

=
c
(
G
2
5
4
4
,

G
2
5
4
4
)

B
o
d
y
2

=
f
(
G
2
5
4
4
)
,

g
(
G
2
5
4
4
)

L
2

=
[
f
(
G
2
5
4
4
)
,

g
(
G
2
5
4
4
)
]

L
=
[
b
(
G
2
5
4
3
,

G
2
5
4
4
)
,

f
(
G
2
5
4
4
)
,

g
(
G
2
5
4
4
)
,

d
(
G
2
5
4
4
,

G
2
5
4
6
)
,

e
(
G
2
5
4
6
,

G
2
5
4
7
)
]

N
e
w
B
o
d
y

=
b
(
G
2
5
4
3
,

G
2
5
4
4
)
,

f
(
G
2
5
4
4
)
,

g
(
G
2
5
4
4
)
,

d
(
G
2
5
4
4
,

G
2
5
4
6
)
,

e
(
G
2
5
4
6
,

G
2
5
4
7
)

Y
e
s

?
-

l
i
s
t
i
n
g
(
a
/
5
)
.

.
.
.

a
(
A
,

B
,

B
,

C
,
D
)

:
-

b
(
A
,

B
)
,

f
(
B
)
,

g
(
B
)
,

d
(
B
,

C
)
,
e
(
C
,

D
)
.

Y
e
s

F
ig

u
re

3
.1

4
:

U
n
fo

ld
in

g
,
E

x
p
er

im
en

t
4
:

E
x
p
er

im
en

t
3

fo
ll
ow

ed
b
y

n
ew

cl
a
u
se

cr
ea

ti
o
n

a
n
d

d
a
ta

b
a
se

u
p
d
a
te

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

102

Program Manipulations

Built-in Predicates: nth clause/3 and clause/3

nth clause(+Pred,+Index,?Ref) is used to assign a system–chosen reference
to a specific clause of a predicate. This reference may be used subsequently to
retrieve head and body of the clause by clause/3 . Example: Head and body
of the second clause of the predicate c/2 , defined by

c(A,B) :- f(A), m(A,B).

c(A,B) :- A is B + 1.

c(A,A) :- f(A), g(A).

may be retrieved by

?- nth clause(c(,),2,Ref), clause(Head,Body,Ref).

Ref = 1791614

Head = c(G542, G543)

Body = G542 is G543+1

If used with the instantiation pattern nth clause(+Pred,-Index,-Ref) , on
backtracking the references to all clauses of a given predicate are obtained:

?- nth clause(c(,),Index,Ref).

Index = 1 Ref = 1791577 ;

Index = 2 Ref = 1791614 ;

Index = 3 Ref = 1791649 ;

No

• Fig. 3.13: The previous two steps are repeated and then Head2 is unified with Entry1 , essentially
completing the unfolding operation. Notice in particular that the effect of unifying Head2 with Entry1

‘ripples through’ to all other variables: for example, as expected, in Head1 the second and third arguments
become identical while this was not the case before unification (see Fig. 3.11).

• Fig. 3.14: Subsequent to the steps above, we first assemble in L the list of goals for the new clause; we
use here the (fairly straightforward) user-defined predicate concat3/4 . Then, conj/2 is used again (now
in the ‘reverse’ direction) to create the term NewBody , the conjunction of terms in L . Finally, the new
clause is written to the database, confirmed also by the next query using listing/1 .

The definition of elementary unfolding/5 in transformations.pl follows the query shown in Fig. 3.14. The
auxiliary predicates used therein won’t be discussed here; the way conjunctions are composed/decomposed by
conj/2 is noteworthy, however. This is accomplished within conj/2 via the auxiliaries conjunction(+List,+Acc,-Term)
and conjuncts(+Term,+Acc,-List)
whose working is illustrated below.

?- conjunction([t(X),u(Y,a),v(b,X)],s(Y),C), conjuncts(C,[],L).

X = G492

Y = G497

C = v(b, G492), u(_G497, a), t(G492), s(G497)

L = [s(G497), t(G492), u(G497, a), v(b, G492)]

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

103

Program Manipulations

They are defined in (P-3.13) and (P-3.14) by the accumulator technique.10

Prolog Code P-3.13: Definition of conjunction/3

1 conjunction([],Conj,Conj).

2 conjunction([H|T],Acc,Conj) :- conjunction(T,(H,Acc),Conj).

10In (P-3.14) we implicitly use the fact that Prolog’s conjunction is right-associative. The two queries below thus generate the
same response:

?- conjuncts((v(b,X), u(Y, a), t(X), s(Y)),[],L).

X = G409 Y = G411

L = [s(G411), t(G409), u(G411, a), v(b, G409)]

?- conjuncts((v(b,X), (u(Y, a), (t(X), s(Y)))),[],L).

X = G433 Y = G435

L = [s(G435), t(G433), u(G435, a), v(b, G433)]

What will Prolog’s response be to the query below?

?- conjuncts((((v(b,X), u(Y, a)), t(X)), s(Y)),[],L).

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Prolog Techniques

104

Program Manipulations

Prolog Code P-3.14: Definition of conjuncts/3

1 conjuncts(Term,Acc,[Term|Acc]) :- not(functor(Term,’,’,2)).

2 conjuncts(Term,Acc,L) :- functor(Term,’,’,2),

3 arg(1,Term,Term1),

4 arg(2,Term,Term2),

5 conjuncts(Term2,[Term1|Acc],L).

3.2.2 Complete One Step Unfolding

Let us now assume that we want to unfold clause 4 of a/5 on its second goal. We can do this by repeatedly
using elementary unfolding/5 in an obvious manner:

?- elementary unfolding(a/5,4,2,c/2,K).

K = 1 ; K = 2 ; K = 3 ;

No

?- listing(a/5).

a(A, A, A, A, A).

a(A, B, A, B, A) :- m(A, B).

a(A, B, C, B, A) :- n(A, n(B, C)), b(A, B), e(B, A).

a(A, B, C, D, E) :- b(A, B), c(B, C), d(C, D), e(D, E).

a(A, B, C, D, E) :- b(A, B), f(B), m(B, C), d(C, D), e(D, E).

a(A, B, C, D, E) :- b(A, B), B is C+1, d(C, D), e(D, E).

a(A, B, B, C, D) :- b(A, B), f(B), g(B), d(B, C), e(C, D).

In doing so, the following steps have been carried out:

1. We have visually identified c(V,W) as goal 2 in clause 4 of a/5 .

2. We have attempted (and successfully completed) by backtracking an elementary unfolding operation with
each of the clauses of c/2 .

To complete the task, we would also need to

3. Remove clause 4 of a/5 from the database.

Step 2 is more concisely implemented by a failure driven loop thus

?- elementary unfolding(a/5,4,2,c/2,K), fail.

No

Within the same failure driven loop we may integrate Step 1 by attempting an elementary unfolding operation
with each predicate in the database. The generation of all predicates may be accomplished by11

?- current predicate(Fun,Head),

not(predicate property(Head,built_in)),

not(predicate property(Head,imported from())),

not(predicate property(Head,foreign)),

functor(Head,Fun,Arity).

11The same functionality (i.e. retrieval from the database of all user-defined predicates) is achieved by the almost identical
predicate my predicate/2 from p. 88.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

105

Program Manipulations

Fun = a

Head = a(G1380, G1381, G1382, G1383, G1384)

Arity = 5 ;

...

Fun = c

Head = c(_G1380, _G1381)

Arity = 2 ;

...

Embedding this within the earlier failure driven loop will essentially implement unfold/3 :

?- current predicate(Fun,Head),

not(predicate property(Head,built in)),

not(predicate property(Head,imported from())),

not(predicate property(Head,foreign)),

functor(Head,Fun,Arity),

elementary unfolding(a/5,4,2,Fun/Arity,K), fail.

No

For further details on the definition of unfold/3 the reader is referred to the file transformations.pl. (Note-
worthy is perhaps the use in Step 3 of the built-in predicate erase/1 .)

Built-in Predicate: erase(+Ref)

erase(+Ref) removes the clause with reference Ref from the database. Exam-
ple:

?- dynamic(num/1), ((member(I,[1,2,3]), assert(num(I)),

fail); true), listing(num/1).

num(1).

num(2).

num(3).

?- nth clause(num(),2,Ref), erase(Ref), listing(num/1).

num(1).

num(3).

Ref = 3904727

Exercise 3.14. Use the predicate unfold/3 to solve Exercise 2.9, Part (c).

�

Self-unfolding

There may seem a subtle problem with our implementation of unfold/3 which we want to address now.
In the definition of unfold/3 we write (within a failure driven loop) to the database new clauses via

elementary unfolding/5 which itself ‘feeds on’ clauses (in its fourth argument) that are retrieved from the
database. This construction could conceivably give rise to an infinite loop in the case of what was termed
‘self-unfolding’ in Sect. 2.3.1, p. 52. This cannot happen, however, since a search tree under consideration by
Prolog won’t be affected by database changes created by the search itself. The following simple interactive
session illustrates this point.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

106

Program Manipulations

?- listing(num/1).

num(1).

Yes

?- num(X), Y is 2 * X, assert(num(Y)), fail.

No

?- listing(num/1).

num(1).

num(2).

Yes

Had the search tree been affected by the database changes immediately we would have expected in the database
infinitely many clauses of num/1 like

num(1). num(2). num(4). ...

The session shown in Fig. 3.9 (involving self-unfolding of the predicate rev dl/2) confirms indeed that unfold/3
does not cause looping.

3.2.3 Rearranging Clauses

Clauses of a predicate may be rearranged by clause arrange/2 as illustrated in Fig. 3.9. To this end, the
following auxiliary predicates have been defined:

• all clauses/2 collects all clauses of a predicate into a list of terms. Example:

?- all clauses(c/2,L).

L = [(c(G368, G369) :- f(G368), m(G368, G369)),

(c(G350, G351) :- G350 is G351+1),

(c(G331, G331) :- f(G331), g(G331))]

all clauses/2 is defined by

all_clauses(Fun/Arity,List) :-

functor(Pred,Fun,Arity),

findall((Head :- Body),

(nth_clause(Pred,_,Ref),

clause(Head,Body,Ref)), List).

• arrange/3 selects (a subset of) the entries of list as specified by a list of integers in the first argument.
Example:

?- arrange([4,3,5],[a,b,c,d,e,f],L).

L = [d, c, e]

arrange/3 is defined by

arrange(IntList,InL,OutL) :-

findall(E,(member(M,IntList), nth1(M,InL,E)),OutL).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

107

Program Manipulations

Built-in Predicate: nth1(?Index,?List,?Elem)

nth1/3 is used to select a specified entry from a list. Example:

?- nth1(3,[a,b,c,d,e,f],E).

E = c

The definition of clause arrange/2 in terms of the two auxiliaries is fairly straightforward; see the file
transformations.pl for details.

Exercise 3.15. Use the predicate unfold/3 to carry out a Complete One Step Unfolding on an appropri-
ately chosen goal in one of the clauses of flatten dl/2 from Sect. 2.2.3. After some removal and rearranging
of clauses via clause arrange/2 , you should arrive at a version of flatten/2 which is more efficient than the
earlier ones. Demonstrate the gain in speed by an experiment akin to the one carried out in Exercise 2.7.

�

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Prolog Techniques

108

Program Manipulations

Exercise 3.16. You will have seen in Exercise 3.15 that unfold/3 places the new clauses after the existing
ones. To observe the original order, the new clauses had to be subsequently moved by clause arrange/2 to
the position of the clause they were replacing. Write a predicate cosu/3 which performs a Complete One
Step Unfolding and then restores the predicates’ order.12 For example, the suggested solution of Exercise 3.15
(p. 162) could then be achieved simply by

?- cosu(flatten dl/2,2,2).

...

?- listing(flatten dl/2).

flatten dl([], A-A).

flatten dl([A], B-C) :- flatten dl(A, B-C),

true.

flatten dl([A, B|C], D-E) :- flatten dl(A, D-F),

flatten dl(B, F-G),

flatten dl(C, G-E).

flatten dl([A|B], C-D) :- flatten dl(A, C-[B|D]),

true.

flatten dl(A, [A|B]-B).

Note. When using clause arrange/2 , you will have to be able to generate integer lists with specified bounds.
The built-in predicate between/3 may be used to achieve this.

�

3.3 Dijkstra’s Dutch Flag Problem Revisited

3.3.1 Problem Generalization and First Solution

Dijkstra’s Dutch Flag Problem from Sect. 2.4 may be generalized as follows:

• The items may be of any colour and any number of colours may occur.

• The items are to be grouped to a certain order of colours as specified by the user in some list Colours .
This list need not include all the items’ colours and may include colours not assigned to any of the items.
As before, within each colour group the items’ original order should be retained.

We call the predicate to be defined dijkstra(+Colours,+Items,-Grouped) and illustrate its desired behaviour
by an example. Take the list of items

new_items([col(soot,black), col(tomato,red), col(nut,brown),

col(milk,white), col(snow,white), col(coal,black),

col(bile,green), col(bark,brown), col(ocean,blue),

col(grass,green), col(apple,red), col(blood,red),

col(night,black), col(sky,blue)]).

12To retrieve the number of clauses of a predicate, you should use the built-in predicate predicate property/2 in the form
predicate property(+Pred,number of clauses(-ClauseNumber)) .

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

109

Program Manipulations

and sort it in the order black, blue, violet, green, red and white. (Notice that brown is not one of the colours
listed here, nor is there any item whose colour is violet.) The expected behaviour of dijkstra/3 is as follows.13

?- new items(Items),

dijkstra([black,blue,violet,green,red,white], Items,Grouped).

Grouped = [col(soot,black), col(coal,black), col(night,black),

col(ocean,blue), col(sky,blue), col(bile,green),

col(grass,green), col(tomato,red), col(apple,red),

col(blood,red), col(milk,white), col(snow,white)]

dijkstra/3 solves the original Dutch Flag problem from Sect. 2.4 if its first argument is unified with [red,

white, blue].
On inspection of dijkstra/2 from Sect. 2.4.3 (the version based on difference lists) it is seen that the

current, specific problem would be solved by dijkstra/2 if dijkstra dl/2 had been defined by the clause

dijkstra_dl(Items,L1-L7) :- colour_dl(black,Items,L1-L2),

colour_dl(blue,Items,L2-L3),

colour_dl(violet,Items,L3-L4),

colour_dl(green,Items,L4-L5),

colour_dl(red,Items,L5-L6),

colour_dl(white,Items,L6-L7).

This suggests introducing a predicate replace dijkstra dl(+Colours) for replacing the existing definition of
dijkstra dl/2 in the database by the desired one. Then, dijkstra/3 may be defined in terms of the old
version of dijkstra/2 thus

dijkstra(Colours,Items,List) :- replace_dijkstra_dl(Colours),

dijkstra(Items,List).

Let us now look at in detail how the change in the database is accomplished.

replace_dijkstra_dl(Colours) :-

dynamic(dijkstra_dl/2), % goal 1

retractall(dijkstra_dl(_,_)), % goal 2

conjuncts(Items,Colours,L,First,Last), % goal 3

conj(Body,L), % goal 4

assert(dijkstra_dl(Items,First-Last) :- Body). % goal 5

The first two goals are obvious: dijkstra dl/2 is made a dynamic predicate and then its existing definition is
removed from the database. The rôle of conjuncts/5 is best illustrated by a sample query.

?- conjuncts(Items,[red,white,green],L,First,Last).

Items = G399

L = [colour dl(red, G399, G402- G513),

colour dl(white, G399, G513- G514),

colour dl(green, G399, G514- G403)]

First = G402

Last = G403

13We note in passing that the default maximum number of entries of a list displayed on the terminal by SWI–Prolog is ten. For
a full display of the twelve-entry list Grouped , we issue the prior query

?- set prolog flag(toplevel print options,[max depth(20)]).

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

110

Program Manipulations

Here, L is unified with the list of terms whose conjunction will form the body of the clause for dijkstra dl/2 .
The variables First , Last and Items will be used in goal 5 as variables in the head of the clause for
dijkstra dl/2 . We won’t spell out the definition of conjuncts/5 here but consider some salient points only.
The list of terms in the third argument is created by an auxiliary predicate using the accumulator technique;
see the source code for details. Perhaps the most imminent question here is how to get hold of an unspecified
number of variable names.14 This is accomplished by vars/2 ,

?- vars(5,V).

V = [G239, G240, G241, G242, G243]

which may be defined as shown below.15

vars(N,Vars) :- functor(Term,dummy,N),

bagof(Var,Arg^arg(Arg,Term,Var),Vars).

The requisite number of variables is generated by the built-in predicate functor/3 , as in

?- functor(Term,dummy,5).

Term = dummy(G313, G314, G315, G316, G317)

subsequent to which bagof/3 is used to collect the variables in a list. In goal 4, we use conj/2 (which is known
from Sect. 3.2.1, p. 102) to unify with Body the conjunction of terms for the body of the clause to be created.
Finally, in goal 5 the clause is written to the database.

Exercise 3.17. Use dijkstra/3 to define dijkstra st(+Items,-Grouped) for returning in Grouped the
entries of Items such that

• All entries of Items feature in Grouped ;

• The colours are sorted in alphabetical order;

• And, as before, within each colour group, the items’ original order is retained.

Example:

?- items(Items), dijkstra st(Items,Grouped).

Grouped = [col(sky, blue), col(ocean, blue), col(tomato, red),

col(blood, red), col(cherry, red), col(milk, white),

col(snow, white)]

�

14Only at runtime will it be known how many colours conjuncts/5 holds in its second argument!
15 There are at least two other alternatives for defining vars/2 . The simplest is by using the built-in predicate length/2 :

?- length(Vars,5).

Vars = [G251, G254, G257, G260, G263]

The second one is based on the built-in predicate =../2 (univ) for assembling and disassembling terms. The idea for this
implementation of vars/2 should be clear from the query below.

?- functor(Term,dummy,5), Term =.. [|Vars].

Term = dummy(G478, G479, G480, G481, G482)

Vars = [G478, G479, G480, G481, G482]

(The predicates functor/3 , arg/3 and univ will be familiar from Sect. 2.2.1.)

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

111

Program Manipulations

3.3.2 Enhanced Implementations

The predicate dijkstra(+Colours,+Items,-Grouped) from Sect. 3.3.1 is inefficient inasmuch as it will require
as many passes through Items as there are entries in Colours . We have seen implementations for the original
Dutch Flag Problem in Exercise 2.10, requiring a single pass only through the input list Items . In this section,
those versions will be enhanced for solving the problem’s more general formulation.

As in Sect. 3.3.1 before, we want to glean the plan for solving the general problem by considering a specific
example. Let us assume that Colours is the list [black,white,red,green] . Then, it is easily seen that
the plan for the solution of Exercise 2.10 (pp. 152–153) still applies if colour dl/4 and dijkstra dl/2 are
respectively replaced by the predicates encolour dl/5 and endijkstra dl/2 as shown in Fig. 3.15. Clearly,

encolour dl([],B-B,W-W,R-R,G-G).

encolour dl([col(Object,black)|T],

[col(Object,black)|B1]-B2,W1-W2,R1-R2,G1-G2) :-

encolour dl(T,B1-B2,W1-W2,R1-R2,G1-G2).

encolour dl([col(Object,white)|T],

B1-B2,[col(Object,white)|W1]-W2,R1-R2,G1-G2) :-

encolour dl(T,B1-B2,W1-W2,R1-R2,G1-G2).

encolour dl([col(Object,red)|T],

B1-B2,W1-W2,[col(Object,red)|R1]-R2,G1-G2) :-

encolour dl(T,B1-B2,W1-W2,R1-R2,G1-G2).

encolour dl([col(Object,green)|T],

B1-B2,W1-W2,R1-R2,[col(Object,green)|G1]-G2) :-

encolour dl(T,B1-B2,W1-W2,R1-R2,G1-G2).

encolour dl([col(,)|T],B1-B2,W1-W2,R1-R2,G1-G2) :-

encolour dl(T,B1-B2,W1-W2,R1-R2,G1-G2).

endijkstra dl(Items, L1-L7) :-

encolour dl(Items,L1-L2,L2-L3,L3-L4,L4-L5,L5-L6,L6-L7).

}
1©⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

2©

}
3©

}
4©

Figure 3.15: Illustrative Example of Intended Database Updates

the list of colours in Colours will be known at runtime only and thus the predicate definitions indicated in
Fig. 3.15 should be accomplished by prior database updates. The predicates def encolour dl(+Colours)

and def endijkstra dl(+Colours) shall be responsible for writing to the database clauses like 1©– 3© and 4©,
respectively.

The present problem is more complex than that in Sect. 3.3.1 in two respects: both the number of clauses
for, and the arity of the predicate encolour dl will be known at runtime only.

Implementing def encolour dl/1 and def endijkstra dl/1

The top level definition of def encolour dl/1 is shown in Fig. 3.16. The following features are noteworthy:

• The old definition (if present) of encolour dl (with the same arity as the one to be implemented) is
removed from the database.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

112

Program Manipulations

def encolour dl(Colours) :-

length(Colours,N),

M is N + 1,

dynamic(encolour dl/M),

length(Vars,M),

Old Version =.. [encolour dl|Vars],

retractall(Old Version),

base clause(Colours,B Clause),

assert(B Clause),

((member(Colour,Colours),

recursive clause(Colour,Colours,R Clause),

assert(R Clause),

fail); true),

catch all clause(Colours,C Clause),

assert(C Clause).

} 	
 ��Implements 1©⎫⎪⎪⎬
⎪⎪⎭

	
 ��Implements 2©

} 	
 ��Implements 3©

Figure 3.16: Top Level Definition of def encolour dl/1

• The auxiliary predicate base clause/2 creates the term for the base clause (marked 1© in Fig. 3.15),
followed by a database update. It is defined by the predicates

base_clause(Colours,(Head :- true)) :- length(Colours,N),

base(N,Head).

base(N,Term) :- diffvars1(N,D),

Term =.. [encolour_dl,[]|D].

diffvars1(N,D) :- functor(Term,dummy,N),

Term =.. [_|L],

diffterms(L,L,D).

where diffvars1/2 produces a list with a given number of differences of pairwise identical variables as
exemplified by

?- diffvars1(3,D).

D = [G287- G287, G288- G288, G289- G289]

• The terms for the recursive clauses (marked 2© in Fig. 3.15) are created by the auxiliary predicate
recursive clause/3 and written to the database within a failure driven loop. recursive clause/3

reads at the top level as

recursive_clause(Colour,Colours,(Head :- Body)) :-

length(Colours,N),

diffvars2(N,D),

head(Colour,Colours,T,D,Head),

body(T,D,Body), !.

where

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

113

Program Manipulations

1. diffvars2/2 produces a list with a given number of differences of pairwise distinct variables,

2. head/5 produces the term for the head of encolour ,

3. body/3 produces the term for the body of encolour .

head/5 and body/3 are respectively defined by

head(Colour,Colours,T,D,Head) :-

comb(Object,Colour,Colours,D,Modified),

Head =.. [encolour_dl,[col(Object,Colour)|T]|Modified].

body(T,D,Body) :- Body =.. [encolour_dl,T|D].

The predicate comb/5 combines the list of colours with the list of difference terms as exemplified below.

?- comb(Object,w,[r,w,g],[R1-R2,W1-W2,G1-G2],M).

Object = G429

R1 = G411 R2 = G412

W1 = G417 W2 = G418

G1 = G423 G2 = G424

M = [G411- G412, [col(G429, w)| G417]- G418, G423- G424]

In the definition of comb/5 (not shown here) the accumulator technique is used.

• Finally, the catch-all clause (marked 3© in Fig. 3.15) is created by the auxiliary predicate catch all clause/2

along similar lines to body/3 . (Its definition is not shown here).

The definition of def endijkstra dl/1 is broadly analogous to that of catch all clause/2 and is not
shown here. The full source code for the present version is available in the file dl.pl.

Exercise 3.18. In the above development, for simplicity, def encolour dl/1 was defined such that clause
3© in Fig. 3.15 does not contain any reference to the colours to be omitted; this was accomplished by 3© being
the last clause. The resulting definition of encolour dl will therefore be sensitive to the ordering of its clauses.
This is not ideal, however, as it prevents code to be interpreted declaratively.

Redefine def encolour dl(+Colours) such that it writes to the database code which is not sensitive to
clause reordering.

Hints.

• Aim at excluding the colours not in Colours by using the built-in predicate member/2 . If, for example,
Colours is unified with [black, white, red, green] , then def encolour dl/1 writes instead of 3©
the following clause to the database

encolour_dl([col(_, Clr)|T], B1-B2, W1-W2, R1-R2, G1-G2) :-

not(member(Clr, [black, white, red, green])),

encolour_dl(T, B1-B2, W1-W2, R1-R2, G1-G2).

• All we need is a new definition of catch all clause/2 , used in Fig 3.16. Use conj/2 (known from
Sect. 3.2.1, p. 102) to construct the conjunction of the two goals in the body of the new clause of
encolour dl . Each of the two conjuncts will be obtained by using =../2 .

• The solution is in dl.pl.

�

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

114

Program Manipulations

Performance Comparison

An experiment confirms that the enhanced version needs a lesser number of inferences than the version from
Sect. 3.3.1.

?- new items(Items),

Colours = [black,blue,violet,green,red,white],

def encolour dl(Colours), def endijkstra dl(Colours),

time(endijkstra dl(Items,Grouped-[])).

% 16 inferences in 0.00 seconds (Infinite Lips)

Grouped = [col(soot, black), col(coal, black), ...]

?- new items(Items),

Colours = [black,blue,violet,green,red,white],

replace dijkstra dl(Colours),

time(dijkstra dl(Items,Grouped-[])).

% 91 inferences in 0.00 seconds (Infinite Lips)

Grouped = [col(soot, black), col(coal, black), ...]

The earlier version will appear more efficient, however, if we repeat this experiment and take also into account the
overhead for creating and writing to the database the versions’ definitions. This apparent advantage disappears,

EADS unites a leading aircraft manufacturer, the world’s largest
helicopter supplier, a global leader in space programmes and a
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments
during your studies. Given a high level of responsibility, plenty of

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across
disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also
find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

Download free eBooks at bookboon.com

Prolog Techniques

115

Program Manipulations

however, as soon as the list of items exceeds a certain length.

Creating Plain Implementations

Exercise 3.19. def encolour dl/1 and def endijkstra dl/1 gave rise to enhanced implementations which
themselves were using difference lists. Write analogues of these two predicates creating plain solutions of the
Dutch Flag Problem. More precisely, the implementations thus created should themselves be (the augmented)
analogues of the solution proposed in Exercise 2.10, p. 60. The interactive session in Fig. 3.17 overleaf illustrates
the desired behaviour of def encolour pl/1 and def endijkstra pl/1 .

�

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

116

Program Manipulations

�

�

�

�

?- listing(encolour pl).

ERROR: No predicates for ‘encolour pl’

No

?- def encolour pl([black,white,red,green]).

Yes

?- listing(encolour pl).

encolour pl([], [], [], [], []).

encolour pl([col(A, black)|B], [col(A, black)|C], D, E, F) :-

encolour pl(B, C, D, E, F).

encolour pl([col(A, white)|B], C, [col(A, white)|D], E, F) :-

encolour pl(B, C, D, E, F).

encolour pl([col(A, red)|B], C, D, [col(A, red)|E], F) :-

encolour pl(B, C, D, E, F).

encolour pl([col(A, green)|B], C, D, E, [col(A, green)|F]) :-

encolour pl(B, C, D, E, F).

encolour pl([col(A, B)|C], D, E, F, G) :-

encolour pl(C, D, E, F, G).

Yes

?- listing(endijkstra pl).

ERROR: No predicates for ‘endijkstra pl’

No

?- def endijkstra pl([black,white,red,green]).

Yes

?- listing(endijkstra pl).

endijkstra pl(A, B) :- encolour pl(A, C, D, E, F),

flatten([C, D, E, F], B).16

Yes

?- items(Items)17, endijkstra pl(Items,Grouped).

Grouped = [col(milk, white), col(snow, white), col(tomato, red),

col(blood, red), col(cherry, red)]

Yes

Figure 3.17: Example Session for Exercise 3.19

16In contrast to the special case in Exercise 2.10, now the number of lists to be concatenated will be known at runtime only.
Thus the concatenation is best accomplished by using flatten/2 and not by (repeated use of) append/3 .

17The predicate items/1 is as defined in Sect. 2.4, p. 57.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

117

Exploratory Code Development

Chapter 4

Exploratory Code Development

Conciseness and accessibility of source code through declarative reading are Prolog’s major strengths. It is
therefore relatively easy to appreciate the workings of someone else’s implementation, while it is much harder
independently to arrive at one’s own solution to the same problem. In this chapter, we illustrate a practi-
cal methodology which is intended to overcome this discrepancy: it is a software development style that is
interactive, incremental, exploratory and allows Prolog code to be arrived at in a relatively effortless manner.

4.1 A Nursery Rhyme

The task is to write a Prolog predicate rhyme/0 which displays on the screen the well-known nursery rhyme
This is the House that Jack Built ([11]):

This is the house that Jack built.

This is the malt
That lay in the house that Jack built.

This is the rat
That ate the malt
That lay in the house that Jack built.

This is the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the maiden all forlorn
That milked the cow with the crumpled horn

That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the man all tattered and torn
That kissed the maiden all forlorn
That milked the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the priest all shaven and shorn
That married the man all tattered and torn
That kissed the maiden all forlorn
That milked the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the cock that crowed in the morn
That waked the priest all shaven and shorn
That married the man all tattered and torn
That kissed the maiden all forlorn

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

118

Exploratory Code Development

That milked the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

This is the farmer sowing his corn
That kept the cock that crowed in the morn

That waked the priest all shaven and shorn
That married the man all tattered and torn
That kissed the maiden all forlorn
That milked the cow with the crumpled horn
That tossed the dog
That worried the cat
That killed the rat
That ate the malt
That lay in the house that Jack built.

In our implementation of rhyme/0 we want to exploit the rhyme’s repetitive structure and the fact that
all essential information is contained in its last verse. We record the last verse in the database by verse/1 as
shown in (P-4.1).

Prolog Code P-4.1: Definition of verse/1

1 verse([’This is the farmer sowing his corn’,

2 ’That kept the cock that crowed in the morn’,

3 ’That waked the priest all shaven and shorn’,

4 ’That married the man all tattered and torn’,

5 ’That kissed the maiden all forlorn’,

6 ’That milked the cow with the crumpled horn’,

7 ’That tossed the dog’,

8 ’That worried the cat’,

9 ’That killed the rat’,

10 ’That ate the malt’,

11 ’That lay in the house that Jack built.’]).

The rhyme is seen roughly to match the simplified pattern shown in Fig. 4.1.

verse 1 verse 2 verse 3 verse 4 verse 5 verse 6
↓ ↓ ↓ ↓ ↓ ↓

A B C D E F · · ·
A B C D E · · ·

A B C D · · ·
A B C · · ·

A B · · ·
A · · ·

Figure 4.1: The Rhyme’s Simplified Pattern

Knowing the rhyme’s last verse and the above structure will allow (up to some finer detail) the rhyme to
be fully reconstructed. With a view to a simplified preliminary Prolog implementation, we therefore define the
following Prolog fact in the database

verse_skeleton([’F’,’E’,’D’,’C’,’B’,’A’]).

The first task is now to define a predicate rhyme prel/2 which should enable us to obtain the skeleton rhyme’s
structure in the following manner.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

119

Exploratory Code Development

?- verse skeleton(V), rhyme prel(V, R), write term(R,[]).

[[A], [B, A], [C, B, A], [D, C, B, A], [E, D, C, B, A],

[F, E, D, C, B, A]]

Taking this as an informal specification of rhyme prel/2 , we want to arrive at its definition by a series of
interactive experiments.

4.1.1 First Preliminary Implementation

What could be the least ambitious first step in implementing rhyme prel/2 ? We may for example create a list
whose only entry is the last entry of the above list-of-lists. (This will correspond to reproducing the last verse.)
This we do by

?- verse skeleton(V), R = [V], write term(R,[]).

[[F, E, D, C, B, A]]

Still interactively, a list comprising the last two entries of the target list-of-lists may be generated by

?- verse skeleton(V), V = [| T1], R = [T1, V],

write term(R,[]).

[[E, D, C, B, A], [F, E, D, C, B, A]]

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Prolog Techniques

120

Exploratory Code Development

Here we unify T1 with the tail of V and position it in front of V to form the new list (of lists). How do
we now generate the next larger list (comprising the last three entries of the target list-of-lists)? We proceed as
before except that we assemble R from the entries T2 , T1 and V (in that order!) where T2 is unified with
the tail of T1 .

?- verse skeleton(V), V = [| T1], T1 = [| T2],

R = [T2, T1, V], write term(R,[]).

[[D, C, B, A], [E, D, C, B, A], [F, E, D, C, B, A]]

One more such step should suffice to appreciate the underlying pattern of interactively generating instances of
R .

?- verse skeleton(V), V = [| T1], T1 = [| T2],

T2 = [| T3], R = [T3, T2, T1, V], write term(R,[]).

[[C, B, A], [D, C, B, A], [E, D, C, B, A], [F, E, D, C, B, A]]

Since our aim is to identify a recursive pattern in the above interactive session, we recast the inputs slightly by
observing that [a1, · · · , an−1, an] and [a1|[a2|[a3| · · · |[an−1|[an]] · · ·]] are equivalent representations of the same
list. Let’s have a look at the last two queries again.

?- verse skeleton(V), V = [| T1], T1 = [| T2],

R = [T2︸︷︷︸
Head Old

|[T1|[V]]︸ ︷︷ ︸
Tail Old

]

︸ ︷︷ ︸
Rhyme Old

, write term(R,[]).

[[D, C, B, A], [E, D, C, B, A], [F, E, D, C, B, A]]

?- verse skeleton(V), V = [| T1], T1 = [| T2],

T2︸︷︷︸
Head Old

= [| T3︸︷︷︸
Head

], R = [T3︸︷︷︸
Head

|[T2|[T1|[V]]]︸ ︷︷ ︸
Rhyme Old

]

︸ ︷︷ ︸
Rhyme

,

write term(R,[]).

[[C, B, A], [D, C, B, A], [E, D, C, B, A], [F, E, D, C, B, A]]

The annotated lists suggest the following pseudocode (using Prolog’s list-notation) for one single recursive
step.

Rhyme Old = [Head Old|Tail Old] (4.1)

Head Old = [|Head]

Rhyme = [Head|Rhyme Old] (4.2)

Notice that by equations (4.1) and (4.2) we may replace the latter by

Rhyme = [Head|[Head Old|Tail Old]]

The base case for the recursion is given by

First Rhyme = [[’F’, ’E’, ’D’, ’C’, ’B’, ’A’]]

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

121

Exploratory Code Development

A straightforward implementation of the recursive step is by the (auxiliary) predicate rhyme aux/3 in (P-4.2).

Prolog Code P-4.2: First definition of the auxiliary predicate

1 rhyme_aux(R,1,R).

2 rhyme_aux([Head_Old|Tail_Old],Counter,R) :-

3 Head_Old = [_|Head],

4 New_Counter is Counter - 1,

5 rhyme_aux([Head|[Head_Old|Tail_Old]],New_Counter,R).

In the first argument of rhyme aux/3 the most recent version of the rhyme is accumulated; its second argument
is a counter which is decremented from an initial value until it reaches unity at which point the third argument
is instantiated to the first. It is noteworthy in the definition of rhyme aux/3 that, as a consequence of using
the accumulator technique, reference to the more complex case in the recursive step is found in the rule’s body.
(In this sense, as opposed to the familiar situation from imperative programming, progression is from right to
left.)

We find out by an experiment what the counter should be initialized to.

?- verse skeleton(V), rhyme aux([V],1, R), write term(R,[]).

[[F, E, D, C, B, A]]

?- verse skeleton(V), rhyme aux([V],2, R), write term(R,[]).

[[E, D, C, B, A], [F, E, D, C, B, A]]

...

?- verse skeleton(V), rhyme aux([V],6, R), write term(R,[]).

[[A], [B, A], [C, B, A], [D, C, B, A], [E, D, C, B, A],

[F, E, D, C, B, A]]

It is seen that the second argument of rhyme aux/3 (the counter) will have to be initialized to the length of
(what stands for) the last verse. This gives rise to the following first version of the predicate rhyme prel/2

rhyme_prel_1(V,R) :- length(V,L), rhyme_aux([V],L,R).

which then behaves as specified on p. 119.
Even though the solution thus obtained is perfectly acceptable, there is scope for improvement. Counters

are commonly used in imperative programming for verifying a stopping criterion. The corresponding task in
declarative programming is best achieved by pattern matching . There is indeed no need for a counter here since
the information for when not to apply the recursive step (any more) can be gleaned from the pattern of the
first argument of rhyme aux/3 : For the recursion to stop, the head of the list-of-lists (in the first argument)
should itself be a list with exactly one entry. (The complete rhyme will have been arrived at when the first
verse comprises a single line!) This idea gives rise in (P-4.3) to a new, improved (and more concise) version of
the auxiliary predicate, now called rhyme aux/3 .

Prolog Code P-4.3: Another definition of the auxiliary predicate

1 rhyme_aux_2([[First]|Rest],[[First]|Rest]).

2 rhyme_aux_2([Head_Old|Tail_Old],R) :-

3 Head_Old = [_|Head],

4 rhyme_aux_2([Head|[Head_Old|Tail_Old]],R).

rhyme aux 2/3 behaves as intended:

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

122

?- verse skeleton(V), rhyme aux 2([V], R), write term(R,[]).

[[A], [B, A], [C, B, A], [D, C, B, A], [E, D, C, B, A],

[F, E, D, C, B, A]]

The definition of a second, improved version of the preliminary rhyme predicate now simplifies to

rhyme_prel_2(V,R) :- rhyme_aux_2([V],R).

To complete the ‘skeleton version’ of the rhyme, we display the above by

?- verse skeleton(V), rhyme prel 2(V, R), show rhyme(R).

A

B

A

...

F

E

D

C

B

A

with the predicate show rhyme/1 defined by

show_list([]).

show_list([H|T]) :- write(H), nl, show_list(T).

show_rhyme([]).

show_rhyme([H|T]) :- show_list(H), nl, show_rhyme(T).

There is still scope for further improvement leading to an even more concise version of the auxiliary predicate.
We may replace in the definition of rhyme aux 2/2 all occurrences of Head Old by [H|T], say, accounting for
the fact that Head Old will be unified with a list.

rhyme_aux_2([[H|T]|Tail_Old],R) :-

[H|T] = [_|Head],

rhyme_aux_2([Head|[[H|T]|Tail_Old]],R).

But then, by virtue of the first goal in the body of this rule we may replace all occurrences of Head by T.
Subsequently, the first goal may be dropped. Overall, we obtain in (P-4.4) a third, even more concise version
of the auxiliary predicate.

Prolog Code P-4.4: Third definition of the auxiliary predicate

1 rhyme_aux_3([[First]|Rest],[[First]|Rest]).

2 rhyme_aux_3([[H|T]|Tail_Old],R) :- rhyme_aux_3([T|[[H|T]|Tail_Old]],R).

There is hardly any room for improvement left save perhaps a minor simplification of the first clause. We derive
an alternative boundary case by first completing the interactive session from p. 120 and then carrying out one
more step:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

123

?- verse skeleton(V), V = [| T1], T1 = [| T2],

T2 = [| T3], T3 = [| T4], T4 = [| T5],

R = [T5|[T4|[T3|[T2|[T1|[V]]]]]], write term(R,[]).

[[A], [B, A], [C, B, A], [D, C, B, A], [E, D, C, B, A],

[F, E, D, C, B, A]]

?- verse skeleton(_V), V = [| T1], T1 = [| T2],

T2 = [| T3], _T3 = [| T4], T4 = [| T5], T5 = [| T6],

R = [_T6|[_T5|[_T4|[_T3|[_T2|[_T1|[_V]]]]]]],

write term(_R,[]).

[[], [A], [B, A], [C, B, A], [D, C, B, A], [E, D, C, B, A],

[F, E, D, C, B, A]]

The first query suggests that we are finished if the (partially) completed skeleton rhyme’s head is a single-
element list; this condition gave rise to the earlier boundary case. On the other hand, in the second query the
variable R is unified with a list whose head is empty and whose tail is the full skeleton rhyme. This suggests
the following alternative first clause for rhyme aux 3/2 ,

rhyme_aux_3([[]|R],R).

The disadvantage of this stopping criterion is that it will cause one additional invocation of the recursive step.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

124

Of course, the third version of the auxiliary predicate, rhyme aux 3/2 , (with any of the two alternative first
clauses) gives rise to yet another version of rhyme prel/2 .

rhyme_prel_3(V,R) :- rhyme_aux_3([V],R).

4.1.2 Another Preliminary Implementation

With a view to wishing to use the accumulator technique (yet again), let us examine the first few steps of an
(as yet imaginary) interactive session.

?-...

[F, E, D, C, B, A], []

?-...

[E, D, C, B, A], [[F, E, D, C, B, A]]

?-...

[D, C, B, A], [[E, D, C, B, A], [F, E, D, C, B, A]]

?-...

[C, B, A], [[D, C, B, A], [E, D, C, B, A], [F, E, D, C, B, A]]

Two lists are involved here. The first list serves as a ‘supplier’ for updating the second one in which the skeleton
rhyme’s verses are accumulated. We observe that in each step the first list ‘loses’ its head, whereas the second
list is augmented by the first one. At the end of this sequence of steps (i.e. when the first list is empty) the
second list will contain the full skeleton rhyme. Having established the underlying idea, we now turn to the
corresponding interactive session. (This may look tedious but is easily carried out using ‘copy-and-paste’.)

?- verse skeleton(V), P1 = (V,[]), write term(P1,[]).

[F, E, D, C, B, A], []

?- verse skeleton(V), P1 = (V,[]),

([H1| T1], Acc1) = P1, P2 = (T1,[[H1| T1]| Acc1]),

write term(P2,[]).

[E, D, C, B, A], [[F, E, D, C, B, A]]

?- verse skeleton(V), P1 = (V,[]),

([H1| T1], Acc1) = P1, P2 = (T1,[[H1| T1]| Acc1]),

([H2| T2], Acc2) = P2, P3 = (T2,[[H2| T2]| Acc2]),

write term(P3,[]).

[D, C, B, A], [[E, D, C, B, A], [F, E, D, C, B, A]]

?- ...

To see how consecutive steps in the above query are interrelated, we have a look at two goals in the last query
in some more detail; this is shown in Fig. 4.2. It is indicated here how the new pair P3 is expressed in terms

([H2|
︷︸︸︷
T2]︸ ︷︷ ︸, Acc2︸ ︷︷ ︸) = P2, P3 = (

︷︸︸︷
T2 ,[[H2| T2]︸ ︷︷ ︸| Acc2︸ ︷︷ ︸]),
�

� �

Figure 4.2: Exploring Details of the Rhyme’s Structure

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

125

of the old pair P2 . This observation gives rise to (P-4.5), a fourth version of rhyme prel/2 .

Prolog Code P-4.5: Fourth version of rhyme prel/2

1 rhyme_prel_4(V,R) :- rhyme_acc(V,[],R).

2 rhyme_acc([],R,R).

3 rhyme_acc([HOld|TOld],AccOld,R) :-

4 rhyme_acc(TOld,[[HOld|TOld]|AccOld],R).

4.1.3 The Final Version

We may use any of the four versions produced thus far of rhyme prel/2 to obtain a rough version of rhyme/0
by replacing in the query on p. 122, Sect. 4.1.1, the term verse skeleton(V) by the term verse(V) ; for
example,

?- verse(V), rhyme prel 2(V, R), show rhyme(R).

That lay in the house that Jack built.

That ate the malt

That lay in the house that Jack built.

...

This is the farmer sowing his corn

That kept the cock that crowed in the morn

...

That tossed the dog

That worried the cat

That killed the rat

That ate the malt

That lay in the house that Jack built.

We realize that the rhyme thus produced is not quite what we want: the first line of each verse (and not merely
that of the last verse) should begin with ‘This is ...’. This effect will be achieved in three steps.

1. Define a predicate to first/2 which, when applied to an atom, replaces all its characters up to the first
occurrence of the string ‘the’ by the string ‘This is ’. Example:

?- to first(’We find the definite article.’,A).

A = ’This is the definite article.’

2. Define change first/2 in terms of to first/2 by

change_first([H1|T],[H2|T]) :- to_first(H1,H2).

This predicate applies to first/2 to the head of a list of atoms while leaving the tail unchanged. Example:

?- change first([’That was the first’,’Now the second’,

’Now the third’],L).

L = [’This is the first’, ’Now the second’, ’Now the third’]

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

126

3. Now apply change first/2 by means of the built-in predicate maplist/3 to the first line of each verse
of the rhyme’s rough version.

Below we show our definition of to first/2 .

to_first(Old,New) :- atom_chars(Old,Charlist),

change(Charlist,Newlist),

concat_atom(Newlist,New).

Given an atom (in Old), it is first converted by means of the built-in predicate atom chars/2 into a list of
one-character atoms (in Charlist).

Built-in Predicate: atom chars(?Atom,?CharList)

It converts an atom into the corresponding list of one–character atoms and
vice versa. Example:

?- atom chars(’Text’,L).

L = [’T’, e, x, t]

The predicate change/2 is then used to effect the intended change in the atom’s list-of-characters representation;
it is defined by1

change([t,h,e|T],[’T’,h,i,s,’ ’,i,s,’ ’,t,h,e|T]) :- !.

change([_|T],X):- change(T,X).

and its behaviour is exemplified by

?- change([’F’,i,n,d,’ ’,t,h,e,’ ’,s,t,r,i,n,g], L),

write_term(L,[]).

[T, h, i, s, , i, s, , t, h, e, ,s, t, r, i, n, g]

Finally, the built-in predicate concat atom/2 is used to convert the list-of-characters in Newlist into an atom
(in New).2

Built-in Predicate: concat atom(+List,-Atom)

Atom is obtained by concatenating the elements of List . Example:

?- concat atom([atom1,atom2,atom3],A).

A = atom1atom2atom3

Having thus arrived at an implementation of change first/2 , we now want to apply this predicate to the head
of each of the rough rhyme’s verses. Since the latter is available (from rhyme prel/2) as a list, we may use
maplist/3 for a concise definition of rhyme/0 .

1Because of the cut, change/2 will fail on backtracking even for multiple occurrences of the substring ‘the’ in its first argument.
2For the present purposes where a list of single character atoms needs concatenating, we may use atom chars/2 as an alternative.

The last goal in the definition of to first/2 then reads as atom chars(New,Newlist).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

127

Built-in Predicate: maplist(+Pred,?List1,?List2)

The 2–ary predicate Pred is applied to each entry of List1 giving List2 and
vice versa.3Example:

?- maplist(append([a,b]),[[r,s],[u,v]],L).

L = [[a, b, r, s], [a, b, u, v]]

?- maplist(append([a,b]),L,[[a,b,r,s],[a,b,u,v]]).

L = [[r, s], [u, v]]

(Here, append/3 became a 2–ary predicate by partial application by fixing its

first argument to [a,b] .)

Now, any of the four versions of rhyme prel/2 may be used to define rhyme/0 ; for example,

rhyme_2 :- verse(V),

rhyme_prel_2(V,RTemp),

maplist(change_first,RTemp,R),

show_rhyme(R).

4.1.4 Other Approaches

All solutions considered thus far were based on (some form of) the accumulator technique. The problem at hand
can also be approached by simple recursion, however. To arrive at such a solution, we first show in Table 4.1
the desired rhyme for some last verses of various lengths. We ask ourselves the following question:

Last Verse Rhyme

[’A’] [[’A’]]

[’B’,’A’] [[’A’],[’B’,’A’]]

[’C’,’B’,’A’] [[’A’],[’B’,’A’],[’C’,’B’,’A’]]

[’D’,’C’,’B’,’A’] [[’A’],[’B’,’A’],[’C’,’B’,’A’],[’D’,’C’,’B’,’A’]]

· · · · · ·

Table 4.1: Rhyme Structure

Given a particular rhyme, how can the previous rhyme be expressed in terms of the current one?

A declarative reading of the last two lines of Table 4.1 suggest the following: [H|T] is the last verse of the
current rhyme C if T is the last verse of the previous rhyme P and C comes about by appending [[H|T]] to

3The ‘reverse’ application of maplist/3 is possible only if the second argument of Pred may be used in the input mode. This
is not the case for example for flatten/2 as is shown below.

?- maplist(flatten,[[a,[b,[c,d],e]],[[[r,s],t],x,y]],L).

L = [[a, b, c, d, e], [r, s, t, x, y]]

?- maplist(flatten,L,[[a,b,c,d,e],[r,s,t,x,y]]).

No

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

128

P . And, the boundary case is identified by observing that the one-line verse [L] is the last verse of [[L]] . The
aforesaid is immediately expressed in Prolog by either of the two (logically equivalent) definitions (P-4.6) and
(P-4.7).4

Prolog Code P-4.6: Fifth version of rhyme prel/2

1 rhyme_prel_5([L],[[L]]).

2 rhyme_prel_5([H|T],C) :- append(P,[[H|T]],C), rhyme_prel_5(T,P).

Prolog Code P-4.7: Sixth version of rhyme prel/2

1 rhyme_prel_6([L],[[L]]).

2 rhyme_prel_6([H|T],C) :- rhyme_prel_6(T,P), append(P,[[H|T]],C).

(It is readily confirmed that both versions behave as earlier ones do.) As each of the last two predicates is
defined in terms of append/3 we would expect some improvement in elegance (and performance) by rewriting

4The following are alternative first clauses:
rhyme prel 5([],[]).

rhyme prel 6([],[]).

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

129

them using difference lists . Indeed, both versions give rise to (P-4.8), the same concise, tail recursive imple-
mentation using difference lists.

Prolog Code P-4.8: Seventh version of rhyme prel/2

1 rhyme_prel_dl([L],[[L]|X]-X).

2 rhyme_prel_dl([H|T],C1-C2) :- rhyme_prel_dl(T,C1-[[H|T]|C2]).

3 rhyme_prel_7(V,R) :- rhyme_prel_dl(V,R-[]).

Exercise 4.1. We want to make an experimental comparison between the various versions of rhyme prel/2
and need therefore a predicate that produces rhymes of any specified length. To be more specific, we will need
a predicate long verse/1 which removes from the database the current version of verse/1 and replaces it by
something of a repetitive structure and of a specified length as shown in the session below.

?- long verse(3), verse(V), show list(V).

That interacts with the item ...

That interacts with the item ...

That interacts with the item ...

?- rhyme 2.

This is the item ...

This is the item ...

That interacts with the item ...

This is the item ...

That interacts with the item ...

That interacts with the item ...

Define the predicate long verse/1 .

�

We can now use long verse/1 in conjunction with the built-in predicate time/1 to assess the versions’ per-
formance; this is shown for the last three versions in Table 4.2 below.5 As expected, version seven, the imple-

Version length of V 100 200 300 400 500
5 CPU-time [sec] 1.97 15.77 52.50 125.0 244.1

Version length of V 1,000 2,000 3,000 4,000 5,000
6 CPU-time [sec] 4.51 20.04 45.53 85.63 132.4

Version length of V 10,000 20,000 30,000 40,000 50,000
7 CPU-time [sec] 0.28 0.71 0.55 1.32 1.16

Table 4.2: CPU Times for Versions of the Query ?- rhyme prel(V, R).

mentation based on difference lists, is by far the most efficient. Furthermore, perhaps surprisingly, version six

5The first entry in Table 4.2 for example may be obtained by
?- long verse(100), verse(V), time(rhyme prel 5(V, R)).

% 176,749 inferences in 1.97 seconds (89720 Lips)

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

130

turns out to be better than its tail recursive counterpart, version five. We turn to Prolog’s tracing facility to
find out why this is the case:

?- trace([append/3,rhyme prel 5/2,rhyme prel 6/2]).

% append/3: [call, redo, exit, fail]

% rhyme_prel_5/2: [call, redo, exit, fail]

% rhyme_prel_6/2: [call, redo, exit, fail]

[debug] ?- rhyme prel 5([’B’,’A’],R).

T Call: (6) rhyme_prel_5([’B’, ’A’], _G418)

T Call: (7) append(_G506, [[’B’, ’A’]], _G418)

T Exit: (7) append([], [[’B’, ’A’]], [[’B’, ’A’]])

T Call: (7) rhyme_prel_5([’A’], [])

T Call: (8) append(_G512, [[’A’]], [])

T Fail: (8) append(_G512, [[’A’]], [])

T Fail: (7) rhyme_prel_5([’A’], [])

T Redo: (7) append(_G506, [[’B’, ’A’]], _G418)

T Exit: (7) append([_G476], [[’B’, ’A’]], [_G476, [’B’, ’A’]])

T Call: (7) rhyme_prel_5([’A’], [_G476])

T Exit: (7) rhyme_prel_5([’A’], [[’A’]])

T Exit: (6) rhyme_prel_5([’B’, ’A’], [[’A’], [’B’, ’A’]])

R = [[’A’], [’B’, ’A’]]

[debug] ?- rhyme prel 6([’B’,’A’],R).

T Call: (6) rhyme_prel_6([’B’, ’A’], _G418)

T Call: (7) rhyme_prel_6([’A’], _G498)

T Exit: (7) rhyme_prel_6([’A’], [[’A’]])

T Call: (7) append([[’A’]], [[’B’, ’A’]], _G418)

T Exit: (7) append([[’A’]], [[’B’, ’A’]], [[’A’], [’B’, ’A’]])

T Exit: (6) rhyme_prel_6([’B’, ’A’], [[’A’], [’B’, ’A’]])

R = [[’A’], [’B’, ’A’]]

It is seen that version five causes Prolog to backtrack on the search tree of append/3 until append([G482],[[’B’,’A’]]

succeeds. This is quite a contrast to rhyme prel 6 which does not cause backtracking but builds up a stack of
subgoals all of which eventually are satisfied in turn. It is also easily verified that on backtracking version five
will not terminate whereas version six will fail to re-satisfy the goal and returns ‘No’.

Exercise 4.2. Modify the definition of rhyme prel 5/2 such that it won’t loop but fails on backtracking.

�

Exercise 4.3. Define cputime(+Predname,+Arglist,-Time) for obtaining the CPU seconds in Time for
the predicate with name Predname and arguments in Arglist . Then, for example, the following is an alternative
to the query in footnote 5 on p. 129:

?- long verse(100),verse(V),cputime(rhyme prel 5,[V, R],Time).

Time = 1.97

The predicate cputime/3 will be an improvement on time/1 since it will then be possible to produce for
example the first row of Table 4.2 in one sweep interactively as follows.

?- findall(Time,(member(L,[100,200,300,400,500,600,700]),

long verse(L),

verse(V),

cputime(rhyme prel 5,[V, R], Time)),

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

131

Times).

Times = [2.03, 15.71, 52.29, 124.51, 242.5, 419.58, 667.78]

(Slight variations in the CPU times may be observed even when repeating the same query.) In your definition
of cputime/3 you should use the built-in predicate statistics/2 .

Built-in Predicate: statistics(+Key,-Value)

Unify system statistics determined by Key with Value . For example, we obtain
the CPU seconds and number of inferences accumulated in the present Prolog
session by

?- statistics(cputime,Time).

Time = 18020.2

?- statistics(inferences,Inf).

Inf = 222054681

�

Exercise 4.4. We have created several versions of rhyme prel/2 and have indicated the version number
by an appropriate suffix attached to the original predicate name. Let us now assume that this is the style
for indicating predicates’ versions in general. In this exercise, you are asked to define a predicate cputime/4
which is a generalization of cputime/3 from Exercise 4.3 in that the former will allow the version number to
be specified by an extra (the third) argument. Example:

?- long verse(100),verse(V),cputime(rhyme prel,[V, R],5,Time).

Time = 1.97

The benefit of cputime/4 is obvious: it will allow the timing of several versions of the same predicate in one
sweep, as is illustrated below.

?- long verse(70000), verse(V),

maplist(cputime(rhyme prel,[V, R]),[1,2,3,4,7],Times).

Times = [4.28, 3.19, 3.35, 1.54, 3.18]

�

Exercise 4.5. Using cputime/4 from Exercise 4.4, produce all entries of Table 4.2 interactively by one
single query.

Hint. As a first step, you should revisit the problem of producing interactively a list comprising the first
row of entries in Table 4.2 (c.f. Exercise 4.3). This is now best achieved by using the built-in predicates
findall/3 and between/3 and by observing that the last verse’s length is expressed in terms of the column
number j = 1, . . . , 5 as

length = j × 102

The general case is dealt with by nesting two such constructs. Version number and length are respectively
generated by

version = i + 3

length = j × 10i

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

132

with i = 2, 3, 4 and j = 1, . . . , 5.

�

4.2 Project: ’One Man Went to Mow . . .’

Another nursery rhyme with a similar recursive structure is the well-known song One man went to mow . . .

whose three-verse version is as follows.6

One man went to mow,
Went to mow a meadow,
One man and his dog,

Went to mow a meadow.

6Source: The BBC web site
http://www.bbc.co.uk/cbeebies/tweenies/songtime/

It is a cornucopia of songs and rhymes for pre-school children.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

133

Two men went to mow,
Went to mow a meadow,

Two men, one man and his dog,
Went to mow a meadow.

Three men went to mow,
Went to mow a meadow,

Three men, two men, one man and his dog,
Went to mow a meadow,
Went to mow a meadow.

We want to outline here the way this rhyme can be produced in Prolog and formulate the stages of the detailed
work as exercises.

This song has a very similar recursive structure to that of This is the house that Jack built except that
there is now no predefined ‘last verse’ from which we could unravel the entire rhyme. Our aim is to produce
a predicate song/0 returning on the terminal a continuous stream of verses until stopped by the keystrokes	
 ��Ctrl +

	
 ��C . The intended behaviour is shown in Fig. 4.3.7

?- song.

One man went to mow,

Went to mow a meadow,

One man and his dog,

Went to mow a meadow.

Two men went to mow,

Went to mow a meadow,

Two men,

one man and his dog,

Went to mow a meadow.

...

Seven men went to mow,

Went to mow a meadow,

Seven men,

six men,

five men,

four men,

three men,

two men,

one man and his dog,

Went to mow a meadow.

Action (h for help) ? abort

% Execution Aborted

Figure 4.3: Desired Behaviour of song/0

7Here we deliberately avoid asking for a fixed number of verses since otherwise the task would not be dissimilar enough to the
one considered in Sect. 4.1: we could then produce a ‘last verse’ with relative ease and then proceed as before.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

134

The core of the implementation is a predicate song skeleton/1 which on backtracking returns the skeleton
structure of each verse using numerals.

?- song skeleton(Verse).

Verse = [1] ;

Verse = [2, 1] ;

Verse = [3, 2, 1] ;

...

Exercise 4.6. Define the predicate song skeleton/1 by recursion.
Hint. You may model your definition of song skeleton/1 on that of the predicate int/1 , which on

backtracking returns all natural numbers:

?- int(N).

N = 1 ;

N = 2 ;

N = 3 ;

...

The predicate int/1 is defined in terms of an auxiliary predicate int(+Int1,?Int2) by

int(N) :- int(1,N).

which on backtracking instantiates Int2 to all integers starting from Int1 :

?- int(5,I).

I = 5 ;

I = 6 ;

I = 7 ;

...

The definition of int/2 is as follows.

int(I,I).

int(Last,I) :- succ(Last,New), int(New,I).

Built-in Predicate: succ(?Int1,?Int2)

Succeeds if Int1 = Int2 + 1. Incrementation by succ/2 is faster than by the

usual arithmetic predicate.

�

There is in Prolog, as an alternative to recursion, the facility of failure driven, and repeat loops for the
implementation of code with a repetitive behaviour. We want to illustrate this idea by way of a predicate nat/1
which has the same specification as the predicate int/1 from above but is defined in terms of a repeat loop
rather than by recursion. Let nat/1 be defined by

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

135

nat(N) :- first_nat, current_nat(N).

nat(N) :- repeat, update_nat, current_nat(N).

with the auxiliary predicates

first_nat :- dynamic(current_nat/1),

retractall(current_nat(_)),

assert(current_nat(1)).

and

update_nat :- current_nat(N),

retractall(current_nat(_)),

NewN is N + 1,

assert(current_nat(NewN)).

The predicate current nat/1 is used here to hold the current value of the natural number in the database
as a fact. first nat/0 clears the database of all facts defining current nat/1 (possibly originating from
earlier invocations of nat/1) and writes to the database the first natural number. update nat/0 retrieves the
previous value, clears the database, and writes back the updated value. The generation of an infinite stream
of values by (the second clause of) nat/1 hinges on the built-in predicate repeat/0 which always succeeds on
backtracking and is best thought of as returning a distinct (albeit invisible) ‘solution’ each time it is re-invoked.
The conjunction of subgoals to the right of repeat, i. e.

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

136

update_nat, current_nat(N)

is re-satisfied on backtracking, resulting in an update of N . The database serves here as a ‘scratchpad’ for
intermediate results.

Exercise 4.7. Define a second version of the predicate song skeleton/1 by a repeat loop. Your solution
should be modelled on the definition of nat/1 .

�

There are of course other possibilities, too, for defining song skeleton/1 . Take for example the one suggested
by the following query.

?- current prolog flag(max integer, Largest),

between(1, Largest, H), findall(I,between(1, H, I), R),

reverse(R,L).

L = [1] ;

L = [2, 1] ;

L = [3, 2, 1] ;

...

The list L is constructed here by:

• Getting hold of the largest number Largest which can be represented in SWI–Prolog as an integer.

• Obtaininig the head H of L by the built-in predicate between/3 .

• Creating the reverse R of L by the all-solutions predicate findall/3 .

• And, finally, reversing R to get L .

A new L is obtained each time the query’s second goal is re-satisfied. This solution is neither concise nor is it
as elegant as the earlier ones, however.

The remaining steps for the completion of song/0 are spelt out in the Exercises 4.8 to 4.11 below.
Exercise 4.8. Define a predicate digits(+Number,-List) for converting a natural Number into the list of

its digits in List :

?- digits(351,L).

L = [3, 5, 1]

(As an optional task which, however, is not needed in the present context, you may extend the definition of
digits/2 for the instantiation pattern digits(-Number,+List) .)

Now define a predicate in words(+Num,-Atom) for converting a numeral Num to its plain English equivalent
in Atom . (Allow for up to 9, 999 in Num .) Example:

?- in words(351,A).

A = threehundredfiftyone8

�

Exercise 4.9. In the definition of the first and third lines of each verse you will need a predicate capital/2
for converting the first character of an atom to its upper case equivalent:

8For reasons of simplicity, the rules of hyphenation and separating spaces are ignored here.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

137

?- capital(’sixteen men, fifteen men, fourteen men’,C).

C = ’Sixteen men, fifteen men, fourteen men’

Define capital/2 .

Note. Use the built-in predicate atom chars/2 to disassemble atoms into lists and vice versa; see, inset on
p. 126. For a concise solution to converting single letters to upper case you will also need the built-in predicate
char code/2 .9

Built-in Predicate: char code(?Char,?ASCII)

Converts the single-character atom Char to its ASCII code in ASCII and vice
versa. Example:

?- char code(a,ASCII).

ASCII = 97

?- char code(Char,65).

Char = ’A’

�

Exercise 4.10. Define a predicate line3/2 for generating the third line of each verse; for example, the
third verse’s third line we get by

?- line3([3,2,1],Text), write(Text).

Three men,

two men,

one man and his dog,

Text = ’Three men,\n two men,\n one man and his dog,’

In your work, you may be guided by the following query:

?- maplist(in words,[16,15,14],[H|T]),

maplist(atom concat(’ men, ’),T,L), concat atom([H|L],A),

atom concat(A,’ men’,A2).

H = sixteen

T = [fifteen, fourteen]

L = [’ men, fifteen’, ’ men, fourteen’]

A = ’sixteen men, fifteen men, fourteen’

A2 = ’sixteen men, fifteen men, fourteen men’

�

9A simpler but more tedious alternative is by using a predicate which is defined by 26 facts – one for each letter in the English
alphabet.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

138

Built-in Predicate: atom concat(?Atom1,?Atom2,?Atom3)

Atom3 is the concatenation of Atom1 and Atom2 . At least two of the argu-
ments must be instantiated. Alternatively, it suffices if the last argument is
instantiated only. Examples:

?- atom concat(atom1,atom2,A).

A = atom1atom2

?- atom concat(A1,A2,atom3).

A1 = ’’ A2 = atom3 ;

A1 = a A2 = tom3

Yes

Exercise 4.11. Complete the definition of song/0 by using your predicates from the Exercises 4.6 to 4.10.

�

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Prolog Techniques

Exploratory Code Development

139

4.3 Chapter Notes

We have illustrated a practical Prolog development technique based on an incremental, exploratory and interac-
tive working style. It is not dissimilar to the Incremental Development Model known from Software Engineering
(e. g. [15]) the application of which in the commercial context results in prototypes at an early stage for evalu-
ation and feedback. We have identified the following development stages in particular for predicates defined by
recursion:

• Identify informally a recursive structure of the problem.

• Experiment interactively to explore and confirm the above.

• Identify a pattern and write pseudo–code.

• Write a preliminary (and perhaps incomplete) Prolog implementation.

• Refine details to arrive at a final Prolog implementation.

The method discussed here won’t of course be a substitute for existing formal approaches to logic program-
ming that are rooted in Mathematical Logic (e. g. [5]).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

Exploratory Code Development

140

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Prolog Techniques

141

Appendix A: Solutions of Selected Exercises

Appendix A

Solutions of Selected Exercises

A.1 Chapter 1 Exercises

All Prolog source code for Chap. 1 is available in the file accumulator.pl.

Exercise 1.1. Define from to/3 and its auxiliary from to acc/3 by (P-A.1).

Prolog Code P-A.1: Definition of from to/3

1 from_to(M,N,L) :- (var(L); is_list(L)), % clause 0

2 integer(M), %

3 integer(N), %

4 M =< N, %

5 from_to_acc(M,[N],L), !. %

6 from_to(H,N,[H|T]) :- last(N,[H|T]), !, % clause 1

7 H =< N. %

8 from_to_acc(H,[H|T],[H|T]). % clause 2

9 from_to_acc(M,[H|T],L) :- NewHead is H - 1, !, % clause 3

10 from_to_acc(M,[NewHead,H|T],L). %

The annotated version of the hand computations from Fig. 1.4 is shown in Fig. A.1. The idea suggested by

from to(6,9,L)
0©

�� from to acc(6,[9],L)
3©

��

from to acc(6,[8,9],L)
3©

�� from to acc(6,[7,8,9],L)
3©

��

from to acc(6,[6,7,8,9],L)
2©

�� L = [6,7,8,9]
0©

�� success

Figure A.1: Annotated Hand Computations for from to/3

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

142

Appendix A: Solutions of Selected Exercises

the hand computations is clearly reflected in the clauses 0, 2 and 3. It is instructive to consider the unexpected
consequences of a slight (and perhaps innocent looking) change to clause 0. If we redefine clause 0 as shown
here,

from_to(M,N,L) :- var(L), % new clause 0

integer(M), %

integer(N), %

M =< N, %

from_to_acc(M,[N],L), !. %

then the predicate’s pattern matching functionality will be corrupted:

?- from to(6,9,[, ,E|]).

E = 9

(The third entry of the list [6,7,8,9] is clearly not 9 .) To explain this, we note that Prolog first tries the
modified clause 0 which will fail since [, ,E|] is not a variable but a compound term.1

?- var([, ,E|]).

No

1Lists are compound terms with the functor ‘. ’ (dot). More on this will be found in Sect. 2.2.1.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Prolog Techniques

143

Appendix A: Solutions of Selected Exercises

Next, clause 1 is tried, which then succeeds as indicated by the query below.

?- (6,9,[, ,E|]) = (H,N,[H|T]), last(N,[H|T]), !, H =< N.

E = 9

H = 6

N = 9

T = [G269, 9]

Why? Well, for the first goal of this query to succeed, [H|T] has to have at least three entries, requiring T be
of length at least two. The second goal then succeeds with T as a two-element list (whose first entry is a system
chosen internal variable):

?- last(9,[6|T]). 2

T = [9] ;

T = [G269, 9] ;

T = [G269, G272, 9] ;

...

Therefore, [H|T] will be unified with [6, G269,9] . Now, the unification [, ,E|] = [H|T] (still in force
from the first goal) requires that E be unified with the third entry of [6, G269,9] , i.e. with 9 .

We note in passing that the predicate numlist/3 in SWI-Prolog, Version 5.2.7, has almost the same function-
ality as our from to/3 . (The instantiation pattern numlist(-Low,-High,+List) has not been implemented
there.)

Exercise 1.2. The new version, nums/2 , is defined in (P-A.2).

Prolog Code P-A.2: Definition of nums/2

1 nums(Atom,N) :- atom_codes(Atom,Values), % clause 0

2 nums([47|Values],0,N), !. %

3 nums([],N,N). % clause 1

4 nums([_],N,N). % clause 2

5 nums([H,E|T],Acc,N) :- not(digit(H)), digit(E), % clause 3

6 NewAcc is Acc + 1, %

7 !, nums([E|T],NewAcc,N). %

8 nums([_,E|T],Acc,N) :- nums([E|T],Acc,N). % clause 4

• We prefix in clause 0 with the ASCII Values with ‘47’, an arbitrary non-digit code, in case the leftmost
character was a digit. (Otherwise, the first group of digits will be missed.)

• The first two goals of clause 3 provide the condition for incrementing the accumulator.

Exercise 1.3. The pseudocode is shown as Algorithm A.1.1; the correspondence between the pseudocode’s
statements and the Prolog clauses in Example 1.6 is displayed in Table A.1.

2We are using SWI-Prolog, Version 3.4.5 here. In the latest version also available at the time of writing (Version 5.2.7), for some in-
explicable reason the order of the arguments of last/2 is the other way round.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

144

Appendix A: Solutions of Selected Exercises

Algorithm A.1.1: Numbers(Atom)

V alues ← list of ASCII values of characters in Atom (1)
Acc ← 0 (2)
Switch ← nodigit (3)
while V alues �= []

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[H |T] ← V alues (4)
if H is an encoded digit

then

⎧⎨
⎩

if Switch = nodigit (5)
then

{
Acc ← Acc + 1 (6)

Switch ← digit (7)
else

{
Switch ← nodigit (8)

V alues ← T (9)
N ← Acc (10)
return (N)

Statement (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Clause 0 0 0 2, 3, 4 2 2 2, 3 4 2, 3, 4 1

Table A.1: Algorithm A.1.1 & Prolog Clause Correspondence (Example 1.6)

Exercise 1.4. A simple tail recursive definition for mult/3 is by (P-A.3).

Prolog Code P-A.3: Definition of mult/3 by recursion

1 mult(_,[],[]).

2 mult(C,[H|T],[P|Ps]) :- P is C * H, !,

3 mult(C,T,Ps).

An alternative definition using accumulators is suggested by the hand computations in Fig. A.2, giving rise
to (P-A.4).

mult(0.2,[5.0,10.5,2.5],L)
0©

�� mult(0.2,[5.0,10.5,2.5],[],L)
2©

��

mult(0.2,[10.5,2.5],[1.0],L)
2©

�� mult(0.2,[2.5],[2.1,1.0],L)
2©

��

mult(0.2,[],[0.5,2.1,1.0],L)
1©

�� reverse([0.5,2.1,1.0],L) ��

L = [1.0,2.1,0.5]
0©

�� success

Figure A.2: Hand Computations for mult/3

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

145

Appendix A: Solutions of Selected Exercises

Prolog Code P-A.4: mult/3 by the accumulator technique

1 mult(C,List,L) :- mult(C,List,[],L). % clause 0

2 mult(_,[],Acc,L) :- reverse(Acc,L). % clause 1

3 mult(C,[H|T],Acc,L) :- A is C * H, !, % clause 2

4 mult(C,T,[A|Acc],L).

Timing by time/1 will show that simple recursion delivers a better performance. mult/3 is an example of
a mapping operation where each entry of the input list is mapped by some function to the corresponding entry
of the output list. (add/3 is defined analogously.)

Exercise 1.5. Replace clause 1 in (P-1.13), p. 30, (the definition of pta/2) by the following two clauses.

pta(in(_,_,_,Ws,Acc),out(Ws,I)) :- integer(I),

Acc =:= I, !.

pta(in(_,Ps,Ds,Ws,Acc),out(Ws,I)) :- var(I),

classify_all(Ps,Ws,Ds),

I = Acc, !.

If a fixed number of iterations I is wanted, the stopping criterion requires that the accumulator be numerically
equal to I . The alternative stopping criterion is, as before, that all points be correctly classified.

A.2 Chapter 2 Exercises

All Prolog source code for Chap. 2 is available in the file dl.pl.

Exercise 2.1. sharp/2 is defined by recursion in (P-A.5).

Prolog Code P-A.5: Definition of sharp/2

1 sharp(E,E) :- not(proper_list(E)), !.

2 sharp([],[]).

3 sharp([E],#(Term,[])) :- sharp(E,Term), !.

4 sharp([H|T],#(Term1,Term2)) :- sharp(H,Term1),

5 sharp(T,Term2).

Perhaps the order of the two boundary case clauses should be given some thought. As it stands, the sharp-
notation of a list with a single entry of a free variable is correctly evaluated:

?- sharp([E],S).

E = _G210

S = #(_G210, []) ;

No

However, on interchanging the first two clauses in (P-A.5), we get an incorrect response:

?- sharp([E],S).

E = []

S = #([], []) ;

No

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

146

Appendix A: Solutions of Selected Exercises

Exercise 2.2. lf/2 is defined in (P-A.6).

Prolog Code P-A.6: Definition of lf/2

1 lf(Term,Term) :- var(Term), !. % clause 1

2 lf(#(Term,_),Term) :- not(functor(Term,#,2)), % clause 2

3 Term \= []. %

4 lf(#(Term,_),Leaf) :- lf(Term,Leaf). % clause 3

5 lf(#(_,Term),Leaf) :- lf(Term,Leaf). % clause 4

(P-A.6) admits the following declarative reading:

• Clause 1: Variables are leaves.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2014

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

Download free eBooks at bookboon.com

Prolog Techniques

147

Appendix A: Solutions of Selected Exercises

• Clause 2: Term is the left-hand leaf of #(Term,) if Term is not a list3 of length at least 1 nor is Term the
empty list. (Notice that in a more precise interpretation of clause 2, the phrase ‘is not’ should be replaced
by ‘cannot be unified with’. However, this change in interpretation makes a real difference only if lf/2 is
invoked with an unbound variable in its first argument, a case which will have been caught by clause 1.)4

• Clause 3: Leaf is a left-hand leaf of #(Term,) if Leaf is a left-hand leaf of its (left-hand) branch Term .

• Clause 4: Leaf is a left-hand leaf of #(,Term) if Leaf is a left-hand leaf of its (right-hand) branch Term .

Exercise 2.3. The definition of a first version of flatten/2 is is shown in (P-A.7).

Prolog Code P-A.7: A first version of flatten/2

1 flatten_1(L,F) :- sharp(L,S), bagof(Leaf,lf(S,Leaf),F).

The discussion on p. 46 shows that the use of the dot-notation for displaying lists can be achieved by the
predicate set prolog flag/2 . Close scrutiny of the Exercises 2.1 to 2.3 (and their solutions) will in fact reveal
that we can implement flatten/2 also directly, i.e. without recourse to our sharp-notation; such a version is
defined in (P-A.8).

Prolog Code P-A.8: A second version of flatten/2

1 leaf(Term,Term) :- var(Term), !.

2 leaf(.(Term,_),Term) :- not(functor(Term,.,2)),

3 Term \= [].

4 leaf(.(Term,_),Leaf) :- leaf(Term,Leaf).

5 leaf(.(_,Term),Leaf) :- leaf(Term,Leaf).

6 flatten_2(L,F) :- bagof(Leaf,leaf(L,Leaf),F).

The above two versions of flatten/2 behave identically to the built-in one; for example,

?- flatten_1([a,[Y,[b,X]],c,f(X)],L).

Y = _G339

X = _G345

L = [a, _G339, b, _G345, c, f(_G345)]

?- flatten_2([a,[Y,[b,X]],c,f(X)],L).

Y = _G339

X = _G345

L = [a, _G339, b, _G345, c, f(_G345)]

?- flatten([a,[Y,[b,X]],c,f(X)],L).

Y = _G330

X = _G336

L = [a, _G330, b, _G336, c, f(_G336)]

3‘Lists’ are understood here to be in terms of the sharp-notation.
4In the absence of clause 1, however, a query like lf(#(X,[]),Leaf). will cause stack overflow since clause 2 will fail and

clause 3 will cause looping as can be inferred from

?- #(Term,) = X.

Term = G219

X = #(G219, G220)

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

148

Appendix A: Solutions of Selected Exercises

It is seen in particular that a free variable occurring more than once in the nested list will be unified, as
expected, with the same internal variable. This would not have been so, however, had we used the built-in
predicate findall/3 (in lieu of bagof/3) for collecting the leaves from the list’s tree representation:

?- findall(Leaf,leaf([a,[Y,[b,X]],c,f(X)],Leaf),Leaves).

Leaf = _G480

Y = _G456

X = _G462

Leaves = [a, _G641, b, _G629, c, f(_G617)]

Exercise 2.4. The definition of dot/1 in (P-A.9) follows the suggested route.

Prolog Code P-A.9: Definition of dot/1

1 dot(List) :- sharp(List,Term),

2 term_to_atom(Term,A1),

3 atom_chars(A1,L1),

4 sharps_to_dots(L1,L2),

5 concat_atom(L2,A2),

6 write_term(A2,[]).

The predicate sharps to dots/2 is defined by the accumulator technique in (P-A.10).

Prolog Code P-A.10: Definition of sharps to dots/2

1 sharps_to_dots(S,D) :- sharps_to_dots(S,[],R),

2 reverse(R,D), !.

3 sharps_to_dots([],L,L).

4 sharps_to_dots([#|T],Acc,L) :- sharps_to_dots(T,[.|Acc],L).

5 sharps_to_dots([H|T],Acc,L) :- sharps_to_dots(T,[H|Acc],L).

A more concise alternative is offered by the use of the built-in maplist/3 ; this is shown in (P-A.11).

Prolog Code P-A.11: Alternative definition of sharps to dots/2

1 sharps_to_dots(S,D) :- maplist(sharp_to_dot,S,D).

2 sharp_to_dot(#,’.’) :- !.

3 sharp_to_dot(C,C).

Exercise 2.5. The improved version is defined in (P-A.12).

Prolog Code P-A.12: Definition of flatten 4/2

1 flatten_4(X,[X]) :- var(X), !. % clause 0

2 flatten_4([],[]). % clause 1

3 flatten_4([H|T],L1) :- flatten_4(H,L2), % clause 2

4 flatten_4(T,L3), %

5 append(L2,L3,L1), !. % cut added here

6 flatten_4(X,[X]). % clause 3

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

149

Appendix A: Solutions of Selected Exercises

Clauses 1 to 3 are essentially as in flatten 3/2 . (The cut in clause 2 has been added to achieve a unique
solution.) To rectify the other problem with flatten 3/2 , we have to understand why it produces spurious
solutions on backtracking. When flatten 3/2 arrives at a list entry which is a variable, it will first unify
the variable with the empty list and then on further backtracking with [H|T] where H and T are themselves
variables. Because of the recursive definition, this will then give rise to further such erroneous unifications.
To avoid this, we simply ‘catch’ a variable first argument by clause 0. flatten 4/2 thus defined behaves as
expected:

?- flatten 4([a,[Y,[b,X]],c,f(X)],L).

Y = _G339

X = _G345

L = [a, _G339, b, _G345, c, f(_G345)] ;

No

Exercise 2.6. The following additional clause (an analogue of clause 0 in the definition of flatten 4/2) will
become the first clause in flatten dl/2 :

flatten_dl(X,[X|T]-T) :- var(X), !.

Exercise 2.7. We define in (P-A.13) nested/2 in terms nested/4 whose second and third argument are a
counter and an accumulator, respectively.

Prolog Code P-A.13: Definition of nested/2

1 nested(M,L) :- nested(M,1,[1],L), !.

2 nested(M,M,L,L).

3 nested(M,N,Acc,L) :- NewN is N + 1,

4 nested(M,NewN,[Acc,NewN],L).

The versions’ relative performance is illustrated below. It is seen in particular that the one based on difference
lists is nearly as good as the built-in version.

?- nested(8000, L), time(flatten(L, F)).

% 95,999 inferences in 0.44 seconds (218180 Lips)

?- nested(8000, L), time(flatten 1(L, F)).

% 216,004 inferences in 12.96 seconds (16667 Lips)

?- nested(8000, L), time(flatten 2(L, F)).

% 144,007 inferences in 12.79 seconds (11259 Lips)

?- nested(8000, L), time(flatten 3(L, F)).

% 335,514 inferences in 9.88 seconds (33959 Lips)

ERROR: Out of global stack

?- nested(8000, L), time(flatten 5(L, F)).

% 32,000 inferences in 0.93 seconds (34409 Lips)

Furthermore, it is seen that version 3, the implementation using list concatenation with append/3 , is not prac-
tically viable due to stack overflow. (This problem has been experienced even for a nesting depth of 1000.)

Exercise 2.8. Your session will typically look like this:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

150

Appendix A: Solutions of Selected Exercises

?- findall(_N,between(1,2000,_N),_L), time(reverse_1(_L,_R)).

% 2,003,001 inferences in 19.34 seconds (103568 Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_2(_L,_R)).

% 2,002 inferences in 0.00 seconds (Infinite Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_3(_L,_R)).

% 4,000 inferences in 0.06 seconds (66667 Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_4(_L,_R)).

% 2,002 inferences in 0.05 seconds (40040 Lips)

It is seen that the ‘näıve’ implementation is far less efficient than either of the other three. Furthermore, version 4
is seen to behave in the same way as the one using accumulators (which is the method used also to implement the
built-in version). This is not surprising since these two implementations were shown to be identical in Sect. 2.3.2.

Exercise 2.9.
Declarative Reading.

The difference list L-X is the reverse of the list [E1,E2|T] if the difference list L-[E2,E1|X] is the
reverse of T .

New Version. This is defined in (P-A.14).

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Prolog Techniques

151

Appendix A: Solutions of Selected Exercises

Prolog Code P-A.14: Definition of reverse 5/2

1 reverse_5(L,R) :- rev_dl_3(L,R-[]).

2 rev_dl_3([],L-L). % clause 0

3 rev_dl_3([X],[X|L]-L). % clause 1

4 rev_dl_3([E1,E2|T],L1-L2) :- rev_dl_3(T,L1-[E2,E1|L2]). % clause 2

Noteworthy is in (P-A.14) the fact that reversal is carried out in ‘chunks of twos’ resulting in fewer invocations
of the auxiliary predicate. There are now two boundary clauses: if the list to be reversed has an even number
of entries then clause 0 is used; otherwise, clause 1 applies.

Unfolding. We are going to show here that the clauses 0–2 can be inferred from the clauses (b1)–(b2).5

The boundary clause 0 is identical to clause (b1).

We infer clause 1 by an elementary unfolding operation on the only goal in clause (b2): we first rewrite clause (b1)
as

rev_dl([],L-L) :- true.

and then seek to unify its head with the goal in the body of clause (b2):

?- rev_dl([],L-L) = rev_dl(T,L1-[H|L2]).

L = [_G360|_G361]

T = []

L1 = [_G360|_G361]

H = _G360

L2 = _G361

Yes

The unification succeeds and gives rise to the clause

rev_dl([_G360|[]],[_G360|_G361]-_G361) :- true.

which is equivalent to clause 1.

To infer now clause 2, we rewrite clause (b2) as

rev_dl([U|V],W1-W2) :- rev_dl(V,W1-[U|W2]).

and seek to unify the head of this new clause with the goal in clause (b2):6

?- rev_dl([U|V],W1-W2) = rev_dl(T,L1-[H|L2]).

U = _G384

V = _G385

W1 = _G387

W2 = [_G393|_G394]

T = [_G384|_G385]

5For the present purposes, the version number (i.e. the suffix ‘ 3 ’) is to be ignored.
6This is an instance of self unfolding.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

152

Appendix A: Solutions of Selected Exercises

L1 = _G387

H = _G393

L2 = _G394

Yes

The unification succeeds and gives rise to

rev_dl([H|T],L1-L2) :- rev_dl(V,W1-[U|W2]).

which in terms of Prolog’s internal variable names reads as follows.

rev_dl([_G393|[_G384|_G385]],_G387-_G394) :-

rev_dl(_G385,_G387-[_G384|[_G393|_G394]]).

The latter clause is readily recognized as clause 2. This second and final elementary unfolding operation con-
cludes a complete one step unfolding, thus making clause (b2) redundant.

Speed of Execution. The enhanced version is twice as fast as the previous one:

?- findall(_N,between(1,100000,_N),_L), time(reverse_5(_L,_R)).

% 50,002 inferences in 0.61 seconds (81970 Lips)

?- findall(_N,between(1,100000,_N),_L), time(reverse_4(_L,_R)).

% 100,002 inferences in 1.92 seconds (52084 Lips)

Further Enhancement. Modify the implementation by processing the input list in chunks of threes; this is
shown in (P-A.15).

Prolog Code P-A.15: Definition of reverse 6/2

1 reverse_6(L,R) :- rev_dl_4(L,R-[]).

2 rev_dl_4([],L-L).

3 rev_dl_4([E1],[E1|L]-L).

4 rev_dl_4([E1,E2],[E2,E1|L]-L).

5 rev_dl_4([E1,E2,E3|T],L1-L2) :- rev_dl_4(T,L1-[E3,E2,E1|L2]).

It is seen that three base cases are needed now, defining explicitly the reversal of lists with up to two entries.
The gain in speed is illustrated by the query below.

?- findall(_N,between(1,100000,_N),_L), time(reverse_6(_L,_R)).

% 33,335 inferences in 0.50 seconds (66670 Lips)

Generalization. Provide n base cases catering for the reversal of lists with up to n − 1 entries and write a
recursive clause for reversing lists with at least n entries.

Exercise 2.10, part (a). We convert colour/4 to its difference lists based form by (P-A.16).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

153

Appendix A: Solutions of Selected Exercises

Prolog Code P-A.16: Definition of colour dl/4

1 colour_dl([],R-R,W-W,B-B).

2 colour_dl([col(Object,red)|T],

3 [col(Object,red)|R1]-R2,W1-W2,B1-B2) :-

4 colour_dl(T,R1-R2,W1-W2,B1-B2).

5 colour_dl([col(Object,white)|T],

6 R1-R2,[col(Object,white)|W1]-W2,B1-B2) :-

7 colour_dl(T,R1-R2,W1-W2,B1-B2).

8 colour_dl([col(Object,blue)|T],

9 R1-R2,W1-W2,[col(Object,blue)|B1]-B2) :-

10 colour_dl(T,R1-R2,W1-W2,B1-B2).

The concatenation of the three output difference lists is accomplished by

dijkstra_dl(Items,L1-L4) :- colour_dl(Items,L1-L2,L2-L3,L3-L4).

dijkstra/2 is now defined as in Sect. 2.4.3,

dijkstra(Items,Grouped) :- dijkstra_dl(Items,Grouped-[]).

Timing by time/1 will confirm that the difference list based version of each implementation is better (as mea-
sured by the number of inferences used) than its plain counterpart. The last version is the best as it uses
difference lists and takes a single pass through the input list.

Exercise 2.10, part (b). Add the clauses

colour([col(_,Colour)|T],R,W,B) :- Colour \= red,

Colour \= white,

Colour \= blue,

colour(T,R,W,B).

and

colour_dl([col(_,Colour)|T],R1-R2,W1-W2,B1-B2) :-

Colour \= red,

Colour \= white,

Colour \= blue,

colour_dl(T,R1-R2,W1-W2,B1-B2).

to the respective existing definitions.

Exercise 2.11. Carry out a clause-by-clause ‘translation’ of averages/2 and allied predicates to get (P-A.17).

Prolog Code P-A.17: Definition of averages dl/2

1 averages_dl(L1-L2,A1-A2) :- aver_dl([-1,1|L1]-L2,A1-A2), !.

2 aver_dl([_,0,_|X]-Y,X-Y).

3 aver_dl(X1-X2,ADL) :- av_rotate_dl(X1-X2,Y1-Y2),

4 aver_dl(Y1-Y2,ADL).

5 av_rotate_dl([H1,H2|Y]-[Last|Z],[H2|Y]-Z) :- Last is (H1 + H2)/2.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

154

Appendix A: Solutions of Selected Exercises

L1︷ ︸︸ ︷
[H|L1]︷ ︸︸ ︷

︸ ︷︷ ︸
L2

︸ ︷︷ ︸
[H|T]

H T

Figure A.3: Illustrating the Second Clause of dl/2

Exercise 2.12. Clause 2 in (P-2.19) is illustrated by Fig. A.3. It admits the following declarative interpretation:

The difference list version of [H|T] is [H|L1]-L2 if the difference list version of T is L1-L2 .

Exercises 2.13 & 2.14. The first implementation is by (P-A.18).

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Prolog Techniques

155

Appendix A: Solutions of Selected Exercises

Prolog Code P-A.18: Definition of show matrix dl/1

1 show_matrix_dl(M-[]):- show_matrix(M), nl. % clause 0

2 show_matrix([]). % clause 1

3 show_matrix([H-[]|T]) :- write(H), write(’ ’), % clause 2

4 show_matrix(T). %

In clause 0, the argument of show matrix dl (which expects a difference list of difference lists) is converted to
a proper list of difference lists. This then is diplayed entry-wise by show matrix/1 , defined in the clauses 1 and
2. Noteworthy is clause 2 where the matrix head is unified with H-[] thereby making H a proper list which in
turn is displayed on the terminal.

Invoking show matrix dl(M1-M2) with a difference list M1-M2 will of course unify M2 with the empty list.
This can’t be ‘undone’ later and therefore any subsequent attempt of using M1-M2 as a genuine difference list
will fail. We solve this problem by not displaying the original difference list M1-M2 but a copy of it which we
write to the database prior to the invokation of show matrix dl/2 . The improved version show matrix dl2/2

is defined in (P-A.19).

Prolog Code P-A.19: Definition of show matrix dl2/1

1 show_matrix_dl2(DLM):- dynamic(matrix/1),

2 retractall(matrix(_)),

3 assert(matrix(DLM)),

4 matrix(M),

5 show_matrix_dl(M).

It will behave as expected:

?- matrix a(A), dl2(A, DLA), show matrix dl2(DLA),

rot matrix dl(DLA, DLR), show matrix dl2(DLR).

[a11, a12, a13, a14] [a21, a22, a23, a24] [a31, a32, a33, a34]

[a22, a23, a24, a21] [a32, a33, a34, a31] [a12, a13, a14, a11]

You will find more on database operations in Sect. 3.1.
In the above approach, a copy of the term holding the matrix in difference list form was written to and later

retrieved from the database. Subsequently, the new copy (or parts of it) may be unified with some other term
without affecting the original. There is a built-in predicate to achieve just that; it is copy term/2 (see inset).

Built-in Predicate: copy term(+TermIn,-TermOut)

The term in TermIn is copied to TermOut . Each of the free variables in TermIn

is given a new (internal) name and subsequently no link is maintained between
the two terms. Example:

?- copy term(f(a,X),Y), X = b.

X = b

Y = f(a, G386)

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

156

Appendix A: Solutions of Selected Exercises

A new version of show matrix dl/1 is defined in (P-A.20).

Prolog Code P-A.20: Definition of show matrix dl3/1

1 show_matrix_dl3(DLM):- copy_term(DLM,M),

2 show_matrix_dl(M).

It will be found to respond exactly as show matrix dl2/1 did.

Exercise 2.15. Add to the database the clause

g_seidel(in([[First|Rest1]-Rest2|A1]-A2,

[B|B1]-[B|B2],[_|T1]-[NewX|T2],[S|S1]-[S|S2]),

out(NewAs,B1-B2,T1-T2,S1-S2)) :-

dot_product_dl(Rest1-Rest2,T1-[NewX|T2],P),7

NewX is B - P,

rot_matrix_dl([[First|Rest1]-Rest2|A1]-A2,NewAs).

to enable g seidel/2 to work also with difference lists. (Notice that this new clause won’t interfere with the
earlier definition.) No other changes are necessary since g seidel/7 will call this modified version of g seidel/2
as before:

?- a(A), b(B), x0(X), s(S),

dl2(A,ADL), dl(B,BDL), dl(X,XDL), dl(S,SDL),

g_seidel(ADL,BDL,XDL,SDL,50,NewX-[],NewS-[]).

...

NewX = [62.5, 62.5, 87.5, 87.5]

NewS = [3, 4, 1, 2]

To simplify the query, we may use the new version of g seidel/7 , defined in (P-A.21).

Prolog Code P-A.21: New version of g seidel/7

1 g_seidel_2(A,B,X,S,I,NewX,NewS) :-

2 dl2(A,ADL),

3 dl(B,BDL),

4 dl(X,XDL),

5 dl(S,SDL),

6 g_seidel(ADL,BDL,XDL,SDL,I,NewX-[],NewS-[]), !.

(This version uses the same pattern of proper list inputs as g seidel/7 but works internally with difference
lists.)

7The dot product of vectors in difference list notation is defined by the accumulator technique as follows

dot_product_dl(DL1,DL2,Result) :- dot_product_dl(DL1,DL2,0,Result), !.

dot_product_dl(L-_,_,Acc,Acc) :- var(L).

dot_product_dl([HU|TU1]-TU2,[HV|TV1]-TV2,Acc,Result) :-

NewAcc is Acc + HU * HV, !,

dot_product_dl(TU1-TU2,TV1-TV2,NewAcc,Result).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

157

Appendix A: Solutions of Selected Exercises

Experiments will show that the new implementation always needs a lesser number of inferences. However,
for the CPU–time also to show a relative improvement, the problem has to be of a minimum size. (Difference
lists carry a certain computational overhead worth paying for problems beyond a certain size only.)

A.3 Chapter 3 Exercises

Prolog source code: for Sect. 3.1, see party.pl, people.pl, arrange.pl and queue.pl; for Sect. 3.2, see
transformations.pl; for Sect. 3.3, see dl.pl and transformations.pl.

Exercise 3.1, part (f). facing/3 is recursively defined by

facing(X,L,R) :-

right_to(L,X), right_to(X,R), (L == R, !; true).

facing(X,L,R) :-

facing(X,Y,Z), right_to(L,Y), right_to(Z,R), (L == R, !; true).

The declarative reading of this definition should be straightforward in conjunction with Fig. 3.2. Recursion
stops when the last two arguments of facing/3 are instantiated to identical terms. For an odd number of
guests, facing/3 will stop once the second and third arguments are identical to the first:

?- listing(right to/2).

right to(clara, adam).

right to(adam, susan).

right to(susan, clara).

?- facing(adam,Left,Righ).

Left = clara Righ = susan ;

Left = susan Righ = clara ;

Left = adam Righ = adam ;

No

Define now opposite to/2 by

opposite_to(X,Y) :- facing(X,Y,Y), X \== Y.

(The second goal ensures failure for an odd number of guests.)

Exercise 3.2. (P-A.22) shows the definition of opposites/0 ; guests/0 is defined analogously.

Prolog Code P-A.22: Definition of opposites/0

1 opposites :- opposite_to(_,_),

2 ((right_to(X,Y),

3 opposite_to(X,Z),

4 write(X), write(’, ’), write(Z), nl,

5 fail); true).

Observations. opposites/0 will succeed iff opposites to/2 does, i.e. if there are an even number of names
in the database. From inside a failure driven loop all opposite pairs are displayed and success is enforced by
disjunction with ‘true ’.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

158

Appendix A: Solutions of Selected Exercises

(P-A.23) defines look right/1 in terms of an auxiliary predicate look right/2 . In the second argument
of this predicate the list of names is accumulated until the person’s name reappears in the head.

Prolog Code P-A.23: Definition of look right/1

1 look_right(Pers) :- look_right(Pers,[Pers|T]),

2 reverse(T,List),

3 write_list(List).

4 look_right(Pers,[X,Pers]) :- right_to(Pers,X).

5 look_right(Pers,[X,H|T]) :- right_to(H,X),

6 look_right(Pers,[H|T]).

write list/1 is defined by recursion (not shown here) and displays the entries of a list in a single line.

Exercise 3.3, part (a). Don’t change the database if one or two people are at the table:

swap_neighbours(Pers1,Pers2) :- right_to(Pers1,Pers2),

right_to(Pers2,Pers1).

Changes are due if more than two people are at the table:

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

159

Appendix A: Solutions of Selected Exercises

swap_neighbours(Left,Right) :- right_to(Left,Right),

right_to(L,Left),

right_to(Right,R),

retract(right_to(Left,Right)),

retract(right_to(L,Left)),

retract(right_to(Right,R)),

assert(right_to(Right,Left)),

assert(right_to(L,Right)),

assert(right_to(Left,R)).

Exercise 3.3, part (b). Use swap neighbours/2 for swapping neighbours:

swap(Pers1,Pers2) :- swap_neighbours(Pers1,Pers2).

swap(Pers1,Pers2) :- swap_neighbours(Pers2,Pers1).

And, do changes as necessary for swapping people who aren’t neighbours:

swap(Pers1,Pers2) :- right_to(Pers1,R1),

right_to(L1,Pers1),

right_to(Pers2,R2),

right_to(L2,Pers2),

retract(right_to(Pers1,R1)),

retract(right_to(L1,Pers1)),

retract(right_to(Pers2,R2)),

retract(right_to(L2,Pers2)),

assert(right_to(Pers1,R2)),

assert(right_to(L2,Pers1)),

assert(right_to(Pers2,R1)),

assert(right_to(L1,Pers2)).

Exercise 3.4, part (a). Only one of the four cases in Table 3.1 will be discussed here: the last two customers
swap places and there are more than two customers in the queue (Fig. A.4). The relations of interest which can

. . .Z Y X W V E D C B A �� �

� �

not(behind(Z,))

behind(Y,Z)

behind(X,Y)

. . .Y Z X W V E D C B A� �

not(behind(Y,))

behind(Z,Y)

behind(X,Z)

Figure A.4: The Last Two Customers Swap Places

be inferred from the database before and after the swap are indicated in Fig. A.4. The corresponding clause of
swap neighbours/2 is therefore

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

160

Appendix A: Solutions of Selected Exercises

swap_neighbours(Y,Z) :- % swap Y and Z

not(behind(Z,_)), % Z is the last in the queue

behind(Y,Z), % Z is behind Y in the queue

behind(X,Y), % Y is behind X in the queue

retract(behind(Y,Z)), % remove relation between Y and Z

retract(behind(X,Y)), % remove relation between X and Y

assert(behind(X,Z)), % establish relation between X and Z

assert(behind(Z,Y)). % establish relation between Z and Y

(You should complete the remaining three clauses with reference to Table 3.1 and by using sketches similar to
Fig. A.4.)

Exercise 3.5. The intended database changes are achieved by a failure driven loop:

?- dynamic(lives in/2),

((lives in(london, Person), assert(lives in(york, Person)),

fail); true), retractall(lives in(london,)).

Exercise 3.6. The definition of joins/1 is fairly straightforward: check first that there aren’t any facts in the
database for right to/2 ; then assert the appropriate fact for right to/2 ; finally, augment the file people.pl

and report the job completed.

joins(Pers) :- not(right_to(_,_)),

assert(right_to(Pers,Pers)),

tell(’people.pl’), listing(right_to/2), told,

write(Pers), write(’ has joined the table.’), nl.

Exercise 3.7. The task is to enhance the definition of the second clause of

save predicates to(+Filename,+List) . As a first step, we translate the informal specification as follows:

Condition -> Action ; Alternative Action (A.1)

with

Condition = ∀x(A(x) → B(x)) (A.2)

A(x) = x ∈ List (A.3)

B(x) = my predicate(x,) (A.4)

Action = write to file (A.5)

Alternative Action = display error message (A.6)

Since it is more difficult to implement in standard Prolog a universally quantified condition than an existentially
quantified one, we write (A.1) in terms of the negation of (A.2), thereby getting

Condition = ¬(∀x(A(x) → B(x))) (A.7)

Action = display error message (A.8)

Alternative Action = write to file (A.9)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

161

Appendix A: Solutions of Selected Exercises

Rewrite now the right-hand side of (A.7) as follows:8

Condition = ∃x¬((A(x) → B(x)))

= ∃x¬(B(x) ∨ ¬A(x))

= ∃x(A(x) ∧ ¬B(x)) (A.10)

A Prolog implementation of save predicates to(+Filename,+List) based on (A.1), (A.3)–(A.4) and

(A.8)–(A.10) is therefore

save_predicates_to(Filename,List) :-

(member(X,List), not(my_predicate(X,_))) -> (write(’...’),

nl,

fail);

write_to_file(Filename,List).

where write to file/2 is defined by a failure driven loop:

8The rules hereby used are from Predicate and Propositional Calculus; they are in turn: a Quantifier Equivalence Rule, Material

Implication and DeMorgan’s Rule.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Prolog Techniques

162

Appendix A: Solutions of Selected Exercises

write_to_file(Filename,List) :- tell(Filename),

((member(Fun/Arity,List),

listing(Fun/Arity),

fail); true),

told.

Alternative Solution of Exercise 3.7. The built-in SWI Prolog predicate forall(+Condition,+Action)

allows a direct implementation of the Condition in (A.2). The resulting alternative definition of
save predicates to/2 is then

save_predicates_to(Filename,List) :-

(forall(member(X,List),

my_predicate(X,_)) -> write_to_file(Filename,List));

write(’...’), nl, fail.

(Two possibilities are discussed in [16] for defining forall/2 .)

Exercise 3.9. The directive :- dynamic(album/1). in the source file will make album/1 a dynamic predicate.
Now use the query

?- retractall(album([stamp(’Germany’,’Kaiser’, ,)|])).

Yes

to remove the clauses as required.

Exercise 3.14. See Fig. A.5.

Exercise 3.15. We unfold the second goal in clause two of flatten dl/2 :

?- unfold(flatten dl/2,2,2).

Clause(s) used:

Clause 1 of predicate flatten dl/2

Clause 2 of predicate flatten dl/2

Clause 3 of predicate flatten dl/2

...

Clause removed:

Clause 2 of predicate flatten dl/2

flatten dl([], A-A).

flatten dl(A, [A|B]-B).

flatten dl([A], B-C) :- flatten dl(A, B-C),

true.

flatten dl([A, B|C], D-E) :- flatten dl(A, D-F),

flatten dl(B, F-G),

flatten dl(C, G-E).

flatten dl([A|B], C-D) :- flatten dl(A, C-[B|D]),

true.

As shown above, flatten dl/2 is now defined by five clauses which, however, have to be rearranged to restore
the ’original order’: clauses 3–5 are a replacement for what was formerly clause 2; thus

?- clause arrange(flatten dl/2,[1,3,4,5,2]).

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

163

Appendix A: Solutions of Selected Exercises

�

�

�

�

?- consult(user).

|: :- consult(transformations).

% transformations compiled 0.06 sec, 9,584 bytes

|: rev dl([],L-L).

|: rev dl([H|T],L1-L2) :- rev dl(T,L1-[H|L2]).

|:
	
 ��Ctrl +

	
 ��Z

% user compiled 86.18 sec, 10,128 bytes

Yes

?- unfold(rev dl/2,2,1).

Clause(s) used:

Clause 1 of predicate rev dl/2

Clause 2 of predicate rev dl/2

rev dl([], A-A).

rev dl([A|B], C-D) :- rev dl(B, C-[A|D]).

rev dl([A], [A|B]-B).

rev dl([A, B|C], D-E) :- rev dl(C, D-[B, A|E]).

Clause removed:

Clause 2 of predicate rev dl/2

rev dl([], A-A).

rev dl([A], [A|B]-B).

rev dl([A, B|C], D-E) :- rev dl(C, D-[B, A|E]).

Yes

⎫⎬
⎭ Manual input

of rev dl/2

︸︷︷︸
� COSU on goal 1 of clause 2

}
Old, redundant clause

�

}
New clauses

⎫⎬
⎭

New

definition of

rev dl/2

Figure A.5: Automated Solution of Exercise 2.9, Part (c)

?- listing(flatten dl/2).

flatten dl([], A-A).

flatten dl([A], B-C) :- flatten dl(A, B-C),

true.

flatten dl([A, B|C], D-E) :- flatten dl(A, D-F),

flatten dl(B, F-G),

flatten dl(C, G-E).

flatten dl([A|B], C-D) :- flatten dl(A, C-[B|D]),

true.

flatten dl(A, [A|B]-B).

The above is equivalent to the initial definition (both logically and procedurally). Clause 4 may be removed
from the database, however, without affecting the behaviour of flatten dl/2 since clause 2 won’t ever be made
use of:9

• Clause 1 is invoked for flattening the empty list.

9To be more precise, the first solution found by flatten dl/2 won’t be affected by the removal of this clause; further solutions
found on backtracking may differ. They are, however, of no concern here because of the cut used in flatten 5/2 .

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

164

Appendix A: Solutions of Selected Exercises

• Clause 2 is invoked for flattening lists with a single entry.

• All other lists are covered by clause 3 which is used for flattening lists with at least two entries.

Remove now the redundant clause:

?- clause arrange(flatten dl/2,[1,2,3,5]).

Yes

?- listing(flatten dl/2).

flatten dl([], A-A).

flatten dl([A], B-C) :- flatten dl(A, B-C),

true.

flatten dl([A, B|C], D-E) :- flatten dl(A, D-F),

flatten dl(B, F-G),

flatten dl(C, G-E).

flatten dl(A, [A|B]-B).

An experiment akin to the one in Exercise 2.7 confirms that flattening based on this version is more efficient
than the built-in flatten/2 :

?- time(flatten 5([a,[b],[c,[d]],[e,[f],[g,[h]]],

[i,[j],[k,[l]],[m,[n],[o,[p]]]]],F)).

% 43 inferences in 0.00 seconds (Infinite Lips)

F = [a, b, c, d, e, f, g, h, i|...]

?- time(flatten([a,[b],[c,[d]],[e,[f],[g,[h]]],

[i,[j],[k,[l]],[m,[n],[o,[p]]]]],F)).

% 191 inferences in 0.00 seconds (Infinite Lips)

F = [a, b, c, d, e, f, g, h, i|...]

Further improvement may be achieved by carrying on unfolding in an analogous manner. Let us unfold goal 3
of clause 3:

?- unfold(flatten dl/2,3,3).

...

?- clause arrange(flatten dl/2,[1,2,4,5,6,3]).

?- listing(flatten dl/2).

flatten dl([], A-A).

flatten dl([A], B-C) :- flatten_dl(A, B-C),

true.

flatten dl([A, B], C-D) :- flatten dl(A, C-E),

flatten dl(B, E-D),

true.

flatten dl([A, B, C], D-E) :- flatten dl(A, D-F),

flatten dl(B, F-G),

flatten dl(C, G-E),

true.

flatten dl([A, B, C, D|E], F-G) :- flatten dl(A, F-H),

flatten dl(B, H-I),

flatten dl(C, I-J),

flatten dl(D, J-K),

flatten dl(E, K-G).

flatten dl(A, [A|B]-B).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

165

Appendix A: Solutions of Selected Exercises

The improvement in performance is gleaned from

?- time(flatten 5([a,[b],[c,[d]],[e,[f],[g,[h]]],

[i,[j],[k,[l]],[m,[n],[o,[p]]]]],F)).

% 35 inferences in 0.00 seconds (Infinite Lips)

F = [a, b, c, d, e, f, g, h, i|...]

It is seen that as unfolding is carried further, longer and longer lists will be flattened by rules explicitly referring
to their length and less is dealt with by the (penultimate) ‘general rule’.

Exercise 3.16. The initial and intended final arrangement of clauses are indicated in Fig. A.6. The predicate
cosu/3 is defined in (P-A.24).

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

166

Appendix A: Solutions of Selected Exercises

Initial Arrangement

clause 1
clause 2
...

clause (i − 1)

�

clause i

clause (i + 1)
clause (i + 2)
...

clause c1

�

After Applying
unfold(...,i,...)

(New clauses shaded

dark .)

clause 1
clause 2
...

clause (i − 1)

�

clause i

clause (i + 1)
...

clause (c1−1)

�

��

	�
clause c1

clause (c1 +1)
...

clause c2

Final Arrangement

...

...

...

...

...

...

...

...

...

...

...

...

Figure A.6: Database Changes Brought About by cosu/3

Prolog Code P-A.24: Definition of cosu/3

1 cosu(Fun/Arity,I,J) :-

2 functor(Pred,Fun,Arity),

3 predicate_property(Pred,number_of_clauses(C1)),

4 unfold(Fun/Arity,I,J),

5 predicate_property(Pred,number_of_clauses(C2)),

6 A1 is 1, B1 is I - 1,

7 A2 is I, B2 is C1 - 1,

8 A3 is C1, B3 is C2,

9 from_to(A1,B1,L1),

10 from_to(A2,B2,L2),

11 from_to(A3,B3,L3),

12 concat3(L1,L3,L2,L),

13 clause_arrange(Fun/Arity,L).

With reference to Fig. A.6, the steps performed by cosu/3 are:

• Unify with C1 the number of clauses in the predicate’s original definition. The initial arrangement is
shown Fig. A.6.

• Unfold by using unfold/3 . The resulting state of the database is again shown in Fig. A.6.

• Unify with C2 the number of clauses in the predicate’s new definition.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

167

Appendix A: Solutions of Selected Exercises

• As seen from Fig. A.6, the pattern of intended rearrangement for the clauses is given by the permutation

L = [1, 2, . . . , i − 1, c1, c1 + 1, . . . , c2, i, i + 1, . . . , c1 − 1]

This list is then used to rearrange the clauses by clause arrange/2 .

• The predicate from to/3 is used to generate integer lists with specified first and last entries:

from_to(Low,High,List) :- bagof(N,between(Low,High,N),List), !.

from_to(_,_,[]).

(The catch-all clause ensures that from to/3 always succeeds.)

Exercise 3.17. Using the built-in predicate setof/3 , the predicate colours/2 collects the items’ colours in
alphabetical order.

colours(Items,Colours) :- setof(Colour,

Object^(member(col(Object,Colour),Items)),

Colours).

dijkstra/3 is then used to obtain the items’ list.

dijkstra_st(Items,Grouped) :- colours(Items,Colours),

dijkstra(Colours,Items,Grouped).

Exercise 3.19. The definition of def encolour pl/1 is not shown here as it is analogous to that of
def encolour dl/1 . (The source code is found in the file dl.pl.) The predicate def endijkstra pl/1 is
defined in (P-A.25).

Prolog Code P-A.25: Definition of def endijkstra pl/1

1 def_endijkstra_pl(Colours) :- dynamic(endijkstra_pl/2),

2 retractall(endijkstra_pl(_,_)),

3 length(Colours,N),

4 length(Vars,N),

5 Head = endijkstra_pl(Items,Grouped),

6 Goal1 =.. [encolour_pl,Items|Vars],

7 Goal2 =.. [flatten,Vars,Grouped],

8 Body = (Goal1, Goal2),

9 assert((Head :- Body)).

length/1 is used here to create a list of the requisite number of unbound variables which then serve as arguments
to both encolour pl and flatten/2 . (The former receives them as individual arguments whereas to the latter
they are passed as a list.)

A.4 Chapter 4 Exercises

All Prolog source code for Chap. 4 is available in the file rhyme demo.pl.

Exercise 4.1. A predicate n times/3 will be needed which returns in a list a specified number of copies of
any term:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

168

Appendix A: Solutions of Selected Exercises

?- n_times(3,any(term),L).

L = [any(term), any(term), any(term)]

This we define by the accumulator technique as follows.

n_times_acc(0,_,L,L).

n_times_acc(N,X,L1,L2) :- N1 is N - 1,

n_times_acc(N1,X,[X|L1],L2).

n_times(N,X,L) :- n_times_acc(N,X,[],L), !.

Now, we define long verse/1 by

long_verse(N) :- n_times(N,’That interacts with the item ...’,L),

dynamic(verse/1),

retract(verse(_)),

assert(verse(L)).

Exercise 4.2. The second clause in the definition of rhyme prel 5/ (p. 128) should be augmented by a cut :

rhyme_prel_5([H|T],C) :- append(P,[[H|T]],C),

rhyme_prel_5(T,P), !.

Exercise 4.3. Let us examine interactively, for example, how the query

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Prolog Techniques

169

Appendix A: Solutions of Selected Exercises

?- cputime(rhyme_prel_5,[[’B’,’A’],R],Time).

could be dealt with. Obviously, we will want rhyme prel 5/2 to be invoked by call/1 and therefore we will
have to create first a term which will serve as the argument of call/1 . To achieve this, we use the built-in
predicate univ.

?- T =.. [rhyme prel 5,[’B’,’A’],R].

T = rhyme prel 5([’B’, ’A’], G345)

R = G345

Yes

We now submit T to call/1 , the latter sandwiched between two invocations of statistics/2 :

?- T =.. [rhyme prel 5,[’B’,’A’],R],

statistics(cputime,Before), call(T),

statistics(cputime,After), Time is Before - After.

T = rhyme_prel_5([’B’, ’A’], [[’A’], [’B’, ’A’]])

R = [[’A’], [’B’, ’A’]]

Before = 15124

After = 15124

Time = 0

Yes

(The CPU time for the above happens to be negligible hence the zero response.) This gives rise to the following
definition.

cputime(Predname,Arglist,Time) :- T =.. [Predname|Arglist],

statistics(cputime,Before),

call(T),

statistics(cputime,After), !,

Time is After - Before.

As a consequence of the cut in the above definition, cputime/3 will find one solution only even if the under-
lying query could be re-satisfied on backtracking. Furthermore, and perhaps more importantly in our context,
if the query has a solution but would be caught in an infinite loop on trying to re-satisfy the goal, cputime/3
will still deliver this unique solution and respond with failure subsequently. This property of cputime/3 is
essential when timing the same predicate with several sets of arguments using findall/3 , as seen on p. 131 for
rhyme prel 5/2 .

Exercise 4.4. Prior to applying cputime/3 from Exercise 4.3, we construct the predicate’s name by using
concat atom/2 (see, inset on p. 126):

cputime(Predname,Arglist,Version,Time) :- concat_atom([Predname,’_’,Version],Pred),

cputime(Pred,Arglist,Time).

Exercise 4.5. We first show how the first row of Table 4.2 is produced interactively.10

?- findall(_Time,

(between(1,7,_J),

_L is _J * 10 ** 2,

long_verse(_L),

10The Java/C–style code layout is of course not the actual one but is employed here for better readability only.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

170

Appendix A: Solutions of Selected Exercises

verse(_V),

cputime(rhyme_prel,[_V,_R],5,_Time)

),

Row

).

Row = [1.98, 15.71, 52.23, 124.19, 241.95, 418.81, 666.96]

Now, after some modifications (involving the introduction of the variables I and Version), we embed this
query into another findall to collect all the rows of Table 4.2 in the variable Rows which, as a list (of lists),
we then display by using show list/1 :

?- findall(_Row,

(between(2,4,_I),

findall(_Time,

(between(1,7,_J),

_Version is _I + 3,

_L is _J * 10 ** _I,

long_verse(_L),

verse(_V),

cputime(rhyme_prel,[_V,_R],_Version,_Time)

),

_Row

)

),

_Rows

),

show_list(_Rows).

[1.97, 15.77, 52.35, 124.51, 242.6, 419.9, 666.41]

[4.23, 19.99, 45.59, 85.74, 135.45, 194.44, 276.88]

[0.11, 0.44, 0.99, 1.2, 1.37, 1.48, 1.76]

Alternative Solution. For a perhaps simpler solution by using a single instance of bagof/3 , we revisit the first
query above with findall replaced by bagof .

?- bagof(_Time,

_J^_L^_V^_R^(between(1,7,_J),

_L is _J * 10 ** 2,

long_verse(_L),

verse(_V),

cputime(rhyme_prel,[_V,_R],5,_Time)

),

Row).

Row = [1.98, 15.76, 52.24, 124.29, 242.11, 419.08, 666.96]

How should the above be augmented to display on backtracking all three rows of Table 4.2? We inroduce new
variables Version and I as before but won’t prefix the goal inside bagof by Version^ thus allowing Prolog
to find solutions corresponding to each particular value of Version . Finally, backtracking is accomplished by
a failure-driven loop.

?- bagof(Time,

I^J^L^V^R^(between(2,4,I),

between(1,7,J),

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

171

Appendix A: Solutions of Selected Exercises

Version is I + 3,

L is J * 10 ** I,

long_verse(L),

verse(V),

cputime(rhyme_prel,

[V,R],

Version,

Time

)

),

Row

),

write(Version),

write(’ - ’),

write(Row),

nl,

fail.

5 - [1.98, 15.76, 52.29, 124.46, 242.67, 419.58, 667.4]

6 - [4.28, 20.05, 45.65, 85.79, 135.62, 194.5, 278.85]

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Prolog Techniques

172

Appendix A: Solutions of Selected Exercises

7 - [0.11, 0.44, 0.77, 1.21, 1.43, 1.48, 1.7]

No

Exercise 4.6. The definition of song skeleton/1 is fairly obvious if we use int/1 and int/2 as ‘templates’:

song_skeleton(L) :- song_skeleton([1],L).

song_skeleton(L,L).

song_skeleton([H|T],L) :- succ(H,N),

song_skeleton([N|[H|T]],L).

A more interesting question is perhaps how the definition of int/2 (p. 134) came about in the first place. To
examine this, we first consider the following partial implementation of int/2

int(I,I). % clause 1

int(1,I) :- int(2,I). % clause 2

The query ?- int(1,I). will be first satisfied by virtue of clause 1 with I = 1 and on backtracking re-satisfied
by clause 2 which succeeds with I = 2 since its only subgoal (i.e. int(2,I)) unifies with clause 1. If we now
take also the clause

int(2,I) :- int(3,I). % clause 3

aboard, everything said thus far still applies; moreover, the body of clause 2 now succeeds also by clause 3 with
I = 3 since the body of the latter unifies with clause 1. Clearly, any number of new clauses could be added in
this manner to the database. (The resulting search tree is shown in Fig. A.7 below.) Now, the second clause

I = 1

I = 2

I = 3 ...

�
�

�
�

�

�
�
�
�
�

?- int(3,I).

�
�

�
�

�
�

�
�
�
�
�

?- int(2,I).

��������

�
�
�
�
�

?- int(1,I).

Figure A.7: Search Tree of the Query ?- int(1,I).

in the definition of int/2 on p. 134 can be considered a subsumption of all possible such augmentations of the
database.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

173

Appendix A: Solutions of Selected Exercises

It is also instructive to observe that int/1 is defined by solving another problem (the definition of int/2)
of which the original problem is a special case. This approach is often successful in Prolog programming.

Exercise 4.7. Our definition of song skeleton/1 very closely models that of nat/1 :

song_skeleton(L) :- first_verse, current_verse(L).

song_skeleton(L) :- repeat, update_verse, current_verse(L).

with the predicates first verse/0 and update verse/0 defined by

first_verse :- dynamic(current_verse/1),11

retractall(current_verse(_)),

assert(current_verse([1])).

update_verse :- current_verse([H|T]),

retractall(current_verse(_)),

NewH is H + 1,

assert(current_verse([NewH,H|T])).

Exercise 4.8. We calculate the digits of a natural number by applying the built-in arithmetic functions mod
(the modulo)12 and // (the integer division) in an alternate fashion; the digits of 351, for example, may be
obtained by

?- N0 is 351,

D1 is N0 mod 10, N1 is N0 // 10,

D2 is N1 mod 10, N2 is N1 // 10,

D3 is N2 mod 10.

D1 = 1

D2 = 5

D3 = 3

suggesting a predicate digits/3 with

digits(N,Acc,[N|Acc]) :- N < 10, !.13

digits(N,Acc,D) :- H is N mod 10, NewN is N // 10,

digits(NewN,[H|Acc],D).

which then behaves as expected:

?- digits(351,[],D).

D = [3, 5, 1]

11As an alternative, the predicate current verse/1 may be declared dynamic also by the directive

:- dynamic(current verse/1).

This is usually placed at the head of the source file.
12mod computes the remainder of an integer division. It is not to be confused with Prolog’s built-in arithmetic function rem

which returns the fractional part of a quotient:

?- Frac is 3896 rem 100.

Frac = 0.96
13Without this cut some spurious solutions are returned on backtracking:

?- digits(98,[],L).

L = [9, 8] ;

L = [0, 9, 8]

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

174

Appendix A: Solutions of Selected Exercises

We define the predicate digits(+Number,-List) thus by

digits(N,D) :- integer(N), digits(N,[],D).

(This definition works for the instantiation pattern digits(+Number,+List) , too.)
With a view to the instantiation pattern digits(-Number,+List) , we observe that any number can be

written in terms of its digits as in

4351 = 10 × (10 × (10 × (10 × 0 + 4) + 3) + 5) + 1

suggesting Algorithm A.4.1.

Algorithm A.4.1: Value(List)

Accumulator ← 0 (1)
List ← list of digits, e.g. [4, 3, 5, 1] (2)
while List �= [] (3)

do

⎧⎪⎪⎨
⎪⎪⎩

[H |T] ← List

Accumulator ← 10 ∗ Accumulator

Accumulator ← Accumulator + H

List ← T

Number ← Accumulator (4)
return (Number)

We implement (3)–(4) by value/3 ,

value([],N,N).

value([H|T],Acc,N) :- integer(H), H < 10,

AccNew is H + 10 * Acc,

value(T,AccNew,N).

while (1) and (2) will take effect when value/3 is invoked:

?- value([4,3,5,1],0,V).

V = 4351

The definition of digits(-Number,+List) is now straightforward:

digits(N,D) :- var(N), value(D,0,N).

The predicate in words/2 finally is defined by

in_words(N,Text) :- digits(N,D), number(D,Text).

with a predicate number/2 which assembles from a list of digits the corresponding number in plain English:

?- number([3,5,1],Text).

Text = threehundredfiftyone

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

175

Appendix A: Solutions of Selected Exercises

We won’t spell out here the definition of number/2 . The idea for a first rough version can be gleaned, however,
from the following query:

?- maplist(units,[4,3,5,1],[Th, H, T, U]),

concat_atom([Th,thousand, H,hundred, T,ten, U],Text).

Text = fourthousandthreehundredfivetenone

where units/2 is defined by a collection of facts in the database:

units(0,’’). units(1,one). units(2,two).

units(3,three). units(4,four). units(5,five).

...

Exercise 4.9. The definition of capital/2 in (P-A.26) is self-explanatory.

Prolog Code P-A.26: Definition of capital/2

1 capital(Atom1,Atom2) :-

2 atom_chars(Atom1,[H|T]), % disassemble Atom

3 to_upper(H,Upper), % convert H to upper case

4 atom_chars(Atom2,[Upper|T]). % re-assemble Atom

5 to_upper(Lower,Upper) :- char_code(Lower,L),

6 U is L - 32,

7 char_code(Upper,U).

Exercise 4.10. The following definition of line3/2 is derived from the sample query on p. 137.

line3(Numbers,Text) :- maplist(in_words,Numbers,[H|T]),

maplist(atom_concat(’ men,\n ’),T,L1),

capital(H,C),

concat_atom([C|L1],Text1),

atom_concat(Text1,’ man and his dog,’,Text).

Notice the partial application of atom concat/3 here in that its first argument is fixed, thereby becoming a
predicate of two arguments, ready to be used by maplist/3 .

Exercise 4.11. The top level predicate song/0 is finally defined by a failure driven loop thus

song :- song_skeleton([H|T]),

line1(H,L1),

line2(L2),

line3([H|T],L3),

line4(L4), nl,

write(L1), nl,

write(L2), nl,

write(L3), nl,

write(L4), nl, fail.

The only building block of song/0 perhaps in need of some comment is line1/2 which is expected to behave
as follows.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

176

Appendix A: Solutions of Selected Exercises

?- line1(1,L).

L = ’One man went to mow,’

?- line1(351,L).

L = ’Threehundredfiftyone men went to mow,’

We use the predicates in words/2 and capital/2 (from Exercise 4.8 and (P-A.26) in Exercise 4.9, respectively)
to define line1/2 :

line1(N,Text) :- in_words(N,HowMany),

capital(HowMany,C),

((N =:= 1, atom_concat(C,’ man went to mow,’,Text));

(N > 1, atom_concat(C,’ men went to mow,’,Text))).

A simpler alternative definition is as follows.

line1(1,’One man went to mow,’) :- !.

line1(N,Text) :- in_words(N,HowMany),

capital(HowMany,C),

atom_concat(C,’ men went to mow,’,Text).

This is the preferred version as it does not involve any arithmetic operations nor a choice of case by the
disjunction operator; it uses Prolog’s search and unification mechanisms instead.

EADS unites a leading aircraft manufacturer, the world’s largest
helicopter supplier, a global leader in space programmes and a
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments
during your studies. Given a high level of responsibility, plenty of

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across
disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also
find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

Download free eBooks at bookboon.com

Prolog Techniques

177

Appendix B: Software

Appendix B

Software

Below are listed the Prolog source files referenced in the various chapters. They are available on the Ventus website.

Referred to in Chap. 1.

accumulator.pl

Referred to in Chap. 2.

dl.pl

Referred to in Chap. 3.

arrange.pl party.pl stamps.pl

committee.pl people.pl transformations.pl

dl.pl queue.pl

Referred to in Chap. 4.

rhyme_demo.pl

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

178

Appendix B: Software

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Prolog Techniques

179

Appendix C: Glossary

Appendix C

Glossary

Note. You will find a more complete collection of Prolog terms defined in the SWI–Prolog manual [18].

Accumulator. An auxiliary argument whose final value is calculated by repeated updating. It plays the rôle of an
accumulator variable in a loop in imperative progranmming.

Anonymous variable. It is a variable with no user-defined name and it is denoted by the underscore (_). It is
used to replace singleton variables (i.e. variables occurring once only in a clause). Several anonymous variables in the
same clause will be unrelated, i.e. their system-chosen names will be different.

Argument. One of the positions of a predicate if this has arity at least one.

Argument pattern. This is a way of describing the modes in which a predicate can be called. The name of an
input argument is prefixed by a plus sign (+); the name of an output argument is prefixed by a minus sign (−); and,
the name of an argument which can be used in both modes is prefixed by a question mark (?). Example. The inset for
between/3 (p. 41) says that the first two arguments of between/3 are for input only while the third one can be used for
input or output (depending on whether the predicate is used to test or to generate values thereof).

Arity. The number of arguments of a predicate, or more generally, of a compound term. Example. The term
parents of(F, M, joe) has arity 3.

Atom. A constant value which is assigned to a variable. Example. Strings starting with a lower case character such
as joe .

Backtracking. A way of finding values of the variables in a predicate such that this succeeds. This is accomplished
by traversing the associated search tree using Depth First search.

Binding. Assignment of a term as a value to a variable.

Body of a clause. The conjunction of the goals which have to be satisfied for the head of the clause to be ’true’.

Bound variable. A variable which has been assigned a value.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

180

Appendix C: Glossary

Clause. A fact or a rule in the database.

Closed World Assumption. Any goal that cannot be inferred from the database is assumed ’false’. Therefore,
the negation of such a goal will succeed.

Cut (!). A built-in predicate for ’freezing’ the assignment of values to variables in goals to the left of the cut.
Variables in goals to the right will be assigned new values on backtracking.

Database. The collection of all facts and rules loaded in memory.

Declarative reading. A program (a predicate) is viewed as a collection of declarative assertions about the problem
to be solved.

Difference list. A way of representing a list as a ’difference’ of two lists. Implicitly, its use involves unification and
is equivalent to the accumulator technique.

Fact. A clause with no body. More precisely, a clause whose body is assumed true.

Failure. A predicate is said to fail if its truth value inferred from the database is ’false’.

Free variable. A variable with no value assigned to it.

Functor. The name of a predicate, or more generally, the name of a compound term. Example. In parents of(george,

susan, joe) the functor is parents of .

Goal. An atom or a compound term which will be assigned a truth value by the Prolog system.

Ground term. A term with no free variables in it, i.e. a one where all variables are bound.

Head of a clause. The part of a clause which follows from the conjunction of the other goals of the clause, the body.

Head of a list. The first entry if we use the square bracket notation. The first argument if we use the dot (.)
functor to denote lists.

Higher order predicate. A predicate which uses another predicate by expecting in one of its arguments the
name of this predicate; or, which defines or modifies another predicate. Example. The built-in predicate bagof/3 is a
higher order predicate of the former kind as it uses the predicate named in its second argument. unfold/3 (see Fig. 3.9,
p. 97) is a higher order predicate of the latter kind as it modifies the definition of the predicate named in its first argument.

Instantiation. The assignment of a value to a variable.

List. It is a recursively defined built-in binary predicate with the dot functor (.). Its second argument is either the
empty list or a list. The user friendly notation uses square brackets to denote lists.

Predicate. A Prolog structure for representing an n–ary relation. Example. The ternary relation parents of/3 is a
relation on (i.e. a subset of) the Cartesian product C = People×People×People. A triplet in C which can be inferred
to satisfy the relation parents of/3 is said to succeed; otherwise it is said to fail.

Predicate Calculus. PC is a system for formalizing arguments with a view to establishing their validity. It is
an extension of Propositional Calculus using predicates, constants and variables which are universally or existentially

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

181

Appendix C: Glossary

quantified.

Predicate. The collection of clauses whose heads have the same functor.

Propositional Calculus. PC is the simplest system for formalizing arguments with a view to establishing their
validity. Its smallest units are the sentence letters that are assigned the values ’true’ or ’false’. These then are strung
together with connectives according to certain rules to form well–formed formulae. Finally, the latter are built up to
argument forms; PC is concerned with establishing the validity of these.

Recursion. Defining a predicate in terms of itself.

Rule. An assertion that a certain goal, the head of the clause, is ’true’ provided that all the goals in its body are ’true’.

Success. A predicate is said to succeed if it can be inferred from the database.

Switch. A predicate argument which can take two values only. Used as a programming tool.

Tail. The latter part of a list: the list comprising all entries except its first entry.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Prolog Techniques

182

Appendix C: Glossary

Tail recursion. A tail recursive clause defines a predicate in terms of itself where the predicate is called as the last

goal in the body.

Term. The most general data object in Prolog. It can be one of the following: a constant, a variable, or a compound
term.

Unification. A pattern matching algorithm returning a set of values assigned to the variables of two terms such that
these become equal. The assignment is most general in that any other such assignment can be obtained by specialization
of the variables after unification.

Variable. A named location in the memory which may be assigned a value.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

183

References

References

[1] W. F. Clocksin. Clause and Effect – Prolog Programming for the Working Programmer. Springer, London,
1997.

[2] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer, London, fourth edition, 1994.

[3] M. A. Covington, D. Nute, and A. Vellino. Prolog Programming in Depth. Prentice Hall, Upper Saddle
River, NJ, 1997.

[4] A. Csenki. Rotations in the plane and Prolog. Science of Computer Programming, 66:154–161, 2007.

[5] Y. Deville. Logic Programming – Systematic Program Development. Addison–Wesley, Wokingham, 1990.

[6] DIN Deutsches Institut für Normung e.V., Berlin. DIN 66 261 : Nassi–Shneiderman–Diagramm, eine
Entwurfsmethode für die strukturierte Programmierung, 1985.

[7] A. Hoffmann. Paradigms of Artificial Intelligence – A Methodological & Computational Analysis. Springer,
Singapore, 1998.

[8] C. J. Hogger. Introduction to Logic Programming. Academic Press, London, 1984.

[9] C. J. Hogger. Essentials of Logic Programming. Clarendon Press, Oxford, 1990.

[10] E. Kreyszig. Advanced Engineering Mathematics. Wiley, New York, eighth edition, 1998.

[11] J. Mulherin. Popular Nursery Rhymes. Grosset & Dunlap, New York, eighth edition, 1983.

[12] I. Nassi and B. Shneiderman. Flowchart Techniques for Structured Programming. SIGPLAN Notices, 8,
August 1973.

[13] M. Negnevitsky. Artificial Intelligence – A Guide to Intelligent Systems. Addison–Wesley, Harlow and
London and New York, 2002.

[14] N. J. Nilsson and P. Norvig. Artificial Intelligence – A Modern Approach. Prentice Hall, Upper Saddle
River, NJ, 1995.

[15] I. Sommerville. Software Engineering. Addison–Wesley, Harlow and London and New York, sixth edition,
2001.

[16] L. Sterling and E. Shapiro. The Art of Prolog – Advanced Programming Techniques. MIT Press, Cambridge
Ma, London, 1986.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

184

References

[17] S. Todd. Basic Numerical Mathematics, volume 2. Academic Press, Harlow and London and New York,
1978. Basic Numerical Algebra.

[18] J. Wielemaker. SWI–Prolog 5.1 Reference Manual. Amsterdam, 2003.
http://www.wsi-prolog.org.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Prolog Techniques

185

Index

Index

->/2 , 91
./2 , 43
// , 173
=../2 , 43
\=/2 , 58

accumulators, 13–36
difference lists as acc’s, 57

arg/3 , 43
assert/1 , 80
asserta/1 , 81
atom chars/2 , 126
atom codes/2 , 19
atom concat/3 , 138

bagof/3 , 41
between/3 , 41

char code/2 , 137
clause/3 , 102
Closed World Assumption, 54
concat atom/2 , 126
copy term/2 , 156
current predicate/2 , 88
current prolog flag/2 , 16, 46, 136

DeMorgan’s Rule, 161
difference lists, 37–73, 97, 98, 107–115, 129
Dijkstra’s Dutch Flag Problem, 57–60, 108–116
directive, 38
dynamic/1 , 79

erase/1 , 105

fail/0 , 77
failure driven loop, 77, 104, 105, 161
findall/3 , 56
flatten/2 , 42–49

folding, 54
forall/2 , 162
functor/3 , 43

Gauss–Seidel Method, 69–73

hand computations, 14–23

Implication Introduction Rule, 56
integer/1 , 17
is list/1 , 17

last/2 , 17, 143
listing/1 , 86

maplist/3

definition of, 127
Material Implication, 161
member/2 , 90
mod , 173

nth1/3 , 107
nth clause/3 , 102
numlist/3 , 143

op/3 , 38
operator, 38

partial application, 127, 175
pattern matching, 121
Perceptron Training Algorithm, 27–36, 64–65
predicate property/2 , 88, 108
proper list/1 , 45, 145
pseudocodes, 23–26

Quantifier Equivalence Rule, 161

rem , 173
repeat loop, 134–136, 173

http://bookboon.com/

Prolog Techniques

186

Index

repeat/0 , see repeat loop
repeat loop, 173
retract/1 , 79
retractall/1 , 80
reverse/2 , 50–57
rotation

list rotation, 61–64
planar rotation, 65–69

self-unfolding, 52, 105–106
set prolog flag/2 , 33, 46, 109, 147
setof/3 , 41
statistics/2 , 131
succ/2 , 134
switch, 21

tail recursion, 13
tell/1 , 86
term to atom/2 , 47
time/1 , 41
told/0 , 86
torus, 66
trace/1 , 130
true/0 , 77

unfolding, 52–53, 95–108
univ , see =../2

var/1 , 17

write term/2 , 46

