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Preface

This volume owes its existence to a brave initiative of J. Scott Bentley, Exec-
utive Editor of Elsevier Inc. Based upon my article ‘Economics, Strategies in
Social Sciences’ in the Encyclopedia of Social Measurement (Elsevier 2004),
Bentley expressed in August 2004 his interest in publishing a handbook on mea-
surement in economics, and asked me whether I would be interested to serve
as the editor-in-chief. I did not need much time to think about this challeng-
ing invitation. The Amsterdam Research Group in History and Methodology
of Economics had just concluded a project on Measurement in Economics, di-
rected by Mary Morgan. Morgan had successfully linked this Amsterdam project
to a project ‘Measurement in Physics and Economics’, at the Centre for Philos-
ophy of Natural and Social Science of the London School of Economics and
Political Science, which ran from 1996 to 2001, and was co-directed by Nancy
Cartwright, Hasok Chang, and Carl Hoefer. Another event that had an impor-
tant influence on the ultimate structure of this book was the 10th IMEKO TC7
International Symposium on Advances of Measurement Science, held in St. Pe-
tersburg, Russia, June 30–July 2, 2004. There, a number of different perspectives
on measurement employed in sciences other than engineering were examined.
For that reason, Joel Michell was invited to give his account on measurement
in psychology, Luca Mari to discuss the logical and philosophical aspects of
measurement in measurement science, and I was invited to give my account on
measurement in economics. Together with Ludwik Finkelstein and Roman Z.
Morawski, this multi-disciplinary exchange was very fruitful for developing the
framework that has shaped this volume.

A volume on Measurement in Economics with contributions from all the peo-
ple I had met when developing my own ideas about Measurement Outside the
Laboratory would be a perfect way to conclude this research project. In fact,
this volume is a very nice representation of the achievements of the many peo-
ple that were involved. From the beginning we attached importance to the aim of
having contributions from a broad range of backgrounds. We welcomed contri-
butions from practitioners as well as scholars, from various disciplines ranging
from economics, econometrics, history of science, metrology, and philosophy of
science, with the expectation that an intensive exchange among these different
backgrounds would in the end provide a deeper understanding of measurement
in economics. Thanks to all contributors I do think we attained this goal.

An important step towards the completion of this volume was an Author
Review Workshop that took place in April 2006, in Amsterdam, through the
generous financial support of Netherlands Organisation for Scientific Research
(NWO), Tinbergen Institute and Elsevier. At this workshop, the contributors pre-
sented their work to each other, which, together with the subsequent profound
discussions, improved the coherence of the volume considerably.
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There are many scholars who made a significant contribution to the project
but whose work is not represented in the volume: Bert M. Balk, Hasok Chang,
Francesco Guala, Michael Heidelberger, Kevin D. Hoover, Harro Maas, and Pe-
ter Rodenburg.

I would also thank the Elsevier’s anonymous referees who helped me improve
the structure of the volume and the editors at Elsevier: J. Scott Bentley (Ex-
ecutive Editor), Kristi Anderson (Editorial Coordinator), Valerie Teng-Broug
(Publishing Editor), Mark Newson and Shamus O’Reilly (Development Edi-
tors), and Betsy Lightfoot (Production Editor), and Tomas Martišius of VTEX
who saw the book through production.

Marcel Boumans
May 2007, Amsterdam
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CHAPTER 1

Introduction

Marcel Boumans

Department of Economics, University of Amsterdam, Amsterdam, The Netherlands
E-mail address: m.j.boumans@uva.nl

Abstract
Measurement in Economics: a Handbook aims to serve as a source, reference,
and teaching supplement for quantitative empirical economics, inside and out-
side the laboratory. Covering an extensive range of fields in economics: econo-
metrics, actuarial science, experimental economics, and economic forecasting,
it is the first book that takes measurement in economics as its central focus. It
shows how different and sometimes distinct fields share the same kind of mea-
surement problems and so how the treatment of these problems in one field can
function as a guidance in other fields. This volume provides comprehensive and
up-to-date surveys of recent developments in economic measurement, written at
a level intended for professional use by economists, econometricians, statisti-
cians and social scientists.

The organization of this Handbook follows the framework that is given in this
introductory chapter. It consists of four major parts: General, Representation in
Economics, Representation in Econometrics, and Precision.

1.1. Introduction

Measurement in economics is the assignment of numerals to a property of ob-
jects or events – ‘measurand’ – according to a rule with the aim of generating
reliable information about these objects or events. The central measurement
problem is the design of rules so that the information is as reliable as possi-
ble. To arrive at reliable numbers for events or objects, the rules have to meet
specific requirements. The nature of these requirements depends on the nature
of the event or object to be measured and on the circumstances in which the
measurements will be made.

Measurement in economics is not a unified field of research, but fragmented
in various separate fields with their own methodology and history, for instance
econometrics, index theory, and national accounts. This volume will discuss
these various fields of studies, which have developed their own specific re-
quirements for measurement, often independently of each other. Despite this
fragmentation it appears that these separate fields share similar problems and

Measurement in Economics: A Handbook © 2007 Elsevier Inc.
Marcel Boumans (Editor) All rights reserved



4 M. Boumans

have developed similar methods of solution to these problems. This volume is a
first attempt to bring these approaches together within one framework to facili-
tate exchange of methods and strategies.

To make comparisons of these – at first sight, quite different – strategies
possible and transparent, the scope of the strategies is strongly simplified to
a common aim of finding a ‘true’ value of a system variable, denoted by x.1

The reliability of measurement results can so be characterized by three features:
‘invariance’, ‘accuracy’ and ‘precision’. ‘Invariance’ refers to the stability of
the relationship between measurand, measuring system and environment. ‘Ac-
curacy’ is defined as the “closeness of the agreement between the result of a
measurement and a true value of the measurand” (VIM, 1993, p. 24), and ‘preci-
sion’ is defined as “closeness of agreement between quantity values obtained by
replicate measurements of a quantity, under specified conditions” (VIM, 2004,
p. 23). The difference between invariance, accuracy and precision can be illus-
trated by an analogy of measurement with rifle shooting, where the bull’s eye
represents the true value x. A group of shots is precise when the shots lie close
together. A group of shots is accurate when it has its mean in the bull’s eye.
When during the shooting the target remains stable this is a matter of invariance.

To explore these three requirements and to show how different strategies deal
with them, a more formal, though simplified, framework will be developed. For
all strategies, it is assumed that x is not directly measurable. In general, the
value of x is inferred from a set of available observations yi (i = 1, . . . , n),
which inevitably involve noise εi :

yi = F(x) + εi . (1.1)

This equation will be referred to as the observation equation.
To clarify the requirement of invariance, and of accuracy and precision when

control is possible, it is useful to rewrite Eq. (1.1) as a relationship between the
observations y, the system variable x, and background conditions B:

y = f (x,B) = f (x,0) + ε. (1.2)

The observed quantity y can only provide information about the system variable,
x, when this variable does influence the behavior of y. In general, however, it
will be the case that not only x will influence y, but also there will be many
other influences, B , too. To express more explicitly how x and other possible

1 ‘True value’ is an idealized concept, and is unknowable. Even according to the Classical Ap-
proach, as expressed in VIM (1993), it is admitted that ‘true values are by nature indeterminate’
(p. 16). In current evaluations of measurement results this term is avoided. The in metrology influ-
ential Guide to the Expression of Uncertainty in Measurement (GUM, 1993) recommends to express
the quality of measurement results in terms of ‘uncertainty’, see section Precision below and Mari
in this volume.
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factors (B) influence the behavior of the observed quantities, the relationship is
transformed into the following equation:

�y = �f (x,B) = ∂f

∂x
�x + ∂f

∂B
�B (1.3)

where ∂f/∂x and ∂f/∂B denote how much y will change proportionally due to
changes in x and B , respectively.

To achieve reliable measurement results, the following problems have to be
dealt with:

1. Invariance problem: ∂f/∂x is the element of Eq. (1.3) that expresses the re-
lation between the observed quantity y and the measurand x. This element
should be, as much as possible, invariant – that is to say, it has to remain
stable or unchanged for, and to be independent of, two kinds of changes:
variations over a wide range of the system variable, �x, and variations over
a wide range of background conditions, �B .

2. Noise reduction: Taking care that the observations are as informative as pos-
sible, or in other words, are as accurate and precise as possible, we have to
reduce the influences of the other factors B . In a laboratory, where we can
control the environment, this can be achieved by imposing ceteris paribus
conditions: �B = 0. For example, by designing experiments as optimally as
possible (discussed by Moffatt in Chapter 15) one can gain precision.

3. Outside the laboratory, where we cannot control the environment, accuracy
and precision have to be obtained by modeling in a specific way. To mea-
sure x, a model, denoted by M , has to be specified, for which the observations
yi function as input and x̂, the estimation of x, functions as output:

x̂ = M[yi;α] (1.4)

where α denotes the parameters of the model. The term ‘model’ is used here
in a very general sense; it includes econometric models, filters, and index
numbers (see also Chapter 6 in which Backhouse discusses other representa-
tions than those usually understood to be useful as models in economics).

Substitution of the observation equation (1.1) into model M (Eq. (1.4)) shows
what should be modeled (assuming that M is a linear operator):

x̂ = M
[
f (x) + εi;α

]= Mx[x;α] + Mε[ε;α]. (1.5)

A necessary condition for x̂ to be a measurement of x is that model M must be a
representation of the observation equation (1.1), in the sense that it must specify
how the observations are related to the measurand. Therefore we first need a
representation of the measurand, Mx . This specification should be completed
with a specification of the error term, that is, a representation of the environment
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of the measurand, Mε . As a result, accuracy and precision will be dealt with in
different ways. To see this, we split the measurement error ε̂ in two parts:

ε̂ = x̂ − x = Mε[ε,α] + (
Mx[x,α] − x

)
. (1.6)

To explore how this measurement error is dealt with, it may be helpful to com-
pare this with the ‘mean-squared error’ of an estimator as defined in statistics:

E
[
ε̂2]= E

[
(x̂ − x)2]= Var ε̂ + (x − Ex̂)2. (1.7)

The first term of the right-hand side of Eq. (1.7) is a measure of precision and the
second term is called the bias of the estimator (see also Proietti and Luati’s Sec-
tion 5.1 in this volume). Comparing expression (1.6) with expression (1.7), one
can see that the error term Mε[ε,α] is reduced, as much as possible, by reducing
the spread of the errors, that is by aiming at precision. The second error term
(Mx[x,α] − x) is reduced by finding an as accurate as possible representation
of x.

This splitting of the error term into two and the strategies developed to deal
with each part explains the partitioning of this volume. After a General Part
in which general and introductory issues with respect to measurement in eco-
nomics are discussed, there will be two parts in which the problem of obtaining
accurate representations in economics and in econometrics are looked at in turn.
The division between economics and econometrics is made because of the differ-
ences between strategies for obtaining accuracy developed in the two disciplines.
While there is an obviously stronger influence from economic theory in eco-
nomics, one can see that econometrics is more deeply influenced by statistical
theories. The last part of this volume deals with the first error term, namely Pre-
cision.

1.2. General

The dominant measurement theory of today is the Representational Theory of
Measurement. The core of this theory is that measurement is a process of assign-
ing numbers to attributes or characteristics of entities or events in such a way that
the relevant qualitative empirical relations among these attributes or character-
istics are represented by these numbers as well as by important properties of the
number system.

This characterization of contemporary measurement theory is heavily in-
fluenced by the formalist, representationalist approach presented in Krantz
et al. (1971, 1989, 1990). This formalist approach defines measurement set-
theoretically as: Given a set of empirical relations R = {R1, . . . ,Rm} on a set of
extra-mathematical entities X and a set of numerical relations P = {P1, . . . ,Pm}
on the set of numbers N , a function φ from X into N takes each Ri into Pi ,
i = 1, . . . ,m, provided that the elements x, y, . . . in X stand in relation Ri if and
only if the corresponding numbers φ(x),φ(y), . . . stand in relation Pi . In other
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words, measurement is conceived of as establishing homomorphisms from em-
pirical relational structures 〈X,R〉 into numerical relational structures 〈N,P 〉
(Finkelstein, 1975). Typically for this formalist approach is the requirement of
axioms characterizing the empirical relational structure. Then a ‘representation
theorem’ asserts that “if a given relational structure satisfies certain axioms,
then a homomorphism into a certain numerical relational structure can be con-
structed” (Krantz et al., 1971, p. 9).

In Chapter 2, Michell gives the historical background from which this ap-
proach arose. The development of the Representational Theory of Measurement
can be best understood in respect of developments in the philosophy of science
in the 20th century, in particular Patrick Suppes own specific view on theories,
the so-called Semantic View.2 According to the logical positivist (or empiricist)
account of theories, also referred to as the Syntactic View or Received View,
the proper characterization of a scientific theory consists of an axiomatization in
first-order logic. The axioms are formulations of laws that specify relationships
between theoretical terms. The language of the theory is divided into two parts,
the observation terms that describe observable objects or processes and theoret-
ical terms whose meaning is given in terms of their observational consequences.
Any theoretical term for which there are no corresponding observational con-
sequences is considered meaningless. The theoretical terms are identified with
their observational counterparts by means of correspondence rules, rules that
specify admissible experimental procedures for applying theories to phenom-
ena.

A difficulty with this method is that one can usually specify more that one
procedure or operation for attributing meaning to a theoretical term. Moreover,
in some cases the meanings cannot be fully captured by correspondence rules;
hence the rules are considered only partial interpretations for these terms. The
Semantic View solution to these problems is to provide a semantics for a theory
by specifying a model for the theory, that is, an interpretation on which all the
axioms of the theory are true. To characterize a theory, instead of formalizing
the theory in first-order logic, one defines the intended class of models for a par-
ticular theory. This view still requires axiomatization, but the difference is that it
is the models (rather than correspondence rules) that provide the interpretation
for the axioms (or theory). In short, a theory is in the Semantic View a family of
a finite number of axioms. A model is an interpretation of the undefined terms
of a theory that renders all the axioms of the theory simultaneously true.

Both the Semantic View and its related Representational Theory of Measure-
ment made one believe that modeling and measurement are only possible in
those fields that allow for axiomatization. At the same time, however, in vari-
ous fields in economics all kinds of numerical representations, sometimes also
called models, were developed with the aim of measurement without any onset

2 See also Chao in this volume. For surveys of model accounts, see Morgan (1998) and Morrison
and Morgan (1999).
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of axiomatization.3 Particularly, the practice of modeling in econometrics was
an answer to the question of how to find laws outside the laboratory (Morgan,
1990). Schlimm (2005) distinguishes between relation-rich and object-rich do-
mains. He observes that relation-rich domains, that are domains with few objects
and a rich relational structure, do not lend themselves to axiomatization, but for
object-rich domains, domains with many elements but with only few relevant
relations between them, axiomatization seems to be most appropriate. Some
structures simply do not lend themselves to axiomatization while this doesn’t
mean that modeling and measurement are impossible.

Michell (Chapter 2) shows that the development of the Representational The-
ory of Measurement was in particular a response to doubts about the possibilities
of measurement in psychology, which were induced by the above epistemolog-
ical discussions. Independent of these discussions, a science of measurement,
called metrology, arose. Contributions to this field come mainly from engi-
neers and deal with measurement in relation to instrumentation. Key concepts of
this engineering approach to measurement are explicated by Mari (Chapter 3).
According to this approach a formal characterization of measurement is not
complete, and therefore should be completed with a description of the structure
of the measurement process. A measurement process is a mutual measurand-
related interaction of three components: the object or event under measurement,
a measuring system and an environment. This approach emphasizes that mea-
surement as a homomorphic evaluation results from an experimental comparison
to a reference. In other words to characterize measurement the Representa-
tional Theory of Measurement is not sufficient and should be completed with
information about the measuring system and environment, usually obtained by
calibration. The result of this approach is a shift from a truth-based view, which
only reports directly about the state of the measurand, to a model-based view,
where a model includes the available relevant knowledge on the measurand, the
measuring system and the environment, see also Boumans in this volume.

To explore the various possible strategies to achieve accuracy and precision,
one should notice that there is a whole spectrum over which we have to discuss
this issue of reliability. At one end of this spectrum we are in the position of
full control of the measuring system and environment – the ideal laboratory
experiment – and at the opposite end, where we lack any possibility of control,
accuracy is obtained by careful modeling the measurand, measuring system and
environment.4

An ideal laboratory experiment assumes full control of background conditions
and full control of the ‘stressor’, x. Full control of background conditions is
usually understood as arranging a ‘sterile’, ‘clean’ or ‘pristine’ environment:
�B = 0 (ceteris paribus conditions) or B = 0 (ceteris absentibus conditions),

3 See for examples Morgan’s history of the measurement of the velocity of money in Chapter 5,
Backhouse’s chapter on Representation in Economics, and den Butter’s chapter on national accounts
and indicators.
4 See Boumans and Morgan (2001) for a detailed discussion of this spectrum.
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cf. Eq. (1.3). In such noiseless environment, we attempt to obtain knowledge
about the relationship between x and y (whether it is invariant and significant)
by varying systematically the stressor x:

∂f

∂x
= �y

�x
. (1.8)

At the opposite end of this spectrum of experiments are the so-called ‘natural
experiments’, where one has no control at all, and one is fully dependent on
observations only passively obtained:

�y = ∂f

∂x
�x + ∂f

∂z1
�z1 + ∂f

∂z2
�z2 + ∂f

∂z3
�z3 + · · · (1.9)

where the zi ’s represent all kinds of known, inexactly known and even unknown
influencing factors.

To discuss these latter kinds of experiment and to chart the kind of knowledge
gained from them, it is helpful to use a distinction between ‘potential influences’
and ‘factual influences’, introduced by Haavelmo in his important 1944 paper
‘The probability approach in econometrics’. A factor z has potential influence
when ∂f/∂z is significantly5 different from zero. Factor z has factual influence
when ∂f/∂z · �z is significantly different from zero. In practice, most of all
possible factors will have no or only negligible potential influence: ∂f/∂zi ≈ 0,
for i > n. So change of y is determined by a finite number (n) of non-negligible
potential influencing factors which are not all known yet:

�y = ∂f

∂x
�x + ∂f

∂z1
�z1 + ∂f

∂z2
�z2 + · · · + ∂f

∂zn
�zn. (1.10)

To find out which factors have potential influence, when one can only passively
observe the economic system, we depend on their revealed factual influence.
Whether they display factual influence (∂f/∂z ·�z), however, depends not only
on their potential influence (∂f/∂z) but also on whether they have varied suf-
ficiently for the data set at hand (�z). When a factor hasn’t varied enough
(�z ≈ 0), it will not reveal its potential influence. This is the so-called problem
of passive observation. This problem is tackled by taking as many as possible
different data sets into account, or by modeling as many as possible factors as
suggested by theory.

Generally, to obtain empirical knowledge about which factor has potential
influence without being able to control, econometric techniques (e.g. regression
analysis) are applied to find information about their variations:

�zj = gx�x + gy�y + g1�z1 + · · · + gn�zn (j = 1, . . . , n). (1.11)

5 Whenever this term is used in this chapter, it refers to passing a statistical test of significance.
Which statistical test is applied depends on the case under consideration.
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On the spectrum of experiments, ‘field experiments’ are considered to cover the
broad range between laboratory experiments and natural experiments: “Field
experiments provide a meeting ground between these two broad approaches to
empirical economic science” (Harrison and List, 2004, p. 1009). It is an experi-
ment in the field: outside the laboratory, however not in the wild, but on a piece
of cultivated land. So, similar to natural experiments, changes of y are deter-
mined by a finite number of non-negligible influencing factors which are not all
known. But now we have control of some of the influencing factors:

�y = ∂f

∂x
�x + ∂f

∂c1
�c1 + · · · + ∂f

∂cm
�cm + ∂f

∂z1
�z1 + · · · + ∂f

∂zk
�zk

(1.12)

where beside the stressor x, the ci ’s indicate the influencing factors which are
also controlled by the experimenter. The experimenter intervenes by varying
these control factors in a specific way, according to certain instructions or tasks,
�ci = Ii , where Ii represents a specific institutional rule assumed to exits in
the real world or a rule which is correlated with naturally occurring behavior.
Knowledge about these rules is achieved by other experiments or econometric
studies. Harrison et al. (Chapter 4) investigate how knowledge about one of these
experimental controls might influence the measurement results. This knowledge
depends on previous experiments or is based on theoretical assumptions. Mis-
specification of these controls may lead to inaccurate measurement results.

Each economic measuring instrument can be understood as involving three
elements, namely, of principle, of technique and of judgment. A particular strat-
egy constrains the choices and the combinations of the three elements, and these
elements in turn shape the way individual measuring instruments are constructed
and so the measurements that are made (see also Morgan, 2001). Morgan (Chap-
ter 5) provides examples of different measurement strategies; these different
strategies all have the common aim to measure the ‘velocity of money’. Interest-
ingly she observes in her history of the measurement of the velocity of money a
trajectory that may be a general feature of the history of economic measurement:
a trajectory of measuring some economic quantity by direct means (measure-
ment of observables), to indirect measurement (measurement of unobservables)
to model-based measurement (measurement of idealized entities).6 The latter
kind of measurement involves a model that mediates between theory and obser-
vations and which defines the measurand.

6 A similar study has been carried out by Peter Rodenburg (2006), which compares different
strategies of measuring unemployment.
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1.3. Representation in Economics

Finding an accurate representation of an economic phenomenon is a complex
process; representations are not simply derived from theory. Much background
knowledge is involved. Backhouse (Chapter 6) distinguish five different types of
knowledge that are involved with modeling: statistics, history and experience,
metaphysical assumptions, empirical representations and theoretical representa-
tions. Other studies of practices of model building in empirical economics and
econometrics (Morgan, 1988; Boumans, 1999) show that models have to meet
implicit criteria of adequacy, such as satisfying theoretical, mathematical and
statistical requirements, and be useful for policy. So in order to be adequate,
models have to integrate enough items to satisfy such criteria. These items in-
clude theoretical notions, policy views, mathematical concepts and techniques,
analogies and metaphors, empirical facts and data.

As we have seen above, in the Representational theory of Measurement, rep-
resentations of economic phenomena should be homomorphic to an empirical
relational structure. To be considered homomorphic to an empirical structure,
models have to meet specific criteria. In economics there are two different ap-
proaches: an axiomatic and an empirical approach. The axiomatic approach is
supported by the formal representational approach of Krantz et al. (1971). This
axiomatic approach has been most influential where (behavioral) economics and
(cognitive) psychology overlap, namely fields where decision, choice and game
theory flourish. Key example is von Neumann and Morgenstern’s (1956) Theory
of Games and Economic Behavior. Beside this often-referred application, the
axiomatic approach was also successful in index theory. Reinsdorf (Chapter 7)
shows that in axiomatic price index theory, axioms specify mathematical prop-
erties that are essential or desirable for a price index formula. One of the main
problems of axiomatic index theory is the impossibility of simultaneously sat-
isfying all axioms. In practice, however, a universal applicable solution to this
problem is not necessary. The specifics of the problem at hand, including the
purpose of the index and the characteristics of the data, determine the relative
merits of the possible attributes of the index formula.

National accounts, discussed by den Butter (Chapter 8), are examples of rep-
resentations that fulfill criteria of the empirical approach. This doesn’t mean that
these representations only fulfill empirical criteria, see Chapter 6. Other criteria
are: (1) consistency, (2) flexibility, (3) invariance, and (4) standardization. Con-
sistency of the data in the accounting scheme is crucial for its use in economic
analysis and policy. This consistency is guaranteed by using definitional equa-
tions and identities, which relate the various statistical sources to each other.
A consistent structure of interdependent definitions enables a uniform analysis
and comparison of various economic phenomena. Between these criteria there
are inevitably tensions, also between the requirements of accuracy and timeli-
ness of the estimates, which are extensively discussed by Fixler (Chapter 17).

Another important criterion for achieving reliable measurement results is that
the empirical relational structure is an invariant structure, see also Chao’s dis-
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cussion of structure (Chapter 11). In the axiomatic approach this invariance is
secured by the axioms. In the empirical approach, however, invariance has to be
verified empirically, which is hard outside the laboratory. Boumans (Chapter 9)
distinguishes two strategies to achieve this kind of invariance. One is by build-
ing models that not only represent the measurand but also the measuring system
and its environment, see also the metrological criteria discussed by Mari (Chap-
ter 3). The other strategy is calibration: the model parameters should represent
stable facts about the system under investigation.

1.4. Representation in Econometrics

Generally, the system under investigation is a dynamic system, xt+1 = Fxt ,
where t denotes time, and other lower case letters are vectors. Often it is as-
sumed that the system is a linear system, so a matrix, A = (αij ), can represent
it: xt+1 = Axt . As a result, accuracy, that is the reduction of (Mx[x,A] − x), cf.
Eq. (1.6), is obtained by finding an as accurate as possible representation – struc-
ture – of the economic system: ‖Axt − Fxt‖ ≈ 0, where ‖ · ‖ is a statistically
defined norm.

Standard textbook accounts of econometrics, assume that these structures are
provided by economic theory. It is then the task of econometrics to put empirical
flesh and blood on these theoretical structures. This involves three steps of spec-
ification. First, the theory must be specified in explicit functional – often linear –
form. Second, the econometrician should decide on the appropriate data defini-
tions and assemble the relevant data series for the variables that enter the model.
The third step is to bridge theory and data by means of statistical methods. The
bridge consists of various sets of statistics, which cast light on the validity of
the theoretical model that has been specified. The most important set consists
of the numerical estimates of the model parameters, A. Further statistics enable
assessment of the precision with which these parameters have been estimated.
There are still further statistics and diagnostic test that help in assessing the
performance of the model and in deciding whether to proceed sequentially by
modifying the specification in certain directions and testing out the new variant
of the model against data.

Gilbert and Qin (Chapter 10) take this standard account as starting point to
survey the developments and concerns that resulted from it. One of these con-
cerns was that more sophisticated estimation methods did not automatically lead
to an improvement of the validity of models. Another concern was whether the
three-steps way – specification, identification and estimation – was the golden
route to invariant structures. These concerns established doubt about whether
theory was such a good guide with respect to model specification. Gilbert and
Qin observe a shift in methodology: from a competitive strategy to an adaptive
strategy. This distinction is from Hoover (1995), who labels the standard econo-
metric textbook account as a competitive strategy: “theory proposes, estimation
and testing disposes” (p. 29). The adaptive strategy begins with an idealized and



Introduction 13

simplified product of the core theory. “It sees how much mileage it can get out of
that model. Only then does it add any complicating and more realistic feature”
(p. 29). Mayer (Chapter 13) discusses a similar ‘disagreement’ between these
two strategies.

Structure is one of the key concepts of measurement theory, including econo-
metrics. Surveying the literature on this subject, Chao (Chapter 11) observes that
structure has two connotations: one is that it refers to a system of invariant re-
lations and the other to a deeper layer of reality than its observed surface. They
are, however, connected. The latter connotation implies that we can only assess
that layer indirectly, we need theory to connect surface with the layers below.
The connection between the observations yi and the measurand x, denoted by F

in Eq. (1.1) is made by theory. As we have seen, in order to let the observations
y be informative about x, this relation must be stable across a broad range of
variations in both x and background conditions.

Magnus (Chapter 12) shows that one should not only use diagnostic tests to
assess the validity of the model specification, but also sensitivity analysis. Mor-
gan (Chapter 5) raises the issue that observations and measurements are always
taken from a certain position – observation post. This implies that the view of
the nearest environment of this position is quite sharp, detailed and complete, but
the view of the environment farther away becomes more vague, less detailed, in-
complete, and even incorrect. The question is whether this is a problem. Is it
necessary for reliable measurement results to have an accurate representation
of the whole measuring system plus environment? No, not necessarily, as Mag-
nus argues, but a reliability report should include an account of the scope of the
measurement: a sensitivity report.

Models contain two sets of parameters: focus parameters (α) and nuisance
parameters (θ ). The unrestricted estimator α̂(θ̃ ) is based on the full model, de-
noted by θ̃ , and the restricted estimator α̂(0) is estimated under the restriction
θ = 0. Magnus shows that the first order approximation of their difference can
be expressed as:

α̂
(
θ̃
)− α̂(0) ≈ ∂α̂(θ)

∂θ

∣∣∣∣
θ=0

θ̃ ≡ Sθ̃ (1.13)

where S denotes the sensitivity coefficient. In metrology, see Chapter 3, a sim-
ilar sensitivity coefficient is being used where it expresses the propagation of
uncertainty. In econometrics the choice between both estimators is based on
whether θ̃ is large or small (t- or F -statistics). However, it might be that the
model parameter is insensitive to this misspecification, that is, when S is small.

The empirical assessment of representations in economics and economet-
rics is not simply a matter of statistical significance. As Mayer (Chapter 13)
shows, for achieving accuracy one has to deal with the reliability of data, the
theory-data correspondence, and the possibilities of testing outside the labora-
tory. Besides these problems, which appears to be central to a lot of measurement
problems, as witnessed by the several chapters in this volume, Mayer discusses
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the problem of data mining: the repetition of operations until the desired results
are obtained. The problem is to validate the accuracy of these results. An im-
portant way to assess the results’ accuracy is to see whether these results can
be reproduced. Reproduction is the opposite of data mining. In VIM (1993)
reproducibility is defined as: “closeness of the agreement between the results
of measurement of the same measurand carried out under changed conditions
of measurement” (p. 24). The changed conditions might include: principle of
measurement, method of measurement, observer, measuring instrument, ref-
erence standard, location, conditions of use, and time. A similar strategy in
non-laboratory sciences is ‘triangulation’, see also Chapter 6. The term ‘trian-
gulation’ is often used to indicate that more than one method is used in a study
with a view to multiple checking results. The idea is that we can be more con-
fident about the accuracy of a result if different methods lead to the same result
(see e.g. Jick, 1979).

1.5. Precision

Precision is not defined in the 1993 edition of the International Vocabulary of
Basic and General Terms in Metrology, only closely related concepts as ‘repro-
ducibility’, see above, and ‘repeatability’, that is “closeness of the agreement
between the results of successive measurements of the same measurand carried
out under the same conditions of measurement” (VIM, 1993, p. 24). However,
comparing this 1993 version of the Vocabulary with the draft of the 3rd edition
(VIM, 2004), one will find a remarkable change of vocabulary. ‘Accuracy’ has
disappeared, and ‘precision’ is now introduced into the Vocabulary, see Intro-
duction above.

The reason for the disappearance of accuracy in the proposed 3rd edition is
a change of approach in metrology, from a Classical (Error) Approach to an
Uncertainty Approach; see also Mari in this volume for a more elaborate dis-
cussion of this change of approach. The Classical Approach took it for granted
that a measurand can ultimately be described by a single true value, but that
instruments and measurements do not yield this value due to additive ‘errors’,
systematic and random. In the new Uncertainty Approach, the notion of error
no longer plays a role, there is finally only one uncertainty of measurement. It
characterizes the extent to which the unknown value of the measurand is known
after measurement (VIM, 2004, p. 2). So, instead of evaluating measurement
results in terms of errors, it is now preferred to discuss measurement in terms
of uncertainty. Uncertainty is defined as the “parameter that characterizes the
dispersion of the quantity values that are being attributed to a measurand, based
on information used” (VIM, 2004, p. 16).

For the evaluation of uncertainty two types are distinguished. Type A evalua-
tion: by a statistical analysis of quantity values obtained by measurements under
repeatability conditions; and Type B evaluation: by means other than a statistical
analysis of quantity values obtained by measurement. Precision is often equated
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with Type A uncertainty. Discussions about how to achieve accuracy are rather
similar to the discussions about assessing Type B uncertainty.

Precision or Type A uncertainty can be objectively established for any chosen
metric, they are considered to be quantitative concepts. However, accuracy or
Type B uncertainty depends much more on qualitative knowledge of the mea-
surand itself and cannot be assessed in the same objective way. That objective
standards are not enough for evaluating measurement results is admitted in the
Guide to the Expression of Uncertainty in Measurement:

Although this Guide provides a framework for assessing uncertainty, it cannot substitute for
critical thinking, intellectual honesty, and professional skill. The evaluation of uncertainty is
neither a routine task nor a purely mathematical one; it depends on detailed knowledge of the
nature of the measurand and of the measurement. The quality and utility of the uncertainty
quoted for the result of a measurement therefore ultimately depend on the understanding,
critical analysis, and integrity of those who contribute to the assignment of its value (GUM,
1993, p. 8).

This is a remarkable position, which reinforces a longer existing assumed
connection between ‘intellectual honesty and professional skill’ and ‘precision’.
As Porter (Chapter 14) shows, precision creates trust: trust in the results, in the
measuring instrument, in the scientist, or who or what else is considered to be
responsible for the results. Because we do not know the true value – otherwise
we wouldn’t need to measure – accuracy is a highly problematic criterion to
validate the trustworthiness of a result. Precision, on the other hand, is a feature
that can be ‘objectively’ evaluated without knowing truth. Results that lie close
together gives trust in the measuring system, laboratory, or model. A drawback,
however, is that we indeed are not informed about the results’ accuracy. That
means that the aim for Precision does not preserve us from arriving at spurious
results, artifacts.

Precision is a quality of the measuring instrument, measurement system or ex-
periment. Optimal precision can be achieved by optimal design. Moffatt (Chap-
ter 15) unravels strategies for optimal experimental design.

A very old and simple method to reduce (‘filter’) noise is taking the arithmetic
mean of the observations (cf. observation equation (1.1)):

1

n

n∑

i=1

yi = F(x) + 1

n

n∑

i=1

εi = F(x). (1.14)

This method is, of course, based on the assumption that the errors are symmetri-
cally distributed around zero. Nonetheless, it is an early example of a model of
the errors, Mε .

Taking the arithmetic mean to reduce noise also implicitly assumes that the
observations are taken under the same conditions, the assumption of repeatabil-
ity. Repeatability, however, is a quality of a laboratory. Economic observations
are rarely made under these conditions. For example, times series are sequen-
tial observations without any assurance that the background conditions haven’t
changed. To discuss noise reduction outside the laboratory and at the same time
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to keep the discussion as simple as possible, we now take as observation equa-
tion:

yt = xt + εt . (1.15)

A broadly applied model taking account of changing conditions in economics –
indices, barometers, filters and graduation – is a weighted average of the obser-
vations:

x̂t =
n∑

s=−n

αsyt+s =
n∑

s=−n

αsxt+s +
n∑

s=−n

αsεt+s . (1.16)

To turn the observations yt into a measurement result x̂t , one has to decide on
the values of the weighting system αs . In other words, the weights have to be
chosen such that they represent the dynamics of the phenomenon (cf. Eq. (1.5)):

Mx[x;α] =
n∑

s=−n

αsxt+s (1.17)

and at the same time reduce the error term:

Mε[ε;α] =
n∑

s=−n

αsεt+s . (1.18)

Usually a least squares method is used to reduce this latter error term. Proietti
and Luati (Chapter 16) give an overview and comparison of the various models
that are used for this purpose.

Fixler (Chapter 17) discusses the tension between the requirement of preci-
sion and of timeliness. Equation (1.4) seems to assume immediate availability of
all needed data for a reliable estimate. In practice, however, this is often not the
case. Collecting data takes time; economic estimates are produce in vintages,
with later vintages incorporating data that were not previously available. This
affects the precision of early estimates.

1.6. Conclusions

Measurement theories have been mainly developed from the laboratory. In eco-
nomics, however, many if not most measurement practices are performed out-
side the laboratory: econometrics, national accounts, index numbers, etc. Taking
these theories as starting point, this volume aims at extending them to include
these outdoor measurement practices. The partitioning of this volume is based
on an expression (1.6) that represents the key problems of measurement:

ε̂ = x̂ − x = Mε[ε,α] + (
Mx[x,α] − x

)
.
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Measurement is the achievement of providing reliable numerical facts about
an economic phenomenon. The reliability of the measurement depends on two
qualities: accuracy (minimizing second term) and precision (minimizing first
term). The aim for accuracy requires modeling of the phenomenon, that is, de-
veloping accurate representations of the measurand. The achievement of this aim
for accuracy is neither a mechanical task nor a purely formalistic statistical one;
beside detailed knowledge and understanding of the measurand, it also requires
consistency and standardization.

Knowledge of the measurand includes knowledge about its invariant charac-
teristics, which is hard to find outside the laboratory. It involves a lot of theory
and expertise: “it is not a problem of pure logic, but a problem of actually know-
ing something about real phenomena, and of making realistic assumptions about
them” (Haavelmo, 1944, p. 29).

Models have two faces. On the one hand they represent the phenomena, on the
other hand they operationalize the measurand, that is, models define the measur-
and in observable terms. Accuracy concerns the ability of the model to measure
what we want it to measure. As den Butter (Chapter 8) and Fixler (Chapter 17)
both argue, it is therefore essential that the model definitions are consistent with
accounting schemes, or any other classification scheme. Accuracy, however, not
only depends on consistency with these schemes, but also on institutional accep-
tance of these schemes: standardization (see also Chapter 14 and Porter, 1994).

Precision has more to do with knowledge of the measuring system than
knowledge of the measurand. The improvement of precision can be achieved
by improvement of technique, model or experiment. Because it can be evaluated
by formal procedures it is sometimes confused with rigor, as has been shown
in a work with a nicely provoking title ‘Truth versus Precision in Economics’
(Mayer, 1993). Precision is one of the two legs on which the reliability of the
measurement stands; not only do we need expertise of the economic phenomena
but also expertise of the measuring systems being applied. This volume gives a
survey of current expertise in economics of both fields.
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CHAPTER 2

Representational Theory of Measurement
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The representational theory of measurement expands on the idea that measure-
ment is ‘. . . the correlation, with numbers, of entities which are not numbers’
(Russell, 1903, p. 158). It came with the twentieth century as part of Bertrand
Russell’s logicism. Then N.R. Campbell tailored it to quantitative physics and
used it to denounce measurement in psychology, which, in his turn, the psychol-
ogist, S.S. Stevens, defended, blending the representational idea with positivism
and operationalism. The theory was completely reconstructed by Patrick Suppes
and Duncan Luce, who argued that measurement in physics could be under-
stood as homomorphisms from empirical systems to numerical systems and
considered the possibility that measurement in psychology could be likewise
construed. Despite its shortcomings, their version provides an invaluable re-
source for those who believe that claims to be able to measure always require
evidential support.

2.1. Introduction

Measurement has characterised science since antiquity, and many have written
on its philosophy, but during the twentieth century an unprecedented number
of attempts were made to uncover its foundations. Such attempts generally em-
phasised one or more of three aspects: first, the processes of measuring (e.g.,
Dingle, 1950); second, the structure of measured attributes (e.g., Hölder, 1901
and Mundy, 1987); and, third, evidence that putative measurement processes
actually measure. It is to this third aspect that the representational theory of
measurement is most directly relevant.

Initially, the representational theory emerged from the philosophy of mathe-
matics, specifically, from changes in the understanding of what numbers are. In
the nineteenth century, increasingly abstract and formal theories made it difficult
to think of numbers as features of the real-world situations to which processes of
measurement apply. This raised the issue of why, if they are not real-world fea-
tures, they appear indispensable in measurement? One proposal was that while
numbers are not, themselves, features of the real world, they might serve to re-
present or model such features. On its own, this idea could never have energised

Measurement in Economics: A Handbook © 2007 Elsevier Inc.
Marcel Boumans (Editor) All rights reserved
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the flourishing sub-discipline that representational measurement theory became.
The energy derived from a controversy over psychological measurement. Crit-
ics used the representational idea to question the credentials of psychological
procedures and, in response, psychologists attempted to find space for these pro-
cedures within the representational paradigm.

Attempts at measurement in psychology were a product of scientism, the view
that new sciences should mimic the methods of physics. Opposing scientism
was empiricism, the view that knowledge claims are sanctioned only by ob-
servational evidence, which implies that measurement requires such evidence
of measurability. During the hegemony of logical empiricism, with its doctrine
that mathematics is devoid of empirical content, this empiricism found its clear-
est voice in the version of the representational theory of measurement that was
developed in the second half of the twentieth century.

2.2. The Traditional Theory and the Emergence of the Representational
Idea

The first to define measurement in representational terms (Michell, 1993) was
Bertrand Russell, who wrote that,

[m]easurement of magnitudes is, in its most general sense, any method by which a unique and
reciprocal correspondence is established between all or some of the magnitudes of a kind and
all or some of the numbers, integral, rational, or real, as the case may be (1993, p. 176).

By ‘magnitudes’ he meant the class of measurable attributes, that is, prop-
erties (such as mass or length) and relations (such as distance or velocity). He
proposed this definition after abandoning the traditional, ratio concept of num-
ber and embracing logicism, the idea that the truths and concepts of mathematics
derive exclusively from logic. The traditional concept was a development of the
Euclidean idea (see Book V of Euclid’s Elements (Heath, 1908)) that measure-
ment concerns ratios of magnitudes, where a ratio is understood as the relation
of ‘relative greatness’ (De Morgan, 1836, p. 29) between them. This concept in
turn sustained the ratio concept of number, expressed by Isaac Newton as the
idea that number is ‘the abstracted Ratio of any Quantity to another Quantity
of the same kind, which we take for Unity’ (1967, p. 2). The concept of ratio
tied those of magnitude and number together and meant that measurement was
defined as the estimation of the ratio between any magnitude and unit.

Otto Hölder (1901) grounded this understanding by defining the concept of
an unbounded, continuous quantitative attribute (i.e., the kind figuring in the
laws of physics) and proving that ratios of its magnitudes possess the structure
of the positive real numbers. Let any attribute of this sort be symbolised as Q;
specific magnitudes of Q be designated by a, b, c, . . . , etc.; let it be the case
that for any three magnitudes, a, b, and c, of Q, a + b = c if and only if c is
entirely composed of discrete parts a and b; then Hölder’s axioms of quantity
are as follows:
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1. Given any magnitudes, a and b, of Q, one and only one of the following is
true:

(i) a is identical to b (i.e., a = b and b = a);
(ii) a is greater than b and b is less than a (i.e., a > b and b < a); or

(iii) b is greater than a and a is less than b (i.e., b > a and a < b).
2. For every magnitude, a, of Q, there exists a b in Q such that b < a.
3. For every pair of magnitudes, a and b, in Q, there exists a magnitude, c, in

Q such that a + b = c.
4. For every pair of magnitudes, a and b, in Q, a + b > a and a + b > b.
5. For every pair of magnitudes, a and b, in Q, if a < b, then there exists mag-

nitudes, c and d , in Q such that a + c = b and d + a = b.
6. For every triple of magnitudes, a, b, and c, in Q, (a + b) + c = a + (b + c).
7. For every pair of classes, φ and ψ , of magnitudes of Q, such that

(i) each magnitude of Q belongs to one and only one of φ and ψ ;
(ii) neither φ nor ψ is empty; and

(iii) every magnitude in φ is less than each magnitude in ψ ,
there exists a magnitude x in Q such that for every other magnitude, x′, in Q,
if x′ < x, then x′ ∈ φ and if x′ > x, then x′ ∈ ψ (depending on the particular
case, x may belong to either class).

For example, for length, these axioms mean: 1, that any two lengths are the
same or different and if different, one is less than the other; 2, that there is no
least length; 3, that the additive composition of any two lengths exists; 4, that all
lengths are positive; 5, that the difference between any pair of lengths constitutes
another; 6, that the additive composition of lengths is associative; and 7, that the
ordered series of lengths is continuous (i.e., any set of lengths having an upper
bound (i.e., a length not less than any in the set) has a least upper bound (i.e.,
a length not greater than any of the upper bounds)). This is what it is for length
to be an unbounded continuous quantity.

Because magnitudes were understood as attributes of things, the traditional
view entailed that numbers are intrinsic features of the situations to which the
procedures of measurement apply. Consequently, the conceptual thread binding
number, magnitude and ratio would seem to unravel if either, (i) magnitudes
were denied a structure capable of sustaining ratios or, (ii) if numbers were not
thought of as located spatiotemporally. It was the first of these that applied in
Russell’s case. He stipulated that magnitudes are merely ordered (one magni-
tude always being greater or less than another of the same kind) and denied that
they are additive (i.e., denied that one magnitude is ever a sum of others) and
thus, by implication, denied that magnitudes stand in relations of ratio, thereby
severing the thread sustaining the traditional theory. His reasons were idiosyn-
cratic (Michell, 1997) and not accepted by his fellow logicists, Gottlob Frege
(1903) or A.N. Whitehead (see Whitehead and Russell, 1913), who treated logi-
cism as compatible with the ratio theory of number. Nonetheless, Russell, for
his own reasons, gave flesh to the representational idea, and it proved attractive.
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2.3. Early Representational Theory and Criticism of Psychological
Measurement

One of its first advocates was Campbell (1920 and 1928), who, applying it to a
distinction of Hermann von Helmholtz (1887), produced the concepts of funda-
mental and derived measurement. He distinguished measured quantities, such as
length, from measured qualities, as he called them, like density. Quantities, he
claimed, are like numbers in possessing additive structure, which is only iden-
tifiable, he thought, via specification of a suitable concatenation procedure. For
example, when a rigid straight rod is extended linearly by another adjoined end
to end with it, the length of these concatenated rods stands in a relation to the
lengths of the rods concatenated that has the form of numerical addition, in the
sense that it conforms to associative (a+[b+c] = [a+b]+c) and commutative
(a + b = b + a) laws, a positivity law (a + b > a), and the Euclidean law that
equals plus equals gives equals (i.e., if a = a′ and b = b′, then a + b = a′ + b′)
(Campbell, 1928, p. 15). Evidence that these laws are true of lengths could be
gained by observation. Therefore, thought Campbell, the hypothesis that any at-
tribute is a quantity raises empirical issues and must be considered in relation to
available evidence.

If, for any attribute, such laws obtain, then, said Campbell, numerals may
be assigned to its specific magnitudes. Magnitudes are measured fundamentally
by constructing a ‘standard series’ (1920, p. 280). This is a series of objects
manifesting multiples of a unit. If u is a unit, then a standard series displays a
set of nu, for n = 1,2,3, . . . , etc., for some humanly manageable values of n.
If an object is compared appropriately to a standard series, a measure of its
degree of the relevant quantity can be estimated and this estimate is taken to
represent the additive relation between that degree and the unit. The sense in
which measurements are thought to represent empirical relations is therefore
clear.

Campbell recognised that not all magnitudes are fundamentally measurable.
There is also derived measurement of qualities, which is achieved by discover-
ing constants in laws relating attributes already measured. He believed that the
discovery of such laws is a result of scientific research and must be sustained by
relevant evidence. An example is density. For each different substance, the ratio
of mass to volume is a specific constant, different say for gold as compared to
silver. The numerical order of these constants is the same as the order of degrees
of density ordered by other methods. Thus, said Campbell, these constants are
derived measurements of density, but the sense in which they represent anything
beyond mere order is not entirely clear from his exposition.

However, that the ratio of mass to volume is correlated with the kind of sub-
stance involved suggests that each different substance possesses a degree of a
general property accounting for its associated constant ratio. Because the effect
being accounted for (the constant) is quantitative, the property hypothesised to
account for it (viz., density) must likewise be quantitative, otherwise the com-
plexity of the property would not match the complexity of the effect. Although
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Campbell did not reason like this and never explained how derived measurement
instantiated the representational idea, it seems that it can.

When the British Association for the Advancement of Science established
the Ferguson Committee to assess the status of psychophysical measurement,
Campbell’s empiricism confronted psychologists’ scientism head-on: he insisted
that their claims to measure intensities of sensations be justified via either funda-
mental or derived measurement. Instead of doing this, he argued, ‘having found
that individual sensations have an order, they assume that they are measurable’
(Ferguson et al., 1940, p. 347), but ‘measurement is possible only in virtue of
facts that have to be proved and not assumed’ (Ferguson et al., 1940, p. 342).

While the failure of psychologists to produce evidence for more than order
in the attributes they aspired to measure was the basis for Campbell’s critique,
there is nothing in the representational idea per se that restricts measurement to
fundamental and derived varieties. Campbell had simply tried to translate the
traditional concept of measurement into representational terms and because the
former concept is confined by the role it gives to the concept of ratio, represen-
tational theory is thereby needlessly narrowed. Morris Cohen and Ernest Nagel
served the latter better when they wrote that numbers

have at least three distinct uses: (1) as tags, or identification marks; (2) as signs to indicate
the position of the degree of a quality in a series of degrees; and (3) as signs indicating the
quantitative relations between qualities (Cohen and Nagel, 1934, p. 294).

Use (1) is not something that Russell or Campbell would have called measure-
ment, but the representational idea does not exclude it. Use (2) is the assignment
of numbers to an ordered series of degrees to represent a relation of greater than.
For this, Cohen and Nagel required that the represented order relation be shown
by observational methods to match the ordinal properties of the number series,
such as transitivity and asymmetry. They called this use measurement of ‘inten-
sive qualities.’ Use (3) covered fundamental and derived measurement and their
treatment of these added little to Campbell’s, but the popularity of their textbook
meant that the representational idea was well broadcast.

However, inclusion of ordinal structures within representational theory only
highlighted psychology’s dilemma. If no more than ordinal structure is identi-
fied for psychological attributes, then the fact that psychological measurement
does not match the physical ideal is displayed explicitly, a point laboured by
critically minded psychologists (e.g., Johnson, 1936). By then, practices called
‘psychological measurement’ occupied an important place, especially attempts
to measure intellectual abilities (Michell, 1999). Psychologists had devoted con-
siderable energy to constructing numerical assignment procedures (such as in-
telligence tests), which they marketed as measurement instruments, but without
any observational evidence that the relevant attributes possessed the sort of struc-
ture thought necessary for physical measurement.

A key concept within the representational paradigm, and one that future de-
velopments traded upon is the concept of structure (see Chao, 2007). The sorts
of phenomena investigated in science do not consist of isolated properties or ob-
jects. Crucial to scientific investigation is the concept of relation. That a thing
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possesses a property is a matter involving it alone. For example, that Socrates is
male is a situation involving, in and of itself, no one but Socrates. However, that
a thing stands in a relation to something else involves not just that thing but the
thing that the relation is to, as well. For example, that Socrates is shorter than
Aristotle is a situation involving, in itself, both Socrates and Aristotle. To see
structure in things is to see how they are related. A house, for example, is not a
mere collection of bricks; it is the bricks in a definite spatial arrangement. That
is, a house is a relational structure. More generally, a structure is a class of things
together with one or more relations holding between the things in the class. For
example, an ordered structure is a class of things together with a transitive and
asymmetric relation holding between pairs of things within the class.

Such an understanding of the concept of structure gives a prominent place to
the concept of relation, but this concept is not unproblematic. For example, in
the relational situation of a book’s being upon a desk, we know what it is for
something to be a book and what it is for something to be a desk, but in what
does the uponness consist? A relation is not a third thing present in the situation,
so what is it? There is tradition within British empiricism of treating relations as
‘having no other reality but what they have in the minds of men’ (Locke, 1959,
p. 499). Since all scientific laws deal with relations of one sort or another, this
so-called ‘empiricist’ view has the unfortunate consequence of making science a
subjective construction of the human mind rather than an attempt to identify the
structure of independently existing systems (the realist view). Scientific realism
is better served by interpretations, such as Armstrong’s, which try to understand
relations objectively as ‘ways things are’ (1987, p. 97) independently of human
minds or practices. Nonetheless, the issue of the objective character of structure
was the fulcrum upon which the next development of the representational theory
turned.

The representational idea seemed to lack the flexibility psychologists wanted:
the represented attribute was understood to possess a definite, intrinsic struc-
ture (e.g., ordinal or additive) and it was this that was represented numerically.
Different possible structures could be explored theoretically and, in principle,
there is no end of these. However, considering these only threw the onus onto
psychologists to find evidence that the relevant attributes possessed structures of
the sort contemplated, thereby raising questions, not securing existing claims.
Russell, Campbell, and Cohen and Nagel saw the structure of the represented
attribute in an empirical realist way, in that natural structures were supposed
to exist independently of scientists and while scientists could possibly discover
the character of such structures, they had no room to postulate the existence of
desirable structures in the absence of relevant evidence. Russell thought that the
‘method of “postulating” what we want has many advantages; they are the same
as the advantages of theft over honest toil’ (1919, p. 71). In contrast, Stevens
(1946 and 1951) adapted representational theory to the demands of scientism by
allowing the structure of attributes to be thought of as constituted via operations
used to make numerical assignments.
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2.4. Representational Theory Operationalised

Stevens had developed the sone scale to measure sensations of loudness (Stevens
and Davis, 1938), an achievement the Ferguson Committee disputed (Ferguson
et al., 1940). However, he saw Percy Bridgman’s (1927) operationalism and
Rudolf Carnap’s (1937) logical positivism as philosophical tools for deflecting
Campbell’s objections. Carnap thought that logic and mathematics are systems
of symbols, each with a syntax (i.e., rules for constructing formulas and deduc-
tions) consisting of conventions, not empirical truths. Stevens agreed, holding
that ‘mathematics is a human invention, like language, or like chess, and men
not only play the game, they also make the rules’ (1951, p. 2). How come then
that successful applications of arithmetic are so ubiquitous? He responded that

the rules for much of mathematics (but by no means all of it) have been deliberately rigged to
make the game isomorphic with common worldly experience, so that ten beans put with ten
other beans to make a pile is mirrored in the symbolics: 10 + 10 = 20 (1951, p. 2).

However, if these rules are isomorphic with ‘common worldly experience’,
then they are not mere conventions lacking empirical content. But the mood of
the times was with him; the ‘received view’ being that arithmetic reduces to set
theory and the concept of the empty set. From this point of view, the number
system is a formal, axiomatic system devoid of empirical content, and numbers,
being sets, are thought of as ‘abstract entities.’ Any remaining vestiges of the
traditional theory were thereby exorcised.

Cohen and Nagel (1934) had noted that not all numerical representations
are the same. Stevens made this explicit, distinguishing four kinds of scales,
nominal, ordinal, interval, and ratio. He believed that kind of scale could be
determined by asking how the numerical assignments could be altered without
altering the scale’s purpose. Numerical assignments are always arbitrary to some
extent, but the degree of arbitrariness varies. Stevens held that in any case where
scale values might be altered, the purpose of making numerical assignments on
a ratio scale is unaltered (or invariant) only if all scale values are multiplied by a
(positive) constant (a positive similarity transformation); the purpose of making
numerical assignments on an interval scale is unaltered only if all scale val-
ues are multiplied by a (positive) constant and a (positive or negative) constant
is added (a positive linear transformation); the purpose of making numerical
assignments on an ordinal scale is unaltered if all scale values are altered by
an order-preserving function (an increasing monotonic transformation); and the
purpose of making numerical assignments on a nominal scale is unaltered if all
scale values are altered by a one-to-one substitution (a one-to-one transforma-
tion). These distinctions have merit, but scientism has no use for ordinal scales.
Stevens needed a licence to claim measurement on interval or ratio scales.

He believed (Stevens, 1939) he found it in Bridgman’s tenet that the meaning
of a concept is defined by the operations used to measure it, which implies that
the meaning of quantitative concepts, such as length, derives from measurement
operations and not from the attribute’s intrinsic character. Thus, he concluded
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that for a ratio scale, operations used to ‘determine’ equal ratios ‘define’ equal
ratios. The procedures used to construct his sone scale involved instructing sub-
jects to judge loudness ratios directly. Stevens took the resulting scale ‘at its face
value’ (1936, p. 407) as a ratio scale and, cocking his snoot at Russell’s scru-
ples announced that if this ‘is thievery, it is certainly no petty larceny’ (1951,
p. 41), thereby deriding the issue of whether loudness intensities stand in ratios
independently of the operations supposed to identify them.

This delivered the sort of conceptual pliability needed to claim measurement
without having to interrogate established methods in the way that realist inter-
pretations of representational theory required. It allowed psychologists to claim
that they were measuring psychological attributes on scales like those used in
physics (Michell, 2002). For the majority of procedures used in psychology
there is no independent evidence that hypothesised attributes possess even or-
dinal structure, but the received wisdom since Stevens is that ‘the vast majority
of psychological tests measuring intelligence, ability, personality and motivation
. . . are interval scales’ (Kline, 2000, p. 18).

2.5. The Logical Empiricist Version of Representational Theory

From an empirical realist point of view, if the only defence of psychological
measurement is to allow scale structure to be operationally defined via numer-
ical assignment procedures, then whatever its popularity, this manoeuvre is an
admission of the correctness of Campbell’s critique, for from the realist per-
spective, science attempts to investigate things as they are and not merely as
reconstructed by our procedures. Inevitably some psychologists rejected oper-
ationalism and reshaped representational theory to see if a genuine, empirical
defence of psychological measurement was possible (see Krantz et al. (1971),
Suppes et al. (1989) and Luce et al. (1990)). However, like Stevens, they re-
tained the logical positivist (now called ‘logical empiricist’) premise that number
systems are man-made constructions of abstract entities devoid of empirical con-
tent.

According to this version of representationalism, establishing a measurement
scale involves five steps:

1. An empirical system is specified as a relational structure, that is, as a non-
empty set of empirical objects of some kind together with a finite number of
empirical relations between them, where the issue of whether these objects
stand in these relations is empirically decidable.

2. A set of, preferably, empirically testable axioms is stated characterising this
empirical system.

3. A numerical system is identified such that a set of homomorphisms between
the empirical system and this numerical system can be proved to exist. This
is called a representation theorem.

4. A specification of how the elements of this set of homomorphisms relate to
one another is given. This is called a uniqueness theorem.
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5. If the weight of evidence supports the set of axioms, at least one of the ho-
momorphisms between the empirical and numerical systems is selected as a
scale of measurement for the relevant attribute.

The following examples illustrate these ideas, but hardly scratch the surface,
given the range of possible empirical systems elaborated by proponents of this
version. (See also Reinsdorf, 2007, for an example from economics.)

2.5.1. An empirical weak order

Consider a set, A, of rigid, straight rods of various lengths and the relation,
a spans b, holding between any pair of rods whenever the length of a at least
matches that of b (symbolised as b � a). For any pair of rods, whether this
relation holds can be decided empirically by, say, laying them side-by-side. This
set of rods and the spanning relation constitute an empirical system, A = 〈A,�〉.
Consider the following two axioms in relation to this system: for any rods, a, b,
and c in A,

1. If a � b and b � c, then a � c (transitivity);
2. Either a � b or b � a (connexity).

A system having this character is a weak order and any weak order is homo-
morphic to a numerical structure, N = 〈N,�〉 (where N is a subset of positive
real numbers and � is the familiar relation of one number being less than or
equal to another). That is, it can be proved (Krantz et al., 1971) that a many-to-
one, real-valued function, φ, exists such that for any rods, a and b, in A,

a � b if and only if φ(a) � φ(b).

That is, positive real numbers may be assigned to the rods where the magnitude
of the numbers reflects the order relations between the rods’ lengths. Further-
more, if ψ is any other function mapping A into N , such that

a � b if and only if ψ(a) � ψ(b),

then φ and ψ are related by an increasing monotonic transformation. Given that
axioms 1 and 2 above are true, φ is an ordinal scale of length.

It should be noted that the mapping from A to N is partial in the sense that
it is into only a subsystem of the positive real numbers. N is a subsystem of
the positive real numbers in two respects: first, N is typically only a proper sub-
set of the positive real numbers; and, second, the numerical relation, �, is just
one of the relations characterizing the complete system of positive real num-
bers. Clearly, then, representational theory does not preclude partial mappings.
Indeed, the following examples are also of partial mappings because the empiri-
cal systems described lack the continuity of the real numbers (see, for example,
Hölder’s 7th axiom). Instead, they are merely Archimedean systems.
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2.5.2. An empirical extensive system

Suppose that A, above, is augmented by including a ternary relation, Γ , which
holds between any three rods, a, b, and c whenever a ∗ b � c, where a ∗ b signi-
fies the rod formed by concatenating rods a and b end to end linearly. Consider
the following axioms for A′ = 〈A,�,Γ 〉, for any a, b and c in A (Suppes and
Zinnes, 1963):

1. If a � b and b � c, then a � c;
2. (a ∗ b) ∗ c � a ∗ (b ∗ c);
3. If a � b, then a ∗ c � c ∗ b;
4. If not a � b, then there is a c in A such that a � b ∗ c and b ∗ c � a;
5. Not a ∗ b � a;
6. If a � b, then there is a number n such that b � na (where the notation na is

defined recursively as follows: 1a = a and na = (n − 1)a ∗ a).

Such a system is an empirical extensive system. Axiom 1 is just transitivity;
axiom 2 is that ∗ is associative; 3 is a combined monotonicity (if two rods are
each concatenated with rods equal in length, any equality or inequality is pre-
served) and commutativity (order of concatenation is unimportant) condition;
4 is that concatenating some other rod with the shorter of any two can compen-
sate for any difference between them; 5 is that all rods’ lengths must be positive;
and 6 is an Archimedean condition (any rod, no matter how short, extended by
a finite number of replicas will span any other rod).

Suppes and Zinnes (1963) proved that a homomorphic mapping from any
extensive structure, 〈A,�,Γ 〉, into a subsystem of the positive real numbers,
〈N,�,P 〉 exists, where P is a ternary relation holding between any three pos-
itive real numbers, x, y, and z, whenever x + y � z. Furthermore, they proved
that any two such mappings are related by a positive similarity transformation.
Given that these axioms are adjudged true, any such mapping is taken to be a
ratio scale for length.

2.5.3. An empirical conjoint system

A conjoint system involves three attributes where increase in one is a function
of increase in the other two, as for example, mass increases with increases in
volume and/or density. Consider a set, B , of objects composed of various kinds
of homogeneous solid stuff, which differ in volume, such as lumps of various
minerals. Further, allow that if B contains a volume, x, of any such solid, say
volume x of pure gold, then B contains volume x of each other different kind of
stuff as well. Note that this does not require measurement of volume, only classi-
fication of sameness or difference in volume, which could be made via sameness
or difference of volumes of liquid displaced when the solids are completely
immersed. Hence, there exists a relation of equality of volume between some
elements of B . Likewise, since sameness of density is correlated with sameness
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of stuff, there is also a relation of equality of density between some elements
of B . This means that the equivalence class of volume and of density that it be-
longs to identifies each element of B . Let the set of volumes be V and the set of
densities, D, then B may be thought of as the Cartesian product of D and V , that
is, B = D × V . Finally, one further relation on the elements of B is required:
a weak order with respect to mass. This could be assessed using an equal-arm
pan balance such that when volume x of stuff a is placed on the first pan and
volume y of stuff b on the second, if the first pan does not drop, then the mass
of x of a does not exceed that of y of b (symbolised as 〈a, x〉 � 〈b, y〉). For
convenience, let 〈a, x〉 = 〈b, y〉 if and only if 〈a, x〉 � 〈b, y〉 and 〈b, y〉 � 〈a, x〉;
〈a, x〉 < 〈b, y〉 if and only if 〈a, x〉 � 〈b, y〉 and not (〈b, y〉 � 〈a, x〉); a < b if
and only if for all x in V , 〈a, x〉 < 〈b, x〉; and x < y if and only if for all a in D,
〈a, x〉 < 〈a, y〉. Consider the following axioms for B = 〈D × V,�〉 (Krantz et
al., 1971, p. 257):

1. For any a, b, and c in D and x, y, and z in V , if 〈a, y〉 � 〈b, x〉 and 〈b, z〉 �
〈c, y〉, then 〈a, z〉 � 〈c, x〉 (double cancellation).

2. Given any three of a and b in D and x and y in V , the fourth exists such that
〈a, x〉 = 〈b, y〉 (solvability).

3. Every strictly bounded standard series of elements of D and of V is finite
(Archimedean condition)

(where a strictly bounded standard series of elements of D is a series of equally
spaced elements of D, a1, a2, a3, . . . , an (for some natural number, n) (that is,
for any x and y in V , where x < y, and any b in D, where a1 < b, (i) 〈ai+1, x〉 =
〈ai, y〉 (for all i = 1, . . . , (n − 1)) and (ii) 〈an−1, x〉 < 〈b, y〉 � 〈an, x〉); and a
strictly bounded series of elements of V is analogously defined).

The relation, 〈a, y〉 � 〈b, x〉, may be interpreted as saying that the shift from
x to y in volume has at least as much effect upon mass as the shift from a to b in
density. Looked at this way, axiom 1 says that if the shift from x to y in volume
has at least as much effect upon mass as the shift from a to b in density and the
shift from y to z in volume has at least as much effect upon mass as the shift
from b to c, then (if these effects upon mass are additive) the shift from x to z

must have at least as much of an impact upon mass as the shift from a to c.
That is, it can be interpreted as a kind of additivity condition. Axiom 2 means
that the effect upon mass of any difference in volume can always be matched
by a difference in density, anywhere within the density attribute; and the effect
upon mass of any density difference can be similarly matched by a difference
in volume. That is, either degrees of both density and volume are equally finely
spaced or both are order dense in the same sense as the rational numbers. Finally,
axiom 3 says that the effect upon mass of a difference in volume, no matter
how great, can always be spanned by the sum of the effects of a finite number
of consecutive and equal density differences, no matter how small separately;
and vice versa. That is, relative to their effects upon mass, differences between
densities or between volumes are never infinitesimally small or infinitely large
relative to one another.



30 J. Michell

Krantz et al. (1971) proved that if a conjoint structure satisfies these axioms
then there exist functions, φ and ψ , into the positive real numbers, such that for
any a and b in D and x and y in V ,

〈a, x〉 � 〈b, y〉 if and only if φ(a) + ψ(x) � φ(b) + ψ(y).

Furthermore, they proved that if λ and θ are any other functions satisfying this
condition for a given conjoint structure, then λ and φ are related by a positive
linear transformation, as are θ and ψ also. That is, θ and ψ are interval scales of
density and volume. They are, in fact, logarithmic transformations of the scales
normally used in physics because, of course, if mass = density × volume then
log(mass) = log(density) + log(volume). So, equally, the above conjoint struc-
ture also admits of a multiplicative numerical representation, in accordance with
conventional practice in physics.

These examples illustrate the fact that the concept of scale-type derives
from the empirical system’s intrinsic structure (Narens, 1981) and not, as
Stevens thought, from the measurer’s purposes in making numerical assign-
ments. Recognising this has allowed for progress to be made with respect to
two problems.

The first is the problem of ‘meaningfulness’ (Luce et al., 1990). This prob-
lem arises whenever the structure of the system represented falls short of the
structure of the real number system itself. Then numerically valid inferences
from assigned numbers may not correspond to logically valid deductions from
empirical relations between objects in the system represented (Michell, 1986).

Following the lead of Stevens (1946) and Suppes and Zinnes (1963), Luce et
al. (1990) and Narens (2002) have attempted to characterise the meaningfulness
of conclusions derived from measurements in terms of invariance under admis-
sible scale transformations. Non-invariant conclusions are generally held to be
not meaningful. For example, consider the question of which of two arithmetic
means of ordinal scale measures is the greater? The answer does not necessarily
remain invariant under admissible changes of scale (in this case, any increasing
monotonic transformation). Hence, such conclusions are said not to be mean-
ingful relative to ordinal scale measures.

In so far as this issue has affected the practice of social scientists it relates to
qualms about whether the measures used qualify as interval scales or are only
ordinal, and, thus, to the meaningfulness of conclusions derived from parametric
statistics (such as t and F tests) with ordinal scale measures. Since many social
scientists believe that the existence of order in an attribute is a sign that the
attribute is really quantitative, recent thinking on the issue of meaningfulness
has considered the extent to which interval scale invariance may be captured by
conclusions derived from ordinal scale measures (Davison and Sharma, 1988
and 1990). For example, even though the concept of an arithmetic mean has,
itself, no analogue within a purely ordinal structure, calculation of means with
ordinal data may still be informative if it is assumed that the attribute measured
possesses an underlying, albeit presently unknown, interval scale structure.
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The second problem in relation to which this new understanding of scale-type
has facilitated progress is that of specifying the structural unity underlying each
type of scale. This will be exemplified here only for the case of ratio scales.
Quite different kinds of empirical systems are representable by ratio scales, for
example, extensive and conjoint systems, and indefinitely many others. How-
ever, all such systems share an underlying structural unity, a point hinted at
by the fact that proofs of the relevant representation theorems all employ the
same result, known in the literature as Hölder’s theorem (the proposition that
any Archimedean ordered group is isomorphic to a positive subgroup of the real
numbers). This theorem applies because when any empirical system admitting
a ratio scale representation is repeatedly mapped (or translated) into itself in
distinct but structure preserving ways, the resulting set of translations has the
structure of an Archimedean ordered group (Luce, 1987). For example, take an
extensive system, such as that described above. Suppose each rod in A is mapped
into a rod twice as long. Such a translation preserves both the ordinal and the
additive structure of the system, as does any other translation of A into A, where
each rod is mapped into one r-times as long (where r is any positive real num-
ber). The full set of all such translations constitutes an Archimedean ordered
group and because of this A is representable as a ratio scale. So without going
beyond the empirical system, the structural feature common to all systems ad-
mitting ratio scale representations is specified. The significance of this is that
it demonstrates the way in which ratio scalability is an intrinsic feature of the
empirical system represented.

2.6. Implications of the Logical Empiricist Version of Representational
Theory

Beginning with Ernest Adam’s (1966) paper, the logical empiricist version has
been subjected to numerous critiques. Many of these are based upon misun-
derstandings. For example, one common criticism concerns error. If data were
collected using objects and relations of the kinds specified in any of the above
examples, with the aim of testing the axioms involved, then as exact descrip-
tions of data, the axioms would more than likely be false. However, this is not a
problem for the representational theory because the axioms were never intended
as exact descriptions of data. From Krantz et al. (1971) to Luce (2005), it has
been repeatedly stressed that the axioms are intended as idealisations. That is,
they are intended to describe the form that data would have in various situa-
tions, were they completely free of error. In this respect, as putative empirical
laws, the axioms are no different to other laws in science. (On this issue see also
Boumans, 2007.)

It also goes without saying that its proponents are not claiming that such
axiom systems played a role in the historical development of physical measure-
ment. In so far as physics is concerned, as Suppes (1954) said at the outset, such
systems are mainly intended to display how ‘to bridge the gap between quali-
tative observations (“This rod is longer than that one”) . . . and the quantitative
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assertions demanded in developed scientific theories (“The length of this rod is
5.6 cm”)’ (p. 246). Even if no physicist ever subscribed to the representational
idea, the point of identifying axioms for empirical systems would not be lost.
Representationalism is a philosophical theory about how numbers get involved
in measurement and to have any plausibility, it must display a possible represen-
tational role for numbers in all instances of physical measurement. That the three
volumes of the Foundations of Measurement do this is an outstanding triumph.

However, for the social sciences, its point is different. If, as its proponents
maintain, this theory is the best available account of the role of numbers in
measurement (i.e., of the logic of measurement), and if it does not cover ‘mea-
surement’ in the social sciences, then the best available account of the logic of
measurement provides no justification for regarding these practices as instances
of measurement. While Luce (2005) thinks that some psychological practices
come close to meeting the requirements of representational theory, most, and,
significantly, psychometric testing, do not. As one psychometrician, reviewing
the Foundations of Measurement, noted, ‘It would be a good thing, in my opin-
ion, if we could restrain our use of terms such as “measurement” . . . in the
context of fields such as mental testing’ (Ramsay, 1991, p. 357). The argument
leading to such a recommendation rests on the premise that the logic of measure-
ment is representational, which in turn rests upon the claim that axiom systems,
like those for extensive and conjoint systems, obtain for all attributes measured
in physics. However, if no one in the history of physics has ever carried out the
relevant sets of observations (e.g., checking the behaviour of rigid straight rods
vis à vis the axioms of an extensive system), is it reasonable to dismiss the en-
tire class of psychometric practices from the category of measurement on the
grounds of what it is thought ideal observations would amount to? And is it not
strange that an empirical tradition pushes a seemingly non-empirical argument
so far?

However, commitment to empiricism does not preclude argument as a means
of confirming or falsifying hypotheses. Generally, in science, hypotheses are
confirmed or falsified in two ways. The first is the directly empirical method
of evaluating hypotheses in the light of relevant observational data. The sec-
ond is the less directly empirical method of judging hypotheses in the light of
propositions already accepted as true. In the clearest cases, a hypothesis (or its
contradictory) can be deduced (Philip Catton, 2004 provides some interesting
examples). Logical empiricists have tended to put the emphasis on the first way,
but as the present discussion shows, they rely upon the second also. So while no
one in the history of physics may ever have made observations relating directly
to the axiom systems for extensive or conjoint measurement, the relevant ques-
tion is, Are there any good reasons to believe that were such observations to be
made, the data would support the axioms?

And there are: viz., our theories of the attributes involved. Take the case of
length. If we come to the above example of an empirical extensive system armed
with a concept of length as an unbounded continuous quantity, in the spirit of
Hölder’s axioms, then, knowing what we do about rigid, straight rods and their
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behaviour in standard circumstances, we have no trouble inferring that the six
axioms given above are true. Also, in part, it is because we hold this theory that
we know that even if data failed to fit the axioms perfectly, the most plausible
explanation would be error in the data, not falsity of the axioms. We accept the
six axioms as true of the situation described and this is an inference from a theory
of length already endorsed. Of course, in accord with the values of science, this
theory is ultimately based upon observational evidence, but it is not based upon
direct tests of these six axioms or of any others.

The theory of length as a quantitative attribute takes length to be a relational
structure. However, the domain of the theory is not a set of objects, but a set
of attributes, viz., the set of all possible lengths. As captured, say, in Hölder’s
axioms, this set is understood as ordered by a greater than relation, this order
is thought of as continuous, and various lengths are taken to stand in additive
relations to others. As such, this relational structure is better suited, conceptu-
ally, to account for measurement than the extensive structure proposed earlier, if
only because no actual set of rigid, straight rods could ever instantiate all possi-
ble lengths. So, a more satisfactory version of the representational theory would
be one that shifted its focus from systems of directly observable objects to sys-
tems of attributes, not all of which need be directly observable. Brent Mundy
(1987 and 1994) and Chris Swoyer (1987) advocate this kind of shift, that is, re-
placing the logical empiricist version of the representational theory by a realist
version (‘realist’ in the sense that it takes attributes to be real and makes them
its centrepiece).

The fact that measurement of physical attributes occurs at all implies that
there must be something about the character of the relevant attributes that makes
it possible. While various kinds of relationships between objects may inform
us about the structure of attributes, it is that structure itself, which should be
central to measurement theory because in the final analysis, it is attributes that
are measured. We might loosely say that we measure a rod, but in fact it is the
rod’s length or weight or temperature, etc. that we measure. If, in measurement,
numbers represent, then it is attributes that they represent, not objects. (See also
Mari’s, 2007, treatment of ‘measured properties’.) When the logical empiricist
version is thought through, the realist version results.

With this shift, representational theory shifts towards the traditional theory,
to which Russell at first opposed it, the major remaining difference being a the-
sis about numbers. The realist version of representational theory tries to retain
the doctrine that numbers are abstract entities, ‘existing’, if at all, only outside
space and time. The traditional theory accepts numbers as relations between
magnitudes of unbounded continuous quantities and, so, as located wherever
such magnitudes are found. To the quantitative scientist, this difference might
seem irrelevant. Yet, if scientists use any philosophy it is naturalism, the view
that in attempting to understand nature’s ways of working, the realm of space
and time is world enough. Combining naturalism with the view that the system
of real numbers is defined by its structure (i.e., any system isomorphic to the
real numbers is an instance of them), Hölder’s result that the structure of ratios
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of magnitudes of unbounded, continuous quantities is isomorphic to the system
of positive real numbers entails that such ratios instantiate real numbers (for a
more detailed defence see Armstrong, 1997 and Michell, 1994).

There is another reason for moving from the realist version of representa-
tional theory to the traditional theory of measurement and this is that the former
entails the latter. Simply because representational theory is premised upon the
possibility of real-world systems being similar in structure to mathematical sys-
tems, it follows that there is no sharp divide between natural and mathematical
structures. Recognition of this has occasionally surfaced: Cohen believed that
mathematical systems ‘apply to nature because they describe the invariant re-
lations which are found in it’ (1931, p. 204); Nagel wrote that ‘if mathematics
is applicable to the natural world, the formal properties of the symbolic opera-
tions of mathematics must also be predicable of many segments of the world’
(1932, p. 314); and Narens and Luce noted that ‘in many empirical situations
considered in science . . . there is a good deal of mathematical structure already
present’ (1990, p. 133); but none acknowledged that if a theory requires a this-
worldly location for mathematical structures, then denying numbers a real-world
existence is hardly being consistent. When representational measurement theory
is worked-out consistently, the traditional theory follows.

This is not to deny that proponents of the representational theory have made
contributions to measurement theory of fundamental importance. The logical
empiricist version, with its emphasis upon characterising empirical systems via
sets of testable axioms has advanced our understanding of possible forms of em-
pirical evidence for the hypothesis that attributes are quantitative. Measurement
always starts with the hypothesis that an attribute is quantitative. This hypothesis
is always empirical in the sense that its truth is never logically necessary. Thus,
from a scientific perspective, its truth must always be assessed relative to avail-
able evidence. To the extent that this evidence depends upon direct observation,
the logical empiricist version has identified in detail, relevant, albeit idealised,
possible data structures, such as the above extensive and conjoint systems.

However, as noted, direct, observational evidence is not the only possible
kind. Sometimes hypotheses are tested relative to things already taken to be
true. Thus, while the hypothesis that, for example, density is quantitative could
be tested via conjoint measurement theory, this has never been done and cen-
turies before the theory of conjoint measurement was proposed, density was
already accepted as quantitative. Similarly, social scientists have long thought
that they have good reason to believe that their attributes are quantitative. For
example, psychologists typically reason (Michell, 2006) that if an attribute is
ordered, then it must be quantitative, although its quantitative structure may be
presently unknown. F.H. Bradley (1895) fleshed-out their argument as follows:
if degrees of an attribute admit of order, whenever one degree is greater than
another, the two must differ by some amount, with the greater degree being the
sum of the lesser and the difference between them; hence, the attribute must
possess additive structure and, so, be quantitative. Here is where the kinds of
analyses performed by proponents of the logical empiricist version may play
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another important role. Analyses of difference structures from Hölder (1901) to
Krantz et al. (1971) show that Bradley’s reasoning is invalid. There is no logical
necessity that differences between merely ordered degrees should be quantita-
tive. Whether they are is always an empirical matter.

Consider the kind of system that Krantz et al. (1971, p. 151) call an algebraic
difference structure. Suppose that C is an attribute, the degrees of which consti-
tute a strict simple order (i.e., the order on the degrees is transitive, asymmetric
and connected), and that the set of differences between degrees of C is weakly
ordered, such that for any a, b, c, and d , degrees of C, (a − b) � (c − d) means
that the difference between a and b is no less than that between c and d . Krantz
et al. (1971) give these axioms for this weak order on C × C. For all a, b, c, d ,
a′, b′, and c′ in C,

1. If (a − b) � (c − d), then (d − c) � (b − a).
2. If (a − b) � (a′ − b′) and (b − c) � (b′ − c′), then (a − c) � (a′ − c′).
3. If (a − b) � (c − d) � (a − a), then there exist d ′ and d ′′ in C, such that

(a − d ′) = (c − d) = (d ′′ − b).
4. Every strictly bounded standard series of elements of C is finite.

Krantz et al. (1971) prove that if the differences between degrees satisfy these
conditions, then they are quantitative and Hölder (1901) long ago gave a similar
proof. However, there is no necessity that axioms, such as 2 (which is analogous
to the double cancellation condition for conjoint systems in being an additiv-
ity condition) must be true. If the differences between degrees do not behave
as quantitative differences, then 2 will be false. These axioms display the psy-
chometricians’ fallacy by showing that qualitative increase is not necessarily the
same as quantitative increase.

This is important whenever the attributes that scientists aspire to measure are
experienced in the first instance only as ordered and, so, it calls into question
applications of Michael Heidelberger’s (1993 and 1994) ‘correlative’ theory of
measurement (for a discussion of which see Boumans, 2007). According to
this theory, one attribute, Y , may be measured via measurements of a second
attribute, X, if measures of X reflect the order of degrees of attribute Y , by
introducing a quantitative ‘measurement formula’ preserving this ordinal corre-
lation. Heidelberger (1993) had in mind Fechner’s (1960) proposal to measure
the intensity of sensations via the logarithm of the magnitude of the physical
stimulus eliciting the sensation involved, but it describes a pattern of practice
employed in the social sciences generally, viz., that of employing numerical in-
dices to measure ordinally associated attributes. The problem with this approach
is that if attribute Y is only ever experienced as ordinal (as Fechner conceded
is the case for sensation intensities), then any claim to measure Y in this way
begs the question of whether Y is actually a quantitative attribute. If uncertainty
over the issue of whether social and psychological attributes are really quanti-
tative is to be resolved, then those marks capable of distinguishing quantitative
from merely ordinal attributes in possible data sets need to be identified. To a
significant extent, this is what proponents of the representational theory of mea-
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surement have achieved and were social scientists serious about measurement,
they would attempt to employ this body of knowledge to test for quantitative
structure.

2.7. Résumé

The logical empiricist doctrine that mathematics is merely a useful language,
a system of symbols devoid of empirical content, is a tenacious view. Its ubiquity
seems to explain the popularity of the representational theory of measurement.
Yet this theory provides ammunition against that doctrine, for if the numerical
representation of empirical phenomena is premised upon structural identities
between empirical and numerical systems, then a structuralist interpretation of
mathematics (viz., that mathematics is the science of structure, per se) is pre-
sumed. Furthermore, once it is accepted that the fundamental concept in quan-
titative science is the concept of a quantitative attribute, it follows that before
measurement procedures are developed, quantitative attributes entail structures
identical to the real number system. That is, quantity and number are part of the
same package.

The representational theory of measurement could flourish only in an histor-
ical interlude between acceptance of non-empiricist views of mathematics and
recognition of the central place of the concept of quantity in quantitative sci-
ence. This is because it is based upon an inconsistent triad: first, there is the idea
that mathematical structures, including numerical ones, are about abstract enti-
ties and not about the natural world; second, there is the idea that representation
requires at least a partial identity of structure between the system represented
and the system representing it; and third, there is the idea that measurement is
the numerical representation of natural systems. The second and third ideas im-
ply that natural systems instantiate mathematical structures and when the natural
system involves an unbounded, continuous quantity, it provides an instance of
the system of positive real numbers. Thus the second two refute the first idea,
the principal raison d’être for the representational theory.

However, one feature of representational theory is of enduring importance.
While the concept of quantity concerns the deep, theoretical structure underly-
ing measurement, the range of empirical systems identified by proponents of
the representational theory deal with the kinds of observable, surface structures
enabling tests of features of quantitative structure. Cataloguing possible, sur-
face structures provides an invaluable resource for aspiring quantitative sciences
such as the human sciences to draw upon as they strive to expose the logical
gaps in the quantitative program initiated under the auspices of the ideology of
scientism and strive to test whether the attributes they deal with are not merely
qualitative but quantitative.
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Abstract
Words have nothing magic in them: there are no “true words” for things, nor
“true meanings” for words, and discussing about definitions is usually not so
important. Measurement assumed a crucial role in physical sciences and tech-
nologies not when the Greeks stated that “man is the measure of all things”, but
when the experimental method adopted it as a basic method to acquire reliable
information on empirical phenomena/objects. What is the source of this reli-
ability? Can this reliability be assured for information related to non-physical
properties? Can non-physical properties be measured, and how? This paper is
devoted to explore these issues.

3.1. Introduction

Measurement is an experimental and formal process aimed at obtaining and ex-
pressing descriptive information about the property of an object (phenomenon,
body, substance, etc.). Because of its long history and its so diverse fields of
application (see at this regards Morgan, 2007), the concept of measurement is
multiform and sometimes even controversial. Indeed, while the black box model
would interpret it as a “basic”, and actually trivial, operation (see Fig. 3.1),
measurement can become a complex and theory-laden process, as sketched in
Fig. 3.2 (Carbone et al., 2006).

For this reason I will discuss here about measurability according to a bottom-
up strategy: starting from what I suggest to be the simplest form of measurement
(so simple that in fact someone could even consider it not measurement at all)

Fig. 3.1.
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Fig. 3.2.

I will add, step by step, some of the elements leading to a more complete frame-
work for understanding the concept. The basic theses of the paper are:

– measurability is a specific case of evaluability;
– the measurability of a property conceptually depends on the current state of

the knowledge of the property, and therefore it is not an “intrinsic character-
istic” of the property;

– the measurability of a property operatively depends on the availability of ex-
perimental conditions, and therefore it cannot be derived solely from formal
requirements;

– the measurement of a property is an evaluation process aimed at producing in-
tersubjective and objective information; accordingly, measurement is a fuzzy
subcategory of evaluation: the more an evaluation is/becomes intersubjective
and objective, the more is/becomes a measurement.

Although somehow discussed in the following pages, I will assume here as
primitive the concepts of (1) property, (2) relation among objects and proper-
ties (variously expressed as “property of an object”, “object having a property”,
“object exhibiting a property”, “property applicable to an object”, etc.), and
(3) description related to a property. Objects under measurement are consid-
ered as empirical entities, and not purely linguistic/symbolic ones, and as such
the interaction with them requires an experimental process, not a purely formal
one: many of the peculiar features of measurement derive from its role of bridge
between the empirical realm, to which the object under measurement belongs,
and the linguistic/symbolic realm, to which the measurement result belongs.
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I do not think that words have something magic in them: there are no “true”
words for things, and discussing about definitions is usually not so important.
Accordingly, I surely admit that the same term measurement can be adopted
in different fields with (more or less) different meanings, and I do not think
that the identification of a unified concept of measurement is necessarily a
well-grounded aim for the advancement of science. On the other hand, a basic,
historical, asymmetry can be hardly negated:

– measurement assumed a crucial role in Physics not when the Greeks stated
that “man is the measure of all things”, nor when they decided to call “mea-
sure” the ratio of a geometrical entity to a unit, but when the experimental
method adopted it as a basic method to acquire reliable information on em-
pirical phenomena/objects;

– for many centuries measurement has been exclusively adopted in the evalua-
tion of physical properties, and it is only after its impressively effective results
in this evaluation that it has become a coveted target also in social sciences.

As a consequence, I will further assume that:

– a structural analysis of the measuring process for physical properties should
be able to highlight the characteristics which guarantee the intersubjectivity
and the objectivity of the information it produces;

– as far as the analysis is maintained at a purely structural level, its results
should be re-interpretable for non-physical properties.

3.1.1. Measurement as tool for inference

As any production process, measurement can be characterized by its aims. I sug-
gest that measurement is primarily a tool for inference, whose structure can be
sketched as in Fig. 3.3.

There:

– op1 is a sensing operation, by which some information on the current state of
a system, in the form of values of one or more of its properties, is acquired;

– op2 is a processing operation, by which some conclusions is inferentially
drawn from such values.

Fig. 3.3.
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The following examples of this process introduce in an evolutionary way
some of the topics which will be further addressed in this paper.

CASE 1. Two subsystems, x1 and x2, are identified, and the same property p is
evaluated on them (op1), thus obtaining the values p(x1) and p(x2). From the
comparison of these values the inference can be drawn (op2) whether x1 and
x2 are mutually substitutable as far as the given property is concerned. As the
resolution of the evaluation process increases (e.g., typically by increasing the
number of the significant digits by which the values p(xi) are expressed), the
inference result is enhanced in its quality.

CASE 2. The property p leads to a meaningful comparison in terms not only
of substitutability or non-substitutability, as in the Case 1, but also of ordering.
Hence, from p(x1) < p(x2) the inference can be drawn that x1 is “empirically
less” than x2 with respect to p. As the structure of the meaningful comparisons
increases (e.g., typically by identifying a p-related metric among subsystems),
the inference result is enhanced in its quality.

CASE 3. The values of n � 2 properties pi of the system x are constrained by
a mathematical expression, let us assume of the form pn = f (p1, . . . , pn−1). If
the properties p1, . . . , pn−1 are evaluated on x, then the inference can be drawn
that the value of the property pn of x is f (p1(x), . . . , pn−1(x)). Moreover, if
time variability of the properties pi is taken into account, pi(x) = pi(x(t)), and
the mathematical expression has the differential form:

dpi

dt
= f (p1, . . . , pn)

sometimes called canonical representation for a dynamic system (it can be noted
that several physical laws have this form, possibly as systems of such first-order
differential equations), then the inference becomes a prediction. The diagram in
Fig. 3.4 shows the basic validation criterion in this case: the values pi(x(tfuture))

obtained in tcurrent as inference result (op1a + op2) and by directly evaluating pi

in tfuture (system dynamics + op1b) must be compatible with each other.

Fig. 3.4.
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Fig. 3.5.

Furthermore, one or more property values could be specified as nominal (or
target) values instead of being evaluated: in the Case 1, for example, this would
lead to compare the values p(x) and p(nominal) to establish whether x is in
conformance with the given specifications with respect to p. The inference result
can be then interpreted as a decision on how to operate on x(tcurrent) so to obtain
the specified state x(tfuture) where therefore op3 is an actuation operation (see
Fig. 3.5).

In decision-making terms, the empirical outcome of having the current state
x(tcurrent) transformed to a different state x(tfuture) is achieved by acquiring some
information on the current state, then processing this information together with
the specifications which express the target values, and finally operatively carry-
ing out the decision. This structure shows a general, pragmatic, constraint put
on op1 and op2, as expressed in terms of the commutativity of the previous di-
agram: the empirical transformation x(tcurrent) → x(tfuture) and the composition
op1 + op2 + op3 must be able to produce the same results. Indeed, since the op-
eration op3 requires some empirical transformations to be performed, the good
quality of the result of op1 +op2 is not sufficient to guarantee the good quality of
the final outcome. On the other hand, a low quality empirical outcome must be
expected from a low quality result of op1 + op2, a principle sometimes dubbed
GIGO, “garbage in, garbage out” (this does not imply, of course, a related neces-
sary condition, given the evidence that sometimes the wanted empirical outcome
is obtained even from wrong decisions: since I am interested in arguing here
about measurement, and not good luck, intuition, role of individual experience,
etc., in decision, I will not deal with this kind of situations here).

In the jargon of the physical sciences and technologies, op1 can be performed
as a direct measurement, whereas a direct measurement followed by a op2 in-
ference is called a derived (or also indirect) measurement. In this sense, a data
processing operation is recognized to be a possible component of measurement,
provided that at least some of its inputs come from a direct measurement (and
not only from specifications, guesses, etc.).
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3.2. A Basic Model of Measurement

Not every object has every property. Given a property p, the domain of p, D(p),
is the set of objects {xi} having the property p, so that x ∈ D(p) asserts that the
object x has the property p. For example, if p is the property “length” then phys-
ical rigid objects usually belong to D(p), in the sense that they have a length,
but social objects such as organizations do not, since they do not have a length.
For a given property p and a given object x in D(p), the descriptive information
on p of x is denoted as ν = p(x) and it is called the value ν of p of x, as in
the syntagm “the value of the length of this table”, expanded but synonymous
form of “the length of this table”. Values of properties can be simple entities as
booleans, as in the case of the property “1 m length”, or they can be, for exam-
ple, vectors of numbers, as for the property “RGB color” by which each color
is associated with a triple of positive numbers. The set V = {νi} of the possible
values for p must contain at least two elements, so that the assertion p(x) = νi
conveys a non-null quantity of information, provided that the a priori probabil-
ity of the assertions p(x) = νj , i �= j , is positive, so that p(x) = νi reduces the
(objective or subjective) current state of uncertainty on the property value.1

Properties can be thus interpreted as (conceptual and operative) methods to
associate values to objects. Accordingly, the diagram:

graphically expresses the fact that p(x) = ν.
In this paper the following terminology will be adopted (see also ISO, 1993):

– measurement is a process aimed at assigning a value to a property of an object;
– the measured property is called a measurand; measurands can be both physi-

cal and non-physical properties; they can be as simple as the length (e.g., of a
rigid rod) or as complex as the reliability (e.g., of an industrial plant);

– the value p(x) obtained by measuring a measurand p of an object x expresses
the result of this measurement: therefore a measurement result is a descriptive
information entity on a property p of an object x.

The basic concept for operatively characterizing properties is mutual substi-
tutability: distinct objects can be recognized as mutually substitutable in attain-
ing a purpose. For example, objects which are different in shape, color, etc.,

1 This standpoint has been formalized in terms of a concept of quantity of information (Shannon,
1948). The quantity of information I (ν) conveyed by an entity ν depends inversely on the proba-
bility PR(ν) assigned to ν: as PR(ν) decreases, I (ν) increases. From a subjective standpoint, I (ν)
expresses the “degree of surprise” generated by the entity ν. The boundary conditions, PR(ν) = 1
(logical certainty) and P(ν) = 0 (logical impossibility), correspond respectively to null and infinite
quantity of information conveyed by ν. Hence, an entity ν brings a non-null quantity of informa-
tion only if V contains at least a second element ν′, such that I (ν′) > 0. The formal definition,
I (ν) = − log2(PR(ν)) bit, only adds a few details to this conceptualization.
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can be recognized as substitutable with each other as far as the purpose of fill-
ing a given round hole is considered. This recognition requires an experimental
comparison to be performed among candidate objects, aimed at assessing their
mutual substitutability. Since it does not involve any information handling, such
a process is integrally empirical, and as such it can be considered as a primitive
operation. Properties can be operationally interpreted in terms of this concept of
mutual substitutability: if two objects, x1 and x2, are recognized as mutually sub-
stitutable, then there exists a property p such that both x1 and x2 belong to D(p),
and their mutual substitutability is the empirical counterpart of p(x1) = p(x2)

(this position endorses a generalized version of operationalism, whose origi-
nal characterization, “the concept is synonymous with a corresponding set of
operations” (Bridgman, 1927), has been acknowledged as too narrow; indeed,
nothing prevents here that the same property is evaluated by different opera-
tions). As a consequence, for a given property p, an experimental comparison
process cp(x1, x2) can be available:

such that two objects x1 and x2 in D(p) can be compared relatively to p. The
process cp is formalized as a relation, so that cp(x1, x2) = 1 means that x1 and
x2 are recognized in the comparison substitutable with each other as far as p

is concerned, the opposite case being cp(x1, x2) = 0, where 1 and 0 correspond
thus to the boolean values ‘true’ and ‘false’ respectively:

In the simplest case the result of this comparison is formalized as an equivalence
relation: together with the immaterial condition of reflexivity, cp(x, x) = 1, and
the usually non critical condition of symmetry, cp(x1, x2) = 1 if and only if
cp(x2, x1) = 1, the relation cp is assumed to be transitive, if cp(x1, x2) = 1 and
cp(x2, x3) = 1 then cp(x1, x3) = 1. In more complex situations, both the re-
quirements of symmetry and transitivity can be removed, and cp can even be
formalized as a non-classical, multi-valued/fuzzy, relation. In particular, in the
case cp is assumed as a non symmetric relation the following representation will
be adopted:

3.2.1. Conditions for measurement

Measurement is recognized to be a peculiarly effective operation for obtaining
descriptive information on objects. In the course of history the reasons of this ef-
fectiveness have been looked for in both ontological characteristics of the object
and formal characteristics of the process:
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– measurement has been traditionally founded on the hypothesis that properties
have a “true value”, i.e., a value inherently existing in the object, which mea-
surement has the ability to determine or at least to approximate when errors
are experimentally superposed to it;

– more recently, measurement has been characterized as a process by which one
or more experimentally observed relations among objects are represented by
formal relations defined among property values.

With respect to other processes having comparable goals, measurement
claims the ability of producing information that is reliably intersubjective and
objective (Mari, 2003):

– intersubjectivity of measurement implies that its results can be interpreted in
the same way by different subjects, who from the same measurement result
are able to infer the same information on the measurand; this concept of in-
tersubjectivity corresponds formally to non-ambiguity and organizationally to
harmonization;

– objectivity of measurement implies that its results convey information only on
the object under measurement and the measurand, and not on the surrounding
environment, which also includes the subject who is measuring, nor on any
other property of the object.

This claim of intersubjectivity and objectivity is founded on the structural
characteristics of the measurement process: it is precisely the fact that mea-
surement can be characterized in a purely structural way, therefore not consid-
ering any requirement on the usage of physical devices, that leaves the issue
of measurability open to both physical and non-physical properties. Accord-
ingly, measurement is ontologically-agnostic: in particular, it does not require
measurands to have a “true value”, however this concept is defined, although
it does not prevent and is usually compatible with this hypothesis. The em-
pirical content of intersubjectivity and objectivity cannot be guaranteed to
measurement by formal constraints, with the consequence that any purely for-
mal characterization of measurement cannot be complete if it is not able to
model measurement as a process. This applies to both the classical definition
of measurement as ratio to a unit and the current representational definition of
measurement as scale homomorphism (Michell, 2007). Any model of measure-
ment should be able to describe the structure of the measurement process as a
means to obtain and express intersubjective and objective information on mea-
surands.

3.2.2. Structure of the measurement process

In its simplest structure, the measurement process of a measurand p of an ob-
ject x in D(p) can be described as follows:

1. preliminary stage (“reference construction”): an object s (“reference object”)
is chosen in D(p) such that:
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– the value ν1 = p(s) (“reference value”) is assumed to be known, possibly
because conventionally chosen; together with ν1, the value set V for p

contains a second value, ν0;

– an experimental comparison process is available, by which s can be com-
pared to other objects x in D(p), so that the value cp(s, x) can be deter-
mined;

2. determination (experimental) stage: the object under measurement x is com-
pared to the reference object s, and the value cp(s, x), either 1 or 0, is
experimentally determined;

3. assignment (symbolic) stage: the value p(x) is assigned according to the rule:
if cp(s, x) = 1 then p(x) = ν1, else p(x) = ν0 (Mari, 1997),

where thus a complete measurement process requires a calibration (first stage)
and a measurement (second and third stage). Therefore:

The result for this measurement process can be thus expressed as “p(x) = ν

in reference to s by means of cp”. Whenever distinct comparisons regularly
produce the same value, i.e., c′

p(s, x) = c′′
p(s, x) even if c′

p �= c′′
p , then the last

specification can be removed and measurement results are expressed more cus-
tomarily as “p(x) = ν in reference to s”.

The previous diagrams assume the simplified situation in which calibration
and measurement are performed synchronously, tcal = tmeas: this is seldom the
case. More generally, the reference object s should be then identified in its
state, s = s(t), that can change during time, i.e., s(tcal) �= s(tmeas) and therefore
cp(s(tcal), s(tmeas)) = 0. This highlights the inferential structure of measure-
ment:

and explains why the basic requirement on reference objects is their stability.
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The experimental and logical components required to perform a measurement
process of a measurand p of an object x (at least: a reference object s associated
to a reference value and a physical or logical device to perform the comparison
process leading to determine the value cp(s, x)) together constitute a measuring
system. Both the object under measurement and the measuring system are em-
bedded in an environment, whose presence generally influences the interaction
of the former two elements. Hence, a measurement process involves three mutu-
ally interacting entities: an object under measurement, a measuring system, and
a surrounding environment.

Accordingly, measurement can be thought of as a process aimed at formally
expressing the result of the experimental comparison of an object to a reference
relatively to a property, performed by the suitable usage of a measuring system
which interacts with the object in its environment.

The information obtained by a measurement process is:

– the more intersubjective the more the reference object s is stable and widely
available, so that the information obtained in the comparison can be trans-
ferred over the time and the space, and multiple subjects can perform the
comparison and obtain the same results;

– the more objective the more the comparison cp produces a value cp(s, x)

depending only on the stated entities (the property p, the reference object s,
and the measured object x), and not on any other entity of the surrounding
environment.

Intersubjectivity and objectivity are thus interpreted as varying in a gradual,
instead of sharp, way. By assuming the compliance to this structure as a re-
quirement for a process to be considered a measurement, a concept of quality
of measurement derives, such that different measurement processes can lead to
results of different quality, in terms of their intersubjectivity and objectivity. It
is indeed the quest for this quality that justifies an important part of the research
and development done in Measurement Science and Technology.

3.2.3. Pragmatics of measurement

Among the various pragmatic reasons for which measurement is performed,
two of them deserve specific attention for their structural implications: mea-
surement as a first stage of an inferential process, and measurement as a means
for determining the mutual substitutability of objects. Measurement can be per-
formed as a first stage of an inferential process: a value p(x) obtained by means



Measurability 51

of a process structured as presented above can be adopted as a premise in an
inference of the form “if p(x) = ν1 then q(x) = w1, else q(x) = w0”, where
q is a property such that x ∈ D(q) and W = {w0,w1} is the set of its possi-
ble values. In a more general form, the premise of the inference includes the
conjunction of two or more expressions “pi(x) = νj ”, each of them related to
a distinct property: “if p1(x) = · · · and p2(x) = · · · and . . . then . . .”. Physi-
cal laws are examples of this inferential structure, stating a mutual connection,
and therefore a regularity, among the involved properties. The whole process of
measurement of the measurands pi together with the application of the infer-
ence rule is called derived (or indirect) measurement. In the case the property
evaluated by the inference can be in its turn independently measured relatively
to a given reference object, the comparison between the results obtained in the
two situations for the same object x can be abductively adopted to validate both
the processes.

Measurement can also be performed as a means for determining the mutual
substitutability of distinct objects: in the case cp(s, x1) = cp(s, x2), and there-
fore p(x1) = p(x2), where x1 and x2 are distinct objects in D(p), such objects
can be inferentially assumed to be substitutable with each other with respect to
p, i.e., cp(x1, x2). Such an inference requires a peculiar form of transitivity of
the relation cp , i.e., cp(s, x1) and cp(s, x2) implies cp(x1, x2), which becomes a
transitivity in the case cp is symmetric. The fundamental role of this property is
witnessed by the first axiom in Book I of the Euclid’s Elements: “Things which
equal the same thing are equal to one another”.

3.3. Extensions to the Basic Model

We are now ready to introduce some extensions to the simple structure presented
above, with the aim of characterizing the measurement process with more details
and realism.

3.3.1. Reference as a set

The information, that relatively to the measurand the measured object is either
equivalent or not equivalent to the chosen reference object, can be sometimes
refined, i.e., quantitatively increased. A whole set of reference objects, S = {si},
i = 1, . . . , n, called a reference set, can be chosen such that:

– the reference objects can be compared to each other with respect to the mea-
surand, and any two distinct objects in S are not equivalent to each other,
cp(si, sj ) = 0 if i �= j , i.e., the objects in S are mutually exclusive with re-
spect to cp:
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– each reference object in S can be compared to the object under measure-
ment x, and ∃!si such that cp(si, x) = 1, being cp(sj , x) = 0 for all other
sj �= si , i.e., the objects in S are exhaustive with respect to cp:

– to each reference object si ∈ S a value νi = p(si) is associated; the value set
V for p is then assumed to be {νi}, i = 1, . . . , n:

Hence, the measurand value for x is assigned so that if cp(si, x) = 1 then p(x) =
νi , and the measurement result is therefore expressed as “p(x) = νi in reference
to S”:

3.3.2. Reference as a scale

The information, that relatively to the measurand the measured object is equiv-
alent to an element of the chosen reference set, can be sometimes qualita-
tively enhanced. The elements of the reference set S can be compared to each
other with respect to an experimental, measurand-related, relation Rp . Assum-
ing Rp to be binary for the sake of notation simplicity, such a relation is such
that:

– for each couple (si , sj ) of elements in S the fact that either Rp(si, sj ) = 1 or
Rp(si, sj ) = 0 can be determined, i.e., Rp is complete on S × S;

– a relation R among the elements of the value set V is present in cor-
respondence to Rp , such that, for each couple (si , sj ) of elements in S,
Rp(si, sj ) = 1 implies R(p(si),p(sj )) = 1, i.e., the experimental information
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obtained in the comparison process Rp is preserved by R when expressed in
terms of property values;

– the relation Rp is transferred by cp to the objects under measurement x ∈
D(p), so that if Rp(si, sj ) = 1 and cp(si, xi) = 1 and cp(sj , xj ) = 1 then
Rp(xi, xj ) = 1 and therefore R(p(xi),p(xj )) = 1.

A common relation for which such conditions hold is the experimental order-
ing <p , such that if si <p sj (the usual infix notation for <p (si, sj ) = 1) then
p(si) < p(sj ): that is why a reference set S equipped with a relation Rp is called
a reference scale. In this case measurement results are expressed as “p(x) = ν

in reference to 〈S,Rp〉”, where the couple 〈S,Rp〉 is called a relational system
(in more general terms, a set {Rp} of relations could be defined on S, so that
the relational system is the couple 〈S, {Rp}〉; this extension, immaterial for the
present discussion, is the main topic of the already mentioned representational
definition of measurement, in Michell, 2007).

Considered as a first stage of an inferential process, measurement based on
a reference scale leads to values that can be adopted as premises in inferences
such as “if p(xi) = · · · and p(xj ) = · · · and R(p(xi),p(xj )) = 1 then Rp(xi,

xj ) = 1”, which thus exploit the structure induced by Rp on D(p).
Since an n-ary operation is a specific (n + 1)-ary relation, Rp can be some-

times expressed as an operation Opp . Assuming Opp to be binary for the
sake of notation simplicity, Rp is ternary and Rp(si, sj , sk) = 1 if and only if
Opp(si , sj ) = sk . Therefore a binary operation Op on the value set V corre-
sponds to Opp , such that if Opp(si, sj ) = sk then Op(p(si),p(sj )) = p(sk).
Operatively important is the situation in which the binary operation Op has the
properties of a sum among values in V , and a procedure for the experimental
replication of the reference objects in S is available, i.e., the reflexive property
cp(si, si) = 1 assumes the operative meaning that the reference object si has a
clone. In this case if Opp(si , si) = sj then p(si) + p(si) = p(sj ), and therefore
p(sj ) = 2p(si). A reference object s1 can be then chosen so that p(s1) = 1,
with the role of scale unit by which the reference objects can be operatively
generated: s2 = Opp(s1, s1), s3 = Opp(s2, s1) = Opp(Opp(s1, s1), s1), etc., and
p(sn) = np(s1). Hence, in this case measurement results can be expressed as
“p(x) = n (in reference to) s1”, being s1 the chosen scale unit.

3.3.3. Traceability

The goal of enhancing the intersubjectivity of measurement can be obtained
by increasing the number of experimental situations, distinct in space and/or in



54 L. Mari

time, in which the same reference S (either a set or a relational system, possi-
bly equipped with a unit) is adopted. This requires S to be available to perform
the comparisons cp(si, x) which constitute the experimental component of mea-
surement. This problem is commonly dealt with by experimentally generating
some replicas Sx of S, and then iteratively generating some replicas Sx,y of the
replicas Sx until required, and finally disseminating these replicas to make them
widely available (according to this notation, Sx,y,z is therefore the zth replica
of the yth replica of the xth replica of S). The whole system of a reference S

and its replicas is therefore based on the assumption that cp(S,Sx) = 1 and that,
iteratively, cp(Sx, Sx,y) = 1, having suitably extended the relation cp to sets and
relational systems. Hence, an unbroken chain cp(S,Sx) = 1, cp(Sx, Sx,y) = 1,
cp(Sx,y, Sx,y,z) = 1, etc., makes the last term traceable to S, which thus has the
role of primary reference for all the elements of the chain:

such that for example:

Under this assumption of traceability, measurement results are still expressed
relatively to the primary reference S, even if this relation is only indirect, being
based on the transitivity of the relation cp . The basic characteristic of any given
replica Sx,y of a reference Sx is the guarantee that cp(Sx, Sx,y) = 1. This is
an experimental, not a formal, fact, which must be ascertained by operatively
comparing the two references, and modifying the state of the replica Sx,y in the
case cp(Sx, Sx,y) = 0, an operation called reference calibration (on the concept
of calibration see also Boumans, 2007).

As a traceability system grows in number of the disseminated replicas, its
primary reference becomes more and more intersubjectively important in the
measurement of the property under consideration: therefore, the quality of mea-
surement is not only a characteristic of the specific process under consideration
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but also implies some systemic components. A reference in a socially wide-
spread traceability system is called a measurement standard (or simply “stand-
ard”). The primary reference in a traceability system of measurement standards
is called “primary standard”, and the references used to operatively perform
measurements (instead of disseminating the primary standard) are called “work-
ing standards”. Hence, in a traceability chain the first and the last element are
the primary standard and a working standard respectively. The adoption of a
traceability system modifies the structure of a measurement process as fol-
lows:

1. preliminary stage, in which the adopted standard S is calibrated, i.e., its trace-
ability to a given standard is established, to assign a value p(si) to each
reference object si in S;

2. determination stage, in which the reference object s in S is identified such
that cp(s, x) = 1, being x the object under measurement;

3. assignment stage, in which the value p(x) = p(s) is assigned.

3.3.4. Asynchronous comparison by means of a calibrated sensor

Despite of the dissemination of standards by a traceability system, in some
routine measurements the object under measurement could not be directly com-
pared to a standard S to determine cp(si, x), because of the local unavailability
of a standard and/or even the unavailability of an experimental comparison
process cp which is synchronously applicable to si and the object under mea-
surement x. In these situations, measurement results can be sometimes obtained
by means of an asynchronous comparison between the object under measure-
ment and an available standard, through the mediation of a measuring trans-
ducer, usually called a sensor, i.e., a device d such that:

– d has an “output property” q which can be measured;
– d is able to interact with the objects in D(p), by modifying the value of its

output property in function of the value of p, which thus operates in this case
as an “input property”.

Because of this behavior, d is interpreted as a device transducing the measur-
and p to the output property q , so that the structure of the measurement process
is modified as follows:

1. preliminary stage (“sensor calibration”): the sensor d is systematically put
in interaction with an available standard S whose objects s ∈ D(p), and for
each s ∈ S the resulting value q(s) is measured; since the values p(s) are
assumed to be known, the set of the couples 〈p(s), q(s)〉, i.e., <measurand
value, corresponding output property value>, is recorded (“calibration data”),
possibly in the form of a “calibration function” c, c(p(s)) = q(s); such a
function associates a value for the sensor output property to each measurand
value obtained for a working standard (note that this characterization is in
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accordance with the definition of calibration given by the International Vo-
cabulary of Basic and General Terms in Metrology (VIM) (ISO, 1993): “set
of operations that establish, under specified conditions, the relationship be-
tween values of quantities indicated by a measuring instrument or measuring
system, or values represented by a material measure or a reference material,
and the corresponding values realized by standards”);

2. transduction stage: d is put in interaction with the object under measure-
ment x, and the corresponding value q(x) is obtained, called “indication”, or
“instrumental reading”, i.e., the value of the sensor output property for the
object under measurement;

3. assignment stage: the value p(x) is assigned according to the rule: the couple
〈p(s), q(s)〉 is found in the calibration data such that q(x) = q(s), and then
p(x) = p(s); this assignment assumes the calibration function c to be invert-
ible, so that from the indication q(x) the measurand value p(x) is assigned
such that p(x) = c−1(q(x)).

This justifies the interpretation according to which measurement and calibration
are inverse operations. Furthermore, a calibrated sensor embeds the information
on the standard against which it has been calibrated. This implies that calibrated
sensors can functionally operate as standards of a traceability system.

3.4. Relations With the Representational Point of View

I have already mentioned the current representational definition of measurement
as scale homomorphism. Given the status of “orthodox” measurement theory of
this point of view, it is worth highlighting the elements for which the concept of
measurement presented here differs from the representational one. To this goal,
I suggest that measurement, as any complex operation, can be described accord-
ing to multiple levels of abstraction. Beginning from a general description, more
and more specific characterizations can be obtained such that:

– each level specializes the previous one, being included in it as a special case;
– each level highlights some features of the operation that were ignored at the

previous level.

I conceive of four “levels of description” for measurement, as follows:

– Level A: measurement as generic evaluation;
– Level B: measurement as homomorphic evaluation;
– Level C: measurement as homomorphic evaluation resulting from an experi-

mental comparison to a reference;
– Level D: measurement as empirical operation.

In its most abstract interpretation, let us call it Level A description, measure-
ment is simply meant to be a generic evaluation, aimed at assigning a symbol
ν chosen from a given set V to any candidate object x of a set X and therefore
formalized as a function p :X → V . Such a function admits two complementary
interpretations, as it can be thought of as representing:
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– the property of the objects in X whose evaluation is expressed by means of
the symbols of V ;

– the operation by which the objects in X are mapped to the symbols in V .

Any function p induces an equivalence relation ≈p on its domain, such that
xi ≈p xj if and only if p(xi) = p(xj ), i.e., two objects are equivalent if and
only if they are associated to the same value by p: the subset of the objects
xi which are in this sense equivalent is an equivalence class, and therefore an
element of a partition of X, usually denoted by X/≈p . As a consequence, any
function p can be decomposed into:

– a “partition function” πp :X → X/≈p , which maps any object to its equiva-
lence class;

– a “labeling function” λp :X/≈p → V , which maps any equivalence class to
a value, and such that p(x) = λp(πp(x)).

This decomposition formally justifies the initial assertion on the role of mea-
surement of bridge between the empirical realm and the linguistic/symbolic
realm: the measurement of a property p of an object x corresponds to the em-
pirical determination of the ≈p-equivalence class which x belongs to followed
by the symbolic assignment of a value to this class. I see this as the main merit
of the Level A description, which on the other hand is unable to specify any
constraint on the evaluation (note that λp is 1–1 by definition), thus leading to a
far too generic description of measurement.

The available knowledge on the property p could guarantee that among the
objects in X one or more relations related to p can be observed together with the
≈p-equivalence. For example, objects xi and xj which are not ≈p-equivalent to
each other could satisfy an order relation <p such that as far as p is concerned xi
is not only distinguishable from xj , but also “empirically less” than it. In these
cases the labeling function λp must be constrained, so to preserve the available
structural information and to allow inferring that xi <p xj from p(xi) < p(xj ),
as from p(xi) = p(xj ) the conclusion that xi ≈p xj can be drawn. To sat-
isfy this further condition, p is formalized as a homomorphism: this Level B
description, which clearly specializes the Level A description, emphasizes in-
deed the constraints that a consistent mapping p satisfies, as formalized by the
concept of the scale type in which the property is evaluated. For example, an
evaluation performed in an ordinal scale is defined but a monotonic transforma-
tion, so that if p :X → {1,2,3,4,5} is ordinal then the transformed mapping
p′ :X → {10,20,30,40,50} such that p′(x) = τ(p(x)), where τ(y) = 10y,
conveys exactly the same information as p. Hence, each scale type corresponds
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to the class of the allowable transformation functions τ :V → V ′ which preserve
the relations defined on X.2

I see this link with the concept of scale type as the main merit of the Level
B description, which on the other hand is unable to specify any constraint on
the evaluation that guarantees its intersubjectivity and objectivity, thus leading
to a description of measurement that is still too generic. The Level B description
expresses the representational point of view to a theory of measurement.

The model of measurement that has been presented in the previous pages
corresponds to the Level C description, which characterizes measurement as a
homomorphic evaluation resulting from an empirical comparison to a reference.
Indeed, if a reference scale is available for the property p such that, for example,
an experimental order <p is defined between reference objects, then the above
specified conditions on the scale require that:

– the experimental information related to the order <p must be preserved in
terms of the symbolic order < defined among property values:

– the order <p is transferred by the comparison process cp to the objects under
measurement x, so that if si <p sj and cp(si , xi) = 1 and cp(sj , xj ) = 1 then
also xi <p xj and therefore p(xi) < p(xj ):

2 As a corollary of this definition, it can be easily shown that the transformation functions τ are in-
jective, i.e., map distinct arguments to distinct values. The algebraically weakest, and therefore more
general, scale type is the nominal one, for which the only preserved relation is the ≈p -equivalence,
so that the only constraint on its transformation functions is injectivity. Each other scale type spe-
cializes the nominal one by adding further constraints to injectivity, for example monotonicity for
the ordinal type and linearity for the interval type. It is precisely this common requirement of injec-
tivity that justifies the fact that the transformation functions preserve the information acquired in the
experimental interaction with the object under measurement, as expressed in the recognition of its
membership to a given ≈p -equivalence class.
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Therefore, the following chain of implications holds:

– if a reference scale is defined for p;
– and if for a given couple of reference objects si , sj such that si <p sj the

conditions hold that cp(si , xi) = 1 and cp(sj , xj ) = 1;
– then also xi <p xj and therefore p(xi) < p(xj ).

This result is easily generalized to any relation Rp , and shows that the condi-
tion of homomorphism for the objects under measurement trivially follows from
the condition of homomorphism for the reference objects, and therefore that the
Level C description specializes the Level B one. I see the introduction of the
concept of (traceable) reference and the formalization of the experimental com-
parison between the object under measurement and the reference as the main
merit of the Level C description, which maintains an abstract connotation on the
specific methods adopted to experimentally perform such a comparison.

Finally, a Level D description can be envisioned, which further specializes
the Level C description by identifying the empirical operations performed to
compare the object under measurement to the assumed reference. In the previ-
ous pages two of such methods have been introduced, namely, the synchronous
direct comparison and the asynchronous comparison mediated by a measuring
transducer. Descriptions of measurement methods can be found in most techni-
cal books on measurement. Also standard documents such as the International
Vocabulary of Basic and General Terms in Metrology (VIM) (ISO, 1993) list
them in various ways (indeed, according to the VIM, “measurement methods
may be qualified in various ways such as: substitution measurement method; dif-
ferential measurement method; null measurement method; direct measurement
method; indirect measurement method”).

If, as I am suggesting, it is the Level C description the one which specifically
highlights the characteristics of measurement, the question arises whether the
representational point of view (Level B) can be properly considered a theory of
measurement. At this regards a serious ambiguity must be preliminarily solved,
related to the status of the relations defined among the objects in X: is their ob-
servability an experimental requirement or just a logical one? That is: should
the relations Rp be directly observed as the result of an experimental compari-
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son process Rp(xi, xj ), or can their existence be inferred from the comparisons
R(p(xi),p(xj ))?

The Level C description only requires the experimental observability of
the relations Rp(si, sj ), that generate the reference scale, not necessarily of
Rp(xi, xj ). Let us at first assume that also the Level B description allows the
relations Rp to be obtained indirectly (let us call this a weak representational
point of view). Accordingly, Level C specifies Level B, which is not a theory of
measurement only because too generic: the weak representational point of view
gives a necessary but not sufficient condition to characterize measurement. If, on
the other hand, the relations among the objects in X are required to be directly
observable (a strong representational point of view), the situation becomes more
complex: a property evaluation could satisfy all the Level C requirements and at
the same time the relations Rp(xi, xj ) could remain unobserved. The strong rep-
resentational point of view gives neither a sufficient nor a necessary condition
to characterize measurement (a further discussion on this subject can be found
in Mari, 2000).3

3.5. Quality of Measurement

I have already considered that, as for any production process, measurement
should be evaluated relatively to the quality of its products, i.e., measurement
results. The quality of measurement results has been traditionally accounted for
in terms of error, i.e., difference of the reported measurand value and the true
value of the measurand itself, thus seeking an ontological solution to a prag-
matic problem. I suggest that the inconclusiveness of many analyses on this
topic depends on the lack of a clear distinction between the empirical realm and
the linguistic/symbolic one. Indeed, the cultural tradition from which the very
concept of measurement grew up, from the Pythagorean school, to Euclid, to
Galileo, to Gauss, to Kelvin, grounded measurability on the assumption that
“numbers are in the world” (as Kepler wrote in his Letter to Michael Maestlin,
1595).

Measurement was interpreted as a process of discovery of entities that are al-
ready in the object under measurement, so that measurement results would be
empirically determined, i.e., “extracted” from the underlying objects. Quanti-
ties would be themselves inherent characteristics of objects, the concept of true
value for a quantity simply being the coherent outcome of this standpoint. On
the other hand, in about the last 100 years a pivotal concept appeared, and more

3 In its usual interpretation, is the representational point of view strong or weak? Let us take into
account a classical definition at this regards: “Measurement is the assignment of numbers to prop-
erties of objects or events in the real world by means of an objective empirical operation, in such
a way as to describe them. The modern form of measurement theory is representational: numbers
assigned to objects/events must represent the perceived relations between the properties of those
objects/events” (Finkelstein and Leaning, 1984). This emphasis on perception seems to give a clear
answer to the question.



Measurability 61

and more became crucial for any scientific analysis and development: the con-
cept of model. The current view on symbolization can be traced back to the
concept of formal system as defined by David Hilbert: theories are purely sym-
bolic constructions, and as such they can (and should) be consistent, but they are
neither true nor false since, strictly speaking, they do not talk about anything.
Truth is not a property of symbols, and surely not even of empirical objects,
but of models, i.e., interpretations of theories that are deemed to be true when-
ever they manifest themselves as empirically coherent with the given domain
of observation. According to our current model-based view, numbers are not in
the (empirical) world simply because they cannot be part of it. Indeed, let us
compare the following two statements:

– “at the instant of the measurement the object under measurement is in a defi-
nite state”;

– “at the instant of the measurement the measurand has a definite value”.

While traditionally such statements would be plausibly considered as synony-
mous, their conceptual distinction is a fundamental fact of Measurement Sci-
ence: the former expresses a usual assumption of measurement (but when some
kind of ontological indeterminism is taken into account, as in some interpreta-
tions of quantum mechanics); the latter is unsustainable from an epistemological
point of view and however operationally immaterial (a further discussion on this
subject can be found in Mari and Zingales, 2000).

The conceptual importance of the change implied in the adoption of the
concept of model should not be underestimated. It is a shift from ontology to
epistemology: measurement results report not directly about the state of the ob-
ject under measurement, but on our knowledge about this state. Our knowledge
usually aims at being coherent with the known objects (“knowledge tends to
truth”, as customarily said), but even a traditional standpoint, such as the one
supported by the above mentioned VIM, is forced to recognize that “true values
are by nature indeterminate”. The experimental situation which at best approx-
imates the concept of true value for a property is the check of the calibration
of a sensor by means of a reference object. In this case, the value for the input
property is assumed to be known before the process is performed, and there-
fore actually operates as a reference value. On the other hand, this operation is
aimed at verifying the calibration of a device, not obtaining information on a
measurand. Indeed, if the reference value is 2.345 m and the value 2.346 m is
instead experimentally obtained, then the usual conclusion is not that the refer-
ence object has changed its state (however surely a possible case), but that the
sensor must be recalibrated. Plausibly for describing this kind of peculiar situ-
ations the odd term “conventional true value” has been proposed (the concept
of “conventional truth” is not easy to understand . . .), but it should be clear that
even in these situations truth is out of scope: reference values are not expected
to be true, but only traceable. A still conservative outcome, which is adopted
more and more, is of purely lexical nature: if the reference to truth is not opera-
tional, then it can simply be removed. This has been for example the choice of



62 L. Mari

the Guide to the Expression of Uncertainty in Measurement (GUM) (ISO, 1995),
which considers the adjective “true” to be redundant and accordingly writes “the
value”, by dropping “true”. On the other hand, the pragmatic problem of prop-
erly evaluating the quality of measurement is not solved by a linguistic choice,
and therefore remains an open issue.

3.5.1. The truth-based view

Measurement should produce information on both the measurand value and its
quality, which can be interpreted in terms of reliability, certainty, accuracy, pre-
cision, etc. Each of these concepts has a complex, and sometimes controversial,
meaning, also because its technical acceptation is usually intertwined with its
common, non-technical, usage (as a cogent example the case of the term “pre-
cision” can be considered. The VIM (ISO, 1993) does not define it, and only
recommends that it “should not be used for ‘accuracy’ ”, whereas it defines the
repeatability as the “closeness of the agreement between the results of succes-
sive measurements of the same measurand carried out under the same conditions
of measurement”, called “repeatability conditions”. A second fundamental stan-
dard document, also released by ISO (ISO, 1998a), defines the precision as “the
closeness of agreement between independent test results obtained under stipu-
lated conditions”, and then notes that the repeatability is the “precision under
repeatability conditions”).

I do not think discussing terminology is important: words can be precious
tools for knowledge, but too often discussions are only about words. The agree-
ment should be reached on procedures and possibly on concepts, not necessarily
on lexicon. I subscribe at this regards the position of Willard Van Orman Quine:
“science, though it seeks traits of reality independent of language, can neither
get on without language nor aspire to linguistic neutrality. To some degree, nev-
ertheless, the scientist can enhance objectivity and diminish the interference of
language, by the very choice of language” (Quine, 1966). Indeed, what is im-
portant for our subject is an appropriate operative modeling on the quality of
measurement, not the choice of the terms adopted to describe this modeling ac-
tivity and its results.

The structure of the measurement process, that in the previous pages I have
introduced and then variously extended, does not include any explicit component
allowing to formally derive some information about the quality of the process
itself. Such a structure can be thus thought of as an “ideal” one. Two prototypical
situations are then traditionally mentioned to exhibit the possible presence of
“non-idealities”:

– the measurement of a property whose value is assumed to be already known
(thus analogously to the check of the calibration of a sensor by means of a
reference object): a difference of the obtained value from the known one can
be interpreted as the effect of an error in the process, for example due to the
usage of an uncalibrated sensor; this effect, which is not plausibly corrected
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in repeated applications of the measuring system, is traditionally called a sys-
tematic error;

– the measurement of a property by the repeated applications of the measuring
system under the hypothesis that the state of the object under measurement
does not change during the repetitions: the fact of obtaining different values
in the repetitions can be interpreted as the effect of an error in the process.
The superposition of several, unidentified but singularly small, causes gener-
ated by the interaction of the environment with the object under measurement
and/or the measuring system is typically assumed; this effect, under the hy-
pothesis of its statistical origin, is traditionally called a random error.

The concepts of systematic and random error and their relations are expressively
exemplified by the operation of shooting at a target, as is shown in Fig. 3.6.

These pictures justify the (ideal) definition of “true value” as “the value ob-
tained after an infinite series of measurements performed under the same condi-
tions with an instrument not affected by systematic errors” (D’Agostini, 2003).
On the other hand:

– systematic errors can be recognized as such only if a reference value for the
measurand, i.e., the target point, is assumed to be known in advance; in this
case, a “degree of systematic error” is evaluated by the distance (provided that
a distance is algebraically defined) between the measurement result and the
reference value;

– random errors can be recognized as such only if the state of the object under
measurement does not change during the repetitions (in short: if the mea-
surement is assumed to be repeatable), i.e., the target point is not a moving
target; in this case, a “degree of random error” is evaluated by a dispersion
index (provided that it is algebraically defined) of the set of the measurement
results.

While both the hypotheses are demanding from an epistemological point of
view, they are radically different in operative terms:

– a reference value for the measurand is typically not known in advance: indeed,
measurement is usually aimed at obtaining information on a measurand, and

Fig. 3.6.
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not at confirming the quality of the measuring system (which is instead the
task of calibration); as a consequence, systematic errors cannot usually be
evaluated;

– the repeatability is surely not a necessary condition for measurement, but it
can be sometimes assumed as the result of the analysis of the empirical char-
acteristics of both the measuring system and the object under measurement;
as a consequence, random errors can sometimes be evaluated.

Apart from these epistemological issues, the traditional interpretation of qual-
ity of measurement in terms of errors is hindered by the operative problem of
formalizing these two types of error in a compatible way, so to allow to prop-
erly combine them into a single value. None of the several solutions which
have been proposed obtained a general agreement, plausibly because of their
nature of ad hoc prescriptions (either “combine them by adding them linearly”,
or “. . . quadratically”, or “. . . linearly in the case . . . , and quadratically other-
wise”). On the other hand, this problem has been recently dealt with in a success-
ful way by the already mentioned GUM (ISO, 1995), according to a pragmatic
standpoint which is aimed at unifying the procedure and the vocabulary while
admitting different interpretations of the adopted terms. In the following this
standpoint will be explicitly presented, and maintained as a background refer-
ence.

3.5.2. The model-based view

Because of the mentioned shift from ontology to epistemology, Measurement
Science emphasizes now certainty instead of truth. Accordingly, the quality of
measurement is more and more conceptualized in terms of uncertainty, i.e., lack
of complete certainty on the value that should be assigned to describe the ob-
ject under measurement relatively to the measurand, thus acknowledging that
measurement is a knowledge-based process. From a conceptual standpoint this
change has some traits of a scientific revolution, in the sense of the term pro-
posed by Kuhn (1970): the truth-based view and the model-based one can be
thought of as competing paradigms, and some of the current problems troubling
the metrological community derive from what Thomas Kuhn calls the incom-
mensurability of such paradigms.4 On the other hand, in pragmatic terms the

4 My opinion is that Measurement Science is currently living a transition phase, in which the
historically dominant truth-based view is being more and more criticized and the model-based view
is getting more and more support by the younger researchers. On the other hand, the truth-based view
is a paradigm that benefits from a long tradition: the scientists and the technicians who spent their
whole live thinking and talking in terms of true values and errors are fiercely opposing the change.
An indicator of this situation is linguistic: in response to the critical analyses highlighting the lack
of any empirical basis for the concept of true value, the term “conventional true value” has been
introduced (the VIM: ISO, 1993, defines it as “value attributed to a particular quantity and accepted,
sometimes by convention, as having an uncertainty appropriate for a given purpose”). Despite its
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change from the truth-based view to the model-based one is a domain exten-
sion. Indeed, the uncertainty modeling does not prevent dealing with errors as a
possible cause of quality degradation, but it does not force to assume that any
quality degradation derives from errors. If measurement is not able to acquire
“pure data”, then it must be based on a model including the available rele-
vant knowledge on the object under measurement, the measuring system and
the measurand: this knowledge is generally required to evaluate the quality of
a measurement. Indeed, several, not necessarily independent, situations of non-
ideality can be recognized in the measurement process; in particular (denoting
with x the object under measurement and with s the reference to which x is
compared), it could happen that5:

– s is not stable, i.e., it changes its state during its usage, so that the value that
was associated to it at the calibration time does not represent its state at the
measurement time (formally: p(s(t)) = p(s(t0)) even if cp(s(t0), s(t)) = 0,
a comparison that can be performed only in indirect way);

– the system used to compare x to s is not repeatable, i.e., x and s are
mutually substitutable in a given time and subsequently they result as no
more substitutable even if they have not changed their state (formally: if
cp(s(t1), x(t1)) = 1, then cp(s(t2), x(t2)) = 0 even if c′

p(s(t1), s(t2)) = 1 and
c′
p(x(t1), x(t2)) = 1, where c′

p is a comparison process assumed to be more
repeatable than cp);

– the system used to compare x to the adopted reference has a low resolu-
tion, i.e., x is substitutable with distinct reference objects (formally: both
cp(si, x) = 1 and cp(sj , x) = 1 even if si �= sj ) (this applies also to the re-
lation between a reference and its replicas in the traceability system).

This list of situations of non-ideality does not include the item that the GUM
(ISO, 1995) states as the first source of uncertainty in a measurement: the in-
complete definition of the measurand.

Because of its relevance to the very concept of measurement uncertainty,
a short analysis of the problem of the definition of the measurand is appropriate.

aim of extreme defense of the traditional paradigm, the very concept of “conventional truth” is so
manifestly oxymoric that its adoption seems to be a cure worse than the illness. A further analysis
on the current status of Measurement Science in terms of paradigms can be found in Rossi (2006).
5 In more detailed way, the GUM mentions as “possible sources of uncertainty in a measure-

ment”: “a) incomplete definition of the measurand; b) imperfect realization of the definition of the
measurand; c) non-representative sampling – the sample measured may not represent the defined
measurand; d) inadequate knowledge of the effects of environmental conditions on the measure-
ment, or imperfect measurement of environmental conditions; e) personal bias in reading analogue
instruments; f) finite instrument resolution or discrimination threshold; g) inexact values of measure-
ment standards and reference materials; h) inexact values of constants and other parameters obtained
from external sources and used in the data-reduction algorithm; i) approximations and assumptions
incorporated in the measurement method and procedure; j) variations in repeated observations of the
measurand under apparently identical conditions”.
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3.5.3. Some considerations on the definition of the measurand

As a simple example of measurand definition, let us consider the diameter of a
bore, as it is presented by Phillips et al. (2001): “The simple definition as a di-
ameter may be sufficient for a low accuracy application, but in a high accuracy
situation imperfections from a perfectly circular workpiece may be significant”.
According to a radically operational definition, this sentence is fallacious: if the
measurand is defined by the operation by which it is measured, the experimental
evidence of different “diameter values” obtained for different positions on the
same bore would lead to the conclusion that the bore has several diameters, not
that the diameter is incompletely defined. The concept of “having several diam-
eters” is admittedly inconsistent with the geometrical meaning of the term, to
which the mentioned “simple definition” implicitly refers: on the other hand, di-
ameters, as geometrically defined, cannot be physical properties, for the obvious
reason that in the physical world no “perfect circles” exist at all.

Radical operationalism is however seldom maintained: properties are a con-
stitutive component of our knowledge, and we tend to assign them stable, and
therefore transferable, meanings, to which any single operation only partially
contributes. This dependence to a model can make a measurand definition in-
complete: in the example, if the common, geometrical, concept of diameter is
maintained, then “in a high accuracy situation imperfections from a perfectly
circular workpiece may be significant”, and such imperfections typically lead to
uncertainties in the diameter measurement. As the observation accuracy grows,
the fact that diameter is not a single-valued quantity must be recognized as
depending on the discrete structure of the matter, not on manufacturing im-
perfections anymore: in this situation, the remaining uncertainty is therefore
intrinsic to the measurand definition. On the other hand, it is precisely the de-
pendence on a model (instead of ontological roots) which allows the alternative
option of defining measurands on ad hoc bases. For example, again Phillips et
al. (2001) note that “some standards (. . .) have further defined the diameter of
a bore to be the maximum inscribed diameter” (or, more plausibly, the max-
imum distance between points on the edge of the bore, to avoid defining the
concept of diameter in terms of itself . . .). But this conventionality can result
in arbitrariness: why not to define the diameter as the average distance between
opposite points? or as the difference between the maximum and the minimum
of such distances? If properties are methods to associate information entities to
objects, as I have sustained above, it is possible to arbitrarily define always new
properties. Conventionality in the definition of properties avoids arbitrariness
if grounded on pragmatic bases. For example, in a system constituted of a pis-
ton and a cylinder, the internal “diameter” of the cylinder could be defined as
the minimum inscribed distance and the external “diameter” of the piston as the
maximum inscribed distance. Were the internal “diameter” of a cylinder c ascer-
tained to be greater than the external “diameter” of a piston p, the passage of p

through c could be inferred:
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given ν1 = internal_diameter(c) and ν2 = external_diameter(p), then:

if ν1 > ν2 then passage(p, c)

an implication with formal analogies to, for example:

given ν1 = applied_force(x) and ν2 = mass(x), then:

if ν3 = ν1/ν2 then acceleration(x) = ν3

(a rather lengthy expression of the known physical principle commonly writ-
ten F = ma). Both cases express a law stating a relation among properties that
in principle are defined independently of each other, in Mari (1999) I have ana-
lyzed the information conveyed by this relation, by calling it “information-from-
connection” and discussing its pragmatic nature). These relations contribute to
a complex concept of definition of properties, according to which each property
is partially defined by means of other properties, in a network of mutual con-
nections expressing the available knowledge of such properties and limiting the
conventionality of their definition (Mari, 2005).

The network that connects the measurand to other properties guarantees the
pragmatic usefulness of the measurand evaluation but, at the same time, is a
further source of complexity for the definition of the measurand itself. Indeed,
part of this network are the so called influence quantities, i.e., according to the
definition of the VIM (ISO, 1993), those properties of the object under measure-
ment or the environment (thus including the measuring system) that are distinct
from the measurand and nevertheless affect the measurement result. As a sim-
ple example, consider the expansion of a metallic body caused by a temperature
increase: if length is the measurand, then temperature is an influence quantity.
The evidence that repeated measurements on the same object produce differ-
ent results because of temperature variations can be modeled according to two
strategies:

– temperature is maintained as a hidden variable in the definition of the measur-
and, whose intrinsic uncertainty should be increased correspondingly to keep
into account this under-determination;

– temperature is explicitly included in the definition of the measurand, which is
then denoted for example as “length at 20 ◦C”.

The greater specificity of this second strategy offers the potential condition of
obtaining measurand values of lower uncertainty, and therefore of higher quality,
but requires the measurement of two properties, length and temperature, together
with a control/correction system (that can be empirical or symbolic) for dealing
with the situations in which the measured temperature is different from the spec-
ified one. Moreover, in this case temperature becomes a measurand in turn, with
the consequence that its value could depend on further influence quantities, for
which the problem of choosing a strategy for dealing with the influence quanti-
ties is iterated. Once more, this shows the model dependence of the measurand
definition.
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3.5.4. From analysis to expression

From the previous considerations the conclusion can be drawn that measurement
is not a purely empirical operation. Indeed, any measurement can be thought of
as a three-stage process (see also Mari, 2005b):

1. acquisition, i.e., experimental comparison of the object under measurement
to a given reference;

2. analysis, i.e., conceptual modeling of the available information (the compar-
ison result, together with everything is known on the measurement system:
the measurand definition and realization, the instrument calibration diagram,
the values of relevant influence quantities, etc.);

3. expression, i.e., statement of the gathered information according to an agreed
formalization.

The crucial role of the analysis stage is emphasized by considering it in the light
of the truth-based view. Once more, were “numbers in the world”, questions
such as “how many digits has the (true) length of this table?” would be mean-
ingful, while as the power of the magnifying glass increases the straight lines
limiting the table become more and more blurred, and the very concept of length
looses any meaning at the atomic scale. If these questions traditionally remained
outside Measurement Science it is plausibly because of the impressive effective-
ness that the analytical methods based on differential calculus have shown in the
prediction of the system dynamics: this led to the assumption that the “num-
bers in the world” are real numbers.6 As a consequence, the property values are
usually hypothesized to be real numbers, or however, when the previous con-
sideration is taken into account, rationals, and therefore always scalars. On the
other hand, if it is recognized that (real) numbers are linguistic means to express
our knowledge, then the conclusion should be drawn that scalars are only one
possible choice to formalize property values, so that other options, such as in-
tervals, probability distributions, fuzzy subsets, could be adopted. Apart from
tradition, I suggest that a single, but fundamental, reason remains today explain-
ing why property values are so commonly expressed as scalars: such values act

6 Direct consequence of this standpoint is the hypothesis that “true measurement” requires conti-
nuity, so that discreteness in measurement would always be the result of an approximation. I must
confess that I am simply unable to understand the idea of numbers as empirical entities which
grounds the position that in Mari (2005) is called the “realist view”: “whether a physical phenom-
enon is continuous or not seems to be primarily a matter of Physics, not Measurement Science.
Classical examples are electrical current and energy: while before Lorenz/Millikan and Plank they
were thought of as continuously varying quantities, after them their discrete nature has been discov-
ered, with electron charge and quantum of action playing the role of ultimate discrete entities. What
is the realist interpretation of these changes in terms of the measurability of such quantities? (they
were measurable before the change, no more after; they have never been actually measurable; etc.).
In more general terms, from the fact that any physical measuring system has a finite resolution the
conclusion follows that all measurement results must always be expressed as discrete (and actually
with a small number of significant digits) entities: does it imply according to the realist view that
‘real’ measurements are only approximations of ‘ideal’ measurements, or what else?” (Mari, 2005).
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as input data in inferential structures, as it is the case of physical laws, which are
deemed to deal with scalars. Indeed, no logical reasons prevent to express infer-
ences, such as the above mentioned “the acceleration generated on a body with
mass m by a force F is equal to F/m”, in terms of non-scalar values, e.g., inter-
vals or fuzzy subsets, provided that the functions appearing in such inferences,
the ratio in this case, are properly defined for these non-scalar values.

3.5.5. Balancing specificity and trust: a pragmatic choice

The analysis stage does not univocally determine the form of measurement re-
sults also because quality of measurement is a multi-dimensional characteristic.
According to Bertrand Russell: “all knowledge is more or less uncertain and
more or less vague. These are, in a sense, opposing characters: vague knowledge
has more likelihood of truth than precise knowledge, but is less useful. One of
the aims of science is to increase precision without diminishing certainty” (Rus-
sell, 1926).

The same empirical knowledge available on a measurand value can be for-
mally expressed by balancing two components:

– one defining the specificity of the value: sometimes this component is called
precision or, at the opposite, vagueness;

– one stating the trust attributed to it: neither accuracy nor trueness (the lat-
ter term is used in ISO, 1998a, but not in the VIM: ISO, 1993) have been
mentioned here. If a reference value is not known, such quantities are simply
undefined; in the opposite case, accuracy can be thought of as the subject-
independent version of trust.

Until the available knowledge on the measurand is not experimentally en-
hanced, if one component is increased the other one should be decreased. An
instance of such a trade-off is the probabilistic relation between confidence
intervals and confidence levels. In the general case, the measurement result
could be expressed as, e.g., a fuzzy subset with an associated possibility mea-
sure/distribution (see at this regard for example Benoit et al., 2005), so that the
assignment of the two components stating the quality of measurement remains
largely a task based on the experience of the subject.

From this point of view the approach followed by the GUM (ISO, 1995) is
hybrid, being based on two complementary models, both of them probabilistic
in their bases but opposite in the component of quality they emphasize (I should
point out that the following analysis presents my viewpoint on the GUM, and
is not literally faithful to the GUM itself, which is however repeatedly quoted
henceforth; a good and synthetic (and faithful) synthesis of the GUM is Taylor
and Kuyatt, 1994). Let us call them “primary” model and “secondary” model
respectively.
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The primary model assumes that the measurement result is expressed as a
couple:

〈estimated measurand value, standard uncertainty〉

where the first term is a scalar and the second one is interpreted as a standard
deviation of the estimated measurand value, either derived from an experimen-
tal frequency distribution or obtained from an assumed underlying probability
density function.7 In the first case the estimated measurand value is defined as
the mean value of the experimental set {νi}, i = 1, . . . , n:

ν̄ = 1

n

n∑

1

νi

and the standard uncertainty is defined as the experimental standard deviation
of the mean value:

u(ν̄) = s(ν̄) =
√√√√ 1

n(n − 1)

n∑

1

(νi − ν̄)2.

If an experimental frequency distribution is not available, the standard uncer-
tainty “is evaluated by scientific judgment based on all the available information
on the possible variability” of the property (as examples of such information
sources, the GUM mentions the following: “previous measurement data; ex-
perience with or general knowledge of the behavior and properties of relevant
materials and instruments; manufacturer’s specifications; data provided in cali-
bration and other certificates; uncertainties assigned to reference data taken from
handbooks.” The focus on physical quantities is here manifest). The choice of
assuming a maximally specific value for the measurand implies that its quality
is entirely expressed as trust, by means of the standard uncertainty.

The secondary model assumes the measurement result to be expressed as an
interval, whose half width is called expanded uncertainty, U , and is derived from

7 This double option highlights, once more, the pragmatic orientation of the GUM: while tradi-
tional distinctions are aimed at identifying “types” of uncertainty (or of error, of course, as in the
case of random vs. systematic error), thus assuming an ontological basis for the distinction itself, the
GUM distinguishes between methods to evaluate uncertainty. Furthermore, the GUM removes any
terminological interference by adopting a Recommendation issued by the International Committee
for Weights and Measures (CIPM) in 1980 and designating as “Type A” the evaluations performed
“by the statistical analysis of series of observations”, and as “Type B” the evaluations performed “by
other means”. The GUM itself stress then that “the purpose of the Type A and Type B classification
is to indicate the two different ways of evaluating uncertainty components and is for convenience of
discussion only; the classification is not meant to indicate that there is any difference in the nature
of the components resulting from the two types of evaluation”.
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the primary model by multiplying the standard uncertainty u(ν̄) by a positive co-
efficient k, called “coverage factor”, typically in the range 2 to 3, U = ku(ν̄).
Such an interval, ν = [ν̄−U, ν̄+U ], has the goal “to encompass a large fraction
of the distribution of values that could reasonably be attributed to the measur-
and”. The quality of the value is now in principle formalized in terms of both
specificity and trust, as related respectively to the expanded uncertainty and the
encompassed “fraction of the distribution”, interpreted as a probability measure
and called “level of confidence” of the interval. On the other hand, since “it
should be recognized that in most cases the level of confidence (especially for
values near 1) is rather uncertain” and therefore difficult to assign, the standard-
ized decision is made of choosing a level of confidence above 0.95, by suitably
increasing the expanded uncertainty as believed to be required: the expanded
uncertainty, and therefore the specificity, is thus in practice the only component
which expresses the quality of measurement.

The reasons of this double modeling are explicitly pragmatic:

– the primary model is aimed at propagating uncertainties through functional
relationships;

– the secondary model is aimed at comparing property values to ascertain
whether they are compatible to each other.

Let us introduce the main features of these application categories.

3.5.6. Propagation of uncertainty

Let q be a property computed by a function f,q = f (p1,p2, . . . , pk), where
each pj is a property whose value is assumed to be available (because ei-
ther measured or in its turn computed) but uncertain, and the analytical form
of the function f is assumed to be known. If the information on each input
property pj is expressed as a couple 〈ν̄j , u(ν̄j )〉, i.e., according to the primary
model, and the information on the output property q must also be expressed
as a couple 〈ν̄q , u(ν̄q)〉, then the problem is to derive 〈ν̄q , u(ν̄q)〉 from the set
{〈ν̄j , u(ν̄j )〉}j . Since the input information is uncertain and the sought output
information is also expected to be uncertain, this derivation problem is called
propagation of uncertainty. Such a problem has been traditionally applied in de-
rived measurement, in which the input properties are experimentally measured
and the function f formalizes a (physical) law. On the other hand, the uncer-
tainty should also be propagated when the dependence of a measurand from one
or more influence quantities is analytically known and both the measurand and
its influence quantities are expressed as uncertain, the output quantity being in
this case the measurand specified in reference to the identified influence quan-
tities. This shows the generality of the problem. The choice of expressing the
measurement result for each property pj as a couple 〈ν̄j , u(ν̄j )〉 allows to com-
pute the output property value ν̄j and its standard uncertainty u(ν̄q) by means
of separate procedures:
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– ν̄q is obtained by applying the function f to the estimated values of the input
properties: ν̄q = f (ν̄1, ν̄2, . . . , ν̄k);

– u(ν̄q) is obtained by assuming that the uncertainty on each property pj pro-
duces a deviation Δνj from the mean value ν̄j , so that the problem is to derive
the standard deviation of ν̄q from f (ν̄1 + Δν1, ν̄2 + Δν2, . . . , ν̄k + Δνk).

The technique recommended by the GUM is based on the hypothesis that
the function f can be approximated by its Taylor series expansion in the k-
dimensional point 〈ν̄1, ν̄2, . . . , ν̄k〉. In the simplest case, in which all input prop-
erties are independent and f is “linear enough” around this point, the series
expansion can be computed up to the first-order term:

u2(ν̄q) =
k∑

j=1

c2
j u

2(ν̄j )

an expression called law of propagation of uncertainty, which shows that the
standard uncertainty for the output property, called “combined standard uncer-
tainty” by the GUM, depends on the weighted quadratic sum of the standard
uncertainties of the input properties. Each weight cj :

cj = ∂f

∂pj

∣∣∣∣
ν1,ν2,...,νk

i.e., the partial derivative of the function f with respect to the j th property as
computed in the point 〈ν̄1, ν̄2, . . . , ν̄k〉, operates as a “sensitivity coefficient”.
This dependence becomes more and more complex as higher-order terms in the
Taylor series expansion and/or the correlations among the input properties are
taken into account: at this regards some further technical considerations can be
found in the GUM, and several cogent examples are presented in Lira (2002).

This logic of solution to the problem of the propagation of uncertainty is based
on the traditional choice of expressing the property value as a scalar entity, dis-
tinct from the parameter specifying its quality: property values are dealt with in
a deterministic way and analytical techniques are applied for formally handling
the uncertainty.8

8 The working group who created the GUM is currently preparing some addenda to it, and in par-
ticular the “Supplement 1: Numerical methods for the propagation of distributions”, which presents
an alternative solution to the problem of uncertainty propagation. Whenever input property values
can be expressed as probability density functions, the whole functions can be propagated, to obtain
a “combined propagated function”. This logic is in principle more general than the one endorsed by
the GUM, since the mean value and its standard deviation are trivially derived from a probability
density function. On the other hand, since the combined propagated function cannot generally be
obtained by analytical techniques, the propagation can be performed in a numerical way, typically
by the Monte Carlo method.
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3.5.7. Comparison of uncertain property values

I have proposed above an operational definition of properties based on the em-
pirical substitutability of objects: if two objects x1 and x2 are recognized as
mutually substitutable for some purpose, then there must exist a property p such
that p(x1) = p(x2). On the other hand, whenever the property values are recog-
nized to be uncertain (and, for example, are expressed as 〈ν̄, u(ν̄)〉) such an
equality at the same time:

– is ambiguous, since it is not clear whether it requires that ν̄1 = ν̄2 indepen-
dently of their uncertainties, or also that u(ν̄1) = u(ν̄2);

– constitutes a too narrow constraint, since mutual substitutability is guaranteed
also in the case ν̄1 and ν̄2 are “close enough” relatively to their uncertainties,
even if not identical.

When uncertainty is taken into account, mutual substitutability does not require
the equality of property values, but more generally their “compatibility”. More
than by means of sophisticated analytical techniques, the check of compatibility
between property values is customarily performed by their direct comparison.
To this goal, the simplest solution is to express property values as intervals, as in
the secondary model, and to formalize their compatibility in terms of their set-
theoretical intersection, which must be non-null. The GUM itself acknowledges
the practical scope of the secondary model, introduced “to meet the needs of
some industrial and commercial applications, as well as requirements in the area
of health and safety”. Indeed, this check of compatibility has at least two general
applications:

– it is a means to obtain information on the repeatability of a measurement:
while consecutive measurements produce compatible results, the inference
can be drawn that the object under measurement is not changed with respect
to the measurand;

– it is a means to decide about the conformance with given specifications in
presence of uncertainty: this pragmatic issue is so important that deserves
some further consideration.

A technical specification on a property is usually expressed as an interval of con-
formance c, also called “tolerance”, i.e., the subset of the property values which
are considered acceptable for the given application. If also measurement results
for that property are expressed as intervals ν, the decision on the conformance
of ν with the specification formalized by c requires the comparison of the two
intervals. The outcome can be (see ISO, 1998b):

– (case 1) if the property value is completely within the tolerance, ν ⊂ c, then
the value is assumed to be in conformance with the specification;

– (case 2) else if the property value is completely outside the tolerance, ν ∩ c =
∅, then the value is assumed not to be in conformance with the specification;

– (case 3) otherwise, i.e., if the property value is only partially within the toler-
ance, ν ∩ c �= ∅ but not ν ⊂ c, then the situation is ambiguous.
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Fig. 3.7.

(See Fig. 3.7.) Whenever the property values are expressed with a non-null un-
certainty, case 3 of ambiguity can always appear in the borderline situations. On
the other hand, the frequency of this case statistically decreases as the width of
the interval ν decreases (whereas in the extreme situation in which the width
of ν is greater than the width of c the first case cannot occur): the quality of
measurement influences the ambiguity of the conformance decision.

3.5.8. Uncertainty evaluation as a pragmatic decision

In presence of ambiguity, a decision can be made only on the basis of a contex-
tual criterion. If, for example, the conformance to a specification is the condition
required by a subject A (the buyer, the evaluator, etc.) to accept an entity (a prod-
uct, a service, etc.) produced by a subject B (the seller, the maker, etc.), then two
positions can be assumed:

– “in defense of buyer”, ambiguity is dealt with as non-conformance, i.e., in
doubt refuse;

– “in defense of seller”, ambiguity is dealt with as conformance, i.e., in doubt
accept.

This alternative maps the traditional distinction between the so called “type 1”
errors (wrong acceptation) and “type 2” errors (wrong refusal). Under the hy-
potheses that (1) the object state can be expressed in dichotomic way, in terms
of either conformance or non-conformance, and that (2) the decision can only
be either “accept” or “refuse”, four situations can occur:

Object state
non-conformance conformance

Decision refuse ok: correct refusal type 2 error
accept type 1 error ok: correct acceptation

A further position is in principle possible: if measurement results can be
obtained with a reduced uncertainty, the ambiguity could be removed by reclas-
sifying case 3 as either case 1 or case 2. This option highlights the pragmatic
nature of the evaluation of measurement quality: since enhancing the measure-
ment quality generally implies increasing the costs of the resources required
to perform the measurement process, the issue arises of balancing the costs of
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such resources with the quality of the measurement results. The stated goal of
the process should allow to identify a lower bound for acceptable quality and an
upper bound for acceptable costs, so that the decision space can be split in three
subspaces, for decisions leading respectively to (see Fig. 3.8):

– useless measurements, which, independently of their costs, have a quality
insufficient with respect to the given goal (in conformity decision this cor-
responds to case 3);

– unfeasible measurements, which, independently of their quality, have costs
unacceptable with respect to the given goal;

– appropriate measurements, for which the trade-off quality vs. costs is com-
patible with the given goal.

Accordingly, the decision should be made before measurement about its mini-
mum acceptable quality threshold, expressed by the so called target uncertainty,
so that the measurement process should be performed according to the following
procedure:

1. decide the minimum acceptable quality, i.e., the target uncertainty, uT , and
the maximum acceptable costs, i.e., the resource budget (i.e., define the four
subspaces in Fig. 3.8);

2. estimate the minimum costs required to obtain uT : if such costs are beyond
the resource budget, then stop as unfeasible measurement (the procedure
stops in subspaces 2 or 3);

3. identify the components which are deemed to be the main contributions to
the uncertainty budget;

4. choose an approximate method to combine such contributions, credibly lead-
ing to overestimate the combined uncertainty;

5. perform the measurement by keeping into account the identified contribu-
tions and evaluate the result by combining them, thus obtaining a measure-
ment uncertainty uM ;

6. compare uM to uT : if uM < uT , then exit the procedure by stating the ob-
tained data as the result of an appropriate measurement (area 4);

7. estimate the current costs: if such costs are beyond the resource budget, then
stop as unfeasible measurement (area 2);

8. identify further contributions and/or enhance the method to combine them;
9. repeat from 5.

The pragmatic ground of this algorithm is manifest: as soon as the available in-
formation allows to unambiguously satisfy the goal for which the measurement
is performed, the process should be stopped. Any further activity is not justified,
because useless and uselessly costly: the concept of “true uncertainty” is simply
meaningless.
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Fig. 3.8.

3.6. Conclusions

The traditional concept of measurability is grounded in ontology: each specific
property, such as “the length of this table”, is measurable because it inherently
has a “true value”, whose determination is the aim of measurement, so that the
empirical inability of obtaining such true values is accounted for as caused by
errors in the measurement process. The concept of measurability presented in
this chapter is instead a pragmatic one: measurement results must be assigned
(and not determined) according to the goals for which the measurement is per-
formed, with the consequence that they are adequate if they meet such goals.
Measurement results are evaluated and formally expressed by suitably eliciting
the information on the measurand value and its quality experimentally acquired
in the measurement process. In this evaluation a critical role is played by the
subject; indeed, as the GUM considers, no method for evaluating the quality
of measurement can be a “substitute for critical thinking, intellectual honesty,
and professional skill; (. . .) the quality and utility of the uncertainty quoted for
the result of a measurement ultimately depends on the understanding, critical
analysis, and integrity of those who contribute to the assignment of its value”.
In this perspective, intersubjectivity and objectivity become the pragmatic target
of measurement, instead of its preliminary ontological conditions. Measurement
is recognized to be a model-based process, and thus it is emphasized its depen-
dence to an interpretive activity that is pre-empirical: scientifically organized
bodies of knowledge, modeling methodologies, formally-defined constraints,
physical instrumentations, ethical responsibility, all contribute to the social value
of measurement even in the current epistemologically relativistic world.
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Abstract

Many predictions of economic theory depend on the assumed aversion of in-
dividuals towards risk. We examine statistical aspects of controlling for risk
aversion in the lab, and the implications that these have on the ability to test
expected utility theory. The concerns expressed here regarding the importance
and difficulty of generating precise estimates of individual risk attitudes gen-
eralize to a wide range of other individual characteristics, such as inequality
aversion and trust. We show that imprecision in estimated individual charac-
teristics may result in misleading conclusions in tests of the underlying theory
of choice. We also show that the popular instruments and statistical models
used to estimate risk attitudes do not allow sufficiently precise estimates. Given
existing laboratory technology and statistical models, we conclude that con-
trols for risk aversion should be implemented using within-subjects, “revealed
preference” designs that utilize the direct, raw responses of the subject. These
statistical issues are generally applicable to a wide variety of experimental situ-
ations.

Experimental methods provide the promise that economists will be able to mea-
sure latent concepts with greater reliability. The reason is that experimental
methods offer the possibility of controlling potential confounds.

However, the use of experimental controls might not lead to more reliable
measurements. One reason is that the imposition of an artefactual control might
itself lead to changes in behavior compared to the naturally occurring coun-
terpart of interest. Concern with this problem has spurred interest in field ex-
periments, where the controls are less artificial than in many laboratory exper-
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iments.1 It has also spurred renewed interest in sample selection and sorting
processes.2

Another reason that experimental controls might not generate more reli-
able measurements is that the latent data-generating process might simply be
misspecified. If the experimental design is motivated by a model of the data-
generating process that is invalid, then there can be no expectation that the
controls will improve measurement and inference. For example, if there are ac-
tually two or more distinct data-generating processes at work, and we assume
one, then systematically invalid inferences can result.3

We consider a third way in which experimental controls might influence
measurement inference, by allowing “unobservables” to become “observable.”
Concepts that previously needed to be assumed to take on certain values or dis-
tributions a priori, can now be measured and controlled. In turn, this allows
conditional measurements to be made unconditionally, akin to the integration of
“nuisance parameters” in Bayesian analysis. We consider a substantively fun-
damental application of these ideas, to the evaluation of choice behavior under
uncertainty when one has experimental control of risk attitudes.4

Many predictions of economic theory depend on the assumed aversion of in-
dividuals towards risk. Empirical research requires that one make a maintained
assumption about risk attitudes or devise controls for risk aversion. The first
strategy has the obvious disadvantage that the maintained assumption may be
false. The second strategy is becoming feasible, particularly with the develop-
ment of simple pre-tests for risk aversion in laboratory settings. We examine
statistical aspects of controlling for risk aversion in the lab, and the implications
that these have on the ability to test expected utility theory (EUT). The concerns
expressed here regarding the importance and difficulty of generating precise es-
timates of individual risk attitudes generalize to a wide range of other individual
characteristics, such as inequality aversion and trust.5 Imprecision in estimated
individual characteristics may result in misleading conclusions in tests of any
underlying theory of choice.

1 Harrison and List (2004) review this literature, and this concern with laboratory experiments.
2 For example, see Botelho et al. (2005), Harrison, Lau and Rutström (2005), Kocher, Strauß and

Sutter (2006) and Lazear, Malmendier and Weber (2006).
3 Harrison and Rutström (2005) illustrate this point by comparing estimates of choice behavior

when either expected utility theory or prospect theory are assumed to generate the observed data,
and contrast the results with those obtained from a finite mixture model that allows both to be
valid for distinct sub-samples. Similarly, Coller, Harrison and Rutström (2006) compare inferences
about temporal discounting models when one assumes that subjects discount exponentially or quasi-
hyperbolically, when the data is better characterized by again assuming that distinct sub-sample
follow each model.
4 Other applications include Harrison (1990), Engle-Warnick (2004) and Karlan and Zinman

(2005).
5 Methodologically related experimental procedures are being used to identify the extent of “in-

equality aversion” in tests of the propensity of individuals to “trust” each other. Cox (2004) discusses
the need for controls in experiments in this context.
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The way in which controls for risk aversion can be implemented varies with
the experimental design. If a “within-subjects” design is used, in which the same
subject takes part in a risk aversion test and some other task, one can directly use
the results for that subject to control for theoretical predictions in the other task.
In general such responses are likely to respect the individual heterogeneity that
one would expect from risk aversion, which is after all a subjective preference.
If a “between-subjects” design is used, in which different subjects6 are sam-
pled for the risk aversion test and the other task, one must construct a statistical
instrument for the risk attitudes of subjects in the latter task.

Instruments for risk attitudes can be generated by constructing a statistical
model of risk attitudes from the responses to the risk aversion task, and then
using that model to predict the attitudes of the subjects in the other tasks. Given
the time and monetary cost of eliciting risk attitudes in addition to some other
experimental task, such methodological short-cuts would be attractive to experi-
menters if reliable. Of course, relying on a statistical model means that one must
recognize that there is some sampling error surrounding the estimated risk at-
titude, even if one assumes that the correct specification has been used for the
statistical model.

The issue of imprecision in measuring risk is readily apparent when one uses
a statistical model to predict risk parameters. While less obvious, this issue still
arises when one uses a “direct test” in a within subjects design. Imprecision in
directly eliciting risk aversion may arise for several reasons.7 First, our risk elic-
itation task may not yield precise estimates due to “trembling hand” error on
behalf of the subject. For example, even when given a simple choice between
two lotteries, a subject may, with some positive probability, indicate one lottery
when they intended to choose the other. A second source of error occurs if our
risk attitude task does not elicit enough information to make sufficiently precise
inferences about the parameters of the choice model. We can reduce the impre-
cision by improving the design of the risk elicitation task, but we still need a
way to characterize the degree of imprecision in the estimated parameters and
to gage its impact on any conclusions that can be drawn based on responses in
the subsequent choice task.8

We illustrate these procedures using a test of EUT as the “choice task” for
which one needs a control for risk aversion.9 We use data from a previous experi-
ment in which subject choices have been shown to be inconsistent with expected

6 We will assume that these are two samples drawn from the same population, and that there are
no sample selection biases to worry about. These potential complications are not minor.
7 “Imprecision” here is used in the usual econometric sense of minimizing the confidence intervals

for the underlying parameter.
8 Moffatt (2007) uses the concept of D-Optimal design to maximize the overall information content

of an experiment.
9 Rabin (2000) examines the theoretical role of risk aversion and EUT, and argues that EUT must

be rejected for individuals who are risk averse at low monetary stakes. If true, then further tests
of EUT are not needed for those individuals who are found to be risk averse in these low stake
lottery choices. He proves a calibration theorem showing that if individuals are risk averse over
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utility given the estimate of the individual’s risk attitude. We begin our analysis
by allowing for the possibility that subjects are noisy decision-makers. One way
to incorporate subject errors is to calculate their cost and ignore those inconsis-
tent choices that have a trivial error cost. We show that the percentage of choices
violating EUT remains high even when we consider only those errors that are
costly to the subject. We then ask whether these results are sensitive to the preci-
sion with which we estimated an individual subject’s risk attitude. The data we
use were implemented using a full within-subjects design, allowing us to com-
pare the use of direct, raw risk aversion measures for each subject in the EUT
task with the use of instruments generated by a statistical model. The method we
adopt is to examine the sensitivity of our conclusions about EUT to small pertur-
bations in the estimated risk preference parameters. We can think of this test of
empirical sensitivity as a counterpart to the formal sensitivity tests proposed by
Magnus (2007). Leamer (1978, p. 207) and Mayer (2007) remind us to consider
both economic significance as well as statistical significance when evaluating
estimates of a parameter of interest. Our objective is to evaluate whether our eco-
nomic conclusions are sensitive to small changes in the estimated parameters. In
the case of our statistical model, the estimated confidence interval provides the
standard region in which to conduct the perturbation study. When we use direct
measures of risk, the nature of the experiment suggests natural regions in which
to check for parameter sensitivity. These methods can also be used to address
the issue of precision in tests of choice models other than EUT. Tests of cumu-
lative prospect theory, for example, are conditional on the estimated parameters
of the choice function and the robustness of the conclusions will depend on the
precision with which the initial parameters were estimated.10

In Section 4.1 we review the need for estimates of risk attitudes in tests of
EUT and show how inference is affected by risk aversion. In Section 4.2 we
discuss experimental procedures for characterizing risk attitudes due to Holt
and Laury (2002). We present the distribution of estimated risk attitudes of our

low stakes lotteries then there are absurd implications about the bets those individuals will accept
at higher stakes. Following the interpretation of these arguments by Cox and Sadiraj (2006) and
Rubinstein (2002), a problem for EUT does indeed arise if (a) subjects exhibit risk aversion at low
stake levels, and (b) one assumes that utility is defined in terms of terminal wealth. If, on the other
hand, one assumes utility is defined over income, this critique does not apply. A close reading of
Rabin (2000, p. 1288) is consistent with this perspective, as is the model proposed by Charness and
Rabin (2002) to account for experimental data they collect. Whether or not one models utility as a
function of terminal wealth (EUTw) or income (EUTi) depends on the setting. Both specifications
have been popular. The EUTw specification was widely employed in the seminal papers defining risk
aversion and its application to portfolio choice. The EUTi specification has been widely employed
by auction theorists and experimental economists testing EUT, and it is the specification we employ
here. Fudenberg and Levine (2006) provide another framework for reconciling the EUTi and EUTw
approaches, by positing a “dual self” model of decision-making in which a latent EUTw-consistent
self constrains choices actually observed by the EUTi-motivated self.
10 For example Harbaugh, Krause and Vesterlund (2002) test the fourfold patten of risk attitude
predicted by cumulative prospect theory. Their tests are designed based on parameter estimates from
Prelec (1998) and others.
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subject pool and examine its implications for subjects’ preferences over lot-
tery choices taken from the EUT choice experiments. In Section 4.3 we show
that, for each subject and each choice, the cost of choosing inconsistently with
EUT can be calculated. Conditional on our risk aversion estimates, we find that
subjects frequently violate EUT even when the cost of doing so is high. In
Section 4.4 we examine whether our risk aversion estimates provide sufficient
precision for reaching meaningful conclusions about EUT. We show that the use
of instruments, based on a statistical model, does not allow sufficiently precise
estimates of risk aversion for our purposes. We discuss various reasons for this
outcome. The implication is, however, that with existing laboratory technology
and statistical models, controls for risk aversion should be implemented using
within-subjects designs that utilize the direct, raw responses of the subject.11

4.1. Risk Aversion and Tests of EUT

Experiments that test EUT at the level of the individual typically require that the
subject make two choices, so that we can compare their consistency. The first
lottery choice can be used to infer the subject’s risk attitude, and then the second
choice can be used to test EUT, conditional on the risk attitude of the subject.
Thus, preferences have to be elicited over two pairs of lotteries for there to be a
test of EUT at all.

For a specific example of the frequently used “Common Ratio” (CR) test,
suppose Lottery A consists of prizes $0 and $30 with probabilities 0.2 and 0.8.
Lottery B , consisting of prizes $0 and $20 with probabilities 0 and 1. Then one
may construct two additional compound lotteries, A∗ and B∗, by adding a front
end probability q = 0.25 of winning zero to lotteries A and B . That is, A∗ offers
a (1 − q) chance to play lottery A and a q chance of winning zero. Subjects
choosing A over B and B∗ over A∗, or choosing B over A and A∗ over B∗, are
said to violate EUT.

To show precisely how risk aversion does matter, assume that risk attitudes
can be characterized by the popular Constant Relative Risk Aversion (CRRA)
function, U(m) = (m1−r )/(1 − r), where r is the CRRA coefficient. The cer-
tainty equivalents (CE) of the lottery pairs AB and A∗B∗ as a function of r are
shown in the left and right upper panels respectively of Fig. 4.1. The CRRA co-
efficient ranges from −0.5 (moderately risk loving) up to 1.25 (very risk averse),

11 To what extent do our conclusions transfer beyond the lab to field experiments? In that setting one
often encounters apologies that it was not possible to control everything of theoretical interest, but
that the tradeoff was worth it because one is able to make more “externally valid” inferences about
behavior. Such claims should be viewed with suspicion, and are often made just to hide incomplete
experimental designs (Harrison, 2005). One can always condition on a priori distributions that might
have been generated by other samples in more controlled settings (e.g., Harrison, 1990), such that
inferences based on posteriors do not ignore that conditioning information. Or one can complement
“uncontrolled” field experiments with controlled lab experiments, acknowledging that controls for
risk attitudes in the latter might interact with other differences between the lab and the field.
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Fig. 4.1: Risk attitudes and common ratio tests of EUT.
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with a risk-neutral subject at r = 0. The CE of lottery B , which offers $20 for
sure, is the horizontal line in the left panel. The CE of A, A∗ and B∗ all decline
as risk aversion increases. The lower panels of Fig. 4.1 show the CE differences
between the A and B (A∗ and B∗) lotteries. Note that for the AB (A∗B∗) lot-
teries, the preferred outcome switches to lottery B (B∗) for a CRRA coefficient
about 0.45.

Most evaluations of EUT acknowledge that one cannot expect any theory to
predict perfectly, since any violation would lead one to reject the theory no mat-
ter how many correct predictions it makes. One way to evaluate mistakes is to
calculate their costs under the theory being tested and to “forgive” those mis-
takes that are not very costly while holding to account those that are. For each
subject in our data and each lottery choice pair, we can calculate the CE differ-
ence given the individual’s estimated CRRA coefficient allowing us to identify
those choice pairs that are most salient. A natural metric for defining “trivial
EUT violations” can then be defined in terms of choices that involve a differ-
ence in CE below some given threshold.

Suppose for the moment that an expected utility maximizing individual will
flip a coin to make a choice whenever the difference in CE falls below some
cognitive threshold. If r = 0.8, the CE difference in favor of B is large in the
first lottery pair and B will be chosen. In the second lottery pair, the difference
between the payoffs for choosing A∗ and B∗ is trivial12 and a coin is flipped
to make a choice. Thus, with probability 0.5 the experimenter will observe the
individual choosing B and A∗, a choice pattern inconsistent with EUT. In a
sample with these risk attitudes, half the choices observed would be expected
to be inconsistent with EUT.13 With such a large difference between the choice
frequencies, standard statistical tests would easily reject the hypothesis that they
are the same. Thus, we would reject EUT in this case even though EUT is true.

Harrison et al. (2003) test EUT conditional on subjects’ estimated risk aver-
sion. Because the effects of risk aversion on our ability to test EUT depend on
the particular lottery pairs used, Harrison et al. (2003) consider 6 lottery pair
choices and 12 stated “selling prices” for each of those 12 lotteries taken from
Grether and Plott (1979), in addition to the two CR lotteries discussed above. In
this literature on Preference Reversals (PR), the term “P-bets” refers to lotter-
ies that have a relatively high probability of winning a relatively low monetary
prize. The alternative bets are called “$-bets” because they have a lower prob-
ability of winning than the paired P-bet, but a higher dollar prize if the subject
wins. PR Choice pair #1, for example, consists of the P-bet offering $4 with
probability 35/36 and a loss of $1 with probability 1/36, and the $-bet offering
$16 with probability 11/36 and a loss of $1 with probability 25/36. In this case

12 In fact, it is less than 1 cent.
13 This example illustrates only one possible characterization of subject error. For a discussion of
alternatives, see Loomes, Moffatt and Sugden (2002), Harless and Camerer (1994), Hey and Orme
(1994), Hey (1995), Loomes and Sugden (1995, 1998), Ballinger and Wilcox (1997), and Carbone
(1997).
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the expected values are $3.86 and $3.85, respectively. The other five PR lottery
pairs are similar. Because the lottery pairs in these experiments have virtually
identical expected values, the difference in CE is zero if the CRRA coefficient
r = 0.14 Figure 4.2 shows that the difference in CE varies over the 6 lotteries.15

Based on the observed distribution of risk attitudes in our sample, we can
calculate the EUT consistent choice in each of the 8 lottery pairs, assuming
a CRRA utility function.16 Abstracting from any consideration of the size of
the CE difference, only 52% of observed choices were consistent with EUT
when pooling over all 8 lottery pairs. Only in one PR lottery pair does one see a
proportion of choices that are markedly higher than 50% and therefore consistent
with EUT. However, even those observations would require us to have a high
tolerance for errors in the data in order to accept EUT. One would therefore
reject the predictions of EUT for this set of choices, conditional on the point
estimates of risk aversion being accepted.

While we observe a high rate of lottery choices inconsistent with EUT, this
analysis does not consider whether the apparent errors are costly from the per-
spective of the subject. We ask here whether consistency with EUT increases as
the cost of an error increases. Moreover, we investigate whether our rejection of
EUT, conditional on the point estimates of risk aversion being accepted is sen-
sitive to the precision of our estimates of the underlying CRRA coefficients.
Since the calculation of the CE differences depends critically on the CRRA
estimates, we need to measure the robustness of our EUT findings to the im-
precision of those estimates. While we focus on tests of EUT, this question of
precision in estimating the parameters of the choice function is also relevant
for tests of cumulative prospect theory, models of choice with altruism, other
regarding preferences, etc.

One might ask how one can test EUT when one must assume that EUT holds
in order to measure risk attitudes. Our point is that tests of EUT are incomplete
if they do not also include a joint hypothesis about risk attitudes and consistent
behavior over lottery choices. That is, one has to undertake such tests jointly
or else one cannot test EUT at all, since the subject might be indifferent to the
choices posed. Or, more accurately, without such tests of risk attitudes, the ex-
perimenter is unable to claim that he knows that the subject is not indifferent.
So, just as EUT typically entails consistent behavior across two or more pairs of

14 The payoffs in choice pair #6 have been altered slightly from the values in Grether and Plott
(1979) so that a risk neutral individual is not indifferent between the two.
15 Moffatt (2007) develops a technique to select the parameters of the experiment to maximize the
information content. Rather than use his technique, we adopted familiar tests from the literature,
which has the advantage of allowing comparisons to previous findings.
16 There are 8 lotteries in total, 6 PR lotteries and 2 CR lotteries. Each individual was presented
with all 6 PR choices but only one of the CR choices. Hence, we have 7 observed choices for
each individual. The analysis in Harrison et al. (2003) was undertaken in the usual manner from
the “preference reversal” literature: the direct binary choices of each subject were compared to the
implied choices from the selling prices elicited over the underlying lotteries.
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(difference in certainty equivalents favoring P-bet in each pair).
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lottery comparisons, we are arguing that it necessarily entails consistent behav-
ior across those lottery comparisons and a task to measure risk attitudes. Our
focus, then, is on the statistical precision of the inferences from the latter task.

4.2. Experimental Procedures

We use data from experiments reported in Harrison et al. (2003). These experi-
ments implement both a risk elicitation task and several lottery choices following
those used in earlier experimental tests of the CR and PR phenomena.

The risk elicitation task follows Holt and Laury (2002) who devise a simple
experimental measure for risk aversion using a multiple price list design. Each
subject is presented with a choice between two lotteries, which we can call A

or B . Table 4.1 illustrates the basic payoff matrix presented to subjects. The
first row shows that lottery A offered a 10% chance of receiving $2 and a 90%
chance of receiving $1.60. The expected value of this lottery, EVA, is shown
in the third panel as $1.64, although the EV columns were not presented to
subjects.17 Similarly, lottery B in the first row has chances of payoffs of $3.85
and $0.10, for an expected value of $0.48. Thus the two lotteries have a relatively
large difference in expected values, in this case $1.17. As one proceeds down the
matrix, the expected value of both lotteries increases, but the expected value of
lottery B becomes greater than the expected value of lottery A.

The subject chooses A or B in each row, and one row is later selected at
random for payout for that subject. The logic behind this test for risk aversion
is that only risk-loving subjects would take lottery B in the first row, and only
risk-averse subjects would take lottery A in the second-to-last row. Arguably,
the last row is simply a test that the subject understood the instructions, and has
no relevance for risk aversion at all. A risk neutral subject should switch from
choosing A to B when the EV of each is about the same, so a risk-neutral subject
would choose A for the first four rows and B thereafter.

Holt and Laury (2002) examine two main treatments designed to measure the
effect of varying incentives.18 They vary the scale of the payoffs in the matrix
shown in Table 4.1 by multiplying the payoffs by 20, 50, or 90. Thus, Table 4.1
shows the scale of 1.

17 There is an interesting question as to whether they should be provided. Arguably the subjects
are trying to calculate them anyway, so providing them avoids a test of the joint hypothesis that
“the subjects can calculate EV in their heads and will not accept a fair actuarial bet.” On the other
hand, providing them may cue the subjects to adopt risk-neutral choices. The effect of providing EV
information deserves empirical study.
18 Holt and Laury’s (2002) design provides in-sample tests of the hypothesis that risk aversion does
not vary with income, an important issue for those that assume specific functional forms such as
CRRA or constant absolute risk aversion (CARA), where the “constant” part in CRRA or CARA
refers to the scale of the choices. A rejection of the “constancy” assumption is not a rejection of
EUT in general, of course, but just these particular (popular) parameterizations.
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Table 4.1: Design of the Holt and Laury risk aversion experiments

(Standard payoff matrix).

Lottery A Lottery B EVA EVB Difference in Range of CRRA
Probability of Probability of Probability of Probability of (in $) (in $) Expected value coefficient r if last
winning $2 winning $1.60 winning $3.85 winning $0.10 (in $) lottery A choice

0.1 0.9 0.1 0.9 1.64 0.48 1.17 < −0.95
0.2 0.8 0.2 0.8 1.68 0.85 0.83 −0.95 < r < −0.49
0.3 0.7 0.3 0.7 1.72 1.23 0.49 −0.49 < r < −0.15
0.4 0.6 0.4 0.6 1.76 1.60 0.16 −0.15 < r < 0.15
0.5 0.5 0.5 0.5 1.80 1.98 −0.17 0.15 < r < 0.41
0.6 0.4 0.6 0.4 1.84 2.35 −0.51 0.41 < r < 0.68
0.7 0.3 0.7 0.3 1.88 2.73 −0.84 0.68 < r < 0.97
0.8 0.2 0.8 0.2 1.92 3.10 −1.18 0.97 < r < 1.37
0.9 0.1 0.9 0.1 1.96 3.48 −1.52 1.37 < r

1 0 1 0 2.00 3.85 −1.85
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Harrison et al. (2003) adapt the Holt and Laury (2002) procedure by scaling it
appropriately for the present purposes. Multiplying by 10 the original payoff
scale of 1, which has prizes ranging between $0.10 and $3.85, provides re-
sponses that span prizes between $1.00 and $38.50. These two payoffs scales
are referred to as 1x and 10x hereafter. The 10x payoffs comfortably covers the
range of prizes needed to apply the measures of risk aversion to our experiments.
All subjects were given the 10x test, but some were also given a 1x test prior
to the 10x, which we refer to as the 1x10x treatment since these payoffs are
comparable to the EUT decision tasks.19

Apart from conducting experiments to elicit subjects attitudes toward risk (the
risk aversion experiments) Harrison et al. (2003) also conducted experiments
with the same subjects in order to test for violations of EUT, controlling for
risk aversion. To avoid possible intra-session effects, only one experiment was
run in each session. The same subjects were contacted again by e-mail and in-
vited to participate in subsequent experiments that were separated by at least one
week.20 Students were recruited from the University of South Carolina. In total,
152 subjects participated in a risk aversion experiment and, of those, 88 also
participated in the lottery choice experiments. Overall, there were 88 subjects
for whom we can match results from the risk aversion test to the lottery choice
task. No attempt was made to screen subjects for recruitment into subsequent
experiments based on their choices in earlier experiments.

All subjects received a fixed show-up fee of $5 in each of the three experi-
ments, consistent with our standard procedures.21 This is a constant across all
subjects, and does not vary with the decisions the subjects faced. No subject
faced losses.

The lower left panel of Fig. 4.3 displays the elicited CRRA coefficients for
our sample, based on a sample of 152 subjects. We employ the CRRA utility
function introduced earlier to define the CRRA intervals represented by each
row in the payoff matrix faced by the subject shown in Table 4.1, although other
functional forms could also be used and would lead to similar conclusions. Each
subject is assigned the midpoint of the CRRA interval at which they switch from
choosing lottery A to lottery B .22 The right column in Table 4.1 shows CRRA
intervals associated with each switch point. The resulting distribution of risk
attitudes is depicted in the bottom left panel in Fig. 4.3. While a small portion of

19 The reason for this design was to test for “order effects” in elicited risk attitudes, as reported in
Harrison et al. (2005b).
20 The time between sessions for a given subject was usually one or two weeks. Harrison et al.
(2005a) show that elicited risk attitudes for this sample are stable over time horizons of several
months.
21 The subjects were recruited in lectures for experiments run during the usual lecture time and they
received no show-up fee. In our case, subjects were recruited via Ex-Lab (http://exlab.bus.ucf.edu),
consisting of a combination of e-mail alerts and on-line registration schedules from a subject pool
database.
22 Several subjects switched two or more times. In this case we use the first and last switch points
to define a relatively “fat” interval for that subject.
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subjects appear to be risk-loving or risk-neutral, the bulk of the subjects appear
to be averse to risk, with the modal response being in the neighborhood of a
CRRA value of 0.5.

An alternative method for characterizing risk attitudes is an interval regression
statistical model in which each subject’s choice is the CRRA interval at which
they “switch” from choosing lottery A to choosing lottery B . Using the predicted
CRRA coefficients from the interval regression has a disadvantage: it throws out
much of the individual variation that is not captured by socio-demographics.
Thus, the fitted distribution of CRRA is smoothed, but the qualitative con-
clusions are unchanged. The advantages of using the fitted model are that, if
reliable, the model allows us to predict risk attitudes for subjects without hav-
ing to directly elicit them. It is costly and time consuming to have to run an
elicitation task in addition to the test of the choice model of interest.23

In the interval regression,24 we include a standard list of socio-demographic
characteristics and dummy variables for each experimental session.25 The esti-
mates shown in the bottom right panel of Fig. 4.3 are then obtained as predictions
from this estimated model, setting each individual’s characteristics equal to their
actual values. Average CRRA is estimated to be 0.68 for this sample. The av-
erage standard error in the CRRA coefficient estimate was 0.14, and the 95%
confidence interval around the mean CRRA coefficient of 0.68 is between 0.41
and 0.96. Comparing the lower panels of Fig. 4.3, the distribution of CRRA
coefficients from the interval regression model (right panel) is more smoothed
and concentrated around the mean relative to the distribution (left panel) that is
obtained by directly eliciting the CRRA values.

How sensitive are our conclusions about the validity of EUT given the es-
timated width of the confidence interval above? Casual inspection of Figs. 4.1
and 4.2 suggests there are wide differences in the CE over this range including
the possibility that cost of making an EUT-inconsistent choice is nearly zero
for some choice pairs. We examine the sensitivity of these conclusions more
formally below.

23 In addition, there are problems asking a subject to give two “real responses” in the lab. First,
there might be wealth effects, or expected wealth effects, when the earnings from one lottery affect
valuations for the second lottery. Second, if one picks out one choice at random to pay the subject,
one is assuming that one of the axioms of EUT (independence) is correct. If it is not, then this
random payoff device can generate inconsistent preferences even if the underlying preferences are
consistent. These points are well known in the experimental literature, and are important if one is
attempting to identify which axioms of EUT might be in error.
24 For subjects that participated in the 1x10x experiments, the data constitute a panel consisting of
two observations for that subject, so we use panel interval regression models with random individual
effects. We included a binary indicator in the regression to control for order effects when subjects
did both 1x and 10x tasks.
25 These were binary indicators for sex, race (black), a Business major, Sophomore status, Junior
status, Senior status, high GPA, low GPA, Graduate student status, expectation of a post-graduate
education, college education for the father of the subject, college education for the mother of the
subject, and US citizen status. We also included age in years.
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4.3. Effects of CE Differences on Tests of EUT

We first consider the possibility that subjects may be more likely to choose in-
consistently with EUT when the cost of doing so is trivial. Figure 4.4 shows the
fraction of EUT consistent choices as a function of CE differences, using all the
data from the two CR choices and the 6 PR choices. For each threshold listed
on the bottom axis, the calculations underlying these figures drop any choice
that entails a CE difference that is less than the indicated threshold. Thus, as
the threshold gets above several pennies, many of the A∗B∗ choices faced by
risk averse subjects are naturally dropped from consideration. Figure 4.4 shows
thresholds for the difference in CE varying from 0 cents up to 100 cents. The
thin, dashed line shows the fraction of choices above the threshold on the bottom
axis. Thus, for a threshold of 0 cents 100% of the choices are considered (i.e.,
the choices from the 6 PR choices plus the 2 CR choices, for all individuals).
As the threshold increases, additional choices are dropped. Whether a choice is
dropped depends on the estimated risk aversion of the subject and the parame-
ters of the lotteries in each choice, since these are the factors determining the
CE. The heavy, solid line shows the fraction of the remaining choices that are
consistent with the EUT prediction.

Surprisingly, the ability of EUT to predict choices does not appear to increase
as the threshold for CE differences is increased. Our earlier conclusion, that
there is little support for EUT, is therefore not affected by excluding observations
that were based on small differences in the CE of the lotteries (and where “small”
is defined parametrically, so that the reader may individually decide what is

Fig. 4.4: Fraction of EUT consistent choices as a function of certainty equivalent differences.
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small). Moreover, although not shown in Fig. 4.4, we find that EUT does not do
better than about 50% correctly predicted even if CE differences are required to
exceed $3.00. Simple random chance would explain these data better than EUT.

Figure 4.5 undertakes the same analysis at the level of each individual task.26

These results show that the fraction of choices above the threshold, shown by
the thin dashed line, stays quite high for most of the preference reversal choice
tasks. This is by design, given that we have a generally risk averse subject pool.
By contrast, the fraction of choices above the threshold drops rapidly in the CR
task involving lotteries A∗ and B∗, as implied from Fig. 4.1. In fact, given the
CRRA values observed in our sample, no decisions have CE differences greater
than about 30 cents for the A∗B∗ pair. For this task and two of the preference
reversal tasks, Pair 3 and 6, the fraction of choices consistent with EUT, shown
by the heavy, solid line, does increase as the threshold increases. However, this
only occurs for a small fraction of choices since the number of choices above
the threshold falls rapidly for these three tasks. For the remaining tasks, there
appears to be no relationship between the minimum threshold and the extent to
which choices are consistent with EUT. This is particularly telling since these
are the tasks for which a substantial fraction of choices exceed the threshold.

4.4. Allowing for Imprecision in Risk Elicitation

We have seen that error rates do not decline even when CE differences are large.
While we do not see any persuasive evidence that the size of CE differences
affects our conclusions about EUT , we must recognize that our risk aversion co-
efficient estimates for individuals may be imprecise. As seen in Figs. 4.1 and 4.2,
CE differences are very sensitive to the CRRA coefficient. Small changes in r

can change an observed choice from being considered a trivial violation to a
costly violation, or to no violation. Imprecision in estimating the CRRA coeffi-
cient must be taken into account when evaluating the data.

Imprecision may arise if our risk elicitation task does not yield precise esti-
mates due to “trembling hand” error on behalf of the subject, or to our failure
to elicit sufficient information to make more precise inferences about the risk
attitudes of the subject. To illustrate an important but subtle point, imagine we
had collected information on hair color and used that to explain the risk aversion
choices of our subject. We anticipate that this would be a poor statistical model,
generating extremely wide standard errors on our forecast of the individual’s
risk attitudes. As a result, it would be very easy to find a predicted risk aversion
coefficient within a 95% confidence interval of the mean predicted value that
includes the point of indifference. Thus one could almost always find a risk atti-
tude that makes the observed choices consistent with EUT, but only because the
statistical model was so poor. We have selected individual characteristics that

26 The lines in Fig. 4.5 are defined identically to those in Fig. 4.4.
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are standard in empirical work of this kind, but there is always the risk that none
of these characteristics help us predict risk attitudes carefully.

For all the analyses and tests employed so far, the way we characterize risk
attitudes makes no difference to the conclusions we draw. Using the interval
regression model to generate average risk aversion estimates for each individual
yields indistinguishable results from the alternative, less parametric, approach
which measures risk aversion for each individual using the observed interval
at which the individual switches from safe to risky. The reason that these two
approaches to inferring risk attitudes generate the same conclusions is that the
averages from the interval closely approximate the average prediction from the
interval regression model.

However, when considering the impact of the precision of the risk aversion
estimates, the conclusions we draw are sensitive to how we statistically charac-
terize risk attitudes. Thus, we will first consider the precision of raw responses,
and then compare the precision of the CRRA coefficients estimated using inter-
val regression models.

First, consider a minimally parametric approach that does not condition on
the socio-demographic characteristics of the subjects. This allows us to focus on
the imprecision inherent in the experimental task rather than prediction error in
the regression model. Because subjects were only given ten questions in the risk
aversion task, we only know the interval at which the subject switched from the
safe to risky choice.27 For each individual we know the upper and lower bounds
of their “switching” interval. Any CRRA coefficient between these bounds is
consistent with the observed switching behavior of the individual, and equally
plausible a priori. Each CRRA coefficient in the interval is associated with a CE
difference; hence, there is a range of equally plausible CE differences. For each
individual and each choice, we pick the most “conservative” CRRA coefficient,
that is, we pick the CRRA coefficient associated the smallest absolute value of
the CE difference. Then, if the CE difference is below the chosen threshold, this
observation is dropped. Thus, whenever it is plausible that the subject does not
care about the choice given the bounds on the subject’s risk aversion, that choice
is excluded. The bottom panel of Fig. 4.6 shows the results of this calculation.
The horizontal axis again shows threshold values up to 100 cents and the thin
dashed line shows the fraction of choices above the threshold. The darker line
shows the fraction of EUT consistent choices when we allow for uncertainty
over the precise CRRA coefficient for each individual. There do not appear to
be conservative CRRA values for each subject, taking into account the inter-
val nature of CRRA estimate, such that the predicted consistency of EUT rises
much above 50%. For comparison, the top panel of Fig. 4.6 shows the fraction of
choices correctly predicted by EUT assuming no uncertainty in the risk aversion

27 Of course, we could have asked more questions to “pin” the individual to a smaller interval.
This alternative is implemented in a risk aversion elicitation task by Harrison, Lau, Rrutström and
Sullivan (2005).
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measure and using the midpoint of each individual’s raw CRRA response inter-
val. There is little difference in the fraction of EUT consistent choices between
the top and bottom panels of Fig. 4.6.

We also consider whether “trembling hand” errors in risk aversion could be
driving these apparent EUT violations. Suppose that the latent process that
drives an individual’s choices in the risk aversion experiment operates with
some error, so that individuals may be observed switching earlier or later than
their optimal switching points. To capture this idea, we expand the upper and
lower bounds of the individual’s observed CRRA interval to the midpoints of
the adjacent intervals.28 As above, we consider the range of CRRA values in
this expanded interval, and then pick the one that leads to the smallest CE differ-
ence in the same manner as before. The bottom panel of Fig. 4.7 shows that EUT
still preforms poorly even under this less exacting test (the top panel of Fig. 4.6
is reproduced in the top panel of Fig. 4.7 for comparison). Allowing for uncer-
tainty over the risk aversion interval chosen does not provide any compelling
new evidence in favor of EUT.

Now ask the same questions using the interval regression model to charac-
terize risk attitudes. Figure 4.8 shows the effects of incorporating the forecast
error of the model’s prediction for each individual into the test of EUT. The top
panel shows the fraction of choices that are both EUT consistent and above the
CE threshold when the CRRA estimates are generated from the average of the
prediction from the interval regression. In the bottom panel, forecast error from
the regression is taken into account in a similar manner as described above for
Figs. 4.6 and 4.7. For each subject, we randomly draw a thousand CRRA esti-
mates from the estimated distribution of CRRA values for that subject, in this
case using the estimated mean and standard error of the forecast from the in-
terval regression model as the estimated distribution.29 We then use the CRRA
estimate for the individual that generates the smallest of the absolute values of
the CE difference between the two choices in each lottery pair.

Figure 4.8 shows the results of this calculation. What is striking here is that
the fraction of choices that are above the threshold for CE differences drops to
nothing when the threshold exceeds 10 cents. Hence, for each individual and
each lottery, there exist “plausible” CRRA values such that the opportunity cost
of an error under EUT is trivial.

28 We do not extend the interval to the three intervals surrounding the chosen interval, since the
trembling hand argument does not justify a uniform distribution over the “outer intervals.” It simply
says that somebody may have had a CRRA of 0.16 but chosen the interval with upper bound 0.15
since it was “close enough.”
29 The standard error of a forecast takes into account the uncertainty of the coefficients in the interval
regression model. It is always larger than the standard error of the prediction, which assumes that
those estimates are known exactly. These draws reflect the normal distribution appropriate for this
estimated coefficient value, so 95% of the draws for each subject will be within ±1.96 standard
errors of the point estimate. Thus, to emphasize, we are not allowing the CRRA values for any
individual to take on values that are outside the realm of statistical precision given our experimental
procedures.
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Fig. 4.7: Additional sample uncertainty and EUT consistent choices.
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Figures 4.6 and 4.8 pose a dilemma for the interpretation of the lottery choices
from the perspective of EUT. One must decide which statistical characterization
of risk attitudes is the best, in terms of reflecting the precision of inferences pos-
sible from our experimental procedure. Although there is nothing wrong with
the interval regression characterization, we are firmly inclined towards the min-
imally parametric characterization since we have that for each individual in our
sample. It makes fewer assumptions about the process generating the observed
risk aversion choices, can be easily relaxed to undertake robustness checks as
shown in Fig. 4.7, and can be refined with simple extensions of the experimental
procedures we used. 30 Thus, we conclude that if one cannot directly elicit risk
attitudes from the sample then EUT may be operationally meaningless since the
estimated risk attitude coefficients suffer from too much imprecision.

There are situations in which one might prefer the interval regression model,
despite the relative imprecision of the estimates that result. Assume that the risk
aversion test has been applied to a sample drawn from one population, and one
wants to define a risk aversion distribution for use in interpreting data drawn
from choices in a risk-sensitive task by a distinct sample drawn from the same
population or a distinct population. All that one might know about the new sam-
ple are individual characteristics, such as sex and age. One could then generate
conditional predictions for the new sample using the coefficient estimates from
the interval regression model estimated on the first sample and the information
on characteristics of the new, target sample. The minimally parametric char-
acterization is not so attractive here, since it cannot be so easily conditioned
on individual characteristics. In many experimental situations considerations
of cost may necessitate using predicted rather than elicited risk attitude coef-
ficients. However, more work on specifying good predictive models is needed
before such an approach can be meaningfully applied. Furthermore, there are
many situations in which one only needs to know broad qualitative properties of
the risk attitudes of subjects (e.g., are they risk-neutral or not), rather than pre-
cise estimates of degrees of risk aversion. For such purposes the within-sample
procedures may be overkill.

4.5. Conclusions

We address the imprecision of the empirical parameterization of risk attitude in
expected utility choice models and its impact on the probability of rejecting the
underlying choice model. We provide an extended case study of the inferential
problems that arise, assuming a CRRA form for the utility function. However,

30 Harrison, Lau, Rutström and Sullivan (2005) consider two ways. One, noted earlier, is to “iterate”
the MPL procedure several times so that subjects get 10 intervals within the interval they chose on
the prior iteration. The other way in which one can tighten the CRRA interval is to administer
the procedure several times over distinct lottery prizes, so as to span a more refined set of CRRA
intervals.
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the issue is broadly generalizable to any situation in which parameters need to
be estimated prior to testing the hypothesized choice function.31 We adopt a pro-
cedure in which the risk attitude estimates are perturbed over successively wider
intervals to provide a sense of the robustness of our conclusions regarding the
hypothesized EUT choice function. We constrain the perturbations to intervals
that are within estimated confidence intervals of the point estimates.

We begin by considering a context in which EUT appears to be a poor pre-
dictor of choice behavior. Under the null hypothesis of EUT and CRRA, we
calculate the cost of choosing inconsistently with EUT conditional on estimated
individual risk parameters. We find no evidence that the predictive power of
EUT improves when we restrict the sample to choices that impose nontrivial
costs on subjects. We proceed to examine two methods for estimating the first
stage parameters, in this case individual risk parameters. Risk measures may be
directly elicited by giving each subject a test, or may be predicted based on a
statistical model that utilizes the information on subject risk response and de-
mographics. In either case we find pervasive violations of the theory even when
the opportunity costs of errors are substantial for a risk averse, expected utility
maximizer. Furthermore, allowing for imprecision in our estimates due to “trem-
bling hand” error demonstrates that we can estimate coefficients of relative risk
aversion with sufficient precision to test EUT. Unfortunately, this is only true for
the directly elicited “within” sample method. While the point estimates from the
statistical model would lead to the same conclusion as when we directly elicit
risk aversion measures, the imprecision of those estimates is such that they in-
clude CRRA values for which the cost of almost any error is negligible. While
our qualitative conclusions about expected utility theory are unaffected by im-
precision in measuring risk aversion, this concern is generally applicable to a
wide variety of experimental situations.
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5.1. Introduction

This paper is concerned with the kind of measurements that are often taken
for granted in modern economics, namely the measurement of the entities that
economists theorise about such as: prices, money, utility, GNP, cycles, and
so forth. Two important issues are addressed here. One concerns the general
constitution of such measurements in economics, or for that matter, in the so-
cial sciences more generally: What makes good economic measurements? The
second is an enquiry into the historical trajectory of economists’ successive at-
tempts to provide reliable measurements for the concepts in their field. Is there a
recognisable transit, and if so, what are its characteristics? I shall seek and frame
answers to both these questions with the help of that useful, but perhaps unusual,
concept to find in the practice of economics: namely, “measuring instruments”.1

The discussion makes extensive use of a case example: the history of attempts
to measure the velocity of money – as a way of analysing the nature of econo-
mists’ measuring instruments. In this case, as we will see, economists began by
measuring velocity as a free standing entity using statistical data from various
sources. They went on to use identities or equations from monetary theory to
derive measurements of velocity that were still understood as an observable fea-
ture of the economy. More recently, economists defined and measured velocity
using econometric models that embedded the mathematical idealised notions of
theory in terms of statistical data relations. The case provides material for an
analytical history that illuminates both general issues noted above: the criteria
for measuring instruments; and the historical development of such instruments
in economics.

1 Marcel Boumans first introduced this terminology in an insightful series of papers on measure-
ment in economics – see his 1999, 2001 and 2005, as well as this, volumes.

Measurement in Economics: A Handbook © 2007 Elsevier Inc.
Marcel Boumans (Editor) All rights reserved
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5.2. Measuring Things

5.2.1. Ideas about measuring from philosophy, metrology and history of
science

There are three kinds of literature that help us to think seriously and analyti-
cally about the history of economic measurements, particularly the problems of
measuring things that are not easy to measure. These literatures come from the
philosophy of science, from metrology, and from the history and social studies
of science. As we shall see, they are complementary.

The mainstream philosophy of science position, known as the representational
theory of measurement, is associated particularly with the work of Patrick Sup-
pes.2 This theory was developed by Suppes in conjunction with Krantz, Tversky
and Luce, and grew out of their shared practical experience of experiments in
psychology into a highly formalised approach between the 1970s and 1990s (see
Michell, this volume). The original three volumes of their studies ranged widely
across the natural and social sciences and has formed the basis for much further
work on the philosophy of measurement.

Formally, this theory requires one to think about measurement in terms of a
correspondence, or mapping: a well defined operational procedure between an
empirical relational structure and a numerical relational structure. Measurement
is defined as showing that “the structure of a set of phenomena under certain
empirical operations and relations is the same as the structure of some set of
numbers under corresponding arithmetical operations and relations” (Suppes,
1998). This theory is, as already remarked, highly formalised, but informally,
Suppes himself has used the following example.3 Imagine we have a mechanical
balance – this provides an empirical relational structure whose operations can
be mapped onto a numerical relational structure for it embodies the relations of
equality, and more/less than, in the positions of the pans as weights are place
in them. The balance provides a representational model for certain numerical
relations, and there is an evident homomorphism between them. Though this
informal example nicely helps us remember the role of the representation, and
suggests how the numerical relations can lead to measurement, it is unclear how
you find the valid representation.4

Finkelstein and Sydenham, both in the Handbook of Measurement Science
(see Sydenham, 1982) offer more pragmatic accounts to go alongside and in-
terpret the representational theory’s formal requirements to ensure valid mea-
surement. Finkelstein’s informal definition talks of the assignment of numbers
to properties of objects, stressing the role of objectivity and that “measurement

2 For the original work, see Krantz et al. (1971). For recent versions see Suppes (1998 and 2002).
A more user-friendly version is found in Finkelstein (1974 and 1982).
3 At his Lakatos award lecture at LSE (2004).
4 See Rodenburg (2006) on how these representations are found in one area of economics, namely

unemployment measurement.
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is an empirical process, . . . the result of observation and not, for example, of a
thought experiment” (pp. 6–7).5

This practical version of the representational theory closes in on the sec-
ond approach – the metrology approach – developed for economics by Marcel
Boumans (1999, 2001, 2005 and his chapter in this volume) at the University
of Amsterdam. Boumans’ innovation here entails taking seriously the notion
that we have “measuring instruments” in economics. We may not recognise
them as such, but Boumans shows us that the history of economics is full of
mathematical formulae, models, or even parts of models, that we use as devices
or instruments to enable us to put measurements (i.e. numbers) to apparently
unmeasurable entities in economics.6 For Boumans, the basis of successful mea-
surement depends on creating or developing measuring instruments (formulae)
that are, like thermometers, as far as possible invariant to extraneous changes in
the broader environment while at the same time accurately capturing the vari-
ations of the entity to be measured. His work shows how these mathematical
measuring devices are constructed by economists to fulfil these requirements
and how they function to overcome standard problems such as extracting signal
from noise, filtering, and calibrating the signal to numbers.

In parallel to these philosophical and metrological approaches, Ted Porter
(1994 and 1995) in the history of the social sciences, has focussed on the ways
in which social science numbers become accepted as legitimate and conven-
tional measurements in their fields. In particular, his notion of the development
of “standardised quantitative rules” focuses on the qualities necessary for social
science numbers to count as “objective”. All three named elements contribute
to our willingness to have “trust in numbers”, that is to think of them as be-
ing “objective” measurements. “Quantitative” refers to a level of precision or
exactitude (see Porter, this volume) we associate with the notion of measure-
ment; “rules” refer to the set of principles, methods and techniques by which the
measurement is made; and “standardised” refers to the stability of our measur-
ing process. Numbers produced according to methods that changed each time a
measurement was taken would not constitute measurements that were usable or
even meaningful.7 That is, numbers are not trustworthy in themselves, however
precise they seem, our trust depends on their means of production according to
rules that don’t change unduly. An important part of Porter’s thesis is attention
to the role of bureaucracy – preferably an independent trustworthy office such
as a central statistical office – in the production of numbers, so that “rules” in-
clude not only statistical counting rules, but rules about gathering and handling

5 See Mari (this volume) for an account in this pragmatic tradition that stresses the importance of
processes of measurability over the purely logic approach.
6 In this context, I should stress that this is not solely a discussion of econometrics, which uses

models as measuring instruments to measure the relations between entities: on which see Chao,
2002 and this volume (and his forthcoming book).
7 An infamous UK example of this is the way in which Thatcher’s government insisted on succes-

sive changes in the definitional rules of counting unemployment so that the measurements of this
entity would fall.
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of information and so forth. Since these kinds of rules are obviously endemic
in the production of most economic data, Porter’s thesis is particularly salient
to economic measurement; the onus however is on how our numbers gain trust,
not on how we overcome the problem of turning our concepts and ideas about
phenomena into numbers in the first place.8

An analysis of effective measurement in economics engages us in considering
the aspects of measuring entailed in these three approaches – the philosophical,
the metrological and social/historical. All of these approaches are concerned
with making economic entities, or their properties, measurable, though that
means slightly different things according to these different ideas. For the repre-
sentational theorists, it means finding an adequate empirical relational structure
for an entity or property and constructing a mapping to a numerical relational
structure. This enables measurements – numbers – to be constructed to repre-
sent that entity/property. For Boumans, it means developing a model or formula
which has the ability to capture the variability in numerical form of the prop-
erty or entity, but itself to remain stable in that environment. For Porter, it means
developing standardised quantitative rules (by the scientific or bureaucratic com-
munity or some combination thereof) that allow us to construct, in an objective
and so trustworthy manner, measurements for the concepts we have. We can
interpret these three notions as having in common the idea that we need a mea-
suring instrument, though the nature of such instruments (an empirical relational
structure, a model formula, or a standardised quantitative rule), and the criteria
for their adequacy, have been differently posed in the three literatures.

5.2.2. Making economic things measurable with instruments

If we look back over the past century of so of how economists have developed
ways of measuring things in economics, we can certainly find the kinds of for-
mulae and models – measuring instruments – that Boumans describes. We can
also interpret them using the notions of Porter’s standardised quantitative rules,
and the kind of representational approach outlined by Suppes. For example,
Boumans (2001) analysed the construction of the measuring instrument for the
case of Irving Fisher’s “ideal index” number. Fisher attempted to find a formula
that would simultaneously fulfil a set of axioms or requirements that he believed
a good set of aggregate price measurements should have. Boumans showed how
Fisher came to understand that, although these were all desirable qualities, they
were, in practise, mutually incompatible in certain respects. Different qualities
had to be traded-off against each other in his ideal index formula – the formula
that became his ideal measuring instrument.

8 The development of the measurement rules is not neglected by Porter (for example, see his 1995
discussion of the development of the rules of cost-benefit analysis), but such processes of gaining
trust are less susceptible to the kinds of generalisation I seek to use here.
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Fisher’s initial axioms – his design criteria – can be interpreted within the
representational theory of measurement as laying out the empirical relational
structure that the measurements would have to fulfil. But Fisher’s empirical re-
lational structure (his axioms) could not be fully and consistently mapped onto
numbers from the economic world. Only when one or two of the axioms or
criteria were relaxed, could the empirical structure map onto the numerical struc-
ture.9 While this might seem as a partial failure according to the criteria of the
representational theory, the actual index number formula that Fisher developed
on the modified set of axioms was interpreted by Boumans as a successful at-
tempt to arrive at a more accurate measuring instrument given the variation in
the material to be measured.10 In addition, the kinds of rules and procedures
that were developed to take measurements using Fisher’s index or similar kinds
of instruments11 can be understood within Porter’s discussion of standardised
quantitative rules. The fact that numbers produced with such measuring instru-
ments, are, by and large, taken for granted is evidence of our trust in these
numbers, and that trust is lost when we notice something amiss with the rules
or formulae used to calculate them. For example, Banzhaf (2001) gives an ac-
count of how price indices lost their status as trustworthy numbers when quality
changes during the Second World War undermined the credibility of the index
number formula which assumed constant qualities.12

Historians of economics writing about measurement issues typically focus on
one particular measuring instrument such as input–output matrices or macro-
accounting. But each of these particular instruments can be classified based on
family likeness, for we have different kinds of measuring instruments in eco-
nomics in the same way that we have different categories of musical instruments.
An orchestra can be divided into classes of instrument labelled as strings, wood-
wind, brass, keyboard, percussion etc, according to the way that sounds are
produced within each group and so to the kinds of musical noises we asso-
ciate with each group. Similarly, we can define several different kinds of generic
measuring instruments and associated kinds of measurements in economics (see
Morgan, 2001 and 2003), and within each kind we can find a number of spe-
cific instruments. These generic measuring instrument groups are constructed

9 See Reinsdorf, this volume, for a broader and deeper discussion of the issues raised here on index
numbers.
10 While Fisher decided to compromise on the axioms, an alternative is to reject the data cases that
do not fit the axioms. A recent seminar paper by Steven Dowrick (see Ackland et al., 2006) at ANU
on poverty measurement suggests that it is common in this field to use as a measuring instrument an
ideal index in which the Afriat conditions have to be met. If a particular set of countries do not meet
these tests (and thus the axioms on which the index was based), then those data points are omitted
from the data set.
11 The data requirements of Fisher’s ideal index means that many index numbers are based on the
simpler, less demanding, Laspeyres formula.
12 The recent Boskin report on the US cost of living index offers another case for the investigation
of trusty numbers; see the special symposium on the report in Journal of Economic Perspectives, 12
(1), Winter 1988.
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according to strategies such as weighted averages, sampling systems, account-
ing systems, regressions methods, and so forth. In Morgan (2001), I suggested
further that these general strategies incorporate specific principles of design; that
the measuring instruments constructed according to these design principles in-
volve techniques; and that their application involves judgement. Although such
economic measuring instruments have been constructed by economists without
particular regard for the requirements discussed in the previous section, it may
well be that in combining principles, techniques and judgement they in fact fulfil
the kinds of criteria laid out in those commentators’ analyses.

Let me make this idea more concrete with an example. One of these general
measuring strategies is constituted by index numbers. Of course, economists
know that there are many different index number formulae, often named after
their “inventors” – Laspeyres, Paasche, Fisher, Divisia, etc. (see for example,
the list in Reinsdorf, this volume). We can understand all of these as providing
slightly different designs of the same generic measuring instrument – namely
formulae to calculate one number out of the weighted averages of many unlike
elements. Although they all follow this same basic principle in construction,
each of these named index numbers (and many others) has a slightly different
formula, according to the kind of thing it is designed to measure. Each one also
has somewhat different requirements in terms of raw data, and will also use dif-
ferent data according to whether it is designed to be used to take measurements
of the price level, or standard of living, or money supply etc. Constructing mea-
suring instruments of the index number kind requires a high level of technique
in the art, and using the instrument to provide measurements of the price level
or the money supply requires a high level of judgement as well as calculation
techniques.

Each of the generic strategies for developing specific measuring instruments
has a strong set of principles which provide structure to the measuring instru-
ment, just as for example, woodwind instruments share structural features about
how their sound is produced. We can think of these principles as a kind of recipe
that both tells how to make something to fit such a purpose and in so doing lays
down constraints: for example, woodwind instruments must have a hollow space
as an air pathway, input and exit holes for breath, and so forth. Similarly, when
we think of principles structuring a measuring instrument, they both shape the
measuring instrument and constrain it. For example, the principles of weighted
averages which underlie index number measuring instruments, or the princi-
ples of accounting which underpin national income accounting and input–output
analysis, not only provide the structure of the measuring instrument but also set
constraints on it. The accounting principle provides a good example of how a
strategy and set of principles may spawn measuring instruments that diverge
considerably in shape and in the things they measure, yet use the same kind of
accounting principles and constraints in their construction (see den Butter, this
volume). The accounting principles tell you that everything in the set has to be
counted and must not be double counted; and its constraints mean that certain
elements must balance (be equal, e.g. national income and expenditure) or that
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aggregates must sum to the same amount (e.g. rows and columns in input–output
analysis). Such principles are really important – they are the glue that holds the
necessary elements of the measuring instrument together; they give form to the
standardised quantitative rules and provide constraints to the structure; they give
shape to the representation of the empirical and numerical relational structures
and help define the locations of variance and invariance.

In looking at the history of economic measurements then, we need to look
out for the measuring instruments, to their principles of construction, and to the
techniques and judgements required in their practical usefulness. The literatures
on measurement from the philosophy, metrology and science studies are com-
plementary here for they offer more general criteria relevant for all classes of
instrument. Measuring instruments, regardless of their general kind or particular
construction, should ideally fulfil Suppes’, Boumans’ and Porter’s requirements
for the characteristics of measuring systems. How the instruments are used, and
what happens when the requirements are not fulfilled, are explored in the case
below.

5.3. Case: Historical Episodes in Measuring the Velocity of Money

How should economists measure the velocity of money? This is a question
which has intrigued, if not baffled, economists for several centuries. Even
William Stanley Jevons, who proved to be one of the nineteenth century’s most
willing and innovative measurers in economics, stated:

I have never met with any attempt to determine in any country the average rapidity of circula-
tion, nor have I been able to think of any means whatever of approaching the investigation of
the question, except in the inverse way. If we knew the amount of exchanges effected and the
quantity of currency used, we might get by division the average numbers of times the currency
is turned over; but the data, as already stated, are quite wanting (Jevons, 1909 [1875], p. 336).

Nowadays, this is indeed the kind of formula used in measuring velocity:
some version of the values of total expenditure (usually nominal GDP) and of
money stock are taken ready made from “official statistical sources”, and veloc-
ity is measured by dividing the former by the latter. For example, the Federal
Reserve Chart Book routinely charted something it called the “Income Velocity
of Money” in the 1980s, namely GNP/M1 and GNP/M2 (in seasonally adjusted
terms, with quarterly observations on a ratio scale): see Fig. 5.1 as an example.13

But such treatment accorded to velocity – as taken for granted, easily mea-
sured and charted – does not mean that the problems of adequately measuring
the velocity of money have been solved, or that the Fed’s modern measurements
are any more useful than those of three centuries earlier. Let me begin by con-
trasting that standard late twentieth century method of measuring the velocity of
money with one from the seventeenth century.

13 For example, see that publication, 1984, p. 5; 1986, p. 8.
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Fig. 5.1: Income Velocities of Money (seasonally adjusted, quarterly).

Source: Federal Reserve Chart Book, 1984, p. 5.

William Petty undertook a series of calculations of the economic resources of
England and Wales in his Verbum Sapienti of around 1665 and asked himself
how much money “is necessary to drive the Trade of the Nation” having already
estimated the total “expence” of the nation to be £40 millions. This set him to
consider the “revolutions” undergone by money:

if the revolutions were in such short Circles, viz. weekly, as happens among the poorer artisans
and labourers, who receive and pay every Saturday, then 40/52 parts of 1 Million of Money
would answer those ends: But if the Circles be quarterly, according to our Custom of paying
rent, and gathering Taxes, then 10 Millions were requisite. Wherefore supposing payments in
general to be of a mixed Circle between One week and 13, then add 10 Millions to 40/52,
the half of the which will be 5½, so as if we have 5½ Millions we have enough (Petty, 1997
[1899], pp. 112–113).

Now Petty set out to measure the amount of necessary money stock given
the total “expenses” of the nation, not to measure velocity, but it is easy to see
that he had to make some assumptions or estimates of the circulation of money
according to the two main kinds of payments. He supposed, on grounds of his
knowledge of the common payment modes, that the circulation of payments
was 52 times per year for one class of people and their transactions and 4 for the
other, and guesstimated the shares of such payments in the whole (namely that
payments were divided half into each class), in order to get to his result of the
total money needed by the economy.

If we simple average Petty’s circulation numbers, we would get a velocity
number of 28 times per year (money circulating once every 13 days); but Petty
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was careful enough to realise that for his purpose to find the necessary money
stock, these must be weighted by the relative amounts of their transactions. Such
an adjustment must also be made to find a velocity measurement according to
our modern ideas. If we employ the formula: velocity = total expenditure/money
stock, to Petty’s circulation numbers, we get a velocity equal 7.3 (or that money
circulates once every 50 days).

One immediate contrast that we can notice between these two episodes is that
in Petty’s discussion, the original circulation figures for the two kinds of trans-
action – the figures relating to velocity – were needed to derive the money stock
necessary for the functioning of the economy and having found this unknown, it
was then possible (though Petty did not do this) to feed this back into a formula
to calculate an overall velocity figure from the velocity of circulation numbers
for the two classes of payments. We used the formula here to act as a calcu-
lation device for overall velocity, though that measurement was dependent on
independent “guesstimates” of the two classes of such circulation by Petty. This
is in contrast to the modern way used by the Fed, where the velocity number is
derived only from V = GNP/M , this simple formula acts as a measuring device,
yet there were no separate numbers constituting independent measurements (or
even guesses) of monetary circulation or velocity in this calculation.

These two methods of measuring velocity – Petty’s independent way and the
modern derived way – are very different. It is tempting to think that the Fed’s was
a better measure because it was based on real statistics not Petty’s guess work,
and because its formula links up with other concepts of our modern theories. But
we should be wary of this claim. We should rather ask ourselves: What concept
in economics does the Fed’s formula actually measure? And, Does it measure
velocity in an effective way?

5.3.1. Independent measurements of transactions velocity

Beginning again with Petty’s calculations, recall that he had guesstimated the
amounts of money circulating on two different circuits in the economy of his
day. He characterised the two circuits both by the kind of monetary transactions
and the economic class of those making expenditures in the economy. I label
these “guesstimates” because these two main circuits of transactions and their
timing were probably well understood within the economy of his day but the
exact division between the two must have been more like guess work. We find
further heroic attempts, using a similar approach, to estimate the velocity or
“rapidity” of circulation in the late 19th century. For example, Willard Fisher
(1895) drew on a number of survey investigations into check and money de-
posits at US banks in 1871, 1881, 1890 and 1892 to estimate the velocity of
money in the American economy. Although these survey data provided for two
different ways of estimating the amount of money going through bank accounts,
the circulation of cash was less easy to pin down, and he was unhappy with the
ratio implied from the bank data that only 10% of money circulated in the form
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of cash transactions. On the basis of an estimate of the total currency in circu-
lation, Willard Fisher was able to frame, with some plausibility, the limits of
cash money circulation against check money circulation: that is, he argued that
it would be implausible to assume a cash circulation (as for credit) of only once
every 3 weeks, and that cash circulating at the more plausible 3 times a week
would make credit and cash transactions roughly equal in making up the circu-
lation of money. The method was similar to that used by Petty, except that now
Willard Fisher had some statistical evidence on one part of the circulation, and
his categories involved different kinds of payments rather than classes of people
and types of expenditures.

This late nineteenth century was the “age of economic measurement” (see
Klein and Morgan, 2001), a period when serious data collection as a means
of observation and measurement was beginning to become an obsession. The
question of how much work money did, and how far that had changed over the
previous years, was the subject of much debate in the American economics com-
munity in the middle 1890s. Wesley Clair Mitchell (1896), for example, claimed
both a substantial increase in the money in the economy and an increase in the
velocity of circulation even while he estimated there had been a fall in the share
of cash transactions, from 63% to 33% over the period 1860 to 1891. David Kin-
ley’s (1897) paper used evidence from an 1896 bank survey investigation, and,
with a little more information at his disposal but still on the basis of guesswork
on the plausible circulation of cash, he placed the figure at 75% check money
and 25% cash transactions. Yet, empirical numerical information on the velocity
of circulation, and cash transactions in particular, remained elusive.

A further flurry of measurement activity took place around the end of the first
decade of the 20th century. Edwin Kemmerer (1909), made full use of the vari-
ous banking and monetary statistics of his day, and built on these earlier 1890s
investigations and estimations to arrive at an estimated velocity of money (“rate
of monetary turnover”) of 31 (or 47, if money was taken ex. bank reserves) for
1896. He then applied these circulation rates, and other estimates for 1896 to the
whole period 1879–1908 to construct a series that summed two different kinds
of money (cash and checks) times their respective velocities (i.e. MV in a Fish-
erian equation of exchange: Money × Velocity = Price × Transactions). In the
final summary chapter of Kemmerer’s book, these estimates were combined to
form an index number of the “relative circulation” (i.e. MV/T ) and compared
with his separately constructed prices series (P ) and trade series (T ) to check
the overall coherence of the separate measurements. These other measurements
are not in themselves of interest here – rather the point is that velocity mea-
surements were estimated independently of the other terms in the formula and
directly from various banking statistics.

In terms of Suppes’ representational theory of measurement, we can interpret
Kemmerer’s actions as taking the equation of exchange (MV = PT ) to operate
as an empirical relational structure indicating the numerical relational structure
that his series of numbers needed to possess. He did not use that empirical re-
lational formula to derive measurements for any of the unmeasured items, but
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did assume that the numerical relations between the separately measured series
should hold in the same format as his empirically defined relations. Thus, he
constructed measurements of all the elements independently and numerical dif-
ferences between the two sides of the relation MV = PT were taken to indicate
how far his series of measurements of each side of the equation might be in er-
ror. The formula here operated neither as a calculation device nor as a measuring
instrument, but it was part of a post-measurement check system which had the
potential to create trust or confidence in his measurements.

This indeed was the same use that Irving Fisher made of his equation of
exchange MV = PT , but in a much more explicit way that takes us back imme-
diately to Suppes’ informal example of the mechanical balance. In my previous
examination of Irving Fisher’s use of the analogy of the mechanical balance for
his equation of exchange (see Morgan, 1999), I wrote briefly about the mea-
surement functions of his mapping of the various numbers he obtained for the
individual elements of the equation of exchange onto a visual representation
of a double-armed balance.14 I suggested that the mechanical balance was not
the measuring instrument in this case, for, like Kemmerer, he measured all the
elements depicted on the balance in separate procedures and both tabled and
graphed the series to show how far the two sides of the equation were equal –
see Fig. 5.2 (where money and trade are the weights on the arms; velocity and

Fig. 5.2: Fisher’s Mechanical Balance.

Source: Part of Fig. 17, from the 1912 edition of The Purchasing Power of Money, opposite p. 306.

14 The original diagram is in his 1911 book, Fig. 17, opposite p. 306. See also Harro Maas (2001)
on the way Jevons used the mechanical balance analogy to bootstrap a measurement of the value of
gold, and to understand certain properties of unobservable utility; and Sandra Peart (2001) on his
measurements of the wear of coins.
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pries are shown on the left and right arms respectively). Nevertheless, he did
use the mechanical balance visual representation to discuss various measure-
ment issues: the mapping enabled him to show the main trends in the various
series at a glance and in a way which immediately made clear that the quan-
tity theory of money (a causal relation running from changes in money stock
to changes in prices) could not be “proved” simply by studying the equation
of exchange measurements. He was also prompted by this analogy to solve the
problem of weighted averages by developing index number theory (which is
where Boumans’s case analysis of Section 5.2.2 fits in). All of this takes us
somewhat away from the point at issue – the measurement of velocity – but the
use of equations of exchange returns again later.

In thinking about all these measurement problems, Irving Fisher took the op-
portunity to develop not only the fundamentals of measuring prices by index
numbers (see Boumans, 2001), but also new ways of measuring the velocity of
money. He regarded his equation of exchange as an identity which defined the
relationship of exchange based on his understanding that money’s first and fore-
most function was as a means of transaction. Thus, he thought it important to
measure velocity at the level of individuals: it was individuals that spent money
and made exchanges with others for goods and services. From this starting point,
he developed two neat new methods of measuring velocity.

I will deal with the second innovation first as it can be understood as working
within the same tradition as that used by Petty and Kemmerer, but instead of
simply estimating two numbers for the two different cash circulations as had
Petty, or two different circulations of cash and check money as had Kemmerer,
Irving Fisher (1909, and then 1911) proposed a more complex accounting in
which banks acted as observation posts in tracing the circulation of payments in
and out of a monetary “reservoir”. This innovation in measuring velocities was
introduced as follows15:

The method is based on the idea that money in circulation and money in banks are not two in-
dependent reservoirs, but are constantly flowing from one into the other, and that the entrance
and exit of money at banks, being a matter of record, may be made to reveal its circulation
outside. . . . We falsely picture the circulation of money when we think of it as consisting of
a perpetual succession of transfers from person to person. It would then be, as Jevons said,
beyond the reach of statistics. But we form a truer picture if we think of banks as the home of
money, and the circulation of money as a temporary excursion from that home. If this be true,
the circulation of money is not very different from the circulation of checks. Each performs
one, or at most, a few transactions outside of the bank, and then returns home to report its
circuit (1909, pp. 604–605).

He began by dividing all people into three classes: commercial depositors,
other depositors, and non-depositors and thence developed two models to help

15 This work was reported in his 1909 paper “A Practical Method of Estimating the Velocity of
Circulation of Money” and repeated in his 1911 book under the title “General Practical Formula for
Calculating V ”, Appendix to his Chapter XII, para 4, pp. 448–460.
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him map the circulation of money in exchange for goods – first a visual rep-
resentation, and, from using that, a second model, an algebraic formula which
allowed him to calculate velocity.

The first visual model (his Fig. 18 – shown here in Fig. 5.3 – and his Fig. 19,
pp. 453 and 456 of Fisher, 1911) portrayed the circulation from banks into pay-
ment against goods or services, possibly on to further exchanges, and thence
back to banks. This “cash loop” representation enabled him to define all the rel-
evant payments that needed to go into his formula and to determine which ones
should be omitted. The relevant payments that he wanted to count for his calcu-
lation of velocity were ones of circulation for exchanges of money against goods
and services, not those into and out of banks, that is, the ones indicated on the
triangle of his diagram, not on the horizontal bars. But banks were his obser-
vation posts – they were the place where payment flows were registered and so
the horizontal bars were only places where easy counting and so measurement
could take place. Thus his argument and modelling were concerned with clas-
sifying all the relevant payments that he wanted to make measurable and then
relating them, mapping them, in whatever ways possible, to the payments that he

Fig. 5.3: Fisher’s Cash Loop Diagram.

Source: Fig. 18 from I. Fisher, The Purchasing Power of Money (1911) p. 453.

On Fisher’s diagram, B denote banks, C commercial depositors, O ordinary
depositors (salaried men), N non-depositors (wage-earners). The main flows
are bank deposits (Oc + Nc) and wages (On + Cn)

Fisher’s “barometer” for measuring velocity (see text below) derives from:

MV = Oc + On + Cn + Nc
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could measure using the banking accounts.16 He used the visual model to create
the mathematical equation for the calculation using the banking statistics, and
this in turn used the flows that were observed (and could be measured) in order
to bootstrap a measurement of the unobservable payments and thus calculate a
velocity of circulation.

Irving Fisher applied his calculation formula – his measuring instrument for
velocity – to the 1896 statistics on banks that Kinley had discussed earlier. This
part of his work is also very careful, detailing all the assumptions and adjust-
ments he needed to make as he went along (for example for the specific char-
acteristics of the reporting dates). Some of these steps enabled him to improve
on his model-based formula. For example, his diagram assumed that payments
to non-depositors circulated straight back to depositors, so such money changes
hands only twice before it returns to banks, not more. Yet in the process of mak-
ing a consistent set of calculations with the statistical series, he found that he
could specify how much of such circulated money did change hands more than
twice. In other words, his measuring instrument formula acted not just as a rule
to follow in taking the measurement, but as a tool to interrogate the statistics
given in the banking accounts and to improve his measurements.

The velocity measure that Irving Fisher arrived at in 1909 by taking the ratio
of the total payments (calculated using his formula) to the amount of money in
circulation for 1896 was 18 times a year (or a turnover time of 20 days). Kin-
ley (1910) immediately followed with a calculation for 1909 based on Fisher’s
formula and showing velocity at 19. Kinley’s calculations paid considerable at-
tention to how wages and occupations had changed since the 1890 population
census, and Fisher in turn responded by quoting directly this section of Kin-
ley’s paper, and his data, in his own 1911 book. With Kinley’s inputs, and after
some further adjustments, Fisher had two measurements for velocity using this
cash loop analysis: 18.6 for 1896 and 21.5 for 1909. The calculation procedure
had been quite arduous and required a lot of judgement about missing elements,
plausible limits, substitutions and so forth. Nevertheless, on the basis of this
experience and the knowledge gained from making these calculations, Fisher
claimed that a good estimate of velocity could be made from the “measurable”
parts (rather than the “conjectural” parts) of his formula (p. 475, 1911, shown
as Fisher’s “barometer” equation above). He concluded confidently that “money
deposits plus wages, divided by money in circulation, will always afford a good
barometer of the velocity of circulation” (1911, p. 476). It is perhaps surprising
that he did not use this modified equation, his “barometer”, to calculate the fig-
ures for velocity between 1897 and 1908! Rather, the two end points acted as a
calibration for interpolation. Nevertheless, the way that he expressed this shows
that his cash loop model and subsequent measurement formula can be classified
as a sophisticated measurement instrument in Petty’s tradition of using the class
of payers and payments to determine the velocity measurement.

16 In doing this, he argued through an extraordinarily detailed array of minor payments to make sure
that he had taken account of everything, made allowances for all omissions, and so forth.
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The other new way of measuring velocity introduced by Irving Fisher was an
experimental sample survey that he undertook himself and reported briefly in
1897. A fuller report of this survey was included in his The Purchasing Power
of Money (1911). In his 1897 paper, he wrote of the possibility of taking a direct
measurement of velocity:

. . . just as an index number of prices can be approximately computed by a judicious selection
of articles to be averaged, so the velocity of circulation of money may be approximately com-
puted by a judicious selection of persons. Inquiry among workmen, mechanics, professional
men, &c., according to the methods of Le Play might elicit data on which useful calculations
could be based, after taking into account the distribution of population according to occupa-
tions (Fisher 1897, p. 520).

Again, this has shades of Petty’s approach: investigate a groups of spenders
whose varied transactions behaviour are the key to understanding the overall
transactions velocity.

Fisher began this task by enlisting the help of Yale students. After an initial
disappointing survey, in which he asked respondents for annual amounts of ex-
penditure and cash balances (and which he supposed that they merely guessed),
he then asked for volunteers to undertake a more systematic survey. He asked
them to keep records of their cash expenditure and cash balances each day for a
month as a way to get some reasonably accurate statistics on velocity or turnover
of money in exchange for goods and services. He gained 116 good quality re-
sponses, of which 113 were from students: each acted as an observation post for
reporting their own behaviour. These data provided him with an average velocity
(money spent during the month divided by average cash balance in their pocket)
of 66. The returns enabled him to divide the total sample into sub-samples ac-
cording to total expenditure, and so to calculate associated velocities, showing a
rising scale of velocities from 17 (for the lowest category of total expenditure) to
137 (for the highest). The average stock of money in the pocket overnight rose
with the day’s average expenditure, but fell as a proportion of that expenditure.
These investigations fed into his discussions about the determinants of velocity
and what made it change, and about what effects changes in velocity had on
other entities in the equation of exchange.17

In this late nineteenth/early twentieth century period of work, it was taken for
granted that the task of measuring velocity must be undertaken separately from
measuring other elements in the equation of exchange, either by figuring out
circulations of money from other payment measurements, or even by plausible
guess work with them. The equations of exchange were regarded as calculation
checking devices rather than measuring instruments for velocity in their own
right. With Irving Fisher, as we saw, two new kinds of measuring instruments
were developed to apply to the problem of measuring velocity: one based on a
sampling strategy, the other on a representational model. Neither of these instru-
ments seems to have turned into the kind of standardised quantitative rules – to

17 See Chapter VIII of Fisher (1911), to which the report of the Yale experiment forms an Appendix,
pp. 379–382.
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use Porter’s terminology – that betoken well accepted measuring instruments,
although as we shall see, there have been later uses of the cash-loop model, and
there have been later sample survey investigations.

5.3.2. Interlude on concepts

Concepts form one of the important elements in measuring instruments. It is of-
ten held that we need a theory of what governs the behaviour of an entity before
we can measure it. This seems to require too much. First, there are good ex-
amples in measurement history where reliable measuring instruments have been
constructed on theories which turn out later to be wrong – e.g. thermometers.18

Second, the history of economic measurement suggests that conceptual mater-
ial is required, but not necessarily a causal account or theory of the behavioural
variations in the element being measured. For example, we need a clear concept
of the difference between the cost of living and the standard of living to deter-
mine relevant index number measuring formulae for them, but we don’t have to
commit to the causes of changes in the cost of living to determine the relevant
measuring formula for that concept.

In this context, Holtrop’s (1929) discussion of early theories of the velocity
of circulation makes an interesting distinction between two concepts of velocity.
One, held by Petty (and by Cantillon), understands the idea of velocity as a
circular course in which we measure the time taken by money to travel around
the circle of payments: i.e. the relation between circulation distance and time –
a “motion-theory” concept. Holtrop’s expression of his insight is striking: “The
partisans of the motion theory are more or less inclined to regard the velocity of
circulation as a property of money, as a kind of energy which is inherent to it.
. . . If, however, the velocity is a property of money, then the supply of money
is not a singular but a compound magnitude, being constituted of the product
of quantity and velocity” (1929, p. 522). In contrast, according to Holtrop, we
also find in early work, the concept of a “cash-balance theory” or the total need
of money as at a position of rest in the economy – to which the velocity of
circulation is inversely proportional (a position he attributes to Locke). Holtrop
suggests we understand this concept as a focus on the demand side of money
in which “the size of cash balances is [dependent] . . . on the will of the owner,
which is governed by economic motives” (1929, p. 523).

In looking at these earlier methods of taking measurements of velocity (rather
than theorising about it), we can see that they did indeed rely on concepts of
velocity, but the positions do not seem to map onto Holtrop’s account. We saw a
“need of money” argument made by Petty, not for cash balances or money at rest,
but as an amount of money needed for circulation – i.e. Holtrop’s motion-theory
concept. Irving Fisher’s ideas are also difficult to characterise. Holtrop (p. 522)
argues that Fisher had a cash-balance concept of velocity, but I find this doubtful

18 See Chang’s (2004) book on the history of measuring heat.
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for his methods of measuring velocity were essentially designed to measure the
money flow. Although his sample survey method appears to be measuring the
cash balance (in the students’ pockets overnight), Fisher’s aim was to measure
the cash as it went through his student subjects’ pockets each day. The students
were acting as his observation posts here for a flow measure, just as in his cash
loop method, he used the banks as observation posts for payments into and out
of a position of rest as a way to get at the flows of money. Fisher’s idea of money
velocity can be well characterised by Holtrop’s idea of an “energy” or compound
property of money, somehow inseparable from its quantity.

Open disagreement about such conceptual issues in discussions of velocity
in the late nineteenth century continued into the inter-war period. The masterly
treatment of these arguments by Arthur Marget (1938) in the context of the the-
ory of prices provides an exhaustive analysis of theorising about velocity. But
Marget’s analysis and critique could not stem the tide; in place of the earlier
“transactions velocity”, the number of times money changes hands for transac-
tions during a certain period (the concept that we have found in the examples
of measurement from Petty to Irving Fisher), velocity was re-conceived as “in-
come velocity”: the number of times the circular flow of income went around
during the period. Although the velocity measures of the later twentieth century
are conceptualised by thinking about individuals’ demand for money in rela-
tion to their income, and might even be considered a cash-balance approach in
Holtrop’s terms, this concept of velocity came to be “expressed” in a measuring
formula of the ratio of national income to money in circulation, i.e. a macro-
level instrument. And, as we shall see, the issue of compound properties comes
back to strike those grappling with the problem of uncertainty and variability in
these measurements of monetary aggregates at the US Federal Reserve Board.

5.3.3. Derived measurements of income velocity

Economists considering questions about velocity in the latter half of the 20th
century have tended to stick with an income notion of velocity, not only in dis-
cussion, but also in measurement. Yet their measuring instruments are far from
providing numbers that fit the concept of the individuals’ demand for money im-
plied by Holtrop. Rather, since 1933, measurements have been constructed on
the basis of macro-aggregates, rather than at the individual level in accordance
with the conceptual requirements.

Michael Bordo’s elegant New Palgrave piece on Equations of Exchange
(1987), discussed how equations of aggregate exchange, considered as identi-
ties, have been important in providing building blocks for quantity theories and
causal macro-relations. Not only for theory building, for, as we have seen, equa-
tions of exchange provided resources for measuring the properties of money.
In the work of Kemmerer and Fisher, their equation of exchange, the identity
MV = PT , provided a checking system for their independent measurements of
transactions circulation and so velocity. In the more recent history of velocity,
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the income equation of exchange, namely M = PY/V , has formed the basis
for measuring instruments that enable the economist to calculate velocity with-
out going through the complicated and serious work of separately measuring
velocity as done by Fisher and Kemmerer.

This income equation of exchange, rearranged to provide: V = PY/M (ve-
locity = nominal income divided by the money stock), became a widely used
measuring instrument for velocity in the mid-twentieth century, in which differ-
ent money stock definitions provide different associated velocities, and different
income definitions and categories alter the measurements of velocity made. For
example, Richard Selden’s (1956) paper on measuring velocity in the US reports
38 different series of “estimates” for velocity made by economists between 1933
and 1951 and adds 5 more himself. They use various versions of income as the
numerator (personal, national income, even GDP) and various versions of M as
the denominator. These are called “estimates” both because the measurers could
not yet simply take their series for national income (or equivalent) and money
stock ready made from some official source (national income figures were only
just being developed during this time), and because many of the measurers, as
Selden, wished to account for the behaviour of velocity. They wished to see if
income velocity exhibited long-term secular changes, so understood themselves
to be estimating some kind of function to capture the changing level of veloc-
ity as the economy developed. Like the late nineteenth century measurers of
transactions velocity whose work we considered earlier, there was considerable
variation in the outcome measurements.

Boumans (2005) has placed considerable emphasis on variation and invari-
ance in measurement. It is useful to think about that question here. Clearly, we
want our measuring instrument to be such that it could be used reliably over
periods of time, and could be applied to any country for which there are relevant
data, to provide comparable (i.e. standardised) measurements of velocity. At the
same time, we want our measuring instrument to capture variations accurately,
either between places or over time. In the context of this measuring instrument,
clearly if the ratio of PY/M were absolutely constant over time for example,
velocity measured in this way would also be unvarying, suggesting something
like a natural constant perhaps. But the evidence from our history suggests that
velocity is not a natural constant, so the question is: does the formula work well
as a measuring instrument – like for example a thermometer – to capture that
variation? From that formula, V = PY/M , we can see that the variations in the
measurements for velocity (for example, shown in Fig. 5.1 earlier) are due to
variations in either, or both, the numerator and denominator of the right hand
side term. The measuring formula appears to operate as a measuring instrument
to capture variations in velocity, but in fact it merely displays variations that are
reflections of changes in one or both of the money supply and nominal income.19

19 This parallels a similar confusion over testing the hypothesis that k is a constant in the equation
V = kY/M ; such a test is only valid if there are separate (independent) measurements available for
V , Y and M , otherwise it is just a test of the constancy of the ratio of Y/M .
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(Had Fisher used his equation of exchange: MV = PT to derive measurements
of velocity, the same problem of interpreting the numbers for velocity would
have risen; in fact, as we saw, he used that equation as a checking device, not a
measuring instrument.)

How are we to interpret the velocity that we measure in this way? And
what are the sources of velocity’s independent freedom for variation when the
equation V = PY/M is used as a measuring instrument? One economist who,
without using this language of measuring instruments, has taken an interpreta-
tion close to denying the velocity measured by this instrument any independence
or autonomous variation is Benjamin Friedman (1986).20 He, for the most part,
keeps “velocity” in quotes, partly to remind us that the velocity measured with
nominal income is not a true velocity in the sense of the transactions velocity of
the older concept, but partly as well to point to its lack of independent conceptual
and so numerical content:

. . . it is useful to point out the absence of any economic meaning of “velocity” as so defined –
other than, by definition, the income-to-money ratio. Because the “velocity” label may seem
to connote deposit or currency turnover rates, there is often a tendency to infer that “velocity”
defined in this way does in fact correspond to some physical aspect of economic behaviour.
When the numerator of the ratio is income rather than transactions or bank debits, however,
“velocity” is simply a numerical ratio. . . . The issue of money or credit movements versus their
respective “velocities”, in a business cycle context, is just the distinction between movements
of nominal income that match movements of money or credit and movements of income that
do not, and hence that imply movements in the income-to-money or in come-to-credit ratio
(Friedman, 1986, pp. 411–412).

If we observe variations in the numbers produced for such “velocity”, it alerts us
to changes in the nominal income that are not due to increases in the money (or
credit) supply. It offers a way to decompose changes in nominal income across
different business cycles, but it is not something that can represent independent
variation in velocity: “Saying that money growth outpaced income growth be-
cause velocity declined is like saying that the sun rose because it was morning”
(Friedman, 1988, p. 58). Friedman is effectively denying an autonomous or in-
dependent status to the velocity measured using this ratio: the equation operates
to produce numbers, and these are taken as an indicator for something else, but
in terms of the representational theory, there is no entity – no independent well-
conceptualised thing called velocity – there that can be measured with such a
measuring instrument.

In the 1980s, the Governors of the Federal Reserve Board also grappled with
the problem of what velocity is when measured by such an equation. For ex-
ample, the transcript of the Federal Open Market Committee (FOMC) for July
6–7th of 1981 finds its members arguing over which version of M1 to target
(M1, M-1A or M-1B). The level of uncertainty in setting the target ranges for

20 I am indebted to Tom Mayer who points out that Alvin Hansen has a strong statement of the same
kind in his The American Economy of 1957, p. 50.
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money supply growth was high, and it was an uncertainty that came from sev-
eral sources. First there was the normal problem of predicting the economic
future of the real economy and the monetary side of the economy in relation to
that. Secondly, and equally problematic, seemed to be the uncertainty associated
with the difficulty of locating a reliable measure of money supply in relation to
transactions demand, the inverse of velocity. The Fed’s charts show the problem
of the day – after a period of trend growth, stability had broken down, as we see
in the 1980s part of the graph for the M1 velocity shown in Fig. 5.1 (above).
This may have been to do with institutional changes to which people reacted
by “blurring” the distinctions (and so their monetary holdings) between trans-
actions and savings balances. As Chairman Volcker expressed it is “not that we
know any of these things empirically or logically” (p. 81).

The difficulties of locating a money supply definition that provided stability
for measuring the relevant concept of money was matched in – and indeed, in-
timately associated with – the problem of velocity measurement.21 The target
ranges discussed in the committee were understood to be dependent on both
what happened to a money stock that was unstable and a velocity that was
subject to change. The instability of the money stock measurements were un-
derstood to be not only normal variation as interest rates changed, but also more
unpredictable changes in behaviour because of innovations in the services of-
fered to savers.22 Those factors in turn were likely to affect the velocity of money
conceived of as an independent entity. Here though, the situation is further con-
fused by the fact that, as the Governors were all aware, the velocity numbers
that they were discussing were not defined nor measured as independent con-
cepts, but only by their measurement equation – namely as the result of nominal
income divided by a relevant money supply. Thus, variations in velocity were
infected by the same two kinds of reasons for variations as the money supply.

Velocity was as problematic as the money stock. The difficulties are nicely
expressed in this contribution from Governor Wallich:

We seem to assume that growth in velocity is a special event due to definable changes in
technology. But if people are circumventing the need for transactions balances right and left
by using money market funds and overnight arrangements and so forth, then really all that
is happening is that M-1B is becoming a smaller part of the transactions balances. And its
velocity isn’t really a meaningful figure; its just a statistical number relating M-1B to GNP.
But it doesn’t exert any constraints. That is what I fear may be happening, although one can’t
be very sure. But that makes a rise in velocity more probable than thinking of it in terms of a
special innovation (FOMC transcript, July 1981, p. 88).

Because of these causes of variations in the money supply, velocity variations
also appeared unpredictable. So, either velocity measurements were attached to

21 For background to the troubles the Fed had in setting policy in this period, see Friedman (1988).
22 This may be interpreted as Goodhart’s Law, that any money stock taken as the object of central
bank targeting will inevitably lose its reliability as a target. However, the reasons for the difficulty
here were not necessarily financial institutions finding their way around constraints but the combi-
nation of expected savings behaviour in response to interest rate changes and unexpected behaviour
by savers in response to new financial instruments.
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a meaningful concept, but their variations were unpredictable, and so provided
no anchor or constraints; or velocity as measured was merely the ratio of GDP
to M-1B, and so provided no independent anchor or constraint. Either way, it
was no help in the problem of predicting the future range of money supply and
so targeting.

These knotty problems experienced in the early 1980s are neatly dissected in
a presentation on velocity to the October 1983 meeting of the FOMC by Stephen
H. Axilrod from the Fed staff:

Velocity is of course the link between money and GNP in the equation of exchange (MV =
PY ), but whether its behavioural properties are sufficiently stable or predictable to provide
a strong basis for monetary targeting as a means of attaining ultimate economic objectives
over time has, as we all know, been a continuing subject of intensive economic debate. At one
extreme, velocity might be considered as no more than the arithmetic by-produce of forces
acting independently on the supply of money and other forces acting independently on GNP
– hence, an economically meaningless number and making the whole equation of exchange
useless as a policy framework. At the other extreme velocity might be found to have a trend
all of its own – hence providing a reasonably predictable link between money and GNP, and
giving policy content to the equation of exchange.

From another viewpoint, velocity can be considered as the inverse of the demand for money
relative to GNP. If we can know what influences the demand for money – and among the
factors explaining money demand are income, transactions needs, interest rates, wealth and
institutional change – then we can predict the money needed, for, say, a given GNP. But the
more one has to go beyond income or transactions needs in explaining money demand, the
weaker is the argument for pure or rigid monetary targeting (Axilrod, 1983, p. 1).

So, velocity in the equation V = PY/M now has three faces or interpretations.
On one side, it is simply the measured ratio between two things, each of which
are determined elsewhere than the equation of exchange: because velocity has
no autonomous causal connections, it provides for no measure of V that can
be used for policy setting. On the second, it is thought of as an independent
concept and its measurements might exhibit its own (autonomous) trend growth
rate (though sometimes unreliably so) which might be useful for prediction and
so monetary policy setting. On the third, it has a relationship to the behaviour
of money demand, a relationship which is both potentially reliable and poten-
tially analysable, so that it could be useful for understanding the economy and
for policy work, but here the focus has been reversed: understanding the deter-
minants of velocity now seems to be the device to understand the behaviour of
the money stock, even while the measuring instrument works in the opposite
direction.

Standing back from this episode and using our ideas on measuring instru-
ments, it seems clear that the problem in the early 1980s was not so much that the
instrument was just unreliable in these particular circumstances, but that the in-
strument itself has design flaws. In taking the formula V = nominal GDP/money
stock as a measuring instrument that is reliable for measuring velocity, there is a
certain assumption of stability between the elements that make up the measuring
instrument and within their relationships. If the dividing line between velocity
and money supply (that is, between one property or stuff that is defined as veloc-
ity and another property or stuff that constitutes money) is not strict, the latter
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cannot be used as a reliable component in a measuring device intended for the
former. It would be rather like using a thermometer where the glass tube and the
mercury column keep dissolving into each other.

This problem of maintaining a definitional division between M and V , be-
tween money stock and velocity of circulation is not simply a question of logical
or conceptual clarity, but a problem of the fit between concepts and the economic
world.23 There are two senses in which this problem might be understood in the
velocity case. First the changes in behaviour of people and in their categori-
sation of elements mean that there is a switching between what counts as the
money quantity and what counts as the velocity category. This seems to be a
generic problem in this field of economics, for as Tom Humphrey has so as-
tutely remarked in his history of the origins of velocity functions, “one era’s
velocity determinants become another’s money-stock components” (Humphrey,
1993, p. 2).24 The second is, as Holtrop characterised it – we may really have a
compound property, and so, despite the measurement formula, velocity cannot
be separated out from the money stock. In terms of Porter’s trust in numbers,
we have a standardised quantitative rule to measure velocity, one supported by
a well-respected bureaucracy and vast amounts of data collection and manip-
ulation, but the measuring device lacks certain characteristics which make us
believe that its numbers are trustworthy. It lacks the requirements of invariance
specified by Boumans for measuring instruments because the device does not
capture the independent variations in the thing being measured. It fails also in
Suppes’ representational theory of measurement in that the mapping between
empirical and numerical structures seems not to be operational.

5.3.4. Measures of idealised velocity

These second and third faces mentioned by Axilrod are ones that many econo-
mists have taken up when they assume that velocity does indeed have its own be-
haviour. Arguments over what determines the behaviour of velocity and whether
it declines or rises with commercialisation were a feature of those late 19th and
early 20th century measurers. They can be seen as following suggestions made
by many earlier economists (mostly non-measurers) who discussed both eco-
nomic reasons (such as changes in income and wealth) as well as institutional
reasons (changes in level of monetisation or in financial habits) for velocity to
change over time.25

In the twentieth century, economists have assumed that velocity’s behaviour
can be investigated just like that of any other entity through an examination of

23 See also Fixler, and den Butter, both in this volume.
24 Similar definitional problems have occurred in the history of measuring consumption and invest-
ment.
25 Excellent accounts of economists’ attempts to explain velocity behaviour can be found in
Humphrey, 1993 and of these institutional changes can be found in Friedman, 1986.
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the patterns made by its measurements. Some, like Selden (1956) have used
correlations and regressions to try to fix the determinants of variations in ve-
locity. Particular attention was paid to the role of interest rates in altering
people’s demand for money and so its velocity. Selden himself reported re-
gressions using bond yields, wholesale prices and yields on common stocks
to explain the behaviour of velocity (though without huge success). More re-
cently and notably, Michael Bordo with Lars Jonung (1981 and 1990), have
completed a considerable empirical investigation into the long run behaviour of
velocity measurements using regression equations to fix the causes of these be-
haviours statistically and thence to offer economic explanations for the changes
implied in the velocity measurements. Others have argued that there is no eco-
nomically interesting behavioural determinant, that velocity follows a random
walk and can be characterised so statistically (for example Gould and Nelson,
1974).26

The use of regression equations in the context of explaining the behaviour of
velocity is but one step removed from using regression equations as a measur-
ing instrument to measure velocity itself. Regression forms a different kind of
generic measuring instrument (see Section 5.2.2) from the calculations based on
bank and individual sample surveys used from Petty to Irving Fisher and from
the calculating formulae provided by equations of exchanges (such as those sur-
veyed by Seldon or in the Fed’s formulae). The principles of regression depend
on the statistical framework and theories which underlay all regression work.
An additional principle here is that by tracing the causes which make an entity
change, we can track the changes in the entity itself. Alfred Marshall suggested
this as one of the few means to get at monetary behaviour: “The only practicable
method of ascertaining approximately what these changes [in prices or velocity
of money] are is to investigate to what causes they are due and then to watch
the causes” (Marshall, 1975, p. 170). Marshall did not of course use regression
for this, but his point is relevant here: regression forms a measuring instrument
not only for tracing these changes but for measuring them – and so velocity –
too.27

One option has been to use regression to measure or “estimate” velocity by
using the opportunity cost of holding money as the estimator (see for example,
Orphanides and Porter, 1998). The velocity concept measured here is a different
one from the kind supposed and measured by Fisher. It is, by constitution an
idealised entity named the “equilibrium velocity”; it may be well defined con-

26 William Barnett has used Divisia index numbers to try to isolate a stable velocity; see Chapter 6
of Barnett and Serlitis (2000).
27 See Backhouse, this volume, for a more general account of representational issues of models and
measurement and Chao, this volume, for a considered account of issues or representation particularly
related to econometrics.
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ceptually, but it is a different concept altogether from those concrete, empirically
defined concepts sought and measured in earlier times.28

Another interesting example combines the regression measuring instrument
with that of Fisher’s transactions loop model. J.S. Cramer (1986) set out to mea-
sure the transactions velocity for the US in the post-war period. He began with
Fisher’s cash loop idea to get at measures of currency velocity, and then de-
veloped the equation of exchange into a form which included a parameter for
“hypothetical pure transactions velocity”. This parameter was measured using
regression and then plugged back into his equation of exchange to provide the
series of measurements of velocity over the period showing a rise in the transac-
tion velocity of demand deposits. Clearly, Cramer rivals Irving Fisher’s inspired
ingenuity as a measurer. And he appears to bring us back almost to where we
started, but not quite – for he too is now purporting to measure a different con-
cept: the “hypothetical” version of the transactions velocity from an idealised
economic model.

5.4. Conclusions: The Historical Trajectory of Measurement in Economics

It is easy to put a number to the income velocity of money by calculating it from
an equation of exchange V = PY/M , but velocity is a difficult thing to measure
with any confidence using that well-worn method. The standardised quantitative
rules that measuring instrument entails do not seem to provide numbers that ad-
equately represent the property we are trying to measure even though the raw
numbers fed in come from trustworthy series. The equation there acts as a mea-
suring instrument, yet by its design does not have the reliability we require in
such instruments. We can understand this equation of exchange as a numerical
relational structure, but it is not clear that it relates to an empirical relational
structure for velocity. In other words, this is a case of feeding trustworthy data
into an untrustworthy measuring instrument. The velocity numbers it produces
are not trustworthy.

We have also seen that earlier economists tried to secure trustworthy mea-
surements of a transactions velocity of money using a variety of other kinds of
measuring instruments: sample surveys, bank surveys, and so forth that aimed
at measuring velocity independently of the money stock. These often relied on
feeding in guesstimated data, of rather poor quality compared to modern data.
Yet these measuring instruments were rather better designed to create good mea-
surements. Even though these instruments have their individual problems, their
design treats velocity as a separate, conceptually well defined, entity, and so
the measurements they produce may well be more sustainable and so trust-
worthy.

28 Even if such models locate the actual velocity in an error term, this too would be a velocity
measured with respect to some hypothetical equilibrium level.
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In a further contrast, the regression methods of the most recent work rely
on well-established measuring instruments (the statistical family of regression
methods), and use a variety of good quality input data on other variables that are
causally related to the velocity that modern economists seek to measure. No-
tably, these instruments are aimed at a different concept of velocity, one defined
by idealised economic models rather than one that might be immediately valid
in the real economy. In this respect, there is a step change in the kind of en-
tity being made measurable from the earlier transactions and income velocities,
both of which had seemed to have the status of empirically valid entities (how-
ever difficult it was to get at them and make them measurable), to ones that in
principle seem non-observable.

Time Concept Measuring Instrument

Late 19th century Transactions Velocity Bank surveys and statistics;
individual surveys

Mid 20th century Income Velocity V = PY/M identity
Late 20th century Idealised (equilibrium) Regression models

Velocity

The historical trajectory of this case suggests that economists in the later
nineteenth century began by treating the things they wanted to measure as in-
dependent free standing entities which could be measured using clever designs
for collecting and then manipulating statistical data: an approach that under-
stood observation as close to measurement and fashioned measuring instruments
accordingly. This was not a naive empiricist approach to measuring, for well de-
fined conceptual properties and relations were used to help define measuring
instruments (e.g. surveys), but the relationships (causal relations, accounting
identities) in which velocity was thought to be embedded were cast as back-
ground constraints or as checking systems not as measuring instruments in
themselves. In the middle of the twentieth century, economists’ approach had
changed to using those same kinds of descriptive identities or relationships as
the measuring instruments themselves: enabling economists to derive measure-
ments of velocity by easy application of equations in which other elements had
already been observed and measured. In the late twentieth century, economists
moved further away from an empirical starting point to focus on measuring con-
cepts that were defined in, and by, the idealised, theory-based, economic models
which had come to dominate economics. Such concepts of velocity could be
considered unobservables in the sense that they were hypothesised, though the
point of the measurement process was to bring them into measurable status by
using their causal and functional relationships to other entities – both idealised
and pragmatic – so as to put numbers to them.

This trajectory of beginning by measuring some economic quantity by inde-
pendent means, to processes of making measurable some empirical entity by
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deriving it from some other measurements, to the measurement of an idealised,
or non-observable, entity defined in relation with other theoretically defined con-
cepts may be a general feature of the history of economic measurement. We
can think for example of how early political arithmetik’s indicative listing of
the incomes of the nation were replaced by more sophisticated and compre-
hensive adding-up attempts in the nineteenth century measures of gross output,
to be replaced in the twentieth century by the more closely-theorised, national
income measurements conceptualised in accounting models formulated in scien-
tific rather than everyday terms. Peter Rodenburg (2006), in a recent thesis, has
found the same pattern of development in the measurement of unemployment:
first unstandardised counts collected by trades unions and local councils, giving
way to more inclusive and standardised measurement at national level, giving
way to economists seeking numbers for theorised, but unobservable, kinds of
unemployment (such as voluntary or involuntary, frictional, natural and so forth)
using measuring instruments in the form of the diagrams, models and formulae
that are habitually found in modern economics.

Over time, the quality of input data has improved, the measuring instruments
have become more sophisticated, and the entities themselves have become less
observable. Though the measuring work for the latter non-observables attains
a high level of sophistication, and involves real economic data, such processes
of measuring seem to be more like the complicated, mathematical model, glori-
fied thought experiments of theoretical economics (see Morgan, 2002) than the
workings of measuring instruments. This historical experience invites us to re-
call the injunction by Finkelstein quoted earlier: “measurement is an empirical
process, . . . the result of observation and not, for example, of a thought experi-
ment” (1982, p. 6–7).
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6.1. Representation through Modelling

Economists see themselves as modellers. There is a sense in which all thought
involves abstraction, and hence the use of models. However, when economists
use the word they refer to systems that can be presented using mathematical no-
tation – using algebra or geometry. This approach to the subject is the method
that is best articulated, and as a result it is the most visible. It has much in com-
mon with the assumptions underlying the representational theory of measure-
ment (see Michell, Chapter 2), where models are seen as logical-mathematical
structures and measurement is analysed in terms of mappings – formal relation-
ships – between different entities. If students are exposed to formal discussions
of methodology, it is modelling (understood in this way) to which they are ex-
posed. They will typically be taught some variant of the hypothetico-deductive
method, or even falsificationism.1 A classic example is Lipsey’s Introduction
to Positive Economics (1975, p. 15) which argues that definitions and assump-
tions about behaviour are used to generate predictions that are tested against
data: if the theory provides a better explanation of the data than competing ones,
it is used, but is subjected to continuing scrutiny. Otherwise, it is amended or
rejected, and a new theory developed, this in turn being tested against the data.2

In practice, however, the process of representation through modelling is much
more complex. An attempt to summarise it is made in Fig. 6.1. This distinguishes
the stock of knowledge (of representations of the economy), which constitute the
background knowledge for any specific piece of work, from economic theory
and empirical work. It shows the channels through which modelling interacts
with the stock of knowledge.

The first and fundamental point is that representations of the economy are of
many types. Though they overlap and cannot be disentangled completely from

1 The word “even” is used, because it is widely accepted, by supporters as well as critics, that
falsificationism is not what goes on in economics. See Hausman (1992), Blaug (1992).
2 Lipsey’s flow chart and Figures 1 and 2 can be compared with the ones offered in Backhouse

(1997, pp. 140–142).

Measurement in Economics: A Handbook © 2007 Elsevier Inc.
Marcel Boumans (Editor) All rights reserved



136 R.E. Backhouse

Fig. 6.1: Theory, empirical work and representations of the economy.

one another, it is helpful to think of them in five categories. Together, they con-
stitute the background knowledge relevant to economists’ modelling activities.

(a) Statistics are numerical measurements of the economy. There is, of course,
much to be said about the creation of statistics, which are themselves repre-
sentations, and what they measure – for example about how the national ac-
counts are constructed (see den Butter, Chapter 9) or whether index numbers
can have the properties that economists want them to have (see Reinsdorf,
Chapter 8). Taking into account the process whereby statistics are created
reinforces the argument given here: it adds to the complexity of the picture,
making the contrast with the conventional view even more pronounced; and
it provides further places through which informal arguments enter, raising
further questions about whether representation can be understood in terms
of formal mappings between entities.

(b) History/experience is a very loose label for knowledge about the economy
that is not the result of any formal modelling process. It is discussed further
in Section 6.2.

(c) Metaphysical assumptions are included as a separate category as a reminder
that economists appear, much of the time, to be committed to some of many
of the assumptions made in their models for reasons that appear to have
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little to do with evidence. Utility maximisation is strictly unfalsifiable, for
if evidence were found to contradict it, the notion could be redefined so as
to make it fit the evidence.3 For example, if it is shown that agents do not
maximise utility, then utility can be redefined as an expectation, or the max-
imisation process can be made conditional on other factors such as limited
information. This is not to claim that the assumption of utility maximisation
is in itself metaphysical, for it may reflect accumulated experience, or intro-
spection: what is suggested is that there may be metaphysical assumptions
that underlie it, or other assumptions being made.

(d) Empirical representations are added to describe the output of economists
empirical modelling activities. Clearly this category overlaps with the first
two. It covers representations ranging from the equations found in econo-
metric forecasting models to estimates of elasticities of demand and supply,
or elasticities of substitution.

(e) Theoretical representations are a further category to represent relationships
between economic variables that economists have established using theory,
without any formal empirical testing. Examples might include the propo-
sition that, where there is asymmetric information about product quality,
adverse selection will ensure that price is forced down to zero. Clearly, as-
sumptions about the world underlie such results, but they involve no formal
testing as described below.

Knowledge about the economy could, of course, be classified differently.
For example, Boumans (1999, p. 93) distinguishes metaphors, analogies, pol-
icy views and stylised facts from empirical data. The reason for the classifica-
tion adopted here is to focus on a number of distinctions: between knowledge
that results directly from economists’ modelling activities and that which does
not; between knowledge that results from theoretical and empirical modelling;
and between statistical representations that enter economists’ formal testing
procedures and informal knowledge that affects theory through other mecha-
nisms.

Economic theory starts with assumptions from which results are derived using
formal mathematical or logical techniques. These typically involve algebra (typ-
ically differential and integral calculus or more abstract algebra) or geometry,
though they need not do so. The assumptions reflect the background know-
ledge (i),4 the importance of the different types of representation varying greatly
from problem to problem. Theoretical results may then be evaluated against the
background knowledge (ii): they might, for example, be rejected because they
seem so silly that the economist concludes something must be wrong with the
theory, or because they are inconsistent with some other result that is considered
well-established. The result may be to change the assumptions, without any em-
pirical work taking place (iii). Or, as with the adverse selection example just

3 Hausman (1992) makes a similar, though not identical, point.
4 Lower case roman numbers refer to links in Fig. 6.1.
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mentioned, economists may decide that the result is so clearly right that it does
not need empirical testing: the stock of knowledge has been enlarged (iv). A
third possibility is that the result may feed into empirical work (v). Two arrows
are shown here, to denote the fact that economists may decide to test theoretical
results with or without evaluating them first.

Empirical work starts with a set of economic relationships, formulated in such
a way that they can be confronted with data using formal, statistical techniques.
These relationships may be the theoretical results discussed above, but typically
they will be different. The reason for this is the requirement that they can be
confronted with data: they must refer to variables on which statistical data exist,
or for which proxies can be found; functional forms must be precisely specified
and amenable to statistical implementation. These equations are then confronted
with statistics (vi), and empirical results are derived. These results are then eval-
uated against the background knowledge (vii). They augment that background
knowledge (viii) either positively (the results are considered to stand up) or neg-
atively (the results indicate that the model is inferior to some other representation
of the phenomenon). The process then starts again given the new set of repre-
sentations of the economy.

The significance of this view can best be seen by comparing it with the con-
ventional, hypothetico-deductive model. This is depicted in Fig. 6.2, which is
kept as close as possible to Fig. 6.1, to aid comparison. The economist starts
with assumptions that reflect what has been leaned from previous modelling ex-
ercises and logical or mathematical methods are used to derive results. These
results are then tested (note that the step of evaluating the theoretical results is
dropped) against statistical data (it is assumed that it is the theoretical results
themselves that are tested, cutting out another element in Fig. 6.1). Empirical
results are then evaluated against previous results, and the stock of knowledge is
augmented, either positively or negatively, as before.

This is might be thought an oversimplification of the hypothetico-deductive
model, which allows for the possibility that assumptions may come from any-
where, so long as their implications are tested empirically. There should perhaps
also be direct feedback from evaluation of the empirical results to theoretical
assumptions, the process iterating until some results receive a positive eval-
uation. However, the heart of the hypothetico-deductive model is represented
here, for there is a clear link from assumptions to evaluation of empirical re-
sults (as in Lipsey, 1975, p. 15). In addition, Fig. 6.2 captures the fact that in the
hypothetico-deductive model, testing leads to progressive improvement in the
empirical representation of the phenomenon.

The process of representation outlined in Fig. 6.1 thus encompasses the
hypothetico-deductive model, but is more complex. This additional complexity
points to additional questions concerning representation in economics:

(a) What is the origin of representations that are not the outcome of the formal
modelling analysed here (notably History/experience)?

(b) How are theories and the evaluation of theories related to existing represen-
tations (i) and (ii)?
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Fig. 6.2: The hypothetico-deductive model.

(c) What is the relationship theoretical models, data and empirical models (v)?
(d) How do economists learn from the results of their modelling activities (iv)

and (viii)?

The conventional view has simple answers to all of these. In other words, the
conventional view, represented by the hypothetico-deductive model, presumes
the following:

(a) Models are based on assumptions that reflect what is known about the econ-
omy as a result of preceding empirical work.

(b) Theoretical models are used to generate predictions that are then tested.
(c) These predictions typically take the form of equations, and testing them

implies estimating the parameters of these equations, thereby generating an
empirical model.

(d) These numerical parameters provide quantitative knowledge of the phenom-
ena under analysis, thereby increasing the stock of knowledge.

In practice, however, the picture is much more complicated: none of these four
links is as simple as the conventional view suggests. Each will be considered in
turn. It is worth noting that even this picture is not comprehensive in that little
attention is paid to the statistical estimation process itself and to issues such as
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the choice of confidence intervals and criteria for accepting or rejecting hypothe-
ses. Given that this involves judgement (see Mayer, Chapter 14) this reinforces
the arguments made here. This picture also misses out other relations between
representations. Empirical models may be used to generate statistical data (as
a measuring instrument) – for example, estimates of full-capacity output or the
NAIRU/natural rate of unemployment. Such data may be used directly in test-
ing models. However, such data may also inform other types of representation:
they may inform interpretations of historical experience. “Stylised facts”, that
frequently inform theory, may be simplifications of or generalisations from em-
pirical results, or they may be based on prior beliefs such as that the economic
system is not going to grind to a halt.

6.2. Representation without Explicit Modelling

Though most modern economics is centred on modelling, there is still much
work that does not make use of any explicit models: it comprises statements that
are taken to be directly descriptive of the world. Clearly, this includes basic fac-
tual descriptions of institutions (such as the relationship between a central bank
and the commercial banks with which it deals), but it also covers claims about
relationships between economic phenomena. Most “non-cliometric” economic
history would fall into this category. In teaching and in the seminar room, if not
in print, it is seen my many economics, it is seen as “non-analytical”, the latter
being associated with the use of mathematics, of one form or other.5

The main characteristic of such work for the present discussion is that the
statements about economic phenomena that comprise such work are conceived
as statements about the world, not as abstractions from it. Much non-academic
writing, such as economic or financial journalism, is of this type, but it merges
into academic economics. It was also a much more common approach amongst
academic economics before the Second World War, when many economists sim-
ply did not think in terms of models that abstracted from reality, instead making
deductions on the basis of assumptions that were assumed to describe the real
world.6 On what could they rest?

(1) Institutional/legal descriptions.
(2) The lore of the market place: beliefs that are the result of experience of how

markets work.7

(3) Beliefs about what rational people do, or about what the analyst would do
in such a situation.

(4) Ideas learned from economists who have used more formal methods to de-
velop them.

5 It should go without saying that it is ridiculous to describe work as non-analytical simply because
it does not use mathematics.
6 See Backhouse (1998).
7 The wording reflects McCloskey (1986).
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If the last of these is very important, it is arguable that “descriptive” work is
does not avoid explicit modelling, but is based on it. However, that judgement
would be inappropriate, for the links with any formal modelling may be very
loose, with the caveats that surround models having been dropped completely.

Also descriptive, though worth considering as a separate category are sta-
tistical descriptions, where the descriptions are not derived using any formal
economic modelling. One type of such analysis is found in the national accounts
which provide a representation of the economy as a whole. As den Butter (Chap-
ter 9) points out, the national accounts are based on accounting rules, many of
which involve judgement – such as how to classify multi-product firms, and
where to draw the boundaries between industries. There is frequently no single
answer to the question, ‘What is the correct measure to use?’

Two other types of ‘model-free’ representation are illustrated by Stephen
Nickell’s “A picture of male unemployment in Britain” (1980) is a good ex-
ample. This examines data from the General Household Survey in 1972, in two
ways. One is breaking down the sample into various categories (age, reasons for
becoming unemployed, benefits received, socio-economic group, family make-
up and so on) and finding patterns in the incidence of unemployment across the
some of the categories so defined. This is description that is independent of any
model.

The other approach used by Nickell is to use a Logit model to relate unem-
ployment incidence to a list of personal characteristics (including many of those
listed in the previous sentence). Clearly, the selection of variables was informed
by Nickell’s knowledge of economic theory, but the choice of model was deter-
mined by the statistical properties of the data, not by any economic theory. More
important, many of the relationships have little theory, in the sense of theory that
hardly goes beyond common sense, behind them. Examples are whether unem-
ployment incidence should be higher for men living in private or public rented
accommodation, or owner-occupiers; or how unemployment incidence should
vary with the number of dependent children. Even where relationships are the
subject of formal theorising, such as the link between unemployment incidence
and the level of benefits received, which certainly influenced Nickell’s decision
to explore this relationship, his analysis does not depend on that theory. There
is a statistical model, but it is arguable that there is not really any economic the-
oretical model behind the analysis. It is data description rather than testing an
economic model.

Macroeconomic time-series models fall into a similar category, though with
differences. Data are usually index-numbers, or aggregates such as appear in the
national accounts which bear only a tenuous relationship to formal economic
theory.8 Monetary aggregates rest on little formal theory, for economic models
say little about which types of bank deposit (or deposits with other financial
institutions) should be counted as money. The categories into which national

8 On the meaning of economic aggregates, see Hoover (2002b).
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income is broken up do have links to formal economic theory (consumption,
investment, exports, imports), but are in practice largely independent of it. Un-
employment statistics are based on counts of those meeting certain criteria,
whether in receipt of benefits, or how certain questions in a survey are answered.
When such data are plotted or tabulated, the result is something that, as regards
any direct relation with formal theory, can be seen as purely descriptive.

The term “descriptive” can also be applied to the results of more formal time-
series modelling, where more elaborate statistical techniques are employed to
provide a robust description of the data. The selection of variables and the
formulation of the model will clearly reflect background knowledge, includ-
ing economic theory, but it is analysis that stands as a description of the data,
independently of any economic theory and belong here as much as Nickel’s sta-
tistical techniques discussed above, even though the result may be an equation,
or even set of equations that describe the economy.

Some experimental work comes into this category. An interesting example is
the early studies of preference reversals by Kahneman and Tversky (see Haus-
man, 1992 for a discussion). Faced with a choice between two carefully-chosen
lotteries, a significant proportion of subjects (around 30%) choose the lottery
to which, as revealed by other questions, they attached lowest value. Though
Kahneman and Tversky had what, as psychologists, they considered a theoreti-
cal explanation of this phenomenon, as far as many economists were concerned,
this was a result not founded on any theory worthy of the name. It was tanta-
mount to pure description of how subject behaved (assuming, of course, that the
results were believed).

The point that representations may be based on theories that economists do
not recognise as theories, perhaps because they are not instantiated in formal
models, also applies to historical work. In the past half century, the advent of
‘Cliometrics’ has meant that much work in economic history is indistinguishable
from applied economics or even from applied econometrics. However, before
that, historians spurned the use of formal techniques: they might classify factors
in terms of supply and demand, or distinguish between the quantity of money
and its velocity (using the equation of exchange) but in an informal way. Theo-
ries about the role of Protestantism in the rise of European capitalism, or even
the preconditions for a take-off into self-sustained growth created what might be
thought representations, but were not based on formal modelling.

Economists’ representations of the economy rest in large part on such “de-
scriptive” work, which bears only tenuous, or indirect, relation to formal theory
and model building. Its precise relation to model-building depends very much
on definitions. Statistical models are of course models, but from an economic
point of view, it arguably makes more sense to bracket models that have only a
loose relationship, if any, to economic theory, with simpler procedures such as
the calculation of means and index numbers, rather than associating them with
economic models. Furthermore, though it can be argued that such work, and
work that deduces relationships between economic phenomena from such evi-
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dence, rests on implicit models, the point is that the models are not explicit and
their relationship to the results is, at best, tenuous.

6.3. Economic Theory and Existing Representations

Theoretical models can be thought of as logical structures that rest on ab-
stractions from reality.9 Abstraction is necessary to create structures that are
sufficiently precise that deductive logic can be applied, so that the implications
of assumptions can be worked out and confronted with evidence. If models are
tested, and inadequate ones are abandoned or at least modified, it should not mat-
ter where they come from: all that matters is that economists do not go round
in circles. However, given the infinite number of models that could be used, and
the impossibility of testing them all, this may not be enough. The price of using
abstract models is that theorising is constrained by theoretical choices as much
as by evidence. The principles underlying economic models matter.

Knowledge relevant to the construction of models falls into several cate-
gories.

(1) Knowledge of institutions in the broadest sense. This ranges from know-
ledge about what products are bought and sold, by whom they are produced,
the number of firms in an industry, whether products are close substitutes
for each other or complements, legal constraints, the nature of contractual
arrangements, and so on. Though its interpretation may be open to question,
much of this knowledge is comparatively unproblematic and does not need
further discussion here.10

(2) Statistical and historical evidence on relevant phenomena.
(3) Beliefs about agents’ motivations and behaviour.
(4) Propositions derived from theoretical models.
(5) Propositions derived from empirical models.

These are not necessarily independent of each other. Statistical and histor-
ical evidence, and the results of empirical models should not only feed into
economists’ knowledge of institutions, but should also affect their beliefs about
agents’ motivations and behaviour. If the hypothetico-deductive method is to
work as described by Lipsey, this needs to happen. However, in practice, the
links are looser than one might expect.

One problem is that economists’ knowledge of economic agents is not derived
simply from observations of behaviour: it is different from, for example, the

9 I make no claim that this is the only, or even the best, way to view models, merely that it is the
appropriate one for the arguments being made here.
10 I use the word “comparatively” because even apparently simple data may be open to question.
Take the assertion that the market for groceries in the UK is dominated by four large firms. This
depends on how that market is defined: on whether “convenience stores” are considered to be a
distinct market from “supermarkets”.



144 R.E. Backhouse

chemist’s knowledge of how sodium and water behave when they come together.
Economists are themselves economic agents, so can draw upon introspection:
they can consider how they would themselves behave in the situation they are
considering. Thus one prominent economist could go so far as to claim that “The
method of economics remains . . . that of the mental experiment aided by intro-
spection” (Georgescu-Roegen, 1936, p. 546). Not exactly the same, but in the
same broad category are arguments from rationality. Maximisation of expected
utility is a normative theory in that it describes how agents ought to behave,
which provides economists with a strong reason for assuming that economists
do behave in this way. In addition, for many economists, explanation means
explaining observed behaviour as the outcome of rational behaviour. Some ex-
plore other assumptions about behaviour, such as bounded rationality, or other
characterisations of behaviour derived from experimental work (“behavioural
economics”) but that is a minority.

Thus most theoretical models are based not on empirically observed behav-
iour but on the assumption of rationality. Agents are assumed to be rational,
and to maximise an objective function subject to the relevant constraints. These
constraints are drawn from economists knowledge of institutions, which deter-
mine, for example, how market structures are modelled (as perfect competition,
monopoly, or interaction between a small number of agents, each of whom has
to take account of how others will respond to his or her own actions). However,
increasingly, economists have ceased to take institutions as constraints, but as
part of what is to be explained. Contracts, for example, should not be seen as
constraints, but as the result of a process involving decisions by rational agents.
Government decisions are the result, not of policy-makers standing “outside” the
system, taking decisions based on what improves social welfare, but of decisions
taken by politicians and bureaucrats who are seeking to achieve their own ends.
Though they are more reticent in print, in less formal situations, economists
will talk about analysing the implications of rational choice as “the” method of
economics.

This approach, defining economics not in terms of its subject matter but in
terms of its method, has a history going back at least to Lionel Robbins (1932)
who provided the most commonly cited definition of economics: the science
which studies the allocation of scarce resources, which have alternative uses,
between competing ends. The whole of economic theory, he suggested, could be
derived from the assumption of scarcity, taken to be a fundamental feature of the
human condition. It resulted in an approach to economics that paid little atten-
tion to empirical work, and which provoked the move to “positive economics”,
represented by Friedman (1953) and Lipsey (1975). Under the banner of pos-
itive economics, and facilitated by increased quantities of economic data and
improved computing facilities, statistical work aimed at testing theories became
more and more common.

Despite the mass of empirical work, the assumption of rationality has contin-
ued to drive economic theory. One reason for its persistence has been that, the
assumption of rationality is hard to falsify. However, the attractions of the model
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would appear to go deeper than this. Hausman (1992) has argued that, not only
have economists frequently attached more weight to such theoretical arguments
than to empirical results, but that there are reasons why they should do this. Not
only are the arguments in favour of rationality compelling, to the extent that
economists find ways to preserve it rather than accept apparently conflicting ex-
perimental evidence, but also the data available to economists are often of low
quality, containing many errors, and not measuring precisely what economists
want them to measure. The result is that, faced with a conflict between theory
and data, it is the data that they call into question. The result is that propositions
from economic theory, even if not tested against data, or even if they have been
tested and found inadequate, may influence subsequent work. The assumption of
rationality may exert a more powerful influence on models than does the result
of statistical testing.

6.4. From Theoretical Models to Empirical Models

In an ideal world, the models that economists confront with data (assumed in
this section to be statistical) would be the same as their theoretical models. In
practice this is not always possible: theories may involve unobservable variables;
other variables may be not be measurable or measured properly; theories may
specify functional forms that cannot be estimated given the available techniques;
and theories may simply be too complicated or too imprecise to be testable (see
Mayer, Chapter 14). The result is that, probably in most cases, the model that
is tested is not the same as the one that is produced by the theory. It may not
even be a special case of the theoretical model, but one that has been modified
in ways that make it possible to confront it with data.

Cartwright (2002) suggests that when there is such a gap between theoret-
ical and empirical models, the link between them is too weak to consider the
empirical work a meaningful test of the theoretical model; empirical models do
not have any nomological machine underlying them, but are effectively plucked
from the air. Against this, it can be argued that the theoretical model should be
seen as interpretive, the lack of a precise correspondence between the two mod-
els being the result of the model being an incomplete representation of reality
(Hoover, 2002a). The model leads us to discover robust regularities in the data.
An alternative way to put this is that the theoretical model establishes possible
causal links between variables, and that those causal links then form building
blocks for the empirical model that is confronted with the data (Backhouse,
2002a). Whichever interpretation of the link we accept, the result is the same:
the nature of economic data mean that the links between theory and empirical
models involve a degree of informality.

The most highly visible, though not necessarily the most commonly-used,
way of confronting models with data involves the imprecisely-defined package
of techniques going under the name of econometrics. These methods are covered
by Qin and Gilbert in Chapter 11, but some features of this process need to be
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discussed here. The most important point is that, though econometricians em-
phasise the statistical foundations of their work, economic considerations and
consequently less formal forms of reasoning become important when statisti-
cal methods are employed in practice. These come in both in formulating and
estimating the model, and in drawing conclusions.

Econometric models rarely work properly the first time they are applied to
data – say, the first time a regression equation is calculated. Theory typically
does not tell the economist what functional form to use. Often it merely say that
a function should be increasing, decreasing, or perhaps that it should be convex
or concave, leaving room for an infinite number of functional forms. Decisions
need to be made about which variable to include, and how they are measured.
Even something apparently simple such as a price index can be measured in
many ways, none of which is clearly better than the others. Lag structures and
control variables (particularly important in cross-section data sets on individu-
als) are something else over which it is hard to make a decision before coming to
the data. Where theory does indicated clearly that variables should be included,
their statistical properties in the particular data set may make it impossible to
include them in the way that theory suggests they should be. The result is that
decisions on these matters have to be made in the light of initial empirical re-
sults. Variables are added or dropped; alternative functional forms and lags are
tried out; and the economist experiments with different measures of included
variables.

Such practices are often referred to, derogatorily, as data mining. Mayer
(Chapter 14) offers a parallel discussion of this problem, and suggests remedies.
Given conventional statistical theory, it undermines the theoretical foundations
of the hypothesis tests on which econometricians rely: at its simplest, if the
econometrician will carry on calculating regressions until he or she finds one
where a particular coefficient is positive, a statistical test that shows it to be
positive is meaningless. In practice, however, not only does data mining oc-
cur – it has to occur. It can be compared with the way experimental scientists
have to tune their experiments before they work, whether working means that
anticipated results are found or are not found (Backhouse and Morgan, 2000).
There are no rules for such tuning, and economic criteria enter. Attempts have
been made to formalise the process, even incorporating such strategies into au-
tomated computer software routines but choices have to be made before even
the most sophisticated software can be applied. For example, to use PcGets,11

which automates the process of model selection, requires the user to input a list
of variables and to specify basic parameters such as lag lengths to be analysed.

Even once a satisfactory empirical model is found, judgements have to be
made about its economic significance. Of particular importance is the generality
of the conclusions reached – about the domain of the theory – a process that is

11 See http://www.pcgive.com/pcgets/index.html.
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not independent of the estimation process (Backhouse, 1997). Suppose a con-
sumption function is estimated for the UK during the 1980s. Does this tell us
anything about consumption in the UK in general, or about consumption in Eu-
ropean economies in general? This is relevant for decisions about the results: if
the domain is UK consumption in general, then data for the 1990s is relevant,
otherwise it is not. If it is believed to say something about consumption in Eu-
ropean economies, then data for France and Germany is relevant too. The point
is that these decisions involve economic criteria (for example, the introduction
of the Euro may have changed the way foreign exchange markets operate, or
the 1997 change in the UK monetary regime might be thought to have changed
the structure of the UK market for money). One of the difficulties is that deci-
sions about these matters will depend on the empirical results, but the empirical
results depend on the decisions made.12

6.5. Learning from Models

Empirical models clearly add to the stock of knowledge. What is less clear is
how they add to the stock of economic knowledge, rather than simply knowledge
of the form “If you correlate x, y and z, the result is p”. Econometric results
can establish generalisations (see Hoover, 2002a; Sutton, 2000) but the stock
of economic knowledge resulting from such work is arguably much less than
the stock of results. Summers (1991) has argued that econometric results have
had much less influence on macroeconomics than much more informal work,
such as the calculation of averages, trends, and other “low level” techniques.
The reason, he contends, is that the latter are more robust. This is related to the
problem of the domain of the results discussed above. Typically, economists are
not concerned, say, with the properties of UK demand for money between 1979
and 1987, but with the properties of money demand functions in general. For
example, if someone is constructing a model of the business cycle, is it more
realistic to assume that the elasticity of substitution between labour and leisure
is zero, a half or one? Meta-analysis works in some disciplines, but in economics
it has not been particularly effective in narrowing the range of disagreement.13

However, if it became more widespread, the effects might be greater: knowing
that their results would be subject to meta-analysis, and compared systematically
with other results, researchers might alter their behaviour.

The issue of how economists learn from empirical and theoretical results is
not merely a practical problem, but a profound conceptual one. The stock of
knowledge is multi-dimensional, the various elements being, at least in part,
incommensurable. Furthermore, there is no formal procedure that can specify

12 Backhouse (1997), following Harry Collins’s “experimenter’s regress” calls this the “econome-
trician’s regress”.
13 See Backhouse (1997) and Goldfarb (1995).



148 R.E. Backhouse

the knowledge contained in a particular empirical result; in one sense, an equa-
tion (for example) is itself a representation, but more important is its effect on
economists beliefs about the economy. It is the representations that are implicit
or explicit in economists beliefs that matter. This means that to make sense of the
last link in the chain, from empirical results to knowledge about the economy, it
is necessary to see how empirical results are used by economists.

Models are clearly used in policy-making: not only do policy makers use
economic models, but “the requirements and questions of policy makers play
an important role in the development and revision of economic models” (den
Butter and Morgan, 2000, p. xiv). Den Butter and Morgan describe two-way in-
teraction between policy makers and modellers as “widespread”. Policy failures
may be even more important than formal tests in causing economists to revise
their views of how the economy operates.14

The Bank of England, for example, uses both large-scale models and smaller
models (such as Phillips curves) in the design of policy.15 Models provide fore-
casts, though with error bands that increase the further into the future the forecast
is made. But the knowledge provided by the model is heavily circumscribed. De-
cisions are made on the basis of judgement: this is informed by models, but not
in a mechanical way. The forecasts produced by models have errors attached,
but there are also uncertainties that go beyond these. There will often be evi-
dence about, for example, future developments in energy markets, future trends
in house prices, or consumer confidence that are not incorporated in the mod-
els. In considering model forecasts, therefore, members of the Monetary Policy
Committee (MPC) balance the risks that the models may be wrong in different
directions. The implication of this is that the MPC members’ knowledge of the
economy is informed by empirical models, but in a complex way.16

The same is true of the Netherlands Central Planning Bureau (CPB). Den
Butter (Chapter 9) points out that the CPB tries to establish ‘a consensus view’
on what is going on in the economy and on the effects that policy changes are
likely to have. This implies that, even on questions of positive economics, there
is scope for legitimate disagreements on how to interpret the results of formal
modelling: if it were a matter of simply eliminating technical mistakes, search-
ing for consensus would not make sense.

In economics more generally, models are used in different ways. Economists
doing research into a field will typically, one assumes, start with the existing
literature. In this sense, the models are directly part of the relevant stock of

14 They approach the complexity of the relationships between models and the policy process by
analysing their case studies as examples of different market structure, characterised by the variables
of number and the degree of product differentiation (den Butter and Morgan, 2000, p. 283).
15 See Bank of England (2000).
16 Downward and Mearman (2005) use the metaphor of ‘triangulation’, which has recently entered
British political discourse, to describe this use of a variety of methods and sources. It is typical of
the way economists use empirical evidence (see Backhouse, 1997, 2002b, two examples from which
are discussed below).
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knowledge. However, it is the models themselves, rather than what they say
about the economy that is relevant, for the aim is to produce other models that
can be judged superior. It is not even necessary that the models are taken seri-
ously as representations of the economy for them to play a role in subsequent
research.

Perhaps more interesting is the way that econometric results are used by
economists in constructing economic theories. Generally, economists have been
reluctant to rely on generalisations established by economists, these doubts go-
ing beyond the widely-known Lucas critique (Lucas, 1976). There is usually
scepticism about whether quantitative generalisations will be robust in the pres-
ence of exogenous shocks and changes within the systems being considered.
Thus, whereas economists were at one time willing to assume that the propensity
to save was approximately constant, and might have considered using evidence
on its value, they would nowadays not be willing to do this. Yet empirical re-
sults are not irrelevant. Rather, they inform theory in ways that have something
in common with the way the MPC uses the results of models (Backhouse, 1997,
Chapter 13). Two examples make this point.17 These may be particularly good
examples, but the conclusions drawn are probably representative of much theo-
retical work.

Peter Diamond (1994) is concerned with theory, seeking to go beyond the sta-
tics of Marshallian period analysis and the textbook IS-LM model, to construct
a more dynamic theory. Though his purpose is theoretical, and he does not even
try to derive empirical models, he makes extensive use of evidence, some of
which came from models, some of which did not. This ranged from survey evi-
dence on the frequency of price changes and price dispersion to evidence on the
link between US monetary policy decisions and subsequent change in national
output. He does not use numbers directly in his theory, but quantitative results
are important in establishing that things are important. Thus he establishes that
flows into and out of unemployment are very large in relation to the stock of
unemployment, that entry is more concentrated than exit, that seasonal changes
are large relative to the growth of national product. Because he is interested in
propositions that are more general – more abstract – than those offered by the
studies he cites, he brings together evidence from a range of sources, looking in-
formally for common patterns. Thus price stickiness is established by bringing
together evidence on input prices, mail order catalogue prices and news-stand
prices of magazines.18

Another example is Seater’s (1993) survey or Ricardian equivalence. This
brings together evidence from econometric studies of the life-cycle theory of
consumption, in which Ricardian equivalence depends, tests relating to assump-
tions made in theory, direct evidence (effectively from reduced-form models)

17 Both are taken from Backhouse (1997, pp. 190—203), where they are discussed in much more
detail.
18 Backhouse (1997, pp. 203–205) argues that this can be thought of as replication, comparable to
the replication of experimental results.
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on the effects of tax changes on consumption, and a range of other evidence,
such as the proportion of couples that are childless (and hence cannot care about
their descendants’ welfare as the theory requires). They reach a heavily qualified
conclusion about the limited relevance of Ricardian equivalence.

In both examples, evidence is used to reach conclusions about what the world
is like. It is hard to point to a single study that causes either Diamond or Seater
to reach the conclusions that they reach, but evidence from models and more
formal evidence do play a role in guiding their theorising. A further role of
empirical models is the negative one, of showing that simple theories are inade-
quate, opening up a space for more complex models.19

6.6. Conclusions: Representations and Reality

Representation does not imply resemblance, even in visual arts. This is doubly
true in economics. Economic models, even though they may be thought ade-
quate representations of the economic world, rest on assumptions that are often
wildly unrealistic as descriptions of the world. Indeed, in his classic analysis of
the issue, Friedman (1953) made a virtue of models being unrealistic. Models
are based on caricatures of agents.20 Furthermore, in some cases it is hard even
to think about resemblance, for models deal with concepts for which it is hard
to identify real-world counterparts with which a comparison can be made. Take
markets as an example. The market for equities may correspond to an identifi-
able institution, defined in space and time, but many of the markets that appear in
economic models have no such counterparts. Many markets are, at most, loose
networks of buyers and sellers with no tangible existence.

This has led many economists to be sceptical about the link between models
and understanding reality, this scepticism extending both to economic theory
and to econometric work. On economic theory, many would echo the following
critique:

More often than not, the method of economics consists either of the application of an existing
theory with little attention to whether it is closely related to the system being considered or,
worse still, of recommending that the system be changed to bring it into conformity with the
assumptions of theory (Phillips, 1962, p. 361).

On econometrics, Summers’s scepticism has been mentioned. In similar vein,
Keuzenkamp and Magnus (1995, p. 21) challenged readers of the Journal of
Econometrics “to name a paper that contains significance tests which signifi-
cantly changed the way economists think about some economic proposition”.

But if account is taken of informal ways in which evidence is used, wherever
that evidence comes from, a different picture emerges. It is not correct to say

19 Backhouse (1997, pp. 194–199) uses the example of the textbook by Blanchard and Fischer to
make this point.
20 See Gibbard and Varian (1978).
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that the informality of this process means that models are dispensable. As the
Bank of England (2000, p. 3) put it,

Why bother with models at all? Could policy judgements not simply be based on observation
of current economic developments, in the light of lessons from past experience of how the
economy works? That is indeed the basis for policy judgements, but making them without the
aid of models would be extraordinarily difficult, not simple.

The same could be applied, mutatis mutandis, to the use of models elsewhere
in economics, for purposes other than monetary policy.

Where does this leave representation in economics? The main lesson is that
representation is multi-dimensional or multi-layered.21 It is trivial to say that
economics is full of representations of economic phenomena. What is interest-
ing is how these relate to each other, how they evolve, and how they contribute to
the economist’s stock of knowledge. Individual representations, whether based
on experiments, econometric work or “lower-level” methods, should not be seen
in isolation. This has been widely recognised. Friedman (1953) stressed the im-
portance of looking at the data before theorising, reflecting the view associated
with the National Bureau of Economic Research that empirical work was an
engine of discovery as much as a way of testing theories. Boumans (1999) has
drawn attention to the variety of roles played my models and the way evidence
affects theorising at different levels. “Data mining” is acknowledged to be a
widespread practice in econometrics, implying a more complex relationship be-
tween theory and data than standard views about hypothesis testing would imply.
When this broader view is taken, the common theme is that formal rules, such as
the rules of experimental or econometric practice, fail to encompass the process.
Insofar as it implies formal mappings between entities, and sees models purely
as logical-mathematical structures, this involves moving away from the repre-
sentational theory of measurement. The wider picture may be less precise and
highly informal, but this is not to say it is not systematic.22
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7.1. Objective of Axiomatic Index Theory

Price indexes summarize changes in price for a heterogeneous set of commodi-
ties over time or between geographic areas. They are sometimes paired with
quantity or volume indexes, which are analogous summarizations of the changes
in economic volumes of a set of commodities consumed or produced in some
definite interval of time. In axiomatic price index theory, “tests” or “axioms”
specify mathematical properties that are essential or desirable for a price index
formula, and formulas are sought that exhibit those properties. The term “test”
was used by Irving Fisher in two books that effectively launched this field of
research in the early twentieth century, while “axiom” is used by more recent
authors to refer to core properties that are essential for any price index.

Two alternatives to the axiomatic approach are also used to design or to
evaluate price indexes. The stochastic approach (also known as the statistical
approach) models individual price changes as draws from a statistical distribu-
tion whose central tendency is to be estimated. The economic approach models
the quantities as functions of the prices and income that describe the solution
to an optimization problem. The problem may be one of revenue maximization
via substitution among outputs by a producer subject to constraints on inputs,
cost minimization via substitution among inputs by a producer subject to a con-
straint on output, or utility maximization by a consumer subject to a budget
constraint. The two kinds of producer indexes are often used to measure produc-
tivity change. The consumer problem, which defines the cost of living index, is
often treated as representative of the entire approach in theoretical discussions.

The axiomatic approach is sufficiently adaptable to be universally applica-
ble, but the applicability of the alternative approaches generally depends on the
level of aggregation. At the lowest level of aggregation, the assumptions of the
stochastic approach are well-suited for the problem of combining price quotes
from individual sellers into an index for a single commodity. Most index num-
ber problems involve higher levels of aggregation, however. A critical feature
of these problems – the weighting of different commodities to reflect their eco-
nomic importance – is handled most naturally by the economic approach. At
this level of aggregation the stochastic approach is also subject to two criticisms

Measurement in Economics: A Handbook Published by
Marcel Boumans (Editor) Elsevier Inc. (2007)
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made by John Maynard Keynes (1930), who argued that commodity price trends
diverge in ways that are too persistent to be explainable as differences in random
draws from some distribution, and that the prices in an economy are function-
ally interdependent and simultaneously determined. Nevertheless, after a long
period of neglect, the stochastic approach has recently enjoyed something of a
revival, particularly for applications to inter-area comparisons.

7.2. History of the Field

7.2.1. Early efforts

Although the first systematic uses of price index tests occurred in late in the
nineteenth century, people have been selecting index formulas to achieve certain
properties for as long as they have sought to go beyond the use of a single, pur-
portedly representative, commodity for measurement of aggregate price change.
Perhaps the earliest discussion of a price index property (quoted in Wirth Fer-
ger, 1946, p. 56) concerned the ability to track the cost of a constant basket of
commodities. This discussion was in a treatise written in 1707 by William Fleet-
wood, Bishop of Eli, on the change in the cost of living for Fellows at Oxford
since the establishment of a cap on their outside income of £5 per year in the
time of Henry VI. Letting p0 and pt represent the vectors of prices in periods 0
and t and letting q∗ be a vector of quantities that is taken as representative of
both periods, the fixed basket price index P FB(p0,pt ,q∗) compares the cost of
purchasing the same quantities at the different vectors of prices from the refer-
ence time period 0 and the comparison time period t :

P FB(p0,pt ,q∗)= pt · q∗

p0 · q∗ . (7.1)

Unfortunately, William Fleetwood does not get the credit for the first use of
the fixed basket index formula: surprisingly enough, he departed from Eq. (7.1)
in calculating his results. The groundwork for the first documented use of the
fixed basket index came a few years later in 1747, when the Massachusetts Bay
Colony passed legislation calling for the use of “the prices of provisions and
other necessaries of life” for the escalation of inflation-adjusted public debt to
avoid the spurious volatility and manipulation that had occurred when a sin-
gle commodity (silver) was used (Willard Fisher, 1913, p. 426). Since keeping
track of the prices of the “necessaries of life” was impractical given the re-
sources available at the time, the idea had to be simplified before it could be
implemented. This was done in 1780, when Massachusetts specified a basket of
consisting of 5 bushels of corn, 68 4/7 pounds of beef, 10 pounds of wool, and
16 pounds of sole leather for indexation of interest-bearing notes used to pay its
soldiers in the Revolutionary War.

The rudimentary Massachusetts basket was not an approximation to the aver-
age basket that was actually consumed by the erstwhile colonists, so it also falls
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short of complete implement of the fixed basket index idea. The first index bas-
ket design that included a plan for making the weights truly reflect expenditure
patterns came nearly a half century later in 1823, when Joseph Lowe proposed
such a consumer price index for Britain (W. Erwin Diewert, 1993, p. 34).

Another index number property that early measures of price change were
designed to achieve is independence from the definitions of the units of mea-
surement of the items in the index. Letting Λ represent a matrix with arbitrary
positive values on its main diagonal and zeros elsewhere, the commensurability
axiom, also known as the “change of units test,” requires that the index formula
P(p0,pt ,q0,qt ) have the property:

P(p0,pt ,q0,qt ) = P
(
Λp0,Λpt ,Λ

−1q0,Λ
−1qt

)
. (7.2)

A formula that fails to satisfy this axiom is useful only for items that are
homogeneous and measured in identical units. An example such a formula was
used by Dutot in 1738:

PDutot(p0,pt ) =
∑

i pit∑
i pi0

. (7.3)

The commensurability axiom is critical for the main purpose of price indexes,
which Ragnar Frisch (1936, p. 1) identified as the uniting of individual measure-
ments for which no common physical unit exists. If the units of measurement for
diverse commodities could all be converted into some common unit by means
of physical equivalency ratios, index numbers would be unnecessary. Instead,
the aggregate price level could be measured by the unit value (the ratio of total
expenditures to total equivalency units consumed) of the single composite com-
modity. Price change would then be measured by the change in the aggregate
unit value:

unit value ratio = [∑i pit qit ]/[∑i qit ]
[∑i pi0qi0]/[∑i qi0]

. (7.4)

In the absence of a system of physically equivalent units for diverse com-
modities, the only recourse is to use prices for conversions into units that are
equivalent in monetary terms.

The commensurability axiom is satisfied by any index formula that can be
written as a function of the price relatives and weighting parameters that do not
depend on the prices (which means that the weights must either be predeter-
mined or else depend on observed item expenditures). The simplest function of
this type is an unweighted average of price relatives. Carli used this formula
(which is also known as the Sauerbeck index) in his 1764 investigation of the
effect of the discovery of America on the purchasing power of money:

PCarli(p0,pt ) = 1

N

∑

i=1,...,N

pit /pi0. (7.5)
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A fixed basket index satisfies the commensurability axiom if and only if the
elements of q∗ in Eq. (7.1) are determined in a way that takes units of mea-
surement into account. The basket used by Massachusetts in 1780, for example,
assumed equal expenditures in the base period. This procedure insures that a
change in units will have no effect on the index; indeed, it makes the fixed bas-
ket index equivalent to the Carli index. Two more substantive examples of fixed
basket indexes that satisfy the commensurability axiom are the Laspeyres index,
defined as P FB(p0,pt ,q0), and the Paasche index, defined as P FB(p0,pt ,qt ).
Defining si0 as (pi0qi0)/(p0 ·q0), the reference period expenditure share of com-
modity i, the Laspeyres index is shown to satisfy the commensurability axiom
by writing it as a weighted average of the price relatives:

P Laspeyres =
∑

i

si0(pit /pi0). (7.6)

Similarly, the Paasche index is shown to satisfy the commensurability axiom
by writing it as a weighted harmonic mean of the price relatives:

P Paasche(p0,pt ,qt ) = 1
∑

i sit (pi0/pit )
. (7.7)

7.2.2. Emergence as a field of study

In the latter half of the nineteenth century, explicit discussions of proper-
ties that could be used to evaluate price index formulas began to appear.
Etienne Laspeyres discussed the strong identity test, which requires that
P(p,p,q0,qt ) = 1. The test of independence from the choice of the base for
comparisons of periods other than the base period was discussed by W. Stan-
ley Jevons and F.Y. Edgeworth. This test requires that the change in the in-
dex between periods s and t be unaffected by the choice of the base period,
or P(p0,pt ,q0,qt )/P (p0,ps ,q0,qs) = P(p1,pt ,q1,qt )/P (p1,ps ,q1,qs). Je-
vons proposed an unweighted geometric mean index that satisfies this test, as
well as the commensurability test:

P Jevons(p0,pt ) =
∏

i=1,...,N

(pit /pi0)
1/N . (7.8)

A closely related test that is satisfied by any index that satisfies the base-
independence test was discussed by Harald Westergaard. This test is known as
the circularity test, and is much-discussed in the subsequent price index litera-
ture. It requires that a chained index calculated as the product of the index from
period 0 to period s and the index from period s to period t equal the direct
index from period 0 to period t :

P(p0,ps ,q0,qs)P (ps ,pt ,qs ,qt ) = P(p0,pt ,q0,qt ). (7.9)
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Another much-discussed test is, in turn, satisfied by any index that satisfies
the circularity test and the identity test. The time reversal test requires agreement
between the value that a price index formula assigns to a set of price changes,
and the value that the formula assigns to a reversal of those price changes, given
that quantities also return to their original values:

P(p0,pt ,q0,qt )P (pt ,p0,qt ,q0) = 1. (7.10)

N.G. Pierson (1896) (who also pointed out the failure of the commensurability
axiom by the Dutot index) thought this test of such importance that its failure by
the indexes known to him caused him to recommend that the entire enterprise of
trying to construct price indexes be abandoned.

A failure of the time reversal test that reveals a bias occurs in the case of
the Carli index. Let r be the column vector of the price relatives and r−1 be
the vector of their inverses pi0/pit . Letting ιιιι be a vector of ones, the product
of the Carli index (1/N)ιιιι′r and its time-reversed counterpart (1/N)ιιιι′r−1 is the
quadratic form (1/N2)ιιιι′[r(r−1)′]ιιιι. The main diagonal of the matrix r(r−1)′ con-
sists of 1s, and the average of all the elements of r(r−1)′ equals the chained Carli
index.

We can calculate this average in two stages. The first stage combines each
element above the main diagonal of r(r−1)′ with a counterpart from below the
main diagonal. Letting δij = (pit /pi0)(pj0/pjt ) − 1, the average of element ij
and element ji of the matrix r(r−1)′ is:

(1 + δij ) + 1/(1 + δij )

2
= 2(1 + δij ) + δ2

ij

2(1 + δij )
.

This average is greater than 1 if δij �= 0, so unless pt = p0, the average of all the
pairwise averages exceeds 1. Paradoxically, after every price and every quan-
tity has returned to its original value, the chained Carli index registers positive
inflation!

The beginning of the twentieth century saw the first systematic use of the test
approach to evaluate and design price index formulas. A book by Correa M.
Walsh (1901) discussed a version of the circularity test that adds a third link to
the chain and makes the ultimate prices and quantities identical to the original
ones, as they are in the time reversal test. Walsh also discussed a proportionality
axiom (also known as the strong proportionality test), which requires that an
index containing identical price relatives equal that price relative:

P(p0, λp0,q0,qt ) = λ. (7.11)

Finally, Walsh applied the constant basket test to price index formulas that
attempt to account for the effects of changes in the basket that is consumed.
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These formulas should agree with the fixed basket formula in the special case of
an unchanging consumption basket:

P(p0,pt ,q,q) = pt · q
p0 · q

. (7.12)

The constant basket test is trivially satisfied either by a fixed basket index
formula that uses only the base period market basket, disregarding the bas-
ket from the other period, or by a fixed basket index formula that uses only
the comparison period market. Use of the base period basket had been sug-
gested by Laspeyres in 1871, and use of the comparison period basket had been
suggested by Hermann Paasche in 1874. Yet Walsh inferred from numerical tri-
als that the Laspeyres price index P FB(p0,pt ,q0) and the Paasche price index
P FB(p0,pt ,qt ) were both biased.

To satisfy the constant basket test while allowing the opposite biases of the
Laspeyres and Paasche indexes to offset one another, Walsh favored an average
of the baskets from the base and comparison periods. The simple average of the
quantities in the two baskets proposed earlier by Edgeworth and Alfred Marshall
was acceptable. Walsh found, however, that a geometric mean performed better,
so his preferred index was:

PWalsh(p0,pt ,q0,qt ) =
∑

i pit (qi0qit )
0.5

∑
i pi0(qi0qit )0.5

. (7.13)

7.2.3. Irving Fisher’s systematic approach

A decade after Walsh’s book appeared, Irving Fisher wrote The Purchasing
Power of Money. This book contained some important new tests, but it is even
more notable because Fisher took a systematic and thorough approach that el-
evated the question of index number properties to the level of a formal field of
study.

Inspired by the right hand side of the equation of exchange MV = PT , where
M is the stock of money in circulation, V is its velocity of circulation, P is the
price level and T is the volume of trade, Fisher proposed the product test.1 This
test states that when a price index and a quantity index are specified simulta-
neously, their product must equal the expenditure relative pt · qt /p0 · q0. Using
the product test, Fisher developed the concept of the “correlative form” of the
quantity index corresponding to a price index, a concept that is now known as
the implicit quantity index.

1 As den Butter [this volume] explains, today National Accounts use index numbers to decompose
changes in nominal expenditure into price and volume effects. This procedure has its origins in
Fisher’s (1911) discussion of the product test. The Laspeyres quantity index derived there is used to
measure real GDP in most countries.
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The product test can also be used to derive the implicit price index cor-
responding to a directly specified quantity index. To avoid a violation of the
commensurability axiom, Fisher defined the units for each item in T as a “dollar
worth” in the base year, which makes T equal to the numerator of the Laspeyres
quantity index p0 · qt . By substituting pt · qt for MV in the equation MV = PT

and solving for P , Fisher obtained the implicit price index implied by the use
of base period prices to measure volume change. The result showed that for
the Laspeyres quantity index, the implicit price index is a Paasche price index.
Divide both sides of the equation pt · qt = P(p0 · qt ) by base period nomi-
nal expenditures p0 · q0 to obtain pt · qt /p0 · q0 = P(p0 · qt /p0 · q0), where
p0 · qt /p0 · q0 = QLaspeyres. Then the price index P must equal:

P = pt · qt /p0 · q0

QLaspeyres
= pt · qt

p0 · qt

. (7.14)

Another advance in The Purchasing Power of Money was the assembly of
a battery of all tests known to Fisher for purposes of screening for the best
price index formulas. As a reflection of Fisher’s interest in the equation of ex-
change, his list of tests included ones that concerned the behavior of the implicit
quantity index that the price index implied. A further novelty was the inclusion
of tests of comparative index behavior, which apply to not to index itself but
rather to the change in an index between periods other than the base period, i.e.
P(p0,pt ,q0,qt )/P (p0,ps ,q0,qs).

Eight tests were on Fisher’s original list. Using names from today’s literature,
they are:

1. The proportionality axiom.
2. The proportional baskets test. The price index must satisfy P(p0,pt ,

q0, λq0) = pt · q0/p0 · q0. The proportional baskets test is necessary be-
cause the quantity index in the equation pt · qt = P(p0,pt ,q0,qt )Q(p0,pt ,

q0,qt )(p0 · q0) must equal λ if qt = λq0. This test includes the constant
basket test as a special case by letting λ equal 1.

3. Test of determinateness in prices: The price index does not become indeter-
minate or converge to 0 as a price goes to 0. Although this test is sometimes
defined with the outlier price equal to 0, stating it as a requirement of a finite,
positive limit as any price approaches 0 avoids some unhelpful complica-
tions.

4. Test of determinateness in quantities: The quantity index does not become
indeterminate or equal 0 if a quantity goes to 0.

5. Test of withdrawal or entry of prices: The price index is unaffected by the
withdrawal or entry of a price relative that has the same value as the price
index.

6. Test of withdrawal or entry of quantities: The quantity index is unaffected by
the withdrawal or entry of a quantity relative that has the same value as the
quantity index.
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7. Test of independence from the choice of base and the closely related cir-
cularity test and time reversal test. Given the identity axiom (i.e., given
that P(p,p,q,q) = 1), these latter tests are special cases of the base-
independence test.

8. The commensurability axiom.

None of the 44 price indexes that Fisher considered passed all these tests.
(Indeed, no index can.) Fisher, however, emphasized the test of proportionality
in quantities because of the importance he attached to the equation of exchange.
If we restrict attention to indexes that also satisfy the proportionality axiom in
prices, only the Paasche price index is able to satisfy the implicit quantity index
version of the comparative proportionality test, which considers time periods
other than the base period. Substituting λqs for qt , the change in the Laspeyres
quantity index implied by the Paasche price index from time s to time t is:

Q(p0,pt ,q0, λqs)/Q(p0,ps ,q0,qs) = p0 · λqs/p0 · q0

p0 · qs/p0 · q0

= p0 · λqs

p0 · qs

= λ. (7.15)

As an illustration of how other indexes fail the comparative proportionality
test, consider the Laspeyres price index. The implicit quantity index that it im-
plies has a Paasche form. Substituting λqs for qt in the Paasche formula, a test
of the Paasche quantity index for the comparative proportionality property gives:

pt · λqs/pt · q0

ps · qs/ps · q0
= pt · λqs/ps · qs

pt · q0/ps · q0

�= λ except in special cases. (7.16)

Based on its ability to satisfy the comparative test of proportionality in
quantities, Fisher selected the Paasche price index as best. In the context of
national product accounts, Fisher’s emphasis on this test is reasonable. The
single number of greatest interest to the users of these accounts is the most
recent change in real gross domestic product (GDP). National statistical agen-
cies that use a fixed base approach calculate the percentage change in real GDP
as 100[Q(p0,qt ,q0,qt )/Q(p0,ps ,q0,qs) − 1]. The national accounts of most
countries still follow Fisher’s recommendation in their choice of formula for the
“implicit deflator” for GDP.

Of course, price indexes are used for many purposes besides the measurement
of the volume of domestic production. Fisher next turned his attention to select-
ing the best index number for all purposes. For this, he drew on his work on
quantity indexes and the equation of exchange to develop a new test. Fisher’s
factor reversal test requires that the price index and its implicit quantity index
have the same functional form:

P(p0,pt ,q0,qt )P (q0,qt ,p0,pt ) = (pt · qt )/(p0 · q0). (7.17)
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In a paper presented to the American Statistical Association Fisher (1921) used
this test, and the time reversal test to identify an “ideal” price index for any
purpose.2 The form of Fisher’s index was a geometric mean of the Laspeyres
index and the Paasche index:

P Fisher =
√

pt · q0

p0 · q0

pt · qt

p0 · qt
. (7.18)

Fisher’s magnum opus on index numbers, The Making of Index Numbers, ap-
peared a year later. This book tabulated the performance of nearly 150 formulas
on the tests of proportionality, determinateness, and withdrawal or entry, and it
identified the class of formulas that failed to satisfy the fundamentally important
commensurability test. It supplemented this deductive reasoning based on tests
with inductive reasoning based on trials of how formulas performed with ac-
tual data. These trials gave empirical evidence of such properties as the upward
bias of arithmetic averages of price relatives and the downward bias of harmonic
averages (which are simply reciprocals of time-reversed arithmetic averages).

Fisher’s new treatment of tests differed from his original one in some impor-
tant ways. Fisher renounced the circularity test and also the “comparative” tests,
which focused on the change in the index rather than the index itself. Fisher
also dismissed the base-independence test as irrelevant because of its inapplica-
bility to the chained indexes that he now favored. (Chained price indexes use
the baskets from years being compared, not the basket from some base year of
questionable germaneness.) Finally, these changes in approach implied an aban-
donment of the recommendation of the Paasche price index as the best formula
for deflation purposes.

Three tests that were unknown at the time of Fisher’s earlier book are men-
tioned in The Making of Index Numbers. Fisher’s discussion of index formulas
that behaved “erratically” or “freakishly” implied a test of continuity in prices
and quantities. Second, Fisher (1922, pp. 220–221 and 402) justified his prefer-
ence for “crossing” formulas (as is done in the Fisher index) rather than crossing
weights (as is done in the Edgeworth–Marshall and Walsh indexes) by arguing
that only the former procedure would insure that the final index remained within
the bounds of the Laspeyres index and the Paasche index. (This was not the first
mention of the Laspeyres–Paasche bounds test; it had already been discussed
by Arthur L. Bowley and by Pigou, 1912 and 1920.) Third, Fisher placed great
emphasis on his new factor reversal test. After excluding erratic or freakish in-
dex formulas and focusing on crosses of formulas rather than of weights, Fisher
identified P Fisher as “ideal” because it was the only straightforward formula that
satisfied the time reversal test and the factor reversal test.

2 In his discussant’s comments Walsh (1921) showed how to derive other formulas that satisfied
Fisher’s new test besides PFisher , thereby undermining Fisher’s initial argument for the superiority
of PFisher . The name later given to this formula reflects Fisher’ role in demonstrating its axiomatic
advantages; Walsh was the first to mention it.
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Indeed, P Fisher also satisfies all the tests on Fisher’s original list if they are
properly framed. The circularity test or base-independence test, which Fisher
now disavowed, becomes the time reversal test when applied to two periods
only. Of the remaining seven tests, Fisher reported that five were satisfied. The
two tests that Fisher reported as violated by his ideal index are the price with-
drawal or entry test, and the quantity withdrawal or entry test. Fisher, however,
made no restriction on the quantities when he tested the effect on the price index
of withdrawal or entry of an item with a price relative equal to P Fisher . The ap-
propriate assumption for testing an index that depends on prices and quantities
in both periods is that the entering or withdrawing item matches both the origi-
nal price index and the original quantity index. A simultaneous test of price and
quantity withdrawal or entry is satisfied by P Fisher and QFisher .

7.2.4. Criticisms of Fisher’s tests and the rise of the economic approach

Following the publication of The Making of Index Numbers, the focus of index
number research shifted to the economic approach, with a host of contributions
advancing the field far beyond the state in which Pigou and other pioneers of this
approach had left it.3 Furthermore, the test approach research that continued to
be performed shifted in focus from the use of tests to select index formulas to the
selection of the tests themselves. Certain tests were singled out for criticism as
unjustifiable according to the economic approach or as incompatible with other
tests. For example, Samuelson and Swamy (1974, p. 575) discussed the lack of
an economic justification for the factor reversal test, concluding: “A man and
his wife should be properly matched, but that does not mean I should marry my
identical twin!”

The discovery that important tests can be incompatible with each other
pointed to a weakness of the axiomatic approach: the question of which axioms
are vital can neither be avoided by finding a formula that simultaneously satisfies
them all, nor answered in a way that is beyond all controversy.4 A noteworthy
example of controversy involves three tests from Fisher’s list that Frisch (1930)
identified as impossible to satisfy simultaneously. These are the circularity (or
base-independence) test, the commensurability test, and the determinateness
test.5 At different times, each member of Frisch’s set of incompatible tests has
been identified as the one to abandon. Frisch (1930, p. 405) suggested the sacri-
fice of the commensurability test. Fisher had, of course, discarded the circularity

3 Important contributions to the economic approach from this era include Corrado Gini (1924,
1931), Gottfried Haberler (1927), Bowley (1928), R.G.D. Allen (1935 and 1949), Hans Staehle
(1935), Abba P. Lerner (1935), A.A. Konus (1939) and Erwin Rothbarth (1941).
4 The impossibility of satisfying every axiom is interpreted within the representational theory of

measurement by Morgan [this volume]. She also discusses two approaches that have been used to
respond to this problem.
5 Frisch overlooked the need for the proportionality axiom, without which the expenditure relative

pt · qt /p0 · q0 would satisfy all the tests on the list (Eichhorn, 1976, p. 251).
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test, and had – like Frisch in 1936 – identified the commensurability test as fun-
damental. Finally, Swamy (1965, p. 625) discarded the determinateness test.

The circularity test is particularly prone to incompatibility with other axioms,
including some that are indispensable. In particular, an important impossibility
theorem states that it is impossible to satisfy the axioms of circularity, commen-
surability and proportionality simultaneously if the price index uses information
on the quantities (see Appendix A). These three axioms constitute a charac-
terization for a geometric average of price relatives that has exponents that
are constants that sum to 1 but that need not be identical, as they are in the
Jevons index. (A characterization for an index is a combination of tests and ax-
ioms that is uniquely satisfied by that index.) An additional axiom that prevents
negative exponents must also be included to make the formula that is charac-
terized admissible as a price index. One such axiom, introduced in a later vein
of the literature by Wolfgang Eichhorn and Joachim Voeller, is the monotonicity
axiom. This axiom requires that the price index be strictly increasing in com-
parison period prices and strictly decreasing in base period prices. Combining
this axiom with the other three, we have a characterization for a version of the
Cobb–Douglas index that has predetermined weights s∗.6 In log-change form,
this index is:

logPCobb–Douglas(p0,pt , s∗)=
∑

i

s∗
i log(pit /pi0). (7.19)

Another perspective on the difficulty of satisfying the circularity test was of-
fered by Samuelson and Swamy. They showed that a price index can use the
quantity data and still satisfy the circularity test if the quantities behave in a way
that is consistent with homothetic utility maximization.7 This price index need
not sacrifice the proportionality test nor the commensurability axiom. Unfortu-
nately, however, homotheticity is a strong assumption: it means that marginal
rates of substitution do not depend on the utility level, making the composition
of the consumption basket invariant to income and dependent only on prices.
Samuelson and Swamy conclude:

[I]n the nonhomothetic cases of realistic life, one must not expect to be able to make the naïve
measurements that untutored common sense always longs for; we must accept the sad facts of
life, and be grateful for the more complicated procedures economic theory devises (p. 592).

7.2.5. The resurgence of interest in the axiomatic approach

The rise of the economic approach to index numbers did not mean the end
of progress on index number axiomatics, nor even the limiting of axiomatic

6 The name comes from the economic approach. Constant expenditure shares are implied by a
Cobb–Douglas utility function. Used as weights in a log-change price index, these shares yield the
Cobb–Douglas cost of living index.
7 They were not the first to show this: the homotheticity condition had been identified a year earlier

by Charles Hulten using a method that is discussed in the appendix.
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research to the identification of tests with an economic justification. Notably,
G. Stuvel (1957) and K.S. Banerjee (1959) used the factor reversal test to derive
a novel ideal index number formula, which we discuss below. Furthermore, Jan
van IJzeren (1952) derived a useful and illuminating alternative formula for the
Fisher index. Although van IJzeren’s use of the test approach was rather infor-
mal, his equations reveal how the Fisher index corrects an axiomatic weakness of
the Edgeworth–Marshall price index.8 Deflating the period t quantities (prices)
by the quantity index Q (price index P ) before forming the simple averages
used as the basket of the Edgeworth–Marshall index yields a pair of simultane-
ous equations in P and Q:

P =
∑

i pit (qi0 + qit /Q)
∑

i pi0(qi0 + qit /Q)
, (7.20)

Q =
∑

i qit (pi0 + pit/P )
∑

i qi0(pi0 + pit /P )
. (7.21)

The solution to Eqs. (7.20) and (7.21) is P = P Fisher and Q = QFisher .
Deleting Q from the numerator and denominator equation (7.20) would turn it

into the Edgeworth–Marshall price index. The value of the Edgeworth–Marshall
price index depends arbitrarily on whether growth is negative or positive, since
with a low Q it resembles a Paasche price index and with a high Q it resem-
bles a Laspeyres index. Consequently, the Edgeworth–Marshall index fails to
satisfy the test of homogeneity of degree zero in base period quantities and in
comparison period quantities, which requires that for λ > 0:

P(p0,pt , λq0,qt ) = P(p0,pt ,q0, λqt ) = P(p0,pt ,q0,qt ). (7.22)

Note also that Eq. (7.20) allows an additive decomposition of the change in
P Fisher , and similarly for Eq. (7.21) and QFisher . These equations are therefore
used in the national economic accounts of the US and Canada to calculate the
tables of contributions to change in their Fisher indexes of price and volume
change (Reinsdorf et al., 2002).

Starting in the 1970s, the field of axiomatic index theory began to experience
a renaissance. Yrjö Vartia (1976) introduced the test of consistency in aggre-
gation, which requires that a multi-stage application of the index formula in
various levels of aggregation yield the same result as a single stage application
that calculates the top-level aggregate directly from the detailed data.9 Another
watershed event was the independent discovery by Kazuo Sato (1976) and Var-
tia (1976) of the ideal log-change (i.e. geometric) index, where “ideal” means
that an index satisfies the factor reversal and time reversal tests. This index has

8 This weakness of the Edgeworth–Marshall index is also avoided by the Walsh index.
9 Diewert (2005, fn. 24) notes that a variant of this test had already appeared in a book by J.K.

Montgomery (1937). This test is also discussed in Charles Blackorby and Diane Primont (1990).
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weights proportional to logarithmic means of expenditure shares. The logarith-
mic mean of two positive and unequal shares is defined as:

logmean(si0, sit ) ≡ (sit − si0)/(log sit − log si0), (7.23)

with logmean(si0, si0) ≡ si0. Normalizing the weights so that they sum to 1, the
natural logarithm of the Sato–Vartia index (also known as the Vartia II index),
has the form:

logP Sato–Vartia =
∑

i

logmean(si0, sit ) log(pit /pi0)∑
j logmean(sj0, sj t )

. (7.24)

At about the same time as the research leading to the Sato–Vartia index, the
study of index number tests themselves experienced a rebirth as “the axiomatic
theory of index numbers,” which was the name of a paper by Eichhorn. Eich-
horn, with his student Voeller, and also Janos Aczél, replaced Fisher’s pragmatic
quest for good measurement tools – termed the “instrumental approach” by
Marcel Boumans (2001, p. 336) – with the functional equation approach. This
literature provided further theorems on the mutual inconsistency of various sets
of axioms, but it also introduced the new concerns of identifying mathematically
independent sets of axioms and the discovery of characterizations for the impor-
tant price index formulas. Theorems on mutual inconsistency and independence
of sets of axioms were proven by Eichhorn (1976), for example. For examples
of characterizations for the Fisher index, see Bert Balk (1995), H. Funke and
Voeller (1978, 1979) and for characterizations for other indexes see Manfred
Krtscha (1984, 1988), and Arthur Vogt (1981).

A set of independent axioms than can be viewed as a definition of the fun-
damental properties of a price index function was introduced by Eichhorn and
Voeller (1983). This set consists of the monotonicity axiom, the proportionality
axiom, the commensurability axiom and the price dimensionality axiom. The
price dimensionality axiom requires that multiplying all base and comparison
period prices by the same positive scalar leave the index unchanged, so Balk
(1995, p. 72) calls it “homogeneity of degree zero in prices.”

These four axioms are independent because price indexes exist that violate
any one of them while satisfying all others. Eichhorn and Voeller show that any
index that satisfies them all also satisfies some additional tests, most notably the
mean value test. The mean value test requires that P(p0,pt ,q0,qt ) lie within
the range defined by the smallest and largest price relative:

min{p1t /p10,p2t /p20, . . . , pNt/pN0}
� P(p0,pt ,q0,qt ) � max{p1t /p10,p2t /p20, . . . , pNt/pN0}. (7.25)
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7.2.6. Axiomatic theory for inter-area price indexes

Axiomatic price index theory continues to be a lively field of research. Diew-
ert (2005), for example, extends this theory from the measurement of ratios to
measures of level differences, and the 2004 International Labor Organization
Manual on Consumer Price Indexes develops an axiomatic theory of price index
formulas where item expenditures replace the quantities as arguments. Yet inter-
area price indexes may be the most active topic of current research on axiomatic
index theory.

When indexes are used for inter-area comparisons, such as determining the
relative price levels of a set of countries, the kind of transitivity called for by
the circularity test is critical. Transitivity is also more feasible to achieve in the
inter-area index context than in a time series context, because the static mem-
bership of geographic groups is generally allows the use of quantities or prices
that reflect a combination of all the included countries. (Use of different quan-
tity weights for each bilateral comparison is incompatible with transitivity.) The
grand geometric mean of country quantity indexes, first proposed by Gini, is
known as the EKS method, because it was independently derived and justified by
Ö. Eltetö and P. Köves (1964) and by Bohdan Szulc (1964). Another approach
is to solve a system of equations that uses a common set of average commod-
ity prices to value each country’s commodity quantities. This method, proposed
by Robert C. Geary (1958) and validated by Salem H. Khamis (1972), satisfies
a test of additivity that is convenient for inter-area volume comparisons. Balk
(2003) finds that it fails just one of his core inter-area index tests, along with a
test of monotonicity in quantities for inter-area indexes first proposed by Diew-
ert (1999). Diewert (who is skeptical about the test of additivity) evaluates the
test performance of the Geary–Khamis method less favorably than does Balk,
and recommends the EKS method for the calculation of purchasing power par-
ities (1999, p. 52). Armstrong (2003) finds that a specialized, restricted domain
version of the EKS method has superior axiomatic properties, though without
these restrictions the GKS does better. All these authors also distinguish some
other methods for their good test properties, however. Also methods derived
from the stochastic approach, such as weighted country-product regression dum-
mies (WCPD), are more convenient to calculate than the EKS system yet still
satisfactory in their axiomatic properties.

7.3. Issues in Axiomatic Price Index Theory

7.3.1. Superiority of the Fisher index

The superiority of the Fisher index is the subject of a longstanding debate in
the literature on the axiomatic theory of index numbers that has continued into
recent years. Diewert (1992) implicitly claims superiority for the Fisher index,
as it satisfies a battery of 20 tests (21 if the factor reversal test is included) that
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none of its main rivals can satisfy completely. A particularly noteworthy rival to
the Fisher index is the Leo Törnqvist (1936) index:

logP Törnqvist =
∑

i

1

2
(si0 + sit ) log(pit /pi0). (7.26)

Many researchers who prefer the economic approach think of the Törnqvist
price index as superior because, in a much-celebrated paper, Diewert (1976)
demonstrated its exact equality to a cost of living index from the versatile
translog model of economic behavior.10 This claim to superiority from the
economic approach made Diewert’s subsequent finding of a relatively poor per-
formance for the Törnqvist index on axiomatic criteria all the more striking. The
test violations of the Törnqvist index generally involve only small discrepancies,
but they are surprisingly numerous and they include some important properties.
The constant basket test, the Laspeyres–Paasche bounds test, the determinate-
ness test (which was omitted from Diewert’s list), the monotonicity axiom, and
the mean value test for the implicit quantity index are not satisfied by the Törn-
qvist index.11 The violation of the Laspeyres–Paasche bounds test may seem
inconsistent with the equivalence of the Törnqvist index to a cost of living in-
dex in the translog case, but when the data do not fit the translog model, the
Törnqvist index may not mimic a cost of living index so well.

The next round in the debate came in a survey of axiomatic price index the-
ory. Here Balk (1995, p. 87) observed that every known characterization of the
Fisher index includes a questionable test. This leaves open the possibility that
some other index could fulfill just as many of the important tests as the Fisher
index does. Indeed, Balk singled out the Sato–Vartia index as doing just that.
Though Balk did not explore the properties of the Sato–Vartia index in detail,
remarkably, it can be shown to satisfy the same slightly weakened version of
Fisher’s original list of tests that the Fisher index satisfies.

Tests not found on Fisher’s (1911) list are a different matter, however. The
question of the test parity of the Sato–Vartia index with the Fisher index turns
on how much importance is attributed to two of these tests. First, Reinsdorf and
Alan Dorfman (1999) demonstrated that the Sato–Vartia index fails to satisfy
the monotonicity axiom. Since the monotonicity axiom has been viewed as fun-
damental – Balk lists it first among his core axioms – there would seem to be no
hesitation in proclaiming the Fisher index superior.

10 The paper also categorized the Fisher index and some other indexes as superlative, but the Törn-
qvist index is exact for the economic model with the widest use and the most appeal. The intuition
that the superlative index corresponding to the best model must itself be best has recently been
vindicated in research by Robert J. Hill (2006).
11 Diewert subsequently discovered some axiomatic advantages of the Törnqvist index, which he
details in chapter 16 of the International Labor Organization (2004) manual on consumer price
indexes.
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Yet the economic approach shows that things are not so simple. The rela-
tionship between price changes and quantity changes implies a value for the
elasticity of substitution in the economic model that generates the Sato–Vartia
index, so with quantities held constant, a different price change implies a dif-
ferent degree of item substitutability. For large price changes, the degree of
substitutability matters greatly. A larger price increase (or smaller price decline)
for a highly substitutable item can therefore have less effect on the cost of liv-
ing than a smaller price increase (larger decrease) for a less substitutable item.
A believer in the economic approach could, then, argue that the fault lies with
the monotonicity axiom, not the Sato–Vartia index. In particular, according to
the economic approach, the property of monotonicity should be required locally
in the region where price log-changes do not exceed 1 in absolute value. The
Sato–Vartia index indeed satisfies such local monotonicity.

The second important test failure of the Sato–Vartia index – which occurs
only when it includes three or more items – is of the Laspeyres–Paasche bounds
test. As is argued below, the economic approach does support the validity of the
Laspeyres–Paasche bounds test. Thus, if the economic approach is used to ex-
cuse the failure of the monotonicity axiom, the failure of the Laspeyres–Paasche
bounds test cannot at the same time be dismissed.

The failure of the Sato–Vartia index to equal the test performance of the Fisher
index does not by itself rule out the possibility that some new rival to the Fisher
index could be discovered. We can rule out this possibility, however, if we accept
the importance of the Laspeyres–Paasche bounds test. Fisher’s contention that
this test rules out a crossing of the weights can be proven under the assumptions
that more than two goods are present and that the index satisfies tests of time
reversal, continuity, and proportionality. Consistent with this, Hill (2006) shows
that the only superlative index that satisfies the Laspeyres–Paasche bounds test
is the Fisher index.

7.3.2. The Laspeyres–Paasche bounds test

Since Pigou, the main argument for the Laspeyres–Paasche bounds test has come
from the economic approach. The basic logic is straightforward: adjusting con-
sumers’ base period income p0 · q0 for the price change to pt by means of the
Laspeyres index would enable them to purchase basket q0 again, though they
would likely choose a better basket that would also cost pt · q0. A change in
income in proportion to the Laspeyres index is, therefore, at least adequate to
maintain the base period standard of living, and quite possibly more than an
adequate. This makes the Laspeyres index an upper bound for the cost of liv-
ing index evaluated at the base period standard of living. Similarly, consumers’
comparison period income pt · qt deflated by the Paasche index is adequate at
base period prices p0 to purchase basket qt , or some other, possibly better, bas-
ket that also costs p0 · qt . Therefore the Paasche index is a lower bound for the
index that compares the cost of the comparison period standard of living at com-
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parison period prices to the cost of that same standard of living at base period
prices.

The existence of two relevant standards of living creates complications that
easily lead to mistakes. Only in the simple case of homotheticity are the
Laspeyres and Paasche indexes upper and lower bounds for the same cost of
living index. One possible mistake is, therefore, to ignore the need to assume
homotheticity to make the cost of living index a function of prices alone.

A sound theory should allow for the possibility of changes in the composi-
tion of the consumption basket due to income effects. For small changes in the
standard of living, income effects are generally so dominated by price effects
that they may be ignored. At the other extreme, if q0 and qt represent very dis-
parate standards of living, the Laspeyres–Paasche bounds may plausibly contain
neither the cost of living index for the standard of living of period 0, nor the
one for the standard of living of period t . A relaxation of the Laspeyres–Paasche
bounds test is justifiable when the value of the quantity index is far below 1
or far above 1, because large effects on consumption patterns attributable to a
changing standard of living widen the range of possible values for the relevant
cost of living indexes beyond the Laspeyres and Paasche bounds.

Nevertheless, to discard the Laspeyres–Paasche bounds test entirely is a sec-
ond possible mistake. Under a wide variety of assumptions, any cost of liv-
ing index that is outside the desired bounds will be approximately equal to a
Laspeyres or Paasche index and hence be at least approximately inside their
bounds. Furthermore, the regions of the index domain where the relevant cost
of living indexes are outside the Laspeyres–Paasche bounds are limited to sub-
spaces of the domain where the standard of living varies widely. As a result, an
index number formula that violates the Laspeyres–Paasche bounds test is likely
to do so in the region where the relevant cost of living indexes are necessarily
between those bounds.

To identify the region where the index must lie within the range defined by
the Laspeyres and Paasche indexes, we can use the weak axiom of revealed pref-
erence (WARP). According to revealed preference theory, if bundle q0 (qt ) is
chosen when qt (q0) would be less expensive, the costlier bundle is superior
(“revealed preferred”) to less expensive one. In terms of index numbers, this
means that QLaspeyres(p0,pt ,q0,qt ) � 1 implies that q0 is at least equivalent
to qt , and that QPaasche(p0,pt ,q0,qt ) � 1 implies that qt is at least equivalent
to q0. Letting Q∗ represent the implicit quantity index implied by the price index
being tested, WARP requires that Q∗ � 1 if QLaspeyres(p0,pt ,q0,qt ) � 1, and
that Q∗ � 1 if QPaasche(p0,pt ,q0,qt ) � 1. If QLaspeyres = QPaasche = 1, then
Q∗ must equal 1.

Moreover, the version of revealed preference theory for strictly quasi-concave
preferences (Vartia and Weymark, 1981, p. 411) implies that QPaasche <

QLaspeyres when prices change in a way that keeps the standard of living un-
changed. In this case, in a region of positive measure consisting of a neighbor-
hood around the locus of points where the standard of living is constant, the cost
of living index evaluated at the comparison period or reference period utility
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is in [P Paasche,P Laspeyres]. A price index that strays outside of the Laspeyres–
Paasche bounds in this region is likely to get the direction of the welfare change
wrong.

Unfortunately, this is not the end of the story regarding the Laspeyres–Paasche
bounds test. Besides non-homotheticity, a second source of conceptual difficul-
ties in the economic theory of the Laspeyres–Paasche bounds is the problem of
aggregation over consumers. Applications of revealed preference theory to ag-
gregate demand data are subject to the criticism that they presume the existence
of a representative consumer, ignoring the fact that aggregate demands of a het-
erogeneous, nonhomothetic population fail to exhibit key properties that utility
maximization confers on individual demands. A theory of the Laspeyres index
as an upper bound of a social cost of living index for a population was developed
by Robert Pollak (1981). This social cost of living index is based on a Scitovsky
contour, which means that it tracks the amount of aggregate income needed
for every household to keep its own reference standard of living. Pollak’s up-
per bound result follows because the Laspeyres index and Scitovsky–Laspeyres
social cost of living index can both be written as weighted averages of corre-
sponding household level indexes using the same set of weights – households’
base period shares of aggregate expenditures. A symmetric result establishing
the Paasche index as a lower bound on a social cost of living index was derived
by Diewert (1984). In the Paasche case, the weights reflect comparison period
household expenditures, and a harmonic mean formula is used both to average
the household level Paasche indexes and the corresponding household level cost
of living indexes.

The Scitovsky–Pollak social cost of living index bounded by the Laspeyres
index is again not the same as the social cost of living index concept bounded
by the Paasche index, except in very special cases. Nevertheless, an index that
satisfies the Laspeyres–Paasche bounds test has some clear advantages. In the
absence of detailed information on the individual cost of living indexes of the
members of the population, the presumption that our summary statistic for those
indexes should lie in between the two bounds identified as important by theory
is a reasonable one. Furthermore, for consistency with the Pareto principle, at
least one member of the population must have a welfare change in the direction
indicated by the implicit quantity index. An index that is less than or equal to
the Laspeyres index and greater than or equal to the Paasche index is consistent
with the Pareto principle, something we can generally not be sure of for an index
outside these bounds.

7.3.3. Existence of an economic interpretation for indexes that satisfy
ordinal circularity

Samuelson and Swamy counsel us to accept the sad facts of life regarding the
circularity test because our hopes for satisfying this test must depend on an un-
realistic assumption of homotheticity. Yet price indexes that take expenditure
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patterns into account via their weighting structure must exhibit at least a min-
imal amount of internal consistency to be meaningful. This requisite internal
consistency can be defined as the absence of contradictions in the ordinal rank-
ing of consumption (or output) bundles: a price measure that simultaneously
implies that real consumption is up and that it is down does not seem to measure
anything useful. Fortunately, economic optimization based on some stable util-
ity or production function – a much weaker assumption than homotheticity! – is
sufficient to rule out such contradictions.

The ordinal circularity axiom uses the absence of ranking contradictions as a
criterion for determining whether the quantities and prices behave too inconsis-
tently for construction of indexes that conform to the Laspeyres–Paasche bounds
test. Recalling the logic of the weak axiom of revealed preference for consump-
tion, purchase of qt at price pt when q0 would have cost less implies that qt

yields more utility than q0. That is, QPaasche(p0,pt ,q0,qt ) > 1 implies that qt

can be ranked as a higher level of real consumption (consumer welfare or pro-
ducer use of inputs) than q0. Similarly, QLaspeyres(p0,pt ,q0,qt ) < 1 implies that
q0 can be ranked as superior. An analogous theory for a producer of multiple out-
puts states that QLaspeyres(p0,pt ,q0,qt ) > 1 implies that qt represents a higher
level of real output than q0, while QPaasche(p0,ps ,q0,qs) < 1 implies that q0 is
superior. In the producer case, the logic is that selling q0 when qt would have
yielded more revenue shows that qt is on a higher production possibility fron-
tier. Of course, these restrictions on the quantity indexes imply restrictions on
the Laspeyres and Paasche price indexes via the product test.

The ordinal circularity axiom forbids a transitive contradiction in rankings
when we form a closed loop of Laspeyres and Paasche indexes. The sim-
plest version of this axiom uses just three time periods to form the loop,
though a complete characterization of this axiom would allow for loops of
any length. Letting the first link in the loop run from period 0 to period s,
if min[QLaspeyres(p0,ps ,q0,qs),Q

Paasche(p0,ps ,q0,qs)] > 1, then qs repre-
sents a larger volume of production or consumption than q0. Similarly, if
min[QLaspeyres(ps ,pt ,qs ,qt ),Q

Paasche(ps ,pt ,qs ,qt )] > 1, then qt represents a
larger volume of consumption or production than qs . The ordinal circularity ax-
iom states that if qs is an improvement on q0 and qt is an improvement on qs ,
then a return to q0 cannot be still another improvement. That is:

min
[
QLaspeyres(p0,ps ,q0,qs),Q

Paasche(p0,ps ,q0,qs)
]
� 1 and

min
[
QLaspeyres(ps ,pt ,qs ,qt ),Q

Paasche(ps ,pt ,qs ,qt )
]
� 1

⇒ max
[
QLaspeyres(p0,pt ,q0,qt ),Q

Paasche(p0,pt ,q0,qt )
]
� 1. (7.27)

Assume a violation of the ordinal circularity axiom. Then when we reverse
the direction of time in the last inequality in (7.27), we obtain:

min
[
QLaspeyres(pt ,p0,qt ,q0),Q

Paasche(pt ,p0,qt ,q0)
]
> 1. (7.28)
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In the loop formed by combining inequality (7.28) with the first two inequalities
in expression (7.27), the transitive property implies that each point is strictly
superior to itself!

The Laspeyres and Paasche indexes will satisfy the ordinal circularity test if
and only if the price and quantity data are consistent with economic optimization
behavior (utility maximization, cost minimization, profit maximization). If we
accept that the absence of ranking contradictions is necessary for indexes to be
meaningful, we must conclude that the construction of Laspeyres, Paasche or
similar indexes implies a belief in the existence of some economic concept that
is being maximized, such as utility or profits. This belies the claims that are
occasionally made that Laspeyres and Paasche indexes are devoid of economic
content.

Tests of ordinal circularity have an interesting history. The economic signif-
icance of the existence of intransitive loops was first pointed out by Jean Ville
(1951–1952), an engineer who was called upon to teach economics at the Uni-
versity of Lyon because of a post-war faculty shortage. Ville, however, based
his tests on a purely theoretical construct known as a Divisia index, which is
explained in Appendix B. Ordinal circularity of Laspeyres and Paasche indexes
was first used to test for the existence of a utility function that rationalizes the
data by Sidney Afriat (1967), who also developed non-parametric bounds for
the cost of living index. The narrowing of the hypothesis to be tested to one of
utility maximization allows Eq. (7.27) to be simplified by substituting QPaasche

for min[QLaspeyres,QPaasche] and QLaspeyres for max[QLaspeyres,QPaasche].
The importance of Afriat’s tests was explained in Diewert (1973), and they

were extended to include a test for homothetic utility maximization in Diewert
(1981). Hal Varian (1982 and 1984) developed algorithms for the implemen-
tation of these tests, and Dowrick and Quiggin (1994 and 1997) adapted these
algorithms for use in inter-area comparisons. Varian’s algorithms were used
by Marilyn Manser and Richard McDonald (1988), with the surprising result
that US aggregate consumption data were consistent with homothetic utility
maximization. Finally, using enhanced algorithms, Blow and Crawford (2001)
found that data from the British Family Expenditure Survey, which furnishes
the weights for the British Retail Price Index (RPI), were consistent with utility
maximization. They also determined ranges for the annual substitution bias of
the Laspeyres index used for the official RPI. The range was centered some-
where between 0.1 and 0.25 percentage points in most years, a result that agrees
with Manser and McDonald’s estimates of substitution bias in a Laspeyres price
index for the US.

7.3.4. Axiomatic advantages of Laspeyres and Paasche indexes

Formulas with better axiomatic properties than the Laspeyres and Paasche for-
mulas have been recommended since the earliest days of the field in the late
1800s, and the economic approach also implies that other formulas are better.
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Nevertheless, the Laspeyres and Paasche indexes remain in widespread use, to
such an extent that they were relied on almost exclusively by national statistical
agencies until the last days of the twentieth century. It is therefore natural to ask
whether these indexes have axiomatic advantages that can justify their use.

An affirmative answer to this question was suggested by Balk (1995 and 1996)
based on the test of consistency in aggregation. This test is important for price
indexes that are calculated in stages or that comprise components that are them-
selves of interest, such as a consumer price index. To calculate an index in stages,
at each stage of aggregation, the price indexes for lower level aggregates (or ba-
sic components) are treated just as if they were price relatives.

The consistency in aggregation test requires that successive use of the index
formula in multiple levels of aggregation yield the same answer as a single stage
application of that formula that calculates to top-level index directly from all of
the detailed data. The Laspeyres index provides an illustration of this property.
Partition the detailed items i into K lower-level aggregates Jk with base-period
expenditure shares Sk0 =∑

i∈Jk
si0, price vectors pk

0 and pk
t , and quantity vec-

tors qk
0 and qk

t . Then the Laspeyres index equals:

P Laspeyres =
∑

i

si0(pit /pi0)

=
∑

k=1,...,K

[∑

i∈Jk

si0(pit /pi0)

]

=
∑

k=1,...,K

Sk0P
Laspeyres(pk

0,pk
t ,qk

0,qk
t

)
. (7.29)

Balk (1996, p. 357) provides a general characterization for the price indexes
that satisfy consistency in aggregation. He shows that this set of indexes P can
be defined implicitly by requiring the existence of a function f (P,p0 ·q0,pt ·qt )

such that:

f (P,p0 · q0,pt · qt ) =
∑

i

f (pit /pi0,pi0qi0,pit qit ). (7.30)

For example, a generalization of the Laspeyres index that depends on the
unobservable elasticity of substitution parameter σ from the CES utility func-
tion is the Lloyd–Moulton index. This index satisfies condition (7.30) because
(p0 · q0)P

Lloyd–Moulton = [∑i (pi0qi0)(pit /pi0)
σ ](1/σ ).

A formula that depends exclusively on observables is the Vartia I or Mont-
gomery index:

PMontGomery =
∑

i

logmean(pi0qi0,pit qit ) log(pit /pi0)

logmean(pt · qt ,p0 · q0)
. (7.31)

The Montgomery index is the only formula that is consistent in aggregation and
that satisfies the factor reversal test. Unfortunately, it gains these remarkable
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properties at the cost of sacrificing the vital proportionality axiom. Its usefulness
is therefore limited to theoretical purposes, such as Diewert’s (1978) proof that
the Törnqvist and Fisher indexes satisfy approximate versions of the consistency
in aggregation test.

If we restrict f (·) to be a linear combination of (p0 ·q0)P and (pt ·qt )P , then
the family of generalized Stuvel indexes comprises the admissible indexes that
solve Eq. (7.30) exactly. To derive the Stuvel indexes, begin by recalling that a
pairing of the Paasche price index with the Laspeyres quantity index passes the
product test, but a pairing of two Laspeyres indexes does not. Since raising a
quantity index has the effect of lowering the implicit price index that it implies,
we can adjust the Laspeyres price index and the Laspeyres quantity index in the
same direction to arrive at a pair of indexes P and Q that pass the product test.
Moreover, by making both adjustments identical, we can derive a formula that
satisfies the factor reversal test.

Two ways to do this were identified by van IJzeren (1958). The system of
equations formed by the product test PQ = (pt · qt )/(p0 · q0) and an equality of
proportional adjustments can be solved for P and Q to obtain the Fisher indexes.
The proportional adjustments equality is:

P/P Laspeyres = Q/QLaspeyres. (7.32)

Alternatively, we can make the adjustments equal in absolute terms. This leads
to the equation:

P − P Laspeyres = Q − QLaspeyres. (7.33)

Solving for P and Q in the system of simultaneous equations formed by
PQ = (pt · qt )/(p0 · q0) and the equality of absolute adjustments gives the Stu-
vel (1957) indexes:

P Stuvel = P Laspeyres − QLaspeyres

2

+ [(P Laspeyres − QLaspeyres)2 + 4(pt · qt )/(p0 · q0)]1/2

2
, (7.34)

QStuvel = QLaspeyres − P Laspeyres

2

+ [(QLaspeyres − P Laspeyres)2 + 4(pt · qt )/(p0 · q0)]1/2

2
. (7.35)

The Stuvel indexes are “ideal” because they satisfy both the time reversal test
and the factor reversal test. They can also be generalized. The family of gen-
eralized Stuvel indexes is defined by weighting the absolute price and quantity
index adjustments by some λ ∈ [0,1]:

λ
(
P − P Laspeyres(·))= (1 − λ)

(
Q − QLaspeyres(·)). (7.36)
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The resulting indexes satisfy Balk’s condition for consistency in aggregation
with f (·) from Eq. (7.30) specified as follows:

λ(p0 · q0)P − (1 − λ)(pt · qt )P
−1

=
∑

i

[
λ(pi0qi0)(pit /pi0) − (1 − λ)(pit qit )(pit /pi0)

−1]. (7.37)

If λ equals 1, the generalized Stuvel price index becomes a Laspeyres index,
and if λ equals 0, it becomes a Paasche index. Balk (1996) observes that the
generalized Stuvel indexes fail to satisfy the axiom of linear homogeneity in
comparison period prices unless λ = 0 or λ = 1. Therefore, the Laspeyres in-
dex and the Paasche index are unique in their ability to exhibit consistency in
aggregation and linear homogeneity in comparison period prices.

Balk argues that this property of linear homogeneity is important because it is
called for by the economic approach and because it is required to obtain sensi-
ble results in a common use of price indexes, the measurement of price change
between periods other than the base period. The latter assertion is a reference
to the comparative proportionality test, ironically, the very test that led Fisher to
favor the Paasche index in The Purchasing Power of Money.

In The Making of Index Numbers Fisher reversed his position and dismissed
the test of comparative proportionality because of its inapplicability to chained
indexes. This castes doubt of Balk’s rationale for preferring the Laspeyres and
Paasche indexes to other types of generalized Stuvel indexes. The Laspeyres
and Paasche indexes have another axiomatic advantage over the other Stu-
vel indexes, however. Like the Edgeworth–Marshall index, P Stuvel defined in
Eq. (7.34) grows closer to the Paasche index as qt rises. This violation of the
axiom of homogeneity of degree 0 in comparison period quantities is avoided
by the Laspeyres and Paasche price indexes.

7.4. Selection and Application of Axioms and Tests

7.4.1. A core set of axioms

Despite the controversies over which tests to set aside in light of the impos-
sibility of simultaneously satisfying all of them, some sets of axioms have
gained acceptance as ways of defining an admissible price index. Balk (1995,
p. 86) identifies two such sets of fundamental axioms. One combination con-
sists of the monotonicity axiom, the proportionality axiom, the price dimen-
sionality axiom and the commensurability axiom, as discussed by Eichhorn
and Voeller (1983). The other combination of axioms, which Balk prefers, re-
places the proportionality axiom with two axioms, the strong identity test and
an axiom requiring linear homogeneity in comparison period prices, i.e. that
P(p0, λpt ,q0,qt ) = λP (p0,pt ,q0,qt ). A formula can satisfy proportionality
yet fail to exhibit linear homogeneity in comparison prices. Whether such a for-
mula should be excluded from consideration as a price index is debatable, so
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either treatment of the axiom of linear homogeneity in comparison prices is de-
fensible.

Nevertheless, both sets of axioms are too restrictive to be accepted as fun-
damental. The problem lies with the monotonicity axiom. Besides its incon-
sistency with economic theory discussed above, this axiom is incompatible
with some formulas that are clearly acceptable. These are the log-change in-
dexes that use expenditure shares as weights, including the Törnqvist index, the
Sato–Vartia index, and the version of the Cobb–Douglas index with weights of
si0 = pi0qi0/(p0 · q0). Moreover, if monotonicity is also required for the im-
plicit quantity indexes, as is logically consistent for a price index that is used
as a deflator, more formulas are ruled out, most notably the Walsh index. The
Walsh index is remarkable for the number of tests that it satisfies; indeed, it was
classified by Fisher (1922, p. 247) as superlative.

As an illustration of the non-monotonicity of the log-change indexes,
consider the endogenous weight version of the Cobb–Douglas index,
PCobb–Douglas(p0,pt , s0). Substituting pi0qi0/(p0 · q0) for s∗

i in Eq. (7.18) and
differentiating, we have:

∂ logPCobb–Douglas/∂ logpi0 = si0(1 − si0) log(pit /pi0) − si0. (7.38)

If log(pit /pi0) � 1 − si0, the index is increasing in pi0, thus violating the
monotonicity axiom.12

The problems of severe implications and lack of theoretical justification can
be resolved by weakening the monotonicity axiom whenever a log price changes
by more than one. We retain the local monotonicity axiom as a requirement on
the price index in the region defined by |log(pit /pi0)| � −1 ∀i because this
axiom guarantees that P(p0,pt ,q0,qt ) > 1 whenever pit � pi0 ∀i with at least
one inequality strict, and that P(p0,pt ,q0,qt ) < 1 when p0 < pt . We also main-
tain the global necessity of a monotonicity axiom that holds item expenditures
constant by treating the quantities as inversely dependent on prices. Using the
diagonal matrix Λ from the commensurability axiom to adjust prices and quan-
tities in one period only, the weak monotonicity axiom requires that:

∂P
(
Λp0,pt ,Λ

−1q0,qt

)
/∂Λii < 0 (7.39a)

and

∂P
(
p0,Λpt ,q0,Λ

−1qt

)
/∂Λii > 0. (7.39b)

Eichhorn and Voeller’s set of four core axioms is valid if the monotonicity
axiom is replaced with a combination of the local monotonicity axiom and the

12 To obtain a general result for the log-change indexes, note that functions of the form xap+b

are non-monotonic for small p if a > 0 and 0 � b < e−2a. Let p represent a price and let a and
b be parameters such that ap + b approximates the function for the weight of the Cobb–Douglas,
Törnqvist or Sato–Vartia index.
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weak monotonicity axiom. Alternatively, to rule out negative weights without
relying on a monotonicity axiom, we can strengthen the strong identity test to
the mean value test. The mean value test formalizes the appealing principle that
a measure of central tendency must not stray outside the range of the values
that it is supposed to summarize. Eichhorn and Voeller (1983) showed that this
property is implied by their set of fundamental axioms, so adding it to their
set of axioms, or, by extension, to Balk’s set of five axioms, does not have the
effect of excluding any index previously admissible. If linear homogeneity in
comparison period prices is maintained as an axiom, the mean value axiom is
particularly appealing because it reduces Balk’s set of five axioms to a set of just
four axioms. These axioms are linear homogeneity in comparison period prices,
the mean value axiom, the price dimensionality axiom and the commensurability
axiom.

7.4.2. Choosing the right set of tests

The specifics of the problem at hand, including the purpose of the index and the
characteristics of the data, determine the relative merits of the possible attributes
of the index formula. In selecting tests, therefore, the key principle is that the
answer depends on the question. Even formulas with serious defects, such as
the Dutot index and the ratio of unit values, can be useful in the right context.
However Fisher’s (1922, p. 361) oft-neglected warning about the Carli index –
“[it] should not be used under any circumstances” – is best observed.

Six kinds of tests are of practical value for comparison of prices over time.
First, failure to satisfy the time reversal test is a sign of bias if the discrepancies
tend to be in one direction, and if the discrepancies are necessarily in one di-
rection, the bias is severe. Second, the requirements of continuity in prices and
quantities may be necessary for avoiding erratic behavior of the index. Third,
if the data contain extreme price relatives, the determinacy test is important for
avoiding excessive sensitivity to outliers. Fourth, the test of consistency in ag-
gregation is relevant when an index is constructed in stages, especially if index
users are interested in the index components along with the top level aggregate.

Fifth, for indexes that have an interpretation using the economic approach,
such as a cost of living index, item weights must reflect expenditure patterns.
An index that stays within the bounds defined by the Laspeyres and Paasche
indexes will do this, but treating this test may be treated as approximate to avoid
automatically limiting the choice of index to a Laspeyres index, a Paasche index,
or some kind of average of the two.

Lastly, if the index is to be used for deflation of nominal expenditures, the
product test, and tests of the properties of the implicit quantity index that is
implied by the product test are critical. Satisfaction of the factor reversal test
(which requires that the implicit quantity index have the same functional form
as the price index) is a convenient way to insure that the implicit quantity index
has axiomatic properties that are as good as those of the price index, but this
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test is intrinsically important only if an identical approach to price and quantity
indexes is desired.

7.4.3. Hard tests or soft tests?

Mathematically, a theorem is determined to be false if a single example that
violates it is discovered, regardless of whether the conditions that generate the
example are aberrant. Yet for the instrumentalist’s goal of finding price mea-
surement tools that work well in practice, the circumstances and magnitude of
test violations are relevant. Measurement errors caused by a test violation may
be rare if the test is locally satisfied in the region that contains most data, or they
may be inconsequential if the test is approximately satisfied.

Unnecessary errors are, of course, to be avoided, even if they are infrequent
and small. An exposure to minor errors that is necessary to gain other advan-
tages may be warranted, however. Many tests hypothesize conditions that are
rarely encountered in actual practice, so a failure of a test because of a small
discrepancy is not always an indication that an index will perform poorly.

The Törnqvist index is the best example of this. It has long been a staple of
the productivity measurement literature, sometimes under the name “Divisia in-
dex.”13 Extensive experience with the Törnqvist index in applied research shows
that it generally produces very credible results, yet it has a mediocre score of
satisfied tests. The explanation for this paradox is that the Törnqvist index ap-
proximately satisfies the critical tests that it does not satisfy exactly, and its
test violations occur in narrow or extreme ranges of prices and quantities. For
example, when the gap between the Laspeyres and Paasche indexes is close
to vanishing, the Törnqvist index will generally violate the Laspeyres–Paasche
bounding test – albeit by a small amount – but the probability of the Laspeyres
and Paasche indexes coinciding is small, absent some mechanism that artificially
guarantees such an outcome. In most practical applications, therefore, the Törn-
qvist index falls inside the required bounds. Indeed, most of the time, it closely
mimics the high-scoring Fisher and Sato–Vartia indexes, as is demonstrated for-
mally for the Fisher index case by Diewert (1978). It may even be superior to
them in its resistance to chain drift, which occurs when a chained index exhibits
large or systematic violations of the circularity test (Ehemann, 2005).

7.5. Future of the Field

The pendulum that swung so strongly towards the economic approach starting
in the 1930s began to swing back starting in the 1970s. One cause of this re-
vitalized interest is an increased recognition of the usefulness of the axiomatic

13 A chained Törnqvist index is a good discrete time approximation for François Divisia’s continu-
ous time concept, as explained in Pravin K. Trivedi (1981) and Balk (2005).
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approach. The problem of formula bias in the US Consumer Price Index (CPI),
which caused hundreds of billions of dollars in excess payments and played a
key role in the decision to name a commission to investigate the CPI led by
Michael Boskin, provides a dramatic example of this. In the early 1990s, re-
search revealed that a narrow focus on the stochastic approach had prevented a
full consideration in the 1970s of the axiomatic properties of a formula for the
lowest-level aggregates of the CPI that had the characteristics of a Carli index
(Reinsdorf, 1998). Another example of the usefulness of the axiomatic approach
comes from the selection in the 1990s of the Fisher index for the US and Cana-
dian national economic accounts. Even though the factor reversal test has been
criticized for its lack of support from the economic approach, this test showed
that the alternatives to the Fisher index (such as the Törnqvist index) do not per-
mit the kind of unified approach to the construction of both price indexes and
quantity indexes that is desirable for national accounts.

A second cause of revitalized interest in the axiomatic approach is disillusion-
ment with its competitor, the economic approach. Concerns about the applica-
bility of the economic approach to groups of heterogeneous households have
received renewed emphasis from some researchers (e.g. Angus Deaton, 1998).
Furthermore – although having an imperfect but explicit conceptual framework
would seem preferable to having a framework that cannot be articulated or that
is not relevant to important elements of the problem – a few index number users
question whether the underlying assumptions of the economic approach are suf-
ficiently descriptive of reality to constitute a useful paradigm. Because of such
controversies, a recent US National Academy of Sciences Panel was unable
to reach a consensus on the question of whether the underlying measurement
concept for the US Consumer Price Index should be based on the economic ap-
proach or on a kind of basket test (National Research Council, 2002). A turning
of the tables on the economic approach by the axiomatic approach is not on the
horizon, for the reasons discussed by Jack Triplett (2001). Instead, we can hope
that index number researchers in either tradition will become increasingly aware
that both traditions offer critical advantages.
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Appendix A7. The Circularity Test in Characterizations for the
Cobb–Douglas Index

PROPOSITION 1. If an index that satisfies the circularity test, the commensura-
bility axiom, the proportionality test, and the monotonicity axiom, then it is the
Cobb–Doublas index.
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PROOF. The commensurability axiom states that a change in the quantity units
for any item i must have no effect on the index. A change in the units of mea-
surement for the arbitrary item i will change the values of qi0 and qit and the
values of pi0 and pit , so an index that satisfies the commensurability axiom
must be expressible as a function that does not have the qi0, the qit , the pi0, or
the qit as arguments. In particular, all the information about item i that matters
for the index must be contained in three functions of (qi0, qit , pi0, qit ) that are
unaffected by a change in its units of measurement: (a) the price relative pit/pi0;
(b) the expenditure pi0qi0; and (c) pitqit . Therefore, an index that satisfies the
commensurability axiom is expressible in the form:

f (p1t /p10, . . . , pNt/pN0, s20, . . . , sN0, s2t , . . . , sNt ,p0 · q0,pt · qt ),

(A7.1)

where s10 and s1t are omitted from the argument list because they are deter-
mined from the other shares as 1 − (s20 + · · · + sN0) and 1 − (s2t + · · · + sNt ),
respectively.

The circularity test states that:

f
(
(p1s/p10)(p1t /p1s), . . . , (pNs/pN0)(pNt/pNs), ·

)

= f (p1s/p10, . . . , pNs/pN0, ·)f (p1t /p1s , . . . , pNt/pNs, ·). (A7.2)

Equation (A7.2) implies that multiplying pis/pi0 by any positive scalar k

must change log f (p1s/p10, . . . , pNs/pN0, ·) by minus the amount that divid-
ing pit/pis by k changes log f (p1t /p1s , . . . , pNt/pNs, ·). Let r represent the
vector of price relatives from time 0 to time s and ρ represent the vector of
price relatives from time s to time t . Then, using the first price relative as the
representative case, for all (r,ρ) we have the equality:

logf (kr1, . . . , rN , ·) − logf (r1, . . . , rN , ·)
= logf (ρ1, . . . , ρN , ·) − logf

(
k−1ρ1, . . . , ρN , ·). (A7.3)

This equality holds if and only if, for some predetermined constant w1,

logf (kr1, . . . , rN , ·) − logf (r1, . . . , rN , ·) = w1 logk. (A7.4)

Similar requirements for items 2 through N imply that

logf (r1, . . . , rN , ·) =
∑

i=1,...,N

wi log ri . (A7.5)

Now suppose that pit/pi0 = λ > 0 for all i. Then λ(pi0/pis) can be substi-
tuted for pit /pis in Eq. (A7.2). Furthermore, using the proportionality test, λ can
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be substituted for f (p1t /p10, . . . , pNt/pN0, ·). Equation (A7.2) then becomes:

logλ = logf (p1s/p10, . . . , pNs/pN0, ·)
+ logf

(
λ(p1s/p10)

−1, . . . , λ(pN0/pNs)
−1, ·)

= logλ

[ ∑

i=1,...,N

wi

]
. (A7.6)

Consequently,
∑

i=1,...,N wi = 1. Finally, monotonocity of f (·) implies that
wi � 0 ∀i. �

PROPOSITION 2. If an index that satisfies the circularity test, the commensu-
rability axiom, the proportionality test, and the mean value test, then it is the
Cobb–Doublas index.

PROOF. Identical to proof of Proposition 1, except that wi � 0 ∀i follows from
the mean value test instead of from the monotonicity test. �

Appendix B7. Divisia Indexes and the Assumptions of the Economic
Approach

In the economic approach, the price index concept is a ratio of expenditure func-
tions, cost functions or revenue functions. These functions are derived from the
primal economic utility or production functions via the maximization and min-
imization problems studied in duality theory. They therefore exist if and only if
the demand system or output system could have been generated by some form
of economic optimization behavior, such as utility maximization.

To identify the implications of economic optimization behavior, we need an
index concept that does not presume the existence of expenditure functions, cost
functions, or revenue functions, which are used to define the economic indexes.
The Divisia index can be adapted to this purpose. The Divisia index may be
considered a generalization of the economic index concept (such as the cost of
living index) because in cases where the functions needed to define an economic
index exist, the Divisia index can be evaluated in a way that makes it equal to the
economic index. A detailed explanation of this point is beyond the scope of this
appendix, but briefly, to equal the economic index based on some indifference
curve (or isoquant), the line integral that defines the Divisia index must be eval-
uated over a path consisting of a segment that runs along the indifference curve
(or isoquant) in price space, and a segment (or possibly a pair of segments) that
runs along a ray emanating from the origin.

A derivation of the Divisia index of consumption is as follows. Let {(pt , Yt );
t ∈ [0,1]} define a continuously differentiable mapping from t to the price vec-
tor pt and income level Yt . François Divisia defined an analogous path for the
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quantity vector, but in the version of the Divisia index used to study the proper-
ties of a demand model, the quantities must be specified as functions of prices
and income. To represent the demand model, let s(p, Y ) be a continuously dif-
ferentiable mapping of prices and income to a vector of expenditure shares.
Letting sit and pit represent the share and price of the ith item at time t , a price
change from pt to pt+�t implies a Laspeyres index of

∑
i sit (pi,t+�t/pit ). In

the limit as �t approaches 0, the log-change in this Laspeyres index equals
s(pt , Yt ) · (∂ log(pt )/∂t)�t , and the log-change in the Paasche index has an
identical limit. We therefore define the Divisia price index as the solution to
the differential equation:

∂ log
(
PDivisia
t

)
/∂t = s(pt , Yt ) · (∂ log(pt )/∂t

)
. (B7.1)

A similar derivative of a Laspeyres or Paasche implicit quantity index defines
the Divisia quantity index:

∂ log
(
QDivisia

t

)
/∂t = ∂ log(Yt )/∂t − s(pt , Yt ) · (∂ log(pt )/∂t

)
. (B7.2)

Failure of this Divisia index to satisfy ordinal circularity is indicated by the
existence of a path with p(1) = p(0) and ∂ log(QDivisia

t )/∂t > 0 everywhere.
The existence of such a cycle implies that the demand system is inconsistent
with utility maximization (Ville, 1951–1952, and Leonid Hurwicz and Marcel
Richter, 1979).

In a paper that anticipated Samuelson and Swamy’s result, Charles Hulten
(1973) showed that the Divisia index satisfies the circularity test (in cardi-
nal form) if and only if the utility function is homothetic. If s(p, Y ) is con-
sistent with maximization of a homothetic utility function, then s(p, Y ) =
∂ log(e(p, u))/∂ log p, where e(p, u) is the expenditure function. Substituting
this vector of derivatives for s(pt , Yt ) in (B7.2), we can show the “if” part of
Hulten’s result, by writing the line integral defining the Divisia index as:

0∫

1

[
∂ log(Yt )/∂t − (

∂ log
(
e(p, u)

)
/∂ log p

) · (∂ log(pt )/∂t
)]

dt. (B7.3)

This integral equals log(Y (1)/Y (0)) − log(e(p(1), u)/e(p(0), u)) regardless of
the path.

For more information on Divisia indexes see Balk (2005).

B7.1. Glossary

B7.1.1. Tests and axioms

Base-independence. Requires that P(p0,pt ,q0,qt )/P (p0,ps ,q0,qs) =
P(p1,pt ,q1,qt )/P (p1,ps ,q1,qs).
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Basket, constant. Requires that P(p0,pt ,q,q) = pt ·q
p0·q , where q represents

a fixed consumption basket that is assumed to be representative of purchas-
ing patterns. The proportional baskets test imposes the same requirement on
P(p0,pt ,q, λq) for any positive scalar λ.

Change of units. See “Commensurability.”
Circularity. Requires that P(p0,ps ,q0,qs)P (ps ,pt ,qs ,qt ) = P(p0,pt ,

q0,qt ).
Commensurability. Requires that simultaneously multiplying the prices of

the arbitrary item i by Λii and dividing its quantities by Λii leave the in-
dex unchanged. Letting Λ be a matrix with the Λii on its main diagonal
and 0s elsewhere, this requirement may be written as P(p0,pt ,q0,qt ) =
P(Λp0,Λpt ,Λ

−1q0,Λ
−1qt ). Also known as “the change of units” test.

Consistency in aggregation. Requires that an iterated application of the index
formula in multiple stages of aggregation, with index values from lower stages
of aggregation treated as price relatives, yield the same answer as a single-stage
application of the index formula.

Continuity. Requires that the function P(p0,pt ,q0,qt ) be continuous in all
of its arguments.

Determinateness. Requires that P(p0,pt ,q0,qt ) have limit that remains
within some definite finite positive bounds as a price approaches 0 or infinity.

Factor reversal. Requires that the price index and its implicit quantity in-
dex have the same functional form; i.e. P(p0,pt ,q0,qt )P (q0,qt ,p0,pt ) =
(pt · qt )/(p0 · q0).

Linear homogeneity in comparison period prices. A generalization of the
proportionality test that requires that the index satisfy P(p0, λpt ,q0,qt ) =
λP (p0,pt ,q0,qt ).

Laspeyres–Paasche bounds. Prohibits the index from ranging outside the
bounds defined by the Laspeyres index and the Paasche index.

Mean value. Prohibits the index from ranging outside the bounds defined by
the largest and smallest price relative.

Monotonicity. The derivative of the index with respect to any comparison pe-
riod price is non-negative and the derivative with respect to any base period price
is non-positive. Applied holding quantities constant.

Monotonicity, weak. The derivative of the index with respect to any com-
parison period price with quantities adjusted simultaneously to hold expendi-
tures constant is non-negative; i.e. for any non-negative diagonal matrix Λ,
∂P (p0,Λpt ,q0,Λ

−1qt )/∂Λii > 0.
Ordinal circularity. Prohibits transitive contradictions in the ranking of con-

sumption or output bundles. If the quantity indexes imply that qs is a greater
level of real consumption (or real output) than q0 and that qt is a greater level
of real consumption (or real output) than qs , then they cannot at the same time
imply that q0 is a greater level of real consumption (or real output) than qt .

Price dimensionality. Requires that multiplying all base and comparison pe-
riod prices by the same positive scalar λ leave the index unchanged. Also known
as “homogeneity of degree zero in prices.”
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Product. Requires that the price index and the quantity index together decom-
pose the expenditure change; i.e. P(p0,pt ,q0,qt )Q(p0,pt ,q0,qt ) = (pt · qt )/

(p0 · q0).
Proportionality. P(p0, λp0,q0,qt ) = λ. Also known as “strong proportional-

ity” to distinguish it from the weaker requirement that P(p0, λp0,q0, λq0) = λ.
Proportionality, comparative. P(p0, λps ,q0,qt )/P (p0,ps ,q0,qs) = λ, where

pt has been assumed to equal λps .
Time reversal. P(p0,pt ,q0,qt )P (pt ,p0,qt ,q0) = 1.
Weak axiom of revealed preference. Implies that the standard of living index is

greater than or equal to 1 whenever the Paasche quantity index is greater than 1
and that the standard of living index is less than or equal to 1 whenever the
Laspeyres quantity index is less than 1. If expenditures are constant, equivalent
conditions are that the cost of living index is greater than or equal to 1 whenever
the Paasche price index is greater than 1, and the cost of living index is less than
or equal to 1 whenever the Laspeyres index is less than 1.

B7.1.2. Price index formulas

Carli. A simple average of price relatives. Also known as the Sauerbeck index.
Cobb–Douglas. In log-change form, a weighted average of price log-changes,

with fixed weights that reflect a set of constant expenditure shares.
Cost of Living. Also known the “Konüs index.” Tracks the change in the ex-

penditure needed to keep the standard of living constant at some reference level
taking substitution possibilities into account.

Divisia. Define prices and quantities as continuous functions of time. The
limit of log-change in the chained Laspeyres (or, equivalently, Paasche) index
as the frequency of chaining becomes infinite is the log-change in the Divisia
index.

Dutot. Ratio of simple averages of prices.
Edgeworth–Marshall. Uses a simple two-period average of quantities as its

fixed basket.
Fisher. Geometric mean of the Laspeyres and Paasche indexes.
Implicit. An implicit price index is derived from a specified quantity index via

the product test, and is equal to the expenditure relative divided by the quantity
index.

Jevons. An unweighted geometric mean of price relatives.
Laspeyres. Uses initial (base) period quantities as its basket. If price relatives

are averaged, the weights are always the expenditure shares from the same pe-
riod as the denominator in the price relatives.

Laspeyres–Scitovsky. A social cost of living index concept that measures the
change in the aggregate expenditure needed to keep all individuals at their base
period utility level.

Lowe. Uses a representative basket based on expenditure patterns from a year
or set of years immediately preceding the period furnishing the initial prices.
This basket can be more practical to estimate than the precise basket correspond-
ing to the initial prices called for by the Laspeyres index formula.
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Paasche. Uses final (comparison) period quantities as its basket. If price rela-
tives are averaged, the averaging formula is a weighted harmonic mean, and the
weights are the expenditure shares from the same period as the numerator of the
price relatives.

Sato–Vartia. In log-change form, an average of price log-changes with
weights proportional to logarithmic means of base and comparison period ex-
penditure shares.

Stuvel. Uses the quadratic formula to define implicitly an average of the
Laspeyres and Paasche indexes that satisfies the factor reversal test and the time
reversal test.

Törnqvist. In log-change form, an average of price log-changes with weights
equal to simple averages of base and comparison period expenditure shares.
Some authors refer to the chained Törnqvist index as a “Divisia index.”

Walsh. Uses a two-period geometric mean of quantities as its fixed basket.

B7.1.3. Other terms

Characterization. For an index formula, a set of axioms and tests that the
formula uniquely satisfies.

Homotheticity. Assumption in economic models of optimization behavior that
changes in income (aggregate expenditures) with prices held constant have no
effect on consumption patterns. In a homothetic utility function, marginal rates
of substitution between commodities are independent of the utility level, which
equals a monotonic transformation of a function that is linear homogeneous in
quantities.

Impossibility theorem. A result that some set of axioms and tests cannot be
satisfied simultaneously. Also known as an inconsistency theorem.

Logarithmic mean. For two positive real numbers a and b, equals a if a = b,
or (b − a)/(logb − loga) if a �= b. It is in between the arithmetic mean and the
geometric mean, with the distance from the geometric mean approximately half
the distance from the arithmetic mean.

Log-change. For the ith price between period 0 and period t , equals logpit −
logpi0.

Standard of living index. The quantity index counterpart of the cost of living
index that tracks the change in the money metric utility function. Also known as
the Allen index.

References

Afriat, S.N. (1967). The construction of utility functions from expenditure data. International Eco-
nomic Review 8, 67–77.

Allen, R.G.D. (1935). Some observations on the theory and practice of price index numbers. Review
of Economic Studies 3, 57–66.

Allen, R.G.D. (1949). The economic theory of index numbers. Economica 16, 197–203.
Armstrong, K. (2003). A restricted-domain multilateral test approach to the theory of international

comparisons. International Economic Review 44, 31–86.



186 M.B. Reinsdorf

Balk, B.M. (1995). Axiomatic price index theory: A survey. International Statistical Review 63,
69–93.

Balk, B.M. (1996). Consistency-in-aggregation and Stuvel Indices. Review of Income and Wealth
42, 353–364.

Balk, B.M. (2003). Aggregation methods in international comparisons, ERIM Report Series Refer-
ence No. ERS-2001-41-MKT. http://ssrn.com/abstract=826866.

Balk, B.M. (2005). Divisia price and quantity indices: 80 years after. Statistica Neerlandica 59,
119–158.

Banerjee, K.S. (1959). A generalisation of Stuvel’s index number formulae. Econometrica 27, 676–
678.

Blackorby, C., Primont, D. (1990). Index numbers and consistency in aggregation. Journal of Eco-
nomic Theory 22, 87–98.

Blow, L., Crawford, I. (2001). The cost of living with the RPI: Substitution bias in the UK retail
prices index. Economic Journal 111, F357–F382.

Boumans, M. (2001). Fisher’s instrumental approach to index numbers, In: Klein, J.L., Morgan,
M.S. (Eds.), The Age of Economic Measurement, Duke Univ. Press, Durham, pp. 313–344.

Bowley, A.L. (1928). Notes on index numbers. Economic Journal 38, 216–237.
Deaton, A. (1998). Getting prices right: What should be done? Journal of Economic Perspectives

12, 37–46.
Diewert, W.E. (1973). Afriat and revealed preference theory. Review of Economic Studies 40, 419–

426.
Diewert, W.E. (1976). Exact and superlative index numbers. Journal of Econometrics 4, 115–145.

Reprinted in: Diewert, W.E., Nakamura, A.O. (Eds.), Essays in Index Number Theory, vol. 1.
Elsevier Science Publishers, Amsterdam, 1993, pp. 223–252.

Diewert, W.E. (1978). Superlative index numbers and consistency in aggregation. Econometrica 46,
883–900. Reprinted in: Diewert, W.E., Nakamura, A.O. (Eds.), Essays in Index Number Theory,
vol. 1. Elsevier Science Publishers, Amsterdam, 1993, pp. 253–275.

Diewert, W.E. (1981). The economic theory of index numbers: A survey. In: Deaton, A. (Ed.), Es-
says in the Theory and Measurement of Consumer Behavior in Honour of Sir Richard Stone,
Cambridge Univ. Press, London, 163–208. Reprinted in: Diewert, W.E., Nakamura, A.O. (Eds.),
Essays in Index Number Theory, vol. 1. Elsevier Science Publishers, Amsterdam, 1993, pp. 177–
222.

Diewert, W.E. (1984). Group cost of living index: Approximations and axiomatics. Methods of Op-
erations Research 48, 23–45.

Diewert, W.E. (1992). Fisher ideal output, input, and productivity indexes revisited. Journal of Pro-
ductivity Analysis 3, 211–248.

Diewert, W.E. (1993). The early history of price index research. In: Diewert, W.E., Nakamura, A.O.
(Eds.), Essays in Index Number Theory, vol. 1, Elsevier Science Publishers, Amsterdam, pp. 33–
66.

Diewert, W.E. (1999). Axiomatic and economic approaches to international comparisons. In: Hes-
ton, A., Lipseys, R.E. (Eds.), International and Inter-Area Comparisons of Income, Output and
Prices, pp. 13–87.

Diewert, W.E. (2005). Index number theory using differences rather than ratios. American Journal
of Economics and Sociology 64:1, 311–360.

Dowrick, S., Quiggin, J. (1994). International comparisons of living standards and tastes: A revealed
preference analysis. American Economic Review 84, 332–341.

Dowrick, S., Quiggin, J. (1997). True measures of GDP and convergence. American Economic Re-
view 87, 41–64.

Ehemann, C. (2005). Chain drift in leading superlative indexes. Working paper WP2005-09 BEA.
Available at http://www.bea.gov/bea/working_papers.htm.

Eichhorn, W. (1976). Fisher’s tests revisited. Econometrica 44, 247–256.
Eichhorn, W., Voeller, J. (1983). The axiomatic foundation of price indexes and purchasing power

parities. In: Diewert, E., Montmarquette, C. (Eds.), Price Level Measurement. Ministry of Supply
and Services, Ottawa.



Axiomatic Price Index Theory 187

Eltetö, Ö. Köves, P. (1964). On the problem of index number computation relating to international
comparisons. Statisztikai Szemle 42, 507–518 (in Hungarian).

Ferger, W.F. (1946). Historical note on the purchasing power concept and index numbers. Journal
of the American Statistical Association 41, 53–57.

Fisher, I. (1911). The Purchasing Power of Money. MacMillan, New York.
Fisher, I. (1921). The best form of index number. Quarterly Publications of the American Statistical

Association 17, 533–537.
Fisher, I. (1922; 3rd ed. 1927). The Making of Index Numbers: A Study of Their Varieties, Tests, and

Reliability. Houghton Mifflin Co., Boston.
Fisher, W.C. (1913). The tabular standard in Massachusetts history. Quarterly Journal of Economics

27, 417–452.
Frisch, R. (1930). Necessary and sufficient conditions regarding the form of an index number which

shall meet certain of Fisher’s Tests. Journal of the American Statistical Association 25, 397–406.
Frisch, R. (1936). Annual survey of general economic theory: The problem of index numbers.

Econometrica 4, 1–38.
Funke, H., Voeller, J. (1978). A note on the characterization of Fisher’s ideal index. In: Eichhorn,

W., Henn, R., Opitz, O., Shephard, R.W. (Eds.), Theory and Applications of Economic Indices.
Physica-Verlag, Würzburg, pp. 177–181.

Funke, H., Hacker, G., Voeller, J. (1979). Fisher’s circular test reconsidered. Schweizerische
Zeitschrift für Volkswirtschaft und Statistik 115, 677–687.

Gini, C. (1924). Quelques considérations au sujet de la construction des nombres indices des prix et
des questions analogues. Metron 2.

Gini, C. (1931) On the circular test of index numbers. Metron 9, 3–24.
Geary, R.C. (1958). A note on the comparison of exchange rates and purchasing power between

countries. Journal of the Royal Statistical Society 121, 97–99.
Haberler, G. (1927). Der Sinn der Indexzahlen. Mohr, Tübingen.
Hill, R.J. (2006). Superlative index numbers: Not all of them are super. Journal of Econometrics

130, 25–43.
Hulten, C.R. (1973). Divisia index numbers. Econometrica 41, 1017–1025.
Hurwicz, L., Richter, M. (1979). Ville axioms and consumer theory. Econometrica 47, 603–620.
International Labor Organization (2004). Consumer Price Index Manual: Theory and Practice. ILO

Publications, Geneva.
Keynes, J.M. (1930). A Treatise on Money. MacMillan, London.
Khamis, S.H. (1972). A new system of index numbers for national and international purposes. Jour-

nal of the Royal Statistical Society 135, 96–121.
Konus, A.A. (1939). The problem of the true index of the cost of living. Econometrica 7, 10–29.
Krtscha, M. (1984). A Characterization of the Edgeworth–Marshall Index. Athenaüm/

Hain/Hanstein, Königstein.
Krtscha, M. (1988). Axiomatic characterization of statistical price indices. In: Eichhorn, W. (Ed.),

Measurement in Economics. Physical-Verlag, Heidelberg.
Lerner, A.P. (1935). A note on the theory of price index numbers. Review of Economic Studies 3,

50–56.
Manser, M., McDonald, R. (1988). An analysis of substitution bias in measuring inflation. Econo-

metrica 46, 909–930.
Montgomery, J.K. (1937). The Mathematical Problem of the Price Index. Orchard House, P.S. King

& Son, Westminster.
National Research Council (2002). At what price? Conceptualizing and measuring cost-of-living

and price indexes. In: Schultze, C.L., Mackie, C. (Eds.), Panel on Conceptual Measurement, and
Other Statistical Issues in Developing Cost-of-Living Indexes. Committee on National Statistics,
Division of Behavioral and Social Sciences and Education, National Academy Press, Washing-
ton, DC.

Pierson, N.G. (1896). Further considerations on index numbers. Economic Journal 6, 127–131.
Pigou, A.C. (1912). Wealth and Welfare. Macmillan, London.
Pigou, A.C. (1920). The Economics of Welfare. 4th ed., Macmillan, London.



188 M.B. Reinsdorf

Pollak, R. (1981). The social cost-of-living index. Journal of Public Economics 15, 311–336.
Reinsdorf, M.B. (1998). Formula bias and within-stratum substitution bias in the US CPI. Review of

Economics and Statistics 80, 175–187.
Reinsdorf, M., Dorfman, A. (1999). The monotonicity axiom and the Sato–Vartia Index. Journal of

Econometrics 90, 45–61.
Reinsdorf, M.B., Diewert, W.E., Ehemann, C. (2002). Additive decompositions for Fisher, Törnqvist

and geometric mean indexes. Journal of Economic and Social Measurement 28, 51–61.
Rothbarth, E. (1941). The measurement of changes in real income under conditions of rationing.

Review of Economic Studies 8, 100–107.
Samuelson, P.A., Swamy, S. (1974). Invariant economic index numbers and canonical duality: Sur-

vey and synthesis. American Economic Review 64, 566–593.
Sato, K. (1976). The ideal log-change index number. Review of Economics and Statistics 58, 223–

228.
Staehle, H. (1935). A development of the economic theory of price index numbers. Review of Eco-

nomic Studies 2, 163–188.
Stuvel, G. (1957). A new index number formula. Econometrica 25, 123–131.
Swamy, S. (1965). Consistency of Fisher’s tests. Econometrica 33, 619–623.
Szulc, B. (1964). Indices for multiregional comparisons. Przeglad Statystyczny 3, 239–254.
Törnqvist, L. (1936). The bank of Finland’s consumption price index. Bank of Finland Monthly

Bulletin 10, 1–8.
Triplett, Jack E. (2001). Should the cost-of-living index provide the conceptual framework for a

Consumer Price Index? Economic Journal 111, F311–F334.
Trivedi, P.K. (1981). Some discrete approximations to Divisia integral indices. International Eco-

nomic Review 22, 71–77.
van IJzeren. J. [van Yzeren] (1952). Over de plausibiliteit Van Fisher’s ideale indices (On the

plausibility of Fisher’s ideal indices). Statistiche en Econometrische Onderzoekingen (C.B.S.)
7, 104–115.

van IJzeren, J. [van Yzeren] (1958). A note on the useful properties of Stuvel’s index numbers.
Econometrica 26, 429–439.

Varian, H.R. (1982). The non-parametric approach to demand analysis. Econometrica 50, 945–974.
Varian, H.R. (1984). The non-parametric approach to production analysis. Econometrica 52, 579–

597.
Vartia, Y.O. (1976). Ideal log-change index numbers. Scandinavian Journal of Statistics 3, 121–126.
Vartia, Y.O., Weymark, J.A. (1981). Four revealed preference tables. Scandinavian Journal of Eco-

nomics 83, 408–418.
Ville, J. (1951–1952). The existence-conditions of a total utility function. Review of Economic Stud-

ies 19, 123–128.
Vogt, A. (1981). Characterizations of indexes, especially of the Stuvel index and the Banerjee index.

Statistische Hefte 22, 241–245.
Walsh, C.M. (1901). The Measurement of General Exchange Value. Macmillan and Co., New York.
Walsh, C.M. (1921). The best form of index number: Discussion. Quarterly Publications of the

American Statistical Association 17, 537–544.



CHAPTER 8

National Accounts and Indicators

Frank A.G. den Butter

Vrije Universiteit, Department of Economics, De Boelelaan 1105,
NL-1081 HV Amsterdam, The Netherlands

E-mail address: fbutter@feweb.vu.nl

Abstract
National accounts generate a variety of indicators used in economics for deter-
mining the value of goods and services. This chapter highlights two problems
in the measurement of such indicators, namely the construction of the data at
the macro level using individual observations from different sources, and the in-
terpretation of the data when economic relationship are empirically investigated
using these data at the macro level. The chapter pays ample attention to the insti-
tutional set-up of national accounting, and to the use of indicators derived from
the national accounts in policy analysis in various industrialised countries. Major
difficulties in interpretation arise when the indicators are used in the assessment
of (social) welfare and in separating developments in prices and volumes.

8.1. Introduction

National accounts provide a quantitative description of the state of the economy
at the macro level. Indicators derived from national accounts are widely used
in economic policy analysis. Examples are national income, price and wage de-
flators as measures of inflation, purchasing power, total employment, imports,
exports, current account of the balance of payments, government receipts and
expenditure, government deficit, total consumption, investments, stock build-
ing, etc.. In almost all countries data of the national accounts are compiled by
the National Statistical Offices (NSOs) following uniform international guide-
lines.

National accounts’ data are based on individual observations of persons,
households, firms and government bodies. Most of these observations stem from
administrative records and are supplemented by evidence from surveys and field
observations. The major conceptual problem of the construction and use of these
data is that observations at the micro level are to be combined and aggregated
to the macro level in order to comply with concepts from economic theory used
in policy analysis. It implies that there will always be a discrepancy between in-
terpretations and semantics of concepts at the macro level, and the way they are
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given empirical content by the statistics from the national accounts. National in-
come may have different meanings and connotations in various macro economic
analyses. However, when national accounts’ data are used in these analyses to
represent the concept of national income empirically, it is the definition of na-
tional income according to the rules of national accounting which determines
how this concept is made operational. To give another example: many inhabi-
tants of the European Union had the impression that after the introduction of the
Euro life had become much more expensive. Yet, according to the price deflators
computed by the NSOs, following the standard aggregation methods, “in real-
ity” only a slight increase of inflation could be observed. Obviously there was a
discrepancy between the men and women in the streets’ view on inflation, and
the way this concept is made operational in statistical accounting.

This chapter focuses on the conceptual problem of the construction and use
of indicators from the national accounts in policy analysis. As the author is
especially familiar with the situation in the Netherlands, most examples and
historical anecdotes stem from that country. The contents of the article is as
follows. The next section describes the characteristics and methodology of the
national accounts. Section 8.3 surveys the history of national accounting and
Section 8.4 discusses the interaction between the collection and use of data at
the macro level in the last two centuries in the Netherlands. Section 8.5 consid-
ers the role of statistics and economic policy analysis in the institutional set-up
of the polder model in the Netherlands. Section 8.6 discusses the history of na-
tional accounting and the institutional set-up of policy preparation in some other
industrialised countries. Sections 8.3–8.6 provide insight into the confrontation
between scientific knowledge and practical policy needs, which has been crucial
in the development of the national accounts. Section 8.7 examines the present
situation, issues for discussion and prospects for national accounting. The rela-
tionship between construction and use of various main economic indicators from
the national accounts is discussed in Section 8.8. This section also gives exam-
ples where the conceptual problem of measurement and use has been subject of
fierce debate, such as the use of NA statistics as welfare indicators and the cor-
rection of national income for environmental degradation. Finally Section 8.9
concludes.

8.2. National Accounts as Indicators of the State of the Economy

The national accounts (NA) or the national bookkeeping of an economy pro-
vide a quantitative description of the economic process at the level of the state
during a certain period. Particularly those aspects of the economic activities are
described which are directly or indirectly related to the formation, distribution,
spending and financing of the domestic product or national income. Moreover
the national accounts provide insight in the economic relations with foreign
countries.

More specifically three different approaches are used in national accounting
in order to describe economic developments at the level of the state. The first
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one is the expenditure approach, which determines aggregate demand, or gross
national expenditure, by summing consumption, investments, government ex-
penditure and net exports. The second way of measurement is the output (or
production) approach. Here total production of a nation is calculated by sum-
ming added value in production in all sectors of the economy and net income
from abroad. The third method of measurement is the income (distribution) ap-
proach. This method illustrates how national income has been earned and has
been distributed amongst the income factors (wages, rents, profits). All three
methods use different sources for the compilation of data, but, in the end, must
yield the same outcomes for national income and expenditure data. Total ex-
penditures on goods and services must by definition be equal to the value of
goods and services produced, which must be equal to the total income paid to
the factors that produce these goods and services. In fact there will be minor
differences in the results obtained from the three different methods. A source of
these differences are inventories that have been produced but not sold. But also
the use of various sources for compilation of the data may be a reason that the
definition equations, which are balancing identities in the double (or even triple)
bookkeeping of the national accounts, do not hold. A solution is to have one of
the items as the residual item to be determined by the definition equation (e.g.
stock building in the production approach, and profits in the income approach).
However, most NSOs use much more sophisticated methods to distribute dis-
crepancies between the various approaches so that the balancing definitions hold
and the system is made consistent.

In this confrontation of income and expenditures, national accounts’ data gen-
erate a number of important economic indicators, such as the domestic product
and national income. The domestic product is the sum of all goods and services
produced in the country. More specifically it is the difference between the output
value of the production and the input value of goods and services used in produc-
tion. This is the added value of production in the country. National income, in its
turn, indicates how much all residents of a country earned in a specific period.
These loose definitions of both indicators only give a first impression of the core
indicators from the system of national accounts. For more formal definitions of
the various ways income and production are measured at the macro level we
refer to the official guidelines for the construction of the national accounts, and
to the publications of the various NSOs which specify how these guidelines are
implemented in the specific case of the country concerned

National accounting does not aim at explaining the past, nor at forecasting
future developments. It is solely directed at the recording of the economic ac-
tivity in the past. This knowledge of the macroeconomic data from the past is
indispensable for the construction and testing of economic theories, and for the
building of empirical models, such as the macroeconomic models, which are
nowadays used all over the world in order to examine economic developments
and to calculate effects of measures of economic policy. This knowledge is also
essential for formulating concrete policy goals, for example with respect to the
development of the purchasing power or with respect to the extent that the col-
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lective sector makes use of national resources. National accounts data also give
an answer to the question to what extent the policy goals have been realised.
This illustration of the scope and use of the national accounts is indicative for
what must be included in the description of the economic process. On the one
hand the selection of data is motivated by the needs from economic theory, and
on the other side by the demands from policy analysis. With respect to the latter,
demands do not only stem from the government. Trade unions and employer
associations base their policy likewise on data from the national accounts. An
example is the development of prices and labour productivity, which play a ma-
jor role in the wage negotiations.

The system of the national accounts can be characterised as a coherent and in-
tegrated data set at the macro level. The consistency of the data in the accounting
scheme is guaranteed by using definition equations and identities, which relate
the underlying observations from various statistical sources to each other. This
quality of the system is crucial for its use in economic analysis and policy: its
structure of interdependent definitions enables a uniform analysis and compari-
son of various economic phenomena. However, it also makes the system rather
rigid. It is impossible to change individual concepts and/or definitions in the sys-
tem. For instance, inclusion of a new component to domestic production is only
possibly if at the same time the concepts of income, consumption, savings and
investments are adapted.

The consistency of the system of national accounts is of great importance for
the way the data are used in practice. A number of possibilities has already been
mentioned. The domestic product and national income are frequently used as
an overall indicator for the functioning of the national economy. The success
of the economic policy and the financial power of a nation are based on these
indicators. In this line of reasoning the extent to which a country should pro-
vide development aid is expressed as a percentage of national income. National
income is also the benchmark for payments of the various member states to
the European Union. A higher national income means more payments. There-
fore, it is extremely important that the calculation of national income is based
as much as possible on objective criteria and is calculated according to inter-
national guidelines. It should not become subject of dispute between countries,
and of political manipulation.

The same applies when the national income is taken as a basis for various
economic indicators to guide and judge government policy. See for instance the
debt and budget deficit of the government, which are, according to the Maas-
tricht criteria and the limits set in the Stability and Growth Pact (SGP) of the
EU, expressed as a percentage of national income. Moreover the relative impor-
tance of a specific economic sector, e.g. agriculture, industry or retail trade, can
be illustrated by calculating its relative share in domestic production. However,
the fact that national account data should be undisputed when used in policy
practice, does not exclude that there can be much dispute between experts on
proper definitions. By way of example Mellens (2006) discusses the various de-
finitions of savings.
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8.2.1. Methodology

National accounts are set-up for a number of possible uses. The consequence
of such diversity is that the definition of the various concepts in the national ac-
counts (e.g. of income) is not always completely in accordance with the intention
and wishes of the users. An important choice in this respect is that between pro-
viding a description from the angle of the economic actors versus reproducing
as correctly as possible economic processes. The first is called the institutional
approach and the second the functional approach.

In the institutional approach the producers are the focus of the description
of the production process. Their value added in production is classified on the
basis of their main activities in sectors of the economy. Producers who perform
mainly transport activities, therefore will be classified in the transport sector.
This provides good information on total production value of producers in a spe-
cific branch of industry or services. However, it also implies that other activities
of the producers in the transport sector, for instance some trading activities,
are not counted as such in the national accounts. When the analysis focuses
on the characteristics of the production activities themselves, such institutional
approach is not very adequate and a functional approach is warranted.

The question of how to define a concept plays an important role in the national
accounts and in the interpretation of the data from these accounts. Examples
are construction and decorating activities of house owners and their families,
and unpaid domestic work. Should these be included in the domestic product?
One can think of pros and cons. The argument for inclusion is that they are
productive services that would be included in the domestic product if they would
be performed on payment by third parties. The counter argument is that inclusion
would imply large changes in the domestic production, which would limit the
use of this indicator in analysing the developments of the market economy. In
fact, taxable income is used here as criterion (see Bos, 2003, pp. 145–147).
The problem of definition is, of course, very much connected to the desire for
international comparability. An individual country or a statistical office does not
decide about the definition of, for instance, income autonomously, but has to
follow the definition laid down in the international directives. Of course there
are always border cases and grey areas in these definitions. A typical example in
the Netherlands is the (home) production from small rented gardens at distance
from the homes (so called “volkstuintjes”). It is now included in the production
statistics because the official directives suggest it should, but only after a foreign
expert asked questions about the production of these gardens when he had seen
them when travelling to the CBS (Netherlands Central Bureau of Statistics).
However, most of such cases relate to small amounts which will not influence
interpretation of the data.
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8.2.2. National accounts and the theory of measurement

A major question of this chapter is how national accounts’ data can be used in
measurement of economic phenomena and relationships. From a theoretical per-
spective this question relates to the way the construction and compilation of data
of the national accounts are related to the theory of measurement. According
to Boumans (2007, this volume) today’s measurement theory is the Represen-
tational Theory of Measurement. It is described as taking “measurement as a
process of assigning numbers to attributes of the empirical world in such a way
that the relevant qualitative empirical relations among these attributes are re-
flected in the numbers themselves as well in important properties of the number
system”. Boumans distinguishes two different foundational approaches in eco-
nomics in the theory of measurement: the axiomatic and the empirical approach.

When considering measurement and national accounts the empirical approach
is most relevant. For the use of these data in policy analysis modelling eco-
nomic relationships based on economic theory plays a major role. That is why
this chapter pays ample attention to the interaction between the provision of
data at the macro level, the empirical analysis of economic relationships using
these data and the policy analysis based on these relationships, or “models” of
the economy. Loosely speaking, measurement theory is, in this respect, con-
cerned with determining the parameter values of these models using the data
constructed by the methodology of the national accounts. Modern econometric
methodology, time series analysis in particular, teaches us how to establish this
empirical link between data and characteristics of the model (see e.g. Chao, this
volume). However, a number of methodological issues remains unsolved which
nowadays have considerably reduced the role of econometric methodology in
macroeconomic model building (see e.g. Don and Verbruggen, 2006). Three
issues can be mentioned. A first issue is that consistency of the models with the-
oretical requirements and with long run stylised facts is often at variance with
parameter estimates which are a mere result of applying econometric methods
to one specific data set. A second issue is that econometric methodology re-
quires specific conditions of the specification of a model, e.g. linearity, which
are too binding for a proper use of the model. Thirdly, the relationship between
the theoretical concept warranted in the model may be much at variance with
the practical construction method according to which the data in the empirical
analysis are obtained. This latter issue is most relevant for this chapter.

8.3. History of National Accounts

Important historical events such as wars, economic crises and revolutions have
always called the need for good quantitative data on the economy at the macro
level, and have therefore contributed considerably to the development of national
accounting. A look into the early history teaches us that a need for such data for
policy analysis formed the reason for the first estimates of national income. They
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were made respectively by Sir William Petty and Gregory King in 1665 and
1696 for United Kingdom (see Kendrick, 1970; Bos, 1992, 2003). Petty tried
to show that the state could raise a much larger amount of taxes to finance the
war expenditure than it actually did, and that the way of collecting taxes could
be much improved. Moreover, Petty wanted to show that the United Kingdom
was not ruined by its revolutions and by the wars with the foreign enemies, and
that it could compare itself with the Netherlands and France with respect to the
amount of trade and military potential.

The estimates by King can be regarded as an improvement to those of Petty.
In his calculation method, King used a broad concept of income and production,
similar to what it is today according to the guidelines of the United Nations.
Production comprises the added value of both the production of goods and of
services. This concept is in strong contrast with that of the physiocrats, who
reasoned that only agriculture produces value added and that all remaining pro-
duction is ‘sterile’. Yet already Adam Smith argued that not only agriculture but
also occupations in the trade and the industry produce added value. However,
according to Smith, services, both by the government and by private businesses,
do not generate additional value. In that sense the income concept of King was
even broader and more modern than that of Smith. Beside the use of a ‘modern’
concept of income, a second important characteristic of the estimates of King is
that he calculated national income already in three different ways, as it is done
today, namely from the perspective of (i) production, (ii) income distribution
and (iii) expenditure. Moreover, the calculations by King showed remarkably
much detail. He did not restrict himself to the outcomes for total annual na-
tional income and the total annual expenditure and savings, but made a split up
of these data with respect to social groups, to the various professions, and to
different income groups. He also made an estimate of the national wealth (gold,
silver, jewels, houses, livestock, etc.). King compared national income and na-
tional wealth of United Kingdom with those of the Netherlands and France. It is
interesting to note that this aspect of international comparability – an important
aim of the international guidelines – already played a role in the first estimates
of national income ever. King constructed time series for national income for
the period 1688–1695. Using these time series he calculated income forecasts
for the years 1696, 1697 and 1698.

At about the same time in France estimates of national income were made
by Boisguillebert and Vauban. It is unclear to what extent these estimates were
influenced by the way national income was originally calculated in United King-
dom. However, the estimates of the English national income by Petty and King
can be regarded unique as far as the quality and the scope of these estimates
were hardly matched in the following two centuries. After the pioneering work
of King the number of countries for which national bookkeeping’s were estab-
lished, gradually increased. Around 1900, estimates were available for eight
countries: United Kingdom, France, the United States, Russia, Austria, Ger-
many, Australia and Norway. Compiling national accounts was not yet always
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considered as a task for the government. In this respect Australia was an early
bird: here the government already started in 1886.

8.3.1. The Netherlands

International historic reports do not include the Netherlands in the above list of
eight countries. Nevertheless the first estimates of national income in the Nether-
lands were already made much earlier (see Den Bakker, 1993). In fact the history
of the national bookkeeping in the Netherlands starts at the beginning of the 19th
century, with the calculations of national income by Hora Siccama and Van Rees
in 1798, by Keuchenius in 1803, and by Metelerkamp in 1804. And again war
was the reason for making these calculations. The major goal of these calcula-
tions was that they enabled a comparison of the wealth in the Netherlands with
that of the neighbouring countries from the economic and military perspective.
The calculations by Hora Siccama and Van Rees were part of a plan at the re-
quest of the national assembly of the new Batavian republic for revision of the
tax system. The reason was to see how taxes could be levied efficiently, in pro-
portion to personal wealth (see Bos, 2006). Keuchenius, a member of the city
council of Schiedam, constructed a hypothetical estimate of national income
which was based on the situation as if war in Europe would have ended and
peace would have been established. Keuchenius estimated national income of
the Netherlands to be about 221 million guilders, it is 117 guilders per head of
the population. The share of agriculture and fishery in this income amounted to
45%, whereas 27% was transfer income from abroad (think of the rich import
from the colonies). Metelerkamp, who knew the work of Keuchenius, intro-
duced some improvements, and arrived at an estimate of national income for
the Netherlands in 1792 of 250 million guilders, that is 125 guilders per head of
the population.

The first systematic estimates of national income in the Netherlands were
made by Bonger. The first year for which data were calculated, was 1908. It
was published in 1910. The first official calculations of national income by the
Netherlands Central Bureau of Statistics (CBS) were published in 1933 and refer
to the year 1929. Finally it was Van Cleeff who constructed a coherent system
of national accounts for the Netherlands in a two article publication in the Dutch
periodical ‘De Economist’ in 1941. Subsequently, on 19 January 1943 a com-
mission for national accounting was installed at CBS. Today the installation of
this commission is considered the official beginning of the Netherlands’ national
accounting (see Bos, 2006, for an extensive review of the history of national ac-
counting in the Netherlands).

8.3.2. Modern systems of NA

The 1930s and 1940s provided inspiration for the modern system of national ac-
counts. Three aspects played an important role. In the first place the discussion
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on what concepts of income to use at the macro level revived. Secondly devel-
opments in economic theory underlined the importance of national accounting.
Thirdly the first coherent and approved systems of national accounts were devel-
oped. The two most important protagonists in the discussions on the problems
of the definition of national income (what should, and should not be included
in income data) in the inter-bellum were Clark and Kuznets. Clark argued that
services from house ownership were to be included in income, but services of
durable consumer goods were not to be included. Clark already suggested to
subtract every verifiable exhaustion of natural resources from income. Moreover
he considered problems of purchasing power and international and intertempo-
ral comparability of the national income data. This discussion of comparability
continues today and has, for instance, resulted in the large PENN World Table-
project of data collection and construction, where national income data are made
comparable by using a constructed international price. More specifically, for
each country the costs of a differentiated basket of goods are calculated and the
national income data are corrected by means of the observed cost differences
(see Summers and Heston, 1991).

Much more than Clark, Kuznets was also a prominent theoretician. He pub-
lished on the link between changes in national income and welfare, on the
valuation of production by the government and on the difference between in-
termediate and final production. Moreover he contributed a number of techni-
calities in data processing (interpolation, extrapolation). In 1936, Leontief made
a next major step in the statistical description of an economy by presenting in-
put/output tables. Although the basic idea of the input/output table is already
present in Quesnay’s ‘tableau économique’ and in the way Walras described the
working of the economy, Leontief’s main innovation was the formulation of the
model that directly connects the outputs with the inputs in an operational man-
ner. In this way it portrays the complete production structure of a country and it
enables to calculate which changes in inputs are needed in order to bring about a
warranted change of the outputs. It should be noticed that there does not need to
exist a direct link between the input/output tables and the national accounts. As
a matter of fact in a large number of countries input/output tables are calculated
only on an incidental basis, and outside the framework of the annual calculation
of the national accounts. The Netherlands is an exception. Already for a long
time in this country input/output tables are published annually together with the
tables of the national accounts. In this case the input/output tables do not only
form a separate source of information, but are also exploited as the main statis-
tical tool to calculate the data from the production accounts.

8.3.3. Importance of macroeconomic model building

In the 1930s, the start of macro economic model building and the consequent
development of new econometric techniques were important innovations that
increased the need for statistical data collection at the macro level, and hence
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for national accounting. In 1936, Tinbergen constructed the first macro model
for the Dutch economy. In order to make the model describe the actual work-
ing of the economy empirically, the behaviour parameters of the model were
estimated using time series data on all endogenous and exogenous variables of
the model. For that reason other and longer time series at the macro level were
needed than originally available. Moreover, the quality of the existing data had
to be improved. Although Tinbergen realised the need of a good and compre-
hensive system of national accounts, he himself has not been involved directly
in the drawing up of such a social accounting system. However, the CBS started
already in 1937 at the request of Tinbergen a project that aimed at improved
estimates of the national income. Its focus was a better statistical foundation
of cyclical analysis. At the CBS it was Derksen who managed this project
that contributed much to improve the calculation methodology of income data.
Nowadays the demands of the builders and users of macro economic models still
play a major role in the set-up and development of national accounting.

8.3.4. Keynes and the national accounts

Undoubtedly the most important support for further elaboration of the national
bookkeeping was the publication of Keynes’ “General Theory” in 1936. It marks
the beginning of macro economic analysis. This Keynesian analysis directly
connects economic theory with national accounting: both use the same set of
identities. The consequence of the theory of Keynes was that a shift occurred in
the main concept of income used in policy analysis: net national income in factor
costs was more and more replaced by gross national income in market prices.
The reason was to provide a better insight into the link between the different
expenditure categories and income. The Keynesian revolution also prompted
the governments to an active countercyclical policy. This created a need for
a system of national accounts where the government sector was added to the
sector accounts. All in all, thanks to the Keynesians revolution it was widely
recognised how important national accounting for preparation and conduct of
economic policy is. Keynes himself actively stimulated the advancement of na-
tional accounting schemes, particularly in the United Kingdom. At his initiative
the most important experts of the national accounting in the United Kingdom,
Stone and Meade, made estimates of national income and expenditures in 1941.
These data were used to assess the receipts and expenditures of the government
into a scheme of balances for the whole economy. And again it was a war which
contributed to a prompt implementation of this work. According to Stone the
major aim of this exercise was to map the problem of financing the war expendi-
tures. These data were indeed used in the discussions on the government budget
during war time.
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8.3.5. International comparability

This marks also the beginning of the era in which national accounting was con-
ducted on the basis of international guidelines in order to promote international
comparability. For that reason, the League or Nations (the pre-war predecessor
of the United Nations) had already asked for such guidelines in 1939. How-
ever, the activities were postponed because of the war. At last, in 1947, the first
guidelines were published by the United Nations in a report which consisted
mainly of an appendix, drafted by Stone. This appendix can be regarded as the
first fully fledged and detailed description of a system of national accounts. The
next step were the guidelines that Stone published in 1951 at the request of the
Organisation of European Economic Co-operation (OEEC, the predecessor of
the OECD). These guidelines were a simplification as compared to those of the
United Nations: in fact the guidelines of the United Nations were much too am-
bitious for most European countries. After a number of following rounds with
new guidelines the United Nations published in 1968 a fully revised and very
detailed set of guidelines for the construction of national accounts (SNA). To-
gether with the guidelines of the EC from 1970, which were mainly meant to
clarify the guidelines of the United Nations, these guidelines have, for a long
period, been the basis for the set-up of the systems of national accounts in the
world. As a matter of fact, in order to guarantee the continuity in national ac-
counting, modification of the guidelines should not take place too frequently. It
was only in 1993 that the United Nations issued new guidelines.

8.4. History of Statistics and Economic Analysis in the Netherlands

The previous survey of the history of national accounts illustrates the long road
from the early calculations of total income and wealth of a nation to today’s
extended and sophisticated systems of national accounts. In order to obtain a
better view on how indicators from the national accounts are used in economic
policy analysis, a look into the history of the interaction between data collection
and policy analysis is also useful. Here the history in the Netherlands is taken
as an example. A historical overview for other countries, especially the United
Kingdom, Norway and the United States, is given by Kenessey (1993).

Today empirical analysis and measurement play an essential role in the debate
on policy measures in the Netherlands. This interest in actual measurement only
slowly and partially emerged between 1750 and 1850 (see Klep and Stamhuis,
2002; Den Butter, 2004). Yet, it were mainly private initiatives of individual
scientists and practitioners, and not so much of the government, which brought
about this attitude. The estimates by the forerunners Hora Siccama, Van Rees,
Keuchenius and Metelerkamp were already mentioned in the previous section.
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8.4.1. Kluit and Vissering

An early protagonist of actual measurement in the Netherlands was Adriaan
Kluit (1735–1807). He was the first Dutch professor to teach statistics under that
name. One of the reasons that Kluit started to deliver lectures in statistics was a
prize contest by the “de Hollandsche Maatschappij der Wetenschappen” (Dutch
Society of Sciences) at Haarlem, which is a learned society founded in 1752 and
still existing, and which, in those days, tried to promote scientific research by
posing practical questions. The question to which Kluit reacted was ‘What is the
overall situation, both in general and especially with respect to the economy in
our fatherland, and what are the reasons why our country lacks so far behind,
compared to our neighbours?’ So it was in fact a quest for economic data which
inspired Kluit to get involved in statistics. Kluit did not distinguish between
political economy and statistics, and in his specification the state was the centre
of attention. So in his work we are at the beginning of the connection between the
working of political economy (in Dutch: “staatkunde” or “staathuishoudkunde”)
and statistics. In this respect it is noteworthy that in Germany political economy
or economic political science was called Statistica or Statistik. This connection
can also be traced back to the Italian word ‘Statista’ or ‘Statesman’, which has
given the discipline of statistics its name.

Although he was a lawyer by education, Simon Vissering (1818–1888) can
be regarded as one of the main advocates of statistical quantification of the state
of the economy at the macro level in the Netherlands. He was one of the leaders
of the “Statistical Movement”, a group of lawyers who dedicated themselves
to the development of statistics. Although Vissering was more quantitatively
oriented than his predecessors in political economy, his ideas about which data
are needed for the description of the national economy, are still rather naïve as
compared to the data which are nowadays used to analyse the economy. In the
course of the 19th century quantification came to play a more important role, but
it was still Vissering’s opinion that qualitative information was needed to make
the statistical description of a state complete (see Klep and Stamhuis, 2002).

8.4.2. Descriptive versus mathematical statistics

It is interesting to note that in the development of measuring the state of the
economy (and society) in the 19th century no much reference seems to be made
to the work of early “quantitative” economists such as Petty and King in the UK,
or Keuchenius and Metelerkamp in the Netherlands, as discussed in the previous
section. Moreover, there was still a large gap between descriptive and mathemat-
ical statistics. In the latter discipline the Belgian statistician Lambert Adolphe
Jaques Quetelet (1796–1874) was a forerunner. In 1834 Quetelet was one of
the founders of the London Statistical Society, nowadays the Royal Statistical
Society. Morgan (1990) describes how, in the history of statistics, Quetelet’s
statistical characterisation of human behaviour proved to be of great impor-
tance. He noted that individuals behave in an unpredictable way, but that taken
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together these apparently disorganised individuals obey the law of errors in devi-
ating from the ideal “average man”. Obviously this is one of the basic notions in
econometric methodology, used in the evaluation of economic policy measures.
So Quetelet can be seen as a first bridge-builder between the mathematically
oriented statistical approach and the descriptive and qualitative-quantitative ap-
proach. However, Quetelet’s ideas did not reach Vissering and his people. It was
only after the 1930s that, with Tinbergen as the great inspirer and teacher, a full
integration of both lines of thought in statistics took place in the Netherlands. It
is remarkable that, whereas these two lines in statistics had been separated for
such a long time, from then on the Netherlands obtained a strong position in
econometrics and applied economics.

8.4.3. Statistics as a public good

Vissering and his people have played a major role in promoting that the gov-
ernment should regard statistical data collection as a public good and therefore
should take its responsibility in collection these data. However, in the second
half of the 19th century the government was very reluctant to take up this re-
sponsibility. Therefore, in 1866 Vissering took a private initiative to compose
and publish general statistics for the Netherlands. However, this large project
has never been finished (see Stamhuis, 1989, 2002). In 1884, when the Dutch
government was still not willing to collect statistical data in the public domain,
a Statistical Institute was established by these private people. At last, in 1892,
after questions in the Second Chamber of the Parliament by, amongst others,
the socialist member of parliament, F.J. Domela Nieuwenhuis, de “Centrale
Commissie voor de Statistiek” (Central Committee for Statistics) was installed.
Finally, in 1899 the Central Bureau of Statistics (CBS) was founded, which from
then on conducts its task to collect independent and undisputed data for public
use in the Netherlands. The Central Committee for Statistics still exists and has a
role as supervisory board for the Central Bureau of Statistics. Its responsibilities
were even expanded by decision of the Parliament in 2003. In fact, the lobby
to have the government collect statistical data at the level of the state was much
conducted by the “Society of Statistics”, founded in 1849 (see Mooij, 1994). Af-
ter 1892, now that the lobby of the society for data collection by the government
had finally been successful, the main focus of the society became more and more
on economics. Therefore, in 1892, its name was changed in Society for Politi-
cal Economy and Statistics. Yet it was more than half a century later, namely in
1950, that the focus of the society was really reflected in its name which now be-
came Netherlands Economic Association. Finally, in 1987 the Queen honoured
the society by granting it the label “Royal”. So since 1987 we have the Royal
Netherlands Economic Association, which, given its start in 1849, is probably
the oldest association of political economists in the world.



202 F.A.G. den Butter

8.4.4. Micro versus macro data

As mentioned before, a major question in national accounting is on how to
aggregate individual data to the macro level. In this respect Van den Bogaard
(1999, Chapter 5) gives an interesting description of the long discussions be-
tween Tinbergen and the CBS on transforming individual data from budget
surveys to national data on consumption which could be used in consumption
functions of the Keynesian macro models of those days. In the 1930s consump-
tion was still something related to individual incomes, classes of people and
their social role in society. It was indeed only in the early 1950s that data collec-
tion and statistical methodology to analyse data at the macro level, were really
integrated.

8.5. The Tinbergen Legacy and the Institutional Set-up of Policy
Preparation in the Netherlands

This integration of data collection and statistical methodology is an important
aspect of how indicators of the national accounts are used in economic policy
analysis. For a more comprehensive answer to that question it is useful to look
at the institutional set-up of economic policy preparation of a country. Again the
Netherlands is taken as an example. The present institutional set-up of policy
preparation in the Netherlands can, in a way, be seen as a spring-off of Tinber-
gen’s theory of economic policy, where scientific insights on how instruments
may affect policy goals are separated from political preferences on trade-off
between these policy goals (see Tinbergen, 1952, 1956). These ideas were, of
course, very much inspired by the political and societal landscape in the Nether-
lands in the period between the First and the Second World Wars (see also Van
Zanden, 2002, for a broad historic perspective). In the years just after the Second
World War, when Tinbergen designed his theory of economic policy and was ac-
tive in the institutional set-up of policy preparation in the Netherlands, the Dutch
society was still very much “pillarised”. The four main pillars were the liberals,
the Catholics, the Protestants and the socialists. Each of them were represented
by one or more political parties with implicit preferences on policy goals in their
own, so to say, social welfare function. As they all are minority parties, there has
been always a need for the formation of a coalition government. The leaders of
the political parties or pillars did realise that it is impossible to meet all of their
own policy goals in such a coalition government. Although the pillarised society
has changed very much since then and there has been a steady “depillarasation”,
still all parties are minority parties, even more so then before, so that the need
for a compromise agreement for the coalition government has remained.

8.5.1. The CPB Netherlands Bureau for Economic Policy Analysis

The analysis of the Dutch Central Planning Bureau has from its start played
an important role in the design of the policy preparation in the Netherlands.



National Accounts and Indicators 203

Nowadays the bureau calls itself CPB Netherlands Bureau for Economic Policy
Analysis, because there is no true “planning” involved in the activities of the
bureau. More specifically the analysis is an important input for the negotiations
and social dialogue on policy issues in what has become known as the Dutch
“polder model”. It has already be noted that Tinbergen, who became the CPB’s
first director in 1945, has built the first econometric policy model (Tinbergen,
1936). Therefore, it is understandable that model based policy analysis has, from
the origin, constituted an important part of the work of the CPB. The CPB’s
‘model’ early acquired a high status in academic circles and has come to be
regarded in the Dutch society as an more or less “objective” piece of economic
science (Den Butter and Morgan, 1998).

However, in the first few years of the CPB there was a fierce internal discus-
sion in the CPB about the way the bureau should give shape to its advices (see
Van den Bogaard, 1999). On the one side was Van Cleeff, who had the view that
the CPB should follow a normative approach, while on the other side Tinbergen
supported the idea of disentangling the positive and normative elements of the
analyses. The crucial question in this controversy was about the way economic
policy advice would be the most successful in the pillarised economy. Van Cle-
eff tried to develop an all-embracing normative theory which would integrate the
ideas of the different pillars. Like in industry that would lead to a formal policy
“plan” which could be implemented by the government in a coordinated effort
of all citizens, On the other hand, Tinbergen wanted to develop a method that
would give the most objective description of reality. The differences between the
pillars would then be minimised to their different normative proportions. In other
words, he wanted to make a clear distinction between the working of the econ-
omy (model) and the policy goals (welfare functions), and then “try to agree on
the first and compromise on the second issue”. Tinbergen won this battle. Since
then, economic policy preparation in the Netherlands is organised in three au-
tonomous parts: data, model and norms. As discussed in the previous section,
the data and statistics are collected by the Central Bureau of Statistics (CBS) in
an independent and (hopefully) undisputed manner, the working of the economy
is described by the models of the CPB and the balancing of different points of
view is done by the government in dialogue with unions, employer organisations
and other associations of organised interest. This method of splitting facts and
politics has, up to now, always been a prominent feature in creating consensus
in the Dutch society where all belong to a cultural minority or minority party.

In this institutional set-up the CPB has a major role in describing the working
of the economy. It takes the data, collected, and in the case of national accounts,
constructed by the CBS, as given. The task of the CPB is to provide a quantita-
tive analysis of the state of the Dutch economy, based on scientific knowledge.
In doing so it tries to establish a consensus view on economic developments and
the effects of policy measures. Of course others (other institutions) also have a
say in this analysis of the Dutch economy based on scientific insights. An ex-
ample is the Dutch central bank, that makes its own model based analysis of
developments and policy measures in the Netherlands. Moreover, in some cases
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a major discussion emerges with academics and other scientists working outside
the CPB (e.g. the Ministry of Economics Affairs, private research institutes) on
matters of interpretation of economic developments. Examples are discussions
on Keynesian demand policies versus neo-classical policies in the second half
of the 1970s, on the need for general equilibrium modelling in the early 1990s,
and on the effectiveness of a prolonged policy of wage moderation in the early
2000s. However, these disputes did not refer to the measurement of economic
data at the macro level, nor to the construction methods of data.

Nowadays, the analyses of the CPB are widely used as input for social eco-
nomic policy discussions, e.g. in the Social Economic Council (see below).
A typical example of the role of the CPB in using their model based analysis
for policy purposes is the calculation of the effects of the policy proposals in the
election programmes of the political parties on economic growth, employment,
income distribution and so on. Seemingly, it is almost a realisation of Tinber-
gen’s dream to separate the knowledge on the working of the economy, which
is contained in the models used by the CPB, and the normative preferences on
trade-offs between policy goals, which will differ for each political party. In fact,
the CPB has two major tasks. The first is that of national auditor: this implies
economic forecasting and assessment of the effects of policy measures for the
government and for other groups involved in the policy making process. The
second task consists of the CPB conducting, in a more general sense, applied
economic research (see Don, 1996). Nowadays the latter task gains importance:
extensive scenario analyses and cost benefit analyses are conducted with respect
to various aspects of the Dutch economy. There is also a shift towards micro-
economic research and evaluation studies. Typical for the institutional set-up of
Dutch policy-making are the numerous formal and informal contacts between
the staff of the CPB and the economists at ministries, researchers in academia
and the staff of the social partners. On the one hand, they provide relevant infor-
mation to the CPB, but, on the other hand, they will, if needed, be critical on the
work of the CPB.

An other major institution in the set-up of policy preparation in the Nether-
lands is the Social Economic Council (SER) that plays (together with the Foun-
dation of Labour) the central role in negotiations between the various stake-
holders to come to a compromise agreement on matters of economic and social
policy (see for a more elaborate survey: Den Butter and Mosch, 2003; Den But-
ter, 2006). This is the arena where interaction between scientific knowledge and
the policy dispute takes place. The SER is the main policy advisory board for
the government regarding social economic issues. Its constellation is tripartite.
Labour unions, employer associations and independent “members of the crown”
each possesses one third of the seats. The “members of the crown” consist of
professors in economics or law, politicians, the president of the Dutch Central
Bank and the director of the CPB.

It is through these independent members that the policy discussions within the
SER benefit from the insights of scientific research. The analyses of the CPB and
also of the Dutch Central Bank carry a large weight in these discussions. Policy
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advices by the SER are prepared in committees, wherein representatives of the
three categories discuss and amend texts drafted by the SER’s Secretariat. Rep-
resentatives of various ministries attend these committee meetings, but formally
they are observers. They will not take part in discussions unless they are asked to
provide relevant information. So, unlike in other countries, where the third party
in tripartite council discussions is the government, in the Netherlands scientists,
as independent third party in the discussion, see to it that the social partners do
not come to agreements which are harmful to society as a whole. This would be
the case when the costs of the policy measures agreed upon, are shifted away
from the social partners to the society as a whole.

Obviously it is important for the impact of the SER recommendations that
they are supported unanimously. It is quite exceptional that the government
would disregard a SER unanimous policy recommendation. The independent
members (which, by the way, represent the various pillars in the Dutch society,
so that their political colour mimics the political landscape in the country) can
be helpful in reaching a unanimous recommendation in informal discussions.
The SER chairman, who is also an independent member and understandably has
a crucial position in this institutionalised social dialogue, plays a major role.

8.6. National Accounts and Policy Preparation in other Industrialised
Countries

The role of the CBS in the institutional set-up of economic policy preparation
in the Netherlands is much linked to Tinbergen’s strict separation of the task of
independent data collection form the tasks of consensus and compromise forma-
tion on economic policy analysis and political decision making. In this respect
the institutional set-up in other countries differs from that in the Netherlands, al-
beit that independence of data collection and compilation carries a large weight
in all industrialised and democratic economies.

8.6.1. Statistics and policy analysis in the UK1

The 19th and early 20th century history of data collection at the macro level
in the UK is somewhat comparable to that in the Netherlands. The major gov-
ernment body to collect data at a national level was the statistical department
of the Board of Trade. After two journalists had been head of that department,
in the early 1870s there were great concerns about the quality of the data. The
idea was to establish a central statistical department to service the requirements
of all Departments of State. Recommendations were continually made over the
years to establish a small central statistical department but they were rejected
because of difficulties arising from the laws, customs and circumstances under

1 This section is partly based on information from http://www.bized.ac.uk.
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which the different statistics were collected. In addition to the objections raised
by the Board of Trade, Mr Gladstone, then the first Chancellor of the Exchequer,
feared that such a central Department might extend its functions beyond the lim-
its required by economy and expediency, and so the recommendations to form a
Central Statistical Office were rejected.

Calls for improvements in statistical services continued throughout the 1920s
and the 1930s. The outbreak of the Second World War saw proponents for
change brought together in the team supporting the War Cabinet. Finally the
Central Statistical Office (CSO) was set up on 27 January 1941 by Sir Winston
Churchill with the clear aim of ensuring coherence of statistical information and
to service the war effort. It quickly established itself as a permanent feature of
government. It is interesting to note that again it was during wartime that a major
step in the provision of statistical data at the macro level was taken. After 1945
there was an expansion in the work of official statisticians. This resulted mainly
from the aim to manage the economy through controlling government income
and expenditure by the use of an integrated system of national accounts. The
passing of the Statistics of Trade Act in 1947 made it possible to collect more
information from industry on a compulsory basis.

The late 1960s saw the performance of the statistical system again come un-
der scrutiny. Following a report of the Estimates Committee of the House of
Commons a reorganisation was effected. This reorganisation had four central
elements:

• Establishment of the Business Statistics Office (BSO) to collect statistics from
businesses irrespective of the department requiring information.

• Establishment of the Office of Population Censuses and Surveys to collect in-
formation from individuals and households through programmes of censuses,
surveys and registers.

• An enhanced role for the CSO in managing government statistics.
• Development of the Government Statistical Service (GSS), including a cadre

of professional statisticians across government.

A new, expanded CSO was established in July 1989. This brought together
responsibility for collecting business statistics (previously with the BSO), re-
sponsibility for compilation of trade and financial statistics (previously with the
Department of Trade and Industry) and responsibility for the retail prices index
and family expenditure survey (previously with the Employment Department)
with the old responsibilities of the CSO. In early 1990 the quality of economic
statistics continued to be of concern to the Treasury and to the CSO. John Ma-
jor, then the Chancellor of the Exchequer, indicated to Parliament his continuing
concern about the statistical base. This was quickly followed by an announce-
ment in May 1990 of a package of measures (known as the Chancellor’s Initia-
tive), backed up by substantial additional resources, to improve quality. Finally
the CSO was renamed Office for National Statistics (ONS) on 1 April 1996 when
it merged with the Office of Population, Censuses and Surveys (OPCS).
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Economic policy preparation in the UK is very much the responsibility of the
Chancellor of the Exchequer, which is the head of Her Majesty’s Treasury. This
institution combines the tasks of the Ministry of Finance, the Ministry of Eco-
nomic Affairs and a bureau for economic policy analysis (such as the CPB in the
Netherlands), and therefore holds a very powerful position in economic policy
preparation in the UK. Civil servants of Her Majesty’s Treasury make economic
forecasts and policy analyses using their own model of the UK economy. The
Cabinet uses these services for the calculation of the economic effects of their
policy plans. So the separation between the more or less “objective” discussions
on the working of the economy, and on political preferences and trade-offs, is
less strict in the UK than in the Netherlands. On the other hand, much model
based policy analysis in the UK is done by universities and institutes linked to
universities. The Macroeconomic Modelling Bureau (MMB) of the University
of Warwick compares and publishes the outcomes of the various UK models
(and interprets the differences) so that there is some countervailing power to the
policy analysis of the government. The Bank of England also conducts model
based policy analysis but the citation reproduced by Backhouse (this volume)
sheds some doubts on its influence.

8.6.2. Statistics and economic policy analysis in Norway2

In Norway, national accounts was, earlier than in most other countries, defined as
the framework for the overall economic policy. It was Ragnar Frisch, with Tin-
bergen the first Nobel price winner in economics, who was responsible for this
special type of integration of national accounting and economic policy analy-
sis in Norway, which differed from the Anglo-American approach. Frisch had
already in the late 1920s worked on a system of accounting concepts for describ-
ing the economic circulation. In 1933 Frisch had recommended the construction
of ‘national accounts’, introducing this term for the first time in Norwegian.
Frisch reworked his national accounting ideas several times in the following
years, adopting the eco-circ system as the name for his accounting framework
(and elaborate eco-circ graphs as a way of presenting it).

Frisch’s national accounting ideas and his active role in the economic policy
discussion in the 1930s led in 1936 to a project with colleagues at the University
of Oslo, where he started to develop national accounts for Norway. Funds were
provided by the Rockefeller Foundation and by private Norwegian sources. In
1940 Frisch had elaborated the eco-circ system from a theoretical level to a quite
sophisticated system of national accounts.

The compilation of national accounts tables according to Frischian ideas was
continued by some of his former students within the Central Bureau of Statistics
(renamed Statistics Norway in 1991). In the first years after WWII, national ac-
counting was at a preliminary stage and international standards were still years

2 This section is based on Bjerkholt (1998).



208 F.A.G. den Butter

away. That is why the early national accounting in Norway in the Frischian
tradition had distinct national features, which made it differ from the stan-
dard national accounting framework. In the Frischian conception of national
accounts above all it were the ‘real phenomena’ that mattered. The accounts
should distinguish clearly between the real sphere and the financial sphere and
show the interplay between them. The entries in the accounts should repre-
sent flows (or stocks) of real and financial objects. This ‘realist’ conception of
national accounting, supported by Frisch’s detailed structure of concepts, was
later modified by adopting elements from Richard Stone’s work, and further
enhanced by embracing the input–output approach of Wassily Leontief as an in-
tegral part. For years the Norwegian approach was one of very few accounting
systems producing annual input–output tables. The result was a detailed set of
accounts comprising thousands of entries, rather than just a few tables of ag-
gregate figures. It gave the impression that an empirical representation of the
entire economic circulation had been achieved and it looked like a wholly new
foundation for scientifically-based economic policy analysis.

The use of macroeconomic models for economic policy in Norway has been
closely related to the reliance upon ‘national budgeting’ in the management of
economic policy. The idea was that of a budget, not for the government’s fiscal
accounts, but in real terms for the entire national economy, spelt out in the spirit
and concepts of the Frischian national accounts. The national budget served as
a conceptual framework as well as a quantitative instrument for economic plan-
ning. The national budgeting process was organised by the Ministry of Finance
as a network of ministries, other government agencies, semi-official bodies, and
coordinating committees. The national budgeting in the early postwar period
took place in a highly-regulated and rationed economy, and called for the kind
of detail that the new national accounts could provide. The value of the national
budget was seen in its role as an integrating tool, linking the sub-budgets of min-
istries, subordinate government agencies and semi-official bodies in the process
of working out the economic prospects and economic policies for the coming
year.

This programmatic national budget as something different from a forecast of
national accounting aggregates raised problems of interpretation and realism.
The national budget would not constitute a plan in a meaningful sense unless it
was based upon a realistic assessment of the functioning of the economy. The
various sub-budgets had to be combined in a such way that all relationships
in the economy would be taken into account. However, with national accounts
still in their infancy, large-scale models unavailable and computers in a mod-
ern sense non-existent, this was a daunting task. In fact it was resolved by the
‘administrative method’ which at best was an imperfect iterative administrative
procedure.

As yet, together with the Netherlands, Norway is the example of a country
where interaction between data collection at the macro level and model based
economic analysis had an early start. Even more so than in the Netherlands,
the Norwegian experiment was, in those early days, directed at detailed eco-
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nomic planning, where the economy was run like an enterprise. In that sense
the planning exercise in Norway was much in line with the proposals of Van
Cleeff for ‘central planning’ in the Netherlands. A remarkable difference with
the Netherlands (and reflecting differences in opinion between Tinbergen and
Frisch) is that in Norway model based economic policy analysis and forecast-
ing has originally been conducted at the same institute as the data collection,
namely Statistics Norway. As mentioned before, in the Netherlands Tinbergen
advocated a strict separation between on the one hand data collection and on the
other hand economic policy analysis and forecasting.

8.6.3. Statistics and policy analysis in the US

Unlike in other countries, the US has no single NSO which collects all statisti-
cal data. There are several institutions financed by the government which collect
and compose data on the state of the economy. The Bureau of Labour Statis-
tics publishes inflation and unemployment figures. The Census Bureau collects
statistics specifically with respect to production, stock building, and population
data. The Bureau of Economic Analysis (BEA) composes the national accounts
based on data collected using by the Census Bureau. Finally the Federal Re-
serve Board (Fed), apart from monetary data, also collects and composes data
on the cyclical situation of the economy. This division of labour between the
various institutes brings about coordination problems. The different institutions,
in many cases, use their own methodology, which makes the data difficult to
compare, and makes policy analysis based on the data somewhat troublesome.
It also leads to much discussion on the quality of the data between the various
producers, so that data are less undisputed as, for instance, in the Netherlands.

A powerful institution in the US where economic policy analysis of statistical
data at the macro level takes place is the Council or Economic Advisers (CEA).
The council consists of a chairperson and two members, appointed by the Pres-
ident of the US. The members are assisted by a relatively small staff. Most of
them are university professors on leave from their university, and statistical as-
sistants and graduate students. For this reason the CEA has been strongly related
to the academic world. Each year the CEA makes forecasts of macroeconomic
developments. An important publication is The Economic Report of the Presi-
dent, which contains the political vision of the CEA. Obviously the composition
of this advisory body changes with the political colour of the President. As a
consequence, both the contents of the recommendations and the advice process
itself depend much on the composition of the government. Although the major
obligation of the CEA is to give policy recommendations to the President, it
has a broader task in policy preparation. The members of the CEA frequently
take part in committee meetings at several levels and can therefore try to per-
suade, beside the President, other policy makers of their vision. This strong link
between the political colour of the President and the composition of the CEA
resulted that policy advices have been less consistent than for example at the
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German Sachverständigenrat (see later). Particularly in the field of the macro-
economic stabilisation policy diverging recommendations have been given by
various councils of different political colour. However, on other issues such as
the support for free trade and the correction of market failures the CEA has
followed a more consistent line.

Another powerful institution in policy making in the US is its independent
central bank, the Fed. It collects data on the monetary side of the economy and
has a large research staff for analysis of all kinds of economic data. Another
institute for economic policy analysis is the Congressional Budget Office, which
is part of the advisory bodies of the Congress. A major task is to make forecasts
in a way similar to that of the CPB in the Netherlands.

A difference between the United States and, for instance the Netherlands
and Germany, is that there are much less formal and institutionalised chan-
nels of contact between scientists and policy makers. On the other hand, the
US has a number of private institutions, which conduct fundamental policy ori-
ented research. The National Bureau of Economic Research (NBER) is such
private non-profit research organisation of top people from the academic world.
Enterprises, several ‘foundations’ and the federal government finance this in-
stitution with general funds or funds for specific projects. Another institution,
the Brookings Institution, tries, by organising all kinds of activities, to make a
bridge between scientific research and policy. The institute is financed by the
turnovers of contract research, donations by charitable institutions, grants and
sale of books. Similarly the American Enterprise Institute has much influence as
opinion leader on a broad range of topics, albeit in an informal way.

8.6.4. Statistics and policy analysis in Germany

The Statistische Bundesamt is the central institution for collecting statistical data
in Germany. Some 2780 staff members collect, process, present and analyse sta-
tistical information in this Federal Statistical Office. Seven departments and the
offices of the President and the Vice-President are located in Wiesbaden’s main
office, two further departments are situated in the Bonn branch office. The Berlin
Information Point directly provides information and advisory services based on
official statistical data to Members of the Bundestag, the German federal gov-
ernment, embassies, federal authorities, industry associations, and all those who
are interested in official statistics in the Berlin–Brandenburg region.

In accordance with the federal state and administrative structure of the Fed-
eral Republic of Germany, federation-wide official statistics (federal statistics)
are produced in cooperation between the Federal Statistical Office and the sta-
tistical offices of the 16 Länder. This means that the system of federal statistics
is largely decentralised. In the context of that division of labour, the Federal
Statistical Office has mainly a coordinating function. Its main task is to ensure
that federal statistics are produced without overlaps, based on uniform methods,
and in a timely manner. The tasks of the Federal Statistical Office include (i) the
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methodological and technical preparation of the individual statistics, (ii) the fur-
ther development of the programme of federal statistics, (iii) the coordination of
individual statistics, (iv) the compilation and publication of federal results. With
just few exceptions, conducting the surveys and processing the data up to the
Land results fall within the competence of the statistical offices of the Länder.

So in fact a major part of the statistical data in Germany are collected by
these regional statistical institutions. Many cyclical indicators are constructed
and published by the Bundesbank. Moreover the Institut für Arbeidsmarkt- und
Berufsforschung der Bundesagentur für Arbeit (IAB) collects, publishes and
analyses data on developments at the labour market.

An important link between science and policy advice in Germany is the
Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung
(SVR). This council consists of five members, in most cases university pro-
fessors. They are the so-called ‘five wise’. The members of the council are
appointed for five years on proposal of the federal government by the Bundes-
president. In practice three members have no links with political parties and
interest groups. For the remaining places the employees and employers organi-
sations can present a candidate, but also the current members of the SVR have
a say in these appointments. The Sachverständigenrat publishes each year be-
fore November 15th a report on economic developments. Important topics in the
analysis are the stability of the price level, developments on the labour market,
including the unemployment problem, steady economic growth and an assess-
ment of the position of the balance of payment. Moreover the council must take
the income distribution in consideration. The council is asked to propose several
policy measures for reaching the policy goals, but no choice should be make.
The advice of the council is not bound to be unanimous; members may include
a minority opinion in the report. The Sachverständigenrat regularly commissions
research to other scientists. In contrast to the CEA in the US, the Sachverständi-
genrat is politically independent. Moreover, the way new members are appointed
ensures that their economic views will not differ radically from those of their
predecessors.

Both the Ministry of Finance and the Ministry of Economic Affairs also have
their own scientific advisory councils (wissenschaftliche Beiräte), composed of
university professors. The current members of these councils propose the new
members, so that here there is also some continuity in the line of advice. The
task of members of these councils is to give opinions on policy suggestions and
to suggest proposals themselves.

An important role in economic policy analysis in Germany is played by the
six independent research institutes. These have each their own specialisations,
although all report on the (inter)national economic development. Although none
of these institutes has a specific political background, or is linked to a political
party, they do represent different schools of economic thought. For instance, the
Deutsches Institut für Wirtschaftsforschung (DIW) in Berlin has a more Keyne-
sian orientation, whereas the Institut für Weltwirtschaft (IfW) of the university
of Kiel frequently pleads for letting the market forces work and for less govern-
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ment regulation. Twice a year these institutes meet in order to draft a report on
the stance of the business cycle for the current year (in April) and for the coming
year (in October). It is possible to add a minority opinion to the report. Espe-
cially the DIW has often used this possibility. Moreover each of the research
institutes publishes its own monthly report. So there is no equivalent to the CPB
in Germany. The common (consensus) forecast of the research institutes is not
the outcome based on one macroeconomic model, but the result of consultation
between the institutes. An important aspect is also that policy makers and politi-
cians in Germany are not very familiar with, and enthusiastic about model based
policy analysis.

In Germany the social partners also have their own research institutes. The
Institut der Deutschen Wirtschaft (IW) in Cologne, financed by the employers
organisations, is even one of the largest scientific research institutes in Germany.
The counterpart of the trade unions, the Wirtschafts und Sozialwissenschaftliche
Institut of the DGB (WSI), is somewhat smaller. These institutes publish their
own bulletins with analyses of the economic situation and prospects in advance
of the autumn report of the six independent institutes, in order to influence the
discussion.

8.6.5. Statistics and policy analysis in France

Like in the UK, the most powerful institution in economic policy analysis and
policy preparation in France is the Ministry of Finance. The power of the Minis-
ter for Finance over its colleagues stems from delegation by the President of the
Republic. Because of this, a situation can arise where the Prime Minister has no
influence on economic policy, because the President imposes another opinion by
means of the Minister for Finance.

National accounts’ data and other data on the state of the French economy are
collected by the Institut National de la Statistique et des Études Économiques
(INSEE). It is a “General Directorate” of the French Ministry of Finance and
it is subjected to government-accounting rules: it is mainly funded from the
central-government’s general budget. The INSEE has a rather long history. In
1833 Adolphe Thiers (then Minister of the Interior) founded the Bureau de la
Statistique. It became the Statistique Générale de la France (SGF) in 1840. In
1946 the National Institute of Statistics and Economic Studies for Metropoli-
tan France and Overseas Possessions (Institut National de la Statistique et des
Études Économiques pour la Métropole et la France d’Outre-Mer) was estab-
lished. It was later renamed as the INSEE.

Around 1960, the formulation of “Le Plan” in France led to the application of
statistics to economic planning and economic-regulation policies. Immediately
after the war, a task force had engaged in preliminary national-accounting work.
The program was originally carried out by the Finance Ministry’s Economic
and Financial Studies Office (Service des Études Économiques et Financières:
SEEF), and then transferred to the INSEE. National accounting and medium-
term forecasting gained momentum in the 1960s. The contacts with potential
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“customers” of statistics were implemented in the National Council for Sta-
tistics (which later became the National Council for Statistical Information:
CNIS), established in 1972: statistical programs were now discussed with or-
ganisations representing the social partners (employers and trade unions). From
1974–1987 one of the most prominent French economists, Edmond Malinvaud,
has been director general of the INSEE. This period saw a move toward greater
independence for the Institute – a trend begun under the previous directors-
general. Many large-scale computing resources were set up, the leading clas-
sifications were revised and intermediate accounts, satellite accounts (see later),
and major macroeconomic models (DMS, METRIC) were introduced. So, like
the situation in Norway, the French NSO does not only collect data but has
the combined role of a bureau of statistics and of an institute of applied eco-
nomic research. Besides data collection and its analysis the INSEE is actively
involved in economic research and education. In addition to applied research,
focused on policy making, the INSEE also conducts high quality fundamental
research.

Another institute in France that resorts under the Ministry of Finance is the
Direction de Prévision (DP). Although both the INSEE and the DP are involved
in economic forecasting, each institute has its own specific responsibilities. The
DP focuses primarily on short-term forecasting for economic policy making
concerning public finance, foreign relations and the financial sector. The INSEE
specialises on the one hand in extremely short term forecasting and on the other
hand on long term forecasting. In order to built in some independence between
data collection and policy analysis, forecasting and analysis of policy proposals,
which are relevant for actual policy making, are prepared by the DP, and not by
the INSEE.

An important feature of the French system is the close interrelations between
the Ministry of Finance, the INSEE and the DP. Staff members are often em-
ployed by one of those institutions through short term contracts, which result in
frequent mutual rotations and increased interaction possibilities.

8.7. National Accounts Today

In an early stage one of the main protagonists of national accounting, Richard
Stone, realised that the data constructed by the system of national accounts, are
to be used in economic analysis in various different contexts. So there always is
a tension between the way national accounts data are constructed, and defined,
and the theoretical concepts that they are to represent. In other words, Stone was
one of the first to pay attention to the issue of what criteria should be used to
assess the quality of measurement (see Comim, 2001). The main criteria that the
construction of national accounting data should comply with, namely (i) consis-
tency, (ii) flexibility, (iii) invariance and (iv) standardised forms, were already
formulated by Stone at the beginning of the 1940s.

The conception of consistency viewed the measurement of national income
not merely as a quantification of isolated single magnitudes, but as a quantifi-
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cation of an integrated accounting system in which magnitudes from different
sources had to agree. This consistency as a balance between measures from
different sources was achieved through the principle of double entry applied
to a system of four balancing accounts: domestic product account, income and
expenditure account, capital transactions account and the balance of payments
account. The balancing identities close this system of accounts where each item
appears once on the credit side of the balance and once at the debit side. The
problem of consistency is the analogue of that described in Section 8.2 where
there has to be a balance between the expenditure approach, the production ap-
proach and the income distribution approach.

The ‘flexibility’ in the formulation of national accounts is, from the perspec-
tive of the tension between the construction and economic interpretation of na-
tional accounts’ data, the most important measurement criterion. The remainder
of this section discusses various recent developments in national accounting that
comply with this criterion. In 1944 Meade and Stone noted that “there are many
admissible ways of defining national income, and there is nothing absolutely
right or wrong about any of these definitions” (cited by Comim, 2001). In a
broader sense Stone suggested that measurement and economic theory should
be tailored to each other’s needs. On the one hand the social accounting system
should preserve conceptual distinctions that are needed for economic analysis.
On the other hand economic analysis should restate its needs in a terminology
that could be measured. In modern terminology, one could reformulate this cri-
terion of flexibility as a plea for an open standard for the system of national
accounts, where the core of the system is fixed, but which enables changes in
the semantics of the various aggregates. In this vein Stone advocated a system
of multiple classifications.

In this respect there is also a tension between the criterion of flexibility and
the criteria of invariance and standardisation. The latter criteria concerned the
formal aspects of national accounts and consisted of homogenising definitions,
classifications and procedures in order to narrow the variability of measurement.
The apparent contrary criterion of flexibility concerned the human context of
national accounts and would advocate extending the scope of measurement by
introduction of new dimensions of measurement of national accounts.

8.7.1. Timeliness and accuracy of NA data

Today, most NSOs publish quarterly national account data and some data are
even available at a monthly basis. An important aim of the quarterly estimates
is providing consistent and timely information on the recent economic develop-
ments in the country. However, NA data, and also the quarterly estimates, suffer
from long publication delays. In most cases it will take more than two years
when final data can be published. Data published previously are all preliminary
and provisional data, bound to revisions. Therefore the analysis of the recent
development takes place by means of data which may change considerably. In
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spite of these uncertainties with respect to the quality of the data, most NSOs
provide a quarterly “flash estimate” in order to cope with the need for very re-
cent information. In the case of the CBS this is an estimate of the development
of gross domestic product, released by means of a press bulletin eight weeks
after the end of the respective quarter. Magnus et al. (2000) designed a method-
ology using available information on indicator ratio’s, which can be helpful to
enhance the accuracy of recent national accounts estimates. Yet, there always is
a trade-off between timelines and accuracy in these estimates (see also Fixler,
2007, this volume). It can pose a problem when much weight is attached to these
recent data, for instance by financial markets. Market developments and strate-
gic decisions may, with the benefit of hindsight, be based on data which had a
very poor information contents. Therefore NSOs should very well monitor the
quality of their flash estimates and refrain from publishing them when quality is
too poor. They should do that in spite of public pressure to come up with recent
information.

8.7.2. Revisions of NA

On average each five to seven years a major revision of the national accounts data
takes place (see e.g. Blades, 1989). Reasons for these revisions are (i) new basic
observations becoming available; (ii) improvement in the construction method
and (iii) changes in the definitions and set-up of the system (for instance in
response to new international guidelines). These revisions may bring about sub-
stantial changes in the final figures of the national accounts. In the Netherlands
the last revision was published in 2005 and related to 2001 as the year of re-
vision. This revision had the following consequences for the assessment of the
state of the economy and for the economic policy indicators:

1. Gross domestic product was enhanced with 18.4 billion Euros which implies
an increase of 4.3%. This increase was mainly caused by introduction of new
insights in the use of statistical information.

2. Gross national income increased with 24.8 billion Euros.
3. The financial deficit of the government (according to the EMU definition)

now amounted to 0.2% of gross domestic product instead of 0.1% according
to the original calculations.

Obviously these revisions have considerable consequences for the interpretation
of historic economic developments, and also, in the above case, in the ranking
of nations according to their per capita income. This ranking is often used to
illustrate the relative prosperity of nations (see also Table 8.1).

8.7.3. Modules at national accounts – core module system

National accounts, in their current form, are a consistent description of economic
processes on the basis of one, internationally used framework and terminology.



216 F.A.G. den Butter

Table 8.1: Ranking of countries according to UN Human Develop-
ment Index, 2005.

Country ranked according to HDI Rank of country according to
GDP per capita, pp US$

1. Norway 3
2. Iceland 6
3. Australia 10
4. Luxemburg 1
5. Canada 7
6. Sweden 20
7. Switzerland 8
8. Ireland 2
9. Belgium 12
10. United States 4
11. Japan 13
12. Netherlands 11
13. Finland 16
14. Denmark 5
15. United Kingdom 18
16. France 15
17. Austria 9
18. Italy 19
19. New Zealand 22
20. Germany 14

Source: Human Development Report 2005, United Nations.

Of course this is not by definition the most suitable system for an analysis of the
national economy with its specific institutional characteristics. Although already
in its current form the accounting framework satisfies to a large number of user
wishes, information relevant for a specific policy analysis may not be contained
in the system. Here the trade-off between the criteria of flexibility and invari-
ance (and international comparability) referred to above, plays a part. Moreover
the current NA in principle has been set up from the institutional approach (see
Section 8.2). The international guidelines have chosen a specific definition of
income, which excludes, for instance, domestic production but also the nega-
tive consequences of the use of the environment in production. More in general,
NA do not provide information on other aspects which are, beside financial in-
come and wealth, of importance for the prosperity of a country (see the next
section).

In order to meet the need of multi-purpose information a more flexible system
of NA has been designed. It consists of a (institutional oriented) core and vari-
ous types of modules (see Bloem et al., 1991; Bos, 2006). The core focuses on
transactions which are in reality expressed in money terms. These transactions
are booked (exclusively) for the actors who are actually involved in the transac-
tions. This core module system offers a number of clear advantages above the
current system of presentation of NA. In this alternative set-up the users avail of
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a number of parallel definitions and classifications for various types of analyses.
An example is a definition of national income which excludes imputed rents on
owner occupied dwellings, which may be relevant representing the transactions
motive in a demand for money equation. As a matter of fact this imputed rent
does not represent an actual transaction for which money is needed.

Definitions and classifications used in the core can rather easily be understood
by general users of NA, because they are in conformity with the international
standards, adapted to the specific situation of the country. The modules make it
possible to zoom in on a specific topic of research by using alternative defini-
tions and classifications. In this way the modular approach enables to illustrate
in detail various relationships between economic, social and technical phenom-
ena, whereas on the other hand the connection with the core system remains
preserved. An example is the relationship between economic developments as
registered in the national accounts, and total spending of time by a population.
An advantage is also that the description in a module must not inevitably be reg-
istered in monetary terms (for example, it is preferable to register unpaid labour
in terms of time spent). A difference between the modular system and the tra-
ditional system is that the core of the modular system may contain much more
side information.

The general idea of a building-block system with a core and satellite modules
has been incorporated in the most recent official guidelines of the United Nations
and of the European Union. For example, the United Nations guidelines contain
a separate chapter on satellite accounts, (to be) supplemented by various hand-
books, e.g. on environmental accounting (see Bos, 2006). In the Netherlands, the
CBS has been an early promoter of satellite accounts, and a number of modules
have been developed and made operational, namely (i) the relationship between
the environment and the national economy; this extensive environmental module
can also be used to illustrate trade-offs between production and environmental
degradation; (ii) human capital and research and development; (iii) social pro-
tection; (iv) non-market production; (v) the illegal economy; (vi) income and
expenditure by socio-economic group: the so called Social Accounting Matrix
(SAM) (see Keuning and De Ruijter, 1988; Keuning, 1991).

8.7.4. Flexibility and transaction costs

Today’s emphasis on the on the flexibility of the system of national accounts re-
flects the wishes of national accountants to make the system more user friendly
and to adapt to changes in the needs for data in economic analysis. In this
perspective there is an analogy to the argument by Mayer (this volume). He
describes the relationship between readers and authors of scientific articles as
a principal agent relationship. The author (as agent) has more information on
his/her research, but the description of the research should, in a concise way,
provide the essentials of the information so that the reader (as principal) can
make a good judgement on the value and importance of the research. Likewise
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the national accountant (as agent) should in the construction of the data provide
as much as possible the information which the user of the data (the principal)
needs. Tinbergen’s organisational set-up of economic policy preparation can,
along these lines, be seen as a multilayered principal agent relationship. The
CSO is the agent for the modelling and forecasting agency, and on their turn,
these model builders, model users and forecasters are the agents of the policy
makers who use these analyses in their debates and compromise agreements
on proper policy measures. A major advantage of such strict organisation and
separation of responsibilities is that it minimizes transaction costs in the pol-
icy discussions. In the context of the principal agent model these transaction
costs can be associated with bonding costs, monitoring costs and residual loss.
The more the national accountants are prepared and able to fulfil the wishes of
the users, and communicate the information contents of the data in an adequate
manner, the less effort the users of the data have to conduct their research in a
proper manner. In the multilayered principal agent model discussed above, all
experts involved in policy preparation – statisticians, model builders and model
users, policy makers – should familiarise themselves with the concepts used in
the analysis. Such common economic framework, where all “speak the same lan-
guage”, greatly contributes to the efficiency in the policy discussions. Of course,
as Den Butter and Morgan (1998) note, there is much interaction between pol-
icy makers, model builders and model users. So there is no one way stream of
information from agent to principal (or vice versa). In the context of the prin-
cipal agent model this interaction could be seen as a way of goal alignment,
so that the residual loss (agent has different goals than principal, or principal
has no clear goals given the external conditions) as part of transaction costs is
minimized.

8.8. The Use of NA Indicators in Welfare and Policy Analysis

The major aggregate economic indicators from the national accounts are na-
tional income and national product in their various definitions. These data are
often used as indicators for economic welfare and prosperity. There is ample
theoretical literature on the representation of economic welfare by national ac-
counting (e.g. Weitzman, 1976; Asheim, 1994). Asheim and Buchholz (2004)
developed a framework for national income accounting using a revealed wel-
fare approach that covers both the standard utilitarian and the maximin criteria
for welfare as special cases. They show that the basic welfare properties of na-
tional income accounting do not only cover the discounted utilitarian welfare
functions, but extend to a more general framework of welfare functions. In par-
ticular, under a wider range of circumstances, it holds that real NNP growth
indicates welfare improvement. Also from the empirical perspective develop-
ments in real national income (per capita) show a substantial correlation with
indicators which are specifically used as indicators of non material welfare,
such as child mortality, literacy, educational attainment and life expectancy. The
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Human Development Index (HDI), published annually by the UN, ranks na-
tions according to their citizens’ quality of life rather than strictly by a nation’s
traditional economic figures. The ranking of countries according to HDI in Ta-
ble 8.1 shows that the top of the list consists only of industrialised countries
with high national per capita incomes. The table uses the 2005 index which is
based on 2003 figures. Yet, the table also shows that within this group of in-
dustrialised countries, the ranking according to HDI and according to GDP per
capita may differ considerably. For instance, Australia and Sweden obtain much
better scores for HDI than for GDP per capita. The opposite holds for the United
States, and, surprisingly, for Ireland and Denmark.

However, from a more operational perspective there is much criticism and
discontent with national accounting data as indicators for welfare and specific
economic developments. For instance, Van Ark (1999) mentions a number of
problems when national account data are used for the analysis of long term eco-
nomic growth. In that case long and internationally comparable time series are
needed on (changes) in real GDP and its components. Van Ark’s first concern is
the weighting procedure. Changes in volume terms need necessarily be related
to a benchmark year with a given basket of goods and services. The weights
of the benchmark year are representative for the volume index or price index
used for the calculation of volume data over the whole time period. Ideally one
would wish to use the regular shifts in weights in benchmark years every five or
ten years, and some coordination amongst various countries would be highly de-
sirable. However, such data are not available and one has to rely at most on a few
benchmark years, and sometimes even on only one benchmark year. The second
concern by Van Ark is the estimation of intermediate inputs, capital and labour,
which are important ingredients of an empirical study of economic growth. With
the exception of manufacturing, which in many (trading) countries comprises
only a relative small part of total production, there is very little comprehen-
sive evidence on intermediate inputs in the production process before the era
of input–output tables. Historical sources on capital stock and capital services
are only available for a very limited number of countries and the consistency
of historical labour statistics with national accounts is weak in many cases. The
third concern of Van Ark is the treatment of services. The measurement of real
output in services remained somewhat neglected as much of the work of his-
torical accounts focused primarily on the commodity sectors of the economy.
Historical accounts often assume no productivity changes in services and rely
largely on changes in the wage bill of services. It appears that on the whole real
output growth in services is likely to be understated in most accounts, because
the no productivity growth assumption seems to be unrealistic. It may also imply
that productivity increases in services are attributed to industry and commodity
sectors.
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8.8.1. Prices and volumes

More in general one of the most troublesome parts of national accounting from
the perspective of the interpretation of the data is the separation of the observed
(changes in) nominal values in prices and volumes (for reviews see Diewert,
2004 and Reinsdorf, 2007, this volume). Index number theory gives statistical
agencies some guidance on what is the “right” theoretical index for determin-
ing prices of commodities and services and for aggregation of these prices. The
problem, however, is that there have been many alternative index number theo-
ries and that statistical agencies have been unable to agree on a single theory to
guide them in the preparation of their consumer price indices or their indices of
real output.

One of major operational problems is to adjust prices for the quality changes
in the attributes of goods and services. For instance, a price increase of a new
version of a car may come together with some improvements (higher engine
power, more luggage space, new safety provisions) as compared to the older
version of the same car. In that case a correction has to be made for these im-
provements which may imply that the corrected price change is much lower, or
even negative, as compared to the actual price change. These implicit changes
in the quality of goods and services in the basket of consumer goods used for
determining the consumer price index (CPI) has been a major concern for the
Boskin commission.3 When quality changes are not properly taken into con-
sideration, price indices overestimate inflation and hence underestimate volume
changes and productivity increases. A method of adjusting prices for quality
changes is the so called hedonic method where prices of goods and services are
regressed with (quality) changes in the attributes of those goods and services.
As yet one should be cautious in the use of hedonic regressions because many
issues have not yet been completely resolved. Moreover questions have been
raised about the usefulness of hedonic regressions as several alternative hedonic
regression methodologies proved to yield different empirical results. Therefore
Diewert (2004) notes that there is still some work to be done before a consensus
on “best practice” hedonic regression techniques emerges.

A related problem with respect to the construction of price indices is intro-
duction of new products. Here the solution is the reservation price methodology,
already suggested by Hicks, which has, however, not been adopted by any sta-
tistical agency as yet. Moreover, a final solution for the problem of separating
price and volume movements will never be possible as there are, especially in
services, categories of products where prices are difficult, or even impossible to
be observed. Diewert (2004) gives the following list: (i) unique products: that is,
in different periods, different products are produced; it prevents routine match-
ing of prices and is a pervasive problem in the measurement of the prices of

3 It is acknowledged that measuring inflation by the CPI using a basket of consumer commodities
is, strictly speaking, not part of national accounting.
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services; (ii) complex products: many service products are very complicated;
e.g., telephone service plans; (iii) tied products: many service products are bun-
dled together and offered as a single unit; e.g., newspapers, cablevision plans,
banking services packages; (iv) joint products; for this type of product, the value
depends partially on the characteristics of the purchaser; e.g., the value of a year
of education depends not only on the characteristics of the school and its teach-
ers but also on the social and genetic characteristics of the student population;
(v) marketing and advertising products: this class of service sector outputs is
dedicated to influencing or informing consumers about their tastes; a standard
economic paradigm for this type of product has not yet emerged; (vi) heavily
subsidized products: in the limit, subsidized products can be supplied to con-
sumers free of (explicit) charges: the question than is whether zero is the “right”
price for this type of product? (vii) financial products: what is the “correct”
real price of a household’s monetary deposits? (viii) products involving risk and
uncertainty: what is the correct pricing concept for gambling and insurance ex-
penditures? What is the correct price for a movie or a record original when it is
initially released?

Diewert also mentions the problem for statistical agencies of how to deal with
transfer prices when constructing import and export price indexes. A transfer
price is a border price set by a multinational firm that trades products between
subsidiaries in different countries. It is unlikely that currently reported transfer
prices represent “economic” prices that reflect the resource costs of the exports
or imports. As the proportion of international trade that is conducted between
subsidiaries of multinational firms is about 50%, it becomes an increasingly
difficult challenge for statistical agencies to produce price indexes for exports
and imports that are meaningful.

8.8.2. A more fundamental critique on national income as welfare
indicator

Beside the practical problems of measurement described above, more funda-
mental critique has been raised against the use of national income data from the
national accounts for economic welfare analysis. A recent example is van den
Bergh (2005) who advocates to completely abolish the use of GNP in economic
analysis because it provides ‘misleading information and does harm to welfare’.
He repeats a number of arguments from the literature such as the mixing up of
costs and benefits in national accounting, government expenditures connected
with government failure which reduce welfare instead of increasing it, welfare
reductions through market failures which national accounting does not take into
account, exclusion of the informal economy and household production from the
national accounts (although, as described above, provisions for this are taken in
the modules at the national accounts), the neglect of questions of income distri-
bution and loss of information in the aggregation process. A major argument for
Van den Bergh are the results of recent empirical studies on subjective welfare,
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which connect individual welfare with happiness. These studies show that some-
where between 1950 and 1970 the increase in individual welfare (or happiness)
has stopped, or even has changed into a negative trend in most industrialised
(OECD) countries, whereas there has been a steady and continuous growth of
real GNP. There seems to be a ‘decoupling’ between income and individual sub-
jective welfare at the level of about 15 000 to 20 000 dollars income per year
(see also Layard, 2006; Helliwell, 2006).

8.8.3. National accounts and the environment

In the assessment of the relationship between national accounting and welfare
much attention has been paid to environmental issues (see e.g. Mäler, 1991). A
major criticism on national income as welfare indicator is that it does not take
environmental degradation, or the use of the environment in production, into ac-
count. In principle two solutions have been proposed for this problem (see also
Den Butter and Verbruggen, 1994). The first solution is to consider environmen-
tal quality as a separate variable (or policy target) in the social welfare function.
In that case the argument is on the trade-off between environmental quality and
material welfare – as indicated by national income – given the other variables in
the welfare function. The problem in this case is how to determine the composite
indicator of environmental quality which reflects this respect of social welfare.
The second solution is to correct, in one way or another, GNP for environmental
change and arrive at a so called environmentally adjusted GNP: ‘green’ GNP,
eco-GNP or (environmentally) sustainable GNP. Now the problem is how to
make this correction which gives an implicit weight to the trade-off between
environmental quality and income in the welfare function. Such correction was,
by the way, already alluded to by, Clark (1937, p. 9) who indicated a possible
‘deduction for any demonstrable exhaustion of natural resources’.

Both methods obviously represent opponent strategies, which stem from dif-
ferent schools of economic thought. A correction of GNP implies a monetising
of environmental degradation (or upgrading) by the statistical agency that pub-
lishes these data. It affects the definition of national income and requires an
amendment of the theory of national accounting. On the other hand, the calcu-
lation of physical indicators leaves the final valuation of the trade-off between
economic growth and a clean environment to the users of the data. Then, it may
become a political rather than an economic valuation. However, both strategies
are not opponent in every respect. For the construction of composite indica-
tors of the state of the environment some valuation cannot be avoided as various
aspects of pollution are to be added up, whereas calculation of a green or sustain-
able GNP implicitly defines an overall indicator for the state of the environment,
namely the difference between the traditional GNP and the corrected figure for
GNP.

Physical indicators for the state of the environment can be constructed within
the framework of national accounts, namely by adding, by way of satellite
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account, an environmental module to the system (see the description of the
modular approach above). In the Netherlands the design for an environmental
module to the NA, which yields such satellite account, was made by De Boo
et al. (1991). Indicators for the state of the environment can be derived from
the physical accounts of this environmental module (see e.g. Keuning, 1993; De
Haan and Keuning, 1996). A related method is to combine various aspects of
environmental quality by using theme indicators. In their environmental indica-
tors for respectively the UK and the Netherlands, Hope et al. (1992) and Den
Butter and Van der Eyden (1998) have aggregated such theme indicators of en-
vironmental policy (such as greenhouse emissions, acidification, eutrophication,
etc.) to one overall index. For the aggregation weights of these indices evidence
from public opinion polls on the concern for environmental problems is used.
In this way preferences with respect to trade-offs between various aspects of the
environment are taken into account in the overall indicator.

The second way to incorporate the environment in national accounting is, as
mentioned before, to correct GNP for environmental damage. A strong propo-
nent of this methodology is one of the pioneers in environmental economics,
Hueting. In many publications he has proposed a practical methodology for
the calculation of an environmental correction, which is based on sustainabil-
ity norms (e.g. see Hueting et al., 1992). Hueting’s proposals for the correction
of GNP for environmental loss has been made operational for the Netherlands
by a research team at the Institute for Environmental Studies (IvM) of the
Vrije Universiteit chaired by Verbruggen (see Gerlagh et al., 2002). They use
a computable general equilibrium model calibrated to a benchmark year. The
equilibrium obtained with an unrestricted version of the model is compared
with the equilibrium obtained when the sustainability standards are included
as constraints in the model. GNP in this new equilibrium, which appears to be
(much) lower that the original equilibrium because all standards are binding, is
labelled “the sustainable national income according to Hueting” for the bench-
mark year. Clearly this calculation of the sustainable NI cannot be taken as a
simple statistic-technical correction in the system of the national accounts. That
is why, in Tinbergen’s set-up of separated responsibilities in economic policy
preparation, this model based calculation should not be conducted by the NSO
(CBS in this case) but by outsiders (in this case the IvM).

8.8.4. The road back from macro to micro?

The main skill of national accounting is to construct, in a consistent framework,
meaningful data at the macro level from individual observations. However, today
there is a tendency of data users to ask for more and more detail in the economic
indicators: the road back to the micro level. Below three examples are given of
this tendency.

Firstly there is a growing need for detailed information on various sectors of
the economy. The problem here is how to define the various sectors and how to
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allot individual observations at the firm level to these various sectoral accounts.
Sectoral disaggregation becomes even more difficult now that more and more
production processes are split up due to subcontracting and outsourcing. Even
at the plant level firms fulfil various different functions in the production chain
so that a functional approach would be better suited for the purposes of data
analysis than the present institutional approach in sectoral accounting. Think of
multinationals like Shell, Unilever and Philips, which are in the statistics part of
the industry sector, but which have in their home countries mainly an orches-
trating function where goods and services are produced all over the world at
lowest prices and sold at highest prices. Reductions of transaction costs (e.g.
by innovations in subcontracting and outsourcing, or by creating much value
by smart marketing) will, according to the sectoral accounting, result in pro-
ductivity gains of the industry. The economic interpretation of such productivity
increase is often that it is caused by product innovations, which is not true in this
case (see WRR, 2003). In fact, macroeconomic research in this field of produc-
tivity analysis and growth accounting increasingly use microeconomic data sets
with individual firm data which cover the whole economy. Modern computer
facilities and empirical methodology facilitates such analysis. NSOs are capable
and willing to make these data sets available for professional researchers.

The second example relates to the consumer price index (CPI). The CPI is
used for indexation of all kinds of economic quantities such as wages and pen-
sion income. Calculation of the CPI is based on an basket of goods and services
for the average of all individuals. However, the price inflation calculated by the
CPI differs for each individual and group. Frequently specific groups, such as
the elderly, are dissatisfied with indexation according to the average CPI when
they believe that inflation has been above average for their group. On that occa-
sion they ask the NSO to calculate a CPI for their specific group – obviously no
demand for a group CPI occurs when the inflation of that group is believed to
be below average. In principle NSOs are able to calculate a CPI for each indi-
vidual person – or to be more precise: for each individual basket of goods and
services. So they can comply with the demand for CPIs for various (sub)groups
of the population. The question is whether such proliferation of CPIs is wise
from both a political and a statistical viewpoint. From a political viewpoint it is
not wise because the use of these disaggregated CPIs will always be asymmet-
ric and biased to bring more inflation. From a statistical viewpoint, researchers
at the Netherlands CBS, Pannekoek and Schut (2003) have shown that it is not
wise either. They looked at price increases within and between four different
groups of income earners, namely (i) households with wage incomes (workers);
(ii) households with income from capital and own occupation (self employed);
(iii) households living on social security and assistance; (iv) household with old
age pensions (elderly). There appeared to be some persistent (but hardly signif-
icant) differences in inflation rates between these groups. However, differences
within these groups appeared to be much larger. Therefore the CBS decided, for
the time being, not to comply with the demand to publish regularly CPIs for
various groups.
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The third example is somewhat related to the previous one, albeit that the re-
sult here is a presentation of data at the micro level rather than (solely) at the
macro level. Traditionally the Netherlands CPB calculates short term prospects
for the purchasing power of Dutch households. The outcome of these calcu-
lations carry a heavy weight in the policy discussions in the Netherlands. The
effect of each policy measure on purchasing power is closely looked at by politi-
cians and the media, and often policy measures are very much fine tuned (and
therefore sometimes made too specific and complicated) in order to avoid losses
of purchasing power, especially for low income groups. As a matter of fact,
in the Netherlands it is the indicator which carries the largest weight in pol-
icy discussions on measures which affect the income distribution and in the
yearly negotiations on the government budget. The CPB used to present (and
still is presenting) the effects on purchasing power for the average of different
income groups: minimum wage earner; modal wage earner; two times modal
wage earner, etc. However it was perceived that these average outcomes at the
macro level did not provide a sufficient picture of the underlying effects at the
individual level. For instance, when the government declared that, on the basis of
the average outcomes, through a combination of policy measures, the purchas-
ing power of the whole population would increase, the media and politicians
of the opposition were always able to find an unfortunate and poor individual,
who suffered a substantial decrease in disposable income by the combination
of the policy measures. The Social Economic Council even published a lengthy
advice on how to present indicators of purchasing power. It made the CPB de-
cide to present the development of purchasing power in scatter diagrams, where
each point in the scatter represents a specific small groups of similar house-
holds. These scatters for six different categories of households are reproduced
in Fig. 8.1. They show for most households of all categories an increase of pur-
chasing power in 2006 as compared to 2005. Policy measures seem to be most
favourable to households with a single wage earner. Most households with two
wage earners will also see their purchasing power increase, but here there is a
considerable number of households that will not profit from the policy measures
(and in this case, start of the cyclical upturn). The same holds true for the other
categories of the figure. So the scatter diagram brings more sophistication to the
policy discussions than a simple presentation of averages at the macro level in
a table. Although the scatter diagrams may seem complicated and difficult to
understand at first sight, nowadays all participants in the social economic policy
debate in the Netherlands know perfectly well how to interpret this represen-
tation of the indicator. A disadvantage of this indicator is, like in the case of
aggregated purchasing power indicators, that it does not reveal the dynamics of
moving to another group (e.g. from unemployed to employed). Policy measures
often aim to give incentives for such transitions.
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Fig. 8.1: Purchasing power by household type, source of income and household income (changes
in %), 2006. Source CPB: Purchasing power in 2006 according to MEV 2007.

8.9. Conclusions

National accounts (NA) and the indicators derived from the system of national
accounts play a major role in economic policy preparation and in the political
debate on welfare and well being. For a structured discussion on these matters
it is essential that technical aspects of data construction are as much as possible
separated from the policy interpretation of these composed data which often has
a normative and political character. This separation of responsibilities leads to a
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considerable reduction of transaction costs in discussions on the effects of policy
measures as in that case the discussions are based on the same undisputed data
and use the same concepts known to all participants in the discussions.

This chapter lays much emphasis on the institutional set-up of (economic)
data collection at the macro level, with the Netherlands as an example. National
accounts’ data, and all other data which describe developments at the level of
the state (or parts thereof) have the character of a public good and should be
collected by an independent National Statistical Office. The first problem is an
aggregation problem: how to come from individual data at the micro level to
aggregate data at the macro level so that, as much as possible, normative el-
ements are excluded from the aggregation process. National accountants have
solved this problem by being very precise about the definitions of the various
concepts of the NA. Consistency is obtained by an accounting framework of
double (or even triple) bookkeeping where total income should be equal to to-
tal expenditure. International comparability of the data is obtained by following
international guidelines.

The second problem, however, is that of interpretation of indicators derived
from the NA. Here different users of the data may warrant different definitions
in order to let the data conform to the specific concept used in the analysis.
The chapter extensively discusses the concept of welfare, but similar arguments
hold for the discussions on poverty: NSOs collect data on income distribution,
but the transformation of these data into one of the many indices of poverty
contains normative elements. So, besides internal consistency and international
comparability, flexibility is another criterion for NA. As yet this criterion of
flexibility does not imply that national accountants and NSOs themselves are
to publish various concepts according to alternative definitions which have a
specific normative interpretation. They should allow others, by kind of open
standards, to make such calculations. Satellite accounts are useful in that respect.

On several occasions interpretation of indicators at the macro level is trou-
blesome anyhow. The discussion on purchasing power in the Netherlands is a
clear example. In such cases, presentation of micro data in other forms than as
aggregate indicators can be a solution. This road back from macro to micro is
an apparent trend in economic analysis. Therefore, making relevant sets with in-
dividual data available for professional users has become an important task for
NSOs.
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Abstract
The Representational Theory of Measurement conceives measurement as es-
tablishing homomorphisms from empirical relational structures into numerical
relation structures, called models. Models function as measuring instruments by
transferring observations of an economic system into quantitative facts about
that system. These facts are evaluated by their accuracy. Accuracy is achieved
by calibration. For calibration standards are needed. Then two strategies can be
distinguished. One aims at estimating the invariant (structural) equations of the
system. The other strategy is to use known stable facts about the system to ad-
just the model parameters. For this latter strategy, the requirement of models as
homomorphic mappings is not required anymore.

9.1. The Representational Theory of Measurement

In the formal representational theory (see Chapter 2), measurement is defined
set-theoretically as:

Given empirical relations R1, . . . ,Rn on a set of extra-mathematical entities
Y and numerical relations P1, . . . ,Pn on the set of numbers N (in general a
subset of the set of real numbers), a function φ from Y into N takes each Ri into
Pi , i = 1, . . . , n, provided that the elements Y1, Y2, . . . in Y stand in relation Ri

if and only if the corresponding numbers φ(Y1),φ(Y2), . . . stand in relation Pi .

In other words, measurement is conceived of as establishing homomorphisms
from empirical relational structures � = 〈Y,R1, . . . ,Rm〉 into numerical re-
lational structures N = 〈N,P1, . . . ,Pm〉. We say then that the ordered triple
〈�,N,φ〉 is a scale. Figure 9.1 shows a diagrammatic representation of this
set-theoretical definition of measurement.

A numerical relational structure representing an empirical relational structure
is also called a model. For this reason RTM is sometimes called the Model The-
ory of Measurement.

The problem of this representational view on measurement is that when the re-
quirements for assessing the representations or models are not further qualified,

Measurement in Economics: A Handbook © 2007 Elsevier Inc.
Marcel Boumans (Editor) All rights reserved
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Fig. 9.1: Representational theory of measurement.

it can easily led to an operationalist interpretation. This operationalist interpre-
tation is best illustrated by Stevens’ dictum: Measurement is ‘the assignment
of numerals to objects or events according to rule – any rule’ (Stevens, 1959,
p. 19). As a result, measurement according to this interpretation does not inform
us about empirical phenomena. To avoid this, a model should meet certain cri-
teria to be considered homomorphic to an empirical relational structure. This is
the so-called representation problem.

9.2. Data and Phenomena

The objects of economic measurements have a different ontology than the ob-
jects of classical theories of measurement. Measurement is assigning numbers
to properties. In the classical view of measurement, which arose in the physical
sciences and received its fullest exposition in the works of Campbell (1928),
these numbers represents properties of things. Measurement in the social sci-
ences does not necessarily have this thing-relatedness. It is not only properties
of ‘things’ that are measured but also those of other kinds of phenomena: states,
events, and processes.

To arrive at an account of measurement that acknowledges this different on-
tology, Woodward’s (1989) distinction between phenomena and data is helpful.
According to Woodward, phenomena are relatively stable and general features
of the world and therefore suited as objects of explanation and prediction. Data,
that is, the observations playing the role of evidence for claims about phenom-
ena, on the other hand involve observational mistakes, are idiosyncratic and
reflect the operation of many different causal factors and are therefore unsuited
for any systematic and generalizing treatment. Theories are not about observa-
tions – particulars – but about phenomena – universals.

Woodward characterizes the contrast between data and phenomena in three
ways. In the first place, the difference between data and phenomena can be indi-
cated in terms of the notions of error applicable to each. In the case of data the
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notion of error involves observational mistakes, while in the case of phenomena
one worries whether one is detecting a real fact rather than an artifact produced
by the peculiarities of one’s instruments or detection procedures. A second con-
trast between data and phenomena is that phenomena are more ‘widespread’
and less idiosyncratic, less closely tied to the details of a particular instrument
or detection procedure. A third way of thinking about the contrast between data
and phenomena is that scientific investigation is typically carried on in a noisy
environment, an environment in which the observations reflect the operation of
many different causal factors.

The problem of detecting a phenomenon is the problem of detecting a signal in this sea of
noise, of identifying a relatively stable and invariant pattern of some simplicity and generality
with recurrent features – a pattern which is not just an artifact of the particular detection tech-
niques we employ or the local environment in which we operate. Problems of experimental
design, of controlling for bias or error, of selecting appropriate techniques for measurement
and of data analysis are, in effect, problems of tuning, of learning how to separate signal and
noise in a reliable way (Woodward, 1989, pp. 396–397).

Underlying the contrast between data and phenomena is the idea that theories
do not explain data, which typically will reflect the presence of a great deal of
noise. Rather, an investigator first subjects the data to analysis and processing,
or alters the experimental design or detection technique, in an effort to separate
out the phenomenon of interest from extraneous background factors. Although
phenomena are investigated by using observed data, they themselves are in gen-
eral not directly observable. To ‘see’ them we need instruments, and to obtain
numerical facts about the phenomena in particular we need measuring instru-
ments. In social science, we do not have physical instruments, like thermometers
or galvanometer. Mathematical models function as measuring instruments by
transforming sets of observations into a measurement result.

Theories are incomplete with respect to the quantitative facts about phenom-
ena. Though theories explain phenomena, they often (particularly in economics)
do not have built-in application rules for mathematizing the phenomena. More-
over, theories do not have built-in rules for measuring the phenomena. For ex-
ample, theories tell us that metals melt at a certain temperature, but not at which
temperature (Woodward’s example); or they tell us that capitalist economies give
rise to business cycles, but not the duration of recovery. In practice, by mediating
between theories and the data, models may overcome this dual incompleteness
of theories. As a result, models that function as measuring instruments medi-
ate between theory and data by transferring observations into quantitative facts
about the phenomenon under investigation:

Data → Model → Facts about the phenomenon.

Because facts about phenomena are not directly measured but must be in-
ferred from the observed data, we need to consider the reliability of the data.
These considerations cannot be derived from theory but are based on a closer
investigation of the experimental design, the equipment used, and need a statisti-
cal underpinning. This message was well laid out for econometrics by Haavelmo
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(1944, p. 7): ‘The data [the economist] actually obtains are, first of all, nearly
always blurred by some plain errors of measurement, that is, by certain extra
“facts” which he did not intend to “explain” by his theory’.

If we look at the measuring practices in economics and econometrics, we
see that their aims can be formulated as: Measurements are results of model-
ing efforts for their goal of obtaining quantitative information about economic
phenomena. To give an account of these economic measurement practices, the
subsequent sections will explore in which directions the representational theory
has to be extended. This extension will be based on accounts that deal explicitly
with measuring instruments and measurement errors.

9.3. Instrument Measurement

The danger of operationalism, that is, lack of empirical significance in RTM
is discussed by Heidelberger (1994a, 1994b), who argues for giving the repre-
sentational theory a ‘correlative interpretation’, based on Fechner’s principle of
mental measurement.

The disadvantage of a general RTM is that it is much too liberal. As Hei-
delberger argues, we could not make any difference between a theoretical de-
termination of the value of a theoretical quantity and the actual measurement.
A correlative interpretation does not have this disadvantage, because it refers
to the handling of a measuring instrument. This interpretation of the represen-
tational theory of measurement is based on Fechner’s correlational theory of
measurement. Fechner had argued that

the measurement of any attribute Y generally presupposes a second, directly observable at-
tribute X and a measurement apparatus A that can represent variable values of Y in correlation
to values of X. The correlation is such that when the states of A are arranged in the order of
Y they are also arranged in the order of X. The different values of X are defined by an in-
tersubjective, determinate, and repeatable calibration of A. They do not have to be measured
on their part. The function that describes the correlation between Y and X relative to A (un-
derlying the measurement of Y by X in A) is precisely what Fechner called the measurement
formula. Normally, we try to construct (or find) a measurement apparatus which realizes a 1:1
correlation between the values of Y and the values of X so that we can take the values of X

as a direct representation of the value of Y (Heidelberger, 1993, p. 146).1

To illustrate this, let us consider an example of temperature measurement. We
can measure temperature, Y , by constructing a thermometer, A, that contains a
mercury column which length, X, is correlated with temperature: X = F(Y ).
The measurement formula, the function describing the correlation between the
values of Y and X, x = f (y), is determined by choosing the shape of the func-
tion, f , e.g. linear, and by calibration. For example, the temperature of boiling
water is fixed at 100, and of ice water at 0.

1 I have replaced the symbols Q and R in the original text by the symbols Y and X, respectively,
to make the discussion of the measurement literature uniform.



Invariance and Calibration 235

The correlative interpretation of measurement implies that the scales of mea-
surement are a specific form of indirect scales, namely so-called associative
scales. This terminology is from Ellis (1968). To understand what these scales
entail, we first have a closer look at direct measurement; thereupon we will dis-
cuss Ellis’ account of indirect measurements and finally explicate instrument
measurement.

A direct measurement scale for a class of measurands is one based entirely
on relations among that class and not involving the use of measurements of any
other class. This type of scale is implied by the definition of the representational
theory of measurement above, see Fig. 9.1, and is also called a fundamental
scale. Direct measurement assumes direct observability – human perception
without the aid of any instrument – of the measurand.

However, there are properties, like temperature, for which it is not possible
or convenient to construct satisfactory direct scales of measurement. Scales for
the measurement of such properties can, however, be constructed, based on the
relation of that property, Y , and quantities, Xi (i = 1, . . . ,m), with which it is
associated and for which measurement scales have been defined. Such scales are
termed indirect. Associative measurement depends on there being some quantity
X associated with property Y to be measured, such that when things are arranged
in the order of Y , under specific conditions, they are also arranged in the order
of X. This association is indicated by F in Fig. 9.2. An associative scale for the
measurement of Y is then defined by taking h(φ(X)) as the measure of Y , where
φ(X) is the measure of X on some previously defined scale, and h is any strictly
monotonic increasing function. Associative measurement can be pictured as an
extended version of direct measurement, see Fig. 9.2.

We have derived measurement if there exists an empirical law h = h(φ1(X
1),

. . . , φm(Xm)) and if it is the case that whenever things are ordered in the
order of Y , they are also arranged in the order of h. Then we can define
h(φ1(X

1), . . . , φm(Xm)) as a derived scale for the measurement of Y .
The measurement problem then is the choice of the associated property X and

the choice of h, which Ellis following Mach called the ‘choice of principle of
correlation’.2 The central idea of associative measurement, which stood in the
center of Mach’s philosophy of science, is that ‘in measuring any attribute we
always have to take into account its empirical lawful relation to (at least) another
attribute. The distinction between fundamental [read: direct] and derived [read:
indirect] measurement, at least in a relevant epistemological sense, is illusory’
(Heidelberger, 1994b, p. 11).

In addition to direct (fundamental) and indirect (associative and derived),
a third type, called instrument measurement, may be noted. This kind of mea-
surement, involving an instrument, was also mentioned by Suppes and Zinnes

2 Ellis’ account of associative measurement is based on Mach’s (1968) chapter ‘Kritik des Tem-
peraturbegriffes’ from his book Die Principien der Wärmelehre (Leipizg, 1896). This chapter was
translated into English and added to Ellis’ (1968) book as Appendix I.
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Fig. 9.2: Associative measurement.

(1963), where it was called ‘pointer measurement’, but its discussion disap-
peared in later accounts of RTM. Generally, by instrument measurement we
mean a numerical assignment based on the direct readings of some validated
instrument. A measuring instrument is validated if it has been shown to yield
numerical values that correspond to those of some numerical assignments under
certain standard conditions. This is also called calibration, which in metrology
is defines as: ‘set of operations that establish, under specified conditions, the
relationship between values of quantities indicated by a measuring instrument
or measuring system, or values represented by a material measure or a refer-
ence material, and the corresponding values realized by standards’ (IVM, 1993,
p. 48). To construct a measuring instrument, it is generally necessary to utilize
some established empirical law or association.

One difference between Ellis’ associative measurement and Heidelberger’s
correlative interpretation of measurement, that is instrument measurement, is
that, according to Heidelberger, the mapping of X into numbers, φ(X), is not the
result of (direct) measurement but is obtained by calibration (see Heidelberger’s
quote above). To determine the scale of the thermometer no prior measurement
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of the expansion of the mercury column is required; by convention it is decided
in how many equal parts the interval between two fixed points (melting point
and boiling point) should be divided.

Another difference between both accounts is that Heidelberger’s account in-
volves the crucial role of measuring devices to maintain the association between
Y and X. To represent the correlative interpretation, Fig. 9.3 is an expansion of
Fig. 9.2 by adding the measurement apparatus A to maintain the association F

between the observations X ∈ X and the not-directly-observable states of the
measurand Y ∈ Y. A correlative scale for the measurement of Y is then defined
by taking

x = φ(X) = φ
(
F(Y,OC)

)
(9.1)

where φ(X) is the measure of X on some previously defined scale. The cor-
relation F also involves other influences indicated by OC. OC, an acronym of

Fig. 9.3: Instrument measurement.
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‘other circumstances’, is a collective noun of all other quantities that might have
an influence on X.

The central idea of instrument measurement is that in measuring any at-
tribute Y we always have to take into account its empirical lawful relation to (at
least) another attribute X. To establish this relation we need a measurement ap-
paratus or experimental arrangement, A. In other words, a measuring instrument
had to function as a nomological machine. This idea is based on Cartwright’s ac-
count that a law of nature – necessary regular association between properties –
hold only relative to the successful repeated operation of a ‘nomological ma-
chine’, which she defines as:

a fixed (enough) arrangement of components, or factors with stable (enough) capacities that
in the right sort of stable (enough) environment will, with repeated operation, give rise to the
kind of regular behavior that we represent in our scientific laws (Cartwright, 1999, p. 50).

It shows why empirical lawful relations on which measurement is based and
measuring instruments are two sides of the same coin. The measuring instrument
must function as a nomological machine to fulfill its task. This interconnection
is affirmed by Ellis’ definition of lawful relation as an arrangement under spe-
cific conditions and Finkelstein’s observation that the ‘law of correlation’ is ‘not
infrequently less well established and less general, in the sense that it may be the
feature of specially experimental apparatus and conditions’ (Finkelstein, 1975,
p. 108).

The correlative interpretation of RTM gives back to measurement theory the
idea that it concerns concrete measurement procedures and devices, taking place
in the domain of the physical states as a result of an interaction between X and Y.

As a consequence of this interpretation of measurement, Xi (i = 1, . . . , k) are
repeated observations of Y to be used to determine its value. Variations in these
observations are assumed to arise because influence quantities – other than the
measurand itself of course – that can affect the observation, and are indicated
by OC, might vary. In other words, each observation involves an observational
error, Ei :

Xi = F(Y,OCi ) = F(Y,0) + Ei (i = 1, . . . , k). (9.2)

This error term, representing noise, reflects the operation of many different,
sometimes unknown, influences. Now, accuracy of the observation is obtained
by reducing the noise as much as possible. One way of obtaining accuracy is
by taking care that the other influence quantities, indicated by OC, are held as
constant as possible, in other words, that ceteris paribus conditions are imposed.
To show this idea, Eq. (9.2) is rewritten to express how Y and possible other
circumstances (OC) influence the observations:

�X = �F(Y,OC) = FY · �Y + FOC · �OC = FY · �Y + �E. (9.3)

Thus, imposing ceteris paribus conditions, �OC ≈ 0, reduces noise �E ≈ 0.
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Equation (9.3) shows that accuracy can be obtained ‘in the right sort of stable
(enough) environment’ by imposing ceteris paribus conditions (cp), which also
might include even stronger ceteris absentibus conditions: OC ≈ 0. As a result
the remaining factor Y can be varied in a systematic way to gain knowledge
about the relation between Y and X:

FY = �Xcp

�Y
. (9.4)

If the ratio of the variation of Xcp and the variation of Y appears to be stable,
the correlation is an invariant relationship and can thus be used for measurement
aims.

So, an observation in a controlled experiment is an accurate measurement be-
cause of the stabilization of background noise (�E = 0 → E is stable: E = S).

xcp = φ(Xcp) = φ
(
F(Y,S)

)
. (9.5)

Knowledge about stable conditions S is used for calibrating the instrument.
However, both kinds of conditions imply (almost) full control of the circum-

stances and (almost) complete knowledge about all potential influence quan-
tities. Besides uncertainty about the observations, in both natural and social
science, due to inadequate knowledge about the environmental conditions OC,
there is an additional problem of control in economics. Fortunately, a measur-
ing instrument can also be designed, fabricated or used that the influences of all
these uncontrollable circumstances are negligible. Using expression (9.3), this
means that it is designed and constructed such that FOC ≈ 0. In other words,
a measuring device should be constructed and used such that it is sensitive to
changes in Y and at the same time insensitive to changes in the other circum-
stances (OC), which is therefore called here the ceteris neglectis condition. In
economics, the environment often cannot be furnished for measurement pur-
poses, so, a ‘natural’ nomological machine A have to be looked for satisfying
ceteris neglectis requirements. If we have a system fulfilling the ceteris neglectis
condition, we do not have to worry about the extent to which the other con-
ditions are changing. They do not have to be controlled as is assumed by the
conventional ceteris paribus requirements. Whenever we cannot control the phe-
nomenon’s environment, we have to look for a ‘natural’ system that can function
as a measuring instrument. Therefore it is only required that it obeys ceteris ne-
glectis requirements.

Observation with a natural system A that we cannot control – so-called pas-
sive observation – does not, however, solve the problem of achieving accuracy.
The remaining problem is that it is not possible to identify the reason for a dis-
turbing influence, say Z, being negligible, FZ ·�Z ≈ 0. We cannot distinguish,
‘identify’, whether its potential influence is very small, FZ ≈ 0, or whether the
factual variation of this quantity over the period under consideration is too small,
�Z ≈ 0. The variation of Z is determined by other relationships within the eco-
nomic system. In some cases, a virtually dormant quantity may become active
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because of changes in the economic system elsewhere. Each found empirical
relationship is a representation of a specific data set. So, for each data set it is
not clear whether potential influences are negligible or only dormant.

In practice, the difficulty in economic research does not lie in establishing
simple relations, but rather in the fact that the empirically found relations, de-
rived from observations over certain time periods, are still simpler than we
expect them to be from theory, so that we are thereby led to throw away el-
ements of a theory that would be sufficient to explain apparent ‘breaks in
structure’ later. This is what Haavelmo (1944) called the problem of autonomy.
Some of the empirical found relations have very little ‘autonomy’ because their
existence depends upon the simultaneous fulfillment of a great many other rela-
tions. Autonomous relations are those relations that could be expected to have
a great degree of invariance with respect to various changes in the economic
system.

Confronted with the inability of control, social scientists deal with the prob-
lem of invariance and accuracy by using models as virtual laboratories. Morgan
(2003) discusses the differences between ‘material experiments’ and ‘mathe-
matical models as experiments’. In a mathematical model, control is not materi-
alized but assumed. As a result, accuracy has to be obtained in a different way.
Accuracy is dealt with by the strategy of comprehensiveness and it works as fol-
lows (see Sutton, 2000): when a relationship appears to be inaccurate, this is an
indication that a potential factor is omitted. As long as the resulting relationship
is inaccurate, potential relevant factors should be added. The expectation is that
this strategy will result in the fulfillment of two requirements:

(1) the resulting model captures a complete list of factors that exert large and
systematic influences;

(2) all remaining influences can be treated as a small noise component.

The problem of passive observations is solved by accumulation of data sets:
the expectation is that we converge bit by bit to a closer approximation to the
complete model, as all the most important factors reveal their influence. This
strategy however is not applicable in cases when there are influences that we
cannot measure, proxy, or control for, but which exert a large and systematic
influence on the outcomes.

To connect this strategy with measurement theory, let us assume a set of ob-
servations

xi = f (y) + εi (i = 1, . . . , k) (9.6)

where f is a representation of the correlation F and εi is a symbolic represen-
tation of the observational errors Ei . To transform the set of observations into a
measurement result the specification of a model is needed. So, to measure Y a
model M has to be specified of which the values of the observations xi functions
as input and the output estimate ŷ as measurement result. If – and in economics
this is often the case – data indicate that M does not model the measurand to
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Fig. 9.4: Model measurement.

the degree imposed by the required accuracy of the measurement result, addi-
tional input quantities must be included in M to eliminate this inaccuracy. This
may require introducing input quantities to reflect incomplete knowledge of a
phenomenon that affects the measurand. This means that the model has to incor-
porate a representation of the full nomological machine A, denoted by a, that is
should represent both properties of the phenomenon to be measured as well as
the background conditions influencing the observations. To take account of this
aspect of measurement, Fig. 9.3 has to be further expanded as shown in Fig. 9.4.

When one has to deal with a natural measuring system A that can only be
observed passively, the measurement procedure is first to infer from the obser-
vations Xi nature’s design of this system to determine next the value of the
measurand Y . So, first an adequate representation a of system A has to be speci-
fied before we can estimate the value of Y . A measurement result is thus given by

ŷ = M(xi;a). (9.7)
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If one substitute Eq. (9.6) into model M , one can derive that, assuming that
M is a linear operator (usually the case):

ŷ = M
(
f (y) + εi;a

)= My(y;a) + Mε(εi;a). (9.8)

A necessary condition for the measurement of Y is that a model M must in-
volve a theory of the measurand as part of My , and a theory of the error term as
part of Mε . To obtain a reliable measurement result with an immaterial mathe-
matical model, the model parameters have to be adjusted in a specific way. So,
tuning, that is separating signal and noise, is done by adjusting the parameter
values.

9.4. Reliable Measurement Results

A true signal, that is the true value of Y , however, can only be obtained by a
perfect measurement, and so is by nature indeterminate. The reliability of the
model’s outputs cannot be determined in relation to a true but unknown signal,
and thus depends on other aspects of the model’s performance. To describe the
performance of a model that functions as a measuring instrument the term ac-
curacy is important. In metrology, accuracy is defined as a statement about the
closeness of the mean taken from the scatter of the measurements to the value
declared as the standard (Sydenham, 1979, p. 48).

The procedure to obtain accuracy is calibration, which is the establishment
of the relationship between values indicated by a measuring instrument and the
corresponding values realized by standards. This means, however, that accuracy
can only be assessed in terms of a standard. In this context, a standard is a rep-
resentation (model ) of the properties of the phenomenon as they appear under
well-defined conditions.

To discuss this problem in more detail, we split the measurement error in three
parts:

ε̂ = ŷ − y = Mε + (My − S) + (S − y) (9.9)

where S represents the standard. The error term Mε is reduced as much as pos-
sible by reducing the spread of the error terms, in other words by aiming at
precision. (Mx − S) is the part of the error term that is reduced by calibration.
So, both errors terms can be dealt with by mechanical procedures. However, the
reduction of the last term (S −y) can only dealt with by involving theoretical as-
sumptions about the phenomenon and independent empirical studies. Note that
the value y is not known. Often the term (S − y) is reduced by building as ac-
curate representations a of the economic system as possible. This third step is
called standardization.
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9.5. Economic Modeling

An often-used method of evaluation in economics to verify whether the model
of the economic system is accurate is to test it on its predictive performance.
The modeling procedure is to add to the model a variable, suggested by theory,
each time the model predictions can be improved. So, in this above-mentioned
strategy of comprehensiveness, two models, I and II, are compared with each
other, and the one that provides the best predictions is chosen.

In economics, these representations are often assumed to be linear operators.
From now on, therefore, a denotes a matrix: a = (αij ), where αij are the matrix
parameters, and x and y denote vectors. The subscript t denotes time:

Model I: x̂I
it+1 =

k∑

j=1

αI
ij xjt (i: 1, . . . , k), (9.10)

Model II: x̂II
it+1 =

k+1∑

j=1

αII
ij xjt (i: 1, . . . , k + 1). (9.11)

If ‖xit+1 − x̂II
it+1‖ < ‖xit+1 − x̂I

it+1‖ for the majority of these error terms
(i: 1, . . . , k) and where ‖ · ‖ is a statistically defined norm, choose model II.
Note that for each additional quantity the model is enlarged with an extra (inde-
pendent) equation. As a result, the prediction errors are assumed to be reduced
by taking into account more and more potential influence quantities. As long as
all potential influences are indirectly measurable by the observational proxies,
there is no problem, in principle. As data sets accumulate, it might reasonably
be expected that the model converge bit by bit to a more accurate representa-
tion of the economic system, as all the most important x’s reveal their potential
influence. But what if there are quantities that cannot be (indirectly) measured,
and which exert a large and systematic influence on outcomes? Then their pres-
ence will induce a bias in the measurement. This doubt about this strategy was
enforced by empirical research that showed large-scale models failed to be bet-
ter predicting devices than very simple low-order autoregressive (AR) models,
or simple autoregressive moving average (ARMA) models, which are used to
study time series.

In interpreting these results, Milton Friedman (1951) suggested that the pro-
gramme of building comprehensive large-scale models is probably faulty and
needs reformulation. For him, the ability to predict is the quality of a model
that should be evaluated not its realisticness. This methodological standpoint is
spelled out in the among economists well-known article ‘The Methodology of
Positive Economics’ (Friedman, 1951). The strategy he suggests is to keep the
model a as small as possible by avoiding to model the ‘other circumstances’ OC
and instead to search for those systems for which a is an accurate model (tested
by its predictive power). In other words, try to decide by empirical research for
which systems the other circumstances are negligible (FOC ≈ 0). Enlargement
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of the model is only justified if it is required by the phenomenon to be measured.
The relevant question to ask about a model is not whether it is descriptively real-
istic but whether it is a sufficiently good approximation for the purpose at hand.
In this kind of empirical research, the strategy is to start with simple models and
to investigate for which domain these models are accurate descriptions.

A very influential paper in macroeconomics (Lucas, 1976) showed that the es-
timated so-called structural parameters (αij ) achieved by the above strategy are
not invariant under changes of policy rules. The problem is that the model equa-
tions in economics are often representations of behavioral relationships. Lucas
has emphasized that economic agents form expectations of the future and that
these expectations play a crucial role in the economy because they influence the
behavior of economic actors. People’s expectations depend on many things, in-
cluding the economic policies being pursued by governments and central banks.
Thus, estimating the effect of a policy change requires knowing how people’s
expectations will respond to policy changes. Lucas has argued that the above es-
timation methods do not sufficiently take into account the influence of changing
expectations on the estimated parameter values. Lucas assumed that economic
agents have ‘rational expectations’, that is the expectations based on all infor-
mation available at time t and they know the model, a, which they use to form
these expectations.

Policy-invariant parameters should be obtained in an alternative way. Either
they could be supplied from micro-econometric studies, accounting identities,
or institutional facts, or they are chosen to secure a good match between a se-
lected set of the characteristics of the actual observed time-series and those of
the simulated model output. This latter method is a method of estimation which
entails simulating a model with ranges of parameters and selecting from these
ranges those elements that best match properties of the simulated data with those
of the observed time series. An often-used criterion is to measure the difference
between some empirical moments computed on the observed variables xt and
its simulated counterpart x̂t . Let m(x) be the vector of various sample moments,
and m(x) could include the sample means and variances of a selected set of
observable variables. m(x̂) is the vector of simulated moments, that is, the mo-
ments of the simulations x̂(a). Then the estimation of the parameters is based
on:

aMSM = arg min
a

∥∥m(x) − m
(
x̂(a)

)∥∥. (9.12)

These alternative ways of obtaining parameter values is in economics labeled
as calibration. Important is that whatever the source is, the facts being used for
calibration should be as stable as possible. However, one should note that in
social science, standards or constants do not exist in the sense as they do in
natural science: lesser universal, more local and of shorter duration. In general,
calibration in economics works as follows: use stable facts about a phenomenon
to adjust the model parameters.
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As a result of Lucas’ critique on structural-equations estimations, he in-
troduced a new program for economics, labeled as ‘general-equilibrium eco-
nomics’, in which it is no longer required for representations being homo-
morphic to an empirical relational structure. One should not aim at models as
‘accurate descriptive representations of reality’:

A ‘theory’ is not a collection of assertions about the behavior of the actual economy but
rather an explicit set of instructions for building a parallel or analogue system – a mechanical,
imitation economy. A ‘good’ model, from this point of view, will not be exactly more ‘real’
than a poor one, but will provide better imitations. Of course, what one means by a ‘better
imitation’ will depend on the particular questions to which one wishes answers (Lucas, 1980,
pp. 696–697).

This approach was based on Simon’s (1969) account of artifacts, which he
defines as

a meeting point – an ‘interface’ in today’s terms – between an ‘inner’ environment, the sub-
stance and organization of the artifact itself, and an ‘outer’ environment, the surroundings in
which it operates. If the inner environment is appropriate to the outer environment, or vice
versa, the artifact will serve its intended purpose (Simon, 1969, p. 7).

The advantage of factoring an artificial system into goals, outer environment,
and inner environment is that we can predict behavior from knowledge of the
system’s goals and its outer environment, with only minimal assumptions about
the inner environment. It appears that different inner environments accomplish
identical goals in similar outer environments, such as weight-driven clocks and
spring-driven clocks. A second advantage is that, in many cases, whether a
particular system will achieve a particular goal depends on only a few character-
istics of the outer environment, and not on the detail of that environment, which
might lead to simple models. A model is useful only if it foregoes descriptive
realism and selects limited features of reality to reproduce.

Lucas’ program was most explicitly implemented by Kydland and Prescott
(1996). According to them, any economic ‘computational experiment’ involves
five major steps:

1. Pose a question: The purpose of a computational experiment is to derive a
quantitative answer to some well-posed question.

2. Use well-tested theory: Needed is a theory that has been tested through use
and found to provide reliable answers to a class of questions. A theory is not
a set of assertions about the actual economy, rather, following Lucas (1980),
defined to be an explicit set of instructions for building a mechanical imita-
tion system to answer a question.

3. Construct a model economy: An abstraction can be judged only relative to
some given question. The features of a given model may be appropriate for
some question (or class of questions) but not for others.

4. Calibrate the model economy: In a sense, model economies, like thermome-
ters, are measuring devices. Generally, some economic questions have known
answers, and the model should give an approximately correct answer to them
if we are to have any confidence in the answer given to the question with un-
known answer. Thus, data are used to calibrate the model economy so that it
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mimics the world as closely as possible along a limited but clearly specified,
number of dimensions.

5. Run the experiment.

Kydland and Prescott’s specific kind of assessment is similar to Lucas’ idea
of testing, although Lucas didn’t call it calibration. To test models as ‘useful
imitations of reality’ we should subject them to shocks ‘for which we are fairly
certain how actual economies, or parts of economies, would react. The more
dimensions on which the model mimics the answer actual economies give to
simple questions, the more we trust its answer to harder questions’ (Lucas, 1980,
pp. 696–697). This kind of testing is similar to calibration as defined by Franklin
(1997, p. 31): ‘the use of a surrogate signal to standardize an instrument. If an
apparatus reproduces known phenomena, then we legitimately strengthen our
belief that the apparatus is working properly and that the experimental results
produced with that apparatus are reliable’.

The economic questions, for which we have known answers, or, the standard
facts with which the model is calibrated, were most explicitly given by Cooley
and Prescott (1995). They describe calibration as a selection of the parameters
values for the model economy so that it mimics the actual economy on dimen-
sions associated with long-term growth by setting these values equal to certain
‘more or less constant’ ratios. These ratios were the so-called ‘stylized facts’
of economic growth, ‘striking empirical regularities both over time and across
countries’, the ‘benchmarks of the theory of economic growth’.

What we have seen above is that in modern macroeconomics, the assessment
of models as measuring instruments is not based on the evaluation of the ho-
momorphic correspondence between the empirical relational structure and the
numerical relational structure. The assessment of these models is more like
what is called validation in systems engineering. Validity of a model is seen
as ‘usefulness with respect to some purpose’. Barlas (1996) notes that for an
exploration of the notion validation it is crucial to make a distinction between
white-box models and black-box models. In black-box models, what matters is
the output behavior of the model. The model is assessed to be valid if its out-
put matches the ‘real’ output within some specified range of accuracy, without
any questioning of the validity of the individual relationships that exists in the
model. White-box models, on the contrary, are statements as to how real systems
actually operate in some aspects. Generating an accurate output behavior is not
sufficient for model validity; the validity of the internal structure of the model is
crucial too. A white-box model must not only reproduce the behavior of a real
system, but also explain how the behavior is generated.

Barlas (1996) discusses three stages of model validation: ‘direct structural
tests’, ‘structure-oriented behavior tests’ and ‘behavior pattern tests’. For white
models, all three stages are equally important, for black box models only the last
stage matters. Barlas emphasizes the special importance of structure-oriented
behavior tests: these are strong behavior tests that can provide information on
potential structure flaws. The information, however, provided by these tests does
not give any direct access to the structure, in contrast to the direct structure tests.
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Though Barlas emphasizes that structure-oriented behavior tests are designed
to evaluate the validity of the model structure, his usage of the notion of structure
needs some further qualification. The way in which he describes and discusses
these tests show that his notion of structure is not limited to homomorphic rep-
resentations of real system’s structures; it also includes other kinds of arrange-
ments. Structure-oriented behavior tests are also ‘strong’ for the validation of
modular-designed models, and for these models the term structure refers to
the way the modules are assembled. A module is a self-contained component
with a standard interface to their components within a system. Modular design
simplifies final assembly because there are fewer modules than subcomponents
and because standard interfaces typically are designed for ease of fit (see also
den Butter’s discussion of flexibility in Chapter 8). Each module can be tested
prior to assembly and, in the field, repairs can be made by replacing defective
modules. Custom systems can be realized by different combinations of standard
components; existing systems can be upgraded with improved modules; and new
systems can be realized by new combinations of existing and improved modules
(White, 1999, p. 475). These models – in line with the labeling of the other two
types of models – could be called gray-box models and should pass the structure-
oriented behavior tests and behavior pattern tests. Gray-box models are validated
by the kinds of tests that in the general-equilibrium literature all fall under the
general heading of ‘calibration’, where it is defined generally enough to cover
all tests which Barlas (1996) called structure-oriented behavior tests. To achieve
accurate measurement results, the models that are used should be calibrated and
need not to be accurate representations of the relevant economic systems.
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Abstract
Measurement forms the substance of econometrics. This chapter outlines the
history of econometrics from a measurement perspective – how have measure-
ment errors been dealt with and how, from a methodological standpoint, did
econometrics evolve so as to represent theory more adequately in relation to
data? The evolution is organised in terms of four phases: ‘theory and measure-
ment’, ‘measurement and theory’, ‘measurement with theory’ and ‘measurement
without theory’. The question of how measurement research has helped in the
advancement of knowledge advance is discussed in the light of this history.

10.1. Prologue

Frisch (1933) defined econometrics as ‘a unification of the theoretical-quan-
titative and the empirical-quantitative approach to economic problems . . . by
constructive and rigorous thinking similar to that which has come to dominate
in the natural sciences’. Measurement has occupied a central place in economet-
rics and the econometric approach to measurement attempted to emulate that of
physics.1 However, the road to achieving adequate econometric measurements
has been bumpy and tortuous, as economics, obliged in the main to rely in non-
controllable data, is distinctly different from physics (see e.g. Boumans, 2005).
Questions and problems include: What to measure? By what instruments? How
to evaluate the measured products, particularly against observed data as well as
available theories?

We chart the evolution of econometrics to demonstrate how the above ques-
tions have been tackled by econometricians. In other words, we offer a brief

1 There was a strong sense to make ‘modern economics’ ‘scientific’, as apposed to humanity, e.g.
see Schumpeter (1933) and Mirowski (1989).

Measurement in Economics: A Handbook © 2007 Elsevier Inc.
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historical narrative organised with respect to a measurement perspective. It is not
our intention to provide a comprehensive history of econometrics. Rather, our
objective is to develop an account of the way in which measurement research
in econometrics has helped knowledge advancement. As such, the account is
presented from a largely retrospective angle.

There is no unanimous approach to measurement and representation in econo-
metrics. From the measurement viewpoint, we can categorise the evolution of
econometrics into three approaches:

• the orthodox structural approach which closely follows the measurement ap-
proach of hard science;

• the reformist approach which places measurement in a soft system but does
not diverge methodologically from the scientific approach; and

• the heterodox approach which we discuss as ‘measurement without theory’.

An initial distinction is between data measurement and theory measurement.
The fundamental difference between data measurement and theory measurement
is that the former purports to make fact-like statements as to how the world is
while the latter is concerned with the quantification of counterfactual statements
about how the world might otherwise be. Although we acknowledge that data
are always measured relative to and within a theoretical framework, data mea-
surement takes these theoretical constructs as given while theory measurement
moves those issues to the foreground and takes the data measurement instru-
ments as being both reliable and neutral with respect to competing theories.
This allows us to rely on the modern distinction between economic statistics
(data measurement) and econometrics (theory measurement) and focus only on
the latter. Within an econometric context, measurement theory focuses on the
identification of those measurable attributes of the observed phenomena which
reflect economically interesting (in the sense of lawful and invariant) properties
of the phenomena (e.g. see Luce et al., 1990) and also Chapter 6 by Backhouse
and Chapter 9 by Boumans in this volume. Data measurement is the subject of
Chapter 8.

Both econometric theory and practice have adapted over time in the face of
problems with earlier theory and practice (such as residual serial correlation and
poor forecasting performance), new questions (for example, those generated by
the Rational Expectations hypothesis) and fresh challenges (such as the avail-
ability of large data sets and fast computers). Some of these demands forced
econometricians to re-hone their tools to be able to respond in the new situa-
tions – tool adaptation. In other instances, it was not the tools that needed to be
adapted but rather the models on which the tools were employed. It was model
adaptation which forced the most dramatic changes in the econometric approach
to measurement.
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10.2. Economic Theory and Measurement2

Economists have been concerned with quantification from at least the nineteenth
century. Morgan’s (1990) history of econometrics starts with W.S. Jevons’ at-
tempts to relate business cycles to sunspots (Jevons, 1884). Jevons (1871) was
also the first economist to ‘fit’ a demand equation although Morgan (1990) at-
tributes the first empirical demand function to C. Davenant (1699) at the end of
the seventeenth century. Klein (2001) documents measurement of cyclical phe-
nomena commencing with W. Playfair’s studies of the rise and decline of nations
published during the Napoleonic War (Playfair, 1801, 1805). Hoover and Dow-
ell (2001) discuss the history of measurement of the general price level starting
from a digression in Adam Smith’s Wealth of Nations (Smith, 1776).

More focused empirical studies occurred during the first three decades of the
twentieth century. These studies explored various ways of characterising cer-
tain economic phenomena, e.g. the demand for a certain product, or its price
movement, or the cyclical movement of a composite price index by means
of mathematical/statistical measures which would represent certain regular at-
tribute of the phenomena concerned, e.g. see Morgan (1990), Gilbert and Qin
(2006) and the Chapter by Chao in this volume. These studies demonstrate a
concerted endeavour to transform economics into a scientific discipline through
the development of precise and quantifiable measures for the loose and unquan-
tified concepts and ideas widely used in traditional economic discussions.

This broad conception of the role of econometrics continued to be reflected in
textbooks written in the first two post-war decades in which econometrics was
equated to empirical economics, with emphasis on the measurability in eco-
nomic relationships. Klein (1974, p. 1) commences the second edition of his
1952 textbook by stating ‘Measurement in economics is the subject matter of
this volume’. In Klein (1962, p. 1) he says ‘The main objective of econometrics
is to give empirical content to a priori reasoning in econometrics’. This view
of econometrics, which encompassed specification issues and issues of mea-
surement as well as statistical estimation, lagged formal developments in the
statistical theory of econometrics.

The formalisation of econometrics was rooted directly in the ‘structural
method’ proposed by Frisch in the late 1930s (1937, 1938). Much of the for-
malisation was stimulated by the famous Keynes–Tinbergen debate, see Hendry
and Morgan (1995, Part VI), and resulted in econometrics becoming a dis-
tinct sub-discipline of economics. The essential groundwork of the formalisation
comprised the detailed theoretical scheme laid out by Haavelmo (1944) on the
basis of probability theory and the work of the Cowles Commission (CC) which
elaborated technical aspects of Haavelmo’s scheme, see Koopmans (1950) and
Hood and Koopmans (1953).3

2 This is from the title of the Cowles Commission twenty year research report, see Christ (1952).
3 For more detailed historical description, see Qin (1993) and Gilbert and Qin (2006).
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The Haavelmo-CC edifice defines the core of orthodox econometrics. It is of-
ten referred to as the structural approach and may be summarised from several
perspectives. At a broad methodological level, it attempted to systematically
bridge theory and empirical research in a logically rigorous manner. Specifi-
cally, the CC research principle was to make all assumptions explicit in order to
facilitate discovery of problems and revision of the assumptions in the light of
problems that might subsequently emerge. The assumptions should be as con-
sistent as possible with knowledge of human behaviour and are classified into
two types: the first are those assumptions which are statistically testable and the
second are provisional working hypotheses (see Marschak, 1946).

At the level of the economics discipline, demarcation between the economists
and the econometricians assigned the job of formulating theoretical models to
the economists while the econometricians were to specify and estimate structural
models deriving from the economists’ theoretical models. This demarcation is
explicit, for example, in Malinvaud (1964) who states (p. vii) ‘Econometrics may
be broadly interpreted to include every application of mathematics or of statisti-
cal methods to the study of economic phenomena. . . . we shall adopt a narrower
interpretation and define the aim of econometrics to be the empirical determina-
tion of economic laws’. Johnston (1963, p. 3) offers an even clearer distinction:
‘Economic theory consists of the study of . . . relations which are supposed to de-
scribe the functioning of . . . an economic system. The task of econometric work
is to estimate these relationships statistically . . .’. For both Malinvaud and John-
ston, the measurement problem in econometrics was equated with the statistical
estimation of parameters of law-like relationships.

At the technical level, the CC researchers formalised econometric procedure
on the assumption that they were starting from known and accepted theoretical
models relayed to them by economists. The modelling procedure was formu-
lated in terms of a simultaneous-equations model (SEM), which was regarded
as the most general (linear) theoretical model form since it encompasses a dy-
namically extended Walrasian system:

A0xt =
p∑

i=1

Aixt−i + εt . (10.2.1)

The econometric procedure comprised model specification, identification and
estimation. Specification amounted to adoption of the normal distribution for
εt following the forceful arguments given by Haavelmo (1944). Identification
amounted to formalisation of the conditions under which the structural para-
meters of interest, crucially those found in the (generally) non-diagonal matrix
A0, are uniquely estimable.4 The issue was analysed via a transformation of the

4 Note that ‘identification’ carried far wider connotation prior to this formalisation, e.g. see Hendry
and Morgan (1989) and Qin (1989).
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structural model (10.2.1) into what is now known as the ‘reduced-form’:

xt =
p∑

i=1

A−1
0 Aixt−i + A−1

0 εt =
p∑

i=1

�ixt−i + ut . (10.2.2)

Identification requires that structural parameters Ai should be implied uniquely
once the non-structural parameters, �i , are estimated from data. The role of
structural estimation was to deal with the nonlinear nature of the transforma-
tion of �i → Ai . The principle method adopted was maximum likelihood (ML)
estimation. Ideally, the full-information maximum likelihood (FIML) estima-
tor was to be used but a computationally more convenient method, known as
limited-information maximum likelihood (LIML) estimator, was developed.

From the viewpoint of measurement research, the Haavelmo-CC formali-
sation standardised econometrics by firmly accepting the probabilistic model
formulation and the application of statistical theory in relation to these prob-
abilistic models as the instruments both for measuring parameters defined in
terms of economic relationships which had been postulated a priori and also as
the criteria for assessing such measurements. The normality assumption for εt
was the crucial link in this process since the statistically optimal properties of
the ML estimators relies on this assumption. This formalisation was believed
to guarantee delivery of the most reliable estimates of structural parameters of
interest, in a manner comparable to that which natural scientists, in particular
physicists, would aim to attain.

The identification issue occupied a central position in the research agenda
of structural econometrics. The research touched, and even went beyond, the
demarcation boundary dividing economics and econometrics. The CC formu-
lation of the identification problem categorised econometric models into two
types – structural and non-structural (reduced-form) models – and similarly pa-
rameters were either structural parameters, which quantify causal behavioural
relations, or non-structural parameters, which describe the statistical features of
data samples. This demarcation implicitly established the evaluation criterion
which came to underlie standard econometrics: optimal statistical measurement
of structural models. However, the very fact that the most popular type of eco-
nomic model, the SEM, is in general unidentifiable forced structural econometri-
cians to deal with an additional model specification issue: ‘when is an equation
system complete for statistical purposes?’ (in Koopmans, 1950; see also Koop-
mans and Reiersøl, 1950), which essentially makes the starting point of the
structural approach untenable from a practical standpoint.5 Moreover, identi-
fication is conditioned upon the causal formulation of the model, specifically
the ‘causal ordering’ of the variables in the SEM. Consequently, research in
identification inevitably led the CC group into the territory of structural model

5 The CC group was conscious of the problem and ascribed it to the lack of good theoretical
models, see Koopmans (1957) and also Gilbert and Qin (2006).
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formulation, which they had initially wished to take as given (see e.g. Simon,
1953).

10.3. Measurement and Economic Theory

The CC’s work set the scientific standard for econometric research. Their work
was both further developed (tool adaptation) and subjected to criticism in the
decades that followed.

The controversy between maximum likelihood (ML) and least squares (LS)
estimation methods illustrates the limits of tool adaptation. The argument is re-
lated primarily to the validity of the simultaneous representation of economic
interdependence, a model formulation issue (e.g. see Wold, 1954, 1960, 1964).
The judgement or evaluation related to actual model performance, e.g. measured
accuracy of modelled variables against actual values. The reversal out of ML es-
timation methods back to LS estimation methods provided a clear illustration of
the practical limits of tools rather than model adaptation. The Klein-Goldberger
model (1955) provided the test-bed (see Christ, 1960 with Waugh, 1961), offer-
ing the final judgement in favour of LS methods.

This was one of a number of debates which suggested that there was relatively
little to be gained from more sophisticated estimation methods. An overriding
concern which came to be felt among researchers was the need for statistical
assessment of model validity. This amounted to a shift in focus from the mea-
surement of structural parameters within a given model to examination of the
validity if the model itself. It led to the development of a variety of specification
methods and test statistics for empirical models.

One important area of research related to the examination of the classical
assumptions with regard to the error term, as these sustain statistical optimal-
ity of the chosen estimators.6 Applied research, in particular consumer demand
studies, exposed a common problem: residual serial correlation (e.g. see Orcutt,
1948). From that starting point, subsequent research took two different direc-
tions. The first was to search for more sophisticated estimators on the basis of
an acceptance of a more complicated error structure but remaining within the
originally postulated structural model. Thus in the case of residual serial cor-
relation, we have the Cochrane–Orcutt procedure (1949) while in the case of
residual heteroscedasticity, we have feasible general least squares (FGLS) both
of which involve two stage estimation procedures. These were instances of tool
adaptation. The other direction was to modify the model in such a way as to
permit estimation on the basis of the classical assumptions (e.g. Brown’s 1952
introduction of partial adjustment model into the consumption function, an early
instance of model adaptation).

In later decades, it was model adaptation which came to dominate, especially
in the field of time-series econometrics. Statistically, this was facilitated by the

6 For a historical account of the error term in econometrics, see Qin and Gilbert (2001).
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ease of transition between model-based tool adaptation and tool-based model
adaptation. Methodologically, it was due to a lack of theoretical models which
clearly met identification criteria as well as to the increasing dissatisfaction with
the performance of estimated structural models, despite the improved statistical
rigour of the estimators of the supposedly structural parameters.

The accumulating scepticism about, and distrust of, the CC structural ap-
proach stimulated a move towards data-instigated model search. Liu (1960)
advocated the use of reduced-form models for forecasting. Nelson (1972) used
simple autoregressive-integrated-moving average (ARIMA) models of the Box–
Jenkins (1970) type to compare the forecasting performance of the structural
model jointly developed by the Federal Reserve Board, MIT and the Univer-
sity of Pennsylvania. He found that the ARIMA time-series models enjoyed a
superior forecasting performance. Reviews of the then existing structural macro-
econometric models threw up evidence of unsatisfactory forecasts and these
were taken as a strong indicator of internal model weakness (see e.g. Evans,
1966; Griliches, 1968; Gordon, 1970).

In terms of tool making, the changed focus on model modification led to
development of statistical measures for the evaluation of model performance,
rather than directly for parameter measurement. Examples are diagnostic tests,
such as the DW test (Durbin and Watson, 1950, 1951) and the Chow test (Chow,
1960). In acknowledgement of the recurrent need for model re-specification,
Theil (1957, 1958) incorporated the then available test measures into a step-
by-step model misspecification analysis procedure, further loosening the grip of
economic theory over the measurement procedures. This movement was later
reinforced by the Granger causality (Granger, 1969) and the Hausman misspeci-
fication tests (Hausman, 1978), both of which allowed model specification to be
determined by statistical fit instead of conformity with theory.

The traffic was two-way and developments in macroeconomics were in part
a response to the erosion of the foundations of macroeconometrics in economic
theory. Theorists devoted substantial effort to the development of models which
would combine a firm basis in individual optimising behaviour with the flexi-
bility of the data-instigated macroeconometric models. This culminated in the
rational expectations (RE) movement of the 1970s. At this point, it became
apparent that it was no longer practically tenable to carry out econometric mod-
elling under the strict CC assumption of a known structural model. The practical
problem centred on finding the best possible model rather than on measuring the
parameters of a pre-acknowledged model.

10.4. Measurement with Economic Theory

This section sets out how the second generation of econometricians put model
search as the focus of their research.

The RE movement, and especially the component associated with the Lu-
cas’ (1976) critique, posed a profound methodological challenge to then current
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approaches to macroeconometrics. Because expectations of endogenous vari-
ables are not directly observed by the econometrician but must be inferred from
forecasts generated from the solved model, RE forced econometric researchers
to abandon the pretence that true models were known up to the values of the
structural parameters. The focus became that of dealing squarely and system-
atically with the issue of ‘model choice’. ‘Test, test, test’ became the golden
rule of macroeconometric research (Hendry, 1980). Three prominent schools of
methodology emerged from this trend: the Bayesian approach, the VAR (vector
autoregression) approach and the so-called LSE (London School of Economics)
approach.

Despite some vocal disagreements, the three approaches shared considerable
common ground: in particular the perception that there are serious limitations
on the extent to which a priori knowledge is useful in assisting model search.
In the macroeconomic context, no matter what level of generality claimed by
the theory, this is seldom sufficient to provide econometrician with adequate
guidance to fit actual data. Hence, a combination of judgement and computer-
based statistical tools tend to play the decisive role during model search at the
expense of theory.

The Bayesian approach to econometrics was initially elaborated to enhance
the internal consistency of the CC paradigm (see Qin, 1996). The focus was
on the treatment of unknown parameters, which the Bayesians believed should
be regarded as random rather than deterministic. However, early results showed
that ‘for many (perhaps most) statistical problems which arise in practice the
difference between Bayesian methods and traditional methods is too small to
worry about and that when the two methods differ it is usually a result of making
strongly different assumptions about the problem’ (Rothenberg, 1971, p. 195).
This may be crudely parsed as ‘economic specification is more important than
statistical estimation’. Over time, these disappointments induced a change in
direction on the part of the Bayesian camp culminating in Leamer’s influential
book Specification Searches (1978). The book opened up a new direction for
Bayesian econometrics and gained it the reputation of being an independent
approach to econometric methodology rivalling the CC paradigm – see Pagan
(1987).

From the measurement standpoint, Leamer’s manifesto may be seen as an at-
tempt to use Bayesian priors as the means to explicitly express the uncertainty
involved in apparently arbitrary ‘data mining’ practice, i.e. the ad hoc and seem-
ingly personal methods for dealing with the ‘model choice’ issue in applied
contexts. Leamer offered a broad four-way classification of model specification
search activities – interpretation search, hypothesis testing search, simplification
search and post-data model construction (i.e. hypothesis-seeking search). The
classification and the Bayesian representation of these searches helped expose
and alert modellers to the pitfalls and arbitrariness in these practices. But Leamer
was unable to offer a systematic alternative strategy for model specification
search. Instead, he developed the quasi-Bayesian method of ‘extreme-bounds
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analysis’ as a measure of model and/or parameter fragility resulting from speci-
fication uncertainty.

Extreme bounds analysis was a retreat from the model specification issue
back into parameter measurement, an admission that specification uncertainty
severely limits the precision to which economists can measure structural para-
meters together with a claim that traditional approaches exaggerate the precision
they obtain, see also Chapter 12 by Magnus in this volume. The Bayesian ap-
proach was unable to offer a systematic solution to specification uncertainty
because, in the absence of theoretically given structural parameters, the Bayesian
lacked a well-defined domain over which to define the prior distribution.

The VAR approach was the outcome of fusion of the CC tradition and time
series statistical methods developed during the 1960s and 1970s, with the RE
movement acting as midwife (see Qin, 2006). In spite of the provocative state-
ments made in Sims’ (1980) paper, now commonly regarded as the method-
ological manifesto of the VAR approach, the approach essentially offered the
first systematic solution to the issue of ‘model choice’ which had become en-
demic in macroeconometrics. The result, contrary to Sims’ declared objectives,
was to restore the credibility of structural models.

The VAR approach consisted of four steps. The initial step was to set up an
unrestricted (reduced-form) VAR model which could adequately characterise
the dynamic features of the data. The second step was to simplify the model
(by reducing lag lengths, where possible) while the third was to structure the
original VAR through the imposition of a causal ordering. In both cases, the
objective was identification of a data-coherent structural VAR (SVAR). The sec-
ond and third steps were preconditions for the final step – transformation of the
simplified VAR model into the moving average (MA) representation since, with
this ordering in place, the model could then be used for policy simulations (see
Sargent and Sims, 1977; Sims, 1980; Sargent, 1981).

The second and third of these steps are those to which VAR econometricians
have devoted most of their efforts, placing the issue of structural identification
at the top of their research agenda. This reflects maintenance of the CC tradition
of developing structural models for policy analysis while the dynamic simplifi-
cation component was inherited from the time series focus on forecasting.

Relative to the CC tradition, the connotation of identification was enhanced
in the VAR approach to include the notion of identification taken from Box and
Jenkins (1970), see Section 10.5. It indicates a partial shift of methodological
focus towards data and away from theory. However, VAR theorists continued
to maintain faith in structural models, as best seen from Sims’ view of ‘ideal
model’, which is one which ‘contains a fully explicit formal behavioural inter-
pretation of all parameters’, ‘connects to the data in detail’, ‘takes account of the
range of uncertainty about the behavioural hypotheses invoked’ and ‘includes a
believable probability model that can be used to evaluate the plausibility, given
the data, of various behavioural interpretations’ (1989). Moreover, the model re-
mains within the SEM framework, virtually the same as in the CC tradition (see
Qin, 2006).
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In retrospect, the so-called LSE approach to macroeconometrics may be seen
as a pragmatic variant of VAR modelling. That claim may seem odd in view of
the LSE focus on single equation models whereas the VAR approach is to model
the entire closed system. However, a single equation can always be thought of
as simply the first equation of a system, and often modellers in the LSE tra-
dition embedded equations of interest in just such a system. Further, because
VAR modellers impose a diagonal A0 matrix on the SEM and LSE modellers
have typically opted for conditional representations, the choice of single equa-
tion versus system modelling does not have any implications for estimation.
Both approaches make heavy use of simplification searches, but these are more
structured in the VAR context. Both rely on post-estimation diagnostic testing
to gauge model validity. From a practical standpoint, LSE modellers have of-
ten regarded VAR models as over-parameterised and likely to be vulnerable to
structural breaks, while VAR modellers have questioned the LSE type of mod-
els as what they see to be arbitrary (i.e. completely data-based) specification
simplifications.

Following Sargan (1964), LSE theorists have often adopted so-called error
correction specifications, on the intuition that any well-behaved system would
require either or both level and integral controls – see Phillips (1954, 1957),
Gilbert (1989) and Hendry (1995). That belief was reinforced by practical ex-
perience of use of macroeconometric models in forecasting and policy simu-
lation but lacked any clear theoretical underpinning. This was to come from
the ‘discovery’ of cointegration which rationalised error correction through the
Granger Representation Theorem (Engle and Granger, 1987). Johansen (1988)
was responsible for the system analysis of cointegration which turned out to fit
naturally into a VAR framework. This opened the door to the development of
structural VARs involving cointegrated variables. Both LSE and VAR modellers
agreed that equilibrium structure is embodied in Johansens’s αβ ′ matrix. At this
point, the differences between the LSE and VAR modellers were reduced to one
of style and not substance.

10.5. Measurement without Theory7

Data exploration has always been a strong objective in econometric research. It
has never been the case that research has been constrained to areas where eco-
nomic theories are established already waiting for conformational measurement.

Most of the early atheoretical econometric modelling activities were clus-
tered in empirical business cycle studies. The Harvard barometer was one of
the earliest leading indicators of this type of data-instigated research, see Per-
sons (1916, 1919).8 Persons’ approach was greatly enhanced in the voluminous
business cycle studies carried out by Burns and Mitchell (1946) of the National

7 This is the title of Koopmans (1947).
8 See also Gilbert and Qin (2006) for a summary of the data-instigated researches in the 1930s.
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Bureau of Economic Research (NBER). However, their work induced strong
methodological criticisms from the CC group as ‘measurement without theory’,
see Koopmans (1947) and also Vining (1949). The CC structural approach be-
came dominant among newly trained modellers from the 1950s, following the
example of the Klein–Goldberger model (1955).

Despite this, exploratory econometric studies have by no means receded,
albeit away from the mainstream. The lack of adequate economic theory pro-
vided modellers with the incentive to look for parametric measures of statistical
models and attempt, where possible, to provide an interpretable justification of
these in terms of ‘common sense’ economics. Structural models based on the
economic optimisation rationale were never regarded as a prerequisite for mod-
elling, nor as delivering the final judgement on model validity. Research in this
tradition has been fostered by steady advances in statistics, increasing data avail-
ability and the rapid progress of computing technology. In much applied work
in government, finance and industry, it was also driven by the requirement for
usable results, see also Chapter 13 by Mayer in this volume.

Time-series analysis is the area in which so-called data-mining activities have
been most contentious. An interesting example is the use of spectral analysis.
This could be traced back to the uses of periodograms and Fourier frequency
analysis for the business cycle studies in the early 1900s, e.g. Moore (1914) and
Beveridge (1921). However, the frequency approach soon fell from favour and
was widely seen as not useful for the analysis of economic time series, e.g. see
Greenstein (1935), before econometrics settled on the time-domain representa-
tion models in the 1940s. However, the approach was revitalised by Morgenstern
(1961), who delegated the research to Granger, see Phillips (1997). Thanks to
J.W. Tukey’s work on cross-spectral analysis to enable frequency analysis to
multivariate cases, see Brillinger (2002), spectral analysis was re-established as
a powerful device for economic time-series analysis by Granger and Hatanaka
(1964). Notably, the spectral perspective assisted Granger in the derivation of
his well-known causality test (1969), which not only relies totally on posterior
data information but also abandons the simultaneity connotation of causality
which has been a cornerstone of the CC structural model approach. The Granger-
causality test was used as a key tool in the simplification process of RE models
in the form of VARs (see e.g. Sent, 1998, Chapter 3).

As discussed in Sections 10.3 and 10.4, the time-series approach made a
comeback into applied macroeconometric modelling during the 1970s under the
impact of the Box–Jenkins’ methodology (1970). A striking feature of the Box–
Jenkins’ approach is their concept of identification, which differs significantly
from the concept of the CC’s paradigm described in Section 10.2. Instead of
seeking unique estimates of theoretical parameters, identification in the Box–
Jenkins’ framework filters out data features to assist model reduction, a process
which aims to obtain a parsimonious model through iterative use of identifica-
tion, estimation and diagnostic testing. As the final model is for forecasting, data
coherence becomes the primary criterion for model acceptance, rather than the-
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ory confirmation. The impact of this methodology is clearly discernible in the
development of the VAR and the LSE schools described in the previous section.

The increasing appreciation of data-coherent modelling approaches is also
embodied in the revival of Burns–Mitchell empiricist pursuit of business cycles
since the late 1980s. The revival was mainly boosted by the use of dynamic fac-
tor models (DFM) pioneered by Stock and Watson (1989, 1991, 1993), although
the idea of applying dynamic factor analysis to macroeconometric models had
been put forward by Sargent and Sims (1977) over a decade earlier (see also
Diebond and Rudebusch, 1996).9 The powerful device of DFMs has helped re-
vitalise Persons’ leading indicator models for forecasting over recent years, e.g.
see Banerjee et al. (2003), Camba-Mendez and Kapetanios (2004) and Forni et
al. (2005).

The area where measurement without theory has been most prominent
is time-series finance, e.g. see Bollerslev et al. (1992). Two prominent de-
vices developed are the generalised autoregressive conditional heteroscedas-
ticity (GARCH) models, initiated by Engle (1982), and the stochastic regime-
switching threshold models, developed originally by Hamilton (1989, 1990).
Interestingly, both were initially devised for charactering macroeconomic data.
Engle’s original application was to a relatively low frequency macroeconomic
process (UK inflation), whereas Hamilton proposed the regime-switching model
in the context of business cycle research. The GARCH class of models, and its
many variants, has been most widely applied to high-frequency financial time se-
ries to capture their volatility movement, i.e. the skedastic (or second moment)
process. Regime-switching models are used to handle asymmetric conditional
states of modelled variables. Typically, they depend on different sets of condi-
tional variables which determine ‘good’ and ‘bad’ states of the system (boom
versus recession, bull versus bear markets).

Both the GARCH and regime-switching devices were primarily data-insti-
gated and have encouraged econometricians to move further away from the CC’s
paradigm by referring as ‘structural’ what the parameters of these time-series
models measure, in spite of the considerable gap in the behavioural connotation
between these models and underlying theory. The GARCH class of models has
always been open to the objection that, by contrast with stochastic volatility (SV)
models, the GARCH skedastic process lacks an independent stochastic specifi-
cation. The preference for GARCH over SV derived from its greater tractability
and was despite the fact that SV models are more directly compatible with fi-
nance theory – see Hull and White (1987).10 Switching models are one instance
of a much wider class of models which respond in a data-instigated manner to
nonlinearities in economic responses – see Granger and Teräsvirta (1993). So
long as econometricians restricted attention to linear models, slope parameters

9 The method of factor analysis in a cross-sectional setting was employed in economics as early as
the 1940s (see e.g. Waugh, 1942 and Stone, 1947).
10 Shephard (2006) provides a history of SV models.
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could be interpreted as (or in terms of) the first order derivatives of the sup-
posedly underlying theoretical models. By contrast, parameters often lack clear
interpretation in nonlinear models and the model must be interpreted through
simulation.

10.6. Epilogue: Measurement and Knowledge Advance

The status of models, and hence structure, in philosophy of science, and specif-
ically in the methodology of economics, remains controversial. Even if in some
of the natural sciences, parameters may be seen as natural constants relating to
universal regularities, it makes more sense in economics to see parameters as
objects defined in relation to models, and not in relation either to theories or to
the world itself. Econometric measurement becomes co-extensive with model
specification and estimation.

The standard view is that models provide a means of interpreting theory into
the world. Cartwright (1983) regards models as explications of theories. For
Hausman (1992), models are definitional – they say nothing directly about the
world, but may have reference to the world. Further, a theory may assert that a
particular model does make such reference. These views are broadly in line with
the CC conception of econometrics in which models were taken as given by the
theorists.

Taking models as given proved unproductive in practice. Estimated models
often performed poorly, and more sophisticated estimation (measurement) meth-
ods failed to give much improvement; identification problems were often acute;
and the availability of richer data sets produced increasing evidence of misspec-
ification in ‘off the shelf’ economic models. The econometrician’s task shifted
from model estimation to adaptation. This view was captured by Morgan (1988)
who saw empirical models as intermediating theory and the world. For her, the
task facing the economist was to find a satisfactory empirical model from the
large number of possible models each of which would be more or less closely
related to economic theory.

The alternative view of the relationship between theory and models is less
linear, even messier. Morrison (1999) asserts that models are autonomous, and
may draw from more than one theory or even from observed regularities rather
than theories. Boumans (1999), who discusses business cycle theory, also views
models as eclectic, ‘integrating’ (Boumans’ term) elements from different the-
ories. In terms of our earlier discussion, this view is more in line with the
data-instigated approach to economic modelling which derives from the tradi-
tions of time series statistics. In this tradition, economic theory is often loosely
related to the estimated statistical model, and provides a guide for interpretation
of the estimates rather than a basis for the specification itself.

Wherein lies the measurement problem in econometrics? Econometricians in
the CC tradition saw themselves as estimating parameters of well-defined struc-
tural models. These structural parameters were often required to be invariant to
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changes in other parts of the system, such as those induced by policy change.
Many of these parameters were first order partial derivatives. But the interpreta-
tion of any partial derivative depends on the ceteris paribus condition – what is
being held constant? The answer depends on the entire model specification. If
we follow Boumans (1999) and Morrison (1999) in regarding models as being
theoretically eclectic, parameters must relate to models and not theories. The
same conclusion follows from Morgan’s views of the multiplicity of possible
empirical models.

Subsequently, with the fading faith in the existence of a unique correct model
for any specific economic structure, measurement shifted away from parame-
ters, which are accidental to model specification, and towards responses, and in
particular in time series contexts, to dynamic responses. The VAR emphasis, for
example, is often on estimated impulse response functions, rather than the pa-
rameters of a particular VAR specification. Similarly, the main interest in error
correction specifications is often in the characterisation of the system equilib-
rium which will be a function of several parameters.

Models may be more or less firmly grounded in theory. The evolution of
econometrics may be seen as a continuous effort to pursue best possible statisti-
cal measurements for both ‘principle models’ and ‘phenomenological models’,
to use the model classification suggested by Boniolo (2004).11 The former are
assiduously sought by the orthodox structural econometricians. This probably
results from four major attractions of a ‘principle’ model, see De Leeuw (1990),
namely it serves as an efficient medium of cumulative knowledge; it facilitates
interpolation, extrapolation and prediction; it allows for deductive reasoning to
derive not so apparent consequence; it enables the distilling out of stable and
regular information.

Many classes of models in economic theory are deliberately and profoundly
unrealistic. This is true, for example, of general equilibrium theory and much of
growth theory. Such models make possible ‘conceptual, logical and mathemati-
cal exploration’ of the model premises. These models are useful in so far as they
‘increase our conceptual resources’ (Hausman, 1992, p. 77) and, we would add,
that they allow us to recognise similar aspects of the model behaviour which cor-
respond to real world economic phenomena. In a sense, these models substitute
for experiments which are seldom possible for entire economies.

Econometrics claims to be solely occupied with models which are realistic
in the sense that they account statistically for behaviour as represented by data
sets. For econometricians, the data are the world. Following Haavelmo’s (1944)
manifesto, Neyman–Pearson testing methodology became the established proce-
dure for establishing congruency of models with data. But the claim to realism
is problematic in that models can at best offer partial accounts of any set of
phenomena. ‘The striving for too much realism in a model may be an obstacle

11 The third model category in Boniolo (2004) is ‘object models’, which correspond essentially to
computable general equilibrium (CGE) type models in econometrics.
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to explain the relevant phenomena’ (Boumans, 1999, p. 92). During the initial
decades of modern econometrics, data sets were limited and sometimes rela-
tively uninformative. Over more recent decades, econometricians have benefited
both from larger and more informative data sets and from the computing power
to analyse these data. As Leamer anticipated, these rich data would oblige a
thorough-going classical econometrician to reject almost any model: ‘. . . since
a large sample is presumably more informative than a small sample, and since
it is apparently the case that we will reject the null hypothesis in a large sam-
ple, we might as well begin by rejecting the hypothesis and not sample at all’
(Leamer, 1978, p. 89). So either by the force of circumstance in the case of in-
adequate data, by design in the face of rich and informative data, or through
the imposition of strong Bayesian priors, econometricians have abandoned real-
ism in favour of simplicity. The situation is not very different from that of the
deliberately unrealistic theory models. Econometricians measure, but measure-
ments are model-specific and are informative about the world only in so far as
the models themselves are congruent with the world.

History reflects a gradual ‘externalisation’ of measurement in terms of Car-
nap’s terminology (1950): the development of measurement instruments is ini-
tially for ‘internal questions’ and moves gradually towards ‘external questions’.
For example, parameters are internal within models, whereas the existence of
models is external with respect to the parameters. Econometric research has
moved from the issue of how to optimally estimate parameters to the harder
issue of how to measure and hence evaluate the efficiency, fruitfulness and sim-
plicity of the models, i.e. the relevance of models as measuring instruments.
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11.1. Introduction

Structure is an ill-defined term in both economics and econometrics, and usually
it is conceived by analogy with the distinct term physical structure (for example,
Morgan, 1995, p. 60). Many definitions of it are loosely related to the framework
of a system in which many relations between objects involved can be identified.
A typical one in economics is similar to the definition proposed by the philoso-
pher of science, Tian Yu Cao (2003, p. 6): “A structure is a stable system of
relations among a set of constituents.” This definition reveals two characteristics
of structure: a system of relations and invariance. As seen in the work of the
history of econometrics (for example, Epstein, 1987; Morgan, 1990; Qin, 1993;
Hendry and Morgan, 1995, and Gilbert and Qin, Chapter 11, this volume), the
evolution of the methods of measuring structure is central on the early stage of
the development of econometrics. The notion of structure still remains as one
of the most important issues in contemporary econometrics. Measuring struc-
ture, with the task including setting up a measurable model and estimating its
parameters, provides useful knowledge of structure.

In philosophy of science, structure can serve as a heuristic device. Instead
of being an object of measurement, structure is considered as the main concept
in constructing a measurement theory. This doctrine can be referred to as the
structural approach to measurement, for which the dominating representational
theory of measurement is a paradigm example. Its philosophical root, the se-
mantic view on the structure of scientific theory, has itself become increasingly
a popular and convincing account for the role that models play in science and
economics.1

In this chapter we investigate these two topics: measurement of structure in
econometric methodology and a structural approach to measurement in the phi-
losophy of science. We hope to show that these two topics are related not just

1 Also see Michell (Chapter 2, this volume) for a historical account for the philosophical origin of
the representational theory of measurement.
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because of the similarity in name, but because of their concern of fundamental
philosophical issues with respect to structure and measurement.

11.2. Measuring Structure

There are generally two meanings of structure in econometrics. One refers to the
understanding that the relationships among variables are specified by theory or a
priori information. The other refers to the notion of invariance. In this chapter the
former is called the “theory view” while the latter is referred to as the “invariance
view”. Both the theory view and the invariance view are direct outgrowths of the
Cowles Commission approach to econometric modeling. They are compatible
rather than conflicting with each other. Each meaning leads to a different model
specification and a measurement strategy.

Structure and its measurement are discussed by considering four approaches
towards econometric models. They are: the Cowles Commission structural ap-
proach, the new classical macroeconomics, the vector autoregressive models,
and the London School of Economics (LSE) approach (Gilbert and Qin, Chap-
ter 10, this volume, also discuss the similar issues).2

11.2.1. The Cowles Commission approach3

Although the methodology of econometric modeling that the Cowles Commis-
sion and its predecessors, notably Ragnar Frisch and Jan Tinbergen, proposed
has in some sense been regarded as outdated, the definitions and notions of
structure we nowadays accept are still due to them. Various ways to measure
the structural parameters in a simultaneous system can be seen in contempo-
rary econometrics textbooks (for example, Hamilton, 1994). Historically, it is
first shown in Haavelmo (1944) that if we use the ordinary least squares (OLS)
method to measure an equation, which is in fact a part of a simultaneous equa-
tions model, there would be a positive bias between the true value and the OLS
estimate. This bias is known as the Haavelmo bias or simultaneous equations
bias (Hamilton, 1994, p. 234). To solve the problem, Haavelmo suggests us-
ing the indirect least squares method in Haavelmo (1947).4 But for Haavelmo,
a more appropriate way to measure the structure is to consider estimate the
system as a whole and use the maximum likelihood estimators. The idea is to

2 Kevin Hoover has explored extensively on the same issue in a series of his works, but his main
concern is the issue of causality. Structure is regarded as causal. Hoover’s account can be regarded
as a structural approach to causality. See Hoover (2001), Hoover and Jordá (2001), and Demiralp
and Hoover (2003).
3 For more detailed historical accounts, see Epstein (1987), Morgan (1990), Qin (1993), and

especially Hendry and Morgan (1995, pp. 60–76).
4 Qin (1993, p. 68) states that the indirect least square method was first developed by Jan Tinbergen

in 1930.
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maximize the joint likelihood function of endogenous variables conditional on
predetermined variables. However, due to the computing capacity at that time,
the full information maximum likelihood (FIML) estimator became too com-
plicated. The limited information maximum likelihood (LIML) method, in that
a priori identifying restrictions are imposed on the equations to be estimated,
was then invented as a workable alternative for the FIML method. Girshick and
Haavelmo (1947) provide the first application of the LIML method on mea-
suring US food consumption at the average per capita level over the period
1922–1941.

All these methods of estimating the simultaneous equations model explic-
itly or implicitly treat structure as existing, and sometimes it can be known
so that a priori restrictions are legitimate. Measurement is thus a means to
provide the knowledge of structure. As Girshick and Haavelmo put it: “Know-
ing the structural parameters, all the relations implied by the model can be
derived. In a sense these structural parameters play a role similar to that
of the elements in chemistry.” (Girshick and Haavelmo, 1947, p. 93). The
viewpoint that the Cowles Commission econometricians takes on identifying
structures with the help from economic theories is well addressed in Koop-
mans’s (1947) “Measurement without Theory” paper, in which he stresses
that in the empirical business cycles research, “Fuller utilization of the con-
cepts and hypotheses of economic theory as a part of the processes of ob-
servation and measurement promises to be a shorter road, perhaps even the
only possible road, to the understanding of cyclical fluctuations.” (Koop-
mans, 1947, p. 162, original emphasis). This is realism about theories: eco-
nomic theory is true to the world; econometric models, whose structures
are specified with the help from economic theory, are thus also true to the
world.

In the work of the Cowles Commission econometrics, structure is also under-
stood in terms of the notion of invariance. The origin of the invariance view can
be traced to Frisch’s distinction between autonomous and confluent relations in
economics. In Haavelmo (1944), an autonomous relation is an invariant relation
to the changes in the structure. A confluent relation, which has a lower degree
of autonomy, is derived from more autonomous relations. Autonomy is a matter
of degree (Haavelmo, 1944, p. 29):

It is obvious that the autonomy of a relation is a highly relative concept, in the sense that any
system of hypothetical relations between real phenomena might itself be deducible from an-
other, still more basic system, i.e., a system with still higher degree of autonomy with respect
to structural changes.

Marschak (1953) and Hurwicz (1962) are particularly concerned with the is-
sue of invariance under policy intervention. They can be seen as a precedent for
the Lucas critique (Lucas, 1976; see below). Hurwicz, for example, along the
same line with Haavelmo’s view, argues that if the original model and the one
modified after some policies are implemented are both unique up to a admis-
sible transformation, then this model can be regarded as containing a structure
with respect to this policy intervention. Thus, structure is a relative concept:
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“the concept of structure is relative to the domain of modifications anticipated”
(Hurwicz, 1962, p. 238).5

If structure is understood in terms of the theory view, there are some issues
pertaining to identifying the structure in the Cowles Commission econometric
models. They are usually known as the identification problem. At the formal
level, identification requires the rank and order conditions to reduce to a unique
representation. Practically, it is achieved by imposing on the model the iden-
tifying restrictions chosen with the help from a priori information or theory.
However, one problem is to ask whether the structural models represent the true
structure - that is, whether the identifying restrictions are “credible”. If it is not
the case, then we cannot say that these methods provide faithful measures for
the structure.

On the other hand, if structure is understood as invariance, then invariance
is usually taken as a necessary and sufficient condition for structure. Whether
or not an econometric model is invariant under policy intervention seems to be
an empirical question. To answer the question, two approaches have been de-
veloped (see Hoover, 1988, 1994). One abandons the concept of structure all
together and uses a non-structural, atheoretical vector autoregressive method in
econometrics to represent the data (Sims and the VAR approach). The other ap-
proach has a much stronger belief in economic theory, and accordingly derives
from a well-defined representative-agent model, in which some behavioral para-
meters such as taste and technology are assumed to be constant (Lucas and the
real business cycle theory).

11.2.2. The Lucas critique

Even though the Cowles Commission scholars have considered the theme of
invariance, their simultaneous equations models have become the targets of
the Lucas critique. Lucas (1976) challenges the standard econometric models
which do not exhibit invariant relationships as they should be, because they
do not properly deal with expectations. Macroeconomists’ reaction to the Lu-
cas critique is to construct models based on the microfoundation that employs
the representative agent assumption and derives a well-articulated optimization
model. What is invariant in this model can thus be regarded as structure. For
instance, deep parameters, indicating the policy-invariant parameters describ-
ing taste and technology, are regarded as structural in the real business cycle
research. In consumption studies, the Euler equation, denoting the first-order
condition of the consumer’s intertemporal choices, represents the structure for
the new classical aggregate consumption function (Hall, 1978).6

5 Woodward’s recent work (2000, 2003) discusses extensively the degrees of autonomy and invari-
ance in the context of scientific explanation.
6 Hall (1990, p. 135): “For consumption, the structural relation, invariant to policy interventions

and other shifts elsewhere in the economy, is the intertemporal preference ordering.”
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When the consumption function is a random-walk model described in Hall
(1978), a first-order autoregressive process (AR(1)) of consumption indicates
that when the consumption in this period is only the function of the consumption
in the previous period plus an innovation (i.e., consumption is a random walk),
its structural parameters can be measured directly (Attanasio, 1998, p. 21). The
standard procedure is to log-linearize the Euler equation given that the utility
function is constant-relative-risk-averse (Hansen and Singleton, 1983) and esti-
mate the consumer’s elasticity of intertemporal substitution. Although the deep
parameters can be directly measured, the empirical justification of whether the
structure is described as the Euler equation is indirect rather than direct. As ob-
served in the literature (e.g., Flavin, 1981), consumption theorists are usually
concerned with the final model – whether the consumption function is a random
walk. They test whether current consumption, or the change in consumption, is
orthogonal to lagged income. Even though sometimes economists conjecture the
Euler equation (the “structure”) is responsible for some empirical facts, they can
neither test such a conjecture alone by ruling out other auxiliary assumptions.

In the real business cycle research, the measuring strategy is calibration.
Boumans (2002 and Chapter 9 of this volume) understands the method of cali-
bration in three different ways. The conventional thinking is to regard calibration
as a simulation-based estimation method for obtaining parameters that generate
the data whose properties best match with the observed data. Calibration can
also be understood as testing in the sense that it can be thought of as a “weak
test” (Hartley et al., 1998, p. 16) to check whether the simulating model mim-
ics the observed data. However, this is the fallacy of affirming the consequent,
because there might be other incompatible theories that are also capable of sim-
ulating the same observed data (Hartley et al., ibid). This argument is the same
as the problem of underdetermination of theory by evidence (see below), hence
the identification problem may be regarded as unsolved. The third meaning of
calibration in the real business cycle theory is interpreted closely with the mean-
ing understood in metrology. A measuring device requires to be “calibrated” by
way of correlating the reading of a device with those of an invariant standard
in order to check the accuracy of the measuring device. Similarly, calibration in
the real business cycle research can be thought of as making measuring devices
for the economy, according to the chosen standards – deep parameters.

11.2.3. Vector autoregressions: non-structural and structural

Sims’s vector autoregressive (VAR) (Sims, 1980) approach was inspired by Ta-
Chung Liu’s critique on the Cowles Commission method. Liu (1960, 1963)
asserts that the identifying restrictions exclude many variables that should be
included.7 One of the reasons is that in reality “very few variables can really be
legitimately considered as exogenous to economic system” (Liu, 1963, p. 162).

7 In this sense the identifying restrictions are sometimes called “exclusion restrictions”.



276 H.-K. Chao

This is referred by Maddala (2001, p. 375) as the “Liu critique”. Therefore, the
nature of the models is underidentified rather than overidentified. Sims wants to
abandon these “incredible restrictions” altogether and proposes an unrestricted
reduced-form model, in which all variables are regarded as endogenous.8

The simplest form of the VAR model is reduced-form VAR models. In a
reduced-form VAR model each variable is a linear function of the past value
of itself and all other variables. Each equation can be estimated by the OLS
method. However, it is assumed in reduced-form VARs that error terms, usually
denoting shocks in macroeconomic theory, are usually correlated. A problem is
caused by interpreting these error terms as particular economic shocks that are
normally regarded as uncorrelated. To solve the problem, econometricians can
orthogonalize the shocks by using a Choleski factorization to decompose the
covariance matrix (Sims, 1980). The Choleski decomposition implies a Wold
causal chain on the contemporaneous variables – we have a specific hierarchi-
cal causal ordering among the contemporaneous variables. However, the order
of the variables is arbitrarily chosen. This means there is a unique Choleski de-
composition for each possible order – changing the order of the contemporary
variables changes the VAR representation. Therefore, we have a class of obser-
vational equivalent VAR representations.

In order to identify a VAR, additional a priori information is in need to choose
between many possible links among contemporaneous variables. A VAR that
requires these identifying restrictions is known as a structural VAR, where the
term “structural” is the same as the theory view that we can find in the Cowles
Commission models. See Bernanke (1985), Blanchard and Watson (1986), Sims
(1986) for some early papers on structural VARs.9

11.2.4. The LSE approach

The LSE school of econometrics, led by David Hendry and his collaborators, of-
fers a methodologically promising approach to economic modeling (see Hendry,
1995, 2000). At the outset it is assumed that there exists an unobservable data-
generating process (DGP), represented by a conditional joint density function
of all the sample data, that is responsible for producing the data we observe.
While to uncover the real DGP seems impossible, the best thing that econome-
tricians can do is to build a model which characterizes all types of information
at hand. In this sense a model can be said to be congruent with the information
sets. To achieve a congruent econometric model, the LSE approach provides
the theory of reduction, claiming that to obtain an empirical econometric model
is to impose a sequence of reductions on a hypothetical local DGP (LDGP),
a data-generating mechanism of variables under analysis. The purpose is to

8 Some think that Liu first refers such an identification as “incredible”. But in fact it is Sims (1980)
who originally coins the term.
9 See also Stock and Watson (2001) for a recent review of the VAR approach.
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ensure that the features of the data obtained are not lost in the derived em-
pirical model. The practical implementation of the theory of reduction is the
general-to-specific methodology. It directs econometricians to start with a gen-
eral unrestricted model containing all available information that the DGP or the
LDGP is supposed to have. They then use econometric concepts to impose var-
ious types of tests on the general model so that there is no loss of information
when deriving a specified final model.

In the LSE methodology, the notion of structure is equally important to econo-
metric models as in the Cowles Commission methodology. Structure can be
represented as (Hendry, 1995, p. 33):

Et−1yt = ρEt−1zt , for ρ ∈ R,

where yt is the output variable, zt is the input variable for an agent’s decision,
and Et−1 is the conditional expectations given all available information at t − 1.
When ρ is invariant, the above equation can be said to define a structure. It
shows that the LSE methodology subscribes to the invariance view of structure.
Economic theory is not much help to determine the invariance. To see whether
the model represents an invariant relation, the Chow test for structural change is
performed on ρ. Hendry (1997, p. 166) claims, “Succinctly, ‘LSE’ focuses on
structure as invariance under extensions of the information set over time, across
regimes, and for new sources of information.” Hence structure is embedded in
the congruence test which checks for whether parameters are invariant under the
extensions of the information sets.

The views on structure in the above-discussed four approaches to macro-
econometric modeling can be summarized as follows. The simultaneous equa-
tions models that the Cowles Commission proposes involve both the theory view
and the invariance view. The new classical and the RBC schools subscribe to
the invariance view, but also hold the belief that economic theory is capable of
specifying the structure of the model. Both the VAR approach and the LSE ap-
proach construe structure as invariance. What contrasts between the VAR and
the LSE approaches is that in the VAR approach economic theory is regarded as
incapable of imposing credible restrictions on the structure, while in the LSE ap-
proach economic theory and other types of measurable information are treated
on an equal footing. Yet the distinctions between these competing approaches
are rather subtler than this classification suggests. The controversy over structure
between the post-Cowles econometric approaches results from their attitudes to-
wards the Lucas critique.

11.2.5. Discussion

Although Sims’s VAR modeling is of great contrast with the Cowles Commis-
sion simultaneous equations models, he does not see the simultaneous equations
models as misrepresenting the structure. Sims’s favorite definition of structure
comes from Hurwicz (1962) as mentioned above. Sims (1980, 1982) accepts
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Hurwicz’s idea that invariance is only a matter of degree. Hence, Sims’s view
is no different from Frisch’s and Haavelmo’s views on the autonomy and con-
fluence of econometric models. Sims also finds Lucas’s assumption of a once-
and-for-all policy choice as too strong. A permanent policy action is rare to
non-existent. The public would act (rationally) to implement useful information
provided by history to take up proper responses to policy interventions (Sims,
1982, 1998).10

The meaningfulness of the Lucas critique can be empirically evaluated by
checking whether policies have permanent effects on switching the regimes. A
recent empirical study by Leeper and Zha (2003) shows that actual monetary
policy interventions may not be subject to the Lucas critique. Leeper and Zha
distinguish a policy intervention’s direct effect from the expectation-formation
effect that is induced by the change in people’s expectations about a policy
regime. They find that many monetary policies are in fact “modest” relative
to the Lucas critique in the sense that the policies that the Federal Reserve con-
siders do not have expectation-formation effects. This empirical finding on the
one hand demurs the Lucas critique which specifies the fact that a lack of invari-
ance may be due to the effect of changing expectations formation on structure,
while on the other hand supports Sims’s view that the permanent policy regime
changes are only rare events. The Cowles Commission simultaneous equations
models remain structural in the sense of Hurwicz and still have the merit of be-
ing used in policy analysis. The Lucas critique is merely a “cautionary footnote”
(Sims, 1982, p. 108).11

Structural VARs, a mixture of the VARs and the Cowles structural models,
seem to diverge from the VARs and converge to the new classical macroeco-
nomics. Koopmans’s analogy of the Kepler’s and the Newton’s stages of science
to the NBER’s and the Cowles Commission’s methodologies in his Measure-
ment without Theory paper strikes a chord with the new classical economists.
Cooley and LeRoy (1985) argue against the VARs as a retreat to the Kepler
stage since theory plays no role in scientific investigation They also point out
the identification problem in the non-structural VARs that has to be dealt with.
They claim that in order for policy analysis, the VARs must be interpreted as
structural in terms of the theory view.

Structural VARs are not without criticism. The most appealing one is that it
seems a retreat to what Sims has forcefully argued against the Cowls Commis-

10 See Sims (1998) for his reevaluation for the Lucas critique.
11 Sims’s view can be envisaged in an analogy to the structures in civil engineering. In analyzing the
seismic resistance of a building structure, it is usually required for those “essential structures” (e.g.,
hospitals, power plants) that must remain operational all the time to resist a much larger seismic
force than other structures. Structure thus is also a relative concept: it is defined by its resistance to
a certain assigned degree of the strength of earthquakes. It would be implausible to define structure
by its capacity of resisting one determining seismic activity that destroys all constructed buildings,
because an earthquake this strong has not happened in the past, and it perhaps would never happen
in the future.
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sion: incredible identifying restrictions. No clue is shown whereby the identi-
fying assumptions applied to the structural VAR models are more credible than
that to the simultaneous equations models. Stock and Watson (2001) suggest
that credible identifying assumptions can be reached if we “exploit detailed in-
stitutional knowledge”. However, “institutional knowledge” is itself too vague a
concept to be defined. The examples Stock and Watson had in mind range from
tax code, spending rules, models of the reserve market, and long-run money
neutrality (Stock and Watson, 2001, p. 112). However, it basically is nothing
different from Koopmans’s (1957, p. 140) appeal to “exploit all the evidence
we can secure, directly or indirectly” to help to know the simultaneously inter-
dependently influenced economic system, and for identifying restrictions. Nor
does Stock and Watson’s claim seem to differ from Hendry’s LSE approach
in this respect, which utilizes all available information including “institutional
knowledge” (Hendry, 1997, p. 165). There is still no proof for these assumptions
to be credible.

The debate over the structural VAR highlights the conflation of the concept
of structure between invariance version and theory version. One might argue
that the VAR approach has the same identification problem to the Cowles struc-
tural model, because, as been discussed above, a Choleski-decomposed VAR has
many observationally equivalent representations, each is regarded as a different
Wold-causal-chain model and is subject to a different theoretical interpretation.
A structural VAR needs to be identified among these many possible ones. This is
exactly the reason for which Wold’s causal-chain model, which is offered as an
alternative to Haavelmo’s simultaneous equations model, is criticized as being
confluent rather than autonomous, in terms of Frisch’s terminology (Hendry and
Morgan, 1995, p. 65). Hence this type of VARs is not structural in the sense of
autonomy or invariance. However, when, as Bernanke (1985) makes it clear that
the term “structural” for his structural VAR model refers to the theory version
only, this implies the true structure of a VAR model cannot be specified without
economic theories. In addition, though VARs are usually not subject to the Lucas
critique, one might still ask whether the relationships measured in a structural
VAR model satisfy the invariance view of structure in the sense of Lucas.12

The LSE approach sides with the VAR approach treating the Lucas critique
as an empirical question. Hendry and Mizon (2000) find that in a forecasting
model, errors usually result from factors unrelated to the policy change under
study. Therefore, the model can be still used for policy analysis despite it yield-
ing inaccurate forecasts. The LSE approach, indicated by the dictum, “to break
out of the straightjacket of received theory” (Hendry and Mizon, 1990, p. 121),
also rejects the view of starting an econometric model with a well-articulated
economic theory that the RBC school proposes. According to the theory of re-
duction, the new model needs to explain the facts that have been explained by

12 A study by Keating (1990) also shows that standard structural VAR models under rational expec-
tations may yield inconsistent parameter estimates.
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the previous theories and also explain the novel facts unexplained by the previ-
ous theories. In this sense we say that the new model encompasses the models
built according to existing theories. Take one of the benchmark models in the
LSE approach as an example: the DHSY (an acronym for Davidson et al., 1978)
model of consumption. When the LSE practitioners built the DHSY model, they
considered the existing theories reflected in the permanent income and the life-
cycle hypotheses, and they aimed to encompass both of them. This indicates that
economic theories are not superior to other sorts of information.

11.2.6. Conclusion

The views of structure can be distinguished between the theory view and the
invariance view. The theory view believes that economic theory is capable
of specifying the relationships between variables. The invariance view defines
structure as a set of invariant relationships under intervention. The structural
VAR approach aligns itself with the Cowles Commission on the theory view.
The identifying restrictions are based on a priori information or theory. The new
classical school goes further to argue that a macroeconomic model needs to be
derived from the representative agent’s optimizing behavior. The VAR and the
LSE approaches are of empiricism. Theory alone does not define structure.

All approaches generally agree to the invariance view, because it would be
strange if there are unstable relationships in their models, yet for the VAR and
structural VAR approaches the Lucas critique does not apply. Sims’s argument
is that the radical policy change is rare to non-existent. For the VAR and the LSE
approaches, the invariance is an empirical question. They agree that invariance
is a matter of degree. This marks the great legacy of Frisch and Haavelmo.13

11.3. The Structural Approach to Measurement

The structural approach to measurement denotes the theories of measurement
that are influenced by the semantic view of the structure of scientific theory
in the philosophy of science. The semantic view refers commonly to the ap-
proach led by Patrick Suppes in identifying the structure of scientific theory
with set-theoretical structure. Its application to measurement is used extensively
in utility theory in economics. However, in economic methodology, the applica-
tion of the semantic view is mainly due to the “structuralist” tradition of Joseph
Sneed and Wolfgang Stegmüller (see Stegmüller et al., 1982; Balzer and Ham-
minga, 1989). Consequently, the “structuralist” view of measurement (Balzer,
1992; Díez Calzada, 2000) usually represents the view influenced by the Sneed–
Stegmüller structuralism.

13 Lucas might also agree to the idea of degree of invariance. See his (1973) work on cross-country
comparisons of the slope of the Phillips curve. (I thank Kevin Hoover for pointing this out to me.)
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In the following sessions the discussion will be concentrated on the semantic
view of Suppes’s and two other developments by Bas van Fraassen and Ronald
Giere. For the application of the Sneed–Stegmüller structuralism to economics,
see Hands (1985) for a detailed discussion. The accounts of Giere, Suppes and
van Fraassen are the most accepted versions of the semantic view and have been
zealously debated in the philosophy of science. To understand the semantic view,
it is first helpful to know the approach that the semantic philosophers object: the
received view.

11.3.1. The received view

The “received view”, the name coined by philosopher of science Hilary Put-
nam, stands for the view of the constitution of scientific theories in the eyes
of logical positivists. According to the received view of scientific theories, a
theory consists of a set of theoretical axioms on the one hand, and a set of corre-
spondence rules on the other. Theoretical axioms are constituted by “theoretical
terms” which only exist in the context of theory. The correspondence rules then
relate the axioms to the phenomena expressed in “observational terms”. The
correspondence rules play the central role in the received view. As a part of
the theory, the correspondence rules contain both theoretical and observational
terms, and offer the theory an interpretation by giving the theory proper em-
pirical meanings.14 Logical positivist Rudolf Carnap gave an example of the
correspondence rules as follows: “The (measured) temperature of a gas is pro-
portional to the mean kinetic energy of its molecules.” This correspondence rule
links the kinetic energy of molecules (a theoretical term in molecular theory)
with the temperature of the gas (an observational terms). If such rules exist, then
philosophers are confident in deriving empirical laws about observable entities
from theoretical laws (Carnap, 1966, p. 233).

The received view also recommends a deductive method of theorizing, in
which logical analysis is applied to deduce consequences from the statements
that axioms posit. Since the received view puts great emphasis on the theoriza-
tion from axioms, it is also known as the axiomatic approach (cf. van Fraassen,
1980). However, this type of axiomatization only refers to the theories axioma-
tized in first-order logic. The received view is also called as the syntactic view,
because axioms are statements of language and have no direct connection to the
world.

The received view may have been dismissed in the methodology of economics
(see Blaug, 1992), yet one can still observe theories and practices that fol-
low such a tradition. In addition to the similarities between various economic
methodologies and logical positivism (see Caldwell, 1994), Koopmans’s (1957)
methodological approach is particularly regarded as similar to the received view

14 In the sense that the theoretical axioms are interpreted by the empirical world, the correspondence
rules can be referred to as “rules of interpretation” or “dictionaries”. See Suppe (1977).
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(see Morgan and Morrison, 1999). Koopmans’s (1957, pp. 132–135) proposi-
tion to the structure of economic theory starts with “postulates” that consist of
logical relations between symbols that he calls “terms”. Terms are interpreted if
they are connected with the observable phenomena. A set of postulates then are
regarded as a theory and can be verified or refuted by observation. Milton Fried-
man’s (1957) permanent income hypothesis may be considered as an example of
the application of the syntactic view. The theoretical term “permanent income”
is linked with the empirical world by the correspondence rule: “the permanent
income is estimated by a weighted pattern of past income” in which “a weighted
pattern of past income” is an observational term. Whereas it is questionable
that we can derive an empirical law about observable entities (i.e., measured
consumption and income) from the permanent income hypothesis in a logical
positivistic way, the theory is confirmed as an empirical claim when the de-
duced consequences are tested against both cross-sectional and time-series data
in various respects.15

The received view has been criticized for many reasons, two of which are
particularly salient, and both regard the correspondence rules.16 First, there is
no sharp distinction between theory and observation. Thomas Kuhn (1962) has
pointed out to us that observations are possibly theory-laden. Therefore, corre-
spondence rules do not obtain. Second, the correspondence rules are too naïve to
describe the complex interactions between theory and the world. This point has
motivated many philosophers to reconsider the structure of theory, particularly
the fact that models are used extensively to bridge theory and data in science.
One alternative to the syntactic approach is to develop an account that is inspired
by model theory in mathematics and scientific practices. The semantic view or
model-theoretical approach provides such an alternative.

11.3.2. The semantic view

In contrast with the deductivist axiomatization process suggested in the syntac-
tic view, the semantic view focuses on “satisfactions” or “realizations” of the
axioms. This naturally switches the focus to scientific models. Models not only
bear such meanings of satisfaction and realization based on the model theory
in mathematics, but they also serve as an important means to mediate between
theory and the world. Moreover, studying models, non-linguistic entities, might
help to avoid the problem of theory-observation distinction that the syntactic
view faces.

Patrick Suppes, who is inspired by Alfred Tarski’s model theory, is defi-
nitely the pioneer of the semantic view. In Suppes’s work (1960, 1967, 2002),

15 This kind of test can be regarded as what Kim et al. (1995) call “characteristic tests”, that aim
to confirm specific characteristics of empirical models. See Mayer’s (1972) classic book for an
extensive study on testing Friedman’s permanent income hypothesis, and Chao (2003, pp. 87–89)
for interpreting Friedman’s theory in terms of the notion of the characteristic tests.
16 See Suppe (1977, 1989, 2000) for the criticisms of the received view.
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a structure of the theory is usually defined set-theoretically.17 A set-theoretical
structure is presented as an ordered n-tuple containing a set of elements and a
set of n-ary relations. In the case of ordered couple,18 a structure can be denoted
as 〈A,R〉, where A is a set of elements and R is a binary relation. If this struc-
ture satisfies a set of axioms of a certain theory, then it can be thought of as a
particular type of structure or a model for a theory. Conversely, we can say that
a theory is axiomatized set-theoretically when its models can be represented as
〈A,R〉. To illustrate, consider a case of weak ordering. Let A = 〈A,R〉, where
A is a non-empty set, and R be a binary relation defined on A. A structure A

is then a weak ordering if and only if the following axioms hold for every a, b,
and c, in A (adopted from Suppes, 2002, p. 56):

(Axiom 1, Transitive). If aRb and bRc, then aRc.

(Axiom 2, Complete). aRb or bRa.

Similarly, the weak preference in economics can be represented in the following
set-theoretical way (Varian, 1992, pp. 94–95): a structure B = 〈A,�〉 is a weak
preference, where A is a non-empty set of commodities, � is a binary “at least
as good as” relation, if and only if the following axioms hold for every x, y, and
z in A.

(Axiom 1, Complete). Either x � y or y � x or both.

(Axiom 2, Reflexive). x � x.

(Axiom 3, Transitive). If x � y and y � z, then x � z.

An entity that has a structure can be thought of as a model for the theory, which
is a realization of all axioms. There can be many models for the theory if these
models all satisfy the axioms. However, since these models have the same struc-
ture, an isomorphism (one-one mapping) can be constructed between them.

Suppes believes that the notions of models and structure in mathematical logic
can also be applied to understand models used in the daily scientific practices.
To put models at the center stage of science marks a significant contrast to the
received view. As Suppes puts it: “A central topic in the philosophy of science is
the analysis of the structure of scientific theories. . .. The fundamental approach
I advocated for a good many years is the analysis of the structure of a theory in
terms of the models of the theory” (Suppes, 2002, p. 51).

11.3.3. Models of data

In considering the roles and functions of models, Suppes’s seminal article “Mod-
els of Data” (Suppes, 1962) pioneered the attempt to explicate the role models

17 “Theory” here means mathematical theory, like theory of group or theory of ordering.
18 Suppes (1957) shows that ordered n-ary tuples can be reduced to ordered couples.
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play in representing the world. Suppes introduces a hierarchy of empirical mod-
els. The model builders deal with the related problems for specifying the model.
There are particular “theories” associated at different levels. Suppes’s example
of learning theory in experimental psychology consists of a hierarchy in five
levels. In a top-down order, they are:

(1) linear response models that are concerned with the problems of estimating
parameters, and checking goodness of fit;

(2) models of experiment that are concerned with the numbers of trials and
choices of experimental parameters;

(3) models of data that consider homogeneity, stationarity, and fit of experimen-
tal parameters;

(4) experimental design that requires theories for randomization and assignment
of subjects;

(5) ceteris paribus conditions that deal with the control of extraneous factors.

“Models of Data” is an important landmark in the development of the seman-
tic view.19 Not only does Suppes shift the focus from the correspondence rules
to models, including the functions of and the relations between models, but also
does he successfully argue that in the empirical science, it is the models of data,
rather than the raw data, that confront the theory.

11.3.4. Two versions of the semantic view: Van Fraassen and Giere

Two of the most discussed versions of the semantic view are offered by van
Fraassen (1980, 1989) and Giere (1988), who differ from each other in ontology.
Van Fraassen’s picture of scientific theories can be depicted as follows. At the
outset, there are structures and models that present the theory. Models include a
subset called empirical substructures that correspond to the actual phenomena.20

The type of correspondence that van Fraassen prefers is isomorphism. In his
account of constructive empiricism, van Fraassen draws a distinction between
acceptance of a theory and belief in the truth of a theory. An empiricist does not
believe that theory explains the unobservable parts, but only accepts a theory
because its empirical adequacy – that is, those parts of the models of the theory
called empirical substructures – are isomorphic to the observational parts of the
object investigated.

Giere’s constructive realism contrasts with van Fraassen’s empirical account
on two aspects. First, Giere holds a realist position that models can represent the
underlying causal structure which may be unobservable. Second, he regards iso-
morphic mappings as rare in science and suggests similarity relations instead.
Models for Giere, such as Watson and Crick’s scale model of DNA and geo-
graphical maps, exhibit a particular similarity of structure between models and

19 This paper influenced Suppe’s version of the semantic view (see Suppe, 1989).
20 Teller (2001) distinguishes many versions of empirical substructures in van Fraassen’s work.
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the real system (Giere, 1997, pp. 21–24). In Giere’s account a theoretical hy-
pothesis is a statement asserting the relationships between a model and a real
world. Models that satisfy the axioms are the means to represent the real world
up to similarity. There is no truth relationship of correspondence between the-
oretical hypothesis and the real world, as the received view claims. For Giere,
a theoretical hypothesis has the general form as: “Such-and-such identifiable
real system is similar to a designated model in indicated respects and degrees.”
(Giere, 1988, p. 81). What is the concern is the similarity relationship between
models and the real world that requires a “redundancy theory” of truth only
(Giere, 1988, pp. 78–82).

Similarity propose a weaker interpretation of the relationship between a
model and a designated real system than isomorphism, in the sense that isomor-
phism requires models being “perfect” to exhibit all the details and information
contained in the object, but only selected features.21 Similarity account seems
similar to Mary Hesse’s (1966) analogy account in that there are positive analo-
gies between the model and the object, yet Giere has been cautious in realizing
the problem of a vacuous claim in similarity since anything is similar to anything
else. He then introduces the role of scientists who are able to specify the rele-
vant degrees and respects of similarity between model and the world. As Giere
(2004, pp. 747–748) once put it,

Note that I am not saying that the model itself represents an aspect of the world because it
is similar to that aspect. There is no such representational relationship. Anything is similar
to anything else in countless respects, but not anything represents anything else. It is not
the model that is doing the representing; it is the scientist using the model who is doing the
representing. One way scientists do this is by picking out some specific features of the model
that are then claimed to be similar to features of the designated real system to some (perhaps
fairly loosely indicated) degree of fit. It is the existence of the specified similarities that makes
possible the use of the model to represent the real system in this way.

In comparison between these two accounts of the semantic view, it can be
seen that van Fraassen’s empiricist perspective for the semantic view can be
incorporated with Suppes’s account of the models of data. Consider two types
of models: model of theory and model of data. The former represents the theory
and the latter represent the real world. Van Fraassen’s empirical adequacy can
be interpreted as an isomorphic mapping from the empirical substructure of a
model of the theory to a corresponding part in the model of data. Thus, the
structure of theories is the mapping between two types of models.

The above statement contrasts the received view on two respects. First, the
relation between theoretical and empirical aspects is not by deduction, but also
by mapping between two models. Second, unlike the correspondence rules in
the received view that aim to interpret the theory, mapping requires constructing
models representing the theory and the world respectively. These not only put
models as the major interest of the study, but also accentuates that the repre-
sentation is proceeded by structure. This means that models are manipulated as

21 Also see Teller (2001).
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relational structures that Suppes proposes in his methodology. A model is about
representation; representation is about structure.

Giere’s view forcibly highlights the view of model as structural represen-
tation. He regards models as the primary representational tools in science.
Even though his similarity account does not utilize the set-theoretical relational
structure for models, it is suggested in his account that the relationships be-
tween models and reality are similarity of structure with reality, like a map
and the area mapped, and Watson and Crick’s scale model and the double
helical structure of DNA. Hence, models are able to represent the reality struc-
turally.

11.3.5. Representational theory of measurement: representation theorems
and uniqueness theorems

Perhaps the most well-known, most well-established application of the semantic
view is representational theory of measurement. Modern representational theory
was greatly influenced by S.S. Steven’s account, which is regarded as a sharp re-
sponse to the classical view of measurement that all measurement should be able
to be reduced to fundamental measurement that involves the axiom of additivity.
Stevens claims that those rules of assigning numerals, which are invariant to the
mathematical transformation, are of the same scale type. Since measurement is
not merely according to an additive rule, Stevens concludes that measurement is
defined as “the assignment of numerals to objects or events according to rule –
any rule” (Stevens, 1959, p. 19).

The representational theory later developed into a formal account by Scott and
Suppes (1958), Suppes and Zinnes (1963) and by the three-volume set of Foun-
dations of Measurement by Krantz, Luce, Suppes, and Tversky (Krantz et al.,
1971; Suppes et al., 1989; Luce et al., 1990). (Boumans’s and Michell’s chap-
ters in this volume offer extensive discussions on the representational theory of
measurement.) It appears that the concept of structure, defined set-theoretically
as suggested by the semantic view, emerges as a crucial component of distin-
guishing between various types of scale. For a certain type of scale, there is a
unique kind of relational structure to be formulated. In order to ensure that the
measurement is a satisfactory numerical measurement, two types of theorems
that appear to be the core of representational theory of measurement are needed
to be fulfill: representation theorems and uniqueness theorems (or invariance
theorems in Suppes, 2002).

Briefly, representation theorems indicate an isomorphism between the object
and the model representing it. For measurement, it initially requires a representa-
tion theorem in order to secure a quantitative scale on the basis of qualitative em-
pirical observations for a particular type of measurement in the way suggested in
the semantic view. The measurement is suggested to proceed as follows. First,
the object, its properties and relations, and the empirical operations are char-
acterized set-theoretically as an empirical relational structure. A representation
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theorem then offers an isomorphic mapping between the empirical relational
structure and a selected mathematical structure, call it a numerical relational
structure. In this way we say that measurement is a representation of the empiri-
cal relational structure by the numerical relational structure. The isomorphism is
established according to a certain type of scale. Take the above-mentioned cases
of weak orderings and weak preferences as examples. A legitimate measure or
representation for a weak order or a weak preference is to establish an ordinal
scale and no other types of scale. To use a utility function to measure a weak
order or a weak preference, we want this utility function to satisfies the listed
axiom, meaning that we prove a representation theorem for the utility measure-
ment, so that the numbers that the utility function yields can be regarded as a
measure of the case of weak order or weak preference under study.

Uniqueness theorems state that when there is more than one representing
model, a reduction to a unique representation can be accomplished by a pos-
sible admissible transformation for a scale. Suppose there is an original scale φ,
the admissible transformation produces a new scale φ′ whose relations are the
same as the original φ. Thus, a specific scale type allows a specific admissible
transformation so that the measurement is unique up to the corresponding ad-
missible transformation. Formally put, suppose there are two scales φ and φ′,
an admissible transformation is such that φ → f (φ) = φ′. Only a measurement
which is unique to an admissible transformation is “meaningful”.22

As mentioned above, measurement is typically regarded as a scientific task of
assigning numbers to the objects to be measured. Whereas the assignment can
go by any rule, in the representational theory, to measure an object is to find a
numerical system that has the same scale – and the same relational structure –
as that of the measured objects, and use the former to represent the latter. Thus,
representation between “same structure” utilizes Suppes’s idea of isomorphism,
which is central to representation theorems.

11.4. Discussion: Structure, Representation, and Invariance

The message that the semantic view delivers is models’ structural representa-
tion to the theory and to the world. Different versions of the semantic view
may shed some interesting light on the methodology of econometric models.
Giere’s picture of the relations between theory, model, and data is useful to un-
derstanding the methodology and practices of economics (see Morgan, 1998).
Van Fraassen’s constructive empiricism is compatible with the LSE approach.
Hendry’s empiricist position can be described by his statement: “the proof of
empirical puddings lies in their eating, not a priori views” (Hendry, 1997,
p. 168).23 Unobservable entities (e.g., the DGP for the LSE approach) exist,

22 The contribution to the issue of meaningfulness in the theory of measurement is mainly due to
Louis Narens. See Falmange and Narens (1983), Narens (1985), and Luce and Narens (1987).
23 This is a paraphrase of Tinbergen’s famous quote in his reply to Keynes (Tinbergen, 1940, p. 154).
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explaining that the existence of the unobservables is not the purpose; rather it is
to construct a model to match the observed data. This matches Hendry’s concept
of congruence.

The representational theory of measurement asserts that quantitative repre-
sentations (i.e., measurement) are required to satisfy both representation and
uniqueness theorems. In measuring utility, proving the existence of the rep-
resentation theorem is essential in building utility functions, even though the
axiomatization does not proceed in an explicit set-theoretical way. In economet-
rics, a discipline of measurement, can this structural approach of measurement
shed some light on the measurement of structure? In other words, can we ap-
ply the structural approach to measurement to understand the measurement of
structure in econometrics?

At the outset, econometricians do regard their models as representation. We
see econometricians not only customarily call the VAR models the “VAR rep-
resentation”, but also go further to prove theorems for securing models’ rep-
resentation, even though such representation theorem in econometrics are not
presented in terms of relational structures. Perhaps the most famous one is
the Granger representation theorem by Engle and Granger (1987), in which
they prove that co-integrated variables can be represented as an error correction
model.

Furthermore, the issue concerning uniqueness theorems consists apparently
with (a certain type of) the identification problem – the central topic in the
above discussion on measuring structure in econometrics. The basic idea of
identification is based on the observational equivalence problem. Observational
equivalent structures generate the same data or have the same probability density
function. Cooley and LeRoy (1985) argue that Sims’s VARs are not identified,
because we can easily find several observationally equivalent VARs that gen-
erate the same probability distribution for the data. Observationally equivalent
structures can be related by what Hsiao (1983, p. 231) calls “admissible transfor-
mation”, which is equivalent to that we understand in unique theorems. Hence,
to find the admissible transformation is to prove the uniqueness theorem for a
class of observational equivalent structures. The rank and order conditions for
simultaneous equations models are thus considered as a type of uniqueness the-
orem.

To solve the identification or uniqueness problem, as described in the pre-
vious part in this chapter, econometricians usually employ the theory view of
structure. Different sets of identifying restrictions imply different theoretical in-
terpretations. Christ (1966, p. 298) describes the identification problem in the
following way:

It is a truism that any given observed fact, or any set of observed facts, can be explained in
many ways. That is, a large number of hypotheses can be framed, each of which if true would
account for the observance of the given fact or facts.

This interpretation of the problem of observational equivalence is a vari-
ant of the philosophical problem of underdetermination of theory by evidence:
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because there can be many theories capable of interpreting the world, we can-
not determine the true theory of data by appealing to the data alone. Theory
is thus underdetermined by data. When the theory view is applied to identify
the structure, it implies that econometricians hold strong priors (Hoover, 1988;
Sutton, 2000) on the theory in the face of the underdetermination problem:
identification primarily depends on economic theory, other information such
as the pragmatic factors for choosing between models (e.g., mathematical el-
egance or simplicity) are only secondary in importance. A particular economic
theory and its suggested identifying restrictions are true, and therefore other
theories and their restrictions can be ruled out. Again Christ (1966, p. 299)
claims:

The purpose of a model, embodying a priori information (sometimes called the maintained
hypothesis), is to rule out most of the hypotheses that are consistent with the observed facts.
The ideal situation is one in which, after appeal has been made both to the facts and to the
model, only one hypothesis remains acceptable (i.e., is consistent with both). If the “facts”
have been correctly observed and the model is correct, the single hypothesis that is consis-
tent with both facts and model must be correct; . . . . In a typical econometrics problem the
hypothesis we accept or reject is a statement about the relevant structure or a part of it or a
transformation of it.

Yet to rule out many other hypotheses according to the theory regarded as real
does not suggest that others are false. Uniqueness theorems merely imply that
the accepted theory is more fundamental so that other theories can be reduced to
this fundamental theory (see Suppes, 2002). The transformation (or reduction)
to a unique structure (or models representing theoretical structures) indicates
invariance under transformation. In the measurement theory, since a unique-
ness theorem for a scale asserts transformation among the relational structures
up to an isomorphism, the existence of the same structure is a prerequisite for
invariance under transformation.

If the purpose of econometric models is to represent something, be it theory or
data, then representation theorems are thus required to determine which model
is an acceptable representation. We seldom see econometricians write down spe-
cific representation theorems of the sort, but they are implicitly stated. As seen
already, the notion of structure is usually defined in a set-theoretical way. So a
representation theorem for econometric models may be (loosely) stated as:

If S is a structure, then there exists a (structural) model M representing S

if and only if M is identifiable,

or

If S is a structure, then there exists a (structural) model M representing S

if and only if M satisfies (a list of identification conditions).

If structure is defined as the invariance view, then there is a hierarchy of invari-
ance: invariance of intervention defines structures, and representation theorems
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are required to represent the structure. Invariance under transformation secures
a unique representation for the structure.

11.5. Conclusion

One of the major themes in econometrics is the definition and the measurement
of the notion of structure. We have distinguished between two definitions of
structure: the theory view and the invariance view. The theory view is to consider
whether the particular chosen theory is true. But if the theory view is accepted,
we can equally say that the theory view provides a “realism-about-structure”
attitude towards the relationships between theory and data: economic theory is
true to the invariant relations that we call structure.

It is more widely accepted (for both realists and empiricists) that structure is
understood in terms of invariance under intervention. Invariance is a matter of
degree. It provides a good arguable definition of structure, not only in economics
and econometrics, but also in other subjects for which the notion of structure is
an essential prerequisite.

The semantic view is a more appropriate approach to understanding and in-
terpreting econometrics than the received view. It is particularly because the
semantic view stresses the importance of the function and the role of models,
and because models are crucial devices for the aim of econometrics - bridg-
ing theory and data. There are several studies that have attempted to apply the
semantic view to econometrics, for example, Davis (2000), Chao (2002), and
Stigum (1990, 2003).24 Their views are similar to the idea presented in Morgan
and Morrison’s (1999) edited volume. The Morgan–Morrison volume provides
a broader interpretation of models than the semantic view. For them models are
“autonomous agents” in the sense that they have the merit of being not entirely
dependent on theory or data. Representation is one of models’ functions to me-
diate between theory and data. Nonetheless, as long as structure is concerned,
econometric models can involve representation and uniqueness theorems, as the
structural approach to measurement suggests, for representing the structure.
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Abstract
We investigate a phenomenon which is well known in applied econometrics and
statistics: an auxiliary parameter (say θ ) is significant in a diagnostic test, but
ignoring it (setting θ = 0) makes very little difference for the parameter of in-
terest (say β). In other words, the estimator for β is not sensitive to variations
in θ . We shall argue that sensitivity analysis is often more relevant than diagnos-
tic testing, and we shall review some of the sensitivity results that are currently
available. In fact, sensitivity analysis and diagnostic testing are both important
in econometrics. They play different and, as we shall see, orthogonal roles.

12.1. Motivation

Suppose we are given a cloud of points, as in Fig. 12.1, and assume that these
points are generated by a linear relationship

yt = β0 + β1xt + εt (t = 1, . . . , n),

which we write more compactly as y = Xβ + ε. Assume further that the expec-
tation of the error is E(ε) = 0 and that its variance is var(ε) = σ 2Ω . There are
three levels of knowledge on Ω . Firstly, we may know Ω completely. This does
not happen often, but if it does we would estimate β by generalized least squares
(GLS):

β̃ = (
X′Ω−1X

)−1
X′Ω−1y,

and this estimator would be best linear unbiased. Secondly, and more realisti-
cally, we might know the structure of Ω (for example, an AR(1) process) but
not the values of the parameters. Thus we would know that Ω = Ω(θ) where
θ is a finite-dimensional parameter vector. Since θ is unknown it needs to be
estimated, say by θ̃ . If θ̃ is a consistent estimator (not necessarily efficient), and
writing Ω̃ := Ω(θ̃), we obtain the feasible GLS estimator

β̃∗ = (
X′Ω̃−1X

)−1
X′Ω̃−1y.

Measurement in Economics: A Handbook © 2007 Elsevier Inc.
Marcel Boumans (Editor) All rights reserved
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In most cases, however, not even the structure of Ω is known. We could then
sequentially test, thereby adding more and more noise to our estimator for β ,
or we might simply set Ω = I . In the latter case, we obtain the ordinary least
squares (OLS) estimator for β:

β̂ = (X′X)−1X′y.

One question is how good or bad this OLS estimator is, in other words: how
sensitive it is to variations in Ω . Let us consider the data plotted in Fig. 12.1.
If we estimate the relationship by OLS we obtain the solid line, labeled “OLS
regression”. In fact, the data have been generated by some ARMA process, and
therefore the OLS estimator is not the “right” estimator. Consider the hypoth-
esis that the {εt } form an AR(1) process, so that the elements of Ω depend on
just one parameter, say θ . We don’t know whether this hypothesis is true (in
fact, it is not), but we can test the hypothesis using a diagnostic, such as the
Durbin–Watson statistic. In the present case, the diagnostic is statistically very
significant, so that we must reject the null hypothesis (no autocorrelation) in fa-
vor of the alternative hypothesis (positive autocorrelation). Given the outcome
of the diagnostic test, we estimate the AR(1) parameter θ from the OLS residu-
als, and estimate β again, this time by feasible GLS. This yields the broken line,
labeled “GLS regression”.

The broken line is hardly visible in Fig. 12.1, because the OLS and GLS
estimates coincide almost exactly. Hence, the OLS estimates are not sensitive to

Fig. 12.1: Sensitivity to AR(1) misspecification: simulated example.
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whether θ is zero or not, even though the diagnostic test has informed us that θ is
significantly different from zero. One may argue that although β̂ is not affected
by the presence θ , the variance of β̂ will be affected. This is true. In fact, the
variance will be quite sensitive to variance misspecification for reasons that will
become clear in Section 12.3. This is precisely the reason why in current-day
econometrics we usually estimate the variance by some “robust” method such
as the one proposed by Newey and West (1987).

This simple example illustrates a phenomenon which is well known in applied
econometrics and statistics. An auxiliary parameter (like θ ) may show up in a
diagnostic test as significant, but ignoring it (setting θ = 0) makes very little
difference for the parameter of interest (here β). In other words, the estimator
for β is not sensitive to variations in θ . We shall argue that sensitivity analysis
is often more relevant than diagnostic testing, and we shall review some of the
sensitivity results that are currently available. In fact, sensitivity analysis and
diagnostic testing are both important in econometrics. They play different and,
as we shall see, orthogonal roles.

We shall thus be concerned with models containing two sets of parameters:
focus parameters (β) and nuisance parameters (θ ). In such models one often has
a choice between the unrestricted estimator β̃ (based on the full model) and the
restricted estimator β̂ , estimated under the restriction θ = 0. Let us introduce the
function β̂(θ), which estimates β for each fixed value of θ . The unrestricted and
restricted estimators can then be expressed as β̃ = β̂(θ̃ ) and β̂ = β̂(0), respec-
tively.

A Taylor expansion gives

β̃ − β̂ = β̂
(
θ̃
)− β̂(0) = ∂β̂(θ)

∂θ ′

∣∣∣∣
θ=0

θ̃ + Op(1/n),

which shows that the difference between β̃ and β̂ factorizes as β̃ − β̂ = Sθ̃ ,
where S denotes the sensitivity,

S := ∂β̂(θ)

∂θ ′

∣∣∣
∣
θ=0

.

We may think of θ̃ as the “magnitude” and of S as the “direction” of the impact
of the misspecification on β̂ . In applied econometrics the choice between β̃ and
β̂ is almost always based exclusively on a t- or F -statistic, or a simple transfor-
mation thereof. In other words, the choice is based on a diagnostic, answering
the question whether θ̃ is “large” or “small”. Since θ is a nuisance parameter,
we are not primarily interested in whether θ̃ is large or small; our interest is in β .
It may very well be that θ̃ is large, but that nevertheless the difference between
β̃ and β̂ is small, a frequent observation in econometric practice, which occurs
if the sensitivity is small. A proper choice between the estimators should there-
fore be based on both factors: the diagnostic and the sensitivity. The literature
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on diagnostic testing is huge; the literature on sensitivity analysis is relatively
small.

There are two branches of sensitivity analysis: data perturbation and model
perturbation. In data perturbation one may perturb the location of the regressors,
or the location or the scale of the dependent variable in a regression context.
This branch is associated mainly with the work of Huber (2004, first edition
1980) and Cook (1979, 1986). In contrast, model perturbation considers the ef-
fects on the parameter of interest (or any other focus) of small deviations from
the hypothesized model, such as the deletion of relevant regressors, the misspec-
ification of the variance matrix, or deviations from normality. This branch plays
a role in Bayesian statistics, in particular the effect of misspecifying the prior
distribution (Leamer, 1978, 1984; Polasek, 1984), but also in classical econo-
metrics (Banerjee and Magnus, 1999, 2000). Our interest lies in the perturbation
of models, and “sensitivity analysis” will be understood to mean the study of the
effect of small changes in model assumptions on an estimator or test statistic of
a parameter of interest. Sensitivity issues are also important in an experimental
context; see Harrison et al. (this volume).

Sensitivity analysis and the relationship between sensitivity and diagnostic
testing are closely linked to what a model is and what its function should be. Ba-
sic to the understanding of sensitivity is the idea that the correctness of a model
is neither necessary nor even desirable. What matters is that the model fulfills
the task for which it has been built, an idea which relates closely to Giere’s
(1999) constructive realism and his concept of similarity; see also Chao (this
volume).

This chapter surveys some recent developments in sensitivity analysis, and re-
lies heavily on three papers: Banerjee and Magnus (1999, 2000) and Magnus and
Vasnev (2007). Sections 12.2–12.4 are based on Banerjee and Magnus (1999),
and discuss the sensitivity of the OLS predictor (Section 12.2) and the OLS vari-
ance estimator (Section 12.3). Two sensitivity statistics are proposed: B1 and
D1, and their behavior is discussed in Section 12.4. Sections 12.5 and 12.6 are
based on Banerjee and Magnus (2000), and discuss the sensitivity of the F -test
and, more in particular, the t-test. The behavior of the appropriate statistic ϕ

is investigated. Section 12.7 relates to some findings in Magnus and Vasnev
(2007), and concerns the relationship between sensitivity and diagnostic tests
and in particular the asymptotic independence of sensitivity and the diagnostic.
Some concluding remarks for the practitioner are offered in Section 12.8.

12.2. Sensitivity of the OLS Predictor

Let us begin by considering the standard linear regression model

y = Xβ + u, (12.1)

where y is an n × 1 vector of observations, X is an n × k matrix of explanatory
variables, β is a k × 1 vector of unknown parameters, and u is an n × 1 vector
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of unobservable disturbances. We assume that all standard assumptions hold,
except one. Thus we assume that X is nonrandom with full column-rank k, and
that u is normally distributed with mean 0. The disturbance variance matrix,
however, is not given by σ 2In, but by σ 2Ω(θ), where σ 2 and the m × 1 vector
θ are unknown. Our parameters of interest are E(y) = Xβ or, which amounts to
the same, β . The variance parameters σ 2 and θ are nuisance parameters.

Without any loss of generality we may assume that Ω(0) = In. Then, at θ = 0,
the ordinary least squares (OLS) estimator and predictor,

β̂ = (X′X)−1X′y and ŷ = X(X′X)−1X′y,

are unbiased and efficient. If θ �= 0, then β̂ and ŷ are, in general, no longer effi-
cient. If we know the structure of Ω and the values of the m elements of θ , then
generalized least squares (GLS) is more efficient. If we know the structure Ω

but not the value of θ , then estimated GLS is not necessarily more efficient than
OLS. But in the most common case, where we don’t even know the structure Ω ,
we have to determine Ω and estimate θ . The question then is whether the result-
ing estimator for β (or Xβ) is “better” than the OLS estimator β̂ . In sensitivity
analysis we don’t ask whether the nuisance parameters (here the θ -parameters)
are significantly different from 0 or not. Instead we ask directly whether the
GLS estimators β̂(θ) and ŷ(θ) are sensitive to deviations from the white noise
assumption.

If θ is known, then the parameters β and σ 2 can be estimated by generalized
least squares. Thus,

β̂(θ) = (
X′Ω−1(θ)X

)−1
X′Ω−1(θ)y (12.2)

and

σ̂ 2(θ) = (y − ŷ(θ))′Ω−1(θ)(y − ŷ(θ))

n − k
, (12.3)

where ŷ(θ) denotes the predictor for y, that is,

ŷ(θ) = Xβ̂(θ). (12.4)

The OLS estimators are then given by β̂ := β̂(0), σ̂ 2 := σ̂ 2(0), and ŷ := ŷ(0).
We wish to assess how sensitive (linear combinations of) β̂(θ) is with respect
to small changes in θ , when θ is close to 0. The predictor is the linear combi-
nation most suitable for our analysis. Since any estimable linear combination of
β̂(θ) is a linear combination of ŷ(θ), and vice versa, this constitutes no loss of
generality.

We now define the sensitivity of the predictor ŷ(θ) (with respect to θs ) as

zs := ∂ŷ(θ)

∂θs

∣∣∣∣
θ=0

(s = 1, . . . ,m), (12.5)
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which is related to the “impact factor” considered by Omtzigt and Paruolo
(2005). The sensitivity of β̂(θ) (with respect to θs ) is then

∂β̂(θ)

∂θs

∣∣∣
∣
θ=0

= (X′X)−1X′zs.

In order to use the (normally distributed) n×1 vector zs as a sensitivity statistic,
we transform it into a χ2-variable in the usual way. Defining

M := In − X(X′X)−1X′, As := ∂Ω(θ)

∂θs

∣∣∣∣
θ=0

, Cs := (In −M)AsM,

we thus propose

Bs := z′
s(CsC

′
s)

−zs

(n − k)σ̂ 2
(12.6)

as a statistic to measure the sensitivity of the predictor ŷ(θ) with respect to θs .
(The notation A− denotes a generalized inverse of A.) Large values of Bs in-
dicate that ŷ(θ) is sensitive to small changes in θs when θ is close to 0, and
therefore that setting θs = 0 is not justified. The statistic Bs depends only on y

and X and can therefore be observed. Since the distribution of y depends on θ ,
so does the distribution of Bs .

Using standard results of differential calculus (see Magnus and Neudecker,
1988) we obtain the differential of ŷ(θ) from (12.2) and (12.4),

dŷ(θ) = X
(
X′Ω−1(θ)X

)−1
X′(dΩ−1(θ)

)(
y − Xβ̂(θ)

)

so that, at θ = 0,

zs = −X(X′X)−1X′AsMy = −Csy.

Hence, using (12.6) and the fact that σ̂ 2 = y′My/(n − k), we obtain

Bs := z′
s(CsC

′
s)

−zs

(n − k)σ̂ 2
= y′C′

s(CsC
′
s)

−Csy

y′My
.

Next consider the distribution of Bs . We notice that CsX = 0 and MX = 0.
Evaluating the distribution of y at θ = 0 we then find

Bs = u′Wsu

u′Mu
= u′Wsu

u′Wsu + u′(M − Ws)u
.

Now, Ws is idempotent with rk(Ws) = rk(Cs) = rs . Also, since MC′
s = C′

s , we
have MWs = Ws . Hence M −Ws is idempotent as well and its rank is n−k−rs .
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The condition 0 < rs < n − k implies that both Ws and M − Ws have rank � 1.
It follows that u′Wsu ∼ σ 2χ2(rs), u′(M − Ws)u ∼ σ 2χ2(n − k − rs), and the
two quadratic forms are independent, because (M − Ws)Ws = 0. Therefore, Bs

follows a Beta-distribution. Summarizing, we have found

THEOREM 1. We have

zs = −Csy and Bs = y′Wsy

y′My
,

where Ws := C′
s(CsC

′
s)

−Cs . Furthermore, if rs := rk(Cs) satisfies 0 < rs <

n − k, and the distribution of y is evaluated at θ = 0, then

Bs ∼ Beta

(
rs

2
,
n − k − rs

2

)
,

or, what amounts to the same,

n − k − rs

rs
· Bs

1 − Bs

∼ F(rs, n − k − rs).

We shall be primarily interested in the case where As is a Toeplitz matrix, so
that As = T (h) for some 0 � h � n − 1, where

T (h)(i, j) =
{

1 if |i − j | = h,

0 otherwise.

This is a common situation for stationary processes and the matrix Cs then be-
comes Cs = (In − M)T (h)M . Our particular focus – and the most important
special case in practice – is As = T (1), where

T (1) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 1
0 0 0 . . . 1 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (12.7)

We shall denote the corresponding B1-statistic as B1. We know that B1
measures the sensitivity of ŷ(θ) with respect to the AR(1) (or MA(1) or
ARMA(1,1)) parameter. The statistic B1 should be seen as an alternative to the
Durbin–Watson (DW) statistic. But where the DW-statistic answers the question
“Is the AR(1) parameter θ equal to 0?” our B1 statistic answers the question
“Are ŷ and β̂ sensitive to the fact that θ may not be 0?” In most practical situa-
tions the latter question seems more appropriate. In the next section we shall see
that DW is essentially the sensitivity of σ̂ 2(θ). Hence we can interpret DW as
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answering the question “Is σ̂ 2 sensitive to θ?” Thus, DW turns out to be measur-
ing the sensitivity of the estimator for the variance of y, while B1 measures the
sensitivity of the estimator for its mean. Again, in most practical situations our
primary interest lies in the mean of y. The statistic B1 provides a direct measure
for this sensitivity.

12.3. Sensitivity of the OLS Variance Estimator

In the standard linear model we have two parameters of interest: the mean pa-
rameters β and the variance parameter σ 2. Having studied the sensitivity of the
mean parameter in the previous section, we now turn our attention to the sensi-
tivity of the variance estimator σ̂ 2(θ) with respect to small changes in θ .

It is more convenient to consider log σ̂ 2 instead of σ̂ 2. Thus we define

Ds := ∂ log σ̂ 2(θ)

∂θs

∣∣∣∣
θ=0

(12.8)

as the statistic to measure the sensitivity of the σ̂ 2(θ) with respect to θs , the
counterpart to Bs defined in (12.6). Differentiating σ̂ 2(θ) in (12.3) gives

(n − k)d
(
σ̂ 2(θ)

)

= −2
(
y − ŷ(θ)

)′
Ω−1(θ)d

(
ŷ(θ)

)+ (
y − ŷ(θ)

)′(dΩ−1(θ)
)(
y − ŷ(θ)

)
,

and hence, at θ = 0,

(n − k)
∂σ̂ 2(θ)

∂θs
= 2y′MCsy − y′MAsMy = −y′MAsMy,

since MCs = 0. Thus we obtain the following counterpart to Theorem 1.

THEOREM 2. We have

Ds = −y′MAsMy

y′My
= −v′P ′AsPv

v′v
,

where P is an n × (n − k) matrix containing the n − k eigenvectors of M asso-
ciated with the eigenvalue 1, that is, M = PP ′,P ′P = In−k , and v := P ′y/σ ∼
N(0,P ′Ω(θ)P ). Furthermore, if the distribution of y is evaluated at θ = 0, then
v ∼ N(0, In−k).

Theorem 2 shows that Ds has the same form as the DW-statistic. The most
important special case occurs again when As = T (1) (that is, AR(1) or MA(1)
or ARMA(1,1)). The corresponding Ds -statistic will be denoted by D1. This
case was considered by Dufour and King (1991, Theorem 1) as a locally best
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invariant test of θ = 0 against θ > 0, where θ denotes the AR(1) parameter. Not
surprisingly, D1 is closely related to the DW-statistic, a fact first observed by
King (1981).

An immediate consequence of Theorems 1 and 2 and the fact that

û ′T (1)û = 2
n∑

t=2

ût ût−1 = −
n∑

t=2

(ût − ût−1)
2 +

n∑

t=2

û2
t +

n∑

t=2

û2
t−1

is the following important and illuminating special case.

THEOREM 3 (Special Case). In the special case As = T (1), we have

Bs := B1 = û ′W(1)û

û ′û
, Ds := D1 = − û ′T (1)û

û ′û
= DW − 2 + R/n,

where

W(1) := C(1)′(C(1)C(1)′)−C(1), C(1) := (I − M)T (1)M,

and û = My is the vector of OLS-residuals, DW denotes the Durbin–Watson
statistic,

DW =
n∑

t=2

(
ût − ût−1

)2
/ n∑

t=1

û2
t ,

and R = (û2
1 + û2

n )/(
∑

û2
t /n) is a remainder term.

The matrix T (1) is equally relevant in the AR(1) and MA(1) case (and in-
deed, the ARMA(1,1) case). From Theorem 3 we see that B1 and D1 depend
on T (1), and hence are identical for AR(1) and MA(1). This explains, inter alia,
the conclusion of Griffiths and Beesley (1984) that a pretest estimator based
on an AR and an MA pretest performs essentially the same as a pretest es-
timator based on only an AR pretest. Any likelihood-based test (such as the
Lagrange multiplier test) uses the derivatives of the log-likelihood, in particular
∂Ω(θ)/∂θs . Under the null hypothesis that θ = 0 the test thus depends on As ,
which explains why As plays such an important role in many test statistics. Any
pretest which depends on As = T (1) will not be appropriate to distinguish be-
tween AR(1) and MA(1). A survey of the DW and D1 statistics is given in King
(1987).

12.4. Behavior of B1 and D1

We know from Theorem 1 that B1 follows a Beta-distribution when the dis-
turbances are white noise. Our next step is to ask how B1 behaves when the
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disturbances follow some more general stationary process. In this section we
answer this question for the case where the disturbances follow a stationary
AR(1) process. The variance matrix then has one parameter (apart from σ 2): θ .
The correct procedure for measuring the sensitivity of ŷ (and β̂) is to use B1.
Similarly, the correct procedure for measuring the sensitivity of σ̂ 2 is to use D1,
which is essentially the DW-statistic.

We perform a little simulation. First we generate five regressors:

x1 constant 1,1,1, . . .
x2 time trend 1,2,3, . . .
x3 normal distribution E(x3) = 0, var(x3) = 9
x4 lognormal distribution E(logx4) = 0, var(logx4) = 9
x5 uniform distribution −2 � x5 � 2

These regressors can be combined in various data sets. We consider five data
sets with two regressors and five with three regressors, as follows:

k = 2 k = 3

1 constant, time trend 6 constant, time trend, normal
2 constant, normal 7 constant, time trend, lognormal
3 constant, lognormal 8 constant, uniform, lognormal
4 uniform, normal 9 uniform, normal, lognormal
5 time trend, normal 10 time trend, normal, uniform

For each of the ten data sets we calculate B1∗ and D1∗ such that

Pr(B1 >B1∗) = α and Pr(D1 � D1∗) = α,

where α = 0.05 and the disturbances are assumed to be white noise. In Fig. 12.2
we calculate

Pr(B1 >B1∗) and Pr(D1 � D1∗)

under the assumption that the disturbances are AR(1) for values of θ between
0 and 1. Each line in the figure corresponds to one of the ten different data
sets. As noted before, the D1-statistic is essentially the DW-statistic. As a re-
sult, Pr(D1 � D1∗) can be interpreted as the power of D1 in testing θ = 0
against θ > 0. Alternatively we can interpret Pr(D1 � D1∗) as the sensitiv-
ity of σ̂ 2 with respect to θ . In the same way, B1 measures the sensitivity of ŷ

(and β̂) with respect to θ . One glance at Fig. 12.2 shows that B1 is quite insen-
sitive, hence robust, with respect to θ , even for values of θ close to 1. The figure
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Fig. 12.2: B1 and D1: AR(1) disturbances as a function of θ (α = 0.05).

shows the probabilities Pr(B1 >B1∗) and Pr(D1 � D1∗) for n = 25. The main
conclusion is that D1 is quite sensitive to θ but B1 is not. Hence, the D1 or
DW-statistic may indicate the OLS is not appropriate since θ is “significantly”
different from 0, but the B1 statistic shows that the estimates ŷ and β̂ are little
effected. This explains and illustrates a phenomenon well known to all applied
econometricians, namely that OLS estimates are “robust” to variance misspeci-
fication (although their distribution may be less robust).

If θ is close to 1, then the limit (or the limiting distribution) can be calculated
from Banerjee and Magnus (1999, Appendix 2). The flatness of the B1-curves
suggests that B1 and D1 are near-independent. This “near-independence” is
based on asymptotic independence, a fact proved in Section 12.8. For n = 25
and θ = 0.5 we would decide in only about 7–10% of the cases that ŷ is sensitive
with respect to θ .

Figure 12.2 gives the sensitivities for one value of n, namely n = 25. To see
how B1 depends on n we calculate for each of our ten data sets Pr(B1 > B1∗)
for three values of n (n = 10,25,50) and one variance specification: AR(1).
The results are given in Table 12.1. Table 12.1 confirms our earlier statements.
In only 5–10% of the cases would we conclude that ŷ and β̂ are sensitive to
AR(1) disturbances. High values of n are needed to get close to the probability
limit and the higher is θ > 0, the higher should be n.

Our calculations thus indicate that OLS is very robust against AR(1) (in
fact, ARMA(1,1)) disturbances. In only about 5–10% of the cases does the
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Table 12.1: Pr(B1 >B1∗), α = 0.05, for three values of n.

Data set AR(1), θ = 0.5

n = 10 n = 25 n = 50

1 0.078 0.072 0.063
2 0.073 0.087 0.073
3 0.101 0.092 0.089
4 0.073 0.079 0.080
5 0.077 0.082 0.064
6 0.093 0.085 0.069
7 0.092 0.101 0.087
8 0.096 0.088 0.078
9 0.081 0.091 0.096

10 0.104 0.087 0.069

B1 statistic lead us to conclude that OLS is not appropriate for predicting y or
estimating β .

We briefly comment on how B1 behaves in more general situations. In the
case of MA(1) or ARMA(1,1) disturbances the general conclusions are the
same. Almost all stationary processes will have either an AR(1) or an MA(1)
component, so that the B1 statistic has a justification. We now consider the
AR(2) process with parameters θ1 and θ2 where θ1 = 0. In this situation B1
is not the correct sensitivity statistic, the correct one being

B2 := û ′C(2)′(C(2)C(2)′)−C(2)û

û ′û
,

where û denotes the vector of OLS residuals and

C(2) = (I − M)T (2)M.

If we know that AR(2) with θ1 = 0 is the only alternative to white noise, we
would use B2 to find out whether OLS is still reasonable or not. In most prac-
tical situations, however, we do not know this. If we calculate the probabilities
Pr(B1 > B1∗) and Pr(B2 > B2∗) for 0 < θ2 < 1 we find that B1 is more sen-
sitive than B2 with respect to θ2, even though B2 is the correct statistic. This
is true for nine of the ten data sets. For D1 compared with D2 the opposite is
the case. D1 is less sensitive than D2, or, put differently, the DW-test is less
powerful than the appropriate AR(2) test, which is what we would expect.

Under the current specification of AR(2) with θ1 = 0 the correct B2 statistic
will show sensitivity about 7% of the time, depending of course on the value
of θ2 and the data set. The incorrect B1 statistic will show sensitivity about 12%
of the time. Thus, using B1 in this case will lead us to conclude that OLS is
sensitive slightly more often than is justified.

We conclude that B1 can be usefully employed even in cases for which it was
not designed. With 25 observations we will reject OLS slightly more frequently
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than is necessary, but of course much less frequently than if we were using the
DW-test.

12.5. Sensitivity of the F -test

Suppose now that we are interested, not in estimation, but in testing, in particular
testing linear restrictions while we are uncertain about the distribution of the
disturbances. The set-up is the same as in Sections 12.3 and 12.4. We have a
linear regression model y = Xβ +u, where u follows a normal distribution with
mean zero and variance σ 2Ω(θ). In this section, to simplify notation, we assume
that θ consists of a single parameter; hence m = 1.

If there are restrictions on β , say Rβ = r0, where R is a q × k matrix of rank
q � 1, then the restricted GLS estimator for β is given by

β̃(θ) = β̂(θ) − (
X′Ω−1(θ)X

)−1
R′(R

(
X′Ω−1(θ)X

)−1
R′)−1(

Rβ̂(θ) − r0
)
,

where

β̂(θ) = (
X′Ω−1(θ)X

)−1
X′Ω−1(θ)y.

If we assume that θ is known, then the usual F -statistic for testing the hypothesis
Rβ = r0 can be written as

F(θ) = (Rβ̂ − r0)
′(R(X′Ω−1(θ)X)−1R′)−1(Rβ̂ − r0)

û ′(θ)Ω−1(θ)û(θ)
· n − k

q
(12.9)

or alternatively as

F(θ) = ũ′(θ)Ω−1(θ)ũ(θ) − û ′(θ)Ω−1(θ)û(θ)

û ′(θ)Ω−1(θ)û(θ)
· n − k

q
, (12.10)

where

û(θ) = y − Xβ̂(θ), ũ(θ) = y − Xβ̃(θ).

Notice that the equality of (12.9) and (12.10) holds whether or not the restriction
Rβ = r0 is satisfied. Of course, under the null hypothesis H0: Rβ = r0, F(θ) is
distributed as F(q,n − k).

Suppose we believe that θ = 0, which may or may not be the case. Then we
would use the OLS estimator β̂(0) or the restricted OLS estimator β̃(0). We now
define the symmetric idempotent n × n matrix

B := X(X′X)−1R′(R(X′X)−1R′)−1
R(X′X)−1X′, (12.11)
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where we recall that M = In − X(X′X)−1X′, and we notice that

MB = 0, rk(M) = n − k, rk(B) = q.

We then have û := û(0) = Mu, and, if the restriction Rβ = r0 is satisfied, ũ :=
ũ(0) = (M + B)u.

We want to find out how sensitive the F -statistic is with respect to small
changes in θ when θ is close to 0. As in Sections 12.3 and 12.4, we do not ask
the question whether θ is 0 or not, using for example a Durbin–Watson test.
Instead, we think of θ as a nuisance parameter whose estimate may or may not
be “significantly” different from 0. But even when θ is “far” from 0, this does not
imply that F(θ) is “far” from F(0). And this is what interests us: Is it legitimate
to use F(0) – based on OLS residuals – instead of F(θ)?

We define the sensitivity of the F -statistic F(θ) as

ϕ := dF(θ)

dθ

∣∣∣∣
θ=0

, (12.12)

where F(θ) is given in (12.9) or (12.10). Large values of ϕ indicate that F(θ) is
sensitive to small changes in θ when θ is close to 0 and hence that setting θ = 0
is not justified. The statistic ϕ depends only on y and X (and, of course, on
R and r0) and can therefore be observed. The distribution of ϕ does, however,
depend on θ (and, if the restriction Rβ = r0 is not satisfied, on σ 2 as well). The
following result is proved in Banerjee and Magnus (2000, pp. 170–171).

THEOREM 4. We have

ϕ = 2

(
F(0) + n − k

q

)(
θ̂ − θ̃

)
, (12.13)

where

θ̂ = 1

2

û ′Aû

û ′û
, θ̃ = 1

2

ũ′Aũ

ũ′ũ
, (12.14)

and

F(0) = ũ′ũ − û ′û
û ′û

· n − k

q
, (12.15)

û and ũ denote the unrestricted and restricted OLS residuals, and A is again
defined as dΩ(θ)/dθ at θ = 0.

We notice that Theorem 4 is valid whether or not the restriction Rβ = r0 is
satisfied, and also whether or not the distribution of y is evaluated at θ = 0. We
see from Theorem 4 that ϕ is a function of quadratic forms in normal variables,
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but, since these quadratic forms are not independent, it does not appear feasible
to obtain the density of ϕ in closed form. We shall obtain certain limiting results
in Section 12.6, and also the first two moments of ϕ exactly.

The notation θ̂ and θ̃ in (12.13) and (12.14) suggests that these statistics can
be interpreted as estimators of θ . This suggestion is based on the following ar-
gument. We expand Ω(θ) as

Ω(θ) = In + θA + 1

2
θ2H + O

(
θ3),

where A is the first derivative of Ω , and H is the second derivative, both at
θ = 0. Then,

Ω−1(θ) = In − θA + 1

2
θ2(2A2 − H

)+ O
(
θ3).

If the y-process is covariance stationary, we may assume that the diagonal ele-
ments of Ω are all ones. Then, trA = trH = 0 and

tr

(
dΩ−1(θ)

dθ
· Ω(θ)

)
= θ trA2 + O

(
θ2). (12.16)

We next expand û(θ) as

û(θ) = û(0) + θX(X′X)−1X′Aû(0) + O
(
θ2),

so that, writing û instead of û(0),

û ′(θ)dΩ−1(θ)

dθ
û(θ) = −û ′Aû + θ(2û ′AMAû − û ′Hû) + O

(
θ2). (12.17)

The maximum likelihood estimator for θ is obtained by equating (12.16) and
(12.17); see Magnus (1978). This gives

θ̂ML ≈ û ′Aû

2û ′AMAû − û ′Hû − trA2
= 1

2

û ′Aû

û ′û
(
1 + n− 1

2 δ
)
,

where δ will be bounded in probability if (1/n) trA2 → 2. This will usually
be the case, certainly for low-order ARMA processes. In essence, therefore, all
properties of the distribution of ϕ are determined by the behavior of n(θ̂ − θ̃ ),
the difference between the unrestricted and the restricted “estimator” of θ .

12.6. Behavior of ϕ when q = 1

In order to gain further insight into the behavior of ϕ, we concentrate on the
special case q = 1, that is, we shall consider the t-test rather than the F -test.
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The general results for the F -test can be found in Banerjee and Magnus (2000,
Section 4). If q = 1 then the null hypothesis is written as H0: r ′β = r0, where r

is a given k×1 vector. The matrix B has rank one and can be written as B = bb′,
where

b = X(X′X)−1r
√
r ′(X′X)−1r

and b′b = 1. Since ϕ does not depend on σ 2, we shall set σ 2 = 1 in this section.
We first recall the following result from Pitman (1937); see also Laha (1954).

PITMAN’S LEMMA. Let x1, x2, . . . , xn be identically and independently distrib-
uted random variables with a finite second moment. Then,

∑n
i=1 aixi∑n
i=1 xi

and
n∑

i=1

xi

are independent if and only if each xi follows a gamma distribution.

Using Pitman’s lemma we obtain the exact first two moments of ϕ. At θ = 0
and assuming r ′β = r0 we can write

ϕ = u′MAMu · u′bb′u − u′Mu · u′(bb′Abb′ + bb′AM + MAbb′)u
(u′Mu)2/(n − k)

,

using (12.13)–(12.15) and the facts that û = Mu and ũ = (M + bb′)u. Let M =
SS′, S′S = In−k , so that S′b = 0. Define the vector v := S′u and the scalar
η1 := b′u, so that v and η1 are independent. Then,

ϕ = (v′S′ASv)η2
1 − (b′Ab)(v′v)η2

1 − 2(v′v)(b′ASv)η1

(v′v)2/(n − k)
, (12.18)

and hence

E(ϕ | v) = R1 − b′Ab

w

and

E
(
ϕ2

∣∣ v
)= 3R2

1 + 3(b′Ab)2 − 6(b′Ab)R1 + 4(n − k)wR2
2

w2
,

where

R1 := v′S′ASv

v′v
, R2 := b′ASv√

v′v
, w := v′v

n − k
.
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We now use Pitman’s lemma, recognizing the fact that R1 and w are indepen-
dent, and, similarly, that R2 and w are independent. Since

E

(
1

w

)
= n − k

n − k − 2
, E

(
1

w2

)
= (n − k)2

(n − k − 2)(n − k − 4)
,

we obtain

THEOREM 5. Assume that the distribution of y is evaluated at θ = 0 and that
the restriction r ′β = r0 is satisfied. Then,

E(ϕ) = n − k

n − k − 2

(
−b′Ab + trAM

n − k

)

and

E
(
ϕ2) = n − k

n − k − 2

(
3(n − k)(b′Ab)2

n − k − 4
+ 4b′AMAb

+ 6 tr(AM)2 + 2(trAM)2

(n − k + 2)(n − k − 4)
− 6(b′Ab)(trAM)

n − k − 4

)
.

Let us next consider the large sample behavior of ϕ. Let

η2 := (b′Ab)η1 + 2b′ASv = b′A(2SS′ + bb′)u ∼ N
(
0, c2),

where

c2 := (b′Ab)2 + 4b′AMAb. (12.19)

Starting from (12.18), we can then rewrite ϕ as

ϕ = (v′S′ASv)η2
1 − (v′v)η1η2

(v′v)2/(n − k)
= −η1η2 + R1η

2
1 + (w − 1)η1η2

w
.

We shall assume that the distribution of y is evaluated at θ = 0 and that the
restriction r ′β = r0 is satisfied, and also that

(i) Ω(θ) is normalized such that trΩ(θ) = n for all θ , and
(ii) the eigenvalues of A are bounded.

Notice that condition (i) can always be achieved by redefining σ 2. The condi-
tion implies that trA = 0. Notice also that η1 = Op(1) and w = 1 +Op(n

−1/2).
Hence, if we can show that c2 remains bounded as n → ∞ and that R1 =
Op(n

−1/2), then ϕ will behave asymptotically as −η1η2.
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Let μ1 denote the largest eigenvalue (in absolute value) of A. Then condition
(ii) guarantees that μ1 remains bounded for all n. As a result,

(b′Ab)2 =
(
b′Ab

b′b

)2

� μ2
1,

b′AMAb = (Ab)′M(Ab)

(Ab)′(Ab)
· b

′A2b

b′b
· b′b � μ2

1,

| trAM| = ∣
∣trA(In − M)

∣
∣� μ1 tr(In − M) = kμ1,

and

tr(AM)2 � (trM)μ1(AMA) � (n − k)μ2
1.

Therefore c2 remains finite, and since

E(R1) = trAM

n − k
→ 0, E

(
R2

1

)= tr(AM)2

(n − k)(n − k + 2)
→ 0,

we see that R1 = Op(n
−1/2). Since also w = 1 + Op(n

−1/2), we obtain

THEOREM 6. Assume that the distribution of y is evaluated at θ = 0 and that
the restriction r ′β = r0 is satisfied. Assume further that (i) Ω(θ) is normalized
such that trΩ(θ) = n for all θ , and (ii) the eigenvalues of A are bounded. Then,
for large n,

ϕ = −η1η2 + Op(1/
√
n ).

We notice that η1η2 can be expressed as

η1η2 = (b′u)
(
2b′AM + (b′Ab)b′)u

= u′((M + bb′)A(M + bb′) − MAM
)
u = ũ′Aũ − û ′Aû,

and also as η1η2 = c · z, where z follows a “product-normal” distribution with
parameter ρ := b′Ab/c, that is, z can be expressed as z = z1z2, where z1 and z2
are both standard-normal with E(z1z2) = ρ.

Theorem 6 is useful because the distribution of ϕ at θ = 0 is intractable, but
the distribution of η1η2 is known. To assess the sensitivity of the t-test, we con-
sider the equation

Pr
(|ϕ| > ϕ∗)= α.

According to Theorem 6 this is approximately equal to Pr(|z| > ϕ∗/c) = α. We
thus obtain an asymptotic sensitivity statistic z whose distribution is simple and
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Fig. 12.3: Median m1 of z and m2 of |z| as a function of ρ.

depends only on one parameter ρ. We stated – after defining ϕ in (12.12) – that
large values of ϕ indicate that F(θ) is sensitive to small changes in θ when θ

is close to 0. We did not discuss what we mean by “large.” We can now discuss
this matter in the context of Theorem 6.

For a given data set we know c and ρ. Hence, given α, ϕ∗ can be obtained
from published tables of the product-normal distribution. If |ϕ| > ϕ∗, we say
that the t-test is sensitive to variance misspecification; if |ϕ| � ϕ∗ we say it
is insensitive or robust. There is, of course, some arbitrariness in the choice
of α. The most common choice would be α = 0.05 or α = 0.01, in which case
we would (too) frequently conclude that the t-test is robust. In our view the
most sensible choice is α = 0.50, in which case ϕ∗/c is the median of |z|. We
see from Fig. 12.3 that the median of |z| does not depend much on ρ. In fact,
0.35 � median(|z|) � 0.45. Hence, at α = 0.50 we obtain the following “rule of
thumb” based on the above asymptotic sensitivity argument.

Rule of thumb: The t-statistic is sensitive (at the 50% level) to variance mis-
specification if and only if |ϕ|/c > 0.40.

In practice, we may compute ϕ from (12.13) and c from (12.19) and check
whether |ϕ| > 0.40c. If we know the type of variance misspecification which
could occur, we use the A-matrix corresponding to this type of misspecification.
In most situations we would not know this. Then we use the Toeplitz matrix T (1),
defined in (12.7), as our A-matrix. We know from Sections 12.2–12.4 that this
is the appropriate matrix for AR(1), MA(1) and ARMA(1,1) misspecification.
There is evidence that the probability that |ϕ| > 0.40c is extremely close to
0.50. In other words, 0.40c is an excellent approximation to the exact (finite
sample) median of |ϕ|. Park et al. (2002) use the fact that serial correlation has
little bearing on the robustness of t- and F -tests in a study on the effects of
temperature anomalies and air pressure/wind fluctuations of the sea surface on
the supplies of selected vegetables and melons.
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12.7. Asymptotic Independence of Sensitivity and Diagnostic

Let us now further consider the relationship between the sensitivity statistic and
a diagnostic test. In Fig. 12.4 we assume for simplicity that k = m = 1, so that
there is one focus parameter β and one nuisance parameter θ . At (β̃, θ̃ ) we
obtain the maximum of the likelihood �̃, while at (β̂,0), we obtain the restricted
maximum �̂. For every fixed value of θ , let β̂(θ) denote the value of β which
maximizes the (restricted) likelihood. The locus of all constrained maxima is the
curve

C := (
β̂(θ), θ, �

(
β̂(θ), θ

))
.

In particular, the points (β̂,0, �̂) and (β̃, θ̃ , �̃) are on this curve.
The β̂(θ)-curve is thus the projection of the curve C onto the (β, θ)-plane; we

shall call this projection the sensitivity curve. In contrast, if we project C onto
the (θ, �)-plane, we obtain the curve �̂ defined as

�̂(θ) := �
(
β̂(θ), θ

)
,

which we shall call the diagnostic curve. The diagnostic curve �̂ in the (θ, �)-
plane contains all relevant information needed to perform the usual diagnostic
tests. In particular, the LR test is based on �̂(θ̃ ) − �̂(θ̂ ), the Wald test is based
on θ̃ , and the LM test is based on the derivative of �̂(θ) at θ = 0.

Fig. 12.4: Diagnostic test and sensitivity.
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Analogous to the LM test in the (θ, �)-plane, the (local) sensitivity of β̂ is the
derivative of β̂(θ) at θ = 0 in the (β, θ)-plane,

S
β̂

:= ∂β̂(θ)

∂θ ′

∣∣∣∣
θ=0

.

The sensitivity thus measures the effect of small changes in θ on the restricted
ML estimator β̂ and the sensitivity curve contains all restricted ML estimators
β̂(θ) as a function of θ .

One might think that sensitivity and diagnostic – although obviously not the
same – are nevertheless highly correlated. We shall now argue that this is not
the case. In fact, they are asymptotically independent, as demonstrated by Mag-
nus and Vasnev (2007). The fact that the sensitivity curve and the diagnostic
curve in Fig. 12.4 live in different planes suggests this orthogonality result, but
constitutes no proof.

Since this independence result is a crucial aspect of the importance if sen-
sitivity analysis, let us consider first the simplest example, namely the linear
regression model

y = Xβ + Zθ + ε, ε | (X,Z) ∼ N
(
0, σ 2In

)
,

where (β,σ 2) is the focus parameter and θ is the nuisance parameter. We are
interested in the sensitivity of β with respect to θ . The restricted estimator is
β̂ = (X′X)−1X′y and the Lagrange multiplier (LM) test takes the form

LM = y′MZ(Z′MZ)−1Z′My

y′My/n
.

The sensitivity in this example is

S
β̂

:= ∂β̂(θ)

∂θ ′

∣∣∣∣
θ=0

= −(X′X)−1X′Z,

because β̂(θ) = (X′X)−1X′(y − Zθ).
The sensitivity S

β̂
and the diagnostic LM are independent, because of the fact

that the Wald test in this case is proportional to an F -distribution. As shown by
Godfrey (1988, p. 51), the LM and LR tests are related to the Wald test by

LM = W

1 + W/n
, LR = n log(1 + W/n),

and hence the distribution of LM (and W and LR) does not depend on (X,Z).
Thus, for any two measurable functions φ and ψ ,

E
(
φ(LM)ψ(X,Z)

) = E
(
E
(
φ(LM)

∣∣X,Z
)
ψ(X,Z)

)

= E
(
φ(LM)

)
E
(
ψ(X,Z)

)
.
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Not only are LM and S
β̂

uncorrelated, but any two measurable functions of LM
and S

β̂
are uncorrelated as well. Then, by Doob (1953, p. 92), LM and S

β̂
are

independent, and the same holds for the Wald and LR tests.
In this simple example, the sensitivity and the diagnostic are not only

asymptotically independent, but even independent in finite samples. In the next
example – which is more typical – we only find asymptotic independence.

Consider again the linear regression model

y = Xβ + u, u | X ∼ N
(
0, σ 2Ω(θ)

)
,

where Ω(0) = In. We regard (β,σ 2) as the focus parameter and θ as a single
nuisance parameter. We are interested in the sensitivity of β to θ .

Letting M := In − X(X′X)−1X′ and A := dΩ(θ)/dθ at θ = 0, the restricted
estimator and the sensitivity are

β̂ = (X′X)−1X′y, S
β̂

= (X′X)−1X′AMy,

while the LM test takes the form

LM = n

2 trA2/n

(
y′MAMy

y′My
− trA

n

)2

,

from which we see that the LM test is a quadratic function of u, while the sensi-
tivity is a linear function of u. Hence they are asymptotically independent since
both have finite limiting variances.

A limiting result does not, however, inform us how fast the convergence takes
place. Thus, we perform a Monte Carlo experiment, based on the same set-up as
in Section 12.4. Our assumed alternative is the AR(1) model with parameter θ .
Assuming that the null hypothesis that θ = 0 is true, we calculate critical values
SS∗ and LM∗ such that

Pr(SS > SS∗) = Pr(LM > LM∗) = 0.05,

where SS refers to the (one-dimensional) “scaled” sensitivity rather than the
multi-dimensional sensitivity statistic S. If SS and LM are independent, then
the conditional probability Pr(SS < SS∗ | LM � LM∗) will be equal to 0.95.
If, on the other hand, SS and LM are perfectly dependent, then the conditional
probability will be zero.

We performed 100,000 Monte Carlo simulations for each of the ten models
and for each of n = 25, 50, 100, 250, 500, and 1000. Figure 12.5 demonstrates
that the convergence to independence is fast, and that the behavior for each of
the ten data sets is similar. Interestingly, the LM test and the scaled sensitivity
are negatively correlated in this case.

We have chosen the LM test as our diagnostic test. The LR test and the Wald
tests are asymptotically the same as the LM test, but not in finite samples. Hence,
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Fig. 12.5: Nonscalar variance: independence of LM test and sensitivity.

the LR and Wald tests will also be asymptotically independent of the scaled sen-
sitivity, but the speed of convergence could be different. All three tests converge
quickly to the 95% line; the Wald test is the slowest. The Wald test and the LR
test are both positively correlated with the scaled sensitivity.

12.8. Conclusions for the Practitioner

Sensitivity analysis matters. The usual diagnostic test provides only half the
information required to decide whether a restricted estimator suffices to learn
about the focus parameters in the model; the other half is provided by the sensi-
tivity.

What are the implications for the practitioner? If the practical model and esti-
mation environment is covered by the theory and examples in this chapter, then
the sensitivity can be computed and its distribution derived. This will provide
useful additional information. In many cases encountered in practice, however,
the current state of sensitivity analysis does not yet allow formal testing. In those
cases ad hoc methods can be fruitfully employed to assess the sensitivity of
estimates, forecasts, or policy recommendations. After all, sensitivity analysis
simply asks whether the results obtained change “significantly” when one or
more of the underlying assumptions is violated. Each time we perform a diag-
nostic test, we should also ask the corresponding sensitivity question. Suppose,
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for example, that we assume normality in a given estimation context. Perhaps we
even test for normality using a Jarque–Bera test or some other diagnostic. But
we should also ask in a more general framework (say a t-distribution if heavy
tails are a possibility, or a gamma-distribution if nonsymmetry is a possibility)
whether our estimates are affected or not. This is sensitivity analysis. Since this
chapter has demonstrated that diagnostics and sensitivity are both important, the
inclusion of such ad hoc sensitivity analysis is important as well.
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CHAPTER 13

The Empirical Significance of
Econometric Models

Thomas Mayer
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Most of the papers in this volume analyze in detail some narrowly specified
problem of economic measurement. This paper takes a more general approach
and surveys a number of problems that limit the empirical evaluations of eco-
nomic models. It takes as given that economic models should have empirical
relevance, so that they need to be empirically tested.

I therefore focus on some difficulties in testing economic models. The prob-
lems being numerous and space being limited, I take up just a few of them,
concentrating on those that are at least to some extent remediable, and ignore
others, such as the problem of inferring causality, the Lucas critique and some
limitations of the available data. This means omitting some important funda-
mental problems in relating data to theory, such as those discussed in the last
chapter of Spanos (1986). Nor do I discuss the problems created by ideological
commitments, loyalty to schools of thought, or to the reluctance to admit error.1

At the same time I have not been reluctant to discuss issues that are already well
known – but ignored in practice.

13.1. The Aim of Empirical Models: Understanding or Prediction?

Although this essay focuses on models that make quantitative predictions let us
first look at models that are intended in the first instance to provide qualitative
understanding. They, too, are empirical since they aim to enhance our under-
standing of observed phenomena.

One type of such models is what Allen Gibbard and Hal Varian (1978) call
“caricature models,” that is models that purposely deal with an extreme case
because that clarifies the operation of a particular factor that in the real world

1 Elsewhere (Mayer, 2001b) I have argued that ideological differences do not explain very much
of the disagreement among economists. (For a contrary conclusion see Fuchs et al., 1998.) In Mayer
(1998) I have presented a case study of how adherence to schools of thought and other personal
obstacles have inhibited the debate about a fixed monetary growth rate rule.
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takes a less extreme form. For example, a model may explain price dispersion
by hypothesizing that there are only two types of consumers, those who search
until they find the lowest price for a specific item regardless of the time it takes,
and those who buy from the first seller they encounter. Such a model can teach
us about the importance of search effort. Since that is an empirical issue, it is
an empirical model, even though standing on its own, it is only loosely related
to empirical prediction. Suppose, for example, that we would find that while the
model predicts that the variance of prices is high for a commodity for which
there is much consumer search, the data show the opposite. We would not treat
this as a contradiction of the model’s claim that consumer search lowers the vari-
ance of prices, but would attribute it to some disturbing factor, such as reverse
causation. Such a caricature model can serve as an input into a more general
model that has less restrictive ceteris paribus clauses. It also provides under-
standing in an informal sense, understanding that Fritz Machlup (1950) has
characterized as a sense of “Ahaness.” This does not mean that the credibility
of a caricature model is entirely independent of its predictive performance. If
the larger model in which it is used fails to predict correctly, and if no conve-
nient disturbing factors can be found, then the alleged insight of the model is
dubious.

Caricature models carry a potential danger. Particularly if the model is elegant
it may be applied over-enthusiastically by ignoring its ceteris paribus conditions,
as was done, for example, when Ricardian rent theory was used to predict that
rents would absorb a rising share of income. Schumpeter called this type of error
the “Ricardian Vice.”

Another type of qualitative model, qualitative in the broad sense that it does
not require the microscope of econometric analysis, is one that derives its ap-
peal from readily observed experience. In some cases the facts stand out starkly.
Thus, the Great Depression showed that prices are not flexible enough to quickly
restore equilibrium given a massive negative demand shock. And the Great In-
flation showed that a Phillips curve that does not allow for the adjustment of
expectations is not a good policy guide. In microeconomics a model that ex-
plains why some used goods whose quality is hard to ascertain sell at a greater
discount than do others, is empirically validated by ordinary experience without
the aid of econometrics. This does not mean that narrower subsidiary hypothe-
ses of these models are not tested, and that these tests are not informative. But
our willingness to accept the broad messages of these models does not depend
on t values, etc. (See Summers, 1991.)

Both of these types of quantitative models raise different issues from qual-
itative models. For the first type it is whether the feature of reality that the
caricature model has pounced on teaches us enough about the real world, or
whether it distorts our understanding by focusing our attention on something
that may be technically “sweet,” but of little actual relevance.2 That cannot be

2 For example, take the following model: A government can finance its expenditures only by tax-
ing, borrowing or money creation. Therefore, holding tax receipts and borrowing constant, money
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decided by appeal to a methodological rule. One has to rely on one’s intuition
and on the success of the testable hypotheses that are derived from the insight
of the caricature model. For the second type the question is whether such casual
empiricism can be trusted. That, too, must be decided by experience.

13.2. Three Basic Problems in Testing Economic Theories

Let us now look at three of the many serious problems that arise in testing eco-
nomic theories.

13.2.1. Relating theories and data

The traditional procedure is to select as the regressors the major variables im-
plied by the model, run the regression, and then, if necessary add, or perhaps
eliminate, some regressors until the diagnostics look good. An alternative pro-
cedure coming from LSE econometricians is to use a large number of regressors,
some of which may not be closely tied to the hypothesis being tested, and then
narrow the analysis by dropping those with insignificant coefficients. Such a
search for the data generating process (DGP) usually puts more stress on meet-
ing the assumptions of the underlying statistical model, emphasizes misspecifi-
cation tests, and rejects quick fixes, such as adding an AR term, than does the
traditional procedure, though it does not reject the criteria used in the traditional
approach. Thus Spanos (1986, pp. 669–670) cites the following criteria: “the-
ory consistency, goodness of fit, predictive ability, robustness (including nearly
orthogonal explanatory variables), encompassing [the results of previous work
and] parsimony.”

What is at stake here is a more fundamental disagreement than merely a
preference for either starting with a simple model and then adding additional
variables until the fit becomes satisfactory. or else starting with a general model
and then dropping regressors that are not statistically significant. Nobody can
start with a truly general model (see Keuzenkamp and McAleer, 1995), and if
the reduction does not provide a satisfactory solution a LSE econometrician, too,
is likely to add additional regressors at that stage.

The more fundamental disagreement can be viewed in two ways. The first is
as emphasizing economic theory versus emphasizing statistical theory. In the
former case one may approach a data set with strong priors based on the theo-
ry’s previous performance on other test. One then sees whether the new data
set is also consistent with that theory rather than asking which hypothesized
DGP gives the most satisfactory diagnostics, Suppose that the quantity theory

creation depends on government expenditures. We can therefore explain the inflation rate by the
growth rate of government expenditures. This last statement holds if tax receipts and borrowing are
constant, but not if – as seems at least as, if not more, likely – the government finances changes in
its expenditures by changing tax receipts or borrowing.
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gives a good fit for the inflation rates of twenty countries . However, for each
of these countries one can estimate a DGP that gives a better fit, but contains
an extra variable that differs from country to country. One may then still prefer
the quantity theory. LSE econometricians would probably agree, but in practice
their method tends to stress econometric criteria rather than the other criteria
relevant to theory selection. This issue is well stated by Friedman and Schwartz
(1991, pp. 39, 49) who wrote in their debate with Hendry and Ericsson (1991)
that one should:

[E]xamine a wide variety of evidence quantitative and nonquantitative. . . ; test results from
one body of evidence on the other bodies, using econometric techniques as one tool in this
process, and build up a collection of simple hypotheses. . . . [R]egression analysis is a good
tool for deriving hypotheses. But any hypothesis must be tested with data or nonquantitative
evidence other than that used in deriving the regression, or available when the regression was
derived. Low standard errors of estimate, high t values and the like are often tributes to the
ingenuity and tenacity of the statistician rather than reliable evidence. . . .

A good illustration of this approach is a paper in which Friedman (2005) tried
to confirm the quantity theory of money by comparing changes in the growth
rate of money and subsequent recessions in the US in the 1920s and 1990s and
in Japan in the 1980s. He has only three observations, so obviously he uses no
econometrics. Nonetheless, I found it persuasive – not as conclusive evidence,
but as circumstantial evidence, because his findings fit in with much other evi-
dence. By contrast, an adherent of the LSE approach would presumably find it
unconvincing.

The second, and deeper way of viewing the disagreement is to treat it as a
dispute about the criterion to be applied to economics. Should one require of
economics rigor close to that of mathematics and of physics, with the latter’s
(alleged) reliance on crucial experiments, and hence be hard nosed about meet-
ing econometric criteria, or should one consider this as a generally unattainable
goal, and settle for more amorphous extensive circumstantial evidence? (Thus in
an unjustly neglected book Benjamin Ward, 1972, argued that economics should
model itself more on law, with its emphasis on circumstantial evidence, than on
physics.) There are problems with both extremes. The rigorous approach re-
quires us to abandon suggestive evidence even when nothing better is available.
The other may degenerate into journalism.

A related issue in the interaction of theory and data is whether data are to be
used only to test models, or also to inspire them. Thus Arnold Zellner (1992)
advocates searching for “ugly facts,” that is puzzling phenomena that cry out for
explanation. This fits in with Friedman and Schwartz’s just-cited suggestion of
looking at many different types of observations rather than analyzing just one
particular data set. And it seems to have played an important role in Friedman’s
own work on the permanent income theory and on the quantity theory, thus
demonstrating its fruitfulness.

A third issue is the choice between simple, or more precisely what Zellner
(1992) calls “sophisticatedly simple” models and complex models. Although
economists in evaluating their own and their colleague’s work seem to adhere to
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a labor theory of value, several econometricians have warned against automat-
ically assuming that a complex model is more useful and predicts better than a
simple model. (See Keuzenkamp and McAleer, 1995; Kennedy, 2002; Makri-
dakis and Bibon, 2000; Zellner, 1992.)

13.2.2. Ceteris paribus conditions and testability

Another serious problem both in testing and in applying a model is that the ce-
teris paribus conditions that define its domain are often insufficiently specified.
If we are not told what they are, and the extent to which they can be relaxed
without significant damage to the model’s applicability, then data cannot be said
to refute it, but only to constrain its domain. In day-to-day work this shows up as
the question of what variables have to be included among the auxiliary regres-
sors. A dramatic illustration is Edward Leamer’s (1978) tabulation of the results
obtained when one includes various plausible auxiliary regressors in equations
intended to measure the effect of capital punishment on the homicide rate. The
results are all over the map. And the same is true in a recent follow-up study
(Donohue and Wolfers, 2006). Similarly, as Thomas Cooley and Stephen LeRoy
(1981) have shown, in demand functions for money the negative interest elastic-
ity predicted by theory does not emerge clearly from the data, but depends on
what other regressors are used.

The ideal solution would be to specify the ceteris paribus conditions of the
theoretical model so precisely that it would not leave any choice about what
auxiliary regressors to include. But we cannot list all the ceteris paribus condi-
tions. New classical theorists claim to have a solution: the selection of auxiliary
regressors must be founded on rational-choice theory. But that is unpersuasive.
In their empirical work the new classicals substitute for utility either income,
or both income and leisure variables, plus perhaps a risk-aversion variable. But
behavioral and experimental economics, as well as neuroscience, provide much
evidence that there is more to utility than that. And the well documented bounds
on rationality open the door to all sorts of additional variables that are not in
the new classicals’ utility function. Similarly, market imperfections complicate
a firms’ decisions.

If theory cannot constrain sufficiently the variables that have to be held
paribus by the inclusion of regressors for them one possible solution could
be: open the floodgates, allow all sorts of plausible variables in, and call the
model confirmed only if it works regardless of which auxiliary regressors are
included. In this spirit Edward Leamer (1978, 1983) has advocated “extreme
bounds analysis,” that is, deciding what regressors are plausible, running re-
gressions with various combinations of them, and then treating as confirmed
only those hypotheses that survive all of these tests. This procedure has been
criticized on technical grounds (see McAleer et al., 1983; Hoover and Perez,
2000). It also has the practical disadvantage that it allows very few hypothe-
ses to survive. Since if economists refuse to answer policy questions they leave
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more space for the answers of those who know even less, it is doubtful that they
should become the Trappist monks that extreme bounds analysis would require
of them. However, it may be possible to ameliorate this problem by adopting a,
say 15 percent significance level instead of the 5 percent level.

Full-scale extreme bounds analysis has found few adherents. Instead, econo-
mists now often employ an informal and limited version by reporting as robust-
ness tests, in addition to their preferred regressions, also the results of several
alternative regressions that use different auxiliary regressors or empirical defini-
tions of the theoretical variables.3 This can be interpreted along Duhem–Quinian
lines as showing that the validity of the maintained hypothesis does not depend
on the validity of certain specific auxiliary hypotheses. While this is a great im-
provement over reporting just the results of the favored regression it is not clear
that economists test – and report on – a sufficient number of regressors and de-
finitions. Indeed, that is not likely because data mining creates an incentives-
incompatibility problem between authors (agents) and readers (principals).

13.2.3. Data mining

By the time she runs her regressions a researcher has usually already spent much
effort on the project. Hence, if her initial regressions fail to confirm her hypoth-
esis she has a strong incentive to try other regressions, perhaps with differently
defined variables, different functional forms, a different sample periods, differ-
ent auxiliary variables, or different techniques, and to do so until she obtains
favorable results. Such pre-testing makes the t values of the final regression
worthless.4 Just as bad, if not worse, such biased data mining also means that
the final results “confirm” the hypothesis only in the sense of showing that it is
not necessarily inconsistent with the data, that there are some decisions about
auxiliary regressors, etc., that could save the hypothesis. Suppose a researcher
has run, say ten alternative regressions, three of which support his hypothesis
and seven that do not. He will be tempted to present one of his successful regres-
sions as his main one and mention the other two successful ones as robustness
tests, while ignoring the seven regressions that did not support his hypothesis.5

3 I have the impression that this has become much more common in recent years.
4 There is no way of correctly adjusting t values for pre-testing. (See Greene, 2000; Hoover and

Perez, 2000; Spanos, 2000.)
5 It is often far from obvious whether the results of additional regressions confirm or disconfirm

the maintained hypothesis. Suppose, that this hypothesis implies that the coefficient of x is positive.
Suppose further that it is positive and significant in the main regression. But in additional regressions
that include certain other auxiliary regressors, though again positive, it is significant only at the
20 percent level. Although taken in isolation these additional regressions would usually be read
as failures to confirm, they should perhaps be read as enhancing the credibility of the maintained
hypothesis, because they suggest that even if the auxiliary hypothesis that these regressors do not
belong in the regression is invalid, there is still only a relatively small likelihood that the observed
results are due merely to sampling error. Good theory choice takes more than attention to t values.
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And that deprives readers of information they need to evaluate the hypothe-
sis.

Data mining can occur not only in conventional econometric tests, but also in
calibrations, where there may be many diverse microeconomic estimates among
which the calibrator can pick and choose. (Cf. Hansen and Heckman, 1996.)
To be convincing a calibration test requires making a compelling case for the
particular estimates of the coefficient that has been picked out of the often quite
diverse ones in the literature, not just giving a reference to the coefficient found
in some particular paper.

Though much practiced (see Backhouse and Morgan, 2000) data mining is
widely deplored (see for instance Leamer, 1983; Cooley and LeRoy, 1981). But
it has its defenders. Thus Adrian Pagan and Michael Veall (2000) argue that
since economists seem willing to accept the output of data miners they cannot be
all that concerned about it. But what choice do they have? They do no know what
papers have been hyped by biased data mining, and being academic economists
they have to read the journals and refer to them. Pagan and Veall also argue
that data mining does little damage because if a paper seems important but is
not robust, it will be replicated and its fragility will be exposed. But while path
breaking papers are likely to be replicated, by no means all unreplicated papers
are unimportant; much scientific progress results from normal science. And even
when papers are replicated time passes until the erroneous ones are spotted, and
in the meantime they shunt researchers onto the wrong track.

A much more persuasive defense of data mining is that it is needed to ob-
tain as much information as we can from the data, so that the learning that
results from trying many regressions and testing need to coexist (see Greene,
2000; Spanos, 2000). Thus Hoover and Perez (2000), who focus on generating
accurate values for the coefficients of a hypothesis rather than on testing it, ar-
gue (mainly in the context of general-to-specific modeling) that we need to try
many specifications to find the best one, while Keuzenkamp and McAleer (1995,
p. 20) write: “specification freedom is a nuisance to purists, but is an indispens-
able aid to practical econometricians.” (See also Backhouse and Morgan, 2000;
Kennedy, 2002.) Testing, Hoover and Perez argue, should then be done in some
other way, thus separating the task of exploring a data set from the task of draw-
ing inferences from it. That would be the ideal solution, but in macroeconomics
such, multiple independent data sets are generally not available, or if they are
they relate to different countries which may complicate research. In much mi-
croeconomic work with sample surveys or experimental data, it is, in principle,
possible to gather two samples or to divide the sample into two, and to use one
to formulate and the other to test the hypothesis. But in practice, funds are often
too limited for that. Suppose, for example, that your budget allows you to draw
a sample of a 1000 responses. Would you feel comfortable using only 500 re-
sponses to estimate the coefficients when another 500 are sitting on your desk?
Moreover, a researcher who has two samples can mine surreptitious by peeking
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at the second sample when estimating the coefficients from the first sample.6

(See Inoue and Killian, 2002.)
The other polar position on data mining – one usually not stated so starkly but

implicit in much criticism of data mining – is to limit each researcher to testing
only a single variant of her model. But that is a bad rule, not only for the reasons
just mentioned, but also because it leaves too much to luck. A researcher might
just happen on the first try to pick the one variant of twenty equally plausible
ones that provides a good fit. (See Bronfenbrenner, 1972.) Moreover, even if all
data mining by individual researchers were eliminated, it would not put a stop
to the harmful effects of data mining because of a publication bias. Only those
papers that come up with acceptable t values and other regression diagnostics
tend to be printed, so that, at least in the short run, there would still be a bias
in favor of the hypothesis.7 Moreover, it is hard to imagine such a rule of one
regression per researcher being effectively enforced.

A more feasible solution that avoids both extremes, is to permit data mining
but only as long as it is done transparently. A basic idea underlying the orga-
nization of research is the division of labor; instead of having every scientist
investigate a particular problem, one scientist does so, and her discoveries be-
come known to all others. This works best if she holds nothing important back,
and not well if she withholds information that detracts from the validity of her
work, for example, that her results require the assumption that the lag is six
months rather than three, nine or twelve months. Hence, a data miner should let
readers know if plausible assumptions other than the ones she used yield results
that are meaningfully different. The reader can then decide whether to accept
the proffered conclusions.

Though I think this is the best of all available alternatives, it, too, has its prob-
lems. One is the difficulty (impossibility?) of ensuring that researchers mention
all their alternative regressions that significantly reduce the credibility of the
maintained hypothesis. Your conscience may urge you to do so, but fear that
your rivals do not, urges you to override your conscience. A second is that a
researcher is likely to run some regressions that she does not take seriously, just
to see what would happen if. . . . Do they have to be reported? And if not, where
does one draw the line? Another problem is that a researcher who intends to
run, say twelve variants of the maintained hypothesis, and happens to get a good
result in say the first two, has a strong incentive to quit while he is ahead, so that
potential knowledge is lost.

6 This is not necessarily dishonest. If a macroeconomist sets a few year’s data aside as a second
sample, she knows something about what the data are likely to show simply by having lived through
this period, And someone working with survey data may have inadvertently learned something about
the second sample in the process of splitting the data or in talking to his research assistant.
7 I say the short run because, as Robert Goldfarb (1995) has shown, once a hypothesis is widely

accepted only those papers that test it and disconfirm it tend to be published, because only they
provide “new” information.
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In macroeconomics another way of ameliorating the effects of data mining
would be to require an author to publish, perhaps three to five years after the
appearance of his paper, a follow-up note on how well his model fits the subse-
quent data. (See Greene, 2000.) This is preferable to asking him to hold out the
last few year’s data when fitting his model, because of the danger that he may be
influenced, either consciously or unconsciously, by what he knows happened in
these last few years. Moreover, it would provide only a small sample. Besides,
policymakers may want to know how well the model performed during the last
five years. All in all, there is no perfect solution to the problem of biased data
mining, but requiring transparency seems a reasonable compromise.

13.2.4. Significance tests

Most economists seem to view significance tests as a standard accoutrement of a
“scientific” paper. They might be surprised that in psychology their use has come
in for much criticism, and that there was even an (unsuccessful) attempt to ban
them in journals published by the American Psychological Association.8 Within
economics D. McCloskey (1985, Chapter 9) has argued that significance tests
are useless because what matters is the magnitude of a coefficient, its “policy
oomph” as she calls it, and not its t value, which depends on sample size. Given
a large sample even a trivial coefficient can be statistically significant without
being substantively significant. McCloskey is right in stressing that one should
usually look at the size of a coefficient. But that does not mean that significance
tests are unimportant. A researcher usually has to clear two hurdles. She must
show that her results are large enough to be interesting, and that they are unlikely
to be just due to sampling error. And in some special cases even a statistically
significant but substantively trivial coefficient may be highly relevant if we are
choosing between two theories that have sharply different and tight implications
on this point; for example the slight bending of light that supports relativity
theory against Newtonian theory (Elliot and Granger, 2004; Horowitz, 2004).9

Although the distinction between substantive and statistical significance
seems obvious Steven Ziliak and Deidre McCloskey (2004) claim that it is
widely ignored. But while it is confused in many cases (see Elliot and Granger,
2004 and Thorbecke, 2004), their claim that this is the common practice is

8 See for instance, Bruce Thompson (2004), Open Peer Comments (1996). Sui Chow (1996, p. 11),
who even though he defends the use of significance tests, writes: “the overall assessment of the . . .

[null-hypotheses significance test procedure] in psychology is not encouraging. The puzzle is why
so many social scientists persist in using the process.” He argued persuasively that these criticisms
of significance tests are largely due to researchers trying to read too much into them.
9 McCloskey (1985) also argued that in many cases the sample is, in effect, the whole universe, so

that tests for sampling error are meaningless. Hoover and Perez (2000) respond that the hypothesis
being tested is intended to be general and thus cover actual or potential observations outside the
sample period.
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questionable.10 Kevin Hoover and Mark Siegler (unpublished) have reexamined
some of Ziliak and McCloskey’s data, and concluded that this confusion is not
widespread. But even if it occurs only some of the time, that is too much.

A problem may also arise from the interaction of statistical and substantive
significance. An economist may first check for statistical significance, and hav-
ing reassured himself about that, check for substantive significance, and make a
confident statement that the coefficient – by which he means its point estimate –
is substantively as well as statistically significant. But the confidence intervals
should also be checked for substantive significance. If a test of the law of one
price finds that the difference between two prices is both statistically significant
and substantively large, there is still not a strong case against the law of one price
if the lower confidence interval, though it does not include zero, does include a
substantively insignificant value.

I now turn to a problem that is less known, and therefore needs more discus-
sion. This is the confusion of “not confirmed” with “disconfirmed,” a confusion
that sometimes shows up in econometric practice, even though the distinction is
well known in the abstract.11 Imagine first an ideal world in which the depen-
dent variable is explained entirely by a few independent variables, and all data
are measured without error, so that using the correct model the standard error
of a regression is zero. In this world if a hypothesis implies that the regression
coefficient of x is zero, and it is not so in the data, we can say that the hypothe-
sis has been disconfirmed. But what happens in a stochastic world? Suppose the
estimated coefficient is 1.0 with a standard error of 0.25, so that its t value is 4
and the hypothesis is rejected. So far no problem. But suppose the standard error
is greater, so that the hypothesis that the true value of the coefficient is zero is
rejected only at the 20 percent level. Then, the usual procedure is to say that the
hypothesis has not been disconfirmed. And while this may be stated cautiously
as “the data do not reject the hypothesis,” the clear implication is that the test
confirmed the hypothesis in the following way: The data were given a chance to
reject it, but did not do so. And the more often a hypothesis survives a potentially
disconfirming test, the more credible it is. But in the case just described does this
make sense? In repeated sampling in only one fifth of the runs would random
errors generate that large a discrepancy between the actual and predicted values.
And that should count as potential evidence against, not for, the hypothesis.12

10 In his survey of papers published in the Journal of Economic History and in Explorations in
Economic History Anthony O’Brien (2004) found that of the 185 papers that used regression analy-
sis, 12 percent did so incorrectly, and that in 7 percent of these papers this did matter for the main
conclusions of the paper. The confusion of statistical and substantive significance has also been a
problem in biology (see Phannkuch and Wild, 2000).
11 For some specific instances see Robertson (2000), Viscusi and Hamilton (1999), Loeb and Page
(2000), McConnell and Perez-Quiros (2000), Papell et al. (2000), Wei (2000). For a further discus-
sion of this problem see Mayer (2001a).
12 Nothing said above conflicts with the philosophy-of-science proposition that failure to be discon-
firmed on a hard test raises the credibility of a hypothesis, because the term “not disconfirmed” is
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A related problem arises if a hypothesis is tested more than once. Suppose
that on the first test an estimated coefficient that according to the hypothesis
should be zero is positive with a t value of 1.7. Suppose further that on a second
test using an independent data set it is again positive with a t value of 1.6, and
on a third test it is positive with a t value of 1.5. If failure to reject at the 5 per-
cent level is interpreted as confirmation, then the second and third tests must be
treated as strengthening the plausibility of the hypothesis, since three tests have
now failed to reject it. But the correct message of the second and third tests is
just the opposite. The probability of three successive sampling errors that large
and with the same sign is so low that the hypothesis should be rejected.

These problems arise from our unsurprising eagerness to have significance
tests do more than they are actually capable of. We want them to classify hy-
potheses as either confirmed or disconfirmed. But all they can do is tell us the
probability that the observed result is just due to sampling error or other noise
in the data. We then add the rule of thumb that when the probability is less than
5 percent that the observed error is just a sampling or noise error, we refuse to
accept the hypothesis. But there is a wide gap between refusing to accept the
hypothesis, and believing that it is actually false. In many cases the correct con-
clusion is neither to accept nor to reject it, but to suspend judgment. Yet this
point is sometimes missed in the literature. For example, if the cross-equation
restrictions of a model cannot be rejected at the 5 percent level, we act as though
they have been satisfied, even if they can be rejected at, at say the 12 percent
level. The 5 percent criterion was intended to be a tough taskmaster, but all too
often has become a progressive educator.

This raises a difficult problem. Suppose we subject a hypothesis to a tough
test, tough in the sense that it tests an implication that is rigorously derived from
the hypothesis, and as far as we can tell cannot also be deduced from some other
reasonable hypothesis (see Kim, de Marchi and Morgan, 1995). Suppose that
on this test the t value of the difference between the predicted and the estimated
coefficient is less than, say 0.1. Since it seems unlikely that we got such a small t
just by chance, it is reasonable to say that the data support the hypothesis. On
the other hand, if the t value is 1.5, then the probability that the difference is due
to sampling error is low. If we do not have a null hypothesis that would tell us
what t value to expect if the hypothesis is false, we cannot tell whether to treat
the 1.5 t value as enhancing or as reducing the credibility of the hypothesis. We
have to rely on our subjective judgment – precisely the situation that we, though
not the originators of significance tests (see Gigerenzer, 2004), sought to avoid.

Another criticism of significance tests is that despite their prevalence they
have had little influence. Keuzenkamp and Magnus (1995) offered a prize to

used in two different senses. In the context of significance testing it means that – using a rigorous
standard for saying that the hypothesis has been rejected – there is not sufficient evidence to say that
it has. In the context of philosophy-of-science failure to be disconfirmed means that the probability
that the proposition is false is less than 50 percent.
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anyone finding an example of a significance test that changed economist’s think-
ing about some proposition. So far at least, this prize has not been successful
claimed. However, the many papers that have sunk some propositions, such as
the total interest inelasticity of the demand for money, would probably not have
been taken seriously, or even been published, if the relevant coefficients had not
been statistically significant. But since statistical significance was just a sup-
portive point in their argument they do not qualify as examples with which to
claim the Keuzenkamp–Magnus prize. Moreover, the requirements for the prize
are also hard to meet because one of them is that “the particular test has been
persuasive to others” (Keuzenkamp and Magnus, 1995, p. 21). But while we can
readily observe changes in the opinions of our colleagues, it is harder to deter-
mine why they changed their minds. Moreover, important propositions are often
sunk not on by a single hit, but by an unrelenting bombardment. (Cf. Hoover
and Siegler, unpublished.)

13.2.5. Reliability of the data and of their processing

As several economists have pointed out (see for instance Leontief, 1971) most
economists show little concern about the quality of their data.13 To be sure, they
make allowance for sampling error, but that’s about it. The standard justifica-
tions for this unconcern are first that the obvious need to quantify and test our
hypotheses forces us to use whatever data we can find, and as long as they are
the best available data, well, that’s all we can be expected to do. Second, previ-
ous researchers have already decided what the best data sets are, so we can just
use these.

Sounds compelling – but isn’t. Yes, empirical testing is important, but in some
cases even the best available data may not be reliable enough to test the model,
and then we should either develop a better data set on our own, or else admit
that our model cannot, at least at present, be adequately tested. Or if the avail-
able data are neither wholly reliable nor totally inadequate you may use them
to test the hypothesis, but inform the reader about the problem, and perhaps do
some robustness testing. That others have used a data set is not an adequate jus-
tification for your using it, not only because of uncertainty about whether the
previous use was successful, but also because, while for some purposes crude
estimates suffice, for others they do not. Don’t assume that the sophistication of

13 Previously Oskar Morgenstern (1950) had provided a long list of errors that resulted from econo-
mists not knowing enough about their data, and Andrew Kamarck (1983) has presented more recent
examples. The appearance of downloadable databases probably exacerbated this problem. In the old
days when economists had to take the data from the original sources they were more likely to read
the accompanying description of the data. Another exacerbating factor is the much greater use of re-
search assistants. A researcher who has to work with data herself is more likely to notice anomalies
in the data than are assistants who tend to follow instructions rather than “waste” time by thinking
about the data.
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your econometrics can compensate for the inadequacy of your data. (Cf. Chat-
field, 1991.) Time spent on cleaning up the data, or looking for a data set that
provides a better measure of your model’s variables, may not impress a referee,
but it may improve the results more than the same time spent in learning the
latest technique. As Daniel Hamermesh (2000, p. 365) has remarked: “data may
be dirty, but in many cases the dirt is more like mud than Original Sin.”

In more concrete terms suppose the data seem to disconfirm the hypothesis
because the t value of the critical coefficient is low, or because other regression
diagnostics look poor. Both of these may be due to data errors and not an er-
ror in the hypothesis. To illustrate with an extreme case, albeit one involving
an identity rather than a hypothesis, few would deny that for a particular com-
modity total exports equal total imports, even though the data show them not
to. Conversely, data errors may sometimes favor the hypotheses. For example,
because of a lack of better data the compilers of a series may have estimated an
important component as a simple trend. If the model contains a regressor dom-
inated by a similar trend this data error could provide spurious support for the
model.

Because of the reluctance of economists to get involved in the messy details
of how their data were derived certain standard conventions are used without
question. To illustrate the type of problem frequently swept under the rug con-
sider the savings ratio. How many economists who build models to explain this
ratio discuss whether they should use the savings data given in the National In-
come and Product Accounts (NIPA), or else the very different savings data that
can be derived from the flow-of-funds accounts? The former are generally used
even though they derive saving by subtracting consumption from income, and
are therefore at least potentially subject to large percentage errors.14 (The flow-
of-funds estimates also have their problems.) Moreover, as Reinsdorf (2004) has
pointed out, there are some specific problems with the NIPA savings data. One is
that the personal income data include income received on behalf of households
by pension funds and nonprofit organizations that serve households, that is in-
come that households may not be aware of and take into consideration when
deciding on their consumption. Data on the difference between the NIPA per-
sonal savings rate and the savings rate of households that exclude these receipts
are available since 1992, and while the difference is trivial in 1992–1994, it
amounts to 0.7 percentage points – that is about 30 percent of the savings ratio

14 More precisely, “personal outlays for personal consumption expenditures (PCS), for interest pay-
ments on consumer debt, and for current transfer payments are subtracted from disposable personal
income” (Reinsdorf, 2004, p. 18). The extent to which errors in estimating either income or con-
sumption affect estimates of the savings ratio depends not only on the size of these errors, but also
on their covariance. Suppose income is actually 100, but is estimated to be 101, while consumption
is estimated correctly at 95. Then, saving is estimated to be 6 rather than 5, a 20 percent error. But if
income has been overestimated by 1 because consumption was overestimated by 1, then these errors
lower the estimated savings ratio only by 0.05 percent of income, that is by 1 percent of its actual
value.
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in 1999 and 2000. Another problem is that the NIPA data treat as interest income
(and as also as interest payments on consumer debt, and hence as a component
of consumption) nominal instead of real interest payments. Using real instead of
nominal interest payments reduces the personal savings rate by 1.5 to 2.4 per-
centage points during 1980–1992, but only by 0.5 to 1.2 percentage points in
1993–2000.

Another problem is the treatment of capital gains and losses. The NIPA data
exclude capital gains from income, and hence from saving, but they deduct the
taxes paid on realized capital gains from disposable personal income, and thus
indirectly from personal saving. Using an alternative measure that includes in
disposable personal income federal taxes on capital gains changes the recorded
savings rate by only 0.5 percentage points in 1991–1992 but by 1.65 percent-
age points in the unusual year, 2000. And then there is the important question
whether at least some of the unrealized capital gains and losses shouldn’t be
counted as saving, since over the long run capital gains are a major component
of the yield on stocks.

Other data sets have other problems. For instance the difficulties of measur-
ing the inflation rate are well known, and since real GDP is derived by deflating
nominal GDP, errors in estimating the inflation rate generate corresponding er-
rors with the opposite sign in estimated real GDP. Moreover, real GDP estimates
are downward biased because of an underground economy that might account
for 10 percent or more of total output. Furthermore, GDP revisions are by no
means trivial, which raises the question of how reliable the final estimates are.
Balance of payments statistics, too, are notoriously bad. The difficult of defining
money operationally has led to the quip that the demand for money is stable; it
is just the definition of money that keeps changing. And even if one agrees on
the appropriate concept of money, real time estimates of quarterly growth rates
of money are unreliable. The problems besetting survey data, such as misunder-
stood questions and biased answers are also large. Moreover, in using survey
data it has become a convention in economics not to worry about a possible bias
due to non-response, even when the non-response rate is, say 65 percent.

My point here is not that the available data are too poor to test our models.
That I believe would be an overstatement. It is also not that economists use
wrong data sets, but rather that they tend to select their data sets in a mechanical
way without considering alternatives, or asking whether the data are sufficiently
accurate for the purpose at hand.

There is also a serious danger of errors in data entry, in calculations, and in
the transcription of regression results. Dewald, Thursby and Anderson (1986),
show that such errors were frequent and substantial. Perhaps as a result of this
paper they are now much less common, but perhaps not.15 Downloading data
from a standard database is not a complete safeguard against errors. Without

15 Over many years of working first with desk calculators and then with PCs I have found that even
if one checks the data carefully, in any large project mechanical errors do creep in. Calculation errors
may be as common, or even more common, now than they were in the days of desk calculators. One
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even looking for them I have twice found a substantial error in a widely used
database.

Moreover, since various popular software packages can yield sharply differ-
ent results, regression programs, too, can generate substantial errors. (See Lovell
1994; McCullough and Vinod, 1999; McCullough, 2000.) In particular, McCul-
lough and Vinod speak of:

the failure of many statistical packages to pass even rudimentary benchmarks for numerical
accuracy. . . . [E]ven simple linear procedures, such as calculation of the correlation coefficient
can be horrendously inaccurate. . . . While all [three popular] packages tested did well on
linear regression benchmarks – gross errors were uncovered in analyses of variance routines.
. . . [There are] many procedures for which we were unable to find a benchmark and for which
we found discrepancies between packages: linear estimation with AR(1) errors, estimation of
an ARMA model, Kalman filtering, . . . and so on (pp. 633, 635, 650, 655).

Because this paper appeared in the Journal of Economic Literature many
economists were surely aware of it. One might therefore have expected them
to have recalculated computations in their previously published papers using al-
ternative software packages, and the journals to be full of errata notices. This did
not happen. (Mea culpa.) In checking Google for references to the McCullough
and Vinod paper for such corrections I did not find a single one.16

Even allowing for the natural reluctance to retract one’s results, and a ten-
dency for herding (and hence for thinking that if nobody else worries, why
should I?) this nonchalant attitude is not so easy to reconcile with the claim
that economics is a “science,” or even that it is a serious discipline. And yet this
“who cares?” attitude should not be surprising to someone who takes our por-
trayal of “economic man” seriously, because there is only a small chance that an
error will be caught. But while we therefore need a system of routinely checking
at least some published results (say 5 percent) to discourage both carelessness
and occasionally even fraud, we are not likely to get one.

In the natural sciences, too, mechanical checking of other people’s results is
rare. (See Mirowski and Skilivas, 1991.) But instead of checking the mechan-
ics, such as the correctness of calculations, natural scientists try to “replicate”
the results, that is they look for similar results in similar circumstances. (See
Backhouse, 1992.) For example, they may repeat an experiment at a different

is more likely to be dividing when one should be multiplying, if one can do so with a single key
stroke, than in the old days when in the tedious hours of using a desk calculator one had plenty of
time to think about what one was doing.
16 I did the search on November 4, 2005 using the Google “scholar” option. It is, of course, possible,
though unlikely, that some errata were published that did not cite the McCullough–Vinod paper but
cited one of the other papers that made a similar point. It is also possible that in their subsequent
papers some economists did check whether other programs gave results similar to the one they
used, though I do not recall ever seeing any indication of this. Also, some economists may have
tried several programs and abandoned their projects when they found that these programs gave
substantially different results. It would be interesting to know whether economists in government
or business, whose errors could result in large losses, recalculated some of their regressions using
different programs.
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temperature. If they get similar results then that confirms the original findings,
and if they do no]t, that can be read either as a limitation of the domain of the
model or as casting doubt on it. If many replications fail to confirm the original
findings these are then treated as, at best, a special case. Such replication is not
common in economics.

13.3. In Conclusion: All is Not Bleak

This discussion may seem to have struck an unrelieved pessimistic note. But all
attempts to advance knowledge, not just economic measurements, face obsta-
cles. For example, economic theory has its unrealistic assumption (and impli-
cation) of rational income maximization. All the same, it has greatly advanced
our understanding. Moreover, the large volume of economic modeling over the
last few decades has improved our understanding of the economy and our pre-
dictive ability, think, for example, of asymmetric information theory, modern
finance theory and behavioral economics. And other fields have their problems
too. In medicine a study found that: “16 percent of the top cited clinical research
articles on postulated effective medical interventions that have been published
within the last 15 years have been contradicted by subsequent clinical studies,
and another 16 percent have been found to have initially stronger effects than
subsequent research” (Ioannides, 2005, p. 223).

The preceding tale of woe is therefore not a plea for giving up, but instead an
argument for modesty in the claims we make. Our papers seem to suggest that
there is at least a 95 percent probability that our conclusions are correct. Such
a claim is both indefensible and unneeded. If an economist takes a proposition
for which the previous evidence suggested a 50:50 probability and shows that
it has a 55:45 probability of being right, she has done a useful job. It is also a
plea to improve our work by paying more attention to such mundane matters as
the quality and meaning of our data, potential computing errors, and the need to
at least mention unfavorable as well as favorable results of robustness tests. To
be sure, that would still leave some very serious problems, such as the transition
from correlation to causation, the Lucas critique, and the limited availability of
reliable data, but that there is some opportunity for improvement is a hopeful
message. Moreover, that some problems we face are insoluble should make us
economists feel good about ourselves, since it suggests that our failure to match
the achievements of most natural sciences is not an indication of intellectual
inferiority.17

None of this would carry much weight if the pessimists are right in saying that
in economics empirical evidence is not taken seriously when it conflicts with

17 Alexander Rosenberg, a philosopher of science who specializes in the philosophies of economics
and biology, described economics as “a subject on which at least as much sheer genius has been
lavished as on most natural sciences.” (Rosenberg, 1978, p. 685, italics in original.) That is flattering,
but not entirely convincing.
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an appealing theoretical model. For example McCloskey (1985, p. 182) wrote:
“[N]o proposition about economic behavior has yet been overturned by econo-
metrics, at any rate not to the standard that the hypothetico-deductive model of
science would demand[.]”, and Aris Spanos (1986, p. 660) stated “. . . to my
knowledge no economic theory was ever abandoned because it was rejected by
some empirical econometric test, nor was a clear-cut decision between com-
peting theories made on the basis of such a test.” Such statements are hard to
evaluate because they are vague. Do they include only major, generally accepted
propositions or also claims made in a specific paper that has not been widely
cited? Moreover, what does “overturned” mean? Suppose a paper states a claim
that is then rejected by an econometric test in another paper, and neither paper
is cited thereafter. Does that count? Or suppose a model that implies that raw
prices of exhaustible resources rise over time at a rate equal to the interest rate,
is rejected not only by econometric tests, but also by informal observation. Does
that count? If it does it is an obvious counterexample. Besides, well-entrenched
propositions – in the physical sciences as well as in economics – seldom fall as
a result of a single piece of evidence. And that is more a sign of common sense
and good judgment than of a faulty methodology.

Let’s therefore turn to a broader issue. Have economists stuck with irrational
stubbornness to a model of rational, maximizing behavior, despite extensive em-
pirical evidence to the contrary? (Cf. Hausman, 1992.) In an important way
they have, but with two substantial qualifications. First, even within mainstream
economics this theory is now being challenged by behavioral economics. Sec-
ond, much of economic theory, for example, Keynesian theory, monetarism,
and comparative-cost theory, require only weak versions of rational maximizing
theory, versions that are much less challenged by the empirical evidence cited
against the much stronger versions. Empirical evidence has much more influ-
ence on what economists actually do when dealing with practical problems than
it has on what is emblazoned on their banner. Hard-core versions of new clas-
sical theory, Ricardian equivalence, efficient markets theory, etc., that require
a rigorous rational, maximizing model cater primarily to niche markets. Per-
haps economists should be blamed, not for sticking to disconfirmed hypotheses,
but for fooling others (in particular philosophers) by proclaiming what they do
not really believe or practice. The reason is that the weakened version of the
rational-maximizing principle that economists use in practice is hard to formu-
late, particularly since it depends on the specific issue being addressed.

But that may be letting economists off too easily. Some of their beliefs seem
invulnerable to empirical evidence. Macro-economists widely accept rational-
expectations theory despite the empirical evidence against it. (See Goldfarb and
Stekler, 2000.) I conjecture that no economist ever accepted this theory because
he or she found its empirical evidence convincing. Rather, it is widely accepted
because it seems to be a necessary implication of rational behavior, and must
therefore be defended to the death. But even here ongoing research on how
agents learn, and the introduction of such learning models into macro models –
a move that does not bring the assumption of rational behavior into question – is
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now taming rational-expectations theory. Sometimes economists do stick stub-
bornly to their models for a long time in the face of contrary empirical evidence,
but eventually reason wins out – even in academia.
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Precision – to be precise – is the quality of being definite and unambiguous,
and need not signify correctness. We might for example be given very precise
directions, with distances to the nearest centimeter, specifying street names and
compass directions including minute descriptions of elevators, halls, and doors,
for traveling from our hotel to the university room where a conference on mea-
surement is to begin at 9:00 a.m., and yet, on account of the malign wit of the
organizing powers, be led not to the Tinbergen Institute but to the maritime
museum, the central railway station, or worse, occasioning who knows what
misadventures. In science and technology, where precision has primarily a quan-
titative meaning, it has come to be distinguished from accuracy, which implies
the validity of a number in regard to the location, quantity, or magnitude of a
thing. Precision requires nothing more than a tight clustering of the measure-
ments which, like the bullet holes in a target made by a marksman with a bias,
may be very near to each other but some distance from the bull’s eye. The dens-
est concentration of shot in the body of the vice president’s hunting partner will
yet bring down no quail. The quest for greater precision is, nevertheless, a perva-
sive theme in the history of the sciences since the end of the eighteenth century,
of particular significance for those material and social technologies that embody
the modern role of science in economies, governments, and societies.

14.1. Measuring Precision

While quantitative precision is not sufficient to assure accuracy, it is in general
necessary. A measurement might of course just happen to be very close to the
true value, but it would be impossible to know unless that value is somehow
given independently. Precision, according to its operational definition, can be
characterized statistically in terms of a standard deviation or related measure of
dispersion, while accuracy, like the Kantian noumenon, is perhaps unknowable
because inaccessible to experience. As Dennis Fixler points out in this volume
with respect to quantities in economics, the objects to be measured are often
defined by models, and the models are often subject to revision. The same point
holds, though not always to the same degree, in the natural sciences, and few if

Measurement in Economics: A Handbook © 2007 Elsevier Inc.
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any quantities of interest even in physics can be said to be directly knowable.
Still, systematic errors can often be recognized even at the time the measures
are taken, and they may also become evident in retrospect when a new method
of measurement gives discrepant results. There are, we may suppose, always
systematic errors, linked to particular observers and to particular techniques. In
1972, W.J. Youden gathered up the results of fifteen separate measures of the
mean distance from the Earth to the Sun (the Astronomical Unit) taken from
1895 to 1961, and showed that each new value lay outside the limits of prob-
able error given by the previous one (Youden, 1972; Gigerenzer et al., 1989,
pp. 82–83).

Accurate measurement was intermittently a concern of science, or natural
philosophy, from ancient times. For the Greeks, astronomy, mechanics, and geo-
metrical optics were all mathematical fields. This did not necessarily imply any
need for precise measurement, since the match between mathematics and obser-
vation might be purely qualitative. Plato was a famous believer in mathematical
reality, but the cave in his Republic did not allow this empyrean domain to be
experienced by the empirical observer. Precise measurement was more impor-
tant to Babylonian astrology, and to the modest Greek ambition to “save the
phenomena” (to predict or retrodict) than to a causal and geometrical science
of the planets. In Christian Europe, calculating the dates of movable feasts such
as Easter gave added incentive for accurate measurement and prediction, which
remained essential to astrology (Heilbron, 1999; Porter, 2001). Kepler’s reluc-
tant abandonment of perfect spheres in favor of the ellipse as the appropriate
geometrical template for the orbit of Mars, and then of all the planets, attests to
a new esteem for precision in the natural philosophy of the heavens. This was
preserved by Newton, whose most famous title, the Mathematical Principles
of Natural Philosophy, advertised his belief that natural philosophy should be
mathematical. The problem of precision was not always so easy in practice, not
even in astronomy, and his need to reconcile, in detail and through calculation,
ever more refined measurements with the geometry of an inverse-square force
in the case of the moon, a three-body problem, gave him, he said, a headache.

By the late seventeenth century, the role of exact measurement in astronomy
was secure. In their drive for ever greater precision, astronomers began working
out systematic methods for managing error and minimizing its consequences,
a line of developments that would lead by the early nineteenth century to the
method of least squares (Stigler, 1986). This effort had several motivations. One
was to test predictions derived from Newton’s laws, which bore on geodetic
measures such as the shape of the Earth as well as the motions of planets, moons,
and comets. Often the confrontation of theory and measurement had stakes much
lower than validity of the inverse-square law of gravitation or of circular orbits,
involving instead minute approximations, as for example in the landmark com-
putational effort to predict the return of Halley’s comet in 1758–1759 (Grier,
2005). Increasingly, precision was accepted as important for its own sake, part
of the ethics of scientific practice, independently of any bearing on theoretical
issues. Greenwich astronomer John Flamsteed’s desperate effort to keep his data
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from Newton (who wanted them for his study of the chronology of ancient king-
doms) until they were perfect shows how obsessive the drive for precision could
be. His amendments to Newton’s edition, copies of which he hunted down and
burned, were few and minor. In the 1790s, Pierre-André Méchain was driven to
distraction by an error of a few seconds of arc (implying a discrepancy of about
a hundred meters) in his survey of a line of meridian from France through the
Pyrenees to Barcelona (Alder, 2002; Gillispie, 2004). These three or four sec-
onds poisoned the remainder of this life, which he spent desperately trying to
correct the inconsistency and covering it up, until his more level-headed collab-
orator Jean-Baptiste Delambre discovered it in his papers after he died.

The role of the metric system in the history of precision goes beyond
Méchain’s measurement-induced madness. The aspiration to universal mea-
sures, based on a meter that would be one ten-millionth part of a quarter merid-
ian, the distance from the equator to the North Pole, was part of a revolutionary
ambition to remake the world. The tangle of locally variable units of length,
weight, area, and volume given by history was to be replaced by a simple and
rational system, removing also those ambiguities that were so often exploited
by the powerful and promoting free commerce among the nations of the world
(Kula, 1986). A culture of precise, standardized measures would be more open
and legible than one based on locality, tacit understanding, and social power. It
would facilitate the free movement of knowledge as well as of merchandise.

The late eighteenth century, when the Enlightenment came to fruition, initi-
ated the heyday of precision in the sciences, which has gained momentum in
the succeeding centuries. The antique sciences of astronomy, mechanics, and
geometrical optics, known to the early modern period as natural philosophy,
had long traditions of mathematical precision. Now, chemistry, meteorology,
geodesy, and the study of heat, light, electricity, and magnetism, were made ex-
perimental and subjected to precise measurement, in most cases before there
was much in the way of mathematical theory. The rising standard of precision
was made possible by new instruments and the experimental practices that went
with them, but the impulse behind it all was not simply a matter of scientific
goals. Rather, it grew from a new alliance of scientific study with the forces of
state-building, technological improvement, and global commerce and industrial
expansion. The metric system, linked as it was to measurements of the earth,
depended on techniques of land surveying now deployed on a large scale. The
French state, for example, undertook in the early eighteenth century to map the
kingdom, the better to administer it, while the British surveyed North America in
an effort to regulate settlement and to allow clearer property holdings (Linklater,
2002). The scientific controversy over the shape of the Earth, often explained in
terms of Cartesian opposition to Newtonian mechanics, arose in fact from the
empirical findings of a French land survey which seemed to show that the Earth
was narrower at the equator than a perfect sphere would be (Terrall, 2002). The
systematic pursuit of precision extended to many technological domains, includ-
ing mining and metallurgy, agriculture, forestry, and power production by water
wheels as well as steam engines (Frängsmyr et al., 1990). Precise measurement
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became important also in the human sciences, such as medical studies of small-
pox inoculation, In the early 1790s, savants and administrators led by Lavoisier
and Lagrange undertook to demonstrate the successes of the Revolution and mo-
bilize the nation for war with a systematic accounting of the French economy.
The drive for improved population statistics was stimulated in equal measure by
scientific, administrative, and ideological ambitions, to the extent that these can
even be distinguished (Rusnock, 2002; Brian, 1994).

Kathryn Olesko argues that the proliferation of instruments of exactitude in
the late eighteenth century did not suffice to support a shared understanding of
what “precise” measurement must mean (Olesko, 1995, p. 104). The looseness
of this concept may be illustrated by Lavoisier’s notorious practice of giving
many superfluous decimal places, as for example in a paper of 1784 where
0.86866273 pounds of vital air are combined with 0.13133727 pounds of inflam-
mable gas to give 1.00000000 pounds of water (Golinski, 1995, p. 78). Olesko
suggests, very reasonably, that the idea of probability, as incorporated into the
method of least squares early in the new century, supported a novel concept of
precision as the tightness of a cluster of measurements, one that indicates the
reliability of the measuring system in the inverse form of the magnitude of ex-
pected error. Significantly, the method of least squares was first published in
1805 by Adrien-Marie Legendre with specific reference to the metric surveys.
Carl Friedrich Gauss, however, had already incorporated this method of mini-
mizing the squares of errors into his work on planetary astronomy, where the
notion of error to be expected with a given measuring apparatus was already
familiar. The method of least squares was first applied routinely in these two al-
lied fields, astronomy and geodesy. It was subsequently taken up in experimental
physics, first of all in Germany, and much more slowly than in astronomy.

Yet precision as a concept, if not necessarily as a word, was reasonably famil-
iar in the late eighteenth century, before the systematization of least squares for
reducing data and fitting curves. Laplace deployed the paired concepts of preci-
sion and probability in the 1780s to estimate population. He inferred a measure
of population from the number of births – these were systematically recorded
and gathered up nationally – using a multiplier, the number of inhabitants per
birth. He made an estimate of the multiplier based on samples involving com-
plete population tallies is a few selected towns. He was aware that the individuals
sampled could not be independent and random, as if drawn with equal probabil-
ity from the whole of France, yet proceeded as if they were. He then explained
just how many individuals must be counted for the determination of the multi-
plier, 771,649, in order to have sufficiently high odds – a thousand to one – that
the error of the population estimate for the kingdom would be less than half a
million. The dubious exactitude of the proposed sample size then vanished as he
moved on to a recommendation that the précision demanded by the importance
of the subject calls for a census of 1,000,000 to 1,200,000. Using similar math-
ematics he calculated the probability (very low) that the difference between the
ratio of male to female births in London compared to Paris could be due merely
to chance. He could not replicate the data or the measures, but implicitly he
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was comparing the actual results with others that might be anticipated based on
his customary probability model of drawing balls from an urn, supposing the
underlying chances to be the same as those given by the statistics (Bru, 1988;
Gillispie, 1997).

The earliest effort to create a system of mass production and interchangeable
parts, undertaken in France in the last decades before the French Revolution,
also involved a sense of precision as something measurable, though this was not
necessarily given an explicitly probabilistic form. In contrast to the American
system of mass production, achieved by entrepreneurs and practical engineers,
savants had a large role in the early French version. Ken Alder (1997) shows
what fundamental changes in systems of manufacture and the organization of
labor would have followed from this initiative, had it succeeded. Quantita-
tive standards were to provide the discipline according to which the workmen
labored, and the skilled craftsman who worked according to his own, possi-
bly high, individualized standards could not survive. There was no immediate
prospect in 1780 of manufacturing weapons more cheaply with interchangeable
parts, since the precision required took much labor. The advantage, rather, was
a work force under tighter control and a manufacturing process less dependent
on special skills monopolized and kept secret by guildsmen. There was also
the potential, with standardization, to repair weapons more easily in the field.
Precision here took the form of “tolerance,” and could be gauged either with a
measuring stick or by comparing the piece with a standard. And this effort to
create interchangeability provides a standard for us with which to think about
the meaning of precision.

Already in this eighteenth-century initiative, precision was about interchange-
ability and standardization. On one of Janus’s faces we see scientific accuracy
based on technical knowledge and methods, and on the other, a cultural and eco-
nomic system of highly disciplined work. Precision instruments by themselves
achieve rather little, for the system depends on skilled or highly standardized
operation of them, and also on the reliability, hence uniformity, of their con-
struction. A work force of technicians and savants that can produce and operate
such instruments presupposes a well-organized system of training and appren-
ticeship. If the validity of science is to be independent of place, as scientists (and
the rest of us) commonly suppose, some of those instruments, and with them the
work practices and the institutions that make them possible, must be replicated
in new locations. Precision cannot be merely technical, but depends on and helps
to create a suitable culture. Such a culture is not indissolubly bound to capital-
ism or socialism, democracy or oligarchy, yet forms of state and of economy are
part of this system as well.

14.2. How Knowledge Travels: Precision, Locality, and Trust

In Trust in Numbers (1995), I described objectivity as a “technology of distance.”
The same year, in The Values of Precision, Norton Wise spoke of precision as,
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among other things, a means by which knowledge can more readily travel. He
explains (p. 6): “While qualities do not travel well beyond the local communities
where they are culturally valued, quantities seem to be more easily transportable,
and the more precise the better.” To be sure, a system of precision and objectiv-
ity would not survive in an alien world. Its life under such conditions would
resemble that of the Connecticut Yankee who tries to raise King Arthur’s Court
up to the technological standard of nineteenth-century New England, and is de-
feated by cultural backwardness and superstition. Precision necessarily includes
a capacity to replicate itself, to recreate, within a certain tolerance, the social
and economic conditions through which it was formed. The universal validity of
knowledge is the precondition as well as the outcome of modern science, which
manages somehow to transform local knowledge and personal skill, passed on
in specific locations from master to apprentice, into truths that are recognized
all over the world, if not quite everywhere. Michael Polanyi (1958), who fa-
mously emphasized “personal knowledge” and the “tacit dimension” of science,
also compared science to a liberal economy of free enterprise. Far from being
machinelike and impersonal, socialism incarnate, science for Polanyi was neces-
sarily a spontaneous and highly decentralized cultural form. Against J.D. Bernal
and the British enthusiasts for Soviet-style scientific planning, Polanyi insisted
that scientists must be left free to follow their intuitions in choosing research
problems and methods of solution.

Polanyi’s vision depended on a highly idealized version of capitalism as well
as of science. One might just as well say that effective (humane, tolerant) so-
cialism depends or would depend on a capacity to nurture rather than to squash
or rationalize away local initiative and the expert knowledge of small commu-
nities. The question of the scale of quantitative precision has no simple answer.
Polanyi’s insights regarding skill and locality are as valid for the pursuit of pre-
cision as for other aspects of science. The last decimal place of precision in a
measurement is often purchased at very high cost, and the laboratory that can
achieve it may have to be correspondingly large. But such a laboratory will be
permeated by non-replicable skills of many sorts, joining forces to combat the
sources of error that multiply relentlessly as the scale of the variability at issue
becomes ever smaller. Often a program of precision measurement will incorpo-
rate also the power of numerous repetitions, thus joining brute force to exquisite
craft in the clocklike regularity of the statistical recorder. Finally, the statistical
design itself may be, in a subtle way, unique, fitted to the special circumstances
of the observations, and it may have to be adapted when things don’t work
out quite the way they were planned. All of this applies a fortiori to therapeu-
tic experiments, measuring the medical effectiveness of pharmaceuticals, where
tightly-organized large-scale experiments are necessary even to detect the effect
of a valuable new treatment, and where measurement to two significant figures
would be a miracle.

A many-layered precision measurement in a physics or engineering laboratory
does not travel easily or carry conviction from the sheer force of the evidence
it supplies, but depends for its credibility on trust. Although much of the work
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may be shielded from the vision of those who are interested in the result, their
trust need not be blind. Specialists in the same field will be familiar with the
instruments and their limits, and perhaps also with the particular scientists and
technicians who carried out the work. Published papers include a description of
experimental methods, enough to be illuminating to cognoscenti from the same
area of science if not to just any technically-literate person. The data, even as
filtered for publication, give indications of the limits of the procedures and of
things that might have gone wrong. Also, scientists often have other indications
of what the result ought to be, based on a model or on measurements carried
out in a somewhat different way, which can be compared with the new one. And
they may well try to incorporate some aspects of a new procedure into their own
work, and in this limited sense to replicate it.

Moreover, the last word is scarcely ever spoken in science. Brilliantly orig-
inal but quirky and unreliable techniques get their rough spots sanded down
and the conditions within which they work more closely defined. Skilled prac-
tices become routine or are automated, and may in effect be incorporated into a
manufactured instrument. The cutting-edge precision to which scientists of one
generation devote every waking moment will often, in the next, be purchased off
the shelf from a supply house and incorporated unthinkingly into work in quite
different disciplines. In this way, the most glorious triumphs of precision, pur-
sued often for their own sake, are transformed into instruments and procedures
to simplify tasks or improve reliability in the achievement of some other task.
Scientific precision, especially in the form that can most easily travel, thus con-
tributes to and depends on that other basic form of precision, manufacturing with
standardized, interchangeable parts. Precision machinery forms the nucleus of a
system of standardization that has spread over much of the world, an artificial
world within which travel is relatively unproblematical. As with Anne Tyler’s
Accidental Tourist, who leaves home with reluctance and would like every for-
eign location to be as much like his neighborhood in Baltimore as possible, you
can eat a salade niçoise, replace the battery in your watch, and pick up email on
your Blackberry almost anywhere you go.

In a similar fashion, precision and standardization help to make the world
administrable, especially by creating the conditions for information to travel. In-
formation, as Yaron Ezrahi points out, is knowledge “flattened and simplified.” It
should require little or no interpretation, and thus presume no deep intellectual
preparation, but be immediately available to almost anyone for do-it-yourself
use (Ezrahi, 2004). The existence of such information presumes much about the
world, which should contain an abundance of self-similar objects, and about its
inhabitants, who should be familiar with them: in short, a world of standardized
objects and, to a degree, standardized subjects as well. Such a world was not
made in a day, and while precision has greatly assisted the Weberian project of
rational bureaucracy, it cannot figure in this great drama as the deus ex machina.
As Wise (1995, p. 93) sagely puts it, “precision comes no more easily than
centralized government.” The pursuit of precision cannot, unassisted, created
a system of legibility and control that makes bureaucracy possible. Rather, sys-
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tems of precision and of administration have grown up and continue to develop
in tandem, each tugging at the bootstraps of the other. Each displays features
characteristic of the alliance, which cannot be regarded as intrinsic to bureau-
cracy or to precision “as such.” For example, the intense demands on intimate
understanding and trust characteristic of scientific precision as craft are hard
to reconcile with the pervasive distrust that structures bureaucracy in its most
impersonal form. There, it may be most important to have rules to rein in subjec-
tivity. The prototype of this form of precision is the accounting statement, which
may be denominated in terms of quantities of production (this one is especially
typical of socialist economies and of economic planning), human individuals, or
money.

14.3. Technologies of Distance: Precision and Impersonality

Although this essay emphasizes the dependence of precision in science on skill,
locality, and intense interactions among specialists, this is not the only form
of precision measurement in science, and perhaps not the most important one.
Communities of specialists certify numbers for use by others. So authorized,
a technique of quantification can perform as a “technology of distance,” a role
played by numbers in the most detached scientific endeavors as well as in those
linked to technology and to policy. The process may be summed up as the re-
duction of knowledge to information. Users of information do not customarily
ask how the knowledge was produced or what it means, but simply incorporate it
into solutions to their own problems. Numbers exemplify this aspect of informa-
tion because they can be incorporated readily into a mode of analysis governed
by formal principles of arithmetic or of statistics. Often it does not even matter
whether the units in question are atoms or humans, meters, money, or mental
test results.

In public and administrative uses, the role of numbers as a technology of dis-
tance becomes all the more dominant. The transformation of knowledge into
information, with the attendant obscuring of subtleties that demand interpreta-
tion, makes objective numbers suitable for widespread diffusion. “Objectivity,”
as used here, has a sense like that of precision, implying not truth but constraint,
the minimization of subjectivity. Tallying a population, for example, depends on
many fussy details of definition such as what counts as a place of residence and
how it matters whether one is a citizen and whether one is present legally. It
depends also on how the count is administered, including what efforts are made
to identify those who do not send in their forms or cannot be found at home.
Although census officials recognize that such indeterminacies can mount into
the millions, they give population figures to the last unit, and the expectation
of random errors of a much smaller order is among the factors that have been
invoked against use of probability sampling in place of a complete count.

Similarly, in accounting, a company’s balance sheet will change whenever a
stock of inventory is determined to unsaleable, or in any “restructuring,” which
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in some cases involves a shift of billions of dollars. Yet such ambiguities do
not prevent the accountants from trying to deal properly with much smaller fig-
ures, and failure to do so could send them to prison. Accuracy can be elusive in
relation to quantities like these, but the rules and conventions governing them
do produce a kind of precision. Indeed, the pursuit of precision can appear al-
most obsessive. When, in its infancy, Microsoft’s Windows 95 turned up with a
bug that would, in extremely rare circumstances, produce an infinitesimal error,
this was troubling not to experimental physicists but to accountants. Their preci-
sion is, in one sense, of the highest order, since their books must balance to the
penny. (Even so, at least one ingenious programmer managed briefly to enrich
himself by diverting fractions of cents from bank interest payments into his own
account.) Charles Sanders Peirce once remarked that the vaunted precision of
physics was on the order of that of upholsterers’ measurements, leaving little
corners of uncertainty where the effects of pure chance might be tucked away
(Porter, 1986).

Index numbers, such as the cost of living or inflation and deflation of the
currency, involve sampling and so cannot attain to absolute precision. Yet the
numbers are always much more precise and determinate that the concepts (or
even the entities) they purport to measure. This imprecision, as Fixler explains
in his contribution to this volume, is manifested by regular changes in the mod-
els that underlie the measures. Their preciseness follows from the rules and
practices of measurement, and depends on the credibility of the agencies that
gather up and process the data. For cost of living, assessing the effects of tech-
nological change has been particularly thorny. As the experience of the Boskin
Commission in the United States in 1996 indicates, the uncertainties could very
plausibly involve an alteration of the index on the order of a percentage point
per year. Protests by pensioners, who receive annual adjustments based on these
numbers, assured that no such recalibration would be put into effect, and the
existence of indeterminacy on this scale has not prevented experts in economic
measurement from attending assiduously to much smaller errors. A measure so
important cannot, after all, be left to amendment by personal judgment or arbi-
trary whim.

Other economic indicators, those without any direct statutory role, are rou-
tinely manipulated rhetorically, and sometimes even redefined, for political ad-
vantage. Is the average citizen becoming more prosperous? It makes a great deal
of difference whether a mean or a median is presented, and inequalities in the
distribution of wealth are quite different from those of income. Personal income
and income per household have often moved in opposite directions as house-
holds have, in recent years, become smaller. Either number can be calculated
with some precision from publicly available data (which may, however, omit the
untaxed “unofficial” economy), yet the availability of these superficially similar
but quantitatively very different indicators of prosperity allow sharply divergent
assessments of the effects of a government’s tax and budgetary policies.

The emergence of decision technologies such as cost–benefit analysis illus-
trates the complex dynamic of precision and accuracy in relation to objectivity
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and discernment, or information and wisdom. Here, once again, are numbers
performing a legal or bureaucratic function. However it often is not within the
capacity of a particular agency to pronounce authoritatively on what these num-
bers should be. In the United States, for example, they have been subject to
challenge in Congressional committee hearings and sometimes in the courts.
At times the numbers are transparently corrupt, but good intentions provide no
guarantee that they will hold up as valid or even that they should. Cost–benefit
analysis is often defended as bringing the methods and hence the efficiencies
of business to government, but it was from its beginning a technology for pub-
lic decisions, involving the quantification of effects that would never appear on
a balance sheet of a private business. This mighty project of commensuration,
which began as a somewhat loose and informal method for analyzing public con-
struction projects, was more and more strictly codified beginning in the 1930s.
By 1965 it had emerged as an ideal for the analysis of government expenditures
and regulatory actions of all kinds, a way of purging (or pretending to purge)
the corrupt play of interests from the decisions of government, which should in-
stead be objective and rational. That is, they should be turned into a problem of
measurement and calculation.

Precision in these cost–benefit studies never pretended to absolute exactitude.
The engineers who, through the 1950s, normally performed them for such agen-
cies as the Army Corps of Engineers and the Bureau of Reclamation were not
always consistent in their use of rounding, but they would rarely claim more than
two significant figures, and when the politics shifted or matured, it was quite
possible for a dismal benefit–cost ratio of 0.37 to 1 to rise above 1.0 by adding,
say, hydroelectric generation facilities that, despite these dazzling economic ad-
vantages, had somehow not at first been inserted into the plans (Porter, 1995,
p. 160). Only the pressure of powerful opponents, some of them from private
industry such as electric utilities and railroads but the most effective ones from
rival agencies, caused the rules of measurement to be spelled out more clearly.
Even after this, the decision process continued to depend as much on forming
an alliance of supporters as on the “objective” economic considerations. Still,
when in the 1940s the Bureau of Reclamation and the Corps of Engineers found
themselves embattled over projects on the Missouri River or in the epic contest
to build the Pine Flat Dam on the Kings River in California, the issue of objec-
tivity in the calculations rose to the surface and had to be defended in a battle of
experts.

At times these collisions inspired challenges directed specifically to ques-
tions of accuracy. Was the increased revenue to movie theaters in areas where
agriculture was promoted by new cheap supplies of irrigation water properly in-
cluded among the benefits of a dam built by the Bureau of Reclamation? Often,
however, precision was the great desideratum. Were the methods devised by the
Corps in the 1950s for assigning a value to recreation on reservoirs sufficiently
strict so as to exclude manipulation of the calculation and to avoid decisions
made for corrupt political reasons instead of rational bureaucratic ones? And the
issue of special preferences was, after all, the crucial concern that had stimulated
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the development of such calculative technologies in the first place. Economic
rationality was of interest, but that would be impossible until one could gain con-
trol of the pork-barrel impulse, of Congressmen funding projects to win support
in their districts and to enrich their key supporters or even themselves. A choice
based on criteria that were somewhat arbitrary but rigorous might be preferable
to one aiming to advance rational goals that could not easily be measured.

This last point can be illustrated by the rules for measuring the value of human
life. This has always been a somewhat sensitive issue, because even economists
might be uncomfortable setting a price on a life, and in other walks of life most
people find the whole matter loathsome and heartless. One thinks of Jonathan
Swift’s bitterly ironical Modest Proposal, which pretends to demonstrate the
economic advantages of bringing starving Irish children to England and serving
them up for dinner in prosperous households. Yet, in a system where a dam, a
highway, or a hospital is required by law to get over a benefit–cost hurdle by
showing a ratio above 1.0, to fail to put a value on life is in effect to assign
it a value of zero. Since the eighteenth century, certain institutions had found
reason to place a value on human life. These were life insurance companies,
and the point was to provide widows and orphans of professionals such as min-
isters with the capacity to make up the financial loss they would suffer from
the death of the father and breadwinner. If his future income and his annual
expenses were known, along with rates of return on a safe investment, an actu-
ary could calculate the sum desired. By the twentieth century, determinations of
this kind were made routinely. Since they involved the future, they could not be
extremely precise, but the uncertainties were reduced by probability: in a cost–
benefit analysis, it was an average life rather than some particular ones that the
calculation required. There might be more uncertainty in estimating the number
of lives saved or lost as a result of constructing a levee or regulating a toxic
substance than in the value to be assigned to each.

This monetary sum, the discounted present value of future income, was suf-
ficiently precise and objective for purposes of a cost–benefit analysis. The only
problem was that economists, who took these calculations more seriously than
engineers, regarded it as the wrong quantity. The value of a life is measured not
by income but by welfare or utility, something along the lines of what people on
average would be willing to pay to save their lives, or what they would have to be
paid to sacrifice them. By this definition, we have a very unpromising object of
quantification. There is somewhat more hope in a more nuanced version of the
task: how much in increased wages do people require in order to assume certain
measurable risks, for example by working in a relatively dangerous job. Even
this formulation involves a host of problems, of which the most obvious is sepa-
rating the effects of risk from other factors that may affect pay in various occupa-
tions. Studies of risk and behavior, at least through the 1980s, produced hugely
discrepant figures for the value of human life, from negative values into the bil-
lions and beyond. Thus, though economists agreed that, conceptually, it was far
superior to the alternatives as a way to figure human life into the grand project
of commensuration that is cost–benefit analysis, it remained unworkable from
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the standpoint of precision. The insurance calculation thus remained in use by
social scientists, who regarded it as incoherent from the standpoint of the basic
assumptions of economics, because it was the only definition of the value of life
that admitted a decent level of precision (Porter, 1992). Subsequently, through
the miracle of averaging, a value of life in terms of individual preferences was
made available for bureaucratic use (Ackerman and Hamerling, 2004).

14.4. Precision and World-Making

As science merges more and more with technology, there is a tendency for ac-
curacy to give way to precision. In a way, this can already be seen in the early
history of the metric system. The savants of the 1790s hoped to create a natural
unit of measurement, based on the circumference of the Earth. In more recent
times, scientists and historians have thought the choice of unit arbitrary, a mere
convention, but they forget the ties that bound systems of measurement with the
administration of the land and the rationalization of the economy. The makers
of the metric system envisioned, as Gillispie (1997, p. 152) points out,

a universal decimal system, embracing not only ordinary weights and measures but also
money, navigation, cartography, and land registry. . . . In such a system, it would be possi-
ble to move from the angular observations of astronomy to linear measurements of the earth’s
surface by a simple interchange of units involving no numerical conversions; from these linear
units to units of area and capacity by squaring and cubing; from these to units of weight by
taking advantage of the specific gravity of water taken as unity; and finally from weight to
price by virtue of the value of gold and silver in alloys held invariant in composition through
a rigorous fiscal policy.

Inevitably there were errors; the meter was not, and of course could not possi-
bly have been, exactly one forty-millionth part of the longitudinal circumference
of the Earth. The Euro-doubting Guardian newspaper, inspired by Méchain’s
concealment and by a title advertising a “secret error” in the founding of the
metric system, reviewed Alder’s book on the topic as evidence of corruption at
its very foundation. To modern users of the system, the inaccuracy scarcely mat-
ters. Metric measurements are a system of precision, justified by their internal
coherence, widespread adoption, and ease of use rather than by any relationship
to quantities in nature.

Absolute quantities, of course, still matter to science, and it is difficult not to
believe that accuracy is advancing along with precision in the measurement of
nature. By now the meter is again defined in terms of a natural quantity, though
as an unnatural multiple with many decimal places. Precision is of fundamen-
tal economic importance, crucial for the standardization that makes possible
not only mass production, but also the interconnection of vast grids of power,
transportation, and communication. The field of metrology is presided over by
bureaus of standards, of which the prototype was founded in newly-unified Ger-
many in 1871 (Cahan, 1989). Metrology is an engineering science that serves
as infrastructure for all the sciences and an indispensable aid to scientific com-
munication. It is concerned less directly with accurate measures of nature than
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with the coordination of technical activities through the standardization of pre-
cision, which, much more than serving as handmaid to the triumphant career of
accuracy, helps to constitute it.
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Optimal Experimental Design in Models
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Abstract
When dichotomous choice problems are used as a means of eliciting individual
preferences, an important issue is how the choice problems should be chosen in
order to allow maximal precision in the estimation of the parameters of inter-
est. This issue is addressed by appealing to the theory of optimal experimental
design which is well-established in the statistical literature, but has yet to break
into most areas of economics. Two examples are provided of situations in which
such techniques are applicable: Willingness To Pay (WTP) for an environmen-
tal good; and degree of risk aversion. The determinant of Fisher’s information
matrix is chosen as the criterion for optimal design.

15.1. Introduction

The concept of optimal design of experiments is widespread in many different
fields including the physical, biological and behavioural sciences, as well as en-
gineering and marketing. In contrast, it is an unfamiliar concept to the majority
of Economists. The reason for this is that traditionally economists have resigned
themselves to being passive observers of data generating processes. In fact, when
the subject of Econometrics emerged as a separate discipline in the middle of
the 20th century, one key feature that distinguished it from orthodox statistical
analysis was precisely that it deals with the issues that arise when the investi-
gator has no control over the generation of the data under analysis. Of course,
this position changed in the later part of the 20th century, with the explosion of
interest in Experimental Economics, in which the investigator clearly does have
a significant degree of control. However, it is fair to say that the majority of the
first generation of experimental economists are economic theorists who are keen
to test theories that would be untestable without the laboratory. Few of this first
generation came from the area of statistics or econometrics, although we should
be prepared for rapid change here as well. The term “Experimetrics” was coined
recently by Camerer (2003) to represent the econometric analysis of data from
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economic experiments – another research area that is attracting considerable in-
terest at the present time.

Despite these recent changes within the discipline, it is still the case that ex-
perimental design theory, that is, the use of a rigorous statistical framework as
a means of designing experiments in order for the resulting data sets to be opti-
mally suited to addressing the research questions of interest, has yet to break into
the Economics literature. There is, in fact, one notable exception. As we shall
witness later in this Chapter, environmental economists who perform Contin-
gent Valuation (CV) studies have already been exposed to experimental design
theory (see, for example, Hanemann and Kanninen, 1998). However, in Experi-
mental Economics, perhaps the area in which we would most expect to see such
techniques being exploited, there is a strong sense that investigators are, some-
times by their own admission (Hey and di Cagno, 1990), tending to “grope in
the dark” when it comes to the design of experiments.

One area not too distant from Economics in which design theory has been
usefully applied is marketing research (see, for example, Louviere et al., 2000).
In this area, the most common problems involve “stated choice” experiments,
in which subjects are asked to make hypothetical choices between alternatives
with different combinations of attributes. Many attributes (for example, Airbag
or Satellite Navigation in motor vehicles) have just two “levels”: present and ab-
sent. The experimental design problem then boils down to which combinations
of attributes should be present in the choices offered. If all possible combinations
are offered, the design is said to be a “full factorial”. In practice, it is usually the
case that the number of different attributes is such that a full factorial design is
impractical. The question then is which of the many possible “fractional factor-
ial designs” is optimal for meeting the objectives of the study.

In this Chapter, we are more concerned with the situation more familiar to
Economists that arises when there is a continuous explanatory variable, xi ,
which systematically affects the value taken by some other variable, yi (the de-
pendent variable). The simplest setting that we shall consider is the homoscedas-
tic linear regression model:

yi = θ1 + θ2xi + εi, i = 1, . . . , n,

εi ∼ N
(
0, σ 2). (15.1)

Here, we imagine that we are in a position to choose the values taken by the
explanatory variable xi in the sample. We set out to make this choice in a way
that maximises the precision with which the unknown parameters θ1 and θ2 can
be estimated. “Precision” is a subject that is discussed in more detail and in a
more general context in Chapter 14 of this volume (Porter, this volume).

Here, we refer to precision in terms of the variation of an estimator around the
true value of the parameter being estimated. Precision in this sense is conven-
tionally measured by the standard error of an estimate. For example, it is well
known to anyone who has taken an introductory course in Econometrics that the
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standard error of the ordinary least squares estimator of the slope parameter θ2

in (15.1) is:

se
(
θ̂2
)=

√
σ 2

∑
i (xi − x̄)2

≈
√

Var(εi)

n × Var(xi)
. (15.2)

From (15.2), we clearly see that the standard error of the slope estimator, and
therefore the precision with which the slope parameter is being estimated, de-
pends on three separate factors: the variance of the equation error, the variance
of the explanatory variable, and the sample size. The first of these factors is al-
ways outside of our control. The other two are within our control, and both can
therefore be used to improve precision. These two factors appear to be equally
important: a doubling of the variance of x would appear to have the same effect
on precision as a doubling of the sample size. It therefore appears that a design
that is optimal for a given sample size is one that maximises the variance in
the explanatory variable x. For obvious reasons, this is a sensible optimisation
problem only if bounds on x are determined at the outset. Such bounds might
be determined by the range of values taken by an analogous variable in a real
setting. It is often assumed without loss of generality that x can only take values
between −1 and +1. Given such an assumption, the optimal design becomes
one in which half of the observations in the sample are allocated to the design
point x = −1, and the other half are allocated to x = +1, since this is the com-
bination of x values that maximises the variance of x given the constraint on
the range of the variable. In the jargon of experimental design, we are allocat-
ing all observations to the “corners of the design space”. This simple example
illustrates the selection of an optimal design in a highly intuitive way.

A more general approach is to consider all of the model’s parameters simul-
taneously. The information matrix is a square symmetric matrix representing
the potency of the data in respect of estimating the model’s parameters. The
most popular criterion of experimental design is D-optimality, in which a de-
sign is sought to maximise the determinant of this information matrix. Since
the variance of the estimated vector is the inverse of the information matrix,
D-optimality is seen to be equivalent to minimising the volume of the “confi-
dence sphere” surrounding the parameter estimates, and the D-optimal design
can hence be interpreted as one that maximises the precision with which the
parameters (taken together) are estimated.

A feature of linear models such as (15.1) is that the information matrix only
involves the values of x appearing in the sample, and does not involve the para-
meters. In this situation, finding the D-optimal design is easy. In this Chapter, we
are more interested in non-linear models, and for these, the information matrix
depends on the parameter values. Hence, knowledge of the parameter values is
necessary in order to design an optimal experiment. This is sometimes referred
to as the “chicken and egg” problem. At first sight this problem appears quite
damning: the experiment cannot be designed without knowledge of the parame-
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ters whose values the experiment’s purpose is to find! However, there are ways
of circumventing this problem, as we shall see later.

The type of non-linear models in which we are interested are binary data
models. This interest is motivated as follows. There are situations in Economic
research in which a certain continuously measurable quantity representing indi-
vidual preferences is of interest, but the preferred way of eliciting this quantity
for a given individual is to present them with a dichotomous choice problem,
rather than directly to ask them to state the quantity. Two important examples
are contingent valuation studies (e.g. Green et al., 1998), in which Willingness
To Pay (WTP) for a public good is elicited by means of a hypothetical referen-
dum, and studies of risk attitude (e.g. Holt and Laury, 2002), in which subjects
are asked to choose between pairs of lotteries. In each case, there are reasons,
some more convincing than others, for preferring this elicitation method. When
dichotomous choice is used to elicit preferences, the resulting variable is binary,
calling for non-linear models such as logistic regression or probit in its analysis.

Given the wide acceptance of dichotomous choice as a means of eliciting
preferences, it is important for researchers to have guidance on appropriate de-
sign. In particular, it is desirable to have a clear framework for choosing the
payment levels in referendum questions, and for choosing the parameters of the
lottery pairs. Such a framework comes from the statistical literature on optimal
experimental design.

While a vast literature exists on the problem of optimal experimental design,
most of this work has been applied to linear models (Silvey, 1980; Fedorov,
1972) and most of the seminal papers were highly theoretical. Atkinson (1996)
provides a useful review of developments in optimal experimental designs, in-
cluding more recent, non-linear designs, with particular reference to their prac-
ticality. Ford et al. (1992) summarise developments in non-linear experimental
design.

A problem that has already been raised is the “chicken and egg” problem:
in non-linear settings, the parameters need to be known in advance in order to
find the D-optimal design. A possible solution to the problem is to design an
“interactive” experiment, in which subjects’ choices are continually monitored,
and all choices made up to a particular stage in the experiment are used in con-
structing a design which is locally optimal for the next stage of the experiment.
This approach was adopted by Chaudhuri and Mykland (1993, 1995). There is
a problem with this approach: it violates the requirements of incentive compati-
bility. Intelligent subjects have a tendency to alter their behaviour if they believe
that their choices may have an influence the future course of an experiment. For
this reason, we restrict our attention to the search for a design which can be com-
pletely determined before the start of the experiment, although we acknowledge
that interactive experiments have recently been performed in ways that avoid
the incentive compatibility problem (e.g. Eckel et al., 2005). Such methods are
described in Section 15.5.

In theory, the problem of unknown parameter values could be approached by
taking expectations of the determinant of the information matrix over a prior dis-
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tribution for the parameters. However, the algebra involved can be problematic
and such a technique would normally rely heavily on numerical routines.

Ponce de Leon (1993) adopted a Bayesian approach for generalised linear
models. The approach was then adapted by Müller and Ponce de Leon (1996)
to discriminate between two competing pairwise choice models. Although the
problem they analysed is similar in spirit to ours, our models are somewhat more
complex, with potentially more parameters, which tend to make the Bayesian
approach seem less attractive.

Instead we adopt an approach which takes parameter estimates from a past
study (or possibly a pilot study), and treats these estimates as is they were true
parameter values in the computation of the D-optimal design criterion.

Section 15.2 describes situations in which the dichotomous choice elicitation
methods have become popular, and attempts to justify the use of the method in
these contexts. Section 15.3 presents a brief introduction to experimental design
theory, covering first linear models and then the more relevant non-linear bi-
nary data models. Section 15.4 applies the optimal design results introduced in
Section 15.3 to the economic models of Section 15.2. Section 15.5 contains dis-
cussion of a number of issues relating to the framework developed in the chapter.
Section 15.6 concludes.

15.2. Use of Dichotomous Choice in Economics

15.2.1. Valuation of environmental goods

There is a large literature on how best to elicit individuals’ valuations of envi-
ronmental goods (such as air quality or city parks) in ways that are incentive
compatible, that is, that avoid, for example, under-valuation caused by a desire
to free-ride. Single referendum contingent valuation is one protocol for elicit-
ing Willingness-to-Pay (WTP) for such goods. It was first introduced by Bishop
and Heberlein (1979). Subjects are each presented with a hypothetical refer-
endum that specifies a good to be supplied and an amount payable, and asked
to vote on this referendum. The decision made by a subject clearly allows us
to deduce either an upper bound (if they say “no”) or a lower bound (if they
say “yes”) to their own WTP for the good in question. It is important to recog-
nise that this manner of eliciting valuations is statistically inferior to a scheme
in which subjects are simply asked to state their WTP directly (known as an
“open-ended” protocol). In terms of information extracted, the latter method
is preferable. Also, from the point of view of analysing the results, the lat-
ter method is again preferred, because it requires simpler statistical techniques.
A question that arises, then, is what accounts for the widespread acceptance of
a method that is statistically inefficient and requires analysis that is more com-
plex than is necessary. One important answer appears to be that the two methods
give very different results. Other answers summarised by Green et al. (1998)
are that the referendum format reduces non-response and avoids zero valuations
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and implausibly high valuations. A common counter-argument, also developed
by Green et al., is that the referendum method induces “anchoring bias”.

However one views the validity of reasons given for preferring the referendum
format, it must be accepted that this is currently the most popular method for
eliciting WTP, and therefore it is important to devote effort to analysing the
theoretical underpinnings of the technique.

Let yi be the true WTP of respondent i. It is natural to allow WTP to depend
on characteristics of the respondent (age, gender, income and years of education,
say) in a linear fashion:

yi = β0 + β1agei + β2genderi + β3incomei + β4educi + εi

= x′
iβ + εi . (15.3)

The error term, εi , is assumed to follow a normal distribution:

εi ∼ N
(
0, σ 2). (15.4)

It follows that:

yi ∼ N
(
x′
iβ, σ

2). (15.5)

If the referendum method is used, each respondent is simply asked whether or
not they would be willing to pay a suggested amount si for the good. Note that
the suggested amount varies over the sample.

Let di be a binary variable taking the value 1 if respondent i reveals that they
are willing to pay si , and −1 otherwise. The relationship between di and yi is
as follows: di = 1 if yi > si ; otherwise di = −1. The probability of respondent i
saying “yes” is therefore:

P(di = 1) = P(yi > si) = Φ

[
x′
i

(
β

σ

)
+ si

(
− 1

σ

)]
(15.6)

where Φ(·) is the standard normal c.d.f. Equation (15.6) is the definition of a
binary probit model, with the suggested amount si included as an explanatory
variable along with the variables contained in the vector xi . Note that the coef-
ficient of si is necessarily negative, and an estimate of the parameter σ can be
deduced from knowledge of it. In turn, an estimate of the vector β could then
be deduced from the coefficient of xi . A further technical issue is that since the
structural parameters, β and σ , are non-linear functions of the reduced form
parameters estimated using the probit model, the delta-method (Greene, 2003,
p. 913) is required in order to compute standard errors.

In the present chapter, we mainly restrict attention to situations in which there
are no explanatory variables; all respondents have the same expected WTP, μ.
So, instead of (15.3) we have simply:

yi = μ + εi (15.7)
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and the probit model is of the simpler form:

P(di = 1) = P(yi > si) = Φ

[
μ

σ
+
(

− 1

σ

)
si

]
. (15.8)

Our ultimate objective will be to choose values of the explanatory variable si that
will allow the two structural parameters μ and σ to be estimated with greatest
precision.

15.2.2. Measuring risk aversion

Asking a subject to report their valuation (or “certainty equivalent”) of a lottery
enables us to deduce that subject’s attitude to risk. For example, if a subject
is asked to value a 50:50 gamble with outcomes $10 and zero, and reports a
valuation of $4, and if we assume that the subject has a Constant Relative Risk
Aversion (CRRA) utility function:

U(x) = x1−r

1 − r
, r �= 1 (15.9)

then we can deduce that the subject’s coefficient of relative risk aversion is r =
0.186. If we are interested in measuring attitudes to risk over the population, this
might therefore seem an obvious way to proceed.

It is not obvious how to elicit a subject’s certainty equivalent in a way that
is incentive compatible. One popular method is the Becker–DeGroot–Marschak
(BDM, Becker et al., 1964) mechanism, which operates as follows. It is ex-
plained to the subject that when they have reported their valuation of a given
lottery, a random price will be drawn from a uniform distribution. If the random
price is less than the subject’s reported valuation, the subject will play the lot-
tery; if the random price exceeds the valuation, the subject receives that price
instead of playing the lottery. It is easily verified that this mechanism has the
virtue of incentive compatibility. However, a common criticism of it is that it is
hard for subjects to comprehend sufficiently for the incentive compatibility to
take hold.

An alternative to BDM which also claims to be Incentive Compatible is the
ordinal pay-off scheme (Tversky et al., 1990; Cubitt et al., 2004). In this scheme,
subjects are presented with a sequence of lotteries, for each of which they are
asked to state a certainty equivalent. They are informed that when they have
completed the experiment, two of the lotteries will be chosen at random from the
sequence, and the subject will play out the one to which they assigned a higher
value. Like the BDM scheme, this scheme claims to be incentive compatible.

A commonly reported problem with obtaining certainty equivalents, which-
ever of the above schemes is used, is that subjects have a tendency to report the
expected value of a lottery, that is, they tend to report a risk-neutral certainty
equivalent.
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Fig. 15.1: A histogram of the monetary valuations of 112 subjects of the lottery (0.50, £10).
Source: Cubitt et al. (2004).

To verify this, in Fig. 15.1 we show data from Cubitt et al. (2004), who, as
previously noted, use the ordinal pay-off scheme. Shown in Fig. 15.1 is the
distribution over the sample of 112 subjects of the certainty equivalents of the
lottery (0.50, £10). By this notation, we mean a 50% chance of £10 and a 50%
chance of nothing. We see that more than half (58) of the 112 subjects report a
valuation of exactly £5.00, which is, of course, the expected value of this lottery.
Furthermore, the mean over the sample is 5.07, which is certainly not signif-
icantly different from 5.00 (p = 0.63). This goes against the widely-accepted
belief that the vast majority of people are risk averse.

The important point here is that there are strong reasons for believing that
choices between lotteries are a more reliable source of information on risk atti-
tudes than reported valuations of lotteries. In fact, the tendency to use expected
values for certainty equivalents is an obvious explanation for the reversal phe-
nomenon (Grether and Plott, 1979) – the tendency to value the riskier lottery
more highly but to choose the safer lottery when asked to choose between them.
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We therefore have a similar situation to that encountered in Section 15.2.1.
Instead of extracting a precise measure of risk attitude for a given subject, we
use their choice to deduce either an upper bound (if they choose the riskier al-
ternative) or a lower bound (if they choose safe) to their risk aversion parameter.
The estimation of risk attitudes using lottery choice data is pursued in Chapter 4
of this Volume (Harrison et al., this volume).

Let us assume, as do Harrison et al., that all individuals have the CRRA utility
function (15.9) and that the coefficient of relative risk aversion varies over the
population according to:

r ∼ N
(
μ,σ 2). (15.10)

Assume that the subject is asked to choose between two lotteries. Numerical
techniques can be used to compute the value of r for which a subject is indiffer-
ent between the two lotteries in question. We shall refer to this as the threshold
risk aversion parameter for the choice problem, and denote it as r∗.

Assume that subject i is presented with a choice problem with threshold risk
level r∗

i . Let yi = 1 if the safer of the two lotteries is chosen, and yi = −1 if the
riskier is chosen. The probability of the safe choice is:

P(yi = 1) = P
(
ri > r∗

i

)= Φ

(
μ

σ
+
(

− 1

σ

)
r∗
i

)
. (15.11)

Once again we have a probit model, identical in form to that developed in the
context of referendum contingent valuation in Section 15.2.1. Once again we are
interested in choosing values of the explanatory variable, this time r∗, that allow
us to estimate the two structural parameters μ and σ as precisely as possible.

15.3. Rudiments of Experimental Design Theory

15.3.1. The principle of D-optimal design

Consider a model in which the scalar dependent variable is y, the single ex-
planatory variable is x, and the probability, or probability density, associated
with a particular observation (yi, xi) is f (yi | xi;θ), where θ is a k × 1 vector
of parameters. Assume that there are a total of n independent observations. The
log-likelihood function for this model is:

LogL =
n∑

i=1

lnf (yi | xi;θ). (15.12)

The maximum likelihood estimate (MLE) of the parameter vector θ is the value
that maximises LogL. The information matrix is given by:

I = E

(
−∂2 LogL

∂θ∂θ′
)

= E

(
∂ LogL

∂θ

∂ LogL

∂θ′
)
. (15.13)
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The variance of the MLE is given by the inverse of the Information matrix.
Hence standard errors of individual estimates are obtained from the square roots
of the diagonal elements of I−1.

The principle of D-optimal design is simply to select values of xi , subject
to the specified constraints, that maximise the determinant of the information
matrix. This is equivalent to minimising the volume of the “confidence ellipsoid”
of the parameters contained in θ , that is, estimating the entire set of parameters
with maximal overall precision.

Clearly, the information matrix and its determinant increase with the sample
size n. Often, when we are comparing designs, we need to adjust for the num-
ber of observations, so we divide the information matrix by n to obtain the per
observation information matrix.

15.3.2. Simple linear regression

Consider the simple (normal) regression model:

yi = θ1 + θ2xi + εi, i = 1, . . . , n,

εi ∼ N(0,1),

−1 � xi � +1 ∀i. (15.14)

Assume that the investigator has control over the values taken by the explana-
tory variable xi , subject only to a lower and an upper bound, which we assume
without loss of generality to be −1 and 1. Note that the error term is assumed
to be normally distributed, and, for the sake of further simplicity, to have unit
variance. Given these assumptions concerning the error term, we may construct
the log-likelihood function for this model as:

logL =
n∑

i=1

[
k − (yi − θ1 − θ2xi)

2] (15.15)

where k is a constant. It is easily verified that in this model the MLEs of the two
parameters are the same as the estimates from a least squares regression of y

on x. Differentiating twice with respect to the two parameters θ1 and θ2 we find
the information matrix to be:

I =
(

n
∑

xi∑
xi

∑
x2
i

)
. (15.16)

So the variance of the MLE vector is:

V

(
θ̂1

θ̂2

)
= I−1 =

(
n

∑
xi∑

xi
∑

x2
i

)−1

. (15.17)

Standard errors are obtained as the square roots of diagonal elements of V .
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To obtain the D-optimal design, we need to choose values of xi that max-
imise the determinant of I. It may easily be verified that this determinant may be
written as:

|I | =
n∑

i=1

n∑

j=i+1

(xi − xj )
2. (15.18)

From (15.18) it is clear that the differences between different x-values must be
as great as possible. For this, half of the values must be set to the maximum
allowed, and the other half to the minimum. In experimental design jargon, we
are choosing all design points from the “corners of the design space”.

15.3.3. Simple probit and simple logit

Now consider a binary data setting, in which an underlying continuous vari-
able y∗ depends on x according to:

y∗
i = θ1 + θ2xi + εi, i = 1, . . . , n,

εi ∼ N(0,1) (15.19)

but all that is observed is whether y∗ is positive or negative. That is, we observe
y where:

yi =
{

1 if y∗
i > 0,

−1 if y∗
i � 0.

(15.20)

This is the well known probit model, with log-likelihood function:

LogL =
n∑

i=1

lnΦ
[
yi × (θ1 + θ2xi)

]
. (15.21)

The information matrix for this model may be derived as:

I =
( ∑

wi

∑
wixi∑

wixi
∑

wix
2
i

)
(15.22)

where

wi = [φ(θ1 + θ2xi)]2

Φ(θ1 + θ2xi)[1 − Φ(θ1 + θ2xi)] .

The determinant of the information matrix may be written as:

|I | =
n∑

i=1

n∑

j=i+1

wiwj (xi − xj )
2. (15.23)
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Again, |I | is maximised with just 2 design points. However, |I | is weighted by
the wi ’s. These weights are maximised when Φ(θ1 + θ2xi) = 0.5, that is, when
the probabilities of the two outcomes are equalised. So, the desire to have design
points as far from each other as possible, occupying the “corners of the design
space,” is countered by the desire to have design points giving rise to perfect
indifference – the requirement of “utility balance” (Huber and Zwerina, 1996).

In Fig. 15.2, the solid curve shows |I | against the percentile of the upper
design point. The design is symmetric, so the lower design point is an equal dis-
tance from the centre. We see, as expected, that when both design points are in
the centre (percentile = 0.50) the information is zero. The intuition here is that
if all design points are in the centre of the distribution, all that can be observed is
which side of the centre each observation lies, and the spread of the distribution
cannot be identified. We also see that when both design points are the maximum
distance from the centre (percentile = 1.0), the information is zero again. Again
this is intuitive, if all individuals are given such extreme problems that their
choice can be predicted with certainty, the choice data will be of no value. The
most important feature of the solid line in Fig. 15.2 is the maximum at 0.87. This
implies that the design points that maximise |I | are the 13th and 87th percentiles
of the underlying response function. This is the D-optimal design for the probit
model.

Fig. 15.2: Determinant of information matrix against percentile of larger design point; probit and
logit.
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If the required number of design points is odd, the optimal design is to place
one design point exactly in the centre, and to divide the remaining points equally
between the 13th and 87th percentiles.

A well-known alternative to probit for the modelling of binary data is the logit
model, defined by:

P(yi = 1) = exp(θ1 + θ2xi)

1 + exp(θ1 + θ2xi)
≡ Pi. (15.24)

The information matrix has the same form as (15.22) above, with weights given
by:

wi = Pi(1 − Pi). (15.25)

With (15.25) in (15.23), it is found, again numerically, that the design points
that maximise |I | are the 18th and 82nd percentiles of the underlying response
function. The broken line in Fig. 15.2 shows |I | against the percentile of the
upper design point for the logit model.

We are often led to believe there are no major differences between probit and
logit. For example, according to Greene (2003, p. 667), “in most applications,
the choice between these two seems not to make much difference”. It therefore
seems surprising that the optimal design points under probit are five percentiles
further into the tails than under logit.

Note that in order to find these optimal design points, the parameters of the
underlying distribution (i.e. θ1 and θ2) must be known in advance, since ob-
viously these are needed in order to recover a point on the distribution from
knowledge of its percentile. This is a manifestation of the “chicken and egg”
problem referred to in Section 15.1.

15.4. Optimal Design in Economics

The issues surrounding Optimal Design in Referendum Contingent Valuation
studies have already been addressed by Kanninen (1993a, 1993b), Alberini
(1995) and Hanemann and Kanninen (1998).

In risk studies, as in experimental economics generally, noticeably less work
has been done on Optimal Design. The following quote from Hey and di Cagno
(1990) is typical of the attitude to the design problem held by most researchers
in the area:

The choice of questions was not so easy. . . We tried to get a mixture so that the slope of the
line joining the pair of gambles varied considerably: from 1/7 to 7. The idea behind this was
that we would then be able to distinguish between very risk-averse people and not-very-risk
averse people, but we were rather groping in the dark.

The “slope” referred to in this quote is that of the line connecting two lotter-
ies in the Marschak–Machina triangle, and is analogous to our “threshold risk
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aversion” measure, r∗, introduced in Section 15.2. This chapter may serve to
introduce the notion of optimal experimental design to researchers who have
concerns of this nature.

We assume that a choice problem involves four non-negative outcomes x1 <

x2 < x3 < x4. The problem requires a choice between two lotteries. The “safe”
lottery (S) involves the outcomes x2 and x3, with probabilities p2 and p3 respec-
tively; the “risky” lottery (R) involves the outcomes x1 and x4, with probabilities
p1 and p4.

We assume the Constant Relative Risk Aversion utility function:

U(x) =
{

x1−r

1−r
r �= 1,

ln(x) r = 1.
(15.26)

The parameter r in (15.26) is the coefficient of relative risk aversion.
Given (15.26), the expected utilities of the two lotteries are:

EU(S) = p2
x1−r

2

1 − r
+ p3

x1−r
3

1 − r
,

EU(R) = p1
x1−r

1

1 − r
+ p4

x1−r
4

1 − r
. (15.27)

Assuming that individuals obey Expected Utility (EU) Theory, choice S is made
if and only if:

r > r∗(p1,p2,p3,p4, x1, x2, x3, x4). (15.28)

That is, the Safer choice is made if the individual’s risk aversion parameter ex-
ceeds a “threshold” level of risk aversion, r∗, this being a function of all four
outcomes and all four probabilities. r∗ can be computed numerically for a given
choice problem.

Let r have the following distribution over the population:

r ∼ N
(
μ,η2). (15.29)

First let us assume that each subject (i) solves only one choice problem with
threshold r∗

i . Let yi = 1(−1) if subject i chooses S(R). The log-likelihood con-
tribution for subject i is:

LogLi = lnΦ

[
yi ×

(
μ

η
+
(

−1

η

)
r∗
i

)]
(15.30)

which is a standard probit model as analysed in Sections 15.2 and 15.3.
The optimal design problem here amounts to choosing a set of values of r∗

that will give maximal precision in the estimation of the two parameters of the
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Table 15.1: The Holt and Laury design, with threshold risk aversion parameter for each choice
problem.

Problem Safe Risky r∗ Proportion
choosing S

1 (0.1, $2.00; 0.9, $1.60) (0.1, $3.85; 0.9, $0.10) −1.72 1.00
2 (0.2, $2.00; 0.8, $1.60) (0.2, $3.85; 0.8, $0.10) −0.95 0.99
3 (0.3, $2.00; 0.7, $1.60) (0.3, $3.85; 0.7, $0.10) −0.49 0.98
4 (0.4, $2.00; 0.6, $1.60) (0.4, $3.85; 0.6, $0.10) −0.15 0.92
5 (0.5, $2.00; 0.5, $1.60) (0.5, $3.85; 0.5, $0.10) 0.15 0.66
6 (0.6, $2.00; 0.4, $1.60) (0.6, $3.85; 0.4, $0.10) 0.41 0.40
7 (0.7, $2.00; 0.3, $1.60) (0.7, $3.85; 0.3, $0.10) 0.68 0.17
8 (0.8, $2.00; 0.2, $1.60) (0.8, $3.85; 0.2, $0.10) 0.97 0.04
9 (0.9, $2.00; 0.1, $1.60) (0.9, $3.85; 0.1, $0.10) 1.37 0.01

10 (1.0, $2.00; 0.0, $1.60) (1.0, $3.85; 0.0, $0.10) ∞ 0.00

model. As explained in Section 15.3, in order to apply the rules of optimal
design, prior knowledge concerning the distribution of risk aversion must be
available. For this, we appeal to the results of Holt and Laury (2002). Their
basic design consists of the ten choice problems shown in Table 15.1. The
threshold risk aversion parameter for each choice problem is shown in the final
column. The ten problems are ordered: problem 1 is such that nearly everyone
chooses the Safe alternative; problem 10 is such that everyone is expected to
choose Risky (in fact, for problem 10 the right-hand lottery stochastically dom-
inates).

Each subject was asked to solve the ten problems in order. At some stage in
the sequence all subjects are expected to switch from the Safe column to the
risky column, and it is of interest at which precise stage they switch, since this
sets a lower and an upper bound on their risk aversion parameter.

Figure 15.3 shows an imputed distribution of implied risk attitudes (r), based
on the results provided by Holt and Laury. The mean and standard deviation of
the imputed distribution are 0.3335 and 0.3892 respectively. From the results
of Section 15.3, we may deduce that if an experiment were planned in which
only one choice problem would be solved by each subject, and we continued
to assume normality of r over the population, the optimal design would consist
of one problem with r∗ = 0.33, and the remainder being divided equally be-
tween r∗ = −0.11 and 0.77. More informatively, we would set one subject the
problem:

(0.57, $2.00; 0.43, $1.60) (0.57, $3.85; 0.43, $0.10)

and we would divide the remaining subjects equally between the two problems:

(0.41, $2.00; 0.59, $1.60) (0.41, $3.85; 0.59, $0.10)



372 P.G. Moffatt

Fig. 15.3: The (imputed) distribution of risk aversion parameters from the Holt Laury experiment.
Normal density super-imposed.

and:

(0.73, $2.00; 0.27, $1.60) (0.73, $3.85; 0.27, $0.10).

15.5. Further Issues

15.5.1. Multiple observations per subject

The optimal design problem solved in Section 15.4 was built on the assumption
that only one choice problem would be solved by each subject. It is more usual in
experiments of this type for each subject to solve a sequence of choice problems.
The Random Lottery Incentive (RLI) system is commonly implemented: at the
end of the sequence, one of the chosen lotteries is selected at random and played
for real. Under reasonable assumptions, this guarantees that subjects treat each
lottery as if it were the only lottery.

The resulting data set is a panel, containing a set of T choices for each of n

subjects. To accommodate the multiple observations per subject, within-subject
variation needs to be incorporated into the model. One approach to follow
Loomes et al. (2002) and apply the Random Preference assumption, namely



Optimal Experimental Design in Models of Decision and Choice 373

that an individual i’s risk aversion parameter varies randomly between the T

problems according to:

rit ∼ N
(
mi,σ

2) t = 1, . . . , T (15.31)

and the mean risk aversion of each subject varies across the population according
to:

mi ∼ N
(
μ,η2). (15.32)

This leads to the random effects probit model (Avery et al., 1983). The log-
likelihood contribution for a single subject is given by:

LogLi = ln

[∫ ∞

−∞

{
T∏

t=1

Φ

(
yit × m − r∗

t

σ

)}
1

η
φ

(
m − μ

η

)
dm

]

. (15.33)

The random effects model defined in (15.33) has three parameters: the “be-
tween” parameters, μ and η; and the “within” parameter, σ .

To obtain the information matrix requires differentiation that is quite de-
manding, and it is not expressible in closed form, as it was in the examples
in Section 15.3. Maximising the determinant of the information matrix is there-
fore an awkward problem. It is also intuitively obvious that the optimal design
will have a more complicated structure than the designs of Section 15.3. Given
that there are two sources of randomness, two distinct design points would not
be sufficient to identify the parameters separately, and it is not clear what the
D-optimal number of design points would be. These are matters for future re-
search.

15.5.2. Sequential designs

Each subject has a different risk attitude so a choice problem which induces
indifference for one subject may induce a clear preference for another. A use-
ful approach is therefore to “tailor” problems to individual subjects, using their
choices in early problems to identify their risk attitude, and then set later prob-
lems that apply an optimal design rule for that subject.

As mentioned in Section 15.1, the obvious criticism of this approach is the po-
tential violation of incentive compatibility: subjects may manipulate the experi-
ment by deliberately making false responses in an effort to “steer” the problem
sequence in the direction of the most desirable problem types.

The problem has been addressed by Eckel et al. (2005) who apply a modified
version of RLI. A universal set of choice problems is determined at the outset.
Then a non-random sequence of problems is drawn from the universal set, with
each one chosen in the light of previous responses in order to locate indifference.
But, it is made clear at the outset that the problem that is played for real is drawn
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randomly from the universal set, and not just from the subset of problems solved.
If one of the solved problems is drawn, the chosen lottery is played; if one of
the unsolved problems is drawn, the subject is asked to solve that problem as an
additional task, and then it is immediately played for real.

The crucial feature of this modified RLI system is that the choices made by
the subject have no effect whatsoever on the set of problems over which the ran-
domisation is performed, or on the probabilities of each problem being drawn.
It is this feature that guarantees incentive compatibility.

15.6. Conclusion

The use of dichotomous choice problems in economic research calls for a thor-
ough analysis of the issue of optimal design of such experiments. The main
objective of this chapter has been to bring some well-developed ideas concerning
optimal design into the mainstream of economic research. The chosen criterion
has been the popular D-optimal design criterion, under which the determinant
of the model’s information matrix is maximised. The key ideas are that when
the model is linear, the design points should be as far apart as possible, at the
“corners of the design space”, but for binary data models, this requirement is
countered by the requirement of “utility balance” – that the design points are in
the middle of the underlying distribution. The net effect of these counteracting
requirements is, somewhat intriguingly, that the optimal design points in binary
data models are at identifiable percentiles of the distribution, fairly near to the
tails. The optimal percentiles depend on which model is assumed.

Another issue is that, while in linear models, the optimal design points can
be found, in non-linear models such as the binary data models considered in
this Chapter, the parameters of the underlying distribution need to be known
in order for the optimal design points to be found. This is a problem that can
be addressed by using results from a previous study in designing an optimal
experiment. It was in this spirit that the example on estimating the distribution
of risk attitudes over the population in Section 15.4 was presented.
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Abstract
This chapter provides an introduction to smoothing methods in time series analy-
sis, namely local polynomial regression and polynomial splines, that developed
as an extension of least squares regression and result in signal estimates that
are linear combinations of the available information. We set off exposing the
local polynomial approach and the class of Henderson filters. Very important
issues are the treatment of the extremes of the series and real time estimation,
as well as the choice of the order of the polynomial and of the bandwidth. The
inferential aspects concerning the choice of the bandwidth and the order of the
approximating polynomial are also discussed. We next move to semiparametric
smoothing using polynomial splines. Our treatment stresses their relationship
with popular stochastic trend models proposed in economics, which yield expo-
nential smoothing filters and the Leser or Hodrick–Prescott filter. We deal with
signal extraction filters that arise from applying best linear unbiased estimation
principles to the the linear mixed model representation of spline models and
establish the connection with penalised least squares. After considering several
ways of assessing the properties of a linear filter both in time and frequency do-
main, the chapter concludes with a discussion of the main measurement issues
raised by signal extraction in economics and the accuracy in the estimation of
the latent signals.
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Every valley shall be exalted, and every mountain and hill made low,
and the crooked shall be made straight, and the rough places plain.
And the glory of the Lord shall be revealed, and all flesh shall see it together
for the mouth of the Lord hath spoken it.

Isaiah 40:4-5

16.1. Introduction

The smoothing problem has a long and well established tradition in statistics and
has a wide range of applications in economics. In its simplest form it aims at pro-
viding a measure of the underlying tendency from noisy observations, and takes
the name of signal extraction in engineering, trend estimation in econometrics,
and graduation in actuarial sciences. This chapter provides an introduction to
smoothing methods, namely local polynomial regression and spline smoothing,
that developed as an extension of least squares regression and result in signal
estimates that are linear combinations of the available information. These lin-
ear combinations are often termed filters and the analysis of the filter weights
provides useful insight into what the method does.

Although the methods can be applied to cross-sectional data, we shall deal
with time series applications. In particular, for a time series yt we assume an
additive model of the form:

yt = μt + εt , t = 1, . . . , n, (16.1)

where μt is the trend component, also termed the signal, and εt is the noise, or
irregular, component. We assume throughout that E(εt ) = 0, whereas μt can be
a random or deterministic function of time. If the observations are not equally
spaced, or the model is defined in continuous time, then we shall change our
notation to y(t) = μ(t) + ε(t).

The smoothing problem deals with the estimation of μt . If μt is random,
the minimum mean square estimator of the signal is E(μt |Yn), where Yt =
{y1, . . . , yt } denotes the information set at time t . Estimation is said to be car-
ried out in real time if it concerns E(μt |Yt ), using the available information up
to and including time t . If the model (16.1) is Gaussian, these inferences are
linear in the observations. Why is such set of problems relevant? Essentially, in
economics we seek to separate the permanent movements in the series from the
transitory ones. A related objective is forecasting future values.

The simplest and historically oldest approach to signal extraction is using a
global polynomial model for μt , which amounts to regressing yt on a polyno-
mial of time, where global means that the coefficients of the polynomial are
constant across the sample span and it is not possible to control the influence
of the individual observations on the fit. In fact, it turns out that global poly-
nomials are amenable to mathematical treatment, but are not very flexible: they
can provide bad local approximations and behave rather weirdly at the begin-
ning and at the end of the sample period, which is inconvenient for forecasting
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Fig. 16.1: Industrial Production Index, Manufacture and Assembly of Motor Vehicles, seasonally
adjusted, Italy, January 1990–October 2005.

purposes. This point is illustrated by the first panel of Fig. 16.1, which plots the
original series, representing the industrial production index for the Italian Auto-
motive sector (monthly data, 1990.1–2005.10; source: Istat), and the estimate of
the trend arising from fitting cubic (P3) and quintic (P5) polynomials of time. In
particular, it can be seen that a high order is needed to provide a reasonable fit
(the cubic fit being very poor), and that extrapolations would be troublesome at
the very least.

The subsequent panels illustrate the smoothed estimates of the trend arising
from methods that aim at overcoming the limitations of the global approach,
while still retaining its simplicity (due to the linearity). The top right picture
plots the smoothed estimates of the trend resulting from the unweighted mov-
ing average of three consecutive observations, (yt−1 + yt + yt+1)/3, which
arises from fitting a local linear trend to three consecutive observations, using
a uniform kernel (this is also known as a Macaulay’s moving average). Little
smoothing has taken place.

The bottom left panel plots the estimates resulting from the Henderson fil-
ter, which results from fitting a cubic polynomial to 23 consecutive observations
centred at t (11 on each side). The plot illustrates the advantages of local poly-
nomial fitting over the traditional global polynomial approach: the degree of the
approximating polynomials can be chosen of low order to produce a reasonable
fit. Finally, the last panel displays the estimates of the smoothing cubic spline
trend with smoothness parameter 1600, which yields results indistinguishable
from the popular Hodrick–Prescott filter (Hodrick and Prescott, 1997).
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The chapter is structured as follows. We set off exposing the local polynomial
approach (Section 16.2), and the class of Henderson’s filters (Section 16.3). Very
important issues are the treatment of the extremes of the series and real time es-
timation, which are dealt with in Section 16.4, and the choice of the order of the
polynomial and the bandwidth, which are the topic of Section 16.5. Section 16.6
presents some generalisations. We next move to an alternative fundamental ap-
proach, provided by polynomial splines (Section 16.7). Our treatment stresses
its relationships with popular stochastic trend models proposed in economics,
which yield exponential smoothing filters and the Leser (1961), also known as
the Hodrick–Prescott, filter. In Section 16.8 we deal with several ways of as-
sessing the properties of a linear filter. We conclude with a discussion of the
main issues raised by signal extraction in economics and the accuracy in the
estimation of the latent signals.

The literature on smoothing methods is very large and our review cannot be
but incomplete. For instance, we deal neither with the related flexible regression
approach proposed by Hamilton (2001), based on the notion of a random field,
nor with wavelets, which have a range of applications in economics, and fre-
quency domain methods based on band-pass filters (see Pollock, 1999). Early
references on moving average filters and (local) polynomial time series regres-
sion are Kendall et al. (1983) and Anderson (1971). For local polynomial regres-
sion essential references are Loader (1999) and Fan and Gjibels (1996). A book
on spline smoothing is Green and Silverman (1994), whereas Hastie and Tibshi-
rani (1990), Farhmeir and Tutz (1994) and Ruppert et al. (1989) are excellent
references on semiparametric regression. Polynomial spline models are related
to the time series literature on unobserved components models, trend estimation,
and state space methods, exposed in Harvey (1989) and Durbin and Koopman
(2001). An excellent review of graduation is Boumans (2004, Section 3).

16.2. Local Polynomial Regression

Let us assume that in (16.1) μt is an unknown deterministic function of time, so
that E(yt ) = μt , and that equally spaced observations yt+j , j = 0,±1,2, . . . , h,
are available in a neighbourhood of time t . Our interest lies in estimating the
level of the trend at time t , μt , using the available observations.

If μt is differentiable, using the Taylor-series expansion it can be locally ap-
proximated by a polynomial of degree p of the time distance, j , between yt and
the neighbouring observations yt+j . Hence, μt+j ≈ mt+j , with

mt+j = β0 + β1j + · · · + βpj
p, j = 0,±1, . . . ,±h.

The degree of the polynomial is crucial in determining the accuracy of the
approximation. Another essential quantity is the size h of the neighbourhood
around time t ; in our particular setup the neighbourhood consist of H = 2h + 1
consecutive and regularly spaced time points at which observations yt+j are
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made. The parameter h is the bandwidth, for which we assume p � 2h through-
out.

Replacing μt+j by its approximation gives the local polynomial model:

yt+j =
p∑

k=0

βkj
k + εt+j , j = 0,±1, . . . ,±h. (16.2)

If we assume that εt+j ∼ NID(0, σ 2), then (16.2) is a linear Gaussian regression
model with explanatory variables given by the powers of the time distance jk ,
k = 0, . . . , p and unknown coefficients βk , which are proportional to the kth or-
der derivatives of μt . Working with the linear Gaussian approximating model,
we are faced with the problem of estimating mt = β0, i.e. the value of the ap-
proximating polynomial for j = 0, which is intercept β0 of the approximating
polynomial.

The model (16.2) can be rewritten in matrix notation as follows:

y = Xβ + ε, ε ∼ N
(
0, σ 2I

)

where y = [yt−h, . . . , yt , . . . , yt+h]′, ε = [εt−h, . . . , εt , . . . , εt+h]′,

X =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1 −h · · · (−h)p

1 −(h − 1) · · · [−(h − 1)]p
...

... · · · ...
1 0 · · · 0
...

... · · · ...
1 h − 1 · · · (h − 1)p

1 h · · · hp

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

, β =

⎡

⎢
⎢⎢
⎣

β0
β1
...

βp

⎤

⎥
⎥⎥
⎦

.

In the estimation of the unknown level, we would like to weight the observa-
tions differently according to their distance from time t . In particular, we may
want to assign larger weight to the observations that are closer to t . For this
purpose we introduce a kernel function κj , j = 0,±1, . . . ,±h, which we as-
sume known, such that κj � 0, and κj = κ−j . Hence, the κj ’s are non-negative
and symmetric with respect to j . As a result, the influence of each individual
observation is controlled not only by the bandwidth h but also by the kernel.

Provided that p � 2h, the p + 1 unknown coefficients βk, k = 0, . . . , p, can
be estimated by the method of weighted least squares (WLS), which consists of
minimising with respect to the βk’s the objective function:

S
(
β̂0, . . . , β̂p

)=
h∑

j=−h

κj
(
yt+j − β̂0 − β̂1j − · · · − β̂pj

p
)2
. (16.3)

Defining K = diag(κh, . . . , κ1, κ0, κ1, . . . , κh), the WLS estimate of the coeffi-
cients is β̂ = (X′KX)−1X′Ky. In order to obtain m̂t = β̂0, we need to select
the first element of the vector β̂ . Hence, denoting by e1 the p + 1 vector
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e′
1 = [1,0, . . . ,0],

m̂t = e′
1β̂ = e′

1(X
′KX)−1X′Ky = w′y =

h∑

j=−h

wj yt−j ,

which expresses the estimate of the trend as a linear combination of the obser-
vations with coefficients

w′ = e′
1(X

′KX)−1X′K. (16.4)

The trend estimate is local since it depends only on the subset of the ob-
servations that belong to the neighbourhood of time t . The linear combination
yielding our trend estimate is often termed a (linear) filter, and the weights wj

constitute its impulse responses. The latter are time invariant and carry essen-
tial information on the nature of the estimated signal; their properties will be
discussed in Section 16.8. For the time being we state two important ones: sym-
metry and reproduction of pth degree polynomials.

Symmetry (wj = w−j ) follows from the symmetry of the kernel weights κj
and the assumption that the available observations are equally spaced. Concern-
ing the second, from (16.4) we have that X′w = e1, or equivalently,

h∑

j=−h

wj = 1,
h∑

j=−h

j lwj = 0, l = 1, . . . , p.

As a consequence, the filter w is said to preserve a deterministic polynomial of
order p, which means that if the series is y = Xβ then the filter will reproduce
it exactly, i.e. m̂t = β0 = yt .

The central weight w0 measures the leverage, that is the contribution of yt
on the estimate of the signal at time t . It is also known as the influence of yt .
Defining eh+1 = [0, . . . ,0,1,0, . . . ,0]′ (a H × 1 vector with 1 in the middle
position), such that X′eh+1 = e1,

w0 = w′eh+1 = e′
1(X

′KX)−1X′Keh+1 = κ0e′
1(X

′KX)−1e1. (16.5)

The filter arising for K = I (uniform kernel) has w = X(X′X)−1e1 and it is
known as a Macaulay’s filter. In the case of a local constant polynomial, that
is p = 0 and κj = 1,∀j , the signal extraction filter is the arithmetic moving
average: wj = w = 1/(2h + 1), j = 0,±1, . . . ,±h. The same weights arise in
the case p = 1 i.e. for a local linear fit, but this is true only of the central weights
for equally spaced observations.

16.3. Henderson Filters

An important class of local polynomial filters, proposed by Henderson (1916),
arises as a particular case of the local cubic fit, p = 3 in (16.3). The relevance
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of Henderson’s contribution to modern local regression is stressed in the first
chapter of Loader (1999). Still nowadays the Henderson filters are employed for
trend estimation in the X-11 nonparametric seasonal adjustment procedure. See
Findley et al. (1998) for more details.

The problem faced by Henderson is to determine the weighting function
(16.4) which, for a given bandwidth h and p = 3 provides the smoothest es-
timates of the trend. The smoothness criterion adopted by Henderson is based
on the variance of the third differences of the estimates of the trend, in that the
smaller the variance the greater the extent of smoothness, as the trend accel-
eration is subject to the least variation. Hence, the objective is that of choosing
{wj } so as to minimise Var(�3m̂t ), where � is the difference operator, such that
�m̂t = m̂t −m̂t−1, and �3m̂t = �2(m̂t −m̂t−1) = m̂t −3m̂t−1 +3m̂t−2 −m̂t−3.
At the same time, the weights have to satisfy the cubic polynomial reproduction
property:

∑
j wj = 1,

∑
j wj j

k = 0, k = 1,2,3.
Now, since

Var
(
�3m̂t

)= Var

(
h∑

j=−h

wj�
3εt−j

)

= σ 2
h∑

j=−h+3

(
�3wj

)2
,

as it is implied by the assumption that εt+j ∼ NID(0, σ 2), the above constrained
minimisation problem is equivalent to determining the weights {wj } that min-
imise the sum of squared third differences of the weights,

∑h
j=−h+3(�

3wj )
2,

subject to the constraints
∑

j wj = 1,
∑

j wj j
k = 0, k = 1,2,3.

It can be shown (Kenny and Durbin, 1982) that the solution is

wj = κj
(S4 − S2j

2)

S0S4 − S2
2

,

κj = [
(h + 1)2 − j2][(h + 2)2 − j2][(h + 3)2 − j2],

j = 0,±1, . . . ,±h, where Sk =∑h
j=−h κj j

k . Therefore, the Henderson filters
emerge from WLS estimation of a local cubic polynomial using the particular
kernel given above. Table 16.1 reports the filter weights for different values of
the bandwidth parameter.

16.4. The Treatment of the Extremes of the Series – Real Time Estimation

Up to now we have assumed the availability of 2h + 1 observations centred at t
and have derived symmetric two sided filters. Obviously, it is not possible to
obtain the estimates of the signal for (the first and) last h time points, which is
inconvenient, since we are typically most interested at the most recent estimates.

We can envisage two fundamental approaches to the estimation of the signal
at the extremes of the sample period:
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Table 16.1: Weights wj of the Henderson filters with H = 9, 13, 17, and 23 terms.

j Weights wj

h = 4 h = 6 h = 8 h = 11

0 .33114 .24006 .18923 .14406
±1 .26656 .21434 .17639 .13832
±2 .11847 .14736 .14111 .12195
±3 −.00987 .06549 .09229 .09740
±4 −.04072 .00000 .04209 .06830
±5 −.02786 .00247 .03893
±6 −.01935 −.01864 .01343
±7 −.02037 −.00495
±8 −.00996 −.01453
±9 −.01569

±10 −.01092
±11 −.00428

1. the construction of asymmetric filters that result from fitting a local poly-
nomial to the available observations yt , t = n − h + 1, n − h + 2, . . . , n.
The approximate model yt+j = mt+j + εt+j is assumed to hold for j =
−h,−h+1, . . . , n− t , and the estimators of the coefficients β̂k , k = 0, . . . , p,
minimise

S
(
β̂0, . . . , β̂p

)=
n−t∑

j=−h

κj
(
yt+j − β̂0 − β̂1j − · · · − β̂pj

p
)2
.

Hence, the trend estimates for the last h data points, m̂n−h+1, . . . , m̂n, use
respectively 2h,2h − 1, . . . , h + 1 observations.

2. Apply the symmetric two sided filter to the series extended by h forecasts
ŷn+l|n, l = 1, . . . , h, (and backcasts ŷ1−l|n).

In the sequel we shall denote by m̂t |t+r the estimate of the signal at time t

using the information available up to time t + r , with 0 � r � h; m̂t |t is usually
known as the real time estimate since it uses only the past and current infor-
mation. Figure 16.2 displays the central and asymmetric filters for computing
m̂t |t+r of the Henderson filter with h = 8.

Both strategies imply that the final h estimates of the trend will be subject
to revision as new observations become available. An intuitive and easily estab-
lished fact is that if the forecasts ŷn+l|n are optimal in the mean square error
sense, then the variance of the revision is a minimum. The two strategies coin-
cide only when the future observations are generated according to a polynomial
function of time of degree p, so that the optimal forecasts are generated by the
same polynomial model.
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Fig. 16.2: Henderson filter: central and asymmetric weights.

To prove this result let us start by partitioning the matrices X, K and the
vector y as follows:

X =
[

Xa

Xm

]
, y =

[
ya

ym

]
, K =

[
Ka 0
0 Km

]

where ya denotes the set of available observations, whereas ym is missing. Under
the local polynomial model the forecasted values of ym is

ŷm = Xm(X′
aKaXa)

−1X′
aKaya.

Applying the two-sided filter w to the observations extended by the forecasts
yields:

m̂t |t+r = w′
[

ya

ŷm

]
= e′

1(X
′KX)−1X′K

[
ya

ŷm

]
;

using X′K = [X′
aKa, X′

mKm],

(X′KX)−1 = (X′
aKaXa + X′

mKmXm)−1

= (X′
aKaXa)

−1[I + X′
mKmXm(X′

aKaXa)
−1]−1



386 T. Proietti and A. Luati

and replacing ŷm, gives

m̂t |t+r = e′
1(X

′
aKaXa)

−1X′
aKaya,

which is the estimate of the intercept of the polynomial that uses only the avail-
able information. Hence, the asymmetric filter weights are given by

wa = KaXa(X′
aKaXa)

−1e1,

as they result from application of the first strategy.
Comparing m̂t |t+r with the final estimate, which is computed when the future

observations become available, we obtain the revision error

m̂t − m̂t |t+r = w′
[

y −
(

ya

ŷm

)]
= w′

(
0

ym − ŷm

)
= w′

m(ym − ŷm),

where we have partitioned w = [w′
a,w′

m]′.

16.4.1. Revision of preliminary estimates

Suppose that we add an observation to the current set ya , yt+r+1, and denote
by x′

t+r+1 = [1, (r + 1), (r + 1)2, . . . , (r + 1)p] the (r + 1)st row of the ma-
trix X. If the first strategy is adopted, then we can express the estimate m̂t |t+r+1,
which uses the newly available observation, in terms of the previous estimate,
plus a revision term which depends on a fraction of the one-step-ahead forecast
error:

m̂t |t+r+1 = m̂t |t+r + κr+1e′
1(X

′
aKaXa)

−1xt+r+1

1 + κr+1x′
t+r+1(X

′
aKaXa)−1xt+r+1

× (yt+r+1 − ŷt+r+1|t+r )

where ŷt+r+1|t+r = x′
t+r+1β̂a = x′

t+r+1(X
′
aKaXa)

−1X′
aKaya is the one-step-

ahead forecast of yt+r+1.
The proof uses the following matrix inversion result (see e.g. Henderson and

Searle, 1981): if A is invertible and b is a scalar,

(A ± buv′)−1 = A−1 ∓ b

1 ± bv′A−1u
A−1uv′A−1. (16.6)

16.4.2. The use of exogenous forecasts

As illustrated by Fig. 16.2 the asymmetric filter weights of the Henderson filter
change rapidly, as new observations are added. This adds to the variability of the
estimates of the trend, and is detrimental to their reliability, as they are subject
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to large revisions. The second strategy (using forecast extensions) is safer if it is
thought that the series is not generated by a local polynomial model, provided
that we are able to produce optimal forecasts according to some parametric or
non parametric device, e.g. fitting a time series model of the ARIMA class. This
idea is embodied in the X-11-ARIMA seasonal adjustment procedure (Dagum,
1982). In applied economic time series analysis most often extrapolations have a
local linear nature, such as those obtained from ARIMA models with integration
order equal to 1 or 2 (provided there is no constant term in the latter case).

When the forecast extensions are exogenous the filter weights are adapted to
the property of the series, so that the weights wj are not fixed, but depend also
on yt . An intermediate strategy, which avoids this dependence, is to assume that
outside the sample period the trend is a linear, rather than cubic, function of time.
A similar idea is exploited in Musgrave’s adaptation of the Henderson filters at
the extremes of the series (Musgrave, 1964).

16.5. Inference

The filter (16.4) depends on three characteristics: the degree of the approxi-
mating polynomial, the shape of the kernel function and the bandwidth h (or,
equivalently, the length of the filter H ). All these factors jointly contribute to
balance the trade-off between variance and bias, that will be discussed in the
following subsection.

16.5.1. Bias–variance trade-off

Recalling that m̂t = β̂0 =∑
j wj yt−j is the estimate of the level mt which ap-

proximates the “true” underlying signal μt ,

E(m̂t ) = E

(∑

j

wj yt−j

)
= E

[∑

j

wj (μt−j + εt−j )

]
=
∑

j

wjμt−j .

Thus m̂t is biased, unless μt+j = mt+j , j = 0,±,1, . . . ,±h, i.e. the true signal
is a polynomial of order p. The bias arises from neglecting higher order terms
in the Taylor expansion:

μt − E(m̂t ) = μt −
∑

j

wjμt−j = dt −
∑

j

wj dt−j

where dt−j = μt−j − mt−j =∑∞
k=p+1

1
k!μ

(k)
t−j j

k , is the remainder of the Tay-

lor’s approximation, μ(k)
t−j being the kth derivative of the trend at t − j .

The bias is inversely related to p and is positively related with h. As a matter
of fact, the higher is p, the more reliable is the polynomial approximation (i.e.
the size of dt is lower); also, the suitability of the local polynomial approxima-
tion is higher the smaller the neighbourhood of time t that is considered. Hence,
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in order to minimise the bias we ought to take p high and h low. On the other
hand, higher degree polynomials also have more coefficients to estimate, result-
ing in higher variability. Also, if h is small the estimates use few observations,
so that by increasing h we decrease their variance.

As far as the variance is concerned,

Var(m̂t ) = E
[
m̂t − E(m̂t )

]2 = E

[∑

j

wj (yt−j − μt−j )

]2

= σ 2
∑

j

w2
j

= σ 2e′
1(X

′KX)−1X′K2X(X′KX)−1e1.

The factor
∑h

j=−h w2
j is often termed the variance inflation factor (VIF), as it

represents the proportionate increase (reduction if lower than 1, as is the case
for the methods considered thus far) in the variance of a filtered white noise
sequence due to the smoothing operation. The VIF is one when all the weight is
concentrated on the observation to be estimated, say m̂t = yt .

For a given p, Var(m̂t ) decreases as h increases. For instance, if p = 0,1 and
the kernel is uniform (Macaulay’s moving averages), then the VIF is equal to the
leverage w0 = (2h + 1)−1; for p = (2,3), the VIF is 1, 0.49, 0.33, 0.26, 0.21,
respectively for h = 1,2,3,4,5. On the contrary, for h given, VIF increases
with the even values of p. For instance, for h = 5 the VIF is 0.09, 0.21, 0.33,
respectively for per p = (0,1), p = (2,3), and p = (4,5).

The shape of the kernel has much less impact on the bias–variance trade-off.
The optimal choice of the pair of parameters (p,h) should minimise the mean
square estimation error,

MSE(m̂t ) = Var(m̂t ) + [
μt − E(m̂t )

]2
,

which can be estimated using a variety of methods (see e.g. Fan and Gjibels,
1996).

Usually, p = 1,2 are adequate choices for the degree of the fitting polynomial,
although the Henderson filter (p = 3) is fairly popular in time series applica-
tions.

16.5.2. Cross-validation

It is usually most effective to choose a low degree polynomial and concentrate
instead on the selection of the bandwidth. Here we discuss and illustrate with
reference to the Henderson filter the choice of the bandwidth according to the
cross-validation score. The latter assesses the performance of the fit by com-
paring each observation with the local regression estimate computed from the
remaining n − 1 data points.
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Let m̂t\t denote the two-sided estimate of the signal at time t which does not
use yt . Using (16.5) and the matrix inversion lemma (16.6),

m̂t\t = e′
1(X

′KX − κ0e1e′
1)

−1(X′Ky − κ0yte1)

= e′
1

[
(X′KX)−1 + κ0

1 − κ0e′
1(X

′KX)−1e1
(X′KX)−1e1e′

1(X
′KX)−1

]

× (X′Ky − κ0yte1)

= 1

1 − w0
e′

1(X
′KX)−1(X′Ky − κ0yte1)

= 1

1 − w0
m̂t − w0

1 − w0
yt .

The leave-one-out, or deletion, residual can be expressed in terms of the trend
estimate using all the observations:

yt − m̂t\t = 1

1 − w0
(yt − m̂t ).

The cross-validation score is the sum of the squared deletion residuals:

CV =
n∑

t=1

(yt − m̂t\t )2 =
∑

t

(yt − m̂t )
2

(1 − w0t )2
,

where the subscript t in w0t signifies that the filter weights are different at the
extremes of the sample, so that the leverage varies with t .

Figure 16.3 plots CV for different values of the bandwidth parameter and
the trend estimates corresponding to the h = 9 for which the cross-validation
score is a minimum, along with its 95% confidence bounds computed using the
standard error estimates obtained as indicated in the next section.

16.5.3. Error variance and interval estimates

The estimation of σ 2 can be done using the residuals from the local polynomial
fit: yt − m̂t = yt −∑

j wj t yt−j , where again we append a subscript t since the
filter differs at the extremes.

Assuming yt = mt + εt , i.e. μt = mt , a polynomial of degree p (and thus∑
j wj tmt−j = mt by the polynomial preservation property), the expectation of

the residual sum of squares (RSS) is

E(RSS) = E

[
n∑

t=1

(
yt −

∑

j

wj t yt−j

)2
]

= E

[
n∑

t=1

(
yt − mt −

∑

j

wj t (yt−j − mt)

)2
]
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Fig. 16.3: Henderson filter: cross-validation scores and interval estimates of the signal.

= E

[
n∑

t=1

(
εt −

∑

j

wj t εt−j

)2
]

= E

[
n∑

t=1

(
ε2
t − 2

∑

j

wj t εt εt−j +
(∑

j

wj t εt−j

)2)]

= σ 2

[

n − 2
n∑

t=1

w0t +
n∑

t=1

(∑

j

w2
j t

)]

.

This suggests that we can estimate the error variance by correcting the RSS:

σ̂ 2 = RSS

n − 2
∑n

t=1 w0t +∑n
t=1(

∑
j w2

j t )
.

This estimate can be used in turn to compute interval estimates of the signal; e.g.
an approximate 95% confidence interval for μt is

m̂t ± 2

(
σ̂ 2
∑

j

w2
j t

) 1
2

.
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16.6. Other Approaches and Generalisations

In the previous sections we have focussed on the simplified case when equally
spaced observations are available, the bandwidth is fixed and the support of the
kernel is discrete. The generalisation to unequally spaced observations and con-
tinuous kernels proceeds as follows. Assuming that n observations y(ti) are
made at the at time points ti , i = 1, . . . , n, the estimate of the signal at time
t ∈ (t1, tn) is computed by minimising the WLS criterion function:

S
(
β̂0, . . . , β̂p

)

=
n∑

i=1

κ

(
ti − t

b

)[
y(ti) − β̂0 − β̂1(ti − t) − · · · − β̂p(ti − t)p

]2

where κ(z) is the kernel function, which is symmetric and non-negative. The
smoothing parameter b > 0 determines the bandwidth of the kernel, since
κ(z) = 0 for |z| > 1. If b tends to zero then m̂(ti) = y(ti). On the other hand, if
b tends to infinity, then all the observations will receive weight equal to 1/n and
the estimation gives the ordinary least squares solution.

The estimate of the trend is m̂(t) = β̂0 = w′
ty, where y = [y(t1), . . . , y(tn)]′,

and wt = e′
1(X

′
tKtXt )

−1X′
tKt where Xt is an n × (p + 1) matrix with ith row

[1, (ti − t), . . . , (ti − t)p], and Kt = diag[κ( t1−t
b

), . . . , κ( tn−t
b

)] is n × n.
The case p = 0 (local constant fit) yields the well-known Nadaraya–Watson

estimator (Nadaraya, 1964; Watson, 1964):

m̂(t) = 1
∑n

i=1 κ(
ti−t
b

)

n∑

i=1

κ

(
ti − t

b

)
y(ti),

where the weights for signal extraction are provided by the normalised kernel
coefficients.

There is a large literature on kernels and their properties. An important class,
embedding several widely used kernels, is the class of Beta kernels:

κ(z) = krs
(
1 − |z|r)sI(|z| � 1

)
, krs = r

2B(s + 1, 1
r
)

with r > 0, s � 0, and

B(a, b) =
1∫

0

za−1(1 − z)b−1 dz

with a, b > 0 is the Beta distribution function. The pair (r = 1, s = 0) gives the
uniform kernel (yielding the Macaulay filters in the discrete case), r = s = 1
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gives the triangle kernel, (r = 2, s = 1) the Epanechnikov kernel, r = s = 2 the
biweight kernel, (r = 2, s = 3) the triweight kernel, r = s = 3 the tricube ker-
nel. The kernel of the Henderson filter can be viewed as discrete version of the
triweight kernel. Other kernels are defined from parametric density functions, as
in the case of the Gaussian kernel. For a comparative assessment of the various
kernels see Wand and Jones (1995). The overall conclusion is that their choice
is not very relevant in terms of efficiency.

There are several variations of local polynomial regression. Most of them in-
volve different ways of selecting the bandwidth parameters. One of the most
popular locally weighted regression scatterplot smoother is Loess, due to Cleve-
land (1979). The distinctive features is that each m(t) is estimated using a fixed
number of points, regardless of the time location t , rather than using a fixed
bandwidth. Finally, the choice of the bandwidth parameter can be made local.
For instance, the supersmoother, proposed by Friedman (1984), selects the band-
width for each target point using local cross-validation. In regions where the
curvature-to-variance ratio is high, a small span is chosen. On the other hand, if
the curvature-to-variance ratio is low, then a large span will be preferred.

16.7. Splines and Trend Models

An alternative way of overcoming the limitations of the global polynomial
model is to add polynomial pieces at given points, called knots, so that the poly-
nomial sections are joined together ensuring that certain continuity properties
are fulfilled. Given the set of points t1 < · · · < ti < · · · < tk , a polynomial spline
function of degree p with k knots t1, . . . , tk is a polynomial of degree p in each
of the k + 1 intervals [ti , ti+1), with p − 2 continuous derivatives, whereas the
(p − 1)st derivative has jumps at the knots. It can be represented as follows:

μ(t) = β0 + β1(t − t1) + · · · + βp(t − t1)
p +

k∑

i=1

ηi(t − ti )
p
+, (16.7)

where the set of functions

(t − ti )
p
+ =

{
(t − ti )

p, t − ti � 0,

0, t − ti < 0

defines what is usually called the truncated power basis of degree p.
According to (16.7) the spline is a linear combination of polynomial pieces;

at each knot a new polynomial piece, starting off at zero, is added so that the
derivatives at that point are continuous up to the order p − 2. There are sev-
eral equivalent ways of representing a spline function, some of which are more
amenable from the computational standpoint. The truncated power representa-
tion has the advantage of representing the spline as a multivariate regression
model.
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An important class of semiparametric and parametric time series models are
encompassed by (16.7). The piecewise nature of the spline “reflects the oc-
currence of structural change” (Poirier, 1973). The knot ti is the timing of a
structural break. The change is “smooth”, since certain continuity conditions
are ensured. The coefficients ηi , which regulate the size of the break, may be
considered as fixed or random. In the latter case μ(t) is a stochastic process, ηi

is interpreted as a random shock that drives the evolution of μ(t), whereas the
truncated power function (t − ti )

p
+ describes its impulse response function, that

is the impact on the future values of the trend.
If the ηi ’s are considered as random, the spline model can be formulated as

a linear mixed model, which is a traditional regression model extended so as to
incorporate random effects. Denoting y = [y(t1), . . . , y(tn)]′, η = [η1, . . . , ηn]′,
ε = [ε(t1), . . . , ε(tn)]′, μ = Xβ + Zη,

y = μ + ε = Xβ + Zη + ε, (16.8)

where the t th row of X is [1, (t − 1), . . . , (t − 1)p], and Z is a known ma-
trix whose ith column contains the impulse response signature of the shock ηi ,
(t − ti )

p
+.

In the sequel we shall assume that observations are available at discrete times,
y(ti) = yi , i = 1, . . . , n, and that the knots are placed at the times at which
observations are made (ti = i). Hence, each new observation carries “news”,
which produce the structural change.

16.7.1. The local level model

The simplest truncated power basis arises for p = 0 and consists of step func-
tions with jumps of size 1 at the knots. The corresponding zero degree spline
is

μ(t) = β0 +
n−1∑

i=1

ηi(t − i)0+ = β0 +
t−1∑

i=1

ηi, t = 1, . . . , n, (16.9)

where ηt ∼ NID(0, σ 2
η ) and (t − i)0+ = 1 for t > i, and zero otherwise. Equation

(16.9) defines a random walk and can be reformulated as a stochastic difference
equation: μt+1 = μt + ηt , t = 1, . . . , n − 1, with starting value μ1 = β0. Thus,
a shock ηt occurring at time t is accumulated into the future values of the level
and has unit long run impact. The shock signature is constant and is displayed
in the upper left panel of Fig. 16.4.

The model yt = μt + εt , with μt given above and εt ∼ NID(0, σ 2
ε ), is known

as the local level model and plays an important role in the time series literature,
since the forecasts are an exponentially weighted moving average (EWMA) of
the current and past observations, and the smoothed estimates of μt are given
by a two-sided EWMA.
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Fig. 16.4: Shock signature for polynomial spline trend models.

If (16.9) is modified as follows:

μ(t) = β0 + β1(t − 1) +
n−1∑

i=2

ηi(t − i)0+

= β0 + β1(t − 1) +
t−1∑

i=2

ηi, t = 1, . . . , n,

the trend becomes a random walk with drift and can be represented by the sto-
chastic difference equation μt+1 = μt + β1 + ηt , t = 2, . . . , n− 1, with starting
values μ1 = β0, μ2 = μ1 + β1.

16.7.2. The local linear model

Another important trend model, known as the local linear trend model, arises for
p = 1:

μ(t) = β0 + β1(t − 1) +
n−1∑

i=2

ηi(t − i)1+

= β0 + β1(t − 1) +
t−1∑

i=2

(t − i)ηi, t = 1, . . . , n. (16.10)
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Notice that, in order to enhance the identifiability of the parameters, the equally
spaced knots range from time 2 to n − 1. Equation (16.10) defines an inte-
grated random walk (IRW) and can be reformulated as a stochastic difference
equation: μt+1 − 2μt + μt−1 = ηt , t = 2, . . . , n, with starting values μ1 = β0,
μ2 = β0 + β1. The impulse response function is linear and a shock is doubly
accumulated (integrated) in the future values of the level (see the upper right
panel of Fig. 16.4).

It should be noticed that μt is continuous at each time point t (whereas the
first derivative, β1 + ∑

ηi(t − i)0+, is discontinuous at t = i). To allow for a
discontinuity at each t = i we introduce a linear combination of (t − i)0+:

μ(t) = β0 + β1(t − 1) +
n−1∑

i=2

ηi(t − i)1+ +
n−1∑

i=1

ωi(t − i)0+

= β0 + β1(t − 1) +
t−1∑

i=2

(t − i)ηi +
t−1∑

i=2

ωi, (16.11)

where we take ωi ∼ NID(0, σ 2
ω), uncorrelated with ηi . The trend model (16.11)

can be rewritten as a random walk with stochastic drift, δt , evolving as a random
walk: μt+1 = μt + δt + ηt , δt+1 = δt + ωt . See Harvey (1989) for more details.
Obviously, if σ 2

ω = 0, then the model reduces to (16.9).

16.7.3. Cubic splines

Consider the cubic spline model, which arises from setting p = 3 in (16.7):

μ(t) =
3∑

j=0

βj (t − 1)j +
n∑

i=1

ηi(t − i)3+. (16.12)

The response signature of a shock is a cubic function of time (see the bottom-
left panel of Fig. 16.4) and the signal follows a third degree polynomial outside
the observations interval. This trend model displays too much flexibility for
economic time series, that is paid for with excess variability, especially at the
beginning and at the end of the sample period. Out of sample forecasts tend to
be not very reliable, as they are subject to high revisions as new observations
become available. This is the reason why it is preferable to impose the so called
natural boundary conditions, which constrain the spline to be linear outside the
boundary knots. Similar considerations were made for local polynomial smooth-
ing, see Section 16.4.2.

The original cubic spline model (16.12) has 4 + n parameters. The natural
boundary conditions require that the second and the third derivatives are zero for
t � 1 and t � n. As we shall see shortly they impose 4 restrictions (2 zero restric-
tions and 2 linear restrictions) on the parameters of the cubic spline. The second
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and third derivatives are respectively μ′′(t) = 2β2 +6β3(t −1)+6
∑

i ηi(t − i)+
and μ′′′(t) = 6β3 + 6

∑
i ηi(t − i)0+. For μ′′′(t) to be equal to zero for t � 1 and

t � n we need β3 = 0 and
∑

i iηi = 0; moreover, μ′′(t) = 0 for t � 1 and t � n

requires also β2 = 0 and
∑

i ηi = 0.
Defining x(t) = [1, (t − 1)]′, β = [β0, β1]′, z(t) = [(t − 1)3+, . . . , (t − n)3+]′,

and η = [η1, . . . , ηn]′, the natural cubic spline can be represented as μ(t) =
x(t)′β + z′(t)η. If we further collect in the vector μ the values of the spline at
the data points i = 1, . . . , n, μ = [μ1, . . . ,μn]′, and define X′ = [x1, . . . ,xn],
with xi = [1, (i − 1)]′, Z′ = [z1, . . . , zn], with zi = [(i − 1)3+, . . . , (i − n)3+]′ we
can write μ = Xβ + Zη, where η satisfies the constraints X′η = 0.

Also, the second derivative can be written as a linear combination of the
elements of η, μ′′(t) = v(t)′η, where v(t) = 6[(t − 1)+, . . . , (t − n)+]′. De-
noting γi = μ′′

i the value of the second derivative at the ith data point i =
2, . . . , n − 1 (γ1 = γn = 0 for a natural spline), and defining the vector γ =
[γ2, . . . , γn−1]′, the boundary conditions X′η = 0 imply that we can write
η = Dγ ,γ = (D′D)−1D′η, where D is the n × (n − 2) matrix

D =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 · · · · · · 0

−2 1
. . .

. . .
...

1 −2
. . .

. . .
...

0 1
. . .

. . . 0
... 0

. . .
. . . 1

...
...

. . .
. . . −2

0 0 . . . 0 1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (16.13)

Replacing into the expressions for the spline and the second derivative gives:

μ(t) = x(t)′β + z(t)′Dγ , μ = Xβ + ZDγ ,

μ′′(t) = v(t)′Dγ = r(t)′γ ,

where we have set r(t) = D′v(t). The generic element of the vector r(t) is
6[(t − i)+ −2(t − i−1)+ + (t − i−2)+], a triangular function which is nonzero
in the interval (i, i + 2) and peaking at i + 1, where it takes the value 6.

The integral of the squared second derivative between t = 1 and t = n is

n∫

1

[
μ′′(t)

]2
dt =

∫ [
η′v(t)v(t)′η

]
dt = γ ′

[∫
r(t)r(t)′ dt

]
γ = 6γ ′Rγ
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where R is the (n − 2) × (n − 2) tridiagonal matrix

R =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

4 1 0 · · · 0

1 4
. . .

. . .
...

0 1
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . 0 1 4

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

.

The matrix D is such that D′X = 0, D′ZD = 1
6 R, which gives the fol-

lowing key relationship between the second differences of the spline and the
values of the second derivative at the knots: D′μ = 1

6 Rγ , or equivalently
μt+1 −2μt −μt−1 = 1

6γt+1 + 2
3γt + 1

6γt−1 (see e.g. Green and Silverman, 1994,
Theorem 2.1).

A smoothing spline is a natural cubic spline which solves the following pe-
nalised least squares (PLS) problem:

min

{
(y − μ)′(y − μ) + λ

∫ [
μ′′(t)

]2
dt

}
, (16.14)

where λ � 0 is the smoothness parameter,
∫ [μ′′(t)]2 dt = 6γ ′Rγ , and D′μ =

Rγ . In the next section we argue that minimising the PLS objective function
with respect to μ is equivalent to maximising the posterior density f (μ|y), as-
suming the prior density γ ∼ N(0, σ 2

γ R−1), for a given scalar σ 2
γ .

The shock signature of the smoothing spline can be obtained as ZDR−1/2,
where R1/2 is the Choleski factor of R. The bottom right panel of Fig. 16.4
shows that this is cubic between knot i and knot i + 2, after which reverts to a
linear function of time.

16.7.4. Inference

Writing the polynomial spline model as (16.8) with η ∼ N(0,	η) and ε ∼
N(0,	ε), we will now determine the values of β and η that maximise the poste-
rior density f (η|y) ∝ f (y|η)f (η), or equivalently the joint density f (y,η); see
Robinson (1991) for various approaches to the estimation of fixed and random
effects in a mixed model. The mode of the posterior density can be found by
minimising

(y − Xβ − Zη)′	−1
ε (y − Xβ − Zη) + η′	−1

η η (16.15)

with respect to β and η. The first term measures the fit and the second can be
seen as a penalisation term. It is perhaps worthwhile to stress that here β is fixed
but unknown.
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Differentiating (16.15) with respect to β and η yields the first-order conditions

(
	−1

η + Z′	−1
ε Z

)
η − Z′	−1

ε (y − Xβ) = 0,

X′[	−1
ε − 	−1

ε Z
(
	−1

η + Z′	−1
ε Z

)−1Z	−1
ε

]
(y − Xβ) = 0.

Resolving the second equation with respect to β and noticing1

[
	−1

ε − 	−1
ε Z

(
	−1

η + Z′	−1
ε Z

)−1Z	−1
ε

]= (	ε + Z	ηZ′)−1 = 	−1
y

we obtain:

β̂ = (
X′	−1

y X
)−1X′	−1

y y, η̂ = (
	−1

η + Z′	−1
ε Z

)−1Z′	−1
ε (y − Xβ̂).

The latter can be rewritten:

η̂ = 	ηZ′	−1
y (y − Xβ̂)

= E(η) + Cov(η,y)
[
Var(y)

]−1(y − E(y)
)
. (16.16)

Hence, denoting 	μ = Z	ηZ′ = Cov(μ,y),

μ̂ = Xβ̂ + 	μ	−1
y (y − Xβ̂)

= E(μ) + Cov(μ,y)
[
Var(y)

]−1(y − E(y)
)
. (16.17)

Posterior mode estimation yields the optimal estimator of the trend in the
sense that MSE(μ̂) is a minimum. In particular, for a Gaussian model the
mode is coincident with the mean, and thus μ̂ = E(μ|y), the estimation error
has zero mean, E(μ̂ − μ|y) = 0, and E[(μ − μ̂)(μ − μ̂)′|y] = 	μ	−1

y 	ε +
	ε	

−1
y X(X′	−1

y X)−1X′	−1
y 	ε is a minimum. If gaussianity is not assumed

the previous expressions provide the best linear unbiased estimators of the fixed
and random effects.

If β is taken as a diffuse vector, β ∼ N(0,	β),	
−1
β → 0, the solution is

unchanged. As a matter of fact, posterior mode estimation entails the maximi-
sation of the joint density f (β,η|y) ∝ f (η)f (β)f (y|η,β), but the prior f (β)

does not depend on β (β ′	−1
β β → 0).

An alternative equivalent characterisation of the trend estimates proceeds
from the following argument. Let 
 be a matrix which spans the nullity of X,
so that 
′X = 0. If the columns of X span a polynomial of degree k, 
′ is
a matrix performing (k + 1)st order differences. Then, premultiplying both
sides of the trend equation by 
 yields 
′μ = 
′Zη. A rank n − k − 1 lin-
ear transformation is performed to annihilate the regression effects, and thus

1 This result generalises the matrix inversion lemma (16.6), see Henderson and Searle (1981).
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′μ ∼ N(0,
′Z	ηZ′
). The prior distribution of μ can be singular, as it oc-
curs for all the spline models discussed in the previous section, for which the
rank of Z	ηZ′ is n minus the column rank of the X matrix, but 
′μ has a
nonsingular normal distribution.

Let us consider the problem of choosing μ so as to maximise

(y − μ)′	−1
ε (y − μ) + μ′
(
′Z	ηZ′
)−1
′μ. (16.18)

The above objective function is a penalised least squares criterion. The opti-
mal estimate of a signal arises from maximising a composite criterion function
which has two components, the first measuring the closeness to the data, and
the second the departure from zero of the differences 
′μ (i.e. a measure of
roughness). Penalised least squares is among the most popular criteria for de-
signing filters that has a long and well established tradition in actuarial sciences
and economics (see Whittaker, 1923; Henderson, 1916; Leser, 1961, and, more
recently, Hodrick and Prescott, 1997).

Differentiating with respect to μ and equating to zero, we obtain

μ̂ = [
	−1

ε + 
(
′Z	ηZ′
)−1
′]−1
	−1

ε y

= [
I − 	ε
(
′Z	ηZ′
 + 
′	ε
)−1
′]y

= [
I − 	ε
	−1

�y

′]y

= y − ε̂,

with 	�y = 
′(Z	ηZ′ + 	ε)
, and ε̂ = 	ε
	−1
�y


′y = Cov(ε,�′y)×
[Var(
′y)]−1
y.

The equivalence with the expression (16.17) is demonstrated as follows. We
start defining the projection matrices

QX = X(X′	−1
y X′)−1X′	−1

y , Q� = 	y
(
′	y
)−1
′, (16.19)

such that QXQ� = Q�QX = 0,Q� = I − QX . Then (16.17) can be rewritten as

μ̂ = QXy + 	μ	−1
y Q�y

= [
I − (

I − 	μ	−1
y

)
Q�

]
y

= (
I − 	ε	

−1
y Q�

)
y

= [
I − 	ε
(
′	y
)−1
′]y

= [
I − 	ε
	−1

�y

′]y

which coincides with the above expression.
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Often, the polynomial spline model is formulated so that 
′Z = I, 	ε = σ 2
ε I,

	η = σ 2
η I, and thus minimising (16.18) is equivalent to find the minimum of the

penalised least squares criterion:

(y − μ)′(y − μ) + λμ′

′μ,

where λ = σ 2
ε /σ

2
η is the reciprocal of the signal–noise ratio and provides a mea-

sure of the smoothness of the fit. The solution simplifies to μ̂ = (I +λ

′)−1y.
If λ = 0, the smoothing matrix is the identity matrix, μ̂ = y, and no smoothing
occurs. On the contrary, when λ → ∞, μ̂ = Xβ , a polynomial trend.

For the local level model 
′μ yields the first differences μt+1 − μt and
it can be shown (Harvey and Koopman, 2000) that if a doubly infinite sam-
ple is available, the estimate of the trend in the middle of the sample is μ̂t =
1−θ
1+θ

∑
j (θ)

j yt−j , where θ = (λ−1 + 2 − √
λ−2 + 4λ−1 )/2, and the real time

estimate is an exponentially weighted moving average of the available observa-
tions, μ̂t |t =∑∞

j=0 θ
j yt−j . The corresponding filter is known as an exponential

smoothing (ES) filter. See Gardner (1985) for a review.
The Leser (1961) and Hodrick–Prescott (Hodrick and Prescott, 1997, HP)

filter arises in the special case 	ε = σ 2
ε I, 	η = σ 2

η I, λ = σ 2
ε /σ

2
η , and 
 is equal

to the matrix D given in (16.13). Figure 16.5 displays the middle and the last
row of the smoothing matrices (I + λ

′)−1 and (I + λDD′)−1 for the ES and
the Leser-HP filter with different smoothness parameters and n = 101.

Fig. 16.5: Two-sided and one-sided filter weights for the ES and Leser–HP filters for different
values of the smoothness parameter λ.
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For the cubic smoothing spline, recalling D′μ = Rγ , and assuming γ ∼
N(0, σ 2

γ R−1) solving (16.18) amounts to solving the PLS problem (16.14) where

λ = σ 2
ε /σ

2
γ , i.e. to minimising:

(y − μ)′(y − μ) + λμ′DR−1D′μ.

The solution yields μ̂ = (I + λDR−1D′)−1y = [I − λD(R + λD′D)−1D′]y. No-
tice that D′μ ∼ N(0, σ 2

γ R) is the matrix formulation of an ARIMA(0,2,1) model

for the trend, �μt+1 = ξt + ϑξt−1, where ϑ/(1 + ϑ2) = 1/4.
Suitable algorithms are available for the efficient computation of μ̂; for

smoothing splines, the Reinsch algorithm (Green and Silverman, 1994) exploits
the banded structure of R and DD′. If the polynomial spline models are cast
in the state space form, the computations can be carried out efficiently via the
Kalman filter and smoother (KFS, see Harvey, 1989, and Durbin and Koopman,
2001). The cross-validation residuals are also computed by KFS (de Jong, 1988).
The use of state space methods is advantageous also because the evaluation
of the likelihood, the computation of forecasts and the time series innovations,
along with other diagnostic quantities, are produced as a by-product of the KFS
calculations.

The smoothness parameter λ, and more generally the covariance matrices 	η

and 	ε , play an essential role in the estimation of μ, determining the bandwidth
of the smoothing filter. As Fig. 16.5 illustrates, when λ increases the weights
pattern becomes more smeared across adjacent time points. The estimation of
the variance parameters can be performed by cross-validation or by maximum
likelihood estimation (MLE), where the log-likelihood is given by

�(y;	η,	ε,β)

= −1

2

{
ln |Z	ηZ′ + 	ε | + (y − Xβ)′(Z	ηZ′ + 	ε)

−1(y − Xβ)
};

obviously, the parameter vector β can be concentrated out of the likelihood,
and replacing β̂ = (X′	−1

y X)−1X′	−1
y y into �(y;	η,	ε,β) yields the profile

likelihood �β(y;	η,	ε).
Alternatively, the restricted or marginal log-likelihood can be maximised (Pat-

terson and Thompson, 1971; Harville, 1977):

�R(y;	η,	ε) = �β(y;	η,	ε) − 1

2
ln
∣∣X′(Z	ηZ′ + 	ε)

−1X
∣∣.

The restricted likelihood is the likelihood of a non-invertible linear transforma-
tion of the data, 
′y, which eliminates the dependence on β , the transformation
being such that 
′X = 0. Using �R(y;	η,	ε) is preferable when n is small and
the variance of ηt is small compared to σ 2

ε . The marginal likelihood arises if it
is assumed that the vector β is a diffuse random vector, i.e. it has an improper



402 T. Proietti and A. Luati

distribution with a mean of zero and an arbitrarily large variance matrix. This is
suitable if the stochastic process for the trend has started in the indefinite past;
then the diffuse assumption is a reflection of the nonstationarity of μt .

16.8. The Properties of the Filters

Local polynomial smoothing and polynomial splines yield estimates that can be
written μ̂ = Wy, where W is the smoothing matrix. The plot of the (reversed)
rows of W provides useful information; Fig. 16.2 plots the central and the final h
rows of the Henderson smoothing matrix with h = 8, whereas Fig. 16.5 displays
the central and real time weights of the ES and Leser–HP filters.

Let us denote the spectral decomposition of the smoothing matrix W =∑n
i=1 ρiviv′

i , where vi denotes the eigenvector corresponding to the ith eigen-
value ρi , so that Wvi = ρivi , ρ1 � · · · � ρn, and v′

ivj = I (i = j). The decom-
position can be used to characterise the nature of the filter, as the eigenvectors
illustrate what sequences are preserved or compressed via a scalar multiplica-
tion. If ρi = 1 then the sequence vi is preserved with no modification, if ρi > 1
then it is amplified, otherwise it is damped. If ρi = 0 then it is annihilated.

The rank of W quantifies the computational complexity of the smoother, in
the sense that low rank smoothers use considerably less than n basis compo-
nents (eigenvectors) whereas full-rank smoothers uses approximately the same
number of basis components as the sample size. A related measure is the num-
ber of equivalent the degrees of freedom, which is often used for measuring the
smoothness (on an inverted scale) of the filter. Developing a notion first intro-
duced by Cleveland (1979), Hastie and Tibshirani (1990) define df = tr(W) as
the degrees of freedom of a smoother, which corresponds to total influence of
the observations. In local polynomial smoothing df increases with the order of
the polynomial and decreases as the bandwidth increases; for polynomial spline
models, it is inversely related to the smoothness parameter. The maximum value
is df = n, which occurs for W = I.

The residual degrees of freedom of a smoother are defined as dfres = n −
2 tr(W)+ tr(WW′). This measure has been already used when we corrected the
residual sum of squares in polynomial regression to produce an estimate of the
error variance (see Section 16.5.3).

A different and perhaps more informative approach in a time series setting is
the analysis of the filter in the frequency domain. A comprehensive treatment of
filtering in the frequency domain is provided by Pollock (1999). Given a filter,
e.g. any one of the rows of the matrix W, we can investigate the effect of the
filter by measuring the effects induced on particular sequences, yt = cos(ωt),
where ω is the frequency in radians, that describe a regular periodic pattern with
unit amplitude and periodicity equal to 2π/ω. As the frequency ω increases, the
period reduces and for ω = π , cos(πt) = (−1)t describes a cycle with a period
of two observations.
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Applying standard trigonometric identities, the filtered series is:

∑

j

wj yt−j =
∑

j

wj cos
(
ω(t − j)

)

=
∑

j

wj cos(ωt) cos(ωj) +
∑

j

wj sin(ωt) sin(ωj)

= α(ω) cos(ωt) + α∗(ω) sin(ωt)

= G(ω) cos
(
ωt − θ(ω)

)

where α(ω) =∑
j wj cos(ωj),α∗(ω) =∑

j wj sin(ωj).
The function

G(ω) =
√
α2(ω) + α2∗(ω)

is the gain of the filter and measures how the amplitude of the periodic com-
ponents that make up a signal are modified by the filter. If the gain is 1 at a
particular frequency, this implies that the periodic component defined at that
frequency is preserved; vice versa, fluctuations with periodicity at which the
gain is less than one are compressed. The function θ(ω) = arctan[α∗(ω)/α(ω)]
is the phase function and measures the displacement of the periodic function
along the time axis. For symmetric filters the phase function is zero, since∑

j wj sin(ωj) = 0.
Figure 16.6 plots the gain G(ω) versus the frequency ω for the central weights

of local polynomial and spline filters. The top panels refer to the local cubic fit

Fig. 16.6: Gain of local polynomial and spline filters.
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using a uniform kernel (Macaulay) and the Henderson filters for two values of
the bandwidth parameter. The filters preserve the low frequency components
in the original series to a different extent. In particular, increasing h, yields
smoother estimates, as the amplitude of the high frequency components is fur-
ther reduced. The zeros in the gain imply that certain cycles are annihilated.
The example also illustrates that the choice of the kernel does matter when one
considers the effects on the amplitude of periodic components. The bottom pan-
els exemplify the role of the smoothness parameter on the properties of the ES
and Leser–HP filters. In particular, increasing λ enhances the smoothness of
the filtered estimates as the filter retains to a greater extent the low frequency
components, corresponding to fluctuations with a long period. Also, it can be
anticipated that the Henderson filter with h = 11 will produce a rougher esti-
mate of the signal compared to Leser–HP with λ = 1600.

16.9. Discussion

This chapter has dealt with signal extraction methods which originate from dif-
ferent approaches and which yield linear filters, that is linear combinations or
moving averages of the observations, to extract the feature of interest. Filter-
ing has a long tradition is economics and actuarial sciences (Anderson, 1971,
Chapter 3). Some methods (e.g. smoothing by polynomial splines) originated in
other fields and were later imported into economics, were data are observational
rather than experimental (see Spanos, 1999). In this process the components of
the measurement model were somewhat reified, by attaching to them peculiar
economic content. In fact, in economics the decomposition yt = μt + εt has
been assigned several meanings. The first is of course coincident with the orig-
inal meaning, where εt is a pure measurement error. Indeed, errors in variables
have a long tradition in econometrics: the case is investigated when a response
variable (e.g. consumption) is functionally related to μt (e.g. income), but only
a contaminated version, yt in our notation, is observable. Also, the component
εt can originate from survey sampling errors (see Scott and Smith, 1974 and
Pfeffermann, 1991, and the references therein).

Quite often εt is interpreted as a behavioural component, such as a stochas-
tic cycle (a deviation or growth cycle) or transitory component, whereas μt is
the trend, or permanent component. The underlying idea is that trends and cy-
cles can be ascribed to different economic mechanisms and an understanding
of their determinants helps to define policy targets and instruments. Needless to
say, the formulation of dynamic models for the components turns out to be a
highly controversial issue, due to the fact that there are several observationally
equivalent decompositions consistent with the observations, yielding the same
forecasts and the same likelihood. This final section discusses a few open issues
concerning signal extraction in economics and the accuracy in the estimation of
the latent signals.
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16.9.1. Accuracy

Key estimation problems in macroeconomics concern latent variables, or unob-
served components of a time series, such as potential output and the comple-
mentary notion of an output gap, the non-accelerating-inflation rate of unem-
ployment (NAIRU), core inflation, and so forth. The underlying “true value”,
μt , is a deterministic function of time in the nonparametric local polynomial
regression or a random process (e.g. a random walk) in the stochastic approach.
In other approaches, such as band-pass filtering, which are fairly popular in eco-
nomics, see for instance Baxter and King (1999), the notion of a “true value”
is more blurred and has significance in the frequency domain rather than in the
time domain.

The previous sections have presented different smoothing methods that can be
used to measure the underlying signals. Let μ̂t denote the estimator of μt based
on the representation (model) μ∗

t used for it, μ̂t =∑
j wj t yt−j . We assume that

μ̂t is the optimal signal extraction method for μ∗
t . How do we judge the accu-

racy of the method? Following Boumans (2005, and Chapter 1 of this Volume)
accuracy is a statement concerning the closeness of μ̂t and μt . The discrepancy
μ̂t −μt can be broken down into two components: (μ̂t −μ∗

t )+(μ∗
t −μt), which

are associated to the reliability, or precision, of the method, and to the validity, or
bias, of the representation chosen. The components are uncorrelated, and thus in-
dependent under normality, given the observations, if and only if μ̂t = E(μ∗

t |y).
Precision is measured by (the inverse of) V (μ̂t ) = E[(μ̂t − μ∗

t )
2|y], whereas

B(μ̂t ) = E[(μ∗
t − μt)

2|y] represents the bias.

16.9.1.1. Validity

The validity (bias) of a smoother is usually difficult to ascertain, as it is related to
the appropriateness μ∗

t as a model for the signal. This is a complex assessment,
involving many subjective elements, such as any a priori available information
and the original motivation for signal extraction. Goodness of fit measures can
be used along with cross-validation, but one needs to take into consideration the
well-known risk of overfitting, which takes place when too much variation of
the observed data is explained by the model.

In local polynomial and spline smoothing B(μ̂t ) arises from misspecifying
the degree of the polynomial. Increasing the degree is beneficial for the bias at
the cost of an inflated variance (less precision). This issue is related to overdif-
ferencing and to that of spuriousness, which shall be considered shortly. In the
analysis of economic time series a great deal of research has been attracted by
making inference on the order of integration. The trade-offs arising when high
order trends are entertained, e.g. �dμ∗

t = ηt , where ηt is a purely random dis-
turbance and d � 2, are discussed in Proietti (2007).

Recently, there has been a surge of interest in model uncertainty and in
model averaging. Typically, several methods μ̂it are compared (e.g. for mea-
suring the trend in output we may compare structural vector autoregressive
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models, calibrated filtering techniques, such as Hodrick–Prescott with a fixed λ,
the Beveridge–Nelson decomposition, etc.). Very often the conclusions from
these exercises are rather pessimistic, as different methods may produce incom-
patible answers; see, for instance, Canova (1998), for detrending techniques,
Orphanides and Van Norden (2002), who consider the estimation of the output
gap. The individual estimates may be combined linearly, giving ˆ̂μt =∑

i ci μ̂it ,
where the coefficients ci depend on the mean square errors of the methods.

It is more viable to assess two other aspects of validity, namely concurrent
and predictive validity. The first is concerned with the contemporaneous rela-
tionship between the measure μ̂t and a related alternative measure of the same
phenomenon; for instance we may compute the correlation between the output
gap and another indicator of the same domain produced independently, such as a
measure of capacity utilisation or an index of consumer and producer sentiment.

Predictive validity relates to the ability to forecast future realisation of yt or
related variables; evaluating the mean forecast error yields useful insight on its
predictive validity, as possible bias would emerge. This criterion is adopted by
a number of authors; for instance, Camba-Mendez and Rodriguez-Palenzuela
(2003) and Proietti et al. (2007) assess the accuracy of alternative output gap
estimates through their capability to predict future inflation.

16.9.1.2. Reliability

A measurement method is reliable (precise) if repeated measurements of the
same quantity are in close agreement. Loosely speaking, reliability and precision
are inversely related to the uncertainty of an estimates. In the measurement of
immaterial constructs the sources of reliability would include:

(i) parameter uncertainty, due to the fact that the core parameters of the rep-
resentation μ∗

t , such as the variance of the disturbances driving the compo-
nents, are unknown and have to be estimated;

(ii) estimation error, the latent components are estimated with a positive vari-
ance even if a doubly infinite sample on yt is available;

(iii) statistical revision, as new observations become available, the estimate of
a signal are updated so as to incorporate the new information.

The first source can be assessed by various methods both in the classical (Ans-
ley and Kohn, 1986) and the Bayesian approach (Hamilton, 1986; Quenneville
and Singh, 2000). In an unobserved component framework the Kalman filter
and smoother provide all the relevant information for assessing (ii) and (iii); for
nonparametric filters such as X-11 sliding span diagnostics and revision histo-
ries have been proposed (Findley et al., 1990).

Staiger et al. (1997) and Laubach (2001) find that estimates of the NAIRU, ob-
tained from a variety of methods, are highly imprecise, in that if one attempted to
construct confidence intervals around the point estimates, he/she would realise
that they are too wide to be of any practical use for policy purposes; similar
findings are documented in Smets (2002) Orphanides and van Norden (2002).
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Somewhat different conclusions are reached by Planas and Rossi (2004) and
Proietti, Musso and Westermann (2007). The implications of the uncertainty sur-
rounding the output gap estimates for monetary policy are considered in Smets
(2002).

The sources (ii) and (iii) typically arise due to the fact that the individual
components are unobserved and they have a dynamic representation. The avail-
ability of additional time series observations helps to improve the estimation of
an unobserved component, apart from degenerate cases, such as the Beveridge–
Nelson (1981) decomposition and those arising from structural vector autore-
gressions, for which the latent variable is actually measurable with respect to
past and current information.

Recently, large dimensional dynamic factor models have become increas-
ingly popular in empirical macroeconomics. The essential idea is that the pre-
cision by which the common components are estimated can be increased by
bringing in more information from related series: suppose for simplicity that
yit = θiμt + εit , where the ith series, i = 1, . . . ,N , depends on the same com-
mon factor, which is responsible for the observed comovements of economic
time series, plus an idiosyncratic component, which includes measurement er-
ror and local shocks. Generally, multivariate methods provide more reliable
measurements provided that a set of related series can be viewed as repeated
measures of the same underlying latent variable. Stock and Watson (2002a and
2002b) and Forni et al. (2000) discuss the conditions on μt and εit under which
dynamic or static principal components yield consistent estimates of the under-
lying factor μt as both N and n tend to infinity.

An additional source of uncertainty is data revision, which concerns yt .
Timely economic data are only provisional and are revised subsequently with
the accrual of more complete information. Data revision is particularly relevant
for national accounts aggregates, which require integrating statistical informa-
tion from different sources and balancing it so as to produce internally consistent
estimates (see Chapter 8 of this volume).

16.9.2. Trends and cycles in economic time series

The characterisation of trends and cycles has always been at the core of the
econometric analysis of time series, since it involves an assessment of the role
of supply and demand shock. A first issue is whether the kind of nonstationary
behaviour displayed by economic time series is best captured by deterministic
or stochastic trends. In the former case it is also said that the series is trend-
stationary, implying that it can be decomposed into a deterministic function of
time (possibly subject to few large breaks) and a stationary cycle; in the second
the series can be made stationary after suitable differencing and so it is said to
be difference-stationary or integrated order of order d (or I(d)), where d denotes
the power of the stationary inducing transformation, (1 − L)d .

The characterisation of the nature of the series was addressed in a very in-
fluential paper by Nelson and Plosser (1982), who adopted the (augmented)
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Dickey–Fuller test for testing the hypothesis that the series is I(1) versus the
alternative that it is trend-stationary. Using a set of annual US macroeconomic
time series they are unable to reject the null for most series and discuss the im-
plications for economic interpretation. Another approach is to test stationarity
against a unit root alternative; see Kwiatkowski et al. (1992).

A second issue deals with the specification of a time series model for the trend
component for difference-stationary processes and the correlation between the
components μt and εt . References on this issue are Watson (1986), Morley et al.
(2002) and Proietti (2006).

Another view is that any decomposition yt = μt + εt is just an approximation
to a true trend cycle decomposition, but still it may yield sound inferences for
a given purpose, such as forecasting more than one step ahead, provided that
the parameters are estimated according to a criterion that is consistent with that
purpose (e.g. multistep or adaptive estimation. See Cox, 1961, and Tiao and Xu,
1993, for the local level model).

16.9.3. Spurious cycles and the Sluztky–Yule effect

According to Klein (1997) one of the first uses of moving averages was to dis-
guise statistical information, rather than to unveil a hidden signal. The smooth-
ing properties of arithmetic moving averages would have been exploited by the
Bank of England in order to conceal the true level of gold reserves, which was
falling steeply, whereas the filtered series gave a much more optimistic view.
However, this episode just illustrates a bad practice in data publication rather
than the inherent limitations of filters: it is the data supplier that has to be blamed
and not the instrument. The latter has well known properties, which can be bent
to particular needs, but are independent of their uses. Indeed the publication and
availability of filtered series is a service to the scientific community provided
that the raw observations are also made available and the methods employed are
made transparent. Economic analysts, policy makers and the general public do
make widespread use of filtered information: the availability and the resources
devoted to seasonal adjustment testify this. The same considerations apply: the
original unadjusted data should be available along with the adjusted series.

In the analysis of economic time series, there is great concern about the sta-
tistical “artifacts” about the economy that could emerge from the application of
ad hoc filters (i.e. filters applied regardless of the properties of the series un-
der investigation), such as the Hodrick–Prescott filter (King and Rebelo, 1993;
Harvey and Jaeger, 1993; Cogley and Nason, 1995). This issue has particular
relevance with respect to the measurement of the business cycle.

The Slutzky–Yule effect is concerned with the fact that a moving average
repeatedly applied to a purely random series can introduce artificial cycles (Slut-
sky, 1937). As such it is a rather natural phenomenon; as a matter of fact, the
squared gain |G(ω)|2 of a filter w(L) (see Section 16.8) can be viewed as the
spectral density of the series resulting from the application of the filter w(L)

to a white noise sequence. Nevertheless, the application to nonstationary series
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can create pseudo-cyclical behaviour due to the substantial leakage of power
from the long run components. Harvey and Jaeger (1993) show that if the true
series is generated by the model �dyt = ξt ∼ WN(0, σ 2), so that it has no cy-
cles, the HP smoothed series will display a periodicity which depends on the
value of the smoothness parameter. Filtering will also affect the measurement of
comovements between independent time series.

The last phenomenon has many contact points with the problem of spuri-
ousness in correlation and regression considered in Yule (1926) and Granger
and Newbold (1974), where two independent white noise series are transformed
using an integration filter (i.e. the values are cumulated). Finally, when model-
based filters are interpreted, with less reification, as devices for extracting com-
ponents at given frequencies (band-pass filters) as in Gómez (2001), Kaiser and
Maravall (2005) and Proietti (2007), the issue of spuriousness is not cogent.
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Timeliness and Accuracy
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Abstract
Government, business and households require timely information to make cur-
rent period decisions and to cast future plans. Producers of national economic
statistics seek to provide their users with timely and accurate estimates of eco-
nomic activity where the former refers to the release of estimates “close” to the
end of the reference period and the latter refers both to the validity of the mea-
sure and its reliability. Their ability to do so is constrained by the flow of data
and thereby necessitates a flow of vintage estimates that encompass revisions.
Though a trade-off between accuracy and timeliness is somewhat intuitive, the
paper explains that care should be taken in assessing the impact of the trade-off.
In the US, there does not seem be a trade-off between timeliness and accuracy
save perhaps between the first and second current quarterly vintages of GDP
estimates for the reference period. This finding does not negate the usefulness
of having a sequence of revisions because the sequence of revisions incorpo-
rates new information which enables users to view the later estimates as closer
approximations of the truth, with the latest as being the closest.

17.1. Introduction

Timely information about the economy is used by government, business and
households to make current period decisions and to formulate future plans. The
value of such information is contingent on its accuracy. If the information turns
out to be systematically incorrect or if there is a stream of unscheduled updates
then the usefulness of the information is low. It is often perceived that satisfying
the timeliness goal comes at the expense of accuracy. Before addressing this
issue it is important to examine each aspect.

Timeliness is usually taken to mean the issuance of data at a frequency that
users find relevant to their decision making. For example, central bankers, who
generally meet at least once a quarter to set monetary policy, desire at least a
quarterly frequency. More frequent estimates are useful in that they shed light
on recent activities. Businessman continually make decisions about investments,
marketing plans and the like but because of the custom of releasing performance

Measurement in Economics: A Handbook Published by
Marcel Boumans (Editor) Elsevier Inc. (2007)
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estimates on a quarterly basis, they too are interested in at least quarterly fre-
quencies. Households’ demand for timely data is more difficult to assess because
decisions are on-going. Investors would like daily information if it were possi-
ble.

From the perspective of the producers of economic statistics, timeliness re-
quires the ability to collect, edit, process, analyze and publish data at a time
period “close” to the reference period. In other words, they are interested in
minimizing the time between the end of the reference period and the publishing
of statistics describing the economic activity in the reference period. Thus the
chief metric for measuring timeliness is the number of days between the end of
the reference period and the release of statistics. The determination of the op-
timal number of days should take into account the needs of both suppliers and
demanders of the estimates, including the demanders’ need for accuracy of the
estimates. The demand for quarterly data would disappear if it were impossible
to produce accurate quarterly estimates.

The availability of data on aggregate economic activity can affect the nature
of decision-making. Monetary policy-makers often debate the merits of adopt-
ing policy rules in lieu of discretionary policy. This debate has been ongoing
since Milton Friedman (1968) advocated a non-discretionary monetary policy
rule and continues today in regard to the merits of inflation targeting. Because
the purpose of policy rules is to reduce the uncertainty of future policy actions,
reliance on a rule requires a high degree of accuracy for the measures of eco-
nomic performance. In the US, monetary policy is decided at the meetings of
the Federal Open Market Committee that occur about every 6 weeks, with daily
intervention in the money markets to assure that the policy is carried out. Thus
if the rule were that some money aggregate should increase at some multiple of
Gross Domestic Product (GDP) growth then volatile estimates of GDP growth
would produce volatility in the growth in the money aggregate. In contrast, a
discretionary policy implicitly assumes that the estimates are “nearly” accurate
and allows for corrections or anticipations of corrections. In principle the imple-
mentation of rules could also anticipate revisions and accordingly adjust a point
of time estimate. Alan Greenspan (2003) expressed the idea succinctly “Rules
by their nature are simple, and when significant and shifting uncertainties exist
in the economic environment, they cannot substitute for risk-management para-
digms, which are far better suited to policymaking.”1

Paradigms of the economy are not only useful to policy-making, they are also
the basis for formulating measures of economic activity. That is to say, national
income accountants must first define an interesting and useful measure of aggre-
gate economic activity, and second, they must design methods for estimating the
value of that measure, taking the definition as fixed. One cannot address the ac-
curacy of those measures without first establishing their conceptual foundations.

1 Greenspan (2003, p. 6).
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In the case of GDP, the most widely used measure of economic activity, the con-
ceptual foundation began to be formed in the in the 17th century, as described
in Stone (1986) and in den Butter (this volume), and has undergone changes as
economies have changed.

The existence of a trade-off between timeliness and accuracy is somewhat
intuitive and has been recognized for quite awhile. If one desires to provide
estimates of economic activity near the end of the reference period (or even
before) then the amount and quality of the available of the data are going to be
less than would be the case if the estimates were to released later. In the first
issue of the Survey of Current Business, in July 1921, the introduction stated2:

“In preparing these figures every effort is made to secure accuracy and completeness. On
the other hand, it is realized that timeliness is often of more value then extreme accuracy. In
certain cases it is necessary to use preliminary figures or advance estimates in order to avoid
too great delay in publication after the end of each month.”

The magnitude of the trade-off, however, has a subjective component.3 Dif-
ferent users have different preferences for timeliness and, most important, they
have different preferences for the optimal combination of accuracy and timeli-
ness. The needs of a central bank policy staff are different from those of business
decision-makers. Statistical agencies must balance the preferences of all of their
data users.

After discussing some aspects of timeliness and the production of estimates
of economic activity, this analysis will turn to the concept of accuracy and the
trade-off between the two.4

17.2. Timeliness and the Production Process

The production of estimates of economic activity, like any production process,
is constrained by labor, capital, and technology. That process concerns the col-
lection of data from different actors in the economy, which is in some sense a
separate production process, the review and edit of those data and then the ag-
gregation of them to the level of the desired estimate. All of the necessary data
cannot be collected at one time and so statistical agencies experience a flow of
data. As a result, economic estimates are produced in vintages, with later vin-
tages incorporating source data that were not previously available. The problem
for a statistical agency is to determine the most practical and useful set of release
dates; that is, it must set the release dates for the sequence of vintages so that
they are “close” to the end of the reference period and progressively incorporate
more source data so as to increase their usefulness. For the US, the Bureau of

2 The Survey of Current Business is the journal of record for the US estimates of national output
and income.
3 See Rytan (1997).
4 The analysis will not address price indexes because they are typically provided on a monthly

basis and are not the subject of the discussions about the trade-off between timeliness and accuracy.
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Economic Analysis has set the following sequence of vintages: the initial cur-
rent quarterly estimate of GDP is made about 30 days after the reference period,
two more estimates are made about 30 and 60 days later and then follow annual
and comprehensive revisions that take place even later.5 The estimates that are
released in the first 90 days after the end of the reference period receive most of
the attention of policy-makers and decision-makers.

There have been considerable efforts by other countries to produce more
timely data as well. Several studies have compared the differences between the
US and other countries regarding the timeliness of the data.6 The general find-
ing was that the US was able to provide estimates relatively sooner after the end
of the reference period for a variety of economic measures. A topic of concern
in these studies was the need for decision makers to have timely data, with the
caveat the data be useful to the decision process – thus release dates cannot be
independent of the attending accuracy of the estimates.

17.3. Accuracy

Accuracy is a complex concept that may be thought of as having two aspects,
validity and reliability.7 To illustrate, suppose one is interested in attribute A of
the economy and further suppose that one has a measure of A and a process
for producing that measure. With respect to validity, one is interested in know-
ing whether the measure of A yields systematically distorted information. In
other words, validity concerns the ability of the measurement procedure to mea-
sure what we want it to measure. With respect to reliability, one is interested in
knowing whether the measurement process underlying A yields randomly inac-
curate results. That is, the notion of reliability concerns the differences between
results from successive multiple measurements of A.

To assess the first aspect of accuracy, one generally refers to the difference
between an estimate of a measure and its true value. In the natural sciences,
the true value is well defined and the assessment of accuracy usually involves
the construction of measuring instruments to compare an estimate with the true
value. For example, there is a true value of the distance between the earth and
the sun, and though there were many estimates of that distance it was not un-
til Michelson and Morely in 1887 developed the interferometer and measured
the speed of light that an accurate estimate of the true value was obtained. In
the case of a measure of economic activity, the notion of the true value is more
subjective and therefore more difficult to define and quantify. Consequently it is
more challenging to measure deviations from the true value. For economic sta-
tistics, measuring the deviations from the true value includes the application of

5 See Grimm and Weadock (2006) for a discussion of the flow of data into the early estimates of
US GDP.
6 See, for example, Richard McKenzie (2005).
7 Hand (2004, p. 129).
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statistical theory and an assessment of the source data – the respondents to sur-
veys, regulatory forms (administrative data) and so on – as well as an assessment
of the methodologies used to produce the estimates. In the case of survey-based
data collections, the attention is on the total survey error, which is comprised
of both sampling and non-sampling error. Examples of the evaluations for total
survey error include examining how respondents interpret the questions, errors
in reviewing and editing response, and errors in imputing missing data.

17.3.1. Accuracy and economic activity

In this paper, the focus will be on the attribute “aggregate economic activity,”
though the discussion could apply to any economic measure. The notion of
measuring economic activity requires the use of economic theories to form the
conceptual foundation for the measurement concept and the production bound-
ary for the economy. Both provide the context for defining the “true” value of
economic activity that serves as the basis for gaging accuracy. The production
boundary limits the set of activities that are deemed admissible to the measure.
For example, though household production is clearly an important economic
activity, it is treated as outside the boundary of aggregate economic activity mea-
sures such as Gross Domestic Product (GDP). Such exclusions apply to a host
of non-market transactions.

A prerequisite for a measure of economic activity to achieve the first aspect
of accuracy, validity, is the use of classification system grounded in economic
principles. For example, to measure the output of all industries in the economy
one needs a classification system that organizes firms into industries according to
an economics based guideline. The Industrial Standard Industrial Classification
of All Economic Activities (ISIC) organizes industries according to similarity
in the firm activities while the North American Industrial Classification System
(NAICS) organizes industries according to similarity in the firm’s production
process.

In addition, national economic accounts are designed to provide a system
yielding a measure of aggregate production or aggregate economic activity, as
well as ways of measuring the component parts. The acceptance of these mea-
sures, which is based on a perception of their accuracy, relies in turn on the
acceptance of the system.8 If decision makers had no confidence in the concep-
tual foundations of the system upon which the estimates are based then it would
be meaningless to talk of accuracy – regardless of the statistical properties of
the estimates. Manuals such as the one for the United Nations System of Na-
tional Accounts and other standardizations of techniques provide imprimaturs
of general acceptance that in turn provide the aura of objectivity necessary to
perceptions of accuracy and confidence in the estimates. In addition, they are

8 Porter (1995) similarly maintains that it is the creation of rules and their adoption that give rise
to the confidence in the quantification of economic activity.
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crucial to making the measures replicable, which as in the natural sciences, is a
means of verification.

The role of conceptual models in developing economic measures has received
much attention in economics. In a broad sense, as noted by Katzner (1991), there
must be “reasonable agreement between the relevant measures on the one hand
and theories on the other.”9 Or in the words of Koopmans (1947), “Fuller uti-
lization of the concepts and hypotheses of economic theory as a part of the
processes of observation and measurement promises to be a shorter road, per-
haps even the only possible road, to the understanding of economic fluctuations”
(emphasis in the original).10 Increasingly the conceptual foundations of the es-
timates are driving improvements in the measures. For example, recent method-
ological innovations in the US national accounts, such as the incorporation of
software in investment instead of current expenditure or the implementation of
the user cost approach to measuring implicit financial services of banks, were
respectively due to the application of notions of capital theory and the theory of
financial intermediation. Sometimes there has been tension between the desire
to incorporate sophisticated economic theory and the computational techniques
available, though the rapid and substantial advancement in computer technol-
ogy and software capabilities has greatly expanded the capacity of economists
to estimate complex economic phenomena.

Defining the conceptual foundation for the measure does not necessarily make
it measurable. Morgan (2001) describes measurement strategies as consisting of
three elements: principles, judgments and techniques.11 In particular the notion
of aggregate economy activity has largely been viewed as being measured by
GDP and its computation incorporates all 3 of these strategies. To illustrate,
consider the three common methods of computing GDP. First, one could sum
all of the expenditures on final goods and services – that is, the summation is
over goods and services produced as final product. Another approach focuses
on incomes. The intuition is that expenditures on goods and services result in
income for the attending producers and so tallying the income provides another
method of computation. A third, production approach says that GDP equals the
contribution of each industry to GDP – this is taken as the sum of value added
– the difference between revenue and intermediate consumption. In theory all
three approaches should provide the same estimate. In practice they do not. One
reason is that, depending on the vintage, each method uses different judgments
and techniques to fill in missing data. If the 3 methods are thought to provide
true measure of aggregate economic activity, then the differences between them
can serve as indicators of measurement error. Indeed, in the US, the difference

9 Katzner (1991).
10 Koopmans (1947, p. 162).
11 Morgan (2001).
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between the income and expenditure measure of GDP is labeled the statistical
discrepancy and is often cited as such an indicator.12

The measurement of the second aspect of accuracy, reliability, focuses on the
revisions to the vintages of estimates that arise from the flow of source data. It
is this dimension of accuracy that is tied to timeliness.

17.4. Timeliness and Accuracy

The relationship between timeliness and accuracy partly depends on the pro-
duction process for the estimates. Estimates compiled from survey-based data
have a number of sources of errors; inadequate sampling, concealment and fal-
sification by respondents, inadequately trained collectors and a host of other
sources that are broadly classified into the category of total survey error. For all
estimates there is also potential error in the reconciliation of the available data
and the measurement objective. In other words, how are the requirements of the
measure satisfied when there are gaps in the underlying data? The uncertainty
surrounding the production of information and the validity of the measures bears
on the usefulness of the data released at any period of time. The intuition under-
lying the trade-off between timeliness and uncertainty is that the longer one
waits the error in the data arising from these sources is reduced. As stated in
Bier and Ahert (2001):

“The main reason is that improving timeliness forces the producers to compile the indicators
from incomplete source data. As more data become available afterwards, a so called recompi-
lation process produced different results and so revisions. The ECB (European Central Bank)
considers it necessary to balance timeliness and accuracy. To determine the optimal balance
is not straightforward.”13

Rytan (1997) suggested that the balance between timeliness and accuracy
can be conceptualized by adhering to the intuition of optimization theory: con-
sumers of data choose the combination of timeliness and accuracy according to
their preference structure, thereby balancing the benefits and costs of different
combinations while producers of data choose the combination of timeliness and
accuracy subject to a budget constraint. Oberg (2002) postulated that there can
be improvements to timeliness without any cost in accuracy when the organiza-
tion is operating inefficiently.14 For example, if the process yields a first estimate
60 days after the end of the reference period, it may be possible to reduce the lag
to 30 days without any erosion in accuracy. Indeed such has been the discussion
within the OECD about the production of “flash” estimates of GDP as discussed
in Shearing (2003).15 The point is that the trade-off may not be continuous and
depends on the efficiency of the production process.

12 Many countries allocate the difference across the sectors of the economy and do not publish the
difference. In the US accounts, the sum of industry value added is constrained to equal GDP.
13 Bier and Ahert (2001, p. 4).
14 Oberg (2002).
15 Shearing (2003).
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17.4.1. Revision magnitudes as indicators of accuracy

As Bowman (1964) put it: “Revisions in the data reflect the needs for timeliness,
frequency of reporting and accuracy. Timeliness can only be obtained by using
partial information.”16 Here, revision patterns are used to discuss the timeliness
and accuracy dimensions for US GDP estimates for which the latest estimates
are treated as the most accurate – the latest estimates are viewed as closest to
the true measure. Thus it is the second aspect of accuracy, reliability, that is the
focus of concern when evaluating revision magnitudes.17

The study of revision patterns in US GDP estimates has a long history – start-
ing with Jaszi (1965). Revisions primarily come from 5 sources: (1) Replace-
ment of early source data with later, more comprehensive data; (2) Replacement
of judgmental estimates with estimates based on source data; (3) Introductions
of changes in definitions and estimating procedures; (4) Updating of seasonal
adjustment factors; and (5) Corrections of errors in source data or computations.
Aside from examining the statistical properties of revisions such as mean revi-
sion, mean absolute revision and standard deviation of revision, one can use the
revisions to assess the quality of the GDP estimates in the context of how well
those estimates perform with respect to four basic questions:18

1. Do the estimates provide a reliable indication of the direction in which real
aggregate economic activity is moving?

2. Do they provide a reliable indication of whether the change in real aggregate
economic activity is accelerating or decelerating?

3. Do they provide a reliable indication of whether the change in real aggregate
economic activity differs significantly from the longer run?

4. Do they provide a reliable indication of cyclical turning points?

To answer theses questions one must pick the standard of measure and, as
mentioned, that is usually chosen to be the latest estimates. The latest esti-
mates provide the most informed picture of aggregate economic activity for the
time period of the current quarterly estimates. In the US, the latest estimates
embody additions to the source data that were unavailable when the current
quarterly estimates were made and have also undergone some comprehensive
revisions – in these revisions the US not only incorporates improved source data
– typically data from the Economic Censuses, but also the definitions of the
measures. Changes in definitions are made to adapt the measures to a chang-
ing economy. Comprehensive revisions are performed about every 5 years and
historical series are revised as far back as possible. For example, the 1996 com-
prehensive revision changed the name of the government component of GDP

16 Bowman (1964).
17 A caveat should be kept in mind when evaluating revisions to aggregate statistics: a zero revision
does not imply the absence of error. One way of thinking about this is to consider that an aggregate
estimate can have a zero revision while the components can have large but offsetting revisions.
18 See Grimm and Parker (1998).
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from “government expenditures” to “government consumption expenditures and
gross investment” to reflect the idea that some expenditures were more accu-
rately treated as investment than as expenditures and this change was carried
as far back as 1929. This is another example of the point made earlier that the
underlying measurement concept plays a role in the measurement of the “true”
value and that this concept can evolve as knowledge and measurement tech-
niques improve.

17.4.2. The case of the GDP flash estimate and the perceived trade-off

To satisfy the needs of policy makers an estimate of the Gross National Prod-
uct (the preferred measure of aggregate measure of US economic activity before
1992) was made 15 days before the end of the reference period and provided to
policy makers – the Council of Economic Advisors, the Office of Management
and Budget, the Federal Reserve Board, and the Treasury and Commerce De-
partments – and was not publicly released.19 The estimates were first produced
in the mid 1960s and the confidentiality of the estimates did not become an is-
sue until the early 1980s when these estimates somehow leaked into the public
domain. Widespread interest in these early estimates resulted in BEA deciding,
in September 1983, to release them to the public as the minus 15-day estimate
– the moniker “flash” became attached afterward. The remaining vintages of
the estimates were released about 15 days, 45 days, and 75 days after the end
of the reference period.20 There was considerable discussion about the public
release of the flash estimate – in particular whether the subsequent revisions
would be confusing to the public. In an attempt to minimize such confusion,
the flash estimates were characterized as projections because they were being
formed on partial data. Nevertheless, the concern persisted and it was reinforced
when revisions to the flash received much attention. Characteristic of these con-
cerns is the following excerpt from a New York Times editorial on September 9,
198521:

According to the Commerce Department’s “flash” report, the economy grew at an annual rate
of 2.8 percent in the third quarter. Don’t bet your savings on it. For the last 3 years, this
quarterly report has been at least one-half point off the mark every time; once it was three
points off. A statistic so dependently wrong is one to do without.

19 More specifically these agencies were provided with estimates of current and constant dollar GNP
as well as the related measures of price change, and charges against GNP and its components. These
estimates were produced by the Department of Commerce first in the Office of Business Economics
and then the Bureau of Economic Analysis as a result of a re-organization.
20 The estimates that were released as part of the flash were: GNP in current and constant dollars,
GNP fixed weight price index and GNP implicit price deflator – not exactly the full set that was
provided under limited distribution.
21 Note that the quote focuses on the magnitude of specific revisions and not on statistical measures
of reliability such as mean and standard deviation.
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Such reviews prompted much discussion about whether the flash should con-
tinue.

Given the fact that revisions are a necessary part of the process of providing
timely estimates, the central issue concerned the performance of the flash esti-
mate with respect to the 15-day estimate. In other words, as the quote from the
New York Times suggests, would users be better off if the flash estimate were
dropped and the first estimate was released 15 days after the end of the quarter?

The validity of the flash estimate was first assessed on three non-statistical
metrics: accuracy as an indicator of whether GNP is increasing or decreasing,
by approximately how much, and whether the change is larger or smaller than
the change in the previous quarter. These metrics convey the idea that although
the flash estimate was expressed in terms of a point estimate it was not intended
to provide such an estimate of GNP growth but rather to provide – on the basis
of incomplete data – a perception of how the economy was performing relative
to the estimates of the previous quarter. An internal BEA study found that the
revisions to the flash estimate relative to the later vintage estimates, especially
the 15-day estimate, performed with respect to the 3 metrics in a way that was
not significantly different from those of the 15-day estimate. Despite this evi-
dence, the perception that the flash estimate was providing policy makers and
decision makers with erroneous information about the economy persisted and in
January 1986 the flash estimate was discontinued by BEA at the direction of the
Commerce Department.

In an unrelated study, Mankiw and Shapiro (1966) examined the revision pat-
tern of BEA estimates including the flash estimate for the period 1976, Quarter
1 to 1982, Quarter 4. Their central emphasis was whether the revisions were due
to the availability of new information or due to measurement error. If the flash
estimate of GNP was an efficient estimate, in the sense that it incorporated all
available information, then the standard deviation of the 15-day estimate should
be higher. In addition the correlation between the revision from the flash to the
15-day estimate and the 15-day estimate should be significant. Table 17.1 is part
of their findings.

Note that the standard deviation of the 15-day estimate is higher than that
of the flash. They also found that the standard deviation in the revision of the
growth rates from the flash estimate to the 15-day estimate was 1.2 percentage

Table 17.1: Summary Statistics GNP Growth Rates, 1976 Q1 to 1982 Q4, Percent at annual rate

Mean St. Dev. Revision correlation

Nominal GNP
Flash (15 day) 9.0 4.0
15-Day 9.0 4.6 0.57 (significant at 1% level)
Constant Dollar GNP
Flash 1.7 3.8
15-Day 2.0 4.0 0.35 (not significant)
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points at an annual rate, for nominal GNP, and 1.0 percentage point for constant
dollar GNP. This revision was significantly correlated with the 15-day estimate
in the case of nominal GNP and not significantly correlated in the case of con-
stant dollar GNP (the third column in the table above).22 These findings suggest
that the accuracy of the flash estimates was about the same as the 15-day esti-
mates and that the revision was due to the availability of new information and not
measurement error – that is to say, the flash estimates were efficient estimates.

The case of the flash estimate illustrates that the presumption of a trade-off
between timeliness and accuracy in conjunction with routine revisions can lead
to an inaccurate assessment of an estimate’s performance. In this case the mis-
perception of inaccuracy undermined its usefulness and led to its discontinuance.

17.4.3. The current picture

In turns out that even with BEA’s current estimates and procedures, there does
not seem be a trade-off between timeliness and accuracy save perhaps between
the first and second current quarterly vintages of the estimates. Table 17.2 il-
lustrates the mean revisions for different vintages of GDP growth in the period
1983–2002. The current quarterly vintages are now labeled Advance, Prelimi-
nary and Final estimates, which are respectively released about 30, 60 and 90
days after the end of the reference period. Note that if the Advance estimate
were to be eliminated so that the first estimate would be the Preliminary estimate
then there would be a modest drop in the average revision. Instead of observing
a 0.09 percentage point revision from the Advance to the Final, users would
see a −0.01 percentage point revision in the Preliminary estimate.23 It thus ap-
pears that new information is received in the time between the Advance and
Preliminary estimate and that for these two vintages there is a trade-off between
timeliness and accuracy.24 This result also holds when one looks at the revision
to the current quarterly estimates using the 1st annual revision as the standard –
the magnitude of the revision is greatest for the Advance estimate. The revisions
with respect to the Latest estimates are large because these estimates contain all
available information – this includes new source data and changes in methodol-
ogy and definitions occurring with comprehensive revisions. None of the mean
revisions, however, are statistically significantly different from zero. This result
does not negate the usefulness of having a sequence of revisions. Because the
sequence of revisions incorporates new information, mostly new data but also,
especially for the later revisions, new estimation techniques and new definitions,

22 The revision is not correlated with the flash estimate in either case.
23 The magnitudes of the revision with respect to the latest estimates reflect the definitional changes
that occur in comprehensive revisions. These changes have often increased the level and rate of
increase of GDP. See for example Fixler and Grimm (2005).
24 More than half of the advance estimates are based at least in part on trend-based estimates. A large
majority of these are replaced with annual frequency data in the first annual estimates. See Grimm
and Weadock (2006, p. 12).
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Table 17.2: Mean Revisions to Successive Vintages of Estimates of Quarterly Changes in Real
GDP to Later Vintages of Estimates, 1983–2002/1/

[Percentage points]

Vintage of estimate Vintage of revision used as standard
Preliminary Final 1st annual Latest/2

Advance 0.09 0.09 0.06 0.42
Preliminary −0.01 −0.03 0.32
Final −0.02 0.33
1st annual 0.35

Notes: 1. 2001 for 1st annual.
2. The magnitudes of revision using the latest estimate reflect the definitional changes that occur in
comprehensive revisions. These changes have often increased the level and rate of increase of GDP.

Table 17.3: Mean Absolute Revisions to Successive Vintages of Estimates of Quarterly Changes
in Real GDP to Later Vintages of Estimates, 1983–2002/1/

[Percentage points]

Vintage of estimate Vintage of revision used as standard
Preliminary Final 1st annual Latest

Advance 0.51 0.59 1.12 1.29
Preliminary 0.26 0.94 1.26
Final 0.94 1.32
1st annual 1.14

Note: 2001 for 3rd annual.

users can view the later estimates as closer approximations of the truth, with the
latest as being the closest.

Similar findings hold true for the mean absolute revisions, as can be seen in
Table 17.3. These revisions are computed without regard to sign and they pro-
vide an idea of the dispersion of the revision. Note that once again elimination
of the Advance estimate – in other words, not releasing the Advance estimate
and waiting until all of the data used in the Preliminary estimate are available
– would result in substantially lower mean absolute revisions; with the Final as
the standard the revision would fall to 0.26 percentage points, and with the first
annual estimate the reduction is from 1.12 percentage points to 0.94 percent-
age points. Note that with the latest estimates as the standard there is very little
difference in the revision between the Advance, Preliminary and Final estimates.

As mentioned, the revisions to the vintages of the estimates can also be eval-
uated in terms of the four questions listed earlier. For the period 1983–2002,
the quarterly estimates of constant dollar GDP: successfully indicated the direc-
tion of change in real GDP 98 percent of the time; correctly indicated whether
real GDP was accelerating or decelerating 74 percent of the time; indicated
whether real GDP growth was high relative to trend about two-thirds of the time
and whether it was low relative to the trend about three-fifths of the time; and
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successfully indicated the 2 cyclical troughs in the period but only one of the
cyclical peaks.25

17.5. Summary and Conclusion

Producers of national economic statistics seek to provide their users with timely
and accurate estimates of economic activity, especially aggregate economic ac-
tivity. Their ability to do so is constrained by the flow of data. Thus the problem
for national statistic offices is to determine how close the release dates for es-
timates can be to the end of the reference period and at the same time provide
accurate estimates. Because the data come from a variety of sources, many of
which are not based on probabilistic samples, it is not possible to determine how
close the estimates are to the true value in a statistical sense. Furthermore, the
concept of the true value depends on a host of definitions of economic activity
as well as the underlying conceptual framework of the economy.

Intuitively, there should be a trade-off between timeliness and accuracy be-
cause early estimates are based on less data than later estimates. Yet if the
methods used to project the missing data are efficient so that the projections
have small error, then it need not be true that there is a meaningful trade-off.
This inference follows from the BEA experience with the flash estimates. How-
ever, this is not say that the early estimates are forecasts, although the distinction
between forecasts and early actual values is not sharp because each is simply an
estimate based on partial incomplete information.26 If forecasts are admitted
into the competition for accurate estimates of the “true” nature of economic ac-
tivity, then an assessment of the trade-off ought to include the benefits to users
of having information before the reference period ends.

An analysis of data on revisions to US GDP estimates yields the following
conclusions about the trade-off between timeliness and accuracy. First, there are
modest average revisions from the advance to the two later current quarterly
estimates. Second, revisions to the latest estimates largely reflect definitional re-
visions that adapt the US National Income and Product Accounts to a changing
economy. Third, relative to the latest estimates the three current quarterly vin-
tages of GDP estimates have about the same average revision without regard to
sign. One can therefore conclude that there is little cost, in accuracy, of making
advance estimates containing relatively a large number of trend-based projec-
tions. Waiting a year to publish estimates of GDP would reduce the average
revision without regard to sign of real GDP by only 0.1 to 0.2 percentage points.

Research is continuing on how to improve the efficiency of the estimates. Re-
cently, in the US the use of real time data (original and unrevised data that are
available at the time the estimates are made) has been examined to see if they

25 The last recession in the period occurred from March 2001 (peak) to November 2001 (trough)
and the short duration probably played a role in the mis-estimation of the peak.
26 McNees (1986).
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can predict revisions or provide better estimates. This research focuses on data
that are available at the time that the estimate is being made but not included in
the set of data upon which the estimates are based. In effect, such studies seek
to examine whether the estimates can be considered as rational – in the sense
that all of the available information is used to formulate the estimate.27 Fixler
and Grimm (2006) examined whether the revisions to GDP estimates are ratio-
nal with respect to real time data and found that while such data can somewhat
predict revisions, thereby making the GDP estimates irrational, there may not be
much advantage in incorporating the additional data. Relatedly, Fixler and Nale-
waik (2006) use the difference between the income and expenditure approaches
to GDP measurement as measure of differences in available data, along with the
attending to revisions to the estimates, to provide a better estimate of the “true”
GDP.
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