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Preface

This book originated in part from lecture notes we developed while teaching courses in

financial mathematics in the Master of Mathematical Finance Program at the University of

Toronto during the years from 1998 to 2003. We were confronted with the challenge of

teaching a varied set of finance topics, ranging from derivative pricing to risk management,

while developing the necessary notions in probability theory, stochastic calculus, statistics,

and numerical analysis and while having the students acquire practical computer laboratory

experience in the implementation of financial models. The amount of material to be covered

spans a daunting number of topics. The leading motives are recent discoveries in derivatives

research, whose comprehension requires an array of applied mathematical techniques tradi-

tionally taught in a variety of different graduate and senior undergraduate courses, often not

included in the realm of traditional finance education. Our choice was to teach all the relevant

topics in the context of financial engineering and mathematical finance while delegating more

systematic treatments of the supporting disciplines, such as probability, statistics, numerical

analysis, and financial markets and institutions, to parallel courses. Our project turned from

a challenge into an interesting and rewarding teaching experience. We discovered that prob-

ability and stochastic calculus, when presented in the context of derivative pricing, are easier

to teach than we had anticipated. Most students find financial concepts and situations helpful

to develop an intuition and understanding of the mathematics. A formal course in probability

running in parallel introduced the students to the mathematical theory of stochastic calculus,

but only after they already had acquired the basic problem-solving skills. Computer laboratory

projects were run in parallel and took students through the actual “hands-on” implementation

of the theory through a series of financial models. Practical notions of information technology

were introduced in the laboratory as well as the basics in applied statistics and numerical

analysis.

This book is organized into two main parts: Part I consists of the main body of the theory

and mathematical tools, and Part II covers a series of numerical implementation projects

for laboratory instruction. The first part is organized into rather large chapters that span the

main topics, which in turn consist of a series of related subtopics or sections. Chapter 1

introduces the basic notions of pricing theory together with probability and stochastic calculus.

The relevant notions in probability and stochastic calculus are introduced in the finance

xi



xii Preface

context. Students learn about static and dynamic hedging strategies and develop an underlying

framework for pricing various European-style contracts, including quanto and basket options.

The martingale (or probabilistic) and Partial differential equation (PDE) formulations are

presented as alternative approaches for derivatives pricing. The last part of Chapter 1 provides

a theoretical framework for pricing American options. Chapter 2 is devoted to fixed-income

derivatives. Numerical solution methods such as lattice models, model calibration, and Monte

Carlo simulations are introduced within relevant projects in the second part of the book.

Chapter 3 is devoted to more advanced mathematical topics in option pricing, covering some

techniques for exact exotic option pricing within continuous-time state-dependent diffusion

models. A substantial part of Chapter 3 is drawn partly from some of our recent research

and hence covers derivations of new pricing formulas for complex state-dependent diffusion

models for European-style contracts as well as barrier options. One focus of this chapter is to

expose the reader to some of the more advanced, yet essential, mathematical tools for tackling

derivative pricing problems that lie beyond the standard contracts and/or simpler models.

Although the technical content in Chapter 3 may be relatively high, our goal has been to

present the material in a comprehensive fashion. Chapter 4 reviews numerical methods and

statistical estimation methodologies for value-at-risk and risk management.

Part II includes a dozen shorter “chapters,” each one dedicated to a numerical laboratory

project. The additional files distributed in the attached disk give the documentation and

framework as they were developed for the students. We made an effort to cover a broad

variety of information technology topics, to make sure that the students acquire the basic

programming skills required by a professional financial engineer, such as the ability to design

an interface for a pricing module, produce scenario-generation engines for pricing and risk

management, and access a host of numerical library components, such as linear algebra

routines. In keeping with the general approach of this book, students acquire these skills not

in isolation but, rather, in the context of concrete implementation tasks for pricing and risk

management models.

This book can presumably be read and used in a variety of ways. In the mathematical

finance program, Chapters 1 and 2, and limited parts of Chapters 3 and 4 formed the core of

the theory course. All the chapters (i.e., projects) in Part II were used in the parallel numerical

laboratory course. Some of the material in Chapter 3 can be used as a basis for a separate

graduate course in advanced topics in pricing theory. Since Chapter 4, on value-at-risk, is

largely independent of the other ones, it may also possibly be covered in a parallel risk

management course.

The laboratory material has been organized in a series of modules for classroom instruction

we refer to as projects (i.e., numerical laboratory projects). These projects serve to provide

the student or practitioner with an initial experience in actual quantitative implementations

of pricing and risk management. Admittedly, the initial projects are quite far from being

realistic financial engineering problems, for they were devised mostly for pedagogical reasons

to make students familiar with the most basic concepts and the programming environment.

We thought that a key feature of this book was to keep the prerequisites to a bare minimum

and not assume that all students have advanced programming skills. As the student proceeds

further, the exercises become more challenging and resemble realistic situations more closely.

The projects were designed to cover a reasonable spectrum of some of the basic topics

introduced in Part I so as to enhance and augment the student’s knowledge in various basic

topics. For example, students learn about static hedging strategies by studying problems

with barrier options and variance swaps, learn how to design and calibrate lattice models

and use them to price American and other exotics, learn how to back out a high-precision

LIBOR zero-yield curve from swap and forward rates, learn how to set up and calibrate

interest rate trees for pricing interest rate derivatives using a variety of one-factor short rate
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models, and learn about estimation and simulation methodologies for value-at-risk. As the

assignments progress, relevant programming topics may be introduced in parallel. Our choice

fell on the Microsoft technologies because they provide perhaps the easiest-to-learn-about

rapid application development frameworks; however, the concepts that students learn also

have analogues with other technologies. Students learn gradually how to design the interface

for a pricing model using spreadsheets. Most importantly, they learn how to invoke and use

numerical libraries, including LAPACK, the standard numerical linear algebra package, as

well as a broad variety of random- and quasi-random-number generators, zero finders and

optimizer routines, spline interpolations, etc. To a large extent, technologies can be replaced.

We have chosen Microsoft Excel as a graphic user interface as well as a programming tool.

This should give most PC users the opportunity to quickly gain familiarity with the code

and to modify and experiment with it as desired. The Math Point libraries for visual basic

(VB) and visual Basic for applications (VBA), which are used in our laboratory materials,

were developed specifically for this teaching project, but an experienced programmer could

still use this book and work in alternative frameworks, such as the Nag FORTRAN libraries

under Linux and Java. The main motive of the book also applies in this case: We teach the

relevant concepts in information technology, which are a necessary part of the professional

toolkit of financial engineers, by following what according to our experience is the path of

least resistance in the learning process.

Finally, we would like to add numerous acknowledgments to all those who made this

project a successful experience. Special thanks go to the students who attended the Master of

Mathematical Finance Program at the University of Toronto in the years from 1998 to 2003.

They are the ones who made this project come to life in the first place. We thank Oliver Chen

and Stephan Lawi for having taught the laboratory course in the fifth year of the program.

We thank Petter Wiberg, who agreed to make the material in his Ph.D. thesis available to

us for partial use in Chapter 4. We thank our coauthors in the research papers we wrote

over the years, including Peter Carr, Oliver Chen, Ken Jackson, Alexei Kusnetzov, Pierre

Hauvillier, Stephan Lawi, Alex Lipton, Roman Makarov, Smaranda Paun, Dmitri Rubisov,

Alexei Tchernitser, Petter Wiberg, and Andrei Zavidonov.
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C H A P T E R . 1

Pricing Theory

Pricing theory for derivative securities is a highly technical topic in finance; its foundations

rest on trading practices and its theory relies on advanced methods from stochastic calculus

and numerical analysis. This chapter summarizes the main concepts while presenting the

essential theory and basic mathematical tools for which the modeling and pricing of financial

derivatives can be achieved.

Financial assets are subdivided into several classes, some being quite basic while others are

structured as complex contracts referring to more elementary assets. Examples of elementary
asset classes include stocks, which are ownership rights to a corporate entity; bonds, which
are promises by one party to make cash payments to another in the future; commodities,
which are assets, such as wheat, metals, and oil that can be consumed; and real estate assets,
which have a convenience yield deriving from their use. A more general example of an asset

is that of a contractual contingent claim associated with the obligation of one party to enter

a stream of more elementary financial transactions, such as cash payments or deliveries of

shares, with another party at future dates. The value of an individual transaction is called a

pay-off or payout. Mathematically, a pay-off can be modeled by means of a payoff function
in terms of the prices of other, more elementary assets.

There are numerous examples of contingent claims. Insurance policies, for instance, are
structured as contracts that envision a payment by the insurer to the insured in case a specific

event happens, such as a car accident or an illness, and whose pay-off is typically linked to the

damage suffered by the insured party. Derivative assets are claims that distinguish themselves

by the property that the payoff function is expressed in terms of the price of an underlying
asset. In finance jargon, one often refers to underlying assets simply as underlyings. To
some extent, there is an overlap between insurance policies and derivative assets, except the

nomenclature differs because the first are marketed by insurance companies while the latter

are traded by banks.

A trading strategy consists of a set of rules indicating what positions to take in response

to changing market conditions. For instance, a rule could say that one has to adjust the

position in a given stock or bond on a daily basis to a level given by evaluating a certain

function. The implementation of a trading strategy results in pay-offs that are typically

random. A major difference that distinguishes derivative instruments from insurance contracts

3



4 CHAPT ER 1 . Pricing theory

is that most traded derivatives are structured in such a way that it is possible to implement

trading strategies in the underlying assets that generate streams of pay-offs that replicate the
pay-offs of the derivative claim. In this sense, trading strategies are substitutes for derivative

claims. One of the driving forces behind derivatives markets is that some market participants,

such as market makers, have a competitive advantage in implementing replication strategies,

while their clients are interested in taking certain complex risk exposures synthetically by

entering into a single contract.

A key property of replicable derivatives is that the corresponding payoff functions depend

only on prices of tradable assets, such as stocks and bonds, and are not affected by events,

such as car accidents or individual health conditions that are not directly linked to an asset

price. In the latter case, risk can be reduced only by diversification and reinsurance. A related

concept is that of portfolio immunization, which is defined as a trade intended to offset the

risk of a portfolio over at least a short time horizon. A perfect replication strategy for a given

claim is one for which a position in the strategy combined with an offsetting position in the

claim are perfectly immunized, i.e., risk free. The position in an asset that immunizes a given

portfolio against a certain risk is traditionally called hedge ratio.1 An immunizing trade is

called a hedge. One distinguishes between static and dynamic hedging, depending on whether

the hedge trades can be executed only once or instead are carried over time while making

adjustments to respond to new information.

The assets traded to execute a replication strategy are called hedging instruments. A set of

hedging instruments in a financial model is complete if all derivative assets can be replicated

by means of a trading strategy involving only positions in that set. In the following, we shall

define the mathematical notion of financial models by listing a set of hedging instruments

and assuming that there are no redundancies, in the sense that no hedging instrument can

be replicated by means of a strategy in the other ones. Another very common expression

is that of risk factor: The risk factors underlying a given financial model with a complete

basis of hedging instruments are given by the prices of the hedging instruments themselves

or functions thereof; as these prices change, risk factor values also change and the prices of

all other derivative assets change accordingly. The statistical analysis of risk factors allows

one to assess the risk of financial holdings.

Transaction costs are impediments to the execution of replication strategies and correspond

to costs associated with adjusting a position in the hedging instruments. The market for a

given asset is perfectly liquid if unlimited amounts of the asset can be traded without affecting

the asset price. An important notion in finance is that of arbitrage: If an asset is replicable by

a trading strategy and if the price of the asset is different from that of the replicating strategy,

the opportunity for riskless gains/profits arises. Practical limitations to the size of possible

gains are, however, placed by the inaccuracy of replication strategies due to either market

incompleteness or lack of liquidity. In such situations, either riskless replication strategies are

not possible or prices move in response to posting large trades. For these reasons, arbitrage

opportunities are typically short lived in real markets.

Most financial models in pricing theory account for finite liquidity indirectly, by postu-

lating that prices are arbitrage free. Also, market incompleteness is accounted for indirectly

and is reflected in corrections to the probability distributions in the price processes. In this

stylized mathematical framework, each asset has a unique price.2

1Notice that the term hedge ratio is part of the finance jargon. As we shall see, in certain situations hedge ratios

are computed as mathematical ratios or limits thereof, such as derivatives. In other cases, expressions are more

complicated.
2To avoid the perception of a linguistic ambiguity, when in the following we state that a given asset is worth a

certain amount, we mean that amount is the asset price.
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Most financial models are built upon the perfect-markets hypothesis, according to which:

• There are no trading impediments such as transaction costs.
• The set of basic hedging instruments is complete.
• Liquidity is infinite.
• No arbitrage opportunities are present.

These hypotheses are robust in several ways. If liquidity is not perfect, then arbitrage oppor-

tunities are short lived because of the actions of arbitrageurs. The lack of completeness and

the presence of transaction costs impacts prices in a way that is uniform across classes of

derivative assets and can safely be accounted for implicitly by adjusting the process proba-

bilities.

The existence of replication strategies, combined with the perfect-markets hypothesis,

makes it possible to apply more sophisticated pricing methodologies to financial derivatives

than is generally possible to devise for insurance claims and more basic assets, such as stocks.

The key to finding derivative prices is to construct mathematical models for the underlying

asset price processes and the replication strategies. Other sources of information, such as a

country’s domestic product or a takeover announcement, although possibly relevant to the

underlying prices, affect derivative prices only indirectly.

This first chapter introduces the reader to the mathematical framework of pricing theory

in parallel with the relevant notions of probability, stochastic calculus, and stochastic control

theory. The dynamic evolution of the risk factors underlying derivative prices is random, i.e.,
not deterministic, and is subject to uncertainty. Mathematically, one uses stochastic processes,
defined as random variables with probability distributions on sets of paths. Replicating and

hedging strategies are formulated as sets of rules to be followed in response to changing price

levels. The key principle of pricing theory is that if a given payoff stream can be replicated

by means of a dynamic trading strategy, then the cost of executing the strategy must equal

the price of a contractual claim to the payoff stream itself. Otherwise, arbitrage opportunities

would ensue. Hence pricing can be reduced to a mathematical optimization problem: to

replicate a certain payoff function while minimizing at the same time replication costs and

replication risks. In perfect markets one can show that one can achieve perfect replication at

a finite cost, while if there are imperfections one will have to find the right trade-off between

risk and cost. The fundamental theorem of asset pricing is a far-reaching mathematical result

that states;

• The solution of this optimization problem can be expressed in terms of a discounted
expectation of future pay-offs under a pricing (or probability) measure.

• This representation is unique (with respect to a given discounting) as long as markets

are complete.

Discounting can be achieved in various ways: using a bond, using the money market account,

or in general using a reference numeraire asset whose price is positive. This is because pricing
assets is a relative, as opposed to an absolute, concept: One values an asset by computing its

worth as compared to that of another asset. A key point is that expectations used in pricing

theory are computed under a probability measure tailored to the numeraire asset.

In this chapter, we start the discussion with a simple single-period model, where trades

can be carried out only at one point in time and gains or losses are observed at a later

time, a fixed date in the future. In this context, we discuss static hedging strategies. We then

briefly review some of the relevant and most basic elements of probability theory in the
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context of multivariate continuous random variables. Brownian motion and martingales are

then discussed as an introduction to stochastic processes. We then move on to further discuss

continuous-time stochastic processes and review the basic framework of stochastic (Itô)

calculus. Geometric Brownian motion is then presented, with some preliminary derivations

of Black–Scholes formulas for single-asset and multiasset price models. We then proceed

to introduce a more general mathematical framework for dynamic hedging and derive the

fundamental theorem of asset pricing (FTAP) for continuous-state-space and continuous-

time-diffusion processes. We then apply the FTAP to European-style options. Namely, by the

use of change of numeraire and stochastic calculus techniques, we show how exact pricing

formulas based on geometric Brownian motions for the underlying assets are obtained for a

variety of situations, ranging from elementary stock options to foreign exchange and quanto

options. The partial differential equation approach for option pricing is then presented. We

then discuss pricing theory for early-exercise or American-style options.

1.1 Single-Period Finite Financial Models

The simplest framework in pricing theory is given by single-period financial models, in which
calendar time t is restricted to take only two values, current time t = 0 and a future date

t = T > 0. Such models are appropriate for analyzing situations where trades can be made

only at current time t = 0. Revenues (i.e., profits or losses) can be realized only at the later

date T, while trades at intermediate times are not allowed.

In this section, we focus on the particular case in which only a finite number of scenarios
�1� � � � ��m can occur. Scenario is a common term for an outcome or event. The scenario set
�= ��1� � � � ��m� is also called the probability space. A probability measure P is given by

a set of numbers pi� i= 1� � � � �m, in the interval 	0�1
 that sum up to 1; i.e.,

m∑
i=1

pi = 1� 0 ≤ pi ≤ 1� (1.1)

pi is the probability that scenario (event) �i occurs, i.e., that the ith state is attained. Scenario

�i is possible if it can occur with strictly positive probability pi > 0. Neglecting scenarios that

cannot possibly occur, the probabilities pi will henceforth be assumed to be strictly positive;

i.e., pi > 0. A random variable is a function on the scenario set, f � � → �, whose values

f��i
 represent observables. As we discuss later in more detail, examples of random variables

one encounters in finance include the price of an asset or an interest rate at some point in

the future or the pay-off of a derivative contract. The expectation of the random variable f is
defined as the sum

EP	f
=
m∑
i=1

pif��i
� (1.2)

Asset prices and other financial observables, such as interest rates, are modeled by

stochastic processes. In a single-period model, a stochastic process is given by a value f0
at current time t = 0 and by a random variable fT that models possible values at time T. In
finance, probabilities are obtained with two basically different procedures: They can either

be inferred from historical data by estimating a statistical model, or they can be implied from

current asset valuations by calibrating a pricing model. The former are called historical,
statistical, or, better, real-world probabilities. The latter are called implied probabilities.
The calibration procedure involves using the fundamental theorem of asset pricing to represent

prices as discounted expectations of future pay-offs and represents one of the central topics

to be discussed in the rest of this chapter.
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Definition 1.1. Financial Model A finite, single-period financial model� = ����
 is given
by a finite scenario set � = ��1� � � � ��m� and n basic asset price processes for hedging
instruments:

�= �A1
t � � � � �A

n
t � t = 0� T�� (1.3)

Here, Ai
0 models the current price of the ith asset at current (or initial) time t = 0 and Ai

T

is a random variable such that the price at time T > 0 of the ith asset in case scenario �j

occurs is given by Ai
T ��j
. The basic asset prices Ai

t, i = 1� � � � � n, are assumed real and
positive.

Definition 1.2. Portfolio and Asset Let � = ����
 be a financial model. A portfolio �
is given by a vector with components �i ∈ �� i = 1� � � � � n, representing the positions or
holdings in the the family of basic assets with prices A1

t � � � � �A
n
t . The worth of the portfolio at

terminal time T is given by
∑n

i=1�i A
i
T ��
 given the state or scenario �, whereas the current

price is
∑n

i=1�i A
i
0. A portfolio is nonnegative if it gives rise to nonnegative pay-offs under

all scenarios, i.e.,
∑n

i=1 �i A
i
T ��j
 ≥ 0� ∀j = 1� � � � �m. An asset price process At = At��


(a generic one, not necessarily that of a hedging instrument) is a process of the form

At =
n∑

i=1

�iA
i
t (1.4)

for some portfolio � ∈�n.

The modeling assumption behind this definition is that market liquidity is infinite, meaning

that asset prices don’t vary as a consequence of agents trading them. As we discussed at the

start of this chapter, this hypothesis is valid only in case trades are relatively small, for large

trades cause market prices to change. In addition, a financial model with infinite liquidity is

mathematically consistent only if there are no arbitrage opportunities.

Definition 1.3. Arbitrage: Single-Period Discrete Case An arbitrage opportunity or arbi-
trage portfolio is a portfolio � = ��1� � � � ��n
 such that either of the following condi-
tions holds:
A1. The current price of � is negative,

∑n
i=1�iA

i
0 < 0, and the pay-off at terminal time T is

nonnegative, i.e.,
∑n

i=1�iA
i
T ��j
≥ 0 for all j states.

A2. The current price of � is zero, i.e.,
∑n

i=1�iA
i
0 = 0, and the pay-off at terminal time T

in at least one scenario �j is positive, i.e.,
∑n

i=1�iA
i
T ��j
 > 0 for some jth state, and the

pay-off at terminal time T is nonnegative.

Definition 1.4. Market Completeness The financial model � = ����
 is complete if for
all random variables ft � �→�, where ft is a bounded payoff function, there exists an asset
price process or portfolio At in the basic assets contained in � such that AT��
= fT ��
 for
all scenarios � ∈�.

This definition essentially states that any pay-off (or state-contingent claim) can be repli-

cated, i.e., is attainable by means of a portfolio consisting of positions in the set of basic

assets. If an arbitrage portfolio exists, one says there is arbitrage. The first form of arbitrage

occurs whenever there exists a trade of negative initial cost at time t = 0 by means of which

one can form a portfolio that under all scenarios at future time t = T has a nonnegative

pay-off. The second form of arbitrage occurs whenever one can perform a trade at zero cost

at an initial time t = 0 and then be assured of a strictly positive payout at future time T under
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at least one possible scenario, with no possible downside. In reality, in either case investors

would want to perform arbitrage trades and take arbitrarily large positions in the arbitrage

portfolios. The existence of these trades, however, infringes on the modeling assumption of

infinite liquidity, because market prices would shift as a consequence of these large trades

having been placed.

Let’s start by considering the simplest case of a single-period economy consisting of only

two hedging instruments (i.e., n= 2 basic assets) with price processes A1
t = Bt and A2

t = St.

The scenario set, or sample space, is assumed to consist of only two possible states of the

world: � = ��+��−�. St is the price of a risky asset, which can be thought of as a stock

price. The riskless asset is a zero-coupon bond, defined as a process Bt that is known to be

worth the so-called nominal amount BT = N at time T while at time t = 0 has worth

B0 = �1+ rT
−1N� (1.5)

Here r > 0 is called the interest rate. As is discussed in more detail in Chapter 2, interest

rates can be defined with a number of different compounding rules; the definition chosen here

for r corresponds to selecting T itself as the compounding interval, with simple (or discrete)

compounding assumed. At current time t = 0, the stock has known worth S0. At a later

time t = T , two scenarios are possible for the stock. If the scenario �+ occurs, then there

is an upward move and ST = ST ��+
 ≡ S+; if the scenario �− occurs, there is a downward

move and ST = ST ��−
≡ S−, where S+ > S−. Since the bond is riskless we have BT��+
=
BT��−
= BT . Assume that the real-world probabilities that these events will occur are p+ =
p ∈ �0�1
 and p− = �1−p
, respectively.

Figure 1.1 illustrates this simple economy. In this situation, the hypothesis of arbitrage

freedom demands that the following strict inequality be satisfied:

S−
1+ rT

< S0 <
S+

1+ rT
� (1.6)

In fact, if, for instance, one had S0 <
S−

1+rT
, then one could make unbounded riskless profits by

initially borrowing an arbitrary amount of money and buying an arbitrary number of shares

in the stock at price S0 at time t = 0, followed by selling the stock at time t = T at a higher

return level than r. Inequality (1.6) is an example of a restriction resulting from the condition
of absence of arbitrage, which is defined in more detail later.

A derivative asset, of worth At at time t, is a claim whose pay-off is contingent on future

values of risky underlying assets. In this simple economy the underlying asset is the stock.

An example is a derivative that pays f+ dollars if the stock is worth S+, and f− otherwise, at

final time T: AT =AT��+
= f+ if ST = S+ and AT =AT��−
= f− if ST = S−. Assuming one

can take fractional positions, this payout can be statically replicated by means of a portfolio

p+

p–

S0

S–

S+

FIGURE 1.1 A single-period model with two possible future prices for an asset S.
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consisting of a shares of the stock and b bonds such that the following replication conditions

under the two scenarios are satisfied:

aS−+bN = f−� (1.7)

aS++bN = f+� (1.8)

The solution to this system is

a= f+−f−
S+−S−

� b = f−S+−f+S−
N�S+−S−


� (1.9)

The price of the replicating portfolio, with pay-off identical to that of the derivative, must be

the price of the derivative asset; otherwise there would be an arbitrage opportunity. That is,

one could make unlimited riskless profits by buying (or selling) the derivative asset and, at

the same time, taking a short (or long) position in the portfolio at time t = 0. At time t = 0,

the arbitrage-free price of the derivative asset, A0, is then

A0 = aS0+b�1+ rT
−1N

=
(
S0− �1+ rT
−1S−

S+−S−

)
f++

(
�1+ rT
−1S+−S0

S+−S−

)
f−� (1.10)

Dimensional considerations are often useful to understand the structure of pricing formulas

and detect errors. It is important to remember that prices at different moments in calendar

time are not equivalent and that they are related by discount factors. The hedge ratios a and

b in equation (1.9) are dimensionless because they are expressed in terms of ratios of prices

at time T. In equation (1.10) the variables f± and S+−S− are measured in dollars at time T,
so their ratio is dimensionless. Both S0 and the discounted prices �1+ rT 
−1S± are measured

in dollars at time 0, as is also the derivative price A0.

Rewriting this last equation as

A0 = �1+ rT
−1

[(
�1+ rT
S0−S−

S+−S−

)
f++

(
S+− �1+ rT
S0

S+−S−

)
f−

]
(1.11)

shows that price A0 can be interpreted as the discounted expected pay-off. However, the

probability measure is not the real-world one (i.e., not the physical measure P) with probabil-

ities p± for up and down moves in the stock price. Rather, current price A0 is the discounted

expectation of future prices AT , in the following sense:

A0 = �1+ rT
−1 EQ	AT 
= �1+ rT
−1	q+AT��+
+q−AT��−

 (1.12)

under the measure Q with probabilities (strictly between 0 and 1)

q+ = �1+ rT
S0−S−
S+−S−

� q− = S+− �1+ rT
S0

S+−S−
� (1.13)

q+ + q− = 1. The measure Q is called the pricing measure. Pricing measures also have

other, more specific names. In the particular case at hand, since we are discounting with a

constant interest rate within the time interval 	0� T
, Q is commonly named the risk-neutral
or risk-adjusted probability measure, where q± are so-called risk-neutral (or risk-adjusted)

probabilities. Later we shall see that this measure is also the forward measure, where the

bond price Bt is used as numeraire asset. In particular, by expressing all asset prices relative
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to (i.e., in units of) the bond price Ai
t/Bt, with BT = N , regardless of the scenario and

B0/BT = �1+ rT
−1, we can hence recast the foregoing expectation as: A0 = B0 E
Q	AT/BT 
.

Hence Q corresponds to the forward measure. We can also use as numeraire a discretely

compounded money-market account having value �1+ rt
 (or �1+ rt
N ). By expressing all

asset prices relative to this quantity, it is trivially seen that the corresponding measure is the

same as the forward measure in this simple model. As discussed later, the name risk-neutral
measure shall, however, refer to the case in which the money-market account (to be defined

more generally later in this chapter) is used as numeraire, and this measure generally differs

from the forward measure for more complex financial models.

Later in this chapter, when we cover pricing in continuous time, we will be more specific

in defining the terminology needed for pricing under general choices of numeraire asset. We

will also see that what we just unveiled in this particularly simple case is a general and

far-reaching property: Arbitrage-free prices can be expressed as discounted expectations of

future pay-offs. More generally, we will demonstrate that asset prices can be expressed in

terms of expectations of relative asset price processes. A pricing measure is then a martingale
measure, under which all relative asset price processes (i.e., relative to a given choice of

numeraire asset) are so-called martingales. Since our primary focus is on continuous-time

pricing models, as introduced later in this chapter, we shall begin to explicitly cover some

of the essential elements of martingales in the context of stochastic calculus and continuous-

time pricing. For a more complete and elaborate mathematical construction of the martingale

framework in the case of discrete-time finite financial models, however, we refer the reader

to other literature (for example, see [Pli97, MM03]).

We now extend the pricing formula of equation (1.12) to the case of n assets and m
possible scenarios.

Definition 1.5. Pricing Measure A probability measure Q = �q1� � � � � qm
, 0 < qj < 1, for
the scenario set �= ��1� � � � ��m� is a pricing measure if asset prices can be expressed as
follows:

Ai
0 = � EQ	Ai

T 
= �
m∑

j=1

qjA
i
T ��j
 (1.14)

for all i= 1� � � � � n and some real number �> 0. The constant � is called the discount factor.

Theorem 1.1. Fundamental Theorem of Asset Pricing (Discrete, single-period case)
Assume that all scenarios in � are possible. Then the following statements hold true:

• There is no arbitrage if and only if there is a pricing measure for which all scenarios
are possible.

• The financial model is complete, with no arbitrage if and only if the pricing measure
is unique.

Proof. First, we prove that if a pricing measure Q = �q1� � � � � qm
 exists and prices Ai
0 =

� EQ	Ai
T 
 for all i= 1� � � � � n, then there is no arbitrage. If

∑
i �iA

i
T ��j
≥ 0, for all �j ∈�,

then from equation (1.14) we must have
∑

i �iA
i
0 ≥ 0. If

∑
i �iA

i
0 = 0, then from equation

(1.14) we cannot satisfy the payoff conditions in (A2) of Definition 1.3. Hence there is no

arbitrage, for any choice of portfolio � ∈ �n.

On the other hand, assume that there is no arbitrage. The possible price-payoff �m+1
-
tuples

� =
{( n∑

i=1

�iA
i
0�

n∑
i=1

�iA
i
T ��1
� � � � �

n∑
i=1

�iA
i
T ��m


)
� � ∈�n

}
(1.15)
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make up a plane in �×�m. Since there is no arbitrage, the plane � intersects the octant

�+×�m
+ made up of vectors of nonnegative coordinates only in the origin. Let � be the set

of all vectors �−���1� � � � � �m
 normal to the plane � and normalized so that �> 0. Vectors

in � satisfy the normality condition

−�

( n∑
i=1

�iA
i
0

)
+

m∑
j=1

�j

( n∑
i=1

�iA
i
T ��j


)
= 0 (1.16)

for all portfolios �.

Next we obtain two Lemmas to complete the proof.

Lemma 1.1. Suppose the financial model on the scenario set � and with instruments
�A1� � � � �An
 is arbitrage free and let m be the dimension of the linear space � . If the matrix
rank dim� <m, then one can define l= �m−dim�
 price-payoff tuples �−Bk

0�B
k
T ��

� k=

1� � � � � l, so that the extended financial model with basic assets �A1� � � � �An�B1� � � � �Bl

and scenario set � is complete and arbitrage free.

Proof. The price-payoff tuples �−Bk
0�B

k
T ��1
� � � � �B

k
T ��l

 can be found iteratively. Suppose

that l=m−dim� > 0. Then the complement to the linear space � has dimension l+1≥ 2.

Let X = �−Xk
0�X

k
T ��

 and Y = �−Y k

0 � Y
k
T ��

 be two vectors orthogonal to each other and

orthogonal to � . Then there is an angle � such that the vector B1 = cos�X+ sin �Y has at

least one strictly positive coordinate and one strictly negative coordinate, i.e., B1 ��×�+.
Hence the financial model with instruments �A1� � � � �An�B1
 is arbitrage free. Iterating the

argument, one can complete the market while retaining arbitrage freedom. �

Lemma 1.2. If markets are complete, the space � orthogonal to � is spanned by a vector
����1� � � � � �m
 lying in the main octant � = �+ ×�m

+ of vectors with strictly positive
coordinates.

Proof. In fact if �= 0, then � contains the line �x�0� � � � �0
 and all positive payouts would

be possible, even for an empty portfolio, which is absurd. It is also absurd that �j = 0, ∀j.
In fact, in this case, since markets are complete, there is an instrument paying one dollar in

case the scenario �j occurs and zero otherwise, and since �j = 0, the price of this instrument

at time t = 0 is zero, which is absurd. �

If markets are not complete, one can still conclude that the set � contains a vector

����1� � � � � �m
 with strictly positive coordinates. In fact, thanks to Lemma 1.1, one can

complete it while preserving arbitrage freedom by introducing auxiliary assets and the normal

vector can be chosen to have positive coordinates. Hence, in all cases of �i values, according

to equation (1.16) we have

Ai
0 = � EQ	Ai

T 
= �
m∑

j=1

qjA
i
T ��j
� (1.17)

where Q is the measure with probabilities

qj =
�j∑m
j=1 �j

(1.18)

and discount factor

�= �−1
m∑

j=1

�j� (1.19)

�
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The first project of Part II of this book is a study on single-period arbitrage. We refer the

interested reader to that project for a more detailed and practical exposition of the foregoing

theory. In particular, the project provides an explicit discussion of a numerical linear algebra

implementation for detecting arbitrage in single-period, finite financial models.

Problems

Problem 1. Consider the simple example in Figure 1.1 and assume the interest rate is r.
Under what condition is there no arbitrage in the model?

Problem 2. Compute EQ	ST 
 within the single-period two-state model. Explain your result.

Problem 3. Let p0
i denote the current price A

i
0 of the ith security and denote by Dij =Ai

T ��j

the matrix elements of the n×m dividend matrix with i = 1� � � � � n, j = 1� � � � �m. Using

equation (1.14) with �= �1+rT
−1 show that the risk-neutral expected return on any security

Ai is given by the risk-free interest rate

EQ

[
Ai

T −Ai
0

Ai
0

]
=

m∑
j=1

qj

(
Dij

p0
i

−1

)
= rT� (1.20)

where qj are the risk-neutral probabilities.

Problem 4. State the explicit matrix condition for market completeness in the single-period

two-state model with the two basic assets as the riskless bond and the stock. Under what

condition is this market complete?

Problem 5. Arrow–Debreu securities are claims with unit pay-offs in only one state of the

world. Assuming a single-period two-state economy, these claims are denoted by E± and

defined by

E+��
=

⎧⎪⎨⎪⎩
1� if �= �+

0� if �= �−

� E−��
=

⎧⎪⎨⎪⎩
0� if �= �+

1� if �= �−

�

(a) Find exact replicating portfolios �+ = �a+� b+
 and �− = �a−� b−
 for E+ and E−,
respectively. The coefficients a and b are positions in the stock and the riskless bond,

respectively.

(b) Letting FT represent an arbitrary pay-off, find the unique portfolio of Arrow–Debreu

securities that replicates FT .

1.2 Continuous State Spaces

This section, together with the next section, presents a review of basic elements of probability

theory for random variables that can take on a continuum of values while emphasizing some

of the financial interpretation of mathematical concepts.

Modern probability theory is based on measure theory. Referring the reader to textbook

literature for more detailed and exhaustive formal treatments, we will just simply recall here

that measure theory deals with the definition of measurable sets D, probability measures �,
and integrable functions f � D→� for which one can evaluate expectations as integrals

E	f
=
∫
D
f�x
��dx
� (1.21)
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In finance, one typically deals with situations where the measurable set D⊂�d, with integer

d ≥ 1. Realizations of the vector variable x ∈ D correspond to scenarios for the risk factors

or random variables in a financial model.

Future asset prices are real-valued functions of underlying risk factors f�x
 defined for

x ∈ D and hence themselves define random variables. Probability measures ��dx
 are often

defined as ��dx
= p�x
dx, where p�x
 is a real-valued continuous probability distribution
function that is nonnegative and integrates to 1; i.e.,

p�x
≥ 0�
∫
D
p�x
dx = 1� (1.22)

The expectation EP
[
f
]
of f under the probability measure with p as density is defined by the

d-dimensional integral

EP
[
f
]= ∫

D
f�x
p�x
dx� (1.23)

The pair �D���dx

 is called a probability space.
In particular, this formalism can also allow for the case of a finite scenario set of vectors

D = �x�1
� � � � �x�N
�, as was considered in the previous section. In this case the probability

distribution is a sum of Dirac delta functions,

p�x
=
N∑
i=1

pi��x−x�i

� (1.24)

As further discussed shortly, a delta function can be thought of as a singular function that

is positive, integrates to 1 over all space, and corresponds to the infinite limiting case

of a sequence of integrable functions with support only at the origin. Probabilistically,

a distribution, such as equation (1.24), which is a sum of delta functions, corresponds to

a situation where only the scenarios x�1
� � � � �x�N
 can possibly occur, and they do with

probabilities p1� � � � � pN . These probabilities must be positive and add up to 1; i.e.,

N∑
i=1

pi = 1� (1.25)

In the case of a finite scenario set (i.e., a finite set of possible events with finite integer N), the
random variable f = f�x
 is a function defined on the set of scenarios D, and its expectation

under the measure with p as density is given by the finite sum

EP	f
=
N∑
i=1

pif�x
�i

� (1.26)

For an infinitely countable set of scenarios, then, the preceding expressions must be considered

in the limit N → 
. Hence in the case of a discrete set of scenarios (as opposed to a

continuum) the probability density function collapses into the usual probability mass function,
as occurs in standard probability theory of discrete-valued random variables.

The Dirac delta function is not an ordinary function in �d but, rather, a so-called dis-
tribution. Mathematically, a distribution is defined through its value when integrated against

a smooth function. One can regard ��x− x′
, x�x′ ∈ �d, as the limit of an infinitesimally

narrow d-dimensional normal distribution:∫
�d

f�x
��x−x′
dx = lim
�→0

1

��
√
2�
d

∫
�d

f�x
 exp
(
− 
x−x′
2

2�2

)
dx = f�x′
� (1.27)
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For example, in one dimension a representation of the delta function is

��x−x′
= lim
�→0

1

�
√
2�

e−�x−x′
2/2�2

� (1.28)

Events are modeled as subsets G⊂D for which one can compute the integral that gives

the expectation EP	1G
. The function 1G�x
 denotes the random variable equal to 1 for x ∈G
and to zero otherwise; 1G�x
 is called the indicator function of the set G. This expectation is

interpreted as the probability P(G) that event G⊂D will occur; i.e.,

P�G
= EP	1G
=
∫
�d

1G�x
p�x
dx =
∫
G
p�x
dx� (1.29)

Examples of events are subsets, e.g., such as

G= �x ∈D � a < f�x
 < b�� (1.30)

with b > a and where f is some function. An important concept associated with events is

that of conditional expectation. Given a random variable f, the expectation of f conditioned
to knowing that event G will occur is

EP
[
f 
G]= EP

[
f ·1G

]
P�G


� (1.31)

Two probability measures �̃�dx
= p̃�x
dx and ��dx
= p�x
dx are said to be equivalent

(or absolutely continuous with respect to one another) if they share the same sets of null

probability; i.e., �̃∼ � if the probability condition P�G
 > 0 implies P̃�G
 > 0, where

P̃�G
= EP̃	1G
=
∫
�d

1G�x
p̃�x
dx =
∫
G
p̃�x
dx� (1.32)

with EP̃	 
 denoting the expectation with respect to the measure �̃. When computing the

expectation of a real-valued random variable, say, of the general form of a function of a

random vector (such functions are further defined in the next section), f = f�X
 ��d →�, it

is sometimes useful to switch from one choice of probability measure to another, equivalent

one. One can use the following change of measure (known as the Radon–Nikodym theorem)
for computing expectations:

EP	f
=
∫
D
f�x
��dx
=

∫
D
f�x


d�

d�̃
�x
�̃�dx
= EP̃

[
f
d�

d�̃

]
� (1.33)

The nonnegative random variable denoted by d�

d�̃
is called the Radon–Nikodym derivative of

� with respect to �̃ (or P w.r.t. P̃). From this result it also follows that d�

d�̃
= (

d�̃

d�

)−1
and

EP̃	 d�
d�̃


 = 1. As will be seen later in the chapter, a more general adaptation of this result

for computing certain types of conditional expectations involving martingales will turn out

to form one of the basic tools for pricing financial derivatives using changes of numeraire.

Another particular example of the use of this change-of-measure technique is in the Monte

Carlo estimation of integrals by so-called importance-sampling methods, as described in

Chapter 4.

Just as integrals are approximated with arbitrary accuracy by finite integral sums, contin-

uous probability distributions can be approximated by discrete ones. For instance, let D⊂�d

be a bounded domain and p�x
 be a continuous probability density on D and let �G1� � � � �Gm�
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be a partition of D made up of a family of nonintersecting events Gi ⊂D whose union covers

the entire state space D and that have the shape of hypercubes. Let pi be the probability of

event Gi under the probability measure with density p(x). Then an approximation for p�x
 is

p�x
=
m∑
i=1

pi��x−xi
� (1.34)

where xi is the center of the hypercube corresponding to event Gi. Let � be the volume of the

largest hypercube among the cubes in the partition �G1� � � � �Gm� and let f�x
 be a random

variable on D. In the limit � → 0, as the partition becomes finer and finer, the number of

events m��
 will diverge to 
. In this limit, we find

EP	f
= lim
�→0

m��
∑
i=1

pif�xi
� (1.35)

By using sums as approximations to expectations, which are essentially multidimensional

Riemann integrals, one can extend the theorem in the previous section to the case of continuous

probability distributions. Consider a single-period financial model with current (i.e., initial)

time t = 0 and time horizon t = T and with n basic assets whose current prices are Ai
0,

i= 1� � � � � n. The prices of these basic assets at time T are indexed by a continuous state space

represented by the domain �⊂�d, and the values of the basic assets are random variables

Ai
T �x
, with x ∈�. That is, the asset prices Ai

t are random variables assumed to take on real

positive values, i.e., Ai
t � �→�+. Let’s denote by p�x
dx the real-world probability measure

in � and assume that the measure of all open subsets of � is strictly positive. A portfolio is

modeled by a vector � whose components denote positions or holdings �i, i= 1� � � � � n, in
the basic assets. The definition of arbitrage extends as follows.

Definition 1.6. Nonnegative Portfolio A portfolio is nonnegative if it gives rise to nonneg-
ative expected pay-offs under almost all events G⊂� of nonzero probability, i.e., such that

EP

[
n∑

i=1

�i A
i
T �x


∣∣∣∣x ∈G

]
≥ 0� (1.36)

Definition 1.7. Arbitrage: Single-Period Continuous Case The market admits arbitrage if
either of the following conditions holds:
A1. There is a nonnegative portfolio � of negative initial price

∑n
i=1�iA

i
0 < 0.

A2. There is a nonnegative portfolio of zero initial cost,
∑n

i=1�iA
i
0 = 0, for which the

expected payoff is strictly positive, i.e., EP
[∑n

i=1�iA
i
T

]
> 0�

Definition 1.8. Pricing Measure: Single-Period Continuous Case3 A probability measure
Q of density q�x
dx on D is a pricing measure if all asset prices at current time t = 0 can
be expressed as follows:

Ai
0 = �EQ	fi
= �

∫
�
fi�x
q�x
dx (1.37)

for some real number � > 0. The constant � is called the discount factor. The functions
fi�x
= Ai

T �x
 are payoff functions for a given state or scenario x.

3Later we relate such pricing measures to the case of arbitrary choices of numeraire asset wherein the pricing

formula involves an expectation of asset prices relative to the chosen numeraire asset price. Changes in numeraire

correspond to changes in the probability measure.
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Market completeness is defined in a manner similar to that in the single-period discrete

case of the previous section. From the foregoing definitions of arbitrage and pricing measure

we then have the following result, whose proof is left as an exercise.

Theorem 1.2. Fundamental Theorem of Asset Pricing (Continuous Single-Period Case)
Assume that all scenarios in � are possible. Then the following statements hold true.

• There is no arbitrage if and only if there is a pricing measure for which all scenarios
are possible.

• If the linear span of the set of basic instruments Ai
T , i = 1� � � � � n, is complete and

there is no arbitrage, then there is a unique pricing measure Q consistent with the
prices Ai

0 of the reference assets at current time t = 0.

The single-period pricing formalism can also be extended to the case of a multiperiod

discrete-time financial model, where trading is allowed to take place at a finite number of

intermediate dates. This feature gives rise to dynamic trading strategies, with portfolios in

the basic assets being rebalanced at discrete points in time. The foregoing definitions and

notions of arbitrage and asset pricing must then be modified and extended substantially.

Rather than present the theory for such discrete-time models, we shall instead introduce more

important theoretical tools in the following sections that will allow us ultimately to consider

continuous-time financial models. Multiperiod discrete-time (continuous-state-space) models

can then be obtained, if desired, as special cases of the continuous models via a discretization

of time. A further discretization of the state space leads to discrete-time multiperiod finite

financial models.

1.3 Multivariate Continuous Distributions: Basic Tools

Marginal probability distributions arise, for instance, when one is computing expectations

on some reduced subspace of random variables. Consider, for example, a set of continuous

random variables that can be separated or grouped into two random vector spaces X =
�X1� � � � �Xm
 and Y = �Y1� � � � � Yn−m
 that can take on values x = �x1� � � � � xm
 ∈ �m and

y = �y1� � � � � yn−m
 ∈ �n−m, respectively, with 1 ≤ m < n, n ≥ 2. The function p�x�y
 is

the joint probability density or probability distribution function (pdf) in the product space

�n =�m×�n−m. The integral

py�y
≡
∫
�m

p�x�y
dx (1.38)

defines a marginal density py�y
. This function describes a probability density in the subspace
of random vectors Y ∈ �n−m and integrates to unity over �n−m. The conditional density
function, denoted by p�x
Y= y
≡ p�x
y
 for the random vector X, is defined on the subspace
of �m (for a given vector value Y = y) and is defined by the ratio of the joint probability

density function and the marginal density function for the random vector Y evaluated at y:

p�x
y
= p�x�y

py�y


� (1.39)

assuming py�y
 �= 0. From the foregoing two relations it is simple to see that, for any given y,
the conditional density also integrates to unity over x ∈�m.



1.3 Multivariate Continuous Distributions: Basic Tools 17

Conditional distributions play an important role in finance and pricing theory. As we

will see later, derivative instruments can be priced by computing conditional expectations.

Assuming a conditional distribution, the conditional expectation of a continuous random

variable g = g�X�Y
, given Y= y, is defined by

E	g
Y= y
=
∫
�m

g�x�y
p�x
y
dx� (1.40)

Given any two continuous random variables X and Y, then E	X
Y = y
 is a number while

E	X
Y
 is itself a random variable as Y is random, i.e., has not been fixed. We then have the

following property that relates unconditional and conditional expectations:

E	X
= E
[
E	X
Y
]= ∫ 


−

E	X
Y = y
py�y
dy� (1.41)

This property is useful for computing expectations by conditioning. More generally, for a

random variable given by the function g = g�X�Y
 we have the property

E	g
=
∫
�n−m

∫
�m

g�x�y
p�x�y
dxdy

=
∫
�n−m

[∫
�m

g�x�y
p�x
y
dx
]
py�y
dy

=
∫
�n−m

E	g
Y= y
py�y
dy= E
[
E	g
Y


]
� (1.42)

Functions of random variables, such as g�X�Y
, are of course also random variables. In

general, the pdf of a random variable given by a mapping f = f�X
 ��n →� is the function

pf ��→�,

pf ��
= lim
��→0

P
(
f�X
 ∈ 	�� �+��


)
���


� (1.43)

defined on some open or closed interval between a and b. This interval may be finite or

infinite; some examples are � ∈ 	0�1
, 	0�

, and �−
�

. The cumulative distribution
function (cdf) Cf for the random variable f is defined as

Cf�z
=
∫ z

a
pf ��
d� (1.44)

and gives the probability P�a≤ f ≤ z
, with Cf�b
= 1. Let us consider another independent

real-valued random variable g ∈ �c�d
, where (c,d) is generally any other interval. We recall

that any two random variables f and g are independent if the joint pdf (or cdf) of f and g is

given by the product of the respective marginal pdfs (or cdfs). The sum of two independent

random variables f and g is again a random variable h= f + g. The cumulative distribution

function, denoted by Ch, for the random variable h is given by the convolution integral

Ch��
=
∫∫

�+�≤�

pf ��
pg��
d�d�

=
∫ b

a
pf ��
Cg��−�
d� =

∫ d

c
pg��
Cf ��−�
d�� (1.45)
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where pg and Cg are the density and cumulative distribution functions, respectively, for the

random variable g. By differentiating the cumulative distribution function we find the density

function for the variable h:

ph��
=
∫ b

a
pf ��
pg��−�
d� =

∫ d

c
pg��
pf ��−�
d�� (1.46)

The preceding formulas are sometimes useful because they provide the cumulative (or density)

functions for a sum of two independent random variables as convolution integrals of the

separate density and cumulative functions.

The definition for cumulative distribution functions extends into the multivariate case in

the obvious manner. Given a pdf p ��n →� for�n-valued random vectorsX= �X1� � � � �Xn
,
the corresponding cdf is the function Cp ��

n →� defined by the joint probability

Cp�x
= P�X1 ≤ x1� � � � �Xn ≤ xn
=
∫ xn

−

· · ·

∫ x1

−

p�x′
dx′� (1.47)

We recall that any two random variables Xi and Xj (i �= j) are independent if the joint

probability P�Xi ≤ a�Xj ≤ b
=P�Xi ≤ a
P�Xj ≤ b
 for all a�b ∈�, i.e., if the events �Xi ≤ a�
and �Xj ≤ b� are independent. Hence, for two independent random variables the joint cdf

and joint pdf are equal to the product of the marginal cdf and marginal pdf, respectively:

p�xi� xj
= pi�xi
pj�xj
 and Cp�xi� xj
= Ci�xi
Cj�xj
.
Another useful formula for multivariate distributions is the relationship between probabil-

ity densities (within the same probability measure, say, ��dx

 expressed on different variable
spaces or coordinate variables. That is, if p�x
 and pX̃�x̃
 represent probability densities on

n-dimensional real-valued vector spaces x and x̃, respectively and the two spaces are related

by a one-to-one continuously differentiable mapping x̃ = x̃�x
, then

p�x
= pX̃�x̃


∣∣∣∣dx̃dx
∣∣∣∣� (1.48)

where dx̃
dx is the Jacobian matrix of the invertible transformation x → x̃. The notation 
M


refers to the determinant of a matrix M.

A probability distribution that plays a distinguished role is the n-dimensional Gaussian
(or normal) distribution, with mean (or average) vector �= ��1� � � � ��n
, defined on x ∈�n

as follows:

p�x���C
= 1√
�2�
n
C
 exp

(
− 1

2
�x−�
 ·C−1 · �x−�


)
� (1.49)

The shorthand notation x ∼ Nn���C
 is also used to denote the values of an n-dimensional

random vector with components x1� � � � � xn that are obtained by sampling with distribution

p�x���C
. C = �Cij
 is called covariance matrix and enjoys the property of being positive
definite, i.e., is such that the inner product �x�Cx
≡ x · �Cx
 > 0 for all real vectors x, and
Cij = Cji. It follows that the cdf of the n-dimensional multivariate normal random vector is

defined by the n-dimensional Gaussian integral

�n�x���C
=
∫ xn

−

· · ·

∫ x1

−

p�x′���C
dx′� (1.50)

A particularly important special case of equation (1.50) for n = 1 is the univariate standard

normal cdf (i.e., �1�x�0�1
), defined by

N�x
≡ 1√
2�

∫ x

−

e−y2/2dy� (1.51)
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The mean of a random vector X with given pdf p�x
, is defined by the components

�i = E
[
Xi
=

∫
�n

xip�x
dx =
∫
�
xpi�x
dx� (1.52)

and the covariance matrix elements are defined by the expectations

Cij ≡ Cov�Xi�Xj
= E
[
�Xi−�i
�Xj −�j


]= ∫
�n
�xi−�i
�xj −�j
p�x
dx� (1.53)

for all i� j = 1� � � � � n. The standard deviation of the random variable Xi is defined as the

square root of the variance:

�i ≡
√
Var�Xi
=

√
E
[
�Xi−�i


2
� (1.54)

and the correlation between two random variables Xi and Xj is defined as follows:

�ij ≡ Corr�Xi�Xj
=
Cij

�i�j

� (1.55)

Since
√
Cii = �i, the correlation matrix has a unit diagonal, i.e., �ii = 1. As well, they obey

the inequality 
�ij
 ≤ 1 (see Problem 1 of this section). For random variables that may be

positively or negatively correlated (e.g., as is the case for different stock returns) it follows that

−1≤ �ij ≤ 1� (1.56)

In the particular case of a multivariate normal distribution with positive definite covariance

matrix as in equation (1.49), the strict inequalities −1< �ij < 1 hold.

The main property of normal distributions is that the convolution of two normal distribu-

tions is also normal. A random variable that is a sum of random normal variables is, therefore,

also normally distributed (see Problem 2). Because of this property, multivariate normal

distributions can be regarded as affine transformations of standard normal distributions with

� = 0n×1 and C = In×n (the identity matrix). Consider the vector � = ��1� � � � � �n
 of inde-

pendent standard normal variables with zero mean and unit covariance, i.e., with probability

density

p��
=
n∏

i=1

e−�2i /2√
2�

� (1.57)

If L = �Lij
, is an n-dimensional matrix, then the random vector X = �+L� is normally

distributed with mean � and covariance C = LL†, † ≡ matrix transpose. Indeed, taking

expectations over the components gives

E
[
Xi

]= E

[
�i+

n∑
j=1

Lij�j

]
= �i� (1.58)

and

E
[
�Xi−�i
�Xj −�j


]= E

[(
n∑

k=1

Lik�k

)(
n∑

l=1

Ljl�l

)]
=

n∑
k=1

LikLjk = Cij� (1.59)
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Here we have used E	�i
= 0 and E	�i�j
= �ij , where �ij is Kronecker’s delta, with value 1

if i= j and zero otherwise.

Conversely, given a positive definite matrixC, one can show that there is a lower triangular

matrix L= �Lij
 with Lij = 0 if j > i, such that C=LL†. The matrix L can be evaluated with

a procedure known as Cholesky factorization. As discussed later in the book, this algorithm is

at the basis of Monte Carlo methods for generating scenarios obeying a multivariate normal

distribution with a given covariance matrix.

A special case of a multivariate normal is the bivariate distribution defined for x =
�x1� x2
 ∈�2:

p�x1� x2��1��2��1��2� �
=
e
− 1

2�1−�2


[
�x1−�1


2

�2
1

+ �x2−�2

2

�2
2

−2�
�x1−�1


�1

�x2−�2

�2

]
2��1�2

√
1−�2

�

The parameters �i and �i > 0 are the mean and the standard deviation of Xi, i = 1�2,
respectively, and � (−1 < � < 1) is the correlation between X1 and X2, i.e., � = �12 =
C12/�1�2. In this case the covariance matrix is

C=
(

�2
1 ��1�2

��1�2 �2
2

)
� (1.60)

and the lower Cholesky factorization of C is given by

L=
(

�1 0

��2 �2

√
1−�2

)
� (1.61)

The correlation matrix is simply

�=
(
1 �
� 1

)
� (1.62)

with Cholesky factorization �=��†,

�=
(
1 0

�
√
1−�2

)
� (1.63)

The covariance matrix has inverse

C−1 = 1

�1−�2


(
1/�2

1 −�/�1�2

−�/�1�2 1/�2
2

)
� (1.64)

Conditional and marginal densities of the bivariate distribution are readily obtained by inte-

grating over one of the variables in the foregoing joint density (see Problem 3).

For multivariate normal distributions one has the following general result, which we state

without proof.

Proposition. Consider the random vector X ∈ �n with partition X = �X1�X2
, X1 ∈ �m,
X2 ∈ �n−m with 1 ≤ m < n, n ≥ 2. Let X ∼ Nn���C
 with mean � = ��1��2
 and n×n
covariance

C=
(
C11 C12

C21 C22

)
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with nonzero determinant 
C22
 �= 0, where C11 and C22 are m×m and �n−m
× �n−m

covariance matrices of X1 and X2, respectively, and C12 = C†

21 is the m× �n−m
 cross-
covariance matrix of the two subspace vectors. The conditional distribution of X1, given
X2 = x2, is the m-dimensional normal density with mean �̃ = �1 +C12C

−1
22 �x2 −�2
 and

covariance C̃= C11−C12C
−1
22 C21, i.e., x1 ∼ Nm��̃� C̃
 conditional on X2 = x2.

A relatively simple proof of this result follows by application of known identities for

partitioned matrices. This result is useful in manipulating multidimensional integrals involving

normal distributions.

In deriving analytical properties associated with expectations or conditional expectations

of random variables, the concept of a characteristic function is useful. Given a pdf p ��n →�
for a continuous random vector X = �X1� � � � �Xn
, the (joint) characteristic function is the

function �X ��n →� defined by

�X�u
= E	eiu·X
=
∫
�n

eiu·xp�x
dx� (1.65)

where u = �u1� � � � � un
 ∈ �n, i ≡√−1. Since �X is the Fourier transform of p, then from

the theory of Fourier integral transforms we know that the characteristic function gives a

complete characterization of the probabilitic laws of X, equivalently as p does. That is,

any two random variables having the same characteristic function are identically distributed;

i.e., the characteristic function uniquely determines the distribution. From the definition we

observe that �X is always a well-defined continuous function, given that p is a bonafide

distribution. Evaluating at the origin gives �X�0
 = E	1
 = 1. The existence of derivatives

�k�X�0
/�u
k
i , k≥ 1 is dependent upon the existence of the respective moments of the random

variables Xi. The kth moment of a single random variable X ∈� is defined by

mk = E	Xk
=
∫ 


−

xkp�x
dx� (1.66)

while the kth centered moment is defined by

��k
 = E	�X−�
k
=
∫ 


−

�x−�
kp�x
dx� (1.67)

� = E	X
, k ≥ 1. [Note: for X = Xi then p → pi is the ith marginal pdf, � → �i = E	Xi
,
��k
 → �

�k

i = E	�Xi−�i


k
, etc.] From these integrals we thus see that the existence of the

moments depends on the decay behavior of p at the limits x→±
. For instance, a distribution

that exhibits asymptotic decay at least as fast as a decaying exponential has finite moments

to all orders. Obvious examples of these include the distributions of normal, exponential,

and uniform random variables. In contrast, distributions that decay as some polynomial to a

negative power may, at most, only possess a number of finite moments. A classic case is the

Student t distribution with integer d degrees of freedom, which can be shown to possess only

moments up to order d. This distribution is discussed in Chapter 4 with respect to modeling

risk-factor return distributions.

The moments can be obtained from the derivatives of �X at the origin. However, it is

a little more convenient to work directly with the moment-generating function (mgf). The

(joint) moment-generating function is given by

MX�u
= E	eu·X
=
∫
�n

eu·xp�x
dx� (1.68)
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If the mgf exists (which is not always true), then it is related to the characteristic function:

MX�u
 = �X�−iu
. It can be shown that if E	
X
r 
 < 
, then MX�u
 (and �X�u
) has

continuous rth derivative at u= 0 with moments given by

mk = E	Xk
= dkMX�0


duk
= �−i
k

dk�X�0


duk
� k= 1� � � � � r� (1.69)

Hence, a random variable X has finite moments of all orders when MX�u
 (or �X�u
) is

continuously differentiable to any order with mk =M
�k

X �0
= �−i
k�

�k

X �0
 , k= 1� � � � .

Given two independent random variables X and Y, the characteristic function of the

sum X+Y simplifies into a product of functions: �X+Y �u
= E	eiu�X+Y

= E	eiuX
E	eiuY 
=
�X�u
�Y �u
. Hence for Z =∑n

i=1Xi we have �Z�u
=�n
i=1�Xi

�u
 if all Xi are independent.

Characteristic functions or mgfs can be obtained in analytically closed form for various

common distributions.

Problems

Problem 1. Make use of equations (1.53) and (1.54) and the Schwarz inequality,(∫
�n

f�x
g�x
dx
)2

≤
(∫

�n
�f�x

2dx

)(∫
�n
�g�x

2dx

)
� x ∈�n� (1.70)

to demonstrate the inequality 
Cij
 ≤ �i�j , hence 
�ij
 ≤ 1.

Problem 2. Consider two independent normal random variables X and Y with probability

distributions

px�x
=
1

�x

√
2�

e−�x−�x

2/2�2

x and py�y
=
1

�y

√
2�

e−�y−�y

2/2�2

y � (1.71)

respectively. Use convolution to show that Z = X+ Y is a normal random variable with

probability distribution

pz�z
=
1

�z

√
2�

e−�z−�z

2/2�2

z � (1.72)

where �2
z = �2

x +�2
y and �z = �x+�y.

Problem 3. Show that the joint density function for the bivariate normal has the form

p�x� y��1��2��1��2� �
=
1

2��1�2

√
1−�2

e−�y−�2

2/2�2

2

exp

[
− 1

2�2
1 �1−�2


(
x−�1−�

�1

�2

�y−�2


)2]
� (1.73)

and thereby obtain the marginal and conditional distributions:

pY �Y
=
1√
2��2

e−�Y−�2

2/2�2

2 � (1.74)

p�x
Y
= 1√
2��1−�2
�1

exp

[
− 1

2�1−�2
�2
1

[
x−�1−�

�1

�2

�Y −�2


]2]
� (1.75)

Verify that this same result follows as a special case of the foregoing proposition.
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Problem 4. Find the moment-generating function for the following distributions:

(a) The uniform distribution on the interval (a,b) with pdf: p�x
= �b−a
−11x∈�a�b
.
(b) The exponential distribution with parameter � > 0 and pdf: p�x
= �e−�x1x≥0.

(c) The gamma distribution with parameters (n��), n= 1�2� � � � , � > 0, and pdf: p�x
=
�e−�x��x
n−1

�n−1
! 1x≥0.

By differentiating the mgf, obtain the mean and variance of the random variable X for each

distribution (a)–(c).

Problem 5. Obtain the moment-generating function for:

(a) The multivariate normal with density given by equation (1.49).

(b) The chi-squared random variable with n degrees of freedom: Y = ∑n
i=1Z

2
i , where

Zi ∼ N�0�1
.

Problem 6. Rederive the result in problem 2 using an argument based solely on moment-

generating functions.

Problem 7. Consider two independent exponential random variables X1 and X2 with respec-

tive parameters �1 and �2, �1 �= �2. Find the pdf for X1+X2 and the probability P�X1 <X2
.
Hint: Use convolution and conditioning, respectively.

1.4 Brownian Motion, Martingales, and Stochastic Integrals

A particularly important example of a multivariate normal distribution is provided by a random

path evaluated at a sequence of dates in the future. Consider a time interval 	0� t
 = 	t0 =
0� t1� � � � � tN = t
, and subdivide it into N ≥ 1 subintervals 	ti� ti+1
 of length �ti = ti+1− ti,
i= 0� � � � �N −1. The path points �t� xt
 are defined for all t = ti by means of the recurrence

relation

xti+1
= xti

+��ti
�ti+��ti
�Wti
� (1.76)

where the increments �Wti
= Wti+1 −Wti

are assumed uncorrelated (independent) normal

random variables with probability density at �Wti
= �wi:

pi��wi
=
1√
2��ti

e−��wi

2/2�ti � (1.77)

Since the increments are assumed independent, the joint pdf for all increments is

p��w0� � � � � �wN−1
=
N−1∏
i=0

pi��wi
� (1.78)

This gives rise to two important unconditional expectations:

E
[
�Wti

�Wtj

]= �ij�ti E
[
�Wti

]= 0� (1.79)

By usual convention we fix W0 = 0. The joint pdf for the random variables Wt1
� � � � �WtN

representing the probability density at the path points Wti
= wi (w0 = 0) is then also a
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multivariate Gaussian function, which is obtained by simply setting �wi = wi+1 −wi in

equation (1.78). The set of real-valued random variables �Wti

i=0� � � � �N therefore represents the

time-discretized standard Brownian motion (or Wiener process) at arbitrary discrete points

in time. Iterating equation (1.76) gives

xt = x0+
N−1∑
j=0

[
��tj
�tj +��tj
�Wtj

]
� (1.80)

where xtN
= xt and xt0

= x0. The random variable xt is normal with mean

E0	xt
= x0+
N−1∑
i=0

��ti
�ti (1.81)

and variance

E0	�xt −E0	xt


2
= E0

⎡⎣(N−1∑
i=0

��ti
�Wti

)2
⎤⎦=

N−1∑
i=0

��ti

2�ti� (1.82)

Note: We use E0	 
 to denote the expectation conditional only on the value of paths being

fixed at initial time; i.e., xt0
= x0 = fixed value. This is hence an unconditional expectation

with respect to path values at any later time t > 0. Later, we will at times simply use the

unconditional expectation E	 
 to denote E0	 
. Sample paths of a process with zero mean and

constant volatility are displayed in Figure 1.2.

Typical stochastic processes in finance are meaningful if time is discretized. The choice

of the elementary unit of time is part of the modeling assumptions and depends on the

applications at hand. In pricing theory, the natural elementary unit is often one day but

can also be one week, one month as well as five minutes or one tick, depending on the

objective. The mathematical theory, however, simplifies in the continuous-time limit, where
the elementary time is infinitesimal with respect to the other time units in the problem, such as

0
0

10

20

0.2 0.4 0.6 0.8 1 1.2

FIGURE 1.2 A simulation of five stochastic paths using equation (1.76), with x0 = 10, constant

��t
= 0�1, ��t
= 0�2, N = 100, and time steps �ti = 0�01.
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option maturities and cash flow periods. Mathematically, one can construct continuous-time

processes by starting from a sequence of approximating processes defined for discrete-time

values i�t� i= 0� � � � �N , and then pass to the limit as �t→ 0. More precisely, one can define

a continuous-time process in an interval 	t0� tN 
 by subdividing it into N subintervals of equal

length, defining a discrete time process xN
t ≡ xtN

and then compute the limit

xt = lim
N→


xN
t (1.83)

by assuming that the discrete-time process xN
t is constant over the partition subintervals.

The elementary increments �xt = xt+�t −xt are random variables that obviously tend to zero

as �t → 0, but which are still meaningful in this case. The convention is to denote these

increments as dx in the limit �t → 0 and to consider the straight d as a reminder that, at the

end of the calculations, one is ultimately interested in the limit as �t → 0.4

The continuous-time limit is obtained by holding the terminal time t= tN fixed and letting

N →
, i.e.,

E0	xt
≡ lim
N→


E0	x
N
t 
= x0+

∫ t

0

�� 
d ≡ x0+ �̄�t
t� (1.84)

and

E0	�xt −E0	xt


2
≡ lim

N→

E0	�x

N
t −E0	x

N
t 



2
=
∫ t

0

�2� 
d ≡ �̄�t
2t� (1.85)

where we introduced the time-averaged drift �̄= �̄�t
 and volatility �̄ = �̄�t
 over the time

period 	0� t
� t ∈ �+. Since xt is normally distributed, we finally arrive at the transition
probability density for a stochastic path to attain value xt at time t, given an initially known

value x0 at time t = 0:

p�xt� x0� t
=
1

�̄
√
2�t

exp

(
− �xt − �x0+ �̄t

2

2�̄2t

)
� (1.86)

This density, therefore, gives the distribution (conditional on a starting value x0) for a process
with continuous motion on the entire real line xt ∈ �−
�

 with constant drift and volatility.

[Note: x0� xt are real numbers (not random) in equation (1.86).]

A Markov chain is a discrete-time stochastic process such that for all times t ∈ � the

increments xt+�t − xt are random variables independent of xt. A Markov process is the

continuous-time limit of a Markov chain. The process just introduced provides an example

of a Markov chain because the increments are independent.

The probability space for a general discrete-time stochastic process where calendar time

can take on values t0 < t1 < · · · < tN is the space of vectors x ∈ �N with an appropriate

multivariate measure, such as P�dx
= p�x1� � � � xN 
dx, where p is a probability density. By

considering a process xt only up to an intermediate time ti, i <N , we are essentially restricting

the information set of possible events or probability space of paths. The family
(
	t

)
t≥0

of all

reduced (or filtered) probability spaces 	t up to time t, for all times t ≥ 0, is called filtration.
One can think of 	t as the set of all paths up to time t. A pay-off of a derivative contract

4These definitions are admittedly NOT entirely rigorous, but they are meant to allow the reader to quickly

develop an intuition in case she doesn’t have a formal probability education. In keeping with the purpose of this

book, our objective is to have the reader learn how to master the essential techniques in stochastic calculus that are

useful in finance without assuming that she first learn the formal mathematical theory.
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occuring at time t is a well-defined (measurable) random variable on all the spaces 	t′ with

t′ ≥ t but not on the spaces with t′ < t. Filtrations are essentially hierarchies of probability

spaces (or information sets) through which more and more information is revealed to us

as time progresses; i.e., 	t′ ⊂ 	t if t′ < t so that given a time partition t0 < t1 < · · · < tN ,
	t0

⊂ 	t1
⊂ · · · ⊂ 	tN

. We say that a random variable or process is 	t-measurable if its value

is revealed at time t. Such a random variable or process is also said to be nonanticipative
with respect to the filtration or 	t-adapted (see later for a definition of nonanticipative

functions, while a definition of an adapted process is also provided in Section 1.9 in the

context of continuous-time asset pricing). Conditional expectations with respect to a filtration
	t represent expectations conditioned on knowing all of the information about the process

only up to time t. It is customary to use the following shorthand notation for conditional

probabilities:

Et

[·
= E
[ · ∣∣	t

]
� (1.87)

Definition 1.9. Martingale A real-valued 	t-adapted continuous-time process �xt
t≥0 is said
to be a P-martingale if the boundedness condition E	
xt

 <
 holds for all t ≥ 0 and

xt = Et

[
xT

]
� (1.88)

for 0 ≤ t < T <

This definition implies that the conditional expectation for the value of a martingale

process at a future time T, given all previous history up to the current time t (i.e., adapted
to a filtration 	t), is its current time t value. Our best prediction of future values of such

a process is therefore just the presently observed value. [Note: Although we have used the

same notation, i.e., xt, this definition generally applies to arbitrary continuous-time processes

that satisfy the required conditions; the pure Wiener process or standard Brownian motion is

just a special case.] We remark that the expectation E	 
≡ EP	 
 and conditional expectation

Et	 
 ≡ EP
t 	 
 are assumed here to be taken with respect to a given probability measure P.

For ease of notation in what follows we drop the explicit use of the superscript P unless the

probability measure must be made explicit. If one changes filtration or the probability space

associated with the process, then the same process may not be a martingale with respect to

the new probability measure and filtration. However, the reverse also applies, in the sense

that a process may be converted into a martingale by modifying the probability measure.

A more general property satisfied by a stochastic process �xt
t≥0 (regardless of whether

the process is a martingale or not) is the so-called tower property for s < t < T :

Es

[
Et

[
xT

]]= Es

[
xT

]
� (1.89)

This follows from the basic property of conditional expectations: The expectation of a

future expectation must be equal to the present expectation or presently forecasted value.

Another way to see this is that a recursive application of conditional expectations always

gives the conditional expectation with respect to the smallest information set. In this case

	s ⊂ 	t ⊂ 	T . A martingale process ft = f�xt� t
 can also be specified by considering a

conditional expectation over some (payoff) function � of an underlying process. In particular,

consider an underlying process xt starting at time t0 with some value x0 and the conditional

expectation

ft = f�xt� t
= Et	��xT �T

� (1.90)
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for any t0 ≤ s ≤ t ≤ T , then ft satisfies the martingale property. In fact

Es

[
f�xt� t


]= Es

[
Et

[
��xT �T


]]= Es

[
��xT �T


]= f�xs� s
� (1.91)

The process introduced in equation (1.76) is a martingale in case the drift function ��t

is identically zero. In fact, in this case if ti < tj , we have

Eti
	xtj


= Eti

[ · · ·Etj−1

[
Etj

[
xtj

]] · · · ] (1.92)

= Eti

[ · · ·Etj−1

[
xtj

] · · · ]= xti
� (1.93)

Bachelier was one of the pioneers of stochastic calculus, and he proposed to use a process

similar to xt as defined by equation (1.76) in the continuous-time limit to model stock price

processes.5 A difficulty with the Bachelier model was that stock prices can attain negative

values. The problem can be corrected by regarding xt to be the natural logarithm of stock

prices; this conditional density turns out to be related to (although not equivalent to) the

risk-neutral density used for pricing derivatives within the Black–Scholes formulation, as is

seen in Section 1.6, where we take a close look at geometric Brownian motion. The density

in equation (1.86) leads to Bachelier’s formula for the expectation of the random variable

�xt −K
+, with constant K> 0, where �x
+ ≡ x if x > 0, �x
+ ≡ 0 if x ≤ 0 (see Problem 9).

In passing to the continuous-time limit, we have, based on equation (1.86), arrived at an

expression for the random variable xt in terms of the random variable Wt for the standard

Brownian motion (or Wiener process):

xt = x0+ �̄t+ �̄Wt� (1.94)

The distribution for the zero-drift random variable �Wt
t≥0, representing the real-valued

standard Brownian motion (Wiener process) at time t with Wt=0 ≡W0 = 0, is given by

pW�w� t
= 1√
2�t

e−w2/2t (1.95)

at Wt = w. Note that this is also entirely consistent with the marginal density obtained by

integrating out all intermediate variables w1� � � � �wN−1 in the joint pdf of the discretized

process �Wti

i=0� � � � �N with w = wN , t = tN .

According to the distributions given by equations (1.77) and (1.95), one concludes that

standard Brownian motion (or the Wiener process) is a martingale process characterized by

independent Gaussian (normal) increments with trajectories [i.e., path points �t� xt
] that are
continuous in time t ≥ 0: �Wt =Wt+�t −Wt ∼ N�0� �t
 (i.e., normally distributed with mean

zero and variance �t) and Wt+�t −Wt is independent of Ws for �t > 0, 0 ≤ s ≤ t, 0 ≤ t <
.

Moreover, specializing to the case of zero drift and �̄ = 1 and putting t0 = s, the corresponding

5The date March 29, 1900, should be considered as the birth date of mathematical finance. On that day, Louis

Bachelier successfully defended at the Sorbonne his thesis Théorie de la Spéculation. As a work of exceptional

merit, strongly supported by Henri Poincaré, Bachelier’s supervisor, it was published in Annales Scientifiques de l’
Ecole Normale Supérieure, one of the most influential French scientific journals. This model was a breakthrough

that motivated much of the future work by Kolmogorov and others on the foundations of modern stochastic calculus.

The stochastic process proposed by Bachelier was independently analyzed by Einstein (1905) and is referred to as

Brownian motion in the physics literature. It is also referred to as the Wiener–Bachelier process in a book by Feller,

An Introduction to Probability Theory and Its Applications [Fel71]. However, this terminology didn’t affirm itself,

and now the process is commonly called the Wiener process.



28 CHAPT ER 1 . Pricing theory

probability distribution given by equation (1.86) with shifted time t → �t− s
 then gives the

well-known property: Wt −Ws ∼ N�0� t− s
, Wt ∼ N�0� t
. In fact we have the homogeneity

property for the increments: Wt+s −Ws ∼ Wt −W0 = Wt ∼ N�0� t
. In particular, E	Wt
 = 0

and E	W 2
t 
 = t. An additional property is E	WsWt
 = min�s� t
. This last identity obtains

from the independence of the increments [i.e., equation (1.79)]. Indeed consider any ti < tj ,
0 ≤ i < j ≤ N , then:

E
[
Wti

Wtj

]= E
[
�Wti

−W0
��Wtj
−Wti


+ �Wti
−W0



]
= E

[
�Wti

−W0

2
= E

[
W 2

ti

= ti� (1.96)

A similar argument with tj < ti gives tj , while for ti = tj we obviously obtain ti. All of these
properties also follow by taking expectations with respect to the joint pdf for the Wiener paths.

An important aspect of martingales is whether or not their trajectories or paths are

continuous in time. Consider any real-valued martingale xt, then �xt = xt+�t − xt is a pro-

cess corresponding to the change in a path over an arbitrary time difference �t > 0. From

equation (1.88), Et

[
�xt

] = 0, so, not surprisingly, the increments of a martingale path are

unpredictable (irregular), even in the infinitesimal limit �t → 0. However, the irregularity of

paths can be either continuous or discontinuous. An example of a martingale with discontinu-

ous paths is a jump process, where paths are generally right continuous at every point in time

as a consequence of incorporating jump discontinuities in the process at a random yet count-

able number of points within a time period. We refer the interested reader to recent works on

the growing subject of financial modeling with jump processes (see, for example, [CT04]).

Here and throughout, we focus on continuous diffusion models for asset pricing; hence our

discussion is centered on continuous martingales (i.e., martingales with continuous paths).

Let f�t
= xt��
, t ≥ 0, represent a particular realized path indexed by the scenario �, then
continuity in the usual sense implies that the graph of f(t) against time is continuous for all

t≥ 0. Denoting the left and right limits at t by f�t−
= lims→t− f�s
 and f�t+
= lims→t+ f�s
,
then f�t
= f�t−
= f�t+
. Every Brownian path or any path of a stochastic process generated
by an underlying Brownian motion displays this property, as can be observed, for example, in

Figure 1.2. [In contrast, a path of a jump diffusion process would display a similar continuity

in piecewise time intervals but with the additional feature of vertical jump discontinuities at

random points in time at which only right continuity holds. If t̄ is a jump time, then f�t̄−
,
f�t̄+
 both exist, yet f�t̄−
 �= f�t̄+
 with f�t̄
= f�t̄+
, where f�t̄
−f�t̄−
 is the size of the
jump at time t̄.]

Stochastic continuity refers to continiuty of sample paths of a process �xt
t≥0 in the

probabilitistic sense as defined by

lim
s→t

P
(
xs −xt
> !

)= 0� s� t > 0 (1.97)

for any !> 0. This is readily seen to hold for Brownian motion and for continuous martingales.

The class of continuous-time martingales that are of interest are so-called continuous square
integrable martingales, i.e., martingales with finite unconditional variance or finite second

moment: E	x2
t 
 < 
 for t ≥ 0. Such processes are closely related to Brownian motion and

include Brownian motion itself. Further important properties of the paths of a continuous

square integrable martingale (e.g., Brownian motion) then also follow. Consider again the

time discretization 	0� t
= 	t0 = 0� t1� � � � � tN = t
 with subintervals 	ti� ti+1
 and path points

�ti� xti

. The variation and quadratic variation of the path are, respectively, defined as:

V1 = lim
N→


VN
1 ≡ lim

N→


N−1∑
i=0


�xti

 (1.98)
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and

V2 = lim
N→


VN
2 ≡ lim

N→


N−1∑
i=0

��xti

2� (1.99)

�xti
= xti+1

−xti
. The properties of V1 and V2 provide two differing measures of how paths

behave over time and give rise to important implications for stochastic calculus. Since the

process is generally of nonzero variance, then P�VN
2 > 0
= 1 and P�V2 > 0
= 1. In particular,

if we let �ti = �t= t/N and consider the case of Brownian motion xt =Wt, then by rewriting

V2 we have with probability 1:

V2 = lim
N→


(
1

N

N−1∑
i=0

��xti

2
)
N = lim

N→


(
1

N

N−1∑
i=0

��Wti

2
)
N = t� (1.100)

Here we used the Strong law of large numbers and the fact that the ��Wti

2 are identically

and independently distributed random variables with common mean of �t. Based on this

important property of nonzero quadratic variation, Brownian paths, although continuous, are

not differentiable. For finite N the variation VN
1 is finite. As the number N of increments

goes to infinity, �ti → 0 and, from property (1.97), we see that the size of the increments

approaches zero. The question that arises then is whether V1 exists or not. Except for the

trivial case of a constant martingale, the result is that VN
1 →
 as N →
; i.e., the variation

V1 is in fact infinite. Without trying to provide any rigorous proof of this here, we simply state

the usual heuristic and somewhat instructive argument for this fact based on the following

observation:

VN
2 =

N−1∑
i=0


�xti

2 ≤

[
max
0≤i≤N

�
�xti

�
] N−1∑

i=0


�xti

 =

[
max
0≤i≤N

�
�xti

�
]
VN
1 � (1.101)

Since the quadratic variation V2 is greater than zero, taking the limit N → 
 on both

sides of the inequality shows that the right-hand side must have a nonzero limit. Yet from

equation (1.97) we have max�
�xti

�→ 0 as N →
. Hence we must have that the right-hand

side is a limit of an indeterminate form (of type 0 ·
); that is, V1 = limN→
 VN
1 =
, which

is what we wanted to show.

Once we are equipped with a standard Brownian motion and a filtered probability space,

then the notion of stochastic integration arises by considering the concept of a nonanticipative

function. Essentially, a (random) function ft is said to be nonanticipative w.r.t. a Brownian

motion or process Wt if its value at any time t > 0 is independent of future information. That

is, ft is possibly only a function of the history of paths up to time t and time t itself: ft =
f���Ws
0≤s≤t�� t
. The value of this function at time t for a particular realization or scenario �
may be denoted by ft��
. Nonanticipative functions therefore include all deterministic (i.e.,

nonrandom) functions as a special case. Given a continuous nonanticipative function ft that
satisfies the “nonexplosive”condition

E

[∫ t

0

f 2
s ds

]
<
� (1.102)

the Itô (stochastic) integral is the random variable denoted by

It�f
=
∫ t

0

fsdWs <
 (1.103)
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and is defined by the limit

It�f
= lim
N→


N−1∑
i=0

fti�Wti
= lim

N→


N−1∑
i=0

fti 	Wti+1
−Wti


� (1.104)

It can be shown that this limit exists for any choice of time partitioning of the interval 	0� t
;
e.g., we can choose �ti = �t = t/N . Each term in the sum is given by a random number fti
[but fixed over the next time increment �ti� ti+1
] times a random Gaussian variable �Wti

.

Because of this, the Itô integral can be thought of as a random walk on increments with

randomly varying amplitudes. Since ft is nonanticipative, then for each ith step we have

the conditional expectation for each increment in the sum: Eti
	fti�Wti


 = ftiEti
	�Wti


 = 0.

Given nonanticipative functions ft and gt, the following formulas provide us with the first

and second moments as well as the variance-covariance properties of Itô integrals:

�i
 E	It�f

= E

[∫ t

0

fsdWs

]
= 0� (1.105)

�ii
 E	�It�f


2
= E

[(∫ t

0

fsdWs

)2]
= E

[∫ t

0

f 2
s ds

]
� (1.106)

�iii
 E	It�f
It�g

= E

[(∫ t

0

fsdWs

)(∫ t

0

gsdWs

)]
= E

[∫ t

0

fsgsds

]
� (1.107)

Based on the definition of It�f
 and the properties of Brownian increments, it is not difficult

to obtain these relations. We leave this as an exercise for the reader. Of interest in finance

are nonanticipative functions of the form ft = f�xt� t
, where xt is generally a continuous

stochastic (price) process �xt
t≥0. The Itô integral is then of the form

It�f
=
∫ t

0

f�xs� s
dWs� (1.108)

and, assuming that condition (1.102) holds, then properties (i)–(iii) also apply. Another notable

property is that the Itô integral is a martingale, since Et	Iu�f

= It�f
, for 0< t < u.
The Itô integral leads us into important types of processes and the concept of a stochastic

differential equation (SDE). In fact the general class of stochastic processes that take the form
of sums of stochastic integrals are (not surprisingly) known as Itô processes. It is of interest
to consider nonanticipative processes of the type at = a�xt� t
 and bt = b�xt� t
, t ≥ 0, where

�xt
t≥0 is a random process. A stochastic process �xt
t≥0 is then an Itô process if there exist

two nonanticipative processes �at
t≥0 and �bt
t≥0 such that the conditions

P

(∫ t

0


as
ds <

)
= 1 and P

(∫ t

0

b2
s ds <


)
= 1

are satisfied, and

xt = x0+
∫ t

0

a�xs� s
ds+
∫ t

0

b�xs� s
dWs� (1.109)

for t > 0. These probability conditions are commonly imposed smoothness conditions on the

drift and volatility functions. This stochastic integral equation is conveniently and formally

abbreviated by simply writing it in SDE form:

dxt = a�xt� t
dt+b�xt� t
dWt� (1.110)

We shall use SDE notation in most of our future discussions of Itô processes.
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Itô integrals give rise to an important property, known as Doob–Meyer decomposition. In
particular, it can be shown that if �Ms
0≤s≤t is a square integrable martingale process, then

there exists a (nonanticipative) process �fs
0≤s≤t that satisfies equation (1.102) such that

Mt =M0+
∫ t

0

fsdWs� (1.111)

From this we observe that an Itô process xt as given by equation (1.109) is divisible into a

sum of a martingale component and a (generally random) drift component.

Problems

Problem 1. Show that the finite difference
xti+1

−xti
�ti

of the Brownian motion in equation (1.76)

is a normally distributed random variable with mean ��ti
 and volatility ��ti
/
√
�ti. Hint:

Use equation (1.76) and take expectations while using equation (1.79).

Problem 2. Show that the random variable

� =
N−1∑
i=0

a�ti
�xti
� (1.112)

where �xti
= xti+1

−xti
, and xti

defined by equation (1.76), is a normal random variable. Com-

pute its mean and variance. Hint: Take appropriate expectations while using equation (1.79).

Problem 3. Suppose that the time intervals are given by �ti = t/N , where t is any finite time

value and N is an integer. Show that equations (1.84) and (1.85) follow in the continuous-time

limit as N →
 for fixed t.

Problem 4. Show that the random variable � = ∑N
i=1 a�ti
��Wti


2 has mean and variance

given by

E	�
=
N∑
i=1

a�ti
�ti� E	��−E	�

2
= 2
N∑
i=1

a�ti

2��ti


2 (1.113)

Hint: Since �Wti
∼ N�0� �ti
 independently for each i, one can use the identity in Problem 2

of Section 1.6. That is, by considering E	exp���Wti


 for nonzero parameter � and applying

a Taylor expansion of the exponential and matching terms in the power series in �n, one

obtains E	��Wti

n
 for any n≥ 0. For this problem you only need terms up to n= 4.

Problem 5. Show that the distribution p�x�x0� t
 in equation (1.86) approaches the one-

dimensional Dirac delta function ��x−x0
 in the limit t → 0.

Problem 6. (i) Obtain the joint marginal pdf of the random variables Ws and Wt, s �= t.
Evaluate E	�Wt −Ws


2
 for all s� t ≥ 0. (ii) Compute Et	W
3
s 
 for s > t.

Problem 7. Let the processes �xt
t≥0 and �yt
t≥0 be given by xt = x0 +�xt+�xWt and

yt = y0+�yt+�yWt, where �x, �y, �x, �y are constants. Find:

(i) the means E	xt
, E	yt
;
(ii) the unconditional variances Var�xt
, Var�yt
;
(iii) the unconditional covariances Cov�xt� yt
 and Cov�xs� yt
 for all s� t ≥ 0.

Problem 8. Obtain E	Xt
, Var�Xt
, and Cov�Xs�Xt
 for the processes

�a
Xt =X0e
−�t +�

∫ t

0

e−��t−s
dWs� t ≥ 0� (1.114)

�b
Xt = ��1− t/T
+��t/T
+ �T − t

∫ t

0

dWs

T − s
� 0 ≤ t ≤ T� (1.115)
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where �, �, � are constant parameters and time T is fixed in (b). The process in (a) describes

the so-called Ornstein–Uhlenbeck process, while (b) describes a Brownian bridge, whereby
the process is Brownian in nature, yet it is also exactly pinned down at initial time and final

time T, i.e., X0 = �, XT = �. For (a) assume X0 is a constant.

Problem 9. Assume that xt is described by a random process given by equation (1.94),

or equivalently by the conditional density in equation (1.86). Show that the conditional

expectation at time t = 0 defined by

C�t�K
= E0	�xt −K
+
� (1.116)

where �x
+ = x if x > 0 and zero otherwise gives the formula

C�t�K
= �x0+ �̄t−K
N

(
x0+ �̄t−K

�̄
√
t

)
+ �̄

√
t"

(
x0+ �̄t−K

�̄
√
t

)
� (1.117)

where N�·
 is the standard cumulative normal distribution function and

"�x
= 1√
2�

e−x2/2� (1.118)

By further restricting the drift, �= 0 gives Bachelier’s formula. This corresponds (from the

viewpoint of pricing theory) to the fair price of a standard call option struck at K, and maturing

in time t, assuming a zero interest rate and simple Brownian motion for the underlying “stock”

level xt at time t. Hint: One way to obtain equation (1.117) is by direct integration over all

xt of the product of the density p [of equation (1.86)] and the payoff function �xt−K
+. Use
appropriate changes of integration variables and the property 1−N�x
= N�−x
 to arrive at

the final expression.

1.5 Stochastic Differential Equations and Itô’s Formula

For purposes of describing asset price processes it is of interest to consider SDEs for diffusion

processes xt that are defined in terms of a lognormal drift function ��x� t
 and a lognormal

volatility function ��x� t
 and are written as follows:6

dxt = ��xt� t
xtdt+��xt� t
xtdWt� (1.119)

Assuming the drift and volatility are smooth functions, the discretization process in the

previous section extends to this case and produces a solution to equation (1.119) as the limit

as N →
 of the Markov chain xt0
� � � � � xtN

defined by means of the recurrence relations

xti+1
= xti

+��xti
� ti
xti

�ti+��xti
� ti
xti

�Wti
� (1.120)

6When the drift and volatility (or diffusion) terms in the SDE are written in the form given by equation (1.119)

it is common to refer to � and � as the lognormal drift and volatility, respectively. The reason for using this

terminology stems from the fact that in the special case that � and � are at most only functions of time t (i.e., not
dependent on xt), the SDE leads to geometric Brownian motion, and, in particular, the conditional transition density

is exactly given by a lognormal distribution, as discussed in the next section.
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From this discrete form of equation (1.119) we observe that xt+�t−xt = �xt = ��xt� t
xt�t+
��xt� t
xt�Wt. Alternatively, the solution to equation (1.119) can be characterized as the

process xt such that

��xt� t
= lim
�t→0

Et	xt+�t −xt


xt�t
� ��xt� t


2 = lim
�t→0

Et	�xt+�t −xt

2


x2
t �t

� (1.121)

These expectations follow from the properties Et	�Wt
 = 0 and Et	��Wt

2
 = �t. Notice

that, although an SDE defines a stochastic process in a fairly constructive way, conditional

distribution probabilities, such as the one for the Wiener process in equation (1.86), can be

computed in analytically closed form only in some particular cases. Advanced methods for

obtaining closed-form conditional (transition) probability densities for certain families of drift

and volatility functions are discussed in Chapter 3, where the corresponding Kolmogorov

(or Fokker–Planck) partial differential equation approach is presented in detail.

A method for constructing stochastic processes is by means of nonlinear transformations.

The stochastic differential equation satisfied by a nonlinear transformation as a function of

another diffusion process is given by Itô’s lemma:

Lemma 1.3. Itô’s Lemma If the function ft = f�xt� t
 is smooth with continuous derivatives
�f/�t, �f/�x, and �2f/�x2 and xt satisfies the stochastic differential

dxt = a�xt� t
dt+b�xt� t
dWt� (1.122)

where a�x� t
 and b�x� t
 are smooth functions of x and t, then the stochastic differential of
ft is given by

dft =
(
�f

�t
+a�xt� t


�f

�x
+ b�xt� t


2

2

�2f

�x2

)
dt+b�xt� t


�f

�x
dWt (1.123)

≡ A�xt� t
dt+B�xt� t
dWt�

In stochastic integral form:

ft = f0+
∫ t

0

A�xs� s
ds+
∫ t

0

B�xs� s
dWs� (1.124)

A nonrigorous, yet instructive, “proof ” is as follows.7

Proof. Using a Taylor expansion we find

�ft = f�xt +�xt� t+�t
−f�xt� t


= �f

�t
�xt� t
�t+

�f

�x
�xt� t
�xt +

1

2

�2f

�x2
�xt� t
��xt


2+O���t

3
2 
� (1.125)

where the remainder has an expectation and variance converging to zero as fast as ��t
2 in the

limit �t → 0. Inserting the finite differential form of equation (1.122) into equation (1.125)

while replacing ��Wt

2 → �t and retaining only terms up to O��t
 gives

�ft =
(
�f

�t
�xt� t
+a�xt� t


�f

�x
�xt� t
+

b�xt� t

2

2

�2f

�x2
�xt� t


)
�t

+b�xt� t

�f

�x
�xt� t
�Wt +O���t


3
2 
� (1.126)

7For more formal rigorous treatments and proofs see, for example, [IW89, �ks00, JS87].
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Taking the limit N →
 (�t → 0), the finite difference �t is the infinitesimal differential dt,
�Wt is the stochastic differential dWt, the remainder term drops out, and we finally obtain

equation (1.123). Alternatively, with the use of equation (1.125) we can obtain the drift

function of the ft process:

A�xt� t
= lim
�t→0

Et	�ft


�t

= �f

�t
+ �f

�x
lim
�t→0

Et	�xt


�t
+ 1

2

�2f

�x2
lim
�t→0

Et	��xt

2


�t

= �f

�t
�xt� t
+a�xt� t


�f

�x
�xt� t
+

b�xt� t

2

2

�2f

�x2
�xt� t
�

and the volatility function of the ft process:

B�xt� t

2 = lim

�t→0

Et	��ft

2


�t

=
(
�f

�x

)2

lim
�t→0

Et	��xt

2


�t
= b�xt� t


2

(
�f

�x
�xt� t


)2

�

The drift and volatility functions therefore give equation (1.123), as required. Here we have

made use of the expectations

a�xt� t
= lim
�t→0

Et	�xt


�t
� b�xt� t


2 = lim
�t→0

Et	��xt

2


�t

following from the finite differential form of equation (1.122). �

Note: Itô’s formula is rather simple to remember if one just takes the Taylor expansion of

the infinitesimal change df up to second order in dx and up to first order in the time increment

dt and then inserts the stochastic expression for dx and replaces �dx
2 by b�x� t
2dt.
As we will later see, in most pricing applications, xt represents some asset price pro-

cess, and therefore it proves convenient to consider Itô’s lemma applied to the SDE of

equation (1.119); i.e., a�x� t
 = x��x� t
, b�x� t
 = x��x� t
, written in terms involving the

lognormal drift and volatility functions for the random variable x. Equation (1.123) then gives

dft =
(
�f

�t
+x�

�f

�x
+ x2�2

2

�2f

�x2

)
dt+x�

�f

�x
dWt (1.127)

≡�fftdt+�fftdWt (1.128)

From this form of the SDE we identify the corresponding lognormal drift �f = �f�x� t
 and
volatility �f = �f�x� t
 for the process ft.

The foregoing derivation of Itô’s lemma for one underlying random variable can be

extended to the general case of a function f�x1� � � � � xn� t
 depending on n random variables

x= �x1� � � � � xn
 and time t. [Note: To simplify notation, we shall avoid the use of subscript

t in the variables, i.e., x1�t = x1, etc.] We can readily derive Itô’s formula by assuming that

the xi, i= 1� � � � � n, satisfy the stochastic differential equations

dxi = aidt+bi

n∑
j=1

#ijdW
j
t � (1.129)
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Here the coefficients ai = ai�x1� � � � � xn� t
 and bi = bi�x1� � � � � xn� t
 are any smooth func-

tions of the arguments. Furthermore we assume that the Wiener processes W
j
t are mutually

independent, i.e.,

E	dWi
t dW

j
t 
= �ij dt� (1.130)

The constants �ij = �ji (with �ii = 1) are correlation matrix elements and are convenient for

introducing correlations among the increments (e.g. see equation (1.176) of Section 1.6):

E	�dxi
�dxj

= bibj

n∑
k=1

n∑
l=1

#ik#jlE	dW
k
t dW

l
t 


= bibj

n∑
k=1

#ik#jkdt ≡ bibj�ijdt� (1.131)

When i = j this gives E	�dxi

2
 = b2

i dt. Taylor expanding df up to second order in the dxi

increments and to first order in dt we have

df = �f

�t
dt+

n∑
i=1

�f

�xi

dxi+
1

2

n∑
i�j=1

�2f

�xi�xj

�dxi
�dxj
 (1.132)

Now replacing �dxi
�dxj
 by the right-hand side of equation (1.131) while substituting the

above expression for dxi and collecting terms in dt and the dWi
t gives the final expression:

df =
(
�f

�t
+

n∑
i=1

[
ai

�f

�xi

+ b2
i

2

�2f

�x2
i

]
+

n∑
i<j=1

bibj�ij

�2f

�xi�xj

)
dt

+
n∑

j=1

( n∑
i=1

�ijbi

�f

�xi

)
dWj

t � (1.133)

This procedure can be straightforwardly applied or extended to stochastic differentials of

various processes that are dependent on groups of underlying random variables.

As we shall see in the coming sections, where we cover derivatives pricing in continuous

time, it is important to work out the stochastic differential of the quotient of two processes,

namely; ft ≡ gt/ht, where

dgt
gt

= �gdt+
n∑

i=1

�i
gdW

i
t �

dht

ht

= �hdt+
n∑

i=1

�i
hdW

i
t (1.134)

are stochastic differential equations assumed satisfied by gt and ht, respectively. Note that the

drift and volatility functions8 are generally considered functions of time and of the underlying

processes, �g = �g�gt� ht� t
, �h = �h�gt� ht� t
, �i
g = �i

g�gt� ht� t
, �i
h = �i

h�gt� ht� t
. The
function �i

g is the volatility of the process gt with respect to the ith independent Wiener

process (or ith risk factor).9 The stochastic differential of the ratio ft = gt/ht can be obtained

via the Taylor expansion of the differential df up to first order in dt and up to second order

8Here and throughout the rest of the book we shall sometimes take the liberty to refer to the lognormal drift and

volatility functions simply as the drift and volatility so as to avoid excessive use of such terminology.
9 In what follows we shall at times also refer to independent Brownian motions as risk factors.
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in the dg and dh terms. Hence considering f as function of g, h, and t and taking appropriate

partial derivatives gives

df = 1

h
dg− g

h2
dh− 1

h2
�dg
�dh
+ g

h3
�dh
2� (1.135)

Here �f

�t
= 0, since there is no explicit time dependence. Moreover, since �2f

�g2
= 0, the �dg
2

term is absent. This last SDE takes on a particularly simple form when we divide through by f:

df

f
= dg

g
− dh

h
− dg

g

dh

h
+
(
dh

h

)2

=
(
dg

g
− dh

h

)(
1− dh

h

)
(1.136)

Substituting equations (1.134), expanding out, and setting to zero any term containing

�dWi
t 
�dt
 or �dt


2 [i.e., terms of O��dt
3/2
 or higher] then gives

df

f
=
[
�g −�h−

n∑
i=1

�i
h��

i
g −�i

h


]
dt+

n∑
i=1

��i
g −�i

h
dW
i
t � (1.137)

Here we have also made use of the replacement dWi
t dW

j
t = �ij dt. This gives the stochastic

differential of ft = gt/ht. Note that this equation in compact form reads

df

f
= �fdt+

n∑
i=1

�i
fdW

i
t � (1.138)

where the drift of f is �f = �g − �h −
∑n

i=1 �
i
h��

i
g − �i

h
 and the volatility is given

by �i
f = �i

g − �i
h. It is important to note that pricing formulas ultimately involve the

absolute value or square of the volatilities, i.e., �i
f =

∣∣�i
g −�i

h

∣∣ = √
��i

g

2+ ��i

h

2−2�i

g�
i
h.

This will become clear in the sections that follow. Namely, a rigorous justification of

this arises from consideration of the partial differential equation (i.e., the forward or

backward Kolmogorov equation) satisfied by the corresponding transition probability

density function, which explicitly involves only terms in the square of the volatilities.

Finally, note that for the case of only one risk factor, i.e., n = 1, we have equation (1.138)

with �f = �g −�h −�h��g −�h
 and �f = �g −�h. For general n, using vector notation

��f = �g −�h, �f = �g −�h−�h · ��g −�h

 and equation (1.138) takes the form:

df

f
= �fdt+�f ·dWt� (1.139)

Recall that a martingale process, which we shall here simply denote by ft, is a stochastic
process for which EP

t 	fT 
= ft, t ≤ T , under a given probability measure P. Recall that this
is a driftless process, in the sense that its expected value, under P, is constant over all future
times. We have already encountered a simple example of such a process, namely, the standard

Brownian motion, or Wiener process Wt. Equation (1.90) provides a method of generating a

martingale process. Based on Itô’s Lemma we now have the following result.

Theorem. (Feynman–Kac) If f(x,t) is the function given by the conditional expectation

f�x� t
= Et	��xT 

� (1.140)

at time t≤ T , with xt = x and underlying process obeying equation (1.122), then f(x,t) satisfies
the partial differential equation

�f�x� t


�t
+a�x� t


�f�x� t


�x
+ b�x� t
2

2

�2f�x� t


�x2
= 0� (1.141)

with terminal time condition f�x�T
= ��x
.
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Proof. The proof follows by considering the conditional expectation of equation (1.126) at

time t, which leaves us with only the drift term in �t (to order �t), since the Wiener term is

Markovian. On the other hand,

Et

[
�ft

]= Et

[
ft+�t

]−ft = 0� (1.142)

The last equality is due to the martingale property of ft. In the limit of infinitesimal time step

we are left with the infinitesimal drift term, which vanishes identically only if equation (1.141)

is satisfied. The terminal condition follows simply because f�x� t = T
= ET 	��xT 

= ��x
,
with xT = x imposed when t = T . �

The Black–Scholes partial differential equation discussed in Section 1.13 is a special case

of the Feynman–Kac result. The generalization of equation (1.141) to n dimensions is also

readily obtained by using Itô’s lemma in n dimensions.

Problems

Problem 1. Consider the stochastic processes gt and ht defined earlier. Further assume that

the volatilities of the two processes are identical with respect to all Brownian increments,

i.e., �i
g = �i

h for all i. Show that the process ft = gt/ht is deterministic with solution

fT = ft exp

(∫ T

t

(
�g�gs� s
−�h�hs� s


)
ds

)
� (1.143)

Problem 2. Consider two processes defined by gt = g0e
�gWt+�gt and ht = h0e

�hWt+�ht, where

Wt is a standard Wiener process and �g, �h, �g, �h, g0, and h0 are constants. Use Itô’s lemma

to show that

dgt
gt

=
(
�g +

�2
g

2

)
dt+�gdWt�

dht

ht

=
(
�h+

�2
h

2

)
dt+�hdWt� (1.144)

Then assume dft/ft = �fdt+�fdWt. Find these drift and volatility coefficients in terms of

�g, �h, �g, and �h, for the cases ft = gt/ht and ft = gtht.

Problem 3. Obtain the stochastic differential equations satisfied by the Ornstein–Uhlenbeck

and Brownian bridge processes in Problem 8 of Section 1.4.

1.6 Geometric Brownian Motion

Univariate geometric Brownian motion with time-dependent coefficients is characterized by

the SDE of the form

dSt = ��t
St dt+��t
St dWt� (1.145)

with initial condition S0, where �= ��t
 and � = ��t
 are deterministic functions of time t.
This equation can be solved by means of the change of variable

xt = log
St

S0

� (1.146)
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The transformed equation is obtained using Itô’s lemma,

dxt =
(
��t
− ��t
2

2

)
dt+��t
dWt� (1.147)

and is to be solved with initial condition x0 = 0. Following the procedure in Section 1.4 we

discretize this equation in the time interval [0,T] using a partition in N subintervals of length

�t = T
N
:

xti+1
= xti

+
(
��ti
−

��ti

2

2

)
�t+��ti
 �Wti

� (1.148)

By iterating the recurrence relations up to time T, we find

xT =
N−1∑
i=0

[(
��ti
−

��ti

2

2

)
�t+��ti
 �Wti

]
� (1.149)

Hence xT is a normal random variable for all N > 1. In the limit as N →
, the mean of xT

is given by

E0	xT 
= lim
N→


N−1∑
i=0

(
��ti
−

��ti

2

2

)
�t =

∫ T

0

(
��t
− ��t
2

2

)
dt (1.150)

and the variance is given by

E0	x
2
T 
− �E0	xT 



2 = lim
N→


N−1∑
i=0

��ti

2 �t =

∫ T

0

��t
2 dt� (1.151)

Introducing the time-averaged drift and volatility

�̄�T
≡ 1

T

∫ T

0

��t
dt (1.152)

and

�̄�T
≡
√

1

T

∫ T

0

��t
2 dt� (1.153)

we conclude that xT = log
ST
S0

∼ N

((
�̄�T
− �̄2�T


2

)
T� �̄2�T
T

)
. This result is also easily

verified by directly applying properties (1.105) and (1.106) to the integrated form of equa-

tion (1.147).

The solution to stochastic differential equation (1.145) for all t ≥ 0 is hence

St = S0 exp

((
�̄�t
− �̄2�t


2

)
t+ �̄�t
Wt

)
� (1.154)

where �̄�t
 and ��t
 are given by equations (1.152) and (1.153), respectively. This solution

(which is actually a strong solution) can also be verified by a direct application of Itô’s lemma

(see Problem 1). Note that this represents a solution, in the sense that the random variable

denoted by St and parameterized by time t is expressed in terms of the underlying random

variable, Wt, for the pure Wiener process.
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This solution gives a closed-form expression for generating sample paths for geometric

Brownian motion. Equation (1.154) provides a general expression for the case of time-

dependent drift and volatility. It is very instructive at this point to compute expectations of

functions of St. Let us consider the process in equation (1.145) and proceed now to compute the

expectations E0	St
 and E0	�St−K
+
, for some constant K ≥ 0, where �x
+ ≡max�x�0
= x
if x > 0 and zero if x≤ 0. Using the solution in equation (1.154), the expectation of St under

the density of equation (1.95) (i.e., conditional on St=0 = S0, hence we write E0	 
) is

E0	St
= S0e
��̄−�̄2/2
tE0	e

�̄Wt 


= S0e
��̄−�̄2/2
te�̄

2t/2 = S0e
�̄t� (1.155)

To compact notation we denote �̄≡ �̄�t
, �̄ ≡ �̄�t
. In the last step we have used an important

identity derived in Problem 2 of this section. This result shows that the stock price is expected

to grow exponentially at a rate of �̄.
Using equation (1.154), the expectation E0	�St −K
+
 is given by

E0	�St −K
+
=
∫ 


−

p�y� t


(
S0e

��̄−�̄2/2
te�̄y −K
)
+dy

= S0e
��̄−�̄2/2
t

√
2�t

∫ 


−

e−y2/2t

(
e�̄y − K

S0

e−��̄−�̄2/2
t

)
+
dy (1.156)

The last step obtains from the identity �ax− b
+ = a�x− b/a
+, for a > 0. Changing inte-

gration variable y =√
tx while employing this identity again gives

E0	�St −K
+
=
S0e

��̄− �̄2

2

t

√
2�

∫ 


−

e−x2/2+�̄

√
tx

(
1− K

S0

e−	��̄− �̄2

2

t+�̄

√
tx


)
+
dx (1.157)

Since e−�̄
√
tx is a monotonically decreasing function of x, there is a value xK such that

(
1− K

S0

e−	��̄−�̄2/2
t+�̄
√
tx


)
+
=

⎧⎪⎪⎨⎪⎪⎩
1− K

S0

e−	��̄−�̄2/2
t+�̄
√
tx
� x > xK

0� x ≤ xK

(1.158)

where

xK =− log�S0/K
+ ��̄− �̄2/2
t

�̄
√
t

� (1.159)

Hence, the integral in equation (1.157) becomes a sum of two parts in the region x ∈ �xK�

:

E0	�St −K
+
=
S0e

��̄− �̄2

2

t

√
2�

∫ 


xK

e−x2/2+�̄
√
tx dx− K√

2�

∫ 


xK

e−x2/2 dx� (1.160)

Completing the square in the first integration gives

E0	�St −K
+
= S0e
�̄t�1−N�xK − �̄

√
t

−KN�−xK


= S0e
�̄tN��̄

√
t−xK
−KN�−xK


= S0e
�̄tN�d+
−KN�d−
� (1.161)
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where N�·
 is the standard cumulative normal distribution function and

d± = log�S0/K
+ ��̄± �̄2/2
t

�̄
√
t

� (1.162)

Note that here we have used the property N�−x
= 1−N�x
.
The Black–Scholes pricing formula for a plain European call option follows automatically.

In particular, assuming a risk-neutral pricing measure, the drift is given by the instantaneous

risk-free rate ��t
= r�t
. Hence, the price of a call at current time (t = 0) with current stock

level (or spot) S0, strike K, and maturing in time t is given by the discounted expectation

C0�S0�K� t
= e−r̄tE0	�St −K
+
= S0N�d+
− e−r̄tKN�d−
� (1.163)

where r̄ is the time-averaged continuously compounded risk-free interest rate

r̄ = r̄�t
≡ 1

t

∫ t

0

r� 
d � (1.164)

and d± is given by equation (1.162) with �̄= r̄. It is instructive to note the inherent difference
between the Black–Scholes pricing formula in equation (1.163) and Bachelier’s formula in

equation (1.117). Bachelier’s formula is a result of assuming a standard Brownian motion

for the underlying stock price process [i.e., equation (1.94)]. In contrast, formulas of the

Black–Scholes type are equivalent to the assumption of geometric Brownian motion for the

underlying price process. Using equation (1.154) as defining a change of probability variables

Wt → St, the one-dimensional analogue of equation (1.48) together with equation (1.95) gives

p�St� S0� t
=
1

St�̄
√
2�t

e−	log�St/S0
−��̄−�̄2/2
t
2/2�̄2t� (1.165)

This is the lognormal distribution function defined on positive stock price space St ∈ �0�

.
The log-returns log�St/S0
 are distributed normally with mean ��̄− �̄2/2
t and variance �̄2t.
Setting �̄ = r̄ gives the risk-neutral conditional probability density for a stock attaining a

value St at time t > 0 given an initial value S0 at time t = 0. Hence, the Black–Scholes

pricing formula for European options can also be obtained by taking discounted expectations

of payoff functions with respect to this risk-neutral density. In particular, a European-style

claim having pay-off #�ST 
 as a function of the terminal stock level ST , where T > 0 is a

maturity time, has arbitrage-free price f0�S0� T 
 at time t = 0 expressible as

f0�S0� T
= e−r̄�T
TEQ
0

[
#�ST 

= e−r̄�T
T

∫ 


0

p�ST � S0�T
#�ST 
dST � (1.166)

Here the superscript Q is used to denote an expectation with respect to the risk-neutral density

given by equation (1.165) with drift �̄ = r̄�T
. Note that within this probability measure,

equation (1.155) shows that stock prices drift at the time-averaged risk-free rate r(t) at time t.
As will become apparent in the following sections, this must be the case in order to ensure

arbitrage-free pricing.

For pricing applications, discussed in greater length in later sections of this chapter, it

is useful to consider a slight extension of the foregoing closed-form solutions to geometric

Brownian motion. Namely, we can extend equation (1.154) by a simple shift in time variables

as follows:

ST = St exp

((
�̄�t� T 
− �̄2�t� T 


2

)
�T − t
+ �̄�t� T 
WT−t

)
� (1.167)
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with time-averaged drift and volatility over the period [t,T]

�̄�t� T
≡ 1

T − t

∫ T

t
�� 
d � �̄2�t� T
≡ 1

T − t

∫ T

t
�2� 
d � (1.168)

HereWT−t =WT −Wt is the Wiener normal random variable with mean zero and variance T−
t; i.e., WT−t ∼

√
T − tx, x ∼ N�0�1
. For constant drift and volatility this solution simplifies

in the obvious manner. The formula for the conditional expectation now extends to give

Et	�ST −K
+
= e�̄�T−t
StN�d+
−KN�d−
� (1.169)

with

d± = log�St/K
+ ��̄± �̄2/2
�T − t


�̄
√
T − t

(1.170)

and �̄= �̄�t� T
, �̄ = �̄�t� T
. A related expectation that is useful for pricing purposes is (see

Problem 3)

Et	�K−ST 
+
= KN�−d−
− e�̄�T−t
StN�−d+
� (1.171)

Within the risk-neutral probability measure, �̄ = r̄. Hence discounting this expectation by

e−r̄�T−t
 gives the analogue of equation (1.163) for the Black–Scholes price of a put option at

calendar time t, spot St, and maturing at time T with strike K:

Pt�St�K�T
= e−r̄�T−t
KN�−d−
−StN�−d+
� (1.172)

where d± is given by equation (1.170) with �̄= r̄ ≡ r�t� T
.
In closing this section, we consider the more general multidimensional case of geometric

Brownian motion. Multivariate geometric Brownian motions describe n-dimensional state

spaces of vector valued processes S1
t � � � � � S

n
t and can be described with two different but

equivalent sets of notations. Let’s consider n uncorrelated standard Wiener processes

W 1
t � � � � �W

n
t �with Et	dW

i
t dW

j
t 
= �ij dt� (1.173)

A simple way to introduce correlations among the price processes is to allow for correlated

Wiener processes by defining a new set of n processes WSi

t as

dWSi

t =
n∑

j=1

#ij dW
j
t � (1.174)

or, in matrix-vector notation,

dWS
t =� ·dWt� (1.175)

Using equation (1.174) we have

Et

[
dWSi

t dWSj

t

]
=

n∑
k�l=1

#ik#jl �kl dt =
n∑

k=1

#ik#jk dt ≡ �ij dt� (1.176)

where the last relation defines a correlation matrix �, with elements �ij , and lower Cholesky

decomposition given by

�=��†� (1.177)

Throughout this section, superscript † denotes matrix transpose.
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Stochastic differential equations for the stock price processes can be written as follows:

dSi
t

Si
t

=�i dt+�i dW
Si

t (1.178)

=�i dt+�i

n∑
j=1

#ij dW
j
t ≡ �i dt+

n∑
j=1

Lij dW
j
t (1.179)

where the last expression defines the matrix L, Lij = �i#ij . Note that the lognormal drifts

�i and volatilities �i can generally depend on time, although to simplify notation we have

chosen not to denote this explicitly. The last relation in equation (1.179) defines a lower

Cholesky factorization of the covariance matrix

C= LL† =���†�=���� (1.180)

Here � is the diagonal matrix of lognormal volatilities with (ij)-elements given by �ij �i,

L=�� and �=�
†
. In vector notation we can write equations (1.179) in a compact form as

dSi
t

Si
t

= �i dt+� i ·dWt� (1.181)

where � i = ��i1� � � � ��in
 is the volatility vector for the ith stock, whose jth component

�ij = Lij gives the lognormal volatility with respect to the jth risk factor.

Equation (1.61) in Section 1.2 gives L for the case n= 2. In particular, in the case of two

stocks we can introduce a correlation �, where equations (1.179) now take the specific form

dS1
t

S1
t

=�1 dt+�1 dW 1
t � (1.182)

dS2
t

S2
t

=�2 dt+��2 dW 1
t +

√
1−�2�2 dW 2

t � (1.183)

with infinitesimal variances and covariances

Et

[(
dS1

t

S1
t

)2
]
= �2

1 dt�Et

[(
dS2

t

S2
t

)2
]
= �2

2 dt�Et

[
dS1

t

S1
t

dS2
t

S2
t

]
= ��1�2 dt� (1.184)

For this case the volatility vectors are given by �1 = ��1�0
 and �2 =
(
��2��2

√
1−�2

)
for

stock prices S1
t and S2

t , respectively.

More generally, equations (1.179) [or (1.181)] describe geometric Brownian motion for

an arbitrary number of n stocks with infinitesimal correlations and variances:

Et

[
dSi

t

Si
t

dS
j
t

S
j
t

]
= Cij dt� Et

[(
dSi

t

Si
t

)2
]
= �2

i dt� (1.185)

The vectors � i are seen to be given by the ith rows of matrix L, i.e., the matrix of the lower

Cholesky factorization of the covariance matrix.

A solution to the system of stochastic differential equations (1.179) [or (1.181)] is readily

obtained by employing a simple change-of-variable approach (see Problem 4). In particular,

Si
T = Si

t exp

((
�i−

�2
i

2

)
�T − t
+�i

n∑
j=1

#ijW
j
T−t

)
� i= 1� � � � � n� (1.186)
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where we denote W
j
T−t =W

j
T − W

j
t , for each jth independent Wiener normal random variable

with mean zero and variance T − t; i.e., W
j
T−t =

√
T − txj , xj ∼ N�0�1
 independently for

all j = 1� � � � � n. From this result one readily obtains the multivariate lognormal distribution

function p�ST �St� T − t
, i.e., the analogue of equation (1.165) [see equation (1.198) in

Problem 5]. The pricing of European-style options whose pay-offs depend on a group of n
stocks, i.e., European basket options, can then proceed by computing expectations of such

pay-offs over this density, where the drifts are set by risk neutrality. That is, let’s assume

a money-market account Bt = ert with constant risk-free rate r, then within the risk-neutral

measure the stock prices must all drift at the same rate, giving �i = r.10 Let Vt denote

the option price at time t for a European-style contract with payoff function at maturity time

T given by VT = ��ST 
, ST = �S1
T � � � � � S

n
T 
. The arbitrage-free price is then given by the

expectation

Vt = e−r�T−t
E
Q�B

t

[
��ST 


]
= e−r�T−t


∫
�n+

p�ST �St� T − t
��ST 
dST

= e−r�T−t


�2�
n/2

∫
�n

e−
1
2

x
2��ST �x

dx� (1.187)

where ST �x
 has components Si
T �x
 given by equation (1.186), x = �x1� � � � � xn
. The price

hence involves an n-dimensional integral over a multivariate normal times some payoff

function. Exact analytical expressions for basket options are generally difficult to obtain,

depending on the type of payoff function as well as the number of dimensions n. Numerical

integration methods can be used in general. Monte Carlo simulation methods are very useful

for this purpose. The reader interested in gaining insight into the numerical implementation

of standard Monte Carlo methods for pricing such options is referred to Project 8 on Monte

Carlo pricing of basket options in Part II of this book.

Exact analytical pricing formulas for certain types of elementary basket options, however,

can be obtained, as demonstrated in the following worked-out example.

Example. Chooser basket options on two stocks.

Consider a basket of two stocks with prices S1
t (for stock 1) and S2

t (for stock 2) modeled

as before with constants �1, �2, �, �1, �2. Specifically, the risk-neutral geometric Brownian

motions of the two stocks are given by

S1
T = S1

T �x1� x2
= S1
0e

�r− �2
1
2

T+�1

√
Tx1� (1.188)

S2
T = S2

T �x1� x2
= S2
0e

�r− �2
2
2

T+�2

√
T��x1+

√
1−�2x2
� (1.189)

where S1
0 , S2

0 are initially known stock prices at current time t = 0. The earlier pricing

formula gives

V0 =
e−rT

2�

∫ 


−


∫ 


−

e−

1
2
�x21+x22
��S1

T �x1� x2
� S
2
T �x1� x2

dx1 dx2 (1.190)

10This drift restriction is further clarified later in the chapter where we discuss the asset-pricing theorem in

continuous time.
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for the general payoff function. A simple chooser option is a European contract defined by

the payoff max�S1
T � S

2
T 
. This pay-off has a simple relation to other elementary pay-offs; i.e.,

max�S1
T � S

2
T 
= �S2

T −S1
T 
++S1

T = �S1
T −S2

T 
++S2
T . The current price V0 of the simple chooser

is hence given by V0 = C0 + S1
0 , where C0 denotes the price of the contract with payoff

�S2
T −S1

T 
+. This follows since an expectation of a sum is the sum of expectations and from

the fact that the stock prices drift at rate r; i.e., e−rTE
Q�B

0 	Si

T 
= Si
0. The problem remains to

find the price C0 given by the integral

C0 =
e−rT

2�

∫ 


−


∫ 


−

e−

1
2
�x21+x22


(
S2
T �x1� x2
−S1

T �x1� x2

)
+ dx1 dx2� (1.191)

The integrand is nonzero on the domain ��x1� x2
 ∈�2� S2
T �x1� x2
 > S1

T �x1� x2
�. From equa-

tions (1.188) and (1.189) we find the domain is ��x1� x2
 ∈�2� x1 < ax2+b�, where

a≡ �2

√
1−�2

��1−��2

� b ≡ log�S2

0/S
1
0
+ 1

2
��2

1 −�2
2 
T

��1−��2

√
T

�

Here we assume �1−��2 > 0 and leave it to the reader to verify that a similar derivation

of the same price given next also follows for the case �1−��2 ≤ 0. Using this integration

domain and inserting expressions (1.188) and (1.189) into the last integral gives

C0 =
S2
0e

− 1
2
�2
2T

2�

∫ 


−

e−

1
2
x22+

√
1−�2�2

√
Tx2

[∫ ax2+b

−

e−

1
2
x21+��2

√
Tx1dx1

]
dx2

−S1
0e

− 1
2
�2
1T

2�

∫ 


−

e−

1
2
x22

[∫ ax2+b

−

e−

1
2
x21+�1

√
Tx1dx1

]
dx2

By completing the square in the exponents, the integrals in x1 give cumulative normal

functions N�·
. In particular,

C0 =
S2
0e

− 1
2
�1−�2
�2

2T√
2�

∫ 


−

e−

1
2
x22+

√
1−�2�2

√
Tx2N�ax2+b−��2

√
T
dx2

− S1
0√
2�

∫ 


−

e−

1
2
x22N�ax2+b−�1

√
T
dx2�

At this point we make use of the integral identity (see Problem 6),

1√
2�

∫ 


−

e−

1
2
x2+CxN�Ax+B
dx = e

1
2
C2

N

(
AC+B√
1+A2

)
� (1.192)

for any constants A, B, and C, giving

C0 = S2
0N

(
�a
√
1−�2−�
�2

√
T +b√

1+a2

)
−S1

0N

(
b−�1

√
T√

1+a2

)
�

After a bit of algebra, using a and b just defined, we finally obtain the exact expression for

the price in terms of the initial stock prices and the effective volatility $ as

C0 = S2
0N�d+
−S1

0N�d−
� (1.193)

with

d± = log�S2
0/S

1
0
± 1

2
$2T

$
√
T

� (1.194)

$2 = �2
1 +�2

2 −2��1�2.
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Changes of numeraire methods for obtaining exact analytical solutions in the form of

Black–Scholes–type formulas for basket options on two stocks, as well as other options

involving two correlated underlying random variables, are discussed later in this chapter.

Problems

Problem 1. Use Itô’s lemma to verify that equation (1.154) provides a solution to equa-

tion (1.145).

Problem 2. Consider an exponential function of a normal random variable X, eaX for any

parameter a, where X ∈ �−
�

 has probability density at X = x given by

p�x� t
= 1√
2�t

e−x2/2t� �t > 0
�

Show that

E	eaX
= exp
(
a2t/2

)
�

Hint: make use of the integral identity∫ 


−

e−ax2+bx dx =

√
�

a
eb

2/4a�

where a > 0 and b are constants.

Problem 3. Derive the expectation in equation (1.171) by making use of the identity

�a−b
+ = �b−a
++a−b.

Problem 4. Consider the general correlated n-dimensional geometric Brownian process dis-

cussed in this section. Use Itô’s lemma to show that the processes Y i
t ≡ logSi

t obey

dY i
t = ��i−�2

i /2
dt+�i

n∑
j=1

�ijdW
j
t � (1.195)

Assuming all volatilities are nonzero, the correlation matrix is positive definite. Hence, 	 has

an inverse 	−1. Define new random variables X
j
t ≡∑n

i=1 �
−1
i �−1

ji Y
i
t and show that

dXj
t = �̃j dt+dWj

t � (1.196)

with �̃j ≡
∑n

i=1 �
−1
i �−1

ji ��i− 1

2
�2

i 
, has solution

X
j
T = Xj

t + �̃j�T − t
+W
j
T −Wj

t � j = 1� � � � � n� (1.197)

Invert this solution back into the old random variables, hence obtaining equation (1.186).

Problem 5. Treat W
j
T−t and log�Si

T /S
i
t
 as two sets of n independent variables in equa-

tion (1.186) and thereby compute the Jacobian of the transformation among the variables.

Then invert equation (1.186) and use the identity in equation (1.48) with the distribution

function for the n independent uncorrelated Wiener processes to show that the analytical

formula for the transition probability density for geometric Brownian motion is given by

p�ST �St� T − t
= �2��T − t

−
n
2 
C
− 1

2 exp
(− 1

2
z ·C−1 · z)� (1.198)
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where the n-dimensional vector z has components

zi ≡
log�Si

T /S
i
t
− ��i− 1

2
�2

i 
�T − t
√
T − t

� (1.199)

Problem 6. Using the definition of the cumulative normal function, write

1√
2�

∫ 


−

e−

1
2
x2+CxN�Ax+B
dx = 1

2�

∫ 


−

e−

1
2
x2+Cx

[∫ Ax+B

−

e−

1
2
y2dy

]
dx� (1.200)

Introduce a change of variables ����
 ≡ �y−Ax�y+Ax
 and integrate while completing

squares to obtain equation (1.192).

1.7 Forwards and European Calls and Puts

Consider a situation with a stock price that at current time t = 0 has price S0 while at time

T > 0 in the future is described by a certain random variable ST . Suppose that there is also a

zero-coupon bond maturing at time T, i.e., a riskless claim to one unit of account at time T. Let

Zt�T
= e−r�T−t
 (1.201)

be its price at time t. Here r is the yield up to time T. Unlike the rate introduced in

equation (1.5), in this case r is defined with the continuously compounded rule; we refer

again to Chapter 2 for a more systematic discussion of fixed-income terminology.

Let’s consider a situation where St is contained in the half-line of positive real numbers

�+. Let P be the real-world measure with density p(S); P is inferred through statistical

estimations based on historical data. Pricing measures, instead, are evaluated as the result of

a calibration procedure starting from option prices. Also, as discussed in detail later in this

chapter, pricing measures depend on the choice of a numeraire asset. In our framework, a

numeraire asset is given by an asset price process, gt, that is strictly positive at initial time

t = 0 and any other future time t, t ≤ T . The corresponding pricing measure is denoted by

Q(g), specifying the fact that the asset price gt is the chosen numeraire. A possible choice of

numeraire is given by the bond gt = Zt�T
; this choice corresponds to the pricing measure

denoted by Q(Z(T)), which is called the forward measure. Note that since r is constant, this
also coincides with the risk-neutral measure. Technically speaking the name for the risk-

neutral measure corresponds to using the continuously compounded money-market account

Bt = ert (i.e., the continuously compounded value of one unit of account deposited at time

t = 0 earning interest rate r) as numeraire.11 For constant interest rate, the two measures are

then easily shown to be equivalent since Zt�T
 = Bt/BT . This point is further clarified in

Chapter 2. Other choices of numeraire asset are also possible; for example, gt = St corresponds

to using the stock price as numeraire. As mentioned earlier and also described in detail later

in the chapter, expectations taken based on the information available up to current time t with
respect to the pricing measure Q(g), with gt as numeraire asset price, are denoted by E

Q�g

t 	 
.

In this section, note that (without loss in generality) we are simply setting t = 0 as current

time and allowing T to be any future time.

11Note that we previously used the symbol Bt to denote the bond price. However, here we instead use Bt to

denote the value of the money-market account.
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By applying risk-neutral valuation to the zero-coupon bond, we find that

Z0�T
= e−rT = �E
Q�Z�T


0

[
ZT�T

= �E

Q�Z�T


0

[
1
= �� (1.202)

where ZT�T
= 1. Hence, the discount factor � can be interpreted as the initial price of the

zero-coupon bond. Although we have not yet formally introduced continuous-time financial

models at this point in the chapter, the arguments presented in this section are generally valid

if we assume dynamic trading is allowed in continuous time.

Risky assets are modeled by a function � � �+ → � of the stock price at time T. Let
�At
0≤t≤T be a price process such that AT = ��ST 
; such an asset is called a European-style
option on the stock S with maturity T and payoff function ��ST 
. Applying the asset-pricing

theorem, the arbitrage-free price A0 at time t= 0 of this option can be written as a discounted

expectation under a pricing measure Q(Z(T)),

A0 = e−rTE
Q�Z�T


0 	��ST 

 � (1.203)

An alternative and instructive way of writing this equation is

A0

Z0�T

= E

Q�Z�T


0

[
AT

ZT�T


]
� (1.204)

Although the numeraire asset in equation (1.204) is the riskless bond Zt�T
, the pricing

formula can be extended to the case of a generic numeraire asset g. Let’s denote Q(g) as the
probability measure, with gt as numeraire asset price at time t, and defined so that

A0

g0
= E

Q�g

0

[
AT

gT

]
(1.205)

for all random variables AT =��ST 
 and for all T> 0. Assuming the price is unique, equating

the price A0 in equation (1.204) with that in this last equation gives a relationship for the

equivalence of the two pricing (or probability) measures:

g0E
Q�g

0

[
��ST 


gT

]
= Z0�T
E

Q�Z�T


0

[
��ST 


ZT �T


]
� (1.206)

A variety of numeraire assets can be chosen for derivative pricing. Depending on the

pay-off, one choice over another may be more convenient for evaluating the expectation and

hence obtaining the derivative price, as seen in detail in the examples of pricing derivations

in Section 1.12.

A forward contract on an underlying stock S stipulated at initial time t = 0 and with

maturity time t = T is a European-style claim with payoff ST −F0 at time T. Here F0 is the

forward price at time t= 0. Forward contracts are entered at the equilibrium forward price F0,

for which their present value is zero. A simple arbitrage argument gives a (model-independent)
forward price F0 as

F0 = Z0�T

−1S0� (1.207)

Indeed, to replicate the pay-off of a forward contract one can buy the underlying stock at

price S0 and carry it to maturity while funding the purchase with a loan to be returned also

at maturity. The nominal of the loan to be paid back at time T is then Z0�T

−1S0 (e.g., this

equals erTS0 if we assume a constant interest rate).
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Since the forward contract is initially worthless, the valuation formula yields

0= E
Q�Z�T


0

[
ST −F0
� (1.208)

Since F0 is constant, we have that

E
Q�Z�T


0

[
ST 
= F0 = Z0�T


−1S0 = erTS0� (1.209)

The interpretation of this formula is that, under the pricing measure Q(Z(T)), the expected

return on a stock is the risk-free yield r over the maturity T. The argument just outlined is

model independent and can be shown to extend to all assets with no intermediate cash flows,

thus no carry costs, before maturity time T. The expected return on any asset under the pricing
measure Q�Z�T 

 is the risk-free rate, no matter how volatile they are. Also notice that the

expected return with respect to the real-world measure is quite different.

The popular geometric Brownian motion model, also called the Black–Scholes model,
gives a lognormal risk-neutral probability density for the stock price process. As derived in

Section 1.6, the stock price at time T is a lognormal random variable,

ST = S0 exp

((
r− �2

2

)
T +�

√
Tx

)
� (1.210)

where x ∼ N�0�1
 and � > 0 is the model volatility parameter. As we have seen, the risk-

neutral distribution for ST is defined in such a way as to satisfy the growth condition in

equation (1.209)

E
Q�Z�T


0 	ST 
=

1√
2�

∫ 


−

S0 exp

((
r− �2

2

)
T +�

√
Tx

)
e−

x2

2 dx = S0e
rT � (1.211)

Two important examples of European-style securities are the call option struck at K and of
maturity T with price process Ct and payoff function

CT ≡ �ST −K
+ (1.212)

and the put option struck at K and of maturity T with price process Pt and payoff function

PT ≡ �K−ST 
+� (1.213)

Theorem 1.3. (Put-Call parity). If C0�S0�K�T
 and P0�S0�K�T
 denote the prices at time
t = 0 of a plain European call and a plain European put, respectively, both maturing at a
later time T and both struck at K, then we have the put-call parity relationship, namely,

C0�S0�K�T
−P0�S0�K�T 
= S0−KZ0�T
� (1.214)

The proof of the put-call parity relationship descends from the fact that a portfolio with a

long position in a call struck at K and maturing at T and a short position in a put struck at K
and maturing at T has the same pay-off as a forward contract stipulated at the forward price

K. (See Section 1.8.)

In contrast to the put-call parity relationship in equation (1.214), the evaluation of the

price of a call or put option requires making an assumption on the measure Q(Z(T)) and the

stock price process. Under the Black–Scholes model, where the stock at time T is given by
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equation (1.210), the expectation E
Q�Z�T


0 	�ST −K
+
 can be reduced to a simple integral.

As shown in a detailed derivation in Section 1.6,

E
Q�Z�T


0 	�ST −K
+
= S0e

rTN�d+
−KN�d−
� (1.215)

where N�·
 is the standard cumulative normal distribution function,

d± = log�S0/K
+ �r±�2/2
T

�
√
T

� (1.216)

and the pricing formula for a plain European call option (with constant interest rate) in the

Black–Scholes model is

CBS�S0�K�T��� r
= e−rTE
Q�Z�T


0 	�ST −K
+


= S0N�d+
−Ke−rTN�d−
� (1.217)

European put options are priced analytically in similar fashion by computing the expectation

e−rTE
Q�Z�T


0 	�K−ST 
+
, as seen in the derivation of equation (1.172) of Section 1.6. From

this formula, or by applying the put-call parity relation (1.214) using equation (1.217), we

have the equivalent formulas for the put option price:

PBS�S0�K�T��� r
= e−rTE
Q�Z�T


0 	�K−ST 
+


= S0N�d+
−Ke−rTN�d−
−S0+Ke−rT

=Ke−rTN�−d−
−S0N�−d+
� (1.218)

A direct calculation shows that the functions CBS and PBS satisfy the Black–Scholes partial
differential equation (BSPDE). Analytical and numerical methods for solving this equation

are discussed at length throughout later sections and chapters of this book. The numerical

projects in Part II provide implementation details for finite-difference lattice approaches to

option pricing. A derivation of the BSPDE based on a dynamic replication strategy is provided

in Section 1.9 (and a general derivation is given in Section 1.13), but here we simply quote

it for the purposes of the present discussion. In terms of the partial derivatives with respect

to the time to maturity T and current stock price S0 (with r and � constants) this equation

can be rewritten in the form

�V

�T
= �2S2

0

2

�2V

�S2
0

+ rS0

�V

�S0

− rV� (1.219)

where the option value V = V�S0� T
. The original Black–Scholes equation is really a

backward-time equation involving �V/�t in calendar time t, where the price V is expressed in

terms of t and equals the pay-off at maturity (or expiry) t = T . That is, if we were to express

the option value explicitly in terms of such a function of calendar time t, then, for example,

for the case of a call struck at K, C�S� t = T
 = �S−K
+. Note that in the present context,

however, since we are expressing the option value with respect to the time to maturity, denoted

here by the variable T, the option price equals the pay-off when T = 0 (i.e., at zero time to

expiry): CBS�S�K�T = 0
= �S−K
+ and PBS�S�K�T = 0
= �K−S
+, as is easily verified

via equations (1.217) and (1.218) in the limit T → 0. Since the Black–Scholes equation is

time homogeneous for time-independent interest rate and volatility, option prices are gener-

ally functions of T − t (where t and T ≥ t represent actual calendar times), so �/�t =−�/�T



50 CHAPT ER 1 . Pricing theory

in the original Black–Scholes equation. By replacing T − t → T (without loss in generality

this corresponds to setting current time t = 0), we further simplify all expressions, wherein

T now represents the time to maturity. The form in equation (1.219) is convenient for the

following discussion.

Whether the pricing measure Q(Z(T)) is unique or not depends on the choice of hedg-

ing instruments. The asset-pricing theorem (in the single-period setting as stated earlier and

in the continuous-time case discussed later in this chapter) only implies that — assuming

absence of arbitrage — there exists such a measure and that this measure prices all pay-offs.

Indeterminacies in Q(Z(T)) arise in case there is no perfect replication strategy for the given

pay-off, which can be priced independently. The Black–Scholes model provides the most

basic pricing model that captures option prices through the single volatility parameter � .
Since in finance there is no fundamental theory ruling asset price processes, all models

are inaccurate to some degree. The Black–Scholes model is perhaps the most inaccurate

among all those used, but also the most basic because of its simplicity. Inaccuracies in the

Black–Scholes model are captured by the implied volatility surface, defined as the function

�BS�K�T
 such that

CBS�S0�K�T��BS�K�T
� r
= C0�K�T
� (1.220)

where C0�K�T
 is the observed market price of the call option struck at K and maturing at

time T. This describes a surface �I = �BS�K�T
 in which the implied volatility �I is graphed

as a function of two variables K, T, i.e., across a range of strikes K and time to maturity

values T. For any fixed pair of values (K,T) (and assumed fixed S0, r), the function CBS

is monotonically increasing in � [see equation (1.222)], hence the preceding equation can

be uniquely inverted to give a value for the so-called Black–Scholes implied volatility �I

for any observed market price of a call. If the Black–Scholes (i.e., lognormal) model were

accurate, the implied volatility surface would be flat and constant, for one single volatility

parameter would price all options. Empirical evidence shows that implied volatility surfaces

are instead curved (not flat!).

A practical and widely used approach to risk management involving the Black–Scholes

pricing formulas is based on the calculation of portfolio sensitivities. Sensitivities of option

prices in the Black–Scholes model with respect to changes in the underlying parameters

r�T�S�� are of importance to hedging and computing risk for nonlinear portfolios. Within

the Black–Scholes formulation, these sensitivities are easily obtained analytically by taking

the respective partial derivatives of the European-style option price V for a given pay-

off. The list of sensitivities (also known as the Greeks) are defined as follows, where we

specialize to provide the exact expressions for the case of a plain-vanilla call under the

Black–Scholes model:

• The delta, denoted by %, is defined as the derivative

%= �V

�S0

= �CBS

�S0

= N�d+
� (1.221)

• The vega, denoted by #, is defined as the derivative

#= �V

��
= �CBS

��
= S0

√
T
e−d2+/2

√
2�

� (1.222)
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• The gamma, denoted by & , is defined as the second derivative

& = �2V

�S2
0

= �2CBS

�S2
0

= e−d2+/2

�S0

√
2�T

� (1.223)

• The rho, denoted by �, is defined as the derivative

�= �V

�r
= �CBS

�r
= KTe−rTN�d−
� (1.224)

• The theta, denoted by ', is defined as the derivative12

' = �V

�T
= �CBS

�T
= ��2S2

0/2
& + r�S0%−CBS
� (1.225)

The numerical project called “The Black–Scholes Model” in Part II provides the interested

reader with an in-depth implementation of such formulas for calls as well as for puts

and so-called butterfly spread options. The corresponding spreadsheet is then useful for

numerically graphing and analyzing the dependence of the various option prices and their

sensitivities as functions of either r, � , S0, K, or T.
Given the sensitivities, one can approximate the change in price �C of a call option due to

small changes T → T+�T , S0 → S0+�S0, � → �+�� , r → r+�r by means of a truncated

Taylor expansion,

�C � %��S0
+#����K�T

+ 1

2
&��S0


2+���r
+'��T
� (1.226)

Here, �S0, �r, ���K�T
, and �T are small changes in the stock price, the interest rate, the

implied Black–Scholes volatility � = ��K�T
, and the time to maturity T of the option at

hand. In the Black–Scholes model, ��K�T
 does not depend on the two arguments and these

parameters are constant, so the only source of randomness is the price of the underlying.

However, in practice one observes that implied volatilities and interest rates also change over

time and affect option values.

As we discuss in more detail in Chapter 4, the risk of option positions is hedged on a

portfolio basis and risk-reducing trades are placed in such a way as to decrease portfolio

sensitivities to the underlyings. In particular:

• The delta can be reduced by taking a position in the stock or, more commonly, in a

forward or futures contract on the stock.
• The vega and gamma can be reduced by taking a position in another option.
• The rho can be reduced by taking a position in a zero-coupon bond of maturity T.

Problems

Problem 1. Derive the formulas in equations (1.221)–(1.225).

Problem 2. Obtain formulas analoguous to equations (1.221)–(1.225) for the corresponding

put option with value PBS .

12 In other literature this is sometimes defined as −�V/�T .
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Problem 3. Consider a portfolio with positions �i in N securities, each with price fi, i =
1� � � � �N , respectively. Assume the security prices are functions of the same spot S0 at

current time t0 and that each price function fi = fi�S0� Ti− t0
 satisfies the time-homogeneous

BSPDE with constant interest rate and volatility. The contract maturity dates Ti are allowed

to be distinct. Find the relation between the ', %, and & of the portfolio.

1.8 Static Hedging and Replication of Exotic Pay-Offs

Options other than the calls and puts considered in the previous section are often called exotic.
In this section, we consider the replication of arbitrary pay-offs via portfolios made up of

standard instruments (i.e., consisting of calls, puts, underlying stock, and cash). In finance,

such replicating portfolios are useful for the static hedging of European-style options.

A butterfly spread option maturing in time T is a portfolio of three calls with current value

B0�S0�K�T� !
= 1

!2
�C0�S0�K− !�T
+C0�S0�K+ !�T
−2C0�S0�K�T

� (1.227)

for some ! > 0, where C0�S0�K�T
 represents the (model-independent) price of a European

call with current stock price S0, strike K, and time to maturity T. We observe that (apart from

the normalization constant) this option consists of a long position in a call struck at K+!, a
long position in a call struck at K− !, and two short positions in a call struck at K, with all

calls maturing at the same time. At expiry T → 0 we simply have the payoff function for the

butterfly spread:

�!�ST −K
= 1

!2
�CT �ST �K− !
+CT�ST �K+ !
−2CT�ST �K



= 1

!2

⎧⎪⎨⎪⎩
�ST − �K− !

+� ST ≤ K

��K+ !
−ST 
+� ST > K�

(1.228)

Here we have used CT�ST �K
≡ �ST −K
+ for the pay-off of a call. The normalization factor

hence ensures that the area under the graph of the pay-off (as function of ST ) is unity, for all

choices of ! (see Figure 1.3). In the limit ! → 0, the function �!�ST −K
 converges to the

Dirac delta function ��ST −K
 (see Problem 1).

From the one-dimensional version of equation (1.27), we have

lim
!→0

∫ 


0

�!�ST −K
f�K
dK =
∫ 


0

��ST −K
f�K
dK = f�ST 
� (1.229)

call spread butterfly spread

1

0
K K + ε K K + εK – ε

1/ε

FIGURE 1.3 Payoff functions for a call spread and a corresponding unit butterfly spread struck at K,
where 2! is the width of the butterfly spread.
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for any ST > 0 and any continuous function f. From the linearity property of expectations and

risk-neutral pricing we must have

B0�S0�K�T� !
= e−rTEQ
0 	�!�ST −K

� (1.230)

In particular, we find that in the limit !→ 0,

lim
!→0

B0�S0�K�T� !
= lim
!→0

e−rTEQ
0

[
�!�ST −K


]
= e−rT lim

!→0

∫ 


0

p�S0�0� ST �T
�!�ST −K
dST

= e−rT
∫ 


0

p�S0�0� ST �T
��ST −K
dST

= e−rTp�S0�0�K�T
� (1.231)

where p�S0�0�K�T
 is the risk-neutral probability density that the stock price ST equals K
at time t = T , conditional to its equaling S0 at initial time t = 0. This result basically tells

us that the price of an infinitely narrow butterfly spread is the price of a so-called Arrow–

Debreu security, i.e., the value of a security that pays one unit of account if the stock price

(i.e., the state) ST = K is attained at maturity. One concludes that knowledge of the prices

of European calls at all strikes is equivalent to the knowledge of the risk-neutral transition

probability density p�S0�0� ST �T
 for all ST . Notice, though, that this does not uniquely

identify the price process under the risk-neutral measure because all possible transition

probabilities p�St� t�K�T
 for any t > 0 are not uniquely determined.13 By recognizing that

equation (1.227) is in fact a representation of the finite difference for the second derivative,

we obtain from the last equation

�2C0�S0�K�T


�K2
= e−rTp�S0�0�K�T
� (1.232)

We will arrive at this equation again in Section 1.13 when we discuss the Black–Scholes

partial differential equation and its dual equation.

Other common portfolios of trades include the following.

• Covered calls consist of a long position in the underlying and a short position in a

call, typically struck above the spot at the contract inception. This position is meant to

trade potential returns above the strike at future time for the option price. The pay-off

at the option maturity is

ST − �ST −K
+� (1.233)

• Bull spreads are option spread positions consisting of one long call struck at K1 and

one short call struck at K2 with payoff function

�ST −K1
+− �ST −K2
+� (1.234)

K1 <K2. This portfolio is designed to profit from a rally in the price of the underlying

security.

13There are in general a variety of models involving jumps, stochastic or state-dependent volatility, or a combi-

nation of all that result in the same prices for European options but yield different valuations for path-dependent

pay-offs.
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• Bear spreads are option spread positions in one short put struck at K1 and one long

put struck at K2 with payoff function

−�K1−ST 
++ �K2−ST 
+� (1.235)

K1 <K2. This portfolio profits from a decline in price of the underlying security.
• Digitals obtain in the limit that �K2−K1
→ 0 in a spread option with positions scaled

by the strike spread �K2−K1

−1. A digital is also called a binary. For instance, the

pay-off of a bull digital (or digital call) is a unit step function obtained when such a

limit is taken in a bull spread with �K2−K1

−1 long positions in a call struck at K1

and �K2−K1

−1 short positions in a call struck at K2, with K1 <K2:

��ST −K
=
{
1 if ST ≥ K

0 otherwise
� (1.236)

The bear digital (or digital put) obtains similarly by considering the limiting case of

the bear spread, and the pay-off is ��K−ST 
= 1−��ST −K
, giving 1 if ST < K and

zero otherwise.
• Wingspreads (also called Condors) consist of two long and two short positions in

calls. These are similar to butterfly spreads, except the body of the payoff function

has a flat maximum instead of a vertex; in formulas, the payoff function is

�ST −K1
+− �ST −K2
+− �ST −K3
++ �ST −K4
+� (1.237)

with K1 <K2 <K3 <K4 and K2−K1 = K4−K3.
• Straddles involve the simultaneous purchase or sale of an equivalent number of calls

and puts on the same underlying with the same strike and same expiration. The straddle

buyer speculates that the realized volatility up to the option’s maturity will be large

and cause large deviations for the price of the underlying asset. The pay-off is

�ST −K
++ �K−ST 
+� (1.238)

• Strangles are similar to straddles, except the call is struck at a different level than the

put; i.e.,

�ST −K1
++ �K2−ST 
+� (1.239)

with K1 >K2 or K1 <K2. The case K1 <K2 is an in-the-money strangle, and K1 >K2

is an out-of-the-money strangle, since the minimum payoff values attained are K2−K1

and zero, respectively.
• Calendar spreads are spread options where the expiration dates are different and the

strike prices are the same, for example:

�ST1
−K
+− �ST2

−K
+� (1.240)

with T1 �= T2. This option strategy is added here for completeness, although it differs

from all of the foregoing because the portfolio involves options of varying expiry dates.

Consider the problem of replicating a generic payoff function ��S
, 0< S<
, assumed

throughout to be twice differentiable. By virtue of equation (1.229), one can achieve repli-

cation by means of positions in infinitely narrow butterfly spreads of all possible strikes.
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A perhaps more instructive replication strategy involves positions in the underlying stock,

a zero-coupon bond and European call options, of all possible strikes and fixed expiration

time T. Assuming ��0
 �′�0
 exist, the formula is

��S
= ��0
+�′�0
S+
∫ 


0

n�K
CT�S�K
dK� (1.241)

n�K
dK represents the size of the position in the call of strike K. The function n(S) is related
to the payoff function and can be evaluated by differentiating equation (1.241) twice:

�′′�S
=
∫ 


0

n�K
��S−K
dK = n�S
� (1.242)

Here we make use of the identity

�2

�S2
�S−K
+ = �2

�K2
�S−K
+ = ��S−K
� (1.243)

As shown in Problem 3 of this section, equation (1.241) can be derived via an integration-

by-parts procedure. The conclusion we can draw is that if calls of all strikes are available, the

arbitrage-free price f0 = f0�S0� T
 at time t = 0 of a contingent European claim with payoff

��ST 
 at maturity t = T is

f0 = ��0
Z0�T
+�′�0
S0+
∫ 


0

�′′�K
C0�S0�K�T
dK� (1.244)

Besides the basic assumption that asset prices satisfy equation (1.205), it is crucial to

point out that the foregoing replication formulas follow without any assumption on the model

of the underlying stock motion; i.e., the replication equations are also true by assuming a

stochastic process of a more general form that includes the lognormal model as a special case.

Moreover, these equations can be extended to apply to a payoff ��S
 defined on a region

S ∈ 	S0� S1
, where S0, S1 may be taken as either finite or infinite. Specifically, let us consider

the space 	S0� S1
, then, using the delta function integration property14 and assuming ��S0
,
�′�S0
 exist, one can derive

��S
= ��S0
+�′�S0
�S−S0
+
∫ S1

S0

�′′�K
�S−K
+ dK� (1.245)

The discretized form of this formula reads

��S
≈ ��S0
+�′�S0
�S−S0
+
N∑
i=1

�%Ki
�
′′�Ki
�S−Ki
+� (1.246)

where Ki are chosen as S0 < K1 < K2 < · · · < KN < S1. Let us assume that the strikes are

chosen as equally spaced, %Ki = Ki −Ki−1 = %K. Hence, the replication consists of a cash

position of size ��S0
−�′�S0
S0, a stock position of size �′�S0
, and N call positions of

size �%Ki
�
′′�Ki
 in calls struck at Ki. In most practical cases, this formula actually offers a

more accurate discrete representation than the analogous form obtained from discretizing the

integral in equation (1.241). This is especially the case when considering a pay-off whose

nonzero values are localized to a region 	S0� S1
 for finite S1 or to a region 	S0�

, with S0 > 0.

14Here one uses the general property
∫ S+�

S−�
��S−K
��K
dK = ��S
 for any real constants ��� > 0.
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This is the situation for pay-offs of the general form #�S�X
1�, for some function #�S�X

with strike X> 0. Here 1� is the indicator function having nonzero value only if condition �
is satisfied. If � is chosen as the condition S > X, then 1S>X = ��S−X
. The plain European

call pay-off obtains with the obvious choice #�S�X
 = S−X. It should also be noted that

an alternate replication formula involving puts at various strikes (instead of calls) is readily

obtained in a manner similar as before or by a simple application of put-call parity (see

Problem 6), giving

��S
= ��S1
+�′�S1
�S−S1
+
∫ S1

S0

�′′�K
�K−S
+ dK� (1.247)

assuming that ��S1
, �
′�S1
 exist.

Note that these formulas assume that the payoff function is well behaved at either the

lower endpoint or the upper endpoint. A formula that is valid irrespective of whether the

payoff function is singular at either endpoint can be obtained by subdividing the interval

	S0� S1
 into two regions: a lower region 	S0� S̄
 and an upper region 	S̄� S1
 for any S̄ with

S0 < S̄ < S1. In the lower region we use puts, while calls are used for the upper region. In

particular, via a straightforward integration-by-parts procedure one can derive (see Problem 7)

��S
=��S̄
+�′�S̄
�S− S̄
+
∫ S̄

S0

�′′�K
�K−S
+ dK+
∫ S1

S̄
�′′�K
�S−K
+ dK� (1.248)

One is then at liberty to choose S̄, which acts as a kind of separation boundary for whether calls
or puts are used. Note that in the limit S̄→ S0 the formula reduces to that in equation (1.245),

with only calls being used, while the opposing limit S̄→ S1 gives equation (1.247), with only

puts used for replication. A similar approximate discretization scheme as discussed earlier

may be used for these integrals, giving rise to a replication in terms of a finite number of calls

and puts at appropriate strikes. This last formula may hence prove advantageous in practice

when liquidity issues are present. In particular, this replication can be exploited to better

balance the use of available market contracts that are either in-the-money or out-of-the-money

puts or calls.

We now give some examples of applications of the foregoing replication theory.

Example 1. Exponential Pay-Off.

As a first example, let

��S
= �eS−X −1
+ = 	eS−X −1
��S−X
=

⎧⎪⎨⎪⎩
eS−X −1� S ≥ X

0� S < X�

(1.249)

One can readily verify that this payoff function can be exactly replicated using the right-

hand side of either equation (1.241) or equation (1.245) with S1 = 
. Using ��X
 = 0,

�′�K
=�′′�K
= eK−X (for K>X), and adopting the replication formula in equation (1.246)

with S0 = X and any S1 > X gives

��S
≈ S−X+
N∑
i=1

wi�S−Ki
+� (1.250)

with call positions (i.e., weights) wi = �%K
eKi−X and strikes Ki = X+ i %K. Note that one

may also use slightly different subdivisions, all of which converge to the same result in the
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FIGURE 1.4 Rapid convergence of the static replication of the exponential pay-off defined in equa-

tion (1.249) (in the region 	X�X+L
 with X = 10�L= 3) using equation (1.250) with a sum of (a) two

calls with K1 = 10�75, K2 = 12�25 versus (b) four calls with K1 = 10�375, K2 = 11�125, K3 = 11�875,
K4 = 12�625.

limit of infinitesimal spacing %K → 0. Figure 1.4 partly shows the result of this replication

strategy in practice. Nearly exact replication is already achieved with only eight strikes.

Example 2. Sinusoidal Pay-Off.

Consider the sinusoidal pay-off

��S
= sin

(
��S−X


L

)
1X≤S≤X+L� X�L > 0� (1.251)

The choice of strikes Ki = X+ iL/N , i = 1� � � � �N , with S0 = X and S1 = X+L, within
equation (1.246) gives

��S
≈ �

L
�S−X
+

N∑
i=1

wi�S−Ki
+� (1.252)

where wi = −��2/NL
 sin�i�/N
. Figure 1.5 shows the convergence using this replication

strategy.

1
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FIGURE 1.5 A comparison of three replication curves and the exact sine pay-off defined in equa-

tion (1.251) (in the region 	X�X+L
 with X = 10�L= 3) with N = 4, N = 8, and N = 12 short calls, a

long position in the stock, and a short cash position using equation (1.252). With N = 12 the replication

is already very accurate.
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Example 3. Finite Number of Market Strikes.

In realistic applications there typically is only a select number of strikes available in the

market, so the trader has no control over the values of Ki to be used in the replication

strategy. In this situation the set of calls (puts) with strikes Ki, i = 1� � � � �N , is already

given (i.e., preassigned) for some fixed N, and the spacing between strikes is not necessarily

uniform. A solution to this problem is to consider a slight variation to equation (1.246) and

write the finite expansion

��S
≈ w−1+w0S+
N∑
i=1

wi�S−Ki
+� (1.253)

The coefficient w−1 gives the cash position, while the weight w0 gives the stock position,

and the weights wi give the positions in the calls struck at values Ki. The goal is to find the

positions wi providing the best fit, in the linear least squares sense, as follows. By subdividing

the stock price space 	S0� S1
 into M interval slices S�j
, with S�j
 < S�j+1
, j = 1� � � � �M ,

the N + 2 positions wi can be determined by matching the approximate payoff function on

the right-hand side of equation (1.253) to the value of the exact payoff function ��S�j

 at

these M stock points. This leads to a linear system of M equations in the N + 2 unknown

weights wi:

��S�j

= w−1+w0S
�j
+

N∑
i=1

wi�S
�j
−Ki
+� j = 1� � � � �M� (1.254)

One can always make the choice M ≥N +2 so that there are at least as many equations as

unknown weights. A solution to this system can be found within the linear least squares sense,

giving the wi. This technique is fairly robust and also offers a rapidly convergent replication.

The reader interested in gaining further experience with the actual numerical implementation

of this procedure as applied to logarithmic pay-offs is referred to the numerical project in

Part II of this book dealing specifically with the replication of the static component of variance

swap contracts.

Problems

Problem 1. A particular representation of the Dirac delta function ��x
 is given by the limit

! → 0 of the sequence of functions f!�x
 = �1/!2
�!− 
x

+. Using this fact, demonstrate

that the butterfly spread pay-off defined in equation (1.228) gives the Dirac delta function

��ST −K
 in the limit !→ 0.

Problem 2. Consider the bull spread portfolio with maximum pay-off normalized to unity:

CT�S�K+ !
−CT�S�K


!
� (1.255)

CT�S�K
= �S−K
+. Compute the limit !→ 0 and thereby obtain the pay-off of a bull digital.

Problem 3. Show that under suitable assumptions on the function � [i.e., ��0
 and �′�0

exist] we have ∫ 


0

�′′�K
�S−K
+ dK = ��S
−�′�0
S−��0
� (1.256)

hence verifying equation (1.241). For this purpose use integration by parts twice, together

with the property in equation (1.243) as well as the identity

�

�S
�S−K
+ = ��S−K
� (1.257)
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where ��x
 is the Heaviside unit step function having value 1, or 0 for x ≥ 0, or x < 0,

respectively. Note that the derivative of this function gives the Dirac delta function.

Problem 4. Demonstrate explicitly that the pay-offs of Examples 1 and 2 of this section

satisfy equation (1.245) with S0 = X, S1 = X+L, L > 0.

Problem 5. Assume that calls of all strikes are available for trade and have a known price.

Express the present value of the log payoff ��ST 
= log
ST+a

S0
, with constant a> 0, in terms of

call option prices of all strikes K> 0. Find a similar expression in terms of put option prices.

Problem 6. Apply equation (1.241) to a call payoff ��S
 = �S−X
+, with constant X, to
obtain the put-call parity relation

�S−X
+ = S−X+ �X−S
+� (1.258)

for all S > 0. In deriving this result, the property in equation (1.243) is useful. Now make

use of the right-hand side of this put-call parity formula into equation (1.245) and integrate

by parts to arrive at equation (1.247).

Problem 7. Consider the interval S ∈ 	S0� S1
. Integrate by parts twice while using the general
properties stated earlier for the functions ��x
, �x
+, and the delta function ��x
 to arrive at

the identities∫ S̄

S0

�′′�K
�K−S
+dK = ��S
1S0<S<S̄ −��S̄
��S̄−S
+�′�S̄
�S̄−S
+ (1.259)

and ∫ S1

S̄
�′′�K
�S−K
+dK = ��S
1S̄≤S<S1

−��S̄
��S− S̄
−�′�S̄
�S− S̄
+ (1.260)

where 1
 is the indicator function having unit value for the domain 
 and zero otherwise.

Add these two expressions to finally obtain equation (1.248).

Problem 8. Using risk-neutral valuation, i.e., equation (1.166), derive the Black–Scholes

pricing formula for the price of a European digital call and that of a digital put struck at K with

time to maturity T. For simplicity assume geometric Brownian motion with constant interest

rate and volatility. Interpret the meaning of the digital option prices in terms of the price of a

standard call. Hint: The derivation of the European digital call boils down to computing the

risk-neutral probability P�ST ≥ K
, where the algebraic steps are similar to what is used to

derive a standard call price.

Problem 9. Derive the Greeks %, & , and vega for a European digital call.

1.9 Continuous-Time Financial Models

In this section, we introduce the basic concepts in continuous-time finance. Derivative claims

are structured as contracts written on underlying assets that can be used as hedging instru-

ments. An elegant mathematical structure underlying these financial concepts is reviewed in

this section.

In perfect-markets models, a basic asset price process is given by a money-market account
on which we can deposit and out of which we can borrow without limits. The value at time

t of one dollar deposited in a money-market account at initial time t = 0 with continuously

compounded interest up to time t, is denoted by Bt.
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Definition 1.10. Money-Market Account. Assuming continuous compounding, a money-
market account is an asset price process Bt that is monotonically increasing in time, has zero
volatility, and follows an equation of the form

dBt = rtBt dt� (1.261)

where rt is a stochastic process that is positive at all times.15 By integrating equation (1.261)
we find the stochastic integral representation

Bt = e
∫ t
0 rsds� (1.262)

The instantaneous rate (or short rate) rt is assumed positive at all times. This is a way

to implicitly account for an important restriction: If interest rates were negative, an arbitrage

strategy would be to borrow money at negative interest and hold the cash in a safety deposit

instead of in an interest-bearing account. Assuming that security costs to store money in a

safety deposit are negligible, the existence of such a strategy constrains interest rates to stay

positive.

Definition 1.11. Financial Model: Continuous Time. A continuous-time financial model
� = �	t�A

1
t � � � � �A

n
t 
 is given by a filtration 	t and n price processes as basic hedging

instruments:

�A1
t � � � � �A

n
t 
� t ∈�+� (1.263)

The value Ai
0 can be used to model the current (or spot) price of the ith asset if current time

is set as t = 0 and the random variable Ai
t models the price of the ith asset at any time t > 0.

Definition 1.12. Diffusion Pricing Model. In a diffusion model the price processes of all
hedging instruments (or securities) obey stochastic differential equations of the form

dAi
t

Ai
t

= �Ai

t dt+
M∑

�=1

�Ai

��t dW
�
t � (1.264)

Here, the dW�
t ��= 1� � � � �M , are independent Brownian motions (or Wiener processes)

with E	dW�
t 
 = 0 and E	dW�

t dW
�
t 
 = ��� dt. The functions �Ai

��t are so-called lognormal
volatilities of the ith asset price process �Ai

t
t≥0 with respect to the �th Brownian motion
(i.e., with respect to the �th risk factor), and the functions �Ai

t are lognormal drifts of the ith
asset price process. These are generally functions of the asset values A1

t � � � � �A
n
t and time t.

Note: We can assume further that one of the assets, e.g., A1
t , is the money-market account,

which is the only asset characterized by having zero volatility; in this case �A1

��t = 0 for all

�= 1� � � � �M .

Definition 1.13. Adapted Process. A stochastic process �t is adapted to the filtration 	t if
�t is a random variable in the probability space generated by 	t. In other words, the value
of �t depends only on the values taken by the paths �A1

s � � � � �A
n
s 
 for 0 ≤ s ≤ t, as they were

realized up to time t, i.e., �t is 	t-measurable.

15Technically, Bt is of zero quadratic variation because the differential contains no term with dWt; however, rt
can generally be stochastic.
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Definition 1.14. Stopping Time. A stopping time  ∈ �0� T
, for any finite time T, is an
	t-measurable positive random variable such that the time event �t =  �, with probability
P� <

= 1, corresponds to a decision to stop and is determined entirely by the information
set 	t up to time t =  . That is, given the filtration 	t we know whether or not  ≤ t.

Note that for asset-pricing purposes the information set 	t basically derives from the set

of all asset price paths �A1
t � � � � �A

n
t 
, 0 ≤ t ≤  . This rather technical definition and abstract

concept of a stopping time is best illustrated with examples. For instance, let xt be some

real-valued diffusion process (e.g., a Wiener process) and let 	a� b
 ⊂ � be a given fixed

finite interval. Assume initially x0 � 	a� b
 at time t = 0 and allow the process to evolve in

time t > 0 up to time T. The random variable defined by

 =
{
min�t� such that xt ∈ 	a� b
�� if 0< t < T

T� otherwise
(1.265)

is then a stopping time and corresponds to the first entry time t < T of the process xt into

the interval [a,b]. Some basic useful properties of stopping times follow readily, such as

additivity: If  1 and  2 are two stopping times in a given time interval, then  =  1+ 2 is also
a stopping time and, moreover, min� 1�  2
 and max� 1�  2
 are also stopping times. In the

pricing of European-style options the expiration time is an example of a stopping time that

is actually known at contract inception. In contrast, for American-style options the expiration

period (or lifetime of the contract) is still finite, yet there is the added freedom of early

exercise. As we shall see in Section 1.14, the early-exercise time is actually an example of an

optimal stopping time that is (dynamically) determined by the level of the asset or stock price

at the time of early exercise. Other examples of stopping times and derivative instruments

are given by barrier contracts, for which the pay-off depends on whether or not a certain

price process crosses a given barrier in the future. Suppose H is a fixed number, and define

 as the time t =  at which At = H for the first time, subject to the initial condition A0.

Then  is a stopping time. Cash flows for barrier options can occur at the time the barrier

is crossed or at maturity. A counterexample to a stopping time is the time  ′, defined as the

last time before a given maturity date T for which A ′ =H .  ′ is not a stopping time because

knowledge about when  ′ occurs requires information on the full path xt for all t ∈ 	0� T
 and
in particular for times after  ′ itself.

Definition 1.15. Derivative instrument.16 A derivative instrument, or contingent claim, is
a contractual agreement between two parties who agree to exchange a cash flow stream in
the future, where the cash flow amounts are adapted processes and the timings are stopping
times in the given financial model. A discrete cash flow stream is modeled by a sequence of
pairs � j� cj
, j = 1� � � � �m, where the  j are stopping times and the cj are cash flow amounts
depending on the price processes �A1

t � � � � �A
n
t 
 up to time  j . Continuous cash flow streams

are modeled by more general adapted processes �t such that d�t is the cash flow occurring
in the time interval 	t� t+dt
. In the particular case of a discrete cash flow stream � j� cj
,
 j =  1� � � � �  m < t, the continuous-time representation ct is given by∫ t

0

d�t =
m∑

j=1

cj� (1.266)

16 It should be clearly understood that we are throughout assuming all claims or assets are nondefaultable; e.g., the

money-market account is assumed nondefaultable. The definition must be modified in the case of defaultable

(credit) derivatives, where pricing depends on time of default and recovery, quantities not directly observable from

market-traded instruments.
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An example of a continuous cash flow stream is given by exchange-traded futures and

options contracts. These contracts have the same final pay-off as forward and ordinary option

contracts. However, to reduce credit risk to a minimum, exchanges ask investors to hold a

margin account and mark-to-market gains and losses on a daily basis based on realized prices

or to unwind the position. This results in a daily stream of cash flows that can be modeled as

continuous.

Definition 1.16. Self-Financing Trading Strategy. A self-financing trading strategy in the
hedging instruments A1

t � � � � �A
n
t is a zero cash flow–replicating strategy for all time t ∈ 	0� T
.

That is, this strategy consists of a portfolio of positions �i
t in the assets Ai

t, with value
Vt =

∑n
i=1 �

i
tA

i
t, where the �i

t , i = 1� � � � � n, are adapted processes such that at all times
t ∈ 	0� T
 we have

n∑
i=1

�Ai
t +dAi

t
d�
i
t = 0� (1.267)

The meaning of the self-financing condition is that the cash flow d�t resulting at time

t+dt are reinvested in the underlying assets by adjusting the positions �i
t+dt by purchasing or

selling the corresponding hedging instruments at the prices Ai
t+dAi

t at an infinitesimally later

time t+dt (i.e., positions are readjusted only after the prices have changed during time dt). In
this sense the positions are adapted, i.e., nonanticipative with respect to the stochastic changes

in the asset prices. The infinitesimal change in the portfolio value Vt of a self-financing

strategy is only due to changes in the prices of the underlying instruments since there are no

allowed additional cash inflows or outflows after initial time; hence,17

dVt =
n∑

i=1

�i
tdA

i
t� (1.268)

In integral form this is written as

Vt = V0+
n∑

i=1

∫ t

0

�i
sdA

i
s� (1.269)

Using Itô’s lemma, the change in portfolio value, dVt = Vt+dt −Vt, must also satisfy

dVt =
n∑

i=1

[
�i
tdA

i
t +Ai

td�
i
t + �d�i

t
�dA
i
t

]
� (1.270)

Equating these two expressions then gives the self-financing condition rewritten in the form

contained in equation (1.267).

Definition 1.17. Self-Financing Replicating Strategy. A self-financing replicating strategy
(or perfect hedge) in the hedging instruments A1

t � � � � �A
n
t that replicates a given cash flow

stream d�t, where �t is a given contingent claim at time t in some time interval t ∈ 	0� T
,
is defined as a family of adapted processes �i

t , i = 1� � � � � n, such that at all times t ∈ 	0� T

we have

�t = �0+
n∑

i=1

∫ t

0

�i
s dA

i
s� (1.271)

17Note: We assume throughout that the assets do not pay dividends, although in the case of dividends the

appropriate formulas extend in a simple manner.
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or, equivalently in differential form,

d�t =
n∑

i=1

�i
t dA

i
t� (1.272)

In the case of a European-style option with payoff ��ST 
 at time T, where St is the

underlying stock price process, a self-financing replication strategy in the stock and the

money-market account, with value �1
t Bt +�2

t St at time t, would satisfy

Bt d�
1
t + �St +dSt
d�

2
t = 0 (1.273)

for all times t ∈ 	0� T
. [Note that the term dBt = rtBt dt vanishes since it gives rise to a term

of O��dt
d�1
t 
, i.e., of order greater than dt.] At time T, the position is unwound so that the

payout ��ST 
 [i.e., �T =��ST 
 in this case] is generated; i.e., the portfolio has terminal value

�1
TBT +�2

TST = ��ST 
� (1.274)

In the case of a barrier or American option, where the payout occurs at a stopping time

0 ≤  ≤ T , the equation (1.273) is valid until time  , at which point we have

B �
1
 +S �

2
 = ��S 
� (1.275)

One of the main problems in pricing theory is whether or not the cash flow streams associ-

ated with a contingent claim can be replicated by means of a self-financing trading strategy. If

a self-financing trading strategy exists and reproduces all the cash flows of a given contingent

claim, then the present value of the cash flow stream can (uniquely in case of no arbitrage)

be identified as the cost of setting up the self-financing trading strategy. The question of

whether such a self-financing strategy exists relates to attainability and market completeness.

The practical implementation of trading strategies is limited by the existence of transaction

costs, by liquidity effects, which pose restrictions on the amounts of a given instrument that

can be traded at the posted price, and by the delays with which information reaches market

participants. To a first approximation, these effects can be taken into account implicitly by

assuming that there are no imperfections. A key role is played by the condition of absence
of arbitrage, which is stated next and which implies that all portfolios with the same payoff

structure have the same price. Asking for absence of arbitrage is a way of accounting for

finite market liquidity since, in fact, if an asset had two different prices, trades to exploit the

opportunity would cause the prices to realign.

Definition 1.18. Arbitrage: Continuous Time. The self-financing trading strategy ��1
t � � � � �

�n
t 
, 0 ≤ t ≤ T , in the hedging assets �A1

t � � � � �A
n
t 
 is an arbitrage strategy if either of the

following two conditions holds.
A1. The portfolio value process

Vt =
n∑

i=1

�i
tA

i
t (1.276)

is such that V0 < 0 and with probability P�VT ≥ 0
= 1.
A2. The value process Vt is such that V0 = 0 and P�VT > 0
 > 0 with P�Vt ≥ 0
= 1 for all
t ∈ 	0� T
.

In plain language, condition A2 says that an arbitrage opportunity is a self-financed

strategy that can generate a profit at zero cost and with no possibility of a loss at any time

during the strategy.
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Typically, when solving the replication problem for a cash flow stream, the current price

of the stream is not known, a priori. Knowledge of the cash flow stream, however, is sufficient

because if a trading strategy replicates the cash flows, in virtue of the hypothesis of absence

of arbitrage, the value of this strategy at all times yields the price or value process Vt. Next

we consider a couple of examples of replication (or hedging) strategies. One is static in time;

the other is dynamic.

Example 1. Perpetual Double Barrier Option.

Suppose there are no carry costs such as interest rates or dividends for holding a posi-

tion in the stock. Consider a perpetual option with two barriers: a lower barrier at stock

value L and an upper barrier at H, with L < H . If the stock price touches the lower barrier

before it touches the upper barrier, the holder receives RL dollars and the contract termi-

nates. Otherwise, whenever the upper barrier is hit first, the holder receives RH dollars and

the contract terminates. The problem is to find the price and a hedging strategy for this

contract.

To solve this problem, let  L be the stopping time for hitting the lower barrier and  H
be the stopping time for hitting the higher barrier. The stopping time  at which the option

expires is the minimum of these times,

 =min� L�  H
� (1.277)

If one considers a replicating portfolio ft = aSt +b at any time t, then the barrier levels give

rise to two equations:

aH+b = RH� aL+b = RL� (1.278)

corresponding to the portfolio value (i.e., payout) for hitting either barrier. The value f of

the perpetual double barrier contract evaluated at the stopping time t =  is

f = aS +b� (1.279)

Solving the system in equation (1.278) for the portfolio weights a and b, we find that

a= RH −RL

H−L
� b = RH −aH� (1.280)

Absence of arbitrage therefore implies that the price process followed by ft is given by the

value of the portfolio aSt +b that replicates the cash flows.

Example 2. Dynamic Hedging in the Black–Scholes Model

Consider the Black–Scholes model with a stock price following geometric Brownian motion,

dSt

St

= � dt+� dWt� (1.281)

In this model, the price at time t of a call struck at K and maturity at calendar time T > t
is given by the function CBS�St�K�T − t��� r
 in equation (1.217). Let’s assume that in this

economy interest rates are constant and equal to r.
One can show that the pay-off of the call can be replicated by means of a self-financing

trading strategy that costs Ct = CBS�St�K�T − t��� r
 to set up at calendar time t. This
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strategy involves two adapted processes at and bt for the hedge ratios that give the positions

at calendar time t in two assets: the stock of price St and a zero-coupon bond maturing at

time T of price Zt�T
= e−r�T−t
. Namely,

Ct = atSt +btZt�T
� (1.282)

To show this, we need to find the two processes at and bt. Let us note that self-financing

condition (1.267) in this case reads

�St +dSt
dat +Zt�T
dbt = 0� (1.283)

By the differential of equation (1.282) and using the self-financing condition we find

dCt = at dSt + rbtZt�T
dt� (1.284)

On the other hand, applying Itô’s lemma (in one dimension) to the price process Ct (considered

as function of t and St) we find

dCt =
(
�CBS

�t
+ �2S2

2

�2CBS

�S2

)
dt+ �CBS

�S
dSt�

where S = St. By equating coefficients in dt and dSt with the previous equation we find

at =
�CBS

�S
(1.285)

and

rbtZt�T
=
�CBS

�t
+ �2S2

2

�2CBS

�S2
� (1.286)

Solving for bt from replication equation (1.282) gives

bt = Zt�T

−1�Ct −atSt
� (1.287)

Substituting bt as given by equation (1.287), as well as at from equation (1.285) into

equation (1.286), we arrive at the Black–Scholes partial differential equation in current time

t and spot price S = St:

�CBS

�t
+ rS

�CBS

�S
+ �2S2

2

�2CBS

�S2
− rCBS = 0 (1.288)

This is precisely the equation satisfied by the function CBS�St�K�T − t��� r
 given by equa-

tion (1.217) with T → T − t.
Notice that the parameter � in the equation for the stock price process (1.281) appears in

neither the Black–Scholes formula, the Black–Scholes equation, nor the hedge ratios at and

bt. Section 1.10 provides a more general explanation of this very notable simplification.

1.10 Dynamic Hedging and Derivative Asset Pricing
in Continuous Time

In this section, we present the main theorem for pricing derivative assets within the continuous-

time framework.
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Theorem 1.4. Fundamental Theorem of Asset Pricing (Continuous-Time Case). Part I.
Consider a diffusion continuous-time financial model � = �	t�A

1
t � � � � �A

n
t 
, where the hedg-

ing instruments are assumed to satisfy a diffusion equation of the form (1.264), i.e.,

dAi
t

Ai
t

= �Ai

t dt+
M∑

�=1

�Ai

��t dW
�
t � i= 1� � � � � n� (1.289)

where dW�
t are understood to be standard Brownian increments with respect to a specified

probability measure. Also, suppose there exists a money-market account Bt with

dBt = rtBt dt� (1.290)

Finally, suppose there are no arbitrage opportunities. Then:
(i) Under all equivalent probability measures, there exists a family of adapted processes

q��t��= 1� � � � �M (one for each risk factor), such that, for any asset price process At obeying
an equation similar to equation (1.289) with drift �A

t and volatilities �A
��t, the drift term is

linked to the corresponding volatilities by the equation

�A
t = rt +

M∑
�=1

q��t�
A
��t� (1.291)

where q��t are independent of the asset A in question.

In finance parlance, the adapted processes q��t are known as the price of risk for the �th
risk factor (or �th Brownian motion). Note that this result applies to any asset obeying a

diffusion process: In particular, the drifts �Ai

t and volatilities �Ai

��t of the base asset prices Ai
t

are themselves also linked by an equation similar to equation (1.291), with q��t independent

of the prices Ai
t.

Definition 1.19. Numeraire Asset. Any asset gt whose price process is positive, in the sense
that gt > 0 for all t, is chosen as the numeraire for pricing. That is, gt is an asset price
relative to which the value of all other assets At are expressed using the ratio At

gt
.

Theorem 1.5. Fundamental Theorem of Asset Pricing (Continuous-Time Case). Part II.
Under the hypotheses in Part I of the theorem, we have the following: (ii) If gt is a numeraire
asset, then there exists a probability measure Q(g) for which the price At at time t of any
attainable instrument without cash flows up to a stopping time  > t is given by the martingale
condition

At

gt
= E

Q�g

t

[
A 

g 

]
� (1.292)

Under the measure Q(g) the prices of risk in equation (1.291) for the �th factors are given
by the volatilities of gt for the corresponding �th factors:

qg
��t = �g

��t� (1.293)

Note that we are throughout assuming that the contingent claim or derivative instrument

to be priced is attainable, meaning that one can find a self-financing replicating strategy that

exactly replicates the cash flows of the claim. If one also assumes that the financial model

satisfies market completeness, then every contingent claim or cash flow stream is assumed

attainable.
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Definition 1.20. Pricing Measure: Continuous Time. Given a numeraire asset price pro-
cess gt, the pricing measure associated with g is the martingale measure Q(g) for which
pricing formula (1.292) holds for any asset price process At.

Definition 1.21. Risk-Neutral Measure. Assuming continuous compounding, the risk-
neutral measure Q(B) is the martingale measure with the money-market account as numeraire
asset gt = Bt = e

∫ t
0 rsds�

Theorem 1.6. Fundamental Theorem of Asset Pricing (Continuous-Time Case). Part III.
Under the hypotheses in Part I of the theorem, we have the following: (iii) Under the risk-
neutral measure Q(B) all the components of the price-of-risk vector, qg

��t, � = 1� � � � �M ,
vanish, and the drift �A

t of any asset price At at time t is equal to the riskless rate rt. The
price process for any attainable instrument without cash flows up to any stopping time  > t
is given by the expectation at time t:

At = E
Q�B

t

[
e−

∫  
t ruduA 

]
� (1.294)

(iv) Any attainable price process At can be replicated by means of a self-financing trading
strategy with portfolio value Vt = �

�0

t Bt +

∑n
i=1 �

�i

t Ai

t in the base assets Ai
t and in the

money-market account Bt:

dAt = dVt = �
�0

t rtBt dt+

n∑
i=1

�
�i

t dAi

t� (1.295)

where the positions ��i

t satisfy the self-financing condition

Bt d�
�0

t +

n∑
i=1

�Ai
t +dAi

t
d�
�i

t = 0� (1.296)

Proof.
(i). Assume no arbitrage and consider a self-financing trading strategy, with components

�
�1

t � � � � � �

�n

t as adapted positions in the family of base assets A1

t � � � � �A
n
t . Then

n∑
i=1

�Ai
t +dAi

t
d�
�i

t = 0 (1.297)

holds. This strategy has portfolio value at time t given by

�t =
n∑

i=1

�
�i

t Ai

t� (1.298)

This strategy is instantaneously riskless if the stochastic component is zero, i.e., d�t = rt�t dt.
Given our assumptions, a riskless strategy exists and can be explicitly constructed as follows.

Using the self-financing condition in equation (1.297) and Itô’s lemma for the stochastic

differential d�t we obtain the infinitesimal change in portfolio value in time 	t� t+dt
:

d�t =
n∑

i=1

[
�Ai

t +dAi
t
d�

�i

t + �

�i

t dAi

t

]= n∑
i=1

�
�i

t dAi

t� (1.299)
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Due to the assumption of no arbitrage, the rate of return on this portfolio over the period 	t� t+
dt
 must equal the riskless rate of return on the money-market account, i.e., d�t = rt�t dt.

18

Substituting equation (1.289) into the foregoing stochastic differential and setting the coeffi-

cients in all the stochastic terms dW�
t to zero gives

n∑
i=1

�Ai

��t�
�i

t Ai

t = 0� (1.300)

for all �= 1� � � � �M . Here the functions �Ai

��t are volatilities in the �th factor for each asset

Ai. This equation states that the �n-dimensional vector of components �
�i

t Ai

t is orthogonal

to the subspace of M vectors (labeled by � = 1� � � � �M) in �n having components �Ai

��t,

i= 1� � � � � n.
Absence of arbitrage also implies that the portfolio earns a risk-free rate, d�t = rt�tdt;

hence, setting the drift coefficient in the stochastic differential d�t to rt�t while using

equation (1.298) gives this additional condition:

n∑
i=1

��Ai

t − rt
�
�i

t Ai

t = 0� (1.301)

Here, the quantities �Ai

t are drifts for each ith asset. Hence equation (1.300) must imply

equation (1.301) for all arbitrage-free strategies satisfying the self-financing condition. Equa-

tion (1.301) states that the �n-dimensional vector of components �
�i

t Ai

t must be orthogonal

to the �n-dimensional vector with components ��Ai

t − rt
. This means that if the vector with

components �
�i

t Ai

t is orthogonal to theM vectors of components �Ai

��t, then it is also orthogonal

to the vector of components ��Ai

��t − rt
. From linear algebra we know that this is possible if

and only if the vector of components ��Ai

t − rt
 is a linear combination of the M vectors of

components �Ai

��t (i.e., is contained in the linear subspace spanned by the M vectors). Hence

for any given time t, we have

�Ai

t = rt +
M∑

�=1

q��t�
Ai

��t� (1.302)

with coefficients q��t independent of the asset A
i, for all i= 1� � � � � n. Since this is true for all

self-financing strategies and choices of base assets, this implies that the same relation must

follow for any asset At; namely, equation (1.291) obtains.

(ii) Let g be a numeraire asset. The measure Q(g) is specified by the condition in equa-

tion (1.292). At this point we make use of a previously derived result contained in equa-

tion (1.138). Applying that formula now to the quotient At/gt, where At satisfies an equation of

the form (1.264) (with Ai replaced by A) and the numeraire asset gt satisfies a similar equation,

dgt
gt

= �g
t dt+

M∑
�=1

�g
��t dW

�
t � (1.303)

18A simple argument shows that if the portfolio return is greater than rt , then an arbitrage strategy exists by

borrowing money at the lower rate rt at time t and investing in the portfolio until time t+dt. On the other hand, if

the portfolio return is less than rt , then an arbitrage strategy also exists by short-selling the portfolio at time t and
investing the earnings in the money-market account. Both strategies yield a zero-cost profit.
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immediately gives the drift component:

Et

[
d
At

gt

]
= At

gt

[
�A

t −�g
t −

M∑
�=1

�g
��t��

A
��t −�g

��t


]
dt (1.304)

= At

gt

M∑
�=1

�q��t −�g
��t
��

A
��t −�g

��t
dt� (1.305)

In the last equation we have used equation (1.291) for both gt and At. In order for the ratio

At/gt to be a martingale process for all (arbitrary) choices of the asset At, this expectation

must be zero. This is the case if and only if the process for the price of risk q�
t is related to

the numeraire asset gt, q��t = q
g
��t, as follows:

qg
��t = �g

��t� �= 1� � � � �M� (1.306)

That is, the prices of risk q�
t are equal to the volatilities of the numeraire asset for each

respective risk factor.

(iii) This is a particular case of (ii) and follows when money-market account Bt is chosen as

numeraire asset. Since dBt = rtBt dt, the prices of risk in this case are all zero, i.e., qB
��t = 0,

and therefore �A
t = rt for all asset price processes At. In particular, we have that

At = E
Q�B

t

[
A 

Bt

B 

]
= E

Q�B

t

[
A e

− ∫  
t rsds

]
� (1.307)

giving the result. Here we have used the fact that Bt at time t is a known (i.e., nonstochastic)

quantity that can be taken inside the expectation.

(iv). Consider the trading strategy with positions �
�i

t in the base assets Ai

t. A long position

in this trading strategy and a short position in the generic asset At is a riskless combination

that accrues at the risk-free rate. By adjusting the position in the money-market account �
�0

0

so that the trading strategy has the same value of asset A0 at initial time t = 0, the resulting

trading strategy will track the price process At for all times. This trading strategy is also

self-financing. In fact

dAt = d

(
�
�0

t Bt +

n∑
i=1

�
�i

t Ai

t

)

= �
�0

t rtBt dt+Bt d�

�0

t +

n∑
i=1

	�Ai
t +dAi

t
d�
�i

t + �

�i

t dAi

t
� (1.308)

Hence equation (1.295) obtains from equation (1.296). �

In summary, we observe that the asset pricing theorem is connected to the evaluation of

conditional expectations of martingales (i.e., relative asset price processes) within a filtered

probability space and under a choice of an equivalent probability measure (also called an

equivalent martingale measure). A measure is specified by the chosen numeraire asset g
obeying a stochastic price process of its own, given by equation (1.303). Given a numeraire

g, the relative asset price process At/gt, for a generic asset price At, is a martingale under

the corresponding measure Q(g). Equivalent martingale measures then arise by considering

different choices of numeraire assets. In particular, consider another numeraire asset, denoted

by g̃, with price process g̃t, and suppose that measure Q�g̃
 is equivalent to Q(g), then prices

computed under any two equivalent measures must be equal:

At = gtE
Q�g

t

[
AT

gT

]
= g̃tE

Q�g̃

t

[
AT

g̃T

]
� (1.309)
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Rearranging terms gives

E
Q�g

t

[
AT

gT

]
= g̃t

gt
E

Q�g̃

t

[
AT

g̃T

]
= E

Q�g̃

t

[
gT/g̃T
gt/g̃t

AT

gT

]
� (1.310)

Note that this holds true for an arbitrary random variable XT = AT/gT . We hence obtain the

general property under two equivalent measures:

E
Q�g

t

[
XT

]= �−1
t E

Q�g̃

t

[
XT�T

]
� (1.311)

where �t = gt/g̃t ≡
(

dQ�g


dQ�g̃


)
t

, t ∈ 	0� T
, is a Radon–Nikodym derivative of Q(g) with respect

to Q�g̃
 (with both measures being restricted to the filtration 	t). For t = T we write(
dQ�g


dQ�g̃


)
T

= dQ�g


dQ�g̃

. Choosing Xt = 1 in the foregoing equation shows that �t is also a martingale

with respect to Q�g̃
.
Let’s now fix our choice for one of the numeraires; i.e., let g̃t = Bt be the value process

of the money-market account so that Q�g̃
 = Q�B
 is the risk-neutral measure. Taking the

stochastic differential of the quotient process �t = gt/Bt gives

d�t

�t

= ��g
t − rt
dt+

M∑
�=1

�g
��t dW

�
t � (1.312)

Under the risk-neutral measure with dW�
t as Brownian increments under Q(B), this process

must be driftless so that we have �
g
t = rt. In particular, this martingale takes the form of an

exponential martingale,

�t =
gt
Bt

= exp

(
− 1

2

∫ t

0



�g
s 

2ds+

∫ t

0

�g
s ·dWs

)
� (1.313)

where 

�g
s 

2 = �g

s ·�g
s =

∑M
�=1��

g
��s


2 and �g
s · dWs =

∑M
�=1 �

g
��s dW�

s . At this point we

can implement the Girsanov theorem for exponential martingales, which tells us that the

�M -valued vector increment defined by

dWg
t =−�g

t dt+dWt (1.314)

is a standard Brownian vector increment under the measure Q(g). In the risk-neutral measure

the base assets must all drift at the same risk-free rate,

dAi
t

Ai
t

= rt dt+
M∑

�=1

�Ai

��t dW
�
t � i= 1� � � � n� (1.315)

Substituting for dWt using equation (1.314) into this equation and compacting to vector

notation gives

dAi
t

Ai
t

= �rt +�g
t ·�Ai

t 
dt+�Ai

t ·dWg
t � i= 1� � � � � n� (1.316)

This last equation is therefore entirely consistent with the formulation presented earlier in

terms of the prices of risk. In particular, equation (1.316) is precisely equation (1.289),
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wherein the Brownian increments are understood to be w.r.t. Q(g), with gt as an arbitrary

choice of numeraire asset-price process. From equation (1.316) we again see that the vector

of the prices of risk is qt =�
g
t . In financial terms, each component of qt essentially represents

the excess return on the risk-free rate (per unit of risk or volatility for the component risk

factor) required by investors in a fair market.

Example 1. Perpetual Double Barrier Option — Risk-Neutral Measures.

Reconsider the case of the perpetual double barrier option with zero interest rates discussed

previously. The pricing formula for ft is independent of the real-world stock price drift,

although this drift does in fact affect the real-world probability of hitting one barrier before

the other. Since interest rates vanish, no discounting is required, and the price process ft has
the following representation under the risk-neutral measure Q=Q�B
:

ft = EQ
t

[
f 
]
� (1.317)

In this case, the price process ft is a martingale under the risk-neutral measure because

interest rates are zero for all time and the value of the money-market account is constant, i.e.,

unity. Hence the martingale property gives

ft = RH ProbQ
[
S =H
St

]+RL ProbQ
[
S = L
St

]
� (1.318)

where the probabilities are conditional on the current stock price’s value St. These probabilities

of hitting either barrier must also sum to unity,

ProbQ
[
S =H
St

]+ProbQ
[
S = L
St

]= 1� (1.319)

Note that ft = aSt+b, where a and b are given by equations (1.280). Hence, the probability of
hitting either barrier under the risk-neutral measure can be found by solving equations (1.318)

and (1.319). Notice that these probabilities do not depend on the drift of the stock price under

the real-world measure.

Problems

Problem 1. Find explicit expressions for the preceding risk-neutral probabilities PL =
ProbQ

[
S = L
St

]
and PH = ProbQ

[
S =H
St

]
. Find the limiting expressions for the case that

H >> L (i.e., H → 
 for fixed L). What is the price of the perpetual double barrier for

this case?

1.11 Hedging with Forwards and Futures

Let At be an asset price process for the asset A. A forward contract, with value Vt at time t,
on the underlying asset A (e.g., a stock) is a contingent claim with maturity T and pay-off at

time T equal to

VT = AT −F� (1.320)

where F is a fixed amount. According to the fundamental theorem of asset pricing (FTAP), the

price of this contract at time t < T prior to maturity is equal to At −FZt�T
, where Zt�T
 is
the value at calendar time t of a zero-coupon (discount) bond maturing at time T. This can be
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seen in several ways. The first is the following. The payout AT can be replicated by holding

a position in the asset A at all times, while the cash payment F at time T is equivalent to

holding a zero-coupon bond of nominal F and maturing at time T. Alternatively, to assess

the current price Vt of the forward contract using FTAP of Section 1.10, we can evaluate the

following expectation at time t of the pay-off under the forward measure with gt = Zt�T
 as
numeraire, giving

Vt = Zt�T
E
Q�Z�T 


t 	AT −F
= At −FZt�T
� (1.321)

Here we used the facts that at maturity ZT�T
 = 1 and that E
Q�Z�T


t 	AT 
 = At/Zt�T
,

E
Q�Z�T


t 	F
 = F . The equilibrium forward price (at time t), denoted by Ft�A�T
, is the so-

called forward price such that the value Vt of the forward contract at time t is zero. Setting
Vt = 0 in equation (1.321), we find

Ft�A�T
=
At

Zt�T

� (1.322)

Let’s assume stochastic interest rates, i.e., a diffusion process for the zero-coupon bond

[satisfying equation (1.349) of Problem 1], as well as diffusion processes for the asset At

[satisfying equation (1.348) of Problem 1] and the equilibrium forward price satisfying

dFt�A�T


Ft�A�T

= �

F�A�T

t dt+�

F�A�T

t dWt� (1.323)

Then a relatively straightforward calculation using Itô’s lemma yields the following form for

the lognormal volatility of the forward price (see Problem 1 of this section):

�
F�A�T

t = �A

t −�
Z�T

t � (1.324)

and its drift

�
F�A�T

t = �A

t −�
Z�T

t −�

Z�T

t ��A

t −�
Z�T

t 
� (1.325)

where �
Z�T

t is the lognormal volatility of the zero-coupon bond price and �A

t that of the asset.

We note that the foregoing drift and volatility functions are generally functions of the

underlying asset price At, calendar time t, and maturity T. Moreover, these relationships hold

for any choice of numeraire asset gt. As part of Problem 1 of this section, the reader is also

asked to derive more explicit expressions for the drifts and volatilities of the forward price

under various choices of numeraire.

Definition 1.22. Futures Contract. Futures contracts are characterized by an underlying
asset of price process At and a maturity T. Let us partition the lifetime interval [0,T] in N
subintervals of length �t = T

N
. Let ti = i · �t be the endpoints of the intervals. The futures

contract with reset period �t is characterized by a futures price F ∗
ti
�A�T
 for all i= 0� � � � �N ,

and at all times ti the following cash flow occurs at time ti+1:

cti+1
= F ∗

ti+1
�A�T
−F ∗

ti
�A�T
� (1.326)

Furthermore, the futures price at time tN = T equals the asset price F ∗
T �A�T
 = AT , while

at previous times the futures price is set in such a way that the present value of the futures
contract is zero.
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Recall that under the risk-neutral measure Q(B), the price of risk is zero (i.e., the numeraire

gt is the money-market account Bt with zero volatility with respect to all risk factors —

�
g
��t = 0). Hence, according to equation (1.291) of the asset pricing theorem, all asset prices

At drift at the riskless rate �A
t = rt under Q(B):

dAt

At

= rt dt+
M∑

�=1

�A
��t dW

�
t � (1.327)

where we have assumed M risk factors or, in the case of one risk factor, we simply have

dAt

At

= rt dt+�A
t dWt� (1.328)

Proposition. In the limit as �t → 0, futures prices behave as (zero-drift) martingales under
the risk-neutral measure.

Proof. By definition, the futures price is such that the present value of a futures contract is

zero at all reset times t, and the cash flows at the subsequent times t+�t are given by the

random variable �F ∗
t �A�T
= F ∗

t+�t�A�T
−F ∗
t �A�T
, so the following condition holds under

the risk-neutral measure:

E
Q�B

t

[
�F ∗

t �A�T


Bt+�t

]
= 0� (1.329)

where we discount at times t+�t. Taking the limit �t → 0, gives B−1
t E

Q�B

t 	dF ∗

t �A�T

= 0.

Since Bt �= 0, the stochastic differential dF ∗
t �A�T
 has zero-drift terms for all t; i.e., F ∗

t �A�T


is a martingale under the measure Q(B), with E
Q�B

t 	dF ∗

t �A�T

= 0. �

The price spread between futures and forwards is given by

F ∗
t �A�T
−Ft�A�T
= E

Q�B

t

[
AT

]− At

Zt�T

� (1.330)

with F ∗
T �A�T
= FT�A�T
 (i.e., at maturity the two prices are the same). In Chapter 2 we shall

derive a formula for this spread based on a simple diffusion model for the asset and discount

bond. The topic of stochastic interest rates and bond pricing will be covered in Chapter 2.

However, we note here that when interest rates are deterministic (nonstochastic), where rt is a
known ordinary function of t, then the discount bond price is simply given by a time integral:

Zt�T
= exp�− ∫ T

t
rs ds
= Bt/BT . When interest rates are stochastic (i.e., nondeterministic),

as is more generally the case, then we can use equation (1.294) of the asset-pricing theorem,

for the case Zt�T
 as asset, to express the discount bond price as an expectation of the payoff

ZT�T
 = 1 (i.e., the payout of exactly one dollar for certain at maturity) under the measure

with the money-market account as numeraire:

Zt�T
= E
Q�B

t 	e−

∫  
t rsdsZT �T

= E

Q�B

t 	e−

∫  
t rsds
� (1.331)

[This expectation is not a simple integral (as arises in the pricing of European options) and

can in fact generally be expressed as a multidimensional path integral. See, for example,

the project on interest rate trees in Part II.] In the case that the interest rate process is a
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deterministic function of time or, more generally, when the underlying asset price process

At is statistically independent of the interest rate process (where both processes may be

nondeterminsitic), then forward and future prices coincide and the spread vanishes. In fact,

in this case

E
Q�B

t 	AT 
=

E
Q�B

t 	e−

∫ T
t rsds


Zt�T

E

Q�B

t 	AT 
=

E
Q�B

t 	e−

∫ T
t rsdsAT 


Zt�T

= At

Zt�T

� (1.332)

where we have used equations (1.331) and (1.294).

Definition 1.23. European-Style Futures Options. European-style futures options are con-
tracts with a payoff function ��AT
 at maturity T. They are similar to the regular earlier
European-style option contracts, except those are written on the underlying and traded over
the counter with upfront payment, while futures options are traded using a margin account
mechanism similar to that of futures contracts. Namely, futures options are traded in terms
of a futures option price A∗

t that equals ��AT
 at maturity t = T , while the associated cash
flow stream to the holder’s margin account is given by

ct = A∗
t −A∗

t−dt� (1.333)

Notice that, similar to an ordinary futures contract, futures option prices A∗
t follow

martingale processes under the risk-neutral measure.

Example 1. European Futures Options.

The futures option price V ∗
t for a European-style option with payoff function ��AT
 is thus

given by the martingale condition

V ∗
t = E

Q�B

t 	��AT

 � (1.334)

The analogue of the Black–Scholes (i.e., lognormal) model can be written as follows under

the risk-neutral measure

dA∗
t = �A∗

t dWt� (1.335)

where the drift is zero because of the martingale property. We remark here that, in case

interest rates are stochastic, the implied Black–Scholes volatility on the futures option does not

necessarily coincide with the implied Black–Scholes volatility for plain vanilla equivalents.

Let A∗
t = F ∗

t �A�T
 be the futures price on the asset. At maturity we have AT = F ∗
T �A�T
=

FT�A�T
. The pricing formula for a futures call option struck at the futures price K is given by

C∗
t �K�T
= E

Q�B

t 	�AT −K
+
= F ∗

t �A�T
N�d+
−KN�d−
� (1.336)

where

d± = log�F ∗
t �A�T
/K
± ��2/2
�T − t


�
√
T − t

(1.337)

and we have used the standard expectation formula in equation (1.169) for the case of zero

drift, and where the underlying variable St in that formula is now replaced by F ∗
t �A�T
.

Notice that this formula carries no explicit dependence on interest rates.
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Example 2. Variance Swaps.

An example of a dynamic trading strategy involving futures contracts and the static hedging

strategies discussed in Section 1.8 is provided by variance swaps. Variance swaps are defined

as contracts yielding the pay-off at maturity time T:

�

[
1

T

∫ T

0

�2
t dt−(2

]
� (1.338)

where � is a fixed notional amount in dollars per annualized variance. Assuming that

technical upfront fees are negligible, variance swaps are priced by specifying the variance (2,

which, as we show, is computed in such a way that the value of the variance swap contract

is zero at contract inception (t = 0); i.e., since this is structured as a forward contract, it

must have zero initial cost. Computing the expectation of the pay-off at initial time t = 0

and setting this to zero therefore gives the fair value of this variance in terms of a stochastic

integral:

(2 = 1

T
E

Q�B

0

[∫ T

0

�2
t dt

]
� (1.339)

We shall compute this expectation by recasting the integrand as follows. Assuming a diffusion

process for futures prices and assuming that European call and put options of all strikes and

maturity T are available, such a contract can be replicated exactly.19

More precisely, assume that futures prices F ∗
t ≡ F ∗

t �A�T
 on a contract maturing at time T
with underlying asset price At (e.g., a stock price) at time t obeys the following zero-drift

process under the risk-neutral measure Q(B):

dF ∗
t

F ∗
t

= �t dWt� (1.340)

where the volatility �t is a random process that can generally depend on time as well as on

other stochastic variables.

Then consider the dynamic trading strategy, whereby at time t one holds 1

F∗
t
futures

contracts. If one starts implementing the strategy at time t = 0 and accumulates all the

gains and losses from the futures position into a money-market account, then the worth �T

accumulated at time T is

�T =
∫ T

0

dF ∗
t

F ∗
t

=
∫ T

0

�t dWt� (1.341)

Due to Itô’s lemma we have

d logF ∗
t = dF ∗

t

F ∗
t

− 1

2

(
dF ∗

t

F ∗
t

)2

= dF ∗
t

F ∗
t

− �2
t

2
dt� (1.342)

and integrating from time t = 0 to T we find

logF ∗
T − logF ∗

0 =
∫ T

0

�t dWt −
1

2

∫ T

0

�2
t dt =�T −

1

2

∫ T

0

�2
t dt� (1.343)

19We point out that in actuality the price of a variance swap is largely model independent. That is, it is possible

to replicate the cash flows as long as the trader can set up a static hedge and trade futures on the underlying.
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where equation (1.340) has been used. Rearranging this equation gives the integrand in

equation (1.339) as

1

T

∫ T

0

�2
t dt = 2

T
�T −

2

T
log

F ∗
T

F ∗
0

� (1.344)

This last expression demonstrates the precise nature of the replication. This contains (i) a

static part given by the logarithmic payoff function and (ii) a dynamic part given by the

stochastic time integral �T . Substituting this last expression into equation (1.339) and using

the fact that �t is a martingale,20 i.e., E
Q�B

0 	�T 
= 0, we obtain

(2 =− 2

T
E

Q�B

0

[
log

F ∗
T

F ∗
0

]
� (1.345)

Replicating the logarithmic payoff function in terms of standard call and/or put pay-offs of

various strikes using the replication schemes described in Section 1.8 then gives a formula for

(2 in terms of futures calls and/or puts. In particular, by applying replication equation (1.248)

on the domain F ∗
T ∈ �0�

 and taking expectations, equation (1.345) takes the form (see

Problem 2)

(2 = 2

T

[
1− F ∗

0

F̄
− log

F̄

F ∗
0

+
∫ F̄

0

P∗
0 �K�T


dK

K2
+
∫ 


F̄
C∗

0 �K�T

dK

K2

]
� (1.346)

with any choice of nonzero parameter F̄ ∈ �0�

, and where C∗
0 �K�T
 and P∗

0 �K�T
 represent
the current t= 0 prices of a futures call and put option, respectively, at strike K and maturity T.
Note that this formula holds irrespective of what particular assumed form for the volatility �t.

In the cases of analytically solvable diffusion models, such as some classes of state-dependent

models studied in Chapter 3, the call and put options can be expressed in closed analytical

form. Of course, if �t = ��t
, i.e., a deterministic function of only time, then the futures price

obeys a geometric Brownian motion, and in this case, according to our previous analysis,

we have simple analytical expressions of the Black–Scholes type, with C∗
t �K�T
 given by

equation (1.336), and

P∗
t �K�T
= E

Q�B

t 	�K−F ∗

T 
+
= KN�−d−
−F ∗
t �A�T
N�−d+
� (1.347)

with d± given by equation (1.337), wherein � → �̄ ≡
√
�T − t
−1

∫ T

t
�2�s
ds. For a numerical

implementation of the efficient replication of logarithmic pay-offs for variance swaps in

cases where only a select number of market call contracts is assumed available, the reader is

encouraged to complete the project on variance swaps in Part II.

Problems

Problem 1. Derive the equations for the drift and volatility of the forward price as discussed

in this section. For the domestic asset assume the process

dAt

At

= �A
t dt+�A

t dWt� (1.348)

20Here we recall the property for the first moment E0	
∫ t

0
fs dWs
 = 0, which is valid under a suitable measure

and conditions on the adapted process ft .
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Let Zt�T
 be the price process of a domestic discount bond of maturity T. For any fixed

maturity T > t, the discount bond price process is assumed to obey a stochastic differential

equation of the form

dZt�T


Zt�T

= �Zdt+�ZdWt� (1.349)

where shorthand notation is used (�Z ≡ �
Z�T

t , �Z ≡ �

Z�T

t ) to denote the lognormal drift and

volatility functions of the discount bond. Find the drift of the forward price process Ft�A�T
,
defined by equation (1.322), within the following three different choices of numeraire asset

gt: (i) the money-market account: gt = Bt = e
∫ t
0 rsds, where rt is the domestic short rate at

time t, (ii) the discount bond: gt = Zt�T
, and (iii) the asset : gt = At. Hint: Make use of the

formula for the stochastic differential of a quotient of two processes that was derived in a

previous section.

Problem 2. Use equation (1.248) with payoff function ��F
 = − log F
F∗
0

, F ≡ F ∗
T , S̄ = F̄ ,

S0 = 0, S1 =
, with 0< F̄ <
, to show

��F
= 1− F

F̄
− log

F̄

F ∗
0

+
∫ F̄

0

�K−F
+
dK

K2
+
∫ 


F̄
�F −K
+

dK

K2
� (1.350)

Now, arrive at the formula in equation (1.346) by taking the expectation of this pay-off at

t = 0 under the measure Q(B) while making use of the fact that an expectation can be taken

inside any integral over K and the fact that E
Q�B

t 	F ∗

T 
= F ∗
t , i.e., that F

∗
t is a martingale within

this measure.

1.12 Pricing Formulas of the Black–Scholes Type

In this section we apply the fundamental theorem of asset pricing of Section 1.10 to derive

a few exact pricing formulas. The worked-out examples are meant to demonstrate the use of

different numeraire assets for option pricing.

Example 1. Plain European Call Option.

As a first example, let’s revisit the problem of pricing the plain European call. Consider

the Black–Scholes model (i.e., geometric Brownian motion) for a stock of constant volatility

� and in an economy with a constant interest rate r. Under the risk-neutral measure with

money-market account gt = Bt = ert as numeraire, the expected return on the stock is just the

risk-free rate r; hence,

dSt = rSt dt+�St dWt� (1.351)

The stock price process is given in terms of a standard normal random variable [i.e., equa-

tion (1.154)]: ST = Ste

(
r− �2

2

)
�T−t
+�

√
T−tx

, x ∼ N�0�1
. Using equation (1.292), the arbitrage-

free price at time t of a European call option struck at K> 0 with maturity T > t is hence the
discounted expectation under the risk-neutral measure Q(B):

Ct�St�K�T
= e−r�T−t
E
Q�B

t

[
�ST −K
+

]
= e−r�T−t


√
2�

∫ 


−

e−

x2

2

(
Ste

(
r− �2

2

)
�T−t
+�

√
T−tx−K

)
+
dx

= StN�d+
−Ke−r�T−t
N�d−
� (1.352)
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where

d± = log�St/K
+ (
r± 1

2
�2
)
�T − t


�
√
T − t

� (1.353)

Note that the details of this integral expectation were presented in Section 1.6.

This Black–Scholes pricing formula plays a particularly important role because it is the

prototype for a large number of pricing formulas. As we shall see in a number of examples

in this and the following chapters, analytically solvable pricing problems for European-style

options often lead to pricing formulas of a similar structure. In the case that the underlying

asset pays continuous dividends, the foregoing pricing formula for a European call (and the

corresponding put) must be slightly modified. A similar derivation procedure also applies, as

shown at the end of this section.

If the drift and the volatility are deterministic functions of time, r = r�t
 and � = ��t
,
the Black–Scholes formula extends thanks to the formula in equation (1.167) of Section 1.6.

Using again the money-market account gt =Bt = exp�
∫ t

0
r�s
ds
 as numeraire asset and setting

r̄�t� T
= 1

�T − t


∫ T

t
r�u
du

gives Bt/BT = e−r̄�t�T
�T−t
, and we find

Ct�St�K�T
= e−r̄�t�T
�T−t
E
Q�B

t

[
�ST −K
+

]
= e−r̄�t�T
�T−t


√
2�

∫ 


−

e−

x2

2

(
Ste

(
r̄�t�T
− �̄�t�T
2

2

)
�T−t
+�̄�t�T


√
T−tx−K

)
+
dx

= StN�d+
−Ke−r̄�t�T
�T−t
N�d−
� (1.354)

where

�̄�t� T
2 = 1

�T − t


∫ T

t
��t
2 dt� (1.355)

and

d± = log�St/K
+ (
r̄�t� T
± 1

2
�̄�t� T
2

)
�T − t


�̄�t� T

√
T − t

� (1.356)

Note that, in agreement with the results obtained in Section 1.6, the Black–Scholes pric-

ing formula now involves the time-averaged interest rate and volatility over the maturity

time T − t.

Example 2. A Currency Option.

Let

dXt = �XXt dt+�XXt dWt (1.357)

be a model for the foreign exchange rate Xt at time t, assuming that the lognormal volatility

�X of the exchange rate and drift �X are constants. Suppose that the domestic risk-free interest

rate rd and the foreign interest rate rf are both constant, and let Bd
t = er

dt and B
f
t = er

f t be

the worth of the two money-market accounts, respectively. The drift �X can be computed as
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follows. First we note that the foreign currency money-market account, after conversion into

domestic currency, is a domestic asset and therefore must obey a price process of the form

d�XtB
f
t 
= �rd+�g�XBf 
�XtB

f
t 
dt+�XBf �XtB

f
t 
dWt� (1.358)

where �g and �XBf are lognormal volatilities of the numeraire gt and XtB
f
t , respectively.

We shall choose gt = Bd
t (i.e., the domestic risk-neutral measure) giving �g = 0. By direct

application of Itô’s lemma for the product of two processes we also have the stochastic

differential

d�XtB
f
t 
= Xt dB

f
t +Bf

t dXt + �dXt
�dB
f
t 
= Xt dB

f
t +Bf

t dXt� (1.359)

where the third term in the middle expression is of order dt dWt and hence set to zero.

This follows since both domestic and foreign money-market accounts satisfy a deterministic

differential equation, in particular,

dBf
t = rfBf

t dt� (1.360)

Plugging this and equation (1.357) into equation (1.359) gives

d�XtB
f
t 
= �rf +�X
�XtB

f
t 
dt+�X�XtB

f
t 
dWt� (1.361)

Hence, comparing equations (1.358) and (1.361) gives �X = rd − rf . The foreign exchange

rate therefore follows a geometric Brownian motion with this constant drift and constant

volatility �X . The pricing formula for a foreign exchange call option struck at exchange rate

K is then

Ct�Xt�K�T
= e−rd�T−t
E
Q�Bd

t

[
�XT −K
+

]
= e−rd�T−t


√
2�

∫ 


−

e−

x2

2

(
Xte

��rd−rf 
− �2X
2


�T−t
+�X

√
T−tx−K

)
+
dx

= e−rd�T−t

[
e�r

d−rf 
�T−t
XtN�d+
−KN�d−

]
�

= e−rf �T−t
XtN�d+
−Ke−rd�T−t
N�d−
� (1.362)

where

d± = log�Xt/K
+ �rd− rf ± 1

2
�2

X
�T − t


�X

√
T − t

� (1.363)

Example 3. A Quanto Option.

Consider the case of a quanto option, in which we have a stock denominated in a foreign

currency with geometric Brownian process

dSf
t = �Sf

t dt+�SS
f
t dWS

t � (1.364)

and the foreign exchange process is also a geometric Brownian motion, with

dXt = �rd− rf 
Xt dt+�XXt dW
X
t � (1.365)
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under the risk-neutral measure with numeraire gt = Bd
t . Note that the drift rate �X = rd − rf

was derived in the previous example. The constants �S and �X are the lognormal volatilities

of the stock and foreign exchange rate, respectively. These Brownian increments are not

independent; however, the foregoing equations can also be written equivalently in terms of

two independent Brownian increments dW 1
t , dW

2
t , where

dWX
t = � dW 1

t +
√
1−�2 dW 2

t � dWS
t = dW 1

t �

Here � is a correlation between the stock price and the foreign exchange rate at time t, with

dWS dWX = � dt� (1.366)

In vector notation, dWt = �dW 1
t � dW

2
t 
 and

dXt

Xt

= �rd− rf 
dt+�X ·dWt� (1.367)

dS
f
t

S
f
t

=�dt+�S ·dWt� (1.368)

where �X = ���X��X

√
1−�2
, �S = ��S�0
. Suppose one wants to price a call option on

the stock S
f
t struck at K and then to convert this into domestic currency at a preassigned fixed

rate X̄. Since gt = Bd
t , the prices of all domestic assets (as well as the prices of foreign assets

denominated in domestic currency) drift at the domestic risk-free rate. Hence the return on the

price process XtS
f
t must be rd. This also follows because the price of risk qg = qBd = �Bd = 0.

By direct application of Itô’s lemma we also have

d�XtS
f
t 


XtS
f
t

= dS
f
t

S
f
t

+ dXt

Xt

+ dS
f
t

S
f
t

dXt

Xt

� (1.369)

Plugging the preceding expressions into this equation gives

d�XtS
f
t 


XtS
f
t

= ��+ rd− rf +�X ·�S
dt+ ��X +�S
 ·dWt

= ��+ rd− rf +��X�S
dt+�SdW
S
t +�XdW

X
t (1.370)

Since the drift must equal rd,

�= rf −��S�X (1.371)

is the constant drift of S
f
t in equation (1.364). The arbitrage-free price of a quanto call option

struck at foreign price K is then given by

Ct�S
f
t �K�T
= X̄e−rd�T−t
E

Q�Bd

t

[(
S
f
T −K

)
+
]

= X̄e−rd�T−t

[
e��T−t
Sf

t N�d+
−KN�d−

]

= X̄
[
e−�rd−rf+��S�X
�T−t
Sf

t N�d+
− e−rd�T−t
KN�d−

]
� (1.372)

where

d± = log�S
f
t /K
+ (

rf −��S�X ± 1

2
�2

S

)
�T − t


�S

√
T − t

� (1.373)
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Example 4. Elf-X Option (Equity-Linked Foreign Exchange Option).

Assume equation (1.364), as in the previous example, and now write

dXt = �XXt dt+�XXt dW
X
t (1.374)

for the foreign exchange process, with �X dependent on the choice of numeraire. Consider

the case where the pay-off is

CT = �XT −K
+S
f
T � (1.375)

The foreign asset price S
f
t cannot be used as a domestic numeraire asset, but the converted

process gt = XtS
f
t can. Indeed this is a positive price process denominated in domestic

currency. Under the measure with gt as numeraire we first need to compute the drift �X

explicitly. This is done by considering the process XtB
f
t , which must drift at the domestic

risk-free rate plus a price-of-risk component

d�XtB
f
t 


XtB
f
t

= �rd+�XSf ·�XBf 
dt+�XBf ·dWt� (1.376)

where �XSf and �XBf are volatility vectors of the price processes XtS
f
t and XtB

f
t , respectively.

These are expressible in the basis of either �dW 1
t � dW

2
t 
 or �dW

S
t �dW

X
t 
, as described in the

previous example. [Note also that the Brownian increments, written still as dWt in the SDE

are actually w.r.t. the measure Q�XSf 
.] From equation (1.370) we have �XSf = �X +�S .

From a direct application of Itô’s lemma we also have

d�XtB
f
t 


XtB
f
t

= �rf +�X
dt+�X ·dWt� (1.377)

By equating drifts and the volatility vectors in these two expressions we find �XBf =�X and

rd+ ��S +�X
 ·�X = rf +�X� (1.378)

Hence,

�X = rd− rf +�S ·�X +

�X

2�
The drift �X−1 and volatility of the inverse exchange rate X−1

t under the same measure are

computed using Itô’s lemma [i.e., apply equation (1.138) with numerator = 1 and denomina-

tor = Xt]:

dX−1
t

X−1
t

= �−�X +�2
X
dt−�X dWX

t �

Hence,

�X−1 =−�X +�2
X = rf − rd−�S ·�X = rf − rd−��X�S�

where the square of the volatility is the same as that of Xt, namely �2
X . Using the measure

Q�XSf 
, we therefore have the arbitrage-free price:

Ct�S
f
t �Xt�K�T
= �XtS

f
t 
E

Q�XSf 

t

[
S
f
T �XT −K
+

XTS
f
T

]
=KXtS

f
t E

Q�XSf 

t 	�K−1−X−1

T 
+


=KXtS
f
t

[
K−1N�−d−
− e�X−1 �T−t
X−1

t N�−d+

]

= Sf
t

[
XtN�−d−
− e−�rd−rf+��X�S
�T−t
KN�−d+


]
� (1.379)
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where

d± = log�K/Xt
+ �rf − rd−��X�S ± 1

2
�2

X
�T − t


�X

√
T − t

� (1.380)

Let us now consider Black–Scholes pricing formulas as well as symmetry relations for

European calls and puts under an economy whereby the underlying asset pays continuous

dividends. This will be useful for the discussion on American options in Section 1.14.

In particular, let us assume that the asset price St follows geometric Brownian motion, as in

Example 1, but with an additional drift term due to a constant dividend yield q:

dSt = �r−q
St dt+�St dWt� (1.381)

Note that from equation (1.165) we readily have the risk-neutral lognormal transition density

for this asset price process,

p�ST � St�  
=
1

�ST

√
2� 

e−	log�ST /St
−�r−q− �2

2

 
2/2�2 � (1.382)

 = T − t. We follow Example 1 and choose Bt = ert as numeraire. Then, using equa-

tion (1.169) with drift �r−q
 as given by equation (1.381), the price of a European call struck

at K with underlying asset paying continuous dividend q is

Ct�St�K�T
= e−r�T−t
E
Q�B

t

[
�ST −K
+

]
= e−r�T−t


[
e�r−q
�T−t
StN�d+
−KN�d−


]
= e−q�T−t
StN�d+
−Ke−r�T−t
N�d−
� (1.383)

with

d± = log�St/K
+ (
r−q± 1

2
�2
)
�T − t


�
√
T − t

� (1.384)

The corresponding European put price is easily derived in similar fashion, giving

Pt�St�K�T
= Ke−r�T−t
N�−d−
−Ste
−q�T−t
N�−d+
� (1.385)

The previous put-call parity relation for plain European calls and puts, i.e., equation (1.214),

is now modified to read

Ct�St�K�T
−Pt�St�K�T
= e−q�T−t
St −Ke−r�T−t
 (1.386)

for generally nonzero q.
This put-call parity is a rather general property that obtains whenever relative asset prices

are martingales. Within the geometric Brownian motion model, we can further establish

another special symmetry property that relates a call price to its corresponding put price.

In particular, explicitly denoting the dependence on the interest rate r and dividend yield q,
we have

Ct�S�K�T� r� q
= Pt�K�S�T�q� r
� (1.387)

This relation states that the Black–Scholes pricing formula for a call, with spot St = S,
strike K, interest rate r, and dividend q, is the same as the Black–Scholes pricing formula
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for a put where one inputs the strike as S, spot as St = K, interest rate as q, and dividend

as r. That is, by interchanging r and q and interchanging S and K, the call and put pricing

formulas give the same price. For this reason we can also refer to identity (1.387) as a put-call
reversal symmetry. This result can be established by relating expectations under different

numeraires as follows. Consider the modified asset price process defined by S̃t ≡ eqtSt, then

Itô’s lemma gives

dS̃t = rS̃t dt+�S̃t dWt (1.388)

within the risk-neutral measure. By alternatively choosing g̃t = S̃t as numeraire, equa-

tion (1.292) gives the arbitrage-free price of the call as

Ct�S�K�T� r� q
= SKe−q�T−t
E
Q�g̃

t

[
�K−1−XT
+

]
(1.389)

where we have used the spot value St = S and defined the process Xt ≡ S−1
t . From equa-

tion (1.388), we see that the lognormal volatility of g̃t (or the price of risk) is �; therefore,
under the new measure, Q�g̃
, equation (1.381) becomes

dSt = �r−q+�2
St dt+�St dW̃t� (1.390)

where dW̃t denotes the Brownian increment under measure Q�g̃
. Using this equation and

applying Itô’s lemma to Xt = S−1
t gives

dXt = �q− r
Xt dt−�Xt dW̃t (1.391)

Under Q�g̃
, the transition density p̃ for the process Xt is hence given by equation (1.382)

with r and q interchanged and the replacement St → Xt, ST → XT :

p̃�XT �Xt�  
=
1

�XT

√
2� 

e−	log�XT /Xt
−�q−r− �2

2

 
2/2�2 � (1.392)

Under Q�g̃
, the drift of the lognormal diffusion Xt is q− r. Using equations (1.171) and

(1.392) with spot Xt = 1/St = 1/S at current time t, the expectation in equation (1.389) is

evaluated to give

Ct�S�K�T� r� q
= SKPt�1/S�1/K�T�q� r
� (1.393)

This establishes the identity, which is actually equivalent to equation (1.387), as can be

verified using equation (1.385). Finally, note that equation (1.387) is also verified by directly

manipulating equation (1.385) or (1.383).

A class of slightly more sophisticated options that can also be valued analytically within

the Black–Scholes model are European-style compound options. Such contracts are options

on an option. Examples are a call-on-a-call and a call-on-a-put. Such compound options

are hence characterized by two expiration dates, T1 and T2, and two strike values. Let us

specifically consider a call-on-a-call option. This contract gives the holder the right (not the

obligation) to purchase an underlying call option for a fixed strike price K1 at calendar time T1.

The underlying call is a call option on an asset or stock with strike K2 and expiring at a later

calendar time T2 >T1 — we denote its value by CT1
�ST1

�K2� T2
, where ST1
denotes the stock

price at T1. Hence at time T1 this underlying call will be purchased (i.e., the compound call-on-

a-call will be exercised at time T1) only if CT1
�ST1

�K2� T2
 >K1. Let t denote current calendar
time, t < T1 < T2, then the pay-off of the call-on-a-call at T1 is

(
CT1

�ST1
�K2� T2
−K1

)
+.



84 CHAPT ER 1 . Pricing theory

Since CT1
is a monotonically increasing function of ST1

, this pay-off is nonzero only for values

of ST1
above a (critical) value S∗

1 defined as the unique solution to the (nonlinear) equation

CT1
�S∗

1�K2� T2
 = K1. Hence
(
CT1

�ST1
�K2� T2
−K1

)
+ = CT1

�ST1
�K2� T2
−K1 for ST1

> S∗
1

and zero otherwise.

Denoting the value of the call-on-a-call option by Vcc�S� t
, where St = S is the spot

at time t, and assuming a constant interest rate with gt = ert as numeraire asset price, we

generally have

Vcc�S� t
= e−r�T1−t
E
Q�B

t

[(
CT1

�ST1
�K2� T2
−K1

)
+
]
� (1.394)

Specializing to the case where the stock price process obeys equation (1.381) within the risk-

neutral measure Q(B), this expectation is readily evaluated in terms of the standard univariate

cumulative normal and bivariate cumulative normal functions. Inserting the price of the call

from equation (1.383) gives

Vcc�S� t
= e−r 1

∫ 


S∗1

[
e−q�T2−T1
S1N�d+
−K2e

−r�T2−T1
N�d−
−K1

]
p�S1� S�  1
dS1� (1.395)

 1 = T1− t, where p is the transition density function defined in equation (1.382) and

d± = log�S1/K2
+
(
r−q± 1

2
�2
)
�T2−T1


�
√
T2−T1

� (1.396)

Equation (1.395) is a sum of three integrals. The third integral term involves the risk-neutral

probability that the stock price is above S∗
1 after a time  1 and having initiated at S. This

integral is reduced to a standard cumulative normal function by changing the integration

variable to x = logS1: ∫ 


S∗1
p�S1� S�  1
dS1 = N�a−
� (1.397)

where we define

a± = log�S/S∗
1
+

(
r−q± 1

2
�2
)
 1

�
√
 1

� (1.398)

The second integral term in equation (1.395) can be rewritten using

N�d−
=
∫ 


K2

p�S2� S1�T2−T1
dS2� (1.399)

giving ∫ 


S∗1
N�d−
p�S1� S�  1
dS1 =

∫ 


S∗1

∫ 


K2

p�S2� S1�T2−T1
p�S1� S�  1
dS2 dS1� (1.400)

This double integral can be recast in terms of a standard bivariate cumulative normal function

N2�a� b��
=
1

2�
√
1−�2

∫ a

−


∫ b

−

exp

[
− x2+y2−2�xy

2�1−�2


]
dy dx� (1.401)

where � is a correlation coefficient. For this purpose it proves useful to define

 2 = T2− t and �=√
 1/ 2� (1.402)
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hence T2−T1 =  2−  1. Introducing the change of variables

−x = log�S1/S
−
(
r−q− 1

2
�2
)
 1

�
√
 1

�−y = log�S2/S
−
(
r−q− 1

2
�2
)
 2

�
√
 2

Equation (1.400) then becomes (after some algebraic manipulation)∫ 


S∗1
N�d−
p�S1� S�  1
dS1 = 1

2�
√

1−�2

∫ a−

−


∫ b−

−

exp

[
− x2

2
− �y−�x
2

2�1−�2


]
dy dx�

=N2�a−� b−��
� (1.403)

where

b± = log�S/K2
+
(
r−q± 1

2
�2
)
 2

�
√
 2

� (1.404)

We leave it to the reader to verify that the first integral term in equation (1.395) can be

reduced, using similar manipulations as earlier, to give∫ 


S∗1
S1N�d+
p�S1� S�  1
dS1 = Se�r−q
 1N2�a+� b+��
� (1.405)

Combining the three integrals in equation (1.395) finally gives

Vcc�S� t
= Se−q 2N2�a+� b+��
−K2e
−r 2N2�a−� b−��
−K1e

−r 1N�a−
� (1.406)

Derivations of similar pricing formulas for related types of compound options are left to the

interested reader (see Problem 10).

Problems

Within the problems involving a single underlying asset or stock, assume we are in a Black–

Scholes world where the asset price process obeys geometric Brownian motion of the form

dAt = �r+q ·�A
At dt+�AAt dWt� (1.407)

where dWt is the assumed Brownian increment under the given measure, the interest rate r
(in the appropriate economy) and volatility �A are constants, and q is a market price of risk.

Problem 1. Find the price of a call option on foreign stock struck in foreign currency, i.e.,

of the contract with payoff

CT = XT�S
f
T −K
+� (1.408)

Problem 2. Find the price of a call option on foreign stock struck in domestic currency

with payoff

CT = �XTS
f
T −K
+� (1.409)

where Xt is the exchange rate at time t.
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Problem 3. Consider again the example of the quanto option in Example 3. Compute the

coefficient � in such a way that the price process

gt ≡ X̄e�tSf
t (1.410)

is a domestic asset price process. Further, price the quanto option in Example 3 using gt as a
numeraire asset. Describe the replication strategy for the numeraire asset gt.

Problem 4. Derive the price of an Elf-X option from the point of view of the foreign investor

taking as payoff

CT = �S
f
T −KS

f
TYT 
+� (1.411)

where YT = 1/XT .

Problem 5. A forward starting call on a stock S is structured as follows. The holder will

receive at a preassigned future time T1 a call struck at K = �ST1
and maturing at time T2 >T1.

Here, � is a positive preassigned constant and ST1
is the stock price realized at time T1.

Find (i) the present time t = t0 ≤ T1 price of the forward starting call prior to maturity T1

and (ii) a static hedging strategy that applies up to time T1. Using the result in (i), show that

the price of the contract simplifies to that of a standard call struck at K = �S0 with time to

maturity T2− t0 in the limiting case that T1 → t0 (with t0� T2 held fixed). On the other hand,

show that in the limit T2 → T1 (with t0� T1 held fixed) the contract price is simply given by

S0�1−�
+. This last result is consistent with the price of a standard call with maturity t = T1

and strike K = �ST1
.

Problem 6. Consider two stocks S1 and S2 described by correlated geometric Brownian

motion with constant volatilities �1 and �2 and with correlation �. As seen in Section 1.6, a

simple chooser option yields the pay-off as the maximum of the two stock levels,

max�S1
T � S

2
T 
� (1.412)

at the maturity date T. Find the price of this instrument at time t < T . Find the relationship

between the price of this chooser option and that of the chooser with payoff �S2
T −S1

T 
+.
One Solution: To solve for either option price, pick the price of stock 1 as numeraire,

gt = S1
t . So, for instance, to price the latter option, show that the price Ct is given by an

expectation

Ct = S1
t E

p
t

[(
fT −1

)
+
]
� (1.413)

where the random variable ft = S2
t /S

1
t obeys

dft
ft

= ���2−�1
dW
1
t +�2

√
1−�2 dW 2

t � (1.414)

From this, show that we have

log
fT
ft

=−$2

2
�T − t
+ ���2−�1
�W

1
T −W 1

t 
+�2

√
1−�2�W 2

T −W 2
t 
� (1.415)

where Wi
t are independent Wiener processes at time t and

$ ≡
√
�2
1 +�2

2 −2��1�2 = 
�f 
�
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Since log�fT/ft
 is normally distributed, find its mean and variance and thereby obtain the

lognormal drift and volatility of ft, i.e., the lognormal density p = p�fT � ft� T − t
, giving
the price

Ct = S2
t N�d+
−S1

t N�d−
� (1.416)

where

d± ≡ log�S2
t /S

1
t 
± 1

2
$2�T − t


$
√
T − t

� (1.417)

Problem 7. Derive the standard call option-pricing formula of Example 1 of this section,

but this time use the stock price as numeraire, i.e., gt = St. In particular, show that with this

choice of numeraire,

d�1/St


�1/St

=−r dt−� dWt� (1.418)

where dWt stands for the Brownian increment under the measure Q(S) with St as numeraire.

Then show that this leads to

Ct�St�K�T
= KStE
Q�S

t

[(
1/K−1/ST

)
+
]
� (1.419)

Note: This is related to the price of an European put contract where the random variable

is now the inverse of the stock price struck at the inverse of the strike, i.e., 1/K, and with

drift = −r. Compute this expectation to obtain the final expression.

Problem 8. Consider a foreign money-market account B
f
t = e

∫ t
0 r

f
s ds (with interest rate in

foreign currency given by r
f
t at time t), a domestic asset with price Ad

t , and a foreign asset with

price A
f
t . Let Xt be the exchange rate process in converting foreign currency into domestic.

Suppose we choose gt = Ad
t as our numeraire asset. Compute the drift of the following

processes: Xt, B
f
t , and A

f
t , within the Q(g) measure.

Problem 9. Consider a domestic asset with price Ad
t and a foreign asset with price A

f
t . Let

the constant ) be the conversion factor

) = Ad
0

A
f
0

� (1.420)

[Note that this is given in terms of the asset prices at some current time t = 0.]

(i) Find a pricing formula for the contract at current time t = 0 with payoff function

max�Ad
T �)A

f
T 
 (1.421)

at maturity t= T . Assume that all relevant lognormal volatilities and correlations are constant.

(ii) How can one hedge this contract? Is it necessary to trade the foreign currency

dynamically?

Problem 10. Derive pricing formulas analogous to equation (1.406) for (i) a call-on-a-put,

(ii) a put-on-a-put, and (iii) a put-on-a-call.
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1.13 Partial Differential Equations for Pricing Functions
and Kernels

Consider the continuous-time model with state-dependent volatility

dSt

St

= �r�t
+q��St� t

dt+��St� t
dWt� (1.422)

where q is the price of risk (also equal to the volatility of the numeraire asset). Here, r(t) is
a deterministic, time-dependent short rate consistent with the term structure of interest rates.

The state-dependent volatility ��S� t
 is sometimes called the local volatility.
The asset price process At of an European-style option contingent on the asset S in the

model described by equation (1.422) is given by a pricing function A(S,t) through a formula

of the form

At = A�St� t
� (1.423)

The existence of a pricing function is an expression of the fact that the current price of an

European option depends only on current calendar time and on the current (i.e., spot) price

S = St for the underlying asset (assuming all other contract parameters are held fixed as the

maturity time, etc.).

Theorem. (Black–Scholes Equation) The pricing function A(S, t) of a European claim
contingent on the asset S in equation (1.422) satisfies the Black–Scholes equation

�A

�t
+ �2S2

2

�2A

�S2
+ rS

�A

�S
− rA= 0� (1.424)

where r = r�t
, � = ��S� t
.
This is a backward time parabolic partial differential equation related closely to the

backward Kolmogorov equation, as we shall see later.

Proof. Choosing as numeraire asset the money-market account Bt = e
∫ t
0 r�s
ds, the price of risk

q = 0 and the risk-neutral pricing formula yields

EQ�B

[
dAt

]= r�t
At dt (1.425)

Equation (1.424) follows by applying Itô’s lemma to the calculation of dAt = dA�St� t
.
Namely,

�A

�t
+ rS

�A

�S
+ �2S2

2

�A

�S2
= rA� (1.426)

r = r�t
, � = ��S� t
. Lastly, note that this follows simply from the Feynman–Kac

theorem. �

A second important partial differential equation concerns the probability density function

P(S, t) under the risk-neutral measure for the stock price values S at time t, given an initial

Dirac delta function distribution at time t = t0:

P�S� t = t0
= ��S−S0
� (1.427)
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More explicitly, this function is given by P�S� t
≡ p�S� t� S0� t0
; i.e., this is the risk-neutral

transition probability density for the price of the underlying asset to begin at value S0

at initial time t0 and end with value St = S at time t. The function p�S� t� S0� t0
 is also

commonly referred to as a pricing kernel. We have already seen a specific example of this

as the lognormal transition density for geometric Brownian motion. In general, the resulting

equation, called the Fokker–Planck (or forward Kolmogorov) equation, is contained in the

following statement.

Theorem 1.7. (Fokker–Planck Equation) The probability density function P(S, t) under the
risk-neutral measure for the stock price values S at time t satisfying initial condition (1.427)
obeys the following equation:

�P

�t
= 1

2

�2

�S2
��2S2P
− r

�

�S
�SP
� (1.428)

where r = r�t
, � = ��S� t
.

Proof. This result can be derived as a consequence of the Black–Scholes equation. Consider

a generic asset with pricing function A(S, t) defined in the interval t ∈ �t0� T
, we then have

from risk-neutral valuation that at any time t,

A�S0� t0
= e
− ∫ t

t0
r�s
ds

∫ 


0

P�S� t
A�S� t
dS� (1.429)

Note here that we assume that the range of solution is S ∈ �0�

, although the derivation

can be extended to cases with different ranges. Taking the partial derivative with respect to

calendar time t on both sides of this equation, we find∫ 


0

[
− rPA+A

�P

�t
+P

(
rA− rS

�A

�S
− S2�2

2

�2A

�S2

)]
dS = 0�

where r = r�t
, � = ��S� t
, and the Black–Scholes equation (1.424) has been used for �A
�t
.

Integrating the last two terms by parts we obtain:

−
∫ 


0

PS
�A

�S
dS =−�PSA


∣∣∣∣

0

+
∫ 


0

A
�

�S
�SP
dS =

∫ 


0

A
�

�S
�SP
dS�

and

−
∫ 


0

�2S2

2
P
�2A

�S2
dS =−1

2

�

�S
��2S2P


�A

�S

∣∣∣∣

0

+
∫ 


0

�A

�S

�

�S

(
�2S2P

2

)
dS

=−1

2
�
�A

�S
−A


�

�S
��2S2P


∣∣∣∣

0

− 1

2

∫ 


0

A
�2

�S2
��2S2P
dS

=−1

2

∫ 


0

A
�2

�S2
��2S2P
dS�

In the last equation we have integrated by parts twice. Notice that the nonintegral terms all

vanish, due to the boundary conditions on the probability density function P, namely, that

the function P and the first and second partial derivatives with respect to S, are assumed to

be rapidly decaying functions of S as S → 0 and S →
. Collecting terms gives that for any
derivative pricing function A(S,t),∫ 


0

A�S� t


[
�P

�t
+ r

�

�S
�SP
− 1

2

�2

�S2
��2S2P


]
dS = 0�
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This can only occur if the integrand term in brackets is identically zero; hence equation (1.428)

is fulfilled. �

The corresponding backward Kolmogorov equation for the density is given by the so-

called Lagrange adjoint of equation (1.428). By combining equations (1.429) [with P�S� t
≡
P ≡ p�S� t� S0� t0
] and (1.424), we readily see that e

− ∫ t
t0

r�s
ds
P must satisfy the same equation

as A�S0� t0
 for all initial times t0 < t. Simplifying the equation in terms of P only, we find

the backward Kolmogorov equation:

�P

�t0
+ 1

2
�2�S0� t0
S

2
0

�2P

�S2
0

+ r�t0
S0

�P

�S0

= 0� (1.430)

This is a backward-time parabolic partial differential equation of the form of the Black–

Scholes equation [i.e., replacing (S,t) by �S0� t0
 in equation (1.424)]. The only term missing

is the compounding term r�t0
A. However, as just mentioned, the function e
− ∫ t

t0
r�s
ds

P does

exactly satisfy the Black–Scholes equation. This is, not surprisingly, consistent with our

discussion in Section 1.8, where we showed [see equation (1.231)] that the discounted

transition density gives the current price of a European butterfly option with inifinitely narrow

spread (i.e., the price of an Arrow–Debreu security).

A partial differential equation satisfied by the pricing function of European-style call

options C(S, t; K, T) regarded explicitly as functions of the strike and maturity time arguments

(K,T) [instead of functions of the arguments (S, t), which are held fixed] can now be derived

as follows.

Theorem 1.8. (Dual Black–Scholes Equation) The pricing function for a European call
option C(S, t; K, T) satisfies the following equation:

�C

�T
=−r�T
K

�C

�K
+ 1

2
K2�2�K�T


�2C

�K2
� (1.431)

Proof. European-style call prices admit the following representation in terms of the risk-

neutral transition probability density [i.e., the density for the risk-neutral measure Q(B)]:

C�K�T
= Z0�T
E
Q�B

0 	�S−K
+
= Z0�T


∫ 


0

P�S�T
�S−K
+ dS� (1.432)

where Z0�T
= e−
∫ T
0 r�s
ds. Without loss of generality we simply set current time t = 0. Using

the property ��S−K
+/�K = −��S−K
, where ��x
 is the Heaviside step function with

value 1 for x ≥ 0 and value 0 for x < 0, the first and second derivatives of equation (1.432)

with respect to the strike K give

�C

�K
=−Z0�T


∫ 


K
P�S�T
dS� (1.433)

and

�2C

�K2
= Z0�T
P�K�T
� (1.434)

The derivative with respect to maturity is given by

�C

�T
=−rZ0�T


∫ 


0

�S−K
+P dS+Z0�T

∫ 


0

�P

�T
�S−K
+ dS

=−rC+Z0�T

∫ 


0

[
− r

�

�S
�SP
+ 1

2

�2

�S2
��2S2P


]
�S−K
+ dS�
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where r = r�T
, � = ��S�T
. Note that we have used equation (1.428) with t = T . The
integral containing the first derivative with respect to S can be evaluated by parts as follows:∫ 


0

�S−K
+
�

�S
�SP
dS =−

∫ 


K
SP dS

=−
∫ 


0

�S−K
+P dS−K
∫ 


K
P dS

=
[
−C+K

�C

�K

]
Z0�T


−1�

where we used the identity S = �S −K
+ +K, for S ∈ 	K�

, and equations (1.432)

and (1.433). The integral containing the second derivative can again be evaluated by parts:∫ 


0

�S−K
+
�2

�S2
��2S2P
dS =−

∫ 


K

�

�S
��2S2P
dS

= �2�K�T
K2P�K�T


= Z0�T

−1�2�K�T
K2 �

2C

�K2
�

Collecting the intermediate results obtained so far, we arrive at the following dual Black–

Scholes equation:

�C

�T
=−rC+ rC− rK

�C

�K
+ 1

2
K2�2�K�T


�2C

�K2

=−rK
�C

�K
+ 1

2
K2�2�K�T


�2C

�K2
�

�

A consequence of this result is the following, which may be used in practice to calibrate

a local volatility surface �I = ��K�T
 via market European call option prices across a range

of maturities and strikes.

Theorem 1.9. (Derman–Kani) If a local volatility function exists, then it is unique and it
can be expressed in analytical closed form as follows in terms of call option prices:

�2�K�T
= 2

K2

�C
�T

+ rK �C
�K

�2C
�K2

� (1.435)

This PDE pricing formalism extends readily into arbitrary dimensions. A general con-

nection between a system of SDEs and the corresponding forward (backward) Kolmogorov

PDEs that govern the transition probability density is as follows. Consider a diffusion model

with n correlated random processes xt = �x1
t � � � � � x

n
t 
 ∈�n satisfying the system of SDEs:

dxi
t

xi
t

= �i�xt� t
dt+
M∑

�=1

�i���xt� t
dW
�
t � i= 1� � � � � n� (1.436)

with M ≥ 1 independent Brownian motions, dW�
t dW

�
t = ���� dt, and where the drifts and

volatilites are generally functions of time t and xt. Let us define the differential operator � by

�x�tf ≡
n∑

i=1

xi�i�x� t

�f

�xi

+ 1

2

n∑
i�j=1

xixj$i�j�x� t

�2f

�xi�xj

� (1.437)



92 CHAPT ER 1 . Pricing theory

with Lagrange adjoint operator �† given by

�†
x�tf ≡−

n∑
i=1

�
[
xi�i�x� t
f

]
�xi

+ 1

2

n∑
i�j=1

�2
[
xixj$i�j�x� t
f

]
�xi �xj

� (1.438)

where the functions $i�j , i� j = 1� � � � � n, are defined by

$i�j�x� t
=
M∑

�=1

�i���x� t
�j���x� t
� (1.439)

These operators act on any sufficiently differentiable function f = f�x� t
. The transition

probability density p = p�x� t�x0� t0
 associated with the foregoing diffusion process then

satisfies the forward (Fokker–Planck) Kolmogorov PDE,

�p

�t
= �†

x�tp (1.440)

as well as the corresponding backward PDE,

�p

�t0
+�x0�t0

p= 0� (1.441)

for all t0 < t, with initial (or final) time condition

p�x� t = t0�x0� t0
= p�x� t�x0� t0 = t
= ��x−x0
�

Assuming that a diffusion path starting at some point x0 at time t0 and ending at a point x at

time t must be at all possible points x̄ at any intermediate time t̄, t0 ≤ t̄≤ t, then a consistency

requirement in the theory is the so-called Chapman–Kolmogorov integral equation:

p�x� t�x0� t0
=
∫
�n

p�x� t� x̄� t̄
p�x̄� t̄�x0� t0
dx̄� (1.442)

Prices of European-style contingent claims can then be computed by taking integrals over

an appropriate pricing kernel as follows. Suppose we are within a certain measure Q(g) where
underlying assets depend on random variables xi

t that have appropriate drift and volatilites

in accordance with equation (1.436). Assuming the existence of a martingale measure where

the numeraire is, for example, of the form e
∫ t
0 ��xs �s
ds (i.e., with � as a discounting function),

then according to the asset pricing theorem of the previous section, the price of a contingent

claim A�x� t
 with payoff ��x
 is given by the expectation

A�x� t
= EQ
t

[
e−

∫ T
t ��xs �s
ds��x


]
� (1.443)

Then due to the Feynman–Kac formula (in n dimensions) we have the corresponding Black–

Scholes PDE:

�A�x� t

�t

+�x�tA�x� t
−��x� t
A�x� t
= 0� (1.444)

t < T , with terminal condition A�x� T
 = ��x
, as required. From this analysis we see

that the price of the contingent claim satisfying this Black–Scholes type of PDE can in

fact be expressed as an integral over the set of diffusion paths. With the particular choice
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��xt� t
= r�t
 (the risk-free rate), then, the density p is the risk-neutral density expressed in

the x-space variables. The claim’s price is then simply given by an integral in �n:

A�x� t
= e−
∫ T
t r�s
ds

∫
p�xT �T�x� t
��xT 
dxT � (1.445)

This is a multidimensional extension of equation (1.429). Note also that here, variables x do

not necessarily represent prices. In general, asset prices are functions of x and time t. A nice

feature of such integral equations, among others, is the fact that they provide a solution

whereby the kernel p and hence the expected values can be propagated forward in the time

variable T, starting from T = t, where the delta function condition is employed.

Problems

Problem 1. Consider the one-dimensional lognormal density p�S�S0� t− t0
 given by equa-

tion (1.165). Show that it satisfies forward and backward equations of the form (1.428)

and (1.430) as well as the Chapman–Kolmogorov equation,∫ 


0

p�S� S̄� t− t̄
p�S̄� S0� t̄− t0
dS̄ = p�S�S0� t− t0
� (1.446)

t0 ≤ t̄ ≤ t.

Problem 2. Consider the n-dimensional lognormal density given by equation (1.198). Verify

that this density satisfies the appropriate Kolmogorov equations.

1.14 American Options

In this section we briefly present the theory for pricing American, or early-exercise, options.
The distinction between an American-style option and its European counterpart is that the

holder of the American option has the additional freedom or right to exercise the option at any
date from contract inception until expiration. This additional time optionality generally gives

rise to an additional worth, appropriately also referred to as the early-exercise premium. We

mainly focus our discussion on calls and puts, although the theory is also useful for treating

other types of pay-offs. Throughout this section, we shall assume that we are within a Black–

Scholes world with only one underlying asset. Although the formal theory readily extends into

the multiasset case, the practical implementation and analysis issues are nontrivial and not

within the scope of our present discussion. The development of numerical methods for pricing

multiasset American options remains a topic of active research (see, for example, [BD96,

BG97b, BG97a, BKT01, Gla04]).

1.14.1 Arbitrage-Free Pricing and Optimal Stopping Time Formulation

To begin our discussion, we consider the case where the underlying asset (or stock) price

process �St
t≥0 follows the geometric Brownian motion model as given by equation (1.381)

in the risk-neutral measure, where r is the risk-free interest rate and q is a continuous

dividend yield. We therefore assume that r ≥ 0, q ≥ 0, � are constants (i.e., state and time

independent), although the formalism (i.e., the governing equations) readily extends to the

case of state-dependent drift and volatility functions. Let t0 be the present time (i.e., contract

inception). An American call (or put) option struck at K with expiration at time T is a claim

to a payoff �St −K
+ (or �K− St
+) that the holder can exercise at any intermediate time
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t prior to maturity, i.e., t0 ≤ t ≤ T . The time at which the option is exercised is a stopping

time. Recall the simpler situation in which the stopping time is initially known (i.e., as in

the case of a European-style claim), then from the theorem of asset pricing the arbitrage-free

price of a claim with a given pay-off occurring at time t is simply given by the discounted

expectation via equation (1.294). In particular, the value at present time t0 of a cash flow

�St −K
+ delivered at a later time t is given by

e−r�t−t0
E0

[
�St −K
+

]
�

where E0	·
 = EQ	·
	t0

 = EQ	·
St0

= S0
 is used as a simplified notation to denote the

expectation at time t0 within the risk-neutral measure Q(B), with Bt = ert as numeraire,

conditional on St=t0
= S0. This expectation gives us the fair value of the cash flow as

long as the delivery time t is a given stopping time, which may either be deterministic or

random. For the case in which the stopping time is given by the maturity, e.g., t = T , the
foregoing expectation obviously corresponds to the price of an European call [as given by

equation (1.383), with t� St replaced by t0� S0].

For American contracts the holder has the freedom to exercise at any time within the

continuous set of values � = �t � t0 ≤ t ≤ T�, giving rise to an optimal stopping time (i.e.,

early-exercise time) at which the holder should exercise the option for maximal gain. In

particular, we shall see that an early-exercise boundary arises on the �t� St
-plane (i.e., time-

spot plane) that separates the domain 	t0� T
×�+ into two subdomains. These consist of

a so-called continuation domain, for which the option is not yet exercised, and a stopping
domain, whereby the option is exercised early. Hence, a main distinction from the European

case is that the exercise time is not known prematurely and must be optimally determined as

part of the solution to the pricing problem. As observed later, the basic financial reasoning

for the emergence of an early-exercise boundary is that the holder can either claim a profit

from the underlying dividend income by opting to purchase the asset (e.g., for the case of a

call) or profit from the interest that arises from selling the underlying asset and investing the

proceeds in a money-market account (e.g., for a put).

More generally, let us consider a nonnegative payoff function ��S
, S ∈�+. The values of
the European and corresponding American claim to such a pay-off are given, respectively, by

VE�S0� T − t0
= E0

[
e−r�T−t0
��ST 


]
(1.447)

and

V�S0� T − t0
= sup
t∈�

E0

[
e−r�t−t0
��St


]
� (1.448)

Throughout this section we use VE to distinguish the European price from its American

counterpart. In equation (1.448) the supremum is taken over all possible stopping times in the

set � . Note that both pricing functions are functions of the current time to maturity T − t0,
as is generally true when the drift and volatility terms have no explicit time dependence.

We remark that although various theoretical frameworks exist for the determination of optimal

stopping times, exact analytical formulas for such quantities as well as for American option

values in terms of known transcendental functions have not been found to date. This is

the case for the geometric Brownian motion model and, of course, for the more complex

state-dependent models. In Section 1.14.4 we develop an integral-equations approach for

computing the early-exercise boundary and the American option value, whereas in this section

we provide a discrete-time backward induction formulation, which is useful for approximating

the continuous-time quantities.
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Formally, the optimal stopping time, denoted by t∗, is given by the infimum over the set

� such that the value of the American option is equal to its intrinsic value (or face value) as
given by the pay-off at the observed asset price:

t∗ = inf�t ∈ � �V�St� T − t
= ��St
�� (1.449)

The stopping domain, corresponding to spot and time values for which it is optimal to exercise

prematurely, consists of the set of points


 = ��t� S
 � t ∈ � �V�S�T − t
= ��S
�� (1.450)

while the continuation domain, corresponding to spot and time values for which the option

is not exercised prematurely, is the set of points

� = ��t� S
 � t ∈ � �V�S�T − t
 > ��S
�� (1.451)

Assuming there exists an optimal stopping time t∗, then from asset-pricing theory this time

is given implicitly by

E0

[
e−r�t∗−t0
��St∗


]= V�S0� T − t0
� (1.452)

This is a result that is not practical as it stands since the equation involves the American

option value on the right-hand side, which is itself not yet known and dependent upon the

stopping domain. This is a common feature among optimal stopping problems for Markov

processes in continuous time, because they are essentially free-boundary value problems as

shown shortly.

The structure of the stopping domains may be quite complicated for certain classes of

payoff functions and diffusion models. However, for standard piecewise call/put types of

pay-offs considered here, the domains turn out to be simply connected. In particular, the

boundary of 
 is an early-exercise boundary curve given by

�
 = �� � S
 � 0 ≤  ≤ T − t0� S = S∗� 
�� (1.453)

with S∗� 
 given by a smooth curve

S∗� 
=min�S > 0 � V�S�  
= �S−K
+� (1.454)

for a call and

S∗� 
=max�S > 0 � V�S�  
= �K−S
+� (1.455)

for a put struck at K. Here the function V�S�  
 represents the value of the American call

C�S�K� 
 or put P�S�K� 
, respectively, where S is the value of the underlying spot. From

equation (1.451) it is obvious that the continuation domain is the set of all points � � S
 such
that V�S�  
 is greater than the respective payoff function at S. As we will see, the subscript

+ signs are actually redundant in equations (1.454) and (1.455). Note that here we have

simply expressed the boundary and the option price in terms of the time-to-maturity variable

 = T − t ∈ 	0� T − t0
 rather than the calendar time t ∈ 	t0� T
. This is convenient for what
follows since the diffusion models are assumed to be time homogeneous. The optimal-exercise

decision for the holder therefore depends on the observed spot (or stock price level) and the
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time to maturity (or calendar time) of the observation. In this sense, Amercian options can

be characterized as having a kind of path dependence.

Before any further analysis, we make note of one very basic and important property of

the early-exercise premium (or value): The European option value VE satisfies the condition
(i) VE�S�  
 ≥ ��S
 for all �S�  
 if and only if the corresponding American option value V
satisfies (ii) V�S�  
= VE�S�  
 for all �S�  
. That is, if the corresponding European price is

always above its intrinsic value during the contract lifetime, then it is never optimal to exercise

the American option at any time earlier than expiry; i.e., there is no early-exercise premium

and V = VE . To show this, note that equation (1.448) implies V�S�  
 ≥ VE�S�  
. Hence
condition (i) gives V�S�  
≥��S
, so the American option is always above the intrinsic value,

implying that the holder would not exercise earlier for a lower value. The optimal exercise

(stopping) time is therefore at expiry T; hence (i) implies (ii). To prove the converse, observe

that since the American option value must satisfy V�S�  
≥ ��S
 for all �S�  
, condition (ii)

implies (i). This result is essentially a statement of the fact that an early-exercise boundary

(and premium) arises only if the corresponding European option value falls below the intrinsic

(payoff function) value. Because of this we have the following rather well-known result.

Proposition.
(i) An Amercian call has a nonzero early-exercise premium if and only if q > 0.
(ii) An Amercian put has a nonzero early-exercise premium if and only if r > 0.

This result will be seen to follow explicitly from the early-exercise boundary properties

and the formulas for the early-exercise premiums developed in the following subsections.

However, a simple and instructive proof goes as follows.

Proof. The put-call parity relation for European calls and puts gives

CE�S�K�  
−PE�S�K�  
= e−q S− e−r K� (1.456)

Rewriting this we have

CE�S�K�  
= S−K+PE�S�K�  
+ 	�e−q −1
S− �e−r −1
K
� (1.457)

Since PE�S�K�  
 > 0, then for q = 0 either of these expressions gives CE�S�K�  
 > S−
e−r K ≥ S−K. Hence CE is always above its intrinsic value, and from the previous property

we conclude that the European call value is equal to the American call value, CE�S�K�  
=
C�S�K� 
, so the early-exercise premium is zero. For the case q > 0, we use equation (1.457)

and note that since the European put is a decreasing function of S, there exist large enough

values of S > K such that PE�S�K�  
+ 	�e−q −1
S− �e−r −1
K
 < 0, i.e., CE�S�K�  
 <
S−K for some S > K. From the previous result we therefore have C�S�K� 
 �= CE�S�K�  

and hence conclude that the early-exercise premium is nonzero for q > 0. This proves (i),

while statement (ii) is proved in a similar fashion by reversing the roles of S,q with K,r and
is left as an exercise. �

An obvious consequence of this proposition is that: (i) for an American call on a non-

dividend-paying stock the exercise boundary is trivial (i.e., it is never optimal to exercise

early), and (ii) for an American put on a nondividend-paying stock the exercise boundary is

nontrivial (i.e., there is an optimal early-exercise time) if the interest rate is positive. In what

follows (and also from the framework of Section 1.14.4) we will be able to further assess

such properties.
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Pricing by Recurrence: Dynamic Programming Approach

We now consider specifically the recursive formulation for pricing American options. This

involves an iteration method that goes backward in calendar time (or forward in time to

maturity). Formally, the American option price is given by equation (1.448). In order to

actually implement this formula in a practical manner, we subdivide the time interval 	t0� T
=
	t0� t1� � � � � tN = T
 into N ≥ 1 subintervals 	ti� ti+1
, �ti = ti+1 − ti > 0, i = 0� � � � �N − 1.

For notational purposes it is useful to introduce the price function Vt�S
. For the case of

time-homogeneous diffusions we have

Vt�S
≡ V�S�T − t
= V�S�  
� (1.458)

with  = T − t being the time remaining to maturity. We therefore assume that exercise

can only occur at a fixed set of (intermediate stopping) times given by �ti � i = 0� � � � �N�.
Equation (1.448) can then be approximated by

V0�S0
= sup
t∈�ti�i=0� � � � �N�

E0

[
e−r�t−t0
��St


]
� (1.459)

V0�S0
 ≡ Vt0
�S0
 = V�S0� T − t0
. For small �ti values we expect equation (1.459) to be a

good approximation to equation (1.448). From the theory of optimal stopping rules, one can

show that in the limit �ti → 0 (N →
) this approximation approaches the exact American

option value in equation (1.448), which allows for continuous-time exercise. We remark that

equation (1.459) actually gives the exact price of a Bermudan option with payoff function �.
Bermudans are bonafide contracts that essentially lie in between European and American

contracts and are in reality structured specifically with only a fixed set of allowable exercise

dates. Moreover, in any realistic trading strategy it is interesting to note that the actual

information on asset price levels can only be accessible to the trader at intermittent times

(i.e., at best one obtains “tick-by-tick”data). Hence, for the holder of an American option

the exercise decision times, although approaching the continuum limit, essentially occur at

discretely spaced points in time.

By discretizing time, the underlying asset price process with values Sti
∈�+, i= 0� � � � �N ,

is then a Markov chain. Iterating backward in calendar time starting from maturity, equa-

tion (1.459) is readily shown to imply that the option price at any intermediate time satisfies

the recurrence relation

Vti
�S
=max

{
��S
�Eti

[
e−r�tiVti+1

�Sti+1


Sti

= S
]}
� (1.460)

i= N −1� � � � �0, where VT�S
= ��S
. This result states that the option price at each date ti
is given by the maximum of the pay-off (or the immediate-exercise value) and the discounted

expected value of continuing without early exercise at time ti. Note that at each ith step the

expectation is conditional on Sti
= S. [Remark: Equation (1.460) can also be rewritten as a

forward recurrence relation in terms of a discretized time to maturity variable  i = T − ti
using equation (1.458)]. This formulation can be applied to asset prices that obey diffusion

processes with generally state- and time-dependent drift and volatility functions. Here and

in the following subsections, however, we are assuming time-homogeneous solutions; i.e.,

the drift and volatility functions of the asset price process are only allowed to be explicitly

state dependent. Assuming a generally state-dependent Markov diffusion process �St
t≥0,

St ∈ �+ with assumed risk-neutral transition probability density function p�S′� S�  
, the
earlier expectation then gives

Vti
�S
=max

{
��S
� Ṽti

�S
�� (1.461)
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where

Ṽti
�S
= e−r�ti

∫ 


0

p�S′� S��ti
Vti+1
�S′
dS′ (1.462)

represents the continuation value of the option at time ti. For the particular process, of

equation (1.381), p is specifically the lognormal density function given by equation (1.382).

In this iteration approach, the American (or Bermudan) option prices are obtained without

necessarily computing the early-exercise boundary. However, this can also be obtained simul-

taneously. From equation (1.461) we see that equations (1.449), (1.450), and (1.451) give the

stopping rule

t∗ =min�ti� i= 0� � � � �N � ��Sti

= Ṽti

�Sti

�� (1.463)

the early-exercise (stopping) domain as the union of line segments


 = ∪i=0� � � � �N ��ti� S
 � ��S
≥ Ṽti
�S
�� (1.464)

and the continuation domain

� = ∪i=0� � � � �N ��ti� S
 � ��S
 < Ṽti
�S
�� (1.465)

Relation to Lattice (Tree) Methods

The dynamic programming approach provides a basis for implementing a number of different

numerical methods for computing option prices using either Monte Carlo simulations, quadra-

ture rules of integration, lattice methods, or a combination of such methods. In particular,

the dynamic programming formulation can be directly related to the simplest of the lattice

models — the binomial and trinomial lattices. For a detailed exposition on the implementa-

tions of lattice methods for pricing American options (as well as their European counterparts)

the reader is urged to take a close look at the relevant numerical projects in Part II. The

intricate details as well as the relevant equations and algorithms are explicitly described in

those projects — the reader is also given the opportunity to numerically program the option-

pricing applications. Here we shall simply give a very brief and generic discussion, meant

only to emphasize the basic connection between the dynamic programming formulation and

the lattice pricing models without having to repeat the underlying details.

Lattice methods can be viewed as either: (i) approximate solutions to recurrence rela-

tion (1.460) (or alternatively as approximate solutions to the equivalent option-pricing PDE by

way of finite differences) or (ii) option-pricing models in their own right. Lattice models can

accommodate time-inhomogeneous processes, as is the case for time-dependent drift and/or

volatility functions. However, let’s assume time-homogeneous models, where the underlying

asset or stock price process is essentially modeled as a Markov chain on a discrete set of

possible states. Generally, one assumes that the stock price can only move on a set of nodes,
each denoted by a pair of integers (i,j) corresponding to a stock price value Si

j . The lattice

is a mesh or grid made up of all such nodes, where the integer j is an index for the spatial

position of the stock price on the lattice at time ti, i = 0� � � � �N . Lattice models allow for

the implementation of time steps of fixed or variable size, but for the sake of simplicity let’s

assume a fixed time step of size �t = �T − t0
/N . In fact, most implementations are based on

equal-size time steps. Then conditional on Sti
= Si

j , the probability of a movement of the stock

price within a single time step �t from a node �i� j
 into a successor node �i+1� j′
, with value
Sti+1

= Si+1
j′ , is given by the transition probability value P�Sti+1

= Si+1
j′ 
Sti

= Si
j
 ≡ pj→j′ > 0.
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Although not critical to the present discussion, we note that for the binomial model there are

only two successor nodes with j′ = j� j+1, whereas the trinomial model has three successor

nodes with j′ = j−1� j� j+1, and so on.

The positive quantities pj→j′ are risk-adjusted probabilities and must obviously obey

probability conservation, ∑
j′

pj→j′ = 1� for all j� (1.466)

where the sum is over all successor nodes in the model. Assuming the risk-neutral measure

with money market as numeraire, the expected rate of return of the stock must equal the

risk-free rate; i.e., Et	St+�t
= Ste
r�t. This is the risk-neutrality or no-arbitrage condition. For

the lattice model it takes the form ∑
j′

pj→j′S
i+1
j′ = e��tSi

j� (1.467)

for all �i� j
 nodes, where � = r or � = r − q for nondividend- or dividend-paying stock.

In order to capture the variance in the asset price returns, the lattice model is also built to take

into account the asset price volatilty. For instance, one can relate the variation either of stock

prices or of the log-returns that are computed separately using the diffusion model and the

lattice model. If the variation or second moment of the log-returns are considered, then we have

Et	�� logSt

2
= ���St



2 �t within order �t, where ��St
 is the local volatility function for the
general case of a state-dependent diffusion model of the form �St =��St
St �t+��St
St �Wt.

Applying this same expectation at each node within the lattice model and equating the two

expectations gives

��i
j


2�t =∑
j′

pj→j′ log
2�Si+1

j′ /Si
j
� (1.468)

where �i
j = ��Si

j
 forms a set of volatility parameters. This is just one possible way of intro-

ducing lattice volatility parameters into the model. Equations (1.466), (1.467), and (1.468) are

therefore collective constraints on the lattice geometry and the nodal transition probabilities.

These form an integral part of the construction of the lattice model and its parameters —

this is part of the model calibration procedure. Further steps in the calibration can also be

undertaken by fitting the lattice parameters so that certain computed option prices exactly

match the corresponding market prices. In most applications the number of adjustable lattice

parameters is greatly reduced. In particular, for geometric Brownian motion there is only one

volatility parameter, i.e., �i
j → � . Moreover, most lattice models are simplified by assuming

that the nodal transitions are independent of the starting node, as is the case for constant

local volatilities, i.e., pj→j′ → pj′ . For specific details on the contruction of lattices and on

implementing various calibration schemes for American and European option pricing within

the binomial and trinomial models, we again refer the reader to the relevant projects in

Part II.

Once the lattice geometry and transition probabilities are determined, i.e., the lattice is

calibrated, the option prices at each node in the lattice, V i
j = Vti

�Si
j
, can be determined by

recurrence:

V i
j =max

{
��Si

j
� e
−r�t

∑
j′

pj→j′V
i+1
j′

}
� (1.469)

The current option price V 0
0 = V0�S0
 at spot S0

0 ≡ S0 is obtained by simply iterating over

N time steps, starting from the known payoff VN
j = ��SN

j 
 at the terminal node values SN
j .
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Equation (1.469) also divides up the lattice into two groups of nodes: (i) a stopping domain

as the set ��i� j
 � V i
j = ��Si

j
� and (ii) a continuation domain as the set ��i� j
 � V i
j > ��Si

j
�.
This second set gives the times ti and spot values Si

j for which the option should not be

exercised early. According to equation (1.463), the optimal stopping time is

t∗ =min�ti = i�t � V i
j = ��Si

j
�� (1.470)

The early-exercise boundary is then also readily obtained. For instance, for a call this is the set

of points �i�t� Si
∗
, i= 0� � � � �N , where Si

∗ =max�Si
j � V

i
j > Si

j −K�; for a put, Si
∗ =min�Si

j �
V i
j > K−Si

j�. This offers a simple approach for approximating the early-exercise boundary

curve in the continuous diffusion model corresponding to the limit �t → 0. However, the

resulting curve will not be smooth, even for relatively small time steps. More accurate

calculations are afforded by applying more advanced techniques, such as the integral-equation

approach discussed in Section 1.14.4. For the case of a trinomial lattice, equation (1.469) is

related to the explicit finite-difference scheme for solving the Black–Scholes PDE. Alternative

PDE solvers are based on implicit finite-difference schemes. Implicit schemes require the

solution of a linear system of equations (or matrix inversion) for each time step in the

propagation, yet they may offer more flexibility in the allowable range of lattice parameters

for achieving accuracy and numerical stability. We refer the reader to the “Crank–Nicolson

Option Pricer” project in Part II, which discusses a special type of implementation of the

Crank–Nicolson implicit scheme for calibration and option pricing on a mesh.

The Smooth Pasting Condition and PDE Approach

Although the free-boundary curve is not analytically computable as a function of time, one

can generally establish the smooth pasting condition. This property guarantees that the price

function for an American option has a continuous derivative at the exercise boundary and

that the derivative is equal to the derivative of the payoff function at the exercise boundary.

The following proposition summarizes this result.

Proposition. Let
 , with time to expiry  = T− t > 0, be the early-exercise domain for which
Vt�S
 ≡ V�S�  
 = ��S
 when S ∈ 
 , where � is any differentiable payoff function. Then
the American option price function V satisfies the smooth pasting condition at the boundary
denoted by S∗� 
≡ S∗

t :

�V�S�  


�S

∣∣∣∣
S=S∗� 


= �′�S∗� 

� (1.471)

and the zero-time-decay condition obtains on the early-exercise domain,

�V�S�  


� 
= 0� for S ∈
 � (1.472)

Remark: The condition in equation (1.471) is also obviously valid for S ∈
 (excluding

the boundary) since V�S�  
= ��S
 on that domain. What is important to emphasize here is

that the derivative is continuous at the boundary of the stopping and continuation domains.

These properties are valid under general proper Itô diffusion models. For a call (or put),

then, equation (1.471) simply gives
�V�S∗� 
� 


�S
= 1 (or −1). This is illustrated in Figure 1.6.

Although this proposition can be formally proven from the PDE approach, we shall instead

demonstrate how it arises based on a dynamic hedging strategy argument, which turns out

to be financially more insightful. First we note that the graph of the American option value
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K S* (τ) SKS* (τ) S

CP

FIGURE 1.6 The pricing functions for an American put (left) and an American call (right) with

continuous dividend yield satisfy the smooth pasting condition with slope equal to−1 and 1, respectively,

at the optimal exercise boundary S∗� 
 for given time to expiry  > 0.

is never below that of the payoff function. Moreover, for given calendar time t (or time

to maturity  ), the slope of the graph of Vt�S
 = V�S�  
 at the exercise boundary point

S = S∗� 
 ≡ S∗
t must be less (greater) than or equal to that of the payoff function if the

latter is an increasing (decreasing) function at the boundary. That is: (i)
�Vt�S


�S


S=S

∗�−

t

≤�′�S∗
t 


for the case �′�S∗
t 
 ≥ 0 or (ii)

�Vt�S


�S


S=S

∗�+

t

≥ �′�S∗
t 
 for the case �′�S∗

t 
 ≤ 0. Here we use

S
∗�±

t to denote the limiting values from the right (+) or left (−) of S∗

t . Our objective is to

show that these inequalities in the slopes are actually strict equalities. We now show this

for case (i) as the argument follows in identical fashion for case (ii). In particular, let us

assume that the asset or stock price at calendar time t is at the boundary; i.e., let St = S∗
t .

After an infinitesimally small time lapse �t, the stock price can move either up into the

exercise domain 
 or down into the (no-exercise) domain of continuation. If the stock

price moves upward, then its change is �St = St+�t − S∗
t > 0, so St+�t > S∗

t and it remains

in the exercise domain. In this case, Vt+�t�St+�t
 = ��St+�t
 and the option value changes

by an amount �Vt = ��St+�t
−��S∗
t 
 = �′�S∗

t 
�St, to leading order in �t. So to achieve

a delta hedge for an upward tick over time �t, the option writer has to buy %t = �′�S∗
t 


shares of the stock. The writer’s delta-hedge portfolio at time t consists of one short position
in the option and %t shares in the stock. Hence for an upward tick the hedge portfolio

has value �t = −Vt�S
∗
t 
+%tS

∗
t = −Vt�S

∗
t 
+�′�S∗

t 
S
∗
t , and the change in portfolio value is

��t = −�Vt +�′�S∗
t 
�St = 0, to leading order in �t. On the other hand, if at time t the

stock ticks down, then �St < 0, St+�t < S∗
t ; hence the stock price falls into the domain of

continuation. Now assume the SDE in equation (1.381) holds. [Note: The same argument

also readily follows if we assume a more general Itô diffusion with state- and time-dependent

drift and volatility.] To leading order, then,

�St = �S∗
t �Wt =−�S∗

t

√
�t
z
� (1.473)

where z ∼ N�0�1
, since �Wt < 0 for a downward tick. Now, �Vt = �Vt�S


�S


S=S

∗�−

t

�St and,

using the foregoing expression, the hedge portfolio changes by

��t =−�Vt +�′�S∗
t 
�St

=
[
�Vt�S


�S

∣∣∣∣
S=S

∗�−

t

−�′�S∗
t 


]
�S∗

t

√
�t
z
� (1.474)
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Taking expectations and using E	
z

=√
2/� gives the expected change in the hedge port-

folio:

E	��t
=
√

2

�

[
�Vt�S


�S

∣∣∣∣
S=S

∗�−

t

−�′�S∗
t 


]
�S∗

t

√
�t� (1.475)

We hence conclude that the writer cannot exactly set up a delta hedge portfolio and in

particular is expected to suffer a loss every time the underlying stock is in the vicinity of

the boundary unless �Vt�S
∗�−

t 


�S
= �′�S∗

t 
. Since
�Vt�S

∗�+

t 


�S
= �′�S∗

t 
, the function
�Vt�S


�S
≡ �V�S� 


�S
is

continuous at the boundary and we have established equation (1.471).

The zero-time-decay condition is shown by simply considering the total change in the

American option value along the boundary S = S∗� 
 as the calendar time (or time to

maturity) changes and the boundary point moves accordingly. Along the boundary we have

V�S∗� 
�  
 = ��S∗� 

, and differentiating both sides of this relation w.r.t.  gives (Note:

The analysis in terms of t is the same):

�V�S∗� 
�  

�S

dS∗� 

d 

+ �V�S∗� 
�  

� 

= �′�S∗� 


dS∗� 

d 

� (1.476)

Hence, using equation (1.471) gives
�V�S∗� 
� 


� 
= 0, and since the option is given by the

time-independent payoff function everywhere else on the stopping domain, we have equa-

tion (1.472).

Delta hedging and continuous-time replication arguments apply to American options in

the same way they apply to European options. Within the (no-exercise) continuation domain

we therefore expect and require that the option price function satisfy the Black–Scholes PDE.

The connection between the optimal stopping time formulation and the PDE approach can be

shown as follows. Consider recurrence relation (1.460) with time step �t > 0 for any calendar

time t < T ,

Vt�S
=max
{
��S
� e−r�tEt

[
Vt+�t�St+�t

St = S

]}
� (1.477)

Assuming Vt�S
 is sufficiently smooth with continuous derivatives then to leading order

O��t
, we can Taylor-expand Vt+�t�St+�t
 while using Itô’s lemma. For a generally state- and

time-dependent process obeying �St = ��St� t
�t+��St� t
�Wt, we have

Vt�S
=max

{
��S
� �1− r�t
Et

[
Vt�St
+

(
�Vt�St


�t
+��St� t


�Vt�St


�St

+ 1

2
�2�St� t


�2Vt�St


�S2
t

)
�t+��St� t


�Vt�St


�St

�Wt

∣∣∣∣St = S

]}
+O���t
2


=max

{
��S
�Vt�S
+

[
�Vt�S


�t
+�BSVt�S


]
�t

}
+O���t
2
� (1.478)

The second equation obtains by evaluating the conditional expectation (which sets St = S and

eliminates the �Wt term) and then collecting terms up to O��t
. This expression has been

written more compactly using the Black–Scholes differential operator (for general drift and

volatility functions) defined by

�BSV ≡ 1

2
�2�S� t


�2V

�S2
+��S� t


�V

�S
− rV ≡ ��S�t − r
V� (1.479)
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For values of S in the continuation domain, the inequality Vt�S
 > ��S
 is satisfied, and

hence, from equation (1.478) we must have the Black–Scholes PDE:

�Vt�S


�t
+�BSVt�S
= 0� for all S �
 � (1.480)

By specializing to the geometric Brownian motion model, then, ��S� t
= �r−q
S, ��S� t
=
�S and the Black–Scholes PDE is

�V

� 
= �2S2

2

�2V

�S2
+ �r−q
S

�V

�S
− rV ≡ �BSV� for all S �
 � (1.481)

Thanks to the time-homogeneous property of the solution in this case, we have a PDE in

terms of the time-to-maturity variable, V = V�S�  
, which will be convenient in subsequent

discussions.

1.14.2 Perpetual American Options

An option with infinite time to maturity is called a perpetual option. Here we consider per-

petual American calls and puts. These options are instructive since simple analytic solutions

exist. Moreover, since the exercise boundary S∗� 
 is a monotonic function of time to matu-

rity  (i.e., increasing for a dividend-paying American call and decreasing for an American

put), the perpetual option price provides us with the asymptotic limit lim →
 S∗� 
 ≡ S∗ of

the exercise boundary for times infinitely far from maturity. We again consider an asset price

process St following geometric Brownian motion with constant interest rate r and continuous

dividend yield at constant rate q. Since a perpetual option has infinite time to maturity, its

value does not depend on the passage of time; i.e., the price function is independent of

time. Hence the time derivative of the price function is zero and the Black–Scholes partial

differential equation (1.481) for the price of a perpetual option reduces to a time-independent

ordinary differential equation (ODE).

We first consider the case of a perpetual put struck at K. The price function denoted by

P(S) must satisfy the ODE

1

2
�2S2 d

2P

dS2
+ �r−q
S

dP

dS
− rP = 0 (1.482)

for values away from the exercise boundary, S∗ < S < 
. The optimal exercise price S∗ is

therefore the asset price at which the perpetual American put should be exercised. Since the

value of the perpetual put must be equal to the intrinsic value at all values of S ≤ S∗ and

S∗ <K, (see Figure 1.6) the boundary conditions on P(S) are

lim
S→


P�S
= 0� P�S∗
= K−S∗� (1.483)

S∗ is yet unknown but uniquely determined once P(S) is obtained in terms of S∗ as described
just next. Equation (1.482) is an ODE of the Cauchy–Euler (equidimensional) type and

therefore has the general solution

P�S
= a+S
�+ +a−S

�−� (1.484)

where a± are arbitrary constants and �± are roots of the auxiliary quadratic equation

�2

2
�2+ �r−q− �2

2

�− r = 0� (1.485)
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Solving for the roots gives

�± =
−�r−q− �2

2

±

√
�r−q− �2

2

2+2�2r

�2
� (1.486)

Assuming positive interest rate r, then �− and �+ are negative and positive roots, respectively.

To satisfy the first condition at infinity in equation (1.483) we must have a+ = 0. By satisfying

the second boundary condition in equation (1.483), a− = �K−S∗
/�S∗
�− , we obtain the price
function in the form

P�S
= �K−S∗

(

S

S∗

)�−
� S ≥ S∗� (1.487)

The exercise boundary value S∗ can now be determined as the optimal value that maximizes

the price P(S) for all possible choices of S∗. The derivative w.r.t. the parameter S∗ of this

price function gives

�P

�S∗ = −
(

S

S∗

)�−(
1+ K−S∗

S∗ �−

)
� (1.488)

Setting this derivative to zero yields the extremum

S∗ = K�−
�−−1

� (1.489)

Computing the second derivative at this extremum gives �2P
�S∗2 = K�−

�S∗
2 �
S
S∗ 


�− < 0. Hence S∗ in

equation (1.489) is a maximum, and inserting its value into equation (1.487) gives the price

of the perpetual American put in the equivalent forms

P�S
= K

1−�−

(
�−−1

�−

)�−( S

K

)�−

=− S∗

�−

(
S

S∗

)�−
� (1.490)

for S ≥ S∗. This solution is easily shown to satisfy the required smooth pasting condition

dP

dS

∣∣∣∣
S=S∗

= −1� (1.491)

Next we consider the perpetual American call struck at K. As in the case of the put, the

price function now denoted by C(S) also satisfies equation (1.482), but for values 0< S< S∗.
The optimal value S∗ is therefore the asset price at which the call should be exercised. The

value C(S) must be given by the intrinsic value of the call pay-off for values on the boundary

S ≥ S∗, where S∗ >K; hence the boundary conditions are

lim
S→0

C�S
= 0� C�S∗
= S∗ −K� (1.492)

The general solution is again given by equations (1.484) and (1.486). However, by satis-

fying the boundary conditions in equation (1.492) we now instead have a− = 0 and a+ =
�S∗ −K
/�S∗
�+ , giving

C�S
= �S∗ −K


(
S

S∗

)�+
� 0< S < S∗� (1.493)
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Using the same procedure as for the put, the optimal exercise boundary is determined by

finding the maximum of C(S) w.r.t. S∗, giving

S∗ = K�+
�+−1

� (1.494)

Using S∗ from equation (1.494) in equation (1.493) gives the price of the perpetual American

call, written equivalently in terms of K or S∗:

C�S
= K

�+−1

(
�+−1

�+

)�+( S

K

)�+

= S∗

�+

(
S

S∗

)�+
� (1.495)

This satisfies the required smooth pasting condition

dC

dS

∣∣∣∣
S=S∗

= 1� (1.496)

It is instructive to examine what happens to the exercise boundary in the two separate

limiting cases: (i) zero interest rate r = 0 and (ii) zero dividend yield q = 0. In case (i)

we have from equation (1.486) that �− = 0 (assuming q ≥ −�2/2, which is the case if

q ≥ 0). From equation (1.489) we see that S∗ = 0; hence, for zero interest rate the perpetual

put is never exercised early. This is consistent with the property of an American put for

r = 0 and for any finite time to maturity, as shown in the next section. From a financial

standpoint, there is no time value gained from an early pay-off with zero interest. For case (ii):

Equation (1.486) gives �+ = 1 (assuming r ≥−�2/2, which is the case for r ≥ 0). Moreover,

�+ → 1+ as q → 0+ and from equation (1.494) we have S∗ →
. Hence in the limit of zero

dividend yield the perpetual call is never exercised early, irrespective of the interest rate.

This feature is also consistent with the plain American call of finite maturity, as shown in

the next section.

1.14.3 Properties of the Early-Exercise Boundary

The perpetual American option formulas of the previous section already allowed us to

determine the precise behavior of the optimal exercise boundary in the asymptotic limit of

infinite time to expiry, i.e., as  →
. To further complete the analysis of the boundary we

now consider the opposite limit, of infinitesimally small positive time to maturity  → 0+.
In particular, let us consider the case of the Amercian call struck at K with continuous dividend

yield q and price function denoted by C�S�K� 
 at spot S. Since C�S�K� 
 is an increasing

function of  , for  > 0, the graph of the American call price (plotted as a function of S) with
greater time to maturity  2 must lie above the graph of the price function for the corresponding

call with time to maturity  1 <  2. Furthermore, the smooth pasting condition guarantees that

the price functions join the intrinsic line at levels S∗� 1
−K and S∗� 2
−K, respectively,

giving S∗� 1
 < S∗� 2
. Hence, we conclude that S∗� 
 is a continuously increasing function

of positive  . To put this in financial terms, an American call with greater time to maturity

should be exercised deeper in the money to account for the loss of time value on the strike

K. Due to the fact that one would never prematurely exercise at a spot value below the strike

level (i.e., exercising for a nonpositive pay-off), the early-exercise boundary for an Amercian

call must, in addition, satisfy the property S∗� 
 > K for all  > 0.
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To determine the boundary in the limit  → 0+, note that the option value approaches the

intrinsic value; i.e., at expiry it is exactly given by the payoff function C�S�K� = 0
= S−K
for values on the exercise boundary. Inserting this function into the right-hand side of

equation (1.481) and taking derivatives gives

�C�S�K�0+

� 

= rK−qS (1.497)

for S > K. Since the condition �C�S�K�0+
/� > 0 ensures that the option is still alive (i.e.,

not yet exercised), the spot value S at which �C�S�K�0+
/� becomes negative and hence

for which the call is exercised at an instant just before expiry is given by S = r
q
K. This is

the case, however, if the value r
q
K is in the interval S > K, that is, if r > q > 0. In this

case, just prior to expiry the call is not yet exercised if the spot is in the region K< S < r
q
K

but would be exercised if S ≥ r
q
K. Hence, S∗�0+
 = r

q
K for r > q > 0. In the other case,

r ≤ q, so r
q
K ≤K. Yet S > K, so S∗�0+
=K for r ≤ q. Note that the condition S∗�0+
 > K

is not possible in this case because this leads to a suboptimal early exercise, since the loss

in dividends would have greater value than the interest earned over the infinitesimal time

interval until expiry. Combining these arguments we arrive at the general limiting condition

for the exercise boundary of an American call just prior to expiry:

lim
 →0+

S∗� 
=max�K�
r

q
K
� (1.498)

From this property we see that S∗�0+
 → 
 as q → 0. Hence, for zero dividend yield

the American call is never exercised early, which is consistent with the fact that the plain

(nondividend) American call has exactly the same worth as the plain European call.

Similar arguments can also be employed in the case of the Amercian put struck at K with

continuous dividend yield q. At expiry the put has value P�S�K� = 0
 = K−S for values

on the exercise boundary. We leave it as an exercise for the reader to show that the exercise

boundary of an American put just prior to expiry is given by

lim
 →0+

S∗� 
=min�K�
r

q
K
� (1.499)

For r = 0 we therefore have S∗�0+
 = 0, irrespective of the value of q. Since S∗� 
 is a

decreasing function of  , we conclude that the early-exercise boundary is always at zero,

meaning that the American put with zero interest rate is never exercised before maturity. This

is consistent with the conclusion we arrived at earlier, where we considered the perpetual

American put. For q ≤ r we observe that the early-exercise boundary just before expiry is at

the strike, S∗�0+
 = K. A special case of this is the vanilla American put, i.e., when r > 0

and q = 0. Figure 1.7 gives an illustration of typical early-exercise boundaries for a call and

put. Given a time to maturity of T at contract inception, we see that the American call with

nonzero dividend is not yet exercised (i.e., is still alive) on the domain of points �S�  
 below
the exercise curve: S ∈ 	0� S∗� 

 and  ∈ �0� T
. In contrast, the American put is kept alive

above the exercise curve: S ∈ �S∗� 
�

 and  ∈ �0� T
.

1.14.4 The Partial Differential Equation and Integral Equation Formulation

The problem of pricing an American option can be formulated as an initial-value partial

differential equation (PDE) with a time-dependent free boundary. The early-exercise boundary

is an unknown function of time, which must also be determined as part of the solution.

In particular, let V�S�  
 represent the pricing function of an American option with spot S
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S
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min(K, K )r
q

max(K, K )r
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τ τ

FIGURE 1.7 Early-exercise smooth boundary curves S= S∗� 
 for the American call (left), with q> 0,

and put (right), with values depicted just before expiry  → 0+. In the limit of infinite time to expiry,

the curves approach the horizontal asymptotes at S = S∗, where S∗ is given by equation (1.494) or

equation (1.489) for the call or put, respectively.

and time to maturity  , 0 ≤  ≤ T , and having payoff or intrinsic function V�S�0
 = ��S
.
Here we assume the pay-off is time independent, although the formulation also extends to

the case of a known time-dependent payoff function. For given  , the solution domain is

divisible into a union of two regions: (1) a continuation region �S�  
 ∈ 
′
 × 	0� T
, for

which the option is still alive or not exercised, and (2) a stopping region �S�  
 ∈
 × 	0� T
,
where 
 is the complement of 
′

 within �+, for which the American option is already

exercised. The domains depend on  . As seen in the previous section, in the case of the

American call, ��S
 = S−K on 
 = 	S∗� 
�

 (and 
′
 = �0� S∗� 

, while for the put,

��S
 = K− S on 
 = �0� S∗� 

 (and 
′
 = �S∗� 
�

. Assuming the underlying asset

follows equation (1.381), equation (1.481) holds for S ∈ 
′
 . In contrast, the homogeneous

Black–Scholes PDE does not hold on the domain of the early-exercise boundary, where the

American option is given by the time-independent payoff function V�S�  
 = ��S
. Since
���S


� 
= 0, the solution on 
 satisfies �V

� 
= 0. Combining regions and assuming the pay-off

is twice differentiable gives a nonhomogeneous Black–Scholes PDE:

�V�S�  


� 
= �BSV�S�  
+f�S�  
� (1.500)

with (source) function

f�S�  
=

⎧⎪⎨⎪⎩
0� S ∈
′

 

−�BS��S
� S ∈
 �

(1.501)

where �BS is the Black–Scholes differential operator. For geometric Brownian motion, �BS is

defined by equation (1.481). Given the function f�S�  
, whose time dependence is determined

in terms of the free boundary, the solution to equation (1.500), subject to the initial condition

V�S�  = 0
= ��S
 and boundary conditions V�S = 0�  
= ��0
, V�S =
�  
= ��

, can
be obtained in terms of the solution to the corresponding homogeneous Black–Scholes PDE.

Recall from previous discussions that the transition probability density function p�S′� S�  

solves the forward Kolmogorov PDE in the S′ variable and the backward PDE in the spot

variable S with zero boundary conditions at S = 0�
 for all  > 0. As already mentioned,

for process (1.381) p is just the lognormal density given by equation (1.382). We also know

that e−r p solves the homogeneous Black–Scholes PDE. Combining these facts and applying
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Laplace transforms, one arrives at the well-known Duhamel’s solution to equation (1.500) in

the form

V�S�  
= e−r 
∫ 


0

p�S′� S�  
��S′
dS′

+
∫  

0

e−r ′
[∫ 


0

p�S′� S�  ′
f�S′�  −  ′
dS′
]
d ′

≡ VE�S�  
+Ve�S�  
� (1.502)

One can readily verify that this solves equation (1.500), even for the more general case

of state-dependent models (see Problem 1). An important aspect of this result is that the

American option value V�S�  
 is expressible as a sum of two components. The first term is

simply the European option value VE , as given by the discounted risk-neutral expectation of

the pay-off. Hence the second term, denoted by Ve�S�  
, must represent the early-exercise

premium, which gives the holder the additional liberty of early exercise.

Assuming geometric Brownian motion for the underlying asset, equations (1.500)

and (1.501) for the American call and put specialize to

�C

� 
− �2S2

2

�2C

�S2
− �r−q
S

�C

�S
+ rC =

⎧⎪⎨⎪⎩
0� S < S∗� 


qS− rK� S ≥ S∗� 

(1.503)

and

�P

� 
− �2S2

2

�2P

�S2
− �r−q
S

�P

�S
+ rP =

⎧⎪⎨⎪⎩
rK−qS� S ≤ S∗� 


0� S > S∗� 

� (1.504)

respectively. Here we used�BS�S−K
= rK−qS, and S∗� 
 denotes the early-exercise bound-
ary for the respective call and put with strike K. The right-hand sides of these nonhomogeneous

PDEs are nonzero only within the respective stopping regions. Using equation (1.502), the

solutions to equations (1.503) and (1.504) for the American call and put price are given by

C�S�K� 
=CE�S�K�  
+Ce�S�K�  
 (1.505)

and

P�S�K� 
= PE�S�K�  
+Pe�S�K�  
� (1.506)

where the respective early-exercise premiums take on the integral forms

Ce�S�K�  
=
∫  

0

e−r ′
[∫ 


S∗� − ′

p�S′� S�  ′
�qS′ − rK
dS′

]
d ′ (1.507)

and

Pe�S�K�  
=
∫  

0

e−r ′
[∫ S∗� − ′


0

p�S′� S�  ′
�rK−qS′
dS′
]
d ′� (1.508)

These premiums can also be recast as

Ce�S�K�  
=
∫  

0

e−r ′E0

[
�qS ′ − rK
1�S ′ ≥S∗� − ′
�

]
d ′ (1.509)
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and

Pe�S�K�  
=
∫  

0

e−r ′E0

[
�rK−qS ′
1�S ′ ≤S∗� − ′
�

]
d ′� (1.510)

where E0 denotes the current-time expectation, conditional on asset paths starting at S0 =
S under the risk-neutral measure with density p�S ′ � S�  

′
. The time integral is over all

intermediate times to maturity, and the indicator functions ensure that all asset paths fall

within the early-exercise region. The properties of the early-exercise boundaries established

in the previous section guarantee that the early-exercise premiums are nonnegative. For a

dividend-paying call, equation (1.498), together with the indicator function condition, leads to

S ′ ≥max� r
q
K�K
≥ r

q
K; hence qS ′ − rK ≥ 0 and Ce is positive. A similar analysis follows

for the put premium. The exercise premiums hence involve a continuous stream of discounted

expected cash flows, beginning from contract inception until maturity. This lends itself to

an interesting financial interpretation, as follows. Consider the case of the American put

(a similar argument applies to the dividend-paying call) and an infinitesimal intermediate

time interval 	 ′�  ′ +d ′
. Then from the holder’s perspective the option should be optimally

exercised if the asset price, given by S ′ at time  ′, attains the stopping region (i.e., reaches the
early-exercise boundary with S ′ ≤ S∗� −  ′
 and  −  ′ as the remaining time to maturity).

Assuming that the holder is instead forced to keep the American put alive until expiry, the

holder would have to be fairly compensated for the loss due to the delay in exercising during

the time interval d ′. The value of this compensation is the difference between the interest

on K dollars and the dividend earned on the asset value S ′ , continuously compounded over

time d ′. This cash flow is an amount �rK−qS ′
d 
′, and corresponds to the early-exercise

gain if the holder in fact had the privilege to optimally exercise. Allowing for all possible

asset price scenarios from S to S ′ that attain the boundary gives rise to the expectation

integral under the risk-neutral density for all intermediate times 0 ≤  ′ ≤  . Summing up

all of these infinitesimal cash flows and discounting their values to present time by an

amount e−r ′ gives the time integral, as in equation (1.508) or (1.510). We conclude that the

early-exercise premium has an equivalent and alternative interpretation as a delay-exercise

compensation.

The foregoing integral representations for the American call and put price can also be

applied to cases where the volatility of the asset price process St is considered generally state

dependent. In order to implement the integral formulas, we need to be able to compute the

transition density function p, either analytically or numerically. Moreover, the integrals can

only be computed after having determined the early-exercise boundary S∗� ′
 for 0≤  ′ ≤  .
For the geometric Brownian motion model (with constants r,q,�), p is given by the lognormal

density, and the foregoing double integrals readily simplify to single time integrals in terms

of standard cumulative normal functions. In particular, one readily derives explicit integral

representations for the price of the American call and put (see Problem 2):

C�S�K� 
= Se−q N�d+
−Ke−r N�d−


+
∫  

0

[
qSe−q� − ′
N�d∗

+� 
′

− rKe−r� − ′
N�d∗

−� 
′


]
d ′� (1.511)

P�S�K� 
=Ke−r N�−d−
−Se−q N�−d+


+
∫  

0

[
rKe−r� − ′
N�−d∗

−� 
′

−qSe−q� − ′
N�−d∗

+� 
′


]
d ′� (1.512)
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where

d± = log S
K
+ (

r−q± 1

2
�2
)
 

�
√
 

� (1.513)

d∗
±� 

′
= log S
S∗� ′
 +

(
r−q± 1

2
�2
)
� −  ′


�
√
 −  ′ � (1.514)

These integral representations are valid for S ∈ �0�

,  ≥ 0. By setting S = S∗� 
 and

applying the respective boundary conditions, C�S∗� 
�K�  
 = S∗� 
−K for the call and

P�S∗� 
�K�  
 = K− S∗� 
 for the put, equations (1.511) and (1.512) give rise to integral

equations for the early-exercise boundary. For the call,

S∗� 
−K = Se−q N�d̃+
−Ke−r N�d̃−


+
∫  

0

[
qSe−q� − ′
N�d̃∗

+� 
′

− rKe−r� − ′
N�d̃∗

−� 
′


]
d ′� (1.515)

and separately for the put,

K−S∗� 
=Ke−r N�−d̃−
−Se−q N�−d̃+


+
∫  

0

[
rKe−r� − ′
N�−d̃∗

−� 
′

−qSe−q� − ′
N�−d̃∗

+� 
′


]
d ′� (1.516)

where

d̃± = log
S∗� 

K

+ (
r−q± 1

2
�2
)
 

�
√
 

� (1.517)

d̃∗
±� 

′
= log
S∗� 

S∗� ′
 +

(
r−q± 1

2
�2
)
� −  ′


�
√
 −  ′ � (1.518)

Note that equations (1.515) and (1.516) involve a variable upper integration limit and the

integrands are nonlinear functions of S∗� 
, S∗� ′
,  and  ′. From the theory of integral

equations, equations (1.515) and (1.516) are known as nonlinear Volterra integral equations.
Note that the solution S∗� 
, at time to maturity  , is dependent on the solution S∗� ′
 from
zero time to maturity  ′ = 0 up to  ′ =  . Although equations (1.515) and (1.516) are not

analytically tractable, simple and efficient algorithms can be employed to solve for S∗� 

numerically. For detailed descriptions on various numerical algorithms for solving these types

of integral equations, see, for example, [DM88]. A typical procedure divides the solution

domain into a regular mesh:  0 = 0,  i = ih, i = 1� � � � � n, with n steps spaced as h =  /n.

By approximating the time integral via a quadrature rule (e.g., the trapezoidal rule), one

obtains a system of algebraic equations in the values S∗� i
, which can be iteratively solved

starting from the known value S∗� 0
 = S∗� = 0+
 at zero time to maturity. Alternatively,

popular Runge–Kutta methods usually used for solving initial-value nonlinear ODEs can be

also adapted to these integral equations. Once the early-exercise boundary is determined, the

integral in equation (1.511) or (1.512) for the respective call or put can be computed. In

particular, a quadrature rule that makes use of the computed points S∗� i
 can be implemented.

Accurate approximations to the early-exercise boundary are obtained by choosing the number

n of points to be sufficiently large.
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Problems

Problem 1. Consider the state-dependent model dSt =��St
dt+��St
dWt. Assuming f�S�  

is differentiable w.r.t.  , show that equation (1.502) satisfies equation (1.500) for the appro-

priate operator �BS . Hint: Since VE satisfies the homogeneous Black–Scholes PDE, from

superposition one need only show that Ve satisfies equation (1.500). Use the property of inter-

changing order of differentiation and integration, integration by parts, and the fact that e−r p
satisfies the homogeneous Black–Scholes PDE with initial condition p�S′� S�0
= ��S′ −S
.
Provide an extension to equation (1.502), if possible, for the more general case of explicitly

time-dependent drift and volatility.

Problem 2. (a) By employing similar manipulations as were used to obtain the standard

Black–Scholes formulas in Section 1.6, derive equations (1.511) and (1.512) from equa-

tions (1.507) and (1.508). (b) Show that the pricing formulas for the American call and put in

equations (1.511) and (1.512) satisfy the required boundary conditions at S = 0 and S =
.

Problem 3. Find an analytical formula for the price as well as the early-exercise boundaries

of a perpetual American butterfly option with payoff function �!�S−K
 given by equa-

tion (1.228) of Section 1.8. Assume K− ! > 0 and that the underlying asset price obeys

geometric Brownian motion with constant interest rate r and continuous dividend yield q.

Problem 4. Using equations (1.511) and (1.512), derive integral representations for the delta,

gamma, and vega sensitivities of the American call and put.

Problem 5. Let V�S�  
 and VE�S�  
 denote the American and European option values,

respectively, with spot S, time to maturity  , and payoff function ��S
. Assume a constant

interest rate r and continuous dividend yield q under the geometric Brownian motion model

for the process St. Prove the equivalence of these two statements:

(i) V�S�  
 > VE�S�  
 for all S > 0,  > 0.

(ii) ��S
 > e−r ��e�r−q
 S
 for some point �S�  
. Explain why American options on futures

have a nonzero early-exercise premium.

Problem 6. Consider a Bermudan put option with strike K at maturity T with only a single

intermediate early-exercise date T1 ∈ 	0� T
. Assume the underlying stock price obeys equa-

tion (1.381) within the risk-neutral measure, and let P�St�K�T − t
 denote the option value

at calendar time t with spot St. Find an analytically closed-form expression for the present-

time t = 0 price P�S0�K�T
. Hint: This problem is very closely related to the valuation of

a compound option discussed at the end of Section 1.12. In particular, proceed as follows.

From backward recurrence show that

P�S0�K�T
= e−rT1E0

[
P�ST1

�K�T −T1

]
� (1.519)

with

P�ST1
�K�T −T1
=

⎧⎪⎨⎪⎩
PE�ST1

�K�T −T1
� ST1
> S∗

T1

K−ST1
� ST1

≤ S∗
T1
�

(1.520)

where PE is the European put price function, E0	 
 is the risk-neutral expectation at time 0,

and the critical value S∗
T1

for the early-exercise boundary at calendar time T1 solves

PE�S
∗
T1
�K�T −T1
= K−S∗

T1
�
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Compute this expectation as a sum of two integrals, one over the domain ST1
> S∗

T1
and the

other over 0 < ST1
≤ S∗

T1
while using equations (1.382) and (1.385) to finally arrive at the

expression for P�S0�K�T
 in terms of univariate and bivariate cumulative normal functions.

Show whether S∗
T1

is a strictly increasing or decreasing function of the volatility � , and
explain your answer. What is this functional dependency for the case of a Bermudan call?

Explain.



C H A P T E R . 2

Fixed-Income Instruments

2.1 Bonds, Futures, Forwards, and Swaps

2.1.1 Bonds

A bond is paper issued by a corporate or sovereign entity promising a cash flow stream at

future dates. In this chapter, we make the important assumption that credit risk is negligible,

meaning that the probability that bond issuers default on their promise of making payments

is zero.

Mathematically, a bond is modeled as a cash flow stream with a present value. The

cash flow map of a bond is given by a sequence of pairs �c�T
 = �ci� Ti
� i = 1� � � � � n,
where T1 < · · · < Tn are future cash flow dates in increasing order and c1� � � � � cn are the

corresponding cash flow amounts. A cash flow stream �c�T
 has a present value at calendar

time t denoted by PVt�c�T
. Pure discount bonds, or zero-coupon bonds, are securities with

one single cash flow of fixed amount, i.e., the nominal amount N at maturity T; see Figure 2.1.
The continuously compounded yield yt�T
 for the period 	t� T
 is often used to express the

value Zt�T
 at time t of a zero-coupon bond maturing at time T and is defined as follows:

Zt�T
 = exp
(−yt�T
�T − t


)
� (2.1)

Note that ZT�T
 = 1. Simple-compounding rules are often used. The simply compounded
yield y�

t with period �≤ T − t is defined as follows:

Zt�T
 = (
1+�y

��

t �T


)− �T−t

� � (2.2)

For example, letting � = �T − t
/n�n ≥ 1, gives n simple compounding periods in 	t� T
.
Notice that in an economy where one postulates that the cost of holding a cash position is

negligible — which is the case if one neglects security costs — one obtains the inequality

Zt�T1
≥ Zt�T2
� (2.3)

for all maturities T1 ≤ T2 and any fixed present time t ≤ T1.

113
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zero-coupon bond
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FIGURE 2.1 Zero-coupon bond with one cash flow at maturity T.
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FIGURE 2.2 Cash flow stream for an n-coupon bond.

A cash flow stream �c�T
 of multiple n-coupon payments can be replicated by means

of a portfolio of zero-coupon bonds. Figure 2.2 depicts such a cash flow stream with equal

payments until maturity, at which time a nominal payment in the amount of N is made.

Assuming that zero-coupon bonds of all maturities are traded, the present value of the given

cash flow stream is given by the sum of discounted cash flows:

PVt�c�T
=
n∑

i=1

cie
−yt�Ti
�Ti−t
 �or
=

n∑
i=1

ci
(
1+�y

��

t �Ti


)− �Ti−t

� � (2.4)

where the first sum in the equation assumes continuous compounding and the second assumes

simple compounding. One defines yields of a coupon bond with cash flow map �c�T
 to be

the quantities yt�c�T
 [or y
��

t �c�T
 for simple compounding] such that

PVt�c�T
=
n∑

i=1

cie
−yt�c�T


�or
=
n∑

i=1

ci
(
1+y

��

t �c�T


)− �Ti−t

� � (2.5)

where, again, the first sum in the equation assumes continuous compounding and the second

assumes simple compounding.

Besides coupon bonds, some instruments with uncertain cash flows can also be priced in

terms of the zero-coupon bonds. An example is a bond-forward contract. This is a forward

contract on a zero-coupon bond of given maturity T2, with a future settlement date T1. Two

parties A and B agree, at present time t, that a prescribed interest rate will apply within some

interval 	T1� T2
 in the future, with t < T1 < T2. A bond-forward of nominal N is equivalent
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T1

T1T2 T2

bond-forward FRA in arrears FRA in advance

FIGURE 2.3 A comparison of equivalent present-value cash flows for an FRA with payments in

arrears and in advance. The three figures correspond to the three possibilities of designing the cash

flows: either both occurring at T1, or both at T2, or one at T1 and one at T2.

to the combination of two cash flows, as depicted in Figure 2.3. Party A pays an amount N
at time T1, and after a time  she receives an amount

N�1+�f
��

t �T1� T2



 
�

�or
= N exp
(
 ft�T1� T2


)
(2.6)

at time T2. Here,  = �T2−T1
 is the tenor and f
��

t �T1� T2
 is the forward rate computed with

a simple-compounding rule of period � ≤  , while ft�T1� T2
 uses continuous compounding

as further explained below. Notice that in the limit when the forward maturity is at current

time, i.e., when T1 = t, forward rates coincide with yields, i.e.,

f
��

t �t� T2
= y

��

t �T2
� (2.7)

and yt�T2
 = ft�t� T2
 if continuous-compounding is assumed instead. The most convenient

compounding convention for forward rates is the one with an intermediate compounding

period equal to the tenor, i.e., � =  . The equilibrium value of the forward rate is the

rate for which the present value of the bond-forward contract is zero. Assuming continuous

compounding, the present value of the two cash flows is

PVt =−NZt�T1
+Ne ft�T1�T2
Zt�T2
� (2.8)

whereas for simple compounding

PVt = N�Zt�T2
−Zt�T1

+N f
� 

t �T1� T2
Zt�T2
� (2.9)

The equilibrium rate corresponds to the value for which PVt = 0, hence giving

ft�T1� T2
=
1

 
log

(
Zt�T1


Zt�T2


)
� (2.10)

This coincides with the continuously compounded forward rate for the interval 	T1� T2
 as
viewed at present time t. In contrast, for simple compounding the equilibrium rate (or forward

rate) denoted by f
� 

t �T1� T2
 satisfies

1+  f
� 

t �T1� T2
=

Zt�T1


Zt�T2

� (2.11)

Note that the forward rate is also related to the forward price for a unit zero-coupon bond

maturing at time T2 with settlement at time T1. Forward rates and forward prices are further

discussed in later sections.
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2.1.2 Forward Rate Agreements

A forward rate agreement (FRA) is an instrument with the same risk profile, cash flow map,

and present value of a bond-forward, but with only one actual cash flow. Such FRAs are

struck at the equilibrium forward rate at the time of issue and come in two flavors, since

payments can be either in advance or in arrears. In an FRA with payments in arrears, struck

at the equilibrium rate ft�T1� T2
, there is only one cash flow (with positive and negative

components) at time T2. Using equation (2.8), or (2.9), and inflating the cash flow at time T1

into a cash flow at time T2 gives only one cash flow at time T2, of amount

N 
[
f

� 

t �T1� T2
−y

� 

T1
�T2


]
(2.12)

for simple compounding or

N
[
eft�T1�T2
 − eyT1 �T2
 

]
(2.13)

for continuous compounding. In contrast, in a similar FRA with payments in advance, the

cash flow occurs only at time T1. Discounting the cash flow at time T2 back to time T1 gives

the following payoff amount for an FRA with payments in advance:

N
(
e	ft�T1�T2
−yT1 �T2

 −1

)
(2.14)

for continuous compounding or

N

(
1+  f

� 

t �T1� T2


1+  y
� 

T1
�T2


−1

)
(2.15)

for simple compounding. The cash flows for these FRAs are depicted in Figure 2.3.

Problems

Problem 1. Prove that the condition (2.3) implies that all forward rates are nonnegative.

Problem 2. Conversely, prove that if all forward rates are positive, then the discount function
is monotonically decreasing, i.e., that condition (2.3) holds.

2.1.3 Floating Rate Notes

A floating rate note (FRN) is an instrument with a series of settlement dates Tj = T0+ j � j =
0� � � � � n, at which cash flows occur. In contrast to a bond, the size of a cash flow c�Tj

(i.e., the coupon payment) at the generic date Tj depends on the interest rate prevailing at

time Tj or earlier. In the simplest, so-called plain-vanilla structures, cash flow amounts are

defined in a manner that the FRN can be associated to a cash flow map and priced directly

off the yield curve, i.e., with no volatility risk. There are two variations of FRNs. Either the

coupon payments are settled in arrears, i.e., paid out at time Tj based on the rate for the

period that just ended, �Tj − �Tj
, or they are settled in advance with payments at time Tj−1.

A plain-vanilla FRN with payments in arrears has cash flows given by

c�Tj
=  Ny
� 

Tj− �Tj
+N�jn� (2.16)

Here N is the notional amount of the FRN and �jn equals 1 in case j = n and 0 otherwise;

hence, the second term in equation (2.16) represents the notional repayment, which takes
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place only at the time of maturity Tn. For an FRN with payments in advance, the cash flows

for times Tj < Tn are obtained by discounting at the rate y
� 

Tj− �Tj
; hence,

c�Tj
=
N y

� 

Tj− �Tj


1+  y
� 

Tj− �Tj


(2.17)

if j < n and c�Tn
 = N at maturity. Note that here we are assuming simple compounding

with fixed period  . The present value at time t ≤ T0 is the same in either case. In particular,

with payments in arrears we have

FRNt =
n∑

j=0

c�Tj
Zt�Tj


= c�T0
Zt�T0
+N 
n∑

j=1

y
� 

Tj− �Tj
Zt�Tj
+NZt�Tn
� (2.18)

This expression simplifies by using the relation

�1+  y
� 

Tj− �Tj

Zt�Tj
= Zt�Tj−1
 (2.19)

in the above sum, which collapses to give

FRNt = NZt�T0
+ c�T0
Zt�T0
� (2.20)

In financial terms, this follows from the fact that if one has the notional amount available

at time T0 and invests it in a series of term deposits of tenor  until maturity, one generates

all the cash flows corresponding to the coupon payments starting from the initial and the

principal repayment. This is depicted in Figure 2.4.

2.1.4 Plain-Vanilla Swaps

A payer’s interest rate swap can be regarded as a combination of a short position in a floating

rate (the floating leg) and a long position in a bond (the fixed leg) with the same nominal or

T0 T1 Tn. . .

floating rate note

ca
sh

 fl
ow

s

FIGURE 2.4 Equivalent cash flows for an FRN.
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principal amount N and paying coupons at a preassigned fixed rate rs. A receiver’s interest
rate swap can be regarded as a short payer’s swap. Cash flow dates are at times Tj = T0+ j ,
j = 0� � � � � n, with period  . Clearly, swaps can be priced directly from the yield curve, and

their replication does not involve any volatility risk. Swaps come in two variations, with the

floating rate (typically a six-month LIBOR) agreed to be the rate prevailing either at the

beginning or at the end of each period �Tj−1� Tj
. Assuming a principal repayment of N at

time Tn, the present value at time t of the fixed leg is

PVfixed
t = cfixed�T0
Zt�T0
+Nrs

n∑
j=1

 Zt�Tj
+NZt�Tn
 (2.21)

and that for the floating leg is

PVfloat
t = cfloat�T0
Zt�T0
+N

n∑
j=1

 y
� 

Tj− �Tj
Zt�Tj
+NZt�Tn
� (2.22)

with simple compounding at the floating rate assumed. From arbitrage arguments it also

follows that the yields in this equation are given by the forward rates f
� 

t �Tj−1� Tj
.

The swap rate rst is said to be at equilibrium at time t if the present value to the receiver

or payer of the swap at time t is zero, i.e., if PVfixed
t = PVfloat

t . More precisely, using algebra

similar to what was used in the preceding section, on FRNs [i.e., using equation (2.19)],

the equilibrium swap rate of a swap with payments in arrears can be shown to satisfy the

following equation:

N�Zt�T0
−Zt�Tn

+ �cfloat�T0
− cfixed�T0

Zt�T0
= Nrst

n∑
j=1

 Zt�Tj
� (2.23)

Assuming equal initial coupons cfloat�T0
= cfixed�T0
, we have

rst =
Zt�T0
−Zt�Tn
∑n

j=1  Zt�Tj

� (2.24)

It is important to note that this result is independent of any assumed short rate model. Also,

from the cash flow structure one can observe that interest rate swaps may be decomposed in

terms of FRAs. Figure 2.5 shows the basic cash flow map of a receiver’s swap with variable

positive cash flows and the corresponding negative fixed amounts.

2.1.5 Constructing the Discount Curve

In this section, we describe the most liquid classes of interest-sensitive assets. These instru-

ments can be priced directly from the discount curve and owe their popularity to the relative

ease of replication, which results in liquid, efficient markets. Conversely, prices of such assets

are used to reverse information on the discount curve. The discount curve is found by an

interpolation algorithm, subject to the requirement that the present values Pi of a series of

cash flow maps ci� i= 1� � � � � n, is reproduced, that is, subject to

Pi =
∑
j

cij�Tij
Z0�Tij
� (2.25)

where Tij is the time when the jth cash flow of the ith cash flow map occurs and cij is the
corresponding amount.
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FIGURE 2.5 Fixed-leg and floating-leg cash flows for a receiver’s swap.

A variety of analytical methods can be used to imply the discount curve. The following

is a possible strategy that works quite well for the LIBOR curve. The method consists of two

steps. In the first step one finds a best fit in a special parameterized family of meaningful

discount functions. A possibility is to use the CIR discount function ZCIR
0 �T
, introduced in

the following sections, but other choices would work as well. As a second step, one can

represent the discount curve as

Z0�T
= ZCIR
0 �T
+�Z0�T
 (2.26)

and find the correction, �Z0�T
= Z0�T
−ZCIR
0 �T
, in such a way that the present values of

the cash flow map in equation (2.25) are exactly reproduced, forward rates are positive, and

the function �Z0�T
 is as smooth as possible.

Cubic splines can be used to represent the function �Z0�T
. A cubic spline is parameterized

by the function values and the second derivatives on a time grid T1� � � � � Tn. The value of

�Z0�T
 for time T ∈ �T��T�+1
 falling in between the grid points can be interpolated as

follows, using a cubic polynomial:

�Z0�T
= a��T −T�

3+b��T −T�


2+ c��T −T�
+d�� (2.27)

The constants a�� b�� c��d� solve the equations

d� = �Z0�T�
� 2b� = �Z′′
0 �T�
� (2.28)

a��T�+1−T�

3+b��T�+1−T�


2+ c��T�+1−T�
+d� = �Z0�T�+1
� (2.29)

6a��T�+1−T�
+2b� = �Z′′
0 �T�+1
� (2.30)

This set of equations, in the given coefficients for each � grid point, involves function

evaluations at both times T� and T�+1, some of which correspond to points outside the

discount curve. Hence, the equations constitute an underdetermined linear system. A good

way to select a satisfactory solution is to further require that the weighted sum of squares

n∑
�=1

(
Z0�T�


2+�Z′′
0 �T�


2
)

(2.31)
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FIGURE 2.6 An actual-yield curve versus the yield curve obtained using a CIR discount function. The

actual forward rates curve is also drawn for comparison.

be minimal. The parameter � adjusts the so-called tension of the yield curve. The limit �→ 0

corresponds to an infinitely tense curve, in which the discount factors are linearly interpolated

between the vertices. In the limit �→
, sharp turns in the curve are highly penalized. The

spreadsheet (related to the “Interest Rate Trees: Calibration and Pricing” project of Part II)

can be worked out by the reader interested in implementing the details of this fitting scheme,

as depicted in Figure 2.6.

2.2 Pricing Measures and Black–Scholes Formulas

In Section 1.12 we derived pricing formulas of the Black–Scholes type assuming interest rates

are deterministic functions of time. In this section, we lift this restriction and find Black–

Scholes type of models that are solvable, giving explicit pricing formulas for stock options

with stochastic interest rates and a number of interest rate derivatives. Pricing models for

interest rate derivatives are based mostly on the postulate that interest rates and the discount

function follow a diffusion process, thus ruling out jumps. In a general diffusion model, the

price process for discount bonds Zt�T
 of the various maturity dates T obeys a stochastic

differential equation of the following form:

dZt�T
= �rt +qt�
Z�T

t 
Zt�T
dt+Zt�T
�

Z�T

t dWt� (2.32)

Here, qt is a price of risk component dependent on the chosen numeraire, while �
Z�T

t is the

zero-coupon bond (lognormal) volatility.

Recall that the pricing formula in the asset pricing theorem (covered in Chapter 1) provides

a way to express prices in terms of discounted expectations of future pay-offs with respect to

a pricing measure:

At = gtE
Q�g

t

[
A 

g 

]
� (2.33)
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In this formula, “discounting” is achieved through a numeraire asset g, whose volatility

is the price of risk for the pricing measure denoted by Q�g
. The actual asset price At

is independent of g; changing the numeraire is equivalent to changing coordinates in path

space. Recall that all domestic assets drift at the instantaneous domestic risk-free rate plus a

price of risk component given by the dot product �g ·�A, where �g and �A are lognormal

volatility vectors of the chosen numeraire gt and the asset price At. As the following example

demonstrates, it is useful to select the appropriate numeraire asset in order to derive pricing

formulas in analytically closed form. The choices of numeraire asset we use in this section are:

• Risk-neutral measure, corresponding to selecting gt = Bt ≡ e
∫ t
0 rsds, the money-market

or savings account
• Forward measure with maturity T, (also called the T-forward measure) corresponding

to selecting gt = Zt�T
, the zero-coupon bond price with maturity date T
• Bond-forward measure with cash flow map �c�T
, corresponding to selecting the

bond’s present value:

gt =
n∑

i=1

ciZt�Ti
� (2.34)

To achieve solvability, it is also necessary to identify an appropriate stochastic process

whose expectation at maturity time one proposes to compute. As the following examples show,

sometimes the obvious choice of the process is not the most convenient for the calculations.

Furthermore, one needs to postulate a stochastic differential equation for the selected process

whereby the drift is simple to compute (possibly zero) and the volatility is a deterministic

function of time under the chosen measure. In the following sections we argue that there is

a large class of models — known as Gaussian models — that naturally lead to deterministic

volatilities in several important cases.

2.2.1 Stock Options with Stochastic Interest Rates

Consider a call option on the stock with price St at time t, strike K, and maturity T. Let
Ft�S�T
 = St/Zt�T
 be the forward price for the stock, with delivery at time T. Since

ST = FT�S�T
, the pay-off for the call option can be written as follows:

CT = �FT �ST �T
−K
+� (2.35)

�x
+ ≡max�x�0
. In the forward measure Q�g
 with numeraire gt = Zt�T
� the forward price

Ft�S�T
 is a martingale. Hence, we suppose that the process for Ft�S�T
 is given by

dFt�S�T


Ft�S�T

= ��t
dWt� (2.36)

where the volatility ��t
 of the forward price is a deterministic function of time. Recall from

Section 1.6 that the transition probability distribution for such a process is lognormal:

p�Ft� t�FT �T
=
1

�̄FT

√
2��T − t


e−	log�Ft/FT 
−�̄2�T−t
/2
2/2�̄2�T−t
� (2.37)

where Ft ≡ Ft�S�T
 and �̄ involves the time-averaged square of the lognormal volatility,

�̄2 = 1

T − t

∫ T

t
��u
2 du� (2.38)
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Putting equation (2.37) with equation (2.33) and using the fact that ZT�T
 = 1, the pricing

formula for the value Ct of the call option at time t is then given by

Ct

Zt�T

= E

Q�Zt�T


t

[
�FT �S�T
−K
+

]= ∫ 


0

p�Ft� t�FT �T
�FT −K
+ dFT

= Ft�S�T
N�d+
−KN�d−
� (2.39)

where

d± = log�Ft�S�T
/K
± 1

2
�̄2�T − t


�̄
√
T − t

(2.40)

and N�·
 is the cumulative standard normal distribution function.

2.2.2 Swaptions

Consider a payer swaption (or call swaption) struck at rate rK and of maturity T. The

underlying is the fixed leg with pay-off as present value of all future cash flows if the swap

rate rsT > rK:

PSOT =  �rsT − rK
+
n∑

j=1

ZT�Tj
� (2.41)

where  = Tj+1−Tj is the tenor. As a numeraire, select the present value of a stream of unit

cash flows occurring at the coupon dates, T1 = T +  � � � � � Tn = T +n , of the fixed leg:

gt =
n∑

j=1

Zt�Tj
� t < T� (2.42)

Recalling the expression in equation (2.24) we see that the swap rate rst is a ratio of two

assets, with denominator corresponding to the numeraire gt. In this case one can easily show

from the formula in equation (1.137) that rst is a martingale (i.e., has zero drift �rs

t = 0)

with respect to the pricing measure Q�gt
. Assuming that the lognormal volatility of the

swap rate is a deterministic function of time, we set �
�rs

t = ��t
. The transition probability

distribution function for the swap rate is then a lognormal function p�rst � t� r
s
T � T
, similar to

equation (2.37). Using steps similar to those in the previous section, one obtains the following

Black–Scholes pricing formula for the swaption price PSOt at time t:

PSOt∑n
j=1Zt�Tj


=  E
Q�g

t

[(
rsT − rK

)
+
]

=  	rst N�d+
− rKN�d−

� (2.43)

where

d± = log�rst /rK
± 1

2
�̄2�T − t


�̄
√
T − t

� (2.44)

N�·
 is the cumulative standard normal distribution function, and �̄ is defined as in equa-

tion (2.38), with time average taken over the squared lognormal volatility of the swap rate.
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2.2.3 Caplets

Consider a caplet struck at fixed interest rate rK , maturing at time T, on a floating rate

y
� 

T �T +  
 of tenor  applied to the period 	T�T +  
 in the future. The floating rate is

typically the three- or six-month LIBOR. The pay-off of this caplet is given by a capped-rate

differential compounded in time  multiplied by the discount function over that period:

CplT = �y
� 

T �T +  
− rK
+ ZT �T +  
� (2.45)

where the simply compounded yield is given by

y
� 

T �T +  
=  −1

(
ZT�T +  
−1−1

)= f
� 

T �T�T +  
� (2.46)

Hence in terms of forward rates we have

CplT =  �f
� 

T �T�T +  
− rK
+ZT�T +  
� (2.47)

In the measure Q�g
 with numeraire asset

gt = Zt�T +  
� (2.48)

the simply compounded forward rate

f
� 

t �T�T +  
= 1

 

(
Zt�T


Zt�T +  

−1

)
(2.49)

is readily seen to be a martingale. Note that this follows because the forward rate is (besides

the constant term  −1) a ratio of two assets Zt�T
 and Zt�T +  
, where the denominator is

gt. As in the previous examples, the transition probability distribution p�ft� t� fT �T
 for the
forward rate ft ≡ f

� 

t �T�T+ 
 can be assumed lognormal and of the form in equation (2.37),

with lognormal volatility �
f
t = ��t
 of the forward rate taken as a deterministic function of

time. Hence, the pricing formula at time t < T for the caplet with value Cplt is

Cplt =  Zt�T +  
E
Q�g

t

[
�fT − rK
+

]
= Zt�T +  
	 f

� 

t �T�T +  
N�d+
−  rKN�d−



= 	Zt�T
−Zt�T +  

N�d+
−  rKZt�T +  
N�d−
� (2.50)

where

d± = log�f
� 

t �T�T +  
/rK
± 1

2
�̄2�T − t


�̄
√
T − t

� (2.51)

N�·
 is the cumulative standard normal distribution function, and �̄ is defined as in equa-

tion (2.38), with time average taken over the squared lognormal volatility of the forward

rate.
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2.2.4 Options on Bonds

Consider a European call option struck at exercise K, of maturity date T, written on a

coupon-bearing bond. The option pay-off can be written

BOT = �PT −K
+� (2.52)

where Pt is the present value of the bond,

Pt =
n∑

j=1

cjZt�Tj
� (2.53)

with cash flows cn� � � � � c1 at times Tn > Tn−1 > · · ·>T1 >T . Note that the sum in this present

value involves only cash flows at future times past the maturity of the option. As numeraire

asset, we choose gt = Zt�T
, and we assume a lognormal volatility for the forward price of

the bond: Ft ≡ Ft�P�T
= Pt/Zt�T
. Note that with this choice of numeraire the forward price

is a zero-drift lognormal process, where we assume the lognormal volatility as a deterministic

function of time, �F
t = ��t
. Noting also that PT = FT�P�T
 = FT , the resulting pricing

formula for the call option on the bond is obtained using steps similar to those in the previous

examples:

BOt = Zt�T
E
Q�Zt�T


t

[
�FT −K
+

]
= Zt�T
	Ft�P�T
N�d+
−KN�d−

� (2.54)

where

d± = log�Ft�P�T
/K
± 1

2
�̄2�T − t


�̄
√
T − t

� (2.55)

N�·
 is the cumulative standard normal distribution function, and �̄ is defined as in equa-

tion (2.38), with time average taken over the squared lognormal volatility of the bond forward

price. It is important to note that this model is inaccurate when the lifetime of the bond is

comparable to the time to maturity, in which case there can be a significant deviation from

lognormality due to the pull to par effect.

2.2.5 Futures–Forward Price Spread

The spread between the futures price F ∗
t �A�T
 and the forward price Ft�A�T
 of an underlying

asset A, whose spot price at time t is At, is given by equation (1.330). This difference was

demonstrated in Section 1.11 to be zero in the case when interest rates are deterministic

functions of time or when the asset price process is statistically independent of the short

rate process. Here the numeraire gt = Bt is the money-market account. Let us now compute

the spread assuming that interest rates are generally stochastic. It suffices to compute the

expectation

E
Q�B

t

[
AT

]= E
Q�B

t

[
FT�A�T


]
� (2.56)

We consider the stochastic differential of the forward price process Ft�A�T
,

dFt�A�T


Ft�A�T

= �

F�A�T

t dt+�

F�A�T

t dWt� (2.57)
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given that the asset price satisfies

dAt

At

= �A
t dt+�A

t dWt� (2.58)

Using the results in equations (1.324) and (1.325) for the stochastic differential of the quotient

Ft�A�T
= AtZt�T

−1, we have

�
F�A�T

t = �A

t −�
Z�T

t (2.59)

and

�
F�A�T

t = �

Z�T

t

(
�

Z�T

t −�A

t

)
� (2.60)

Here we have used the fact that, under the risk-neutral measure Q�B
, the drift of the asset

price At and the bond price (which is also an asset) are equal, and both are given by the short

rate. As was seen in Chapter 1, this follows as a consequence of the important no-arbitrage

property, that all assets drift at the instantaneous short rate rt under the risk-neutral measure

with the money-market account as numeraire. We should emphasize here that the formulas

throughout this section obviously extend to the case of many base risk factors as well. In such

cases the drifts and volatilities are vector quantities with components in the base risk factors.

We now make the simplifying assumption that the volatilities of the asset At and the bond

Zt�T
 are deterministic functions of time, i.e.,

�A
t = �A�t
� �

Z�T

t = �Z�T
�t
� (2.61)

The forward price volatility �
F�A�T

t = �F�t
 and drift �

F�A�T

t = �F�t
, for fixed T and given

asset A, are then also deterministic functions of time as given by equations (2.59) and (2.60).

This then allows us to obtain a more explicit formula for the futures–forward price spread,

as follows.

Under the measure Q�B
, the probability density for the forward price attaining a value

FT�A�T
= FT at time T, given Ft�A�T
= Ft at time t, has the lognormal form

p�Ft� t�FT �T
=
1

�̄FT

√
2��T − t


e−	log�Ft/FT 
+��̄−�̄2/2
�T−t

2/2�̄2�T−t
� (2.62)

with time-averaged time-dependent drift and volatility

�̄= 1

�T − t


∫ T

t
�F � 
d � �̄2 = 1

�T − t


∫ T

t
��F � 

2 d � (2.63)

An expression for the futures price, in terms of the forward price, is now readily obtained

from the integral

F ∗
t �A�T
= E

Q�B

t

[
FT�A�T


]= ∫ 


0

FTp�Ft� t�FT �T
dFT

= Ft�A�T
e
�̄�T−t
� (2.64)

From equations (2.60), (2.63), and (2.64), the futures–forward price spread is therefore

F ∗
t �A�T
−Ft�A�T
= Ft�A�T


[
exp

(∫ T

t
��Z�T
� 
−�A� 

�Z�T
� 
d 

)
−1

]
� (2.65)

Finally, note that for given T and asset A, equation (2.64) shows that F ∗
t �A�T
/Ft�A�T
 is a

deterministic function and hence the volatility of the futures and forward price are assumed

to be the same,

�F∗
�t
= �F�t
= �A�t
−�Z�T
�t
� (2.66)
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2.2.6 Bond Futures Options

Consider a European call option on a futures contract on a zero-coupon bond ZT�U
, with

option strike price K and maturity date T, with T < U . Here the underlying asset A is the

zero-coupon bond whose maturity date is U [i.e., At = Zt�U
 for given bond maturity date

U , and at the option expiry date AT = ZT�U
]. The futures price at any time t ≤ T is denoted

by F ∗
t �Zt�U
�T
; hence the pay-off at the option’s expiry time T can be written as follows:

BOT = �F ∗
T �ZT �U
�T
−K
+ = �FT �ZT �U
�T
−K
+� (2.67)

Here we used the property F ∗
T �A�T
= FT�A�T
 for any asset A. In order to price this option,

we will choose as numeraire the zero-coupon bond with maturity T, i.e., gt = Zt�T
. In this

measure the forward price Ft ≡ Ft�Zt�U
�T
= Zt�U
/Zt�T
 is a martingale. We now make

the same assumptions as in the previous section and postulate that the lognormal volatility

of a zero-coupon bond of given maturity (i.e., for any T and U values) is a deterministic

function of time t, with values �Z�T
�t
 and �Z�U
�t
, for maturities T and U , respectively.

Here, however, we are working in a probability space, with Ft having zero drift. Using

equation (2.64), we have F ∗
t = Fte

�̄�T−t
 for the price F ∗
t �Zt�U
�T
, with

�̄= 1

�T − t


∫ T

t
��Z�T
� 
−�Z�U
� 

�Z�T
� 
d � (2.68)

The probability density p�Ft� t�FT �T
 for the forward price attaining a value FT at time T,
given a value Ft at time t, is given by the lognormal form as in equation (2.37) with zero

drift coefficient.

The pricing formula for the call on the bond futures contract then follows from similar

steps as in the previous subsections:

BOt = Zt�T
E
Q�Zt�T


t

[
�F ∗

T �ZT �U
�T
−K
+
]

= Zt�T
E
Q�Zt�T


t

[
�FT �ZT �U
�T
−K
+

]
= Zt�T
	Ft�Zt�U
�T
N�d+
−KN�d−



= Zt�T

[
e−�̄�T−t
F ∗

t �Zt�U
�T
N�d+
−KN�d−

]
� (2.69)

where

d± = log
Ft�Zt�U
�T


K
± 1

2
�̄2�T − t


�̄
√
T − t

= log
F∗
t �Zt�U
�T


K
+ �−�̄± 1

2
�̄2
�T − t


�̄
√
T − t

(2.70)

and N�·
 is the cumulative standard normal distribution function. Here �̄ is given by equa-

tion (2.68), whereas

�̄ =
√

1

T − t

∫ T

t

(
�Z�T
� 
−�Z�U
� 


)2
d � (2.71)

The option price can therefore be expressed either in terms of the futures or forward price,

as well as the zero-coupon bond volatility for the two maturities T and U .
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Problems

Problem 1. Demonstrate a put-call parity relation for European options on a futures contract

on an underlying zero-coupon bond as described in Section 2.2.6.

Problem 2. Derive an option-pricing formula similar to that in Section 2.2.6 for a forward

contract on a bond.

Problem 3. Derive a Black–Scholes formula for a European bond put option struck at

exercise K, of maturity T. Is put-call parity satisfied with respect to the call price given in

Section 2.2.4?

Problem 4. A floorlet is similar to a caplet, except the floating rate is bounded from below

with payoff �rK −y
� 

T �T + 

+ ZT �T + 
. Derive a Black–Scholes formula for a floorlet. Is

there a relationship between a floorlet and a caplet?

Problem 5. Caps and floors are collections of caplets and floorlets, respectively, applied to

periods 	Tj� Tj + 
, j = 1� � � � � n. Show that a model-independent relationship cap = floor +
swap exists.

Problem 6. Provide a Black–Scholes type of formula for a receiver swaption with payoff

 �rK − rsT 
+
∑n

j=1ZT�Tj
.

Problem 7. Provide a Black–Scholes type of formula for a European call option with maturity

T and strike K and written on a (unit-nominal) zero-coupon bond with maturity S > T .
Denoting its pricing function by ZBCt�T� S�K
,

ZBCt�T� S�K
= E
Q�B

t

[
e−

∫ T
t rsds�ZT �S
−K
+

]
�

Assume the forward price of the bond Ft�Z�S
�T
 = Zt�S
/Zt�T
 follows a zero-drift log-

normal process with time-dependent volatility ��t
 under the T-forward measure Q�Z�T


with Zt�T
 as numeraire asset price.

2.3 One-Factor Models for the Short Rate

2.3.1 Bond-Pricing Equation

A possible way of specifying an interest rate process is to assign a stochastic differential

equation for the short rate

drt = �g�rt� t
dt+��rt� t
dWt� (2.72)

Here g is the numeraire asset. The functions �g and � give the drift and volatility, respectively,

of the short rate rt under the measure, with g as numeraire asset. Here we note that the drift

and volatility functions in general have an explicit dependence on r and t variables.

Theorem. (Bond-Pricing Equation) If the short rate process described by equation (2.72)
is Markovian, then the zero-coupon bond price process Zt�T
 is given by a pricing function
Z�r� t� T
 so that

Zt�T
= Z�rt� t� T
� (2.73)
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• The function Z�r� t� T
 solves the following partial differential equation:

�Z

�t
+ r

�Z

�r
+ ��r� t
2

2

�2Z

�r2
= rZ� (2.74)

• The drift of the short term rate is given by

�g�r� t
= r+�g�r� t
��r� t
� (2.75)

where �
g
t = �g�r� t
, as a function of r and t, denotes the volatility function for the

numeraire asset price gt at calendar time t.
• Under the risk-neutral measure with choice of numeraire asset as the savings (i.e.,

money-market) account process, gt = Bt = e
∫ t
0 rsds, the discount function at present

time t, maturing at time T, is given by the conditional expectation under the risk-
neutral measure

Zt�T
= E
Q�B

t

[
e−

∫ T
t rsds

]= EQ�B

[
e−

∫ T
t rsds

∣∣rt = r
]
� (2.76)

i.e., with condition rt = r.
• The probability density P�r� t
 for the short rate having value r at time t, given an

initial condition for the density P�r�0
 at time t = 0, satisfies the equation

�P�r� t


�t
= 1

2

�2

�r2

(
��r� t
2P�r� t


)
− �

�r

(
�g�r� t
P�r� t


)
� (2.77)

Proof. The representation in equation (2.73) is due to the Markov assumption for the short

rate: In this situation, the price of a zero-coupon bond can only depend on the short rate value

r at calendar time t and on calendar time t, given a maturity T. By using Itô’s lemma, where

Z is considered explicitly as a function of r = rt and t variables, one obtains the stochastic

differential for Z ≡ Z�rt� t� T
:

dZ=
(
�Z

�t
+�g�r� t


�Z

�r
+ �2�r� t


2

�2Z

�r2

)
dt+ �Z

�r
��r� t
dWt

≡�Zt�T
Zdt+�Zt�T
ZdWt� (2.78)

with bond volatility �Zt�T
 = �Z�T
�r� t
 as

Z�Z�T
�r� t
= ��r� t

�Z�r� t� T


�r
� (2.79)

Here the bond volatility function is denoted explicitly as a function of r and t, for given
maturity T. The Black–Scholes equation for the stochastic differential equation (2.78) gives

the pricing function for bonds as satisfying

�Z

�t
+�g�r� t


�Z

�r
+ ��r� t
2

2

�2Z

�r2
= rZ+qg

t ��r� t

�Z

�r
� (2.80)

with price of risk q
g
t = �

g
t . Note that this also follows by taking expectations on both sides

of equation (2.78) while using E
Q�B

t 	dZ
 = �r + q

g
t �

Zt�T

Z dt, E
Q�B

t 	dWt
 = 0. This is

essentially a special case of the Feynman–Kac result. In the special case where gt =Bt, i.e., the

money-market account, the price of risk is zero (hence also giving �g = r) and we finally find
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equation (2.74). Since the pricing function Z�r� t� T
 is not dependent on the price of risk, we

conlude that the drift �g of the short rate process satisfies equation (2.75). By applying Itô’s

lemma to the expectation in equation (2.76), one can show that Z satisfies partial differential

equation (2.74) with condition r = rt, thus verifying formula (2.76). Another simple proof of

the bond-pricing equation is to apply the Feynman–Kac formula to the conditional expectation

in equation (2.76), which can be written as BtE
Q�B

t 	B−1

T 
, where this last expectation satisfies

a Feynman–Kac PDE. Finally, equation (2.77) follows from the Fokker–Planck equation (or

Kolmogorov forward equation) for the probability density corresponding to the process in

equation (2.72). �

2.3.2 Hull–White, Ho–Lee, and Vasicek Models

There is empirical evidence that the interest rate process in the real-world measure is mean

reverting. The series for the five-year U.S. dollar rate in Figure 2.7 shows this phenomenon

visually. The periods with high and low rates alternate, following the expansion and recession

cycles of the economy. There is also strong evidence from option prices that the risk-neutral

process is mean reverting as well. Notice that this conclusion is not obvious, mathematically,

since the price of risk can in principle offset the mean-reverting character of the overall

process. Nevertheless, market expectations as they are reflected through cap prices, for

instance, reveal that the market expects rates to fluctuate not far from the historical mean

on long time scales. A large class of stochastic models with the mean-reversion property

can be constructed based on two processes: the Ornstein–Uhlenbeck process and the Cox–

Ingersol–Ross process. We construct both models emphasizing both the continuous-time

interpretation and the discrete-time recurrence relations they satisfy. This approach has the

advantage of clarifying the methodology for statistical estimations using daily or weekly data

and to generate Monte Carlo simulations.

In what follows we describe an explicit method of obtaining expectations of stochastic

quantities, as well as the discount function, by the use of a discrete stochastic calculus

approach combined with a subsequent continuous-time limit. Let us first consider the time

interval 	0� t
 and its discrete subdivision, with the points � = �t0 = 0� t1� � � � tn = t� making
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FIGURE 2.7 A time series for the 5-year U.S. dollar (USD) rate.
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up n subintervals of length �ti = ti+1 − ti. Subinterval paths are defined by means of the

recurrence relations

rti+1
= e−b�ti
�ti rti +a�ti
�ti+��ti
�Wti

� (2.81)

for all i= 0� � � � �N −1, where �Wti
are uncorrelated Brownian increments such that

Et0

[
�Wti

�Wtj

]= �ij �ti� (2.82)

The solution to these recurrence relations is readily found by iteration, giving

rtn = e−
∑n−1

i=0 b�ti
�ti r0+
n−1∑
i=0

e−
∑n−1

k=i+1 b�tk
�tk �a�ti
�ti+��ti
�Wti

� (2.83)

In the continuous-time limit, as the partition of the interval 	0� t
 becomes finer and finer,

i.e., in the limit �ti → 0 (or n →
), this expression for the stochastic process is given by

the stochastic integral:

rt = r0e
− ∫ t

0 b�s
ds +
∫ t

0

e−
∫ t
s b�u
du�a�s
ds+��s
dWs
� (2.84)

Notice that this expression reduces to equation (2.83) if the functions a�t
� b�t
, and ��t
 are
piecewise constant in the intervals 	ti� ti+�ti
. Differentiating this expression with respect to t
while using Leibniz’s rule for the derivative of the integral on the right gives the stochastic

differential equation satisfied by rt as

drt = �a�t
−b�t
rt
dt+��t
dWt� (2.85)

This model encapsulates both the Hull–White and Vasicek models [HW93, Vas77]. The

Hull–White model obtains by setting b�t
 = b, ��t
 = � as constants and keeping a�t
 as

time dependent. The Vasicek model obtains by also setting a�t
 = a as constant. The Ho–

Lee model corresponds to setting b�t
 = 0, ��t
 = � as constants and a�t
 as generally

time dependent. The Black–Karasinski model obtains by replacing the short rate rt with the

logarithm log rt in equation (2.85).

From the solution in equation (2.83) one can obtain the expectation, at time t = 0, of the

random variable rtn by making use of E0	�Wti

= 0 and then taking the continuous-time limit

of the sums, giving

E0	rt
= e−
∫ t
0 b�s
dsr0+

∫ t

0

e−
∫ t
s b�u
dua�s
ds� (2.86)

The reader will also note that this is consistent with taking expectations on both sides of

equation (2.84) and using the property of zero expectation for the stochastic integral part, as

discussed in Section 1.4. Similarly, the variance can be obtained by considering the following

expectation in the continuous-time limit:

E0	�rtn −E0	rtn 


2
= E0

[( n−1∑
i=0

e
∑n−1

k=i+1 b�tk
�tk��ti
�Wti

)2]

=
n−1∑
i=0

n−1∑
j=0

e
∑n−1

k=i+1 b�tk
�tk+
∑n−1

k=j+1 b�tk
�tk��ti
��tj
E0	�Wti
�Wtj




=
n−1∑
i=0

e
∑n−1

k=i+1 b�tk
�tk��ti

2→

∫ t

0

e−2
∫ t
s b�u
du��s
2ds� (2.87)
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where the last expression is obtained in the limit n→
. The reader will note that equation

(2.87) follows also by equations (2.84) and (2.86) after applying the Property (1.106).

In this model for the short rate process we have the useful result that the variable defined

by the integral XT
t ≡ ∫ T

t
rs ds, for any time interval 	t� T
, is a normal random variable. Hence,

the discount function can be obtained in terms of the mean and standard deviation of the

random variable XT
t , as is shown next. To compute the mean and standard deviation of XT

t ,

consider now the interval 	t� T
 with n subdivisions within time points t0 ≡ t� t1� � � � � tn ≡ T
and, as before, �ti = ti+1− ti. The discretized form of the integral is

XT
t =

n−1∑
k=0

rtk �tk� (2.88)

Taking the expectation, at time t, of this sum while using equation (2.83) for rtk and

Et	�Wtk

= 0 gives

Et	X
T
t 
= rt

n−1∑
k=0

e−
∑k−1

i=0 b�ti
�ti �tk+
n−1∑
k=0

k−1∑
i=0

e−
∑k−1

j=i+1 b�tj 
�tj a�ti
�ti �tk� (2.89)

In the continuous-time limit we have the mean

X̄T
t ≡ Et	X

T
t 
= rt

∫ T

t
e−

∫ s
t b�u
du ds+

∫ T

t

∫ s

t
a�u
e−

∫ s
u b�v
dv du ds

≡ rtn�t�T
+m0�t� T
� (2.90)

where the functions n�t�T
, m0�t� T
 have been defined through the integrals. The reader can

also verify that this result obtains by applying Property (1.105) together with (2.84), after a

time shift. The variance follows from the expectation:

var	XT
t 
 ≡ Et

[(
XT

t −Et	X
T
t 

)2]= Et

[( n−1∑
k=0

k−1∑
i=0

e−
∑k−1

j=i+1 b�tj 
�tj��ti
�Wti
�tk

)2]

=
n−1∑
k=0

k−1∑
i=0

n−1∑
k
′ =0

k
′ −1∑
i
′ =0

e
−∑k−1

j=i+1 b�tj 
�tj−
∑k

′ −1

j=i
′ +1

b�tj 
�tj��ti
��ti′ 
�tk �tk′Et	�Wti
�Wt

i
′ 


=
[ n−1∑

k=0

k−1∑
i=0

n−1∑
k
′ =k

+
n−1∑
k=0

k−1∑
k
′ =0

k
′ −1∑
i=0

]
e−

∑k−1
j=i+1 b�tj 
�tj−

∑k
′ −1

j=i+1 b�tj 
�tj��ti

2�tk �tk′ �ti

→
[∫ T

t
ds

∫ s

t
d 

∫ T

s
du+

∫ T

t
ds

∫ s

t
du

∫ u

t
d 

]
�� 
2e−

∫ s
 b�v
dv−∫ u

 b�v
dv� (2.91)

where the last expression obtains in the limit n→
. By reversing the order of integration

in these integrals one can write the expression as one integral term, giving:

var	XT
t 
=

∫ T

t
�� 
2

(∫ T

 
e−

∫ s
 b�u
duds

)2

d =
∫ T

t
�� 
2n� �T
2d 

≡m1�t� T
� (2.92)

Having obtained X̄T
t and var	XT

t 
, we therefore have the probability density for the normal

random variable XT
t ∼ N�X̄T

t �var	X
T
t 

 taking on a value y, as viewed at time t, given by a

Gaussian:

p�y
= 1√
2� var	XT

t 

exp

(
− �y− X̄T

t 

2

2 var	XT
t 


)
� (2.93)
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The discount function Zt�T
= Z�rt� t� T
 is finally obtained in terms of the expectation

Zt�T
= Et	e
−XT

t 
=
∫ 


−

p�y
e−y dy = e

1
2
var	XT

t 
−X̄T
t = em�t�T
−n�t�T
rt � (2.94)

where

m�t�T
= 1

2
m1�t� T
−m0�t� T
� (2.95)

Note that this discount function can also be derived by using the method discussed in the

next section. There, the solution for Z�rt� t� T
 in the form of an exponential of an affine

function in r = rt [see equation (2.94) or (2.116)], is obtained by simply plugging the

expression into bond-pricing equation, where the volatility function is independent of the short

rate. The functions m�t�T
 and n�t�T
 are readily shown to satisfy a system of first-order

equations,

�n

�t
= bn−1� (2.96)

and

�m

�t
−an+ 1

2
��t
2n2 = 0� (2.97)

with final time conditions m�T�T
 = n�T�T
 = 0. For these models, this system is exactly

integrable, giving the same integral expressions as before.

For purposes of yield curve fitting, it is of interest to consider the formulas for the discount

function in terms of the zero-coupon yields. In particular, the foregoing solution reads

yt�T
= �T − t
−1�n�t�T
rt −m�t�T

� (2.98)

The interpretation of this equation is that, for one-factor models having discount functions

as exponentials of affine functions of the short rate, the shocks due to changes in the short

rate are the only ones to affect the shape of the yield curve, which moves parallel to itself,

according to equation (2.98).

The function n�t�T
 is linked to the term structure of volatility at calendar time t. In fact,

by taking the stochastic differential of yt�T
 in equation (2.98) while using equation (2.85),

the yield is shown to have volatility

�
y�T

t = n�t�T
��t


T − t
� (2.99)

The variance of the differential of the yield hence has a quadratic form given by

var�dyt�T

= ��
y�T

t 
2 dt = n�t�T
2�2�t


�T − t
2
dt� (2.100)

The foregoing yield volatility equation allows one to fit the function b�t
 in terms of the

current term structure of volatility. Indeed, since

n�t�T
=
∫ T

t
e−

∫ s
t b�u
du ds� (2.101)
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by differentiating with respect to T we have

b�T
=− �

�T

(
log

�

�T
n�t�T


)
� (2.102)

Note that we can rewrite this equation by changing variable names, letting maturity T → t
and present time t → t0, giving

b�t
=− �

�t

(
log

�

�t
n�t0� t


)
� (2.103)

Given the fitted function b�t
, one can then fit (or retrieve) the function a�t
 from the

discount function or using equation (2.98). Moreover, for the case of the Vasicek, Hull–White,

and Ho–Lee models, all of the preceding integral expressions are readily worked out exactly

in terms of exponential functions. Let us specifically work out the formulas for the case of

the Hull–White model. Since b, � are constants, equation (2.101) is integrated to give

n�t�T
= 1

b
�1− e−b�T−t

� (2.104)

And for m�t�T
 we have

m�t�T
= 1

b

∫ T

t
	e−b�T− 
−1
a� 
d + �2

2b2

∫ T

t
�1− e−b�T− 

2 d � (2.105)

Taking logarithms of equation (2.94) gives

logZt�T
=m�t�T
−n�t�T
rt� (2.106)

Differentiating this equation with respect to T while using equations (2.105) and (2.104) gives

�

�T
logZt�T
=

�2

2b2

[
1−2e−b�T−t
+e−2b�T−t


]
−re−b�T−t
−

∫ T

t
a� 
e−b�T− 
 d � (2.107)

Differentiating again while using equation (2.107) then gives

a�T
=− �2

�T 2
logZt�T
−b

�

�T
logZt�T
+

�2

2b
�1− e−2b�T−t

� (2.108)

Changing the variable name T to t and taking the initial time as zero gives

a�t
=− �2

�t2
logZ0�t
−b

�

�t
logZ0�t
+

�2

2b
�1− e−2bt

� (2.109)

This last equation gives us a useful relationship between the drift function and the zero-coupon

bond prices, as a function of the maturity. In particular, one can rewrite this in terms of the

instantaneous continuously compounded forward rates [these are defined in a later section;

see equation (2.153)]:

a�t
= �

�t
f0�t
+bf0�t
+

�2

2b
�1− e−2bt

� (2.110)
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Lastly, notice that the option-pricing formulas in the previous section, obtained under the

forward measure, can be applied as the log-normal volatility of a zero-coupon bond forward

given by (
dFt�T�T

′

Ft�T�T

′


)2

= �2�n�t�T ′
−n�t�T

2 dt� (2.111)

The pricing formulas in the previous section, however, require the bond-forward measure.

Examples are the formulas for swaptions and options on coupon bonds, which are not

applicable here because the resulting volatility is not a deterministic function of time.

The foregoing short-rate models are among the popular models used for pricing interest

rate options. In particular, lattice methods are useful for calibration and pricing. For an actual

implementation of binomial and trinomial lattice trees within the Ho–Lee, Black–Derman–

Toy, Hull–White, and Black–Karasinski models, the reader is referred to the project on

interest rate trees in Part II of this book. The project contains an elaborate discussion of the

various implementation steps for calibrating binomial and trinomial short-rate lattices, and

for numerically pricing interest rate derivatives within these four models.

2.3.3 Cox–Ingersoll–Ross Model

The stationary Cox–Ingersoll–Ross (CIR) model for the short-rate process is generally defined

as follows under the risk-neutral measure:

drt = �a−brt
dt+�
√
rt dWt� (2.112)

According to the foregoing theorem, the bond-pricing PDE for this process is:

�Z

�t
+ �a−br


�Z

�r
+ �2r

2

�2Z

�r2
− rZ = 0� (2.113)

The stochastic differential equation satisfied by Z = Z�r� t� T
, where r = rt, is

dZ = rZ dt+�ZZ dWt� (2.114)

where

�Z = �
√
r

Z

�Z

�r
(2.115)

Note that the CIR model is sometimes written so that the risk-neutral drift term has the

form )��− r
, where the constants ) and � correspond to the rate of reversion and mean

level, respectively. In our convention, this simply corresponds to setting � = a/b and )= b.
As with the Vasicek model in the previous section, the discount function for the CIR

model takes the form of an exponential of an affine function in r:

Z�r� t� T
= exp �m�t�T
−n�t�T
r
 � (2.116)

Direct substitution leads to the equations

�n

�t
− 1

2
�2n2−bn+1= 0 (2.117)
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and

�m

�t
= an� (2.118)

The final-time condition Z�r�T�T
 = 1 gives m�T�T
 = n�T�T
 = 0. Note the difference

between these equations and equations (2.96) and (2.97), obtained for the models considered

in the previous section. Again, exact expressions for m�t�T
 and n�t�T
 are readily obtained

by integrating equation (2.117) and subsequently equation (2.118), giving

m�t�T
= 2a

�2
log

[
�e

b 
2

� cosh� + 1

2
b sinh� 

]
(2.119)

and

n�t�T
= sinh� 

� cosh� + 1

2
b sinh� 

� (2.120)

where  = T − t is the time to maturity and � = 1

2

√
b2+2�2.

The Fokker–Planck equation for the risk-neutral probability density of the spot rate is

�p�r� t


�t
= bp�r� t
− �a−br


�

�r
p�r� t
+ 1

2

�2

�r2
��2rp�r� t

� (2.121)

In the long time limit t →
 the distribution approaches a steady state with �p/�t → 0. As

one can verify by direct substitution into the right-hand side of equation (2.121), the stationary

probability distribution, denoted by p
�r
, is

p
�r
=
(
2b/�2

)2a/�2

&�2a/�2

r�2a/�

2
−1e−�2b/�2
r � b > 0� (2.122)

where &�·
 is the gamma function. Notice that when a > �2/2, p
�r
 → 0 as r → 0, i.e.,

gives zero probability of attaining zero interest rates. Otherwise, the stationary probability

distribution diverges in the limit r → 0 when a < �2/2.
In particular, the distribution integrates to unity for a > 0, has an integrable singularity at

r = 0 for values 0 < a < �2/2, and is nonintegrable for a ≤ 0. For a ! �0��2/2
 the origin

is reflective. These same conclusions also apply to the time dependent density just below.

An exact analytical solution of the time-dependent Fokker–Planck equation (2.121) for

the distribution function p�r� t
= p�r� r0� t
, subject to the initial-time condition p�r� t= 0
=
��r− r0
, can be shown to take the form (a, b > 0)

p�r� r0� t
= ct

(
rebt

r0

)q/2

exp
(−ct�r0e

−bt + r

)
Iq
(
2ct�r0re

−bt
1/2
)
� (2.123)

where ct ≡ 2b/��2�1− e−bt

, q ≡ �2a/�2
− 1, and Iq�·
 is the modified Bessel function

of the first kind of order q. Useful properties of the Bessel functions are contained in

Appendix C of Chapter 3. Further properties of this density are given as problems at the end

of this section. By using the series expansion of the modified Bessel function, the distribution

function in equation (2.123) can be shown to be related to the noncentral chi-squared function

f*2�x� $��
, since

f*2�x� $��
= 1

2

(x
�

)� $
2
−1
/2

e−�x+�
/2I $
2
−1�

√
�x
� (2.124)
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FIGURE 2.8 Plots of the CIR risk-neutral transition probability density as a function of the short rate,

at three different chosen times.

where $ and � are the number of degrees of freedom and the noncentrality parameter,

respectively. In particular, for the CIR model under the risk-neutral measure, the spot rate

r = rt at time t is a random variable generated by

rt =
�2�1− e−tb


4b
�� (2.125)

where � is a noncentral chi-squared random variable with 2�q+ 1
 = 4a/�2 degrees of

freedom and time-dependent noncentrality parameter equal to 2ctr0e
−bt. Figure 2.8 gives a

plot of the foregoing risk-neutral density for different time values t = 0�25, 0.5, and 1.5 and

with choice of parameters a= 0�075, b= 0�35, � = 0�15, r0 = 0�065 (all units are on a yearly

basis). With this choice of parameters, the steady-state distribution is nearly attained at values

of t ∼ 20.

Under the forward measure with numeraire Zt�T
, the equation for Z ≡ Zt�T
 =
Z�rt� t� T
 is

dZ = �rt +�2
Z
Z dt+�ZZ dWT

t � (2.126)

where dWT
t is the Brownian increment under that measure. Assuming that under the forward

measure the short rate evolves as

drt = ��rt
dt+�
√
rt dW

T
t � (2.127)

this implies, due to Itô’s lemma, and from equation (2.113),

Et	dZ
=
(
�Z

�t
+ �Z

�r
��r
+ �2r

2

�2Z

�r2

)
dt =

(
rZ+ �Z

�r
���r
−a+br


)
dt (2.128)

where rt = r. Hence, the drift obtains as

���r
−a+br
= �2
ZZ

(
�Z

�r

)−1

= �2r

Z

�Z

�r
� (2.129)

giving

drt =
(
a−brt +

�2rt
Z

�Z

�rt

)
Z dt+�

√
rt dW

T
t � (2.130)
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Under this forward measure, one can also solve the Fokker–Planck equation for the process

defined by the corresponding stochastic differential equation, giving a slightly more alge-

braically involved analytical expression for the density, yet again in terms of the modified

Bessel function. This follows from the fact that Z=Z�r� t� T
= em�t�T
−n�t�T
r , so ��Z/�r
/Z=
−n�t�T
 (independent of r). Hence the foregoing SDE has the same structure as the original

SDE for the CIR process in the risk-neutral measure, except for an additional time dependence

introduced into the mean-reversion coefficient. The solution follows by applying appropriate

transformations.1 In particular, it can be shown that a random variable for the short rate r = r 
at any intermediate time  with 0 ≤ t <  ≤ T has the form

r =
�2�n� �T
−n�t�T



4�n� �T
/� 
�̄� (2.131)

where �̄ is a noncentral chi-squared random variable with 4a/�2 degrees of freedom and

noncentrality parameter given by

4�n�t�T
/�t

�2�n� �T
−n�t�T


rt� (2.132)

Note that a simplification arises with the choice of time parameters t = 0 and  = T . We

refer to the literature on the CIR model [CIR85] for a derivation of these results. The

more advanced material in Chapter 3 that deals with Green’s function methods for the

Fokker–Planck equation actually provides the reader with the mathematical tools for deriving

analytically exact transition probability densities for the short-rate process within the CIR

and other models from first principles. Such transition densities, or formulas of the type just

given, allow one to price most European-style interest rate derivatives and to generate exact

scenarios for the short rate under the CIR model.

Problems

Problem 1. Show that the transition probability density function p�r� r0� t
 in equation (2.123)
satisfies the Fokker–Planck equation (2.121), with initial condition p�r� r0� t = 0
= ��r− r0
.
Hint: After inserting the solution into the Fokker–Planck equation, differentiating and col-

lecting terms, arrive at a second-order ordinary differential equation for the modified Bessel

functions; i.e., show that this gives the modified Bessel equation of the form (see Appendix C

in Chapter 3)

d2

dx2
I$�x
+

1

x

d

dx
I$�x
−

(
1+ $2

x2

)
I$�x
= 0�

where $ is the order.

Problem 2. Verify that the CIR density in equation (2.123) where a�b > 0 gives∫ 


0

p�r� r0� t
dr = 1� (2.133)

1Let P�r� r0� t
 be the transition density for the process drt = �a−b�t
rt
dt+�
√
rtdWt , with deterministic time

dependent coefficient b�t
 and define the respective scale and time changes: ��t
≡ e
∫ t
0 b�u
du and  �t
≡ �2

4

∫ t

0
��u
du.

Then P�r� r0� t
 = ��t
u���t
r� r0�  �t

, where u is the density for the Bessel process as given in equation (3.215)

with Bessel order � = �2a/�2
− 1. Note: when b�t
 = b is constant this corresponds to the density in equation

(2.123).
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hence demonstrating that short rates are never negative, i.e., that any short-rate path starting

at time t = 0 at any finite positive value r0 will end up in the positive axis with probability 1

at any finite later time t > 0. Hint: Use the Bessel integral property (3.357) in Appendix C

of Chapter 3.

Problem 3. Show that the CIR density in equation (2.123) satisfies the Chapman–

Kolmogorov equation ∫ 


0

p�rT � r�T − t
p�r� r0� t
dr = p�rT � r0�T
� (2.134)

Hint: Use an appropriate Bessel integral property from Appendix C of Chapter 3.

Problem 4. The integrated form of equation (2.112) from time s to time t gives

rt = rs +
∫ t

s
�a−br 
d +

∫ t

s
�
√
r dW � (2.135)

(a) Show that Es	rt
= E	rt
rt=s = rs
 satisfies a first-order ODE in time t ≥ s, with initial

condition Es	rs
 = rs at t = s. Solve the initial-value problem and thereby obtain an

exact expression for the conditional mean Es	rt
.

(b) Obtain an exact expression for the conditional variance Var�rt
rt=s = rs
= Es	�rt

2
−

�Es	rt


2.

Problem 5. Assume the short rate satisfies SDE (2.85).

(a) Find an expression for the auto-correlation function

Corr�rs� rt
= Cov�rs� rt
/
√
Var�rs
Var�rt


for s < t.

(b) Find an exact closed-form expression for Corr�rs� rt
 by considering b�t
= b, ��t
= �

as constants. Explain your answer in terms of the mean-reversion parameter and what

it represents in the limit b → 0.

Problem 6. Consider the European call option on a zero-coupon bond as stated in Problem 7

at the end of Section 2.2. Find a closed-form analytical expression for this option price

ZBCt�T� S�K
 in:

(a) The Hull–White model with constant mean-reversion coefficient b and constant

volatility �

(b) The CIR model described in this last section

Hint: For part (b) choose gt = Zt�T
 as numeraire (i.e., use the T-forward measure for taking

expectations) and use the formulas at the end of this section. In particular, use the appropriate

transition density for the short rate (within the T-forward measure), and obtain your final

result as a sum of two terms involving the cumulative chi-squared density.
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2.3.4 Flesaker–Hughston Model

The Flesaker–Hughston (FH) model is based on the original idea of defining a numeraire

asset process without a direct financial meaning. Interest in this model stems from the fact

that it is possible to derive analytical closed-form solutions for both caps and swaptions.

The numeraire process in FH models is defined as follows:

gt =
1

f�t
+g�t
xt

� (2.136)

where f�t
 and g�t
 are deterministic and strictly decreasing positive functions of calendar

time t, and xt is a positive definite martingale. A zero-drift geometric Brownian motion gives

a possible definition of xt, i.e.,

dxt = ��t
xt dWt� (2.137)

with some chosen initial condition x0 = 1. Notice that in this model, logxt follows a simple

Wiener process with drift −���t

2/2 and diffusion ��t
. An alternative definition of xt is the

variance-gamma process. Within the FH model one readily arrives at an arbitrage-free price

at time t of a zero-coupon bond of unit worth at maturity time T as

Zt�T
= gtE
Q�g

t

[
1

gT

]
= f�T
+g�T
xt

f�t
+g�t
xt

� (2.138)

Here we have used the martingale condition Et	xT 
 = xt. The instantaneous short rate also

has a simple expression since ft�t
= rt, as discussed in Section 2.4; hence,

rt =− �

�T
logZt�T


∣∣∣∣
T=t

=−f ′�t
+g′�t
xt

f�t
+g�t
xt

� (2.139)

Simply compounded (time-t) forward LIBOR rates Lt�T
 with settlement date T, tenor  ,
and given compounding period  solve the equation

1+  Lt�T
=
Zt�T


Zt�T +  

= f�T
+g�T
xt

f�T +  
+g�T +  
xt

(2.140)

and are thus given by

Lt�T
=
1

 

[
f�T
+g�T
xt

f�T +  
+g�T +  
xt

−1

]
� (2.141)

Using gt as numeraire and following the pricing methodology as in the worked-out examples

of Section 2.2, a caplet struck at rate ) and maturity T is hence priced as follows:

Cplt�)�T
= gtE
Q�g

t

[
 ZT �T +  
�LT �T +  
−)
+

gT

]
= gtE

Q�g

t

[(
a0�)�T
+b0�)�T
xT

)
+
]
�

where

a0�)�T
≡ f�T
− �1+) 
f�T +  
� b0�)�T
≡ g�T
− �1+) 
g�T +  
� (2.142)
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By using the lognormal probability density function for xT , which results from the process in

equation (2.137), this expectation integral gives rise to an exact pricing formula:

Cplt�)�T
= gt
[
a0�)�T
N�h

0
−�t� T�)

+b0�)�T
xtN�h

0
+�t� T�)



]
� (2.143)

where

h0
±�t� T�)
=

log
(
− b0�)�T
xt

a0�)�T


)
± 1

2
�̄2�T − t


�̄
√
T − t

� (2.144)

the time-averaged volatility is

�̄2 = 1

�T − t


∫ T

t
���u

2 du� (2.145)

and N�·
 is the cumulative standard normal distribution function. This formula is valid

for cases in which b0�)�T
/a0�)�T
 < 0. Deriving a similar pricing formula for the case

b0/a0 > 0 is left as an exercise for the reader.

A payer’s swaption was considered in Section 2.2.2, with payoff

PSOT =  
(
rsT −)

)
+

n∑
j=1

ZT�Tj
� (2.146)

where the swap rate rst at time t and the strike rate ) are in units of an interest rate (i.e.,

time−1). Assuming n payments and a swap rate of the form

rst =
1−Zt�Tn


 
∑n

j=1Zt�Tj

� (2.147)

we can write the price of a payer’s swaption maturing at time T as

PSOt�)�T
= gtE
Q�g

t

[(
1−ZT�Tn
−) 

∑n
j=1ZT�Tj


)
+

gT

]
= gtE

Q�g

t

[(
an�)�T
+bn�)�T
xT

)
+
]
�

In the last equation we have used the identity [see equation (2.138)]

ZT�Tj
	f�T
+g�T
xT 
= f�Tj
+g�Tj
xT � (2.148)

giving

an�)�T
= f�T
−f�Tn
−) 
n∑

j=1

f�Tj
� bn�)�T
= g�T
−g�Tn
−) 
n∑

j=1

g�Tj
� (2.149)

As before, by using the lognormal probability density function for xT , the expectation integral

gives rise to an exact pricing formula:

PSOt�)�T
= gt
[
an�)�T
N�h

n
−�t� T�)

+bn�)�T
xtN�h

n
+�t� T�)



]
� (2.150)

where

hn
±�t� T�)
=

log
(
− bn�)�T
xt

an�)�T


)
± 1

2
�̄2�T − t


�̄
√
T − t

� (2.151)

the time-averaged volatility is given by equation (2.145), and N�·
 is the cumulative standard

normal distribution function. This formula is valid for cases in which bn�)�T
/an�)�T
 < 0.

Deriving a similar pricing formula for the case bn/an > 0 is left as an exercise.
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2.4 Multifactor Models

Multifactor models make use of the observed-yield curve, and this in turn can be described

either as a collection of zero-coupon bonds (i.e., discount bonds) of various maturities T
with respect to an arbitrary calendar time t with price Zt�T
 or by the instantaneous forward

rates. In what follows we denote present (today’s) calendar time as t = 0, whereas time t ≥ 0

generally stands for any time in the future or today. It is useful at this point to review very

briefly the connection between these quantities and their relation to the instantaneous short

rate. Let us recall the continuously compounded time-t forward rate for a future finite time

interval 	T�T +  
 as given by

ft�T�T +  
=− logZt�T +  
− logZt�T


 
� (2.152)

In the limit  → 0 this defines the instantaneous forward rate ft�T
 as

ft�T
=− �

�T
logZt�T
� (2.153)

Hence, forward rates and discount bond prices are also linked by

Zt�T
= exp

(
−
∫ T

t
ft�s
ds

)
� (2.154)

This simple expression can be directly contrasted to that of the discount bond price given in

terms of the risk-neutral expectation involving the instantaneous short rate rt,

Zt�T
= E
Q�B

t

[
e−

∫ T
t rsds

]
� (2.155)

The bond price is therefore related to a path-integral of the stochastic variable rt rather than

to a simple (nonstochastic) integral as in the case of the forward rates. This path-integral

expectation shows that if the short rate is stochastic, then ft�T
 �= rT (t < T ), whereas when

rt is deterministic the expectation is simply a regular integral and we have ft�T
 = rT for

all t ≤ T . In the HJM treatment described shortly, one is directly modeling the forward rates

as local stochastic (i.e., Markov) processes. In view of the path-integral relationship between

the short rate and the forward rates, one anticipates a generally non-Markovian theory for

the short rate. A simple result of the formulation is that for generally stochastic short-rate

processes we have

ft�t
= rt� (2.156)

This obtains by equating the right-hand sides of equations (2.154) and (2.155), with T = t+!

(! > 0), and differentiating with respect to !, giving

E
Q�B

t

[
e−

∫ t+!
t rsdsrt+!

]= ft�t+ !
e−
∫ t+!
t ft�s
ds� (2.157)

Taking the limit !→ 0 gives equation (2.156), since Et	rt
= rt, i.e., the value of the instan-

taneous short rate at time t.
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2.4.1 Heath–Jarrow–Morton with No-Arbitrage Constraints

An arbitrage-free dynamics of the yield curve in a diffusion model must satisfy constraints

that take up various forms, depending on the modeling framework. In this section, we

review the Heath–Jarrow–Morton (HJM) constraint for models of instantaneous forward rates

[HJM92]. In the next section, we discuss the Brace–Gatarek–Musiela–Jamshidian (BGMJ)

condition, where one models LIBOR rates instead. We present formulas in the context of one

independent risk factor; however, the multifactor extension follows in an obvious manner,

and we leave the derivation as an exercise problem.

Consider an interest rate stochastic process specified through the short rate

drt = �g
t �rt� t
dt+�r�rt� t
dW

g
t � (2.158)

in a suitable measure Q�g
. When working within the risk-neutral measure, recall that all

assets drift at the instantaneous short rate rt. In particular, all discount bonds of any maturity

T are assets, and hence

dZt�T
= rtZt�T
dt+�
Z�T

t Zt�T
dW

g
t � (2.159)

under the risk-neutral measure with numeraire gt = Bt and dWt as Brownian increment in

Q�B
. Notice that if one chooses a numeraire other than the money-market account Bt, then,

in accordance with the asset pricing theorem in Chapter 1, the drift for any asset (including

any discount bond) will have an extra term added to rt to account for the price of risk. We

use shorthand notation to denote �
Z�T

t ≡ ��t�T�Zt�T

 as the time-t volatility of the bond

price. It is important to observe that in general, the bond price volatility is allowed to be a

function of calendar time t, maturity time T, and the (stochastic) bond price Zt�T
 at time t.
Thanks to Itô’s lemma, the logarithm of the discount function obeys the following stochas-

tic differential equation:

d	logZt�T

=
[
rt −

1

2
��

Z�T

t 
2

]
dt+�

Z�T

t dWt� (2.160)

Since this equation applies for any value of T, we can use it for maturity T and T +  .
Combining this with equation (2.152) gives the stochastic differential of the rate ft�T�T + 
:

d	ft�T�T +  

= ��
Z�T+ 

t 
2− ��

Z�T

t 
2

2 
dt− �

Z�T+ 

t −�

Z�T

t

 
dWt� (2.161)

The stochastic differential of the instantaneous forward rate in the risk-neutral measure now

obtains in the limit  → 0:

dft�T
= �
Z�T

t �

′Z�T

t dt−�

′Z�T

t dWt�

≡�
f�T

t dt+�

f�T

t dWt� (2.162)

The last equation defines the drift �
f�T

t =�f�t�T� ft�T

 and volatility �

f�T

t =�f�t�T� ft�T



of the instantaneous forward rate. The superscript prime is used to denote differentiation with

respect to T, i.e., � ′Z�T

t ≡ ��

Z�T

t /�T . It turns out that one can relate the drift with the volatility

of ft�T
, since a simple integration of the bond price volatility derivative, with respect to

maturity time, gives ∫ T

t
�

′Z� 

t d = �

Z�T

t � (2.163)
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In this equation we have used the fact that �
Z�t

t = 0, which says that the bond price has zero

volatility with known unit value when t = T . Then, using the earlier relations for the drift

and volatility of ft�T
 in terms of the bond price volatility, we arrive at

�
f�T

t = �

f�T

t

∫ T

t
�

f� 

t d � (2.164)

This result shows that the drift of ft�T
 is linked to its volatility and the volatilities of all

forward rates ft� 
 between times  = t and  = T . The link between the drift and volatility

of the instantaneous forward rate was first noted by Heath, Jarrow, and Morton.

From this treatment one can arrive at the risk-neutral process for the short rate stated in

equation (2.158). Using equation (2.162) rewritten in the form

df �t
= �Z�t

 � ′Z�t


 d +� ′Z�t

 dW � (2.165)

integrating and using equation (2.156), we find

rt = f0�t
+
∫ t

0

�Z�t

 � ′Z�t


 d +
∫ t

0

� ′Z�t

 dW � (2.166)

At this point one can apply the rule for differentiating an Itô integral,

�

�t

[∫ t

0

h� � t
dW 

]
= h�t� t
+

∫ t

0

�h� � t


�t
dW � (2.167)

where h� � t
 is any smooth function. By differentiating the integral expression for rt and
again using �

Z�t

t = 0, we obtain the stochastic process for the short rate as:

drt =
{
f ′
0�t
+

[∫ t

0

[
�Z�t


 � ′′Z�t

 + �� ′Z�t


 
2
]
d +

∫ t

0

� ′′Z�t

 dW 

]}
dt

+�
′Z�t

t dWt� (2.168)

The risk-neutral drift for the short rate is, therefore, non-Markovian, since it has a dependence

on stochastic variables for times earlier than t, as given by the integral and stochastic integral

over all times  = 0 to  = t of factors involving the bond volatilities and their derivatives.

Problems

Problem 1. Suppose we have n independent risk factors. The instantaneous forward-rate

process of equation (2.162) then takes the form

dft�T
= �
f�T

t dt+

n∑
j=1

�
f�T

t�j dWj

t � (2.169)

where �
f�T

t�j are volatilities corresponding to the jth risk factor. Show that equation (2.164)

generalizes to

�
f�T

t =

n∑
j=1

�
f�T

t�j

∫ T

t
�

f� 

t�j d � (2.170)

Problem 2. Using the result of Problem 1, obtain the multifactor extension for the short-rate

process given by equation (2.168).
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2.4.2 Brace–Gatarek–Musiela–Jamshidian with No-Arbitrage Constraints

The reader can observe that in all previously presented treatments of the yield curve, including

HJM, the theory has made use of either a continuum of discount bonds (i.e., of any maturity) or

a continuum of instantaneous forward rates. Such continua provide a basis for the description

of points on the yield curve lying on just discrete time intervals, as in LIBOR-based instru-

ments. In contrast, in this section we briefly present the BGMJ (after Brace, Gatarek, Musiela,

and Jamshidian), which models discrete market quantities, namely, the LIBOR rates [BGM97].

Within BGMJ one considers a situation with a lattice of n maturities Ti = T1 + i , i =
0�1�2� � � � � n−1, and the corresponding simply compounded forward rates f

� 

t �Ti� Ti+1
 for

a finite period  (e.g., 1 month, 3 months, 6 months). Recall the formula for the forward rate

in terms of discount bond price ratios,

1+  f
� 

t �Ti� Ti+1
=

Zt�Ti


Zt�Ti+1

� (2.171)

To keep the notation simple, we now introduce the symbol (for given  )

Lt�Ti
= f
� 

t �Ti� Ti+1
� (2.172)

Moreover, we present the treatment within a one-factor notation, although the extension to

many independent risk factors readily follows, and we leave this as an exercise. We now

proceed by assuming that each LIBOR rate is a random variable obeying an SDE of the form

dLt�Ti


Lt�Ti

= �

L�Ti

t dt+�

L�Ti

t dWt� (2.173)

similarly, for each maturity one writes an SDE for each discount bond price process as

dZt�Ti


Zt�Ti

= �

Z�Ti

t dt+�

Z�Ti

t dWt� (2.174)

Here we have used shorthand notation to denote the drifts and volatilities, which can generally

be functions of t, Ti, and the underlying rate or bond price:

�
L�Ti

t = �Li�t� Ti�Lt�Ti

� �

L�Ti

t = �Li�t� Ti�Lt�Ti

�

�
Z�Ti

t = �Zi�t� Ti�Zt�Ti

� �

Z�Ti

t = �Zi�t� Ti�Zt�Ti

� (2.175)

Also, we assume to be in a basis of risk factors with no correlations among the LIBOR rates

and bond prices. The addition of correlations along with the multifactor extension of the

formulas is fairly straightforward and will be left as an exercise.

Taking the stochastic time-t differential of equation (2.171) on both sides and using Itô’s

lemma in the form of equation (1.137), one finds

 Lt�Ti

(
�

L�Ti

t dt+�

L�Ti

t dWt

)= Zt�Ti


Zt�Ti+1


[
�qt −�

Z�Ti

t 
��

Z�Ti

t −�

Z�Ti+1

t 
dt

+��
Z�Ti

t −�Z�Ti+1

dWt

]
� (2.176)

Notice that here qt is a price of risk, which is generally nonzero since the underlying measure

is not necessarily assumed to be the forward-neutral measure, wherein forward rates are
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martingales. Typically, the measure can be chosen to be the so-called spot-LIBOR measure,

under which Zt�Ti

−1 [and not Zt�Ti+1


−1] is a martingale. In this case the forward rates are

not martingales.

Using equations (2.171) and (2.172) within the last equation and equating coefficients in

dWt gives a recurrence relation among the bond volatilities at the different maturities:

�
Z�Ti+1

t = �

Z�Ti

t −  Lt�Ti
�

L�Ti

t

1+  Lt�Ti

� (2.177)

This is easily iterated to give

�
Z�Ti+1

t = �

Z�T1

t −

i∑
k=1

 Lt�Tk
�
L�Tk

t

1+  Lt�Tk

� i ≥ 1� (2.178)

On the other hand, the drift of the LIBOR forward rates is given by equating coefficients in

dt in the preceding SDE while using equation (2.177); hence,

�
L�Ti

t = �

L�Ti

t �qt −�

Z�Ti+1

t 


= �
L�Ti

t

(
qt −�

Z�T1

t +

i∑
k=1

 Lt�Tk
�
L�Tk

t

1+  Lt�Tk


)
� (2.179)

Possible specifications of the volatility are of the form

�
L�Ti

t = Lt�Ti


���t�Ti
� (2.180)

where �= 1 corresponds to lognormal models and �= 1

2
to square-root models.

We conclude this section by providing a pricing formula for the special case of the

lognormal model with � = 1. In particular, the pricing formula for caplets of tenor  and

with settlement at one of the maturities Ti can be computed in analytical closed form. Using

similar methods as discussed in previous sections, one can arrive at a Black–Scholes type of

pricing formula for a caplet struck at rate ) and tenor  :

Cplt�Ti� )
=  Zt�Ti+  

[
Lt�Ti
N�d+�t� Ti� )

−)N�d−�t� Ti� )



]
� (2.181)

where

d±�t� T�)
=
log

(
Lt�T


)

)
± 1

2
�̄�t� T
2

�̄�t� T

� (2.182)

N�·
 is the cumulative standard normal distribution function, and the unnormalized average

LIBOR rate volatility is given by

�̄�t� T
2 =
∫ T

t
��s�T
2 ds� (2.183)

Swaptions are more problematic. Pricing a swaption struck at rate ) requires an evaluation

of an expectation under the measure with Zt�Ti+1
 as numeraire,

PSOt�T�)
=  
n∑

i=1

Zt�Ti
E
Q�Z�Ti+1


t

[
�LT �Ti
−)
1D

]
� (2.184)
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where 1D is the indicator function of the set D of paths for which the payer’s swaption ends

up in the money, i.e., the set

D =
{
�rsT −)
 > 0

}
� (2.185)

where the swap rate rst is given by equation (2.23). The random variables LT�Tj
, j= 1� � � � � n,
are also assumed to be correlated.

2.5 Real-World Interest Rate Models

Modeling the real-world evolution of interest rate curves over long time periods is interesting

for applications in risk management for assessing overnight risk. In corporate finance as

well, these models are used to assess the risk exposure over a time horizon of several years

for portfolios of interest-sensitive assets. Acceptable models should ensure that all forward

interest rates are positive at all times and will involve some sort of principal-component

analysis. In this section we discuss a simple model with the salient features.

An acceptable model meeting the no-arbitrage condition for forward rates is conveniently

formulated in terms of the logarithms of forward rates. Consider a situation with a finite

number of key rates for maturity times T1� T2� � � � � TN . A possible choice of Tj , following

RiskMetrics™ [Mor96b], is to select the terms 1 m, 2 m, 3 m, 6 m, 9 m, 12 m, 2 y, 3 y, 4 y,

5 y, 7 y, 10 y, 15 y, 20 y, 25 y, and 30 y. Consider the logarithms of the time-t forward rates

for the intervals 	Ti� Ti+1
:

xt�i
= logft�Ti� Ti+1
� (2.186)

There are several different ways to go about performing statistical estimations.

If short-term scenarios over time horizons of 1–10 days are sought, one can study the

log-returns over the desired period of the time series xt�i
,

�xt�i
= xt�i
−xt−1�i
� (2.187)

and estimate the covariance matrix as the historical expectation

Cij = E	�x�i
 ·�x�j

= 1

M

M∑
t=1

�xt�i
�xt�j
� (2.188)

Here we assume a return time series of length M. Over short time horizons, the fat-tailed

character of return distributions is an important feature to take into account. It appears that the

degree of kurtosis depends on the term, with shorter maturities being more sensitive to shocks

caused by changes of Central Bank policies. In this case, a possible approach is to estimate

each term separately. Another approach is to perform portfolio-dependent estimations. The

latter method is more accurate but less general.

If long-term scenarios are sought, it is appropriate to compute a singular-value decompo-

sition of the rectangular matrix Y made up of the mean subtracted-time series

yt�i
= xt�i
−E	xt�i

= xt�i
−
1

M

M∑
t=1

xt�i
� (2.189)
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Here the expectation is again computed by taking historical averages. M is the number of

historical data points, and N is the number of forward dates. The matrix Y has M rows and

N columns, and its singular-value decomposition

Y = U ·S ·V ′ (2.190)

involves an M ×M matrix U , an N ×N matrix V and an M ×N diagonal matrix S of

singular values. The columns of the matrix V are the principal components, denoted with u�

(see Figure 2.9). If one projects the time series yt along the principal components, one finds

times series for the component scores:

��
t =

N∑
i=1

yt�i
u
��i
� �= 1� � � � �N� (2.191)

The component scores show a clear tendency to follow a mean reverting process.

A statistical model can be built by first finding the auto-regression coefficients m��
 such

that

��
t −��

t−1 =−m��
��
t−1+��!

�
t � (2.192)

Here, the coefficientsm��
 are computed by solving a least-squares problem. Second, one can

postulate that the residuals !�t are normally distributed and estimate the covariance matrix as

C�� = E
[
����

]= 1

M

M∑
t=1

��
t �

�
t � (2.193)

It is common for portfolios to be sensitive to rates in one currency as well as to interest

rates in foreign currencies and on the exchange rates as well. Hence, one can consider the

case of R interest rate discount curves Zi
t�T
, i= 0� � � � �R−1, and R currencies, giving rise

to �R−1
 independent exchange rates Xi� i = 1� � � � �R−1, giving the worth of one unit of

the ith currency in the base currency with i= 0. In this case, long-term statistical estimations

term
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FIGURE 2.9 Three typical principal components for the forward curve as a function of the key maturity

dates (i.e., the term) using a time series of U.S. Treasury curves.
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must also account for the arbitrage condition, yielding forward exchange rates in terms of the

spot exchange rates and interest rate curves. Namely,

Ft�X
i�T
= Xi

t

Z0
t �T


Zi
t�T


� (2.194)

For a long-term statistical analysis, one can still accomplish a principal-component analysis

and estimate the mean reversion rates for interest rates along the same lines. In addition,

one needs a model for the spot foreign exchange rates, which, jointly with the no-arbitrage

constraint in equation (2.194), yields all of the foreign exchange curves.



C H A P T E R . 3

Advanced Topics in Pricing Theory:
Exotic Options and State-Dependent
Models

Exotic options is a term used to describe derivative securities having cash flow or payoff

structures that are more intricate and more complex than standard contracts such as plain-

vanilla calls and puts. One main reason for trading, and hence pricing, such contracts is that

they permit a much larger degree of flexibility for use in risk management and speculation.

The payoff structure of these contracts can be fabricated to provide a higher leverage from

an investor’s viewpoint. Examples of this arise in so-called barrier options, the pricing of

which is presented in great detail in this chapter. The theoretical pricing and hedging of exotic

as well as standard derivatives depends largely on the stochastic model employed for the

underlying asset price processes. The study of various models for the underling asset price

process is therefore of importance to pricing theory as a whole.

This chapter is largely devoted to the development and application of exact solution

methodologies for pricing derivatives under state-dependent asset price processes. A fairly

general mathematical framework is presented for obtaining pricing kernels satisfying various

boundary conditions. The kernels are then used to obtain new families of analytically exact

closed-form pricing formulas for standard as well as barrier-style European options under

various types of multiparameter state-dependent volatility models. The approach we take

for tackling state-dependent models is of a general nature whereby we solve for the most

fundamental quantities: the pricing kernels or transition probability density functions. This,

in turn, is achieved by introducing a new and special type of “mapping” of the original state-

dependent diffusion problem onto a related, yet simpler, diffusion problem corresponding

to an appropriately chosen, simpler underlying process. The original diffusion problem is

essentially reduced to a simpler diffusion for which exact pricing kernels are obtained by

means of more standard methods. Once a kernel for the simpler underlying diffusion process

is obtained, pricing kernels for a family of more complicated state-dependent volatility models

are generated by direct substitution into a formula that provides an exact relationship between

any two kernels — one for the simple diffusion and the other belonging to the family of

149
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kernels for the original state-dependent volatility model. The derivation of this useful formula

is discussed at length in this chapter. Throughout this chapter we refer to the underlying

(simpler) diffusion process as the so-called x-space process, while the price process of interest
(i.e., the more complex process we wish to describe for pricing) is referred to as the F-space
process. The process Ft can be used to denote either an asset price or a forward price at

time t.

Two particularly useful choices of underlying x-space processes are (i) the Wiener process

and (ii) the Bessel process. We present exact solution methods for the transition density

functions (i.e., the x-space kernels) for the Wiener and Bessel processes, separately, subject to

nonabsorbing as well as all types of absorbing boundary conditions that correspond to either

single- or double-barrier cases. The single- and double-barrier pricing kernels in the forward

(or asset price) space of interest are then immediately generated by direct substitutions

via our main formula. We shall see that the F -space pricing kernels for the linear and

quadratic volatility models with two distinct roots can be generated simply from the standard

Wiener densities. More complex and more abundant state-dependent pricing kernels arise

from underlying densities for the Bessel process. In particular, a considerably larger family of

analytically exact (F -space) pricing kernels containing as many as six adjustable parameters,

which we shall refer to as the Bessel family, is generated from the underlying Bessel process.

The Bessel family of solutions involves Bessel functions, as the name naturally suggests. This

family is quite elaborate in structure because it is also shown to represent the exact solutions

to most of the popular pricing models, including the linear, quadratic, and constant-elasticity-

of-variance (CEV) volatility models as special cases. Some applications of the Bessel family

of pricing kernels to option pricing are discussed in this chapter.

The first section introduces barrier options. The mathematical framework for obtaining

probability densities for a process involving absorption at a barrier is then introduced in

Section 3.2, where the simplest case is considered: a single-barrier Wiener process. The

method of images is used to obtain the Wiener density for one absorbing barrier. Building

on the results of Section 3.2, exact pricing kernels as well as single-barrier option formulas

for the affine (linear volatility or lognormal model) and quadratic diffusion models are

presented in Section 3.5. The method of Green’s functions is then presented in Section 3.6

for solving the Kolmogorov partial differential equations for the kernel. In particular, we

consider an underlying x-space diffusion process and show how analytical formulas for the

time-dependent transition probability density for (barrier-type) absorbing boundary conditions
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FIGURE 3.1 Sample asset price paths hitting a lower or upper barrier.
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as well as nonabsorbing (barrier-free) conditions are generated via the (time-independent)

Green’s functions. In doing so, we also briefly present the basic important features of the

Sturm–Liouville theory of ordinary differential equations for obtaining Green’s functions. The

Green’s functions are obtained in two forms: (i) as special functions and (ii) as eigenfunction

expansions. Green’s functions of the first form lead to exact closed-form solutions for the

transition density, generally in terms of special functions, whereas Green’s functions of the

second form give analytical series expansions for the kernel. The Green’s functions formulas

are then used in the subsequent sections to obtain transition densities for the Bessel process

via complex variable contour integration methods. We then show how these densities can be

used to directly generate new pricing kernels and European option pricing formulas for new

families of diffusion models. Formulas are presented for: barrier free, single barriers, and

double barriers. A discussion on the hierarchy of state-dependent models is also presented

in light of the Bessel family as providing a model that recovers solutions to a class of

popular models.

3.1 Introduction to Barrier Options

A barrier option is a particular kind of exotic option because it is to some extent path

dependent. That is, the option’s pay-off and hence value depends on the realized underlying

asset path via the level attained any time before a given maturity time T . That is, if one
considers an asset of price At (e.g., a stock price), then a barrier for an option contract is

generally given by a time-dependent price threshold Ht, t ≤ T , on which the pay-off depends.

[Note: As seen later, most standard barrier option contracts are structured as having a fixed

(i.e., time-independent) barrier level or levels for a chosen underlying asset price.] Barrier

options can be conveniently characterized in terms of stopping times. Let us denote  �A�H

as the minimum time  ∈ 	t0� T
 for which the asset price At, starting at A0 at current (initial)

time t= t0, first crosses or hits the barrier at level H , i.e., the first time  for which A ≥H .

Note that the stopping time is dependent on the complete path At and the barrier level Ht at

all times t ∈ 	t0� T
.
There are two basic types of single-barrier options: (i) knockout options, which have a

nonzero pay-off only if a level H is not attained, and (ii) knock-in options, which have a

nonzero pay-off only if the level H is attained before or at maturity time T . There are then

different flavors of these corresponding to whether the barrier level H is placed above (sin-

gle upper-barrier option) or below (single lower-barrier option) or both above and below

(double-barrier option) the initial asset price. We refer the reader to the project in Part II of

this book for further details on these contracts and how one can go about hedging them with

plain-vanilla puts and calls. These and other examples of elementary single-barrier options and

their corresponding payoff structures can be characterized in terms of stopping times, as follows.

(i) Knockout options with pay-off at time T :

��AT

(
1−1 <T

)
� (3.1)

and knock-in options with pay-off at time T :

��AT
1 <T � (3.2)

with single-barrier level H . Here � is a certain payoff function [i.e., ��A
= �A−K
+
for a call struck at K],  =  �A�H
 is the stopping time for barrier level H , and 1� is

the indicator function taking on value 1 or 0 if event � occurs or not, respectively. For

double-barrier knock-in/knockout options with lower level L and upper level H > L,
the pay-off is of the same form, where the indicator function in the foregoing two
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expressions is now replaced by 1min� L� H 
<T with  L,  H as stopping times for hitting

levels L, H , respectively.

(ii) Corridor options with two barrier levels H�1
<H�2
 and pay-off at time T :

��AT
1 1<T1 2<T � (3.3)

where  1 =  �A�H�1

,  2 =  �A�H�2

 are stopping times for hitting the two respective

levels. Corridor options hence have a nonzero pay-off only if the asset price hits both

levels before time T .
(iii) Pay-at-hit one-touch options with pay-off at time  :

��A 
1 <T � (3.4)

In contrast to the previous contracts, here the pay-off occurs at the stopping time rather

than at maturity T , which is given by  =  �A�H
 in the case of a single level H .

(iv) Upper-wall options, with payoff

1

T − t0

∫ T

t0

��At
1At>Ht
dt� (3.5)

and lower-wall options, with payoff

1

T − t0

∫ T

t0

��At
1At<Ht
dt� (3.6)

The pay-offs of these contracts are given by the time average of a certain pay-off over all

time intervals for which the asset price is above or below the barrier level Ht.

These elementary pay-offs can be engineered together to create more complex structures.

These options are path-dependent securities and their price is affected by the dynamics of the

implied volatility surface. From the modeling point of view it is often convenient to work in

the space of the forward price process Ft = Ft�A�T
.

3.2 Single-Barrier Kernels for the Simplest Model:
The Wiener Process

3.2.1 Driftless Case

Recall equation (1.86), which is the probability density for free Brownian motion with drift

and no barriers (i.e., with nonabsorbing homogeneous zero-boundary conditions imposed at

±
). Setting the drift to zero gives the transition probability density for a pure Wiener

process xt, with constant volatility. Let us reconsider the Wiener process xt, obeying the

SDE: dxt = $�x
dWt, with constant volatility function1 $�x
 = √
2, zero drift, and focus

now on solving the corresponding forward and backward Kolmogorov partial differential

equations:

�

�t
u�x� t� x0� t0
=

�2

�x2
u�x� t� x0� t0
 (3.7)

1This choice of volatility proves convenient because solutions for arbitrary constant volatility $�x
= � = const

obtain by a simple time scale change, i.e., by the replacement t → 1
2
�2t, t0 → 1

2
�2t0 within the solutions for

$�x
=√
2.
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and

�

�t0
u�x� t� x0� t0
+

�2

�x2
0

u�x� t� x0� t0
= 0� (3.8)

subject to delta function initial (or final) time condition in the case of the forward (back-

ward) equation: limt→t0
u�x� t� x0� t0
= ��x−x0
, t− t0 > 0. More formal methods for solving

equation (3.7) or (3.8), in the case of general time independent volatility and drift func-

tions, by application of Laplace transform and Green’s functions techniques, are discussed

in Section 3.6. In this particularly simple example, however, we simply make use of the

solution for the barrier-less case obtained in Chapter 1. Namely, the solution u�x� t� x0� t0
=
g0�x� x0�  
 for the infinite domain x�x0 ∈ �−
�

, allowing paths to attain any finite value,

is simply

g0�x� x0�  
≡
e−�x−x0


2/4 

2
√
� 

� (3.9)

Note: Throughout this section we define  ≡ t− t0. In most of what follows we shall work

in terms of this time quantity, since the drift and volatility terms are not explicitly time

dependent, hence giving rise to time-homogeneous solutions dependent on  . The boundary

conditions are homogeneous: limx→±
 g0�x� x0�  
 = 0, given any x0, and for the backward

equation limx0→±
 g0�x� x0�  
= 0, given any x, and finite time  . This so-called elementary

solution can be used to obtain the solution to any other initial-value problem satisfying

equation (3.7) [or (3.8)] and obeying homogeneous boundary conditions on the infinite

domain. Indeed, the solution to the forward-time equation (3.7) for an initial distribution

condition u�x� t = t0
= f�x
 is given by the integral

u�x� t
=
∫ 


−

f�x0
g0�x� x0�  
dx0� (3.10)

The function g0�x� x0�  
 is also referred to as a time-dependent Green’s function or kernel
or fundamental solution for the preceding diffusion process. Physically, this corresponds to

the transition probability density of the random variable xt having value x0 at an initial time

t0� = 0
 and taking on the value x at a later time t. For any time value  > 0 and any

fixed initial value x0, one readily verifies that this Gaussian-shaped density integrates to unity

exactly over x ∈ �−
�

. In the limit  → 0 the kernel is the delta function, thereby also

integrating to unity, as required. This kernel hence corresponds to the case of no absorption

outside the entire region; i.e., probability is conserved in the entire region x ∈ �−
�

.
Let us now consider a solution to the forward-time equation (3.7) by imposing a zero

boundary condition at a finite upper-barrier value x = xH , i.e., u�xH� t� x0� t0
 = 0, with

solution region of interest defined by x0� x ≤ xH . As is seen shortly, this gives rise to

absorption of paths (at x = xH ) into the region outside the interval �−
� xH
. We will now

demonstrate the use of the so-called method of images. In this technique the exact solution to

the forward-time Kolmogorov equation, for arbitrary initial condition u�x� t = t0
= f�x
, is
obtained by extending the (“physical”) region x ≤ xH to include the (“nonphysical”) region

x > xH via the definition

f̄ �x
=

⎧⎪⎨⎪⎩
f�x
� x ≤ xH

−f�2xH −x
� x > xH�

(3.11)
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This function is antisymmetric about the point x= xH : f̄ �xH −!
=−f̄ �xH +!
 for any ! > 0.

Then using the solution in the form

u�x� t
=
∫ 


−

f̄ �x0
g0�x� x0�  
dx0 (3.12)

with g0 given by equation (3.9) one can easily show by a change of integration variables

that u�x = xH� t
= 0. This is a consequence of the antisymmetric property. By splitting this

integral into the regions �−
� xH
 and �xH�

, using equation 3.11, and changing integration
variables in one of the integrals, one finally has the solution to the initial-value problem on

the interval x ∈ �−
� xH
 satisfying the forward-time PDE of the form in equation (3.7), with

u�x� t = t0
= f�x
 and zero-boundary condition u�x = xH� t
= 0:

u�x� t
=
∫ xH

−

f�x0
g

u�xH� x� x0�  
dx0� (3.13)

where

gu�xH� x� x0�  
= g0�x� x0�  
−g0�x�2xH −x0�  


= g0�x� x0�  
−g0�2xH −x�x0�  


= 1

2
√
� 

(
e−�x−x0


2/4 − e−�x+x0−2xH 
2/4 
)
� (3.14)

This last quantity is hence the time-dependent Green’s function or kernel u�x� t� x0� t0
 =
gu�xH� x� x0�  
 for the Wiener process in the region x0� x ≤ xH , with the condition that there

is absorption at the barrier level x = xH . The fact that absorption occurs when imposing a

zero boundary condition on the solution u at a finite level is examined more precisely later,

where we also show explicitly why gu�xH� x� x0�  
 is considered a probability density for

Wiener (Brownian) paths starting from x0 < xH and ending at any point x ≤ xH in time  ,
conditional on absorption of all paths crossing the barrier level xH . Note that gu is given

by subtracting the original (i.e., no-barrier) density g0 centered at x0 with the same density

centered at 2xH − x0 within the nonphysical region x ∈ �xH�

 (see Figure 3.2). This is

essentially the reflection principle arising from the method of images, where the image

source is a sink at the point 2xH −x0. Since gu is a linear combination of two solutions to

the Kolmogorov equations (which are linear partial differential equations), gu as given by

equation (3.14) is then also a solution to the Kolmogorov equations and, moreover, is readily

seen to satisfy the required zero-boundary condition at the barrier, gu�xH� x= xH�x0�  
= 0,

as well as gu�xH� x=−
� x0�  
= 0. Using the delta function definition, we have lim →0 g
u =

��x− x0
− ��x− �2xH − x0

. Hence from the integral property of the delta function, the

solution given by equation (3.13) is indeed shown to satisfy the required initial condition.

Note that the second delta function does not contribute to the integral, for it is centered in the

nonphysical region and is precisely the term that acts as a so-called sink (or negative point

source), as mentioned earlier.

The foregoing method applies in identical fashion if we are interested in obtaining solutions

within the upper half-line region x0� x ≥ xL, where xL is now any finite lower-absorption

boundary point with u�x= xL� t
= 0. In this case the kernel u�x� t� x0� t0
= gl�xL� x� x0�  
 for
the Wiener process in the region x0� x≥ xL, given the absorption condition at the lower barrier

level x= xL is given by gl�xL� x� x0�  
= g0�x� x0�  
−g0�x�2xL−x0�  
, and equation (3.13)

is replaced by

u�x� t
=
∫ 


xL

f�x0
g
l�xL� x� x0�  
dx0� (3.15)
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FIGURE 3.2 A sample plot of the kernel gu�xH� x� x0�  
 for absorption at an upper barrier with

parameter choices xH = 0�5, x0 = −0�5,  = 0�75. The thicker solid line gives gu in the physical

solution region, while the dashed line extends into the nonphysical region. The plot of gu is obtained by

subtracting two barrier-free kernels (i.e., summing the two thin solid lines): g0�x� x0�  
− g0�x�2xH −
x0�  
, where 2xH −x0 = 1�5.

This therefore gives the solution to the initial-value problem on the interval x ∈ 	xL�



satisfying the forward-time Kolmogorov PDE with arbitrary initial condition u�x� t0
= f�x


and zero-boundary conditions u�xL� t
= 0. We note that if f�x
 is integrable over the entire

solution domain, then u�
� t
= 0 also. Due to the symmetry of the Wiener process, we also

have gl�xb� x� x0�  
 = gu�xb� x� x0�  
 for any real barrier value xb. This follows from the

symmetry of the Green’s function g0�x� x0�  
= g0�x0� x�  
.

It is important to observe that our analysis can be applied similarly to solve the backward-

time Kolmogorov PDE, where t0 = t now corresponds to a final-time condition instead of an

initial-time condition. The foregoing transition density function g0 also satisfies the backward

PDE with zero-(homogeneous)-boundary conditions at infinity, limx0→±
 g0�x� x0�  
 = 0,

given any x. If a zero-boundary condition is placed at some upper level x0 = xH , then

the solution kernel for equation (3.8) on the interval x�x0 ∈ �−
� xH
 is again given by

u�x� t� x0� t0
 = gu�xH� x� x0�  
 since expression (3.14) satisfies the backward PDE and

gu�xH� x� x0 = xH�  
 = gu�xH� x� x0 = −
�  
 = 0 for any fixed x. In general, the solution

to the backward PDE with arbitrary final-time condition u�x0� t0 = t
 = ��x0
 and kernel

u�x� t� x0� t0
 can be represented as

u�x0� t0
=
∫


��x
u�x� t� x0� t0
dx� (3.16)

where the integral is over the appropriate solution interval 
 and u is the kernel with

appropriate boundary conditions imposed at two endpoints. In particular, the solution with

zero-boundary condition imposed at the endpoint x0 = xH is given by the integral

u�x0� t0
=
∫ xH

−

��x
gu�xH� x� x0�  
dx� (3.17)
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while for zero boundary condition at a lower endpoint x0 = xL

u�x0� t0
=
∫ 


xL

��x
gl�xL� x� x0�  
dx� (3.18)

If � is further assumed to be a compact integrable function over the entire solution domain,

then u�x0� t0
 will also have zero-boundary condition as x0 →±
 accordingly.

It is instructive to reconsider the preceding absorbing barrier problem from a different

point of view using purely probabilistic arguments and basic properties of Brownian paths.

In particular, let xt denote the Brownian motion starting at x0 < xH at initial time t0 with

upper absorbing barrier at x = xH . Let x̃t denote the same Brownian motion but with no

barrier, i.e., the standard Brownian (or Wiener) process with transition density g0�x̃t� x0�  
,
 = t− t0. Let us focus on the case of an upper barrier (the derivation for the case of a lower

barrier is similar; see Problem 4 of this section) and set out to compute the probability that a

path xs, t0 ≤ s ≤ t, has the value of X or less at time t, where X < xH :

P�xt ≤ X�= P�x̃t ≤ X� sup
t0≤s≤t

x̃s < xH�� (3.19)

This expression follows from the fact that if a free Brownian path x̃s crosses the barrier, xs

will be absorbed and hence would never attain a value below xH . Now, from first principles

the total probability for the event

�x̃t ≤ X�= �x̃t ≤ X� sup
t0≤s≤t

x̃s < xH�∪ �x̃t ≤ X� sup
t0≤s≤t

x̃s ≥ xH�

is given by the sum of the probabilities of the two mutually exclusive events:

P�x̃t ≤ X�= P�x̃t ≤ X� sup
t0≤s≤t

x̃s < xH�+P�x̃t ≤ X� sup
t0≤s≤t

x̃s ≥ xH�� (3.20)

Any path contributing to the second term must therefore cross the barrier. The density for

the x̃t motion is given by g0�x̃t� x0�  
, so x̃t follows a symmetric random walk in time. In

particular, if we let tH < t denote the time at which a path first hits xH , then the probability

density that a Brownian path at xH at time tH subsequently attains the value X at terminal

time t is the same as that for a (reflected) path starting at xH at time tH and attaining a value

2xH −X at time t (see Figure 3.3). Indeed, for both paths this probability density is

g0�X�xH� t− tH
= g0�2xH −X�xH� t− tH
=
e−�X−xH 
2/4�t−tH 


2
√
��t− tH


� (3.21)

Using this, the second term in equation (3.20) becomes

P�x̃t ≤ X� sup
t0≤s≤t

x̃s ≥ xH�= P�x̃t ≥ 2xH −X� sup
t0≤s≤t

x̃s ≥ xH�

= P�x̃t ≥ 2xH −X�� (3.22)

where the last term follows because the supremum condition is redundant. Substituting this

result into equation (3.20) and using equation (3.19) gives

P�xt ≤ X�= P�x̃t ≤ X�−P�x̃t ≥ 2xH −X� (3.23)

for all X < xH .
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FIGURE 3.3 The reflection principle for Brownian paths.

Placing the density g0 into equation (3.23) hence gives the probability of any path initiating
below the barrier at x0 < xH and attaining any value xt ≤ X < xH within a time interval  ,
with the condition of paths being absorbed if the barrier level xH is crossed, as:

P�xt ≤ X�=
∫ X

−

g0�x� x0�  
dx−

∫ 


2xH−X
g0�x� x0�  
dx

=
∫ X

−

gu�xH� x� x0�  
dx� (3.24)

where the last expression is obtained by a change of variable in the second integral. Since the

density is obtained by differentiating the cumulative probability function (or by the standard

definition of a cumulative density function) we conclude that the kernel gu�xH� x� x0�  
 in

equation (3.14), as derived earlier by the method of images, is indeed the transition probability

density for Brownian motion xt on the interval x�x0 ∈ �−
� xH
 with an absorbing barrier

at xH . The probability in the last equation is readily evaluated as the difference of two

cumulative normal functions:

P�xt ≤ X�= N

(
X−x0√

2 

)
−N

(
X+x0−2xH√

2 

)
� (3.25)

 = t− t0. The absorption of paths crossing the barrier can then be quantified precisely as

follows. Let P� 
 denote the probability of any path initiating at x0 < xH and terminating

within time  in the interval x ∈ �−
� xH
, conditional on absorption at xH . Then P� 
 =
P�xt ≤ xH�, where the conditional probability is computed using the density gu:

P� 
= N

(
xH −x0√

2 

)
−N

(
− xH −x0√

2 

)
� (3.26)

Hence the probability does not integrate to unity and is in fact time dependent with

P� 
 < 1, implying absorption with 1−P� 
 giving the probability of absorption. Moreover,

P� 
→ 1 as  → 0 and P� 
→ 0 as  →
. One can also compute the rate of absorption

R� 
=−dP� 
/d or flux across the barrier (i.e., the rate at which probability leaks). From
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equation (3.26) (and the analogous formula for the case of a lower barrier, wherein xH −x0
is replaced by x0−xL), we generally have

R� 
= 
xb −x0

2
√
� 3

e−�xb−x0

2/4 � (3.27)

where xb is either a lower or an upper barrier and x0 is above or below the barrier, respectively.

3.2.2 Brownian Motion with Drift

The analysis of the previous section is readily extended to the case of a constant drift �
and constant volatility � , i.e., drifted Brownian motion xt with stochastic increment dxt =
� dt+� dWt. The transition density for this process with no barrier [recall equation (1.86)] is

g0���x� x0�  
≡
e−�x−x0−� 
2/2�2 

�
√
2� 

� (3.28)

Rewriting gives

g0���x� x0�  
= e
�

�2
�x−x0
− �2

2�2
 g0�x� x0�  
� (3.29)

where

g0�x� x0�  
=
e−�x−x0


2/2�2 

�
√
2� 

(3.30)

is the corresponding density for zero drift and no barrier [i.e., the density in equation (3.9)

with  → 1

2
�2 ]. A transition probability density function for the drifted process, denoted by

u� = u��x� x0�  
, is a fundamental solution to the forward and backward time-homogeneous

Kolmogorov equations, which can be respectively written as

�u�

� 
= 1

2
�2

�2u�

�x2
−�

�u�

�x
(3.31)

and

�u�

� 
= 1

2
�2

�2u�

�x2
0

+�
�u�

�x0
� (3.32)

with delta function condition lim →0 u��x� x0�  
= ��x−x0
. For the case of free motion on

the entire infinite domain, we have u� = g0��, since this kernel solves equations (3.31) and

(3.32) with zero-boundary conditions at x�x0 →±
 and lim →0 g0���x� x0�  
 = ��x− x0
.
As in the case of zero-drift, we are interested in further obtaining kernels satisfying zero-

boundary conditions at any specified finite barrier level. For this purpose, relation (3.29)

points to the following generally useful result.

Proposition 3.1. Let u��x� x0�  
 be a fundamental solution to the Kolmogorov equa-
tions (3.31) and (3.32) for drifted Brownian motion and satisfying homogeneous zero-
boundary conditions (in x or x0) at any two endpoints of a finite, infinite, or semi-infinite
solution domain. Assume the corresponding fundamental solution for zero drift (� = 0) is
given by u0�x� x0�  
 ≡ u�x�x0�  
 and that this solution satisfies the same endpoint zero-
boundary conditions, we have the relation

u��x� x0�  
= e
�

�2
�x−x0
− �2

2�2
 u�x� x0�  
� (3.33)
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The solution in equation (3.33) is verified by directly substituting into equations (3.31)

and (3.32), differentiating, and using the fact that u�x�x0�  
 solves the same forward and

backward Kolmogorov equations for �= 0. In the limit  → 0, u� obviously approaches the

delta function since u does. Moreover, note that the exponential term in equation (3.33) is

bounded for all finite values of x�x0, and grows only with linear exponent at infinite absolute

values of x or x0. Hence, any zero-boundary condition on u (placed at a finite or infinite

point in x or x0) is automatically also satisfied by u� at the same point.

Based on the foregoing proposition, the barrier kernels for the drifted Wiener process are

automatically obtained from those for zero drift. Although in this section we are explicitly

discussing only the single-barrier case, the reader should realize that the proposition also

applies directly to the case of the double-barrier kernels. Using equation (3.14) (with the

replacement  → 1

2
�2 ) for the case of an upper absorbing barrier at x = xH , the transition

density denoted by u� = gu
� on the domain x�x0 ∈ �−
� xH
 is then equivalently given by

gu
��xH� x� x0�  
=

e
�

�2
�x−x0
− �2

2�2
 

�
√
2� 

(
e−�x−x0


2/2�2 − e−�x+x0−2xH 
2/2�2 

)
= g0���x� x0�  
− e

2�

�2
�xH−x0
g0���x�2xH −x0�  


= g0���x� x0�  

[
1− e−2�x2H+xx0−xH �x+x0

/�

2 
]
� (3.34)

where the function g0�� is defined by equation (3.28). This density satisfies zero-boundary

conditions at the barrier level x�x0 = xH as well as at x�x0 →−
, as required. The kernel

for the case of a lower barrier at x = xL is identical with transition density for x�x0 ∈
	xL�

 given by gl

��xL� x� x0�  
= gu
��xL� x� x0�  
, with zero-boundary condition at x�x0 =

xL and at x�x0 → 
. It is easy to verify by comparison of the relative magnitudes of the

exponents that these densities are indeed strictly nonnegative on their respective semi-infinite

solution domains.

These kernels can be used to provide analogous probability formulas to those in the

previous section. For example, the kernel gl can be used to compute the probability that a

drifted Brownian path initiating at any point above the barrier at x0 > xL, at time t0, and
attaining any value xt ≥ X, for X ≥ xL, within a time interval t− t0 =  , conditional on the

path being absorbed if it crosses below the barrier level xL, as

P�xt ≥ X ≥ xL
x0 > xL�=
∫ 


X
gl
��xL� x� x0�  
dx

=N

(
x0−X+� 

�
√
 

)
− e

2�

�2
�xL−x0
N

(
2xL−x0−X+� 

�
√
 

)
� (3.35)

The analogous probability for the case of an upper barrier at xH is

P�xt ≤ X ≤ xH 
x0 < xH�=
∫ X

−

gu
��xH� x� x0�  
dx

=N

(
X−x0−� 

�
√
 

)
− e

2�

�2
�xH−x0
N

(
X+x0−2xH −� 

�
√
 

)
� (3.36)

Problems

Problem 1. Consider the Wiener process with lower absorbing barrier as discussed in

Section 3.2.1. Obtain analogues of equations (3.19) through equation (3.27). Provide an

analogous plot to the one in Figure 3.2 for the kernel gl�xL� x� x0�  
.
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Problem 2. What are the limiting values of P� 
 and R� 
 in equations (3.26) and (3.27) as

xH →
? Explain.

Problem 3. Obtain formulas for P� 
 and R� 
 for the case of a driftless Wiener process

with constant volatility � . Explain the dependence of P� 
 and R� 
 on volatility. What are

the limiting values as � →
 and � → 0?

Problem 4. Consider driftless Brownian motion with constant volatility $�x
=� and absorp-

tion at a lower barrier xL. Using steps similar to those in equations (3.19) to (3.25), show that

a path xs, t0 ≤ s ≤ t, conditional on starting at x0 > xL at time t0, has value xt ≥ X at time t,
where X ≥ xL, with probability given by

P�xt ≥ X�= N

(
X+x0−2xL

�
√
 

)
−N

(
X−x0
�
√
 

)
� (3.37)

where  = t− t0. Show that this result is consistent with equation (3.35) when �= 0.

Problem 5. By using equations (3.35) and (3.36) withX= xL andX= xH , respectively, derive

an expression for the rate of absorption across a barrier. Explain the particular dependence

on the drift rate �.

3.3 Pricing Kernels and European Barrier Option Formulas
for Geometric Brownian Motion

The kernels for the drifted Brownian motion obtained in the previous section can be used

to provide exact pricing kernels and hence pricing formulas for which the underlying asset

price process St at time t is assumed to obey a linear volatility and linear drift model (i.e.,

geometric Brownian motion or the standard Black–Scholes model):

dSt = �St dt+�St dWt� St > 0�

Let us begin by defining the variable transformation x= X�S
≡ log�S
, with inverse S = ex,
mapping the domains x ∈ �−
�

 and S ∈ �0�

 into one another. From Itô’s lemma, the

process xt = logSt has SDE

dxt =
(
�− �2

2

)
dt+� dWt�

Hence, the transition density for the random variable logSt is given by the transition density

for the simple Brownian motion xt with constant drift �− 1

2
�2 and volatility � . Changing

variables with Jacobian d logS/dS = 1/S therefore gives a general relationship between the

S-space and the x-space densities:

U�S�S0�  
=
1

S
u�− 1

2
�2�X�S
�X�S0
�  
� (3.38)

for all S�S0 > 0. Here the notation u� refers to a kernel for simple Brownian motion with drift

�, as discussed in the previous section. It is also readily shown by direct substitution, using

equations (3.31) and (3.32), that the density U satisfies the appropriate forward and backward

Kolmogorov equations in S, S0 (i.e., the Kolmogorov equations for lognormal diffusion with

linear drift and volatility functions �S and �S, respectively, as discussed in Section 1.13).
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Relation (3.38) holds true for any homogeneous zero-boundary conditions. The case of

zero-boundary conditions imposed on the pricing kernel U at S�S0 → 0 and S�S0 → 

corresponds to imposing zero-boundary conditions on the kernel u at x�x0 → ±
. Such

boundary conditions give free geometric Brownian motion on the entire half-line S�S0 ∈
�0�

. The pricing kernel for the case of no barriers, denoted by U0, is then obtained

via equation (3.38) by substituting the barrier-free solution for drifted Brownian motion

of the previous section u�− 1
2
�2 = g0��− 1

2
�2�x� x0�  
, with x = X�S
 = logS, x0 = X�S0
 =

logS0, giving

U0�S�S0�  
=
1

S
g0��− 1

2
�2�logS� logS0�  


= 1

�S
√
2� 

e−	log�S/S0
−��−�2/2
 
2/2�2 � (3.39)

This is the familiar lognormal density for the Black–Scholes model discussed in Chapter 1.

However, here we arrived at this density from a different perspective, one that allows us to

readily derive pricing kernels subject to different boundary conditions. To obtain the pricing

kernel for the case of a single absorbing barrier at S =H , the barrier points in the two spaces

are related by xH =X�H
= logH . Then by simply substituting the appropriate single-barrier

x-space kernel of equation (3.34) into equation (3.38) we obtain the equivalent forms:

U�H�S�S0�  
=
1

S
gu
�− 1

2
�2�logH� logS� logS0�  


= 1

S

[
g0��− 1

2
�2�logS� logS0�  


− �H/S0

2�

�2
−1g0��− 1

2
�2�logS� log�H2/S0
�  


]
=U0�S�S0�  
− �H/S0


2�

�2
−1U0�S�H

2/S0�  


=U0�S�S0�  


[
1− exp

[
− log�S/H
 log�S0/H


1

2
�2 

]]
� (3.40)

where U0 is given by equation (3.39). This single-barrier kernel hence satisfies zero-boundary

conditions at the barrier value for both S = H and S0 = H , as well as approaching zero

as S�S0 → 0 and as S�S0 → 
. Kernel (3.40) is therefore valid as a single-barrier kernel

(transition probability density) for either the lower domain, S�S0 ∈ �0�H
, or the upper

domain, S�S0 ∈ 	H�

, with level H being an upper barrier or lower barrier, respectively.

The price level H therefore plays the role of either upper or lower barrier in the respective

solution domains.

Pricing kernel (3.40) can be used to obtain exact analytical formulas for various types

of single-barrier European-style options under the Black–Scholes model where � = r, the
assumed interest rate. If the underlying asset has constant dividend yield q, then �= r−q.
Without loss in generality, in what follows we derive explicit formulas for q = 0.2 Given

an arbitrary payoff function #�S
 at maturity time T , the fair value at current time t0 and

2The pricing formulas for q �= 0 obtain trivially from the q = 0 formulas. Indeed, let V�S0� r� q�  
 represent any

option-pricing function for the case of a constant dividend q. Then from the discounted risk-neutral pricing integrals

we directly have V�S0� r� q�  
 = e−q V�S0� r − q�  
, where the latter is the corresponding option-pricing function

V�S0� r�  
 derived for zero dividend but with subsequent drift replacement r → r−q.
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spot price S0 >H of a down-and-out option with barrier level H is given by the discounted

risk-neutral expectation over the domain above the barrier:

VDO�S0�  
= e−r 
∫ 


H
U�H�S�S0�  
#�S
dS� (3.41)

where the option price is considered a function of  = T − t0, the time to maturity. Recall

from previous contract definitions that this option automatically expires worthless if the stock

or asset price St attains or falls below the barrier price level H for any time before maturity.

The value of the corresponding up-and-out option with spot price S0 < H is given by the

discounted risk-neutral expectation over the domain below the barrier:

VUO�S0�  
= e−r 
∫ H

0

U�H�S�S0�  
#�S
dS� (3.42)

The values of the knock-in barrier options (i.e., the up-and-in and down-and-in options)

follow simply by (knock-in)-(knockout) symmetry:

VUI +VUO = VDI +VDO = V�

where

V�S0�  
= e−r 
∫ 


0

U0�S�S0�  
#�S
dS (3.43)

is the value of the plain European option. [Note that these integral solutions are consistent

with the fact that V , VUI , VDI , VUO, and VDO all satisfy the usual time-homogeneous Black–

Scholes partial differential equation (BSPDE) in the variables S0�  with appropriate boundary

values in S0 and whose value at zero time to maturity is determined uniquely by the pay-off

(and the barrier level with respect to S0 in the case of the barrier options). This follows, since

one can interchange the order of taking partial derivatives in S0�  with integrating over S, and
using the fact that e−r U0 and e−r U solve the BSPDE in S0�  (for fixed S) with appropriate

boundary conditions in S0 and delta function value at zero time to maturity.]

Recall from contract definitions that the knock-in options have zero value unless the

asset price St attains the barrier at a time before maturity time T , upon which the option

immediately becomes the plain European. The foregoing symmetry relation follows from the

fact that the knock-in solution is expressible as a linear combination of the knockout and

barrier-free solutions. The unique combination then follows by satisfying boundary conditions.

In particular, VDI = V −VDO since at the barrier the knock-in must have the same value as

the plain option: VDI�S0 = H� 
 = V�S0 = H� 
 for all nonzero times to maturity. Also, at

the other boundary, S0 = 0, the two option prices must both equal zero. Finally, at maturity,

VDI�S0�  = 0
= V�S0�  = 0
−VDO�S0�  = 0
= 0 since V and VDO are equal for all S0 >H ,

at zero time to maturity. This last property (i.e., the initial condition  = 0) must be satisfied

since the asset price starts above the barrier and stays there, hence the barrier is never attained,

giving zero value for the knock-in. A similar argument applied to the up-and-in option also

leads to the foregoing symmetry.

We now provide the derivation of exact pricing formulas for single-barrier European calls

and puts. As a first example, we consider a down-and-out call with strike K and barrier level

H . In this case #�S
= �S−K
+ and equation (3.41) gives

CDO�H�S0�K�  
= e−r 
∫ 


B
U�H�S�S0�  
�S−K
dS� (3.44)
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where B =H if H ≥K and B =K if H ≤K. In general, it proves useful to evaluate the two

integrals defined by

��B
≡
∫ 


B
U�H�S�S0�  
dS (3.45)

and

�̄�B
≡
∫ 


B
U�H�S�S0�  
SdS (3.46)

for any B ≥ 0. Using equation (3.40) with � = r, and changing integration variable S = ex,
we have

��B
=
∫ 


logB

[
g0�r− 1

2
�2�x� logS0�  
− �H/S0


2r

�2
−1g0�r− 1

2
�2�x� log�H2/S0
�  


]
dx�

This integral is evaluated using steps similar to those in previous derivations of the Black–

Scholes formula for a plain call. In particular, using equation (3.28) gives∫ 


logB
g0�r− 1

2
�2�x� logS0�  
dx=

1

�
√
2� 

∫ 


logB
e−�x−logS0−�r− 1

2
�2
 
2/2�2 dx

= 1√
2�

∫ log�S0/B
+�r− 1
2
�2
 

�
√
 

−

e−

1
2
y2dy

=N

(
d−

(
S0

B

))
� (3.47)

where here and throughout we define

d±�x
≡
logx+ �r± 1

2
�2
 

�
√
 

(3.48)

where d−�x
= d+�x
−�
√
 . The second line in equation (3.47) follows simply by a linear

change of variables x = logS0+ �r− 1

2
�2
 −�

√
 y. The second term in ��B
 is integrated

in identical fashion, with S0 replaced by H2/S0, and combining gives

��B
= N

(
d−

(
S0

B

))
−
(
H

S0

) 2r

�2
−1

N

(
d−

(
H2

S0B

))
� (3.49)

The integrand for the �̄�B
 integral is similar, except for an extra ex factor. Upon completing

the squares in the integrand exponents and using similar steps as before, one readily obtains

�̄�B
= er 
[
S0N

(
d+

(
S0

B

))
−S0

(
H

S0

) 2r

�2
+1

N

(
d+

(
H2

S0B

))]
� (3.50)

From equations (3.44), (3.45), and (3.46), CDO�H�S0�K�  
 = e−r 	�̄�B
−K��B

. Hence
plugging the value B = H if H ≥ K (B = K if H ≤ K) gives the exact pricing formula for

the down-and-out option in terms of cumulative normal density functions:

CDO�H�S0�K�  
= S0N

(
d+

(
S0

H

))
−S0

(
H

S0

) 2r

�2
+1

N

(
d+

(
H

S0

))

− Ke−r N

(
d−

(
S0

H

))
+Ke−r 

(
H

S0

) 2r

�2
−1

N

(
d−

(
H

S0

))
(3.51)
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for H ≥ K, and

CDO�H�S0�K�  
= S0N

(
d+

(
S0

K

))
−S0

(
H

S0

) 2r

�2
+1

N

(
d+

(
H2

S0K

))

− Ke−r N

(
d−

(
S0

K

))
+Ke−r 

(
H

S0

) 2r

�2
−1

N

(
d−

(
H2

S0K

))
(3.52)

for H ≤K. Note that for the case H ≤K, one also has the compact form in terms of plain calls:

CDO�H�S0�K�  
= C�S0�K�  
− �H/S0

2r

�2
−1C�H2/S0�K�  
� (3.53)

From the symmetry CDI +CDO = C, this expression gives the down-and-in value CDI explic-

itly. Rearranging equation (3.51) we can also extract an exact expression for CDI whenH ≥K.

The down-and-out put value PDO = 0 for H ≥K since the put payoff �K−S
+ is zero in

this trivial case. Symmetry then gives PDI = P, the plain European put value. In contrast, the

case H ≤ K gives

PDO�H�S0�K�  
= e−r 
∫ K

H
U�H�S�S0�  
�K−S
dS

= e−r 
[
K���H
−��K

+ �̄�K
− �̄�H


]
=Ke−r 

[
N

(
d−

(
S0

H

))
−
(
H

S0

) 2r

�2
−1

N

(
d−

(
H

S0

))

−N

(
d−

(
S0

K

))
+
(
H

S0

) 2r

�2
−1

N

(
d−

(
H2

S0K

))]

+S0N

(
d+

(
S0

K

))
−S0

(
H

S0

) 2r

�2
+1

N

(
d+

(
H2

S0K

))

−S0N

(
d+

(
S0

H

))
+S0

(
H

S0

) 2r

�2
+1

N

(
d+

(
H

S0

))
(3.54)

By using C�S0�K�  
 = S0N�d+�S0/K

−Ke−r N�d−�S0/K

, the property N�d±�S0/H

 =
1−N�−d±�S0/H

, and put-call parity for the plain call and put option price, this result is

also expressible as

PDO�H�S0�K�  
= P�S0�K�  
−PDI�H�S0�K�  
� (3.55)

where

PDI�H�S0�K�  
=−S0N

(
−d+

(
S0

H

))
+Ke−r N

(
−d−

(
S0

H

))

+ S0

(
H

S0

) 2r

�2
+1[

N

(
d+

(
H2

S0K

))
−N

(
d+

(
H

S0

))]

− Ke−r 

(
H

S0

) 2r

�2
−1[

N

(
d−

(
H2

S0K

))
−N

(
d−

(
H

S0

))]
(3.56)

is the value of the down-and-in put. Note that for H = K these expressions give

PDI�H�S0�K�  
= P�S0�K�  
, the plain put value, and PDO = 0, as required.
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Up-and-out calls and puts are obtained using equation (3.42). For a put we have

PUO�H�S0�K�  
= e−r 
∫ B

0

U�H�S�S0�  
�K−S
dS

=Ke−r 
∫ B

0

U dS− e−r 
∫ B

0

US dS

=Ke−r 	��0
−��B

+ 	�̄�B
− �̄�0

e−r 

=−S0

[
N

(
−d+

(
S0

B

))
−
(
H

S0

) 2r

�2
+1

N

(
−d+

(
H2

S0B

))]

+Ke−r 

[
N

(
−d−

(
S0

B

))
−
(
H

S0

) 2r

�2
−1

N

(
−d−

(
H2

S0B

))]
�

where B=H for H ≤K and B=K for H ≥K. Here we have used the properties N�d±�


=
N�

= 1 and 1−N�x
= N�−x
. Substituting B =H or B =K then gives the exact expres-

sions for the up-and-out put:

PUO�H�S0�K�  
=−S0N

(
−d+

(
S0

H

))
+Ke−r N

(
−d−

(
S0

H

))

+ S0

(
H

S0

) 2r

�2
+1

N

(
−d+

(
H

S0

))

− Ke−r 

(
H

S0

) 2r

�2
−1

N

(
−d−

(
H

S0

))
(3.57)

for H ≤ K, and

PUO�H�S0�K�  
= P�S0�K�  
+S0

(
H

S0

) 2r

�2
+1

N

(
−d+

(
H2

S0K

))

−Ke−r 

(
H

S0

) 2r

�2
−1

N

(
−d−

(
H2

S0K

))
(3.58)

for H ≥ K. The exact expressions for the up-and-in put follow simply by symmetry, PUI =
P−PUO.

From equation (3.42), the up-and-out call is given by

CUO�H�S0�K�  
= e−r 
∫ H

0

U�H�S�S0�  
�S−K
+ dS� (3.59)

Since the payoff function is zero for S ≤K, CUO = 0 for H ≤K. For H ≥K the option value

can be rewritten as

CUO�H�S0�K�  
= e−r 
∫ K

H
U�H�S�S0�  
�K−S
dS� (3.60)

As observed from equation (3.54), this is precisely the value of the down-and-out put option

for H ≤K. By extracting out the plain call value C�S0�K�  
 from the last expression on the

right-hand side of (3.54), the result can be recast as

CUO�H�S0�K�  
= C�S0�K�  
−CUI�H�S0�K�  
� (3.61)
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with up-and-in call option value

CUI�H�S0�K�  
= S0N

(
d+

(
S0

H

))
−Ke−r N

(
d−

(
S0

H

))

− S0

(
H

S0

) 2r

�2
+1[

N

(
d+

(
H

S0

))
−N

(
d+

(
H2

S0K

))]

+ Ke−r 

(
H

S0

) 2r

�2
−1[

N

(
d−

(
H

S0

))
−N

(
d−

(
H2

S0K

))]
(3.62)

for H ≥ K. For H = K we have CUI = C, the plain call value, and CUO = 0, as required.

All of the preceding analytical pricing formulas for geometric Brownian motion are

also readily extended to the case of a time-dependent barrier that has an exponential form

H� 
 = He−� , with �, H as constants. Assuming the choice � > 0, the barrier boundary is

an increasing function of calendar time (or decreasing function of time to maturity  ). For
a given  , the solution domain for the underlying asset price is 	H� 
�

 for a down-and-

out and �0�H� 

 for an up-and-out. Assuming geometric Brownian motion as before with

constant drift � and volatility � , the single-barrier kernel for this exponentially shaped barrier

with zero-boundary condition at the  -dependent boundary level S0 =H� 
 (and at the other

endpoint S0 = 0 or S0 = 
) is denoted by UH� 
�S� S0���  
. [Note that we use a notation

involving the explicit functional dependence on the drift parameter needed to precisely clarify

the arguments that follow.] It can be readily shown (see Problem 3) that this kernel is given

by the constant barrier kernel in equation (3.40), now denoted by U�H�S�S0���  
, where we
replace the arguments S0 → S0e

� and �→ �−�. That is,

UH� 
�S� S0���  
= U�H�S�S0e
� ��−�� 
� (3.63)

The risk-neutral pricing kernel for the exponential barrier with lognormal drift � = r
(the assumed constant interest rate) is then explicitly given by

UH� 
�S� S0� r�  
=
1

�S
√
2� 

[
e
−	log S

S0
−�r− �2

2

 
2/2�2 

−
(
H� 


S0

) 2�r−�


�2
−1

e
−	log S

S0
−�2 log

H� 

S0

+�r− �2

2

 

2/2�2 

]
� (3.64)

Setting �= 0 obviously recovers the previous risk-neutral density for the case with constant

barrier.

Exact pricing formulas for European knockouts and knock-ins for exponential barriers can

be obtained by integrating the density given by equation (3.64) and following similar steps

as were used earlier for the case of a constant barrier. However, a straightforward approach

is to make use of relation (3.63) directly in the risk-neutral pricing formula. Consider a

down-and-out with payoff #�S
: The risk-neutral price is

VDO�H� 
� S0� r�  
= e−r 
∫ 


H� 

UH� 
�S� S0� r�  
#�S
dS

= e−� e−�r−�
 
∫ 


H
U�H�S�S0e

� � r−�� 
#�S
dS

= e−� VDO�S0e
� �H� r−�� 
� (3.65)
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where VDO�S0e
� �H� r −�� 
 is the value of the down-and-out with spot S0e

� , constant

barrier level at H , effective interest rate r−�, and time to maturity  . Similarly, an up-and-out

has value

VUO�H� 
� S0� r�  
= e−� VUO�S0e
� �H� r−�� 
� (3.66)

The corresponding prices of the knock-ins obtain simply from knock-in/knockout symmetry.

Since the barrier-free pricing kernel (3.39) satisfies the invariance relation U0�S�S0� r�  
 =
U0�S�S0e

� � r−�� 
, the plain-vanilla price satisfies

V�S0� r�  
= e−� V�S0e
� � r−�� 
� (3.67)

Given a pricing formula for the constant barrier case, the corresponding pricing formula

for the exponentially shaped barrier follows from equation (3.65) or (3.66). For example,

applying equation (3.65) to equation (3.53) gives the exact price of a down-and-out call with

exponential barrier for H� 
≤ K as

CDO�H� 
� S0�K�  
= C�S0�K�  
−
(
H� 


S0

) 2�r−�


�2
−1

C

(
H� 
2

S0

�K�  

)
� (3.68)

where equation (3.67) has been used on the two plain calls. Analogous formulas for the other

types of knock-in and knockout barrier options discussed follow in similar fashion.

Problems

Problem 1. Show that the function V�S0�  
 = S�
0 V�aS

�
0 �  
 satisfies the Black–Scholes

equation

�V

� 
= 1

2
�2S2

0

�2V

�S2
0

+ rS0

�V

�S0

− rV� (3.69)

where V�S0�  
 is assumed to satisfy the same equation in the �S0�  
 variables, S0 ≡ aS
�
0 ,

and provided we make the parameter choice � = 1− 2r/�2, � = −1, for arbitrary nonzero

constant a. Then consider expressing the price of a down-and-out call struck at K, with

constant barrier at H ≤ K, as a linear combination of two solutions using plain calls

CDO = C�S0�K�  
+bS
1− 2r

�2

0 C�a/S0�K�  
� (3.70)

Determine the constants a and b by satisfying the zero-boundary condition at the barrier

S0 =H and the initial condition CDO → �S0−K
+ as  → 0, hence arriving at (3.53).

Problem 2. Derive the greeks %, & , ' (as defined in Chapter 1) for the down-and-out call,

with value V = CDO given by equation (3.53). Is the relationship ' = 1

2
�2S2

0& + r�S0%−V

satisfied?

Problem 3. Consider the exponential barrier H� 
=He−� , with H and � as constants. Let

Ũ �S� S0�  
= UH� 
�S� S0�  
 be the pricing kernel solving

�Ũ

� 
= 1

2
�2S2

0

�2Ũ

�S2
0

+�S0

�Ũ

�S0

(3.71)
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and satisfying Ũ �S� S0 =H� 
�  
= 0 and Ũ �S� S0 =
�  
= 0 for the fundamental solution

in the upper domain H� 
≤ S0 <
 or Ũ �S� S0 = 0�  
= 0 for the case of the lower solution

domain 0< S0 ≤H� 
. Let Ũ �S� S0�  
= Ū �S� S̄�  
, S̄ = S0e
� , and show that Ū solves

�Ū

� 
= 1

2
�2S̄2 �

2Ū

�S̄2
+ ��−�
S̄

�Ū

�S̄
� (3.72)

with Ū �S� S̄ = H� 
 = 0 and Ū �S� S̄ =
�  
 = 0 for the fundamental solution in the upper

domain H ≤ S̄ < 
 or Ū �S� S̄ = 0�  
 = 0 for the case of the lower domain 0 < S̄ ≤ H .

Hence Ū �S� S̄�  
 = U�H�S�S0e
� ��−�� 
, with the function U given by equation (3.40)

for constant barrier level H and drift �−� (in the place of �), and conclude that the kernel

UH� 
 for the time-dependent exponential barrier with drift � is given by equation (3.63),

while setting �= r gives equation (3.64).

3.4 First-Passage Time

When pricing exotic barrier options it is useful to consider the first-passage time of a diffusion

process, i.e., the first time at which a process achieves a particular value or enters (exits) a

region. In particular, for the sake of pricing, we are interested in the first-passage time for

an asset price process crossing a specified constant barrier level H > 0. We hence consider

calculating the probability distribution for the first-passage time, the time taken to attain the

absorbing barrier. Consider the case of an upper barrier with current asset price S0 <H , and

let t− t0 =  > 0 be the amount of time spent from current time t0 until the barrier is first

attained at time t. Then

��H�S0�  
= 1−
∫ H

0

U�H�S�S0�  
dS (3.73)

represents the probability (cumulative in the passage time  ) that the asset price process

has attained the upper barrier H and has been absorbed. Indeed, this is just 1 minus the

probability that the asset price remains below the barrier, or, equivalently, � is the probability

of absorption. If we denote  p = min� �St ≥ H�S0 < H� as the first-passage time random

variable, then ��H�S0�  
 is the probability P� p ≤  �. The function U�H�S�S0�  
 is the

kernel for the solution region 	0�H
 with absorbing boundary condition at the barrier. [Note

that although we are considering a time-homogeneous process, with state-dependent drift

and volatility functions, the formal theory extends in the obvious manner for the general

case of a time-inhomogeneous process, where we would consider a kernel U�H�S� t� S0� t0

having explicit dependence on t and t0 rather than  = t− t0.] As  → 0, the integrand gives

a Dirac delta function contribution ��S− S0
 in the region 	0�H
 and hence integrates to

unity; therefore ��H�S0�  = 0
 = 0. Since U�H�S�S0�  
 is identically zero for S0 = H , �
has boundary condition ��H�S0 = H� 
 = 1. Moreover, U is a kernel and hence obviously

solves both forward and backward Kolmogorov equations for the asset price diffusion process.

Since partial derivatives with respect to S0 and  can be taken inside the integral, the

cumulative probability density for the first passage time, �, is therefore a solution of the

time-homogeneous backward (and not the forward) Kolmogorov partial differential equation

in S0,  subject to the foregoing conditions.

The other case, where H is a lower barrier with current asset price S0 > H , is similar,

with equation (3.73) replaced by

��H�S0�  
= 1−
∫ 


H
U�H�S�S0�  
dS� (3.74)
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which is the cumulative probability that the asset price process has attained the lower barrier

and has been absorbed, where U is the kernel for the solution region 	H�

 with absorbing

boundary condition at the barrier. The first passage time random variable is now the stopping

time  p =min� �St ≤H�S0 >H�. From similar arguments as before, one again obtains that �

solves the same backward Kolmogorov equation with unit boundary condition at the barrier,

��H�S0 =H� 
= 1, and zero initial condition ��H�S0�  = 0
= 0.

In both cases, the function � can be obtained by solving the backward Kolmogorov

equation subject to the stated conditions. However, given the kernel U ,� is simply determined

by an integration via equation (3.73) [or (3.74)]. If � is a cumulative function, the probability

density function f for the first passage time must be given by differentiation:

f�H�S0�  
=
�

� 
P� p ≤  �= ���H�S0�  


� 
� (3.75)

For f to be a bona fide probability density, it must be strictly nonnegative and must integrate

to unity over all positive  . Integrating

∫ 


0

f�H�S0�  
d =
∫ 


0

���H�S0�  


� 
d =��H�S0�

 (3.76)

hence gives ��H�S0�

 = 1 as the latter condition. This is not generally satisfied, as we

shall see next for the specific case of geometric Brownian motion. Since the integral in

equation (3.76) gives the probability that (given any amount of time) a path starting at S0 will

eventually be absorbed at the barrier, this quantity is generally less than or equal to 1. The

condition of nonnegativity of f , however, can be shown to follow for quite general processes

(see Problem 1).

For geometric Brownian motion with drift r and volatility � it is a simple matter to obtain

exact formulas for the first-passage densities based on the exact kernel in equation (3.40).

In particular, the integrals in equations (3.73) and (3.74) are given by direct use of equa-

tion (3.49), giving

��H�S0�  
=N

(
−d−

(
S0

H

))
+
(
H

S0

) 2r

�2
−1

N

(
d−

(
H

S0

))
= 1−N

(
log

S0
H
+ �r− 1

2
�2
 

�
√
 

)

+
(
H

S0

) 2r

�2
−1

N

(− log
S0
H
+ �r− 1

2
�2
 

�
√
 

)
(3.77)

for S0 >H and

��H�S0�  
=N

(
d−

(
S0

H

))
+
(
H

S0

) 2r

�2
−1

N

(
−d−

(
H

S0

))
=N

(
log

S0
H
+ �r− 1

2
�2
 

�
√
 

)

+
(
H

S0

) 2r

�2
−1

N

(
log

S0
H
− �r− 1

2
�2
 

�
√
 

)
(3.78)
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for S0 <H . Hence, for S0 >H we obtain the limiting value of equation (3.77):

��H�S0�

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1� r ≤ 1

2
�2

(
H

S0

) 2r

�2
−1

� r >
1

2
�2�

(3.79)

upon using N�

 = 1, N�−

 = 0. Hence, if r ≤ 1

2
�2, the cumulative density approaches

unity in the infinite-passage time limit so that, with probability 1, absorption eventually

occurs. On the other hand, if r > 1

2
�2, the cumulative density approaches a number strictly

between 0 and 1, since H/S0 < 1 and 2r
�2 −1> 0, so the probability of eventual absorption is

less than 1. In contrast, taking the infinite time limit of equations (3.78) gives, for S0 <H ,

��H�S0�

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1� r ≥ 1

2
�2

(
H

S0

) 2r

�2
−1

� r <
1

2
�2�

(3.80)

In this case, the reverse is observed, whereby the density approaches unity only if r ≥ 1

2
�2

and otherwise approaches a number strictly between 0 and 1. A basic interpretation of this

is that eventual absorption will take place with certainty only if the effective drift, which is

given by r− 1

2
�2, is not positive (or not negative) if the process starts above (or below) the

barrier. By differentiating equations (3.77) and (3.78) and combining, the exact first-passage

time density can be written as a single expression:

f�H�S0�  
=

 log S0

H



� 3/2
√
2�

e−	log�S0/H
+�r− 1
2
�2
 
2/2�2 � (3.81)

for all S0�H > 0.

The first-passage time density is useful when pricing “pay-at-hit one touch” type of

options or for pricing barrier options that also provide a rebate payment to the holder once

the barrier is hit. In the case of a down-and-out option with a rebate, equation (3.41) becomes

VDO�S0�  
= e−r 
∫ 


H
U�H�S�S0�  
#�S
dS+

∫  

0

e−rtR� − t
f�H�S0� t
dt�

The time integral term is just the expected present value of the rebate, whereby discounted

payments occurring at an elapsed time t in the future from the present are weighted with

the first-passage time density for hitting the barrier after time t. The time-dependent rebate

function is here assumed to be a function of the time remaining to maturtiy.

The first-passage time is also a very useful tool for computing options whose prices

depend on stopping times that can be interpreted as first hitting times. Nice examples of such

options are the American digitals. We have already discussed the payoff structure of European

digitals. The Black–Scholes price of European digitals is simple to obtain (see Problem 8

in Section 1.8). The pay-off of an American digital is similar — the holder of an American

digital receives one dollar if, and at the first time that, the underlying stock price hits the

fixed strike level K. Since the option expires with a pay-off to the holder at the instant the

spot hits the strike level, the early-exercise boundary, as such, is trivially fixed at the strike K.

The time optionality in this case is simpler than in the standard American contracts (e.g., a

put or call with dividend, etc.) studied in Chapter 1, where the early-exercise boundary is
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moving with time. The optimal stopping time is, in this case, just the first hitting time  
such that S = K. Once a hitting time  occurs, the contract expires, paying one dollar at

time  , and the value of that cash flow is the discounted value of one dollar, i.e., e−r . Given

the probability density f�H�S0�  
 for the first hitting time as provided by equation (3.75),

the fair price of the American digital at time t0 = 0, with maturity T , spot S0, and strike K,

reduces to a time integral:

V�S0� T
=
∫ T

0

e−r f�K�S0�  
d =
∫ T

0

e−r ���K�S0�  


� 
d � (3.82)

Closed-form analytical expressions can therefore be derived assuming a geometric Brownian

motion model (see Problem 4).

Problems

Problem 1. Consider a process with state-dependent drift ��S
 and volatility ��S
. Argue
that the first-passage time density for either lower or upper barrier case is strictly nonnegative.

In developing your argument, consider the derivative with respect to  of � defined via

equation (3.73) [and (3.74) separately] and make use of the forward equation for the single

barrier density U = U�H�S�S0�  
:

�U

� 
= 1

2

�2

�S2

(
�2�S
U

)
− �

�S

(
��S
U

)
� (3.83)

Integrating over S and assuming ��S
U and �2�S
U satisfy zero-boundary conditions at

the endpoints, arrive at the expressions

f�H�S0�  
=±1

2
�2�H


�U

�S

∣∣∣∣
S=H

�

where the plus sign is for S0 > H and the minus sign is for S0 < H . Using the fact that the

kernel is a positive differentiable function of S within either solution interval and has zero

value at the barrier endpoint, further argue that

f�H�S0�  
=
1

2
�2�H


∣∣∣∣�U�S
∣∣∣∣
S=H

∣∣∣∣� (3.84)

which is hence strictly nonnegative.

Problem 2. Using the kernel in equation (3.40), give an explicit verification that equa-

tion (3.84) gives the exact first-passage time density in equation (3.81) for geometric Brownian

motion where ��S
= rS, ��S
= �S.

Problem 3. Assume the exponentially time-dependent barrier of the previous section, H� 
=
He−� , � > 0. Show that the first-passage time density for S0 >H is given by

f�H�S0�  
=
log

S0
H� 


� 3/2
√
2�

e−	log�S0/H� 

+�r−�− 1
2
�2
 
2/2�2 � (3.85)

Problem 4. Obtain an analytical pricing formula for an American digital within the geometric

Brownian motion model.
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3.5 Pricing Kernels and Barrier Option Formulas for Linear
and Quadratic Volatility Models

The kernels for the Wiener process obtained in the previous sections are readily used as a

basis for providing other exact kernels and barrier-pricing formulas for affine and quadratic

volatility models. The formulas follow as a simple consequence of a more general method,

which we coin as the diffusion canonical mapping reduction methodology. This mathematical

framework is presented in detail later in this chapter. In particular, it provides a precise

relationship between the transition probability density or pricing kernel U�F�F0�  
 for the

space of a process Ft and the transition density u�x�x0�  
 for a process xt under a sim-

pler diffusion. In this section it suffices to consider xt as the pure Wiener process. The

process Ft represents an underlying asset price, such as a forward price at time t. Hence,
given an exact kernel for the simpler x-space process, we show how the mapping reduction

method automatically provides the desired exact pricing kernel for the more complicated

F -space process. Moreover, the desired boundary conditions in F -space (e.g., in the desired

asset price space) are satisfied by mapping onto the corresponding boundary conditions in

x-space.

3.5.1 Linear Volatility Models Revisited

Although we have already dealt with the linear volatility model (i.e., the standard Black–

Scholes model) in great detail in previous sections, it is instructive to see how the solutions

to the linear volatility model also arise as a very special case of the diffusion canonical

mapping reduction method, wherein the underlying x-space process is the simple Wiener

process. In particular, assume the two processes satisfy dxt =
√
2 dWt and dFt = ��Ft
dWt,

under appropriate respective measures, where the Ft process is considered to have zero

drift and linear volatility function ��F
 = �F , � = const. The (forward price) space of F
values is mapped one to one onto the entire space of the Wiener process with the variable

transformation

x = X�F
= �
√
2/�
 logF (3.86)

with inverse F = F�x
= e�x/
√
2. Since dx

dF
=

√
2

�F
, the transformation reduction equation (3.259),

of Lemma 3.1 to be derived in Section 3.8.1, specializes to give

U�F�F0�  
=
√
2

�F
exp

[
1

2
log

F0

F
− �2

8
 

]
u�X�F
�X�F0
�  


=
√
2

�

√
F0

F 3
e−

�2

8
 u�X�F
�X�F0
�  
� (3.87)

Here we have used � = �x→F = −�2/8, which results from equation (3.257) while substi-

tuting for the x-space volatility function (as constant) $�x
=√
2 and drift ��x
= 0. At this

point the reader should note that the two transition probability densities U and u are not just

simply related by a change of variables (i.e., the two functions are not the same probability

densities expressed in terms of two different variables), but rather also involve the exponential

multiplicative term due essentially to a measure change. This point will become clear later

in this chapter when we come to discuss the mapping reduction framework in general. The

mapping x = X�F
 and its inverse is monotonically increasing, with domain x ∈ �−
�


mapped onto F ∈ �0�

. By direct substitution, while changing variables of differentiation



3.5 Pricing Kernels and Barrier Option Formulas 173

and using equations (3.7) and (3.8), the reader can readily verify that U =U�F�F0�  
 in equa-
tion (3.87) indeed satisfies both forward and backward equations: �U/� = �2

2
�2�F 2U
/�F 2

and �U/� = 1

2
�2F 2

0 �2U/�F 2
0 .

Equation (3.87) gives an exact relationship between a kernel U for the linear volatil-

ity model and a kernel u for the Wiener process. The unique pricing kernels for the

barrier-free case as well as for the case of single and double barriers then follow auto-

matically by substitution of the particular kernel u that satisfies the appropriate boundary

conditions. For the barrier-free case, the zero-boundary conditions U�F = 0�F0�  
= U�F =

�F0�  
 = 0 (with the same conditions also holding in F0) are satisfied by substituting the

solution u�x�x0�  
 = g0�x� x0�  
 of equation (3.9) into equation (3.87). Upon using equa-

tion (3.86) and completing the square in the exponent, one obtains the zero-drift lognormal

density

U�F�F0�  
=
1

�F
√
2� 

exp

[
−
(
log

F0

F
− �2

2
 

)2

/2�2 

]
� (3.88)

As required, this formula is consistent with equation (3.39), where S = e� F or, alternatively,

with the case of zero drift �= 0, with S = F , S0 = F0. A barrier level at F =H (or F0 =H)

corresponds to H = F�xH
 = e�xH/
√
2, so xH = X�H
 = �

√
2/�
 logH . Hence the lower-

region F�F0 ∈ �0�H
 maps onto x�x0 ∈ �−
� xH
, whereas the upper-region F�F0 ∈ 	H�


maps onto x�x0 ∈ 	xH�

. The density for a single absorbing barrier at F�F0 = H is hence

obtained by simply substituting the kernel u�X�F
�X�F0
�  
= gu�X�H
�X�F
�X�F0
�  
 of
equation (3.14) into relation (3.87), giving:

U�H�F�F0�  
=
√
2

�F
exp

[
1

2
log

F0

F
− �2

8
 

]
gu�X�H
�X�F
�X�F0
�  


=U�F�F0�  


[
1− exp

[
− log�F/H
 log�F0/H


�2 /2

]]
� (3.89)

with U�F�F0�  
 given by equation (3.88). Note that this gives (absorbing) zero-boundary

conditions U�H�F = H�F0�  
 = U�H�F�F0 = H� 
 = 0 and that equation (3.89) is exactly

consistent with equation (3.40) when �= 0.

Exact analytical expressions for single-barrier options follow from the kernel in equa-

tion (3.89). Ignoring discounting,3 an up-and-out European-style option expiring worthless if

the upper forward price barrier F = H is crossed before a time to maturity  , with current

(forward) price level F0 ∈ �0�H
, has a price given by [in direct analogy with equation (3.42)]

VUO�F0�  
=
∫ H

0

U�H�F�F0�  
#�F
dF� (3.90)

where #�F
 is an assumed payoff function. The corresponding down-and-out option with

F0 >H has price [in direct analogy with equation (3.41)]

VDO�F0�  
=
∫ 


H
U�H�F�F0�  
#�F
dF� (3.91)

The knock-in barrier option prices are obtained from (knock-in)-(knockout) symmetry as

discussed in Section 3.3. The plain-vanilla option price follows by integrating the barrier-free

kernel (3.88) against the payoff function:

V�F0�  
=
∫ 


0

U�F�F0�  
#�F
dF� (3.92)

3Throughout Section 3.5 we shall simply omit the overall discount factor in all the option-pricing formulas.
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We shall not repeat the explicit intermediate steps in the derivations of the single-barrier

European call and put pricing formulas since the procedure follows in exactly the same

manner as discussed in Section 3.3. Call and put pay-offs with forward price struck at K are

assumed to have payoffs #�F
= �F−K
+ and #�F
= �K−F
+, respectively. The integrals
in equations (3.90) and (3.91) are then readily evaluated by considering the analogues of

equations (3.45) and (3.46); now defined by:

��B
≡
∫ 


B
U�H�F�F0�  
dF� (3.93)

�̄�B
≡
∫ 


B
U�H�F�F0�  
FdF (3.94)

for any B ≥ 0, with U�H�F�F0�  
 given by equation (3.89). In particular, the price of a

down-and-out call on the underlying forward price struck at K with single barrier at forward

price level H is given by (ignoring discounting)

CDO�H�F0�K�  
= �̄�B
−K��B
� (3.95)

where B = H if H ≥ K and B = K if H ≤ K. Exact expressions for ��B
 and �̄�B
 follow
from equations (3.49) and (3.50) with r = 0 and S0 = F0:

��B
= N

(
d−

(
F0

B

))
− F0

H
N

(
d−

(
H2

F0B

))
� (3.96)

�̄�B
= F0N

(
d+

(
F0

B

))
−HN

(
d+

(
H2

F0B

))
� (3.97)

where

d±�x
=
logx± 1

2
�2 

�
√
 

� (3.98)

Hence setting B=H if H ≥K (and B=K if H ≤K) gives the exact pricing formula for the

down-and-out call in terms of cumulative normal density functions:

CDO�H�F0�K�  
= F0N

(
d+

(
F0

H

))
−HN

(
d+

(
H

F0

))
− KN

(
d−

(
F0

H

))
+
(
KF0

H

)
N

(
d−

(
H

F0

))
(3.99)

for H ≥ K; and for H ≤ K,

CDO�H�F0�K�  
= F0N

(
d+

(
F0

K

))
−HN

(
d+

(
H2

F0K

))
− KN

(
d−

(
F0

K

))
+ KF0

H
N

(
d−

(
H2

F0K

))
(3.100)

All other cases of single-barrier calls and puts are derived in the same manner, as described

in detail in Section 3.3. The exact pricing formulas are obtained by simply setting r = 0 and

S0 = F0 in all of the option-pricing expressions in Section 3.3. This is indeed not surprising,

since discounting is ignored and the underlying is a forward price, as is the barrier level.
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To complete this section we consider the problem of pricing a European double-knockout-
barrier option on the underlying asset price process Ft. This option expires worthless if at

any time before maturity the underlying price attains either barrier at L or H with L < H .

The transition density in this case must have absorbing (i.e., zero) boundary conditions at

both finite barrier endpoints. These points are mapped into the x-space endpoints: xH =
X�H
= �

√
2/�
 logH , xL =X�L
= �

√
2/�
 logL. In virtue of the general relationship given

by equation (3.87), the F -space density follows by simply substituting the x-space transition

density satisfying zero-boundary conditions: u�x = xL� x0�  
 = u�x = xH�x0�  
 = 0. The

problem is hence again reduced to finding u�x�x0�  
. This density is readily obtained as

an exact series expansion in sine functions via the method of eigenfunction expansions.

This method and its relation to the Laplace transform technique for solving the Kolmogorov

equations subject to different types of boundary conditions is generally described later in this

chapter, i.e., where the method of Green’s functions is discussed. Here we simply state the

result (see Problem 1 of this section for an alternate derivation):

u�x�x0�  
=
2

xH −xL


∑
n=1

e−�̄n sin
n��x0−xL


xH −xL

sin
n��x−xL


xH −xL

� (3.101)

for x�x0 ∈ 	xL� xH
, where �̄n = n2�2/�xH −xL

2. [In mathematical physics, this is the well-

known Fourier sine series solution to the simple heat conduction problem for an initial point

source of heat diffusing on a finite one-dimensional domain (e.g., a rod) with insulation at

both endpoints.] This series converges for all positive  and gives a representation of the Dirac

delta function ��x−x0
 for the finite domain 	xL� xH
 when  = 0. Inserting equation (3.101)

into equation (3.87) while using equation (3.86) gives the transition density satisfying double-

barrier zero-boundary conditions at L and H , denoted by UDB, for the linear volatility model

as an exact series:

UDB�F�F0�  
=
2

log H
L

√
F0

F 3


∑
n=1

e−�n sin
(
n���F0


)
sin

(
n���F


)
(3.102)

for F0�F ∈ 	L�H
, where

��F
≡ X�F
−X�L


X�H
−X�L

= log F

L

log H
L

� (3.103)

�n =
�2

8
+ �̄n =

�2

8
+ n2�2�2

2 log2 H
L

� (3.104)

This series is easily shown to converge for all positive  values and gives a representation

of the Dirac delta function ��F − F0
 for the finite domain F�F0 ∈ 	L�H
 when  = 0.

[Note: ��F −F0
 = dx
dF

��X�F
−X�F0

 =
√
2

�F
��X�F
−X�F0

.] Of practical importance is

the fact that the convergence of the series is fairly rapid since the eigenvalues �n grow as n2 as

n increases; i.e., contributions from the higher-frequency sine functions are diminished by the

dominant factor e−�n , which decreases rapidly as a Gaussian function in n. Although more

terms are required to achieve the same level of accuracy as the time to maturity is decreased, a

uniformly high level of accuracy (and positivity in the density) can be achieved by retaining a

relatively small number of terms in the sum (see Figure 3.4). Moreover, similar expressions (as

demonstrated next) for pricing double-barrier options require a substantially smaller number

of terms for high accuracy. A double knockout European-style option maturing in time  is
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FIGURE 3.4 Uniform convergence of the density given by equation (3.102) for L = 10, H = 50,

F0 = 20, � = 0�2,  = 0�1. The three curves correspond to using the first 10 (dashed line), 20, and

30 terms (the thick solid line) in the series sum.

then priced by taking the expectation of the payoff #�F
 over the allowable region (ignoring

discounting):

VDB�F0�  
=
∫ H

L
UDB�F�F0�  
#�F
dF� (3.105)

For example, a double knockout European call struck at K is priced by inserting UDB�F�F0�  

with #�F
= �F −K
+ and integrating, term by term, in the series to obtain exact analytical

series expressions for the option value. In carrying out the integration it is very convenient

to change integration variables F → x as defined by the original variable transformation F =
F�x
= e�x/

√
2, i.e., using the F -space density F ′�x
UDB�F�x
�F0�  
 expressed as a function

of the x variable (see Problem 2). Two separate formulas arise accounting for whether K ≤ L
or K ≥ L (in both cases K<H ; otherwise the strike is above the upper barrier and the option

is worthless). For K ≥ L the formula for the call is

CDB�F0�K�  
= �2

log H
L

√
F0


∑
n=1

e−�n 

�n

sin
(
n���F0


)
×
[

n�

log H
L

K−H√
H

�−1
n−√
K sin

(
n���K


)]
(3.106)

and for the case K ≤ L is

CDB�F0�K�  
= ��2

log2 H
L

√
F0


∑
n=1

n
e−�n 

�n

sin
(
n���F0


)
×
[
K−H√

H
�−1
n− K−L√

L

]
� (3.107)

where ��·
 and �n are given by equations (3.103) and (3.104). Note that the two expres-

sions are equivalent when K = L. Figure 3.5 displays a typical convergence when applying

equation (3.106).
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FIGURE 3.5 Uniform rapid convergence of the value of the double knockout call as more terms are

used in the series formula for CDB, where L = 10, H = 50, K = 20, � = 0�2,  = 0�25. The five

separate curves correspond to the truncated series sum in the first 1, 2, 4, 8, and 12 (solid line) terms

of equation (3.106).

Problems

Problem 1. We wish to solve

�u

� 
= �2u

�x2
�

subject to u�x = xL�  
 = u�x = xH�  
 = 0 and initial condition u�x�  = 0
 = u0�x
. Since
the solution must vanish at the endpoints of the interval 	xL� xH
, one method is to express u
as a Fourier sine series:

u�x�  
=

∑

n=1

bn� 
 sin
n��x−xL


xH −xL

� (3.108)

with coefficients bn� 
 depending only on  . Using direct substitution and by satisfying the

initial condition, show that

bn� 
= ane
−�̄n � (3.109)

where �̄n = n2�2/�xH −xL

2 and where an = bn�0
 is

an =
2

xH −xL

∫ xH

xL

u0�x
 sin
n��x−xL


xH −xL

dx� (3.110)

Hence, recover equation (3.101) when u0�x
= ��x−x0
.

Problem 2. From equation (3.105) we see that the double-barrier call option can be derived

by computing the integrals

��K
=
∫ H

K
UDB�F�F0�  
dF� (3.111)

�̄�K
=
∫ H

K
UDB�F�F0�  
FdF� (3.112)
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for L≤K<H . By using equation (3.102) and a change-of-integration variable F → x defined

by F = e�x/
√
2, show that the latter integral is

�̄�K
= 2
√
F0√

2

�
log H

L


∑
n=1

e−�n sin
(
n���F0


) ∫ X�H


X�K

e

�

2
√
2
x
sin

[
n��x−X�L



X�H
−X�L


]
dx�

where X�·
 is defined by equation (3.86). Apply the indefinite integral identity∫
eax sin bx dx = eax	a sin bx− b cosbx
/�a2 + b2
+ c, where a, b, c are any constants,

and obtain

�̄�K
= ��2
√
F0

log2 H
L


∑
n=1

e−�n 

�n

sin
(
n���F0


)[−n�−1
n
√
H

+ √
K

(
n cos

(
n���K


)− log H
L

2�
sin

(
n���K


))]
� (3.113)

Using a similar procedure, obtain

��K
= ��2
√
F0

log2 H
L


∑
n=1

e−�n 

�n

sin
(
n���F0


)[− n�−1
n√
H

+ 1√
K

(
n cos

(
n���K


)+ log H
L

2�
sin

(
n���K


))]
� (3.114)

Using CDB = �̄�K
−K��K
 for K ≥ L and CDB = �̄�L
−K��L
 for K ≤ L, obtain equa-

tions (3.106) and (3.107).

Problem 3. By computing the integrals

��K
=
∫ K

L
UDBdF (3.115)

and

�̄�K
=
∫ K

L
UDBFdF (3.116)

and using steps similar to those in Problem 2, derive an exact series expression for the

corresponding double-barrier put option value PDB�F0�K�  
 for strike K, L < K ≤H .

3.5.2 Quadratic Volatility Models

We now consider the problem of pricing European options, including barriers, for the more

complex quadratic volatility model with two distinct roots:4

��F
= �

� ¯̄F − F̄ 

�F − F̄ 
� ¯̄F −F
� (3.117)

4A quadratic volatility function is generally of the form ��F
 = �0�F − F̄ 
� ¯̄F −F
, where F̄ , ¯̄F are two real

roots. Here, we find it useful to express the nonzero parameter as a ratio �0 = �/� ¯̄F − F̄ 
. In this way, the parameter

� corresponds to the volatility parameter in the linear model in the limit ¯̄F →
.
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FIGURE 3.6 Example of a quadratic volatility function with two distinct roots F̄ = 5, ¯̄F = 100,

� = 0�2. The linear volatility function for given parameter � is drawn for direct comparison. The linear

model obtains in the limit ¯̄F →
.

Figure 3.6 depicts the shape of a quadratic volatility function in comparison with an affine

(linear) model ��F
= ��F − F̄ 
, for given volatility parameter � . Without loss in generality,

throughout we assume F̄ < ¯̄F , with underlying asset price F ∈ 	F̄ � ¯̄F
. We note that the separate

case of the single double-root quadratic model is discussed later in this chapter. This model

is a special case of the constant-elasticity-of-variance (CEV) model, which itself is shown to

obtain as a special case of a more general Bessel family of solutions. These more general

families of exact solutions are discussed later in this chapter. Here, we consider obtaining

solutions to the model in equation (3.117) by mapping the (forward) price space F onto the

x-space of the Wiener process. That is, the zero-drift Wiener process with constant volatility

$�x
 = √
2 can again be chosen as underlying process in x-space and thereby ultimately

provide exact solutions to the quadratic volatility model in F -space. As in the linear model,

we have the constant � = −�2/8. (Note: This is the constant �x→F corresponding to the

diffusion canonical transformation x→ F described later in the chapter.) The transformation

of x = X�F
 is defined by equating the Jacobian of the transformation to the ratio of the

volatility functions in both spaces:

dX�F


dF
= $�X�F



��F

=

√
2�F̄ − ¯̄F


��F − F̄ 
�F − ¯̄F

� (3.118)

This implies the following monotonically increasing map:

X�F
=
√
2

�
log

∣∣∣∣F − F̄

F − ¯̄F

∣∣∣∣=
√
2

�
log

F − F̄

¯̄F −F
� (3.119)

This is a one-to-one map of the domain x ∈ �−
�+

 into the domain F ∈ �F̄ � ¯̄F 
, with
inverse relation

F = F�x
= F̄ + ¯̄Fe �√
2
x

1+ e
�√
2
x
� (3.120)
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That is, X�F̄
 = −
, X� ¯̄F
 = 
, F�−

 = F̄ , F�

 = ¯̄F . As shown later in this section,

the form in equation (3.117) is convenient for showing that the solutions to the quadratic

(double-root) model directly recover the corresponding known solutions to the linear volatility

(i.e., affine or lognormal model) by simply taking the limit ¯̄F →
 in all expressions. This

is in fact a mathematical consistency requirement of the theory.

By specializing equation (3.259), the exact relationship between a transition probability

density function, or pricing kernel, U for the quadratic volatility model and a kernel u for the

Wiener process is given by [i.e., the analogue of equation (3.87)]

U�F�F0�  
=
√
2

�
� ¯̄F − F̄ 


√√√√ �F0− F̄ 
� ¯̄F −F0


�F − F̄ 
3� ¯̄F −F
3
e−�2 /8u�X�F
�X�F0
�  
� (3.121)

F�F0 ∈ �F̄ � ¯̄F 
. This equation relates the density for the quadratic model to that of the simple

Wiener model. By direct substitution and by using equations (3.7) and (3.8), one can verify

that U�F�F0�  
 in equation (3.121) satisfies both forward and backward time-homogeneous

Kolmogorov equations in F�F0 for the zero-drift function and volatility function given by

equation (3.117). Later in the chapter, the reader will learn to derive this relation based on

the canonical diffusion mapping methodology.

Following a similar procedure to that in the previous section, the pricing kernels for the

barrier-free case as well as for single and double barriers arise by direct substitution of the

x-space kernel u satisfying the appropriate boundary conditions. In particular, zero-boundary

conditions, U�F = 0�F0�  
 = U�F = 
�F0�  
 = 0 (with the same conditions also holding

in F0), are satisfied by substituting the solution u�x�x0�  
 = g0�x� x0�  
 of equation (3.9)

into equation (3.121). Upon using equation (3.119) and rearranging logarithmic terms, the

barrier-free kernel is given in exact form:

U�F�F0�  
=
� ¯̄F − F̄ 


�
√
2� 

√√√√ �F0− F̄ 
� ¯̄F −F0


�F − F̄ 
3� ¯̄F −F
3
e−�2 /8

× exp

[
− 1

2�2 
log2

�F − F̄ 
� ¯̄F −F0


� ¯̄F −F
�F0− F̄ 


]
� (3.122)

This kernel may be compared to the zero-drift lognormal density kernel in equation (3.88),

which obtains as a simpler case in the limit ¯̄F →
, F̄ = 0. For computing integral expec-

tations (i.e., for pricing purposes) it is convenient to work in terms of the x variable. Using

equation (3.120), F = F�x
, and equation (3.122) gives the density (see Problem 1)

U�F�x
�F0�  

dF

dx
= e−

�2

8
 

2
√
� 

cosh��x/2
√
2


cosh��x0/2
√
2


e−�x−x0

2/4 � (3.123)

x0 = X�F0
. From this it readily follows that the barrier-free kernel conserves probability

(see Problem 1). The price of a plain European-style option maturing in time  is given by

(ignoring discounting)

V�F0�  
=
∫ ¯̄F

F̄
U�F�F0�  
#�F
dF� (3.124)
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Calls or puts on the forward price struck at K with payoff #�F
 = �F −K
+ or #�F
 =
�K−F
+, respectively, are readily priced. In particular, the price of a call with F̄ ≤ K < ¯̄F
takes the form (ignoring discounting)

C�F0�K�  
= �̄�K
−K��K
� (3.125)

where

��K
=
∫ ¯̄F

K
U�F�F0�  
dF� �̄�K
=

∫ ¯̄F

K
U�F�F0�  
FdF� (3.126)

By changing integration variable F → x = X�F
 and using equation (3.123),

��K
= e−
�2

8
 

2
√
� 

1

cosh
(

�x0
2
√
2

) ∫ 


X�K

cosh

(
�x

2
√
2

)
e−�x−x0


2/4 dx� (3.127)

with X�K
=
√
2

�
log	�K− F̄ 
/� ¯̄F −K

. This integral is readily evaluated via the identity (see

Problem 3) ∫ 


X�K

e
± �x

2
√
2 e−�x−x0


2/4 dx = 2
√
� e

± �x0
2
√
2 e

�2

8
 N

(
d±�



)
� (3.128)

where


 = � ¯̄F −K
�F0− F̄ 


�K− F̄ 
� ¯̄F −F0

(3.129)

and N�·
 is the standard cumulative normal density function. Throughout this section we define

d±�x
≡
logx± 1

2
�2 

�
√
 

� (3.130)

From equation (3.128) and using x0 = X�F0
, namely, e
�x0
2
√
2 = 	�F0 − F̄ 
/� ¯̄F − F0



1
2 and

cosh� �x0
2
√
2

= 1

2
� ¯̄F − F̄ 
	�F0− F̄ 
� ¯̄F −F0



− 1
2 , we hence obtain

��K
= � ¯̄F − F̄ 
−1
[
�F0− F̄ 
N

(
d+�



)+ � ¯̄F −F0
N
(
d−�



)

� (3.131)

The second integral in equation (3.126) is evaluated in similar fashion, namely, by changing

integration variable F → x = X�F
, using the identity

F�x
 cosh��x/2
√
2
= 1

2
	F̄e−�x/2

√
2+ ¯̄Fe�x/2

√
2
� (3.132)

which follows from equation (3.120), and integrating with the use of equation (3.128),

�̄�K
= � ¯̄F − F̄ 
−1
[ ¯̄F�F0− F̄ 
N

(
d+�



)+ F̄ � ¯̄F −F0
N
(
d−�



)

� (3.133)

Combining equations (3.131) and (3.133) finally gives the call price:

C�F0�K�  
= � ¯̄F − F̄ 
−1
[
� ¯̄F −K
�F0− F̄ 
N

(
d+�



)
− �K− F̄ 
� ¯̄F −F0
N

(
d−�



)

� (3.134)

The put price is derived in similar fashion (see Problem 4).
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For a single barrier with absorption at levelH , F̄ <H< ¯̄F , the pricing kernel is obtained in
exact form by simply substituting the kernel u�X�F
�X�F0
�  
= gu�X�H
�X�F
�X�F0
�  

of equation (3.14) into equation (3.121), giving

U�H�F�F0�  
=
� ¯̄F − F̄ 


�
√
2� 

√√√√ �F0− F̄ 
� ¯̄F −F0


�F − F̄ 
3� ¯̄F −F
3
e−�2 /8

×
{
exp

[
− 1

2�2 
log2

�F − F̄ 
� ¯̄F −F0


� ¯̄F −F
�F0− F̄ 


]

− exp

[
− 1

2�2 
log2

�F − F̄ 
�F0− F̄ 
� ¯̄F −H
2

� ¯̄F −F
� ¯̄F −F0
�H− F̄ 
2

]}
� (3.135)

The boundary conditions U�H�F = H�F0�  
= 0, U�H�F�F0 = H� 
= 0 are obviously sat-

isfied. This kernel is hence useful for pricing single-barrier options for the quadratic (double-

root) volatility models. Note that the kernel in equation (3.89) obtains in the limit ¯̄F →
,

F̄ = 0. Exact formulas for single-barrier knock-in and knockout calls/puts are most readily

derived by changing variables of integration, as was done in the earlier barrier-free case.

In particular, using equation (3.120), F = F�x
, and equation (3.135) gives the analogue of

equation (3.123):

U�H�F�x
�F0�  

dF

dx
= e−

�2

8
 

2
√
� 

cosh� �x

2
√
2



cosh� �x0
2
√
2


	e−

�x−x0

2

4 − e−
�x+x0−2xH 
2

4 
� (3.136)

x0 = X�F0
, xH = X�H
.
European-style single-barrier knock-in and knockout option price formulas are then

derived by integrating the density in equation (3.136) against the pay-off in the appropriate

domain. In what follows we derive the knockout option prices as the knock-in prices follow

simply from (knock-in)–(knockout) symmetry. A down-and-out call option, expiring worth-

less if the barrier F = H is crossed before a time to maturity  with current (forward) price

F0 >H , F̄ ≤H�K < ¯̄F , has value (ignoring discounting throughout)

CDO�H�F0�K�  
=
∫ ¯̄F

H
U�H�F�F0�  
�F −K
+dF

=
{
�̄�K
−K��K
� K ≥H

�̄�H
−K��H
� K ≤H�
(3.137)

where ��·
 and �̄�·
 are defined by

��B
=
∫ ¯̄F

B
U�H�F�F0�  
dF� �̄�B
=

∫ ¯̄F

B
U�H�F�F0�  
FdF (3.138)

any real value B such that F̄ ≤ B ≤ ¯̄F . Following similar steps as earlier, these integrals are

reduced to standard cumulative normal functions. Changing variables F → x = X�F
 and

using equation (3.136),

��K
= e−
�2

8
 

2
√
� 

1

cosh
(

�x0
2
√
2

) ∫ 


X�K

cosh

(
�x

2
√
2

)
	e−

�x−x0

2

4 − e−
�x+x0−2xH 
2

4 
dx�
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This integral is evaluated in two parts. The first exponential integral [i.e., identically as in

equation (3.127)] is given by expression (3.131). The second term is integrated in identical

fashion by using the same integral identity (3.128) with the replacement x0 → 2xH −x0 and

then using 2xH −x0 = 2X�H
−X�F0
=
√
2

�
log

�H−F̄ 
2� ¯̄F−F0


� ¯̄F−H
2�F0−F̄ 

,

e��2xH−x0
/2
√
2 = 	�H− F̄ 
/� ¯̄F −H

	� ¯̄F −F0
/�F0− F̄ 



1
2 � (3.139)

Combining the results of the two integrals:

��K
= � ¯̄F − F̄ 
−1

[
�F0− F̄ 
N

(
d+�



)+ � ¯̄F −F0
N
(
d−�



)
−
(
H− F̄

¯̄F −H

)
� ¯̄F −F0
N

(
d+��


)−( ¯̄F −H

H− F̄

)
�F0− F̄ 
N

(
d−��


)]
� (3.140)

where d±�·
 and 
 are given by equations (3.130) and (3.129) and

� = � ¯̄F −K
� ¯̄F −F0
�H− F̄ 
2

�K− F̄ 
�F0− F̄ 
� ¯̄F −H
2
� (3.141)

The second integral in equation (3.138) for B = K is evaluated in similar fashion, namely,

by using equation (3.123) and identity (3.132):

�̄�K
= e−
�2

8
 

2
√
� 

1

cosh
(

�x0
2
√
2

)[ F̄
2

∫ 


X�K

e
− �x

2
√
2 	e−

�x−x0

2

4 − e−
�x+x0−2xH 
2

4 
dx

+
¯̄F
2

∫ 


X�K

e

�x

2
√
2 	e−

�x−x0

2

4 − e−
�x+x0−2xH 
2

4 
dx

]
�

Applying equation (3.128) on each of the four terms and expressing the result in terms of F0,

H , K while using equation (3.139) and simplifying gives

�̄�K
= � ¯̄F − F̄ 
−1

[
¯̄F�F0− F̄ 
N

(
d+�



)+ F̄ � ¯̄F −F0
N
(
d−�



)
− ¯̄F

(
H− F̄

¯̄F −H

)
� ¯̄F −F0
N

(
d+��


)− F̄

( ¯̄F −H

H− F̄

)
�F0− F̄ 
N

(
d−��


)]
� (3.142)

Combining equations (3.140) and (3.142) in equation (3.137) hence gives the exact down-

and-out call price for K ≥H :

CDO�H�F0�K�  
= � ¯̄F − F̄ 
−1

[
� ¯̄F −K
�F0− F̄ 
N

(
d+�



)+ �F̄ −K
� ¯̄F −F0
N
(
d−�



)
+�K− ¯̄F
� ¯̄F −F0


(
H− F̄

¯̄F −H

)
N
(
d+��


)
+ �K− F̄ 
�F0− F̄ 


( ¯̄F −H

H− F̄

)
N
(
d−��


)]
� (3.143)

By taking the limit ¯̄F → 
 of this expression, the reader can easily verify that the exact

formula for the down-and-out price for the affine linear volatility model is obtained and that
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in particular by also setting F̄ = 0, equation (3.100) (i.e., the price assuming a lognormal

density model) is exactly recovered, as required.

For K ≤H the down-and-out call price is obtained by evaluating ��H
 and �̄�H
. These
quantities are derived by replacing the lower integration value X�K
 by X�H
 in the foregoing
integrals for ��K
 and �̄�K
. This is equivalent to setting K → H in equations (3.129)

and (3.141), giving

��H
= � ¯̄F − F̄ 
−1

[
�F0− F̄ 
N

(
d+��


)+ � ¯̄F −F0
N
(
d−��


)
−

(
H− F̄

¯̄F −H

)
� ¯̄F −F0
N

(
d+��


)−( ¯̄F −H

H− F̄

)
�F0− F̄ 
N

(
d−��


)]
� (3.144)

�̄�H
= � ¯̄F − F̄ 
−1

[
¯̄F�F0− F̄ 
N

(
d+��


)+ F̄ � ¯̄F −F0
N
(
d−��


)
− ¯̄F

(
H− F̄

¯̄F −H

)
� ¯̄F −F0
N

(
d+��


)− F̄

( ¯̄F −H

H− F̄

)
�F0− F̄ 
N

(
d−��


)]
(3.145)

where

�= � ¯̄F −H
�F0− F̄ 


�H− F̄ 
� ¯̄F −F0

� �= � ¯̄F −F0
�H− F̄ 


�F0− F̄ 
� ¯̄F −H

(3.146)

and d±�·
 is defined by equation (3.130). Combining these expressions gives the analytically

exact down-and-out call price for K ≤H :

CDO�H�F0�K�  
= � ¯̄F − F̄ 
−1

[
� ¯̄F −K
�F0− F̄ 
N

(
d+��


)+ �F̄ −K
� ¯̄F −F0
N
(
d−��


)
+�K− ¯̄F
� ¯̄F −F0


(
H− F̄

¯̄F −H

)
N
(
d+��


)
+ �K− F̄ 
�F0− F̄ 


( ¯̄F −H

H− F̄

)
N
(
d−��


)]
� (3.147)

The limit ¯̄F →
 of this expression reduces to the exact formula for the down-and-out price

for the affine linear volatility model; and further, by setting F̄ = 0, equation (3.99) is also

recovered. The price of a down-and-out put is derived in similar fashion (see Problem 5).

An up-and-out call option, expiring worthless if the upper barrier F =H is crossed before

a time to maturity  with current (forward) price F0 < H and F̄ ≤ K < H ≤ ¯̄F , has value

(ignoring discounting)

CUO�H�F0�K�  
=
∫ H

K
U�H�F�F0�  
�F −K
dF

= �̄�K
−K��K
− 	�̄�H
−K��H

 (3.148)

and value zero for K ≥H . The second expression obtains by writing the integral as the differ-

ence of two integrals [one from K to ¯̄F and the other from H to ¯̄F within equation (3.138)].
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Using equations (3.140), (3.142), (3.144), and (3.145) (or taking the difference between the

two down-and-out call prices) gives the up-and-out call price (excluding discounting)

CUO�H�F0�K�  
= � ¯̄F − F̄ 
−1

[
� ¯̄F −K
�F0− F̄ 
	N

(
d+�



)−N
(
d+��


)



+�F̄ −K
� ¯̄F −F0
	N
(
d−�



)−N
(
d−��


)



+ �K− ¯̄F
� ¯̄F −F0


(
H− F̄

¯̄F −H

)
	N

(
d+��


)−N
(
d+��


)



+�K− F̄ 
�F0− F̄ 


( ¯̄F −H

H− F̄

)
	N

(
d−��


)−N
(
d−��


)]
� (3.149)

The limit ¯̄F →
 of this expression reduces to the exact formula for the up-and-out price for

the affine linear volatility model; and for F̄ = 0, equation (3.61) is recovered for r = 0 and

S0 = F0. The price of an up-and-out put can be derived in similar fashion (see Problem 6).

We now present the valuation of European-style double-knockout-barrier options with

underlying asset price Ft satisfying the driftless process, with quadratic volatility function

as in equation (3.117). Although the mapping and the functional relationship between the

kernels in F -space and x-space differ, the procedure is similar to the one employed for the

linear volatility. In particular, we impose zero boundary conditions at both barrier endpoints

L (lower barrier) and H (upper barrier) of the double-knockout-barrier pricing kernel, which

we denote by UDB, where F̄ < L < H < ¯̄F . The values L, H are mapped onto the x-space
endpoints via equation (3.119):

xH = X�H
=
√
2

�
log

H− F̄

¯̄F −H
� xL = X�L
=

√
2

�
log

L− F̄

¯̄F −L
(3.150)

From equation (3.121), an exact series for the F -space density follows by simply substi-

tuting the x-space transition density satisfying zero-boundary conditions; i.e., we substitute

equation (3.101) into equation (3.121) while using equation (3.119), giving

UDB�F�F0�  
=
2� ¯̄F − F̄ 


log
�H−F̄ 
� ¯̄F−L


�L−F̄ 
� ¯̄F−H


√√√√ �F0− F̄ 
� ¯̄F −F0


�F − F̄ 
3� ¯̄F −F
3

×

∑

n=1

e−�n sin
(
n���F0


)
sin

(
n���F


)
� (3.151)

where F�F0 ∈ 	L�H
 and

��F
= X�F
−X�L


X�H
−X�L

=

log
�F−F̄ 
� ¯̄F−L


�L−F̄ 
� ¯̄F−F


log
�H−F̄ 
� ¯̄F−L


�L−F̄ 
� ¯̄F−H


� (3.152)

�n =
�2

8
+ n2�2�2

2 log2
�H−F̄ 
� ¯̄F−L


�L−F̄ 
� ¯̄F−H


� (3.153)

This series possesses the same rapid convergence properties as equation (3.102) for positive

 and also represents the Dirac delta function ��F −F0
 for the finite domain 	L�H
 when
 = 0. A double knockout option maturing in time  with payoff #�F
 is priced using
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equation (3.105), with UDB now given by equation (3.151). In particular, the value of a double

knockout call is given by (excluding an overall discount factor)

CDB�F0�K�  
=
∫ H

L
UDB�F�F0�  
�F −K
+ dF

=

⎧⎪⎨⎪⎩
�̄�K
−K��K
� K ≥ L

�̄�L
−K��L
� K ≤ L�

(3.154)

where ��·
 and �̄�·
 are defined by

��B
=
∫ H

B
UDB�F�F0�  
dF� �̄�B
=

∫ H

B
UDB�F�F0�  
FdF� (3.155)

for any real value B ∈ 	L�H
. As in the single-barrier case, these integrals are most readily

evaluated by changing variables using equation (3.120). From equation (3.151),

UDB�F�x
�F0�  

dF

dx
= 2

√
2�

¯̄F − F̄

	�F0− F̄ 
� ¯̄F −F0


1
2

log
�H−F̄ 
� ¯̄F−L


�L−F̄ 
� ¯̄F−H


cosh �x

2
√
2

×

∑

n=1

e−�n sin
(
n���F0


)
sin

n��x−xL


xH−xL
� (3.156)

and the integrals in equation (3.155) give

��B
= 2
√
2�

¯̄F − F̄

	�F0− F̄ 
� ¯̄F −F0


1
2

log
�H−F̄ 
� ¯̄F−L


�L−F̄ 
� ¯̄F−H



∑
n=1

e−�n sin
(
n���F0


)
In�B
� (3.157)

�̄�B
= 2
√
2�

¯̄F − F̄

	�F0− F̄ 
� ¯̄F −F0


1
2

log
�H−F̄ 
� ¯̄F−L
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� ¯̄F−H



∑
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(
n���F0


)
Īn�B
� (3.158)

where

In�B
=
∫ xH

xB

cosh �x

2
√
2
sin

n��x−xL


xH−xL
dx� (3.159)

Īn�B
=
∫ xH

xB

F�x
 cosh �x

2
√
2
sin

n��x−xL


xH−xL
dx� (3.160)

xB = X�B
 =
√
2

�
log B−F̄

¯̄F−B
. These integrals are readily evaluated in exact closed form (see

Problem 7):
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√
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⎤⎦⎫⎬⎭ (3.161)
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Īn�B
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Finally, from equation (3.154) we see that using these expressions within equations (3.157)

and (3.158) for B = K and then separately for B = L and simplifying gives:

CDB�F0�K�  
=�2

√
�F0− F̄ 
� ¯̄F −F0


log
�H−F̄ 
� ¯̄F−L


�L−F̄ 
� ¯̄F−H



∑
n=1

e−�n 

�n

sin
(
n���F0


)

×
⎡⎢⎣ n��−1
n�K−H


log
�H−F̄ 
� ¯̄F−L


�L−F̄ 
� ¯̄F−H


√
� ¯̄F −H
�H− F̄ 


−
√
�K− F̄ 
� ¯̄F −K


� ¯̄F − F̄ 

sin

(
n���K


)⎤⎥⎦
(3.163)

for K ≥ L, and

CDB�F0�K�  
= ��2

√
�F0− F̄ 
� ¯̄F −F0


log2
�H−F̄ 
� ¯̄F−L


�L−F̄ 
� ¯̄F−H



∑
n=1

n
e−�n 

�n

sin
(
n���F0


)

×
⎡⎢⎣ �−1
n�K−H
√

� ¯̄F −H
�H− F̄ 


+ L−K√
� ¯̄F −L
�L− F̄ 


⎤⎥⎦ (3.164)

for K ≤ L. This last expression has a simpler form since ��L
= 0. Note that the two formulas

are identical when K = L. An example of the rapid convergence of these series solutions

is given in Figure 3.7. The limit ¯̄F →
 of these expressions gives exact formulas for the

case of an affine linear volatility model; further, by setting F̄ = 0, we also exactly recover

equations (3.106) and (3.107), respectively. Figure 3.8 demonstrates this explicitly. Indeed

for a given double-barrier call option contract, one observes uniform agreement of the option

prices for the quadratic model with those of the linear model, as the quadratic volatility

function is made to coincide more and more closely with that of the corresponding linear

volatility function.

Problems

Problem 1.

(a) Using equation (3.120) show that

	�F�x
− F̄ 
� ¯̄F −F�x


−
1
2 = 2� ¯̄F − F̄ 
−1 cosh��x/2

√
2
� (3.165)

and use this relation and the derivative F ′�x
 to arrive at equation (3.123).
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(b) Use the identity
∫ 

−
 e�x/2

√
2e−�x−x0


2/4 dx = 2
√
� e�

2 /8e�x0/2
√
2 to show that the

barrier-free density satisfies

∫ ¯̄F

F̄
U�F�F0�  
dF =

∫ 


−

U�F�x
�F0�  


dF

dx
dx = 1� (3.166)
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FIGURE 3.7 Rapid convergence of the double knockout call price across the full range of spot F0

as one includes only the first 1, 2, 8, 16, and 32 (thick solid line) terms in the series (3.163), where

L= 10, H = 50, K = 20, � = 0�2,  = 0�25.

30

30 35 40 45 50

25

25

20

20

15

15

10

10

5

–5

0

F0

FIGURE 3.8 Uniform approach of the double knockout call price for the quadratic model [given by

equation (3.163)] to that of the linear model given by equation (3.106), as ¯̄F is pushed to larger values.

The five thinner curves represent the converged price [i.e., using equation (3.163)] for the quadratic

model for the separate cases of ¯̄F = 60, 120, 240, 480, and 3200. The curve for ¯̄F = 3200 is very close

to the thick solid line representing the price given by the linear model for the same parameter choice:

L= 10, H = 50, K = 20, � = 0�2,  = 0�25.
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Problem 2. Using parts of Problem 1, show that equation (3.123) leads to the martingale

property:

E0	F 
= E
[
F 

∣∣F =0 = F0
=
∫ ¯̄F

F̄
U�F�F0�  
FdF = F0� (3.167)

Problem 3. Derive equation (3.128) by completing the square in the exponent. Note that the

identity d±�1/x
 = −d∓�x
 obtained from equation (3.130) is useful in the manipulation of

expressions.

Problem 4. By following a similar procedure as was used to derive equation (3.134), derive

the exact formula for the corresponding put value. Is a put-call parity relation satisfied?

Problem 5. Derive an exact formula for the down-and-out put value.

Problem 6. Obtain an exact formula for the up-and-out put value for K ≤H and for K ≥H .

Problem 7. The integrals in equations (3.159) and (3.160) can be evaluated by rewriting

them as a sum of integrals of the form∫ xH

xB

e±�x/2
√
2 sin

n��x−xL


xH−xL
dx�

Use the antiderivative
∫
eax sin bxdx = eax	a sin bx− b cosbx
/�a2 + b2
+ c, where a, b, c

are any constants, and then recast the variables xB, xH , xL in the resulting integrations in

terms of the F -space variables B, H , L and arrive at equations (3.161) and (3.162).

3.6 Green’s Functions Method for Diffusion Kernels

In this section we present a standard Green’s function framework for finding solutions for

the x-space kernel subject to homogeneous boundary conditions. Throughout this section we

shall assume one-dimensional diffusions, i.e., a diffusion process xt obeying

dxt = ��xt
dt+$�xt
dWt� (3.168)

with Wt as the standard Wiener process. This process is assumed to have a differentiable

drift function ��x
 and a twice differentiable diffusion function or volatility function $�x
.
The goal is to solve for the kernel or density u�x�x0�  
, subject to appropriate boundary

conditions.

Since the drift and volatility functions are assumed to have no explicit time dependence,

the kernel u= u�x�x0�  
 satisfies the time-homogeneous forward Kolmogorov equation

�u

� 
= 1

2

�2

�x2

(
$�x
2u

)
− �

�x

(
��x
u

)
≡ �xu (3.169)

and the corresponding backward equation

�u

� 
= 1

2
$�x0


2 �
2u

�x2
0

+��x0

�u

�x0
≡ �̃x0

u� (3.170)

subject to the initial condition u�x�x0�0
= ��x−x0
. As in Chapter 1, we have defined the

Fokker–Planck differential operator �x that acts on the variable x and its formal Lagrange
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adjoint �̃x0
acting on x0. One technical point to note is that the differential operator � is

generally not self-adjoint, i.e., �̃ �= �, and the solution for the transition density is generally

not symmetric with respect to interchanging x and x0. However, as is seen from the transfor-

mations provided next, the corresponding time-independent Green’s function technique for

solving either forward or backward equations can be treated within a common footing.

In developing a solution framework for u�x�x0�  
, we consider the corresponding time-
independent Green’s function G�x�x0� s
, which is defined via the Laplace transform with

respect to time:

G�x�x0� s
= L
[
u�x�x0�  


]
	s
≡

∫ 


0

e−s u�x� x0�  
d � (3.171)

[Without loss in generality, we shall assume that u is absolutely integrable with respect

to  on any interval 0 ≤  ≤ T and that G�x�x0� s
 exists for some real value of s = a.
Then from the theory of Laplace transforms it can be shown that G�x�x0� s
 is an analytic

function on the complex s-plane for Re s > a. As will be seen, what is important to keep

in mind for the discussion at hand is that the function G�x�x0� s
 is uniquely determined

by satisfying appropriate boundary conditions in x, for Re s > a.] Taking Laplace transforms

with respect to time  on both sides of forward equation (3.169) while making use of the

well-known identity for the Laplace transform of the derivative of a function and the initial

delta function condition on u gives a nonhomogeneous ordinary differential equation for the

Green’s function G≡G�x�x0� s
,

1

2

d2

dx2

(
$�x
2G

)
− d

dx

(
��x
G

)
− sG≡ �xG− sG=−��x−x0
� (3.172)

Note here that the partial derivatives have been replaced by ordinary derivatives, where one

is holding x0 (and s) fixed in the Green’s function. In similar fashion, by taking Laplace

transforms on both sides of backward equation (3.170), one also obtains the adjoint equation

to equation (3.172):

1

2
$�x0


2 d
2G

dx2
0

+��x0

dG

dx0
− sG≡ �̃x0

G− sG=−��x−x0
� (3.173)

Again, the partial derivatives have been replaced by ordinary derivatives, where one is now

holding x (and s) fixed in the Green’s function.

Using either of these equations, the objective is now to solve the ordinary differen-

tial equation (i.e., with delta function as the inhomogeneous source term) for the function

G�x�x0� s
, subject to the same homogeneous boundary conditions that are imposed on the

function u�x�x0�  
. Hence either one can solve equation (3.172) with imposed boundary

conditions in x, or one solves the corresponding adjoint equation (3.173) with boundary

conditions imposed in x0. Upon unique determination of G�x�x0� s
, one then has the desired

unique solution for the kernel u�x�x0�  
 (which satisfies the same desired homogeneous

boundary conditions) via the Laplace inversion

u�x�x0�  
= L−1
[
G�x�x0� s


]
	 
= 1

2�i

∫ �+i


�−i

es G�x�x0� s
ds� (3.174)

We shall use L−1	F�s

	t
 to denote the inverse Laplace transform of a function F�s
 evaluated
at t. This inversion formula, which can generally be used to compute the inverse Laplace

transform, is the Bromwich contour integral or the Mellin integral arising in the theory of
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Im s

Re s

γ

FIGURE 3.9 The Bromwich contour extends from �− i
 to �+ i
.

Laplace and other integral transforms. This contour, depicted in Figure 3.9, is the infinite line

Re s = � on the complex s-plane parametrized by s = �+ ir, with real parameter r running

from −
 to 
. Here � is any real number such that all singularities of G�x�x0� s
 (now

considered as a complex-valued function of s for any fixed real values x,x0) lie to the left of

the line Re s = � on the complex s-plane. Throughout, i denotes the usual complex number,

with z = Re z+ iIm z, where Re and Im denote the real and imaginary parts, respectively.

Later we also make use of polar coordinate form of a complex number, z= rei�, where r = 
z

is the modulus and � = arg z is the argument of z.

Once one has obtained G�x�x0� s
 analytically, the integral in equation (3.174) is then in

itself an exact integral representation for the transition density u�x�x0�  
. This is partly the

reason for sometimes also referring to G�x�x0� s
 as the resolvent kernel. As shown shortly,

in the analytical evaluation of the Laplace inverse, it proves useful to extend the Bromwich

contour to form a closed contour integral enclosing the negative real half of the complex

s-plane. A simple application of the infamous residue theorem of complex analysis then

further allows us to evaluate the integral either as an exact series or in terms of exact closed-

form special functions. A rather general procedure for achieving this purpose is to try to close

the contour in such a manner that the Green’s function is an analytic function of the complex

variable s everywhere on the closed contour. Yet inside the contour, G may either be analytic

or have a finite number of isolated simple poles (i.e., simple singularities). After justifying

the equivalence and hence replacement of the Bromwich integral with the closed contour,
or loop integral, we then subsequently apply the standard residue theorem to compute the

result. In more general applications the Green’s function may have a branch point (e.g., due
to factors such as

√
s) that gives rise to a branch cut on the complex s-plane. From complex

analysis we know that the residue theorem cannot be used to evaluate a contour integral that

encloses a branch cut. However, there is a standard technique that can be used in such a case.

This is sometimes referred to as “shrinking the contour onto the branch cut.” This method

is generally best described by example. Later we give concrete examples of this Laplace

inversion of G, for the simple case of the Wiener process and also for the more complex case

of the Bessel process. As we shall see, for the case of finite double barriers one obtains a

rapidly converging analytical infinite series representation for the transition density u. This is
the eigenfunction expansion solution for the transition density. Such expansions, as discussed

briefly in Section 3.6.1, also follow from the spectral theory of eigenfunction expansions.
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The Green’s function methodology we now present is based on the Sturm–Liouville

theory of linear ordinary differential equations [MF53, But80, Duf01b, Dav02]. However,

we specialize the theory to the diffusion equation relevant to pricing theory. In what follows

it is convenient to make direct use of equation (3.172). That is, we consider solving the

nonhomogeneous equation (3.172); i.e., we now build the Green’s function G�x�x0� s
 by

considering solutions y�x� s
 to the corresponding homogeneous equation

�xy�x� s
− sy�x� s
= 0� (3.175)

subject to appropriate boundary conditions. Note: For shorthand we shall also simply write

y�x
 to mean y�x� s
, because s is a fixed parameter in the differential equation. In order

to make use of established results from Sturm–Liouville theory, we shall first transform the

original equation (3.175) into one in standard Sturm–Liouville form. This is accomplished

via a transformation to a new function defined by

ȳ�x
≡ $�x


$�x0

exp

(
−
∫ x

x0

��u


$�u
2
du

)
y�x
� (3.176)

Using this definition we can show by direct differentiation that

�xy�x
=
$�x0


$�x

exp

(∫ x

x0

��u


$�u
2
du

)
�̄xȳ�x
� (3.177)

where the new differential operator �̄x is defined by

�̄xf�x
≡
d

dx

(
p�x


df�x


dx

)
−q�x
f�x
 (3.178)

for any arbitrary twice differentiable function f�x
. Here the functions p�x
 and q�x
 are

given in terms of the drift and volatility functions:

p�x
= 1

2
$�x
2� (3.179)

q�x
= 1

2

[
�′�x
+

(
��x


$�x


)2

−2��x

$′�x

$�x


−$�x
$′′�x

]
� (3.180)

(Prime is used to denote differentiation.) The operator �̄ is now in standard Sturm–Liouville

form and is hence also self-adjoint. One should note here that the Green’s function method-

ology may also be directly applied to the original nonself-adjoint problem. However, trans-

forming the equations into the standard self-adjoint Sturm–Liouville form and then solving

and transforming back proves very convenient, as the whole following analysis shows.

From equation (3.176), it follows that a related (new or modified) Green’s function Ḡ is

similarly defined as

Ḡ�x� x0� s
≡
$�x


$�x0

exp

(
−
∫ x

x0

��u


$�u
2
du

)
G�x�x0� s
� (3.181)

leading to the transformed nonhomogeneous equation in Sturm–Liouville form:

�̄xḠ�x� x0� s
− sḠ�x� x0� s
=−��x−x0
 (3.182)
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Note that the inhomogeneous term again contains only the Dirac delta function since the prop-

erty
f�x


f�x0

��x−x0
= ��x−x0
 has been used where the ratio

f�x


f�x0

is nonsingular [i.e., f�x
=

$�x
 exp�
∫ x

���u
/$�u
2
du
] within the allowable solution region, and evaluates to unity

when x= x0. Equation (3.182) is now the desired standard form, which may be solved subject

to various homogeneous boundary conditions. Upon solving for Ḡ we then simply invert

equation (3.181), giving G, as shown next. By using standard textbook methods of solution

for nonhomogeneous second-order ordinary differential equations (e.g., the method of vari-

ation of parameters), Ḡ�x� x0� s
 is readily obtained from the solutions ȳ�x
≡ ȳ�x� s
 to the

corresponding homogeneous equation [i.e., the homogeneous counterpart of equation (3.182)]:

�̄xȳ�x
− sȳ�x
= 0� (3.183)

Generally, if ȳ1 and ȳ2 are two linearly independent solutions to equation (3.183), then the

Green’s function is readily shown to take the form

Ḡ�x� x0� s
=−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ȳ1�x
ȳ2�x0


pW̄
� x ≤ x0

ȳ2�x
ȳ1�x0


pW̄
� x ≥ x0�

(3.184)

Here pW̄ = p�x0
W̄ �x0
 = p�x
W̄ �x
 is a constant independent of x and x0 (not constant

w.r.t. s), as can be shown from the properties of the Wronskian of any two solutions to equa-

tion (3.183): W̄ �x
 ≡ W 	ȳ1�x
� ȳ2�x

 ≡ ȳ1�x
ȳ
′
2�x
− ȳ′1�x
ȳ2�x
. The boundary conditions

for the Green’s function are matched by the choice of the two solutions ȳ1, ȳ2. The reader

should also note that, since equation (3.184) involves a ratio of the product of two indepen-

dent solutions divided by their Wronskian, the Green’s function is still uniquely determined

if we multiply any of the two solutions by an arbitrary nonzero constant. The symmetry

Ḡ�x� x0� s
 = Ḡ�x0� x� s
 with respect to interchanging x and x0 is also a useful property,

following from the fact that the Sturm–Liouville operator is self-adjoint. The solution ȳ1 is

chosen to match the boundary condition at the lower region, while ȳ2 is chosen to match the

boundary at the upper region. For example, if one requires zero-boundary conditions at two

points x= xL and x= xH (xL < xH ) with Ḡ�x= xL� x0� s
= 0 and Ḡ�x= xH�x0� s
= 0, then

a linear combination of independent solutions to equation (3.183) must be formed to give

ȳ1�xL
 = ȳ2�xH
 = 0. Inserting the two solutions and their Wronskian into equation (3.184)

gives Ḡ.

From equation (3.181), the Green’s function to the original problem (3.172) is then

obtained as

G�x�x0� s
=− e
∫ x
x0

��u


$�u
2
du

$�x
/$�x0


⎧⎪⎪⎪⎨⎪⎪⎪⎩
ȳ1�x
ȳ2�x0


pW̄
� xL ≤ x ≤ x0

ȳ2�x
ȳ1�x0


pW̄
� x0 ≤ x ≤ xH�

(3.185)

Here we have assumed that the multiplicative factor to the left of the curly bracket in equa-

tion (3.185) is finite at the solution endpoints. In the special case of a singular multiplicative

factor at an endpoint, we assume that either ȳ1 or ȳ2 approaches zero more rapidly at the

endpoint so that G satisfies the same zero-boundary condition as Ḡ. The foregoing expression

is applicable to all cases of homogeneous boundary conditions that we shall encounter. [It is
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noted that this approach can also handle boundary conditions of a mixed kind to accommodate

for other types of solutions, such as relection at a boundary. However, throughout we are only

concerned with zero-(i.e., Dirichlet)-boundary conditions for the purpose of pricing barrier

as well as barrier-free European options for state-dependent volatility models to follow.]

The points xL, xH can be finite, or either point can be taken in the infinite limit, depending

on the allowable solution space. Note that, in contrast to Ḡ, G is generally not symmetric

with respect to interchanging x and x0. However, by direct inspection we see that G in

equation (3.185) is a product of functions in x and x0 and hence automatically provides us

with solutions to the homogeneous equation (3.175) and its adjoint equation where the func-

tions $�x0
 exp
(− ∫ x0 ��u


$�u
2
du

)
ȳ1�x0
 and $�x0
 exp

(− ∫ x0 ��u


$�u
2
du

)
ȳ2�x0
 form two linearly

independent solutions to the homogeneous version of equation (3.173); i.e., these form two

linearly independent solutions to �̃x0
ỹ−sỹ= 0. Renaming variables x0 → x and s→ � hence

gives a general solution to this homogeneous ordinary differential equation rewritten in terms

of x in equation (3.272), which we obtain simply by inspection of the Green’s function G.

We shall denote this solution by û�x��
, where

û�x��
= $�x
e
− ∫ x ��u


$�u
2
du
	q1ȳ1�x��
+q2ȳ2�x��

 (3.186)

and q1,q2 are arbitrary constants. The function û�x��
 (in Section 3.8.1 it is referred to as a

generating function) will turn out to play an important role in generating new pricing kernels

for an F -space process from known x-space kernels, as is discussed later in this chapter.

In closing this section, we demonstrate the Green’s function procedure with a standard

example covering the different cases of boundary conditions.

Example 5. The Wiener Process.

Let’s consider the process dxt =
√
2 dWt, where $�x
=

√
2 (constant volatility) and ��x
= 0

(zero drift). From equations (3.179) and (3.180), the functions p�x
 = 1 and q�x
 = 0 are

trivial. In this special case �̃= �= �̄, and G= Ḡ, which satisfies

d2

dx2
G− sG=−��x−x0
� (3.187)

where ȳ = y satisfies the corresponding homogeneous equation [i.e., equation (3.183)

or (3.175)] y′′ − sy = 0. Two independent solutions of this equation are e
√
sx and e−

√
sx. If

we seek barrier-free kernel solutions, then we impose zero-boundary conditions at x→±

(e.g., xL = −
 and xH =
 in the earlier notation). Therefore we let ȳ1 = e

√
sx, ȳ2 = e−

√
sx

since e±
√
sx → 0 as x → ∓
 for real values of s > 0 (also generally true for Re s > 0).

The Wronskian of these two solutions gives pW̄ =−2
√
s. Using equation (3.185), where the

multiplicative factor is just unity, gives the Green’s function for the barrier-free case:

G�x�x0� s
=

⎧⎪⎨⎪⎩
e
√
s�x−x0
/2

√
s� x ≤ x0

e−
√
s�x−x0
/2

√
s� x ≥ x0

(3.188)

Obtaining the kernel u�x�x0�  
 is now just a matter of Laplace-inverting this function from s
back into the time  domain. Note that we may rewrite G= e−k

√
s/2

√
s, k= x>−x< (k≥ 0),

where x> (x<) stands for the greater (smaller) of the two real numbers x, x0. The Laplace

transform can in some cases be found directly with the use of tables. For instance, in this

case one can look up a table of transforms to find L−1	e−k
√
s/
√
s
	 
 = e−k2/4 /

√
� . Since

k2 = �x−x0

2 (regardless of the relative magnitudes of x and x0), we then recover the known
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solution u�x�x0�  
 = g0�x� x0�  
 exactly as in equation (3.9), and the problem of obtaining

the barrier-free kernel has been completely solved.

It is now instructive to show how the inverse transform is computed using standard

techniques of complex analysis (without the use of tables because this is particularly important

for handling nonelementary Green’s functions, as discussed later).G is an analytic function on

the complex s-plane, except for a branch point at s= 0 due to the
√
s factor. For this purpose

a branch cut must be introduced. In order to apply the residue theorem, we consider the closed

contour in Figure 3.10 (see Section 3.7.1) with branch cut chosen as the negative real line

arg s=�, with complex s-plane 
arg s
<�, i.e., the principal branch. The Bromwich contour

corresponds to the line segment MN . Since G is analytic everywhere (i.e., no singularities)

on and inside the entire region within the closed contour for all values of the semicircular

radius R > 0 as well as for positive parameters �, �, and � taken arbitrarily close to zero,

Cauchy’s integral formula gives a value of zero for the complete loop integral. Hence the

Bromwich integral is equal to the negative of the sum of all the other contour integrals that

make up the closed loop. From this fact, the kernel is

u�x�x0�  
=
1

2�i

∫ �+i


�−i

es G�x�x0� s
ds

=− 1

2�i

[∫
C+
R

+
∫
C−
R

+
∫ Q

P
+
∫ P′

Q′
+
∫
C�

]
es 

e−k
√
s

2
√
s
ds� (3.189)

This sum of integrals is dramatically reduced using standard arguments as follows. Tak-

ing limits R → 
 and ����� → 0, the C±
R integrals vanish, since along the semicircular

contours s = Rei�, �
2
< 
�
 < �, hence cos� < 0, so the modulus of the integrand 
Ges 
 =

eR cos�e−k
√
R cos� �

2

/2

√
R → 0 as R →
. The C� integral for the circular segment QQ′ also

vanishes since s = �ei�, −� < � < �, so the modulus (as �→ 0) of this integral has value

≤√
�× const�, which goes to zero in the limit �→ 0. The only nonzero integrals are along

the branch cut corresponding to the PQ and Q′P ′ segments, where s = rei� (
√
s = i

√
r) and

s = re−i� (
√
s =−i

√
r), respectively, in the limit �→ 0, with �≤ r ≤ R. In the limits �→ 0

and R→
 the two integrals are combined to give the real-valued integral

u�x�x0�  
=
1

2�

∫ 


0

e−r cos�k
√
r
√

r
dr = 1

2
√
� 

e−k2/4 � (3.190)

where the last result is g0�x� x0�  
, as before, and was obtained by a change of integration

variables resulting in the cosine transform of a Gaussian function giving a Gaussian in k.
Barrier kernels for the Wiener process are also readily obtained. The Green’s functions

provide solutions that relate directly to the method of images, discussed partly in Section 3.2.1.

In particular, let’s reconsider the problem of finding the kernel in the domain x�x0 ∈ �−
� xH

for a single upper barrier at level xH . [The steps for the case of a lower barrier are the

same.] Since we wish to impose zero-boundary conditions for the kernel at xL = −
 and

at xH , we form a linear combination of e
√
sx and e−

√
sx to set ȳ2�x
 = sinh

√
s�x− xH


and set ȳ1�x
 = e
√
sx. Hence ȳ2�xH
 = 0, ȳ1�−

 = 0 for Re s > 0, as needed. In this case

pW̄ =√
se

√
sxH and the Green’s function is

G�x�x0� s
=
1

2
√
s

[
e−�x>−x<


√
s − e−�2xH−x−x0


√
s

]
(3.191)

since x>+x< = x+x0. This involves the difference of two expressions of the same functional

form in s as in the barrier-free Green’s function. Hence, Laplace-inverting gives precisely the
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kernel u�x�x0�  
= gu�xH� x� x0�  
 of equation (3.14). This result was previously derived by

the method of images.

The last case of interest is the kernel having zero value at two finite endpoints xL, xH (i.e.,

the double-barrier) with solution domain x�x0 ∈ 	xL� xH
. Following similar steps as before

we have

G�x�x0� s
=− sinh
√
s�x<−xL
 sinh

√
s�x>−xH
√

s sinh
√
s�xH −xL


� (3.192)

Note that this function is zero at both endpoints. This Green’s function leads to two separate

types of exact series expansions for the kernel. The first type is an eigenfunction expansion.

The relation between eigenfunction expansions for diffusion kernels and Green’s functions

is discussed in the next section. Here we show explicitly how such an expansion arises

from the Laplace inversion of equation (3.192). Observe that G is a ratio of two analytic

functions of complex s, despite the appearance of the
√
s factor. Indeed this can be seen

by a direct Taylor expansion of the hyperbolic sine in both numerator and denominator.

The only singularities of G are isolated simple poles along the negative real axis. In fact,

using the identity sinh�ix
 = i sin�x
 and letting s = −
!
, the denominator of G along the

negative real axis is
√
s sinh

√
s�xH − xL
 = −√
!
 sin√
!
�xH − xL
. Therefore the zeros

of the sine function give the simple poles of G at positions s = !n ≡ −n2�2/�xH − xL

2,

n= 1� � � � . Note that s = 0 is a removable singularity in this case, as is shown by a Taylor

expansion of the denominator about s = 0. The Bromwich integral can therefore be closed

by joining a single semicircular contour CR enclosing the negative real half of the complex

s-plane, as long as the contour does not coincide with any of the isolated poles. Since the

modulus of the integrand in the CR integral approaches zero as R→
, the residue theorem

gives

u�x�x0�  
=

∑

n=1

e!n ResG�x�x0� s = !n
� (3.193)

Since the Green’s function is a ratio of two analytic functions, e.g., G�s
= P�s
/Q�s
, where
Q�s
 has simple zeros at s = !n, then from complex analysis we know that the residue

at each pole is given by ResG�s = !n
 = P�!n
/Q
′�!n
. Evaluating the derivative of the

denominator in equation (3.192) and the numerator at each pole while making use of the

identity sinh�ix
= i sin�x
 and recasting one of the resulting sine functions in the numerator,

we obtain

ResG�x�x0� s = !n
=
2

xH −xL

sin
n��x−xL


xH −xL

sin
n��x0−xL


xH −xL

� (3.194)

which is valid regardless of the relative magnitude of x and x0. Substituting into equa-

tion (3.193) therefore recovers the kernel (3.101). Recall that this kernel was used in

Section 3.5 to generate rapidly convergent exact series solutions for the affine and quadratic

(with two distinct roots) volatility models.

Green’s function (3.192) can also be used to generate a second type of exact infinite

expansion for the kernel, which is not based on eigenfunctions but rather gives exactly what

one would obtain by applying the method of infinite images. The idea is to reexpress G
in a Taylor expansion involving an infinite sum of exponential terms, which upon Laplace

inversion gives rise to an infinite sum of kernels of the barrier-free type that will be centered

at the image points located at a sequence of increasing distances from either side of the

solution domain. We leave this as an exercise for the interested reader (see Problem 1).
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Problems

Problem 1. By using the Taylor expansion identity 1/ sinh x = 2
∑


n=0 e
−�2n+1
x, show that

the Green’s function in equation (3.192) is given by

G= 1

2
√
s


∑
n=0

e−2n�xH−xL

√
s

[
e−

√
s�2�xH−xL
−�x>−x<

+ e−

√
s�x>−x<


− e−
√
s�x>+x<−2xL
− e−

√
s�2xH−x<−x>


]
� (3.195)

By taking the Laplace inverse of this series, obtain an infinite series for the kernel.

Problem 2. Verify that

u�x�x0�  
=

∑

n=−


[
g0�x� x0+2nL� 
−g0�x�2nL−x0�  


]
� (3.196)

where g0 is defined by equation (3.9),  = t− t0, is a solution to equations (3.7) and (3.8) in

the finite domain 0< x�x0 < L. Determine the boundary conditions at the endpoints.

3.6.1 Eigenfunction Expansions for the Green’s Function and the Transition Density

Green’s functions are intimately tied to the eigenvalue-eigenfunction problem of the cor-

responding homogeneous equation. Here it suffices to give only the most basic and brief

discussion of this useful aspect of the theory. In particular, as an alternative to the closed-

form expressions of the previous section, it is sometimes useful to consider Green’s function

solutions directly in terms of eigenfunction expansions when possible. Let us again consider

equation (3.183). This equation, together with the imposed boundary conditions, constitutes an

eigenvalue problem of the Sturm–Liouville type. For the case of zero-homogeneous boundary

conditions at two finite boundaries it follows from regular Sturm–Liouville theory that if the

functions p�x
 and q�x
 in equations (3.179) and (3.180) are well behaved (i.e., p�x
 > 0 and

p, p′, q are continuous in a finite solution domain 	xL� xH
), then the Green’s function admits

a spectral resolution of the form

Ḡ�x� x0� s
=

∑

n=1

�n�x
�n�x0


s− !n
� (3.197)

where the eigenfunctions �n�x
 satisfy the eigenvalue equation

�̄x�n�x
= !n�n�x
 (3.198)

with eigenvalue !n and boundary conditions �n�xL
= �n�xH
= 0. The expression in equa-

tion (3.197) is readily verified to satisfy equation (3.182) by differentiating, term by term, in

the sum and using upcoming equation (3.200). Also from Sturm–Liouville theory we have

that the eigenvalue spectrum !n =−
!n
, n= 1�2� � � � �
, for a regular problem is real and

discrete (infinitely countable) where 
!n
 form an increasing sequence. The corresponding

eigenfunctions �n�x
 form a complete orthonormal basis set with

��m��n
≡
∫ xH

xL

�m�x
�n�x
dx = �m�n� (3.199)



198 CHAPT ER 3 . Advanced topics in pricing theory

where �m�n = 1 for m = n and is otherwise zero. Note that completeness of the functions

also gives


∑
n=1

�n�x
�n�x0
= ��x−x0
� (3.200)

so any smooth function f�x
 admits an eigenfunction expansion

f�x
=

∑

n=1

an�n�x
 (3.201)

with coefficients an = �f��n
. Assuming we have determined the eigenfunctions ��x
, the
original Green’s functionG�x�x0� s
 is then given by equations (3.197) and (3.181). Substitut-
ing this form into equation (3.174) and taking the inverse Laplace transform operation inside

the summation gives a formal eigenfunction series solution representation for the kernel:

u�x�x0�  
=
e
∫ x
x0

��x′

$�x′
2 dx

′

$�x
/$�x0



∑
n=1

�n�x
�n�x0
L
−1

[
1

s+
!n

]
	 


= e
∫ x
x0

��x′

$�x′
2 dx

′

$�x
/$�x0



∑
n=1

e−
!n
 �n�x
�n�x0
� (3.202)

Note that in the last step the Laplace transform is trivially known and one does not really

need to resort to the residue theorem to compute the Laplace inverse transform. This result

also follows, though, from a straightforward application of the residue theorem by closing

the Bromwich contour with an infinite semicircular portion to the left and thereby picking

up the contributions from the residues occurring at the simple poles of Ḡ that lie along the

negative real axis.

Equation (3.202) is a generic series solution for the kernel when ��x
, $�x
, the solution

interval being considered, and the imposed boundary conditions all combined are such that

one indeed has a regular Sturm–Liouville problem at hand, i.e., if it is true that the Green’s

function (G or Ḡ) has the assumed discrete eigenfunction-eigenvalue expansion. In many

applications, however, the Sturm–Liouville problem of interest may not be of regular type

but, rather, of so-called singular Sturm–Liouville type. This situation occurs in a variety of

cases, such as when p�x
 in equation (3.178) attains a zero value at either solution endpoint or
the functions p, q become unbounded or the solution interval is unbounded (e.g., x ∈ 	0�

,
�−
�

, etc.). The eigenvalues may not be discrete in such cases, and the problemmay have a

continuous or a mixed eigenvalue spectrum, in which cases the generic formulas are generally

not valid. Even in singular Sturm–Liouville problems for which the spectrum is discrete,

the convergence of the eigenfunction expansions must also be examined on an individual

basis. However, a substantial class of important singular Sturm–Liouville boundary value

problems involving the so-called hypergeometric and confluent hypergeometric equations

(such as Bessel’s equation for which an in-depth Green’s function development is given in

the next section) can still be treated within the earlier eigenfunction formulation. This class of

problems will generally admit a spectral resolution (or decomposition) of the Green’s function

G as well as the kernel u as a sum of a discrete and a continuous eigenvalue-eigenfunction

portion. In closing this section, we emphasize that the complex contour integral framework of

the previous section has a general applicability. In particular, it is applicable to most singular

Sturm–Liouville problems of interest and can be shown to recover the spectral decomposition

formulas. In fact the approach of the previous section is used in the next section to arrive
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at analytically closed-form kernels for the Bessel process involving Bessel’s equation. The

procedure for extracting the kernels analytically is then basically an advanced exercise in the

application of the residue theorem of complex analysis.

3.7 Kernels for the Bessel Process

In this section we apply the Green’s function methodoloy of Section 3.6 to the so-called

Bessel process and obtain exact analytical solutions for the kernel u�x�x0�  
 for all cases

of interest: (1) no absorption (barrier free), (2) absorption at two finite endpoints (double

barrier), (3) absorption at a single upper endpoint (single upper barrier), and (4) absorption

at a single lower endpoint (single lower barrier).

The Bessel process is characterized by a square root volatility5 function $�x
= 2
√
x, and

drift ��x
= �= const�:

dxt = � dt+2
√
xt dWt� (3.203)

Moreover, throughout we consider � > 2, where all path values are strictly positive xt > 0.

The allowable domain for the kernel is hence x > 0. The corresponding Sturm–Liouville

operator in equation (3.178) has p�x
 = 2x and q�x
 = �2/2x, where � ≡ �
2
− 1 > 0 and

equation (3.183) takes the form

ȳ′′�x
+ 1

x
ȳ′�x
−

(
s

2x
+ �2

4x2

)
ȳ = 0� (3.204)

By a change of variable this equation leads to the modified Bessel’s equation [see equa-

tion (3.374) in Appendix C to this chapter], as one can readily verify. Two linearly independent

solutions to equation (3.204) are ȳ1�x
= I��
√
2sx
 and ȳ2�x
= K��

√
2sx
. Here I� and K�

are the modified (i.e., hyperbolic) Bessel functions of the first and second kinds, respectively,

of order �> 0. These functions are also commonly called the Macdonald functions (see, for
example, [AS64]). For convenient reference, some common useful properties of the Bessel

and modified Bessel functions, are given in this chapter’s Appendix C. These functions are

linearly independent for all values of �; hence linear combinations of these two solutions can

be used to satisfy the appropriate boundary conditions for the Green’s function Ḡ (and G)

and hence for the kernel u�x�x0�  
.

3.7.1 The Barrier-Free Kernel: No Absorption

Let us consider the case of homogeneous boundary conditions at the endpoints of the entire

positive region �0�

. The exact kernel is now readily obtained in analytically closed form.

To begin with, the density must satisfy zero-boundary conditions

lim
x→
u�x�x0�  
= lim

x→0
u�x�x0�  
= 0� (3.205)

Hence, the Green’s function corresponding to equation (3.185), with xL → 0 and xH →
,

obtains by the choice ȳ1�x� s
 = I��
√
2sx
 and ȳ2�x� s
 = K��

√
2sx
, since (for positive

5The Bessel process obeying dxt = �dt+ v0
√
xtdWt with arbitrary nonzero constant parameter v0 is obtained

from equation (3.203) by making a scale change in the order and in the time: �→ �/�� t → �t, where � ≡ $20/4.

In particular, by simply changing �→ 4�/$20 and t → $20 t/4, all the formulas for the Bessel process with parameter

$0 follow from those explicitly given for the process obeying equation (3.203) where $0 = 2.
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order �) I��z
 → 0 as 
z
 → 0 and K��z
 → 0 as 
z
 → 
 for generally complex z. In

particular, I��
√
2sx
→ 0 as x → 0 and K��

√
2sx
→ 0 as x →
, for any value of s. The

Wronskian of these two functions is W̄ �x
 = −1/2x, so pW̄ = −1. Combining this into

equation (3.184) gives

Ḡ�x� x0� s
=

⎧⎪⎨⎪⎩
I��

√
2sx
K��

√
2sx0
� x ≤ x0

K��
√
2sx
I��

√
2sx0
� x0 ≤ x�

(3.206)

Note that this function has been constructed to match the zero-boundary conditions at x = 0

and x = 
. For the Bessel process the multiplicative factor in equation (3.185) is simply(
x/x0

)�/2
; hence equation (3.185) reduces to

G�x�x0� s
=
(

x

x0

)�/2

Ḡ�x� x0� s
� (3.207)

giving

G�x�x0� s
=
(

x

x0

)�/2

⎧⎪⎨⎪⎩
I��

√
2sx
K��

√
2sx0
� 0< x ≤ x0

K��
√
2sx
I��

√
2sx0
� x0 ≤ x <
�

(3.208)

Observe from equation (3.206) that the symmetry property Ḡ�x� x0� s
= Ḡ�x0� x� s
 is evident
by interchanging x with x0. This is consistent with the fact that the Sturm–Liouville operator

�̄ is self-adjoint. Note that this symmetry property is not true for the original Green’s function

G in equation (3.208), as expected since the Fokker–Planck operator � in equation (3.169)

is not self-adjoint in this case.

From the theory of Section 3.6 we know that the inverse Laplace transform (with respect

to s) of this function will yield the density according to equation (3.174). We now proceed to

compute the Bromwich integral analytically using standard techniques of complex analysis.

In proceeding further, we use a known fact that I�K� (for all x ≤ x0 or x0 ≤ x) within
G�x�x0� s
 is analytic on the complex s-plane, with the exception of a (square root) branch

point at s = 0. For this reason we need to introduce a branch cut along some branch or ray

emanating from the origin of the complex s-plane. It is convenient to choose the principal

branch cut defined by arg s = � along the negative real axis and to consider points on the

complex s-plane with 
arg s
 < �. We therefore extend the Bromwich contour to that of a

closed contour that bypasses the branch cut, as in Figure 3.10. Note that this same contour

was used earlier for the Wiener process.

The Bromwich integral in equation (3.174) corresponds to the line segment MN . Since

G�x�x0� s
 is analytic everywhere (i.e., no singularities) on and inside the entire region within

the closed contour for all values of the radius R > 0 as well as for positive parameters

�, �, and � taken arbitrarily close to zero, Cauchy’s integral formula gives zero for the loop

integral. Hence the Bromwich integral is equal to the negative of the sum of all the other

contour integrals that make up the closed loop. From this fact, the kernel is then given as the

negative sum of such integrals:

u�x�x0�  
=
(

x

x0

)�/2
1

2�i

∫ �+i


�−i

es Ḡ�x� x0� s
ds

=−
(

x

x0

)�/2
1

2�i

[∫
C+
R

+
∫
C−
R

+
∫ Q

P
+
∫ P′

Q′
+
∫
C�

]
es Ḡ�x� x0� s
ds� (3.209)
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FIGURE 3.10 The closed contour integral for the Laplace inversion of the Green’s function for the

barrier-free case with a branch cut.

Although this integrand involves nonelementary special functions, the steps that follow actu-

ally make use of standard techniques to reduce this sum of seemingly complicated integrals

to an analytically tractable form. Taking limits R → 
 and ����� → 0, it readily follows

that the C±
R integrals vanish, since along the semicircular contours s = Rei�, �

2
< 
�
 < �,

hence 
es 
 = eR cos� → 0 as R→
 with cos� < 0. The integrand therefore approaches zero

as R →
, since I��z
K��z
 ∼ 1/2z as 
z
 → 
 from the leading-order asymptotic expan-

sions of the modified Bessel functions. The C� integral for the segment QQ′ with s = �ei�,
−� < � < �, also vanishes as �→ 0. In particular for x ≤ x0,∣∣∣∣ ∫

C�

dses Ḡ�x� x0� s


∣∣∣∣≤ �

2�

∫ �

−�

I��

√
2�xei�/2
K��

√
2�x0e

i�/2

d�� (3.210)

Since �> 0, 
I��
√
2�xei�/2
K��

√
2�x0e

i�/2

→ const� (independent of �) in the limit �→ 0.

The same result applies when x ≥ x0; hence the C� integral vanishes in the limit �→ 0. The

only nonzero integrals are along the branch cut corresponding to the PQ and Q′P ′ segments,

where s = rei� (
√
s = i

√
r) and s = re−i� (

√
s = −i

√
r), respectively, in the limit � → 0,

with � ≤ r ≤ R. In the limits �→ 0 and R→
 the two integrals are combined to give the

real-valued integral

u�x�x0�  
=
1

2

(
x

x0

) �
2 ∫ 


0

e−r 	Ḡ�x� x0� e
−i�r
− Ḡ�x� x0� e

i�r



�i
dr� (3.211)

where

Ḡ�x� x0� e
−i�r
=

⎧⎪⎨⎪⎩
I��−i

√
2xr
K��−i

√
2x0r
� x ≤ x0

K��−i
√
2xr
I��−i

√
2x0r
� x0 ≤ x

(3.212)

and Ḡ�x� x0� e
i�r
 is given by the complex conjugate expression. We note that the integral

involves the value of the branch cut discontinuity (or jump discontinuity) of the Green’s
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function along the entire cut. This is typical of Green’s functions for barrier-free kernels, as

we have seen in the simpler case of the Wiener process.

The integrand in equation (3.211) is readily simplified by computing the jump disconti-

nuity by use of the identity

1

�i
	I��−ia
K��−ib
− I��ia
K��ib

= J��a
J��b
 (3.213)

for any real a,b and where J� are the ordinary Bessel functions of the first kind. Note that

since this expression is symmetric with respect to interchanging a and b, it follows that the
integral simplifies to

u�x�x0�  
=
1

2

(
x

x0

)�/2 ∫ 


0

e−r J��
√
2xr
J��

√
2x0r
dr (3.214)

for any x�x0 ≥ 0, irrespective of the relative magnitude of x and x0. This result is now

simplified further by applying the integral identity (3.359) in Appendix C of this chapter with

choice �=  , �=√
x/2, � =√

x0/2, finally giving the known exact closed-form expression

for the barrier-free kernel:

u�x�x0�  
=
1

2

(
x

x0

) �
2 e−�x+x0
/2 

 
I��

√
xx0/ 
� (3.215)

3.7.2 The Case of Two Finite Barriers with Absorption

Here we consider homogeneous zero-boundary conditions at arbitrary finite endpoints xL

and xH with 0< xL < xH <
 and thereby obtain the kernel, denoted by u�x�x0� xL� xH�  
,
for two absorbing boundary conditions (i.e., a double barrier) at finite values x = xL and

x= xH . In our notation we explicitly denote the dependence of u on the endpoint values. The

boundary conditions imposed on the kernel are

u�x = xL� x0� xL� xH�  
= u�x = xH�x0� xL� xH�  
= 0� (3.216)

Hence, the Green’s function corresponding to equation (3.185) obtains by the choice ȳ1�x
≡
ȳ1�x� s
="��xL� x� s
 and ȳ2�x
≡ ȳ2�x� s
="��xH�x� s
, where we have defined the function

"��a�b� z
≡ I��
√
2az
K��

√
2bz
−K��

√
2az
I��

√
2bz
 (3.217)

for generally complex z and real parameters a, b. The two independent solutions are simply

linear combinations of the I� and K� functions satisfying the respective zero-boundary

conditions: ȳ1�x = xL
 = 0, ȳ2�x = xH
 = 0. In this case the Wronskian is shown to give

pW 	ȳ1� ȳ2
 = "��xH�xL� s
 = −"��xL� xH� s
, and hence the Green’s function is given, via

equation (3.185), as

G�x�x0� s
=
(

x

x0

) �
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
"��xL� x� s
"��xH�x0� s


"��xL� xH� s

� xL ≤ x ≤ x0

"��xH�x� s
"��xL� x0� s


"��xL� xH� s

� x0 ≤ x ≤ xH�

(3.218)

In order to obtain the transition density we will invert this Green’s function again with

the use of a closed contour integral while taking into account all singularities of G on the
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complex s-plane. First note that s= 0 may be a possible branch point due to the
√
s argument.

Since the functions "� are analytic on the entire s-plane (excluding possibly the branch cut),

all other singularities of G are the zeros of the denominator "��xL� xH� s
 in equation (3.218).

From equation (3.217) and using properties of the Bessel functions, we see that the zeros

must lie along the negative real axis. Indeed, putting s =−! for any real ! > 0 gives

"��xL� xH�−!
= K��ix̄H
I��ix̄L
−K��ix̄L
I��ix̄H
� (3.219)

To compact notation, we have denoted the real quantities x̄L ≡
√
2!xL, x̄H ≡√

2!xH . Using

the properties I��ix
 = i�J��x
 and K��iy
 = �
2
	I−��iy
− I��iy

/ sin�� for real x� y gives

I��ix
K��iy
 = �
2
csc���
J��x
	J−��y
− ei��J��y

 for any noninteger �. Using this we

obtain the identity

K��ix
I��iy
−K��iy
I��ix
=
�

2
	J��x
Y��y
−Y��x
J��y

� (3.220)

which applies for all � (integer values included), where the usual limiting procedure (i.e.,

analytic continuation in �) is used in the definition of the Bessel K� and Y� functions for the

case of integer order �. The functions Y� are the ordinary Bessel functions of the second kind

of order � (see, for example, [AS64]). In contrast to the monotonic and positive hyperbolic

Bessel functions for real arguments, the ordinary Bessel functions are oscillatory. In particular,
the functions on the right-hand side of equation (3.220) involving the difference of products

of ordinary Bessel functions (these are sometimes referred to as cylinder functions) have a

countable infinite number of zeros. The zeros of the denominator of the Green’s function are

hence all real and negative. To simplify notation, we shall denote these zeros by !n ≡ !��n,

where it is implicitly understood that these are really the nth eigenvalues for given �. The

equation determining these zeros (i.e., the eigenvalues of the Sturm–Liouville operator with

zero-boundary conditions at two finite endpoints) is therefore "��xL� xH� s = !n
 = 0; i.e.,

from equations (3.219) and (3.220),

J��
√
2
!n
xH
Y��

√
2
!n
xL
− J��

√
2
!n
xL
Y��

√
2
!n
xH
= 0� (3.221)

Solving for 
!n
 gives the eigenvalues !n =−
!n
 for all integers n≥ 1. The eigenvalues form

a sequence of negative values along the entire negative real axis. Note that this is entirely

consistent with a regular Sturm–Liouville boundary value problem. These zeros occur in

increasing order 
!1
< 
!2
< � � � , and are readily obtained by standard numerical procedures.

We are now in a position to compute the Bromwich integral analytically using a similar

contour integration procedure as before. However, in contrast to the barrier-free Green’s

function of the previous section, G has isolated singularities at the zeros of the denominator

at s = −
!n
 along the negative real axis (arg s = �). At all other points not lying on the

branch cut and for s �= !n, G is analytic, since it is a ratio of two analytic functions with

nonzero denominator. Although we have freedom in the choice of branch cut, the choice of

cut along the negative imaginary axis with arg s = 3�
2

is convenient. We therefore consider

−�
2
< arg s ≤ 3�

2
and close the Bromwich contour and apply the residue theorem to the
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FIGURE 3.11 The contour integral for the Laplace inversion of the Green’s function for the case of

absorption at two finite endpoints with branch cut along the negative imaginary axis.

loop integral in Figure 3.11. Applying the Cauchy residue formula to the closed contour in

Figure 3.11 gives the Laplace inverse of G, and hence the kernel, as

u�x�x0� xL� xH�  
=
1

2�i

∫ �+i


�−i

es G�x�x0� s
ds

=

∑

n=1

e−
!n
 ResG�x�x0� s =−
!n



− 1

2�i

[∫
CR

+
∫
I+
+
∫
I−
+
∫
C0
�

]
es G�x�x0� s
ds� (3.222)

where the first term involves a sum over the residues ofG, as a function of s, at all eigenvalues
s = !n, n= 1� � � � �
. In this formula the limits R→
 and �����→ 0 are implied. Taking

such limits it readily follows that the semicircular CR integral, with s = Rei�, �
2
< � < 3�

2
,

approaches zero. This obtains from the property of the "� functions, which in the limit

R→
 gives 
es G�x�x0� s

 → )e−R 
 cos�
e�
√
R/
√
R→ 0, where ), � are positive constants

dependent on x, x0, xL, xH . Then using the property lim�→0G�x�x0� s = �ei�
 → const�,
independent of �, a similar argument as used in the previous section allows us to conclude

that the C0
� integral approaches zero. The sum of I+ and I− integrals in the limits � → 0,

R→
 give

1

2�

∫ 


0

e−ir 	G�x�x0� re
i 3�

2 
−G�x�x0� re
−i �

2 

dr� (3.223)

By completing a circuit around the origin, however, one easily proves the property

"��a�b� e
2�iz
= "��a�b� z
 (3.224)

for any complex z �= 0 and any positive real a, b. This shows that there is no jump discontinuity

in the function "� along any choice of branch cut. SinceG is a function of a product and a ratio

of such functions, G also has no jumps. Indeed, applying the last identity with the particular

choice z= re−i �
2 , equation (3.218) gives G�x�x0� re

i 3�
2 
=G�x�x0� re

−i �
2 
. Equation (3.222)

hence reduces to only the sum of residues:

u�x�x0� xL� xH�  
=

∑

n=1

e−
!n
 ResG�x�x0� s =−
!n

� (3.225)
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The residues of the Green’s function are evaluated analytically as follows. From the

analyticity of the "� functions we observe that every point s = !n is a simple pole of

G�x�x0� s
; i.e., "��x�0 � s
 has simple zeros at every s= !n, as will be shown. Hence we have

ResG�x�x0� !n
=
(

x

x0

) �
2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

"��xL� x� !n
"��xH�x0� !n

�"��xL�xH �s


�s

s=!n

� x ≤ x0

"��xH�x� !n
"��xL� x0� !n

�"��xL�xH �s


�s

s=!n

� x0 ≤ x�

(3.226)

To compute this residue we use
�"��xL�xH �s


�s

s=!n

= − �"��xL�xH �−!


�!

!=
!n
, since !n = −
!n
, and

we hence consider

"��xL� xH�−!
= �

2
	J��x̄H
Y��x̄L
− J��x̄L
Y��x̄H

� (3.227)

which follows from equations (3.219) and (3.220) for real ! > 0. Differentiating this equa-

tion at ! = 
!n
 while making use of equation (3.221) and the recurrence relations J ′
��z
 =

��/z
J��z
− J�+1�z
, Y
′
��z
= ��/z
Y��z
−Y�+1�z
 gives

�"��xL� xH�−!


�!

∣∣∣∣
!=
!n


= �

4
!n

[
x̄H	J��x̄L
Y�+1�x̄H
−Y��x̄L
J�+1�x̄H



+x̄L	J�+1�x̄L
Y��x̄H
−Y�+1�x̄L
J��x̄H



]
= 1

2
!n

[
Y��x̄H


Y��x̄L

− Y��x̄L


Y��x̄H


]
� (3.228)

where x̄L ≡ √
2
!n
xL, x̄H ≡ √

2
!n
xH . The last expression obtains from the identity

J��z
Y�+1�z
−J�+1�z
Y��z
=−2/�z. Note that the expression in equation (3.228) is readily

seen to be nonzero, since xH > xL and the zeros 
!n
 ≡ 
!��n
 of equation (3.221) cannot also be
zeros of the Y� functions for given order �. All poles s=−
!n
 are therefore simple, justifying

our assumption. Substituting the expression in equation (3.228) into equation (3.226) and

again using equation (3.221) with some tedious algebraic manipulation gives the closed-form

compact formula for the residue:

ResG�x�x0� s =−
!n

=
(

x

x0

) �
2

�n�x
�n�x0
� (3.229)

where �n�x
 are (eigenfunctions) given by

�n�x
=�n

[
J��x̄L
Y��x̄
−Y��x̄L
J��x̄


]
� (3.230)

with normalization factor

�n = �

√ 
!n
/2[
Y��x̄L
/Y��x̄H


]2−1
� (3.231)

Here we have used the shorthand notation z̄ ≡√
2
!n
z. Note that the result is valid for all

x�x0 > 0 values, for it does not actually depend on the relative magnitude of x�x0. As is the
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case in all eigenfunction expansion solutions for a Sturm–Liouville problem (for Ḡ in this

case), the occurrence of �n�x
�n�x0
 is symmetric with respect to interchanging x and x0.
Finally, inserting this residue formula into equation (3.225) gives the kernel for the domain

xL ≤ x ≤ xH subject to double-ended zero-boundary conditions at x = xL� xH as an exact

closed-form eigenfunction series:

u�x�x0� xL� xH�  
=
(

x

x0

) �
2 
∑

n=1

e−
!n
 �n�x
�n�x0
� (3.232)

From the distribution of increasing values of 
!n
 with n, as can be shown from equation

(3.221), this series converges fairly rapidly for finite values of time  , particularly for large

values of  relative to the first value 
!1
. It is interesting to remark that the complex

analysis approach to the Green’s function methodology also automatically guarantees that the

eigenfunctions ��x
 are normalized, since in the limit  → 0 the density u must approach

the Dirac delta function ��x− x0
. From another perspective, this result is also entirely

consistent with Sturm–Liouville theory as well as spectral theory for the eigenvalue problem

corresponding to the operator �̄x defined earlier. A direct, yet algebraically very tedious,

proof of the normalization
∫ xH
xL

�m�x
�n�x
dx = �mn also follows by use of appropriate

integral properties of products of the Bessel J and Y functions, as provided in this chapter’s

Appendix C.

3.7.3 The Case of a Single Upper Finite Barrier with Absorption

This situation corresponds to zero-boundary conditions at x= 0 and at a finite upper endpoint

x= xH , 0< xH <
. We shall denote the kernel for this case by uH�x�x0� xH�  
. The upper
endpoint turns out to be an absorbing-boundary condition (at a single upper barrier). The

boundary conditions imposed on the kernel are

uH�x = 0� x0� xH�  
= uH�x = xH�x0� xH�  
= 0� (3.233)

Hence, the Green’s function corresponding to equation (3.185) obtains with choice ȳ1�x� s
=
I��

√
2sx
 and ȳ2�x� s
= "��xH�x� s
. The Wronskian of these functions gives pW 	ȳ1� ȳ2
=

−I��
√
2sxH
; hence the Green’s function is

G�x�x0� s
=
(

x

x0

) �
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I��x̄
	I��x̄H
K��x̄0
−K��x̄H
I��x̄0



I��x̄H

� x ≤ x0

I��x̄0
	I��x̄H
K��x̄
−K��x̄H
I��x̄



I��x̄H

� x0 ≤ x�

(3.234)

where we use shorthand notation z̄ ≡ √
2sz. We can split this into a difference of two

functions,

G�x�x0� s
=
(

x

x0

) �
2

⎧⎪⎨⎪⎩
I��x̄
K��x̄0
� x ≤ x0

I��x̄0
K��x̄
� x0 ≤ x

−gH�x� x0� s
� (3.235)

where the first part corresponds to the barrier-free Green’s function of equation (3.208) and

the second part is

gH�x� x0� s
=
(

x

x0

) �
2 K��

√
2sxH


I��
√
2sxH


I��
√
2sx
I��

√
2sx0
� (3.236)
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The inverse Laplace transform is the difference of two Laplace inverses. The first part is

exactly u�x�x0�  
 of equation (3.215) for 0 ≤ x�x0 ≤ xH , while the second inverse Laplace

contour integral is computed using exactly the same methods as in the previous section, i.e.,

using the closed contour integral in Figure 3.11 since gH is analytic, except for the branch

point at s = 0 and at simple poles along the negative real s-axis. The simple poles of gH

are s =−
!n
, where !n ≡ !��n, n= 1� � � � , are now simply the zeros of the ordinary Bessel

function

J��
√
2
!n
xH
= 0� (3.237)

We note that the value !1 is the first nonzero root.

Using the residue theorem, the Bromwich contour integral reduces to

L−1	gH�x� x0� s

	 
=

∑

n=1

e−
!n
 ResgH�x� x0� s =−
!n



+1

2

∫ 


0

e−r 	g
H�x� x0� re

−i�
−gH�x� x0� re
i�



�i
dr� (3.238)

The branch cut discontinuity in gH is readily computed using the properties of the modified

Bessel functions for purely complex arguments, namely,

gH�x� x0� re
−i�
=

(
x

x0

) �
2 K��−i

√
2rxH


I��−i
√
2rxH


I��−i
√
2rx
I��−i

√
2rx0


=
(

x

x0

) �
2 J��

√
2rx0


J��
√
2rxH


I��−i
√
2rx
K��−i

√
2rxH
� (3.239)

giving

	gH�x� x0� re
−i�
−gH�x� x0� re

i�



�i
=
(

x

x0

) �
2

J��
√
2rx0
J��

√
2rx
�

where the identity in equation (3.213) has been used. Inserting this expression into the

integrand shows that the integral term is exactly the barrier-free kernel u�x�x0�  
, as in equa-

tion (3.214). Taking the difference of Laplace inverses for the two terms in equation (3.235)

therefore cancels out the barrier-free portion and we are left with

uH�x�x0� xH�  
=−

∑

n=1

e−
!n
 ResgH�x� x0� s =−
!n

� (3.240)

Let gH = �x/x0

�/2ḡH ; then the residues at the simple poles are given by

Res ḡH�x� x0� s =−
!n

=
K��i

√
2
!n
xH
I��i

√
2
!n
x
J��

√
2
!n
x0


− dJ��
√

2!xH 


d!

∣∣
!=
!n


� (3.241)

Upon evaluating the derivative and using the relation I��ix
K��iy
=−�
2
J��x
Y��y
 we have

Res ḡH�x� x0� s =−
!n

= �

√

!n

2xH

Y��
√
2
!n
xH


J ′
��
√
2
!n
xH


J��
√
2
!n
x
J��

√
2
!n
x0
� (3.242)
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This expression is simplified via the Wronskian property of the ordinary Bessel functions and

by making use of equation (3.237); i.e., using

Y��
√
2
!n
xH
=

√
2/
!n
xH

�J�+1�
√
2
!n
xH


(3.243)

we obtain

Res gH�x� x0� s =−
!n

=−
(

x

x0

) �
2 J��

√
2
!n
x
J��

√
2
!n
x0


xHJ
2
�+1�

√
2
!n
xH


� (3.244)

Inserting this expression into equation (3.240) finally gives an exact closed-form eigenfunction

series solution for the kernel

uH�x�x0� xH�  
=
(

x

x0

) �
2 
∑

n=1

e−
!n
 �n�x
�n�x0
 (3.245)

in terms of the normalized ordinary Bessel eigenfunctions:

�n�x
=
J��

√
2
!n
x
√

xHJ�+1�
√
2
!n
xH


(3.246)

In closing this section we note that this result is also readily proven to obtain as the limit

xL → 0 in the double-barrier solution u�x�x0� xL� xH�  
 of the previous section. We leave it

as an exercise for the interested reader.

3.7.4 The Case of a Single Lower Finite Barrier with Absorption

This last case corresponds to zero-boundary conditions at a lower finite endpoint xL ≥ 0 and

at infinity with 0 ≤ xL <
. The domain of the solution is the semi-infinite interval 	xL�

.
We denote the kernel by uL�x� x0� xL�  
. The imposed boundary conditions are now

uL�x = xL� x0� xL�  
= uL�x =
� x0� xL�  
= 0� (3.247)

For the limiting value xL = 0 the solution is simply that of the barrier-free (no absorption)

problem; for xL > 0, xL is a single lower absorbing barrier. The Green’s function corresponding

to equation (3.185) obtains with choice ȳ1�x� s
= "��xL� x� s
 and ȳ2�x� s
=K��
√
2sx
 since

K��
√
2sx
→ 0 as x→
. The Wronskian of these functions gives pW	ȳ1� ȳ2
=K��

√
2sxL
;

hence the Green’s function is

G�x�x0� s
=
(

x

x0

) �
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
	K��x̄L
I��x̄
− I��x̄L
K��x̄

K��x̄0


K��x̄L

� x ≤ x0

K��x̄
	K��x̄L
I��x̄0
− I��x̄L
K��x̄0



K��x̄L

� x0 ≤ x�

(3.248)

Here again we use shorthand notation z̄≡√
2sz. Rewriting, we have

G�x�x0� s
=G0�x� x0� s
−gL�x� x0� s
� (3.249)
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where gL�x� x0� s
≡ �x/x0

�
2 ḡL�x� x0� s
,

ḡL�x� x0� s
=
I��

√
2sxL


K��
√
2sxL


K��
√
2sx
K��

√
2sx0
� (3.250)

andG0 denotes the barrier-free Green’s function given by equation (3.208) for xL ≤ x�x0 <
.

Laplace-inversion of the first term, G0, gives the barrier-free contribution u�x�x0�  
 of

equation (3.215). Laplace-inversion of the gL term follows by using the same contour as in

the barrier-free case, i.e., Figure 3.10. With branch cut along the negative real axis, s= 
s
ei�,
−� < � ≤ �, and the function gL is hence analytic except at the branch point s = 0 and cut

along arg s = �. From the properties of the modified Bessel functions of the second kind,

we know that K��z
 has no zeros in the region 
arg z
 ≤ �
2
for real � (see [AS64]). Hence

the denominator K��
√
2sxL
 = K��

√
2
s
xLe

i�/2
 is never zero at every point on and inside

the closed contour of Figure 3.10. We therefore deduce that ḡL�x� x0� s
 has no poles and is

analytic on and inside the contour. Using the residue theorem and following similar steps as

in the previous cases, the Bromwich contour integral reduces to give

L−1	ḡL�x� x0� s

	 
=
1

2�i

∫ 


0

e−r 	ḡL�x� x0� re
−i�
− ḡL�x� x0� re

i�

dr�

The branch cut discontinuity in gL is readily computed by making use of the properties

I��−ix
= e−i��/2J��x
 and

e±i��/2K��ix
=∓�i

2
	J��x
∓ iY��x



for real �, x. After some tedious algebraic manipulation, this gives the imaginary part

Im ḡL�x� x0� re
−i�
= 1

2i
	ḡL�x� x0� re

−i�
− ḡL�x� x0� re
i�



= �

2

J��x̄L
	�
�1

� �x̄� x̄0
J��x̄L
+��2


� �x̄� x̄0
Y��x̄L



J 2
��x̄L
+Y 2

��x̄L

�

where we define new functions

��1

� �x� y
≡ J��x
J��y
−Y��x
Y��y
� (3.251)

��2

� �x� y
≡ J��x
Y��y
+ J��y
Y��x
 (3.252)

with shorthand notation z̄≡√
2rz.

An exact closed-form expression for the kernel is therefore

uL�x� x0� xL�  
= u�x�x0�  
− ū�x� x0� xL�  
� (3.253)

where u�x�x0�  
 is the barrier-free part as given by equation (3.215) and ū�x� x0� xL�  
 has
the integral representation

ū�x� x0� xL�  
=
1

2

(
x

x0

) �
2 ∫ 


0

e−r 
J��x̄L
	�

�1

� �x̄� x̄0
J��x̄L
+��2


� �x̄� x̄0
Y��x̄L



J 2
��x̄L
+Y 2

��x̄L

dr�

with x̄L =
√
2rxL, x̄=

√
2rx, x̄0 =

√
2rx0. The zero-boundary condition at x= xL is readily veri-

fied. In particular, setting x= xL whilemaking use of the functions��1

� �x̄L� x̄0
 and�

�2

� �x̄L� x̄0
,

the integrand in our integral representation reduces to e−r J��x̄L
J��x̄0
. From equation (3.214)

we arrive at ū�x = xL� x0� xL�  
= u�xL� x0�  
; hence uL�x = xL� x0� xL�  
= 0.
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3.8 New Families of Analytical Pricing Formulas: “From x-Space
to F-Space”

In this section we present a mathematical framework for generating various families of exact

analytical pricing kernels for nonlinear state-dependent diffusion processes. We shall refer

to this construction as the diffusion canonical transformation methodology. The method is

a reduction approach that essentially reduces the more complex state-dependent diffusion

problem (i.e., the so-called F -space problem that we wish to solve) into a simpler underlying

diffusion process (i.e., the x-space problem). One of the basic ideas of the approach is to

consider an x-space diffusion process that is analytically tractable, e.g., for which Green’s

function methods can be used to arrive at a solution. Pricing kernels for F -space then arise

as a result of having obtained transition kernels for an underlying x-space process. As seen

next, the technique makes use of a special combination of transformations.

3.8.1 Transformation Reduction Methodology

Throughout we shall consider time-homogeneous drift and volatility functions having no

explicit time dependence. Hence, without loss in generality we set initial time t0 = 0, and

in particular for the x-space transition probability densities we simply write u�x�x0�  

[or u�x�x0� t
] in place of u�x� t� x0� t0
, and U�F�F0�  
 [or U�F�F0� t
] denotes the F -space
transition density or pricing kernel. The basis of our reduction methodology arises from

Lemma 3.1 and ultimately Theorem 3.1 relating fundamental solutions of the Fokker–Planck

(or Kolmogorov) equation under two different stochastic processes.

Consider an underlying diffusion process with SDE

dxt = ��xt
dt+$�xt
dWt� (3.254)

where Wt is a standard Wiener process. As already mentioned, the term $�x
 is the x-space
diffusion function or (generally state-dependent) volatility function, while ��x
 is the drift

function. The x-space kernel u= u�x�x0�  
 satisfies the corresponding forward and backward
Kolmogorov PDE (3.169) and (3.170). In F -space (e.g., forward-price space) we are interested
in finding pricing kernels for the corresponding SDE:

dFt = ��Ft
dWt� (3.255)

where ��F
 is the F -space diffusion function or state-dependent volatility function, and

Wt is a standard Wiener process under some new measure. The F -space kernel U�F�F0� t

satisfies a new time-homogeneous forward (and backward) Kolmogorov PDE for the process

described by equation (3.255). An important question that arises is: Can we develop new

families of solutions U�F�F0� t
, corresponding to new volatility functions ��F
, by making

use of (known) solutions u�x�x0� t
? The answer is yes, and it is specifically contained in

what follows.

Lemma 3.1. Let u = u�x�x0� t
 be a fundamental solution to the Fokker–Planck (forward
Kolmogorov) equation for the x-space stochastic process

�u

�t
= 1

2

�2

�x2

(
$�x
2u

)
− �

�x

(
��x
u

)
� (3.256)

with Dirac delta function initial condition limt→0 u�x�x0� t
 = ��x− x0
, with appropriate
boundary conditions at the endpoints of an interval that may be finite, semi-infinite, or
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infinite. Let x=X�F
 be the invertible transformation with invertible mapping F = F�x
 and
having positive semidefinite derivative dX�F
/dF = $�x
/��F
 on the interval. Assume that
the function defined by

��x�F
= 1

2

[
�′�x
+ ��x
2

$�x
2
−2�

$′�x

$�x


+ 1

2

(
��F
� ′′�F
−$�x
$′′�x


)+ 1

4

(
$′�x
2−� ′�F
2

)]
(3.257)

is a constant ��x�F
≡ �, independent of x with F = F�x
, hence also independent of F with
x = X�F
. The related Fokker–Planck (forward Kolmogorov) equation in F-space,

�U

�t
= 1

2

�2

�F 2

(
��F
2U

)
� (3.258)

for the stochastic process defined by equation (3.255) then admits a fundamental solution
U = U�F�F0� t
 of the form

U�F�F0� t
=
$�x


��F

exp

[
�t+ 1

2
log

$�x
/��F


$�x0
/��F0

−
∫ x

x0

��z


$�z
2
dz

]
u�x�x0� t
� (3.259)

where x = X�F
, x0 = X�F0
, with corresponding Dirac delta function initial condition
limt→0U�F�F0� t
= ��F −F0
.

It is important to note that an equivalent result also obtains for the case that the mapping

x=X�F
 is assumed to be monotonically decreasing with dX�F
/dF =−$�x
/��F
, where
$�x
, ��F
 are both positive semidefinite functions. Moreover, under fairly general boundary

conditions (such as homogeneous conditions) the kernels u and U are also solutions to

the corresponding backward time Kolmogorov equations; i.e., an equivalent result of the

foregoing is a statement involving the adjoint or backward time equations. Note also that

boundary conditions in the F -space kernel can be imposed by setting appropriate boundary

conditions in the x-space kernel via the mapping x→ F . In fact, by taking the simple Wiener

process as underlying x-space process, in Section 3.5 this procedure formed the basis for

deriving exact analytical pricing formulas for standard Equropean as well as various barrier

options for the linear and quadratic volatility models. Under fairly general situations, unique

solutions for U satisfying homogeneous boundary conditions are obtained by simply matching

(i.e., uniquely mapping) these homogeneous conditions in u. A direct proof of this lemma is

contained in Appendix A of this chapter.

It is crucial to note that equation (3.257) implicitly defines a special class of invertible

transformations that are used to generate our next main result. It is useful therefore to introduce

a formal definition for such a variable transformation, which we shall refer to as a diffusion
canonical transformation. One definition based on Lemma 3.1 is as follows.

Definition 3.1. Let � be an arbitrary constant, and let the (volatility) functions $�x
 and ��F

be positive semidefinite twice differentiable functions defined on appropriate finite, semi-
infinite, or infinite domains of x- and F -spaces, respectively. Furthermore, let the function
��x�F
 be defined by equation (3.257), where ��x
 is a differentiable (drift) function of x.
A diffusion canonical transformation is an invertible transformation x = X�F
 such that

��x�F
=−� and
dx

dF
=± $�x


��F

�
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This definition now leads us to an equivalent, yet more directly useful and transparent,

definition, as follows. Note that since $�x
/��F�x

 is positive (or negative) semidefinite,

we can set $�x
/��F�x

 = c�+�x

2, with arbitrary constant c �= 0 and twice differentiable

function +�x
. Differentiating w.r.t. x, using F ′�x
= �dx/dF
−1 = �/$ (note: without loss in

generality the map is assumed either monotonically increasing or decreasing), and dividing

both sides by c+�x
2 gives

$�x

+′�x

+�x


= 1

2

(
$′�x
−� ′�F


)
� (3.260)

Squaring gives

$�x
2
(
+′�x

+�x


)2

= 1

4
	$′�x
2−2� ′�F
$′�x
+� ′�F
2
� (3.261)

and multiplying the previous equation by $′�x
 gives

$�x
$′�x

+′�x

+�x


= 1

2
	$′�x
2−$′�x
� ′�F

� (3.262)

Subtracting this last equation from the previous one gives

1

4
	$′�x
2−� ′�F
2
=−$�x
2

(
+′�x

+�x


)2

+$�x
$′�x

+′�x

+�x


� (3.263)

Now differentiating +′�x
/+�x
 using equation (3.263) and multiplying by $�x
2 while using
the previous expression, we have

1

2
	��F
� ′′�F
−$�x
$′′�x

= $�x
2

(
+′�x

+�x


)2

−$�x
$′�x

+′�x

+�x


−$�x
2
(
+′′�x

+�x


)
� (3.264)

Note that the left-hand side of equations (3.263) and (3.264) are contained in the expression for

��x�F
; hence combining equations (3.263) and (3.264) into the expression for ��x�F
=−�
and simplifying gives

−+′′�x��
+V�x��
+�x��
= 0� (3.265)

where

V�x��
= 1

$�x
2

[
�′�x
+ ��x
2

$�x
2
−2�

$′�x

$�x


+2�

]
� (3.266)

Here we have denoted + = +�x��
 to stress the explicit dependence on the constant parame-

ter �. Equation (3.265) is a homogeneous linear second-order ordinary differential equation.6

Based on the development directly preceding, we now present another equivalent, and

more transparent and practical, definition for a diffusion canonical transformation.

6The reader familiar with quantum mechanics will observe that equation (3.265) is essentially related to a

one-dimensional time-independent Schrodinger-like equation.
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Definition 3.2. Let � be an arbitrary constant and $�x
 and ��F
 be positive semidefinite
twice differentiable (volatility) functions defined on some appropriate finite, semi-infinite,
or infinite domains of x- and F -spaces, respectively. Furthermore, let ��x
 be a differen-
tiable (drift) function of x. A diffusion canonical transformation is an invertible variable
transformation x = X�F
 such that

dx

dF
=± $�x


��F

(3.267)

and

��F
= �0

$�x


	+�x��

2
� (3.268)

with arbitrary constant �0 �= 0 and +�x��
 satisfying equation (3.265) with V�x��

given by equation (3.266). The inverse transformation F = F�x
 follows from F ′�x
 =
±��F�x

/$�x
=±�0/	+�x��



2, and integrating gives

F�x
= F̄ ±�0

∫ x

x̄

dz

	+�z��

2
� (3.269)

with F̄ = F�x̄
 and x̄ as an arbitrary constant. The ± factor allows for two possible branches
of either monotonically increasing or decreasing maps.

In the analysis that follows throughout the rest of this section it is convenient to work

with a slightly modified version of +, by defining

û�x��
≡ +�x��
 exp

(
−
∫ ��x


$�x
2
dx

)
� (3.270)

The integral here is left as indefinite since any choice of definite integration would simply

lead to an overall multiplicative factor. From equation (3.268) we therefore conclude that

a diffusion canonical transformation is one that relates the two volatility functions via the

(generally implicit) relationship

��F
= �0$�x
 exp
(−2

∫
��x


$�x
2
dx

)
	û�x��

2

� (3.271)

with x = X�F
 and where û= û�x��
 is readily shown to satisfy

1

2
$�x
2

d2

dx2
û+��x


d

dx
û−�û= 0� (3.272)

Indeed equation (3.272) follows by direct differentiation and substitution of equation (3.270)

into equation (3.265). As we will see, equation (3.271) is rather central to the whole trans-

formation methodology. Equation (3.272) actually turns out to be the homogeneous adjoint

equation for the corresponding x-space time independent Green’s function discussed in

Section 3.6, i.e., the homogeneous version of equation (3.173), with ��x−x0
 replaced by zero
and Laplace transform variable s= �. A set of two linearly independent solutions for û follow

immediately from the Green’s function, as shown in Section 3.6. Using equations (3.269)

and (3.270), the mapping F = F�x
 can now also be rewritten explicitly in terms of û:

F�x
= F̄ ±�0

∫ x

x̄

e
−2

∫ ��z


$�z
2
dz

	û�z��

2
dz� (3.273)
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with inverse x = X�F
 given (generally implicitly) by inverting this relation using either

branch (+ sign branch for monotonically increasing or − sign branch for monotonically

decreasing).

Using these equations we now summarize the main result into the following important

main theorem, which follows as a direct consequence of the preceding lemma.

Theorem 3.1. (Reduction-Mapping for Pricing Kernels) Given an x-space process satis-
fying equation (3.254), with transition probability function u�x�x0� t
 as fundamental solution
to the corresponding Kolmogorov (forward or backward) equation, and an F -space process
described by equation (3.255), with transition probability function U�F�F0� t
 as fundamental
solution to the corresponding (forward or backward) Kolmogorov equation, the fundamental
solutions are related as follows:

U�F�F0� t
=
$�x


��F


û�x��


û�x0� �

e−�tu�x� x0� t
� (3.274)

where x = X�F
, x0 = X�F0
 are (implicitly) given by the diffusion canonical invertible
variable transformation defined by equation (3.271), or (3.273), and û�x��
 solves equa-
tion (3.272), with X′�F
=±$�X�F

/��F
.

Proof. One way to verify this is to show that U in equation (3.274) solves equation (3.258)

by changing derivatives w.r.t. F to derivatives w.r.t. x with repeated use of the chain rule

and using the fact that u satisfies equation (3.256). Although straightforward, this process is

tedious. A simpler proof follows directly from the foregoing lemma. Indeed letting ��x�F
=
−� in equation (3.257) gives the map x=X�F
 defined by equations (3.271) and (3.272), as

shown earlier. Hence �=−� in equation (3.259). Moreover, using equation (3.271) we have

exp

[
1

2
log

$�x
/��F


$�x0
/��F0


]
=
(

$�x


��F


) 1
2
(
$�x0


��F0


)− 1
2

= û�x��


û�x0� �

exp

(∫ x

x0

��z


$�z
2
dz

)
� (3.275)

Substituting directly into equation (3.259) eliminates the exponential term, giving equa-

tion (3.274), where we assume û�x��
 is either positive or negative semidefinite. Note also

that generally, and without loss in generality, the ratio of the volatility functions $�x
/��F

is assumed to be positive definite; i.e., both volatility functions can be positive or nega-

tive semidefinite. Otherwise, one simply takes the absolute value of the Jacobian of the

transformation. �

It is important to point out the basic structure of equation (3.274) and how this relates to

the asset pricing theory of Chapter 1. That is, the F -space transition density U is related to

the x-space transition density by a combination of two terms. The first factor, $�x
/��F
, is
simply the Jacobian resulting from the assumed variable transformation x → F . Within the

framework of stochastic differentials, equivalent martingale measures, and the continuous-

time asset-pricing theorem discussed in Chapter 1, the second term can now actually be

identified as a ratio of two numeraires gt/g0, where the numeraire at time t is gt ≡ e�t/û�xt� �

and the x-space process at time t denoted by xt has value x at time t and value x0 at time

zero. Recall from Chapter 1 that a transition density corresponds to the current price of an

infinitely narrow butterfly spread pay-off (i.e. a delta function pay-off). Hence by assuming
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gt as numeraire, the asset-pricing formula (1.292) allows us to also rewrite equation (3.274)

as the conditional expectation at time zero of the delta function pay-off:

U�F�F0� t
= E
Q�g

0

[
g0
gt

��F�xt
−F


]
� (3.276)

Note that process Ft is generated from the underlying process xt via the mapping Ft = F�xt
.
For an alternative and instructive “proof ” of Theorem 3.1 as it relates to pricing measures,

see Appendix B of this chapter.

In summary, the foregoing reduction methodology provides exact analytical relationships

among transition probability densities describing continuous diffusion under classes of differ-

ent stochastic processes (i.e., x-space and F -space) with different state-dependent volatility

and drift functions. Note that throughout we present the theory with the assumptions of no

explicit time dependence for all drift and volatility functions; furthermore it is assumed that

the drift function multiplying the dt term in the SDE of the Ft processes in F -space is zero. [It
should be noted, however, that generally this does not necessarily imply that Ft is a driftless

(i.e., martingale) process in cases of nonlinear volatility functions ��F
.] Extensions that

further relax some of these assumptions are possible; however, these are not discussed here.

As we will show, this result provides the main tool for generating a substantial number of

new families of exactly solvable diffusions and hence for obtaining new pricing kernels under

multiparameter volatility functions. The fact that ��F
 involves multiple parameters can gen-

erally be seen from equation (3.271), wherein �0 and � are two obvious parameters, while all

other parameters can arise from the underlying x-space drift and volatility functions ��x
 and
$�x
, respectively. As is shown later, two other adjustable parameters arise if one considers

arbitrary linear combinations of two linearly independent solutions to equation (3.272). That

is, equation (3.272) admits a family of solutions; and since we are at liberty to choose any

particular solution, every choice gives us a particular volatility function in F -space.
It is now apparent that if an Ft process can be mapped onto an xt process (in the

“diffusion canonical” sense), then solutions for F -space transition probability densities (i.e.,

pricing kernels) can be obtained by solving the x-space diffusion problem with appropriately

imposed boundary conditions. Consequently, the functions û that solve equation (3.272) are

the basic building blocks for ultimately deriving the pricing kernels U�F�F0� t
 and hence

for constructing solutions for the F -space processes. As described earlier, this arises simply

from application of the theory of time-dependent and time-independent Green’s functions

to the underlying x-space diffusion problem. For this reason, we also refer to such a func-

tion û as a generating function. By solving u�x�x0� t
 subject to a judicious choice of

boundary conditions in x-space, one therefore generates the pricing kernel U�F�F0� t
 via

equation (3.274) while satisfying required boundary conditions in F -space via the inverse

transformation F = F�x
. The analytical properties of U, such as nonnegativity, integrability,

and probability conservation, depend upon the x-space drift and volatility functions and the

choice of �.

3.8.2 Bessel Families of State-Dependent Volatility Models

Based on the exact analysis of a nontrivial underlying x-space process and the foregoing

mapping reduction method, we are now ready to develop new families of analytically exact

pricing kernels for multiparameter classes of diffusion models. In particular, we shall make

use of the solutions to the Bessel process obtained in Section 3.7 and arrive at a new family

of pricing kernels with corresponding volatility models that can be expressed in terms of the

modified Bessel functions. We shall refer to these new models and solution kernels as the

Bessel family of volatilities and pricing kernels.
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The results follow from a straightforward application of equation (3.274) of Theorem 3.1

starting from the exact form of the generating function û�x��
 in the case that the underlying

x-space process has volatility function $�x
= 2
√
x and drift ��x
= �, x ∈ �0�

. From the

discussion in Section 3.7, and in particular from equation (3.186), û�x��
 obtains from the

general solution to the modified Bessel differential equation (3.204), for s = �. Explicitly,
equation (3.186) with ȳ1�x��
= I��

√
2�x
 and ȳ2�x��
= K��

√
2�x
, as strictly increasing

and decreasing nonnegative functions for � > 0��≡ �
2
−1> 0, gives

û�x��
= x−�/2	q1I��
√
2�x
+q2K��

√
2�x

� (3.277)

Throughout we shall assume the family of solutions with q1, q2 as real constants and � > 0

such that û is nonnegative. In this case the map x = X�F
 [and its inverse F = F�x
] is

strictly monotonic on the entire half-line x ∈ 	0�

. [Note: For � < 0, the general form

for the generating function is expressible in terms of ordinary Bessel functions: û�x��
 =
x−�/2

(
q1J��

√−2�x
+q2Y��
√−2�x


)
. In this case, however, invertible maps exist only on

finite piecewise segments along the half-line x ≥ 0 since the J�, Y� functions are oscillatory

and have multiple zeros.] Substituting û�x��
 from equation (3.277) into equation (3.273)

and applying a change of integration variable gives

F�x
= F̄ +2�0

∫ z=√
2�x

z=√
2�x̄

dz

z	q1I��z
+q2K��z


2
� (3.278)

with constant value x̄ mapping into F�x̄
= F̄ , an arbitrary real constant. Here we have used

the + branch of equation (3.273) while a similar result follows for the – branch. This integral

leads to two dual families of exact analytical expressions for the transformation F = F�x
.
This follows directly with the use of the identity

d

dz

(
�1/q2
I��z


q1I��z
+q2K��z


)
= 1

z	q1I��z
+q2K��z


2
� (3.279)

in the case of the first family, and with the use of

d

dz

( −�1/q1
K��z


q1I��z
+q2K��z


)
= 1

z	q1I��z
+q2K��z


2
� (3.280)

in the case of the second family. These general identities follow from the Wronskian relation

I��z
K
′
��z
−K��z
I

′
��z
=−1/z. Using equation (3.279) gives

F�x
= c1+
2�0/q1q2

1+ �q2/q1
K��
√
2�x
/I��

√
2�x


� (3.281)

with q2 �= 0, while use of equation (3.280) gives

F�x
= c2−
2�0/q1q2

1+ �q1/q2
I��
√
2�x
/K��

√
2�x


� (3.282)

with q1 �= 0, for the first and second families, respectively. Here the constants c1, c2 are given
by c1 = F̄ − �2�0/q1q2
/	1+ �q2/q1
K��

√
2�x̄
/I��

√
2�x̄

 and c2 = F̄ + �2�0/q1q2
/	1+

�q1/q2
I��
√
2�x̄
/K��

√
2�x̄

. These constants are fixed by setting x̄. For the first family,

for example, by setting x̄ = 0 we have F�0
= F̄ (i.e., x = 0 maps onto F = F̄ ). In the limit
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x̄ → 0, K��
√
2�x̄
/I��

√
2�x̄
 → 
, hence c1 = F̄ . For the second family, we can choose

x̄ =
, giving c2 = F̄ , where x =
 maps onto F̄ . For the first family, we then have

F�x
= F̄ + 2�0/q1q2
1+ �q2/q1
K��

√
2�x
/I��

√
2�x


� (3.283)

with q2 �= 0. By considering the asymptotic limits I��
√
2�x
/K��

√
2�x
→ 0 as x → 0 and

I��
√
2�x
/K��

√
2�x
 → 
 as x → 
, we observe that the interval x ∈ �0�

 maps one

to one onto F ∈ �F̄ � F̄ +2�0/q1q2
 in this first family. Letting x̄ →
 in the second family

gives an alternate map as

F�x
= F̄ − 2�0/q1q2
1+ �q1/q2
I��

√
2�x
/K��

√
2�x


� (3.284)

where x ∈ �0�

 now maps one to one onto F ∈ �F̄ −2�0/q1q2� F̄ 
.
Applying the foregoing theorem, the volatility for the Ft process is hence given by

equation (3.271), which upon inserting the generating function in equation (3.277) gives

��F
= 2�0√
X�F


[
q1I��

√
2�X�F

+q2K��

√
2�X�F



]2 � (3.285)

Solving for x = X�F
 using either equation (3.283) or equation (3.284) and inserting into

equation (3.285), we observe that the F -space volatility function generally involves as many

as six adjustable parameters: �0, �, �, q1, q2, and F̄ . It can be seen from the transformations,

however, that the effective number of independent parameters reduces to five: �0/q1q2, q2/q1,
�, �, F̄ .

Further properties of these variable transformations lead to other useful subfamilies of

volatility models, as follows. As can be seen directly from equation (3.278), the function

F = F�x
 is monotonically increasing, assuming �0 > 0. By considering the limit q1 → 0 (for

fixed nonzero q2), the first family reduces to a four-parameter subfamily,

F�x
= F̄ +a
I��

√
2�x


K��
√
2�x


� (3.286)

where x ∈ �0�

maps onto F ∈ �F̄ �

 (for constant a≡ 2�0/q
2
2 > 0), with volatility function

��F
= a√
X�F
K2

��
√
2�X�F



� (3.287)

Similarly, by considering the limit q2 → 0 (for fixed nonzero q1), the second family, with F�x

defined by equation (3.284), admits another (dual) four-parameter subfamily of solutions with

F�x
= F̄ −a
K��

√
2�x


I��
√
2�x


� (3.288)

where x ∈ �0�

 maps onto F ∈ �−
� F̄ 
 (for a≡ 2�0/q
2
1 > 0), with volatility function

��F
= a√
X�F
I2��

√
2�X�F



� (3.289)
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For option-pricing purposes, it is useful to consider the related family [obtained via the –

branch of equation (3.278) and using equation (3.280) for q2 = 0] that maps x ∈ �0�

 onto
F ∈ 	F̄ �

 (for a≡ 2�0/q

2
1 > 0):

F�x
= F̄ +a
K��

√
2�x


I��
√
2�x


� (3.290)

This family has the same volatility function (3.289) and defines a strictly monotonically

decreasing function F = F�x
. Indeed by differentiating equation (3.290) w.r.t. x and using

the Wronskian property, we find the derivative

F ′�x
=− a/2

xI2��
√
2�x


� (3.291)

By combining the generating function (3.277), the F -space volatility function (3.285), and
the x-space volatility function $�x
 = 2

√
x into our main equation (3.274) of Theorem 3.1,

we obtain the relationship between a pricing kernel U for the general (dual) six-parameter

Bessel family and a kernel u for the Bessel process:

U�F�F0� t
=
x1− �

2 	q1I��
√
2�x
+q2K��

√
2�x

3

�0x
− �

2

0 	q1I��
√
2�x0
+q2K��

√
2�x0



e−�tu�x� x0� t
� (3.292)

where x = X�F
 and x0 = X�F0
 are given by inverting either equation (3.283) for the first

family or equation (3.284) for the second family of solutions. Here u�x�x0� t
 is an x-space
kernel for the Bessel process, as given in Section 3.7. The particular solution used for u
depends on what set of boundary conditions we require U to satisfy. For instance, one uses

either the kernel in equation (3.215), (3.232), (3.245), or (3.253), depending on the specific

boundary conditions one wishes to impose. We point out that among the general possible

Bessel families of pricing kernels given by equation (3.292), only a subclass of solutions

with q2 = 0 can provide pricing kernels with no absorption in F-space. This important class

of solutions is discussed in detail in the next section. For a technical discussion concerning

the general question of determining whether or not a given kernel represents a transition

density that conserves probability over a solution domain (i.e., whether or not absorption

occurs), see Section 3.8.4. It turns out that for nonzero q2 the kernel U in equation (3.292)

always gives rise to probability leakage or absorption at an F -space endpoint, even in the

case where equation (3.215) is used for the x-space kernel u. Partly because of this property

and the added flexibility of the parameter space, the full six-parameter Bessel model is a

good candidate for modeling credit-rating migration and default risk and for pricing under a

credit setting [ACCZ03].

3.8.3 The Four-Parameter Subfamily of Bessel Models

In this section, we specialize the general Bessel family of solutions and consider a subfamily

of models containing up to four parameters. The pricing of standard European-style options

is considered under this model. Moreover, we show that special cases of this four-parameter

Bessel subfamily correspond to other known exact solutions in the literature, such as the CEV

(constant-elasticity-of-variance), quadratic, and affine volatility models.

In particular, let us consider the model mentioned in the previous section, with zero-

drift function and state-dependent volatility function ��F
 given by equation (3.289) and

where the inverse map x = X�F
 is defined uniquely (and generally implicitly) by inverting
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equation (3.290). As previously seen, this family is obtained by a one-to-one monotonically

decreasing map of the underlying Bessel process space x ∈ �0�

 onto the (asset price) space

F ∈ �F̄ �

. Figure 3.12 illustrates this map for a particular choice of model parameters.

Figure 3.13 gives an illustration of some of the typical local volatility plots obtained within

this family of models. In this family, a and � are positive parameters, F̄ is an arbitrary

parameter because it corresponds to a lower bound of the Ft process, and �≡ �
2
−1> 0 since

� > 2 is chosen so as to guarantee probability conservation for the pricing kernel U�F�F0� t


in the case of unrestricted barrier-free motion, with process Ft attaining any value in �F̄ �

.
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FIGURE 3.12 Plot of F = F�x
 using equation (3.290) for a= 0�1, �= 0�01, �= 1�5, F̄ = 0.
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FIGURE 3.13 Local volatility plots of ��F
/F versus F , for four sets of choices of model parameters:

(�, a, �) = (0.001, 16, 0.25), (0.001, 9, 0.5), (0.001, 1.7, 1.25), (0.01, 150, 1.25). These choices

correspond to most rapidly increasing to least increasing with fixed local volatility at F = 100 and the

choice F̄ = 0.
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In this case, q2 = 0, and formula (3.292) reduces to

U�F�F0� t
=
2

a

x1− �
2

x
− �

2

0

I3��
√
2�x


I��
√
2�x0


e−�tu�x� x0� t
� (3.293)

with x=X�F
, x0 =X�F0
 via equation (3.290) and where u�x�x0� t
 is an x-space kernel for

the Bessel process, as given in the previous sections. This formula hence provides a general

link between a pricing kernel for the underlying Bessel process and that for the four-parameter

Bessel family. As such it can be used to generate exact analytical pricing kernels for the case

of barriers (which are useful for pricing barrier options analytically under the four-parameter

Bessel model), or we can simply use it to generate barrier-free pricing kernels.

In this section we focus on the case of barrier-free solutions. Specifically, by inserting

equation (3.215) into equation (3.293) we obtain the barrier-free analytical pricing kernel for

the four-parameter family in terms of the modified Bessel function of the first kind:

U�F�F0� t
=
e−�t−�X�F
+X�F0

/2t

at

X�F
I3��
√
2�X�F



I��
√
2�X�F0



I�

(√
X�F
X�F0


t

)
� (3.294)

Typical densities are shown in Figure 3.14. As can be observed for the particular choice

of model parameters, the densities are significantly skewed, particularly for larger values

of time t. This pronounced tail feature becomes apparent when comparing the cumula-

tive densities of a four-parameter model with that of the lognormal model while choosing

model parameters such that the two transition densities have similar spreads about the spot

F0 (i.e., the local volatility at F0 is set to the lognormal volatility). Figure 3.15 gives a

relative comparison of the cumulative densities. Note: Given a transition probability den-

sity U�F�F0� t
, the cumulative density is defined in the usual manner by ��F�F0� t
 ≡∫ F

F̄
U�F ′�F0� t
dF

′.
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FIGURE 3.14 Plots of the transition probability density (3.294) for a= 0�1, �= 0�01, �= 1�5, F̄ = 0,

F0 = 14�15.
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FIGURE 3.15 A relative comparison of cumulative density functions for that of a lognormal transition

density (linear model) versus that for a typical four-parameter Bessel family kernel. The parameters are

chosen so that the local volatility
��F0


F0
, at spot F0 = 100, equals the lognormal volatility parameter.

For option-pricing purposes it is useful to consider a change of variables F → x while

using equation (3.291):∣∣∣∣dFdx
∣∣∣∣U�F�x
�F0� t
=

e−�t−�x+x0
/2t

2tI��
√
2�x0


I��
√
2�x
I�

(√
xx0

t

)
� (3.295)

x0 = X�F0
. As function of x, this form is now simply a product of two Bessel functions

times a decaying exponential factor. Integral identities for such functions are now useful. For

instance, using property (3.258), it is easy to verify that the density given by equation (3.294)

conserves probability over the allowable path space Ft ∈ �F̄ �

:∫ 


F̄
U�F�F0� t
dF =

∫ 


0

∣∣∣∣dFdx
∣∣∣∣U�F�x
�F0� t
dx

= e−�t−x0/2t

2tI��
√
2�x0


∫ 


0

e−x/2tI��
√
2�x
I�

(√
xx0

t

)
dx

= 1 (3.296)

A European-style option with assumed payoff #�F
, given a time to maturity t, can then be

priced as an expectation integral (ignoring a discount factor throughout):

V�F0� t
=
∫ 


F̄
U�F�F0� t
#�F
dF

= e−�t−X�F0
/2t

2tI��
√
2�X�F0



∫ 


0

e−x/2tI��
√
2�x
I�

(√
xX�F0


t

)
#�F�x

dx�
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Notice that expectation integrals are more readily computed by expressing the pay-off in

terms of the x variable. In this manner the implicit inversion step from x to F is mainly

avoided. A European call written on the (forward) price F0, maturing in time t, strike K ≥ F̄ ,
with payoff #�F
= �F −K
+ can be priced exactly in terms of Bessel integrals:

C�F0�K� t
= e−�t−X�F0
/2t

2tI��
√
2�X�F0



[
�F̄ −K
f �1
+af �2


]
� (3.297)

where

f �1
 ≡ f �1
�F0�K� t
=
∫ X�K


0

e−x/2tI��
√
2�x
I�

(√
xX�F0


t

)
dx� (3.298)

f �2
 ≡ f �2
�F0�K� t
=
∫ X�K


0

e−x/2tK��
√
2�x
I�

(√
xX�F0


t

)
dx� (3.299)

Equation (3.297) is derived by using equation (3.290) within the call pay-off of the expectation

integral. The corresponding put option price can be derived in similar fashion (see Problem 3).

These integrals are efficiently computed by numerical routines. Figure 3.16 displays some

exact numerical call prices by application of equation (3.297).

3.8.3.1 Recovering the Constant-Elasticity-of-Variance Model

One way to recover the constant-elasticity-of-variance (CEV) model is to consider the limiting

case where �→ 0 within the foregoing four-parameter Bessel family. For this purpose it is

convenient to define a parameter � > 0 such that � = �2�
−1, i.e., � = �−1 + 2. Using the

leading-order small-argument properties of the modified Bessel I� and K� functions with

positive order �, we have the limiting form of the map, equation (3.290), as �→ 0:

F�x
∼ F̄ +a
2�−1&��
�2�x
−�/2

�2�x
�/2/�2�&��+1



∼ F̄ + �a/2
��/2
−�&��
&��+1
x−�

∼ F̄ +Cx−�� (3.300)
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FIGURE 3.16 European call prices as functions of spot F0 for various maturities. The parameters

a= 5�06, �= 0�001, �= 5 (�= 1�5), K = 100 were chosen such that the local volatility at the strike

is ��K
/K = 0�25.
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where the constant is defined by C ≡ �a/2
��/2
−�&��
&��+ 1
 and &�·
 is the gamma

function. Note: The limiting procedure we are considering is such that �→ 0 while a�−� is

kept constant; i.e., we set the parameter a = const�×��. Expressions are further simplified

by defining a positive constant �0 by C ≡ �−�−1

0 . Using �= �2�
−1 within the last expression

in equation (3.300) hence gives the limiting form of the map x→ F in terms of �0:

F�x
= F̄ + ��2
0x


−�2�
−1

(3.301)

with inverse

x = X�F
= �−2
0 �F − F̄ 
−2�� (3.302)

for any constant F̄ . Taking the same limit � → 0 in equation (3.289) and using equa-

tion (3.302) gives

��F
∼ a√
X�F


	2�&��+1

2

�2�X�F

�

∼ 2�0

&��+1


&��

�F − F̄ 
1+�� (3.303)

Now, using the gamma function property &�z+1
= z&�z
, &��+1
/&��
= �= 1/2�, and
the volatility function for this model then reduces to the expression7

��F
= �0

�
�F − F̄ 
1+�� (3.304)

The exact barrier-free pricing kernel for the CEV volatility model (3.304) is then obtained

by taking the same limit �→ 0 and using the small-argument leading order of the Bessel I�
in equation (3.294):

U�F�F0� t
∼
e−�X�F
+X�F0

/2t

at

�X�F

1+
3�
2 �X�F0



− �
2

��/2
−�	&��+1

2
I�

(√
X�F
X�F0


t

)
�

This expression is further reduced by making use of the map (3.302), substituting � =
�2�
−1, using the earlier definition �a/2
��/2
−�&��
&��+ 1
 = �−�−1

0 and the property

&��+ 1
/&��
 = 1

2�
. Again we arrive at the barrier-free pricing kernel for the CEV model

with volatility given by equation (3.304), and zero-drift function:

U�F�F0� t
=
�

�2
0 t

�F0− F̄ 

1
2

�F − F̄ 

3
2
+2�

e−
(
�F−F̄ 
−2�+�F0−F̄ 
−2�

)
/2�2

0 t

×I 1
2�

((
�F − F̄ 
�F0− F̄ 


)−�

�2
0 t

)
� (3.305)

whereF�F0 ∈ �F̄ �

. It is important to point out that this result can also be obtained independent

of any consideration of themore general four-parameter Bessel family of solutions. In particular,

this pricing kernel can be derived using equation (3.259) of Lemma 3.1, where the CEV process

is directly mapped onto the underlying x-space Bessel process (see Problem 4). Solution (3.305)

can also be extended to the case of a linear deterministic drift term (see Problem 5).

7The CEV model is usually defined with volatility function ��F
 = ��F − F̄ 
1+� . This simply corresponds to

setting �0 = �� in all our formulas.
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Note that this result was derived in the case �> 0, for which the lower bound of the process,

Ft = F̄ , is not attained. From equation (3.296) or by use of equation (3.357), the density is

easily shown to integrate to unity (i.e., no absorption occurs and the density also vanishes at

the endpoint F → F̄ and as F →
). By replacing �0/� → �0/
�
 in equation (3.304) and

considering the kernel defined by equation (3.305) but with the slight modification �

�2
0 t
→ 
�


�2
0 t
,

we obtain solutions for the CEV model for � < 0. Indeed one can verify that this modified

pricing kernel is a solution. That is, by direct substitution the kernel is shown to satisfy the

forward and backward Kolmogorov PDE. In the range � < 0, however, the properties of

this pricing kernel are more subtle. In particular, one can show that the density integrates to

unity for all values � < − 1

2
, hence no absorption occurs for � ∈ �−
�− 1

2

. The boundary

conditions for the density can be shown to be vanishing at F → F̄ (i.e., paths do not attain the

lower endpoint) for all � < −1. In contrast, for � ∈ �−1�− 1

2

 the density becomes singular

at the lower endpoint, F = F̄ (hence this corresponds to the case where the density has an

integrable singularity for which paths can also attain the lower endpoint but are not absorbed).

For the special case of � =− 1

2
, the formula gives rise to absorption. [Note that for the range

� ∈ �− 1

2
�0
 the assumed pricing kernel is not useful, since it gives rise to a density that has

a nonintegrable singularity at F = F̄ , except for certain fractional values of �. For � < 0,

however, another solution that is integrable is obtained by only replacing the order �2�
−1 by

−�2�
−1 in the Bessel function. The latter solution for the density does not integrate to unity

and hence gives rise to absorption, whereby the lower finite endpoint F̄ is an exit boundary.]

The special case of �=−1 gives a nonzero constant value at the lower endpoint and recovers

the Wiener process with reflection at F = F̄ and no absorption on the interval 	F̄ �

, with

U�F�F0� t
=
1

�0

√
2�t

(
e−�F−F0


2/2�2
0 t + e−�F+F0−2F̄ 
2/2�2

0 t

)
� (3.306)

In the limit F̄ →−
 this gives back the kernel for the pure Wiener process on the entire

real line F ∈ �−
�

, with U = e−�F−F0

2/2�2

0 t/�0

√
2�t.

3.8.3.2 Recovering Quadratic Models

We have already seen, in Section 3.5.2, that the Wiener process constitutes a useful underlying

x-space process for generating exact F -space pricing kernels for the quadratic volatility model

of the form in equation (3.117) with two distinct roots. In fact, in Section 3.5.2 we employed

the diffusion canonical reduction transformation methodology and thereby generated various

exact pricing kernels for this quadratic volatility model by specifically mapping the process

onto the constant-volatility Wiener process. It is now instructive to show that the quadratic

model with one double root (i.e., one root of order 2) at the lower limit, F̄ , obtains as a

special case of the four-parameter Bessel family. For this we simply consider the CEV model

with choice � = 1. From equation (3.304) the volatility function is then

��F
= �0�F − F̄ 
2� (3.307)

Using the Bessel function I 1
2
�z
=√

2/�z sinh z, equation (3.305) gives the exact barrier-free

pricing kernel for this model:

U�F�F0� t
=
2

�0

√
2�t

�F0− F̄ 


�F − F̄ 
3
e−
(
�F−F̄ 
−2+�F0−F̄ 
−2

)
/2�2

0 t

× sinh

(
�F − F̄ 
−1�F0− F̄ 
−1

�2
0 t

)
� (3.308)

where F�F0 ∈ �F̄ �

. This density integrates to unity exactly (see Problem 2).
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FIGURE 3.17 A hierarchy of analytically solvable state-dependent models with examples of their

corresponding typical local volatility curves. The popular linear (Black–Scholes) model gives only the

flat-line local volatility shape.

It is interesting to observe that the foregoing exactly solvable state-dependent multi-

parameter volatility models form a kind of model hierarchy that can be summarized in a

flowchart, as depicted in Figure 3.17. At the top are the underlying (x-space) processes that
are used to generate the various pricing (F -space) models. Most of the models depicted

are subsets of the Bessel family. However, extensions to other models are also possible

by means of the techniques presented in this chapter. For example, one can enlarge the

family of exact pricing kernels by considering the CIR process as an underlying x-space
process. As seen in Chapter 2, the CIR process has the linear-drift function ��x
= �0+�1x
and hence has one extra parameter as compared to the Bessel process. This gives rise to

the family of confluent hypergeometric functions (e.g., Whittaker and Kummer functions),

for which the Bessel functions form a special subset, as depicted in Figure 3.17. The so-

called confluent hypergeometric family can be shown to contain a total of seven adjustable

parameters. We refer the interested reader to some recent literature on this topic [ACCL01,

Lip03]. Other extensions are also possible. The search for new families of analytical solutions

to complex state-dependent models and their applications to pricing is a topic of current

and ongoing research in financial mathematics. For recent works on pricing path-dependent

options using new families of state-dependent volatility models see [CaM04a, CaM04b,

CaM05].

Problems

Problem 1. Show that the density in equation (3.305) integrates to unity for all t > 0 by a

change of variables using equation (3.302) and an appropriate Bessel integral identity. Show

that in the limit t → 0 the density represents a Dirac delta function.
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Problem 2. Show that the density in equation (3.308) integrates to unity for all t > 0. In doing

so, do not employ any Bessel integral identity. Hint: Change variables to x = �−2
0 �F − F̄ 
−2

and rewrite the integral so as to make use of the identity
∫ 

−
 ye−ay2+by dy =√

�
a

(
b
2a

)
eb

2/4a.

Problem 3. Derive the European put option formula analogous to equation (3.297) for the

four-parameter Bessel model.

Problem 4. Let ��x
=�= �−1+2, $�x
= 2
√
x, ��F
= �0

�
�F−F̄ 
1+�. Using relation (3.257)

with the choice �= 0 [i.e., ��x�F
= 0], show that the mapping in equation (3.302) obtains.

By substituting the kernel u�X�F
�X�F0
� t
 of equation (3.215) into equation (3.259) of

Lemma 3.1, arrive at the kernel in equation (3.305).

Problem 5. Show that the kernel defined by U��F�F0� t
≡ e−�tU�e−�tF�F0�T�t

, where U
solves the CEV process dFt = �F 1+�

t dWt, [i.e. as in equation (3.305) with F̄ = 0, �0 = ��],
is a solution to the corresponding CEV process with an added drift function: dFt = �Ftdt+
�F 1+�

t dWt, for arbitrary drift parameter �. In doing so, arrive at T�t
= �e2��t −1
/2�� and

hence derive the barrier-free kernel

U��F�F0� t
=
2�F

1
2

0 F
− 3

2
−2�e�t/2

sgn��
�2�1− e−2��t

exp

(
− �

��2

F−2�
0 e−2��t +F−2�

�1− e−2��t


)
×I 1

2�

(
�

��2

�FF0

−�

sinh���t


)
� (3.309)

3.8.4 Conditions for Absorption, or Probability Conservation

Consider an x-space kernel solving equation (3.256) and a given fixed interval x ∈ �a� b
.
Given an initial interior point x0 ∈ �a� b
 at time t = 0, the probability p�a�b
x0� t
 that a

sample path x , 0 ≤  ≤ t, will have terminal value xt = x ∈ �a� b
 within the fixed interval

at time t ≥ 0 is then

p�a�b
x0� t
=
∫ b

a
u�x� x0� t
dx� (3.310)

The rate of absorption into the interval, or the rate of probability increase, denoted by

r�a� b
x0� t
, is then given by �p/�t. Taking the time derivative inside the integral while

making use of the forward equation (3.256) and integrating gives

r�a� b
x0� t
=
[
1

2

�

�x

(
$�x
2u�x�x0� t


)
−��x
u�x� x0� t


]x=b

x=a

� (3.311)

If r�a� b
x0� t
= 0 for any t, then no absorption occurs over time; otherwise absorption occurs

inside (or outside) the interval x ∈ �a� b
.
Of interest is whether kernels with imposed homogeneous-(zero-)-boundary conditions

give rise to absorption or not. In this case we take a= xL and b= xH as, respectively, the lower

and upper endpoints of the entire solution space and generally assume solutions such that

��x
u�x� x0� t
→ 0 at both endpoints.8 This is certainly the case for all the x-space kernels

considered throughout this chapter, as can be verified. It hence follows from equation (3.311)

that the kernel gives no absorption if

lim
x→x+L

�

�x

(
$�x
2u�x�x0� t


)
= 0 (3.312)

8Depending on the solution interval, a lower (upper) endpoint xL (xH ) takes on either a finite value or −
 (
).



3.8 New Families of Analytical Pricing Formulas 227

and

lim
x→x−H

�

�x

(
$�x
2u�x�x0� t


)
= 0� (3.313)

Moreover, note that (regardless of whether u is a barrier-free kernel or a kernel with absorption

at a barrier for t > 0) any kernel u integrates to unity in the limit t → 0 because of the

imposed delta function initial condition: u�x�x0� t
→ ��x−x0
 as t → 0. The no-absorption

conditions (3.312) and (3.313), if satisfied, ensure that p�xL� xH 
x0� t
 is constant as a function
of t and therefore that conservation of probability is satisfied, with kernel u integrating to

unity for all t ≥ 0.

For the Bessel process $�x
= 2
√
x, hence, equation (3.311) simplifies to give the absorp-

tion rate r�xL� xH 
x0� t
 proportional to

lim
x→x−H

x
�u�x� x0� t


�x
− lim

x→x+L
x
�u�x� x0� t


�x
� (3.314)

Using the barrier-free kernel given by equation (3.215) [i.e., xL = 0, xH =
, x∈ �0�

] while
making use of the asymptotic properties of the I��z
 function for argument z→ 0 and z→
,

it is readily shown that these limits are both zero, hence giving no absorption. This barrier-

free kernel therefore conserves probability. Alternatively, this is readily shown by direct

integration; see Section 3.7.1. In contrast, the kernels given by equations (3.232), (3.245),

and (3.253) for the double- and single-barrier Bessel process are all readily proven to lead

to absorption. Considering the double-barrier solution equation (3.232), for example, the

absorption rate due to either endpoint involves terms of the form x
�
2
+1�′

n�x
 and x
�
2
+1�n�x
,

with x → xL and x → xH . The eigenfunctions evaluated at the endpoints obviously give

zero, by design �n�x= xL
=�n�x= xH
= 0. However, the derivative of the eigenfunctions

�′
n�x = xL
, �

′
n�x = xH
 are nonzero. Similar arguments can be used to show that the other

Bessel barrier solutions also give rise to absorption; i.e., probability is not conserved as paths

attaining either finite barrier level, xL > 0 or xH > 0, are absorbed.

Now consider any F -space kernel U that is generated from an underlying x-space kernel
u as given by equation (3.274) and a fixed interval F ∈ �Fa�Fb
, Fa = F�a
, Fb = F�b
, where
x ∈ �a� b
 maps one to one onto F ∈ �Fa�Fb
. Given an initial point F0 ∈ �Fa�Fb
 at time

t = 0, the probability P�Fa�Fb
F0� t
 that a sample path F , 0 ≤  ≤ t, will have terminal

value Ft = F ∈ �Fa�Fb
 at time t ≥ 0 is then, in analogy with equation (3.310),

P�Fa�Fb
F0� t
=
∫ Fb

Fa

U�F�F0� t
dF� (3.315)

The rate of absorption into the interval, denoted by R�Fa�Fb
F0� t
, is given by �P/�t. [Note:
The absorption rate outside the interval is then just −R.] Again, taking the time derivative

inside the integral and now using the forward equation (3.258) gives

R�Fa�Fb
F0� t
=
1

2

�

�F

(
��F
2U�F�F0� t


)∣∣∣∣F=Fb

F=Fa

� (3.316)

In carrying out further analysis, it is convenient simply to transform to x-space variables. In

particular, using equation (3.274), and the chain rule,

R�Fa�Fb
F0� t
=
e−�t

2û�x0� �


$�x


��F�x



�

�x

(
$�x
��F�x

û�x��
u�x� x0� t


)∣∣∣∣x=b

x=a

� (3.317)
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x0 = X�F0
, a= X�Fa
, b = X�Fb
, where 
�X�F
/�F 
 = $�x
/��F�x

 is used. By mapping

x ∈ 	xL� xH
 onto F ∈ 	L�H
, with endpoints9 F�xL
 = L and F�xH
 = H (xL = X�L
, xH =
X�H
), and letting a = xL, b = xH , then from equation (3.317) the no-absorption condition

for the interval F ∈ �L�H
 can be written generally as[
$�x


��F�x



�

�x

(
$�x
��F�x

û�x��
u�x� x0� t


)]x=xH

x=xL

= 0� (3.318)

In analogy with the x-space kernel, this condition, if satisfied, therefore represents probability
conservation with total unit probability on the entire interval of the F -space solution, since

the kernel U also integrates to unity in the limit t→ 0; i.e., U�F�F0� t
→ ��F−F0
 as t→ 0.

The general condition given by equation (3.318) can hence be used to determine whether

absorption arises for any F -space kernel obtained via Theorem 3.1. We now apply this

condition to the general Bessel family. In particular, using equations (3.277) and (3.285), the

general Bessel family of pricing kernels given by equation (3.292) then admits a no-absorption

condition in the form[(
�

2
û�x��
+

√
x�

2
x− �

2 	q1I
′
��
√
2�x
+ q2K

′
��
√
2�x



)
u�x�x0� t


− xû�x��

�u�x� x0� t


�x

]x=xH

x=xL

= 0� (3.319)

From our analysis on the x-space kernels we readily observe that all single- and double-barrier
solutions with u�xL� x0� t
= u�xH�x0� t
= 0 for finite xL� xH > 0 lead to absorption. This is

the case since the I�, K�, I
′
�, and K′

� functions are finite at finite nonzero endpoints; hence

for the barrier kernels the foregoing condition reduces to

xû�x��

�u�x� x0� t


�x

∣∣∣∣x=xH

x=xL

= 0� (3.320)

However, as just seen, this condition cannot generally be satisfied for any of the barrier

kernels given by equations (3.232), (3.245), or (3.253). We therefore conclude that the only

possible families of F -space kernels that can lead to no absorption are those with u�x�x0� t

given by equation (3.215), i.e. the barrier-free solutions on x ∈ �0�

 with xL = 0, xH =
.

We therefore further specialize our analysis exclusively to families of barrier-free solutions

with underlying barrier-free x-space kernel chosen for u. Upon substituting equation (3.215)

into equation (3.319), it readily follows that the first term in equation (3.319) is zero in the

limits x → 0�
. Indeed, for the lower limit x → 0 this is a consequence of the asymptotic

identities: I��z
 → c1z
�, K��z
 → c2z

−�, as z → 0, where c1, c2 are positive constants

dependent on the order �> 0. For the upper limit the asymptotic properties I��z
→ ez/
√
2�z,

K��z
 →
√
�/2ze−z, as z →
, are used. The exponential factor e−x/2t in u is hence more

rapidly decreasing, and the term ûu vanishes in the limit x→
. Using equation (3.277), the

no-absorption condition is then reduced to

xû�x��

�u�x� x0� t


�x

∣∣∣∣x=


x=0

= x1− �
2
e−x0/2t

2x
�
2

0 t
	q1I��

√
2�x
+q2K��

√
2�x



× �

�x

(
x

�
2 e−x/2tI��

√
xx0/t


)∣∣∣∣x=


x=0

= 0�

9Note: The arguments follow in exactly the same way whether a monotonically increasing or decreasing map

F = F�x
 is assumed.
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The foregoing asymptotic properties for the I�, K� functions give zero for the upper limit

x → 
, for all choices of parameters q1,q2. On the other hand, evaluating the lower limit

while using the small-argument expressions for I� and K� gives, to leading order:

e−x0/2t

t�+1

(
C1q1x+C2q2x

1−�
) �

�x

(
x�e−x/2t

)
→ Aq2� (3.321)

where C1, C2, A are positive constants and A depends on t, �, x0, and �. Hence, we conclude
that if q2 �= 0, then there is a nonzero finite rate of absorption (i.e., absorbed outside of

the solution region) at the lower boundary; otherwise for q2 = 0 there is no absorption, and

probability is conserved for all time. The latter is the case of the barrier-free four-parameter

subfamily kernel as given by equation (3.294). Notice that this conclusion is indeed consistent

with equation (3.296).

3.8.5 Barrier Pricing Formulas for Multiparameter Volatility Models

In concluding this chapter we give a brief discussion of how pricing kernels and European

option formulas can be obtained in analytically closed form for multiparameter state-dependent

models and in particular for the Bessel family of models.

Let us assume we have solved for an underlying x-space barrier kernel in the form of

an exact eigenfunction expansion given by equation (3.202) for a domain x�x0 ∈ �xL� xH

with zero-boundary conditions at the endpoints of the domain. Consider any Ft process that

is mapped onto an underlying xt-process and thereby satisfying the general assumptions of

Theorem 3.1. From the discussion in Section 3.8.1 it follows that reduction transformation

formula (3.274) can be used together with equation (3.202) to obtain a general family of

exact eigenfunction expansions for an F -space pricing kernel that takes the generic form

U�F�F0� t
=
$�x0


û�x0� �


û�x��


��F

e
∫ x
x0

��x′

$�x′
2 dx

′ 
∑
n=1

e−��+
!n

t�n�x
�n�x0
� (3.322)

The generating function û solves equation (3.272) and is used to obtain x0 =X�F0
, x=X�F

by inverting equation (3.273), where one uses either appropriate branch of the map F = F�x

(e.g., monotonically increasing or decreasing) and the volatility function ��F
 for the Ft

process is given by equation (3.271). The eigenfunctions �n solve equation (3.198). The

x-space endpoints are mapped onto the corresponding barrier levels in F -space: H = F�xH

and L= F�xL
.

By specializing to the four-parameter subfamily of Bessel models of Section 3.8.3, the

pricing kernels are given by relation (3.293), where u is taken to be the Bessel kernel as in

either equation (3.232), (3.245), or (3.253), depending on whether we are seeking an F -space
pricing kernel U for a double barrier or a single barrier, respectively. For instance, in the case

of a double barrier with absorption of paths Ft at levels L and H , we insert equation (3.232)

into equation (3.293) to obtain the pricing kernel as a closed-form eigenfunction series

solution:

UDB�F�F0�L�H� t
=
(
2

a

)
x
I3��

√
2�x


I��
√
2�x0



∑
n=1

e−��+
!n

t�n�x
�n�x0
� (3.323)

with x= X�F
, x0 = X�F0
 given by inverting equation (3.290). Note that this barrier kernel

is a special case of equation (3.322). The mapping in equation (3.290) provides us with the
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unique condition used to fix the two barrier levels L, H by appropriate choice of x-space
endpoints:

L= F̄ +a
K��

√
2�xL


I��
√
2�xL


� H = F̄ +a
K��

√
2�xH


I��
√
2�xH


� (3.324)

Or alternatively, given L and H values, these equations are uniquely inverted to give the

endpoint values xL = X�L
 and xH = X�H
. The eigenfunctions in equation (3.230) [and the

eigenvalues satisfying equation (3.221)] are then given uniquely for all n > 1. Note that since

the mapping F�x
 is decreasing, F�F0 ∈ 	H�L
, so the lower barrier is at H and the upper

barrier is at L in our present notation. That is, the lower (upper) x-space endpoints are mapped

to the upper (lower) barrier levels in F-space.
Similar formulas for the pricing kernel also follow for the single-barrier cases. Cumulative

probability densities can also be computed in analytically closed form. These are in turn used

to provide closed-form pricing formulas for European barrier calls and puts. For the case of

the double barrier with L�H > F̄ , we define the cumulative density for H ≤ F ≤ L as

�c�F�F0� t
=
∫ F

H
UDB�f�F0�L�H� t
df� (3.325)

Using equation (3.323) and changing integration variables from f to x = X�f
 via the

mapping (3.290) we obtain

�c�F�F0� t
=

∑

n=1

e−��+
!n

t �n�X�F0



I��
√
2�X�F0



∫ X�H


X�F

I��

√
2�x
�n�x
dx� (3.326)

Using equation (3.230) for �n�x
 and making a simple change of variables, one can then use

integral indentities (3.362) and (3.363) to evaluate the resulting integrals. After collecting

terms and simplifying with the use of the Wronskian identity (3.384) we arrive at the closed-

form series

�c�F�F0� t
=
1

I��
√
2�X�F0




∑
n=1

e−��+
!n

t�n�X�F0

,n���X�F

� (3.327)

where we have defined the functions

,n���x
≡
1

�+
!n

[√

2
!n
xI��
√
2�x
�̃n�x
−

√
2�xI�+1�

√
2�x
�n�x


− 2

�
�nI��

√
2�X�H



]
(3.328)

and

�̃n�x
≡�n

[
Y��

√
2
!n
xH
J�+1�

√
2
!n
x
− J��

√
2
!n
xH
Y�+1�

√
2
!n
x


]
� (3.329)

The normalization factor �n is given by equation (3.231). In a similar manner, the related

cumulative density given by

�̄c�F�F0� t
=
∫ F

H
UDB�f�F0�L�H� t
fdf� (3.330)
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for H ≤ F ≤L, can also be evaluated analytically. Again using equation (3.323) and changing
integration variables from f to x = X�f
 via the mapping (3.290),

�̄c�F�F0� t
= F̄�c�F�F0� t
+a

∑

n=1

e−��+
!n

t �n�X�F0



I��
√
2�X�F0



×
∫ X�H


X�F

K��

√
2�x
�n�x
dx� (3.331)

This last integral is evaluated using equation (3.230) for �n�x
; and, after changing variables,

we use the integral indentities equations (3.364) and (3.365). Collecting terms, using (3.384),

and simplifying we obtain the closed-form series

�̄c�F�F0� t
= F̄�c�F�F0� t
+
a

I��
√
2�X�F0




∑
n=1

e−��+
!n

t�n�X�F0

+n���X�F

� (3.332)

where

+n���x
≡
1

�+
!n

[√

2�xK�+1�
√
2�x
�n�x
+

√
2
!n
xK��

√
2�x
�̃n�x


− 2

�
�nK��

√
2�X�H



]
� (3.333)

Under the four-parameter Bessel family of volatility models, a European double-knockout

call maturing in time t with payoff �F −K
+ therefore has value given by (excluding dis-

counting)

CDB�F0�K� t
= �̄c�L�F0� t
− �̄c�K�F0� t
−K
[
�c�L�F0� t
−�c�K�F0� t


]
(3.334)

for H ≤ K< L and

CDB�F0�K� t
= �̄c�L�F0� t
−K�c�L�F0� t
 (3.335)

for strike values below the barriers, K < H< L. An analogous formula for the put option is

also readily obtained. Analogous formulas for the option values for single barriers can also

be derived in similar fashion. By applying a similar limiting procedure to the one discussed

in Section 3.8.3.1, the foregoing families of formulas can also be used to recover closed-form

formulas for barrier pricing kernels (as well as barrier call and put option values) for the

CEV model with zero drift function. In particular, one can recover the double-barrier kernel

for the CEV model (see Problem 1). Moreover, as a special case of the CEV solutions, even

simpler closed-form expressions for the barrier kernels and barrier option values arise for the

quadratic model of Section 3.8.3.2. As already discussed, in this case �= 1

2
and the modified

Bessel functions are just the elementary hyperbolic sine and exponential functions, while the

ordinary Bessel functions are just the sine and cosine functions (see Problem 2).

Problems

Problem 1. By using a similar limiting procedure to the one in Section 3.8.3.1 for the

barrier-free case, with � = 1/�2�
, obtain an exact eigenfunction series expansion for the

double-barrier pricing kernel for the CEV model with volatility given by equation (3.304)

and zero drift function in the Ft process. Express your answer explicitly in terms of F , F0,

L, H , �0, �, and time t. Also, provide the equation for the eigenvalues.
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Problem 2. Obtain an exact eigenfunction series expansion for the double-barrier pricing

kernel for the quadratic model of Section 3.8.3.2. This can be achieved by specializing the

CEV formula from Problem 1 using �= 1. Another (simpler) way (which makes no use of the

CEV result of Problem 1) is to set �= 1

2
in the four-parameter Bessel family map (3.290) and

in equation (3.323). Then by letting a= C
√
� (for an appropriate choice of constant C), take

the limit �→ 0 of equation (3.323). The series should in fact reduce to elementary functions,

with a simple exact expression for the eigenvalues !n. Express your answer explicitly in

terms of F , F0, L, H , �0, and t. Hint: For half-integer order the Bessel functions are

J 1
2
�z
=√

2/�z sin z, Y 1
2
�z
=−√

2/�z cos z, I 1
2
�z
=√

2/�z sinh z, K 1
2
�z
=√

�/2ze−z.

Problem 3. Derive a closed-form series expression for a double-barrier call option price for

the quadratic model of Section 3.8.3.2. You may use the result in Problem 2.

Problem 4. Following the same limiting procedure as in Problem 1, obtain an exact eigen-

function series expansion for the price of a double-barrier call option for the CEV model;

i.e., obtain the analogues of equations (3.334) and (3.335) for the CEV model, with zero drift

function in the Ft process.

3.9 Appendix A: Proof of Lemma 3.1

Assume a relationship among the fundamental solutions in the form

U�F�F0� t
=
$�x


��F

e�t

��x


��x0

u�x� x0� t
� (3.336)

with �, ��x
 to be determined. By direct substitution of this Ansatz into equation (3.258),

applying the chain rule of differentiation and collecting terms gives

�u

�t
+�u= 1

2
$2 �

2u

�x2
+ 1

2

[
�$2�
x+$�$�
x

�
+$� ′�F


]
�u

�x

+ 1

2

[
$�$�
xx+ �$x+� ′�F

�$�
x

�
+��F
� ′′�F


]
u� (3.337)

where primes and subscript variables denote derivatves with respect to the appropriate variable

and function arguments and u= u�x�x0� t
. Rewriting equation (3.256) by explicitly carrying

out the derivatives gives

�u

�t
= 1

2
$2 �

2u

�x2
+ �2$$x−�


�u

�x
+ �$2

x +$$xx−�x
u� (3.338)

Combining the last two equations gives a linear equation in u and ux. Since this equation

must be valid for arbitrary solution u, the coefficients in u and ux must be zero identically.

Setting the coefficient in ux to zero gives a first-order equation that can be cast in the form

d

dx
log��x
= 1

2

$′�x
−� ′�F


$�x

− ��x


$�x
2

= 1

2

d

dx
log

$�x


��F�x


− ��x


$�x
2
� (3.339)

Here we used F ′�x
= �/$.
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Integrating from an arbitrary point x0 to x, we find

��x


��x0

= exp

(
1

2
log

$�x
/��F�x



$�x0
/��F�x0


−
∫ x

x0

��s


$�s
2
ds

)
� (3.340)

Setting the coefficient in u to zero and using equation (3.339) gives a second-order equation

in �:

$2�xx

�
+ 1

2

(
$2
x −� ′�F
2

)+��F
� ′′�F
−$$xx− �3$x+� ′�F


�

$
+2�x−2�= 0� (3.341)

For a solution to exist, this equation must be consistent with equation (3.339). Hence, by

differentiating equation (3.339) once with respect to x while using equation (3.339) in the

resulting expression, we obtain

$2�xx

�
= 1

2
�$$xx−��F
� ′′�F

+ 1

4
�� ′�F
2−$2

x


+ �$x+� ′�F


�

$
+ �2

$2
−�x� (3.342)

Inserting the value of $2�xx/� in this equation into the previous one and simplifying finally

leads to an expression for �:

�= 1

2

[
�x+

�2

$2
−2�

$x

$
+ 1

2
���F
� ′′�F
−$$xx
+

1

4
�$2

x −� ′�F
2


]
This is equation (3.257) and must be a constant, as assumed throughout the derivations.

Hence, combining equations (3.336), (3.340), and (3.257), we conclude that U given by

equation (3.259) indeed solves equation (3.258). Moreover, the Dirac delta function initial

condition in F -space is also satisfied, since

lim
t→0

U�F�F0� t
=
$�X�F



��F

��X�F
−X�F0

= ��F −F0
� (3.343)

where X′�F
= $�X�F

/��F
.

3.10 Appendix B: Alternative “Proof” of Theorem 3.1

Here we show how Theorem 3.1 arises as an application of the (continuous-time) fundamental

theorem of asset pricing presented in Chapter 1. The argument can be formulated by making

reference to a financial model. Consider a multicurrency financial model where domestic

interest rates are zero, the process xt is interpreted as a price process for an asset denominated

in a foreign currency, and Ft = F�xt
 is the price process for a contingent claim (a quanto

option) in the domestic currency. Assume that under the pricing measure where Ft has zero

drift function, the underlying foreign price process xt obeys the equation

dxt = ��xt
dt+$�xt
dWt (3.344)

for some drift function ��x
. Assume also that the volatility $�x
 is such that, for some choice

of the drift function ��x
, one can solve stochastic differential equation (3.254). By solving,
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we mean that it is possible to find the pricing kernel u�x� t� x0
, which can be interpreted as

the current time-zero price of an infinitesimally narrow butterfly spread option of maturity

time t, i.e., with delta function payoff ��x−x0
, where x0 is the spot price of the underlying
foreign asset.

Our objective is to show that if the volatility function for the quanto option Ft is defined

as [i.e., equation (3.271)]

��F
= �0$�X�F

e
−2

∫ X�F
 ��y


$�y
2
dy

û�X�F
��
2
� (3.345)

then it is possible to find the pricing kernel for the quanto option Ft (which will be in

analytically closed form assuming the kernel for the xt-process is given analytically). Here,

� is a real valued parameter and the function û = û�x��
 is defined as the solution of

equation (3.272), i.e.,

$2

2
ûxx = �û−�ûx� (3.346)

Finally, the function X�F
 in equation (3.345) and its inverse, F�x
, are defined as the

solutions of the equation

dX�F


dF
= $�x


��F

� (3.347)

The key in this derivation involves a change of numeriare asset given by a process gt,
defined as

gt =
e�t

û�xt� �

� (3.348)

and by applying Itô’s lemma to this function of xt and t we have the SDE

dg =
(
�−�

ûx

û
+$2

[(
ûx

û

)2

− 1

2

ûxx

û

])
g dt+�gg dWt� (3.349)

where the lognormal volatility of gt (denoted by �g) is given by

�g =−$
ûx

û
� (3.350)

Substituting equation (3.346), we find that

dg

g
=
(
�−�

$
�g + ��g
2

)
dt+�g dWt� (3.351)

To demonstrate that gt defines a domestic asset price process, consider this equation in the

original pricing measure, where the domestic quanto option price process Ft has zero drift

function. In this case, using Itô’s lemma on the inverse mapping xt = X�Ft
, we arrive at an

SDE of the form of equation (3.344), with drift given by

��x
= ��F
2

2

d

dF

dX�F


dF
= ��F
2

2

d

dF

$�x


��F

� (3.352)
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where F = F�x
. Using the chain rule for differentiation and expressing all functions in terms

of x, we then have

��x
= �$

2

d

dx

(
$

�

)
= $

2

[
$x−

$

�
�x

]
� (3.353)

where � ≡ ��F�x

 is the volatility function for the quanto option of price Ft. Hence, by

substituting into the expression for the risk-neutral drift of gt in equation (3.351) we find

�−�

$
�g + ��g
2 =

[
�+ $2

2

�x

�
− 1

2
$$x

]
ûx

û
+$2

(
ûx

û

)2

� (3.354)

Using expression (3.345) for the volatility of the quanto option Ft, we find that

�x

�
= $x

$
− 2�

$2
− 2ûx

û
� (3.355)

Substituting into equation (3.354), we find that the drift of gt under the pricing measure

vanishes, as it ought to for a domestic asset. Hence, gt can be interpreted as the process for

a numeraire asset.

Next, consider equation (3.351) again, but now under the measure having gt as numeraire.

Under this pricing measure the price of risk is �g, hence the lognormal drift is just ��g
2, and

dgt = ��g
2gt dt+�ggt dWt� (3.356)

Comparison with equation (3.351) shows that under this measure the drift � of the underlying

process xt is �, as stated. This implies that the pricing kernel for the quanto option, of

volatility given by equation (3.345), is given by equation (3.274) with equation (3.276), as

required.

3.11 Appendix C: Some Properties of Bessel Functions

Integral relations:10 ∫ 


0

x$/2e−�xI$�2�
√
x
dx= �$ e

�2/�

�$+1
� (3.357)

∫ 


0

e−�xI$�2�
√
x
I$�2�

√
x
dx= e��

2+�2
/�

�
I$

(
2��

�

)
� (3.358)

∫ 


0

e−�xJ$�2�
√
x
J$�2�

√
x
dx= e−��2+�2
/�

�
I$

(
2��

�

)
� (3.359)

In these integrals, the order of the Bessel functions is such that Re $ >−1.∫
xJ$�ax
J$�bx
dx=

x

a2−b2

[
aJ$+1�ax
J$�bx
−bJ$�ax
J$+1�bx


]
� (3.360)

∫
xJ$�ax
Y$�bx
dx=

x

b2−a2

[
bJ$�ax
Y$+1�bx
−aJ$+1�ax
Y$�bx


]
� (3.361)

10 Indefinite integrals are given within an arbitrary constant.
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b �= a in equations (3.360) and (3.361).

∫
xJ$�ax
I$�bx
dx=

x

a2+b2

[
aJ$+1�ax
I$�bx
+bJ$�ax
I$+1�bx


]
� (3.362)

∫
xI$�ax
Y$�bx
dx=

x

b2+a2

[
bI$�ax
Y$+1�bx
+aI$+1�ax
Y$�bx


]
� (3.363)

∫
xY$�ax
K$�bx
dx=

x

a2+b2

[
aY$+1�ax
K$�bx
−bY$�ax
K$+1�bx


]
� (3.364)

∫
xJ$�ax
K$�bx
dx=

x

a2+b2

[
aJ$+1�ax
K$�bx
−bJ$�ax
K$+1�bx


]
� (3.365)

∫
xJ 2

$ �ax
dx=
x2

2

[
J 2
$ �ax
− J$−1�ax
J$+1�ax


]
� (3.366)

∫
xY 2

$ �ax
dx=
x2

2

[
Y 2
$ �ax
−Y$−1�ax
Y$+1�ax


]
� (3.367)

∫
xJ$�ax
Y$�ax
dx=

x2

4

[
2J$�ax
Y$�ax
− J$+1�ax
Y$−1�ax


− J$−1�ax
Y$+1�ax


]
� (3.368)

∫
x2$+1Y 2

$ �x
dx=
x2�1+$


2�1+2$


[
Y 2
$ �x
+Y 2

$+1�x


]
� (3.369)

∫
x2$+1J 2

$ �x
dx=
x2�1+$


2�1+2$


[
J 2
$ �x
+ J 2

$+1�x


]
� (3.370)

∫
x2$+1J$�x
Y$�x
dx=

x2�1+$


2�1+2$


[
J$�x
Y$�x
+ J$+1�x
Y$+1�x


]
� (3.371)

The Wronskian W 	I$�x
�K$�x

=−1/x leads to other useful indefinite integrals:

∫ dx

x	aI$�x
+bK$�x


2
= �1/b
I$�x


aI$�x
+bK$�x

� b �= 0 (3.372)

or equivalently:

∫ dx

x	aI$�x
+bK$�x


2
= −�1/a
K$�x


aI$�x
+bK$�x

� a �= 0� (3.373)

Analogous integral identities involving the ordinary Bessel �J� Y� pair also obtain from the

Wronskian W	J$�x
� Y$�x

= 2/�x.
Differential equations:

Z′′
$ �x
+

1

x
Z′

$�x
− �1+$2/x2
Z$�x
= 0� Z$ = I$�K$� (3.374)

Z′′
$ �x
+

1

x
Z′

$�x
+ �1−$2/x2
Z$�x
= 0� Z$ = J$� Y$� (3.375)
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Recurrence relations:

2I ′$�x
= I$−1�x
+ I$+1�x
� (3.376)

−2K′
$�x
=K$−1�x
+K$+1�x
� (3.377)

�2$/x
I$�x
= I$−1�x
− I$+1�x
� (3.378)

−�2$/x
K$�x
=K$−1�x
−K$+1�x
� (3.379)

xI ′$�x
=±$I$�x
+xI$±1�x
� (3.380)

xK′
$�x
=±$K$�x
−xK$±1�x
� (3.381)

xZ′
$�x
=±$Z$�x
∓xZ$±1�x
� (3.382)

�2$/x
Z$�x
= Z$+1�x
+Z$−1�x
� (3.383)

where Z$ = J$� Y$. Combining the Wronskian with recurrence relations gives

J$�x
Y$+1�x
− J$+1�x
Y$�x
=
−2

�x
� (3.384)

Leading-order asymptotic expansions for 
z
 →
:

I$�z
∼
ez√
2�z

� (3.385)

K$�z
∼
√

�

2z
e−z� (3.386)

Jump discontinuities across the complex branch cut z= ei�x→ e−i�x, x > 0:

I$�e
i�x
− I$�e

−i�x
= 2i sin�$I$�x
� (3.387)

K$�e
i�x
−K$�e

−i�x
=−i�	I$�x
+ I−$�x

� (3.388)

I$�e
i�x
+ I$�e

−i�x
= 2 cos�$K$�x
� (3.389)

Leading order expansions for small argument z→ 0

I$�z
∼
1

&�$+1


( z
2

)$ +O�z$+2
� for complex $ �= −1�−2�−3� � � � (3.390)

I$�z
∼
1

&�1−$


( z
2

)−$ +O�z2−$
� for $ =−1�−2�−3� � � � (3.391)

K$�z
∼
1

2
&�
$



( z
2

)−
$
 +O�z2−
$

� for real $ �= 0 (3.392)
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C H A P T E R . 4

Numerical Methods for Value-at-Risk

Portfolios of financial assets are exposed to many types of risks, future events that if they

occurred would result in financial losses. The purpose of risk management is to quantify

and control these dangers. Value-at-risk (VaR) is a measure of the market risk, the chance

of a loss in a company’s portfolio caused by unfavorable changes in prices and rates.

Minimum risk management standards for financial institutions are set and enforced by national

regulators. The Basel Accord [Bas88], the market risk amendment [Bas96a, Bas96b], and

the recent update [Bas88] contain the international guidelines implemented by the national

agencies.1 Value-at-risk has become the industry standard for quantifying market risk, partly

because of its intuitive appeal and, more importantly, because it is endorsed in the Basel

Accord.

For a given portfolio, value-at-risk is defined as the maximum loss forecast over a

specified holding period and within a given confidence level (see Figure 4.1). In other words,

it is a percentile of the distribution for changes in portfolio value. If %� is the change in

portfolio value during the holding period, then value-at-risk is the solution to a nonlinear

equation:

P 	%�≤−VaR
= 1−�� (4.1)

where � is the confidence level. Another interpretation is that in the long term we expect

losses exceeding value-at-risk with frequency 1−�. For �= 99%, we expect losses exceeding

value-at-risk 1 out of every 100 days. Regulators require value-at-risk to be computed daily

with a confidence level of 99% and for a holding period of 10 days. However, since the

rules allow for value-at-risk for 1 day to be scaled to approximate the risk for 10 days, we

choose to consider daily holding periods in our examples. There are many review papers

about value-at-risk simulation: Stambaugh [Sta96] gives a high-level introduction; for more

1The Basel Accord and related documents are available from the Bank of International Settlements (www.bis.org).
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value-at-risk

FIGURE 4.1 The probability that a loss is greater than value-at-risk, the density of the shaded region,

is equal to 1−�.

in-depth, general, algorithmic, and mathematical discussions, we have a personal preference

for [Mor96a, Hul00, DP97].2

In financial markets, risk is caused by uncertainty about the value of an investment in

the future. The value of a portfolio is a function of a set of risk factors. Risk factor is the

generic term for a financial variable related to market prices of selected reference securities,

for example, equity indices, interest rates, foreign exchange rates, and commodity futures

prices. Market risk is the risk that the value of a portfolio declines as a consequence of

changes in the risk-factor values. Therefore, to model market risk we need to understand how

risk factors evolve over time.

Consistently with the hypothesis of absence of arbitrage, we will assume that the changes

in risk factors are random. Although historical data is of limited use to predict changes in risk

factors, it can be used to estimate statistical models to model risk factors and their correlations.

In our examples, we use stocks as elementary risk factors, although the methodology applies

to a wide range of financial instruments.

A simple formula for value-at-risk can be obtained in the case where an n× 1 vector

of relative changes R in the market risk factors is a multivariate normal random variable

with mean vector � and covariance matrix C, and if one assumes that the change in port-

folio value can be approximated by an affine function of the relative changes in the risk

factors:

%�≈-+
TR� (4.2)

Throughout this chapter we shall use superscript T to denote the transpose. Note: We are

using %� to denote the change in portfolio, i.e., %�=�t −�0 for a time lapse t, whereas


 in the dot product is the vector of sensitivities w.r.t. the returns (i.e., the delta Greeks of

the portfolio), as defined later.

2The Web site www.gloriamundi.org is an excellent source for information and links to papers on value-at-risk.
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Since %�−-=
TR is a sum of normal random variables, then it is itself normal. The

distribution is determined by its mean and variance,

��%�−-
 = E	%�−-
= E	
TR
=
TE	R
=
T�� (4.3)

�2
�%�−-
 = �2

%� = E	�
T �R−�

2
=
TE	�R−�
�R−�
T 

=
TC
� (4.4)

So %� is the random normal variable

%�= z
√

TC
+-+
T�� (4.5)

where z∼N�0�1
. Hence, inverting equation (4.1) while using N−1�1−�
=−N−1��
 gives
the value-at-risk

VaR = N−1��

√

TC
−-−
T�� (4.6)

where N−1�·
 is the inverse of the standard normal cdf.

The linear model with normal relative changes has a closed-form solution, but it suffers

from two serious problems. First, real-world returns have fatter tails than normal distri-

butions. The model will therefore underestimate the likelihood of extreme returns, which

as a consequence may lead to inaccurate estimates of value-at-risk. Second, for portfolios

with derivatives, the change in value is a nonlinear function. The local error in the linear

approximation will therefore often be unacceptable, a property that is exacerbated by dynamic

hedging strategies that use the linearization to eliminate risk locally. To compute value-at-risk

for models that take these difficulties into account is a substantially harder task.

Let St be the process for a risk factor. Returns on St over the time horizon 	0� t
 can be

defined either as arithmetic returns

Rt =
St −S0

S0

= %St

S0

or as the log-return,

R̃t = logSt − logS0� (4.7)

Log-returns have the advantage that one can aggregate returns over time by addition. In the

multivariate case, St is a vector of prices and returns are taken componentwise. Of course the

two are closely related. The difference,

Rt − R̃t =
1

2

(
%St

S0

)2

+O

([
%St

S0

]3)
�

is typically negligibly small for estimation purposes, and either type of return can safely be

approximated by the other. In the examples that follow, we choose log-returns.

Because the return is dimensionless, i.e., the quantity does not have a unit, return models

are preferred over models for prices. We consider a model in which the returns, sampled

at equally spaced points in time, form a sequence �Ri�


i=1 of independent and identically

distributed random variables. This means that stock prices are discrete time Markov chains

with an infinite state space [Ros00]. Choosing different distributions gives different models

in this family.
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Closing prices, 1997–2001
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FIGURE 4.2 Daily closing prices for BCE and Canadian Tire from January 1997 to December 2001.

Visual inspection of historical time series gives clues on the key statistical properties.

Figure 4.2 shows the daily closing prices over 4 years for two Canadian stocks traded on the

Toronto Stock Exchange (TSX): Bell Canada Enterprises (BCE) and Canadian Tire (CTRa).

The scatter plot in Figure 4.3 shows that the daily returns form a cloud of samples around the

origin in what resembles a multivariate unimodal distribution. The time series can be divided

into segments with the same time span as the returns in the model �Ri�


i=1. For each time

interval, the relative return can be computed as

Ri =
Si−Si−1

Si−1

� i= 1� � � � � d� (4.8)

where Si−1 and Si are, respectively, the prices at the beginning and end of the time inter-

val. Since the returns �Ri�


i=1 in the model are independent and identically distributed, the

computed (observed) returns ri are viewed, rightly or wrongly, as independent samples from

the same distribution. After settling on a family of distributions for the random-walk incre-

ments, the parameters of this distribution can be estimated from the time series of returns

�ri�
d
i=1.

Many generalizations of the random-walk model have been proposed to correct short-

comings revealed in empirical studies; see, for instance, [CLM97]. Over time periods of a

few days one can make the simplifying assumption that the returns �Ri�


i=1 are independent

and identically distributed. First, for time periods spanning more than a few years, the returns

are not identically distributed. To obtain the current reading and forecast for the volatil-

ity, it is standard practice either to use only recent data or to use a weighting scheme to

attribute a lesser weight to older data or to model the intertemporal dependencies by means

of more elaborate statistical models, such as ARCH and GARCH [Eng82, Bol86, Nel91,

Hul00].
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FIGURE 4.3 Scatter plot of relative returns for BCE and Canadian Tire.

4.1 Risk-Factor Models

Recall that, in the random-walk model, returns are modeled as a sequence �Ri�


i=1 of indepen-

dent and identically distributed random variables. In this section, we discuss three different

instances of this model, three different alternatives for the distribution of the random vari-

ables: the normal random walk, the asymmetric Student’s t-distribution and the nonparametric

density estimator due to Parzen [Par61]. The methods will be generalized to the multivariate

case in the next section.

4.1.1 The Lognormal Model

In the lognormal model, the distribution of log-returns

Ri ∼ N����2
� i= 1�2� � � � � � (4.9)

is normal with mean � and volatility � . The mean can be estimated using the sample returns

�̂= 1

d

d∑
i=1

ri (4.10)
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and the variance by

�̂2 = 1

d−1

d∑
i=1

�ri− �̂
2� (4.11)

See, for instance, [LM86]. Some authors advocate using estimators that give more weight to

recent returns than to old ones (see, for example, [Mor96a, Hul00]).

To illustrate the performance, we estimate the parameters �̂ and �̂2 for daily returns

for the BCE time series. Figure 4.4 shows the quantile-quantile plot3 for the fitted normal

distribution. It is clear that the normal model is a good approximation for small returns, but

FIGURE 4.4 Quantile-quantile plot for the normal random walk with parameters estimated from

4 years of daily returns for BCE.

3A quantile-quantile plot is a method for comparing two distributions. Given a set of observations, we use it to

compare the empirical distribution and a distribution fitted to this data. Sorting the observations gives the empirical

cumulative distribution functions (cdfs). Each observation, which corresponds to a quantile, and the corresponding

quantile for the fitted distribution are marked in the plot. If the two distributions are the same, the points fall on

the diagonal reference line. Deviations from the diagonal line indicate that one distribution has fatter or thinner tails

with respect to the other. To learn more about this, the reader is referred to the relevant numerical project in Part II.
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for both the negative and positive tails the distribution does not fit the data. Fat tails are

typical for stock returns; to estimate value-at-risk, where we need to compute tail quantiles,

the normal model is less suitable. The next two subsections explore different approaches to

construct random-walk models with more realistic tails.

4.1.2 The Asymmetric Student’s t Model

Student’s t-distributions have fat tails. The density for a t-distributed random variable is

pT�x� $
=
&
(
$+1

2

)
&
(
$
2

)√
$�

(
1+ x2

$

)− $+1
2

� x ∈�� (4.12)

the mean is �= 0, and the variance for $ > 2 is

�2 = $

$−2
� (4.13)

The normalization factor involves the gamma function &�·
. The degrees of freedom $ control

the fatness of the tails; as $ →
, the distribution converges to the normal distribution.

An alternative to the normal model is to define a random walk with t-distributed incre-

ments. Since the fatness of the tails can be different for negative and positive returns, we

generalize this idea and let each random variable in the sequence �Ri�


i=1 be distributed as

A=m+�

√
�1−�


(
$+−2

$+

)
B
T+
+�

√
�

(
$−−2

$−

)
�B−1

T−
� (4.14)

The random variables T+ and T− are t-distributed with degrees of freedom $+ and $−,
respectively. The random variable B is a Bernoulli random variable; B takes the value 0 or 1

with probability �5. The random variables T−, T+, and B are independent. We say that A is an

asymmetric Student’s t-distributed random variable. The density, figuratively a density made

up of a Student’s t pdf cut in half, is

p�x
=

⎧⎪⎨⎪⎩
pT

(√
$−

$−−2
�x−m

�
√
� �$−

)√
$−

$−−2

�
√
�

if x ≤m,

pT

(√
$+

$+−2
�x−m


�
√
1−�

�$+
)√

$+
$+−2

�
√
1−�

if x > m.

(4.15)

Since the two regions each make up half of the density, m is the median of the distribution,

and, with a little algebra, it is easy to derive moment properties relative to the median. We

then have the following result, whose proof is left as an exercise.

Proposition 4.1. Suppose that $− > 4 and $+ > 4. Then an asymmetric t-distributed random
variable, defined by equation (4.14), satisfies the following moment properties:

(i) The expectation is

��1
 = E	A−m
= �

⎡⎣&
(

$++1

2

)√
�1−�
�$+−2


&
( $+

2

)√
��$+−1


− &
(
$−+1

2

)√
��$−−2


&
(
$−
2

)√
��$−−1


⎤⎦ �
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(ii) The second moment is

��2
 = E	�A−m
2
= �2�

(iii) The second conditional moments are, for negative values,

��2

− = E	�A−m
2
A≤m
= 2�2�

and, for positive values,

�
�2

+ = E	�A−m
2
A >m
= 2�2�1−�
�

(iv) The fourth conditional moments are, for negative values,

��4

− = E	�A−m
4
A≤m
= 2�4�2

[
3+ 6

$−−4

]
and, for positive values,

�
�4

+ = E	�A−m
4
A >m
= 2�4�1−�
2

[
3+ 6

$+−4

]
�

Once the moment properties are known, estimating the parameters in the model is straight-

forward. The first step is to compute the median m̂ of the observed returns �ri�
d
i=1 by sorting

the samples and taking m̂ to be the order-k value if d = 2k+ 1 is odd, or the average of

the order-k and-(k+ 1) values if d = 2k is even. Then find the sample estimate for the

second moment

�̂2 = 1

d−1

d∑
i=1

�ri− m̂
2�

We then estimate the contribution to the second moment �̂ from the negative and the positive

halves. Let d = d− +d+, where d− and d+ are the number of observations less than and

greater than m̂, respectively. Then

�̂= 1

2�̂2d−

∑
ri≤m̂

�ri− m̂
2�

Finally, using the sample estimates for the fourth moments,

�̂�4

− = 2

d−

∑
ri≤m̂

�ri− m̂
4 and �̂
�4

+ = 2

d+

∑
ri>m̂

�ri− m̂
4�

we can solve for estimates of the degrees of freedom $+ and $−,

$̂− = 6

�̂
�4
−

2�̂4�̂2
−3

+4 and $̂+ = 6

�̂
�4

+

2�̂4�1−�̂
2
−3

+4�

The advantage of the asymmetric t model over the normal model is that, as illustrated

by the quantile-quantile plot in Figure 4.5, the tails of the empirical distribution can be

reproduced more accurately. However, this improvement comes at a price, since the pdf has

a discontinuity at the center. The jump is counterintuitive and the implementation of this

model is more difficult, but in comparison to the advantage of increased accuracy these are

minor concerns.



4.1 Risk-Factor Models 247

FIGURE 4.5 BCE quantile-quantile plot for the random walk model with the asymmetric t model.

4.1.3 The Parzen Model

A nonparametric density estimator is an alternative to using a parametric method, such as

either of the first two examples. Let �ri�
d
i=1 be samples from a distribution with an unknown

pdf, p�x
. In [Par61] Parzen develops and analyzes a family of estimates of the form

p̂d�x
=
1

dh

d∑
i=1

K
(x− ri

h

)
� (4.16)

initially suggested by Rosenblatt in [Ros56]. In our examples, we use the weighting func-

tion [TT90]

K�x
= 15

16
�1−x2
2 for 
x
 ≤ 1� (4.17)
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Note that K�x
 ≥ 0 is a kernel function that integrates to unity. Parzen shows that, if p�x

is sufficiently smooth, p̂d�x
 is asymptotically unbiased and, for an optimal sequence of

h-values, the mean square error converges to zero as4

E	�̂pd�x
−p�x

2
= O�d− 4
5 
�

We refer to a random walk using the Parzen estimate (4.16) for the pdf as the Parzen model.

Similar to the asymmetric t model, the Parzen model can recreate the fat tails more

accurately than the normal model, and it also seems to have a slight advantage over the

asymmetric t model, as illustrated by the quantile-quantile plot in Figure 4.6. The advantage

FIGURE 4.6 BCE quantile-quantile plot for the random-walk model with the Parzen density estimate.

4Parzen presents a theory for density estimates of the form of equation (4.16), with general weighting functions

K�x
. Let hd → 0 as the number of samples d→
. He shows that density estimates of the form of equation (4.16)

converge (pointwise in a mean square sense) to a continuous pdf as d →
, More precisely, given a sequence of

smoothing parameters �hd�


d=1 with limd→
 hd = 0 and limd→
 dhd =
,

E	�̂pd�x
−p�x


2 → 0 as d→
�

The sequence of smoothing parameters giving optimal rate of convergence depends on both the point x and the pdf p�x


aswell as theweighting functionK�x
. See Parzen [Par61] for examples of and details about generalweighting functions.
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of using a nonparametric model is that it does not rely on specific assumptions about the

shape of the density. There are three disadvantages to the Parzen model. First, the optimal

smoothing parameter h is unknown. While experimenting with different stocks, we have

found that taking h equal to the standard deviation works well.5 Second, for our choice of

weighting function, the density estimate has compact support. However, the support covers

the region of interest for value-at-risk calculations, so it should have a minor influence on the

result. Third, evaluating equation (4.16) or the corresponding cumulative distribution function

(cdf) for different values of x is expensive for large samples. In our implementation, we

avoid summing over all sample points by using cubic splines to approximate the cdf and

the pdf.

4.1.4 Multivariate Models

So far we have only considered models for the return on a single risk factor. In general,

portfolios depend on many risk factors. Therefore we must extend the one-dimensional

random-walk models, presented in the previous sections, to the multivariate case.

In the multivariate random walk, �Ri�


i=0 is a sequence of �n-valued vectors of random

variables. The random vectors are independent and identically distributed. The difficulty in

constructing a realistic multivariate model is that returns on the risk factors are typically

dependent, as exemplified by Figure 4.7. To approximate the dependence structure without

introducing an overly complex model, we restrict our attention to multivariate models where

the random vectors �Ri�


i=1 satisfy

Ri = A−1Xi+b� (4.18)

Moreover, we assume that the random vector X has independent components and the pdf is

a product of one-dimensional density functions:

p�x
= p1�x1
 · · ·pn�xn
�

We postpone the discussion about how to choose the linear transformation, i.e., the matrix A
and the vector b, to Section 4.3, after discussing portfolios of derivatives.

To find a stochastic process to model stock prices in continuous time is a more difficult

problem. Returns are often modeled by stochastic differential equations (SDEs). As discussed

in Chapter 1, Brownian motion is the natural continuous-time generalization of a random

walk with normal increments. In this model, the return process is a constant-coefficient SDE,

dR = � dt+� dWt. Like the normal model for stock prices, geometric Brownian motion

underestimates the likelihood of large returns: It does not have fat tails.

Many different types of continuous-time models have been proposed and studied in the

literature, in particular for pricing derivatives. If the returns are a stationary Markov process,

then, for example, the sequence �ri�
d
i=1 of historical returns can be used to find an estimate

for the transition density — the time-dependent probability density p�r� t
 representing the

density for the return r at time t. Figure 4.8 shows the Parzen estimate for the transition

density for the stock BCE. A good model has a transition density that is close to this estimate.

5This choice of h may work well in our examples, but it is not a satisfactory solution in general since a fixed

smoothing parameter does not give convergence as the number of samples d → 
. The estimate converges for

a sequence of smoothing parameters that decrease to zero as the number of samples increases (see [Par61] for

details).
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FIGURE 4.7 Principal components superimposed on the scatter plot for the returns on BCE and CTRa.

FIGURE 4.8 Parzen estimate for BCE to the transition density.
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4.2 Portfolio Models

In this section we discuss portfolios and introduce a new method for portfolio-dependent

parameter estimation. The purpose of this section is first to connect the idea of a portfolio

and the changes in its value to the risk-factor models considered in the previous section.

The second purpose is to give a detailed presentation of a portfolio-dependent estimation

procedure and to discuss the related computational issues.

A portfolio is represented as a k-vector �, where �i is the position in the ith security. When

considering amarket without derivatives one assumes the number of securities k and the number

of risk factors n are the same, k = n. Generally, in a market with derivatives, the number of

securities is greater than the number of risk factors, k > n. In practice, if �i represents shares, then

it is an integer; but inmodeling portfolios it is convenient to let �i be a real number. Furthermore,

in a market where short selling is allowed, �i can be either positive or negative.

Let V i
t be the price of the ith security at time t. If the security is a direct investment in

the risk factor, then V i
t satisfies the identity

V i
t = Si

t = Si
0�1+Ri

t
� (4.19)

If, on the other hand, it is a derivative security, then V i
t is a function of the risk factors.

Assuming that the portfolio remains unchanged, the dollar value of the portfolio at time t is
the sum

�t =
k∑

i=1

�iV
i
t � (4.20)

The change in the value from time 0 to time t is

%�t =�t −�0 =
k∑

i=1

�i�V
i
t −V i

0
� (4.21)

If the Black–Scholes model were correct, the drift would be the only difference between the

stock price processes for the probability spaces with the risk-neutral versus the real-world

measures. However, this approach does not reproduce observable prices for traded options.

Therefore, instead of using a volatility estimated from stock price data, pricing models

typically use parameters implied by option prices; i.e., the pricing model is used as a form of

interpolation scheme. In value-at-risk simulation, we are interested in changes in value over

a short time period, and what is needed is a model that captures the local dynamics of the

value. Hence, compared to the models used for derivatives trading, where the whole lifespan

of the contract must be considered, the quality of the pricing model is less critical. In our

examples we use the Black–Scholes model to construct such local approximations, but the

ideas could in principle be extended to more complex pricing models.

Two problems we touch lightly upon in this chapter are volatility risk and mapping

of risk factors. Both topics are important in the implementation of market-risk models. As

mentioned, parameters of option-pricing models must be chosen to reproduce prices in the

market. Unfortunately, parameters such as the volatility � in the Black–Scholes model tend

to change over time. Therefore, a natural extension is to make volatility stochastic (see, for

example, [Wi100]). This makes potential changes in volatility a source of risk, and it can

be introduced as a risk factor in a value-at-risk model. In Sections 4.5 and 4.7, we study a

very simple version of such a model, and we see that it leads to some interesting qualitative

changes to the problem. Mapping of risk factors is the process where some risk factors are
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replaced by a few general factors. An example is replacing a continuum of interest rates

with different maturities by a few representative rates. The dimension-reduction problem in

Section 4.7 can be viewed as an automatic mapping method.

As we have seen, the price for a derivative may be a complicated function. Often there

is no explicit formula and it must be priced using a separate simulation. Furthermore, the

number of different types of securities in a derivatives portfolio will typically be much larger

than the number of basic risk factors. In such cases, Taylor’s theorem provides a tool to

approximate the value of a portfolio by a function with a simple mathematical form.

4.2.1 �-Approximation

Taylor approximations are accurate close to the point of expansion if the function is suffi-

ciently smooth. Under this assumption and using a first-order approximation, we obtain6

�t =�0+
(

k∑
i=1

�i

�V i
t

�t

)
t+

n∑
j=1

(
k∑

i=1

�i

�V i
t

�sj

)
S
j
0rj +O�t2+ r21 +· · ·+ r2n
�

The �n-valued vector Rt of returns has components R
j
t = rj = �sj − S

j
0
/S

j
0, where S

j
0 are

initial prices and S
j
t = sj , j = 1� � � � � n, are time-t prices of the underlying assets. Collecting

the coefficients, we obtain

�t ≈�0+'t+
TRt (4.22)

where 
T = �%1� � � � �%n
,

' =
(

k∑
i=1

�i

�V i
t

�t

)
and %j =

(
k∑

i=1

�i

�V i
t

�sj

)
S
j
0� (4.23)

In finance, such a linear approximation is called a %-approximation. As seen in Chapter 1,

the %j are often used to hedge a portfolio. By taking a position, for example, by buying the

risk factor or future contracts, that offsets the derivative, a portfolio’s sensitivity to changes

in the underlying can be reduced. As a consequence, in risk models for derivative portfolios

a significant component of the risk will be made up of higher-order effects.

Consider a call option on a single stock, and suppose the current price of the underlying

S0 is equal to the strike price, K = 100, i.e., the option is at-the-money. The derivatives of

the call option value give7

�Vt

�s
= N�d+
� (4.24)

�Vt

�t
=− s

2
N ′�d+


�√
T − t

− rKe−r�T−t
N�d−
� (4.25)

6Taylor’s theorem gives an explicit formula for the error. For the first-order approximation the error is

error= 1

2!

(∑
i

�i
�2V i

t

�t2

)
�t′
2+ 1

2!

(∑
i�j

�i
�2V i

t

�t�sj
S
j
0r

′
j

)
t′ + 1

2!
∑
i�j�k

�i
�2V i

t

�sj�sk
S
j
0S

k
0r

′
jr

′
k�

where the derivatives are evaluated at some t′ ∈ �0� t
 and r ′j ∈ �0� rj
 for j = 1� � � � � n.
7The % and ' are derived by differentiating the Black–Scholes equation, using d− = d+−�

√
T − t, as discussed

in Chapter 1.
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where d± = log�s/S0
+�r±�2/2
�T−t


�
√
T−t

, and we set the risk-free rate equal to the return r =
�s−S0
/S0, with s as the spot. Choosing appropriate parameters,

%= �Vt

�r
= �Vt

�s
S0 ≈ 59�77 and ' ≈−8�12�

and the %-approximation of the gain of the call option is

�t ≈�0+'t+%r ≈ 6�89−8�12t+59�77r� (4.26)

Figure 4.9 shows the %-approximation (as a function of the stock price s for one day,

t = 1/250) compared to the Black–Scholes price. It is accurate for small returns but quickly

deteriorates as 
r
 increases. Finally, when the return 
r
 is large enough, the approximation

is negative or less than �s−Ke−r�T−t

+, and therefore it violates the basic principle of no

arbitrage.

4.2.2 ��-Approximation

For nonlinear portfolios, the %-approximation is useful when the time period considered is

relatively small. But as Figure 4.9 illustrates, ignoring the curvature for an option portfolio may

lead to a large truncation error. This feature becomes particularly important if %-hedging is

used, since the linear term is hedged out, leaving a higher-order residual for the portfolio value.
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FIGURE 4.9 The price of a European call option in the Black–Scholes model compared to the at-the-

money %-approximation for the value.
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The nonlinearity can be better approximated by including more terms from the Taylor

series. Keeping terms in second order in the returns gives the quadratic approximation8

�t =�0+
(

k∑
i=1

�i

�V i
t

�t

)
t+

n∑
j=1

(
k∑

i=1

�i

�V i
t

�sj

)
S
j
0rj

+ 1

2!
n∑

l=1

n∑
j=1

(
k∑

i=1

�i

�2V i
t

�sj�sl

)
S
j
0S

l
0rjrl+O�t2+ t

∑
i ri+

∑
i r

3
i 


or

�t ≈�0+'t+
TRt +
1

2
RT

t �Rt� (4.27)

The vector 
 and the scalar ' are as in equation (4.22), and

&jl =
(

k∑
i=1

�i

�2V i
t

�sj�sl

)
S
j
0S

l
0� j� l= 1�2� � � � � n�

In finance, quadratic approximation (4.27) is called a %&-approximation. Because it approx-

imates the curvature of the value function, it is a more accurate local approximation to the

portfolio value than the linear %-approximation.

We return to the (single risk factor) example with %-approximation (4.26) for a call

option. In this case, the second derivative for the value is

�2Vt

�s2
= N ′�d+


s�
√
T − t

�

Then

& = �2Vt

�s2
S2
0 ≈ 273�6�

which gives the %&-approximation

�t ≈�0+'t+%r+&
r2

2
≈ 6�89−8�12t+59�77r+273�6

r2

2
� (4.28)

where r = �s − S0
/S0. The approximation compared to the exact values is shown in

Figure 4.10. In comparison to the %-approximation, the %&-approximation is, not surprisingly,

much closer to the price in the Black–Scholes model.

8The truncation error is

error = 1

2!

(∑
i

�i
�2V i

t

�t2

)
t2+ 1

2!

(∑
i�j

�i
�2V i

t

�t�sj
S
j
0r

′
j

)
t′

+ 1

3!
∑
i�j�k

(
�i

�3V i
t

�t�sj�sk
S
j
0S

k
0r

′
jr

′
k

)
t′ + 1

3!
∑
i�j�k�l

�i
�3V i

t

�sj�sk�sl
S
j
0S

k
0S

l
0r

′
jr

′
kr

′
l

for some t′ ∈ �0� t
 and r ′j ∈ �0� rj
 for j = 1� � � � � n.
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FIGURE 4.10 The price of a European call option compared to the at-the-money %&-approximation.

4.3 Statistical Estimations for ��-Portfolios

In the algorithm developed later in Section 4.5, we assume that derivative portfolios are

assumed to be represented as %&-approximations (4.27). The change in value, over the time

period from time 0 to time t, is then

%�t =�t −�0 ≈ %�̃t ='t+
TRt +
1

2
RT

t �Rt� (4.29)

The return vector Rt on the risk factors is a vector of random variables, and, when %�t is

viewed as a function of Rt, it is a random variable modeling the change in the portfolio’s

value over the time period t. We assume that the stochastic model for returns is of the type

presented in Section 4.1.

The parameters of the risk-factor model are estimated, independent from the pricing

model, from a time series of historical returns. This choice comes at the cost of ignoring

any connections, suggested by the theory of arbitrage-free pricing, about the relation of

the real-world and risk-neutral processes. However, it has the important advantage of more

flexibility in choosing the underlying model for price changes. Furthermore, as illustrated by

the Black–Scholes model, the conclusion that risk-neutral and real-world processes have the

same variance, properties implied by the pricing model, may not hold up to scrutiny. For

these reasons, we believe that this pragmatic approach is justified.
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4.3.1 Portfolio Decomposition and Portfolio-Dependent Estimation

In this section, we present a new method for portfolio-dependent estimation of parameters for

the risk-factor models. The strategy for parameter estimation builds on the observation that a

%&-approximation can be decomposed as a sum of one-dimensional quadratic functions. This

decomposition has a long history in applied mathematics and statistics, and it has been used

by other authors in the computation of value-at-risk. Still, the multivariate risk-factor model

we present is fundamentally different, in that the resulting risk-factor models are portfolio

dependent.

Suppose that �ri�
d
i=1 is a time series of returns, where ri is an n-vector with component

observations rji, j = 1� � � � � n. We know, as discussed in Section 4.1, that the mean �̂ can be

estimated with standard sample estimators (in the case of the asymmetric t model, the mean

is replaced by the median m̂). Similarly, the standard sample statistics

Ĉij =
1

d−1

d∑
k=1

�rik− �̂i
�rjk− �̂j
� (4.30)

can be used to estimate the matrix elements Cij = Cov�Ri
t�R

j
t 
 of the covariance matrix. For

the normal model, �̂ and Ĉ characterize the model completely. For the other two models, we

explain how to estimate the remaining parameters.

Recall that, as discussed in Section 4.1.4, we want to approximate the dependence structure

of the risk-factor returns with a product pdf. The first step to construct such a model is

to observe that a %&-approximation can be factored by solving the generalized eigenvalue

problem {
�= AT�A�

Ĉ= AAT �
(4.31)

The matrix A is nonsingular and

�= diag��1� � � � � �n
�

Let

X= A−1�Rt − �̂


define a new vector of random variables. Then, since E	Rt − �̂
 = 0 and Ĉ = E	�Rt − �̂

�Rt − �̂
T 
, we have

E	X
= 0 and E	XXT 
= I� (4.32)

Also, by substituting Rt = AX+ �̂ we can express %�̃t in terms of our new variables:

%�̃t =
(
't+ �̂

T

+ 1

2
�̂

T
��̂

)
+XTAT �
+��̂
+ 1

2
XT�X� (4.33)

Defining

-≡'t+ �̂
T

+ 1

2
�̂

T
��̂� (4.34)


′ ≡AT �
+��̂
 (4.35)
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gives the %&-approximation to the change in portfolio value:

%�̃t =-+
n∑

i=1

(
%′

iXi+
�i

2
X2

i

)
� (4.36)

This is simply a sum of one-dimensional quadratic functions

�i = %′
ixi+

�i

2
x2
i � (4.37)

We postulate that the joint probability density for X= x is a product pdf,

p�x
= p1�x1
 · · · pn�xn
� (4.38)

or equivalently that the components of X are independent. As equation (4.32) shows, the

components of X are uncorrelated by construction, so the approximation with a product

pdf extrapolates from this property to a more general assumption. Finally, the remaining

parameters for the asymmetric t and Parzen models can be estimated for each component Xi

individually. The complete parameter estimation and factorization procedure is summarized

in Algorithm 1.

Algorithm 1
Parameter Estimation and Factorization

Input: A %&-approximation. A time series �ri�
d
i=1 of daily returns.

Output: Parameter estimates for the market model. A factorization of the
%&-approximation.

• Compute estimates for the mean �̂ and the covariance matrix Ĉ.
• Solve the eigenvalue problem {

�= AT�A�

Ĉ= AAT �

• Compute

-='t+ �̂
T

+ 1

2
�̂

T
��̂�


′ = AT �
+��̂
�

• For each variable Xi, estimate the remaining parameters from the transformed
returns �A−1�ri− �̂
�di=1 using the methods in Section 4.1.

4.3.2 Testing Independence

The assumption that the risk-factor returns can be modeled by a product pdf is central to what

follows in Section 4.5. It is therefore natural to question whether it is a valid assumption.
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We note that returns tend to be scattered around a central point, as in Figure 4.3. Also, the

parameter estimation procedure produces uncorrelated random variables for which the sample

correlation is zero by construction. These two points form the basis for our belief that a

product pdf is a reasonable model.

For our two-dimensional example, with returns on BCE and CTRa, it is possible to

construct a statistical test.9 To test the assumption, we use a binomial test, as discussed,

for example, in [LM86]. As we will show, the experiment suggests that in this case, the

independence assumption is valid.10

Consider a portfolio with at-the-money call options on BCE and CTRa. Using the Black–

Scholes model to price this portfolio, we get a %&-approximation with


=
[
25�4932
10�9513

]
and � =

[
69�4300 0

0 29�7313

]
�

The portfolio-dependent estimation procedure, with the standard sample estimates and the

data in Figure 4.3, gives us

�1 = 0�0064� %′
1 = 0�1371�

�2 = 0�0169� %′
2 = 0�6382�

We want to test if the two portfolio components �1 and �2 are independent. To formulate

this question as a binomial test, viewing �1 and �2 as random variables, define the events

A1 = ��1 � �1 > �̂�1
��

A2 = ��2 � �2 > �̂�2
��

where �̂�i
is the sample mean for �i. From the time series we estimate the probabilities of

the events:

p̂1 =
# samples in A1

# samples
= 476

1006
�

p̂2 =
# samples in A2

# samples
= 490

1006
�

9 In fact, the possibilities for statistical tests are infinite; see, for example, [Feu93] and the references therein. If

X and Y are independent, then for any functions h and g

E	h�X
g�Y

= E	h�X

E	g�y

�

provided the integrals exist. This equality is taken as the null hypothesis for a statistical test. Given a set of samples,

it is possible to compare sample estimates for the left- and right-hand sides. By the law of large numbers, the two

converge for independent random variables. If it is possible to find confidence intervals for the sample estimates,

then the estimates can be tested to accept or reject the null hypothesis.

Statistical tests cannot prove independence; they can only reject independence through rejection of the null

hypothesis. Furthermore, although the same idea could in principle be used in high dimensions, formulating tests

with sufficient power and obtaining a set of samples large enough makes such tests practically unfeasible.
10Whether the independence assumption holds is not the central question. The important question is whether the

approximation leads to good simulation results. Our experience using different stocks and portfolios is that for four

years of data, rejections become more common as the scales of the portfolio components become more different.

However, a difference in scales indicates that the influence of one component dominates the dynamics, making the

independence a secondary issue. For shorter time series, the rejection rate decreases, and rejections with two years

of data appear to be rare.
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FIGURE 4.11 Scatter plot for the empirical returns on the two portfolio components �1 and �2. The

event B corresponds to the bottom-left and top-right quarters of the plane.

Consider the event

B = �A1∩A2
∪ �A1∩A2
�

i.e., the event that the pair of returns are both either larger or smaller than their estimates for

the mean (see Figure 4.11). We then formulate our null hypothesis: The probability P�B
 is
equal to

q = p̂1p̂2+ �1− p̂1
�1− p̂2
�

Estimate the probability of B:

q̂ = # samples in B

# samples
= 522

1006
�

Treating each sample as an independent Bernoulli trial and normalizing the random variable

of the number of successes leads to

522−1006q√
1006q�1−q


= 1�15

which is within both the confidence intervals for 95%, 	−1�96�1�96
, and 90%, 	−1�64�1�64
.
Therefore, the null hypothesis should be accepted (i.e., not rejected) and the portfolio com-

ponents have passed the independence test.
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4.3.3 A Few Implementation Issues

In the generalized eigenvalue problem (4.31), the Hessian � is symmetric and the covariance

matrix Ĉ is nonnegative definite. Symmetric-definite eigenvalue problems arise in other

applications. The standard method [GL89] is to compute the Cholesky factorization

Ĉ= UTU� (4.39)

where U is upper triangular. We know that a matrix A can be factored in the form QU,
where Q is orthogonal (see, for example, the so-called QR algorithm: [PTVF92]). Then, since

�= AT�A,

�= UT �QT�Q
U�

To solve this eigenvalue problem requires O�n3
 floating-point operations. Combined with the

estimation of the covariance matrix, this gives a total of O�n3+n2d
 floating-point operations.
However, if we take advantage of the structure of problem (4.31), it is possible to improve

slightly on this procedure. Let �ri�
d
i=1 be the time series of returns and define the d×n matrix

W=
⎡⎢⎣r

T
1 −�T

���
rTd −�T

⎤⎥⎦ �

The estimate of covariance matrix (4.30) can be written as

Ĉ= 1

d−1
WTW�

A variety of estimators for the covariance matrix have been proposed in the finance literature

(see, for example, [CLM97, Hul00, Wi100]). Many of the estimators are of the form

Ĉ=WTDW� (4.40)

where D is a weight matrix.11

Depending on whether the number of dates d is greater or smaller than the number of risk

factors n, we get two cases. Suppose d > n. Rather than explicitly forming the covariance

matrix Ĉ, it is preferable to factor it directly by computing the (QR) factorization

D
1
2W=QU� (4.41)

where Q is a d×n matrix with orthonormal columns and U is a n×n upper triangular matrix.

TheQR algorithm (4.41) is then applied to the matrix U�UT . The QR factorization takes about

11Two examples are the exponentially weighted moving average with

D= 1−�

1−�d
diag�1��� � � � � �d−1


and the multivariate GARCH(1,1) model [Bol86, CLM97, Hul00] (n = �1−�−�
V +�rir
T
i +� (n−1, where V is

the standard estimate for the long-run average volatility, which has

D= diag��������d−1
+ 1−�d

1−�
�1−�−�
I�
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2n2d floating-point operations, compared to approximately n2d+n3/3 for equation (4.39).

The advantage of the QR algorithm is that it can be shown that the forward error is smaller

than for the Cholesky factorization.12

On the other hand, if d < n, then the matrix Ĉ will be singular. The best approach when

d ≤ n is to use factorization (4.40) and compute the Schur decomposition

�=QT �D
1
2W
��D

1
2W
TQ�

This effectively reduces the size of the eigenvalue problem from order n to order d, and
therefore the whole step requires only O�dn2 + d2n+ d3
 floating-point operations. We

conclude that performing computations directly on the time series matrix, rather than forming

the covariance matrix explicitly, is convenient, effective, and numerically sound.

4.4 Numerical Methods for ��-Portfolios

Singular portfolios have to be estimated by means of straightforward Monte Carlo simulations;

for %&-portfolios, more methods have been proposed.

4.4.1 Monte Carlo Methods and Variance Reduction

Assume a multivariate distribution for the returns r ∈�n:

pG�r
= 1√
�2�
n
C
 exp

(− 1

2
rTC−1r

)
� (4.42)

where C is the n×n covariance matrix and 
C
 is its determinant. The plain Monte Carlo

(MC) method for computing VaR for %&-portfolios in this case is based on sampling the

returns r from pG ∼ Nn�0�C
. The precise steps are described in the MC VaR numerical

project in Part II. The basic steps are summarized as follows.

• Cholesky factorize the covariance matrix, C= UTU.
• For each scenario, generate an n× 1 vector y of identically and independently dis-

tributed normal variates. For each scenario vector compute r=UTy, and evaluate the

portfolio variation %V�r
, e.g., within the %&-approximation, then %V�r
= %�̃�r
.
• Sort the returns from the complete simulation in increasing order and evaluate the

VaR as a percentile.

Other popular methods are based on importance sampling. The idea is to improve accuracy,

i.e., reduce the variance of a simulation within the same number of scenarios. For VaR

calculations the idea is to generate weighted scenario sets that populate the tails of the

distribution more accurately than the body. In the general theory of the evaluation of integrals,

importance sampling increases sampling efficiency within certain regions of the integration

space. There are several ways of implementing importance sampling, with various degrees

of sophistication, depending on the integral dimensionality, the integrand variability, and so

12Sun [Sun92, Hig96] proves an upper bound for the forward error for Cholesky factorization. Sun’s result can be

adapted for our purposes to the positive-definite matrix WTW by considering a small perturbation W→W+�W.
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on. What essentially underlies the approach is the technique of changing probability measure

from which the scenarios are sampled. [We have seen various examples of the use of changing

measure for pricing options in previous chapters.]

A brief overview of importance sampling as applied to the evaluation of an integral is as

follows. Suppose we wish to evaluate an integral or expectation of some function h ��n →�,

I = E�f
	h�X

=
∫
�n

h�x
f�x
dx� (4.43)

where X is a random vector in �n. The superscript f denotes, as usual, the fact that the

expectation is taken w.r.t. a given probability measure or distribution f . If we use plain MC,

then scenarios Xj , j = 1� � � � �N , are sampled with f as density; i.e., the MC estimator (w.r.t.

f as density) of I is

Îf =
1

N

N∑
j=1

h�Xj
� (4.44)

Alternatively, the integral I can be equivalently recast as an expectation w.r.t. any other

density g, as long as this density satisfies f�x
 > 0 =⇒ g�x
 > 0, x ∈�n:

I = E�g


[
h�X


f�X


g�X


]
=
∫
�n
�h�x
w�x

g�X
dx� (4.45)

wherew�x
= f�x

g�x
 is a weight function (also called the Radon–Nikodym derivative or likelihood

ratio). This factor is introduced by taking g as density in place of the original density f .
Applying standard MC, with samples Xj , j= 1� � � � �N , now drawn from g, gives an estimator

w.r.t. g:

Îg =
1

N

N∑
j=1

h�Xj

f�Xj


g�Xj

� (4.46)

By taking expectations in this expression and treating the Xj as identically distributed random

vectors with g as density, the reader can readily show from equation (4.45) that Îg is an

unbiased estimator of I; i.e., E�g
	Îg
= I . Likewise, E�f
	Îf 
= I . In practice, it is of interest

to compare the difference in the variances Varg�Îg
 and Varf �Îf 
 of the two estimators Îf
and Îg, respectively. Since both estimators have the same mean (equal to I), it suffices to

consider the second moments. In particular,

Varg�Îg
= E�g
	h2�X
w2�X

 and Varf �Îf 
= E�f
	h2�X

� (4.47)

For arbitrary choices of g, the variance Varg (with importance sampling) may be either larger

or smaller than Varf (without importance sampling). The goal of a successful implementation

of importance sampling is to choose a density g that is effective in sampling and thereby

reducing the variance. In order to implement an effective importance-sampling algorithm

one should at best attempt to sample in proportion to the integrand h · f . Recall the typical

situation in option pricing, where the price is given by an expectation integral over a product

of the risk-neutral transition density and the discounted payoff function. Hence, we can view

the transition density as playing the role of f and h as the discounted payoff function.

A plain MC calculation for the option price would proceed by sampling asset price paths

with transition density as the sampling distribution. This is the basis of the MC basket option
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pricer numerical project in Part II. In contrast, a more effective importance-sampling MC

algorithm for option pricing would be to consider a different sampling distribution — one that

gives more “importance” to the payoff function as well as the risk-neutral density. A good

choice of density g should be such that a greater percentage of sample paths lies within the

more significant contributions of the integrand.

For the purposes of computing VaR, we observe from upcoming equation (4.72) that a

more efficient importance-sampling procedure should be one in which the chosen sampling

density generates a substantial number of return scenarios that are in the tails of the distribution

for the portfolio variation %V . This can be seen from the fact that the cdf of %V is an integral

over the product of the return distribution and the step function. For VaR calculations, the step

function is significant only in the left tail of the distribution of %V . One possibile importance-

sampling MC strategy therefore consists of generating scaled returns by introducing a scale

factor fs so as to transform the return scenarios r�i
 into �
√
1−fs


−1r�i
. In some sense one

can also think of fs as a stress-testing factor. The factor fs is strictly between 0 and 1. Another

possibility is to shift the returns by a common vector, i.e., to transform r into r+r0. A more

general approach is to make an affine transformation, i.e., to transform r into Ar+ r0 for

some matrix A.
To show how to compute the weights in an importance-sampling implementation, let’s

consider the simple case of scaling for a univariate, standard normal distribution ��x
. The
particular technique we now present is readily generalizable into the multivariate case. In

the one-dimensional case, we are assuming that our original sampling density is the standard

normal, i.e., f�x
= ��x
, and that we wish to evaluate an integral of the form

I =
∫ 


−

��x
h�x
dx� (4.48)

where h has significant contributions in the tails of �. Sampling from the pdf � itself would

probably not constitute an optimal importance-sampling strategy. The trick we employ is to

rewrite the original density as follows:

��x
= 1√
2�

e−
x2

2 = 1√
2�q

e−
x2

2q ·√qe−
x2

2p � (4.49)

where p and q are positive numbers chosen such that

1

p
+ 1

q
= 1� (4.50)

By defining the factor fs so that p= 1

fs
and q = 1

1−fs
, we have

��x
= w�x
�̃�x
� (4.51)

where w is the weight function

w�x
= �1−fs

− 1

2 exp�−fsx
2/2
 (4.52)

and �̃ is the new sampling density

�̃�x
= 1√
2��1−fs


−1
e
− x2

2�1−fs 

−1 � (4.53)
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The original integral is therefore transformed into

I =
∫ 


−

�̃�x
�h�x
w�x

dx� (4.54)

which can now be evaluated by sampling from the pdf �̃ — a normal density with rescaled

variance �1− fs

−1. The parameter fs can hence be chosen so as to reduce variance in the

corresponding MC estimate of I .

4.4.2 Moment Methods

Moment methods are approximate analytical methods that propose to estimate portfolio VaR

by evaluating the first few moments of the distribution of the portfolio variation analytically

and then matching these moments with a model distribution. The first four moments are of

particular interest, for they provide us with measures of the mean, variance, skewness, and

kurtosis. We discuss two methods in this class, one named Cornish–Fisher and the other the

Johnson method.

In what follows we shall consider portfolio variations within the delta-gamma approxi-

mation in the form

%V ≡ %V�r
=
Tr+ 1

2
rT�r� (4.55)

[Note: This is %�̃t as defined previously but without the theta factor 't, which is trivial to

include if desired.] We denote �1 = E	%V
 as the first moment of the distribution of %V and

�m = E	�%V −�1

m
 as mth central moment for m≥ 2. Assuming the return density is given

by equation (4.42), a straightforward, though lengthy, calculation gives

�1 = E	%V
= 1

2
tr��C�� (4.56)

�2 = E	�%V −�1

2
=
TC
+ 1

2
tr���C
2�� (4.57)

�3 = E	�%V −�1

3
= 3�C

T��C

+ tr���C
3�� (4.58)

�4 = E	�%V −�1

4
= 12�C

T ��C
2
+3tr���C
4�+3�2

2� (4.59)

where tr denotes the matrix trace. For example, the first moment is simple to derive:

�1 = E	%V
=
TE	r
+ 1

2
E	rT�r
= 1

2

n∑
i�j=1

&ijE	rirj


= 1

2

n∑
i�j=1

&ijCji =
1

2
tr��C��

where we used E	r
= 0 and Cov�ri� rj
= Cij , since the density pG ∼ Nn�0�C
. The higher

moments can be derived by a similar procedure and using known identities for integrals of

products such as pGrki r
l
j and higher products, with k� l= 1�2�3�4. For moments �3��4 this

is rather tedious. Alternatively, we can obtain the (noncentral) mth moments (and thereby the

central moments) by evaluating the mth derivative (at the origin) of the moment-generating

function (mgf) for the random variable %V . That is, E	�%V
m
 = Mm�0
, where the mgf

M�u
= E	eu%V 
 is given analytically as derived in the next section.
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The Cornish–Fisher (CF) method stems from the fact that it is possible to derive explicit

polynomial asymptotic expansions for standardized quantiles (or percentiles) of a general

distribution in terms of its (standardized) moments and the quantiles (or percentiles) of the

standard normal distribution. For a detailed mathematical discussion of the general technique,

see, for example, [HD68]. For our purposes it suffices to point out the main result of the CF

expansion. Generally, given a probability distribution g�x
 having cumulants13 )j� j = 0� � � � ,
the distribution f�x
 generated by the expansion

f�x
=

∑
i=0

[∑

j=1 !j

�−D
j

j!

]i

i! g�x
 (4.60)

has cumulants )j +!j� j = 0� � � � , where Dj ≡ dj/dxj defines the jth-order differential oper-
ator. By truncating this expansion, one can hence obtain approximate analytical formulas for

the density of a distribution f using only its first few known central moments and the first

few derivatives of an analytically known distribution function g and its central moments.

Similarly, we also obtain analytical formulas that relate the quantiles of f with those of g.
When g is chosen to be the standard normal distribution, then what arises is the known

Cornish–Fisher formula.

Given the first four central moments in equations (4.56)–(4.59), computing VaR with the

CF expansion (to fourth order) is particularly simple, for there are explicit formulas for it. In

particular, the random variable �%V −�1
/
√
�2 has �-quantile given by

z̃� = z�+
1

6
�3�z

2
�−1
+ 1

24
�4z��z

2
�−3
− 1

36
�2
3z��2z

2
�−5
�

where �3 = �3/�
3/2
2 , �4 = �4/�

2
2 − 3, and z� is defined as the �-quantile of the standard

normal distribution z� = N−1��
.
Within the CF approximation, VaR with confidence level �% (as defined by equa-

tion (4.1)) is given by

VaR = z̃�
√
�2−�1� (4.61)

Note that within the simpler centered normal distribution approximation for %V (with assumed

zero gamma matrix), �3 = �4 = 0, so z̃� = z� and this equation is consistent with equation (4.6).
In the Johnson method, one seeks to match the first four moments of the pdf of %V to

the cumulative distribution of the random variable

f�X
= � sinh��X−�
/�
+�� (4.62)

where X is a standard normal and ������� are model parameters. The pdf of the random

variable Y = f�X
 can be found by means of changing coordinates and is given by

p�y
= �√
2��

e−	�+� sinh−1��y−�
/�

2/2

cosh	sinh−1��y−�
/�


� (4.63)

13The cumulants of a distribution are defined by coefficients in a power series expansion of the logarithm of

the characteristic function or the mgf. Cumulants are related to the central moments: )1 = �1, )2 = �2, )3 = �3,

)4 = �4−3�2
2, etc.
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The expectation integrals E	yn
 for the Johnson distribution, for n = 0�1� � � � , can be

expressed as follows:

E	yn
= �√
2�

∫ +


−

��+� sinh x
ne−��+�x
2/2dx� (4.64)

The integrals

In����
≡
�√
2�

∫ +


−

sinhn xe−��+�x
2/2dx (4.65)

are obtained recursively using the recursion relation

In+1����
= 1

2
	e−��2−��−1/�
2
/2In����−1/�


−e−��2−��+1/�
2
/2In����+1/�

 (4.66)

and the formula for n= 1:

I1����
=−e1/2�
2

sinh��/�
� (4.67)

From equations (4.64) and (4.65) we find that

E	y
= �+�I1�

E	y2
= �2+2��I1+�2I2�

E	y3
= �E	y2
+��2I1+2��2I2+�3I3�

E	y4
= �E	y3
+��3I1+�4I4+3�2�2I2+3��3I3�

where In = In����
 for all n. The moments �J
i = �J

i ��������
 for the Johnson distribution

are given by

�J
1 = E	y
�

�J
2 = E	�y−�J

1

2
= E	y2
−�J2

1 �

�J
3 = E	�y−�J

1

3
= E	y3
−2�J

1E	y
2
+�J3

1 −�J
1�

J
2�

�J
4 = E	�y−�J

1

4
= E	y4
−3�J

1E	y
3
+3�J2

1 E	y2
−�J4
1 −�J

1�
J
3 �

These four moments are explicitly functions of the four parameters �������, which are then

fitted by matching the �J
i with the �i in equations (4.56)–(4.59). This results in a nonlinear

system of four equations,

�1 =�J
1��������
� (4.68)

�2 =�J
2��������
� (4.69)

�3 =�J
3��������
� (4.70)

�4 =�J
4��������
� (4.71)

which is solved for �������.
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4.4.3 Fourier Transform of the Moment-Generating Function

In the Fourier transform method proposed by Milne–Ulma, the idea is to compute the moment-

generating function for the portfolio return distribution and then to invert a Fourier transform

to obtain the density f�V
 of the portfolio P&L. From this density one then computes VaR

from the area under the left tail of the density f corresponding to a given percentile.

Consider the cumulative distribution function for the portfolio variation %V

��V
= P�%V ≤ V
=
∫
�n

pG�r
'�V −%V�r

dr� (4.72)

where pG is given by equation (4.42) and the integration is over the complete space of all

risk-factor returns and '�·
 is the unit step function.

Differentiating this gives f�V
:

f�V
= d��V


dV
� (4.73)

Taking the derivative w.r.t. V inside the integral gives

f�V
= 1√
det�2�C


∫
�n

exp�− 1

2
rTC−1r
��V −%V�r

dr� (4.74)

where we have used the property d'�x
/dx = ��x
. The Dirac delta function ��x
 is then

written in terms of its integral representation, and, assuming a delta-gamma approximation,

%V�r
≈
Tr+ 1

2
rT�r, we find that

f�V
= 1

2�

∫ 


−

e−iuVM�iu
du� (4.75)

i≡√−1, where M is the moment-generating function (mgf)

M�u
= 1√
det�2�C


∫
�n

exp�− 1

2
xT 	C−1−u�
x+u
Tx
dx� (4.76)

The mgf is given by a Gaussian integral and can be explicitly computed by using the

integral identity∫
�n

exp�−xT 	A+ iB
x+vTx
dx = �n/2√
det�A+ iB


exp� 1
4
vT �A+ iB
−1v
 (4.77)

for any n×1 vector v and n×n (complex) matrices A, B. Setting A= 1

2
C−1, B= i u

2
� , and

v = u
 we find

M�u
= 1√
det�I−u�C


exp

(
u2

2
�C

T �I−u�C
−1


)
� (4.78)

where I is the n×n identity matrix. Note that an equivalent expression also follows in terms

of the transpose matrix �I−u�C
T = I−uC� .
The last step is to cast the given mgf into the following computationally tractable form:

M�u
=
n∏

j=1

�1−u�j

−1/2 exp

[
u2

2

b2
j

�1−u�j


]
� (4.79)



268 CHAPT ER 4 . Numerical methods for value-at-risk

Here the bj are the components of the vector b given by

b=OTU
� (4.80)

where O is the matrix of eigenvectors of the symmetric matrix U�UT ,

OT �U�UT 
O= 	� (4.81)

The latter equation gives the diagonal matrix 	, whose diagonal elements define the given

�j components. The matrix U is defined (as usual) in the Cholesky factorization of the

covariance matrix C= UTU.
We finally obtain the real part of the mgf,

Re�M�iu
�=
n∏

j=1

�1+u2�2
j 


− 1
4 exp	−�u2b2

j /2
/�1+u2�2
j 

 cos��
� (4.82)

and an identical expression for the imaginary part Im�M�iu
�, with the cosine function

replaced by the sine function. The phase function is given by

�= 1

2

n∑
j=1

arctan�u�j
−
u3

2

n∑
j=1

�j/�1+u2�2
j 
� (4.83)

The final form of the Fourier transform involves only real quantities:

f�V
= 1

�

∫ 


0

	cos�uV
Re�M�iu
�+ sin�uV
Im�M�iu
�
du� (4.84)

This is a sum of cosine and sine transforms, which can be evaluated using a number of

appropriate numerical routines for integrating one-dimensional oscillatory functions. It is

particularly important to implement an algorithm that gives an accurate representation of the

pdf within the left tail. From equation (4.73), then, VaR for a chosen percentile 1−� is

obtained by evaluating the area under the left tail of f ; i.e., the cumulative density gives

��V =−VaR
= 1−�.

4.5 The Fast Convolution Method

The risk-factor model and the pricing model provide the necessary ingredients to make

equation (4.1), defining value-at-risk, meaningful. In this section, we present a new Fourier

transform algorithm for computing value-at-risk. The method is different from existing Fourier

methods (see [MU99, DP01, GHS02]) in that it does not assume that the characteristic function

(or mgf) of the density is explicitly known. The method therefore has the advantage of greater

freedom in choosing the risk-factor model. We present an extended example illustrating the

performance of the algorithm and the importance of risk-factor models with fat tails. In later

sections, we also extend the method to compute the gradient of value-at-risk. The section

concludes with two computational examples. The first is a simple linear approximation to

the change in value-at-risk with changes in portfolio composition. In the second example we

hedge a derivatives portfolio by solving an optimization problem to minimize the value-at-risk.
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The local dynamics of changes in portfolio value is again approximated by

%�̃='t+
Tr+ 1

2
rT�r�

and we approximate the value-at-risk by the solution to

P�%�̃≤−VaR
= 1−�� (4.85)

Because %�̃ is a quadratic function, it is generally easier to solve equation (4.85) than equa-

tion (4.1). At the same time, since %�̃ is locally accurate, the solution VaR to equation (4.85)

is a good approximation to value-at-risk, provided the probability of large changes in the

risk factors is relatively small. This is exemplified by the relative closeness of the % and %&
distributions (see Figure 4.12). We return to study accuracy in Section 4.8.

Equation (4.85) is solved in two steps. We find the pdf of %�̃ and compute the value-at-

risk from this distribution. Consider a risk-factor model and a factorization of the portfolio

of the type produced by Algorithm 1. That is, the joint distribution of the transformed risk

factors has a product pdf

p�x
= p1�x1
 · · · pn�xn
�

and the %&-approximation is a sum of independent quadratic functions

%�̃=-+
n∑

i=1

�i�xi
 where �i = %′
ixi+

�i

2
x2
i �
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FIGURE 4.12 %& distribution (solid line) compared to the % distribution (dashed line) for relatively

small changes in risk factors.
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Let p�i
�x
 be the pdf of �i for i= 1� � � � � n. Then the pdf of %�̃ has the form of a multiple

convolution,14

p%�̃ =  -�p�1
∗ · · · ∗p�n


� (4.86)

4.5.1 The Probability Density Function of a Quadratic Random Variable

Given a single risk factor xi with pdf pi and a quadratic portfolio component

�i = %′
ixi+

�i

2
x2
i �

it is easy to derive the pdf p�i
for �i. Let x+�u
 and x−�u
 be the two roots of �i�x
−u= 0,

x±�u
=
−%′

i±
√
�%′

i

2+2�iu

�i

� �−�%′
i

2/2�i ≤ u
� (4.87)

The pdf p�i
is the derivative of the probability

P��i ≤ u
= P�x ∈ x+�	−
� u


+P�x ∈ x−�	−
� u


�

The sets x±�	−
� u

 are empty for u <−�%′
i

2/2�i, and otherwise

p�i
�u
= pi�x+�u

x

′
+�u
−pi�x−�u

x

′
−�u
�

It follows that the pdf is

p�i
�u
=

{
0� if u <−�%′

i

2/2�i�

pi�x+�u

+pi�x−�u

√
�%′

i

2+2�iu

� if u≥−�%′
i

2/2�i�

The pdf has a singularity at u=−�%′
i

2/2�i, i.e., at the critical point x =−%′

i/�i of �i.

4.5.2 Discretization

Let 	−a�a
, a > 0, be a closed interval. Consider a regular grid ��j = −a+ jh�N−1
j=0 , where

h = 2a/N . Because p�i
has a singularity, it is necessary to use a discretization scheme that

conserves probability (see Figure 4.13). Therefore, we take

p�i
�x
≈ pD

i �x
= h
N−1∑
j=1

p
j
i �j�x
 where p

j
i =

1

h

∫ �j+h/2

�j−h/2
p�i

�u
du (4.88)

where � is the delta function and �j�x
≡ ��x−�j
. For convenience, let x0 =−a and define

p0
i = 0.

14The function f ∗g defines the convolution product

f ∗g�x
=
∫ 


−

f�y
g�x−y
dy�

The functional  a is the shift operator defined by

 af�x
= f�x+a
�
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FIGURE 4.13 Example of the importance of a discretization method that conserves probability density.

Consider X2, where X is normal — a *2 random variable with one degree of freedom. For the

conservative method, the discrete pdf and cdf are close to the pdf and cdf of the *2 random variable.

In the nonconservative method, the pdf is sampled at the grid points to get a discrete approximation.

As the graph for the cdf shows, the distribution function for the discrete approximation is not close to

the original cdf.

4.5.3 Accuracy and Convergence

The accuracy of the discretized function depends on the density outside the interval 	−a�a

and the number of grid points N . Suppose that

P��i ≤−a+h/2
 < !/2 and P��i ≥ a−h/2
 < !/2�

for i = 1� � � � � n, and some small ! > 0. On 	−a�a
, the discretization converges to the

probability density in the weak sense.

As a special case of convergence, the approximate cdf converges linearly to the exact

cumulative density: If �k−h/2 ≤ y < �k+h/2, then∣∣∣∣ ∫ y

�1−h/2
	p�j

�x
−h
N−1∑
j=0

p
j
i �j�x

dx

∣∣∣∣ ≤ pk
i h�
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and they agree exactly for y = �k+h/2. For the cdf, we have∣∣∣∣ ∫ y

−

	p�j

�x
−pD
j �x

dx

∣∣∣∣≤ !+hmax
k

pk
i �

4.5.4 The Computational Details

To compute the coefficients in equation (4.88) is a bit messy. We consider the case �i �= 0

(the case �i = 0 is simple). Considering an interval 	�j −h/2� �j +h/2
, the computation of

p
j
i falls into one of three categories:

(i) The polynomial �i�x
−u does not have any zeros for any u ∈ 	�j −h/2� �j +h/2
.

This gives

p
j
i = 0� (4.89)

(ii) The polynomial �i�x
− u has a double zero for some u ∈ 	�j − h/2� �j + h/2
. It

follows that

p
j
i =

{
1

h

∫ x+��j+h/2


x−��j+h/2
 pi�x
dx� if �i > 0,

1

h

∫ x−��j−h/2


x+��j−h/2
 pi�x
dx� if �i < 0�
(4.90)

(iii) The polynomial �i�x
−u has two distinct zeros for each u ∈ 	�j−h/2� �j+h/2
. This

yields

p
j
i =

1

h

∫ x+��j+h/2


x+��j−h/2

pi�x
dx+

1

h

∫ x−��j−h/2


x−��j+h/2

pi�x
dx� (4.91)

4.5.5 Convolution with the Fast Fourier Transform

Because the pdf for the %&-approximation %�̃ is a convolution product, it can be com-

puted using ideas from Fourier analysis [GW98]. The convolution product and its Fourier

transform15 satisfies

p�1
∗ · · · ∗p�n

�x
=
(

n∏
k=1

p̂�k

)∨
�x
�

15The continuous Fourier transform of a function f�x
 is

f̂ ��
=
∫ 


−

ei�xf�x
dx�

The inverse Fourier transform is

�̂f 
∨�x
= 1

2�

∫ 


−

e−i�xf̂ ��
d��
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It is possible to compute an approximate pdf for the %&-approximation %�̃ by multi-

plying and inverting the discrete Fourier transform of the coefficients of the discretized

densities:16

p�1
∗ · · · ∗p�n

�x
≈ pD

%�̃
�x
= h

N−1∑
j=0

pj�j�x
 where Pj = �−1
j�n−1
hn−1
n∏

k=1

P
j
k� (4.92)

The sequences �Pj�N−1
j=0 and �P

j
k�

N−1
j=0 are defined as the DFT of the sequences �pj�

N−1
j=0 and

�p
j
k�

N−1
k=0 in pD

%�̃
and pD

j �x
, respectively. The DFT and the inverse DFT of a sequence with N

points can be computed with the fast Fourier transform (FFT) using O�N logN
 floating-point

operations [BH95, GW98]. To compute the discrete approximation pD

%�̃
��i
 therefore requires

a total of O�nN logN
 floating-point operations.

To prove this method works and that the computed distribution converges linearly as h

and ! decrease requires a bit of work. Essentially, the proof is an exercise in Fourier analysis

and it proceeds in two steps. In the first step, we prove that, for a fixed interval 	−a�a
,

equation (4.92) converges to the cyclic convolution. In the second step, we show that as a

grows the cyclic convolution approximates the standard convolution.

For the set of integrable functions with compact support in 	−a�a
, we define the cyclic
convolution by the integral

f �g�x
≡
∫ a

−a
f p�x−y
g�y
dy x ∈ 	−a�a
 (4.93)

and to be zero elsewhere. The function fp�x
 is the periodic extension of f�x
; in other words

fp�x
 =∑
k f�x− 2ak
. It is easy to show that the cyclic convolution is commutative and

linear. Furthermore, if the two functions are in L1, we have


f �g
1 ≤ 
f 
1
g
1�

mimicking the similar property for the standard convolution.

Theorem 4.1. Assume f and g are Riemann integrable and have a finite number of discon-
tinuities. Let

fD = h
N−1∑
k=0

fk�k and gD = h
N−1∑
k=0

gk�k

16Given a sequence �yk�
N−1
k=0 , the discrete Fourier transform (DFT) �Y k�N−1

k=0 and its inverse are defined by

yk =
1

N

N−1∑
j=0

Y j�jk� k= 0�1� � � � �N −1�

Y k =
N−1∑
j=0

yj�
−jk� k= 0�1� � � � �N −1�

where �= e−i 2�N .
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be discretizations (in the manner of Section 4.5.2). Then

fD�gD = h
N−1∑
k=0

ak�k where Aj = �−1
jhF jGj�

and fD�gD → f �g and fD�gD → �f �g
D in the weak sense.

Proof. We prove the two statements separately, starting with the first one.

1. The cyclic convolution fD�gD is

fD�gD�x
= h2
N−1∑
k=0

(
N−1∑
l=0

fk−l+N/2gl

)
�k�x
�

and

ak = h
N−1∑
l=0

fk−l+N/2gl� k= 0�1� � � � �N −1�

By applying the DFT with �= e−i 2�N , it follows that

Ak = h
N−1∑
j=0

aj�−jk

= h�−kN/2
N−1∑
l=0

gl�−lk

(
N−1∑
j=0

f �j−l
−N/2�−k�j−l
+kN/2

)
= �−1
khFkGk�

2. It remains to show that fD�gD → f �g and fD�gD → �f �g
D in the weak sense.

Since f and g are piecewise continuous, we have, for all points of continuity,

1

h

∫ x+h/2

x−h/2
f�z−y
dy = f�z−x
+q�z−x�h
h�

1

h

∫ x+h/2

x−h/2
g�y
dy = g�x
+ r�x�h
h�

where q�·� h
h→ 0 and r�·� h
h→ 0 as h→ 0. Let��x
 be a smooth test function. Then

∫ a

−a
��x
fD�gD�x
dx=

N−1∑
k=0

���k

N−1∑
l=0

(∫ �l+h/2

�l−h/2
fp��k−y
dy

)
×
(∫ �l+h/2

�l−h/2
gp�y
dy

)

=
N−1∑
k=0

h���k

N−1∑
l=0

h�f��k−�l
+hq��k−�l� h



× �g��l
+hr��l� h

 �
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We note that

N−1∑
l=0

hf��k−�l
g��l
→ f �g��k


and

N−1∑
k=0

h���k
f �g��k
→
∫ a

−a
��x
f �g�x
dx�

If necessary, the finite number of points with discontinuities may be excluded without

changing the limits. The remaining integrals involving r and q vanish, proving that

fD�gD → f �g.
Since f �g is Riemann integrable and piecewise continuous, it follows that

1

h

∫ x+h/2

x−h/2
f �g�y
dy = f �g�x
+hs�x�h


at all points of continuity. Hence,

∫ a

−a
��x
�f �g
D�x
dx=

N−1∑
k=0

h���k

1

h

∫ �k+h/2

�k−h/2
f �g�y
dy

→
∫ a

−a
��x
f �g�x
dx

as h→ 0. �

By repeated applications of Theorem 4.1, we conclude that the right-hand side of equa-

tion (4.92) converges weakly to the cyclic convolution of the truncated densities. Our remain-

ing obligation is to show that the standard convolution can be approximated by the cyclic

convolution. The intuition being that since a pdf decays in the tails, for a large enough interval

the density of the overlapping regions in the cyclic convolution decreases.

In the first lemma, we show that the error from restricting the pdfs to an interval containing

the majority of the density is small.

Lemma 4.1. Given the probability density functions p�i
where i= 1� � � � � n, let

p̃�i
�x
=

{
p�i

�x
� if −a≤ x ≤ a,

0� otherwise,

where 
p�i
− p̃�i


1 ≤ ! for some ! > 0 and for all i= 1� � � � � n. Then,


p�1
∗ · · · ∗p�n

− p̃�1
∗ · · · ∗ p̃�n


1 ≤ !n�

Proof. The statement follows immediately from the inequality 
f ∗g
1 ≤ 
f 
1
g
1:


p�1
∗ · · · ∗p�n

− p̃�1
∗ · · · ∗ p̃�n


1 ≤
�p�1
− p̃�1


∗ · · · ∗p�n

1

+· · ·+ 
̃p�1
∗ · · · ∗ �p�n

− p̃�n


1

≤!n�
�
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In the next lemma, we show that if two pdfs are small outside an interval around the origin

and if the cyclic convolution is taken over a large enough interval, then the error is small.

Lemma 4.2. Assume that the pdfs f and g satisfy

f�x
≤ C1

1


x
�+1
and g�x
≤ C2

1


x
�+1
� (4.94)

for some � > 0 for all x outside some interval 	−b�b
. Suppose that a > 2b. Let f̃ and g̃ be
the restrictions of f and g, respectively, to the interval 	−a�a
. Then

0 ≤ f̃ � g̃�x
− f̃ ∗ g̃�x
≤ 1

�a−
x
/2
�+1

(
C1D2�x
+C2D1�x


)
where

D1�x
=
{∫ −a+x

−a+x/2
f�y
dy� if x > 0,∫ a+x/2

a+x
f�y
dy� if x ≤ 0,

and

D2�x
=
{∫ −a+x

−a+x/2
g�y
dy� if x > 0,∫ a+x/2

a+x
g�y
dy� if x ≤ 0.

Proof. We prove the bound in two steps. Consider a point x in the interval 	−a�a
. Suppose
that 0< x ≤ a.

1. Then

f̃ ∗ g̃�x
=
∫ a

−a+x
f�x−y
g�y
dy

and

f̃ � g̃�x
=
∫ −a+x

−a
f�x−y−2a
g�y
dy+

∫ a

−a+x
f�y−x
g�y
dy�

Since f and g are positive, the error satisfies

0 ≤ f̃ � g̃�x
− f̃ ∗ g̃�x
=
∫ −a+x

−a
f�x−y−2a
g�y
dy�

2. Consider the interval 	−a�−a+x
. The functions g�y
 and f�y
 satisfy equation (4.94)

in 	−a�−a+x/2
 and 	−a+x/2�−a+x
, respectively. Hence,

∫ −a+x/2

−a
f�x−y−2a
g�y
dy ≤ C2

∫ −a+x/2

−a

1


y
�+1
f�x−y−2a
dy�∫ −a+x

−a+x/2
f�x−y−2a
g�y
dy ≤ C1

∫ −a+x/2

−a

1


y
�+1
g�x−y−2a
dy�
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Since 
y
�+1 < �a−
x
/2
�+1, by combining the two equalities we find

0 ≤
∫ −a+x

−a
f�x−y−2a
g�y
dy ≤ 1

�a−
x
/2
�+1

(
C2D1�x
+C1D2�x


)
�

as required.

The proof for negative x is similar. The case x � 	−a�a
 is trivial since both functions are

zero outside the interval. �

With the help of the two lemmas, we are in a position to relate the cyclic approximation

to the standard convolution.

Theorem 4.2. Let p�i
for i = 1� � � � � n be probability density functions that satisfy the

assumptions in Lemma 4.1 and Lemma 4.2. Then


p�1
∗ · · · ∗p�n

− p̃�1
� · · ·� p̃�n


1 = O�!+a−�
�

Proof. Use Lemma 4.2 to bound the error from the cyclic convolution. Since the result is

asymptotic, we may assume that a > 2b, so the the lemma can be applied. Note that

p̃�1
∗ · · · ∗ p̃�n

− p̃�1
� · · ·� p̃�n

= �̃p�1
∗ p̃�2

− p̃�1
� p̃�2


∗ · · · ∗ p̃�n

+· · ·+ p̃�1
� · · ·� �̃p�n−1

∗ p̃�n
− p̃�n−1

� p̃�n

�

By the lemma and because 
D�x

 ≤ 1, it follows that


̃p�k
∗ p̃�k+1

− p̃�k
� p̃�k+1


1 ≤ 2�Ck+Ck+1

∫ a

0

1

�a−x/2
�+1
dx

= �Ck+Ck+1

4

�

((
2

a

)�

− 1

a�

)
�

Hence,

∣∣̃p�1
∗ · · · ∗ p̃�n

− p̃�1
� · · ·� p̃�n

∣∣= O�a−�
�

By Lemma 4.1 and the triangle inequality, it follows that


p�1
∗ · · · ∗p�n

− p̃�1
� · · ·� p̃�n


1 = O�!+a−�
�

�

Theorems 4.1 and 4.2 show that equation (4.92) works. As later examples demonstrate,

the rate of convergence for numerical experiments appears to be linear (see upcoming

Figure 4.14). It is therefore reasonable to guess that a stronger version of Theorem 4.1 may

be true.
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4.5.6 Computing Value-at-Risk

In this section, we discuss how to compute value-at-risk from discrete approximation (4.92)

to the pdf of the %&-approximation. Recall that the value-at-risk is defined by nonlin-

ear equation (4.1), and we approximate it by the solution to equation (4.85). Given the

pdf pD

%�̃
�x
 = h

∑N−1
j=0 pj�j�x
, we simply add the coefficients to get the cdf at the grid

points

P%�̃��k
= h
p0

2
+h

∑
j≤k

pj and P%�̃��N 
= P%�̃�a
= hp0+h
N−1∑
j=1

pj� (4.95)

Since the first point of the grid corresponds to the interval 	−a�−a+h/2
∪ 	a−h/2� a
, we

choose to assign half of the density to the right-end grid point, a, and half to the left-end

grid point, −a. Value-at-risk can then be computed by interpolating the cdf. Since the cdf

is an increasing function, we search for the index k such that P%�̃��k
 ≤ 1−� ≤ P%�̃��k+1
,

and therefore −VaR−- is in the interval 	�k� �k+1
. The linear interpolant to the inverse

cdf is

L�p
= �k+
(

p−P%�̃��k


P%�̃��k+1
−P%�̃��k


)
h� p ∈ 	P%�̃��k
�P%�̃��k+1

�

The desired approximation to value-at-risk is VaR =−L�1−�
−-.

4.5.7 Richardson’s Extrapolation Improves Accuracy

In practice, we have found that the observed rate of convergence can be improved with a

step of Richardson’s extrapolation. In our implementation, we compute two solutions VaRf

and VaRc on a fine grid with step size h and a coarse grid with step size 2h, respectively.

Richardson’s extrapolation then gives the solution17

VaR = 2VaRf −VaRc�

Although Richardson’s extrapolation can be extended to eliminate higher-order errors, we

have found that additional levels of extrapolation do not lead to further improvements. The

steps of the fast convolution method for value-at-risk are summarized in Algorithm 2.

17Suppose we want to compute y. If we have two approximations satisfying

y1 = y+ ch+o�h
�

y2 = y+ c�2h
+o�h
�

then the linear error term can be eliminated with Richardson’s extrapolation

2y1−y2 = y+o�h
�

It is easy to derive similar formulas for higher-order terms.
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Algorithm 2
Fast Convolution Method for Value-at-Risk

Input: A %&-approximation. A time series of daily returns. A confidence level
0<�< 1. A number of grid points N and a bound for the grid interval a.

Output: The value-at-risk for one day with confidence level �.

• Estimate the parameters and factorize the %&-approximation with Algorithm 1.
• Create the grid. Define ��k =−a+hk�N−1

k=0 , where h= 2a/N .
• Discretize the densities,

pD
i = h

N−1∑
j=1

p
j
i �j where p

j
i =

1

h

∫ �j+h/2

�j−h/2
p��u
du�

• Compute the density for the %&-approximation with the FFT:

pD

%�̃
= h

N−1∑
j=0

pj�j where Pj = �−1
j�n−1
hn−1
n∏

k=1

P
j
k�

• Compute the discrete cdf P%�̃ and find k such that

P%�̃��k
≤ 1−�≤ P%�̃��k+1
�

• Compute the linear interpolant L�·
 for the inverse over 	�k� �k+1
 and let

VaR =−L�1−�
−-�

• Repeat from step 2 for a grid with step size 2h. Extrapolate to get a more
accurate approximation.

The advantage of Richardson’s extrapolation is clearly illustrated by the computational

example in Figure 4.14. The four graphs show the error as a function of the step size h. The

functions are

�i
 %�̃= X1+X2�

�ii
 %�̃= X2
1 +X2

2�

�iii
 %�̃=−�X2
1 +X2

2
�

�iv
 %�̃= X2
1 +X2

2 −X2
3 −X2

4 +X5�

and the random variables Xi are normal. The graphs show the error for confidence level �

equal to 1%, 5%, 10%, and 20% and for value-at-risk computed with and without Richard-

son’s extrapolation. The error is estimated as the difference between the value-at-risk for

consecutive grid sizes. The rate of convergence was computed using linear regression.
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FIGURE 4.14 Error in value-at-risk as a function of step size for four abstract problems. Each graph

shows the error for the confidence levels 1%, 5%, 10%, and 20%, and for value-at-risk computed

with and without Richardson’s extrapolation. Extrapolation is superior since the errors are smaller,

and the observed rate of convergence improves from 1 to between 1�5 and 2, depending on the

problem.

Without extrapolation, the observed rate of convergence is very close to 1, for all four prob-

lems and all confidence levels. When extrapolation is used, all problems show a faster rate

of convergence, but the systematic relationship is less clear. The estimated rates of con-

vergence range from approximately 1�5 for problems (ii) and (iii) to approximately 2 for

problem (i).

4.5.8 Computational Complexity

The number of floating point operations for Algorithm 2 is O�n2 min�d�n
+ nN logN
,
where n is the number of risk factors, d is the number of dates in the time series, and N
is the grid size. Figure 4.15 shows the computation time for portfolios for increasing n; the
remaining parameters are fixed, with d= 1000 and N = 4096. The figure shows that the time

is essentially linear in n. In addition, we note that a large portion of the computation time is

spent in the parameter estimation step. As expected, the parameter estimation for the Parzen

model is much slower than for the asymmetric t model, which in turn is slower than the

normal model.
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FIGURE 4.15 Computation time versus the number risk factors for the three return models. The

parameter estimation takes a large portion of the total time.

4.6 Examples

4.6.1 Fat Tails and Value-at-Risk

We illustrate the performance of the algorithm with an example. The example also demon-

strates the importance of a return model that incorporates fat tails and that includes information

about the curvature of the function for the portfolio value. Consider a portfolio containing

one European call option on each of BCE and Canadian Tire. The options are at-the-money

and have 3 months to maturity. The Black–Scholes price of the options are $3�23 and $1�39.
The Hessian in the %&-approximation is

� =
[
99�0967 0

0 42�6138

]
�

The portfolio is similar to the example in Section 4.3.2, but it has shorter time to maturity,

which increases the curvature.

An investor who has sold this portfolio will see her holdings decrease in value if the stock

prices increase. To hedge the portfolio, she might take a linear position that offsets the 
 of

the portfolio. To examine how the value-at-risk changes with the 
 vector, we computed the

95% and 99% value-at-risk on a grid with −10 ≤ %i ≤ 10, where i = 1�2. Figures 4.16 and

4.17 show the level sets for value-at-risk. Each graph is computed with a 30×30 grid for 
.



282 CHAPT ER 4 . Numerical methods for value-at-risk

The dynamics of portfolio value are approximated by a linear function, and the returns on the

risk factors are modeled by a multivariate normal with zero mean. The remaining six graphs

in Figures 4.16 and 4.17 were computed with the fast convolution method with N = 4096

grid points. The dynamics of portfolio value are approximated by the same %&-approximation

in all six simulations, and the risk factors are modeled using the three models introduced in

Section 4.1. We see that the linear model oversimplifies the problem. In particular, it suggests

that the risk is eliminated completely by the hedging strategy, which is not true. From the

graph it is clear that it also underestimates the risk away from the origin.
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in CTRa.
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FIGURE 4.17 Part II. Value-at-risk for a short position in an option portfolio as a function of %1 and

%2. The horizontal axis is %1, the linear position in BCE; the vertical axis is %2, the linear position

in CTRa.

Although the remaining six graphs are more in agreement with each other, we can see

some interesting differences. Again the estimate for the value-at-risk is smaller for the normal

model as compared to the asymmetric t and Parzen models. For 
= 0, the relative differences
are approximately 16% (38%) and 80% (92%) for the asymmetric t model (Parzen model) and

for the 95% and 99% value-at-risk, respectively. The differences between the asymmetric t

and Parzen models are about 19% and 7% for the 95% and 99% value-at-risk, respectively.

The Parzen model gives a larger value-at-risk as compared to both of the other models. The

level sets of the normal and asymmetric t models are elliptical, whereas the level sets for

the Parzen model display less symmetry. The fat tails are primarily a concern for portfolios

with negative curvature. Figure 4.18 shows the 95% value-at-risk for a long position in the
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FIGURE 4.18 Part III. The 95% value-at-risk for a long position in an option portfolio as a function

of %1 and %2. The horizontal axis is %1, the linear position in BCE; the vertical axis is %2, the linear

position in CTRa.

example portfolio. The differences between the four graphs are much smaller, and the last

three are almost identically close to the origin. Of course, this just confirms that buying the

call options is much less risky than selling them.

4.6.2 So Which Result Can We Trust?

To better understand the simulations results, we can take a closer look at a long position

in the delta-hedged portfolio, the portfolio with 
 = 0. Recall that if the value-at-risk is

correct, we expect to have approximately 5 (25) losses exceeding the 99% (95%) value-at-risk

for a sample of 500 returns. We repeated the value-at-risk simulation for 500 consecutive

days and computed the number of losses greater than value-at-risk over the 500 returns used

in the calculation. Figure 4.19 shows histograms for the normal, asymmetric t, and Parzen

models.

From the examples in Section 4.1, we know that the normal model does not produce

an accurate model for the tails. This is confirmed by the simulation, since the number
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Each graph shows two superimposed histograms, where the left “bump” is the result for 99% value-at-

risk and the right bump is the result for the 95% value-at-risk.

of losses greater than value-at-risk deviates from the expected values. The histograms for

the asymmetric t model are centered close to the expected values. The Parzen model pro-

duces a good estimate for the 99% value-at-risk, but it seems to overestimate the smaller

confidence level. We conclude that the asymmetric t and Parzen models are preferable to

the normal model. Furthermore, for this example, both models give acceptable results for

the 99% value-at-risk, and the asymmetric t model produces a better estimate for the 95%

value-at-risk.

4.6.3 Computing the Gradient of Value-at-Risk

For small portfolios, such as the one in our example, it is possible to understand how value-at-

risk changes with portfolio composition by computing it many times, varying the parameters,

and visualizing the result. For large portfolios and for increasing number of parameters, this

is a time-consuming strategy, and the result becomes harder to interpret. In this section, we

extend the fast convolution method to compute the gradient of value-at-risk. It is an interesting

problem because the gradient gives local information about how the value-at-risk changes

with portfolio composition. Gradient information is important to understand and evaluate

decisions about changes in the portfolio. In [MR98] Mausser and Rosen review applications

and methods for value-at-risk gradients. Monte Carlo methods to compute value-at-risk have
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been proposed independently by several authors; see, for example, the methods developed by

Păun [Pău99] and Mausser and Rosen [MR98]. For the linear model with normal returns, the

gradient may be interpreted in terms of “risk contributions” from instruments or risk factors;

see, for example, the paper by Hallerbach [Hal99].

Recall that value-at-risk is defined by nonlinear equation (4.1). In the fast convolution

method, it is approximated by the solution to equation (4.85). We can reformulate equa-

tion (4.85) as a one-dimensional integral over the pdf of %�̃,∫ −VaR

−

p%�̃�x
dx = 1−��

Then the gradient (i.e., gradients w.r.t., the “Greeks”) can be computed by implicit differen-

tiation:

�VaR

�'
= 1

p%�̃�−VaR


∫ −VaR

−

�p%�̃

�'
dx� (4.96)

�VaR

�%′
i

= 1

p%�̃�−VaR


∫ −VaR

−

�p%�̃

�%′
i

dx� (4.97)

�VaR

�#ij

= 1

p%�̃�−VaR


∫ −VaR

−

�p%�̃

�#ij

dx� (4.98)

Of course, rather than the derivatives for the parameters in the portfolio factorization, we

want the derivatives for the parameters in the original %&-approximation or the portfolio

positions �i. Fortunately, these can be computed from equations (4.96)–(4.98).18

4.6.4 The Value-at-Risk Gradient and Portfolio Composition

Suppose that the VaR gradient with respect to the parameters in the %&-approximation are

known. The gradient with respect to �i, the quantity invested in the ith security, follows from

the chain rule:

�VaR

��i

= �VaR

�'

�'

��i

+
n∑

k=1

�VaR

�%k

�%k

��i

+
n∑

k=1

n∑
j=1

�VaR

�&kj

�&kj

��i

� (4.99)

The derivatives for the parameters of the %&-approximation can in turn be computed

from the derivatives w.r.t. parameters in the portfolio factorization, equations (4.31), (4.34),

and (4.35). The ' derivative, in equation (4.96), immediately gives

�VaR

�'
=−t�

For the remaining two derivatives, it follows after some calculation that the gradient vector

for %i is [
�VaR

�%i

]n

i=1

= A
([

�VaR

�%′
i

]n

i=1

− �̂

)
(4.100)

18 In the gradient computation, we have left out the contribution to the gradient from the parameter estimates.
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and the Jacobian matrix for &ij is[
�VaR
�&ij

]n
i�j=1

= 1

2
A
([

�VaR
�#ij

]n
i�j=1

+
[
�̂i

�VaR
�%′

j

]n
i�j=1

+
[
�VaR
�%′

i
�̂j

]n
i�j=1

− �̂�̂
T

)
AT � (4.101)

Here we have used the shorthand notation 	vj

n
j=1 ≡ �v1� � � � � vn


T and 	Mij

n
i�j=1 =M for any

n×n matrix M with elements Mij .

4.6.5 Computing the Gradient

Consider integrals (4.96)–(4.98). We note that the density p%�̃�−VaR
 is directly available

in Algorithm 2; it can be computed by interpolation. Therefore, the task that remains is to

approximate the two integrands in equations (4.97) and (4.98).

The derivative with respect to %′
i is

�p%�̃

�%′
i

=  -
(
p�1

∗ · · · ∗ �p�i

�%′
i

∗ · · · ∗p�n

)
�

Similarly, the derivative with respect to the diagonal element #ii is

�p%�̃

�#ii

=  -
(
p�1

∗ · · · ∗ �p�i

�#ii

∗ · · · ∗p�n

)
�

To find the derivatives for #ij , where i �= j, we have to resort to a slightly different

technique.19 The matrix � is a Hessian and hence is symmetric. Therefore, we only have

to consider derivatives in directions that preserve symmetry. Consider a perturbation in the

direction Eij +Eji (i �= j). Differentiating(
1 −t
t 1

)(
#ii 0

0 #jj

)(
1 t
−t 1

)
we get

d

dt

∣∣∣∣
t=0

(
1 −t
t 1

)(
#ii 0

0 #jj

)(
1 t
−t 1

)
= �#ii−#jj


(
0 1

1 0

)
�

Since the curve is tangent to Eij +Eji, we consider p%�̃ along this curve as a function of t:

p%�̃ = p�1
∗ · · · ∗p�i

�#ii�t
�%
′
i�t

∗ · · · ∗p�j

�#jj�t
�%
′
j�t

∗ · · · ∗p�n

�

For this curve, we get

d

dt

∣∣∣∣
t=0


′�t
= d

dt

∣∣∣∣
t=0

(
1 t
−t 1

)−1


′ =
(
0 −1

1 0

)

′

19Differentiating a function f � �n → R is often simplified if the derivation is carried out in a convenient basis.

The derivative in the direction of v at x satisfies

.vf = vT.f�x


where .f�x
 is the gradient of f at x. Hence, if b1� � � � �bn is a basis for �n, then the gradient can be computed

from the derivatives .bi
f by

.f�x
= B−1
[
.bi

f
]
�

where the rows of the matrix B are the basis vectors.
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The derivative of p%�̃ in the direction of T = 1

2
�Eij +Eji
 is the same as the derivative of

p%�̃ along the curve renormalized to compensate for the curve’s not having unit speed:

.Tp%�̃ = d

dt

∣∣∣∣
t=0

 -
(
p�1

∗ · · · ∗p�i
�#ii�t
�%

′
i+ t%′

j
∗ · · · ∗p�j
�#jj�t
�%

′
j − t%′

i
∗ · · · ∗p�n

)
2�#ii−#jj


�

Hence, it follows that

�p%�̃

�#ij

= 1

2�#ii−#jj


(
%′

j

�p%�̃

�%′
i

−%′
i

�p%�̃

�%′
j

)
�

Algorithm 3
Fast Convolution Method for Value-at-Risk Gradient

Input: A %&-approximation. A time series of daily returns. A confidence level
0<�< 1. A number of grid points N and a bound for the grid interval a.

Output: The value-at-risk for one day with confidence level �. The gradient of
value-at-risk for the parameters of the %&-approximation.

• Compute value-at-risk with Algorithm 2.
• Compute the discretized partial derivative for p�i

:

�pD
�i

�%′
i

= h
N−1∑
j=0

q
j
i �j�

• Convolve the functions with the FFT:(
�p%�̃

�%′
i

)D

= h
N−1∑
j=0

rj�j where Rj = �−1
j�n−1
hn−1Q
j
i

∏
k �=i

P
j
k

• Integrate over 	−a�−VaR
 by adding the coefficients �rj�
N−1
j=0 and linear inter-

polation. Let I be this approximation.
• Compute p%�̃�−VaR
 with linear interpolation for pD

%�̃
.

• Set the vector of components:[
�VaR

�%′
i

]
i

= 1

p%�̃�−VaR

I�

• Repeat from step 2 for each %′
i and for #ii.

• Repeat for a grid with step size 2h. Extrapolate both value-at-risk and the
gradients to get more accurate answers.

• Perform the change of coordinates using equations (4.100) and (4.101).
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The computation boils down to finding derivatives of the pdf p�i
with respect to %′

i and

#ii. In our implementation, we approximate the derivatives by differentiating the coefficients

of the discretized pdf pD
�i
, i.e., by differentiating equations (4.89)–(4.91) with respect to %′

i

and #ii. This procedure gives two discretized functions:

�pD
�i

�%′
i

= h
N−1∑
j=0

q
j
i �j and

�pD
�i

�#ii

= h
N−1∑
j=0

r
j
i �j�

Hence, we can compute discrete approximations to the partial derivatives with the DFT.

The algorithm is identical to the corresponding step, in equation (4.92), in the value-at-risk

algorithm. Finally, integrals (4.97) and (4.98) are approximated by summing the coefficients

and with linear interpolation over the final interval. The integration step is similar to equa-

tion (4.95). The complete computational procedure is summarized in Algorithm 3.

4.6.6 Sensitivity Analysis and the Linear Approximation

Consider a portfolio with two European call options on each of BCE and Canadian Tire. Both

options are at-the-money and mature in 3 months. Let �1 and �2 be the number of contracts

held for each of the two options. When priced using the Black–Scholes model, the value of

the portfolio is

�= 3�23 ·�1+1�39 ·�2�
The %&-approximation is given by

' =−0�0277 ·�1−0�0119 ·�2�


=
[
24�3797 ·�1
10�4725 ·�2

]
�

� =
[
99�0967 ·�1 0

0 42�6138 ·�2
]
�

As an example of a gradient calculation, we computed value-at-risk for a 25×25 grid of

��1� �2
 portfolios. To understand the sensitivities of value-at-risk to the portfolio parameters,

we also computed the gradient at each grid point. Figure 4.20 shows the computed gradient

field superimposed over the level curves of value-at-risk. The vectors show the direction of

largest sensitivity to changes in the portfolio. The six graphs show the results for the 95%

and 99% value-at-risk and for the three return models introduced in Section 4.1. From the

figure we make three observations. First, for all plots the computed vector field agrees with

the level sets and shows that changes in �1, the position in the BCE option, has the most

impact on the risk. Second, similar to the previous example, the asymmetric t and Parzen

models for return give a larger estimate of the risk as compared to the normal model. Third,

the level sets for the Parzen model are less smooth, but the computed gradients still seem to

agree quite well with the macro scale of change for the function. For value-at-risk simulations

the lack of smoothness of computed value-at-risk is a minor concern, but when applied to

optimization problems this is a serious shortcoming.

Consider portfolios where �2 = 1 is fixed and �1 varies, i.e., the portfolios on a horizontal

line in each of the graphs in Figure 4.20. For value-at-risk as a function of �1, the derivative of
value-at-risk gives a linear approximation. Figure 4.21 shows the value-at-risk and the linear

approximation computed for �1 =−0�2. In all six cases, the linear approximations accurately

describe the local dynamics of the value-at-risk. Neglecting to differentiate the market model

does not lead to an inaccurate derivative.
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FIGURE 4.20 Level sets for value-at-risk and the gradient field for value-at-risk. The horizontal axis

is �1, the position in the BCE call option, and the vertical axis is �2, the position in the Canadian Tire

option.
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(i) Normal returns
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(v) Parzen estimate for returns (vi) Parzen estimate for returns
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FIGURE 4.21 Linear approximations to the 95% and 99% value-at-risk as a function of �1, the position
in the call option on BCE. The linear approximation is computed for �1 =−0�2.

4.6.7 Hedging with Value-at-Risk

We conclude this section with an optimization example. Similar to the previous examples,

we consider a portfolio with a long position in one European call option each on BCE and

Canadian Tire. The two options both mature in 3 months and are at-the-money. The TSE35
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is an index with 35 stocks trading on the Toronto Stock Exchange. Extend the model with

two more securities: the index itself and an at-the-money call option on the index. Since the

TSE35 includes both BCE and Canadian Tire and there is significant positive correlation

of the returns, it is possible to find a position that reduces the value-at-risk of the original

portfolio. Let �1 and �2 be the number of index and call options on the index in the portfolio.

The %&-approximation for this portfolio is given by

' = 0�0396−0�2354 ·�2�


=
⎡⎣ −24�3797

−10�4725
564�75 ·�1+321�71 ·�2

⎤⎦ �

� =
⎡⎣−99�0967 0 0

0 −42�6138 0

0 0 2233�2 ·�2

⎤⎦ �

This leads to the following optimization problem:

min
�1��2

VaR��1� �2
�

The value-at-risk surface has a flat fold; see Figure 4.22. The portfolios along the fold

all have approximately the same value-at-risk, which corresponds to portfolios where %3 is

constant. To study the performance of the fast convolution method when used in combination

with optimization software, we computed the minimum for each of the three return models.20

The computed solutions are marked in the plots in Figure 4.22. From studying the surface

and inspecting the iterations, we note that the computed solutions are different and that the

solutions for all three problems are very close to degenerate. Hence, hedging the portfolio

using both index and index options does not lead to any significant reduction in the value-at-

risk as compared to using the index alone.

4.6.8 Adding Stochastic Volatility

The picture changes when the model is extended by making volatility a risk factor. We chose

to consider a simple extension. Suppose that the volatility for all three risk factors is the

same; i.e., the changes in volatilities satisfy

%�1

�1
0

= %�2

�2
0

= %�3

�3
0

�

and we use the Black–Scholes equation to extract a %&-approximation. Although this model

is too simple to be of use in practice, it captures the main property of a stochastic volatility

model and introduces a risk factor that can only be hedged using the option. We therefore

believe that the qualitative properties of the example are correct, and for the purpose of

exploring value-at-risk optimization it is therefore an appropriate model problem.

20We used the quasi-Newton method.
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FIGURE 4.22 The 99% value-at-risk surface as a function of �1, the position in TSE35, and �2, the
position in call options on TSE35. The point marked is the computed solution to the optimization

problem. Volatility as a risk factor changes the shape of the value-at-risk surface and makes the minimum

well defined.
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If we include first-order volatility risk, this gives a new%&-approximation for the portfolio:

' = 0�0396−0�2354 ·�2�


=

⎡⎢⎢⎣
−24�3797
−10�4725

564�75 ·�1+321�71 ·�2
−4�1963+22�0409 ·�2

⎤⎥⎥⎦ �

� =

⎡⎢⎢⎣
−99�0967 0 0 0

0 −42�6138 0 0

0 0 2233�2 ·�2 0

0 0 0 0

⎤⎥⎥⎦ �

In Figure 4.22, we see that the value-at-risk surfaces for the stochastic volatility model

are different from the model without volatility risk. In the stochastic volatility model, the

degenerate minimum is replaced by a well-defined minimum. Furthermore, the portfolio with

optimal value-at-risk combines a position in the index and the index option to reduce the risk,

and using only the index would give a less efficient hedge. Finally, the minima computed

using optimization software are close to each other for all three return models.

From the example we can draw several interesting conclusions. First, the example shows

that value-at-risk leads to nontrivial optimization problems. The fast convolution method

provides an efficient basis for solving hedging problems with value-at-risk as the risk measure.

Second, the shape of the value-at-risk surface changes when volatility risk is included in the

model. In the stochastic volatility model, options are important to reduce the value-at-risk.

Third, our experience is that optimization with the Parzen model is less reliable than the

other two return models. The reason is that the surface for the Parzen model has small-scale

variations caused by the nonparametric density estimator. When it is used in an optimization

algorithm, the lack of smoothness makes the use of finite-difference approximations to the

derivatives less stable. To some extent this can be handled by varying the tolerances used in

these computations, but it does not change the fact that the steps and stopping criteria are

less reliable, and special care must be taken to check the accuracy of the computed solution.

4.7 Risk-Factor Aggregation and Dimension Reduction

For many portfolios, a few main directions determine the dominant behavior of the dynamics

of the portfolio value. This is a combined effect of correlation of risk-factor returns and the

quantities of each security held in the portfolio. Therefore, it is natural to search for a simpler

approximation depending on fewer factors that is close to the original model. In this section,

we develop two portfolio-dependent methods for dimension reduction (see also [AJW02]).

This problem has been examined by other authors; e.g., Hull [Hul00] shows how to

use principal component analysis in an interest rate model; Kreinin et al. [KMRZ98] present

a principal-component–based method for linear portfolios with normally distributed risk

factors; and Reimers and Zerbs [RZ98] develop a reduction method where asset blocks

are represented by their dominant principal components and cross-block covariances by the

covariance for the largest principal component of each block. The method presented here take

a %&-approximation and compute a new approximation of lower dimensionality that is close

to the original function. The section concludes with two examples. In the first example, we

compare the performance of the methods for a sample portfolio. We conclude that the method

based on mean square error is more accurate, easier to implement, and slightly more efficient.
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In the second example, we apply the dimension reduction method to an optimization problem.

This experiment shows that dimension reduction can be effective in reducing computation time

while maintaining good accuracy. Parts of these results have appeared in Albanese, Jackson,

and Wiberg [AJW02], but the numerical experiments presented here are more extensive and

the conclusions about nonnormal models are new.

A %&-approximation can be written as

%�̃=-+XT
′ + 1

2
XT�X=-+

n∑
i=1

(
%′

iXi+
�i

2
X2

i

)
� (4.102)

The n× 1 vector X is an affine transformation of the original risk-factor returns (see

Section 4.3). The vector of risk-factor returns is a random variable, and the the transformed

random vector X satisfies

E	X
= 0 and E	XXT 
= I�

If the number of risk factors n is large, the time to compute value-at-risk is large. The

objective in dimension reduction is to find a %&-approximation %�̃1 that captures the main

properties of %�̃, but %�̃1 depends on k � n dimensions. Successful dimension reduc-

tion reduces the time to compute value-at-risk. This is particularly important for problems

where value-at-risk must be computed repeatedly, as, for example, in solving optimization

problems.

The strategy proposed here is to restrict %�̃ to a subspace such that %�̃ and the restriction

%�̃1 are close. Let � be a projection21 onto the subspace spanned by the orthonormal columns

of an n×k matrix Q1, and let �
⊥ be the projection onto the complementary subspace spanned

by the orthonormal columns of Q2. Let z= �z1� z2
 be defined by

X= �X+�⊥X=Q1z1+Q2z2� (4.103)

Based on this factorization of the risk-factor space, we conclude that the reduced approxima-

tion has the form

%�̃�X
≈ %�̃��X
= %�̃1�z1
� (4.104)

In the sections that follow, we present two methods for finding a projection so that %�̃
and %�̃1 are close. The methods are motivated by two different views of the meaning of

closeness. The first method solves the problem by finding a lower-dimension approximation

with a small mean square error. The second method uses the identification of quadratic forms

with matrices and solves the problem, after rescaling the variables, by finding a lower-rank

matrix close to the original %&-approximation.

4.7.1 Method 1: Reduction with Small Mean Square Error

In Method 1, we find %�̃1 in equation (4.104) by insisting that the mean square error

E	�%�̃−%�̃1

2
 be small. To motivate the algorithm for dimension reduction, we need the

following lemma.

21A projection is a Hermitian matrix � such that �2 = � .



296 CHAPT ER 4 . Numerical methods for value-at-risk

Lemma 4.3. Let A be an n×n matrix with x, a, b as n×1 vectors. Suppose that

max

a
2=1

max

b
2=1

E	�aTx
2�bTx
2
≤ ��

Then

E	�xTAx
2
≤ n�
A
2F �



F denotes the Frobenius norm of a matrix; i.e., 
A
F = �
∑n

i�j=1 
Aij
2
1/2.

Proof. From the Cauchy–Schwartz inequality, it follows that

E	�xTAx
2
≤ E	�xTx
�xTATAx

�

Since ATA is symmetric, there is an orthogonal matrix Q such that ATA=QT(2Q where (
is diagonal. Hence,

E	�xTx
�xTATAx

= E	�xTQTQx
�xTQT(2Qx

�

Define yi = qT
i x, where qT

i is the ith row vector of Q. By assumption, we have E	y2i y
2
j 
 ≤ �

for all i and j, and it follows that

E	�yTy
�yT(2y

= E

[
�
∑
k

y2k
�
∑
l

�2
l y

2
l 


]
=∑

l

�2
l

∑
k

E	y2ky
2
l 


≤ n�
∑

�2
j �

Since
∑

j �
2
j = 
A
2F , the lemma follows. �

Suppose that the 4th-order moments in the lemma are bounded and that we have an

estimate � for this bound. Consider a tolerance ! > 0. By reordering the components of X,
we can order the eigenvalues, the diagonal elements of �, such that 
�i
 ≥ 
�i+1
 for all i. Let
k be the smallest index for which

n∑
i=k+1

�2
i ≤ !� (4.105)

Partition X = �X1�X2
, with X1 containing the first k components. We can then write equa-

tion (4.102) as

%�̃=- + [
XT

1 �0
][
′

1

0

]
+ 1

2

[
XT

1 �0
][�1 0

0 0

][
X1

0

]
+ [

0�XT
2

][ 0


′
2

]
+ 1

2

[
0�XT

2

][0 0

0 �2

][
0

X2

]
�

The contribution to the mean square error from �2 is small relative to !, but the effect on the

gain from 
′
2 may still be large. With a simple trick we can keep all the information in 
′

2.

Let V = 	v1�V2
 be an orthogonal matrix with the first column v1 = 
′
2/

′

2
2. Since 
′
2 is
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orthogonal to the column vectors in V2, we define the �k+1
-vector z1 and the �n−k−1
-
vector z2 in equation (4.103) by

z1 =
[

x1
vT
1 x2

]
and z2 = VT

2 x2�

Hence, the reduced %&-approximation is

%�̃1�z1
=-+ zT1

[

′

1



′
2
2
]
+ 1

2
zT1

[
�1 0

0 vT
1�2v1

]
z1�

This dimension reduction method is summarized in Algorithm 4.

To relate the reduced %&-approximation to the mean square error, we observe that the

residual is a pure quadratic term:

%�̃−%�̃1 =
1

2
	zT1 � z

T
2 


⎡⎣0 0 0

0 0 vT
1�2V2

0VT
2�2v1 V

T
2�2V2

⎤⎦[
z1
z2

]
�

It is easy to show that ∣∣∣∣[ 0 vT
1�2V2

VT
2�2v1 VT

2�2V2

]∣∣∣∣
F

≤ ∣∣VT�2V
∣∣
F
�

By the unitary invariance of the Frobenius norm and criterion (4.105), we can apply the

lemma to prove the bound for the mean square error summarized in the following theorem.

Algorithm 4
Dimension Reduction, Method 1

Input: A %&-approximation. A time series �ri�
d
i=1 of daily returns. A tolerance

! > 0.
Output: Parameter estimates for the market model. A factorization of the reduced

%&-approximation.

• Compute estimates for the mean �̂ and the covariance matrix Ĉ.
• Solve the eigenvalue problem {

�= AT�A�

Ĉ= AAT �

Order the eigenvalues so that 
�i
 ≥ 
�i+1
.
• Compute

-='t+ �̂
T

+ 1

2
�̂

T
&�̂�


′ = AT �
+��̂
�
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• Find the smallest integer k such that

n∑
i=k+1

�2
i ≤ !�

• Compute


1 = 	%�1 � k
� 
%�k+1 � n

2
�
v1 = %�k+1 � n
/
%�k+1 � n

2�

�1 =
[
��1 � k�1 � k
 0

0 vT
1��k+1 � n� k+1 � n
v1

]
�

• For each Zi, estimate the remaining parameters from the transformed returns
�A−1�ri− �̂
�di=1 and �vT

1A
−1�ri− �̂
�di=1, using the methods in Section 4.1.

Theorem 4.3. Let ! > 0 and � > 0, with x, a, b as n×1 vectors such that

max

a
2=1

max

b
2=1

E	�aTx
2�bTx
2
≤ ��

Then the %&-approximation %�̃1 produced by Algorithm 4 satisfies

E	�%�̃−%�̃1

2
≤ �!n

4
�

4.7.2 Method 2: Reduction by Low-Rank Approximation

The random variables Xi in equation (4.102) have zero mean, are uncorrelated, and have

variance 1. Therefore, the impact of each random variable is approximately the same. The

%&-approximation can be written as a quadratic form:22

%�̃=-+ 1

2
	XT �1


[
� 
′

�
′
T 0

][
X
1

]
�

Therefore, we can define the distance between two %&-approximations, with the same constant

term -, as


%�̃−%�̃1
 =
∣∣∣∣[ � 
′

�
′
T 0

]
−
[

�1 
′
1

�
′
1


T 0

]∣∣∣∣
2

� (4.106)

In Method 2, this is the definition of closeness we use for dimension reduction.

22 In practice, it is not necessary to transform the problem all the way to form (4.102). It is sufficient to compute

the Cholesky factor of the covariance matrix and transform the %&-approximation accordingly. This way the number

of eigenvalue problems solved in upcoming Algorithm 5 can be reduced from three to two.
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Consider the Schur decomposition for %�̃,[
� 
′

�
′
T 0

]
=O�OT �

where O is an orthogonal matrix and � is a diagonal matrix. The diagonal elements of �
are the eigenvalues, and we may assume that they are ordered in decreasing absolute value


�1
 ≥ � � � ≥ 
�n
. Let the n×n diagonal matrix �k be defined by

�k = diag��1� � � � ��k�0� � � � �0
�

The Schmidt–Mirsky theorem says that O(kO
T solves the minimization problem

min
rank�B
=k


%�̃−B
2 = 
%�̃−O�kO
T 
2 = 
�k+1


(for a proof, see, for example, [SS90 p. 208 or GL89 p. 71]).

Given a tolerance ! > 0, the Schmidt–Mirsky theorem gives a tool to find the optimal

function %�̃1. Let k be the smallest k such that


�k+1
 ≤ !�

Then


%�̃−O�kO
T 
2 ≤ !�

The terms of the reduced function %�̃1 can be computed from the matrixO�kO
T . Partition

the orthogonal matrix U as

O=
[
U11 U12

uT
21 uT

22

]
=

⎡⎢⎢⎢⎣
u11 · · · u1k u1�k+1 · · · u1�n+1

���
� � �

���
���

� � �
���

un1 · · · unk un�k+1 · · · un�n+1

un+1�1 · · · un+1�k un+1�k+1 · · · un+1�n+1

⎤⎥⎥⎥⎦ �

The matrix Q1 in equation (4.103) can be taken as the n×k matrix with orthonormal columns

in the QR factorization Q1R = U11. For this choice, we get the reduced %&-approximation

%�̃1 =-+uT
21�ku21+ zT1R�ku21+

1

2
zT1R�kR

Tz1�

which can be factorized again. The steps of Method 2 are summarized in Algorithm 5. In

some special cases, the matrix U11 may be rank deficient. This is not a serious problem since

it is easy to show that this leads to an approximation of size �k−1
× �k−1
 — it is a lucky

break that earns us the additional reduction of one dimension.

Algorithm 5
Dimension Reduction, Method 2

Input: A %&-approximation. A time series �ri�
d
i=1 of daily returns. A tolerance

! > 0.
Output: Parameter estimates for the market model. A factorization of the reduced

%&-approximation.
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• Compute estimates for the mean �̂ and the covariance matrix Ĉ.
• Solve the eigenvalue problem {

�= AT�A�

Ĉ= AAT �

• Compute

-='t+ �̂
T

+ 1

2
�̂

T
��̂�


′ = AT�
+��̂
�

• Compute the Schur decomposition[
� 
′

�
′
T 0

]
=O�OT �

Order the eigenvalues so that 
�i
 ≥ 
�i+1
.
• Find the smallest k such that


�k+1
 ≤ !�

• Compute the QR factorization

Q1R = U11�

• Compute

�1 = R�kR
T �

%1 = R�kU�n�1 � k
�

-1 =-+uT
21�ku21�

• Factorize %�̃1 and estimate the remaining parameters from the transformed
returns, using the methods in Section 4.1.

4.7.3 Absolute versus Relative Value-at-Risk

Instead of computing the value-at-risk directly from the value-at-risk equation (4.1) with %�

replaced by %�̃1, we have found it is more accurate to compute the relative value-at-risk,
defined by

VaRrel�%�̃
= VaR�%�̃
−E	%�̃
�

Instead of computing the value-at-risk from the reduced approximation as

VaR�%�̃
≈ VaR�%�̃1
� (4.107)
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we use the formula

VaR�%�̃
≈ VaRrel�%�̃1
+E	%�̃
� (4.108)

The motivation for this choice becomes more clear when we consider the errors in the

two formulas. The error for equation (4.107) is

VaR�%�̃
−VaR�%�̃1
= VaRrel�%�̃
−VaRrel�%�̃1
+E	%�̃−%�̃1
� (4.109)

and for equation (4.108) it is

VaR�%�̃
−VaR�%�̃1
−E	%�̃
= VaRrel�%�̃
−VaRrel�%�̃1
�

The extra term E	%�̃−%�̃1
 in equation (4.109) can be large, while the difference between

the relative value-at-risk term is still small. Since computing the expectation for the full

portfolio is easy, separating the terms and using the reduction %�̃1 only to compute the

relative value-at-risk is both easy to do and leads to better accuracy.

The ideas used to develop the two methods for dimension reduction are very different.

Method 1 has a direct connection to probability theory; it finds a reducedmodel with small mean

square error. Method 2 is based on a linear algebra argument, computing reduced model using a

low-rank approximation of the matrix for the quadratic form. Method 1 has several advantages

over Method 2. First, Method 1 is easier to implement and slightly more efficient. Second, in

Method 1 the structure of the %&-approximation is preserved in the new quadratic form, except

for the final risk factor,which captures the residual linear term.Finally, the numerical experiment

in the next section shows that Method 1 gives a more accurate reduced model in practice.

4.7.4 Example: A Comparative Experiment

In this section, we present the first of two computational examples. The purpose of the first

example is to study the performance of dimension reduction and to compare the results from

the two methods.

The portfolios in our previous examples have few dimensions. The advantage of dimension

reduction is to reduce computation time for portfolios with many risk factors. So we consider

a portfolio with options on each of the stocks in the TSE35 index. The returns for the 35 stocks

have significant correlation, and we expect that dimension reduction will produce accurate

simulation results for relatively few dimensions. The portfolio consists of short positions with

one call option and one put option on each of the stocks. As before, the options are European

and at-the-money and have 3 months to maturity. Furthermore, we include one independent

risk factor for changes in volatility, which is shared by all options; see Section 4.6.8 for

details. Experiments with a similar problem, without volatility risk factor and with normal

returns, are reported.

To study the effect of dimension reduction, the daily value-at-risk is computed with

dimensions k = 1� � � � �36 (see Figure 4.23). Each graph shows the 99% value-at-risk and

95% value-at-risk. There is one graph for each of Method 1 and Method 2 applied to the

three risk factor models. Our expectation, that only a few dimensions essentially characterize

the risk of such a portfolio, is confirmed by the simulations.

Figure 4.24 shows the relative errors for the simulations in Figure 4.23. The figures lead to

some interesting observations. Dimension reduction produces results that resemble the result

for the full model, but the quality of the result differs for Method 1 and Method 2. In general,

the result for the 95% value-at-risk seems to be better than for the 99% value-at-risk. In the

case of normal returns, the error is very small for both methods [see graphs (i) and (ii)]. The

error for Method 1 is small for both the asymmetric t and the Parzen models [see graphs
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FIGURE 4.23 Value-at-risk with dimension reduction. The graphs show the 95% and 99% value-at-

risk as a function of the number of dimensions used in the simulation. The x-axis spacings are marked

for every five dimensions.

(iii) and (v)]. Method 2 does not produce accurate results for the last two return models

[see graphs (iv) and (vi)], and, more seriously, it is not clear that the results improve when

more dimensions are included.

To try to understand the failure of Method 2, we examined the intermediate results

produced during the execution. We believe that the problem arises from a large % component

that is split over two dimensions in the reduced model, one with positive and one with

negative curvature. In the normal model, where the model is characterized by the mean and

variance of the returns, this does not lead to a deterioration of the simulation result. In the

other two models, the estimation error destroys the balance between the two components, and

this corrupts the result. This is a serious drawback for Method 2 and one that is not shared

by Method 1.
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FIGURE 4.24 Relative errors for the simulations in Figure 4.23. The solid lines correspond to 99%

VaR. Observe that the scales for graphs (iii) and (iv) are different.

To conclude, the value-at-risk computed with Method 1 has a small relative error. Although

the error does not decreasemonotonically, the trend is clear—more dimensions givemore accu-

rate results. As demonstrated by this example, Method 1 produces better results thanMethod 2.

4.7.5 Example: Dimension Reduction and Optimization

We conclude with an optimization example similar to the one in Section 4.6.7. The example

shows that dimension reduction leads to significant savings in computation time and that

the accuracy is preserved despite the reduction. Since Method 1 has clear advantages over

Method 2, we restrict our attention to the first method.

Consider a portfolio with a short position in one call option on each of the stocks in the

TSE35 index. All options are European and at-the-money and have 3 months to maturity.
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Suppose we want to minimize the value-at-risk by buying or selling a combination of a linear

position in the index, such as the index itself or a future, and a position in a call option

on the index. Let �1 and �2 be, respectively, the number of index units and call options in

the portfolio. To see how dimension reduction affects the shape of the value-at-risk surface,

we computed the 99% value-at-risk for the full portfolio and for a reduced model with five

dimensions. As Figure 4.25 shows, the differences between the surfaces are small. Of course,

we are therefore led to believe that the same applies to the optimization problem

min
�1��2

VaR��1� �2
�

Table 4.1 show the computed solutions to the optimization problem and statistics about

time and number of value-at-risk computations required by the numerical procedure.23

Reduced to Five Dimensions

(i)  Normal returns

(iii)  Asymmetric t returns

(v)  Parzen estimate for returns (vi)  Parzen estimate for returns

(iv)  Asymmetric t returns

(ii)  Normal returns
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FIGURE 4.25 The 99% value-at-risk surfaces, as functions of �1 and �2, computed with the number

of dimensions reduced to five and for the full model.

23The results were created using the quasi-Newton method fminunc in Matlab’s optimization toolbox.
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TABLE 4.1 Computed Solutions to the Optimization Problem (Quoted Times Are in Seconds of CPU

Time)

# Dimensions �1 �2 VaR Time Function calls Time/function call

1 −1.89 5.31 11.93 8.70 101 0.0861

2 −1.87 5.30 12.15 12.87 129 0.0998

3 −1.87 5.31 12.16 14.79 129 0.1147

4 −1.88 5.32 12.16 15.53 122 0.1273

5 −1.87 5.31 12.16 18.54 130 0.1426

6 −1.87 5.31 12.16 13.41 84 0.1596

8 −1.87 5.29 12.16 24.50 127 0.1929

10 −1.86 5.27 12.17 29.60 131 0.2260

12 −1.89 5.34 12.16 30.40 118 0.2576

17 −1.86 5.27 12.16 33.06 102 0.3241

22 −1.86 5.29 12.17 31.18 79 0.3947

27 −1.92 5.28 12.16 38.70 83 0.4663

32 −1.82 5.19 12.21 50.85 95 0.5353

37 −1.86 5.27 12.17 77.33 127 0.6089

(i) Normal returns

# Dimensions �1 �2 VaR Time Function calls Time/function call

1 −1.91 5.46 13.15 18�83 85 0.2215

2 −1.91 5.43 13.30 29�10 102 0.2853

3 −1.91 5.40 13.55 36�36 100 0.3636

4 −1.82 5.26 13.61 55�51 128 0.4337

5 −1.80 5.23 13.62 41�45 80 0.5181

6 −1.87 5.30 13.56 65�75 111 0.5923

8 −1.81 5.28 13.59 29�70 39 0.7615

10 −1.81 5.23 13.58 114�8 127 0.9038

12 −1.83 5.31 13.57 146�5 142 1.0316

17 −1.86 5.28 13.57 115�3 83 1.3889

22 −1.80 5.22 13.60 151�0 87 1.7356

27 −1.81 5.23 13.62 167�2 80 2.0905

32 −1.80 5.22 13.60 316�5 129 2.4537

37 −1.84 5.28 13.60 252�9 89 2.8412

(ii) Asymmetric t returns

# Dimensions �1 �2 VaR Time Function calls Time/function call

1 −2.05 5.26 14.21 33.50 128 0.2617

2 −1.85 5.27 14.51 50.69 110 0.4608

3 −1.86 5.32 14.70 90.81 140 0.6486

continued
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TABLE 4.1 continued

# Dimensions �1 �2 VaR Time Function calls Time/function call

4 −1.82 5.18 13.01 69.43 82 0.8467

5 −1.91 5.27 13.03 73.63 70 1.0519

6 −2.00 5.00 13.32 153.0 122 1.2543

8 −1.88 4.96 13.28 153.4 93 1.6495

10 −1.86 5.16 12.98 108.9 53 2.0555

12 −1.86 5.15 13.00 365.4 150 2.4357

17 −1.83 5.16 13.11 210.1 61 3.4434

22 −1.64 4.98 13.34 725.2 165 4.3950

27 −1.77 5.10 13.22 749.9 139 5.3947

32 −1.85 5.18 12.89 562.6 88 6.3928

37 −1.89 5.27 12.90 601.8 81 7.4291

(iii) Parzen estimate for returns

The variations in value-at-risk at the computed minima are small for the normal and asym-

metric t models, and the changes in the location of the minima are relatively small. Similar to

the observations in Section 4.6.7, we note that the performance of the minimization procedure

is less reliable for the Parzen model; the density estimator introduces small fluctuations in

the value-at-risk. In all three cases, we see that dimension reduction is very effective in

reducing the computation time per function evaluation. The total time for the optimization is

also reduced. Although the total time is important, it is not a good indicator, since it mostly

depends on the success of the stopping criteria used by the optimization algorithm.

4.8 Perturbation Theory

The experiments in previous sections show that the different models for risk-factor returns

can lead to large differences in the estimate for value-at-risk. Similar observations have been

made by several other authors; see Beder [Bed95] and Jorion [Jor96]. In this section, we

derive a perturbation result that describes how value-at-risk changes with perturbations to

the model for risk-factor returns. It shows that value-at-risk becomes increasingly sensitive

as the confidence level increases and that the tail is more sensitive than the center of the

distribution. We present a computable-condition number for value-at-risk and illustrate the

theory with a numerical example.

4.8.1 When Is Value-at-Risk Well Posed?

Value-at-risk is defined as the solution to nonlinear equation (4.1). If p�r
 is the pdf for the

risk-factor returns, then equation (4.1) is equivalent to the integral equation (i.e., equation (4.72):∫
�r∈�n�%��r
≤−VaR�

p�r
dr = 1−�� (4.110)
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The integration domain is a subset of risk-factor returns in �n. The coarea formula24 gives∫ −VaR

−

p%���
d�= 1−�� (4.111)

where

p%���
=
∫
�r∈�n�%��r
=��

p�r


D%��r

1/2 dA (4.112)

and


D%��r

=
n∑

i=1

(
�%�

�ri

)2

�

So the coarea formula transforms integral (4.110) into one-dimensional integral (4.111) over

a new pdf (4.112). In other words, equation (4.111) is an integral over the pdf for %�, which

is defined by equation (4.112) as the �n− 1
-dimensional surface integral (i.e., dA is the

surface differential) over the level sets of %�. Equations (4.110) and (4.111) are equivalent,

but we find the second form more convenient in our perturbation analysis.

Hadamard’s classic definition says that a problem is well posed if it has a unique solution

that depends continuously on the initial data. The properties of pdf (4.112) determine if value-

at-risk is a well-posed problem. The first condition, existence of a solution, holds without

additional assumptions. The cdf

��x
= P�%�≤ x
=
∫ x

−

p%���
d� (4.113)

has range �0�1
. Hence, since the cdf � is a continuous function, the intermediate value

theorem implies that equation (4.111) has a solution for all � ∈ �0�1
.
For uniqueness and continuity to hold, equation (4.113) must be strictly increasing in a

neighborhood around the solution x = −VaR. Equivalently, it is unique if equation (4.112)

is positive almost everywhere in a neighborhood of −VaR. Uniqueness follows by observing

that, if there were to be two solutions with VaR1 > VaR2, then since equation (4.113) is

an increasing function, any x with −VaR1 < x < −VaR2 must be a solution too. Hence,

equation (4.113) is not strictly increasing, or, equivalently, the pdf is not positive almost

everywhere, in any neighborhood of a solution.

Continuity, the third condition for equation (4.111) to be well posed, requires that the

solution depend continuously on the data. We show that value-at-risk is continuous for changes

in the pdf p�r
. Suppose that the density in equation (4.112) is positive almost everywhere

in some interval �−VaR−!�−VaR+!
. Let �pi�


i=1 be a sequence of pdfs that converges to

p; that is, 
p−pi
1 → 0 as i →
. Moreover, let VaRi be the solutions to equation (4.110)

corresponding to pi and some fixed �. Combining equations (4.111) and (4.112) gives

∫ −VaR

−

d�

∫
�%��r
=��

p�r


D%��r

1/2 dA=

∫ −VaRi

−

d�

∫
�%��r
=��

pi�r


D%��r

1/2 dA� (4.114)

24We refer to Evans and Gariepy [EG92] for a proof and discussion of the coarea formula. The formula can be

applied assuming that %� is Lipschitz differentiable and ess inf 
Df 
> 0.



308 CHAPT ER 4 . Numerical methods for value-at-risk

We then obtain∣∣∣∣ ∫ −VaR

−VaRi

p%���
d�

∣∣∣∣≤ ∫
%��r
≤−VaRi


p�r
−pi�r

dr ≤ 
p−pi
1� (4.115)

Furthermore, since p%���
 is positive almost everywhere in a neighborhood of −VaR and

the left-hand side of the inequality goes to zero, we must have VaRi → VaR, as i→
. So

value-at-risk is continuous with respect to the return distribution model p.
Hence, value-at-risk is a well-posed problem, given that cdf (4.113) is increasing close

to the solution. This condition holds for the market-risk models we consider in this chapter.

However, for credit-risk models, this condition is often violated and value-at-risk is a ques-

tionable measure of risk. For a detailed discussion and an axiomatic system of desirable

properties of general risk measures, see Artzner et al. [ADEH99]. In the preceding analysis

we examined perturbations of the model for risk-factor returns. In the future, it would be

interesting to extend the analysis to perturbations of %�.

4.8.2 Perturbations of the Return Model

The foregoing analysis shows that value-at-risk, defined by equation (4.111), is well posed

if the cdf ��x
 is strictly increasing for values of x in a neighborhood of the solution. We

argued that value-at-risk is continuous for changes in p�r
, but the analysis does not indicate
the size of the resulting perturbations. In this section, we quantify the change in value-at-risk

for a perturbation of the pdf p�r
.

4.8.2.1 Proof of a First-Order Perturbation Property

We now derive a variational, first-order perturbation property for value-at-risk. Consider

a differentiable pdf p%���
 as given by equation (4.112). The set of probability density

functions is the subset of functions in L1 that integrate to 1.25 Furthermore, if p and q are

pdfs, then hp+ �1−h
q is a pdf for all h ∈ 	0�1
; i.e., the pdfs are a convex set. Consider a

variation v where

v%���
=
∫
�%��r
=��

v�r


D %��r

1/2 dA (4.116)

is continuous. In addition, for v to be an admissible variation, the function p+hv must be a

pdf for all h in some interval 	0� !
� ! > 0.

For an admissible variation, the value-at-risk is a function of h that satisfies∫ −VaR�h


−

d�

∫
�%��r
=��

p�r
+hv�r


D %��r

1/2 dA= 1−��

The function on the left side has the form

F�x�h
=
∫ x

−

d�

∫
�%��r
=��

p�r
+hv�r


D %��r

1/2 dA�

25A function f is in the function space L1 if it is measurable and has finite L1 norm, i.e., if


f 
1 =
∫
�n


f�x

dx <
�
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with first partial derivatives

�F

�x
=
∫
�%��r
=x�

p�r
+hv�r


D %��r

1/2 dA (4.117)

and

�F

�h
=
∫ x

−

d�

∫
�%��r
=��

v�r


D %��r

1/2 dA�

Since the density in equation (4.112) is continuous, value-at-risk is well posed for h= 0

if and only if equation (4.117) is positive for h= 0,

�F

�x

∣∣
h=0

= p%��x
 > 0�

Assuming that value-at-risk is well posed, the implicit function theorem guarantees that the

solution VaR�h
 to

F�−VaR�h
�h
= 1−�

is continuously differentiable for h in some interval 	0� �
, where �≤ ! (see Rudin [Rud76]).

The derivative of VaR�h
 at h= 0 is

VaR′�0
= 1

p%��−VaR


∫
%��r
≤−VaR

v�r
dr� (4.118)

In the terminology of variational calculus, VaR′�0
 is the Gateaux variation in the direction

of v. Taylor’s theorem gives the linear approximation

VaR�h
= VaR�0
+VaR′�0
h+O�h2
� (4.119)

4.8.2.2 Error Bounds and the Condition Number

Taking the absolute value of linear approximation (4.119), we get an estimate of the

absolute error,


VaR�h
−VaR�0

 ≤ 
VaR′�0

 · 
h
+O�
h
2
�
Note that derivative VaR′�0
 depends on the variation v.26 So in general, different variations

give different derivatives, and we write VaR′
v�0
 for the Gateaux variation in the direction v to

emphasize this dependency. Also, since VaRv�0
 is independent of v, we write VaR instead.

There are many possible metrics that could be used to measure the distance between two

pdfs. We choose to consider the metric induced by the L1-norm,

d�p�q
= 
p−q
1�

26Similarly, the constant in the asymptotic term O�h2
 depends on v. Recall that O�h2
 denotes a function f�h


such that

lim
h→0


 f�h

h2


= C <
�

For our error bound, C depends on the variation v.
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mostly because it leads to an elegant result. We may without loss of generality assume that

the variations have unit length, since we may rescale v and h simultaneously to achieve this.

Remember that the admissible variations satisfy the constraint that p+hv is a pdf for all h
in some interval 	0� !
. Since∫

�n
	p�r
+hv�r

dr = 1� h ∈ 	0� !
�

it follows that ∫
�n

v�r
dr = 0� (4.120)

The function v= v++v− can be separated into its positive v+ and negative v− parts. Since v
has unit length and satisfies equation (4.120), we obtain∫

�n
v+�r
dr =−

∫
�n

v−�r
dr =
1

2
� (4.121)

Property (4.121) can be used to bound the integral term in equation (4.118),



∫
%��r
≤−VaR

v�r
dr
≤ 1

2
�

Therefore, the derivative is bounded by


VaR′
v�0

≤

1

2p%��−VaR


for all admissible variations v with unit length. The absolute error is bounded by


VaRv�h
−VaR
 ≤ 
h

2p%��−VaR


+O�
h
2
� (4.122)

and the relative error is bounded by


VaRv�h
−VaR

VaR

≤ 
h

2VaRp%��−VaR


+O�
h
2
� (4.123)

The condition number of value-at-risk is27

)= 1

2VaRp%��−VaR

� (4.124)

Relative error bound (4.123) provides the first-order error estimate


VaRv�h
−VaR

VaR

� )
p− p̃
1� (4.125)

where p is the original pdf, p̃ = p+hv is a perturbed pdf, and v = p − p̃

h
is the direction of

the perturbation.

27Note that this is a variational condition number. The standard condition number (see Rice [Ric66]) for the

problem y = f�x
 is defined as

)= xf ′�x

f�x


�

This can be interpreted in a directional sense. Consider f ��n →�, then the absolute error is

f�x+%x
−f�x
≈ .f�x
 ·%x�
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4.8.2.3 Example: Mixture Model

We consider two portfolios that depend on a single risk factor, the stock price for BCE.

The first portfolio consists of a single stock. The second portfolio is a short position in a

European call option. The option is delta-hedged with a position in the stock; i.e., a stock

position has been chosen so that the % is zero. The option is at-the-money and has 3 months

to maturity. The returns are assumed to be normal,

p�r
= 1√
2��2

e−
�r−�
2

2�2 �

Although the theory is valid for a large class of return models, we chose this example for its

simplicity and for accurate computations.

Figure 4.26 shows plots with some results of our experiment. The plots are for the stock

portfolio (for the option portfolio, similar plots were obtained). The plots are for value-at-risk

with �= 95% and �= 99%. The continuous line shows equation (4.125) as a function of the

size of the perturbation 
p− p̃
1. We see that the relative error in value-at-risk grows rapidly

for small errors in p. For the stock portfolio, ) can be computed directly. For the option

portfolio, we used a Monte Carlo method to compute value-at-risk and a Parzen estimator

for p%��−VaR
. The Monte Carlo method used 20,000 random normal samples and variance

reduction with antithetic variables. We computed the option price for each sample via the

Black–Scholes formula.

To compare equation (4.125) and actual relative errors for perturbations of the model, we

generated random densities of the form

p̃=H1p1+H2p2+ �1−H1−H2
p�

where p1 and p2 are normal pdfs. The random variables H1 and H2 are uniform with ranges

	0�0�1
 and 	0�0�01
, respectively. The parameters of p1 and p2 were also generated at

random. The parameters were generated as

�1 = ��1+2M1
� �1 = �
0�5+2U1
�
�2 = ��1+10M2
� �2 = �
0�5+U2
�
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FIGURE 4.26 The plots show the relative error in value-at-risk for a stock portfolio versus the size

of the perturbation 
p− p̃
1. The continuous line is the error bound, in equation (4.125). The plus signs

corresponed to random perturbations.
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where M1 and M2 are standard normal random variables and U1 and U2 are standard uniform

random variables.

For each random mixture, we computed the relative error in value-at-risk and the size

of the perturbation, 
p− p̃
1. Each plus sign in the plots in Figure 4.26 marks the result for

a randomly perturbed problem. For the stock portfolio, we used 1000 randomly perturbed

densities. The relative error in value-at-risk is indeed smaller than the first-order, worst-

case estimate, equation (4.125). For the option portfolio, we computed the value-at-risk

and the norm 
p− p̃
1 with the Monte Carlo method. Since this procedure is much more

time consuming than for the stock portfolio, we had to limit the experiment to 300 random

densities. Although some samples are larger than the approximate bound, we conclude that

equation (4.125) is a good estimate of the relative error. The accuracy of the Monte Carlo

method is limited, and we see that these plots contain some simulation noise.

In this section, we have discussed the properties of value-at-risk equation (4.111). In our

analysis, we argued that in most cases value-at-risk is a well-posed problem. The requirement

for being well posed is that cdf (4.113) be strictly increasing close to −VaR. An equivalent

condition is that equation (4.112) be positive almost everywhere in a neighborhood of the

solution. Credit risk is one important exception where these assumptions will typically not

hold, but it is a reasonable assumption for standard value-at-risk models.

Nevertheless, being well posed alone does not guarantee that a small error in the model

for returns translates into a small relative error in value-at-risk. To understand how such errors

affect the simulation, a variational perturbation theory was developed. The theory applies to

problems that are sufficiently smooth and for smooth variations in the model density of the

returns. The advantage of the variational approach is a theory that is model independent;

it can therefore be used to quantify model risk. The theory provides estimate (4.125) for

the relative error where the condition number can be computed. The stumbling block is

to find p%��−VaR
. In some methods, such as the fast convolution method, p%��−VaR

is computed. In other methods, for example, a Monte Carlo method, p%��−VaR
 must be

computed with a density estimator; see, for example, [TT90].

The condition number, equation (4.124), controls the size of the relative error. The problem

becomes increasingly ill conditioned as VaRp%��−VaR
 decreases to zero. This confirms that

the empirical observations of small perturbations to the return model — caused by changes

either in the model, in the data, or in the estimation procedure — that cause large changes in

the simulation result is an intrinsic property for large �. Value-at-risk is ill conditioned for

extreme levels of confidence.
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C H A P T E R . 5

Project: Arbitrage Theory

The purpose of this exercise is to detect arbitrage opportunities given a payoff matrix and a

set of asset prices. The arbitrage theorem is analyzed within the simple context of a single-

period financial model. Some of the basic finance concepts, terminology, and formalism are

reintroduced in a more practical form. Following this, an example that illustrates the logic

behind derivative asset pricing within the single-period model is presented. The arbitrage

theorem is discussed in explicit matrix format for a single-period model with a finite number

of assets and states. This provides all of the background needed to automate arbitrage with a

chosen number of states. As is shown, the problems underlying the single-period model are

simply related to finding solutions to a linear system of equations.

Worksheet: arb
Required Libraries: MFioxl, MFBlas, MFRangen, MFLapack

5.1 Basic Terminology and Concepts: Asset Prices, States,
Returns, and Pay-Offs

We let the index t represent time. The first object we introduce is a price vector. That is, all

securities (options, futures, forwards, bonds, stocks, etc.) are represented by a vector of N
asset prices, which we can denote simply by p�t
:

p�t
=

⎛⎜⎜⎜⎝
p1�t

p2�t

���

pN �t


⎞⎟⎟⎟⎠ (5.1)

The asset price p1�t
 can typically represent riskless borrowing or lending, such as a U.S.

Treasury bill, p2�t
 can denote a stock price St, p3�t
 a call or put option on the same stock St,

etc. In a discrete time series the prices are given by a series of vectors p�0
, p�1
, � � � , p�t
,
p�t+1
, � � � . Note that in a single period model t= present time and T = t+1 is the terminal

time of any trading period [t� t+1]. In terms of the base assets then Ai
t = pi�t
� i= 1� � � � �N .
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Next we introduce the concept of states of the world. That is, we assume that each possible

outcome or scenario corresponds to an elementary event, or state of the world, �i, where there

is only a finite number M of them: i= 1� � � � �M . These states are mutually exclusive, with

at least one of them occurring with nonzero probability. All possible states are represented

by the set �= ��1� � � � ��M�.

Financial assets will attain different values and give rise to differing payouts corresponding

to the different states �i. Shortly we discuss in detail an instructive example. Before that,

however, we recall a couple of other concepts. One is that of payoffs Di�j , which represent

the number of units of account paid out per unit of security i in the state j. Generally, for

an N -asset and M-state system we can represent all single-period pay-offs by an N ×M

dividend matrix for an interval [t� t+1]:

D=
⎛⎜⎝ D11 · · ·D1M

���
���

DN1 · · ·DNM

⎞⎟⎠ � (5.2)

This payoff matrix can be interpreted in two different ways. The first is that each ith row

of the matrix corresponds to pay-offs for one unit of a given ith security in all the different

states of the world. In the second interpretation, each jth column represents pay-offs for all

the different assets within a given jth state of the world.

The other concept of importance is that of a portfolio. Recall from Chapter 1 that a portfolio

is defined as a linear combination of assets or securities. That is, one can generally have

positions given by �i in the ith asset and by specifying all such N positions �i� i= 1� � � � �N ,

we have uniquely specified a portfolio as a vector,

� =

⎛⎜⎜⎜⎝
�1
�2
���
�N

⎞⎟⎟⎟⎠ � (5.3)

Positive �i correspond to long positions and negative values correspond to short positions.

A zero position �i = 0 implies that the ith asset is not included in the portfolio. A portfolio

that delivers the same pay-off regardless of any possible state of the world is defined as

riskless. By taking the dot product of � with the asset price vector pt ≡ p(t) we obtain the

value of the portfolio at time t:

V�
t = � ·pt =

N∑
i=1

�ipi�t
=
N∑
i=1

�iA
i
t� (5.4)

The payoff V�
t+1��j
, denoted here by #j , for the portfolio given by � in a given jth state

is then expressible as a sum over all asset pay-offs weighted by their respective positions,

where Dij = Ai
t+1��j
,

#j =
N∑
i=1

Dij�i =
N∑
i=1

�D′
ji�i� (5.5)
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The superscript ′ stands for matrix transpose. We can therefore express the payoff vector with

components #j , j = 1� � � � �M , in matrix form, #≡ D′�,⎛⎜⎜⎜⎝
#1

#2

���
#M

⎞⎟⎟⎟⎠=
⎛⎜⎝ D11 · · ·DN1

���
���

D1M · · ·DNM

⎞⎟⎠
⎛⎜⎜⎜⎝

�1
�2
���
�N

⎞⎟⎟⎟⎠ � (5.6)

5.2 Arbitrage Portfolios and the Arbitrage Theorem

As in Chapter 1, we define � to be an arbitrage portfolio, or sometimes simply called an

arbitrage, if either one of the following conditions applies:

(i) pt ·� = 0 and D′ ·� ≥ 0, where �D′�
j > 0 for some j.
(ii) pt ·� < 0 and D′ ·� ≥ 0.

Note that these vector inequalities are meant to be applicable component by component.

In case (i) the portfolio guarantees a positive return in some states with no possible loss, yet

costs nothing to purchase. In case (ii) the portfolio will guarantee a nonnegative return and

has a negative cost to purchase.

Finally, we can state the arbitrage theorem as follows:

1. If there are no arbitrage opportunities then there exist positive constants +i > 0, i =
1� � � � �M (in vector notation we write simply + > 0, where + is the vector of +i

components), such that

pt = D+� (5.7)

2. If condition 1 is true, then there is no arbitrage.

One notes that, apart from a positive constant [i.e., the inverse of the discount factor

as shown in upcoming equation (5.10)], the +i correspond to certain nonzero probabilities

of occurence for all the states i = 1� � � � �M . In fact, these coefficients give the risk-neutral

probabilities for the correct pricing of financial securities, as explained in the following

section and as was observed in the discrete case of the fundamental theorem of asset pricing

given in Chapter 1. In matrix form, equation (5.7) reads⎛⎜⎝ p1

���
pN

⎞⎟⎠=
⎛⎜⎝ D11 · · ·D1M

���
���

DN1 · · ·DNM

⎞⎟⎠
⎛⎜⎝ +1

���
+M

⎞⎟⎠ � (5.8)

In the arb spreadsheet assignment we consider the case M =N and the special type of payoff

matrix

D=

⎛⎜⎜⎜⎝
�1+R
 · · · �1+R


D21 · · ·D2M

���
���

DN1 · · ·DNM

⎞⎟⎟⎟⎠ � (5.9)
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The first row has all equal payoff values and corresponds to the riskless return on a money-

market or bond; i.e., p1 = p1�t
 = 1, with single-period rate of return R. Without loss of

generality, here we have simply set the bond’s present value to one unit of worth. The first

row in equation (5.8) of the arbitrage theorem then gives

M∑
i=1

�1+R
+i ≡
M∑
i=1

+̃i = 1� (5.10)

The coefficients +̃i defined here correspond to the risk-neutral probabilities for all possible

states. In fact, +̃i are recognized as being the qi probabilities used to define the pricing

measure in the fundamental theorem of asset pricing discussed in Chapter 1. They sum up to

unity as required and also satisfy the condition 0< +̃i < 1. As noted earlier, these probabilities

are very different from the real-world probabilities, which provide no information on the

risk-neutral probabilities used for pricing. The risk-neutral probabilities therefore exist with

the correct properties mentioned if, and only if, there is no arbitrage.

5.3 An Example of Single-Period Asset Pricing: Risk-Neutral
Probabilities and Arbitrage

The single-period setting assumes that time consists of the present time t and a later time

T = t+1 and that there is a finite time separation. We consider here a portfolio consisting of

just one bond with present value of unity, B�t
= 1, one asset (or stock) S, and a call option

C on the underlying stock S. Moreover, we assume only two possible states of the world.

In this situation the stock, which has present value S�t
, can attain either of two values:

S1�t+1
 or S2�t+1
 at time t+1. Accordingly, the option with present value C�t
 can take

on the values given by C1�t+ 1
 or C2�t+ 1
 in state �1 and �2, respectively. No matter

what the outcome, however, the bond has a fixed (riskless) return of 1+R, with R being the

single-period rate of return. In this situation we have a 3×2 payoff matrix and the foregoing

arbitrage theorem gives⎛⎝ 1

S�t

C�t


⎞⎠=
⎛⎝ �1+R
 �1+R


S1�t+1
 S2�t+1

C1�t+1
 C2�t+1


⎞⎠(
+1

+2

)
� (5.11)

which implies a linear system of three equations:

+̃1+ +̃2 = 1� (5.12)

+̃1S1�t+1
+ +̃2S2�t+1
= �1+R
S�t
� (5.13)

+̃1C1�t+1
+ +̃2C2�t+1
= �1+R
C�t
� (5.14)

Here we have used the same definition as before for the risk-neutral probabilities +̃i ≡
�1+R
+i. These equations have the familiar form of the binomial pricing equations for

options, as discussed in the project that deals with binomial lattice pricing. That is, the price

today of a security is given as the discounted sum of the risk-neutral expected payoff values

for all possible future values of the security. We also note that if we allow for three states of

the world, we then obtain pricing equations that resemble the trinomial pricing equations.

To demonstrate an example of arbitrage, let us consider R = 7% and the two possible

values at time t+1: S1�t+1
= 50 dollars , S2�t+1
= 150 dollars, where S�t
= 100 dollars.
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Say the call option C has strike price of 100 dollars and expires exactly at time t+1. This

option then has pay-off of zero and 50 dollars, respectively. If we denote the price of the call

option today as C, then equations (5.12) to (5.14) give

+̃1+ +̃2 = 1� (5.15)

0�5+̃1+1�5+̃2 = 1�07� (5.16)

50+̃2 = 1�07C� (5.17)

By satisfying the first two equations we actually obtain the arbitrage-free price for C by

substituing the resulting risk-neutral values +̃1 = 0�43, +̃2 = 0�57 into the third equation.

The correct (no-arbitrage) price is therefore C = 26�6355 dollars. If, however, we are given

a market price for C = 25 dollars and we wish to answer the question of whether there

is arbitrage or not in this case, then we solve equation (5.17), giving +̃2 = 0�535, and

then equation (5.16) gives +̃1 = 0�535. These values, however, do not satisfy probability

conservation equation (5.15), therefore, one concludes that there is indeed arbitrage at that

market price.

5.4 Arbitrage Detection and the Formation of Arbitrage Portfolios
in the N-Dimensional Case

The preceding example involves an overdetermined system of linear equations. Now, however,

we shall consider a uniquely specified system where the number of unknowns is equal to the

number of equations. Hence, we consider the case of N states and N assets, i.e., M = N .

We shall assume that one of the assets always corresponds to a bond with fixed rate of

return R. The payoff matrix has the form given in equation (5.9), where the first row has

all equal elements of value �1+R
. The corresponding system of N equations is given in

equation (5.18). The problem is then the following. Generate an arbitrary price vector in

one of two fashions: Set p1�t
 = 1 and then generate independent components pi�t
 (i ≥ 2)

distributed either (i) uniformly as integers lying within some given minimum and maximum

integer values or (ii) continuously using some standard normal distribtuion, say, pi�t
!N�0�1

(i ≥ 2). Similarly, generate N�N − 1
 arbitrary payoff matrix elements Dij (i ≥ 2) in the

discrete or continuous cases, respectively. The numerical library called MFRangen is useful

for random-number and random-matrix generation. For a given generated pair of price vector

p�t
 and payoff matrix D one obtains the vector of risk-neutral probabilities +̃ = �1+R
+
by solving the linear system⎛⎜⎜⎜⎜⎝

1

p2

�
�
pN

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
�1+R
 · · · �1+R


D21 · · ·D2N

· ·
· ·

DN1 · · ·DNN

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

+1

�
�
�

+N

⎞⎟⎟⎟⎟⎠ � (5.18)

In practice, one can solve this system numerically by inverting the payoff matrix using a

routine based on the singular value decomposition. Note that the first equation in the system is

that of probability conservation [this is equation (5.10) with M = N ]. Arbitrage then exists if

the solution gives at least one nonpositive component, that is, if for any given i, +i ≤ 0 (since

we are enforcing probability conservation). For every such i we then have a corresponding ith
state, which we can use to form an arbitrage portfolio that we denote by ��i
 with components
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�
�i

1 � � � � , �

�i

N . According to the discussion on equations (5.5) and (5.6), then, the payoff vector

corresponding to the ith state alone can be obtained by setting only the ith component to a

nonzero positive value, #
�i

j = 1 for j = i (i.e., picking a number greater than zero) and setting

all other j components to zero. Note that this corresponds to the pay-off of an Arrow–Debreu

security, yet with nonpositive initial value. The transpose of this N -dimensional pay-off

column vector, denoted by #�i
, has a row representation of �0� � � � �0�1�0� � � � �0
, where
unity occurs in the ith position only. The arbitrage portfolio is then obtained by solving the

linear system of N equations in the N unknowns �
�i

j , j = 1� � � � �N , as in equation (5.5) or,

in matrix form:

D′ ·��i
 =#�i
� (5.19)

To obtain more arbitrage portfolios, one can repeat the preceding steps for the other state

components that led to arbitrage, i.e., for the other nonpositive +i components. To see

why ��i
 is an arbitrage portfolio note that pt = D+. So the portfolio has present value

V��i


t = ��i
�pt = �D′��i

�+ =#�i
�+ = +i. Since +i ≤ 0, then V��i


t ≤ 0 and by construction the

terminal value or pay-off of this portfolio is given by V��i


t+1��i
=#
�i

i = 1 (hence greater than

0) when �j = �i� yet V
�i

t+1��j
 = 0 (hence ≥ 0) for all other states. From the definition of

single-period arbitrage we conclude that the portfolio ��i
 is indeed an arbitrage.
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Project: The Black–Scholes
(Lognormal) Model

The purpose of this project is to develop pricing routines for plotting and analyzing the

Black–Scholes price for European calls, puts, and butterfly spreads as well as for the corre-

sponding sensitivities — delta, gamma, rho, vega, and theta — as a function of the five basic

parameters that make up the plain-vanilla Black–Scholes pricing formula.

Worksheet: bs
Required Libraries: MFioxl, MFFuncs, MFStat

6.1 Black–Scholes Pricing Formula

The celebrated Black–Scholes pricing formula is quite straightforward since it makes use of

the standard normal distribution. Building the necessary Visual Basic code for this spreadsheet

will, however, quickly familiarize the user with the use of ActiveX numerical library methods

for input/output to Excel. One of the features of the spreadsheet is to allow the user the

flexibility of inputting any values for the fixed parameters while also allowing a choice for

the range of plotting.

Although symmetries of the Black–Scholes formula can be used to reduce the number of

dependent functional parameters, the price of a call option can be most explicitly written (as

seen in Chapter 1) as a function of five variables (or parameters): the interest rate r (assumed

constant), the stock price S, the time to maturity  ≡ T− t �t= current calendar time and T =
maturity calendar time
, the volatility � (assumed constant), and the strike price K. The

Black–Scholes formula for the value of a plain-vanilla European call option is

C�S�K� r���  
= SN�d+
−Ke−r N�d−
� (6.1)

where

d± = �log�S/K
+ �r± 1

2
�2
 
/��

√
 
� (6.2)
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where d− = d+ −�
√
 . The function N�x
 is the cumulative standard normal distribution

at x.

As an example of the functionality built into the bs spreadsheet, a plot of the value of

a call option C as a function of S in the range Smin (the minimum spot price) to Smax (the

maximum spot price) is generated via equation (6.1) while holding r, K,  , and � fixed.

A plot of the option price as a function of varying the interest rate while holding the other

four variables constant is generated in a similar manner. The same plotting functionality is

also generated for varying volatility, time-to-maturity, and strike price while simultaneously

making use of the Black–Scholes formula at appropriate interval points. The interface for the

bs spreadsheet also allows for the choice of plotting a variable input number of points for

each graph.

Put-call parity

P = C−S+Ke−r (6.3)

can also be used to study the corresponding prices and sensitivities of puts. The dimensionality

of the variables is worth emphasizing and is as follows. Volatility refers to a per annum (i.e.,

yearly) time scale and has units of year−1/2. Maturity is in years, so �
√
 is dimensionless.

The interest rate is per annum and has units of year−1, making r dimensionless. Both strike

and spot are in units of currency (e.g., dollars). One noteworthy property of the Black–Scholes

formula is its so-called numeraire invariance. This essentially implies that prices can be made

dimensionless so that the formula is invariant with respect to the underlying currency. This

is easily seen by dividing equation (6.1) throughout by the strike, giving

C/K = �S/K
N�d+
− e−r N�d+−�
√
 
� (6.4)

where d+ is also a function of the dimensionless quantity S/K.

From the vanilla call or put options one can construct many other options with various

payoff structures, as was discussed with the theory of static hedging in Chapter 1. One impor-

tant pay-off that was discussed explicitly is the butterfly spread, as given by equation (1.228).

Here we reconsider this option, with pay-off defined in a similar manner except for a trivial

normalization constant. Namely, the pay-off is peaked at strike K and has a nonzero width

of 2�K. This pay-off is statically replicated by taking a long position in a vanilla call struck

at K+�K, another long position in a vanilla call struck at K−�K, and two short positions

in a vanilla call struck at K:

#�S
= �S− �K+�K

++ �S− �K−�K

+−2�S−K
+

=
{
�S− �K−�K

+� S ≤ K�

��K+�K
−S
+� S > K�
(6.5)

Note that from put-call parity one can also construct such a pay-off with a combination of

puts. The exact analytical expression for the Black–Scholes price of such a butterfly contract

maturing in time  is hence

B�K�S�K� r���  
= C�S�K+�K� r���  
+C�S�K−�K� r���  
 (6.6)

−2C�S�K� r���  
�
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FIGURE 6.1 Price variations as volatility changes for an (a) in-the-money �spot = 100
 versus

an (b) out-of-the-money �spot = 80
 European butterfly option with fixed spread %K = 10, strike

K = 100, r = 5% per annum,  = 1 year. Plot (a) is monotonically decreasing, whereas plot (b)

displays a pronounced maximum, as is expected within a lognormal density model for the stock

movements.

where the call formula is given by equation (6.1). Figure 6.1 gives an example of the results

of the bs spreadsheet application obtained for two cases of chosen spot. As observed, the

plots illustrate the differing effects of volatility on the price of a relatively narrow butterfly

spread option for in-the-money versus out-of-the-money (below strike) options.

The observed changes in the option prices as one changes a parameter, such as volatility,

time to maturity, spot, interest rate, or strike and shape of the payoff function, can be

qualitatively understood by means of the risk-neutral pricing formula. Let us generally denote

by V�S�K� r���  
 the option price for a payoff function #�K�S
. This pay-off can, for

instance, represent either a call, put, or butterfly spread struck at K. Note that for the case of

the butterfly the pay-off is, of course, also a function of the spread �K. As stated in Chapter 1,

the risk-neutral pricing formula gives

V�S�K� r���  
= e−r 
∫ 


0

p�S � S�  
#�K�S 
dS � (6.7)

where p�S � S�  
 is the lognormal transition probability density [i.e., equation (1.165)]

p�S � S�  
=
1

�S 

√
2� 

e−	log�S/S 
+�r− 1
2
�2
 
2/2�2 � (6.8)

Observe that the density p is actually a function of �
√
 as well as r . The interest rate gives

rise to part of the drift of the center of p. The quantity �
√
 gives a negative contribution

to the drift. More importantly, however, �
√
 determines the width (or standard deviation)

of the density. A direct interpretation of equation (6.7) shows that higher option prices

correspond to situations for which there is maximal overlap between the density p and the
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FIGURE 6.2 Variations in overlap between the risk-neutral pricing density and the pay-off, as functions

of S , for an (a) in-the-money (spot S = 100) versus an (b) out-of-the-money (spot S = 80) European

butterfly option with spread %K= 10 and strikeK= 100. The interest rate r = 5% per annum, and time to

maturity  = 1 year. In both cases, the three lognormal density curves correspond to � = 5%�15%�35%
with horizontal axis as final stock level S .

payoff function #, and vice versa. For smaller values of �
√
 (i.e., smaller volatility values

for fixed time-to-maturity or smaller time-to-maturity values for fixed volatility), the density

is more highly concentrated and is centered about the spot S. Figure 6.2 shows the changes in

overlap between the lognormal transition probability density and the butterfly pay-off struck

at K = 100 (�K = 10). Note that in order to keep the two functions on the same scale, the

pay-off has been multiplied by a normalization 1/��K
2, giving unit payoff area with height

1/�K. Increases in the volatility parameter � correspond to more dispersion in the density,

hence giving less and less overlap with the butterfly pay-off in the (in-the-money) case where

the spot is at strike, S = K. For moderately out-of-the-money cases, increases in volatility

lead to a greater overlap for lower values of � (i.e., from � = 5% to 15%), approaching a

maximum at an intermediate value, followed by a decrease in overlap at relatively higher

values (i.e., from � = 15% to 35%). This argument is consistent with the price variations

observed in Figure 6.1. One can use the same reasoning to obtain the qualitative picture of

price variations one would expect in other circumstances. Another example, for instance, is

the case of a deeply out-of-the money butterfly option whereby one expects a monotonically

increasing price as function of � over a wider range of � values, with sharper increases at

lower � values. Note that our overlap analysis can be applied to other pay-offs, such as calls

and puts.
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6.2 Black–Scholes Sensitivity Analysis

Sensitivities of option prices with respect to changes in the underlying parameters r�  � S��
were also discussed in Chapter 1. As noted, these are of importance to hedging and computing

risk for nonlinear portfolios. Within the Black–Scholes formulation, these sensitivities are

obtained analytically by taking the respective partial derivatives of the option-pricing formula.

The %, �, ', and the vega, �V/�� , of an option give the change in the option’s price V with

respect to changes in spot S, r,  , and � , respectively. The other sensitivity of interest is & ,
which gives the change in % with respect to a change in S.

For a vanilla call with price C one can readily derive the following sensitivities:

%c ≡
�C

�S
=N�d+
� (6.9)

&c ≡
�2C

�S2
= e−d2+/2

�S
√
2� 

� (6.10)

�c ≡
�C

�r
=K e−r N�d−
� (6.11)

�C

��
= S

√
 /2�e−d2+/2� (6.12)

The Black–Scholes PDE can be used to give

' = �V

� 
= ��2S2/2
& + r �S%−V 
 (6.13)

for any European-style option with value V . Hence,

'c ≡
�C

� 
= ��2S2/2
&c + r �S%c −C
� (6.14)

with %c and &c given by equations (6.9) and (6.10), respectively.

The sensitivities for a vanilla put follow from put-call parity:

%p =%c −1� (6.15)

&p = &c� (6.16)

�p = �c −K e−r � (6.17)

�P

��
= �C

��
� (6.18)

'p = ��2S2/2
&p+ r �S%p−P
� (6.19)

with %p and &p given by equations (6.15) and (6.16), respectively.

The sensitivities for the butterfly spread option follow trivially by differentiation of

equation (6.6) and the use of equations (6.9)–(6.14), giving

%B�K
=%c�K+�K
+%c�K−�K
−2%c�K
� (6.20)

&B�K
= &c�K+�K
+&c�K−�K
−2&c�K
� (6.21)

�B�K
= �c�K+�K
+�c�K−�K
−2�c�K
� (6.22)

�B�K


��
= �C�K+�K


��
+ �C�K−�K


��
−2

�C�K


��
� (6.23)

'B�K
='c�K+�K
+'c�K−�K
−2'c�K
� (6.24)
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Note that in these formulas, the explicit dependence of the option sensitivities as functions

of the strike is depicted. Hence, equations (6.1), (6.3), (6.6), and (6.9)–(6.24) are used to

generate all option prices and sensitivities required within the Black–Scholes spreadsheet bs.
The numerical library MFStat is useful for computing the cumulative normal distribution

function.
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Project: Quantile-Quantile Plots

The purpose of this project is to visualize kurtosis in risk-factor return distributions by means

of quantile-quantile plots. The test cases include equity indices in 40 different currencies.

Worksheet: qq
Required Libraries: MFioxl, MFFuncs, MFStat, MFSort

7.1 Log-Returns and Standardization

Historical data series are provided in table format for the weekly returns on 40 different

indices (e.g., the TSE100COMPX denotes the TSE100 composite index, SP500C denotes the

Standard & Poor 500). The objective here is to create histograms for the P&L on the log-

return time series for a given choice of index as well as plot the q-q (i.e., quantile-quantile)

plot for the estimated cumulative distribution against the standardized log-returns on the same

index. This allows one to display and study the deviations of the actual distributions from the

standard normal distribution for the log-returns.

The log-returns over a time period dt at time t are defined by

rdti�t = log�St�i/St−dt�i
 (7.1)

for each index i. The value St�i corresponds to a price for index i at time t. To standardize

the returns, we first estimate the mean using

E	rdti�t 
=
1

Nret

Nret∑
k=1

log

(
St�i

St−dt�i

)

t=tk

(7.2)

over all Nret return dates tk, and secondly estimate the standard deviation �i�dt using

��i�dt

2 = E	�rdti�t 


2
− �E	rdti�t 


2� (7.3)

where

E	�rdti�t 

2
= 1

Nret

Nret∑
k=1

log2
(

St�i

St−dt�i

)

t=tk

� (7.4)
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Note: More precisely the usual factor of 1/�Nret − 1
 is used when computing sample

standard deviations, however the return series are large (on the order of 100 →1000) and

using this factor instead of 1/Nret is immaterial for the present calculations.

Next, we make use of the known result: If a random variable x is distributed as N����
,
then the variable y = �x−�
/� has standard normal distribution N�0�1
. In order to com-

pare the actual return series on an equal footing with the corresponding standard nor-

mal distribution, we standardize the return variables by considering the random variable

defined by:

ỹi ≡
rdti�t −E	rdti�t 


�i�dt

� (7.5)

Note that if the return series were normally distributed, then ỹi ∼ N�0�1
. As observed next

using a quantile-quantile analysis, however, actual return series are generally not normally

distributed.

7.2 Quantile-Quantile Plots

To obtain the P&L and the quantile-quantile (q-q) plot for a given index we proceed by

sampling the weekly log-return data for that index. Note that the data on the qq spreadsheet

is given in terms of the standardized log-returns; i.e., the data corresponds to the foregoing ỹi.
Having sampled the data, the cumulative distribution in the variable ỹi is then estimated by

sorting and counting occurrences, Nk, within subintervals �xk−1� xk
, where we divide up the

P&L range of values into n regions: x0 = ỹmin
i , x1 = x0 +dx, � � � , xn = x0 +n�dx
 = ỹmax

i .

The quantity dx = �ỹmax
i − ỹmin

i 
/n is the spacing over the n subintervals. One can then plot

a histogram of the P&L by plotting Nk against the midpoints �xk + xk−1
/2 for all points

given by k= 1� � � � � n. Figure 7.1 shows an example of two such histograms. Note that the

histograms have been created by eliminating extreme outliers. The actual (i.e., the realized)

cumulative distribution F of the standardized return ỹi at points xk is then estimated by

�k ≡ F�xk
≈
1

Nret

k∑
j=1

Nj� (7.6)
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FIGURE 7.1 A comparison of return histograms: (a) SPINDMV and (b) SP500C, for time series

during the period Jan. 1980 to Feb. 1999. The number of bins is set to 50. Note that the histogram

densities are normalized to give an area of 1, with the returns in percentage units.



7.2 Quantile-Quantile Plots 329

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

cu
m

ul
at

iv
e 

no
rm

al

realized

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

cu
m

ul
at

iv
e 

no
rm

al

realized

(a) (b)

FIGURE 7.2 A comparison of quantile-quantile plots computed using the weekly log-returns of two

indices: (a) SPINDMV and (b) SP500C, for time series during the period Jan. 1980 to Feb. 1999. The

return distribution for series (a) shows a greater deviation from normality with a thinner tail to the left

and a fatter tail to the right of the P&L.

where Nret is the total number of dates for which data is available on a given index i (i.e.,
the length of the return time series for index i). The percentiles �k are then plotted against

the percentiles �k, for all parameter values k. The latter percentiles �k correspond to those

of the standard cumulative normal distribution at xk, i.e., �k = N�x = xk
.
The results for the quantile-quantile (q-q) plots are used to demonstrate the deviations from

normality for the log-returns of the realized distribution. The distribution for a given particular

time series may show a more pronounced deviation when one compares the corresponding q-q

plot with that of another time series, as shown in Figure 7.2. Fatter or thinner tails will skew

the otherwise-straight-line q-q plot. The MFStat numerical library is useful for computing

cumulative and inverse cumulative normal functions.
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C H A P T E R . 8

Project: Monte Carlo Pricer

This purpose of this project is to implement calibration and pricing of basket equity options

within a Monte Carlo simulation. The calibration combines implied volatilities with historical

correlations. A multidimensional correlated lognormal distribution is used as the model for

the equity returns.

Worksheet: mc (uses parts of qq as input)

Required Libraries: MFioxl, MFBlas, MFLapack, MFFuncs, MFRangen, MFZero

8.1 Scenario Generation

Let us consider a group (i.e., basket) of n stocks (or indices) with prices (or levels) denoted

by ST�i, i= 1�2� � � � � n, at maturity time T . Given an initial price vector S0 = �S0�1� � � � � S0�n
,
a standard method of generating correlated Brownian motion for the stock prices then follows

from (see Section 1.6):

ST�i = S0�i exp��r− 1

2
�2

i 
T +√
T

n∑
k=1

Ukixk�� (8.1)

Here r is the risk-free interest rate and �i is the volatility with respect to the ith stock

price. These quantities are assumed constant in equation (8.1). The set of variables xk, k =
1�2� � � � � n, is made up of i.i.d. random variables drawn from the standard normal distribution

N�0�1
. Matrix U is used to introduce correlations among the stock prices, as shown in

detail later. Note, however, that equation (8.1) assumes time-independent volatilities. For the

time-dependent case, the foregoing can be extended by considering small time increments dt
and writing

St+dt�i = St�i exp��r− 1

2
�i�t


2
dt+√
dt

n∑
k=1

Ukixk�� (8.2)

To generate the stock prices, this equation is then applied M times from any initial time, say,

t= 0, to final time t= T =M dt (overM steps) while using the time-varying volatilities. Note

331
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that equation (8.2) is, of course, also valid for time-independent volatilities. Throughout this

project, however, we shall assume time-independent volatilities for implementation. Using

equation (8.2), with time-independent �i, we can relate the correlations of the standardized

log-returns to the U matrix:

log�St+dt�i/St�i
− �r− 1

2
�2

i 
dt√
dt

= �U′x
i ≡ yi� (8.3)

where superscript ′ is the matrix transpose and the vector x has components xk. The yi
components are closely related to the standardized log-returns ỹi, as defined within the

quantile-quantile project. Time series for these quantities can therefore be obtained from the

qq spreadsheet. The yi variables have correlation matrix elements

�ij ≡ Corr �yi� yj
=
Cij√
CiiCjj

� (8.4)

in terms of the covariance matrix elements Cij = E	yiyj
, with E	
 being an expectation over

the underlying probability distribution. The covariance matrix of standardized log-returns

is then:

Cov�yi� yj
= E	yiyj
=
n∑

k�l=1

UkiUljE	xkxl


=
n∑

k=1

UkiUkj = �U′U
ij ≡ Cij� (8.5)

since E	xkxl
= �kl [i.e., the xk are independent standard normals, xk ∼ N�0�1
]. This shows
that the U matrix used to generate correlated stock price movements is obtained from the

Cholesky factorization of the covariance matrix. One also observes that uncorrelated stock

price motion follows readily in the case of Cij = �ij�
2
i = �ijCii, i.e., Uij = �ij�i = �ij

√
Cii.

We also have the useful result that

Cov�ỹi� ỹj
=
Cov�yi� yj
√

CiiCjj

= �ij� (8.6)

8.2 Calibration

In themc spreadsheet application, the first phase is to calibrate the scenario-generation engine
to be used later for Monte Carlo pricing. This is accomplished by considering a basket of

options with known market prices on plain-vanilla calls. The second phase, discussed in the

next section, is to price the basket option of choice by running a Monte Carlo simulation

based on the calibrated volatilities as input. The spreadsheet table for the calibration basket,

duplicated in Figure 8.1, shows that for each ith stock (or index), we have a market plain-

vanilla call option price Ci on a single underlying equity i with fixed spot S0�i = $100 (for

example), present calendar time t (e.g., today’s date), given maturity Ti, and strike Ki. From

this we extract an implied volatility �I
i for each underlying index i independently. This is

done by inverting the Black–Scholes formula for a call with �i = �I
i ,

Market Call Pricei = C�S0�i�Ki� r��
I
i � Ti− t
� (8.7)
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TSE100COMPX
MEXISEX
SP500C

SPFINL
SPINDMV
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FIGURE 8.1 Calibration basket for 10 indices. All implied volatilities are computed with interest rate

r = 7%, spot 100, and present date 1-Sept-1999.

for each call contract in the calibration basket. Once the �I
i are obtained, the covariance

matrix of log-returns for the total number n of underlyings is estimated using the historical

returns in the qq spreadsheet. That is, we estimate the correlation from equation (8.6) using

the average

�ij ≈
1

Nret

Nret∑
k=1

ỹ
�k

i ỹ

�k

j (8.8)

over the total number of historical returns Nret contained in the time series table of the qq
spreadsheet. Note that superscript �k
 denotes the standardized return at time tk, and the ỹ

�k

i

are given by equation (7.5), where t = tk. Equation (8.8) gives the correlation matrix. Note

that volatility varies as 1/
√
time, whereas covariance matrix elements vary as the square of

volatility (i.e., as 1/time). Equation (8.8) is very useful as it stands, since the matrix elements

are dimensionless and hence do not depend on the time scale of the returns (i.e., these can be

daily, weekly, yearly, etc.).

The calibrated covariance matrix is then obtained by using the correlation matrix in

conjunction with the yearly implied volatilities in equation (8.7). The covariance matrix that

is actually used for the Monte Carlo sampling, and hence used for pricing as discussed in the

next section, is given by

Cij = �ij�
I
i �

I
j � (8.9)

Note that from use of equation (8.1) the time scale of the covariance matrix is automatically

set by the unit used for the implied volatilities, i.e., yearly.

8.3 Pricing Equity Basket Options

The price V�S0� t = 0
 of a basket option at present time t = 0 and present stock price vector

S0 = �S0�1� � � � � S0�n
 with maturity t = T can be expressed as a closed-form n-dimensional

integral. In particular, the transition probability density function for an initial stock vector

S0 to attain value ST = �ST�1� � � � � ST�n
, in time T , is given by an n-dimensional correlated

lognormal distribution [i.e., equation (1.198)]:

p�ST �S0�T
= �2�T
−
n
2 �detC
−

1
2 exp

(− 1

2
z ·C−1 · z)� (8.10)
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where the n-dimensional vector z is defined by the components

zi ≡
log�ST�i/S0�i
− �r− 1

2
�2

i 
T√
T

(8.11)

and �i =�I
i (the implied volatilities). Note that these components are essentially the yi defined

in equation (8.3), with dt replaced by T . The covariance matrix C is given in terms of the

correlation matrix and the implied volatilities via equation (8.9). Risk-neutral pricing then

gives [i.e., equation (1.187)]

V�S0�0
= e−rT
∫ 


0

p�ST �S0�T
��ST 
dST� (8.12)

where � is the payoff function.

For a Monte Carlo implementation it is useful to rewrite the n-dimensional integral in

equation (8.12) using a change of variables defined by z= U′x, i.e,

zi =
n∑

k=1

Ukixk� (8.13)

where matrix U is obtained from the (upper) Cholesky factorization of the covariance matrix

with elements given in equation (8.9): C= U′U. The Jacobian of the transformation ST → x
is T

n
2

√
detC, while for the inner product we have z ·C−1 · z = x · x. Note that the inverse

transformation ST = ST �x
 is given by equation (8.1). Combining these results with the

integrand in equation (8.12) gives the pricing formula as a discounted expectation over the

uncorrelated n-dimensional standard normal distribution:

V�S0�0
=
e−rT

�2�
n/2

∫ 


−

e−

1
2

x
2��ST �x

dx

≈ e−rT 1

Ns

Ns∑
i=1

��ST �x
�i


� (8.14)

This sum gives the Monte Carlo average of the pay-off evaluated at each ith scenario vector

ST �x
�i

, i.e., the stock price vector with components given by equation (8.1), where the

x
�i

k are n i.i.d. standard normal deviates for all Ns scenarios. The MFRangen numerical

library is useful for generating the standard normal deviates, while MFBlas can be used for

matrix-vector multiplication in the scenario generation.

Within the mc spreadsheet we consider the pricing of three types of basket options, as

entered within the user interface. These have the respective pay-offs

(i) Simple chooser: ��ST 
=max�ST�i� i= 1� � � � � n�
(ii) Chooser call: ��ST 
 = max�Ci = max�ST�i −K�0
 � i = 1� � � � � n�, corresponding to

the choice of one underlying that gives the maximum call pay-off.

(iii) Chooser put: ��ST 
=max�Pi =max�K−ST�i�0
 � i= 1� � � � � n�, corresponding to the

choice of maximum put pay-off. Note: The strike K is also a user input.

Figure 8.2 shows the results of a Monte Carlo simulation for pricing a simple chooser

option on a basket of 10 stocks. Fairly good convergence is obtained in the range of 5000 to
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FIGURE 8.2 An example of the convergence pattern of an actual Monte Carlo simulation for the price

of a simple chooser option on a basket of 10 correlated stocks.

10,000 scenarios. Note that the spacing in the x-axis scale is not constant since the increments

were chosen using an exponentially increasing number of points. The user is encouraged to

experiment with pricing various contracts that are in-the-money, at-the-money, and out-of-

the-money for a varying number of total stocks in the basket. Whenever possible, compare

the results of your Monte Carlo simulations with exact results, as in the special case of two

correlated underlyings.
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Project: The Binomial Lattice Model

The purpose of this project is to build a binomial lattice model to price both European and

American puts and calls. We demonstrate how to parameterize the lattice in terms of a drift

and a volatility parameter, adjust the drift to match forward prices, and adjust the lattice

volatility in such a way as to match the price of an at-the-money European call option. Once

calibrated, the binomial lattice is used to price European and American options. Extensions

to Derman–Kani trees are left to the interested reader.

Worksheet: bin
Required Libraries: MFioxl, MFBlas, MFFuncs, MFZero, MFStat

9.1 Building the Lattice

A binomial lattice is a recombining two-dimensional tree with a total number of time steps

M ≥ 1 over the time interval 	0� T
. Lattice nodes parameterize stock prices and calendar

time. Dates are denoted by tm, m= 0�1� � � � �M , where t0 is the date at which we seek the

price and tm = t0 +m %t, where %t = �T − t0
/M is the elementary time step. At the mth

time step of size %t, there are �m+1
 nodes labeled by an index n= 0�1� � � � �m. The stock

price at node �m�n
 is given by

Sm
n = dm−nunS0� (9.1)

where u > 1 and d< 1. The value S0
0 = S0 is the spot price at the current time t= t0 when the

option is valued. Figure 9.1 depicts the binomial lattice geometry. The model is characterized

by the parameters d�u�%t and by the risk-neutral probability p of an upward jump. An

upward move corresponds to a multiplication by u, whereas a downward move corresponds

to a multiplication by d. The parameter p is strictly between 0 and 1.

According to pricing theory covered in Chapter 1, arbitrage-free prices are achieved if the

discrete stochastic process defined by the binomial lattice is risk neutral. One-period returns
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t0 t1 t2 tm – 1 tm tM
S0
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Sj
M
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M
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Sn–1
m–1

S1
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S0
2S0

1S0
0

S1
1 S2

2

Sn–1
m

S

t

FIGURE 9.1 A binomial lattice originating at the current time t = t0 with stock level S0
0 to final

time tM = T . At every time slice tm−1 a grid point Sm−1
n−1 gives rise to two points, Sm

n = uSm−1
n−1 and

Sm
n−1 = dSm−1

n−1 , at a later time tm = tm−1+%t.

on the stock must equal the return on the prevailing risk-free rate r. Assuming r constant, we
find that the condition

puS+ �1−p
dS = er%tS (9.2)

must be satisfied at all nodes S = Sm
n . Hence,

pu+ �1−p
d = er%t� (9.3)

Let us introduce a lattice volatility parameter � by means of the following equation:

pu2+ �1−p
d2 = e�2r+�2
%t� (9.4)

Proposition 9.1. In the limit as %t→ 0, the lattice volatility converges to the continuous-time
lognormal volatility in the Black–Scholes model.

Proof. For a lognormal distribution, we have

Si+1 = Si exp��r− 1

2
�2
%t+�

√
%tx�� x ∼ N�0�1
� (9.5)

where Si denotes a stock price at time ti and %t = ti+1− ti. Conditional on the stock price

being Si at time ti, the following expected values at a later time ti+1 = ti +%t obtain using

equation (9.5):

E	Si+1
= Sier%t� (9.6)

E	�Si+1
2
= �Si
2e�2r+�2
%t� (9.7)

Within the binomial lattice we have instead:

Eb	S
i+1
= �pu+ �1−p
d
Si� (9.8)

Eb	�S
i+1
2
= �pu2+ �1−p
d2
�Si
2� (9.9)

Equating the variances E	�Si+1
2
− �E	Si+1

2 and Eb	�S
i+1
2
− �Eb	S

i+1

2, and using equa-

tion (9.3), gives equation (9.4). �
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Equations (9.3) and (9.4) allow one to parameterize the three unknowns d�u�p in the

binomial lattice by means of the risk-free rate r, the lattice volatility � , and a third degree

of freedom. To resolve the indeterminacy we are at liberty to choose another constraining

equation. Two choices are popular:

p= 1

2
(9.10)

and

u= 1

d
� (9.11)

For the case p= 1

2
, the lattice parameters can be expressed as follows in terms of a lattice

volatility � and drift r:

d= er%t

(
1−

√
e�2%t −1

)
� (9.12)

u= er%t

(
1+

√
e�2%t −1

)
� (9.13)

p= 1

2
� (9.14)

This is a recombining binomial tree that drifts upward in the stock price direction.

If u= 1

d
, the tree is symmetric about the line S = S0 with zero drift and the lattice

parameters are given as follows:

d= a−√
a2−1� (9.15)

u= 1/d� (9.16)

p= �er%t −d
/�u−d
� (9.17)

where

a= �e−r%t + e�r+�2
%t
/2� (9.18)

9.2 Lattice Calibration and Pricing

Prices of European-style options are computed iteratively, starting from the maturity date T ,
where the payoff function ��S
 is ascribed to the terminal nodes SM

n , n= 0�1� � � � �M . Let

fm
n = V�Sm

n � tm
 be the option price at the node Sm
n . For a call option with strike K, the final

time condition is

fM
n = ��SM

n 
=max�SM
n −K�0
� (9.19)

For the put struck at the same level, the condition is instead

fM
n = ��SM

n 
=max�K−SM
n �0
� (9.20)

The risk-neutral condition on the option price process applied to each node yields the following

recurrence relation (i.e., valuation formula):

fm
n = e−r%t�pfm+1

n+1 + �1−p
fm+1
n 
� (9.21)

The price of the option at current time t0 and spot S0 is given by the last iterate, V�S0� t0
= f 0
0 .
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t
T

f0 (σ2)0

f0 (σ1)0
f0 (σ) = Cref
0

option price

t0

FIGURE 9.2 A schematic of upper and lower bands of option prices (i.e., the outer node values

fm
0 � fm

m �m = 0� � � � �M) for two different lattice geometries corresponding to lattice volatilities �1

(dashed lines) and �2 (solid lines). The lower lattice volatility value �1 gives a lower estimate of the

reference market option price, while the higher value �2 gives an upper estimate of the market option

price. The lattice volatility � (for given time step %t and interest rate r) that prices the market option

value exactly lies in the interval �1 < � < �2.

To price American options, the method is similar, except an adjustment is made to account

for the possibility of early exercise. Namely, the risk-neutral valuation formula is now (see

Section 1.14.1 on dynamic programming):

fm
n =max

(
��Sm

n 
� e
−r%t�pfm+1

n+1 + �1−p
fm+1
n 


)
� (9.22)

In the lattice calibration step, one has to adjust the lattice volaility to match the price

of the single at-the-money option used as calibration target. Figure 9.2 shows a schematic

representation of the lattice calibration procedure. Notice that the optimal value for the lattice

volatility � does not necessarily coincide with the Black–Scholes implied volatility �I of

the option, but it converges to this value in the limit of time steps of vanishing length. The

calibration procedure requires the use of a root-finding algorithm. The existence of a root is

guaranteed with both choices p = 1

2
and u = 1

d
, for in both cases the resulting families of

binomial models allow for arbitrarily large or small values of the volatility. The worksheet

bin contains an at-the-money European call as the calibration target or reference call option

contract. The option is quoted in terms of a Black–Scholes implied volatility �I . The market

price results from the Black–Scholes formula

Cref = C�S0�Kref� r��
I�Tref − t0
� (9.23)

The current time is denoted by t0 and the spot is S0. To determine the lattice volatility � , one
has to find a root of the equation

f 0
0 = f 0

0 ��� r�%t
= Cref (9.24)

for a given choice of r and lattice geometry. Here we have explicitly written the dependence

of the binomial approximation to the price, i.e., f 0
0 , in terms of the lattice parameters. The

value of f 0
0 is found iteratively using equation (9.21) or equation (9.22), depending on

whether the option is European or American, respectively. The final time condition is given

by equation (9.19) for calls and equation (9.20) for puts. The value for the strike is set

as K = Kref . Having finally obtained a value for � , the model can be used to price other

American or European options. �
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Project: The Trinomial Lattice Model

The main task in this project is to build a trinomial lattice model to price European and

American claims within an explicit finite-difference scheme. Both drifted and nondrifted

types of lattice geometries are considered. For the drifted lattice model, the drift is adjusted

to account for the prevailing interest rate so as to maintain risk neutrality. As with binomial

models, the model is parameterized by means of a suitably defined lattice volatility, which

is then calibrated to match the price of a given at-the-money European option. Option

prices are obtained for all single-barrier and plain-vanilla European as well as American-

style claims. Extensions to Derman–Kani (i.e., local volatility) trinomial trees are left to the

interested reader.

Worksheets: pded1, pded2
Required Libraries: MFioxl, MFBlas, MFFuncs, MFZero, MFStat

10.1 Building the Lattice

Trinomial lattices are normally based on lattices of fixed geometry and parameterized by

the nodal transition probabilities. Consider a recombining two-dimensional tree with a total

number of time steps M ≥ 1. The nodes of the tree are placed along the time lines tm,
m = 0�1� � � � �M , where the initial (e.g., present) calendar time is denoted by t0. We will

denote the time to expiry by T, which defines a time step of size %t = �T − t0
/M (i.e.,

tM = T ) for the lattice. At the mth time step, there are �2m+1
 nodes in a standard trinomial

lattice.

The nodes are chosen on a log-rectangular grid and can be generally expressed as follows:

Sm
n = S0

0e
m�%t+n%x� (10.1)

for n=−m�−m+1� � � � �0� � � � �m−1�m. The spot (i.e., initial stock price) is S0 = S0
0 . The

choice of the parameters � and %x is discussed shortly. Note that by taking logarithms of

equation 10.1, %x gives a measure for the change in logS within a given time slice. Namely,

%n logS
m
n ≡ logSm

n+1− logSm
n =%x gives the node spacing for a fixed value of time. Changes
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due to a possible drift can arise from the difference %m logS
m
n ≡ logSm+1

n − logSm
n = � %t.

In the stochastic process underlying the trinomial tree model, stock prices can jump from a

node Sm
n to the nodes Sm+1

n′ , with n′ = n�n± 1. There are three transition probabilities, p+,
p0, and p−, that correspond to an upward move, middle move (i.e., no move for zero drift),

and downward move, respectively, for any trinomial tree. These risk-neutral probabilities are

subject to two constraints; the first is that of probability conservation,

p++p0+p− = 1� (10.2)

A trinomial tree is recombining, and the nodes span a cone within a rectangular grid

arrangement in log-stock and time space (see Figure 10.1). Notice, though, that, as we discuss

later, to price several options of different strikes at once, it is useful to extend the trinomial

lattice to cover the complete rectangular grid of �2M + 1
�M + 1
 points, so at every time

step m we have �2M+1
 points Sm
n , where n=−M� � � � �0� � � � �M .

In what follows we present three different geometric constructions of trinomial lattices.

The first two, Cases 1 and 2, assume �= 0, while the third asks for an additional constraint on

the probability amplitudes and adjusts the drift � in such a way as to achieve risk neutrality.

10.1.1 Case 1 (�= 0)

Since �= 0, the risk-neutrality constraint E	Stm+1

Stm

= S
= er�tS gives:

p+e
%x+p0+p−e

−%x = er%t� (10.3)

Probability conservation (10.2) allows one to eliminate the variable p0 = 1− �p+ + p−
,
and gives

p+�e
%x−1
+p−�e

−%x−1
= er%t −1� (10.4)

t0 t1 t2 tm tm+1

S
0
0

S
1
1

S
0
1

S
–1
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S
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2

S–1
2

S
0
2

S
1
2

S
2
2

S
n
m

S
n – 1
m + 1

S
n + 1
m + 1

Sn
m + 1

t

S

FIGURE 10.1 A schematic of the nondrifted (�= 0) trinomial lattice originating at current time t= t0
with stock level S0

0 . At every time slice tm, a stock at level Sm
n can change to Sm+1

n′ , with n′ = n�n±1.

The drifted lattice has a similar geometry, except all nodes are shifted by an amount exp�� %t
 after
every time step.
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Let us introduce a lattice volatility parameter � by means of the following equation,

similar to equation (9.4):

p+�e
2%x−1
+p−�e

−2%x−1
= e�2r+�2
%t −1� (10.5)

Equations (10.4) and (10.5) are a linear system in the two unknowns p+, p−. By solving them

we find the transition probabilities as a function of � and r:

p+ = �e−2%x−1
�er%t −1
− �e−%x−1
�e�2r+�2
%t −1


�e%x−1
�e−2%x−1
− �e−%x−1
�e2%x−1

� (10.6)

p− = �er%t −1
− �e%x−1
p+
�e−%x−1


� (10.7)

10.1.2 Case 2 (Another Geometry with �= 0)

An alternative definition for the lattice volatility is

p+�%x
2+p−�−%x
2+p00
2 = �2%t� (10.8)

This is also an acceptable definition because in the continuous-time limit it also converges to

the Black–Scholes volatility. With this equation, we have

p++p− = �2 %t

�%x
2
� (10.9)

Equations (10.4) and (10.9) is a linear system of two equations in the two unknowns p+, p−.
Solving gives

p− = �e%x−1
�2%t/�%x
2− �er%t −1


�e%x− e−%x

� (10.10)

and

p+ = �2 %t

�%x
2
−p−� (10.11)

The expressions for the probabilities are in this case slightly simpler than in Case 1.

For both choices of the lattice volatility, one has to select appropriate values for %x,
given a time step %t, so as to obtain acceptable probabilities, i.e., p+ > 0, p− > 0, and

p+ + p− < 1. For the simpler Case 2, we see immediately from equation (10.9) that the

constraint �2 %t/�%x
2 < 1 must be obeyed. This is related to the usual stability constraint

that arises in the direct, or explicit, PDE method for solving the Black–Scholes equation.

10.1.3 Case 3 (Geometry with p+ = p−: Drifted Lattice)

If we ask for the symmetry condition p+ = p− ≡ p, we need to adjust the lattice drift � in

such a way as to satisfy the risk-neutrality condition. Equation (10.2) gives p0 = 1−2p, which
is used to eliminate p0. This is used in the risk-neutrality condition, which now includes the

overall drift

p+e
�%t+%x+p−e

�%t−%x+p0e
�%t = er%t (10.12)
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and, this, gives

p�e%x+ e−%x
+ �1−2p
= e�r−�
%t� (10.13)

Taking logarithms gives the drift in terms of all other parameters:

�= r− 1

%t
log�2p�cosh%x−1
+1
� (10.14)

To define the lattice volatility parameter and express p in terms of it, we set

�p++p−
�%x
2 = �2 %t� (10.15)

which reduces to

p= �2 %t

2�%x
2
� (10.16)

As in Case 2, this equation gives the probability in terms of %x, %t, and � . A possible

strategy is to choose a sensible value for the probability p, given %t and � , and then to arrive

at the spacing in the logarithm of the stock price,

%x = �
√
%t/2p� (10.17)

Note that the usual stability condition for the direct PDE solution of the Black–Scholes

equation requires p < 1/2. %x is then given by equation (10.17) for a given value of the

lattice volatility � . The drift then follows from equation (10.14).

10.2 Pricing Procedure

Option prices are computed iteratively, starting from the maturity date T, at which point

option prices are given by the payoff function ��S
. We denote the value of the option at

node Sm
n by fm

n = V�S = Sm
n � t = tm
. The final-time condition for a call struck at K is

fM
n = ��SM

n 
=max�SM
n −K�0
� (10.18)

and for the put struck also at K

fM
n = ��SM

n 
=max�K−SM
n �0
� (10.19)

Hence, prices for European-style options at each node are computed recursively using the

risk-neutral valuation formula:

fm
n = e−r%t�p+f

m+1
n+1 +p−f

m+1
n−1 + �1− �p++p−

f

m+1
n 
� (10.20)

Figure 10.2 depicts the explicit scheme inherent in equation (10.20) for propagating prices at

each time step. The nodes are placed according to equation (10.1), as explained earlier, and

the probabilities p+, p− are given as described within the respective cases. The iteration is

best accomplished using a band matrix multiplication routine in the MFBlas numerical library.

This is possible since the pricing equation (10.20) can be rewritten in matrix format, whereby
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FIGURE 10.2 The explicit finite difference method makes use of prices at three adjacent nodes at a

more later time step, t = tm+1, for propagating the price to a given node at a more current time t = tm.

the option price solution column vector denoted by fm at time tm is �2M + 1
-dimensional

with components fm
−M�fm

−M+1� � � � � f
m
0 � � � � � fm

M−1� f
m
M :

fm = e−r%tTfm+1� (10.21)

This is a special linear system of equations with a tri-diagonal transfer matrix T. This
�2M+1
-dimensional matrix is given in terms of the transition probabilities for the upward

and downward moves. Namely,

T=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− �p+ + p−
 p+ 0 � � 0

p− 1− �p+ + p−
 p+ � � �
0 p− � � � �
� 0 � � � �
� � � � � 0

� � � � � p+
0 � � � p− 1− �p+ + p−


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
� (10.22)

Note that for the drifted lattice geometry p+ = p−, hence giving a symmetric banded matrix

in this particular case.

To price American options, the iteration proceeds similarly, except an adjustment is made

at every time step to account for the possibility of early exercise. Namely, the risk-neutral

valuation formula is now

fm
n =max

(
��Sm

n 
� e
−r%t	p+f

m+1
n+1 +p−f

m+1
n−1 + �1− �p++p−

f

m+1
n 


)
� (10.23)

The price of the option at current time t0 and spot S0 is given by the last iterate, V�S0� t0
= f 0
0 .

The risk-neutral condition is exactly satisfied at all nodes if we restrict ourselves to the

grid points belonging to the interior of the cone with n=−m� � � � �m at the mth time slice. If

the foregoing equations are used to price options across all grid points with n=−M� � � � �M ,

risk neutrality fails outside the boundaries of the cone and numerical errors arise. This is the

case for implementing the strictly trinomial model, unless proper boundary conditions are

imposed on the extreme nodes of the rectangular grid.

For the case of American put options we can compute the exercise boundary as a function

of the time to maturity T − t. The exercise-boundary value S∗
t at time t corresponds to the

highest value of S for which it is optimal to exercise the option rather than holding it. The

value S∗
t , for each t = tm, is the largest node value Sm

n for which ��Sm
n 
≥ f̃ m

n , with the latter

quantity given by the right-hand side of equation (10.20), i.e., the continuation value at tm .
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10.3 Calibration

As in the binomial model, we determine the lattice volatility in such a way as to match the

price of an at-the-money option chosen as calibration target. The resulting optimal implied

lattice volatility computed again does not coincide with the implied Black–Scholes volatility

�I , but it converges to this value in the limit of infinitesimal time steps. The lattice volatility

compensates for the systematic errors in the discrete-time approximation scheme inherent in

the trinomial method.

Calibration requires the use of a root-finding algorithm. The procedure is similar for all

three lattice cases, as now discussed. The pded1 spreadsheet contains a European at-the-

money call with given maturity Tref and strike Kref as the calibration (reference) target. The

price of the calibration target is provided as a Black–Scholes implied volatility �I . The market

price of this call is then given by the Black–Scholes formula

Cref = C�S0�Kref� r��
I�Tref − t0
� (10.24)

t0 is the time at which we seek the price, and the corresponding spot price is assumed to be

S0. The implied lattice volatility � is obtained by inverting the following equation with a root

finder in the MFZero library:

f 0
0 = f 0

0 ��� r�%t�%x
= Cref � (10.25)

Here we have explicitly written the dependence of the trinomial lattice option price, i.e., f 0
0 ,

in terms of the lattice parameters. The value of f 0
0 is found iteratively using the earlier pricing

equations for a European call option. Note that the interest rate r is held fixed and %t is also
fixed by the chosen number of time steps in the lattice. The value for the strike is set as

K = Kref , i.e. the reference strike.

10.4 Pricing Barrier Options

The procedure to price a barrier option is a modification of the method for plain-vanilla

options, except we have to account for a boundary condition at the barrier H. We discuss,

in detail, the case of single-barrier down-and-out options. The case of up-and-out options is

similar, while the case of knock-in options reduces to that of knockouts thanks to the in-out

symmetry relation

Knock In + Knockout = Vanilla� (10.26)

To price a down-and-out, we can assume that the spot is above the lower barrier, i.e., S0 > H ;

otherwise the option would be worthless. There is an important distinction between the cases

�= 0 and � �= 0. In case � �= 0, it is not possible to adjust the lattice so that a horizontal line of

lattice nodes lies exactly on the barrier. While iterating equation (10.20), one verifies the node

positions with respect to the barrier. For all values of n for which Sm
n < H one sets fm

n = 0 in the

pricing equations. This limitation in approximating the real location of the barrier at each time

slice gives rise to systematic numerical errors (see also Section 11.4 and Figure 11.1).

In the case � = 0, it is possible to adjust the lattice so that a subset of the nodes lies

exactly on the barrier. Figure 10.3 shows such a description of a nondrifted lattice, where

the choice of geometry is such that a set of horizontal nodes corresponds exactly to either a
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S
0
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t

FIGURE 10.3 The spacing of a nondrifted (�= 0) trinomial lattice can be chosen to exactly match an

upper- or lower-barrier level along a horizontal line of nodes.

lower or upper barrier level. Namely, one can select a spacing %x so that for a given positive

integer nH we have H = S0 exp�−nH %x
, or, expressed otherwise:

%x = 1

nH

log�S0/H
�

The price of the down-and-out option is then obtained by iterating the pricing equations,

whereby one considers only the nodes lying at and above the barrier, i.e., n≥−nH , with the

condition that the option prices fm
n = 0� n ≤ −nH , for all m. Note that the approach can be

used to value European as well as American-style barrier options.

10.5 Put-Call Parity in Trinomial Lattices

One of the consequences of risk neutrality is the put-call parity relation for European prices

S+P�S� t
−C�S� t
= Ke−r�T−t
 (10.27)

across all nodes �S� t
= �Sm
n � tm
. It is instructive to verify it directly. Consider prices at the

final time line with m = M . Call and put prices CM
n and PM

n satisfy, by construction, the

put-call parity relation at the terminal nodes,

SM
n +PM

n −CM
n = K� (10.28)

At the internal nodes, we can proceed by induction. Hence, begin by assuming that the put-call

parity relation is satisfied at the mth time step,

Sm
n +Pm

n −Cm
n = Ke−r�T−tm
� (10.29)

By applying equation (10.20) for the put and call we find that:

Pm−1
n −Cm−1

n = e−r%t�p+�P
m
n+1−Cm

n+1
+p−�P
m
n−1−Cm

n−1


+�1− �p++p−

�P
m
n −Cm

n 

� (10.30)
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Using probability conservation and the induction hypothesis, Pm
k −Cm

k =Ke−r�T−tm
−Sm
k � k=

n�n±1. Equation (10.30) yields

Pm−1
n −Cm−1

n = e−r%t	Ke−r�T−tm
− �p+S
m
n+1+p−S

m
n−1

+�1− �p++p−

S
m
n 
� (10.31)

The second term on the right-hand side of this equation simplifies to Sm−1
n as a consequence

of the risk-neutrality condition. Multiplying out the discount term while using tm−1 = tm−%t
then gives

Sm−1
n +Pm−1

n −Cm−1
n = Ke−r�T−tm−1
� (10.32)

Put-call parity is therefore recovered.

10.6 Computing the Sensitivities

The sensitivities % = �V/�S, & = �2V/�S2 and the vega �V/��I of the option value V at

present time t0 and spot S = S0 can be approximated by finite differences:

%≈ V�S0+dS� t0
−V�S0−dS� t0


2dS
� (10.33)

& ≈ V�S0+dS� t0
+V�S0−dS� t0
−2V�S0� t0


�dS
2
� (10.34)

�V

��I
≈ V��I +d�� t0
−V��I −d�� t0


2d�
� (10.35)

The quantity dS can be chosen as a small change in spot price, e.g., dS ∼ 0�001S0 and

likewise d� is a small increment in the volatility, d� ∼ 0�001�I , where �I is the implied

volatility at S0. Note that for clarity of notation we have explicitly written the dependence of

V on spot and volatility only, respectively.



C H A P T E R . 11

Project: Crank–Nicolson Option
Pricer

The purpose of this project is to implement an implicit finite-difference solution scheme

to price standard as well as barrier-type European and American options using the Crank–

Nicolson (CN) method. The CN method is also calibrated against a reference European option.

Possible put-call parity mismatches introduced by the CN approximation are then studied

across a whole range of values in the moneyness parameter. The unique approach makes use

of a drifted trinomial lattice. An implementation of the CN method within nondrifted lattices

as well as other extensions are left as exercises for the interested reader.

Worksheets: cranic1, cranic2
Required Libraries: MFioxl, MFStat, MFFuncs, MFBlas, MFLapack, MFZero

11.1 The Lattice for the Crank–Nicolson Pricer

Crank–Nicolson methods are among the more commonly used implicit finite-difference

solvers for the Black–Scholes PDE. Here we implement a rather unique CN approach that

borrows partly from the methodology used in the direct PDE trinomial lattice solver covered

in the previous project. The first step is to build a trinomial lattice. This part was already

covered in the first section of the previous project on trinomial lattice modeling and hence

will not be repeated here. There we discussed the use of three types of lattices, two of which

are driftless. In this project we will focus specifically on the drifted lattice approach. The

use of nondrifted lattices in CN (which were seen in the direct trinomial solver to intro-

duce explicit differences in the nodal transition probabilities for upward versus downward

moves) will be left as a future exercise. As well, this project focuses on the calibration and

subsequent pricing of plain European and single-barrier European options. The extension to

price double-barrier options as well as American barrier options is also obvious within the

framework provided here, although we shall leave this as a separate implementation exercise

for the interested reader.
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As described in the previous trinomial project, the nodes are chosen on a log-rectangular

grid as given by equation (10.1) with nonzero drift parameter �. For a full description of the

lattice, see the first section of the trinomial project. Again, making use of the risk-neutrality

condition and taking logarithms gives the drift in terms of all other parameters, as given in

equation (10.14) and repeated here for clarity:

�= r− 1

%t
log�2p�cosh%x−1
+1
� (11.1)

The probability p is again given in terms of the lattice volatility parameter � , the spacing %x,
and %t:

p= �2%t

2�%x
2
� (11.2)

As in the direct method, one chooses a sensible value for the probability p, given a %t and a

� , and then arrives at the spacing in the logarithm of the stock price:

%x = �
√
%t/2p� (11.3)

Note that p is normally chosen in the range 0<p< 1

2
, although the CN method can be shown

to be stable and convergent for all p > 0. To reiterate, the M+1 time slices are chosen with

time step %t = �T − t0
/M , where T is the maturity time and t0 denotes present time.

11.2 Pricing with Crank–Nicolson

Here we shall explicitly discuss the pricing of European-style options; the extension to

Americans is obvious and introduces the same extra step as discussed in the previous project.

The pricing equations for the CN method differ significantly from the direct trinomial pricer,

in that propagation of the solution takes into account both backward and forward motion. In

particular, one can relate the option prices fm
n = V�Sm

n � tm
 at the nodes Sm
n for time tm to

the option prices fm+1
n = V�Sm+1

n � tm+1
 at nodes S
m+1
n for future time tm+1 = tm+%t, via the

probability p for forward-time upward and downward stock motion, as follows:

�1+p
fm
n − p

2
�fm

n−1+fm
n+1
= e−r%t

[
�1−p
fm+1

n + p

2
�fm+1

n−1 +fm+1
n+1 


]
� (11.4)

Note the difference between this and the explicit finite-difference approach used in the

trinomial lattice project (see Figure 10.2). In this implicit CN scheme, prices at three nodes

at a later time step are related to prices at three nodes before a time step. Equation (11.4) can

be rewritten in matrix format in which the option price solution column vector denoted by fm

at time tm is �2M+1
-dimensional, with components fm
−M�fm

−M+1� � � � � f
m
0 � � � � � fm

M−1� f
m
M :

Zfm = e−r%tAfm+1� (11.5)

This is a linear system of equations with tridiagonal matrices A, Z given in terms of the

transfer matrix T,

Z= 3

2
1− 1

2
T� (11.6)

A= 1

2
1+ 1

2
T� (11.7)
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where 1 is the �2M+1
-dimensional identity matrix and

T=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−2p p 0 � � � 0

p 1−2p p 0 � � �
0 p 1−2p p 0 � �
� 0 � � � � �
� � � � � � 0

� � � � � � p
0 � � � 0 p 1−2p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
� (11.8)

To implement the CN method, equation (11.5) is solved at every time step beginning with

the known terminal payoff vector whose components are given by

fM
n =max�SM

n −K�0
 (11.9)

for the case of a call struck at K and

fM
n =max�K−SM

n �0
 (11.10)

for a put struck at K. Equation (11.5) constitutes a system of 2M+1 equations in the 2M+1

unknowns fm
n with band diagonal matrix Z and is hence readily solved by LU factorization.

The routine GBSV in the MFLapack library within MFlibs is useful for this purpose once

the matrices A, Z have been transformed to band matrix format. The latter operation is easily

accomplished using the routines ST2B and GT2B in MFBlas. Having solved for fM−1 by using

the known payoff solution vector fM , the procedure is then iterated by solving equation (11.5)

for fM−2. Iterating M times in this fashion gives the option price vectors at all time slices,

including the vector f0 at present time t0.
As a final important note, we observe that the CN pricing equation (11.5) assumes that

the lattice grid takes into account large enough values of Sm
M and small enough values of Sm

−M

where the put and call are negligible, respectively. Moreover, we have purposely excluded

the proper corrections from the boundaries into the matrix pricing equations. The reader can

experiment with the inclusion of boundary conditions at the lower and upper extremities of

the rectangular grid . Without such inclusions the present CN approach will fail to correctly

price options at nodes outside of the proper trinomial lattice (i.e., for nodes lying above or

below the outer cone of the tree).

11.3 Calibration

As in the direct trinomial model, the lattice volatility is determined in such a way as to match

the price of an at-the-money European option chosen as a calibration target. The resulting

optimal implied lattice volatility computed again does not coincide with the implied Black–

Scholes volatility �I , but it converges to this value in the limit of infinitesimal time steps. As

in the other lattice methods, the lattice volatility compensates partly for the systematic errors

in the discrete-time approximation scheme inherent in the trinomial method.

Calibration requires the use of a root-finding algorithm. The cranic1 spreadsheet contains

a European at-the-money call with given maturity Tref and strike Kref as the calibration target

or reference. The price of the calibration target is provided as a Black–Scholes implied

volatility �I . The market price of this call is then given by the Black–Scholes formula:

Cref = C�S0�Kref� r��
I�Tref − t0
� (11.11)
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t0 is the time at which we seek the price, and the corresponding spot price is assumed to be

S0. The implied lattice volatility � is obtained by inverting the following equation with a root

finder in the MFZero library:

f 0
0 = f 0

0 ��� r�%t�%x
= Cref � (11.12)

Here we have explicitly written the dependence of the CN approximation on the price, i.e.,

f 0
0 , in terms of the lattice parameters. The value of f 0

0 is found iteratively using the earlier

pricing equations for a European call option. Note that the interest rate r is held fixed and

that %t is also fixed by the chosen number of time steps in the lattice. The value for the strike

is set as K = Kref .

11.4 Pricing Barrier Options

The procedure for pricing barrier options is almost identical to what is formulated in

Section 10.4 of the previous project. One important distinction arises, however, when using

a drifted lattice (as is the case in the current CN approach) versus a nondrifted lattice. The

differences that arise between the use of drifted and nondrifted lattices were also briefly

discussed in the previous project, where the nondrifted lattice was favored over the use of

drifted lattices when pricing options with a constant barrier level. Within the CN drifted-lattice

approach, the price of a up-and-out barrier call, for example, with barrier at S =H , requires

one to employ the pricing procedure as given in Section 11.2. At each time tm, however, the
price components fm

n must be reset to zero for all n ≥ nH (i.e., all nodes at and above the

barrier level H) before the next propagation time step. The integer nH can be taken to be

the least integer value of n such that Sm
n ≥H . Figure 11.1 demonstrates a possible source of

inaccuracy arising from the use of a drifted-lattice geometry when pricing a barrier option,

with barrier level at a fixed height. The zero-boundary conditions imposed on the “boundary”

nodes creates only a coarse approximation to the actual horizontal straight-line barrier. Note

upper barrier

S
0

S

t

approximated barrier

FIGURE 11.1 A drifted trinomial lattice used to price a barrier option. The barrier level lies along a

horizontal line, which is inaccurately approximated by the zero-boundary nodes.
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that as one makes the time step smaller and smaller, this approximation becomes more and

more accurate. In the limit %t → 0, this approximation becomes exact.

The pricing of down-and-out options is similar, while the pricing of knock-in options

reduces to that of knockouts, thanks to the in-out symmetry relation of equation (10.26). The

reader may note that the spreadsheet can also be readily extended to include the pricing of

American barrier options, if desired.
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C H A P T E R . 12

Project: Static Hedging of Barrier
Options

The objective of this study is to hedge European barrier options by means of a static replication

strategy involving a market-restricted set of available plain-vanilla European call and put

options. The hedge trade occurs at the initial time and is unwound either at maturity or when

the barrier is crossed.

Worksheets: bhedge
Required Libraries: MFioxl, MFBlas, MFFuncs, MFLapack, MFStat, MFCollection

12.1 Analytical Pricing Formulas for Barrier Options

We consider four flavors of single-barrier options: (1) down-and-out, (2) up-and-out, (3) down-

and-in, (4) up-and-in. Each option can be either a call or a put, for a total of eight different

types of contracts.

12.1.1 Exact Formulas for Barrier Calls for the Case H ≤ K

Let us recall from Section 3.3 the pricing formulas for barrier options in the geometric

Brownian motion model. The European down-and-out call option has nonzero value only for

S > H :

CDO�S�K�T − t
= C�S�K�T − t
− �S/H
�1−k
C�H2/S�K�T − t
� (12.1)

with k ≡ r/� 1
2
�2
. This shows that the barrier option value at spot S > H can be expressed

in terms of the plain-vanilla call evaluated at effective spot values of S and H2/S. The
corresponding down-and-in call option value is then

CDI�S�K�T − t
= C�S�K�T − t
−CDO�S�K�T − t
� (12.2)

355



356 CHAPT ER 12 . Project: Static hedging of barrier options

The formula for the value of the call C�S�K�T − t
 is given by the plain Black–Scholes

formula. Using it gives [i.e., equation (3.52)]:

CDO�S�K�  
= SN�d1�S/K

−Ke−r N�d2�S/K



−S�H/S
k+1N�d1�H
2/SK



+Ke−r �H/S
k−1N�d2�H
2/SK

� (12.3)

where d1�x
 and d2�x
 are defined as

d1�x
=
logx+ �r+ 1

2
�2
 

�
√
 

= logx

�
√
 
+ 1

2
�k+1
�

√
 � (12.4)

d2�x
= d1�x
−�
√
 � (12.5)

Note that we have reexpressed the formulas in terms of the time to maturity  ≡ T − t. As
well, for clarity the obvious dependence on k and �

√
 within the functions d1 and d2 is not

written explicitly. Note that the down-and-in call option CDI�S�K�  
 expressed in terms of

cumulative normal distribution functions is just the negative of the sum of the last two terms

in equation (12.3).

In contrast to the down-and-out call, the up-and-out call option is defined to have nonzero

value for values S < H and also has the same pay-off, namely, that of the plain call struck

at K. The European up-and-out call option is zero for all spot values in the case H ≤ K, i.e.,

CUO = 0. This follows since the asset price S must be below the barrier, S < H , for nonzero

values of the option. However, the pay-off is that of a call struck at K, where K ≥H , which

always gives a pay-off of zero, hence CUO = 0. Then from in-out symmetry we immediately

have CUI�S�K�  
= C�S�K� 
.

12.1.2 Exact Formulas for Barrier Calls for the Case H ≥ K

For a European down-and-out call option value we have [i.e., equation (3.51)]:

CDO�S�K�  
= SN�d1�S/H

−Ke−r N�d2�S/H



−S�H/S
k+1N�d1�H/S



+Ke−r �H/S
k−1N�d2�H/S


� (12.6)

and from symmetry the corresponding down-and-in call has value

CDI�S�K�  
= C�S�K� 
−CDO�S�K�  
� (12.7)

The European up-and-in call option now has value [i.e., equation (3.62)]:

CUI�S�K�  
= SN�d1�S/H

−Ke−r N�d2�S/H



−S�H/S
k+1	N�−d1�H
2/SK

−N�−d1�H/S




+Ke−r �H/S
k−1	N�−d2�H
2/SK

−N�−d2�H/S


� (12.8)

and from symmetry the corresponding up-and-out call has value

CUO�S�K�  
= C�S�K� 
−CUI�S�K�  
� (12.9)
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12.1.3 Exact Formulas for Barrier Puts for the Case H ≤ K

All four cases of put barrier options are defined in the same fashion as their corresponding

call barrier options, except the payoff function is that of the plain-vanilla put rather than

the call.

A European up-and-out put option with H ≤ K has price [i.e., equation (3.57)]:

PUO�S�K�  
=−SN�−d1�S/H

+Ke−r N�−d2�S/H



+S�H/S
k+1N�−d1�H/S



−Ke−r �H/S
k−1N�−d2�H/S

� (12.10)

and symmetry gives the up-and-in put in terms of the plain-vanilla put price P�S�K� 
,

PUI�S�K�  
= P�S�K� 
−PUO�S�K�  
� (12.11)

where

P�S�K� 
=−SN�−d1�S/K

+Ke−r N�−d2�S/K

� (12.12)

The down-and-in put price takes the form [i.e., equation (3.56)]:

PDI�S�K�  
=−SN�−d1�S/H

+Ke−r N�−d2�S/H



+S�H/S
k+1	N�d1�H
2/SK

−N�d1�H/S




−Ke−r �H/S
k−1	N�d2�H
2/SK

−N�d2�H/S


� (12.13)

and symmetry gives the down-and-out put,

PDO�S�K�  
= P�S�K� 
−PDI�S�K�  
� (12.14)

12.1.4 Exact Formulas for Barrier Puts for the Case H ≥ K

The European down-and-out put PDO�S�K�  
 = 0. This result is obtained since for any S
value below the barrier H we have PDO = 0. The pay-off is also zero unless S < K, in which

case S < H , giving PDO = 0. Hence PDO = 0 for all spot values in the allowed range S ≥H .

The down-and-in put follows from usual symmetry,

PDI�S�K�  
= P�S�K� 
� (12.15)

The up-and-in put price for H ≥ K is given by [from equation (3.58)]

PUI�S�K�  
=−S�H/S
k+1N�−d1�H
2/SK



+Ke−r �H/S
k−1N�−d2�H
2/SK

� (12.16)

with symmetry giving

PUO�S�K�  
= P�S�K� 
−PUI�S�K�  
� (12.17)
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12.2 Replication of Up-and-Out Barrier Options

Let us consider in detail the problem of replicating a European up-and-out call option CUO

struck at K with barrier H and maturing at time T. The underlying theory of replication tells

us that if two portfolios have equal value along the boundaries in S, t space, then their worth

is also the same at all points that are interior to the boundaries. For the call barrier in question,

the payoff function gives us a choice of boundary, with S = H defining a line of constant S
joining another line at the point �H�T
 given by t = T . The t = T boundary gives

CUO�S�K�  = 0
=max�S−K�0
� S < H� (12.18)

while the S =H boundary gives

CUO�S =H�K� 
= 0� for all  � (12.19)

The other obvious boundary is at S = 0, where all is zero and any portfolio consisting of a

linear combination of vanilla calls will automatically match this value.

We now consider replicating the up-and-out call with a portfolio consisting of a linear

combination of plain calls:

��S� t
= C�S�K�T − t
+
N−1∑
i=0

ai'�Ti− t
C�S�Ki�Ti− t
� (12.20)

Note that we are using a notation that makes explicit the maturities Ti of the various options.

The first term is just a call struck at K with the same maturity T as the barrier option. The

second term involves a linear combination of positions ai in the plain calls struck at Ti, where

t < Ti ≤ T . Note also the use of the Heaviside step function defined by '�x
 = 1 for x ≥ 0

and '�x
= 0 for x < 0. This function is used explicitly to emphasize that any option is set to

zero value for any negative value of time to maturity Ti− t i.e., the particular option becomes

excluded from the hedge portfolio. We also make the choice T0 = T , so one of the calls with

position a0 in the sum also has the same maturity as the barrier option. This call, as well

as all other calls in the sum, is meant to have strike Ki ≈ H . That is, the strikes Ki are not

necessarily set exactly equal to the barrier level H. This is meant to simulate a more realistic

situation in which a trader does not have all strikes with given maturity always available.

This situation arises in the bhedge spreadsheet application and is captured by use of the input

field corresponding to the “precentage away from barrier.” Let us denote this quantity by

pH , where 0%≤ pH ≤ 100%. Then for every ith available maturity date Ti, the hedge should

proceed to include the strike Ki closest to H for which 
Ki−H
/H ≤ pH , if any such strikes

are available. If none are available, then such a term is eliminated from the sum, giving fewer

contract terms available for the replication and, hence, for the hedge.

The problem is then reduced to finding the N constants ai that give us the hedge positions

to be shorted (i.e., the ai are actually the negative positions for the hedge portfolio). For a

replication at today’s time we interpret t as current calendar time and S as the spot, with

��S� t
 in equation (12.20) being the value of our approximate replicating portfolio consisting

of ai positions in each call maturing at Ti. This problem is formulated in a precise manner

as follows. We consider a sequence of M increasing times: t0 < t1 < · · · < tM−1 with t0 ≥ t
and tM−1 < T . For convenience we pick these t� to be equally spaced. Moreover, we have

the extra freedom of generally using more time slices than maturities Ti; i.e., M ≥ N . Note

that the times t� will not necessarily coincide with the maturities Ti. See Figure 12.1 for a

schematic of the replication strategy.
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S = H

S = 0

K

t

t0 t1 tα tM –1

TTN–1TiT1T0

FIGURE 12.1 The replication strategy for an up-and-out European option with upper barrier at stock

level S =H .

We then match ��H� t
 = CUO�H�K�T − t
 = 0 at each t = t� according to equa-

tion (12.19), which upon using equation (12.20) leads to the generally overdetermined linear

system of M equations in the N unknowns ai. In matrix form,

N−1∑
i=0

A�iai = b�� �= 0�1� � � � �M−1� (12.21)

where the M×N matrix with elements A�i is given by

A�i ='�Ti− t�
C�H�Ki�Ti− t�
 (12.22)

and

b� =−C�H�K�T − t�
� (12.23)

This system is solved numerically by finding the minimum-norm solution via a singular value

decomposition approach. The linear algebra library MFLapack is useful for this purpose. The

solution vector is a≡ �a0� a1� � � � � aM−1
. The replicating portfolio has value ���S� t
, where
� denotes the total position (number of purchased contracts) in the barrier option CUO. The

total position that is shorted in each replicating ith call is then �ai. The exact (i.e., target)

portfolio value �CUO is plotted against the result ��, and one observes the mismatch between

the two smooth curves as a function of S at today’s time t. The range of S should be chosen

judiciously within Smin ≤ S ≤ Smax, where Smax = H and Smin is considerably less than K but

greater than zero. Note that for the case H ≥ K one uses equation (12.9) for CUO, and for

H<K one simply has CUO = 0.

Typical results for the bhedge spreadsheet should indicate two smooth curves for

the exact and approximate values of the portfolios as a function of spot S. Agreement

should be overall quite good, within less than 5% for most points, and with maximum

observed deviations of about only 10%. One can also experiment with increasing the num-

ber of equations (i.e., the number M of time slices). As one increases this number past

N, the results should not change in any noticeable way. Hence, the solution is provided

for any M ≥ N choice. Figure 12.2 shows a replication of an up-and-out European call

while allowing the possible strikes Ki to deviate within 10% at most from the barrier;
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FIGURE 12.2 Comparison of an actual replication against the exact value for an up-and-out call option

with upper barrier at H = 780, strike K = 550, interest rate r = 7%, current date t= September 1, 1999,

and maturity date T = April 15, 2000.

i.e., pH = 10%. The number of contracts is �= 100�000. The replicating portfolio consists of

twelve plain-vanilla calls with positions: 100,000; 15,026.21; 11,953; 26,377.41; 42,179.29;

27,038.67; 105,598.27; 160,870.81; 67,371.38; 412,469.94; 1,495,103.62; −2,595,565.28,

strikes: 550; 780; 775; 780; 780; 775; 780; 780; 780; 780; 780; 780, and matu-

rities: 15-Apr-2000; 1-Oct-1999; 15-Oct-1999; 1-Nov-1999; 1-Dec-1999; 15-Dec-1999;

15-Jan-2000; 15-Feb-2000; 1-Mar-2000; 15-Mar-2000; 1-Apr-2000; 15-Apr-2000, respec-

tively. The number of time slices was chosen to be M = 20. In practice, the computed

positions can be rounded to the nearest integer multiple of 100. For example, 15,026.21 may

be rounded to 15,000 (i.e., 150 lots of contract size 100).

This completes the discussion and static hedge implementation for up-and-out barrier

calls. For the case of up-and-out barrier puts, the implementation is very similar, except for

an important difference. The replication is again accomplished via a linear combination in

vanilla calls, except the first term is a position in a put (rather than a call) struck at K. From
put-call parity one also sees that the put can also be replaced by a call plus a position in cash

(or bond) and a stock position. For the up-and-out put option with barrier at H, the analogous
replication formula as in equation (12.20) is now

��S� t
= P�S�K�T − t
+
N−1∑
i=0

ai'�Ti− t
C�S�Ki�Ti− t
� (12.24)

One then solves a matrix equation of the same form as equation (12.21), where the M×N
matrix with elements A�i is again given by equation (12.22), but now

b� =−P�H�K�T − t�
� (12.25)

Note that the boundary condition along the line S = 0, all t ≤ T , is automatically satisfied for

any choice of the ai since the calls all have zero value at S = 0. This gives

��S = 0� t
= P�S = 0�K�T − t
= Ke−r�T−t
� (12.26)

which must be the case for the up-and-out put option value when S = 0.
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12.3 Replication of Down-and-Out Barrier Options

The preceding section treats up-and-out type of knockout options. To replicate down-and-out

options, the treatment is similar, except the expansion term in the ai is now done in puts

rather than calls. This is dictated by the difference in the boundary conditions. That is, the

zero-boundary conditions at S = H and at the t = T lines are the same, but the boundary at

the S = 0 line is now replaced by the boundary condition at S →
. Any linear combination

of puts will give a zero-boundary condition. This latter boundary condition is convenient

when expanding in puts as used here. Figure 12.3 gives a schematic of the barrier replication

for down-and-out European options.

In particular, for a down-and-out call option we can consider replication using

��S� t
= C�S�K�T − t
+
N−1∑
i=0

ai'�Ti− t
P�S�Ki�Ti− t
� (12.27)

One then solves a matrix equation of the same form as equation (12.21), where the M×N
matrix with elements A�i is now given by

A�i ='�Ti− t�
P�H�Ki�Ti− t�
 (12.28)

and

b� =−C�H�K�T − t�
� (12.29)

Note that the boundary condition ��S� t
→ C�S�K�T − t
 as S →
 is then automatically

satisfied, as required.

The case of the down-and-out put option is then handled via the portfolio in puts:

��S� t
= P�S�K�T − t
+
N−1∑
i=0

ai'�Ti− t
P�S�Ki�Ti− t
� (12.30)

One then solves a matrix equation of the same form, where the M×N matrix with elements

A�i is exactly as in equation (12.28), and the coefficients b� are now

b� =−P�H�K�T − t�
� (12.31)

•     •     •

•     •     • •     •     •

•     •     •

S = H

t

t0 t1 tα

T0 T1 Ti TN – 1

tM–1

T

K

FIGURE 12.3 The replication strategy for a down-and-out European option with lower barrier at stock

level S =H .
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FIGURE 12.4 Comparison of an actual replication against the exact value for a down-and-out call

option with upper barrier at H = 450, strike K= 500, interest rate r = 7%, current date t= September 1,

1999, and maturity date T = March 1, 2000.

The correct boundary condition��S� t
→P�S�K�T− t
→ 0, as S→
 is also automatically

satisfied.

Figure 12.4 shows a replication of a down-and-out European call when only allowing

for strikes Ki to match exactly the barrier level; i.e., pH = 0%. The nominal amount of such

barrier contracts is �= 100�000. The replicating portfolio consists of five plain-vanilla puts

with positions: 100,000; −39,151.60; −36,764.17; −2,047.41; −129.29, strikes: 500; 450;

450; 450; 450, and maturities: 1-Mar-2000; 15-Oct-1999; 1-Jan-2000; 1-Feb-2000; 1-Mar-

2000, respectively. The number of time slices was again chosen to be M = 20. Note that the

replication is relatively more accurate for the down-and-out versus the up-and-out call.

The preceding four replication strategies take care of all possible single-barrier European

calls or puts, since the corresponding knock-in option values follow in a trivial manner from

the aforementioned knock-in–knockout symmetry relationship.
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Project: Variance Swaps

Variance swaps are hedged by a combination of a dynamic and a static hedging strategy. The

static part involves a replication of a logarithmic payoff function. The objective of this study

is to construct the logarithmic payoff replication and hence to find hedge ratios for the static

part of the strategy. This can be achieved by combining positions in calls (or puts), stocks,

and bonds.

Worksheets: varswaps
Required Libraries: MFioxl, MFBlas, MFFuncs, MFLapack, MFCollection

13.1 The Logarithmic Pay-Off

A variance swap is a forward contract on an annualized variance or the square of the realized

volatility. The payoff � at final expiry time T is given by

�=� × ��2
R−Kvar
� (13.1)

where Kvar is a fixed swap rate (i.e., the variance swap rate), � is the notional amount of the

swap in dollars per annualized volatility point squared, and �2
R is the realized variance (in

annual terms) of an underlying market observable over the life of the contract. The underlying

can be a stock price, a futures price, an index, etc. In Chapter 1, we discussed such a contract

in detail where the underlying was chosen as a futures price and we showed how to (i) derive

a fair value for the swap rate and (ii) replicate the realized variance in terms of a trading

strategy involving a dynamic and a static component. In this project the goal is only to

replicate the static component of the contract. Moreover, we shall assume that the underlying

asset is a stock with price St at time t. Two definitions of the historically realized variance

are possible, depending on whether we use log-returns, in which case it is defined by

1

n

n∑
i=1

log

(
Si

Si−1

)
� (13.2)
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or arithmetic returns, in which case it is defined by

1

n

n∑
i=1

Si−Si−1

Si−1

� (13.3)

The Si are quoted stock prices at interval times indexed by i. Note that if these are taken as

daily closing prices, then one must convert the variance into a per annum basis (i.e., in terms

of annualized variance). An example of a variance swap contract is a notional amount of

� = $100,000/(one volatility point)2, with delivery swap rate of Kvar = �15%
2 per annum

on the S&P 500 daily closing index and maturity of 1 year.

A simple mathematical model can be constructed on the assumption that the stock price

follows a diffusion process with stochastic time-dependent volatility �t and constant drift

(given by the interest rate r within an assumed risk-neutral measure):

dSt

St

= r dt+�t dWt� (13.4)

The realized variance defining the pay-off is assumed to be given by the stochastic integral

�2
R = 1

T

∫ T

0

�2
t dt� (13.5)

Let Ft = er�T−t
St be the forward-price process. It follows from equation (13.4) that

dFt

Ft

= �t dWt� (13.6)

Ito’s lemma gives

d logFt =
dFt

Ft

− �2
t

2
dt� (13.7)

Hence, integrating gives

�2
R = 2

T

∫ T

0

(
dFt

Ft

−d logFt

)
=− 2

T
log

FT

F0

+ 2

T

∫ T

0

dFt

Ft

� (13.8)

The first term of the realized variance (i.e., the logarithmic function) can be replicated stati-

cally, while the second term can be replicated dynamically by means of a self-financing strat-

egy. In this project we shall only concern ourselves with replication of the static component.

13.2 Static Hedging: Replication of a Logarithmic Pay-Off

Logarithmic contracts are synthetic and, as such, are not traded directly, but they can be

approximately replicated by means of portfolios in standard call or put options. Consider the

following logarithmic payoff function:

f�ST 
=− 2

T
log

(
ST

S0

)
� (13.9)

In practice, only a limited set of strikes is available for trading. In the varswaps worksheet,
all available call options are represented in a table. Each column corresponds to a given

maturity date and contains all the possible strikes assumed available for trading (for that

given maturity date). The problem is to approximately replicate the pay-off in equation (13.9)
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by weighting positions in calls corresponding to only the available strikes as well as allowing

for a variable cash (or bond) and stock position.

Consider the finite expansion

f�ST 
∼ w−1+w0ST +
N∑
i=1

wimax�ST −Ki�0
� (13.10)

The coefficient w−1 gives the (dollar) cash position, while the coefficient w0 gives the stock

position, and the coefficients wi give the positions in the calls struck at values Ki (i.e., the

select set of calls with such strikes that are actually available for trading with given maturity).

The goal is to find the positions wi providing the best fit in the least squares sense for the

log-payoff on the left-hand side. More precisely, we determine the N + 2 weights wi by

matching approximate payoff function (13.10) with the exact logarithmic payoff function at

M number of points in the final stock price ST : S
1
T � S

2
T � � � � � S

M
T , where M ≥N +2. This leads

to the linear system of M equations in the N +2 unknown weights wi:

f�S
j
T 
∼ w−1+w0S

j
T +

N∑
i=1

wimax�S
j
T −Ki�0
� j = 1� � � � �M� (13.11)

In matrix form this system is

N∑
i=−1

Aj�iwi = bj� j = 1� � � � �M� (13.12)

where

Aj�−1 = 1�cash
 or Aj�−1 = erT �bond
� (13.13)

Aj�0 = S
j
T � (13.14)

Aj�i =max�S
j
T −Ki�0
� i ≥ 1� (13.15)

and

bj = f�S
j
T 
=− 2

T
log

(
S
j
T

S0

)
� (13.16)

The points S
j
T are chosen so they are equally spaced (although they can also be unequally

spaced) and the spot S0 lies near the middle of the price range 	S1
T � S

M
T 
. The system of

equations (13.12) is solved numerically by finding the minimum-norm solution via, for

example, a singular value decomposition of the matrix of elements Ai�j . The linear algebra

numerical library MFLapack is useful for this purpose. This gives the required solution vector

of all weights: w = �w−1�w0�w1� � � � �wN 
. Note that when these weights are multiplied by

the nominal position, we refer to them as the hedge ratios. This gives us the approximate

replicating portfolio, with the pay-off approximating the target pay-off in equation (13.9).

One can plot the exact target function f�ST 
 alongside the approximate function given by

equation (13.10) as functions of final stock price ST in an appropriate range 	Smin� Smax
,
with Smin = S1

T and Smax = SM
T . Typically, when using on the order of only five different

strikes, one should observe fairly good agreement across all stock prices (i.e., 1–5% relative

error). Also, the results should display the approximate payoff function as being greater

than or equal to the target payoff function for all points in ST . An example of an actual

calculation is displayed in Figure 13.1. There the comparison is for a logarithmic pay-off with
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FIGURE 13.1 A comparison of an actual logarithmic pay-off with a replicating portfolio achieved

using a cash and stock position as well as positions in only five available calls at strikes K1 = 343�04,
K2 = 505�10, K3 = 783�52, K4 = 1,137.93, K5 = 876�90.
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FIGURE 13.2 Decomposition of the achieved logarithmic payoff function of Figure 13.1 as a sum of

pay-offs corresponding to positions in cash, stock, and one short and four long positions in calls at

strikes K1 = 343�04, K2 = 505�10, K3 = 783�52, K4 = 1,137.93, K5 = 876�90.
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spot S0 = 758, where the set of five strikes used are the ones corresponding to the available

call contracts with time to maturity of T = 21 days. The pay-off has been rescaled by a

notional amount of $1 million per volatility point squared. Rapid convergence is observed

with the use of only M = 7 stock price slices, although the plot shown is with M = 50.

Figure 13.2 shows the decomposition of the replicating portfolio for the achieved payoff

curve of Figure 13.1. The positions are: w−1 = 699�84, w0 = 78,673.12, w1 = −161,399.18

(short position), w2 = 28,390.46, w3 = 15,552.98, w4 = 9,429.72, w5 = 3,717.31. Examples

of other detailed replications are found on the varswaps spreadsheet.
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Project: Monte Carlo Value-at-Risk
for Delta-Gamma Portfolios

The objective of this project is to develop multivariate Monte Carlo simulation procedures

for computing the probability density function for the delta-gamma change in portfolio as

well as to estimate portfolio value-at-risk (VaR) for a given confidence level. Two different

probability distributions for the risk-factor returns are considered: multivariate normal and

multivariate Student t-distributions. This project allows the reader to explore some of the

differences between the use of a normal distribution and a heavy-tailed distribution model

when computing VaR. This project also constitutes a template for future analysis of delta-

gamma portfolio VaR under more general heavy-tailed distributions via the implementation

of t-Copula methods. Such methods allow one to compute VaR for distributions where the

returns can possess different degrees of freedom for different risk factors.

Worksheet: var
Required Libraries: MFioxl, MFBlas, MFLapack, MFRangen, MFStat, MFSort

14.1 Multivariate Normal Distribution

Let ��V 
 be the cumulative distribution function for the P&L of a portfolio. Let P�V 
 =
the probability that the change in portfolio value, denoted by %V , is less than or equal to

a value V. Postulating a multivariate distribution p�r
 for the returns, we have [see equa-

tion (4.72) of Chapter 4]:

��V 
= P�%V ≤ V 
=
∫
�n

p�r
'�V −%V�r

dr� (14.1)

Here r denotes the vector of returns rT = �r1� � � � � rn
 and the integration is over the complete

n-dimensional space of all risk-factor returns. [Note: Here we use superscript T for the

transpose of a matrix (or vector); e.g., r is n× 1 and rT is 1× n.] The function '�x
 is

369
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the Heaviside step function. Let us consider the case of a multivariate (Gaussian) normal

probability distribution function in the space of the risk-factor returns

pG�r
= 1√
�2�
n
C
 exp

(− 1

2
rTC−1r

)
� (14.2)

where C is the n×n covariance matrix and 
C
 is its determinant. The covariance matrix is

assumed already given in this project (i.e., generated at random), although it can be readily

computed from the returns corresponding to a risk-factor time series.

The value of the portfolio is assumed to be a function of n risk factors denoted by

x1� � � � � xn. We shall denote a change in risk factors by the vector dx, hence giving the return

for the ith factor as ri = dxi/xi. Given a change in risk factors, the change in value of the

portfolio within the delta-gamma approximation [neglecting the ' term in equation (4.27)

which is trivial to include] is assumed to be given by the second-order Taylor expansion:

%V�r
= rT
+ 1

2
rT�r� (14.3)

The n-dimensional delta vector 
 has components

%i = xi

�V

�xi

� (14.4)

and the n×n gamma matrix has elements

&ij = xixj

�2V

�xi�xj

� (14.5)

The first step is to generate a random delta vector, gamma matrix, and covariance matrix.

This is the functionality of the randomize button on the var spreadsheet. In essence, one is

fabricating sensitivities for a fictitious portfolio.1 The gamma matrix must have the property

that it is symmetric, &T = & . The covariance matrix must be symmetric positive-definite.

Based on these greeks and the covariance matrix, one then computes VaR and P&L using a

plain Monte Carlo technique as follows.

To implement a plain Monte Carlo algorithm without invoking any additional variance

reduction approaches, one begins by performing a Cholesky factorization of the covariance

matrix

C= UTU� (14.6)

This factorization is done only once, at the beginning of a simulation. The numerical library

class MFLapack is useful for this purpose. Scenarios can then be generated in a two-step

procedure. First, one samples vectors of independent standard normals y�i
, with components

drawn independently from the standard normal distribution, y
�i

k ∼ N�0�1
� k= 1� � � � � n. The

vectors y�i
, i = 1� � � � �Ns, represent intermediate ith scenarios. The random-number library

class MFRangen is useful for this purpose. In the second step, the vectors y�i
 are transformed

into actual scenario vectors for the correlated returns using

r�i
 = UTy�i
� (14.7)

1However, the user can also run a VaR simulation by inputting the values %i and &ij precomputed for an actual

portfolio with position (�1� � � � � �N ) in N assets or subportfolios (see Sections 4.2.1 and 4.2.2).
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These two steps are repeated Ns times, where Ns is the total number of scenarios in the simu-

lation. The scenarios are then distributed according to r�i
 ∼N�0�C
. For each scenario vector

r�i
 we evaluate the portfolio variation, %V�i
 = %V�r = r�i

, as given by equation (14.3).

Once the portfolio variations under all scenarios are obtained, the outcomes are sorted in

increasing order, where %V�i+1
 ≥ %V�i
. The MFSort library is useful for this purpose.

Given the sorted portfolio variations %V�i
 that were generated from the scenarios, the

value-at-risk (VaR), defined by the probability

P
(
%V ≤−VaR

)= p� (14.8)

where p= 1−� and � is the confidence level (typically �= 95% to 99%), is then estimated

as VaR =−%V�		pNs


. Here 		x

 denotes the integer part of a number x.

14.2 Multivariate Student t-Distributions

A popular model that introduces fat tails in the returns is the multivariate Student t-distribution

with pdf,

p$�r�C
= &��$+n
/2


&�$/2
�$�
n/2
C
1/2
(
1+ rTC−1r

$

)− $+n
2

� (14.9)

where &�·
 is the gamma function. In Chapter 4, this distribution was discussed for the

univariate case n= 1. In contrast to the multivariate normal density given by equation (14.2),

this density allows for an additional parameter $, i.e., the degrees of freedom parameter. Small

values of $∼ 3 are not uncommon in historical time series and lead to fat-tailed distributions.

The value of $ is an input to the calculations of VaR and P&L. It is interesting to point

out a few special properties of the multivariate t-distribution. For values $ > 2, t-distributed

random variables with density [with density given by equation (14.9)] can be shown to have

covariance matrix � $
$−2


C. In the special case that C has all unit diagonals, it follows that C
corresponds to the correlation matrix of the distribution, with each marginal being a univariate

t with common degrees of freedom $ > 2. More generally each variable has the distribution

of a scaled t random variable with $ degrees of freedom. Another important property that can

be numerically investigated in this project is that the multivariate t-density converges to the

multivariate normal density, i.e., equation (14.9) becomes equation (14.2) in the limit $→
.

A useful relationship between random variables of a multivariate t-distribution and

those drawn from a multivariate normal is as follows. Assume the random vector RT ≡
�R1� � � � �Rn
∼ t$�0�C
; i.e., this is shorthand notation for a random vector whose components

are jointly distributed according to the multivariate t-density in equation (14.9). Then R has

the same distribution as the vector given by X/
√
Y/$, where XT = �X1� � � � �Xn
∼ N�0�C


and Y ∼ *2
$ (is a chi-squared random variable with $ degrees of freedom) independent of

�X1� � � � �Xn
. A chi-squared random number with assumed integer $ is generated simply

by summing up $ independent and identically distributed standard normals zj ∼ N�0�1
:
Y =∑$

j=1 z
2
j . From this property we conclude that a multivariate t random vector R is gener-

ated by a multivariate normal vector with an independent randomly scaled covariance matrix,

i.e., using

R = X√
Y/$

= UTZ√
Y/$

= UT R̂� (14.10)

This result obtains from equation (14.6) with R̂ being a t random vector of uncorrelated (yet

not independent, since they share a common Y random variable) components: R̂ ∼ t$�0� I
, I
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is the n×n identity matrix. The random vector Z∼ N�0� I
 is an n×1 vector of independent

standard normal components.

Hence, given an integer degree of freedom $ > 2, the simulation procedure for generating

multivariate t random vectors is similar to the procedure for generating multivariate normals,

with only slight modifications. In fact, relation (14.10) points to the specific recipe. The

covariance matrix is Cholesky factorized only once at the beginning of the simulation.

Then for each return scenario r�i
, a vector z�i
 ∼ N�0� I
 is generated and independently a

random chi-squared yi value is generated. Then using equation (14.10): r�i
 = UTz�i
/
√
yi/$,

i = 1� � � � �Ns. Each ith scenario can therefore be obtained by generating n+$ independent

standard normal random numbers. The random-number library routine gennor within the

MFRangen class is useful for this purpose.
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FIGURE 14.1 Histograms of the P&L, within the delta-gamma approximation, for a generic portfolio

of 10 risk factors using the multivariate (a) normal versus (b) Student t-($ = 3 degrees of freedom)

distributions, respectively. The number of scenarios is Ns = 2000. Random gamma and delta sensitivites

were chosen identically for both distributions, while, for precentile p = 1%, the computed values for

VaR were 17.53 versus 28.03 for distributions (a) and (b), respectively.
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For both multivariate normal and Student t-distributions, one should observe 1–5%

statistical error when using a number of scenarios on the order of Ns ∼ 10,000. Moreover,

the results of the simulations should demonstrate fatter tails for the P&L corresponding to

the Student t-distribution as well as a respectively larger value for VaR at a given percentile.

As well, one should observe a much more pronounced effect as the degrees of freedom $ is

decreased. Figure 14.1 gives a comparison of the P&L and VaR for an actual Monte Carlo

simulation on a portfolio of 10 risk factors.
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Project: Covariance Estimation and
Scenario Generation in Value-at-Risk

This project investigates the covariance properties of return time series generated by a

multivariate Monte Carlo simulation.

In particular, one generates a random, symmetric positive-definite matrix with a specific set

of eigenvalues. The matrix is then interpreted as the covariance matrix of a multivariate normal

distribution, and multivariate normal scenarios are subsequently generated. The covariance

matrix is finally reestimated with one of the methods typically used in VaR implementations.

The reestimated covariance is then analyzed in terms of eigenvalue spectral concentration as

compared with the original covariance matrix.

Worksheet: recov
Required Libraries: MFioxl, MFBlas, MFLapack, MFFuncs, MFRangen, MFSort

15.1 Generating Covariance Matrices of a Given Spectrum

In this section we discribe a technique for generating a random positive-definite symmetric

N -dimensional matrix with a specific preassigned set of eigenvalues. The first step is to

generate a symmetric positive-definite (SPD) matrix. Two alternatives are possible. The

first is to simply use the MATP routine in the random-number (and random-matrix) library

MFRangen. This will generate an SPD type of matrix of a given dimension N as specified

by the user. The other alternative is to generate an upper triangular random matrix (using the

normal random-number generator of MFRangen). This preliminary matrix, A, can then be

used to form the matrix B=ATA (superscript T stands for matrix transpose). Now, B is of type

SPD as long as one makes sure that all of the generated diagonal elements of A are nonzero.

Note that the matrix B can, in principle, represent a covariance matrix. Most probably,

however, this matrix will largely be dominated by only one or a very small number of

principal components. It is of interest in the present study to consider covariance matrices

whose eigenvalues are more equally spaced. In particular, one can enforce a set of preassigned

eigenvalues. This leads to the next step, namely, creating a covariance matrix of given

375
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eigenvalues. To accomplish this, one makes use of the MFLapack library and performs a

singular value decomposition (SVD) on the matrix B,

B=O
OT � (15.1)

The matrix O is now an orthonormal matrix whose columns Oi are normalized eigenvec-

tors of B. 
 is the diagonal matrix of eigenvalues �i of B. That is, BOi = �iOi, with Oi·
Oj = �ij , i� j = 1� � � � �N . The Oi are essentially the randomly generated principal compo-

nents of the covariance matrix. After having performed this SVD, the eigenvalues �i are

readjusted (i.e., specifically reassigned) by making the change �i → �i for a chosen set of �i,

i= 1� � � � �N . The new diagonal matrix � of eigenvalues �i is then used to give the desired

covariance matrix:

C=O�OT � (15.2)

One is now at liberty to choose an eigenvalue set. For example, by setting �i =
)�
√
N +1−√

i
 for some positive constant ), one has a slowly decaying spectral density

(i.e., eigenvalue density) as one moves away from the origin of zero eigenvalue.

15.2 Reestimating the Covariance Matrix and the Spectral Shift

As in the previous VaR project, we assume a multivariate normal distribution given by

equation (14.2) for the returns. Scenarios are then generated for returns r using the same

procedure described in detail in the plain Monte Carlo approach of the VaR project. Namely,

one generates a vector y�k
 of independent standard normals and multiplies this vector by

the Cholesky factored form of the foregoing covariance matrix C of equation (15.2). This

gives a scenario r�k
. Each r�k
 is then used to form the exponentially weighted sum over Ns

scenarios:

Ĉ�
ij ≈ �1−�


Ns∑
k=1

�k−1r
�k

i r

�k

j (15.3)

for all i� j = 1� � � � �N and where � is a damping parameter or decay factor strictly less than

unity, 0 < � < 1. In particular, the value for � is typically chosen between 0�94 to 0�97.
The choice of � = 0�97 roughly corresponds to assuming a 1-year time window of trading

days. This parameter, therefore, determines the relative weights given to past observations

(i.e., the return scenarios) and hence the amount of data that is actually used to estimate

the variance-covariance of the return time series. The factor �1−�
 is a normalization since∑n
k=0 �

k ≈ �1−�
−1 for large n. Note that equation (15.3) is not applicable for the special

case �= 1. Hence, for zero damping (�= 1) one must replace equation (15.3) by

Ĉij ≈
1

Ns

Ns∑
k=1

r
�k

i r

�k

j � (15.4)

Note that the time series considered here are scenario sets, which are quite lengthy,

typically of order 10,000.

Having estimated the covariance matrix using equation (15.3) or (15.4), one can then

compare the Ĉ�
ij elements with the original matrix elements Cij . A more interesting compari-

son, however, is obtained by computing the eigenvalues for both C and Ĉ� matrices. Earlier
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FIGURE 15.1 Eigenvalue distributions for a 100-dimensional covariance matrix using 10,000 scenar-

ios. The recovered distribution is computed with damping factor �= 0�97.

we denoted the eigenvalues of C by �1��2� � � � ��N . Correspondingly, we will denote the

eigenvalues of Ĉ� by ��
1 ��

�
2 � � � � ��

�
N . Note that these eigenvalues can be obtained in a variety

of ways, one of which is the singular value decomposition, as given earlier, of the respective

covariance matrices. The so-called vectors of singular values give the sets of eigenvalues.

The objective is to compare eigenvalues in terms of the density (or distribution) for the �i

versus the distribution in the ��
i . The eigenvalue density f��
 at the point � is defined as

the number of eigenvalues lying between � and �+d� for infinitesimal d�. The densities

are actually estimated by considering histogram plots of the respective eigenvalue sets. The

density plots should demonstrate a probability increase or shift of distribution toward the

origin in the spectrum of eigenvalues as the decay factor � is decreased from 1�0 to 0�94, the
latter case corresponding to more damping of past observations. Figure 15.1 gives a histogram

comparison of actual versus recovered eigenvalue distributions for a covariance matrix with

100 risk factors, as generated in the recov spreadsheet. A simple extension to this project is

to include an analysis of the differences in the principal components of C and Ĉ�.
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C H A P T E R . 16

Project: Interest Rate Trees:
Calibration and Pricing

The purpose of this project is essentially twofold: to calibrate interest rate trees against

market discount (zero-coupon) curves and to subsequently use the calibrated lattices to

price interest rate products, such as bonds, bond options, caplets, floorlets, and swaptions.

The theory and implementation allow for four different stochastic interest rate models:

Black–Derman–Toy and Ho–Lee (within a binomial lattice approach) and the Hull–White

model and Black–Karasinski (within a trinomial lattice approach).

Worksheets: ir and ycc
Required Libraries: MFioxl, MFFuncs, MFBlas, MFLapack, MFFit

16.1 Background Theory

In developing interest rate trees we consider a subdivision of calendar time t ∈ 	0� T
 into
M subintervals 	T0 = 0� T1� T2� � � � � TM
 with time spacing %t = Ti −Ti−1. Throughout we

shall assume equal time steps, although the lattice methods we present can be extended to

the more general case of unequal time steps. Discount bond prices at current calendar time

t maturing at calendar time T are denoted by Zt�T
 (≡ Zt�rt� T
) (see Chapter 2). Consider,

then, a generic (European-style) security with payoff function #�rT �T
 depending only on the

value attained at maturity time T for the short rate rT . If one assumes market completeness,

the arbitrage-free price of such a security, at current time t = 0, is given by the expectation

P0�r0� T 
= P0�T 
= E0

[
exp

(
−
∫ T

0

rsds

)
#�rT �T 


]
� (16.1)

Here, the numeraire is chosen as the rolled-over money market account Bt ≡ e
∫ t
0 rsds, as

discussed in Chapter 2. In more explicit terms, this expectation (which is conditional on the

short rate’s having value r0 at time t = 0) has the form of an infinite product of conditional

integrations for every incremental time %t → 0. In particular, if we denote the risk-neutral

379
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conditional probability density that the short rate will attain a value ri at time Ti, given ri−1

at time Ti−1, by p�ri� ri−1�%t
, then (for a generally stochastic rt diffusion process) the price

can be accurately approximated by an M-dimensional integral,

P0�r0� T
=
∫ 


0

· · ·
∫ 


0

M∏
i=1

p�ri� ri−1�%t
e−ri−1%t#�rM�T
drM � � � dr1� (16.2)

where TM = T is the terminal time. In the limit %t → 0 (or M →
 since T =M %t) this
gives an exact path integral representation of the price. Lattice methods arise by choosing a

finite numberM of time slices and evaluating equation (16.2) by using efficiently recombining

lattice point integral approximations. For zero-coupon bonds we have a pay-off of one dollar

with certainty (#�rT �T 
= 1); hence

Z0�T 
= Z0�r0� T 
= E0

[
exp

(
−
∫ T

0

rsds

)]
� (16.3)

Of interest are the Arrow–Debreu prices, denoted by G�r0�0� r�T 
 and given by

G�r0�0� r�T 
= E0

[
exp

(
−
∫ T

0

rsds

)
��rT − r


∣∣∣∣rt=0 = r0

]
� (16.4)

which is the expectation of an infinitely narrow butterfly spread pay-off (i.e., the Dirac delta

function) conditional on the short rate’s starting at r0 at time t = 0. These correspond to the

worth at time t = 0, given (i.e., conditional on) current state r0, of a riskless security that

pays one dollar if state rT = r is attained at any later time T > 0. The zero-coupon bonds are

expressed in terms of the Arrow–Debreu values as follows:

Z0�T 
=
∫ 


0

G�r0�0� r�T 
dr� (16.5)

An important consistency requirement is the continuity relation

G�r0�0� ri� Ti
=
∫ 


0

G�r0�0� ri−1� Ti−1
G�ri−1� Ti−1� ri� Ti
dri−1� (16.6)

This formula is the basis for a discrete version that is used in the sections that follow

to generate a forward induction procedure for propagating the Arrow–Debreu prices. The

function G�ri−1� Ti−1� ri� Ti
 is the Arrow–Debreu value conditional on the short rate’s having

value ri−1 at time Ti−1 and attaining a value of ri at a later time Ti > Ti−1. We conclude this

section by noting that the quantity Z�r� t� t+%t
 = Zt�r� t+%t
 defined by the conditional

expectation

Z�r� t� t+%t
= Et

[
exp

(
−
∫ t+%t

t
rs ds

)∣∣∣∣rt = r

]
=
∫ 


0

drT G�r� t� rT �T = t+%t
 (16.7)

gives the price of a discount bond at time t ≥ 0 (any time later than current time), with

time to maturity of %t, conditional on the short rate’s having value r at time t. Note that

here we have explicitly denoted the conditional nature of the expectation. This formula, in

conjunction with concatenating equation (16.6) for every time step Ti−Ti−1, forms the basis

for producing lattice pricing formulas of derivatives, such as caplets, floorlets, and swaptions

dealt with later.
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16.2 Binomial Lattice Calibration for Discount Bonds

In developing binomial interest rate trees we subdivide calendar time t ∈ 	0� T
 into M subin-

tervals 	T0 = 0� T1� T2� � � � � TM
 with time spacing %t = Ti−Ti−1. At each time t = Ti there

are i+ 1 nodes corresponding to the attainable values of the short rate r �j� i
 ≡ r �j�Ti
,
j = 0�1� � � � � i. Note that throughout we use a notation for the short rate whereby rt denotes
the continuous short rate variable at calendar time t, whereas r �j� i
 ≡ r �j�Ti
 corresponds

to the discretized short rate value at the node with state j and time Ti. Also, note that the

indexing of the nodes in binomial models is such that the index has nonnegative value: j ≥ 0.

Figure 16.1 gives a schematic of the binomial interest rate tree. The two binomial models

considered in this project are the Ho–Lee (HL) and Black–Derman–Toy (BDT) models. The

HL model is the simplest, with no mean reversion. The HL model follows a normal stochastic

process

drt = ��t
dt+��t
dWt� (16.8)

where ��t
 and ��t
 are deterministic drift and volatility functions, respectively. One obvious

shortcoming of this model is the admittance of negative interest rates. The BDT model

removes these deficiencies by considering the logarithm of the short rate, which is assumed

to follow a stochastic process of the form

d log rt =
[
��t
+ d

dt
�log��t

 log rt

]
dt+��t
dWt� (16.9)

where ��t
 is the lognormal volatility and the drift function allows for a drift component

as well as a mean-reversion component for the variable log rt. Note that the speed of the

mean reversion is zero for the case of constant volatility. Note that throughout this study we

shall assume a constant volatility. Hence, mean reversion shall remain zero in the current

implementation of the BDT model. In contrast, mean reversion is introduced in later sections

where we implement the Hull–White and Black–Karasinski models using trinomial lattices.

The HL lattice model can be defined by a set of nodes placed according to

r �j� i
= r �j−1� i
+2�
√
%t� (16.10)

r (0, 0)

r (1, 1)

r (0, 1)

r (2, 2) r ( j, i – 1)
r ( j, i )

r (M, M)

r ( j, M)

r (0, M)

r ( j – 1, i – 1)

r (1, 2)

r (0, 2)

T0 T1 T2 Ti–1 Ti TM

FIGURE 16.1 A binomial lattice originating at the current short-rate node r �0�0
.
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whereas the BDT lattice can be taken as

r �j� i
= r �j−1� i
 exp�2�
√
%t
� (16.11)

for given time slice Ti = i %t, i = 0�1� � � � �M . Here � is a (lattice) volatility parameter

for the short rate. Throughout the calibration to market zero-coupon bonds, as discussed in

this section, the volatility shall be preset to a fixed value, independent of time. It should be

noted that there exist a whole range of fixed � values that can produce identical matches

to the same set of market zero-coupon bond prices. Different values for this parameter have

the effect of shifting the overall drift of the tree so as to still keep it risk neutral. Note that

the assumption of a fixed volatility eliminates the reversion component in the BDT model.

By allowing the volatility � to be time dependent, one can further calibrate to a larger set of

market instruments besides zero-coupon bonds. The first step to consider in the calibration of

discount bond prices is the interpolation of yields from given treasury yield data. Consider the

set of maturities T = Ti, i = 1�2� � � � �M , and set the current time t = T0 = 0. The discount

curve for the calibration consists of the set of prices �Z0�T1
�Z0�T2
� � � � �Z0�TM
� derived

from the set of corresponding yields yt�Ti
= �y0�T1
� y0�T2
� � � � � y0�TM
�. This set of yields
does not, in practice, match the actual input market set of N maturity yields given at a fixed

set of times denoted by the set �y0�T̄1
� y0�T̄2
� � � � � y0�T̄N 
�. The latter are the actual treasury
yields at times T̄1 = 3 months, T̄2 = 6 months, etc. The foregoing discount prices are therefore

obtained after having interpolated for the yields yt�Ti
 at each ith time step. This must be

done either by employing a simple linear interpolation or by using a spline-fitting algorithm

of higher order, such as a cubic spline. The MFFit numerical library class is useful for this

purpose.

Lattice methods correspond to fixing the number of integrations in all the equations of

the previous section into some fixed integer, such as the number of time steps in the case of

pricing, and, in turn, evaluating each integral using only two (for the case of a binomial lattice)

or three (for trinomial lattices) points of integration. An important approximation underlying

the binomial lattice methodology is to set the conditional transition density for every time

step %t simply as a constant, p�ri� ri−1�%t
= 1

2
. Moreover, the short rate is taken as locally

constant ri−1 within time intervals 	Ti−1� Ti
, hence giving the conditional Arrow–Debreu
values for %t maturity as the simple form G�rk�Ti−1� rj� Ti
 ≡ G�k�Ti−1� j�Ti
 = 1

2
e−ri−1%t.

By adopting the binomial short-rate lattices defined by equation (16.10) (for the HL model)

or (16.11) (for the BDT model), we now are in a position to obtain the discrete-time versions

of the equations in the previous section.

To begin with, equation (16.6) takes the discrete form

G�0�0� j�Ti
=
∑

k=j−1�j�0≤k≤ i−1

G�0�0� k�Ti−1
G�k�Ti−1� j�Ti
� (16.12)

where

G�k�Ti−1� j�Ti
=
1

2
exp	−r�k� i−1
%t
� (16.13)

Note that equation (16.12) describes a procedure that takes into account the Arrow–Debreu

prices at intermediate nodes r �k� i− 1
 for the previous time Ti−1, which are subsequently

used for time stepping by an amount %t until a terminal node r �j� i
 is reached at the time

slice Ti = Ti−1+%t. The sum involves only two possible values for k: k = j−1 and k = j,
with the restriction that 0 ≤ k ≤ i− 1. For the extreme (highest or lowest) node there is

only one term in the sum. This is the forward induction equation that is used in practice to

generate all Arrow–Debreu prices G�0�0� j�Ti
 for each jth node at terminal time Ti. It is
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G(0, 0; k = j, Ti–1)

G (0, 0; j, Ti)

G (0, 0; k = j – 1, Ti–1)r(0, 0)

r( j, i – 1)

r r( j, i )

r( j – 1, i – 1)

TiT0 Ti – 1

G(k = j, T
i–1 ; j, T

i )

G(k = j – 1, Ti–1; j, Ti)

FIGURE 16.2 A pictorial representation of the forward propagation of Arrow–Debreu prices on a

binomial lattice originating at the current short-rate node r �0�0
. Their values, i.e., G�0�0� j�Ti
, at
nodes corresponding to a later time step ti are obtained as a sum of contributions from (at most) two

intermediate time Ti−1 two-legged paths.

important to note that this forward induction equation can generally be used for any type of

short-rate model (see Figure 16.2). The discrete-time version of the security price given by

equation (16.2) takes the form

P0�r0� Ti
=
i∑

j=0

G�0�0� j�Ti
#�r �j�Ti
� Ti
� (16.14)

where G�0�0� j�Ti
 are computed using the forward induction relation in equation (16.12).

Specializing this formula to the case of zero-coupon bonds, which have a riskless pay-off of

one dollar, we have the discrete-time lattice version of equation (16.5):

Z0�Ti
=
i∑

j=0

G�0�0� j�Ti
� (16.15)

Hence, the Arrow–Debreu prices at all the nodes of a given maturity T are sufficient for

determining the price of a discount bond of that maturity (see Figure 16.3). In the calibration

procedure the market zero-coupon prices at times T = Ti are used as input to the left-hand

side of equation (16.15). By solving for the nodes at the �i−1
th time step, for every time

slice Ti, we imply the whole lattice and hence obtain the market prices of all discount

bonds correctly. In practice, the right-hand side, for each T = Ti, is computed by using the

vector of Arrow–Debreu values G�0�0� k�Ti−1
, k = 0�1� � � � � i− 1, which are assumed to

be known from the previous time step, as well as a trial vector of nodes r�k� i−1
. These are
plugged into forward induction equation (16.12) while using equation (16.13) and summing

up all node contributions via equation (16.15). At the same time, one also makes use of the

constraint among the r �k� i−1
, namely, equation (16.10) or (16.11), depending on whether

one is calibrating the Ho–Lee or BDT model, respectively. Hence, this reduces the discount

bond calibration problem to a succession of M root-finding problems that make the left-

and right-hand sides of equation (16.15) equal for each Ti. Note also the single-variable

nature of the problem, since the expressions are reduced to finding just one node, i.e., the

lowest one r �0� i−1
, and the rest follow for time slice Ti−1. Observe that at each maturity

the nodes being computed are lagged by one time step. One can use the MFZero library

class for the purpose of finding roots. To start the procedure off, one uses G�0�0�0�0
= 1
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G(0, 0;  j = i, Ti)
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r (0, 0)
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r ( j, i )

r ( i, i )

r ( j + 1, i )

FIGURE 16.3 Lattice calibration of zero-coupon bonds of maturity Ti uses a sum of Arrow–Debreu

prices beginning from the current time T0 and node r �0�0
 up to all nodes r �j� i
, j = 0� � � � � i, at time

Ti. Note, however, that calibration up to maturity time Ti determines the short-rate lattice points up to

the previous time step with time Ti−1.

and solves for r �0�0
. Note that since there are only two branches in this case, giving

G�0�0� k= 0�1�%t
= 1

2
exp	−r �0�0
%t
, one has

r �0�0
=− logZ0�T1 = %t


%t
� (16.16)

where the first node, r �0�0
, is given by the smallest-maturity zero-coupon bond price (i.e., the

initial term structure). If one assumes continuous compounding, then one can also avoid the

numerical root-finding procedure in the case of the Ho–Lee model, which admits a simple

analytical solution for the node positions r �j� i−1
 in terms of Z0�Ti
 and the Arrow–Debreu

prices for terminal time Ti−1.

16.3 Binomial Pricing of Forward Rate Agreements, Swaps,
Caplets, Floorlets, Swaptions, and Other Derivatives

Recall from Chapter 2 the price of a plain-vanilla FRA of a given tenor  = Ti+1 − Ti.

Assuming continuous compounding, equation (2.8) can be used to give the net present value

of an FRA (to the party receiving an initial nominal amount) with one dollar nominal:

PV�FRA
0 =−Z0�T1
+ e f0�T1�T2
Z0�T2
� (16.17)

where the forward is given by

f0�T1� T2
=
1

 
log

(
Z0�T1


Z0�T2


)
� (16.18)

Since all expressions are completely determined by the prices of the zero-coupon bonds, it

necessarily follows that all FRAs are also exactly priced by the binomial lattices obtained

from the calibration procedure in the previous section. Moreover, as recalled from Chapter 2,

a swap is just a collection of FRAs. Plain-vanilla swaps are, therefore, also priced exactly

within the foregoing calibration framework.
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The pricing of options such as caps (or caplets) is not as straightforward as that for

FRAs. In particular, recall from Chapter 2, the pay-off of a caplet struck at fixed interest rate

RK , maturing at time T, on a floating reference rate R �T
 of tenor  applied to the period

	T�T +  
 in the future. The floating rate is typically the three- or six-month LIBOR. The

pay-off of this caplet option is given by

Cpl�R� 
�T 
�T 
= �R� 
�T 
−RK
+ ZT �rT �T +  
� (16.19)

where ZT�rT �T +  
 is the discount function over that period, since the cash flow occurs at

time T + . Here we define �x
+ ≡max�x�0
 as usual. In order to obtain the price at current

time t = 0 of this caplet one must take an expectation, or integral, of the pay-off with a

risk-neutral distribution in the reference rate R
� 

t , where t = T , i.e., the expiry or maturity

time of the option on the (call-type) pay-off. The latter is, however, expressed in terms of a

rate applied to the period of the tenor (i.e., the reference forward rate) and not the short rate

used in the rate lattice calibration of the previous section. In particular, the short rate lattice

gives the conditional distribution of the short rate.

To price the caplet, one must relate the short rate to this reference forward rate. In

particular, the values of the short rate at the nodes �j� i
, r�j� i
 must be related to the values of

the reference forward rates, denoted by R� 
�j� i
, at these nodes. This is achieved by using the
continuous-time relation for the forward rate, and this is where the conditional zero-coupon

prices Z�r� t�T
 are useful. In particular, for continuous compounding,

R� 
�t
= 1

 
log

(
Z�r� t� t


Z�r� t� t+  


)
� (16.20)

and since Z�r� t� t
= 1,

R� 
�t
= 1

 
log

(
1

Z�r� t� t+  


)
� (16.21)

Choosing t = Ti and T = Ti+n %t, where it is assumed that the tenor is exactly n periods of

the lattice time step, for some integer n,  = n %t, we arrive at the discrete time value at the

jth node:

R� 
�j� i
= 1

 
log

(
1

Z�j�Ti� Ti+n %t


)
� (16.22)

Here Z�j�Ti� Ti +n %t
 ≡ Z�j�Ti� Ti+n
 is the zero-coupon value maturing at time Ti+n (n
time steps in the future), conditional on the short rate’s having value r �j� i
 at time Ti. Based

on equations (16.19) and (16.22), we can write all components of the payoff vector of the

caplet at each node �j� i
, denoted by C� 
�j� i
, as

C� 
�j� i
= �R� 
�j� i
−RK
+ Z�j�Ti� Ti+n
� (16.23)

where equation (16.22) is plugged in for R� 
�j� i
. Note that the preceding equations assume

continuous compounding, while a similar set of equations obtain for the case of discrete

compounding, where the log�x
 function is simply replaced by x. The foregoing payoff vector
introduces an extra procedural step, requiring one to compute the quantities Z�j�Ti� Ti+n
,
which involve a separate forward induction starting from the nodes r �j� i
. In practice, these

are computed using the discrete-time version of equation (16.7):

Z�j�Ti� Ti+n
=
j+n∑
k=j

G�j�Ti� k�Ti+n
� (16.24)
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where the �n+ 1
 Arrow–Debreu values (conditional on beginning at a jth node at time Ti

and ending at node k= j� j+1� � � � � j+n at time Ti+n) on the right-hand side of this equation

are computed by forward recursion using an adaptation of equation (16.12), rewritten here in

a slightly different form:

G�j�Ti� k�Ti+m
=
∑

s=k�k−1�j≤s≤j+m−1

1

2
e−r �s�i+m−1
%tG�j�Ti� s�Ti+m−1
� (16.25)

Here m= 1�2� � � � � n and the iteration is readily carried out from time T = Ti to final time

Ti+n, where one initially has G�j�Ti� j�Ti
 = 1 for any j value. It is instructive to write out

the Arrow–Debreu values explicitly for the first two time steps. For a single step (for m= 1)

the terminal time is Ti+1, and we simply have

G�j�Ti� k�Ti+1
=
1

2
e−r�j�i
%t� (16.26)

where k = j� j+ 1 are the only two possible values for k. Not surprisingly, this is con-

sistent with the relation in equation (16.13). Propagating out to the second step (m = 2),

equation (16.25) gives

G�j�Ti� k�Ti+2
=
∑

s=k�k−1�j≤s≤j+1

1

2
e−r �j�i
%t 1

2
e−r�s�i+1
%t� (16.27)

where possible values for k are j� j+1� j+2. Summing up the terms explicitly, these three

Arrow–Debreu prices are

G�j�Ti� j�Ti+2
=
1

4
e−r �j�i
%te−r �j�i+1
%t�

G�j�Ti� j+1� Ti+2
=
1

4
e−r �j�i
%t

[
e−r �j�i+1
%t + e−r �j+1�i+1
%t

]
�

G�j�Ti� j+2� Ti+2
=
1

4
e−r �j�i
%te−r �j+1�i+1
%t� (16.28)

Specializing equation (16.14) we therefore finally have the binomial lattice pricing formula

for a caplet valued at current time T0 = 0 and maturing at time Ti of tenor  = n %t:

Cpl� 
0 �RK�Ti
=
i∑

j=0

G�0�0� j�Ti
C
� 
�j� i
� (16.29)

To summarize then, the application of this pricing formula contains two components. The first

part is the computation of the G�0�0� j�Ti
, which are already computed from the calibration

step, as discussed in the previous section. The second part consists of computing the payoff

components C� 
�j� i
. These are obtained by first computing the conditional Arrow–Debreu

prices G�j�Ti� k�Ti+n
 by forward induction using equation (16.25). These quantities are

then summed up to give the Z�j�Ti� Ti+n
, as in equation (16.24). In turn, the latter are

plugged into equation (16.22), giving the forward rates R� 
�j� i
, and hence C� 
�j� i
, using
equation (16.23).

Figure 16.4 depicts, schematically, this procedure for pricing a caplet. For implementation

considerations, note that the inputs within the ir sheet (for pricing a caplet) are the expiry

time Ti, which for simplicity is assumed chosen as an integer number of time steps from

current time T0, and the tenor of the caplet is chosen as an integer number of time steps
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r (k = j + n, i + n )

r (k = j + 1, i + n )

r (k = j, i + n )

• • •

r ( j, i )

r (0, 0)

C (τ) ( j, i )

T0 Ti Ti + n

τ

FIGURE 16.4 Schematic representation of the separate components used for the pricing of a caplet

option of tenor  , expiring at time Ti. The initial leg starting from the current time node r �0�0
 gives the
Arrow–Debreu prices G�0�0� j�Ti
 at each jth node r �j� i
 at time Ti. The payoff vector of the caplet

with jth component C� 
�j� i
 (for the jth node at time Ti) is obtained by summing all the Arrow–Debreu

prices G�j�Ti� k�Ti+n
 (k= j� � � � � j+n) that are conditional on starting at the node r �j� i
 at time Ti

and ending at nodes r �k� i+n
 at time Ti+n for the period of the caplet.

past Ti, where the time step is the previously computed %t. Note that, if needed, this apparent
restriction can be readily lifted by using a different time-step value for the lattice past-maturity

time Ti. The spreadsheet contains inputs for the number of time steps to reach the caplet

(or floorlet) option expiry time from today, i.e., an integer M with M %t = Ti and another

integer for the number of steps defining the tenor.

The entire analysis for pricing a floorlet of the same maturity, struck at rate RK , follows

almost identically as in the case of the caplet, except the pay-off is now that of a put,

�RK −R
+, instead of that of a call, �R−RK
+. Within this project one should allow for a

computation of both types of options as well as the pricing of swaptions.

Next, we consider the pricing of European swaptions. Such options, as discussed in

Chapter 2, come in two flavors: The payer swaption has pay-off given by equation (2.41),

while the receiver swaption has the put type of pay-off. Let us consider a payer swaption,

struck at rate rK , on an underlying swap to start at time T = Tns
in the future and having a

lifetime of n periods of fixed tenor  :

PSOT =  �rsT − rK
+
n∑

p=1

ZT�T +p 
� (16.30)

Here rst denotes the equilibrium swap rate at time t. Hence, the first reset time of the swap is

assumed as T = Tns
, with first payment time at T +  , the latter being the second reset time

with second payments occurring at T + 2 , etc. Note that, as in the case of caplets, within

the ir application spreadsheet the user enters both the option expiry time T and the tenor  .
In addition, the swaption contract is defined by entering the number of periods n, with each

time period assumed constant and given by  . In particular, given a maturity T, we choose

a number of time steps ns up to maturity with ns %t = T , thereby defining a fixed time step

%t = T/ns. The contract is assumed to be specified as having tenor  =ms %t. The number

of time steps within the swap is then Ns = msn, giving a swap lifetime of Ns %t; i.e., the
swap ends at calendar time given by the �ns +Ns
th time slice: T +n = Tns+Ns

. Figure 16.5



388 CHAPT ER 16 . Project: Interest rate trees: Calibration and pricing

T0 T T + τ T + nτ

ns Δt

ms Δt

Ns Δt

FIGURE 16.5 Time spacing for a swaption expiring at time T. The underlying swap has n equal

periods of tenor  .

shows a schematic of the time spacing for the swaption. Now recall from Chapter 2 that the

equilibrum swap rate at time T can be written as

rsT = ZT�T 
−ZT�T +n 


 
∑n

p=1ZT�T +p 

= 1−ZT�T +n 


 
∑n

p=1ZT�T +p 

� (16.31)

The pay-off then takes the form

PSOT = �A−B
+� (16.32)

Here A is a floating-rate bond

A= 1−ZT�T +n 
� (16.33)

and

B =  rK

n∑
p=1

ZT�T +p 
� (16.34)

is an annuity or fixed-coupon bond originating at time T with fixed payments of amount  rK
at n periods of time  . The formula in equation (16.32) is directly suitable for implementation.

Based on equations (16.33) and (16.34), the components of the payoff vector of the payer

swaption at each jth node r �j� i= ns
, denoted by P�n 
�j� i
, are given by

P�n 
�j� i= ns
=
(
1−Z�j�Tns

� Tns+Ns

−  rK

n∑
p=1

Z�j�Tns
� Tns+pms




)
+
� (16.35)

This pay-off therefore requires the evaluation of the zero-coupons Z�j�Tns
� Tns+pms


 condi-

tional on the starting node r�j� ns
 at time slice Tns
and maturing at times Tns+pms

, p= 1� � � � � n.
These are computed in the same manner as described for the caplet case. Namely, equa-

tion (16.24) gives

Z� j�Tns
� Tns+pms


=
j+pms∑
k=j

G� j�Tns
� k�Tns+pms


� (16.36)

where conditional Arrow–Debreu prices now need to be calculated at every time slice

ns +pms, i.e., for p= 1� � � � � n. The procedure for doing so is the same as in the caplet case,

where forward recursion equation (16.25) is used repeatedly. This time the recursion is carried

out for a total of Ns = msn steps, and at each interval number p of ms steps we extract a

�pms+1
-dimensional vector of Arrow–Debreu prices G�j�Tns
� k�Tns+pms


 with components
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k = j� j+ 1� � � � � j+pms. After having obtained the conditional zero coupons, the current

price of the payer swaption is given by discounting the payoff vector:

PSO�n 

0 �rK�T 
=

ns∑
j=0

G�0�0� j�T 
P�n 
�j� ns
� (16.37)

Lastly, note that the pricing of reciever swaptions follows in identical manner, except that

the pay-off is simply replaced by the put type of expression �B−A
+.

16.4 Trinomial Lattice Calibration and Pricing
in the Hull–White Model

The implementation of trinomial lattices for interest rate trees shares some similarities with the

case of stock price trees covered in the previous project on trinomial lattices for pricing equity

options. There are, however, some important differences, stemming from the fact that the

short rate is itself stochastic and, hence, discounting is inherently very different, as we have

seen in the binomial lattice implementation. Before proceeding to implement a specific short-

rate lattice, it is useful to note that there are various possible acceptable tree implementations.

Namely, one could adapt the tree methodologies used in the previous trinomial lattice project,

which deals with stock price processes, over into the case of a short-rate process. This requires

appropriate modifications to account for the mean-reversion effect as well as calibration to dis-

count bond prices across all time steps. The latter would require that the transition probabilites

(p+, p0, and p−) also depend on the nodal positions. One can, moreover, also incorporate

a similar drift parameter (i.e., the � parameter), which would now also depend on the ith
time slice Ti. Such a viable lattice makes use of only normal branching. Here we shall devi-

ate slightly and follow Hull and White’s two-stage tree-building procedure [HW93, HW94,

Hul00]. As shown later, this procedure has the added advantage of separating out the reversion

term from the drift component. As well, the sampling of the short-rate nodes in the lattice is

done in a more efficient manner by incorporating three types of possible branching modes.

16.4.1 The First Stage: The Lattice with Zero Drift

As discussed in Chapter 2, the Hull–White (HW) model is defined by the stochastic short-rate

process, which can be written in the form

drt = 	��t
−a�t
rt
dt+��t
dWt� (16.38)

where ��t
 is a time-dependent drift term. Throughout, we shall further restrict the mean

reversion a�t
 = a and volatility ��t
 = � to be time-independent parameters. For present

purposes this offers a reasonably good model that can be used to calibrate to zero-coupon

bonds and subsequently to price interest rate options. Extensions that allow for the reversion

speed and/or volatility functions to take on a time dependence (either numerically or analyti-

cally) can also be readily achieved. This would allow for exact calibration of the lattice model

to a larger basket of instruments besides zero-coupon bonds. We leave this as an optional

implementation exercise for the interested reader. The first step is to construct a tree for the

related process with zero drift (and nonzero reversion) defined by

dr∗t =−ar∗t dt+� dWt� (16.39)
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Fixing r∗t within a time step, we compute the mean and variance of the random variable

r∗t+%t − r∗t as given by the expectations

E	r∗t+%t − r∗t 
=−ar∗t %t� (16.40)

E	�r∗t+%t − r∗t 

2
= a2�r∗t 


2�%t
2+�2 %t� (16.41)

where only terms up to order �%t
2 are included. The r∗ lattice has nodes defined by r �j� i
=
r∗�j� i
, where

r∗�j� i
= r∗0 + j %r� (16.42)

with r∗0 = 0 and j = −i�−i+ 1� � � � � i− 1� i for any time slice Ti = i %t (see Figure 16.6).

Using equation (16.42) within equations (16.40) and (16.41) gives

E	�r∗t+%t − r∗t 

r∗t = j %r
=−aj %r %t� (16.43)

E	�r∗t+%t − r∗t 

2
r∗t = j %r
= a2j2�%r
2�%t
2+�2 %t� (16.44)

At this point one finds explicit formulas for the transition probabilities p+, p0, and p− for,

respectively, the higher, middle, and lower branches emanating from a given node r �j� i
. The
three possible branching modes considered are depicted in Figure 16.7. Note the difference

in convention with respect to the indexing of the nodes that was used in the binomial lattice.

As in the previous project on trinomial lattice models, an up (down) move changes the jth
index in r �j� i
 by +1 �−1
, while only for a middle move j remains unchanged. For the

case of normal branching we compute the expectations

E	�r∗t+%t − r∗t 

r∗t = j %r
= p+�j+1
%r+p0j %r+p−�j−1
%r− j %r

= �p+−p−
%r (16.45)

r (0, 0)

r (1, 1)

r (0, 1)

r (–1, 1)

r (2, 2)

r ( j,i + 1)

r ( j + 1, i + 1)

r ( j, i )

r ( j – 1,i + 1)

r (1, 2)

r (0, 2)

r (–1, 2)

r (–2, 2)

T0 T1 T2 Ti+1Ti

• • •

• • •

FIGURE 16.6 Schematic of the (driftless) symmetric trinomial r∗-lattice for the short-rate process with
symmetric (normal) branching from all nodes.
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normal downward upward

r ( j + 1, i + 1)

r ( j –1, i + 1)

r ( j, i + 1)

p+

p0

p–

r ( j, i ) r ( j –1, i + 1)

r ( j – 2, i + 1)

r ( j, i + 1)

r ( j, i ) r ( j + 2, i + 1)

r ( j + 1, i + 1)

r ( j, i + 1)

r ( j, i )

FIGURE 16.7 The three possible branching modes.

and

E	�r∗t+%t − r∗t 

2
r∗t = j %r
= p+�%r
2+p00

2+p−�%r
2

= �p++p−
�%r
2� (16.46)

where we have used probability conservation p+ +p0+p− = 1. It has been observed in the

past [HW94] that numerical efficiency is maximized by fixing the spacing to

%r = �
√
3 %t� (16.47)

Using this value for the spacing and equating expectations in equations (16.45) and (16.43)

and the expectation in equation (16.46) with that in equation (16.44) gives a linear system of

two equations in p+ and p− with unique solution

p±�j
=
1

6
+ 1

2
aj %t�aj %t∓1
� (16.48)

Probability conservation gives

p0�j
=
2

3
− �aj %t
2� (16.49)

Note that the argument j is used to explicitly denote the dependence of the transition proba-

bilities on the nodal j-position value.

A similar analysis gives the probabilities for downward branching:

pd
+�j
=

7

6
+ 1

2
aj %t�aj %t−3
� (16.50)

pd
−�j
=

1

6
+ 1

2
aj %t�aj %t−1
� (16.51)

pd
0�j
=−1

3
−aj %t�aj %t−2
� (16.52)

The superscipt d is used to denote the transition probabilities for downward branching.
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Lastly, for upward branching we have

pu
+�j
=

1

6
+ 1

2
aj %t�aj %t+1
� (16.53)

pu
−�j
=

7

6
+ 1

2
aj %t�aj %t+3
� (16.54)

pu
0�j
=−1

3
−aj %t�aj %t+2
� (16.55)

The superscipt u denotes the transition probabilities for upward branching.

Note that the foregoing expressions are either concave or convex quadratic functions of j.
One can readily derive conditions on j for the transition probabilities to be strictly positive.

Namely, for normal branching

−
√
2/3

a %t
< j <

√
2/3

a %t
� (16.56)

for upward branching

−1−√
2/3

a %t
< j <

−1+√
2/3

a %t
� (16.57)

and for downward branching

1−√
2/3

a %t
< j <

1+√
2/3

a %t
� (16.58)

Throughout we assume a > 0. Let us define a maximum value jmax as the smallest integer

greater than �1−√
2/3
/�a %t
 ≈ 0�1835/�a %t
, for the index j at any time slice, and a

minimum value as jmin =−jmax. This leads to the branching methodology for each node �j� i
,
whereby normal branching is used for jmin < j< jmax, downward branching is used for extreme

positive value j = jmax, and upward branching is used for extreme negative value j = jmin.

16.4.2 The Second Stage: Lattice Calibration with Drift and Reversion

The purpose of the first stage is to build the component of the r-tree (i.e., the r∗-tree) that
encapsulates the mean-reversion and volatility aspect of the short-rate process. In the final

tree implementation, considered in this section, one needs to incorporate a drift component.

Namely, at each time slice the nodes will be drifted by an amount determined by the market

prices of the zero-coupon bonds. The drift component is incorporated by considering the

difference �t = rt − r∗t . This satisfies an ordinary differential equation where

d�t = 	��t
−a�t
dt� (16.59)

with solution

�t = e−at	�0+
∫ t

0

eas��s
ds
� (16.60)

Here �0 = r0 = r �0�0
 since r∗0 = 0. Equation (16.59) provides an apparently trivial analytical

link between the actual r-tree and the driftless r∗-tree since ��t
 can be obtained exactly

from the initial-term structure [i.e., as function of the yield y0�t
]. Indeed, the right-hand
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side of equation (16.60) can be computed explicitly by applying the formulas derived in

Chapter 2. Namely, one can use equation (2.110) or (2.109) [note that there the drift function

��t
 is called a�t
 and the function b is called a here] into the integral of equation (16.60) to

obtain �t. We will not adopt this methodology here since it leads to inaccurate results and,

moreover, bypasses the importance of the pricing algorithm for the drifted trinomial lattice,

which we now present.

To apply the trinomial lattice pricing methodology we simply extend the equations of

Section 16.2 into the trinomial lattice case. In general, we must distinguish between the

different possible branching. Let us first assume normal branching. In this case the Green’s

function propagation (i.e., the Arrow–Debreu forward recursion) equation (16.12) is modified

to read

G�0�0� j�Ti
=
∑

k=j±1�j�
k
≤i−1

G�0�0� k�Ti−1
G�k�Ti−1� j�Ti
� (16.61)

where the Arrow–Debreu prices for a single time step are nonzero for 
k
 ≤ i− 1 and k =
j� j±1� and given by

G�k�Ti−1� j�Ti
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p+�k
e
−r �k�i−1
%t� k= j−1�

p0�k
e
−r �k�i−1
%t� k= j�

p−�k
e
−r �k�i−1
%t� k= j+1�

(16.62)

In contrast to the binomial case, the forward time propagation of Arrow–Debreu prices is

now obtained by summing contributions up to three (as opposed to two) possible two-legged

paths. Note that the probabilities for up/down and middle moves in equations (16.61) and

(16.62) are the ones corresponding to normal branching. For terminal node values of j close
to either jmin or jmax, equations (16.61) and (16.62) need to be slightly modified. Namely,

for any given value of j, equation (16.61) must be modified to the more general case

G�0�0� j�Ti
=
∑

k�
k
≤i−1

G�0�0� k�Ti−1
p�j� k
e
−r�k�i−1
%t� (16.63)

This formula takes into account all (generally mixed) branching types. The quantities p�j� k

denote the nodal transition probabilities for all possible nonzero contributions from interme-

diate nodes at positions k for time Ti−1. The sum of the corresponding probability values to

be used in equation (16.63) now depend on the terminal j value. Assuming jmax > 2, there

are possibly seven distinct cases to consider after jmax time steps.

1. j= jmax gives two terms (one down branch and one normal branch) with p�j� j
=pd
+�j
,

p�j� j−1
= p+�j−1
.
2. j = jmax − 1 gives three terms (one down branch and two normal branches) with

p�j� j+1
= pd
0�j+1
, p�j� j
= p0�j
, p�j� j−1
= p+�j−1
.

3. jmin + 2 < j < jmax − 2 gives three terms (three normal branches) with p�j� j+ 1
 =
p−�j+1
, p�j� j
= p0�j
, p�j� j−1
= p+�j−1
.

4. j = jmin, gives two terms (one up branch and one normal branch) with p�j� k= j+1
=
p−�j+1
, p�j� j
= pu

−�j
.
5. j = jmin+1 gives three terms (one up branch and two normal branches) with p�j� k=

j+1
= p−�j+1
, p�j� j
= p0�j
, p�j� j−1
= pu
0�j−1
.
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6. j= jmax−2 gives four terms (one down branch and three normal branches) with p�j� k=
j+2
= pd

−�j+2
�p�j� j+1
= p−�j+1
�p�j� j
= p0�j
�p�j� j−1
= p+�j−1
.
7. j = jmin+2 gives four terms (one up branch and three normal branches) with p�j� k=

j+1
= p−�j+1
�p�j� j
= p0�j
�p�j� j−1
= p+�j−1
�p�j� j−2
= pu
+�j−2
.

The forward propagation of Arrow–Debreu prices therefore involves a sum of two, three

or four terms in cases where the terminal node is close to jmax or jmin. Most values of j,
however, involve normal branching, with the use of a three-term sum.

The pricing of zero-coupon bonds is essentially similar to the binomial lattice case, in

the sense that one iterates out to any given time slice Ti to obtain the Arrow–Debreu prices

G�0�0� j�Ti
. The analogue of equation (16.14) takes the form

P0�r0� Ti
=
i∑

j=−i

G�0�0� j�Ti
#�r �j�Ti
� Ti
� (16.64)

Specializing to the case of zero-coupon bonds, the equation analogous to equation (16.15)

for pricing zero-coupon bonds is

Z0�Ti
=
i∑

j=−i

G�0�0� j�Ti
� (16.65)

Inserting equation (16.63) into equation (16.65) gives

Z0�Ti
=
i∑

j=−i

∑

k
≤i−1

G�0�0� k�Ti−1
p�j� k
e
−r �k�i−1
%t� (16.66)

Hence, in general, one finds that the trinomial lattice calibration for a short-rate model can

be achieved using a numerical root-finding procedure in equation (16.66) analogous to the

binomial lattice methodology. The HW model, however, offers extra flexibility since one can

actually solve the calibration problem analytically in the case of continuous compounding.

The calibration of the lattice nodes for the HW model proceeds as follows.

The preceding formulas are specialized to the case where the actual drifted lattice is

represented by

r �j� i
= ��i
+ j %r� −i ≤ j ≤ i� (16.67)

with ��0
 = r�0�0
 as the initial node and the spacing given by equation (16.47). The

coefficients ��i
 represent the central node r �0� i
 along each time slice Ti and will therefore

account for the drift of the lattice. Plugging this into equation (16.66) and taking logarithms

we obtain the simple analytical form for the coefficients:

��i
=
log

[∑i+1
j=−i−1

∑
k�
k
≤i G�0�0� k�Ti
p�j� k
e

−k%r%t

]
− logZ0�Ti+1


%t
� (16.68)

Note that we have shifted the time slice index i to i+1. This gives the central node at each

time slice Ti, and hence from equation (16.67) all nodes r �j� i
 for time Ti are obtained,

based on the market price of the zero-coupon bond maturing at time Ti+1 and knowledge of

the Arrow–Debreu prices out to time Ti. These Arrow–Debreu prices are in turn given by

forward induction using equation (16.63) by using the already-known values for the node

positions at time slice i−1.
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One begins the calibration procedure with G�0�0�0�0
= 1, and the initial node r�0�0
=
��0
 is given in terms of the interpolated zero-coupon price at the first maturity time T1 =%t
using equation (16.16). Based on this and the zero-coupon prices at further maturities, one

obtains the rest of the lattice nodes using equations (16.68) and (16.63). For instance, after

the first step we have normal branching with G�0�0�0� T1
 = p0e
−��0
%t, G�0�0�±1� T1
 =

p±e−��0
%t. Assuming normal branching, at the second time step we obtain ��1
:

��1
=
log

(∑1
j=−1 e

−j�%r
�%t
G�0�0� j�T1


)
− logZ0�T2


%t

=
log

(
p−e�%r
�%t
+p0+p+e−�%r
�%t


)
− logZ0�T2


%t
−��0
� (16.69)

This procedure is continued for the rest of the time steps, hence giving the calibrated lattice

for as many time steps as needed.

For the calibration of short-rate models that do not admit a simple analytical solution,

such as the Black–Karasinski model covered in Section 16.5, one can readily proceed to find

the central nodes numerically via a root-finding routine similar to what was described earlier

for the binomial lattice.

16.4.3 Pricing Options

Once the calibrated lattice is built, the procedure for pricing options (e.g., caplets, floorlets,

swaptions) follows similar steps as described for the binomial lattices given in Section 16.3.

The conditional zero-coupon bonds are now obtained using

Z�j�Ti� Ti+n
=
j+n∑

k=j−n

G�j�Ti� k�Ti+n
� (16.70)

where the �2n+1
 Arrow–Debreu values (conditional on beginning at a jth node at time Ti

and ending at node k = j−n� � � � � j+n at time Ti+n) are computed by a general extension

of equation (16.63), i.e., using the forward recursion relation

G�j�Ti� k�Ti+m
=
∑

s�
s
≤i+m−1

p�k� s
e−r�s�i+m−1
%tG�j�Ti� s�Ti+m−1
� (16.71)

Just as in equation (16.63), this forward propagation formula takes into account all possible

mixed branchings. Note that the starting node is denoted by index j, while the terminal node

now has index k. The nodal transition probabilities p�k� s
 are again given as described just

following equation (16.63). For instance, when jmin +2 < k < jmax−2, normal branching is

used with three possible nonzero values for p�k� s
: p�k� s = k± 1
 = p∓�k± 1
, p�k� s =
k
= p0�k
.

Based on knowledge of the conditional zero-coupon prices, all option-pricing formulas

are indentical in form to those for the binomial lattice, except for the obvious modification in

having to compute and sum up more terms due to n extra terminal nodes for every n steps.

Hence, for example, the caplet price is obtained by modifying equation (16.29) slightly:

Cpl� 
0 �RK�Ti
=
i∑

j=−i

G�0�0� j�Ti
C
� 
�j� i
� (16.72)
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For evaluating swaptions, the conditional zero-coupon prices are now given by a formula

similar to equation (16.36) (except for the summation involving more nodes):

Z�j�Tns
� Tns+pms


=
j+pms∑

k=j−pms

G�j�Tns
� k�Tns+pms


� (16.73)

This leads to the pricing formula analogous to equation (16.37) (with payoff vector containing

ns more components) for the payer swaption:

PSO�n 

0 �rK�T
=

ns∑
j=−ns

G�0�0� j�T 
P�n 
�j� ns
� (16.74)

where P�n 
�j� ns
 is again given by equation (16.35). Similar pricing formulas follow in the

obvious manner for other instruments, such as floorlets and receiver swaptions. The interested

reader can also apply the methodology presented here to interest rate derivatives involving

more exotic payoff structures.

16.5 Calibration and Pricing within the Black–Karasinski Model

The Black–Karasinski (BK) model is described by the short-rate process

d log rt = 	��t
−a�t
 log rt
dt+��t
dWt� (16.75)

where a�t
 is a time-dependent mean-reversion speed. This model is the lognormal version of

the Hull–White model, with rt replaced by log rt. Hence, a nice feature of this model is that

the occurrence of negative interest rates is not possible. Note also that the BK model is an

extension of the BDT model. Throughout we shall again assume a constant reversion speed

a�t
= a and constant ��t
= � . In contrast to the BDT model, the BK model still incorporates

mean reversion under such conditions. As mentioned for the HW model, extensions to time-

dependent reversion and/or volatility can also be implemented with some modifications and

are left as an optional exercise.

The tree-building procedure for the BK model follows in similar fashion to the HW model

as described in Sections 16.4.1 and 16.4.2. The difference here is that the short-rate node

values are now replaced by their logarithms. Namely, the spacing takes a similar form as

equation (16.11) except that the nodes now also drift. In particular, we define a constant

spacing for the logarithm of the short-rate nodes: %x = log r �j� i
− log r �j− 1� i
 for any

time slice Ti, or equivalently

r �j� i
= r �j−1� i
 exp�%x
� (16.76)

This leads to the geometry of the short-rate nodes defined by a modification of equation (16.67)

to read

r �j� i
= ��i
 exp�j %x
� −i ≤ j ≤ i� (16.77)

with ��i
= r �0� i
 corresponding to the central node at time Ti with ��0
= r �0�0
. Although
we are somewhat at liberty to choose a spacing for %x in terms of %t, we shall, in analogy

with the HW model, set the spacing as

%x = �
√
3 %t�
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With this choice we can carry out algebra similar to that in the HWmodel (see Section 16.4.1).

Now, however, we consider the random variables xt ≡ log rt (and equivalently x∗
t ≡ log r∗t )

and compute conditional expectations E	�x∗
t+%t−x∗

t 

2
x∗

t = j %x
 and E	x∗
t+%t−x∗

t 
x∗
t = j %x
.

From equation (16.75) it is evident that xt obeys the HW model. As can easily be verified, the

end result is that one obtains exactly the same formulas for the j-nodal transition probabilities

p
�j

0 and p

�j

± for middle and up/down moves, respectively, as in the HW case. Note, however,

that now the logarithmic spacing between the short-rate nodes is constant: %x = % log r =
�
√
3 %t.
The propagation of the Arrow–Debreu prices follows the general recursion procedure

described earlier. Namely, the Arrow–Debreu prices originating from the present node r �0�0

are given recursively by equation (16.63), where the node positions r �k� i−1
 are given by

equation (16.77). The zero-coupon bonds are again given by equation (16.66). By plugging

equation (16.63) into equation (16.66) and the expression for the nodes given by equa-

tion (16.77) one observes that, in contrast to the HW model, one cannot analytically solve

for the central nodes. This is due to the fact that the grid spacing is constant in the logarithm

of the short rate rather than the short rate itself. More explicitly, for the BK model we have

Z0�Ti
=
i∑

j=−i

∑
k�
k
≤i−1

G�0�0� k�Ti−1
p�j� k
 exp
[−��i−1
%tek%x

]
� (16.78)

Given the market zero-coupon price at maturity Ti and the vector of Arrow–Debreu prices

that are determined by forward recursion up to a previous time Ti−1, the parameter ��i−1
 in
this last equation is determined numerically via a single variable root-finding procedure. One

can use the function zeroin of the MFZero library for this purpose. Hence, by determining

the set of parameters ��i
, i= 0�1� � � � �M , one obtains the entire calibrated BK lattice out to

time TM . Option pricing within the BK model then follows the same trinomial methodology

as in Section 16.4.3.
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A

Adapted process, 60

Algorithm, 257, 279, 288, 297–300

American digitals, 170

American options, 93–112

arbitrage-free pricing, optimal stopping

time formulation and, 93–103

early-exercise boundary properties for,

105–106, 107f

early-exercise premium, 94, 96

lattice (tree) methods relation to, 98–100,

340, 345, 353

partial differential equations and

integrated equation formulation,

106–112

perpetual, 103–105

pricing by recurrence, dynamic

programming approach, 97–98

smooth pasting condition, PDE approach

and, 100–103, 101f

Analytical pricing formulas, 210–232

absorption or probability conservation

conditions, 226–229

for barrier options, 355–357

barrier pricing formulas for

multiparameter volatility models,

229–232

Bessel families of state-dependent

volatility models, 215–218,

218–222, 225f

Bessel models’ four-parameter subfamily,
218–226

constant-elasticity-of-variance model,
222–224, 225f

quadratic volatility models, 224–226, 225f
transformation reduction methodology,

210–215, 232–233
Antisymmetric property, 154
Approximations. See % approximations;

%& approximations
Arb spreadsheet, 317
Arbitrage, 4. See also No-arbitrage

constraints
absence of, 8, 63
continuous state spaces, single-period

continuous case and, 15
continuous time, 63–64
-free pricing, optimal stopping time

formulation and American options,
93–103

portfolio, 317–318
single-period finite financial models, 7–8, 9

Arbitrage free, 4
Arbitrage theory
arbitrage detection, formulation of

arbitrage portfolios in N-dimensional
case and, 319–321

arbitrage portfolios and, 317–318
asset prices, states, returns and pay-offs,

315–317
single-period asset pricing, risk-neutral

probabilities and, 318–319

407
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Arrow-Debreu securities/prices, 12, 53,
90, 320

interest rate trees, 380, 382, 383f, 384,
386, 387f, 393–395, 397

Asset, elementary, 3
Asset prices, 315
Asset pricing theorem, 5, 120–121
continuous single-period case, 16
derivative asset pricing (continuous-time

case), 66–71
pricing measure (continuous time), 6
risk-neutral probabilities and

single-period, 318–319
single-period finite financial model

(Lemma), 10–12
Asymmetric student’s t model, 245–246,

247f, 283, 285, 285f
At-the-money option, 337, 351
Auto-regression coefficients, 147

B

Bachelier formula, 27, 40
Bachelier, Louis, 27
Barrier contracts, 61
Barrier options, 149–150, 150f
analytic pricing formulas for, 355–357
Crank-Nicolson option pricer and pricing,

352–353, 352f
double, 64, 71, 159, 187
double-knockout, 175–176, 177f, 178f,

185–187, 188f, 349
down-and-out put, 163–164, 170,

182–184
down-and-out put/call replications,

361–362, 361f, 362f
first-passage time, 168–171
free, 194
introduction to, 151–152
kernel pricing and geometric Brownian

motion for European, formulas,
160–168

pricing kernels, linear volatility models
and, 172–178

pricing kernels, quadratic volatility
models and, 178–189

single-barrier kernels, Wiener process
and, 152–160

static hedging of, 355–362
trinomial lattice model and pricing,

346–347, 346f
up-and-out put/call, 164–165, 173,

184–185, 352

up-and-out put/call replications,
358–360, 360f

Basel Accord, 239
Basket options, 333–335, 335f
BDT. See Black-Derman-Toy model
Bear spreads, 54
Bermudan option, 97
Bernoulli trail, 259
Bessel families
constant-elasticity-of-variance model,

222–224, 225f
four-parameter subfamily of, 218–226,

229, 231
quadratic models, 224–226, 225f
of state-dependent volatility models,

215–222, 225, 225f
Bessel function, 135, 150
absorption/probability conservation, 227
barrier-free kernels, no absorption,

199–202
cylinder, 203
integral relations, 235
kernels for, 199–209
oscillatory, 203
properties of, 235–237
recurrence relations, 237
single lower finite barrier kernels with

absorption, 208–209
single upper finite barrier kernels with

absorption, 206–208
two finite barrier kernels with absorption

and, 202–206
Wronskian and, 202, 206, 208, 216,

218, 236
BGMJ. See Brace-Gatarek-Musiela-

Jamshidian
Bhedge, 358–359
Binary, 54
Binomial lattice model
building, 337–339, 338f
calibration for discount bonds, 381–384,

381f, 383f–384f
lattice calibration and pricing, 339–340

Binomial test, 258
BK. See Black-Karasinski model
Black-Derman-Toy (BDT) model,

381–382, 396
Black-Karasinski (BK) model, 130, 134
interest rate trees and pricing within,

396–397
Black-Scholes formulas, 40, 128, 225f,

321–326, 338, 340, 356. See also
Brownian motion, geometric

compound options, 83–85
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continuous-time financial model and
dynamic hedging, 64–65

currency option, 78–79
%& approximations, 258, 292
dual, 90–91
elf-X option, 81–82
European calls, 48, 50–51, 77–78, 82,

88–89, 90, 254, 255f,
321–322, 325

inverting, 332–333
pricing formulas, 77–87
pricing kernels, 161–163
pricing measures, 120–127
quanto option, 79–80
risk factors, 251, 253–254, 255f
risk-neutral pricing, 323–324, 324f
swaptions, 122
volatility, in-the-money vs.

out-of-the-money option,
323–324, 323f

Black-Scholes partial differential equation
(BSPDE), 37, 49, 88–89, 90–91,
102–103, 162, 325, 343–344, 349

homogeneous, 107–108
nonhomogeneous, 107–108

Black-Scholes volatility, 50, 74, 225f, 343
Bond(s), 3, 113–116, 338
cash flow map of, 113, 114f
discount, 381–384, 381f, 383f–384f
simply compounded yield of, 113–114

Bond future options, 126
Bond options, 124
Bond-forward contract, 114–115, 115f, 121
continuously compounded forward rate

of, 115
equilibrium value of, 115
forward rate of, 115

Bond-pricing equilibrium, 127–129
Brace-Gatarek-Musiela-Jamshidian (BGMJ),

144–146
Bromwich contour integral
Bessel process, Green’s function, 200,

201f, 203, 204f, 207, 209
Green’s function, diffusion kernels,

190–191, 191f, 196, 198
Brownian bridge, 32
Brownian motion. See also Black-Scholes

model
first-passage time and, 169–170
geometric, 27, 37–46, 48, 49, 79, 82, 108,

109, 160, 169–170
pricing kernels and European barrier

option formulas for geometric,
160–168

single-barrier kernels for simplest models,
drift case and, 158–160

single-barrier kernels for simplest models,
driftless case and, 156–157, 157f

standard, 24, 27–28, 36, 70
BSPDE. See Black-Scholes partial

differential equation
Bull spreads, 53
Butterfly spread options, 52–53, 52f, 323f,

324–326

C

Calendar spreads, 54
Calibration, 99
Call option
American, 96, 104, 106–109, 340
covered, 53
European, 40, 43, 47–52, 53, 55–56, 61,

63, 77–78, 83, 88–89, 90, 94, 108,
124, 221–222, 222f, 254, 255f,
321–322, 325, 337–340, 344–345

exponential pay-off, 56–57, 57f
finite number of market strike, 58
observed market price of, 50
put-call parity theorem, 48–51
sinusodial pay-off, 57, 57f
stopping time, 61
struck at K and of maturity T, 48
TSE35, 293f
up-and-out, 164–165, 173, 184–185

Call-on-a-call option, 83
Call-on-a-put option, 83–84
Canadian stocks, 242, 242f, 243f
Caplets, 123
interest rate trees, 385–387, 387f

Cauchy’s integral formula, 200–201, 204
Cauchy-Schwartz inequality, 296
CEV. See Constant-elasticity-of-variance

model
CF. See Cornish-Fisher methods
Change in portfolio, 240
Change of measure, 14
Characteristic function, 21–22
Cholesky factorization, 20, 260–261, 261,

268, 298, 332, 372, 376
Chooser basket options, on two stocks,

43–45
Chooser option, 44, 334–335, 335f
CIR discount function, 119, 120f
CIR. See Cox-Ingersol-Ross model
CN. See Crank-Nicolson option pricer
Coarea formula, 307
Commodities, 3
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Compound options, 83–85
Condition number, 309–310, 312
Conditional density function, 16
Conditional expectation
of random variable, 17
with respect to filtration, 26

Condors. See Wingspreads
Constant-elasticity-of-variance (CEV)

model, 222–224
volatility, 150, 223

Contingent claim, 3
Continuation domain, 94, 95
Continuation value, 98
Continuous probability distribution

function, 13
Continuous state spaces, 12–16
arbitrage: single-period continuous

case, 15
asset pricing fundamental theorem

(continuous single-period case), 16
nonnegative portfolio, 15
pricing measure: single-period continuous

case, 15–16
probability theory for random

variables, 12–13
Continuous time, 10
dynamic hedging and derivative assets

pricing in, 65–71
Continuous-time financial model, 102
adapted process, 60
arbitrage, 63–64
definition of, 60
derivative instrument, 61–62
diffusion pricing model, 60
dynamic hedging in Black-Schloes model,

64–65
perpetual double barrier option, 64
self-financing replication strategy,

62–63
self-financing trading strategy, 62
stopping time, 61

Continuous-time limit, 24–25, 24f, 27
Cornish-Fisher methods, 265
Correlation, 19
Corridor options, 152
Covariance matrix, 18
of given spectrum, 375–376
reestimating, and spectral shift,

376–377, 377f
scenario generation in value-at-risk and

estimation of, 375–377, 377f
Covered call, 53
Cox-Ingersol-Ross (CIR) model, 129,

134–138, 136f, 225f, 231
CIR discount function, 119, 120f

Crank-Nicolson (CN) option pricer
calibration, 351–352
lattice for, 349–350
pricing barrier options, 352–353, 352f
pricing with, 350–351

Credit-risk model, 308, 312
Cumulative density function, 220, 221f
Cumulative distribution function (cdf),

17–18, 40
standard, 40

Currency option, Black-Scholes model,
78–79

Cyclic convolution, 273–275, 277

D

Decomposition
logarithmic payoff, 366f, 367
portfolio, 256–257
Schur, 299–300
singular value decomposition, 376

Delta (%), 50
Dirac, 13–14, 175, 193, 206, 210,

267, 380
hedging, 102

% approximations, 252–253
%& approximations

fast convolution method, 269, 269f,
272–273

low-rank, 298–300
risk-factor aggregation, dimension

reduction and, 294–295, 297–300
%& portfolios

algorithm, 257
Black-Scholes, 258, 292
Cholesky factorization, floating-point

operations and, 260–261
Cornish-Fisher method, 265
Fourier transform of moment-generating

function, 267–268
implementation issues, 260–261
importance samplings for, 261–262
moment methods, 264–266
Monte Carlo methods, variance reduction

and, 261–264
null hypothesis and, 258–259
numerical methods of, 261–268
parameter estimation and

factorization, 257
portfolio decomposition and

portfolio-dependent estimation,
256–257

statistical estimations for, 255–261
testing independence, 257–260, 259f
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value-at-risk, Monte Carlo methods and,
369–373, 372f

Delta-gamma portfolios, value-at-risk,
Monte Carlo methods and,
369–373, 372f

Density. See Probability densities;
Risk-neutral conditional probability
density; Transition density

Derivative asset pricing
asset pricing theorem (continuous-time

case), 66–71
dynamic hedging and in continuous time,

65–71
perpetual double barrier option,

risk-neutral measures and, 71
pricing measure (continuous time), 67

Derivative assets, 3–4, 8–9
Derivative instrument, 61–62
Derivative portfolio, 241
Diffusion canonical transformation, 215
definition of, 210, 211–212
as invertible variable transformation,

213–214
Diffusion pricing model, 60, 189–199
Diffusion process, simple underlying.

See also X-space process
Digitals, 54
Dimension reduction
algorithm, method 1, 297–298
algorithm, method 2, 299–300
comparison of method 1 to 2 in, 301–303,

302f, 303f
method 1, reduction with small mean

square error, 295–298, 301–303,
302f, 303f

method 2, reduction by low-rank
approximation, 298–300, 301–303,
302f, 303f

optimization and, 303–306, 304f,
305t–306t

risk-factor aggregation and, 294–303
Discount bonds, binomial lattice calibration

for, 381–384, 381f, 383f–384f
Discount curve, 118–120
CIR discount function, 119, 120f

Discounting, future pay-off, 5, 9, 120–121
Distribution, 13–14. See also Multivariate

continuous distributions
multivariate normal, 369–371, 373
multivariate student t, 371–373, 372f

Doob-Meyer decomposition, 31
Double-knockout-barrier option, 175–176,

177f, 178f, 185–187, 188f, 349
Down-and-out call, 174, 182–184, 355–357,

361–362, 361f, 362f

Down-and-out put, 163–164, 170, 353
Dynamic programming approach, 97–98

E

Early-exercise boundary, 94, 100
properties of, 105–106, 107f

Early-exercise options. See American
options

Early-exercise premium, 93
nonzero, 96

Eigenfunction, 191, 230
Eigenfunction expansions f,
197–199

Eigenvalues, 256, 261, 377
for Sturm-Liouville, 203, 206

Elementary asset class, 3
Elementary solution, 153
Elf-X option, 81–82
Equivalent martingale measure, 69
Equivalent probability measure, 69
Error. See also Mean square error
absolute, 309
bounds, 309–310
relative, 301, 302f, 312
truncation, 254

European call option, 47–52, 53, 55–56, 61,
108, 124, 221–222, 222f, 361–362

Black-Scholes model, 48, 50–51, 77–78,
82, 88–89, 90, 254, 255f,
321–322, 325

lattice model and, 337–340, 344–345
not known prematurely, 94
plain-vanilla, 321–322, 325, 346
Stochastic differential equation, 40, 43

European-style futures options
European future options, 74
variance swaps, 75–76

Events, 14
Exotic options, 52–59. See also

Barrier options
definition, 149

Exponential martingale, 70
Exponential pay-off, 56–57, 57f
Extrapolation, Richardson’s, 278–280, 280f

F

Fast convolution method, 268–280, 281f
accuracy, convergence and, 271–272,

278–280
algorithm, 279
computational complexity, 280, 281f
computational details of, 272
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Fast convolution method (Continued)
computing value-at-risk, 278, 279
cyclic convolution, 273–275, 277
%& approximations, 269, 269f, 272–273
discretization, 270, 271f
with fast Fourier transform, 272–277
Lemma, 275–277
probability density function of quadratic

random variable, 270
Richardson’s extrapolation improving

accuracy, 278–280, 280f
Riemann integrable, 273–275
standard to cyclic convolution, 277
for value-at-risk gradient, 288

Fat tails, 329, 329f
multivariate student t distribution, 371
value-at-risk, 281–284, 282f–284f

Feynman-Kac theorem, 36–37, 88, 92
Filtration, 25–26
final-time condition, 155
First hitting times, 170
Fixed-income instruments
Black-Scholes formulas, pricing

measures and, 120–127
bond, 113–116
bond future options, 126
bond options, 124
bond-pricing equilibrium, 127–129
Brace-Gatarek-Musiela-Jamshidian with

no-arbitrage constraints, 144–146
caplets, 123
constructing the discount curve,

118–120, 120f
Cox-Ingersol-Ross model, 129, 134–138
Flesaker-Hughston model, 139–140
floating rate notes, 116–117
forward rate agreements, 116
futures-forward price spread, 124–125
Heath-Jarrow-Morton with no-arbitrage

constraints, 141, 142–143
Hull-White, Ho-Lee and Vasicek models,

129–134
multifactor models, 141–146
one-factor models for short rate,

127–140
plain-vanilla swaps, 117–118
real-world interest rate models, 146–148
Stock options with stochastic interest

rates, 121–122
swaptions, 122

Flesaker-Hughston (FH) model, 139–140
Floating rate notes (FRN), 116–117, 117f,

338–389
plain-vanilla, 116–117

Floating-point operations, 260–261
Floorlets, 387, 396

Fokker-Planck equation, 89–90, 92, 135,
189–190

transformation reduction methodology,
x-space, F-space process and,
210–211, 232–233

Forward contract, 47–48, 71, 363
Forward measure, 9, 46, 121, 137
Forward price, 115, 124–125, 181
Forward rate, 142–143
Forward rate agreements (FRA), 115f, 116
binomial pricing of forward rate

agreements, 384–385
Forwards, hedging, and futures, 71–77
Fourier sine series, 175
Fourier transform, 21
fast convolution method, 272–277
of moment-generating function and %&

portfolios, 267–268
FRA. See Forward rate agreements
Free-boundary value problems, 95
FRN. See Floating rate notes
Frobenius norm, 296–297
F-space process, 150, 179, 185, 194, 210
absorption or probability conservation

conditions, 226–229
barrier pricing formulas for

multiparameter volatility models,
229–232

Bessel families of state-dependent
volatility models, 215–218,
218–222, 222f

constant-elasticity-of-variance model,
222–224

generating function, 194, 215
quadratic models, 224–226
reduction-mapping for pricing kernels,

214–215, 233–235
transformation reduction methodology,

210–215, 232–233
Future contracts, 72–73
Futures, hedging, and forwards, 71–77
Futures-forward price spread, 124–125

G

Gamma (&), 51
GARCH, 260
Gateaux variation, 309
Gaussian (normal) distribution, 18–19
Gradient
computing, 287–289
computing, of value-at-risk, 285–286
value-at-risk, portfolio composition and,

286–287
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Green’s function, 150–151, 210
Arrow-Debreu forward recursion,

393–394
Bessel function, barrier-free kernels and,

199–201
Bessel function, single lower finite barrier

kernels with absorption and, 208–209
Bessel function, single upper finite barrier

kernels with absorption and, 206–208
Bessel function, two finite barrier kernels

with absorption and, 202–206
Bromwich contour integral, 190–191,

191f, 196, 198
closed contour/loop integral, 191
for diffusion kernels, 189–199
eigenfunction expansions for, 197–199
homogeneous equation for, 192–194
isolated simple poles, 196
nonhomogeneous ordinary differential

equation for, 190, 193
residues, 204–205
spectral resolution, 197
time-dependent, 153–155, 190
two linearly independent solutions, 193
Wiener process, 194–197

H

Heath-Jarrow-Morton (HJM), 141, 142–143
Heaviside step function, 370
Hedge, 4
Hedge ratio, 4
Hedging
delta, 102
with forwards and futures, 71–77
with value-at-risk, 291–292, 293f

Hedging, dynamic
Black-Scholes model, continuous-time

financial model, 64–65
derivative asset pricing in continuous

time, 65–71
Hedging, static
of barrier options, 355–362
dynamic vs., 4
replication of exotic pay-offs and, 52–59
replication of logarithmic pay-off,

364–367, 365f, 366f
HJM. See Heath-Jarrow-Morton
Ho-Lee (HL) model, 381–382, 384
Homogenous boundary, 153
Hull-White (HW) models, 129–134
lattice with zero drift, 389–392, 390f
trinomial lattice calibration, interest rate

trees and pricing in, 389–396, 397

I

Importance samplings, 261–262
Increments, 23
Inequality, 8
Insurance policies, 3
Integrable functions, 12
Interest rate(s), 8, 123. See also Short rate,

one-factor models for
European call option, Black-Scholes

equation and, 77–78
real-world, models, 146–148
receiver’s interest rate swap, 118, 119f
risk-free, 331
stochastic, 121–122

Interest rate trees
background theory, 379–380
binomial lattice calibration for discount

bonds, 381–384, 381f, 383f–384f
binomial pricing of forward rate

agreements, 384–385
calibration, pricing within

Black-Karasinski model and,
396–397

caplets, 385–387, 387f
floorlets, 387
swaptions, 387–389
trinomial lattice calibration, pricing in

Hull-White model and,
389–396, 390f

In-the-money option, 323–324, 323f
Itô. See Stochastic integrals

J

Jump process, 28

K

Kernels, 149–150
absorption or probability conservation

conditions, 226–229
barrier options, linear volatility models

and pricing, 172–178
barrier options, quadratic volatility

models and pricing, 178–189
barrier pricing formulas for

multiparameter volatility models,
229–232

barrier-free, 155f, 173, 180, 199–202,
227–228

Bessel families of state-dependent
volatility models, 215–218, 218–222
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Kernels (Continued)
Bessel process, barrier-free, no

absorption, 199–202
Bessel process, single lower finite barrier,

with absorption, 208–209
Bessel process, single upper finite barrier,

with absorption, 206–208
Bessel process, two finite barrier, with

absorption and, 202–206
Black-Scholes formulas, 161–163
double-barrier, 159, 230
European barrier option formulas for

geometric Brownian motion and
pricing, 160–168

function, 153
Green’s functions method for diffusion,

189–199
partial differential equations, 88–93
reduction-mapping for pricing, 214–215,

233–235
Kernels, single-barrier, 230
Brownian motion, driftless case and,

156–157, 157f
Brownian motion with drift and, 158–160
driftless case, 152–158
Wiener process, 152–160

Knockin options, 151–152, 162, 166–167,
173, 182, 346

Knockout options, 151–152, 166–167, 173,
182, 346, 353

double, 175–176, 177f, 178f,
185–187, 188f

Kolmogorov equation
backward, 36, 88, 90, 155, 168–169, 210,

214, 224
forward, 92, 189, 210–211, 215, 224

L

Lagrange adjoint, 189–190
Laplace transforms, 190–191
inverse, for Bessel process/Green’s

function, 200, 201f, 204f, 207, 209
inverse, for Green’s function and

diffusion kernels, 190–191,
194–196, 198

Lattice (tree) methods. See also Binomial
lattice model; Interest rate trees;
Trinomial lattice model

American options, 98–100, 340, 345, 353
calibration procedure of, 99–100
Crank-Nicolson option pricer, 349–350
European options, 334–345, 337–340
volatility, 338–339, 343–344, 350, 351

LIBOR, 144
LIBOR curve, 119
Likelihood ratio, 261
Linear approximation, value-at-risk,

sensitivity analysis and, 289, 290f, 291f
Linear ordinary differential equations, 192
Linear volatility models
double knockout options, 175–176, 177f
pricing kernels, barrier options and,

172–178, 179f
Local volatility. See State-dependent

volatility
Logarithmic pay-off, 363–364
static hedging, 364–367, 365f, 366f

Lognormal distribution, 40, 140, 338–339
Lognormal model, 243–245, 244f.

See also Black-Scholes formulas
Log-returns, quantile-quantile plot,

standardization and, 327–329, 329f
Long position, VaR for, 283–284, 284f
Lower-wall options, 152

M

Macdonald functions. See Bessel function
Market completeness, 7–8
Market risk, 240
Market strikes, 58
Market-risk model, 308
Markov chain, 25, 97
Martingales, 10, 26–31, 36, 82, 121
continuous square integrable, 28–30
definition of, 26–27
jump process and, 28

MC. See Monte Carlo methods
Mean square error
risk-factor aggregation, dimension

reduction and, 294–295
small, dimension reduction, 295–298

Measure, change of, 14
Measure theory, 12–13
Mellin integral, 190
MFLapack, 365, 370
Mgf. See Moment-generating function
Moment methods, 21–22, 264–266
Cornish-Fisher, 265
Johnson, 265–266

Moment-generating function (mgf)
Fourier transform of, 267–268

Money-market account, 10, 59–60
Monotonically decreasing function, 39, 218,

219, 228, 323f
Monotonically increasing map, 179,

228, 324
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Monte Carlo (MC) methods, 43, 268–287
calibration, 332–333, 333f
chooser option, 334–335, 335f
%& portfolios, variance reduction and,

261–264
multivariate normal distribution, 369–371
multivariate student t distribution,

371–373, 372f
perturbation theory, VaR and, 311–312
pricing equity basket options,

333–335, 335f
scenario generation, 331–332
value-at-risk for delta-gamma portfolios,

369–373, 372f
Multifactor models, 141–146
Brace-Gatarek-Musiela-Jamshidian with

no-arbitrage constraints, 144–146
Heath-Jarrow-Morton with no-arbitrage

constraints, 141, 142–143
Multivariate continuous distributions, 16–23
bivariate distribution, 20
characteristic function, 21–22
cumulative distribution function, 17–18
moments and, 21–22
probability densities and, 18–19

Multivariate normal distribution, 369–371
Multivariate risk factor models, 249, 250f
Multivariate student t distribution,

371–373, 372f

N

N-dimensional case, arbitrage detection,
formulation of arbitrage portfolios
in, 319–321

No-arbitrage constraints, 148
Brace-Gatarek-Musiela-Jamshidian

with, 144–146
Heath-Jarrow-Morton with, 141, 142–143

Nonanticipative function, 26, 30
Nonlinear Volterra integral equations, 110
Nonnegative portfolio, 15
Nonparametric density estimator, 243,

247–249
Normal distribution. See Gaussian

distribution
Null hypothesis, 258–259
Numeraire asset, 5, 46–47, 66

O

ODE. See Ordinary differential equation
Optimal stopping time formulation,

arbitrage-free pricing and American
options, 93–103

Options. See America options;
At-the-money option; Basket option;
Bermudan option; Bond options;
Butterfly spread option; Call options;
Chooser option; Compound options;
Currency option; Elf-X option;
European call option; European-style
futures options; Exotic options;
In-the-money option; Knockin option;
Out-of-the-money option; Pay-at-hit
one options; Perpetual double barrier
option; Plain-vanilla option; Put
options; Quanto option;
Stock options

Ordinary differential equation (ODE), 103
Ornstein-Uhlenbeck process, 32, 129
Out-of-the-money option, 323, 323f

P

Parameter estimation and factorization, 257
Partial differential equation (PDE), 36, 37.

See also Kolmogorov equation
backward, 155
Black-Scholes equation, 37, 49, 88–89,

90–91, 102–103, 107–108, 162, 325,
343–344, 349

Derman-Kani, 91–93
dual Black-Scholes equation, 90–91
Fokker-Planck equation, 89–90, 92
integrated equation formulation and,

106–112
for pricing functions and kernels,

88–93
Partition of D, 15
Parzen estimator, 248f, 311
Parzen model, 247, 248f, 249, 250f, 281f,

283, 285, 285f, 294
Path-integral, 141
Pay-at-hit one options, 152, 170
Pay-off (Payout), 3, 316–317
discounted expectation of future, 5, 9,

120–121
elementary, 152
exponential, 56–57, 57f
logarithmic, 363–364
nonnegative, 94
replication of exotic, 52–59
sinusodial, 57, 57f
stream, 5

Pay-off function, 3–4, 5
discounted, 262–263

PDE. See Partial differential equation
Perfectly liquid, 4
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Perfect-markets hypothesis, 5
Perpetual double barrier option
continuous-time financial models, 64
risk-neutral measures, derivative asset

pricing, 71
Perturbation theory, 306–312
error bounds, condition number and,

309–310
first-order perturbation property proof,

308–309
mixture model, 311–312, 311f
of return model, 308–312, 311f
value-at-risk well posed, 306–308

Plain-vanilla option, 173
Plain-vanilla structures, 116
Plain-vanilla swaps, 117–118
Portfolio, 316
arbitrage, 317–318
change in, 240
statistical estimations for %& , 255–261

Portfolio composition, 286–287
Portfolio immunization, 4
Portfolio models
value-at-risk, 251–254, 255f, 286–287

Portfolio-dependent estimation
portfolio decomposition and, 256–257

Positive definite, matrix, 18–19
Price, 4
Price vector, 315
Pricing measure, 9
Black-Scholes formulas, 120–127
bond future options, 126
bond options, 124
caplets, 123
continuous time, 67
futures-forward price spread, 124–125
single-period continuous case, 15–16
stock options with stochastic interest

rates, 121–122
swaptions, 122

Pricing theory
American options, 93–112
analytical pricing formulas, 210–232
arbitrage-free pricing, optimal stopping

time formulation and American
options, 93–103

Black-Scholes type formulas, 77–87
Brownian motion, martingales, stochastic

integrals and, 23–32
continuous state spaces in, 12–16
continuous-time financial models, 59–65
dynamic hedging and derivative asset

pricing in continuous time, 65–71
early-exercise boundary properties,

105–106, 107f

financial assets classes for, 3
forwards and European calls and puts,

46–52
geometric Brownian motion, 37–46
hedging with forwards and futures,

71–77
introduction to, 3–6
multivariate continuous distributions,

16–23
partial differential equations and

integrated equation formulation,
106–112

partial differential equations for pricing
functions and kernels, 88–93

perpetual American options, 103–105
single-period finite financial models in,

6–12
static hedging, replication of exotic

pay-offs and, 52–59
stochastic differential equations and Itô’s

formula, 32–37
Probability
historical, statistical or real-world, 6
implied, 6
risk-neutral (risk-adjusted), 9

Probability conservation, 226–229, 391
Probability densities, 89, 308
fast convolution method and, 270,

271f, 275
multivariate continuous distributions and,

18–19
of quadratic random variable, 270

Probability distribution function (pdf)
continuous, 13
joint, 16

Probability mass function, 13–14
Probability measures �, 12–13
Probability space, 6, 13
Probability theory, for random

variables, 12–13
Problem well posed, Hadamard, 307–308
Pull to par effect, 124
Pure discount bond. See Zero-coupon bond
Put option, 222
American, 48, 96, 107–109
struck at K and of maturity T, 48

Put-call parity, 48–51, 82, 322
in trinomial lattice model, 347–348

Put-call reversal symmetry, 83

Q

QR factorization, 260–261, 299–300
Quadratic random variable, 270
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Quadratic variation, 28–29
Quadratic volatility models
double knockout options, 178f,

185–187, 188f
with one double root, 224
pricing kernels, barrier options and,

178–189
x-space, F-space process, Bessel families,

224–226, 225f
Quantile-quantile plot, 244, 244f, 246f,

248f, 327–329, 328f, 329f
log-returns, standardization and,

327–329, 329f
Quanto option
Black-Scholes model, 79–80

R

Radon-Nikodym derivative, 14, 70, 262
Random variable, 6
Random-walk model, 242
with asymmetric t model, 247f
multivariate, 249
normal, 244f
with Parzen density estimate, 248f

Real estate, 3
Real-world returns, 241
Reduction-mapping, for pricing kernels,

214–215, 233–235
Redundancies, 4
Relative asset price process, 10
Relative returns, 242, 243f
Relative value-at-risk, 300–301
Return model, perturbation theory of,

308–312, 311f
Returns, 316–317
Rho (�), 51
Richardson’s extrapolation, 278–280, 280f
Riemann integrable, 273–275
Risk, causes of, 240
Risk factor, 4, 240
Risk factor models, 243–250, 255
asymmetric student’s t, 245–246, 247f,

281f, 283, 285, 285f
lognormal, 243–245, 244f, 281f,

285, 285f
multivariate, 249, 250f
Parzen, 247, 248f, 249, 250f, 281f, 283,

285, 294
Risk free, 4, 8
Risk-factor aggregation
95% VaR surfaces, 302f
99% VaR surfaces, 302f, 303f, 304, 304f

algorithm, dimension reduction method

1, 297–298

algorithm, dimension reduction method 2,

299–300

comparison of method 1 to 2 in, 301–303,

302f, 303f

dimension reduction and, 294–303

dimension reduction, optimization and,

303–306, 304f, 305t–306t

Lemma, 296–297

method 1, reduction with small mean

square error, 295–298, 301–303,

302f, 303f

method 2, reduction by low-rank

approximation, 298–300, 301–303,

302f, 303f

Risk-neutral conditional probability density,

40–41

Risk-neutral measure, 10, 46, 70, 121, 136f,

141, 143, 166

Risk-neutral pricing, 323–324, 324f

Risk-neutral (risk-adjusted) probability, 9,

345, 347–348

single-period asset pricing and, 318–319

R-tree, 392

Ruling out jumps, 120

Runge-Kutta method, 110

S

Scenario

in single-period models, 6

weighted, 261

Schmidt-Mirsky theorem, 299

Schur decomposition, 299–300

SDE. See Stochastic differential equation

Self-financing replication strategy, 62–63

Self-financing trading strategy, 62

Sensitivity analysis

trinomial lattice model, 348

value-at-risk, linear approximation and,

289, 290f, 291f

Short position, VaR for, 282, 282f,

283f, 311

Short rate, one-factor models for

Black-Karasinski, 396

bond-pricing equilibrium, 127–129

Cox-Ingersol-Ross, 129, 134–138

Flesaker-Hughston, 139–140

Hull-White, Ho-Lee and Vasicek,

129–134, 389–390, 390f, 392

Single-period asset pricing, 318–319
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Single-period finite financial models, 6–12
arbitrage, 7–8, 9
asset pricing fundamental theorem

(Lemma), 10–12
financial model, 7
portfolio and asset, 7
pricing measure, 10
scenario/probability space in, 6

Singular value decomposition (SVD), 376
Sinusodial pay-off, 57, 57f
Smooth pasting condition, 100–103, 101f
SPD. See Symmetric positive-definite (SPD)

matrix
Spectral shift, covariance matrix and,

376–377, 377f
S-plane, 200
Standard deviation, 19, 328
State-dependent asset price, 149
State-dependent diffusion problem.

See also F-space process
State-dependent volatility, 88, 149
Bessel families of, 215–222, 225, 225f

States of the world, 316
Stochastic continuity, 28–29
Stochastic differential equation (SDE),

30, 101
European call option, 40, 43
Feynman-Kac theorem, 36–37
geometric Brownian motion, 37–44
Itô’s formula (Lemma) and, 32–37,

142, 364
nonlinear transformations, 33–34
stock price process, 42

Stochastic integrals (Itô), 24–25, 27n5, 29–31
Stochastic interest rates, 121–122
Stochastic process, 5, 6
adapted process of, 60

Stochastic volatility, VaR, 292, 293f, 294
Stock options, 121–122
Stock price process, SDE, 42
Stocks, 3, 311
chooser basket options on two, 43–45

Stopping domain, 94, 95
Stopping time, 61
Straddles, 54
Strong law of large numbers, 29
Sturm-Liouville theory, 151, 200
eigenvalues, 203, 206
singular, 198
standard, 192, 197–198

SVD. See Singular value decomposition
Swaps
plain-vanilla, 117–118
receiver’s interest rate, 118, 119f
variance, 75–76

Swaptions, payer, 122, 140, 145–146
interest rate trees, 387–389, 396

Symmetric positive-definite (SPD)
matrix, 375

T

Taylor (%) approximations, 252
Taylor expansion, 33–34, 51, 196, 370
Theta ('), 51
Toronto Stock Exchange (TSE), 292
Trading strategy, 3–4
Transaction costs, 4
Transformation reduction methodology,

210–215
diffusion canonical transformation, 210,

211–212, 215
Fokker-Planck equation (Lemma),

210–211, 232–233
invertible variable transformation,

213–214
reduction-mapping for pricing kernels,

214–215, 233–235
Transition density, 84, 262
eigenfunction expansions for, 197–199

Transition probability density, 25, 220f
Transpose, 240
Trinomial lattice model
building, 341–344
calibration, 346
computing sensitivities, 348
drifted, 343–344, 352, 352f
Hull-White model pricing and calibration

of, 389–396, 390f
nondrifted, 342–343, 342f, 346, 347f,

352, 390f
pricing barrier options, 346–347, 346f
pricing procedure, 344–345, 345f
put-call parity in, 347–348

Trinomial lattice model, Hull-White
model and

downward branching model of,
390–392, 391f

first stage: lattice with zero drift,
389–392, 390f

normal branching of, 389, 390–392, 391f
pricing options, 395–396
second stage: lattice calibrations with drift

and reversion, 392–395
upward branching model of,

390–392, 391f
Truncation error, 254
TSE35, 292, 301, 303
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U

Underlyings, 3
Up-and-out call, 164–165, 173, 184–185,

352, 358–360
Up-and-out put, 164, 173, 358–360
Upper-wall options, 152
U.S. Treasury, 147f

V

Value process, 63
Value-at-risk (VaR), 239, 240f
95%, surfaces, 302f, 311f
99%, 302f, 303f, 304, 304f, 311f
absolute vs. relative, 300–301
algorithm, 257, 279, 288
Black-Scholes model, 251, 253–254, 255f
computing gradient of, 285–286
covariance estimation and scenario

generation in, 375–377, 377f
examples, 281–294
fast convolution method, 268–280, 281f
fat tails, 281–284, 282f-284f
gradient and portfolio composition,

286–287
gradient computation and, 287–289
hedging with, 291–292, 293f
for long position, 283–284, 284f
Monte Carlo (MC) methods, delta-gamma

portfolios and, 369–373, 372f
numerical methods for %& portfolios,

261–268, 288
perturbation theory, 306–312
portfolio models, 251–254, 255f
risk-factor aggregation, dimension

reduction and, 294–303
risk-factor models, 243–250
sensitivity analysis, linear approximation

and, 289, 290f, 291f
for short position, 282, 282f, 283f
simple formula of, 240–241
simulation results, 284–285, 285f
statistical estimations for %& portfolio

models, 251–254, 255f
stochastic volatility, 292, 293f, 294
well posed, 306–318

Variance reduction, 261–264
Variance swaps, 75–76
logarithmic pay-off, 363–364
static hedging, replication of logarithmic

pay-off, 364–367, 365f, 366f
Variation, 28–29

Varswaps, 364
Vasicek models, 129–134
Vega (#), 50
Visual Basic, 321
Volatility
Black-Scholes, 74, 225f, 343
in-the-money vs. out-of-the-money option,

323, 323f
lattice, 338–339, 343–344, 350, 351
stochastic, 292, 293f, 294

Volatility models
barrier pricing formulas for

multiparameter, 229–232
linear, 172–178, 179f
quadratic, 178–189, 179f
state-dependent, 88, 149, 215–222,

225, 225f

W

Weight function, 261
Weighted scenario, 261
Wiener process, 35, 41, 139, 150, 173, 189.

See also Browian motion
CEV model, 224
Green’s function, 194–197
quadratic model, 225f
single-barrier kernels for simplest models,

Brownian motion with drift and,
158–160

single-barrier kernels for simplest models,
driftless case and, 152–158

transformation reductionmethodology, 210
zero-drift, 179–180

Wingspreads, 54
Wronskian, 193, 194
Bessel function and, 200, 202, 206, 208,

216, 218, 236

X

X-space process, 150, 179, 185, 194, 210
absorption or probability conservation

conditions, 226–229
barrier pricing formulas for

multiparameter volatility models,
229–232

Bessel families of state-dependent
volatility models, 215–222

constant-elasticity-of-variance model,
222–224

generating function, 194, 215
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X-space process (Continued)
quadratic models, 224–226, 225f
reduction-mapping for pricing kernels,

214–215, 233–235
transformation reduction methodology,

210–215, 232–233

Y

Yield curve, 120

Z

Zero boundary condition, 156, 161, 173,
180, 185, 193, 197, 199, 202, 206

Zero drift, lattice with, 389–392, 390f
Zero-coupon bond, 8, 46–47, 55, 72, 106,

113, 114f, 141, 384f
bond-forward contract, 114–115, 115f
interest tree rates, 384f, 385, 388, 392,

394–397
Zero-time-decay condition, 100, 102
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