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Preface

This book emerges from a course given at the Department of Mathematics of

the Delft University of Technology. It forms a part of the program on Risk and

Environmental Modelling open to graduate students with the equivalent of a Bache-

lor’s degree in mathematics. The students are familiar with undergraduate analysis,

statistics and probability, but for non-mathematicians this familiarity may be latent.

Therefore, most notions are ‘explained in-line’. Readers with a nodding acquain-

tance with these subjects can follow the thread. To keep this thread visible, proofs

are put in supplements of the chapters in which they occur. Exercises are also

included in most chapters.

The real source of this book is our experience in applying uncertainty analysis.

We have tried to keep the applications orientation in the foreground. Indeed, the

whole motivation for developing generic tools for high dimensional dependence

modelling is that decision makers and problem owners are becoming increasingly

sophisticated in reasoning with uncertainty. They are making demands, which an

analyst with the traditional tools of probabilistic modelling cannot meet. Put simply,

our point of view is this: a joint distribution is specified by specifying a sampling

procedure. We therefore assemble tools and techniques for sampling and analysing

high dimensional distributions with dependence. These same tools and techniques

form the design requirements for a generic uncertainty analysis program. One

such program is UNcertainty analysis wIth CORrelatioNs (UNICORN). A fairly

ponderous light version may be downloaded from http://ssor.twi.tudelft.nl/ risk/.

UNICORN projects are included in each chapter to give hands on experience in

applying uncertainty analysis.

The people who have contributed substantially to this book are too numerous

to list, but certainly include Valery Kritchallo, Tim Bedford, Daniel Lewandowski,

Belinda Chiera, Du Chao, Bernd Kraan and Jolanta Misiewicz.





1

Introduction: Uncertainty

Analysis and Dependence

Modelling

1.1 Wags and Bogsats

‘...whether true or not [it] is at least probable; and he who tells nothing exceeding

the bounds of probability has a right to demand that they should believe him who

cannot contradict him’. Samuel Johnson, author of the first English dictionary,

wrote this in 1735. He is referring to the Jesuit priest Jeronimo Lobo’s account

of the unicorns he saw during his visit to Abyssinia in the 17th century (Shepard

(1930) p. 200).

Johnson could have been the apologist for much of what passed as decision

support in the period after World War II, when think tanks, forecasters and expert

judgment burst upon the scientific stage. Most salient in this genre is the book

The Year 2000 (Kahn and Wiener (1967)) in which the authors published 25 ‘even

money bets’ predicting features of the year 2000, including interplanetary engineer-

ing and conversion of humans to fluid breathers. Essentially, these are statements

without pedigree or warrant, whose credibility rests on shifting the burden of proof.

Their cavalier attitude toward uncertainty in quantitative decision support is rep-

resentative of the period. Readers interested in how many of these even money

bets the authors have won, and in other examples from this period, are referred to

(Cooke (1991), Chapter 1).

Quantitative models pervade all aspects of decision making, from failure prob-

abilities of unlaunched rockets, risks of nuclear reactors and effects of pollutants

on health and the environment to consequences of economic policies. Such quan-

titative models generally require values for parameters that cannot be measured or

Uncertainty Analysis with High Dimensional Dependence Modelling D. Kurowicka and R. Cooke
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2 INTRODUCTION

assessed with certainty. Engineers and scientists sometimes cover their modesty

with churlish acronyms designating the source of ungrounded assessments. ‘Wags’

(wild-ass guesses) and ‘bogsats’ (bunch of guys sitting around a table) are two

examples found in published documentation.

Decision makers, especially those in the public arena, increasingly recognize

that input to quantitative models is uncertain and demand that this uncertainty be

quantified and propagated through the models.

Initially, it was the modellers themselves who provided assessments of uncer-

tainty and did the propagating. Not surprisingly, this activity was considered sec-

ondary to the main activity of computing ‘nominal values’ or ‘best estimates’ to

be used for forecasting and planning and received cursory attention.

Figure 1.1 shows the result of such an in-house uncertainty analysis performed by

the National Radiological Protection Board (NRPB) and The Kernforschungszentrum

Karlsruhe (KFK) in the late 1980s (Crick et al. (1988); Fischer et al. (1990)). The

models in question predict the dispersion of radioactive material in the atmosphere

following an accident in a nuclear reactor. The figure shows predicted lateral disper-

sion under stable conditions, and also shows wider and narrower plumes, which the

modellers are 90% certain will enclose an actual plume under the stated conditions.

It soon became evident that if things were uncertain, then experts might dis-

agree, and using one expert-modeller’s estimates of uncertainty might not be

sufficient. Structured expert judgment has since become an accepted method for

quantifying models with uncertain input. ‘Structured’ means that the experts are

identifiable, the assessments are traceable and the computations are transparent.

To appreciate the difference between structured and unstructured expert judgment,

Figure 1.2 shows the results of a structured expert judgment quantification of the

same uncertainty pictured in Figure 1.1 (Cooke (1997b)). Evidently, the picture of

uncertainty emerging from these two figures is quite different.

One of the reasons for the difference between these figures is the following:

The lateral spread of a plume as a function of down wind distance x is modelled,

per stability class, as

σ(x) = AxB .

30 km

Figure 1.1 5%, 50% and 95% plume widths (stability D) computed by NRPB and

KFK.
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30 km

Figure 1.2 5%, 50% and 95% plume widths (stability D) computed by the EU-

USNRC Uncertainty Analysis of accident consequence codes.

Both the constants A and B are uncertain as attested by spreads in published

values of these coefficients. However, these uncertainties cannot be independent.

Obviously if A takes a large value, then B will tend to take smaller values.

Recognizing the implausibility of assigning A and B as independent uncertainty

distributions, and the difficulty of assessing a joint distribution on A and B, the

modellers elected to consider B as a constant; that is, as known with certainty.1

The differences between these two figures reflect a change in perception regard-

ing the goal of quantitative modelling. With the first picture, the main effort has

gone into constructing a quantitative deterministic model to which uncertainty

quantification and propagation are added on. In the second picture, the model

is essentially about capturing uncertainty. Quantitative models are useful insofar as

they help us resolve and reduce uncertainty. Three major differences in the practice

of quantitative decision support follow from this shift of perception.

• First of all, the representation of uncertainty via expert judgment, or some

other method is seen as a scientific activity subject to methodological rules

every bit as rigorous as those governing the use of measurement or experi-

mental data.

• Second, it is recognized that an essential part of uncertainty analysis is the

analysis of dependence. Indeed, if all uncertainties are independent, then

their propagation is mathematically trivial (though perhaps computationally

1This is certainly not the only reason for the differences between Figures 1.1 and 1.2. There was

also ambivalence with regard to what the uncertainty should capture. Should it capture the plume

uncertainty in a single accidental release, or the uncertainty in the average plume spread in a large

number of accidents? Risk analysts clearly required the former, but meteorologists are more inclined

to think in terms of the latter.
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challenging). Sampling and propagating independent uncertainties can easily

be trusted to the modellers themselves. However, when uncertainties are

dependent, things become much more subtle, and we enter a domain for

which the modellers’ training has not prepared them.

• Finally, the domains of communication with the problem owner, model eval-

uation, and so on, undergo significant transformations once we recognize that

the main purpose of models is to capture uncertainty.

1.2 Uncertainty analysis and decision support: a

recent example

A recent example serves to illustrate many of the issues that arise in quantifying

uncertainty for decision support. The example concerns transport of Campylobac-

ter infection in chicken processing lines. The intention here is not to understand

Campylobacter infection, but to introduce topics covered in the following chapters.

For details on Campylobacter, see Cooke et al. (Appearing); Van der Fels-Klerx

et al. (2005); Nauta et al. (2004).

Campylobacter contamination of chicken meat may be responsible for up to

40% of Campylobacter-associated gastroenteritis and for a similar proportion of

deaths. A recent effort to rank various control options for Campylobacter contam-

ination has led to the development of a mathematical model of a processing line

for chicken meat (these chickens are termed ‘broilers’).

A typical broiler processing line involves a number of phases as shown in

Figure 1.3. Each phase is characterized by transfers of Campylobacter colony form-

ing units from the chicken surface to the environment, from the environment back

to the surface and from the faeces to the surface (until evisceration), and the

destruction of the colonies. The general model, applicable with variations in each

processing phase, is shown in Figure 1.4.

Given the number of Campylobacter on and in the chickens at the inception

of processing, and given the number initially in the environment, one can run

the model with values for the transfer coefficients and compute the number of

Campylobacter colonies on the skin of a broiler and in the environment at the end

of each phase. Ideally, we would like to have field measurements or experiments
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Figure 1.3 Broiler chicken processing line.
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General model (1)

Environment Broiler

Faeces

Nenv Next
aext

aintWint

cenv

(1 − aint)Wint

b

ca

Cint

Figure 1.4 Transfer coefficients in a typical phase of a broiler chicken processing

line.

to determine values for the coefficients in Figure 1.4. Unfortunately, these are not

feasible. Failing that, we must quantify the uncertainty in the transfer coefficients,

and propagate this uncertainty through the model to obtain uncertainty distributions

on the model output.

This model has been quantified in an expert judgment study involving 12 experts

(Van der Fels-Klerx et al. (2005)). Methods for applying expert judgments are

reviewed in Chapter 2. We may note here that expert uncertainty assessments are

regarded as statistical hypotheses, which may be tested against data and combined

with a view to optimizing performance of the resulting ‘decision maker’.

The experts have detailed knowledge of processing lines, but owing to the

scarcity of measurements, they have no direct knowledge of the transfer mech-

anisms defined by the model. Indeed, use of environmental transport models is

rather new in this area, and unfamiliar. Uncertainty about the transfer mechanisms

can be large, and, as in the dispersion example discussed in the preceding text,

it is unlikely that these uncertainties could be independent. Combining possible

values for transfer and removal mechanism independently would not generally

yield a plausible picture. Hence, uncertainty in one transfer mechanism cannot be

addressed independently of the rest of the model.

Our quantification problem has the following features:

• There are no experiments or measurements for determining values.

• There is relevant expert knowledge, but it is not directly applicable.

• The uncertainties may be large and may not be presumed to be independent,

and hence dependence must be quantified.
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These obstacles will be readily recognized by anyone engaged in mathematical

modelling for decision support beyond the perimeter of direct experimentation and

measurement. As the need for quantitative decision support rapidly outstrips the

resources of experimentation, these obstacles must be confronted and overcome.

The alternative is regression to wags and bogsats.

Although experts cannot provide useful quantification for the transfer coeffi-

cients, they are able to quantify their uncertainty regarding the number of Campy-

lobacter colonies on a broiler in the situation described below taken from the

elicitation protocol:

At the beginning of a new slaughtering day, a thinned flock is slaughtered in

a ‘typical large broiler chicken slaughterhouse’. . . . We suppose every chicken to

be externally infected with 105 Campylobacters per carcass and internally with 108

Campylobacters per gram of caecal content at the beginning of each slaughtering

stage. . . .

Question A1: All chickens of the particular flock are passing successively through

each slaughtering stage. How many Campylobacters (per carcass) will be found

after each of the mentioned stages of the slaughtering process each time on the first

chicken of the flock?

Experts respond to questions of this form, for different infection levels, by

stating the 5%, 50% and 95% quantiles, or percentiles, of their uncertainty distri-

butions. If distributions on the transfer coefficients in Figure 1.4 are given, then

distributions per processing phase for the number of Campylobacter per carcass

(the quantity assessed by the experts) can be computed by Monte Carlo simula-

tion: We sample a vector of values for the transfer coefficients, compute a vector

of Campylobacter per carcass and repeat this until suitable distributions are con-

structed. We would like the distributions over the assessed quantities computed in

this way to agree with the quantiles given by the combined expert assessments. Of

course we could guess an initial distribution over the transfer coefficients, per-

form this Monte Carlo computation and see if the resulting distributions over

the assessed quantities happen to agree with the experts’ assessments. In general

they will not, and this trial-and-error method is quite unlikely to produce agree-

ment. Instead, we start with a diffuse distribution over the transfer coefficients, and

adapt this distribution to fit the requirements in a procedure called ‘probabilistic

inversion’.

More precisely, let X and Y be n- and m-dimensional random vectors, respec-

tively, and let G be a function from Rn to Rm. We call x ∈ Rn an inverse of y ∈ Rm

under G if G(x) = y. Similarly, we call X a probabilistic inverse of Y under G

if G(X) ∼ Y , where ∼ means ‘has the same distribution as’. If {Y |Y ∈ C} is the

set of random vectors satisfying constraints C, then we say that X is an element

of the probabilistic inverse of {Y |Y ∈ C} under G if G(X) ∈ C. Equivalently, and

more conveniently, if the distribution of Y is partially specified, then we say that

X is a probabilistic inverse of Y under G if G(X) satisfies the partial specification

of Y . In the current context, the transfer coefficients in Figure 1.4 play the role of

X, and the assessed quantities play the role of Y .
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In our Campylobacter example, the probabilistic inversion problem may now

be expressed as follows: Find a joint distribution over the transfer coefficients such

that the quantiles of the assessed quantities agree with the experts’ quantiles. If

more than one such joint distribution exists, pick the least informative of these.

If no such joint distribution exists, pick a ‘best-fitting’ distribution, and assess its

goodness of fit.

Probabilistic inversion techniques are the subject of Chapter 9.

In fact, the best fit produced with the model in Figure 1.4 was not very good.

It was not possible to find a distribution over the transfer coefficients, which, when

pushed through the model, yielded distributions matching those of the experts. On

reviewing the experts’ reasoning, it was found that the ‘best’ expert (see Chapter 2)

in fact recognized two types of transfer from the chicken skin to the environment. A

rapid transfer applied to Campylobacter on the feathers, and a slow transfer applied

to Campylobacter in the pores of the skin. When the model was extended to accom-

modate this feature, a satisfactory fit was found. The second model, developed after

the first probabilistic inversion, is shown in Figure 1.5.

Distributions resulting from probabilistic inversion typically have dependencies.

In fact, this is one of the ways in which dependence arises in uncertainty analysis.

We require tools for studying such dependencies. One simple method is to simply

compute rank correlations. Notions of correlation and their properties are discussed

in Chapter 3. For now it will suffice simply to display in Table 1.1 the rank cor-

relation matrix for the transfer coefficients in Figure 1.5, for the scalding phase.

General model (2)

Environment

Transport
from skin

Chicken

Faeces

aextA

aextB

b

Transport from
feathers

Nenv Next

aintWint

cenv

(1 − a int)Wint

ca

Cint

Figure 1.5 Processing phase model after probabilistic inversion.
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Table 1.1 Rank correlation matrix of transfer coef-

ficients, scalding phase.

Variable aextA aextB ca b ce aint

aextA 1.00 0.17 −0.60 −0.04 0.03 0.00

aextB 0.17 1.00 −0.19 −0.10 −0.06 0.00

ca −0.60 −0.19 1.00 0.01 0.02 0.00

b −0.04 −0.10 0.01 1.00 0.02 0.00

ce 0.03 −0.06 0.02 0.02 1.00 0.00

aint 0.00 0.00 0.00 0.00 0.00 0.00

Table 1.1 shows a pronounced negative correlation between the rapid transfer

from the skin (aextA) and evacuation from the chicken (ca), but other correlations

are rather small. Correlations of course do not tell the whole story. Chapter 7

discusses visual tools for studying dependence in high-dimensional distributions.

One such tool is the cobweb plot. In a cobweb plot, variables are represented as

vertical lines. Each sample realizes one value of each variable. Connecting these

values by line segments, one sample is represented as a jagged line intersecting all

the vertical lines. Plate 1 shows 2000 such jagged lines and gives a picture of the

joint distribution. In this case, we have plotted the quantiles, or percentiles, or ranks

of the variables rather than the values themselves. The negative rank correlation

between aextA and ca is readily visible if the picture is viewed in colour: The lines

hitting low values of aextA are red, and the lines hitting values of ca are also red.

We see that the rank dependence structure is quite complex. Thus, we see that

low values of the variable ce (cenv , the names have been shortened for this graph)

are strongly associated with high values of b, but high values of ce may occur

equally with high and low values of b. Correlation (rank or otherwise) is an average

association over all sample values and may not reveal complex interactions. In subse-

quent chapters, we shall see how cobweb plots can be used to study dependence and

conditional dependence. One simple illustration highlights their use in this example.

Suppose, we have a choice of accelerating the removal from the environment ce

or from the chicken ca; which would be more effective in reducing Campylobacter

transmission? To answer this, we add two output variables: a1 (corresponding to

the elicitation question given in the preceding text) is the amount on the first

chicken of the flock as it leaves the processing phase and a2 is the amount on the

last chicken of the flock as it leaves the processing phase. In Figure 1.6, we have

conditionalized the joint distribution by selecting the upper 5% of the distribution

for ca; in Figure 1.7, we do the same for ce.

We easily see that the intervention on ce is more effective than that on ca,

especially for the last chicken.

This example illustrates a feature that pervades quantitative decision support,

namely, that input parameters of the mathematical models cannot be known with

certainty. In such situations, mathematical models should be used to capture and

propagate uncertainty. They should not be used to help a bunch of guys sitting
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Figure 1.6 Cobweb plot conditional on high ca.

around a table make statements that should be believed if they cannot be contra-

dicted. In particular, it shows the following:

• Expert knowledge can be brought to bear in situations where direct experi-

ment or measurement is not possible, namely, by quantifying expert uncer-

tainty on variables that the models should predict.

• By utilizing techniques like probabilistic inversion in such situations, models

become vehicles for capturing and propagating uncertainty.

• Configured in this way, expert input can play an effective role in evaluating

and improving models.

• Models quantified with uncertainty, rather than wags and bogsats, can provide

meaningful decision support.

1.3 Outline of the book

This book focuses on techniques for uncertainty analysis, which are generally appli-

cable. Uncertainty distributions may not be assumed to conform to any parametric

form. Techniques for specifying, sampling and analysing high-dimensional distri-

butions should therefore be non-parametric. Our goal is to present the mathematical
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Figure 1.7 Cobweb plot conditional on high ce.

concepts that are essential in understanding uncertainty analysis and to provide the

practitioners with tools they will need in applications.

Some techniques, in particular those associated with bivariate dependence mod-

elling, are becoming familiar to a wide range of users. Even this audience will

benefit from a presentation focused on applications in higher dimensions. Subjects

like the minimal information, diagonal band and elliptical copula will probably

be new. Good books are available for bivariate dependence: Dall’Aglio et al.

(1991); Doruet Mari and Kotz (2001); Joe (1997); Nelsen (1999). High-dimensional

dependence models, sampling methods, post-processing analysis and probabilistic

inversion will be new to non-specialists, both mathematicians and modellers.

The focus of this book is not how to assess dependencies in high-dimensional

distributions, but what to do with them once we have them. That being said, the

uncertainty, which gets analysed in uncertainty analysis is often the uncertainty of

experts, and expert judgment deserves brief mention. Expert judgment is treated

summarily in Chapter 2. Chapter 2 also introduces the uncertainty analysis, pack-

age UNICORN. Each chapter contains UNICORN projects designed to sensitize

the reader to issues in dependence modelling and to step through features of the

program. The projects in Chapter 2 provide a basic introduction to UNICORN

and are strongly recommended. Chapter 3 treats bivariate dependence, focusing
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on techniques that are useful in higher dimensions. The UNICORN projects in

Chapter 3 introduce the concepts of aleatory and epistemic uncertainty.

With regard to dependence in higher dimensions, much is not known. For

example, we do not know whether an arbitrary correlation matrix is also a rank

correlation matrix.2 We do know that characterizing dependence in higher dimen-

sions via product moment correlation matrices is not the way to go. Product moment

correlations impose unwelcome constraints on the one-dimensional distributions.

Further, correlation matrices must be positive definite, and must be completely

specified. In practice, data errors, rounding errors or simply vacant cells lead to

intractable problems with regard to positive definiteness. We must design other

friendlier ways to let the world tell us, and to let us tell computers, as to which

high-dimensional distribution to calculate. We take the position that graphical mod-

els are the weapon of choice. These may be Markov trees, vines, independence

graphs or Bayesian belief nets. For constructing sampling routines capable of real-

izing richly complex dependence structures, we advocate regular vines. They also

allow us to move beyond discrete Bayesian belief nets without defaulting to the

joint normal distribution. Much of this material is new and only very recently

available in the literature: Bedford and Cooke (2001a); Cowell et al. (1999); Pearl

(1988); Whittaker (1990). Chapter 4 is devoted to this.

Chapter 5 studies graphical models, which have interesting features, but are

not necessarily generally applicable in uncertainty analysis. Bayesian belief nets

and independence graphs are discussed. The problem of inferring a graphical

model from multivariate data is addressed. The theory of regular vines is used

to develop non-parametric continuous Bayesian belief nets. Chapter 6 discusses

sampling methods. Particular attention is devoted to sampling regular vines and

Bayesian belief nets.

Problems in measuring, inferring and modelling high-dimensional dependen-

cies are mirrored at the end of the analysis by problems in communicating this

information to problem owners and decision makers. Here graphical tools come to

the fore in Chapter 7.

Chapter 8 addresses the problem of extracting useful information from an uncer-

tainty analysis. This is frequently called sensitivity analysis (Saltelli et al. (2000)).

We explore techniques for discovering which input variables contribute significantly

to the output.

Chapter 9 takes up probabilistic inversion. Inverse problems are as old as proba-

bility itself, but their application in uncertainty analysis is new. Again, this material

is only very recently available in the literature.

The concluding chapter speculates on the future role of uncertainty analysis in

decision support.

Each chapter contains mathematical exercises and projects. The projects can

be performed with the uncertainty analysis package UNICORN (UNcertainty anal-

ysis wIth CORrelatioNs), a light version of which can be downloaded free at

2We have recently received a manuscript from H. Joe that purports to answer this question in the

negative for dimensions greater than four.
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http://ssor.twi.tudelft.nl/∼risk/. These projects are meant to sensitize the reader to

reason with uncertainty, and modelling dependence. Many of these can also be

done with popular uncertainty analysis packages that are available as spread sheet

add-ons, such as Crystal Ball and @Risk. However, these packages do not support

features such as multiple copula, vine modelling, cobweb plots, iterated and con-

ditional sampling and probabilistic inversion. All projects can be performed with

UNICORN Light, and step-by-step guidance is provided. Of course, the users can

program these themselves.

In conclusion, we summarize the mathematical issues that arise in ‘capturing’

uncertainty over model input, propagating this uncertainty through a mathematical

model, and using the results to support decision making. References to the relevant

chapters are given below:

1. The standard product moment (or Pearson) correlation cannot be assessed

independently of the marginal distributions, whereas the rank (or Spearman)

correlation can (Chapter 3).

2. We cannot characterize the set of rank correlation matrices. We do know that

the joint normal distribution realizes a ‘thin’ set of rank correlation matrices

(Chapter 4).

3. There is no general algorithm for extending a partially specified matrix to a

positive definite matrix (Chapter 4).

4. Even if we have a valid rank correlation matrix, it is not clear how we should

define and sample a joint distribution with this rank correlation matrix. These

problems motivate the introduction of regular vines (Chapter 4; sampling is

discussed in Chapter 6).

5. Given sufficient multivariate data, how should we infer a graphical model,

or conditional independence structure, which best fits the data (Chapter 5)?

6. After obtaining a simulated distribution for the model input and output, how

can we analyse the results graphically (Chapter 7) and how can we charac-

terize the importance of various model inputs with respect to model output

(Chapter 8)?

7. How can we perform probabilistic inversion (Chapter 9)?

This book assumes knowledge of basic probability, statistics and linear algebra.

We have put proofs and details in mathematical supplements for each chapter. In

this way, the readers can follow the main line of reasoning in each chapter before

immersing themselves in mathematical details.
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Assessing Uncertainty

on Model Input

2.1 Introduction

The focus of this book is not how to obtain uncertainty distributions, but rather what

to do with them once we have them. Quantifying uncertainty is the subject of a vast

literature; this chapter can only hope to point the reader in the right direction. More

detailed attention is given to the assessment of dependence. Even here, however, the

treatment must be cursory. Rank correlation and minimal information are formally

introduced in Chapter 3; this chapter appeals to an intuitive understanding of these

notions. The apoplexed may elect to surf this chapter and return in earnest after

digesting Chapter 3.

As indicated in the previous chapter, the quantification and propagation of

uncertainty become essential in precisely those situations where quantitative mod-

elling cannot draw upon extensive historical, statistical or measurement data. Of

course modellers should always use such data sources whenever possible. As data

becomes sparse, modellers are increasingly forced to evaluate and combine dis-

parate data sources not perfectly tailored to the purpose at hand. As the judgmental

element increases, the task of interpreting and synthesizing scanty evidence exceeds

the modeller’s competence and must be turned over to domain experts. We have

entered the arena of expert judgment.

It seems paradoxical at first, but upon reflection it is a truism: If quantification

must rely on expert judgment, the experts will not agree. We do not use expert

judgment to assess the speed of light in a vacuum; if asked, all experts would give

the same answer. The speed of light has been measured to everyone’s satisfaction

and its value, 2.998 × 108 m/s, is available in standard references. At the other

extreme, expert judgment is not applied to assess the possibility of the existence of

Uncertainty Analysis with High Dimensional Dependence Modelling D. Kurowicka and R. Cooke

 2006 John Wiley & Sons, Ltd
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a god. Theology is not science; there are no relevant experiments or measurements.

Between these two extremes, there is a wide domain where sparse data must be

synthesized and adapted for the purposes at hand by experts. By the nature of the

case, different experts will do this in different ways, and it is exactly in these cases

that the quantification and propagation of uncertainty is, or should be, the primary

goal of quantitative modelling.

Structured expert judgment is increasingly accepted as scientific input in quan-

titative modelling. A salient example is found in recent court proceedings of the

United Nations Claims Commission investigating damages from the 1990 Gulf

War. Structured expert judgment was used to assess the health effect on the Kuwaiti

population of Iraq’s firing the Kuwaiti oil wells. The fires burned for nearly nine

months in 1990–1991, and the plumes from these fires contained fine particulate

matter that is believed to have adverse health effects. Although most reputable

experts acknowledge the noxious effects of this form of pollution, the exact dose-

response relation is a matter of substantial uncertainty. The Kuwaiti government

based its claims on the combined uncertainty distributions of six top international

experts on these dose-response relations. The concentrations to which the popu-

lation was exposed were assessed on the basis of extensive measurements. The

lawyers for Iraq raised many pertinent questions regarding the use of structured

expert judgment to assess damages in tort law. The judges should decide whether

the claimant’s burden of proof has been met. Because of its very high profile, and

because of the significant scientific effort underlying the claim, this case promises

to have profound repercussions. The concluding chapter discusses this case in detail

and speculates on its consequences.

2.2 Structured expert judgment in outline

Methods for assessing and combining expert uncertainty are available in the lit-

erature.1 This material will not be rehearsed here. Instead, we itemize the main

features of the structured expert judgment method as employed by the present

authors (Cooke (1991)).

• A group of experts are selected.

• Experts are elicited individually regarding their uncertainty over the results

of possible measurements or observations within their domain of expertise.

• Experts also assess variables within their field, the true values of which are

known post hoc.

• Experts are treated as statistical hypotheses and are scored with regard to

statistical likelihood (sometimes called ‘calibration’) and informativeness.

1A very partial set of references is: Bedford and Cooke (2002); Budnitz et al. (1997); Clemen

and Winkler (1995, 1999); Clemen et al. (1995); Cooke (1991); Cooke and Goossens (2000a); Garth-

waite et al. (appearing); Granger Morgan and Henrion (1990); Hogarth (1987); Hora and Iman (1989);

O’Hagan and Oakley (2004).
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• The scores are combined to form weights. These weights are constructed to

be ‘strictly proper scoring rules’ in an appropriate asymptotic sense: experts

receive their maximal expected long-run weight by, and only by, stating their

true degrees of belief. With these weights, statistical accuracy strongly dom-

inates informativeness – one cannot compensate poor statistical performance

by very high information.

• The likelihood and informativeness scores are used to derive performance-

based weighted combinations of the experts’ uncertainty distributions.

The key feature of this method is the performance-based combination of expert

uncertainty distributions. People with a palliative approach to expert judgment

find this unsettling, but extensive experience overwhelmingly confirms that experts

actually like this since indeed the performance measures are entirely objective.

This experience also shows that in the wide majority of cases, the performance-

based combination of expert judgment gives more informative and statistically more

accurate results than either the best expert or the ‘equal weight’ combination of

expert distributions (Cooke (2004); Cooke and Goossens (2000b); Goossens et al.

(1998)). Upon reflection, it is evident that equal weighting has a very serious draw-

back. As the number of experts increases, the equal weight combination typically

becomes increasingly diffuse until it represents no one’s belief and is useless for

decision support. This is frequently seen as the number of experts exceeds, say,

eight. The viability of equal weighting is maintained only by sharply restricting the

number of experts who will be treated equally, leaving others outside the process.

It appeals to a sort of one-man-one-vote (for registered voters) consensus ideal.

Science, on the other hand, is driven by rational consensus. Ultimately, consensus

is the equilibrium of power; in science, it is not the power of the ballot but the

power of arguments that counts.

Does expert performance on the calibration variables (whose values are or

become known) predict performance on the other variables? This question is usually

impossible to answer for obvious reasons. If we could learn the true values of the

variables of interest, we would not be doing expert judgment in the first place. Such

evidence as exists points to ‘yes’ (van Overbeek (1999); Xu (2002)). Of course

one can divide the calibration variables into two subsets and look at correlations

of scores. This gives a favourable answer, but is not really answering the question

(Bier (1983)).

2.3 Assessing distributions of continuous univariate

uncertain quantities

We are concerned with cases in which the uncertain quantity can assume values in a

continuous range of real numbers. An expert is confronted with an uncertain quan-

tity, say X, and is asked to specify information about his subjective distribution

over possible values of X. The assessment may take a number of different forms.
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The expert may specify his cumulative distribution function, or density or mass

function (whichever is appropriate). Alternatively, the analyst may require only par-

tial information about the distribution. This partial information might be the mean

and standard deviation, or it might be several quantiles of his distribution. For r in

[0, 1], the rth quantile is the smallest number xr such that the expert’s probability

for the event {X ≤ xr} is equal to r . The 50% quantile is the median of his dis-

tribution. Typically, (5%, 50%, 95%) or (5%, 25%, 50%, 75%, 95%) quantiles are

queried. Distributions are fitted to the elicited quantiles such that:

1. The densities agree with the expert’s quantile assessments;

2. The densities are minimally informative with respect to a background mea-

sure (usually either uniform or loguniform), given the quantile constraints

(Kullback (1967)).

The actual questions put to the experts must be prepared very carefully to

avoid unnecessary ambiguity and to get the experts to conditionalize on the proper

background information. By way of example, the following is an elicitation question

for the experts who participated in the Kuwait damage claim project.

2.4 Assessing dependencies

As mentioned in the previous chapter, dependencies between input variables may

be induced by probabilistic inversion. Briefly summarizing, suppose the range of

some function is observable, but the domain of the function is not observable. Sup-

pose that we want an uncertainty distribution over the domain, and that we have

an uncertainty distribution over the range. We then invert the function probabilis-

tically by finding a distribution over the domain, which, when pushed through this

function, best matches the range-distribution. As in the example in Chapter 1, the

best matching distribution will generally be the ‘push through’ of a distribution on

the domain having dependencies.

Sometimes dependencies will be imposed by functional constraints on the input

variables. Suppose, for example, we have yearly data on the numbers of registered
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voters for the Liberal (L), Conservative (C) and Other (O) parties, with the number

of voters (N ) constant. In a randomly chosen year we may represent the uncertainty

that a random individual is Liberal, Conservative or Other as the distributions of

L, C and O . However, these distributions cannot be independent since we must

have L + O + C = N .

When input uncertainty is directly assessed by experts, the experts’ uncer-

tainties regarding these inputs may be the source of dependence. We focus here

on the question, how should we extract information about dependencies from the

experts?

One obvious strategy is to ask the experts directly to assess a (rank) correlation

coefficient.2 However, even trained statisticians have difficulty with this type of

assessment. Two approaches have been found to work satisfactorily in practice.

The choice between these depends on whether the dependence is lumpy or smooth.

Consider uncertain quantities X and Y . If Y has the effect of switching various

processes on or off, which influence X, then the dependence of X on Y is called

lumpy. In this case, the best strategy is to elicit conditional distributions for X

given the switching values of Y , and to elicit the probabilities for Y . This might

arise, for example, if corrosion rates for underground pipes are known to depend

on soil type (sand, clay, peat), where the soil type itself is uncertain. In other

cases the dependence may be smooth. For example, uncertainties in biological

half-lives of cesium in dairy and beef cattle are likely to be smoothly dependent.

The biological half-life of cesium in dairy cattle is uncertain within a certain range.

For each value in that range, there is a conditional distribution for the biological

half-life of cesium in beef cattle given the dairy cattle value. We may expect this

conditional distribution to change only slightly when we slightly vary the value in

dairy cattle.

When the analyst suspects a potential smooth dependence between (continuous)

variables X and Y , experts first assess their marginal distributions. They are then

asked:

Suppose Y were observed in a given case and its values were found to lie above

the median value for Y ; what is your probability that, in this same case, X would

also lie above its median value?

This probability can vary between 0 and 1. If X and Y are completely rank-

correlated, its value is 1; and if they are completely anti-correlated, its value is 0;

and if they are independent its value is 1
2
.

2We glide over mathematical issues that receive ample attention in the following chapters. Recapitu-

lating the discussion at the end of Chapter 1: (1) The standard product moment (or Pearson) correlation

cannot be assessed independently of the marginal distributions; the rank (or Spearman) correlation can.

(2) It is not known which correlation matrices can be rank correlation matrices. (3) There is no general

algorithm for extending a partially specified matrix to a positive definite matrix. (4) Even if we have a

valid rank correlation matrix, it is not clear how we should define and sample a joint distribution with

this rank correlation matrix. These problems motivate the introduction of regular vines in Chapter 4.

Vines use rank and conditional rank correlations, and the results of this discussion apply.
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This technique was used extensively in a joint EU-US study on the conse-

quences of an accident in a nuclear power plant (Cooke and Goossens (2000b);

Kraan and Cooke (2000a,b)).

Experts quickly became comfortable with this assessment technique and pro-

vided answers which were meaningful to them and to the project staff. If FX, FY are

the (continuous, invertible) cumulative distribution functions of X and Y respec-

tively, the experts thus assess

π 1
2
(X, Y ) = P

(
FX(X) >

1

2
| FY (Y ) >

1

2

)
.

Consider all joint distributions for (X, Y ) having margins FX, FY , having rank

correlation r(X, Y ), and having minimum information relative to the distribution

with independent margins. For each r ∈ [−1, 1], there corresponds a unique value

for π 1
2
(X, Y ) ∈ [0, 1]. Hence, we may characterize the minimal informative distri-

bution with rank correlation r(X, Y ) in terms of π 1
2
(X, Y ), or more generally as

r(πq) where for each q ∈ (0, 1)

πq(X, Y ) = P (FX(X) > q | FY (Y ) > q).

We illustrate the procedure. The functions r(πq) have been computed with the

uncertainty package UNICORN. The results for q = −0.9, . . . , 0.9 are shown in

Figure 2.1.

When a single expert assesses π 1
2
(X, Y ), then we simply use the minimum

information joint distribution with rank correlation r(π 1
2
) found from Figure 2.1.

Suppose, for example, that π 1
2
= 0.8. Start on the horizontal axis with q = 0.5 and

travel up until reaching 0.8 on the vertical axis. The line for r = 0.7 passes very

close to the point (0.5, 0.8), hence r(π 1
2
) ≈ 0.7.

When we consider a weighted combination of experts distributions, a compli-

cation arises. Since the medians for X and Y will not be the same for all experts,

the conditional probabilities π 1
2
(X, Y ) cannot be combined via the linear pooling.

However, the marginal distributions can be pooled, resulting in a ‘Decision Mak-

ers’ (DM) cumulative distribution functions FX,DM and FY,DM for X and Y . Let

xDM ,50 and yDM ,50 denote the medians for DM’s distribution for X and Y . We can

compute the conditional probabilities

Pe(X > xDM ,50 | Y > yDM ,50) =
Pe(X > xDM ,50 ∩ Y > yDM ,50)

Pe(Y > yDM ,50)

for each expert e. Since the probabilities on the right-hand side are defined over

the same events for all experts, they can be combined via the linear pool. This

yields a value for π 1
2

for DM, for which we can find the corresponding r .

For more details, we refer to sources cited in the preceding text. This discussion

is intended only to convey an idea how input distributions for an uncertainty analy-

sis may be obtained. The following chapters discuss in detail how this information

is used.
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P(Fx(X) > q|Fy(Y) > q) for minimal information distributions with rank correlation r
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Figure 2.1 πq for minimal information distributions with rank correlation r .
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2.5 Unicorn

UNICORN is a stand-alone uncertainty analysis package. Dependence modelling is

vine- and tree-based coupling of univariate random variables, though joint distribu-

tions in Ascii format are also supported. An extended formula parser is available, as

well as a min-cost-flow network solver. Post-processing satellite programs provide for

• report generation

• graphics

• sensitivity analysis and

• probabilistic inversion.

A light version may be downloaded from http://ssor.twi.tudelft.nl/∼risk/, which

is suitable for doing all the projects in this book. These projects do not explore

all facets of UNICORN, a tutorial downloaded with the program explores other

features. A Pro version may be ordered from the same URL.

2.6 Unicorn projects

Project 2.1 Copulae

This project introduces different copulae and shows how to create a simple

dependence model and study its properties graphically. A copula is a joint distri-

bution on the unit square with uniform margins. The four copulae introduced here

are supported in UNICORN and described in Chapter 3.

• Launch UNICORN and click on the icon to create a new file. The random

variable input panel appears.

• Click on the ADD button; a variable named V 1 is created with a uniform

distribution on the interval [0,1] as default. We will accept this default. Other

distributions can be assigned from the distribution list box. Click a second

time on ADD, and accept the default. Note that information on the uniform

distribution is visible on-screen: the density function, the parameters, main

quantiles and moments.

• From the MODEL menu select Dependence, or simply click on the Depen-

dence icon. This dependence input panel appears. From the dependence menu,

select ADD NEW, and choose dependence tree. V 1 and V 2 are listed as avail-

able nodes. Double click on V 1, then on V 2. A tree is created with V 1 as root.

The rank correlation between V 1 and V 2 is 0 by default. The rank correlation

can be changed either with the slider which appears when the value 0 in the

tree is clicked, or by entering a number between −1 and 1 in the correlation

box, while the value in the tree is highlighted. Make the correlation 0.7.

• The diagonal band copula is chosen by default from the copula list box.
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Figure 2.2 Simulate panel.

• Now go to the RUN menu and select Simulate, or click on the Simulate icon.

The panel shown in Figure 2.2 appears. One ‘Run’ is 100 samples. Choose 50

(5000 samples). Choose to save the input samples (there are no output samples

here, as there are no User Defined Functions) and hit RUN. The simulation

is almost instantaneous. The post-processing options are now available.

• Hit GRAPHICS to call the graphics package. When the UNIGRAPH package

opens, hit the icon for scatter plots. The number of samples is controlled by

a slider, and the dot size and colour are adjusted in the options menu. Your

scatter plot with 5000 samples should look like the first picture in Figure 2.3.

• Go back to the dependence panel and repeat these steps using the successively

the elliptical, Frank’s and the Minimum Information copulae. The results

should appear as in Figure 2.3. Note the close resemblance between Frank’s

copulae and the minimum information copula.

Project 2.2 Bivariate normal and normals with copulae

This project compares the bivariate normal distribution and the result of two

normal variables with the above four copulae. Unicorn includes the normal copula,

but in this exercise you build your own bivariate normal distribution.
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Figure 2.3 Diagonal band, elliptical, Frank’s and Minimum Information copulae

with correlation 0.7.

• Create a file with 4 standard normal variables (mean 0, unit standard devia-

tion), named n1, n2, n3 and n4.

• Go to the formula panel, create a User Defined Function (UDF) named ‘Y ’

and type ‘0.51*n1+0.49*n2’ in the formula definition box. (n1, Y ) is a bivari-

ate normal vector with correlation ρ(n1, Y ) = 0.72; the rank correlation is

0.7 (see Chapter 3).

• Join n3 and n4 with rank correlation 0.7 using the minimum information

copula; hit RUN and go to graphics and plot the scatter plots of (n1, Y ) and

(n3, n4). The results should look like the first two graphs in Figure 2.4.

• Go back to the dependence panel and choose Frank’s copula, and make the

scatter plot of (n3, n4) again; the result should look like the third plot in

Figure 2.4. Now do the same with the elliptical and diagonal band copu-

lae. Note that the minimum information and Frank’s copula produce scatter

plots very similar to the bivariate normal plot, whereas the last two are

quite different.
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Figure 2.4 From upper left to lower right bivariate normal and normals with

minimum information, Frank’s, the elliptical and the diagonal band copula; all

with rank correlation 0.7.

Project 2.3 Dependence Graph

The graph in Figure 2.1 is based on the probability that one uniform variate

exceeds its qth percentile given that a second uniform variate has exceeded its

qth percentile. This project shows how to compute these probabilities; we choose

q = 0.5.
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• Create a case with two uniform [0,1] variables, V 1 and V 2.

• We are interested in the distribution of V1 conditional on V 2 ≥ 0.5. To per-

form conditional sampling with UNICORN, we must have a User Defined

Function (UDF) named ‘condition’ taking values 0 or 1; if the value is 1

the sample is accepted, otherwise it is rejected. Create a UDF named ‘con-

dition’ and enter its definition as ‘i1{0.5,V2,1}’. This returns the value 1 if

0.5 ≤ V 2 ≤ 1, and returns zero otherwise. The report is trained to display

the percentiles of UDFs, so we need a UDF equal to V 1. Create a second

UDF named U , and define it simply as V 1.

• In the Dependence panel, make a dependence tree connecting V 1 to V 2.

Assign a rank correlation 0.7 and choose the minimal information copula.

• Go to the Sample panel, choose 50 runs (5000 samples) and hit RUN.

• Click on Display Report. A panel appears with which you can configure the

report. Check the box Output percentiles, and click on Generate.

• When the report appears, scroll down to the percentiles of the UDF U . The

unconditional median of V 1 is 0.5. From the percentiles of U , we see that

there is about 20% probability that U is less or equal to 0.5. There is thus

about 80% probability that V1 is ≥ 0.5, given that V 2 ≥ 0.5. Compare this

to the curve in Figure 2.1 for r = 0.7. This curve crosses the line q = 0.5 at

about the value 0.8.
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Bivariate Dependence

3.1 Introduction

The theory and history of bivariate dependence is rich and easily warrants a separate

volume (Doruet Mari and Kotz (2001); Joe (1997)). In this chapter we restrict

attention to notions and techniques which translate to higher dimensions and lend

themselves to dependence modelling in uncertainty analysis.

The central notion in the study of bivariate dependence is correlation. The

celebrated product moment correlation coefficient was apparently invented by Fran-

cis Galton in 1885, and thrown into its modern form by Karl Pearson in 1895

(Doruet Mari and Kotz (2001), p. 26), for which reason it is also called the Pear-

son correlation. Correlation was invented to further another of Galton’s inventions,

eugenics. Eugenics is the science of improving the human race through selec-

tive breeding . . . an abiding concern of the English aristocracy. Galton applied

correlation and statistical techniques to answer all sorts of questions, from the

efficacy of prayer to the nature of genius (Gould (1981), p. 75). The psychologist

Charles Spearman picked up the lance in 1904 and developed tools, most notably

the Spearman or rank correlation, to isolate and study the illusive g-factor. The

g-factor is hereditary intelligence, that putative quantity that is fostered by good

breeding but not alas by naive plans of social reformers. Neither better education,

nor higher wages, nor improved sanitation can enable the rabble to puncture the

g-ceiling of bad breeding. The threat of working class g’s to the English gentry

was nothing compared to the g’s from southern and eastern Europe washing onto

the shores of the United States. Spearman’s ideas had a profound impact on the

American Immigration Restriction Act, which Spearman applauded in these terms:

“The general conclusion emphasized by nearly every investigator is that as regards

‘intelligence’, the Germanic stock has on the average a marked advantage over the

South European” (cited in Gould (1981), p. 271). Indeed, the results of intelligence

tests administered to immigrants to the US in 1912 showed that 83% of the Jews,
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80% of the Hungarians, 79% of the Italians, and fully 87% of the Russians were

feeble-minded (Kamin (1974), p. 16).

3.2 Measures of dependence

Bivariate dependence is concerned with two related questions:

• How do we measure dependence between two random variables, and

• In which bivariate distributions do we measure them?

The first question leads us to concepts like correlation, rank correlation, Kendall’s

rank correlation, conditional correlation and partial correlation. The second question

leads to the introduction of copulae.

The concept of independence is fundamental in probability theory. We can say

that two events A and B are independent when the occurrence of one of them has

no influence on the probability of the other. Otherwise they are dependent. More

precisely,

Definition 3.1 (Independence) Random variables X1, . . . , Xn are independent if

for any intervals I1, . . . , In,

P{X1 ∈ I1, and . . . Xn ∈ In} =
n∏

i=1

P{Xi ∈ Ii}.

Saying that variables are not independent does not say much about their joint

distribution. What is the nature of this dependence? How dependent are they? How

can we measure the dependence? These questions must be addressed in building a

dependence model.

In this section, we present the most common measures of dependence based

on linear or monotone relationship that are used later in this book. There are many

other concepts of dependence proposed in the literature. For richer exposition and

references to original papers, see for example, Doruet Mari and Kotz (2001); Joe

(1997); Nelsen (1999).

3.2.1 Product moment correlation

The product moment correlation, also called linear or Pearson correlation is defined

as follows:

Definition 3.2 (Product moment correlation) The product moment correlation

of random variables X, Y with finite expectations E(X), E(Y ) and finite variances

σ 2
X, σ 2

Y , is

ρ(X, Y ) =
E(XY) − E(X)E(Y )

σXσY

.
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The product moment correlation can be also defined in terms of regression coeffi-

cients as follows: Let us consider X and Y with means zero. Let bXY minimize

E
(
(X − bXYY)2

)
;

and bYX minimize

E
(
(Y − bYXX)2

)
;

Proposition 3.1

ρ(X, Y ) = sgn (bXY )
√

bXYbYX.

In other words, the product moment correlation of X and Y is the appropriately

signed geometric mean of the best linear predictor of X given Y and the best linear

predictor of Y given X.

If we are given N pairs of samples (xi, yi) from the random vector (X, Y ), we

calculate the sample or population product moment correlation as follows:

ρ(X, Y ) =
∑N

i=1(xi − X)(yi − Y )√∑N
i=1(xi − X)2

√∑N
i=1(yi − Y)2

,

where X = 1
N

∑N
i=1 xi and Y = 1

N

∑N
i=1 yi .

The product moment correlation is standardized:

Proposition 3.2 For any random variables X, Y , with finite means and variances:

−1 ≤ ρ(X, Y ) ≤ 1;

In the propositions below, we see that in case of independent random variables

the product moment correlation is equal to zero. It is not the case, however, that

correlation zero implies independence. This can be immediately seen by taking X

to be any random variable with E(X) = E(X3) = 0, E(X2) > 0. Take Y = X2.

The correlation between X and Y is equal to zero but they are obviously not

independent. In the case of perfect linear dependence, that is, Y = aX + b, where

a �= 0 we get ρ(X, Y ) = 1 if a > 0 and ρ(X, Y ) = −1 if a < 0.

Proposition 3.3 If X and Y are independent, then ρ(X, Y ) = 0.

Proposition 3.4 For a, b real numbers

(i) ρ(X, Y ) = ρ(aX + b, Y ) , a > 0;

(ii) ρ(X, Y ) = −ρ(aX + b, Y ) , a < 0;

(iii) if ρ(X, Y ) = 1 then for some a > 0, b ∈ R, X = aY + b;
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In the proposition below, it is shown how correlation is affected by taking a

mixture of joint distributions with identical univariate first and second moments.

Proposition 3.5 If F and G are two bivariate distribution functions with identical

univariate first and second moments, and H = aF + (1 − a)G, 0 ≤ a ≤ 1, then

ρ(H) = aρ(F ) + (1 − a)ρ(G),

where ρ(H) denotes the product moment correlation of two variables with distri-

bution H .

The product moment correlation is very popular because it is often straightfor-

ward to calculate. For uncertainty analysis it has few disadvantages, however.

a. The product moment correlation is not defined if the expectations and variances

of X and Y are not finite (e.g. Cauchy distribution).

b. The product moment correlation is not invariant under non-linear strictly increas-

ing transformations.

c. The possible values of the product moment correlation depend on marginal

distributions (Theorem 3.1, below).

In the propositions below, these facts are established. Throughout, if X is a

random variable, FX denotes the cumulative distribution function of X.

Proposition 3.6 For given X, Y let

Rho(X, Y ) = {a| there exist W, Z with FX = FW and FY = FZ,

and ρ(W, Z) = a}.

Then Rho is an interval, in general a strict subinterval of [−1,1].

We can see in the example below that Rho(X, Y ) is a strict subinterval of

[−1, 1] that depends on the marginal distributions. Thus, given marginal distribu-

tions FX and FY for X and Y , not all product moment correlations between −1

and 1 can be attained.

Example 3.1 (Embrechts et al. (2002)) Let X and Y be random variables with

support [0,∞], so that FX(x) = FY (y) = 0 for all x, y < 0. Let the right endpoints

of FX and FY be infinite: the suprema of the sets {x |FX(x) < 1}, {y |FY (y) <

1} are infinite. Assume that ρ(X, Y ) = −1, which would imply Y = aX + b, with

a < 0 and b ∈ R. It follows that for all y < 0

FY (y) = P(Y ≤ y) = P(X ≥ (y − b)/a)

≥ P(X > (y − b)/a) = 1 − FX((y − b)/a) > 0,

which contradicts the assumption FY (y) = 0 for y < 0. �
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Lemma 3.1 shows how the product moment correlation can be expressed in

terms of the joint cumulative distribution function of random vectors (X, Y ). This

lemma is essential in the proof of Theorem 3.1.

Lemma 3.1 Let (X, Y ) be a vector of continuous random variables with support

� = [a, b] × [c, d] (a, b, c, d can be infinite). Let F(x, y) be the joint cumula-

tive distribution function of (X, Y ) with cumulative marginal distribution functions

FX(x) and FY (y). Assume 0 < σ 2
X, σ 2

Y < ∞ then

ρ(X, Y ) =
1

σXσY

∫∫

�

F(x, y) − FX(x)FY (y) dx dy.

We can now determine the set of product moment correlations, which are con-

sistent with given margins. We say that random variables X and Y are comonotonic

if there is a strictly increasing function G such that X = G(Y) except on a set of

measure zero; X and Y are countermonotonic if X and −Y are comonotonic.

Theorem 3.1 (Hoeffding) (Hoeffding (1940)) Let (X, Y ) be a random vector with

marginal distributions FX and FY , and with 0 < σ 2
X, σ 2

Y < ∞; then

a. The set of all possible correlations is a closed interval [ρmin, ρmax] and ρmin <

0 < ρmax.

b. The extremal correlation ρ = ρmin is attained if and only if X and Y are coun-

termonotonic; similarly, the extremal correlation ρ = ρmax is attained if X

and Y are comonotonic.

From Hoeffding’s theorem, we get that ρmin < 0 < ρmax. There are examples

for which this interval is very small (Embrechts et al. (2002)).

Example 3.2 Let X = eZ, Y = eσW , where Z, W are standard normal variables.

Then X and Y are lognormally distributed, and:

lim
σ→∞

ρmin(X, Y ) = lim
σ→∞

ρmax(X, Y ) = 0.

Proof.

From Hoeffding’s theorem ρmax, ρmin, are attained by taking W = Z, W = −Z

respectively. We calculate using the properties of the lognormal distribution. Since

E(Y) = e0.5σ 2
and Var(Y ) = eσ 2

(eσ 2 − 1) then

ρmax(X, Y ) =
e0.5(1+σ)2 − e0.5e0.5σ 2

√
e(e − 1)eσ 2

(eσ 2−1)

=
eσ − 1√

(e − 1)(eσ 2 − 1)
.
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Similarly,

ρmin(X, Y ) =
e−σ − 1√

(e − 1)(eσ 2 − 1)
.

Calculation of limits of ρmin and ρmax concludes the proof. �

3.2.2 Rank correlation

The Spearman, or rank correlation was introduced by Spearman (1904). K. Pearson

regarded the introduction of rank correlation as ‘a retrograde step. . . I cannot there-

fore look upon the correlation of ranks as conveying any real idea of the correlation

of variates, unless we have a means of passing from the correlation of ranks to

the value of the correlation of the variates. . .’ (Pearson (1904), p. 2). To this end,

Pearson proved in Pearson (1904) the result in Proposition 3.25.

Definition 3.3 (Rank correlation) The rank correlation of random variables X, Y

with cumulative distribution functions FX and FY is

ρr(X, Y ) = ρ(FX(X), FY (Y )).

We will denote the rank correlation as ρr or sometimes simply r .

The population version of the rank correlation can be defined as proportional

to the probability of concordance minus the probability of discordance for two

vectors (X1, Y1) and (X2, Y2), where (X1, Y1) has distribution FXY with marginal

distribution functions FX and FY and X2, Y2 are independent with distributions FX

and FY . Moreover (X1, Y1), (X2, Y2) are independent (Joe (1997)):

ρr = 3 (P[(X1 − X2)(Y1 − Y2) > 0] − P[(X1 − X2)(Y1 − Y2) < 0]) . (3.1)

If we are given N pairs of samples (xi, yi) for the random vector (X, Y ), then

to calculate rank correlation we must first replace the value of each xi by the value

of its rank among the other xi’s in the sample, that is 1, 2, . . . , N . If the xi are all

distinct, then each integer will occur precisely once. If some of xi’s have identical

values, then we assign to these ‘ties’ the mean of ranks that they would have had

if their values were slightly different (for more information about how to deal with

ties see Press et al. (1992)). We apply the same procedure for the yi’s. Let Ri be

the rank of xi among the other x’s, Si be the rank of yi among the other y’s. Then

the rank correlation is defined to be a product moment correlation of ranks and can

be calculated as follows:

ρr (X, Y ) =
∑N

i=1(Ri − R)(Si − S)√∑N
i=1(Ri − R)2

√∑N
i=1(Si − S)2

,

where R = 1
N

∑N
i=1 Ri and S = 1

N

∑N
i=1 Si .
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From Proposition 3.7 and Definition 3.3, there is a clear relationship between

the product moment and the rank correlation. The rank correlation is a correlation

of random variables transformed to uniform random variables. Hence we get imme-

diately that rank correlation is symmetric and takes values from the interval [−1,1].

Proposition 3.7 If X is a random variable with a continuous invertible cumulative

distribution function FX, then FX(X) has the uniform on [0,1] distribution, denoted

by U(0, 1).

Rank correlation is independent of marginal distributions and invariant under

non-linear strictly increasing transformations.

Proposition 3.8

a. If G : R → R is a strictly increasing function, then

ρr (X, Y ) = ρr(G(X), Y );

b. If G : R → R is a strictly decreasing function, then

ρr(X, Y ) = −ρr(G(X), Y );

c. If ρr(X, Y ) = 1, then there exists a strictly increasing function G : R → R such

that

X = G(Y).

In contrast to the product moment correlation, the rank correlation always exists

and does not depend on marginal distributions.

Proposition 3.9 For given X, Y having continuous invertible distribution func-

tions let

Rnk(X, Y ) = {a| there exist W, Z with FX = FW and FY = FZ,

and ρr (W, Z) = a}.

Then Rnk = [−1,1].

By definition, product moment and rank correlations are equal for uniform

variables, but in general they are different. The following proposition shows how

different they can be (Kurowicka (2001)).

Proposition 3.10 Let Xk = U k , k ≥ 1, then

ρ(X1, Xk) =
√

3(2k + 1)

k + 2
→ 0 as k → ∞;

ρr(X1, Xk) = 1.

For the joint normal distribution, the relationship between rank and product

moment correlations is known (Section 3.5, Proposition 3.25).
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The rank correlation can be expressed in terms of copula (Section 3.4, Propo-

sition 3.26).

3.2.3 Kendall’s tau

Let (X1, Y1) and (X2, Y2) be two independent pairs of random variables with

joint distribution function F and marginal distributions FX and FY . Kendall’s rank

correlation, also called Kendall’s tau (Kendall (1938)) is given by

τ = P[(X1 − X2)(Y1 − Y2) > 0] − P[(X1 − X2)(Y1 − Y2) < 0]. (3.2)

To calculate Kendall’s tau from data, we do not have to rank the data. If we

have N data points (xi, yi), we consider all N(N−1)
2

unordered pairs of data points.

We call the pair concordant if the ordering of the two x’s is the same as the

ordering of the two y’s. We call a pair discordant if the ordering of the two x’s

is opposite from the ordering of the two y’s. If there is a tie in either of the two

x’s or the two y’s, then the pair is neither concordant nor discordant. If the tie is

x’s, we will call the pair an ‘extra- y pair’. If the tie is in the y’s, we will call the

pair ‘extra- x pair’. If the tie is in both the x’s and the y’s, we do not call the pair

anything at all. The Kendall’s τ is the combination of counts:

τ =
concord − discord

√
concord + discord + extra-y

√
concord + discord + extra-x

.

We can easily see that τ is symmetric and normalized to the interval [−1,1]. It

is also straightforward to verify the following proposition:

Proposition 3.11 Let X and Y be random variables with continuous distributions.

If X and Y are independent, then τ (X, Y ) = 0.

Kendall’s tau can be expressed in terms of the copula (Section 3.4, Proposi-

tion 3.26). This entails that Kendall’s tau is invariant under continuous, increas-

ing transformations. The relationship between product moment correlation and

Kendall’s tau for variables joined by the normal distribution is known (Propo-

sition 3.26, Section 3.5).

3.3 Partial, conditional and multiple correlations

Partial correlation A partial correlation can be defined in a way similar to

product moment correlation in terms of partial regression coefficients. Consider

variables Xi with zero mean and standard deviations σi = 1, i = 1, . . . , n. Let the

numbers b12;3,...,n, . . . , b1n;2,...,n−1 minimize

E
(
(X1 − b12;3,...,nX2 − . . . − b1n;2,...,n−1Xn)

2
)
.

Definition 3.4 (Partial correlation)

ρ12;3,...,n = sgn(b12;3,...,n)
√

b12;3,...,nb21;3,...,n.
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Equivalently, we could define the partial correlation as

ρ12;3,...,n = −
C12√
C11C22

,

where Ci,j denotes the (i, j)th cofactor of the correlation matrix; that is, the deter-

minant of the submatrix is gotten by removing row i and column j .

The partial correlation ρ12;3,...,n can be interpreted as the correlation between the

orthogonal projections of X1 and X2 on the plane orthogonal to the space spanned

by X3, . . . , Xn. Partial correlations can be computed from correlations with the

following recursive formula (Yule and Kendall (1965)) (an illustrative calculation

for three variables is given in the Supplement):

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;3,...,n−1 · ρ2n;3,...,n−1√

1 − ρ2
1n;3,...,n−1

√
1 − ρ2

2n;3,...,n−1

. (3.3)

Conditional correlation

Definition 3.5 (Conditional correlation) The conditional correlation of Y and Z

given X

ρYZ|X = ρ(Y |X, Z|X)

=
E(YZ | X) − E(Y | X)E(Z | X)

σ(Y | X)σ(Z | X)

is the product moment correlation computed with the conditional distribution of

Y and Z given X.

For joint normal distribution, partial and conditional correlations are equal

(Proposition 3.29). In general, however, partial and conditional correlations are

not equal and the difference can be large:1

Proposition 3.12 If

a. X is distributed uniformly on the interval [0, 1],

b. Y, Z are conditionally independent given X,

c. Y |X and Z|X are distributed uniformly on [0, Xk], k > 0,

then

|ρYZ|X − ρYZ;X| =
3k2(k − 1)2

4(k4 + 4k2 + 3k + 1)
;

which converges to 3
4

as k → ∞.

Since Y and Z are conditionally independent given X, their conditional cor-

relation is zero. Their partial correlation, however, is not zero. This is in sharp

contrast to the situation described in Proposition 3.3.

1This example was suggested by P. Groeneboom, and published in Kurowicka (2001).
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Multiple correlation

Definition 3.6 (Multiple correlation) The multiple correlation R1{2,...,n} of vari-

able X1 with respect to X2, . . . , Xn is given by:

1 − R2
1{2,...,n} =

D

C11

, (3.4)

where D is the determinant of the correlation matrix and C11 is the (1, 1) cofac-

tor. It is the correlation between X1 and the best linear predictor of X1 based on

X2, . . . , Xn.

In Kendall and Stuart (1961) it is shown that R1{2,...,n} is non-negative, is

invariant under permutation of {2, . . . , n} and satisfies:

1 − R2
1{2,...,n} = (1 − R2

1{3,...,n})(1 − ρ2
1,2;3...n)

= (1 − ρ2
1,n)(1 − ρ2

1,n−1;n)(1 − ρ2
1,n−2;n−1,n) . . . (1 − ρ2

1,2;3...n).

Further, it is easy to show that (see Exercise 3.7)

D =
(
1 − R2

1{2,...,n}
) (

1 − R2
2{3,...,n}

)
. . .
(
1 − R2

n−1{n}
)
. (3.5)

Of course Rn−1{n} = ρn−1,n.

3.4 Copulae

The notion of ‘copula’ was introduced to separate the effect of dependence from

the effect of marginal distributions in a joint distribution. A copula is simply a

distribution on the unit square with uniform marginal distributions. (Here, we will

also consider copulae as distributions on [− 1
2
, 1

2
]2 with uniform margins on [− 1

2
, 1

2
].

This transformation simplifies calculations since then variables have means zero.)

Copulas are then functions that join or ‘couple’ bivariate distribution functions to

their marginal distribution functions.

Definition 3.7 (Sklar (1959)) Random variables X and Y are joined by copula C

if their joint distribution can be written

FXY(x, y) = C(FX(x), FY (y)).

Every continuous bivariate distribution can be represented in terms of a cop-

ula. Moreover, we can always find a unique copula that corresponds to a given

continuous joint distribution. For example, if �ρ is the bivariate normal cdf with

correlation ρ (see Section 3.5) and �−1 the inverse of the standard univariate

normal distribution function then

Cρ(u, v) = �ρ

(
�−1(u), �−1(v)

)

u, v ∈ [0, 1] is called normal copula (see Figure 3.1).
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Figure 3.1 A density function of the normal copula with correlation 0.8.

If fX,Y and fX, fY denote the nonzero density and marginal densities of (X, Y )

with distribution function FXY, then

c(FX(x), FY (y)) =
fXY(x, y)

fX(x)fY (y)
.

is the copula density of C. Hence the density can be written in terms of the copula

density and the marginal densities as:

fXY(x, y) = c(FX(x), FY (y))fX(x)fY (y).

It is easy to construct a distribution CI (U, V ) with uniform margins such that

U and V are independent:

CI (u, v) = uv (u, v) ∈ [0, 1]2.

The rank correlation and Kendall’s tau can be expressed in terms of the copula

C (Nelsen (1999)).

Proposition 3.13 If X and Y are continuous random variables with joint distribu-

tion function F and margins FX and FY , let C denote the copula, that is, F(x, y) =
C(FX(x), FY (y)), then Kendall’s tau and the rank correlation for X and Y can be
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expressed as:

τ = 4

∫

[0,1]2
C(s, t)dC(s, t)− 1,

ρr = 12

∫

[0,1]2
stdC(s, t) − 3 = 12

∫

[0,1]2
C(s, t) ds dt − 3.

An overview of copulae can be found in e.g. Dall’Aglio et al. (1991);

Doruet Mari and Kotz (2001); Joe (1997); Nelsen (1999). We present here only few

families of copulae, which will be used in subsequent chapters. We are particularly

interested in families of copulae that have the zero independence property: If the

copula has zero correlation, then it is the independent copula.

3.4.1 Fréchet copula

The simplest copulae are the Fréchet copula CL and CU (Fréchet (1951)). They

are also called Fréchet bounds because it can be shown that for any copula C

CL ≤ C ≤ CU .

CL and CU are bivariate distributions such that mass is spread uniformly on

the main diagonal or anti-diagonal, respectively. We get for (u, v) ∈ [0, 1]2

CL(u, v) = max(u + v − 1, 0),

CU (u, v) = min(u, v).

In Figure 3.2, the Fréchet copula CL and CU and the independent copula are

shown.

Copulae CU and CL describe complete positive and negative dependence,

respectively.

Proposition 3.14 If U, V are joined by copula CU (CL), then ρr (U, V ) = 1 (−1).

A mixture of Fréchet copulae is a copula for which the mass is concentrated

on the diagonal and anti-diagonal depending on parameter A ∈ [0, 1]:

CA(u, v) = (1 − A)CL(u, v) + ACU (u, v)

for (u, v) ∈ [0, 1]2.

By Proposition 3.5 all correlation values from the [−1,1] interval can be real-

ized in this way. We can construct a mixture of the Fréchet copula with correlation

zero (take A = 1
2
). Of course variables joined by this mixture will not be inde-

pendent. The Fréchet copulae are easy to simulate and give mathematical insight.

However, as they concentrate mass on a set of Lebesque measure zero, they are

not interesting for applications.
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Figure 3.2 Starting from the left CL, CI and CU .

3.4.2 Diagonal band copula

One natural generalization of Fréchet copula is the diagonal band copula introduced

in Cooke and Waij (1986). In contrast to Fréchet copula, for positive correlation

the mass is concentrated on the diagonal band with vertical bandwidth β = 1 − α.

Mass is distributed uniformly on the inscribed rectangle and is uniform but ‘twice

as thick’ in the triangular corners (see Figure 3.3). We can easily verify that the

height of the density function on the rectangle is equal to 1
2β

and on the triangles
1
β

. For negative correlation, the band is drawn between the other corners.

For positive correlations the density bα of the diagonal band distribution is

bα(u, v) =
1

2(1 − α)

(
I[α−1,1−α](u − v) + I[0,1−α](u + v) + I[1+α,2](u + v)

)
,

where 0 ≤ α ≤ 1, 0 ≤ u, v ≤ 1 and IA denotes indicator function of A. For negative

correlations, the mass of the diagonal band density is concentrated in a band along

the diagonal v = 1 − u. We then have bandwidth β = 1 + α,−1 ≤ α ≤ 0.

From this construction, we can easily see that the diagonal band distribution has

uniform margins, is symmetric in u and v and the correlation between variables

joined by this copula depends on bandwidth β. Moreover, for α = 0 the vari-

ables are independent. For α = 1, they are completely positively correlated and for
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Figure 3.3 A diagonal band copula.

α = −1 they are completely negatively correlated. The relationship between the

parameter of the diagonal band copula and a correlation is given below (Cooke

and Waij (1986)).

Proposition 3.15 Let (U, V ) be distributed according to bα(u, v) with vertical

bandwidth β and correlation ρ. Then the following relations hold

β = 1 − |α| =
2

3
−

4

3
sin

(
1

3
arcsin

(
27

16
|ρ| −

11

16

))
, (3.6)

ρ = sign(α)
(
(1 − |α|)3 − 2(1 − |α|)2 + 1

)
. (3.7)

β given by (3.6) is one of the three real solutions of (3.7). The two other solutions

2

3
±

2
√

3

3
cos

(
1

3
arcsin

(
27

16
|ρ| −

11

16

))
+

2

3
sin

(
1

3
arcsin

(
27

16
|ρ| −

11

16

))

do not yield values for β ∈ [0, 1].

The density of the diagonal band copula with correlation 0.8 is shown in

Figure 3.4.

Simulation of correlated variables with the diagonal band copula is very simple.

First we sample u ∼ U(0, 1). If u ∈ (β, 1 − β), then the conditional distribution

V |U = u is uniform on the interval (u − β, u + β). Sampling from this distribution,

we obtain v. If u is smaller than β, then the conditional distribution given u is
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Figure 3.4 A density of the diagonal band copula with correlation 0.8.

piece-wise uniform: uniform on (0, β − u) and on (−u + β, u + β) with density

on the first interval twice that on the second interval. The same holds mutatis

mutandis when u is greater than 1 − β.

For the diagonal band copula, we can find the conditional distribution and its

inverse.

Proposition 3.16 Let (U, V ) be distributed according to bα(u, v), −1 ≤ α ≤ 1.

Then the conditional and inverse conditional distribution of V |U are the following:

FV |U (v|u;α) =





1
1−α

v u < 1 − α and v < −u + 1 − α
1

1−α
(v − α) u > α and v > −u + 1 + α

1 u < α and v > u + 1 − α

0 v < u − 1 + α
1

2(1−α)
(v − u + 1 − α) otherwise

and

F−1
V |U (t |u;α) =





(1 − α)t u < 1 − α and t < 1 − u
1−α

(1 − α)t + α u > α and t > 1−u
1−α

2(1 − α)t + u − 1 + α otherwise

for 0 ≤ α ≤ 1. Moreover, for −1 ≤ α ≤ 0,

FV |U (v|u;α) = FV |U (v|1 − u;−α),

F−1
V |U (t |u;α) = F−1

V |U (t |1 − u;−α).
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Having inverse cumulative distribution functions, the simulation of correlated

uniform variables (U, V ) with the diagonal band copula can be done with the

following algorithm:

u = u1,

v = F−1
V |U (u2|u, α),

(3.8)

where u1, u2 are realizations of two independent uniformly distributed random

variables U1, U2.

To simulate correlated variables X and Y with marginal distribution functions

FX and FY and rank correlation rXY using the diagonal band copula, we simply

sample U, V with the diagonal band with α corresponding to rXY and apply the

transformations:

x = F−1
X (u), y = F−1

Y (v).

The main advantage with the diagonal band distribution is that it can be easily

computed. This is convenient in modelling correlated events.

Example 3.3 Let events A1, A2 each have probability 0.1. Find the diagonal band

distribution such that

P(A1, A2) = 0.075.

0.1

0.1

A 1

1

0

Note that if A1 and A2 were independent we should have P (A1 ∩ A2) = 0.01. We

want to find α such that probability of the square [0, 0.1]2 is equal to 0.075. Using

the properties of the diagonal band copula, we get

P(A1, A2) = 0.075 =
(1 − α)2

2

1

1 − α
+

(1 − α)2

2

1

2(1 − α)

+ (0.1 − (1 − α))
√

2(1 − α)
√

2
1

2(1 − α)

= 0.1 −
1 − α

4
;

so

α = 1 − 0.1 = 0.9.

Using formula (3.7), we find that to realize P(A1, A2) = 0.075 we must take diag-

onal band copula with correlation 0.981. �
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3.4.3 Generalized diagonal band copula

The construction of diagonal band copula can be seen as putting the uniform density

on [−β, β] and translating this along the diagonal, always folding the mass that

lies outside the unit square inwards. It’s easier to picture than to describe, see

Figure 3.5. This procedure can be generalized by putting a non-uniform density

G(z) along lines perpendicular to the U axis such that G(0) lies on the diagonal.

In this way, a band of densities G(z) will be constructed (see Figure 3.5).

This construction was presented in Bojarski (2001) and Ferguson (1995). We

follow here the notation used in Ferguson (1995).

Let Z be absolutely continuous with density G(z) for z ∈ [0, 1]. The density

function of the generalized diagonal band copula is

bg(u, v) =
1

2
[G(|u − v|) + G(1 − |1 − u − v|)] for 0 < u, v < 1. (3.9)

Proposition 3.17 The generalized diagonal band distribution has uniform margins

and has rank correlation given by

ρr = 1 + 4E(Z3) − 6Var(Z),

where Z has density G.

When Z puts all its mass on 1, we get correlation −1, when Z has the uniform

distribution on [0,1], then U and V are independent, and when Z puts all its mass

on 0, correlation 1 is realized. The generalized diagonal copula generated with beta

distribution with parameters 3,3 is shown in Figure 3.6.

0 1

1

G(z)

U

V

Figure 3.5 Construction of the generalized diagonal band copula.
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Figure 3.6 Generalized diagonal band copulae with G(z) = beta(3, 3).

From (3.9) the conditional distribution of V given U follows:

(V |U = u) =
{

|Z − u| with probability 1/2

1 − |1 − Z − u| with probability 1/2.

This suggests a simple sampling method for this distribution. Sample U from

a uniform distribution on (0,1), choose Z independently from G and toss indepen-

dently a fair coin. On heads, let V = |Z − U | and on tails let V = 1 − |1 − Z − U |.
In Figure 3.7, we present three more examples of density functions of the

generalized diagonal band distribution. We can see how interesting shapes can be

obtained.

It has recently been shown that mixtures of diagonal band copulae are a strict

subclass of the generalized diagonal band copulae (Lewandowski (2004)).

3.4.4 Elliptical copula

The elliptical copula2 is absolutely continuous and can realize any correlation

value in (−1, 1) (Kurowicka et al. (2000)). In constructing this copulae proper-

ties of elliptically contoured and rotationally invariant random vectors were used

2The name of this copula was chosen to acknowledge the distribution that was used in constructing

this copula. The uniform distribution on the ellipsoid in R3 was projected to two dimensions. There

is, however, another usage according to which elliptical copulae correspond to elliptically contoured

distributions.
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Figure 3.7 Density functions of the generalized diagonal copulae. Below each

density is the corresponding G(z) distribution.

(Hardin (1982); Misiewicz (1996)). A density function of the elliptical copula with

correlation ρ ∈ (−1, 1) is the following

fρ(u, v) =
{ 1

π

√
1
4 (1−ρ2)−u2−v2+2ρuv

(u, v) ∈ B

0 (u, v) �∈ B,

where

B =



(u, v)| u2 +

(
v − ρu√
1 − ρ2

)2

<
1

4



 .

Figure 3.8 depicts a graph of the density function of the elliptical copula with

correlation ρ = 0.8.

In the proposition below, some properties of the elliptical copula are studied.

We can find a closed form for the inverse conditional distribution, which is very

important for simulation (algorithm 3.8).

Proposition 3.18 Let U, V be uniform on [− 1
2
, 1

2
]. If U, V are joined by the ellip-

tical copula with correlation ρ then
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Figure 3.8 A density function of an elliptical copula with correlation 0.8.

a. E(V |U = u) = ρU ,

b. Var(V |U = u) = 1
2
(1 − ρ2)

(
1
4
− U 2

)
,

c. for ρu −
√

1 − ρ2

√
1
4
− u2 ≤ v ≤ ρu +

√
1 − ρ2

√
1
4
− u2

FV |U (v|u) = 1
2
+ 1

π
arcsin

(
v−ρu√

1−ρ2
√

1
4−u2

)
,

d. for − 1
2
≤ t ≤ 1

2

F−1
V |U (t |u) =

√
1 − ρ2

√
1
4
− u2sin(πt) + ρu.

The elliptical copula inherits some attractive properties of the normal distri-

bution. For example, it has linear regression (property (a) in the preceding text),

conditional correlations are constant (see below) and are equal to partial correla-

tions.

Proposition 3.19 Let X, Y, Z be uniform on [− 1
2
, 1

2
] and let X, Y and X, Z be

joined by elliptical copula with correlations ρXY and ρXZ respectively and assume

that the conditional copula for YZ given X does not depend on X; then the condi-

tional correlation ρYZ|X is constant in X and

ρYZ;X = ρYZ|X.
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The elliptical copula does not enjoy the zero independence property. For cor-

relation zero, mass is concentrated in a disk.

3.4.5 Archimedean copulae

Another very popular family are the Archimedean copulae. Properties of this fam-

ily were studied by many authors for example, Doruet Mari and Kotz (2001);

Genest and MacKay (1986); Joe (1997); Nelsen (1999). A function ϕ : (0, 1] →
[0,∞), which is convex, strictly decreasing with a positive second derivative such

that ϕ(1) = 0 is called a generator. If we define the inverse (or quasi inverse)

by

ϕ−1(x) =
{

ϕ−1(x) for 0 ≤ x ≤ ϕ(0)

0 for ϕ(0) < x < ∞,

then an Archimedean copula can be defined as follows.

Definition 3.8 (Archimedean copula) Copula C(u, v) is archimedean with gen-

erator ϕ if

C(u, v) = ϕ−1[ϕ(u) + ϕ(v)]. (3.10)

Since the second derivative ϕ′′ of ϕ exists it is possible to find a density function

c of C:

c(u, v) = −
ϕ′′(C)ϕ′(u)ϕ′(v)

(ϕ′(C))3

The following elementary properties of Archimedean copula can be easily

checked (Genest and MacKay (1986)).

Proposition 3.20 Let C(u,v) be given by (3.10), then

a. C(u,v)=C(v,u).

b. C is a copula.

c. U,V joined by C are independent if ϕ(x) = −c log(x), where c > 0.

There are many families of Archimedean copulae but only Frank’s family

(Frank (1979)) has a property of reflection symmetry, that is, c(u, v) = c(1 − u,

1 − v). We find this property very important from an application point of view,

so only Frank’s family of Archimedean copula will be discussed further. Frank’s

copula has one parameter θ :

C(u, v; θ) = −
1

θ
log

(
1 +

(e−θu − 1)(e−θv − 1)

(e−θ − 1)

)
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Figure 3.9 Density function of the Frank’s Archimedean copulae with parameter

θ = 7.9026, and correlation 0.8.

with generating function

ϕ(x) = − ln
e−θx − 1

e−θ − 1
.

When θ → ∞ (θ → −∞), then Frank’s copula corresponds to CU (CL). θ → 0

gives independent copula. Figure 3.9 shows Franks copula density with parameter

θ = 7.9026 and correlation 0.8.

The following proposition shows a simple way to calculate Kendall’s tau for

Archimedean copulae (Genest and MacKay (1986)).

Proposition 3.21 Let U and V be random variables with an Archimedean copula

C with the generating function ϕ. Then the Kendall’s tau for U and V is given by

τ (U, V ) = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt.

Proposition 3.22 (Joe (1997)) Let U and V be random variables with the Frank’s

Archimedean copula C(u, v; θ), then the density, conditional distribution of V |U
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and inverse of the conditional distribution are as follows:

c(u, v; θ) = θ(1 − e−θ )e−θ(u+v)/[1 − e−θ − (1 − e−θu)(1 − e−θv)]2,

CV |U (v|u; θ) = e−θu[(1 − e−θ )(1 − e−θv)−1 − (1 − e−θu)]−1,

C−1
V |U (t |u; θ) = −θ−1 log{1 − (1 − e−θ )/[(t−1 − 1)e−θu + 1]}.

3.4.6 Minimum information copula

Intuitively, information is a scale-free measure of the ‘concentratedness’ in a dis-

tribution. It is mathematically more correct to speak of ‘relative information’ of

one distribution with respect to another. Other terms are ‘cross entropy’, ‘relative

entropy’ and ‘directed divergence’ (Kullback (1959)).

Definition 3.9 (Relative information) If f and g are densities with f absolutely

continuous with respect to g, then the relative information I (f |g) of f with respect

to g is

I (f |g) =
∫

f (x) log

(
f (x)

g(x)

)
dx.

If (p1, . . . , pn) and (q1, . . . , qn) are probability vectors with qi > 0, i = 1, . . . n

then the relative information of p with respect to q is

I (p | q) =
n∑

i=1

pi ln(pi/qi).

If pi = 0, then by definition pi ln(pi/qi) = 0.

Properties of I (f |g) are that I (f |g) ≥ 0 and I (f |g) = 0 ⇔ f = g (see

Exercise 3.9). I (f |g) can be interpreted as measuring the degree of ‘uniformness’

of f with respect to g.

The minimum information copula was introduced and studied in Meeuwissen

(1993) and Meeuwissen and Bedford (1997). The construction is based on the fact

that for any ρr ∈ (−1, 1) there is a unique bivariate joint distribution satisfying

the following constraints:

a. the marginal distributions are uniform on I = (−1/2, 1/2];

b. the rank correlation is ρr ∈ (−1, 1);

c. the distribution has minimal information relative to uniform distribution among

all distributions with rank correlation ρr .
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This is proved by solving the following optimization problem.

minimize ∫

I

∫

I

f (x, y) log(f (x, y)) dx dy

subject to ∫

I

f (x, y) dx = 1 ∀y ∈ I,

∫

I

f (x, y) dy = 1 ∀x ∈ I,

∫

I

xyf (x, y) dx dy = t,

f (x, y) ≥ 0 (x, y) ∈ I 2,

f is a continuous function.

It is shown in Meeuwissen and Bedford (1997) that this optimization problem has

a unique solution of the form

κ(x, θ)κ(y, θ)eθxy,

where κ : I × R → R is continuous and θ is a parameter corresponding to correla-

tion. Moreover, the solution to the continuous optimization problem can be approx-

imated by a sequence of discrete distributions of the following form (Nowosad

(1966))

P (xi, xj ) =
1

n2
κi(θ)κj (θ)eθxixj ,

where xi = (2i − 1 − n)/n for i = 1, . . . , n, and where P (xi, xj ) is a solution of

the discretized problem:

minimize
n∑

i=1

n∑

i=1

pij log(pi,j )

subject to
n∑

i=1

pij =
1

n
j = 1, . . . , n,

n∑

j=1

pij =
1

n
i = 1, . . . , n,

n∑

i=1

n∑

i=1

xiyjpij = θ,

pij ≥ 0,

where (xi, xj ) = ((2i − 1 − n)/n, (2j − 1 − n)/n) and pij = P (xi, xj ).
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Figure 3.10 A density function of minimum information copula with correlation

0.8 (taking values on [−0.5, 0.5]2).

The minimum information copula is attractive because it realizes a specified

rank correlation by ‘adding as little information as possible’ to the product of the

margins. Its main disadvantage is that it does not have a closed functional form.

All calculations with this copula must involve numerical approximations.

An immediate consequence of this result is the following: given the arbitrary

continuous marginal distributions FX, FY , and ρr ∈ (−1, 1), there is a unique joint

distribution having these margins with rank correlation ρr , and having minimal

information with respect to the independent distribution with margins FX and FY .

3.4.7 Comparison of copulae

In this section, we compare the information values for the above copulae as func-

tions of the rank correlation (Lewandowski (2004)).

The relative information values presented in Table 3.1 have been calculated

numerically by first generating a given copula density on a grid of 500 by 500 cells,

and then calculating the relative information based on the discrete approximation

of its density. We used this method because there is no closed form expression

for the density of the minimum information copula. The order of the copulae in

the table reflects their performance in terms of the relative information in compar-

ison with the minimum information copula with given rank correlation. Columns

B-E express the relative information as a percentage of the relative information

of the minimum information copula for the indicated correlation value. Table 3.1
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Table 3.1 The relative information of the minimum information copula for a given

rank correlation (A) and percent increment for other copulae.

Rank

correlation
Copula

r A B C D E

0.1 0.00498 0.80% 5.02% 538.76% 11013.25%

0.2 0.02016 0.94% 5.16% 247.37% 2721.58%

0.3 0.04630 1.10% 5.62% 150.60% 1186.33%

0.4 0.08489 1.35% 7.03% 99.41% 648.72%

0.5 0.13853 1.69% 7.54% 69.40% 399.72%

0.6 0.21212 2.02% 6.19% 51.03% 263.74%

0.7 0.31526 2.35% 4.78% 37.39% 180.75%

0.8 0.47140 2.45% 3.64% 27.45% 124.70%

0.9 0.75820 2.18% 2.76% 18.58% 81.85%

0.95 1.06686 1.45% 1.91% 14.24% 60.51%

0.99 1.82640 1.16% 0.85% 8.84% 37.26%

A - Minimum information copula

B - Frank’s copula

C - Generalized diagonal band copula generated with the triangle distribution

D - Diagonal band copula

E - Elliptical copula

shows that Frank’s copula would be an attractive substitute for the minimal infor-

mation copula: It does not add much information to the product of margins, it

enjoys the zero independence property and it admits closed form expressions for

the conditional and inverse conditional distributions. The relationship between the

parameter of Frank’s copula and the correlation must be found using numerical

integration.

3.5 Bivariate normal distribution

The normal distribution is broadly used in practice. We recall the basic definitions

and properties of this distribution.

3.5.1 Basic properties

The Normal density with parameters µ and σ > 0 is:

fµ,σ (x) =
1

√
2πσ

exp

[
−

(x − µ)2

2σ 2

]
, −∞ < x < ∞.
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and distribution function

Fµ,σ (x) =
∫ x

−∞
fµ,σ (s) ds.

The normal distribution with µ = 0 and σ = 1 is called the standard normal

distribution.

Any linear combination of normal variables is normal. If X has a normal

distribution with parameters µ and σ , then X−µ

σ
has a standard normal distribution.

The standard bivariate normal distribution is a joint distribution of two standard

normal variables X and Y and has a density function

fρ(x, y) =
1

2π
√

1 − ρ2
exp

[
−

x2 − 2ρxy + y2

2(1 − ρ2)

]
, −∞ < x, y < ∞.

The parameter ρ is equal to the product moment correlation of X and Y .

It is straightforward to show the following two propositions.

Proposition 3.23 If (X, Y ) has the standard normal distribution then ρ(X, Y ) = 0

is a necessary and sufficient condition for X and Y to be independent.

Proposition 3.24 If (X, Y ) has the standard bivariate normal distribution with cor-

relation ρ, then

a. the marginal distributions of X and Y are standard normal;

b. the conditional distribution of Y given X = x is normal with mean ρx and stan-

dard deviation
√

1 − ρ2.

We can find a relationship between the product moment, rank correlation and

Kendall’s tau.

Proposition 3.25 (Pearson (1904)) Let (X, Y ) be random vectors with joint normal

distribution, then

ρ(X, Y ) = 2 sin
(π

6
ρr(X, Y )

)
.

Proposition 3.26 Let (X, Y ) be random vectors with joint normal distribution then

τ (X, Y ) = 2 arcsin (ρ(X, Y )) /π;

3.6 Multivariate extensions

3.6.1 Multivariate dependence measures

The bivariate dependence measures can be extended to the multivariate case by

grouping all pairwise measures of dependence in the form of a matrix, say M. If the
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pairwise measures are the product moment correlations, then the matrix is called

the product moment correlation matrix. For n variables, there are
(
n
2

)
off-diagonal

terms in this matrix; for 100 variables that translates to 4950 correlations. Moreover,

the matrix must be positive definite; that is, for all x ∈ Rn \ {O}, xT Mx > 0.

Equivalently, a matrix is positive definite if all its eigenvalues are positive. This

constraint makes elements of the matrix M algebraically dependent. Changing one

element generally requires changing others as well. In the example below, it is

shown how elements of M are constrained when all off-diagonal terms of the

matrix are equal.

Example 3.4 Let M be n × n symmetric matrix with ones on the main diagonal

and the same off-diagonal terms mij = x when i �= j . Then M is positive definite

if, and only if, x ∈ (− 1
n−1

, 1).

Proof.

It is easy to see that M is of the form

M = I + x(E − I ) = (1 − x)I + xE

where I is the n × n identity matrix and E is an n × n matrix of ones. We know

that a matrix is positive definite if, and only if, all its eigenvalues are positive. It

is easy to check that the eigenvalues of M are (1 − x) + xn (multiplicity 1) and

(1 − x) (multiplicity n − 1). Solving for which the values of x the eigenvalues are

positive concludes the proof. �

The constraint of positive definiteness is quite strong. To illustrate, we present

results of a simple numerical experiment. Sampling 10,000 symmetric matrices with

ones on the main diagonal and off-diagonal terms taken uniformly from (−1,1) we

found that for dimension 3, 6079 were positive definite, for dimension 4, 1811 were

positive definite, for dimension 5, 206, for dimension 6, only 11, and for dimension

7, none of the 10,000 matrices were positive definite. In practical problems some

correlations will be deemed important, others less so. Nonetheless, they must all

be determined, and in such a way as to satisfy positive definiteness. If certain cells

are left unspecified, then we create a so-called completion problem: extend the

partially specified matrix so as to become positive definite. Some information on

the completion problem is presented in Chapter 4.

From the proposition below, we see that all positive definite matrices can be

obtained as a product of a lower triangular matrix L and its transpose LT . This

could be a way to specify a correlation matrix. If experts are to assess the matrix

L, then its terms must be given an intuitive interpretation.

Proposition 3.27 If C ∈ M is positive definite, then we may write C = LLT , where

L is lower triangular (Cholesky decomposition).
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In the proposition below, we can see that the covariance matrix is positive

definite.

Proposition 3.28 Let XT = [X1, . . . , Xn] be a random vector with mean O. Then

a. Cov(X) = E(XXT ).

b. If B is n × n matrix, then Cov(BX) = BCov(X)BT .

c. if A ∈ Rn , then AT Cov(X)A ≥ 0 with equality holding only if P (Xi = 0) = 1

for i = 1, . . . , n (in other words, Cov(X) is positive definite).

Another way to specify a correlation matrix is to use the partial correlation vine

introduced in section 4.4.4.

3.6.2 Multivariate copulae

The concept of copula, that is, bivariate distribution with uniform one dimensional

margins can be extended to the multivariate case (called n-copula)3. Many families

of multivariate copulas are found in Dall’Aglio et al. (1991); Doruet Mari and Kotz

(2001); Joe (1997); Nelsen (1999). All multivariate distributions with continuous

margins such as the normal have their corresponding multivariate copula. There

are also n-copulae that are generalizations of the Archimedean copulae. Formula

(3.11) shows the n-dimensional extension of the Frank’s copula.

C(u1, . . . , un; θ) = −θ−1 log

(
1 −

∏n
i=1(1 − e−θui )

(1 − e−θ )n−1

)
(3.11)

n-Archimedean, and n-copulae are limited in the correlation structures, which they

can realize (Joe (1997)).

3.6.3 Multivariate normal distribution

The multivariate normal distribution is a joint distribution of n normally distributed

variables X1, X2, . . . , Xn. For all x = [x1, x2, . . . , xn] ∈ Rn its joint density func-

tion is

f (x) =
1

√
(2π)n|V |

exp

[
−

1

2
(x − µ)V −1(x − µ)T

]
, (3.12)

where µ is a vector, and V is a positive definite symmetric matrix with

determinant |V |. The parameters µ and V are the expectation vector

3Many authors define a copula as multidimensional distribution on unit hypercube with uniform

marginal distribution.
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(E(Xi) = µi, i = 1, 2, . . . , n) and covariance matrix (V = [vij ], vij =
Cov(Xi, Xj ), i, j = 1, 2, . . . , n), respectively.

For the normal distribution, conditional and partial correlations are equal. We

show this here only for the trivariate case but the statement holds for higher dimen-

sions as well (Kendall and Stuart (1961); Yule and Kendall (1965)).

Proposition 3.29 If (X, Y, Z) has the trivariate joint normal distribution, then

ρ(Y |X, Z|X) = ρYZ;X.

3.7 Conclusions

In this chapter, we have presented some basic concepts of bivariate dependence. We

are interested in using such measures to model high-dimensional joint distributions.

That means eliciting or otherwise inferring dependence structures and using these

to perform Monte Carlo simulations.

The product moment correlation was shown to be easy to calculate and very

popular but has many drawbacks from a modelling viewpoint:

1. It does not exist if the first or second moments do not exist;

2. Possible values depend on the marginal distributions; and

3. It is not invariant under non-linear strictly increasing transformations.

For variables joined by the bivariate normal distribution, however, the product

moment correlation is a very attractive measure. It can take all values between −1

and 1 and zero correlation implies independence.

The rank correlation is a more flexible measure of dependence. It always exists,

does not depend on marginal distributions and takes all values from the interval

[−1,1]. This algebraic freedom that the rank correlation gives is very important,

for example, when the dependence must be assessed by experts. However, directly

asking experts for a rank correlation (or product moment correlation) is not a

good idea. It is difficult for experts to assess directly, and its population version

(3.1) is a bit complicated. There are methods that indirectly infer the appropriate

correlation value (see Chapter 2). Kendall’s tau has a simple and intuitive inter-

pretation (see (3.2)). It is widely used in connection with Archimedean copulae,

for which it can be easily calculated (Proposition 3.21). Kendall’s tau does lead

to a tractable constraint for information minimization, but it is less convenient

than rank correlation in this regard. To represent multivariate dependence, all of

these measures of dependence between pairs of variables must be collected in

a correlation matrix. Using a correlation matrix in high-dimensional dependence
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modelling has one strong disadvantage, namely, it requires specification of a full

correlation matrix. It cannot work with a partially specified correlation structure.

If extensive data is not available for this purpose, how should we proceed? We

can ask experts to assess dependencies in the manner of Chapter 2, but we cannot

do this for thousands of correlations. Even if we could, nothing short of a miracle

would assure that the numbers obtained would be positive definite. Even if this

miracle obliged for each expert individually, would it also oblige for the combi-

nation of experts? A new approach is called for, and this is taken up in the next

chapter.

3.8 Unicorn projects

Project 3.1 Nominal values

This little project shows that ‘nominal values’ of random variables when plugged

into simple functions may not give a good picture of the function’s behaviour when

the variables are dependent. Suppose we are interested in the function G(XY) =
XY , where X and Y are uniformly distributed on [0,2], and ρr(X, Y ) = −1. Sup-

pose we wish to get an idea of G by plugging in the expectations of X and Y .

Clearly, G(EX, EY) = 1; what is E(G(X, Y ))?

• Create a case with two variables, X, Y uniformly distributed on [0, 2].

• Go to the function panel and create a user defined function UDF G: X ∗ Y .

• Go to the dependence panel and build a dependence tree with X and Y with

rank correlation −1.

• Simulate and generate a report. Click on the option ‘Output percentiles’.

• Open the report. What is E(G(X, Y ))? Which percentile of the distribution

of G corresponds to G(EX, EY)?

Compare the results with the ones obtained in the case when ρr (X, Y ) = 0 and

ρr(X, Y ) = 1.

Project 3.2 Epistemic and aleatory uncertainty: polio incidence

Some applications require distinguishing ‘epistemic’ from ‘aleatory’ uncertainty.

Consider a class of objects, which we wish to evaluate; it may be days, or peo-

ple in a population, or spatial grid cells. Some variables may be uncertain, but

whatever their values, they effect all members of the class in the same way. Such

variables are said to possess epistemic uncertainty. Aleatory variables are also

uncertain but their values are chosen independently for each element of the class.

Some variables may have both aleatory and epistemic components. Of course from
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a mathematical viewpoint, ‘epistemic’ and ‘aleatory’ simply denote different types

of dependence. We illustrate the ‘repeat whole simulation’ feature and the ‘prev’

function in UNICORN, and show how these can be used to distinguish these two

types of uncertainty.

UNICORN can save the previous sample values of variables and UDFs in mem-

ory and use these to compute current values. When a UDF contains the expression

‘prev(x)’ in its definition, this expression is evaluated as the value of the UDF on the

previous sample. ‘x’ may be a number or an input variable, and is used as a seed

value on the first sample. You may also use ‘prev([other UDF])’ in the definition

of a UDF, but then the other UDF must contain a prev expression in its definition,

with seed value.

We illustrate with a simplified version of the dynamic Polio transmission model

of Edmunds et al. (1999). Each sample represents a time step – in this case days.

The transmission rate from the infected to the susceptible population is unknown,

and is thought to vary from day to day depending on temperature, humidity and

season. The transmission rate is modelled as the sum of an epistemic component

[b] which is uncertain, but the same on every day, and an aleatory component [e]

which varies from day to day. The number of susceptibles [s] in the current time step

is determined by the number of people in the population who are not yet infected,

have not previously recovered and have not died. The number of infecteds [i] in

the current time step is determined by the number of infecteds and susceptibles in

the previous time step and the transmission rate [tr]. A UDF ‘day’ is introduced to

number the days. The precise definitions are given below. The random variables and

their parameters for this model are pasted from the UNICORN report: The initial

values for i and s are found by solving the equations for equilibrium, and do not

concern us here.

Random variable bo: epistemic initial transmission coefficient [1/day]

Distribution type: LogUniform Parameters

a = 5E − 7, b = 1E − 6.

Random variable e: aleatory initial transmission coefficient [1/day]

Distribution type: Beta: Parameters

α = 4.000, β = 4.000, a = −5E − 7, b = 5E − 7.

Random variable ro: initial recovery rate [1/day]

Distribution type: Constant:

CNST = 0.100.

Random variable mo: initial mortality and birth rate [1/day]

Distribution type: Constant

CNST = 5E − 5.



BIVARIATE DEPENDENCE 57

Random variable no.: initial population size

Distribution type: Constant

CNST = 1000000.000.

The UDFs are as follows:

1. r: prev(ro),

2. b: prev(bo),

3. tr: b*(1+0.05*sin(day/365))+e,

4. s: prev((mo+r)/b)*(1−tr*prev(i)−mo)+mo*no,

5. i: prev((b*no−(mo+r))*mo/(b*(mo+r)))*(tr*prev(s)−(r+mo)+1),

6. day: prev(0)+1.

Note that on any day the epistemic component of the transmission, b, is the value

used on the previous day, starting with bo. The seed value bo is sampled from a

log uniform distribution. If we perform the simulation once, the same value of b is

used on each sample, drawn from the distribution of bo. If we repeat the simulation

a second time, a different value for bo will be used on every sample. UNICORN is

able to perform repeated simulations and store the results in one sample file. The

steps are as follows:

• Create a new case with the random variables and UDFs as shown in the

preceding text.

• Go to Simulate and for ‘Repeat whole simulation’ choose 20 repetitions, and

do NOT check the box for separate sam files. Choose 10 runs (1000) sam-

ples, corresponding to a simulation of 1000 days. We see that statistical jitter

caused by the daily variation in the transmission rate gradually dies out as

the population reaches equilibrium.

• Go to graphics and make a scatter plot for ‘i’ and ‘day’. If ‘day’ is on the

vertical axis, click its box in the variable selection list until it becomes the

horizontal axis. The ‘plot samples’ slider regulates the number of samples

used in the graphic plot. If you move the slider with the mouse or arrow keys

to the right, you see the number of samples increases. You also see the number

of infecteds against days as days go from 1 to 1000. As you continue sliding,

the number of days goes back to 1, and we are following the second simula-

tion. Pushing the slider all the way to the left shows all 20 simulations. The

results should look like Figure 3.11.

Project 3.3 NOx Aggregation

This project illustrates some handy tricks in working with large numbers of

variables. Although UNICORN Light is restricted to 101 input variables, in fact

using nested applications you can effectively have as many variables as you like.

This is a stylized version of results published in Cooke (2004). This project also
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Figure 3.11 One sample path of Polio incidence with aleatory uncertainty, and 20

sample paths showing both aleatory and epistemic uncertainty.
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concerns aleatory versus epistemic uncertainty – reflections on this example have

persuaded many to take dependence seriously.

Let us review some probability. Suppose the amount of NOx emitted by one

automobile in one year is normally distributed with mean 30[kg] and variance

25. The 5% and 95% quantiles of the NOx distribution will be 30 −
√

25 × 1.65 =
21.75 and 30 +

√
25 × 1.65 = 38.25. Consider now 5000 identical and independent

auto’s; how much will they emit? Well, the sum of 5000 identical and independent

normal variables will be normal4 with mean 30[Kg] × 5000 = 150, 000[Kg] and

variance 25 × 5000 = 125, 000. The 5% and 95% quantiles will be 150, 000 −√
125, 000 × 1.65 = 149, 416, and 150, 000 +

√
125, 000 × 1.65 = 150, 583. The

uncertainty relative to the mean becomes very small indeed. This is the effect of

the central limit theorem: the fluctuations tend to interfere destructively as we add

independent variables, and the spread grows much more slowly than the mean.

• Create a file named NOx, and using Batch, create variables v1 . . . v100. The

variables remain selected until you assign a distribution; choose the normal

distribution with mean 30 and standard deviation 5.

• Create a variable called ‘dummy’ and assign it the Uniform [0,1] distribution.

This is for creating a symmetric dependence structure. Move this variable to

the first position.

• From the Options panel choose 1000 quantiles (this is simply to avoid a large

distribution file, see below).

• Go to the formula panel and create a UDF

sum1 50 = v1 + v2 + · · · + v50.

This requires some typing but with copy paste, it can be done more quickly.

After typing v1 + . . . v10+, copy these and paste them after ‘v10+’, then

toggle insert off and just change the indices, and so on. Create a second

UDF

sum51 100 = v51 + · · · + v100.

• Go to the dependence panel and create a dependence tree as follows. Right

click on the variables and select all, with right click, add this selection as

child nodes. A tree is created with all 100 variables attached to ‘dummy’. To

rank-correlate the 100 variables to each other with correlation 0.09 (a very

weak correlation), we can rank-correlate them all to dummy at 0.3. Select all

correlations with shift+scroll down, and change the rank correlation to 0.3.

Use the Minimum information copula.

• Go to the Simulate panel, choose 1000 samples (10 runs), choose Rank cor-

relation, and check the Make a Distribution File, check selected variables,

and select sum1 50. Now run.

4Even if the individual auto’s are not very normal, the sum will be approximately normal.
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• Generate a report, check Rank Correlation matrix. You do not want all vari-

ables in this matrix. In the column and row check lists, first select none,

then select sum1 50 and sum51 100. Look at the correlation matrix. The rank

correlation between these two UDFs is 0.81! This is worth remembering:

If the variables v1. . .v100 were independent, then of course sum1 50 and

sum51 100 would be independent as well. Adding a very weak correlation

between the vi’s creates a strong correlation between sums of these vari-

ables, and the more variables you sum, the stronger the correlation becomes

(Exercise 3.14).

• Now go back to the variable panel; using shift + ctrl + end select all variables

v1. . .v100. Click on Distribution file, and assign them the distribution file

‘sum1 50.dis’. Each of the variables now has the distribution of the sum of

50 variables in the first run.

• Go to the formula panel, and change the names of the UDFs to sum1 2500

and sum2501 5000. Add a new UDF, named ‘sumall’: sum1 2500 +
sum2501 5000.
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Figure 3.12 Sum of NOx emissions for 5000 autos, with independence and weak

dependence between individual auto’s.
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• Now simulate as before, 1000 samples, with rank correlation 0.81. Generate

the report as before. The 5 and 95% values for the sum of 5000 automobiles is

now 139000[Kg] and 161000[Kg]. The rank correlation between sum1 2500

and sum2501 5000 is 0.9.

This example emphasizes that a very small correlation in the uncertainties of

NOx pollution for individual autos causes a very large difference, compared to the

assumption of independence as we aggregate over a population of autos. Neglect-

ing dependence at the level of the individual auto can cause large errors at the

population level. Compare this with the result of Exercise 3.14 below. Figure 3.12

compares the independent and dependent distribution of emissions from 5000 autos.

Project 3.4 NOx, Choice of copula

This project builds on the previous project to explore the effect of the choice

of copula. Use the UDFs Sum1 50 and Sum51 100 with normal variables as in the

previous project, but join them with the Minimal information, Frank’s, Diagonal

band and Elliptical copula’s. Look at the scatter plots.

Now create two variables, say A and B and assign them the distribution

Sum1 50.dis. Correlate them with rank correlation 0.81 using the same four copulas

as above, and look at the scatter plots.

The eight scatter plots are shown in Figure (3.13). Notice that the Minimal

information and Frank’s copula’s yield scatter plots very similar to those with the

sums of 50 autos, whereas the Diagonal band and Elliptical copulas do not. This

means that when the autos are joined with the Minimal information or Frank’s

copula’s, the joint distribution is well approximated with A and B using the same

copula’s.

3.9 Exercises

Ex 3.1 Prove Propositions 3.1, 3.2, 3.3, 3.4, 3.6.

Ex 3.2 Find the most negative correlation that can be attained between two expo-

nential variables with parameter λ.

Ex 3.3 For events A, B the product moment correlation is defined as

ρ(A, B) = ρ(IA, IB),

where IA is the indicator function for A. Show that the following inequalities are

sharp:

−
[
P (A′)P (B ′)

P (A)P (B)

]1/2

≤ ρ(A, B)

[
P (A)P (B ′)

P (A′)P (B)

]1/2

≥ ρ(A, B);P (A) ≤ P (B).
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Figure 3.13 Scatter plots of (Sum 1 50) × (Sum 51 100) (top row) with Min. Inf,

Frank’s, Diagonal band and Elliptical copulas. The bottom row shows scatter plots

of two variables with the distribution of the sum of 50 autos, with the copulas as

in the top row.
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Figure 3.13 (continued )
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Figure 3.13 (continued )
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Figure 3.13 (continued )
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Ex 3.4 Prove Propositions 3.7, 3.8, 3.9, 3.10, 3.11.

Ex 3.5 For events A, B, define ρr(A, B) = ρ(FIA , FIB ) then:

ρr(A, B) = ρ(A, B).

Ex 3.6 Let F be the cdf of a symmetric variable with finite second moment. Show

that the full range of product moment correlations in the class of bivariate distri-

butions with both univariate margins equal to F can be realized.

Ex 3.7 Show that if D is the determinant of a correlation matrix C, then

D =
(
1 − R2

1{2,...,n}
) (

1 − R2
2{3,...,n}

)
. . .
(
1 − R2

n−1{n}
)
;

Ex 3.8 Prove Propositions 3.14, 3.15, 3.16, 3.18, 3.22.

Ex 3.9 Let s = (s1, . . . , sn) and p = (p1, . . . , pn) such that pi, si > 0 and∑n
i=1 si =

∑n
i=1 pi = 1. Show that I (s|p) =

∑n
i=1 si log

si
pi

is always non-negative

and vanishes only if s = p. [Hint, recall that x − 1 ≥ ln(x), with equality if and

only if x = 1]

Ex 3.10 Prove equation 3.5.

Ex 3.11 Let (U, V ) be distributed according to the distribution f shown in the

figure below. The mass is uniformly distributed on the four lines inside the unit

square.

1/2

1/2

0 1

1

U

V

Show that

1. f is a copula;

2. E(U |V ) ≡ 0 and E(V |U) �≡ 0;

3. ρ(U, V ) = 0;
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Ex 3.12 The relative information for absolutely continuous bivariate distributions

f and g is defined

I (f |g) =
∫∫

f (x, y) ln

(
f (x, y)

g(x, y)

)
dx dy.

Show that the relative information with respect to bivariate uniform distribution u

of variables joined by

a. the elliptical copula g with correlation ρ is equal to

I (g|u) = 1 + ln 2 − ln(π
√

1 − ρ2),

The above can be shown using standard integration methods. One may have to

calculate the following integral − 2
π

∫ π
2

0 log(cos u) du which can be calculated

with, for example, Maple as log(2).

b. the diagonal band copula with parameter α is equal to

I (db|u) = − ln 2|α|(1 − |α|).

Show this for example, for the case α > 1
2
.

Ex 3.13 Prove Propositions 3.20, 3.22, 3.23, 3.24, 3.27, 3.28.

Ex 3.14 Let random variables X1, X2, . . . , Xn, . . . X2n have the same distributions

F with mean µ and variance σ 2. Assume that (Xi, Xj ), i �= j, i, j = 1, 2, . . . , 2n

have the same distributions H and correlation ρ(Xi, Xj ) = ρ > 0. Show that

lim
n→∞

ρ(Xn, X2n) = 1

where Xn =
∑n

i=1 Xi and X2n =
∑2n

i=n+1 Xi .

3.10 Supplement

Proposition 3.5 If F and G are two dimensional distribution functions with identical

univariate first and second moments, and for 0 ≤ a ≤ 1, H = aF + (1 − a)G, then

ρ(H) = aρ(F ) + (1 − a)ρ(G),

where ρ(H) means ρ(X, Y ) and joint distribution of X and Y is H .
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Proof.

Since EF (X) = EG(X) and VarF (X) = VarG(X), we can easily show that

EH (X) = EF (X) = EG(X) and VarH (X) = VarF (X) = VarG(X). Similarly for

Y . Thus,

αρ(F ) + (1 − α)ρ(G) = α[EF (XY)−EF (X)EF (Y )]√
VarF (X)V arF (Y )

+ (1−α)[EG(XY)−EG(X)EG(Y )]√
VarG(X)VarG(Y )

.

= α[EF (XY)−EH (X)EH (Y )]+(1−α)[EG(XY)−EH (X)EH (Y )]√
VarH (X)VarH (Y )

,

= αEF (XY)+(1−α)EG(XY)−EH (X)EH (Y )√
VarH (X)VarH (Y )

= EH (XY)−EH (X)EH (Y )√
VarH (X)VarH (Y )

= ρ(H). �

Lemma 3.1 Let (X, Y ) be a vector of continuous random variables with support

� = [a, b] × [c, d] (a, b, c, d can be infinite). Let F(x, y) be a joint cumulative dis-

tribution function of (X, Y ) with cumulative marginal distribution functions FX(x)

and FY (y). Assume 0 < σ 2
X, σ 2

Y < ∞, then

ρ(X, Y ) =
1

σXσY

∫∫

�

F(x, y) − FX(x)FY (y) dx dy.

Proof.

Notice that it is enough to show that

E(XY) − E(X)E(Y ) =
∫∫

�

F(x, y) − FX(x)FY (y) dx dy.

We get

E(XY) − E(X)E(Y ) =
∫∫

�

xydF(x, y) −
∫ b

a

xdFX(x)

∫ d

c

ydFY (y)

=
∫∫

�

xy
∂

∂x

(
∂

∂y
(F (x, y) − FX(x)FY (y))

)
dx dy.

Recalling that F(x, b) = FX(x), and so on, integration by parts with respect to x

and y concludes the proof. �

Theorem 3.1 [Hoeffding] (Hoeffding (1940)) Let (X, Y ) be a random vector with

marginal distributions FX and FY , and with 0 < σ 2
X, σ 2

Y < ∞; then

a. The set of all possible correlations is a closed interval [ρmin, ρmax] and ρmin <

0 < ρmax.

b. The extremal correlation ρ = ρmin is attained if, and only if, X and Y are

countermonotonic; similarly the extremal correlation ρ = ρmax is attained if

X and Y are comonotonic.
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Proof.

Using Lemma 3.1 we see that ρ(X, Y ) is maximum (minimum) if
∫
�

F(x, y) dx dy

is maximum (minimum). Since each joint distribution can be represented in terms

of the copula, F(x, y) = C(FX(x), FY (y)) and since all copulae are bounded from

below and above by CL and CU , respectively, then
∫

�

CL(FX(x), FY (y)) dx dy ≤
∫

�

F(x, y) dx dy ≤
∫

�

CU (FX(x), FY (y)) dx dy.

Hence the maximum (minimum) product moment correlations are attained when

X and Y are comonotonic (countermonotonic). �

Proof of Formula 3.3 for three variables

Let X1, X2, X3 have mean zero and standard deviations σi, i = 1, 2, 3.

Since b12;3, b13;2, b21;3, b23;1 minimize

E([X1 − b12;3X2 − b13;2X3]2);

E([X2 − b21;3X1 − b23;1X3]2);

then
∂

∂b12;3
E([X1 − b12;3X2 − b13;2X3]2) = −2E([X1 − b12;3X2 − b13;2X3]X2) = 0,

∂
∂b13;2

E([X1 − b12;3X2 − b13;2X3]2) = −2E([X1 − b12;3X2 − b13;2X3]X3) = 0,
∂

∂b21;3
E([X2 − b21;3X1 − b23;1X3]2) = −2E([X2 − b21;3X1 − b23;1X3]X1) = 0,

∂
∂b23;1

E([X2 − b21;3X1 − b23;1X3]2) = −2E([X2 − b21;3X1 − b23;1X3]X3) = 0.

Hence 



Cov(X1, X2) − b12;3Var(X2) − b13;2Cov(X2, X3) = 0,

Cov(X1, X3) − b12;3Cov(X2, X3) − b13;2Var(X3) = 0,

Cov(X1, X2) − b21;3Var(X1) − b23;1Cov(X1, X3) = 0,

Cov(X2, X3) − b21;3Cov(X1, X3) − b23;1Var(X3) = 0.

Determine

b13;2 =
Cov(X1, X3) − b12;3Cov(X2, X3)

Var(X3)

and

b23;1 =
Cov(X2, X3) − b21;3Cov(X1, X3)

Var(X3)

from the second and fourth equations preceding text and substituting in the first

and third yields

b12;3 =
Cov(X1,X3)Cov(X2,X3)

Var(X3)
− Cov(X1, X2)

Cov2(X2,X3)

Var(X3)
− Var(X2)

,

b21;3 =
Cov(X1,X3)Cov(X2,X3)

Var(X3)
− Cov(X1, X2)

Cov2(X1,X3)

Var(X3)
− Var(X1)

.
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From the above dividing numerator and denominator by
√

Var(X1)Var(X2), we get

ρ23;1 =
√

b12;3b21;3

=

√√√√
Cov(X1,X3)Cov(X2,X3)

Var(X3)
−Cov(X1,X2)

Cov2(X2,X3)

Var(X3)
−Var(X2)

Cov(X1,X3)Cov(X2,X3)

Var(X3)
−Cov(X1,X2)

Cov2(X1,X3)

Var(X3)
−Var(X1)

=
Cov(X1,X2)√

Var(X1)Var(X2)
− Cov(X1,X3)Cov(X2,X3)

Var(X3)
√

Var(X1)Var(X2)√(
Cov2(X2,X3)

Var(X3)Var(X2)
−1

)(
Cov2(X1,X3)

Var(X3)Var(X1)
−1

)

= ρ12−ρ13ρ23√
(1−ρ2

23)(1−ρ2
13)

.

Proposition 3.12 If

(a) X is distributed uniformly on an interval [0, 1],

(b) Y, Z are independent given X,

(c) Y |X and Z|X are distributed uniformly on [0, Xk], k > 0,

then

|ρYZ|X − ρYZ;X| =
3k2(k − 1)2

4(k4 + 4k2 + 3k + 1)
,

which converges to 3
4

as k → ∞.

Proof.

We get

E(Y) = E(Z) = E(E(Y |X)) = E(Xk

2
) = 1

2(k+1)
,

E(Y 2) = E(Z2) = E(E2(Y |X)) = E(X2k

3
) = 1

3(2k+1)
,

Var(Y ) = Var(Z) = 1
3(2k+1)

− ( 1
2(k+1)

)2,

E(XY) = E(XZ) = E(E(XY |X)) = E(X(E(Y |X)) = E(Xk+1

2
) = 1

2(k+2)
,

Cov(X, Y ) = Cov(X, Z) = E(XY) − E(X)E(Y ) = 1
2(k+2)

− 1
2

1
2(k+1)

,

E(YZ) = E(E(YZ|X)) = E(E(Y |X)E(Z|X)) = E(X2k

4
) = 1

4(2k+1)
,

Cov(Y, Z) = E(YZ) − E(Y)(E(Z) = 1
4(2k+1)

− 1
4(k+1)2 .

From the above calculations, we obtain

ρYZ =
Cov(Y, Z)

σY σZ

=
3k2

4k2 + 2k + 1
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and

ρXYρXZ =
Cov2(X, Y )

VarXVarY
=

9k2(2k + 1)

(k + 2)2(4k2 + 2k + 1)
.

|ρYZ|X − ρYZ;X|

= ρYZ−ρXYρXZ√
1−ρ2

XY

√
1−ρ2

XZ

= 3k2(k−1)2

4(k4+2k2+3k+1)
→ 3

4
as k → ∞. �

Proposition 3.13 (Nelsen (1999)) Let X and Y be continuous random variables

with joint distribution function H and margins F and G, respectively. Let C denote

the copula: H(x, y) = C(F(x), G(y)); then Kendall’s tau and the rank correlation

for X and Y can be expressed as:

τ (X, Y ) = 4

∫

[0,1]2
C(s, t)dC(s, t)− 1,

ρr(X, Y ) = 12

∫

[0,1]2
stdC(s, t) − 3 = 12

∫

[0,1]2
C(u, v) du dv − 3.

Proof.

Let (X1, Y1) and (X2, Y2) be independent copies of (X, Y ). Since the vari-

ables are continuous P [(X1 − X2)(Y1 − Y2) < 0] = 1 − P [(X1 − X2)(Y1 − Y2) >

0] and then

τ (X, Y ) = 2P [(X1 − X2)(Y1 − Y2) > 0] − 1.

We get that P [(X1 − X2)(Y1 − Y2) > 0] = P [X1 > X2, Y1 > Y2] + P [X1 <

X2, Y1 < Y2]. We can calculate these probabilities by integrating over the

distribution of one of the vectors (X1, Y1) or (X2, Y2).

P [X1 > X2, Y1 > Y2] = P [X2 < X1, Y2 < Y1],

=
∫

R2
P [X2 < x, Y2 < y]dC(F (x), G(y)),

=
∫

R2
C(F(x), G(y))dC(F (x), G(y)).

Employing the transformation u = F(x) and v = G(y) yields

P [X1 > X2, Y1 > Y2] =
∫

[0,1]2
C(u, v)dC(u, v).

Similarly,

P [X1 < X2, Y1 < Y2] =
∫

[0,1]2
1 − u − v + C(u, v)dC(u, v). (3.13)
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Since C is the joint distribution function of a pair (U, V ) of uniform variables on

(0,1), then E(U) = E(V ) = 1
2

and (3.13) takes the following form

P [X1 < X2, Y1 < Y2] = 1 −
1

2
−

1

2
+
∫

[0,1]2
C(u, v)dC(u, v)

=
∫

[0,1]2
C(u, v)dC(u, v).

We then get

P [(X1 − X2)(Y1 − Y2) > 0] = 2

∫

[0,1]2
C(u, v)dC(u, v)

which concludes the proof for Kendall’s tau. To prove the formula for rank corre-

lation notice that

ρr(X, Y ) = ρ(F (x), G(y)) = ρ(U, V ) =
E(UV) − 1/4

1/12
= 12E(UV) − 3

= 12

∫

[0,1]2
uvdC(u, v) − 3.

This concludes the proof. �

Proposition 3.17 The generalized diagonal band distribution has uniform margins

and has Spearman’s correlation given by

ρr = 1 + 4E(Z3) − 6Var(Z),

where Z is a random variable whose density is the generator G.

Proof.

Notice that E(X) = E(Y) = 1
2

and Var(X) = Var(Y ) = 1
12

, where X and Y are

uniform on the [0,1] interval. To evaluate E(X, Y ), we first find E(XY|Z = z),

where Z has density G. Conditional on Z = z, (X, Y ) is chosen from the uniform

distribution on four line segments that form the boundary of the rectangle with

corners (z, 0), (0, z), (1 − z, 1) and (1, 1 − z), hence

E(XY |Z = z) =
1

2

[∫ z

0

x(z − x) dx +
∫ 1

z

x(x − z) dx

+
∫ 1−z

0

x(x + z) dx +
∫ 1

1−z

x(2 − x − z) dx

]

=
1

3
z3 −

1

2
z2 +

1

3
.

Taking expectation with respect to Z, multiplying by 12 and subtracting 3 gives

the result. �
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Proposition 3.19 Let X, Y, Z be uniform on [− 1
2
, 1

2
] and let X, Y and X, Z be

joined by elliptical copula with correlations ρXY and ρXZ respectively and assume

that the conditional copula for YZ given X does not depend on X; then the condi-

tional correlation ρYZ|X is constant in X and

ρYZ;X = ρYZ|X.

Proof.

We calculate the conditional correlation for an arbitrary copula f (u, v) using Propo-

sition 3.18:

ρYZ|X =
E(YZ|X) − E(Y |X)E(Z|X)

σY |XσZ|X
.

Let I = [− 1
2
, 1

2
], then

E(YZ|X) =
∫

I2
F−1

Y |X(u)F−1
Z|X(v)f (u, v) du dv

=
∫

I2
ρXYρXZX

2f (u, v) du dv

+
∫

I2

√
1 − ρ2

XYρXZ

√
1

4
− X2X sin(πu)f (u, v) du dv

+
∫

I2

√
1 − ρ2

XZρXY

√
1

4
− X2X sin(πv)f (u, v) du dv

+
∫

I2

√
1 − ρ2

XY

√
1 − ρ2

XZ

(
1

4
− X2

)
sin(πu) sin(πv)f (u, v) du dv.

Since f is a density function of the copulae and

∫

I

sin(πu) du = 0,

then we get

E(YZ|X) = ρXYρXZX
2 +
√

1 − ρ2
XY

√
1 − ρ2

XZ

(
1

4
− X2

)

∫

I2
sin(πu) sin(πv)f (u, v) du dv.

Put

I =
∫

I2
sin(πu) sin(πv)f (u, v) du dv,



74 BIVARIATE DEPENDENCE

then from the above calculations and Proposition 3.18 we obtain

ρYZ|X =
ρXYρXZX

2 +
√

1 − ρ2
XY

√
1 − ρ2

XZ(
1
4
− X2)I − E(Y |X)E(Z|X)

σY |XσZ|X

= 2I.

Hence the conditional correlation ρYZ|X does not depend on X, and is constant, say

ρYZ|X = ρ. Moreover, this result does not depend on the copula f . Now we show

that conditional correlation is equal to partial correlation. The partial correlation

ρYZ;X can be calculated in the following way

ρZY;X =
ρZY − ρXYρXZ√

(1 − ρ2
XY)(1 − ρ2

XZ)

.

We also get

ρ = ρYZ|X =
E(YZ|X) − E(Y |X)E(Z|X)

σY |XσZ|X
=

E(YZ|X) − ρXYρXZX
2

σY |XσZ|X
.

Hence

E(YZ|X) = ρσY |XσZ|X + ρXYρXZX
2.

Since

ρZY =
E(E(YZ|X))

σ 2
X

,

then

ρYZ;X =
ρE(σY |XσZ|X)

σ 2
X

√
(1 − ρ2

XY)(1 − ρ2
XZ)

.

Since by Proposition 3.18

σY |X =

√
1

2

(
1 − ρ2

XY

) (1

4
− X2

)
, σZ|X =

√
1

2

(
1 − ρ2

XZ

) (1

4
− X2

)
;

we have

ρYZ;X =
ρE

(√
1
2
(1 − ρ2

XY)(
1
4
− X2)

√
1
2
(1 − ρ2

XY)(
1
4
− X2)

)

σ 2
X

√
(1 − ρ2

XY)(1 − ρ2
XZ)

=
ρ 1

2
E( 1

4
− X2)

σ 2
X

=
ρ 1

2
( 1

4
− 1

12
)

1
12

= ρ. �
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Proposition 3.21 Let X and Y be random variables with an Archimedean copula

C with the generating function ϕ. Then the Kendall’s tau for X and Y is given by

τ (X, Y ) = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt.

Proof.

By Proposition 3.13 we get

τ = 4

∫

[0,1]2
C(u, v)dC(u, v)− 1 = 4

∫

[0,1]2
C(u, v)c(u, v) ds dt − 1. (3.14)

Noticing that C(u, v) = 0 for all (u, v) such that ϕ(u) + ϕ(v) = ϕ(0) and using

the formula for c(u, v), we can rewrite the integral in (3.14) as follows

∫

[0,1]2
C(u, v)c(u, v) du dv = −

∫

ϕ(u)+ϕ(v)<ϕ(0)

C(u, v)
ϕ′′(C)ϕ′(u)ϕ′(v)

[ϕ′(C)]3
du dv.

Taking transformation

s = C(u, v) = ϕ−1[ϕ(u) + ϕ(v)] t = v

with Jacobian ∂(s,t)
∂(u,v)

= − ϕ′(u)
ϕ′(C)

and s ≤ t we get

−
∫ 1

0

∫ 1

s

s
ϕ′′(s)

ϕ′(s)
ϕ′(t) dt ds.

Hence

∫ 1

0

∫ 1

s

s
ϕ′′(s)ϕ(s)

ϕ′(s)
ds

Integrating by parts, the above integral becomes

∫ 1

0

ϕ(s)

ϕ′(s)
ds +

1

2
.

Substitution to (3.14) concludes the proof. �

Proposition 3.25 Pearson (1904) Let (X, Y ) have a joint normal distribution then

ρ(X, Y ) = 2 sin
(π

6
ρr(X, Y )

)
.

Proof.

A density function of the standard normal vector (X, Y ) with correlation ρ is

f (x, y) =
1

2π
√

1 − ρ2
exp

[
−

1

2(1 − ρ2)

(
x2 − 2ρxy + y2

)]
.
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We measured ranks as deviations from their means, 1
2

ξ =
∫

R

∫ x

−∞
f dv dy =

1
√

2π

∫ x

0

e−
v2

2 dv.

η =
∫

R

∫ y

−∞
f dw dx =

1
√

2π

∫ y

0

e−
w2

2 dw.

Then the rank correlation can be calculated

ρr = 12

∫

R2
ξηf dx dy

Differentiating log f with respect to ρ, we can show that

∂2f

∂x∂y
=

∂f

∂ρ
.

Since

∂ρr

∂ρ
= 12

∫

R2
ξη

∂f

∂ρ
dx dy;

the above yields

∂ρr

∂ρ
= 12

∫

R2
ξη

∂2f

∂x∂y
dx dy.

By a partial integration with respect to x, we obtain

∂ρr

∂ρ
= −12

∫

R2
η

∂ξ

∂x

∂f

∂y
dx dy.

Again by a partial integration with respect to y, we get

∂ρr

∂ρ
= 12

∫

R2

∂η

∂y

∂ξ

∂x
f dx dy.

Since

∂η

∂y
=

1
√

2π
e−

y2

2

∂ξ

∂x
=

1
√

2π
e−

x2

2 ,

we find

∂ρr

∂ρ
=

12

4π2
√

1 − ρ2

∫

R2
exp

[
−

x2 − 2ρxy + y2

2(1 − ρ2)

]
exp

[
−

x2 + y2

2

]
dx dy

=
12

4π2
√

1 − ρ2

∫

R2
exp

[
−

(2 − ρ2)x2 − 2ρxy + (2 − ρ2)y2

2(1 − ρ2)

]
dx dy,
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which can be written in the following form

∂ρr

∂ρ
= 12

4π2
√

1−ρ2

∫
R2 exp


− 1

2



[√

4−ρ2

2−ρ2 x
]2

+



√

2−ρ2y− ρ√
2−ρ2

x

√
1−ρ2




2




 dx dy.

Applying substitution

s =

√
4 − ρ2

2 − ρ2
x

t =

√
2 − ρ2y − ρ√

2−ρ2
x

√
1 − ρ2

for which the Jacobian is
√

1 − ρ2

4 − ρ2
,

we obtain

∂ρr

∂ρ
=

6

π
√

4 − ρ2
.

Since ρr and ρ vanish together, we get

ρr =
6

π
arcsin

(ρ

2

)

and from the above

ρ = 2 sin
(π

6
ρr

)
. �

Proposition 3.26 Let (X, Y ) be random vectors with joint normal distribution, then

τ (X, Y ) = 2 arcsin (ρ(X, Y )) /π.

Proof.

Let F(x, y) denote the cdf and f (x, y) pdf of a normal distribution with correlation

ρ:

f (x, y) =
1

2π
√

1 − ρ2
exp

[
−

1

2(1 − ρ2)

(
x2 − 2ρxy + y2

)]
;

F(x, y) =
1

2π
√

1 − ρ2

∫ x

−∞

∫ y

−∞
exp

[
−

1

2(1 − ρ2)

(
x2 − 2ρxy + y2

)]
dy dx.
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As in the proof of Proposition 3.13, we can show that

τ (X, Y ) = 4

∫

R2
F(x, y)dF (x, y) − 1.

Differentiating τ with respect to ρ, we get

∂τ

∂ρ
= 4

∫

R2
F(x, y)

∂f (x, y)

∂ρ
+ f (x, y)

∂F (x, y)

∂ρ
dx dy.

As in Proposition 3.13; ∂f (x,y)

∂ρ
= ∂2f (x,y)

∂x∂y
so that

∂τ

∂ρ
= 4

∫

R2
F(x, y)

∂2f (x, y)

∂x∂y
+ f 2(x, y) dx dy.

Integrating the first summand of the preceding equation by parts with respect to x

and y, we obtain

∂τ

∂ρ
= 8

∫

R2
f 2(x, y) dx dy.

Hence

∂τ

∂ρ
=

8

2π
√

1 − ρ2

∫

R2

1

2π
√

1 − ρ2
exp

[
−

2[x2 − 2ρxy + y2]

2(1 − ρ2)

]
dx dy.

Substituting s = x/
√

2 and t = y/
√

2 for which the Jacobian is equal to 1
2
, we get

∂τ

∂ρ
=

8

2π
√

1 − ρ2

1

2
=

2

π
√

1 − ρ2
.

Since τ and ρ vanish together, we get

τ =
2

π
arcsin ρ,

which concludes the proof. �

Proposition 3.29 (Kendall and Stuart (1961)) If X1, X2, X3 follow a joint normal

distribution, then ρ(X1|X3, X2|X3) = ρX1X2;X3
.

Proof.

Without the loss of generality, we assume that X1, X2 and X3 are standardized.

We exclude the singular case as well. From (3.12)

f (x1, x2, x3) =
1

(2π)3|C|
exp



−

1

2|C|

3∑

i,j=1

Cijxixj



 ,
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where Cij is the cofactor of the (i, j)th element in the symmetric correlation

determinant

|C| =

∣∣∣∣∣∣

1 ρ12 ρ13

1 ρ23

1

∣∣∣∣∣∣
.

Cij

|C| = Cij is the element of the reciprocal of C.

The c.f. of the distribution is

φ(t1, t2, t3) = exp



−

1

2

3∑

i,j=1

ρij ti tj



 .

The conditional distribution g of X1 and X2 given X3 is proportional to

g(x1, x2|x3)

∝ exp
{

1
2
(C11x2

1 + 2C12x1x2 + C22x2
2 + 2C23x2x3)

}
(3.15)

∝ exp
{

1
2
(C11(x1 − ξ1)

2 + 2C12(x1 − ξ1)(x2 − ξ2) + C22(x2 − ξ2)
2)
}
, (3.16)

where

C11ξ1 + C12ξ2 = −C13x3,

C12ξ1 + C22ξ2 = −C23x3.

From (3.16), we see that given X3, X1 and X2 are bivariate normally distributed

with correlation coefficient

ρ12|3 = −
C12

√
C11C22

.

Cancelling the factor |C|, we have

ρ12|3 = −
C12√
C11C22

=
ρ12 − ρ13ρ23√

(1 − ρ2
13)(1 − ρ2

23)

,

which by formula (3.3) is equal to the partial correlation ρ12;3. �





4

High-dimensional Dependence

Modelling

4.1 Introduction

This chapter is the heart of this book. It addresses the question:

How should we encode information about the joint distribution of a large num-

ber of random variables in such a way that we, and our computer, can calculate

and communicate efficiently?

How large is large? Current uncertainty analysis performed on personal com-

puters may easily involve a few hundred variables. The set of variables of interest,

or endpoints, may also be large. The input variables may not be assumed to be

independent nor may they be assumed to fit any given parametric class.

Decision makers and problem owners are becoming more sophisticated in rea-

soning with uncertainty. They will increasingly be making demands on uncertainty

modelling that analysts with the traditional toolbox will simply be unable to meet.

This chapter is an attempt to anticipate these demands. The approach advanced

here involves splitting the modelling effort into two separate tasks:

• Model the one-dimensional marginal distributions and

• Model the dependence structure.

The one-dimensional marginals are usually the most important and easiest to

assess, either from data or from expert judgment. We want to focus our resources

on this task. The dependence structure is in principle much more complex. With

n uncertain variables, there are 2n − 1 distinct non-empty subsets of variables,

Uncertainty Analysis with High Dimensional Dependence Modelling D. Kurowicka and R. Cooke

 2006 John Wiley & Sons, Ltd
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each of which could have a distinct and important dependence structure. In most

problems, this will not be the case, and most dependencies will be of secondary

importance. In large problems, we will typically try to capture the most important

dependence relations and leave others unspecified. Thus, we require methods for

specifying dependence structures that can deal with arbitrary continuous invertible

marginal distributions and with incomplete specifications. Moreover, we want sam-

pling routines that will give us exactly what we specify, up to sampling error, with

minimal additional information.

For most statisticians, the starting point for dependence modelling is the joint

normal distribution. Why not just transform everything to a joint normal and use

familiar techniques from the theory of the normal distribution? The limitations of

the normal transform method encountered in the next section motivate the use of

copula-tree and copula-vine methods, treated in succeeding sections. Issues arising

with regard to positive definiteness and incomplete correlation matrices are the

subject of a separate section.

4.2 Joint normal transform

The joint normal transform method for dependence modelling may be characterized

as follows: Transform the marginals to normals, induce a dependence structure and

transform back. This technique was implemented in Ghosh and Henderson (2002);

Iman and Helton (1985). We present this procedure in the following steps:

1. Variables X1, X2, . . . , Xn are assigned continuous invertible univariate dis-

tribution functions F1, F2, . . . , Fn, and the rank correlation matrix Rr is

specified;

2. A sample (y1, y2, . . . , yn) is drawn from a joint normal with standard normal

margins and the rank correlation matrix Rr ;

3. If � denotes the standard normal distribution function, then a sample from a

distribution with margins F1, F2, . . . , Fn and the rank correlation matrix Rr

is calculated as:
(
F−1

1 (�(y1)), F−1
2 (�(y2)), . . . , F−1

n (�(yn))
)

.

Since the transformations F−1
i (�(yi)) are strictly increasing, (X1, . . . , Xn) have

the rank correlation matrix Rr .

The first step is already slippery. We show in Section 4.4.6 that every three-

dimensional correlation matrix (i.e. symmetric positive definite matrix with 1’s on

the main diagonal) is a rank correlation matrix, but for higher dimensions, the set

of rank correlation matrices has not been characterized. Hence, we do not know

whether the assignments in step 1 are consistent.

The second step also poses a problem: How de we create a joint normal distri-

bution with a specified rank correlation matrix Rr? Using the standard theory of
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normal distribution, we can find a linear combination of independent standard nor-

mal variables to realize a given product moment correlation matrix R. We take the

vector ZT = (Z1, Z2, . . . , Zn) of independent standard normal variables and apply

the linear transformation Y = LZ; R = LLT , where L is a lower triangular matrix

(the Cholesky decomposition of R). In general, however, product moment and rank

correlations are not equal, so at this point we have two options. We can either

a. ignore the difference between product moment and rank correlation matrices of

the joint normal or

b. using the relation between product moment and rank correlation for the nor-

mal distribution (Proposition 3.25), calculate the product moment correlation

matrix from

ρ(i, j) = 2 sin
(π

6
ρr(i, j)

)
, (4.1)

where ρ(i, j) and ρr(i, j) denote the (i, j)th cell of R and Rr respectively.

We do know that every correlation matrix of dimension three is a rank correlation

matrix (see Section 4.4.6). However, we also know that the joint normal distribution

cannot realize all these rank correlation matrices. Consider the following example:

Example 4.1 Let

A =




1 0.7 0.7

0.7 1 0

0.7 0 1


 .

We can easily check that A is positive definite. However, matrix B, given by

B(i, j) = 2 sin
(π

6
A(i, j)

)
for i, j = 1, . . . , 4,

that is,

B =




1 0.7167 0.7167

0.7167 1 0

0.7167 0 1




is not positive definite.

This should be taken into account in any procedure in which the rank cor-

relation structure is induced by transforming distributions to standard normals

and generating a dependence structure using the linear properties of the joint

normal. From the preceding example, we can see that it is not always possible

to find a product moment correlation matrix generating a given rank correlation

matrix via relation (4.1). In fact, the probability that a randomly chosen correlation

matrix stays positive definite after transformation (4.1) changes rapidly to zero with

matrix dimension.
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A generalization of the preceding example, the NORmal To Anything (NORTA)

method (Carion and Nelsen (1997)), uses a normal transformation to generate

random vectors with a prescribed correlation matrix. The key idea is to find a

function dij that relates the correlation between variables Xi and Xj , say ρX(i, j),

to the correlation of the corresponding normal variables Yi and Yj , say ρY (i, j). It

is shown in Carion and Nelsen (1997) that under certain mild conditions,

dij (ρY (i, j)) = ρX(i, j) (4.2)

is a non-decreasing, continuous function on [−1, 1]. This is used in a numerical pro-

cedure that finds a solution for (4.2) if this solution exists. When Xi, i = 1, . . . , n,

is uniform, the function dij is known as in (4.1). The NORTA method, however,

experiences the same problems noted in the example in the preceding text, that is,

nonexistence of a solution in (4.2). It is shown in Ghosh and Henderson (2002) that

the probability of NORTA infeasibility rapidly increases with matrix dimension. A

procedure is introduced to sample uniformly from the set of correlation matrices

and determine empirically the relationship between matrix dimension and proba-

bility of NORTA infeasibility. Figure 4.1 shows how the probability of NORTA

infeasibility grows with matrix dimension.

The preceding issues are of a rather theoretical nature and pale before a much

more serious practical concern: This method requires that the entire rank correla-

tion matrix Rr be specified. Consider a problem with 100 variables. After assessing
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Figure 4.1 Dependence of the probability of NORTA infeasibility on matrix

dimension.
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the one-dimensional marginals, we turn to the problem of assessing dependencies.

There are 4950 distinct correlations in the correlation matrix. It is highly unlikely

that the 4950 correlations estimated by experts, or measured with error, will form

a positive definite matrix. We then have the problem of altering the estimated or

measured matrix to get something to which the normal transform method may be

applied. The iterative proportional fitting (IPF) algorithm can be used when it is

important to preserve zeros in the inverse correlation matrix (see Chapters 5 and 9);

another procedure is presented at the end of this chapter.

Instead of specifying a (rank) correlation matrix, we can determine a joint nor-

mal distribution in different ways. It can be shown that the lower triangular matrix

in the Cholesky decomposition is determined by a set of partial regression coef-

ficients (see Section 3.3) together with conditional variances that are algebraically

independent (Shachter and Kenley (1989)). For the joint normal distribution, the

conditional variances are constant. Hence, if we can find experts who can assess

partial regression coefficients for the normal transforms of our original variables,

together with conditional variances of these transformed variables, then we can

sidestep the problem of positive definiteness. The assessment task placed on these

experts is not straightforward, to say the least.

Another possibility is to leave the rank correlation matrix only partially speci-

fied. In our 100 × 100 example, only a small number of the 4950 correlations may

be deemed important enough to be assessed. The analyst who wishes to work with

a partially specified correlation matrix is confronted with the so-called matrix com-

pletion problem: Can a partially specified matrix be extended to a positive definite

matrix? This problem is hard. Given a partially specified correlation matrix, some

procedure must be invoked to generate a positive definite matrix. The procedure

of Iman et al. (1981) is illustrated as follows: If the following correlations are

specified:




1 0.9 �

0.9 1 0.9

� 0.9 1


 , (4.3)

where � denotes an unspecified entry, then this matrix is completed by taking the

value of the unspecified entry as close to zero as possible.

Anticipating the developments further in this chapter, we can also represent

the dependence structure of a joint normal distribution via a regular vine, which

may be seen as an alternative to a correlation matrix. Since partial and condi-

tional correlations are equal for the joint normal distribution, we can quantify the

vine with conditional or partial correlations, or indeed with conditional rank cor-

relations (see Proposition 3.25 and Section 4.4.5). According to Theorem 4.4, the

partial correlations on a regular vine are algebraically independent and in one-to-

one correspondence with correlation matrices. Hence this specification is always

consistent. The completion problem is treated in Section 4.5.3 and in Kurowicka

and Cooke (2003) using vines with partial correlations.
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4.3 Dependence trees

A tree is an acyclic undirected graph; when trees are used to describe dependence

structures in high-dimensional distributions, these are called dependence trees.

4.3.1 Trees

Definition 4.1 (Tree)1 T = (N, E) is a tree with nodes N = {1, 2, . . . , n} and

edges E, where E is a subset of unordered pairs of N with no cycle; that is, there

does not exist a sequence a1, . . . , ak (k > 2) of elements of N such that

{a1, a2} ∈ E, . . . , {ak−1, ak} ∈ E, {ak, a1} ∈ E.

The degree of node ai ∈ N is #{aj ∈ N | {ai, aj } ∈ E}; that is, the number of edges

attached to ai .

In Figure 4.2 we can see two graphs. The graph on the left is a tree on six variables

and the graph on the right is an undirected graph with a cycle.

4.3.2 Dependence trees with copulae

Edges of trees can be used to specify bivariate dependencies. If a bivariate dis-

tribution H(x, y) has continuous marginal distribution functions FX and FY , then

there exists a unique copula C(U1, U2), such that H(X, Y) = C(FX(X), FY (Y )) =
C(U1, U2); if the distribution functions are invertible, then we can write X ∼
F−1

X (U1), Y ∼ F−1
Y (U2). Figure 4.3 shows a non-invertible distribution function

1

(a) (b)

2

4

3 6

5

Figure 4.2 A tree with six nodes (a) and undirected graph with a cycle (b).

1Some authors additionally require that all nodes are connected: For any a, b ∈ N , there exists a

sequence c2, . . . , ck−1 of elements of N such that

{a, c2} ∈ E, {c2, c3} ∈ E, . . . , {ck−1, b} ∈ E.

A tree, as defined here, is then called a forest of trees. We term a tree in which all nodes are connected

as a connected tree.
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Figure 4.3 The dotted distribution function is not continuous, and the solid distri-

bution function is not invertible.

and one that is non-continuous and non-invertible. Being continuous is not suffi-

cient to guarantee the existence of a density; the Cantor distribution is continuous

but is concentrated on a set of Lebesgue measure zero (Tucker (1967), p. 20) and

cannot be written as an integral of a density. When we say that a distribution has a

density, we mean that it can be written as an integral of a function that is positive

on its domain.

For general bivariate tree specifications, we follow the original formulation

from Cooke (1997a) in terms of distributions with given margins, and we special-

ize this for copula-trees. This requires distribution functions that are continuous

and invertible on their domain. The following definitions formalize the concept of

dependence trees.

Definition 4.2 (Bivariate- and Copula-tree specification) (F, T , B) is a bivari-

ate tree specification if

1. F = (F1, . . . , Fn) is a vector of one-dimensional distribution functions for

random vector (X1, . . . , Xn) such that Xi �= Xj for i �= j .

2. T is a tree on n elements, with nodes N = {1, 2, . . . , n} and edges E.

3. B = {Bij | {i, j} ∈ E and Bij is a non-empty subset of the set of bivariate

distributions with margins Fi, Fj }.
A bivariate tree specification (F, T , B) is a copula-tree if (F1, . . . , Fn) are contin-

uous invertible and if

4. B = {Cij | {i, j} ∈ E and Cij is the copula for (Xi, Xj )}.
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1

2 3

4

5

6

r13r12

r24

r56

Figure 4.4 A tree with six nodes, with rank correlations assigned to the edges.

Bivariate tree specifications are always consistent. Copula-trees are special

cases of bivariate trees in which the bivariate constraints Bij contain one bivariate

distribution specified by the copula Cij . To be useful, we must have a convenient

way of specifying the copulae. Rank correlation, that is, the correlation of the cop-

ula, together with a family of copula indexed by correlation, is the natural choice.

We specify a copula-tree by assigning one-dimensional distribution functions to

the nodes and rank correlations in [−1, 1] to the edges.

In Figure 4.4 rank correlations are assigned to the edges of the tree in Figure 4.2.

Definition 4.3 (Tree dependence) 1. A multivariate probability distribution G on

Rn satisfies, or realizes, a bivariate tree specification (F, T , B) if the marginal

distributions Gi of G equal Fi (1 ≤ i ≤ n) and if for {i, j} ∈ E the bivariate

distributions Gij of G are elements of Bij .

2. G has a tree dependence order M for T if {i, k1}, . . . , {km, j} ∈ E implies that

Xi and Xj are conditionally independent given any M of kℓ, 1 < ℓ < m, and

Xi and Xj are independent if there is no path from i to j .

3. G has Markov tree dependence for T whenever disjunct subsets a and b of

variables are separated by subset c of variables in T (i.e. every path from a

to b intersects c), in which case the variables in a and b are conditionally

independent given the variables in c.

The Markov property is stronger than tree dependence of order M (see

Exercise 4.3). The following theorem shows that bivariate tree specifications have

Markov realizations. It is restricted to distributions with bivariate densities.

Theorem 4.1 Let (F, T , B) be an n-dimensional bivariate tree specification that

specifies the marginal densities fi , 1 ≤ i ≤ n, and the bivariate densities fij , {i, j} ∈
E. Then, there is a unique density g on Rn, with margins f1, . . . , fn, and bivariate
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margins fij for {i, j} ∈ E, such that g has Markov tree dependence for T . The

density g is given by

g(x1, . . . , xn) =
∏

{i,j}∈E fij (xi, xj )∏
i∈N (fi(xi))deg(i)−1

, (4.4)

where deg(i) denotes the degree of node i and fi(xi) > 0, i = 1, . . . , n. With copula

densities cij , {i, j} ∈ E, this becomes

g(x1, . . . , xn) = f1(x1) . . . fn(xn)
∏

{i,j}∈E

cij (Fi(xi), Fj (xj )). (4.5)

Example 4.2 The density function g1...6, with marginal densities g1, . . . , g6 satisfy-

ing the rank correlation specification on the tree in Figure 4.4, where cij is density

of a copula family indexed by correlation rij , is the following:

g1...6(x1, . . . , x6) = g1(x1) . . . g6(x6)c12(F1(x1), F2(x2))c13(F1(x1), F3(x3))

c24(F2(x2), F4(x4))c56(F5(x5), F6(x6)).

Meeuwissen and Cooke (1994) and Cooke (1997a) showed that the minimum

information realization of a bivariate tree specification is Markov and that the min-

imum information distribution with given marginals and rank correlations on a tree

is the Markov realization of a copula-tree with the minimum information copula.

This result easily follows from more general results on vines (Corollary 4.1).

Summarizing, the copula-tree method represents high-dimensional distributions

by specifying the following elements:

1. Continuous invertible marginal distributions assigned to X1, . . . , Xn nodes of

the tree;

2. A set of copula assigned to the edges of the tree.

A copula-tree may have many realizations; the Markov realization makes non-

adjacent variables on a path conditionally independent, given any set of variables

separating them on the path. For the Markov realization of the tree in Figure 4.2

with six variables, variables 1 and 5 would be sampled independently. Variables 2

and 3 would then be sampled independently, conditional on the value of variable

1. Variable 6 would be sampled conditional on the value of variable 5. Finally,

variable 4 would be sampled conditional on the value of variable 2. The sampling

procedure for trees is described in Chapter 6. Note that for the Markov realization

of Figure 4.4, variables 2 and 3 are conditionally independent given 1. It would

be possible to enrich the copula-tree with additional information on the condi-

tional dependence between 2 and 3 given 1. This is in fact a basic idea for vines.

Also note that only correlations r12, r13, r24 and r56 are specified. Other correla-

tions are determined by the realization and by the choice of copula. In a tree on
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n variables only, n − 1 correlations out of
(
n
2

)
in the correlation matrix can be

specified.

4.3.3 Example: Investment

The following example is from a UNICORN project at the end of this chapter,

in which we step through the details. We invest $1000 for 5 years; the yearly

interest (V i; i = 1, . . . , 5) is uniformly distributed on the interval [0.05, 0.15], and

successive yearly interests have a rank correlation of 0.70. This does not determine

the joint distribution, and we explore the effects of different dependence structures.

The first possibility is the tree given in Figure 4.5:

With this structure, the correlation between V 1 and V 5 is much less than that

between V 1 and V 2.

The second possibility is to correlate all yearly interests to a latent variable,

with rank correlation 0.84 (Figure 4.6). This dependence structure is symmetric,

and all interests are correlated at 0.70.

Suppose that we now learn that the interest for the first year, V 1, is in the upper

5% of its distribution. Figure 4.7 shows the result of conditionalizing on these

highest values for the preceding two trees. Each broken line corresponds to one

sample and intersects the vertical lines at the sample values for the corresponding

variables.

Note that the first tree has a more diffuse distribution for V 5, conditional on

high values for V 1, than the second tree. The return after 5 years (leftmost variable)

is also higher with the second tree.

V1

(0.70) V2

(0.70) V3

(0.70) V4

(0.70) V5

Figure 4.5 Tree for Investment.

Latent

(0.84) V1

(0.84) V2

(0.84) V3

(0.84) V4

(0.84) V5

Figure 4.6 Tree for Investment with latent variable.
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Samples selected: 109
5yrreturn

2E3
V1

0.15
V2

0.15
V3

0.15
V4

0.15
V5

V1 V2 V3 V4 V5

0.15

1.3E3 0.05 0.05 0.05

(a)

(b)

0.05 0.05

Samples selected: 105

5yrreturn

2E3 0.150.15 0.15 0.150.15

1.3E3 0.05 0.05 0.05 0.05 0.05

Figure 4.7 Cobweb plots conditional on the 100 highest values for the two trees;

plots for Fig. 4.5 (a) and Fig. 4.6 (b)
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4.4 Dependence vines

A graphical model called vines was introduced in Cooke (1997a) and studied in

Bedford and Cooke (2001b, 2002); Kurowicka and Cooke (2003). A vine on n

variables is a nested set of trees, where the edges of the tree j are the nodes of

the tree j + 1, and each tree has the maximum number of edges. The ‘higher-level

trees’ enable us to encode conditional constraints. When used to specify dependence

structures in high-dimensional distributions, the trees are called dependence vines.

4.4.1 Vines

Figure 4.8 shows examples of a tree and a vine on three variables. In the vine, a

conditional constraint on Y and Z given X can be imposed.

A regular vine on n variables is one in which two edges in tree j are joined

by an edge in tree j + 1 only if these edges share a common node. Figure 4.9

shows a regular vine and a non-regular vine on four variables. The nested trees

are distinguished by the line style of the edges; tree 1 has solid lines, tree 2 has

dashed lines and tree 3 has solid, bend lines.

In the definition below, we introduce the regular vine in a more formal fashion.

X

ZY

X

ZY

(a) (b)

Figure 4.8 A tree (a) and a vine (b) on three elements.

1 2 3 4 1 2 3 4

(b)(a)

Figure 4.9 A regular vine (a) and a non-regular vine (b) on four variables.
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Definition 4.4 (Vine, regular vine) V is a vine on n elements if

1. V = (T1, . . . , Tn−1).

2. T1 is a connected tree with nodes N1 = {1, . . . , n} and edges E1;

for i = 2, . . . , n − 1, Ti is a connected tree with nodes Ni = Ei−1.

V is a regular vine on n elements if additionally

3. (proximity) For i = 2, . . . , n − 1, if {a, b} ∈ Ei, then #a△b = 2, where △
denotes the symmetric difference. In other words, if a and b are nodes of

Ti connected by an edge in Ti , where a = {a1, a2}, b = {b1, b2}, then exactly

one of the ai equals one of the bi .

In Figure 4.10, we can see that different vines can be obtained even when the

first tree in both cases is the same.

In the case of the regular vine in Figure 4.9, the representation is unique, given

the first tree, since each node in the first tree of this vine has a degree of at most 2.

There are two families of vines whose members are fixed simply by fixing the

initial ordering of the variables. These are the D-vine and, the canonical (C-) vine,

characterized by minimal and maximal degrees of nodes in the trees2.

Definition 4.5 (D-vine, C-vine) A regular vine is called a

• D-vine if each node in T1 has a degree of at most 2.

• Canonical or C-vine if each tree Ti has a unique node of degree n − i. The

node with maximal degree in T1 is the root.

The following definitions provide the vocabulary for studying vines.

(a) (b)

Figure 4.10 Two different regular vines on four variables.

2D-vines were originally called ‘drawable vines’; canonical vines owe their deferential name to the

fact that they are the most natural for sampling. The suggestion that ‘D-vine’ is a sacrilegious pun is

thoroughly unfounded.
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Definition 4.6 (m-child; m-descendent) If node e is an element of node f , we say

that e is an m-child of f ; similarly, if e is reachable from f via the membership

relation: e ∈ e1 ∈ . . . ∈ f , we say that e is an m-descendent of f .

For each edge of a vine, we define constraint, conditioned and conditioning

sets of this edge as follows: The variables reachable from a given edge are called

the constraint set of that edge. When two edges are joined by an edge of the next

tree, the intersection of the respective constraint sets form the conditioning set, and

the symmetric difference of the constraint sets is the conditioned set.

Definition 4.7 (Conditioning, conditioned and constraint sets)

1. For j ∈ Ei, i ≤ n − 1, the subset Uj (k) of Ei−k = Ni−k+1, defined by Uj (k) =
{e | ∃ ei−(k−1) ∈ ei−(k−2) ∈ . . . ∈ j, e ∈ ei−(k−1)}, is called the k-fold union

U∗
j = Uj (i) is the complete union of j , that is, the subset of {1, . . . , n} con-

sisting of m-descendants of j .

If a ∈ N1, then U∗
a = ∅.

Uj (1) = {j1, j2} = j .

By definition we write Uj (0) = {j}.

2. The constraint set associated with e ∈ Ei is U∗
e .

3. For i = 1, . . . , n − 1, e ∈ Ei , e = {j, k}, the conditioning set associated with

e is

De = U∗
j ∩ U∗

k

and the conditioned set associated with e is

{Ce,j , Ce,k} = U∗
j △U∗

k = {U∗
j \ De, U∗

k \ De}.

The order of node e is #De.

Note that for e ∈ E1, the conditioning set is empty.

For e ∈ Ei, i ≤ n − 1, e = {j, k} we have U∗
e = U∗

j ∪ U∗
k .

Figures 4.11 and 4.12 show D- and C-vines on five variables, with the condi-

tioned and conditioning sets for each edge. We use the D-vine in Figure 4.11 to

illustrate Definition 4.7. We get

T1 = (N1, E1), N1 = {1, 2, . . . , 5},

E1 = {{1, 2}; {2, 3}; {3, 4}; {4, 5}};

T2 = (N2, E2), N2 = E1,

E2 = {{{1, 2}, {2, 3}}; {{2, 3}, {3, 4}}; {{3, 4}, {4, 5}}};
...

The complete union of j = {1, 2} is U∗
j = {1, 2}, and for k = {2, 3}, U∗

k =
{2, 3}. Hence, the conditioning set of the edge e = {{1, 2}, {2, 3}} in T2 is
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1 2 3 4 5
1,2 2,3 3,4 4,5

1,3|2 2,4|3 3,5|4

1,4|23 2,5|34

1,5|234

T1

T2

T3

T4

Figure 4.11 A D-vine on five elements showing conditioned and conditioning sets.

2,3|1

1

2 3 4 5

1,2
1,3 1,4

1,5

2,4|1

2,5|1 3,4|12

3,5|12

4,5|123

Figure 4.12 A C-vine on five elements showing conditioned and conditioning sets.

De = U∗
j ∩ U∗

k = {1, 2} ∩ {2, 3} = {2}. The conditioned set consists of Ce,j =
U∗

j \ De = {1, 2} \ {2} = {1} and Ce,k = U∗
k \ De = {2, 3} \ {2} = {3}. The dotted

edge of T2 between {1, 2} and {2, 3} in Figure 4.11 is denoted as 1, 3|2, which gives

the elements of the conditioned sets {1}, {3} before ‘|’ and of the conditioning set

{2} after ‘|’.
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For regular vines, the structure of the constraint set is particularly simple, as

shown by the following lemmas (Cooke (1997a); Kurowicka and Cooke (2003)).

Lemma 4.1 Let V be a regular vine on n elements, and let j ∈ Ei . Then

#Uj (k) = 2#Uj (k − 1) − #Uj (k − 2); k = 2, 3, . . . i.

Lemma 4.2 Let V be a regular vine on n elements, and let j ∈ Ei . Then

#Uj (k) = k + 1; k = 0, 1, . . . , i.

The regularity condition ensures that the symmetric difference of the constraint

sets always consists of two variables.

Lemma 4.3 If V is a regular vine on n elements, then for all i = 1, . . . n − 1 and

all e ∈ Ei , the conditioned set associated with e is a doubleton; #U∗
e = i + 1, and

#De = i − 1.

Lemma 4.4 Let V be a regular vine, and suppose for j, k ∈ Ei, U∗
j = U∗

k , then

j = k.

Since there are (n2) nodes in a regular vine, the following lemma shows that

every pair of variables occurs exactly once as the conditioned set of some node.

Lemma 4.5 If the conditioned sets of nodes i, j in a regular vine are equal, then

i = j .

Lemma 4.6 For any node M of order k > 0 in a regular vine, if variable i is a

member of the conditioned set of M , then i is a member of the conditioned set of

exactly one of the m-children of M and the conditioning set of an m-child of M is

a subset of the conditioning set of M .

4.4.2 Bivariate- and copula-vine specifications

As with trees, we first define bivariate-vine dependence for regular vines and then

specialize to copula-vines. If we wish to impose only bivariate and conditional

bivariate constraints on a joint distribution, then we evidently restrict our attention

to regular vines. For dependence on general vines, see Bedford and Cooke (2002).

Definition 4.8 (Bivariate- and Copula-vine specification) (F,V, B) is a

bivariate-vine specification if

1. F = (F1, . . . , Fn) is a vector of distribution functions for random vectors

(X1, . . . , Xn) such that Xi �= Xj for i �= j .

2. V is a regular vine on n elements.
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3. B = {Bjk | e(j, k) ∈
⋃n−1

i=1 Ei, where e(j, k) is the unique edge with condi-

tioned set {j, k}, and Bjk is a non-empty subset of the set of margins on

{Xj , Xk} conditional on De(j,k)};

A bivariate-vine specification (F,V, B) is a copula-vine if (F1, . . . , Fn) are con-

tinuous invertible and,

4. B = {Cjk | e(j, k) ∈
⋃n−1

i=1 Ei, where e(j, k) is the unique edge with condi-

tioned set {j, k}, and Cjk is a copula for {Xj , Xk} conditional on De(j,k)};

A distribution realizes a vine specification if the one-dimensional marginals agree

with F and the conditional distributions (Xj , Xk) conditioned on De(j,k) are in Bjk.

A convenient way to specify the copulae is to choose a family of copulae indexed

by correlation and assign a conditional rank correlation to each edge. In general,

conditional correlations may depend on the value of the conditioning variables.

For the normal vines introduced in Section 4.4.5 however, the conditional rank

correlations must be constant.3 Copula-vine specifications are always consistent.

The proof of this fact is given by the sampling routine (see Chapter 6). The constant

conditional rank correlations may be chosen arbitrarily in the interval [−1, 1].

Just as for the tree-copula dependence structure, we can express a regular vine

distribution in terms of its density (Bedford and Cooke (2001b)).

Theorem 4.2 Let V = (T1, . . . , Tn−1) be a regular vine on n elements. For each

edge e(j, k) ∈ Ti, i = 1, . . . , n − 1 with conditioned set {j, k} and conditioning set

De, let the conditional copula and copula density be Cjk|De and cjk|De respectively.

Let the marginal distributions Fi with densities fi, i = 1, . . . , n be given. Then, the

vine-dependent distribution is uniquely determined and has a density given by

f1...n =




n−1∏

i=2

∏

e(j,k)∈Ei

cjk|De (Fj |De , Fk|De )


 ·

∏
{j,k}∈E1

fjk

∏
j∈N1

f
deg(j)−1
j

(4.6)

= f1 . . . fn

n−1∏

i=1

∏

e(j,k)∈Ei

cjk|De (Fj |De , Fk|De ). (4.7)

Example 4.3 The density function f1...4 of the distribution satisfying a copula-vine

specification of the D-vine on four variables with the marginal densities f1, . . . , f4

is the following:

f1...4 = f1 . . . f4c12(F1, F2)c23(F2, F3)c34(F3, F4)c13|2(F1|2, F3|2)

c24|3(F2|3, F4|3)c14|23(F1|23, F4|23).

The existence of the unique minimum information distribution with respect to

the product of margins for regular vines can be shown:

3Currently UNICORN is also restricted to constant conditional correlations.
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Theorem 4.3 Let g be an n-dimensional density satisfying the bivariate-vine speci-

fication (F,V, B) with density g and one-dimensional marginal densities g1, . . . , gn;

then

I

(
g |

n∏

i=1

gi

)
=

n−1∑

i=1

∑

e(j,k)∈Ei

EDeI (gCe,j ,Ce,k |De | gCe,j |De · gCe,k |De ). (4.8)

If g{Ce,j ,Ce,k}|De is the unique density satisfying (F,V, B), which minimizes

I (gCe,j ,Ce,kDe | gCe,j De · gCe,k |De ); i = 1, . . . , n − 1; e = {j, k} ∈ Ei,

then g is the unique density satisfying (F,V, B) and minimizing

I

(
g|

n∏

i=1

gi

)
.

The quantity on the left-hand side of (4.8) is often called the mutual information

of g. Theorem 4.3 says that the mutual information can be written as the sum over

the nodes of a regular vine of expected mutual information of conditional bivariate

densities, with expectation taken over the conditioning sets of the nodes.

We note that for the (conditional) independent copula, the variables {Ce,j , Ce,k}
are conditionally independent given De; the corresponding term in the sum of (4.8)

is zero, and the corresponding term in the density in (4.6), cjk|De (Fj |De , Fk|De), is

the independent copula, that is, unity. If all constraints Bjk corresponding to edges

in trees T2 . . . Tn−1 contain the independent copula, then the minimum information

will be realized by the (conditional) independent copula. The density then has the

form (4.4) and we have:

Corollary 4.1 The minimum information realization of a copula-tree specification,

relative to the independent distribution with the same one-dimensional marginals,

is Markov.

We will often require that the copulae realizing the conditional correlations

have the zero independence property: Zero (conditional) rank correlation entails

(conditional) independence. The diagonal band (DB), Frank’s and minimum infor-

mation copulae have the zero independence property, with which it is easy to

deal with unspecified correlations. If a (conditional) rank correlation for a regular

vine is unspecified, then setting this correlation equal to zero makes the condi-

tioned variables conditionally independent. This is always consistent and yields,

by Theorem 4.3, the minimum information joint distribution, given the specified

rank correlation and associated copula.

4.4.3 Example: Investment continued

We return to the investment example and reflect that if the interest is high in year 2,

it is unlikely to be high in both years 1 and 3. We can capture this with a D-vine with
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V1 V2 V3 V4

0.7000 0.7000 0.7000 0.7000
−0.7000 −0.7000 −0.7000

0.0000 0.0000
0.0000

V5

Figure 4.13 D-vine for investment; Frank’s copula.

Samples selected: 99

5yrreturn

1.9E3
V1

0.15
V2

0.15
V3

0.15
V4

0.15
V5

0.15

1.4E3 0.05 0.05 0.05 0.05 0.05

Figure 4.14 Cobweb plot for D-vine investment, conditional on high V 1.

rank correlation −0.70 between V i and V i + 2, conditional on V i + 1, i = 1, 2, 3

(Figure 4.13).

Other conditional rank correlations are zero; with Frank’s copula this implies

that V 1 and V 4 are conditionally independent given V 2 and V 3. The effect of the

negative conditional rank correlation is obvious in Figure 4.14.

4.4.4 Partial correlation vines

Recall that the partial correlation ρ12;3,...,n can be interpreted as the correlation

between the orthogonal projections of X1 and X2 on the plane orthogonal to the

linear space spanned by X3, . . . , Xn. The edges of a regular vine may also be
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associated with partial correlations, with values chosen arbitrarily in the interval

(−1, 1) in the following way:

For i = 1, . . . , n − 1, to e ∈ Ei , with conditioned and conditioning variables

{j, k} and De respectively, we associate

ρj,k;De .

This is not a vine specification in the sense of Definition 4.8, as the one-

dimensional marginals are not specified; indeed, a given set of marginals may not

be consistent with a given set of partial correlations (see, however, the next section).

Even if they are consistent, this would not determine the joint distribution and not

lead to a sampling routine. Nonetheless, because of the convenience of calculating

with partial correlations, and their approximate equality to conditional correlations

and conditional rank correlations, it is convenient to assign partial correlations to

the edges of a regular vine and to call the result a partial correlation vine.

In Theorem 4.4 Bedford and Cooke (2002) shows that each such partial cor-

relation vine specification uniquely determines the correlation matrix, and every

full-rank correlation matrix can be obtained in this way. In other words, a regular

vine provides a bijective mapping from (−1, 1)(
n
2) into the set of positive definite

matrices with 1’s on the diagonal.

Theorem 4.4 For any regular vine on n elements there is a one-to-one correspon-

dence between the set of n × n full-rank correlation matrices and the set of partial

correlation specifications for the vine.

All assignments of the numbers between −1 and 1 to the edges of a partial correla-

tion regular vine are consistent in the sense that there is a joint distribution realizing

these partial correlations, and all correlation matrices can be obtained this way.

It can be verified that the correlation between ith and j th variables can be com-

puted from the sub-vine generated by the constraint set of the edge, the conditioned

set of which is {i, j} using the recursive formulae (3.3) and the following lemma.

Lemma 4.7 If z, x, y ∈ (−1, 1), then also w ∈ (−1, 1), where

w = z
√

(1 − x2)(1 − y2) + xy.

A regular vine may thus be seen as a way of picking out partial correlations,

which uniquely determine the correlation matrix and which are algebraically inde-

pendent. The partial correlations in a partial correlation vine need not satisfy any

algebraic constraint like positive definiteness. The ‘completion problem’ for partial

correlation vines is therefore trivial: An incomplete specification of a partial cor-

relation vine may be extended to a complete specification by assigning arbitrary

numbers in the (−1, 1) interval to the unspecified edges in the vine.

Partial correlation vines have another important property that plays a central

role in model inference in the next chapter. The product of 1 minus the square

partial correlations equals the determinant of the correlation matrix.
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Theorem 4.5 Let D be the determinant of the correlation matrix of variables

1, . . . , n, with D > 0. For any partial correlation vine,

D =
n−1∏

i=1

∏

e∈Ei

(1 − ρ2
j,k;De

),

where {j, k} and De are conditioned and conditioning sets of e.

4.4.5 Normal vines

A normal vine arises when (Y1, . . . , Yn) have a joint normal distribution, and the

edges of a regular vine on n nodes are assigned the partial correlations of this dis-

tribution. By Proposition 3.29, the partial and conditional correlations are equal for

the joint normal distribution. With Proposition 3.25 these conditional correlations

may be transformed to conditional rank correlations.

This offers a convenient way of realizing any rank correlation specification on a

regular vine. Suppose that X1, . . . , Xn are assigned arbitrary continuous invertible

distribution functions and that rank correlations on a regular vine V are specified.

We can realize this structure in the following way:

• Create a partial correlation vine V ′ by assigning to each edge e in V the partial

correlation ρi,j ;De = 2 sin(π
6
ri,j |De ), where {i, j} and De are the conditioned

and conditioning sets of e, and ri,j |De is the conditional rank correlation

assigned to e in V .

• Compute the unique correlation matrix R determined by the partial cor-

relation vine V ′, and sample a joint normal distribution (Y1, . . . , Yn) with

standard normal margins and correlation R.

• Write xi = F−1
i �(yi), where Fi is the cumulative distribution function of

Xi, i = 1 . . . n, � is the cumulative distribution function of the standard

normal distribution and y1, . . . , yn is a sample of Y1, . . . , Yn.

This procedure realizes X1, . . . , Xn with the stipulated conditional rank cor-

relations. We avoid the problems encountered in Section 4.2 because we do not

specify a rank correlation matrix, but rather a rank correlation vine. This sampling

method is also fast.

4.4.6 Relationship between conditional rank and partial

correlations on a regular vine

For the vine-copula method, we would like a copula for which the relation between

conditional rank correlations and partial correlations is known. We now examine a

few copulae from this perspective.
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Elliptical copula The elliptical copula is a copula for which partial and constant

conditional product moment correlations are equal. More precisely, it is known

that when (X, Y ) and (X, Z) are joined by elliptical copulae (Section 3.4), and

when the conditional copula of (Y, Z) given X does not depend on X, then the

conditional correlation of (Y, Z) given X is equal to the partial correlation (Kurow-

icka and Cooke (2001) and Proposition 3.19). Hence, we can find a relationship

between partial and conditional rank correlations using techniques as in the proof

of Proposition 3.19. We could also incorporate the sampling algorithm for a C-vine

from Chapter 6, and then

ρ23;1 =
12
∫
I3 x2x3du1du2du3 − r12r13√

(1 − r2
12)(1 − r2

13)

, (4.9)

where I = [− 1
2
, 1

2
]. Calculating the integral given earlier (with x2 and x3 given

by the sampling algorithm (6.2), inverse conditional distributions of the elliptical

copula and simplifying), we get

ρ23;1 = 2

∫

I2
sin(πu2) sin

(
π

[√
1 − r2

23|1

√
1

4
− u2

2 sin(πu3) + r23|1u2

])
, (4.10)

where the integration is with respect to u2 and u3. Notice that ρ23;1 does not depend

on r12, r13; it depends only on r23|1. This is very specific for the elliptical copula.

We denote the relationship (4.10) as

ρ23;1 = ψ(r23|1). (4.11)

Now we can easily show that if r23|1 = 1, then

ρ23;1 = 2

∫

I2
sin(πu2) sin(πu2)du2du3 = 1,

and if r23|1 = −1,

ρ23;1 = 2

∫

I2
sin(πu2) sin(−πu2)du2du3 = −1.

From the preceding result, Hoeffding’s theorem (Hoeffding (1940), Theorem 3.1)

and Theorem 4.4 we get that there exists trivariate uniform distribution realizing

any correlation structure.

Example 4.4 Construct a trivariate distribution with the following rank correlation

structure:

A =




1 0.7 0.7

0.7 1 0

0.7 0 1


 . (4.12)
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The copula-vine with elliptical copulae provides a very convenient way of con-

structing a distribution with rank correlation matrix (4.12). We have ρ12 = ρ13 = 0.7

and ρ23 = 0. The partial correlation ρ23;1 can be calculated from (3.3) as −0.96.

From (4.10) we find conditional rank correlation r23|1 = −0.9635. Using the sam-

pling algorithm for the C-vine (see Chapter 6), we can sample a distribution with the

rank correlation matrix (4.12) very efficiently. Notice that this rank correlation matrix

could not be realized by the joint normal transformation method (see Example 4.1).

Unfortunately, the preceding result cannot be generalized to higher dimensions.

The supplement discusses two fourvariate correlation matrices; the first can be

realized with the elliptical copulae but not by the joint normal method, while the

second cannot be realized with elliptical copulae.

Other copulae Using techniques presented in the previous subsection, we can

find a relationship between partial and conditional rank correlations for other cop-

ulae. If in (4.9) we use x2, x3 when calculating the integral, with the inverse

conditional distributions of, for example, the DB or the Frank’s copula, then the

relationship between the partial correlation and a parameter of the copula that cor-

responds to r23|1 can be established. However, in contrast to the elliptical copula,

ρ23;1 will also depend on r12 and r13.

Interestingly, the correlation matrix in Example 4.4 cannot be realized with the

vine method with the DB copula. We may use formula (4.9) to search for r23|1 that

corresponds to the partial correlation −0.96, and we find that r23|1 = −1 yields

partial correlation equal only to −0.9403.

At present, there are no analytical results concerning the relationship between

partial and constant conditional rank correlations for the DB or the Frank’s cop-

ula. It would be interesting to know whether there exists a copula for which this

relation is known. We could also consider incorporating non-constant conditional

rank correlations assigned to the edges of a regular vine and see how they relate

to partial correlations.

Predicting correlation matrices – simulation results Having specified a joint

uniform distribution with the copula-vine method, we would like to predict the

resulting correlation matrix. In general, we cannot calculate the correlation matrix,

but if we pretend that the conditional rank correlations satisfy the recursive relations

for partial correlations, we can predict the correlation matrix with some error. In

this section, we estimate this error for the elliptical DB and Frank’s copulae with

simulation. The procedure is as follows:

1. Sample a correlation matrix of size n with ‘onion’ method of Ghosh and

Henderson (2002).

2. Find the partial correlation specification on the C-vine on n variables.

3. Pretend that conditional rank and partial correlation specifications are equal.
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4. Draw 10,000 samples of the n-dimensional distribution described by the rank

correlation specification on the C-vine with the elliptical (E), the DB and the

Frank’s (F) copula (in the sampling procedure, the same independent samples

are used for all copulae).

5. Calculate correlation matrices form these samples and compare with the

target correlation matrix (as a measure of difference between matrices, we

take the sum of absolute differences between elements of the target and

sampled matrix);

The preceding procedure was repeated 500 times for each dimension. Error is

defined per matrix as the sum, over all cells, of the absolute difference between

the target and the sampled matrix. In Table 4.1 we record the maximum absolute

error over the 500 matrices, the average absolute error over the 500 matrices and

percentage of the 500 simulated matrices for which the given copula led to the

minimum error. To compare these results with the joint normal method, we sampled

500 random correlation matrices with the onion method and used these matrices as

product moment correlation matrices of the joint normal. We drew 10,000 samples

from the joint normal and calculated the difference between the correlation and the

rank correlation matrices from these samples. Because we sampled from normal

distributions instead of uniform distributions, the results per matrix could not be

compared with the vine-copula matrices, but the maximum and average error can

be compared.

Notice that for three- and four-dimensional matrices, the elliptical copula gives

the smallest error. Five-, six- and seven-dimensional matrices are best approximated

Table 4.1 Performance of elliptical, diagonal band and Frank’s copulae (E, DB

and F) in the vine-copula method. Simulation results for joint normal method (N).

Copula/dim 3 4 5 6 7 8 9 10

E %min error 60.6 53.6 28.6 8.4 1 0 0 0

max error 0.11 0.21 0.45 0.70 1.09 1.52 2.02 2.81

average error 0.03 0.10 0.22 0.41 0.70 1.05 1.50 1.99

DB %min error 25.4 33.6 53.4 62.6 61 46.4 27.4 9.4

max error 0.13 0.23 0.37 0.56 0.77 1.00 1.24 1.57

average error 0.04 0.10 0.19 0.32 0.47 0.65 0.87 1.04

F %min error 14 12.8 18 29 38 53.6 72.6 90.6

max error 0.27 0.29 0.42 0.67 0.82 1.05 1.28 1.48

average error 0.05 0.13 0.22 0.35 0.48 0.64 0.83 0.94

N max error 0.20 0.36 0.57 0.64 0.87 1.00 1.20 1.55

average error 0.08 0.16 0.26 0.38 0.52 0.69 0.86 1.07
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Table 4.2 Average error per cell for vine-copula method with E, DB and F copulae

and for joint normal method (N).

Copula/dim 3 4 5 6 7 8 9 10

E 0.006 0.008 0.011 0.014 0.017 0.019 0.021 0.022

DB 0.007 0.009 0.010 0.011 0.011 0.012 0.012 0.012

F 0.009 0.011 0.0110 0.012 0.012 0.012 0.012 0.011

N 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.012

by the vine-diagonal band method, and then Frank’s copula starts to produce the

smallest error. Of course, the average error over 500 matrices is affected by the fact

that the number of cells over which we sum increases with dimension. Table 4.1

shows average error, divided by the number of off-diagonal cells.

The average error per cell for the vine-copula method and joint normal method

is presented in Table 4.2. Notice that the average error per cell using the normal

method is always greater than the average error per cell for the vine method with

the diagonal band and Frank’s copula. However, the difference decreases with

matrix dimension.

From these numerical experiments, we may conclude that Frank’s copula is

a good choice if we wish to predict the correlation matrix from a rank correla-

tion vine.

4.5 Vines and positive definiteness

The copula-vine method does not work with correlation matrices; it specifies a joint

distribution by choosing a copula family and assigning conditional rank correlations

to the edges of a regular vine. Regular vines can however be used in problems that

arise if we work with correlation matrices, as in the normal transform method. In

Theorem 4.4 a one-to-one correspondence between correlation matrices and partial

correlation specifications on a regular vine is shown. This relationship can be used

to check positive definiteness, to repair violations of positive definiteness and to

attack the completion problem.

4.5.1 Checking positive definiteness

If A is an n × n symmetric matrix with positive numbers on the main diagonal,

we may transform A to a matrix A = DAD, where elements of D are as follows:

dij =
{

1√
aii

if i = j

0 otherwise.

Thus,

aij =
aij√
aiiajj

. (4.13)
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A has 1’s on the main diagonal. Since it is known that A is positive definite if

and only if all principle sub-matrices4 are positive definite, we can restrict our

further considerations to the matrices, which after transformation (4.13) have all

aij ∈ (−1, 1), where i �= j .

Definition 4.9 (proto-correlation matrix) A symmetric matrix with all off-

diagonal elements in the interval (−1, 1) and with 1’s on the main diagonal is

called a proto-correlation matrix.

It is well known that A is positive definite (A ≻ 0) if and only if A is positive

definite.

In order to check positive definiteness of the matrix A, we will use the partial

correlation specification for the C-vine. Because of the one-to-one correspondence

between partial correlation specifications on a regular vine and positive definite

matrices given in Theorem 4.4, it is enough to check whether all partial correlations

from the partial correlation specification on the C-vine are in the interval (−1, 1)

to decide whether A is positive definite.

Example 4.5 Let us consider the matrix

A =




25 12 −7 0.5 18

12 9 −1.8 1.2 6

−7 −1.8 4 0.4 −6.4

0.5 1.2 0.4 1 −0.4

18 6 −6.4 −0.4 16




and transform A to proto-correlation matrix using formula (4.13). Then we get

A =




1 0.8 −0.7 0.1 0.9

0.8 1 −0.3 0.4 0.5

−0.7 −0.3 1 0.2 −0.8

0.1 0.4 0.2 1 −0.1

0.9 0.5 −0.8 −0.1 1




.

Since

[
ρ23;1, ρ24;1, ρ25;1

]
=
[

0.6068, 0.5360, −0.8412
]
,

[
ρ34;12, ρ35;12,

]
=
[

0.0816, −0.0830,
]

and
[

ρ45;123

]
=
[

0.0351
]

are all between (−1, 1), it follows that, A and A are positive definite.

4A principle sub-matrix of an n × n matrix A is the matrix obtained by removing from A the rows

and columns indexed by subset of {1, . . . , n}.



HIGH-DIMENSIONAL DEPENDENCE MODELLING 107

In general, for an n × n correlation matrix we must calculate

n−2∑

k=1

(
n − k

2

)
=

(n − 2)(n − 1)n

6
<

n3

6

partial correlations using formula (3.3). The complexity of this algorithm, however,

is not smaller than that for other known procedures such as, for example, Cholesky

decomposition. This algorithm is implemented in UNICORN to check positive

definiteness of a specified matrix.

4.5.2 Repairing violations of positive definiteness

In physical applications, it often happens that correlations are estimated by noisy

procedures. It may thus arise that a measured correlation matrix is not positive

definite. If we want to use this matrix, we must change it to get a positive definite

matrix, which is as close as possible to the measured matrix.

Partial correlation specifications on a C-vine can be used to alter a non-positive

definite matrix A so as to obtain a positive definite matrix B. If the matrix is not

positive definite, then there exists at least one element in the partial correlation

specification of the C-vine that is not in the interval (−1, 1). We will find the

first such element, change the value and recalculate partial correlations on the vine

using the following algorithm:

for 1 ≤ s ≤ n − 2, j = s + 2, s + 3, . . . , n,

ρs+1,j ;12...s �∈ (−1, 1) → ρs+1,j ;12...s := V
(
ρs+1,j ;12...s

)
,

where V
(
ρs+1,j ;12...s

)
∈ (−1, 1) is the altered value of ρs+1,j ;12...s .

Recalculate partial correlations of lower order as follows:

V (ρs+1,j ;1...t−1) = V (ρs+1,j ;1...t)

√
(1 − ρ2

t,s+1;1...t−1)(1 − ρ2
s+1,j ;1...t−1)

+ ρt,s+1;1...t−1ρs+1,j ;1...t−1, (4.14)

where t = s, s − 1, . . . , 1.

Theorem 4.6 The following statements hold:

a. All recalculated partial correlations are in the interval (−1, 1).

b. Changing the value of the partial correlation on the vine leads to changing only

one correlation in the matrix and does not affect the correlations that were

already changed.

c. There is a linear relationship between the altered value of partial correlation and

the correlation with the same conditioned set in the proto-correlation matrix.

d. This method always produces a positive definite matrix.

From the statement (c) of Theorem 4.6, we can obtain the following result.
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Corollary 4.2 If

|ρs+1,j ;12...s − V (ρs+1,j ;12...s)
(1)| < |ρs+1,j ;12...s − V (ρs+1,j ;12...s)

(2)|,

then

|ρs+1,j − ρ
(1)
s+1,j | < |ρs+1,j − ρ

(2)
s+1,j |,

where V (ρs+1,j ;12...s)
(1) and V (ρs+1,j ;12...s)

(2) are two different choices of

V (ρs+1,j ;12...s) in (4.14).

Let us consider the following example:

Example 4.6 Let

A =




1 −0.6 −0.8 0.5 0.9

−0.6 1 0.6 −0.4 −0.4

−0.8 0.6 1 0.1 −0.5

0.5 −0.4 0.1 1 0.7

0.9 −0.4 −0.5 0.7 1




.

We get ρ34;12 = 1.0420; hence A is not positive definite.

Since ρ34;12 > 1, we will change its value to V (ρ34;12) = 0.9 and recalculate

the lower-order correlations

V (ρ34;1) = V (ρ34;12)

√
(1 − ρ2

23;1)(1 − ρ2
24;1) + ρ23;1ρ24;1

and

V (ρ34) = V (ρ34;1)
√

(1 − ρ2
13)(1 − ρ2

14) + ρ13ρ14.

We find V (ρ34;1) = 0.9623 and, finally, the new value in the proto-correlation matrix

V (ρ34) = 0.0293. Next, we will apply the same algorithm to verify that this altered

matrix is positive definite. We obtained the matrix

B =




1 −0.6 −0.8 0.5 0.9

−0.6 1 0.6 −0.4 −0.4

−0.8 0.6 1 0.0293 −0.5

0.5 −0.4 0.0293 1 0.7

0.9 −0.4 −0.5 0.7 1




,

which is positive definite. Note that only cell (3, 4) is altered.

Remark 4.1 In Example 4.6, if we could choose a new value for the correlation

ρ34;12, that is, V (ρ34;12), as 0.99, then the altered value of correlation ρ34 is 0.0741.

If we change ρ34;12 to 0.999, then we calculate ρ34 to be 0.0786, but in this case

we obtain the value of ρ45:123 to be equal to −1.6224. If we change this value to

−0.999 we calculate ρ45 = 0.7052.
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Remark 4.2 Note that the choice of vine has a significant effect on the resulting

altered matrix. The C-vine favours entries in the first row. These values are not

changed. The further we go from the first row, the greater the changes are. Hence,

when fixing a matrix using the C-vine, one should rearrange variables to have

the most reliable entries in the first row. Alternatively, different regular vines can

be used.

4.5.3 The completion problem

Let A be an n × n partially specified proto-correlation matrix such that the unspec-

ified cells are given by index pairs

(ik, jk), (jk, ik), k = 1, . . . , K. (4.15)

We must fill these unspecified elements such that the resulting matrix B =
[bij ]i,j=1,...,n is positive definite. Thus, we must find a vector (x1, . . . , xk) such that

bik ,jk
= bjk,ik = xk, k = 1, . . . , K,

bij = aij , otherwise

and B is positive definite.

We could approach this problem by trying to find a projection of A on the set

of positive definite matrices. However, as we have already discussed in Chapter 3,

the constraint of positive definiteness is quite strong. The set of positive defi-

nite matrices is not simple. Thus, algorithms that search elements of this set are

complicated.

The partial correlations specified on a regular vine are algebraically inde-

pendent, and they uniquely determine the correlation matrix. Thus, the partial

correlation vine can be seen as an algebraically independent parametrization of

the set correlation matrices.

We thus formulate the completion problem as the following optimization prob-

lem. Let A be a partially specified proto-correlation matrix for n variables, let V

be a regular vine on n variables, let x be a vector of partial correlations assigned

to the edges of V and let B(x) be the correlation matrix calculated from V with x.

We then minimize ∑
|Aij − B(x)ij |,

where the sum is over the specified cells of A. If the sum is zero, then A is com-

pletable. Notice that the set of vectors x that we must search is simply (−1, 1)(
n
2).

For some special cases of partially specified proto-correlation matrices, the

completion problem is trivial. If specified cells of A correspond to the edge set

of a tree, then A is always completable, and we could find all completions of

A by taking a regular vine with the first tree equal to specified cells in A and

assigning freely the values in (−1, 1) to all partial correlations of order greater

then zero. If these partial correlations are chosen to be equal to zero, then using
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1

2

4

3 5

Figure 4.15 A regular vine for Example 4.7, with dashed edges corresponding to

partial correlations that can be chosen freely.

Theorem 4.5 one can easily see that the resulting completion matrix will have

maximum determinant.

If A corresponds to more complicated graph, then a smart choice of a vine can

simplify the search procedure significantly or even allow the description of all pos-

sible completions for A. In the Supplement, preliminary results of the completion

problem for special cases of graphs are shown.

Example 4.7 Let us consider the following partially specified matrix

A =




1 ρ12 � � �

ρ12 1 ρ23 ρ24 ρ25

� ρ23 1 ρ34 �

� ρ24 ρ34 1 ρ45

� ρ25 � ρ45 1




,

where � denotes unspecified entry in A.

By choosing a D-vine for this case, one can get all the correlations in the first tree

1 − 2 − 3 − 4 − 5. The partial correlation ρ24;3 can be also calculated from ρ23, ρ34

and ρ24. One must search for values of the remaining correlations: ρ13;2, ρ35;4,
ρ14;24, ρ25;34 and ρ15;234. Notice that they cannot be chosen freely, as they have to

agree with correlation ρ25. In this case, we could however work with the regular vine

in Figure 4.15 and then ρ34;2 and ρ45;2 can be calculated and ρ13;2, ρ14;23, ρ35;24

and ρ15;234 can be chosen freely. Hence, the whole set of completions can be

described.

In Kurowicka and Cooke (2003), the partial correlation specification on the C-

vine was used to find the completion of some types of partially specified matrices.
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4.6 Conclusions

This chapter addresses the problem of representing high-dimensional distributions

with dependence. The joint normal transform method involves specifying a com-

plete rank correlation matrix and yields approximate results.

The copula-tree method in Section 4.3 allows effective specification of a joint

distribution. A sampling procedure for the distribution specified by the tree structure

is presented in Chapter 6. A tree on n variables, however, allows specification of

only n − 1 rank correlations. This is a significant limitation.

The copula-vine method presented in this chapter generalizes the copula-tree

approach. It uses conditional dependence to construct multidimensional distribu-

tions from two-dimensional and conditional two-dimensional distributions of uni-

form variables. This approach yields a sampling algorithm that is fast and accurate,

giving us exactly what we specify up to sampling error (see Chapter 6). Moreover,

the rank correlations in copula-vines are algebraically independent. Hence, every

rank correlation specification on a regular vine is consistent and can be realized.

Section 4.4.6 shows that the elliptical copula in vines ensures the existence of

a trivariate joint uniform with an arbitrary correlation structure. From the results

of Section 4.4.6, we conclude that there are correlation matrices of size four that

cannot be realized with the vine-elliptical copula method, but this method realizes

more than joint normal method does (Example 4.8).

Many questions remain. We do not know as to which n-dimensional correlation

matrices can be realized by a joint uniform distribution, that is, which of the

matrices are rank correlation matrices. We would like to determine the correlation

matrices that are rank correlation matrices and how this set relates to the set of

matrices that can be realized by copula-vine method. The examples in this chapter

show that the choice of copula affects the set of realizable rank correlation matrices.

Generalizations of the copula-vine method could be contemplated; in particular, we

could consider non-regular vines and non-constant conditional rank correlations.

4.7 Unicorn projects

Project 4.1 Investment

In this project, we step through the construction of the tree and vine dependence

structures discussed in this chapter. Create a case called ‘invest tree’ with one

constant variable ‘start’, the value of which is 1000. This is the initial capital. Add

variables V 1, . . . , V 5 for the yearly interest, each with a uniform distribution on

[0.05, 0.15]. Go to the Formula panel and enter the formula called ‘5yrReturn’:

start ∗ (1 + V 1) ∗ (1 + V 2) ∗ (1 + V 3) ∗ (1 + V 4) ∗ (1 + V 5).

Now go to the Dependence panel, click on Add New and select Dependence tree.

The variables appear in the left window. Click on V1; it moves from the left to the

right window. Select V1, and while it is highlighted, click on V2. V2 appears on the
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right, attached to V1, with correlation 0.00. Select V2 and click on V3, and so on,

until the right window’s tree looks like Figure 4.5. Use Ctrl click to select all the

correlations 0.00 in the tree and go to the Rank Correlation input box and enter

0.70. This value now appears at all positions in the tree. In the copula list box,

select Frank’s copula.

Go to the Run panel; you are advised to save your structure; do so. Choose 20

runs (2000 samples) and check the save input and save output boxes. The default

for Repeat Whole Simulation is ‘1 time’, do not change this. Click on Run. When

the simulation is finished, you can generate and view the report. You may check the

items you wish to see in the report, and select the output format. Returning to the

Run panel; click on Display Graphics. You see a cobweb plot with all input and

output variables and 200 samples. In the Variables check box, unselect ‘start’, as

this is a constant. In the cobweb plot, use the mouse to drag the variable ‘5yrReturn’

to the left most position. The Plot Samples slider allows you to choose the number

of samples shown. Move the slider all the way to the right to see all 2000 samples.

The cobweb plot colour codes the leftmost variable. Selecting Options Colour. . .

you can change the number of colours and the colours themselves. Experiment

with this feature. You can also choose the variables scale; with the Natural scale,

you see the minimum and maximum values for each variable below and above the

corresponding vertical lines. With the mouse right click and hold, you can select the

values of V1 on which to conditionalize. Starting at the top, select the highest 100

values of V1. It may be difficult to select exactly 100 values owing to granularity

in the graphics. By releasing the right click on the mouse, you see the conditional

cobweb plot of Figure 4.7. From the file menu you can export this picture to a bitmap

or jpg file.

To create the symmetric dependence structure, go back to the variables panel

and add a uniform [0, 1] variable ‘LATENT’. Go to the dependence panel. With

the pointer in the right window, right click. The Tree options box appears; select

Remove Entire dependence structure. All variables return to the left window. Now

from Dependence/Add new, select Dependence tree. Attach variables V 1, . . . , V 5

to LATENT and assign them the rank correlation 0.84. Proceed as before to produce

the cobweb plot in Figure 4.7.

To create the D-vine dependence structure, go back to the Dependence panel and

Remove Entire Dependence Structure. Now from the Dependence menu, Add New

and select D-vine. Notice that the minimum information copula is now unavailable;

since its distribution function is not available in closed form, it cannot be used

in sampling a vine. A D-vine structure is specified by specifying an order of the

variables. Click on V 1, . . . , V 5. The first tree appears in the right window. Assign

rank correlations 0.70 to all edges in this first tree. The higher trees are created by

hitting the ‘Transcend’ button. The higher trees can only be created when the first

tree is finished. In the second tree, choose rank correlations −0.70 (to see the rank

correlation matrix approximating the vine structure, check the ‘Matrix View’ box).

The result should look like Figure 4.13. Simulating and displaying graphics works

the same way as with trees.
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Project 4.2 Mission Completion times

This project is a stylized version of an application that illustrates some of UNI-

CORN’s handy built-in functions. A system of communications satellites has a

nominal mission time of 15 years, but the actual mission time is uncertain; it could

be as low as 8 years and as high as 18 years, depending on obsolescence and market

growth, and on how well or badly the satellites function. At least 15 satellites are

required for the system to function according to specifications, and we are launch-

ing 20 satellites, each with a median life of 10 years. The input data are shown in

Figure 4.16. Note that the descriptive fields have been filled to identify the variables.

We created a dummy variable ‘dummy’ to construct symmetric dependencies. The

‘missiontime’ has a beta distribution on the interval [8, 18], with parameters α = 4

and β = 2. Although there are evident dependencies in this problem, we first treat

the satellites and mission time as independent. We are interested in the number of

years for which the system is OK, that is, at least 15 of the satellites are working.

We are also interested in the total number of functional satellite years up to mission

completion. The following user-defined functions (UDFs) allow us to accomplish

this (the UDF name proceeds the colon):

1. t: vary{1,missiontime + 1,1},

Figure 4.16 Input variables for Mission Completion.
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2. over15:

i15{t,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s19,

s20,≫},

3. nrovert:

i#{t,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s19,

s20,≫},

4. totunityrs: sum(nrovert),

5. totsysok: sum(over15).

The first UDF is a variable (the name ‘vary’ is obligatory) running from 1 up to,

and not including, missiontime + 1, with step size 1. In other words, ‘vary’ runs from

1 to missiontime, inclusive of missiontime. UDF 2 is a generalized indicator, which

returns 1 if the first and last arguments contain at least 15 of the middle arguments,

otherwise it returns 0. The leftmost argument ≫ denotes infinity. In other words,

‘over15’ is 1 if and only if at least 15 of the satellites live at least up to time t

and is zero otherwise. UDF 3, ‘nrovert’ is a generalized indicator, which counts

the number of intermediate variables between the left- and rightmost arguments,

inclusive. UDF 4 sums the number of systems alive after t , for t running from one

to mission time with step size 1. UDF 5 counts the number of years for which the

system is OK, that is, at least 15 of the satellites are working.

Go to the RUN panel and run this case with 2000 samples, saving the input and

output. Go to graphics and make a cobweb plot of the output variables. By dragging

the variables and choosing colours, you should get the plot to look like Plate 2. The

variable ‘over15’ is constant at zero because at the last value of t , the number of

working satellites is never 15 or over. Indeed, we see that the maximum value of

‘nrovert’ is 14. We see that we get at most 10 years of system performance. With

the mouse, select the value 10 for the variable ‘totsysOK;’ the number of samples

for which ‘totsysOK’ is equal to 10 is 37. The maximum value of the total number

of satellite years in service up to mission completion is 232.

There are dependencies in this problem. Most notably, mission time is allowed

to depend on how well the satellites function. Also, the satellites have been designed

as identical and manufactured by the same company. In service they will be exposed

to the same solar storms that can influence life. Experts agree that there is a rank

correlation between the satellites’ life and the mission time of 0.7. Independently

of mission time, there is a weak rank correlation, of 0.09, of each pair of satellites

themselves, which we realize (approximately) by rank correlating them to a dummy

variable with rank correlation 0.3. This suggests a C-vine with missiontime as root

and dummy as the second variable. Satellites S1. . .S20 are rank correlated with

missiontime at 0.7, and given mission time, they are rank correlated to the dummy

at 0.3. Higher-order correlations are zero.

The results are shown in Plate 3. Note that the maximal number of years of

‘totsysOK’ is now 12, and 362 samples yield 10 years of system functioning. On
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the other hand, ‘nrovert’ has its maximal value equal to 9. This means that when

t = missiontime, the number of systems still alive is much less than that in the inde-

pendent case shown in the preceding text. Why? This is because the relatively strong

correlation between missiontime and satellite life induces a positive correlation of

about 0.64 between satellites. Hence, the satellites’ deaths tend to be less spread

out. Since the mean is 10 years, we find that 15 survive less often up to 18 years.

You can find that the total number of satellite years now has a maximal value of

270 rather than 232.

4.8 Exercises

Ex 4.1 Let X and Y be uniform on [0, 1] and Z = X + Y . Calculate Var(Z) when

X, Y are:

1. independent,

2. completely positively correlated,

3. completely negatively correlated.

Ex 4.2 Let us consider a tree on three variables X, Y and Z, which are uniform on

(− 1
2
, 1

2
). Let (X, Y ), (X, Z) be joined by the elliptical copula with correlation rXY

and rXZ, respectively. Y and Z are conditionally independent given X. Show that

the correlation rYZ is equal to the product of rXY and rXZ.

Ex 4.3 Let Xi be the outcome (heads or tails) on the i-th toss of a fair coin, i =
1, . . . , 3. Let Xp = 1 if the number heads on X1, . . . , X3 is even, and = 0 otherwise.

Show that the tree

X1 Xp X2 X3

has tree dependence of order 1 but not order 2 and is not Markov. Show that the

tree

X1 Xp X2

⌊ X3

has tree dependence of order m, for all m, but is not Markov.

Ex 4.4 Determine whether the correlation matrix in Example 4.1 can be realized

with the vine-Frank’s copula method (this exercise requires numerical integration).

Ex 4.5 Use the techniques from Section 4.4.6 to show that if variables X, Y and Z

are uniform on (− 1
2
, 1

2
), with (X, Y ) and (X, Z) joined by the elliptical copula with

rank correlations rXY and rXZ, respectively, and the conditional rank correlation is

as follows:

rYZ|X =
{

−1 X ≤ 0

1 X > 0
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then

rYZ = rXYrXZ.

Ex 4.6 Solve the completion problem for the matrix in (4.3) using the partial cor-

relation vine method.

4.9 Supplement

4.9.1 Proofs

Theorem 4.1 (Meeuwissen and Cooke (1994)) Let (F, T , B) be an n-dimensional

bivariate tree specification that specifies the marginal densities fi , 1 ≤ i ≤ n, and

the bivariate densities fij , {i, j} ∈ E, the set of edges of T . Then there is a unique

density g on Rn with marginals f1, . . . , fn and bivariate marginals fij for {i, j} ∈ E

such that g has Markov tree dependence described by T. The density g is given by

g(x1, . . . , xn) =
∏

{i,j}∈E fij (xi, xj )∏
i∈N (fi(xi))deg(i)−1

. (4.16)

With copula densities cij , {i, j} ∈ E, this becomes

g(x1, . . . , xn) = f1(x1) . . . fn(xn)
∏

{i,j}∈E

cij (Fi(xi), Fj (xj )). (4.17)

Proof.

The proof is by induction on the number of variables n. If n = 2, the theorem is

trivial. Without loss of the generality, we may assume that the tree is connected.

Fix i ∈ N with a degree of at least 2 and let Di denote the set of neighbours of

i: Di = {j | j ∈ N, {i, j} ∈ E}. Now, for each j ∈ Di , consider the subtrees Tj

with set of nodes

Nj = {i, j} ∪ {k | k ∈ N, there is a path from k to j that does not include i}

and set of edges

Ej = {{k, l} | {k, l} ∈ E, k, l ∈ Nj }.

Thus,
⋃

j∈Di
Ej = E and for all j, k ∈ Di : Ej ∩ Ek = ∅ and Nj ∩ Nk = {i}

because T is a tree. Further, let degj (k) denote degree of the node k in Tj ; that is,

degj (i) = 1 and degj (k) = deg(k) for all other k ∈ Nj . Now, let gj be the unique

distribution satisfying the theorem for the subtree Tj for all j ∈ Di . By induction,

we have for Nj = {l1, l2, . . . , ln(j)}

gj (xl1, xl2 , . . . , xln(j)
) =

∏
{li ,lj }∈Ej

fli ,lj (xli , xlj )∏
h∈Nj

(flh(xlh))
degj (lh)−1

.
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This expression is equivalent to

gj (xl1, xl2 , . . . , xln(j)
) = fi,j (xi, xj )

∏
{li ,lj }∈Ej \{i,j} fli ,lj (xli , xlj )∏
h∈Nj \{i}(flh(xlh))

degj (lh)−1
.

Denote the conditional density of gj given Xi as gj |i = gj/fi . Since the sets

Nj \ {i}, j ∈ Di are disjoint, we may set

g(x1, x2, . . . , xn) = fi(xi)
∏

j∈Di

gj |i(xl1 , xl2, . . . , xln(j)
),

which is equal to (4.16).

To verify that g has the Markov tree dependence property, let Xa and Xb be

disjunct subsets of variables separated by variables in set Xc. To prove that Xa

and Xb are conditionally independent given Xc, it suffices to factorize the marginal

density g(xa, xb, xc) as

g(xa, xb, xc) = H(xa, xc)J (xb, xc) (4.18)

for some functions H, J (Whittaker (1990)). Such a factorization is immediately

obtained from (4.16), integrating out irrelevant variables.

To verify that g is unique, let g̃ be another density satisfying the theorem; let

x1 be associated with a node with degree 1 and let {1, 2} be the edge attached to

node 1. Let I = N \ {1, 2}. Since g and g̃ both have the Markov property,

g(x1, . . . , xn), = g(x1, xI |x2)g(x2)

= g(xI |x2)g(x1|x2)g(x2),

with a similar equation for g̃. By the induction hypotheses and by the equality of

the first and second dimensional marginals, it follows that

g(x1, . . . , xn) = g̃(x1, . . . , xn).

Replacing each term fij in (4.16) of Theorem 4.1 by

cij (Fi, Fj )fifj

yields 4.17. �

Lemma 4.1 Let V be a regular vine on n elements and let j ∈ Ei . Then

#Uj (k) = 2#Uj (k − 1) − #Uj (k − 2); k = 2, 3, . . . . (4.19)

Proof.

For e ∈ Uj (k − 1), write e = {e1, e2} and consider the lexigraphical ordering of the

names ec, c = 1, 2. There are 2#Uj (k − 1) names in this ordering. #Uj (k) is the
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number of names in the ordering, diminished by the number of names that refer to

an element that is already named earlier in the ordering. By regularity, for every

element in Uj (k − 2), there is exactly one name in the lexigraphical ordering that

denotes an element previously named in the ordering. Hence (4.19) holds. �

Lemma 4.2 Let V be a regular vine on n elements and let j ∈ Ei . Then

#Uj (k) = k + 1; k = 0, 1, . . . , i.

Proof.

The statement clearly holds for k = 0, k = 1. By the proximity property, it follows

immediately that it holds for k = 2. Suppose that the results holds up to k − 1. Then

#Uj (k − 1) = k. By Lemma 4.1,

#Uj (k) = 2#Uj (k − 1) − #Uj (k − 2).

With the induction hypothesis we conclude

#Uj (k) = 2k − (k − 1) = k + 1. �

Lemma 4.3 If V is a regular vine on n elements then for all i = 1, . . . n − 1, and

all e ∈ Ei , the conditioned set Ce associated with e is a doubleton, #U∗
e = i + 1,

and #De = i − 1.

Proof.

Let e ∈ Ei and e = {j, k}. By Lemma 4.2 #U∗
e = i + 1. Let De = U∗

j ∩ U∗
k and

Ce = U∗
j △U∗

k . It suffices to show that #Ce = 2. We get

i + 1 = #De + #Ce (4.20)

and

2i = #U∗
j + #U∗

k = #Ce + 2#De. (4.21)

Divide (4.21) by 2 and subtract from (4.20); then

#Ce = 2.

Hence #(U∗
j \ De) = 1, #(U∗

k \ De) = 1 and #De = i − 1. �

Lemma 4.4 Let V be a regular vine, and suppose for j, k ∈ Ei, U∗
j = U∗

k , then

j = k.

Proof.

We claim that Uj (x + 1) = Uk(x + 1) implies Uj (x) = Uk(x). In any tree, the

number of edges between y vertices is less than or equal to y − 1. #Uj (x + 1) =
x + 2 and Uj (x + 1) ⊆ Ni−x , so in tree Ti−x the number of edges between the

nodes in Uj (x + 1) is less than or equal to x + 1. #Uj (x) = x + 1 = #Uk(x), so
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both these sets must consist of the x + 1 possible edges between the nodes of Ti−x

that are in Uj (x + 1) = Uk(x + 1). Hence, Uj (x) = Uk(x). Since U∗
j = U∗

k , that

is, Uj (i) = Uk(i), repeated application of this result produces Uj (1) = Uk(1), that

is, j = k. �

Lemma 4.5 If the conditioned sets of edges i, j in a regular vine are equal, then

i = j .

Proof.

Suppose i and j have the same conditioned sets. By Lemma 4.3, the conditioned

set is doubleton, say {a, b}, a ∈ N, b ∈ N . Let Di and Dj be the conditioning sets

of edges i and j , respectively. Then, in the tree T1, there is a path from a to b

through the nodes in Di and also a path from a to b through the nodes in Dj .

If Di �= Dj , then there must be a cycle in the edges E1, but this is impossible

since T1 is a tree. It follows that Di = Dj , and from Lemma 4.4, it follows that

i = j. �

Lemma 4.6 For any node M of order k > 0 in a regular vine, if variable i is a

member of the conditioned set of M , then i is a member of the conditioned set of

exactly one of the m-children of M , and the conditioning set of an m-child of M

is a subset of the conditioning set of M .

Proof.

If the conditioning set of an m-child of M is vacuous, the proposition is triv-

ially true; we therefore assume k > 1. Let M = {A, B}, where A, B are nodes

of order k − 1. By regularity we may write A = {A1, D}, B = {B1, D}, where

A1, B1, D are nodes of order k − 2. U∗
M = U∗

A ∪ U∗
B . By assumption, i ∈ U∗

A△U∗
B .

Suppose i ∈ U∗
A, then i /∈ U∗

B . U∗
A = U∗

A1 ∪ U∗
D , and since U∗

D ⊆ U∗
B and i /∈ U∗

B ,

we have i /∈ U∗
D . It follows that i ∈ U∗

A1△U∗
D; that is, i is in the conditioned set

of A. Since the conditioning set of A is U∗
A1 ∩ U∗

D ⊆ U∗
B , we have U∗

A1 ∩ U∗
D ⊆

U∗
A ∩ U∗

B ; that is, the conditioning set of A is a subset of the conditioning set

of M . �

Proposition 4.1 Let V be a regular vine on n elements and i an integer, 1 ≤ i <

n − 1. Given a node m in tree Ti , there are exactly deg(m) − 1 edges in Ti+1 around

m, where an edge in Ti+1 is around m if both its elements contain m.

Proof. Without loss of generality we may assume that i = 1. First we show that

deg(m) − 1 is the maximal number of edges in T2 around m. Clearly, there are

deg(m) edges joining m to other nodes. These are the nodes in T2 that will be

around m when joined by edges. Because T2 has to be a tree, there can be no

cycles of edges, so there are at most deg(m) − 1 different edges in T2 around m.

We now show that there are exactly deg(m) − 1 edges in T2 around m. Note

first that an edge in T2 can only be around one node of T1, as otherwise there

would be a cycle in T1. If some node m of T1 has less than deg(m) − 1 edges in
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T2 around it, then we can count the total number of edges in T2 as

∑

j∈N1

# edges around j <
∑

j∈N1

(deg(j) − 1)

=


∑

j∈N1

deg(j)


− n

= 2(n − 1) − n = n − 2.

This contradicts the fact that T2 has n − 2 edges. �

Theorem 4.2 Let V = (T1, . . . , Tn−1) be a regular vine on n elements. For each

edge e(j, k) ∈ Ti, i = 1, . . . , n − 1 with conditioned set {j, k} and conditioning set

De, let the conditional copula and copula density be Cjk|De and cjk|De respectively.

Let the marginal distributions Fi with densities fi, i = 1, . . . , n be given. Then the

vine-dependent distribution is uniquely determined and has a density given by

f1...n =




n−1∏

i=2

∏

e(j,k)∈Ei

cjk|De (Fj |De , Fk|De )


 ·

∏
{j,k}∈E1

fjk

∏
j∈N1

f
deg(j)−1
j

(4.6)

= f1 . . . fn

n−1∏

i=1

∏

e(j,k)∈Ei

cjk|De (Fj |De , Fk|De ). (4.7)

Proof. The first statement is proved by reverse induction on the level of the tree

in the vine. We claim that for every 2 ≤ M ≤ n − 1,

f1...n =




n−1∏

i=M

∏

e(j,k)∈Ei

cjk|De (Fj |De , Fk|De )


 ·

∏
e∈EM−1

fU∗
e∏

e∈NM−1
f

deg(e)−1

U∗
e

.

The inductive claim holds for M = n − 1, which can be seen as follows: For the

one edge in Tn−1, say e = {e1, e2} with U∗
e1

= {j} ∪ De and U∗
e2

= {k} ∪ De, we

have

f1...n = fjk|DefDe ,

= cjk|De (Fj |De , Fk|De ) · fj |Defk|DefDe ,

= cjk|De (Fj |De , Fk|De )
fU∗

e1
fU∗

e2

fDe

.

Since Tn−2 is a tree with two edges and three nodes, one of the nodes, say m,

has to have degree 2, and the edge e of Tn−1 must be around m. Hence, De = U∗
m

and the claim is demonstrated.

For the inductive step assume that the formula holds for M . We show that it

holds for M − 1. To see this, apply first the same decomposition as the one in
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the preceding text for the marginal distribution corresponding to each edge of TM .

For e ∈ EM−1, there are nodes in NM−1, or equivalently, edges in EM−2 that we

call e1 and e2, such that e = {e1, e2}. The decomposition immediately gives all the

claimed copula density terms, but the remaining term built from marginal densities

of f is of the form:

 ∏

e∈EM−1

fU∗
e1

fU∗
e2

fDe


 1
∏

m∈NM−1
f

deg(m)−1

U∗
m

.

In order to show that this reduces to the formula claimed for the induction

step, we have to show two things: (1) The extra multiplicity of fU∗
e1

terms arising

because a node of NM−1 is cancelled by
∏

m∈NM−1
f

deg(m)−1

U∗
m

; and (2)

∏

e∈EM−1

fDe =
∏

m∈NM−2

f
deg(m)−1

U∗
m

.

The requirement (1) is clear, since the degree of a node is just a number of edges

attached to it. Hence, the multiplicity of a term fei
in the denominator is deg(ei),

so that after cancellation we retain each term exactly once. For (2) note that if

e ∈ EM−1 then De equals U∗
m for some m ∈ NM−1 and, furthermore, that e is

around m. The claim follows immediately from Proposition 4.1, which completes

the proof of the first statement.

The second statement is proved by replacing each term fjk in (4.6) by

cjk(Fj , Fk)fjfk . �

Lemma 4.7 If z, x, y ∈ (−1, 1), then even w ∈ (−1, 1), where

w = z
√

(1 − x2)(1 − y2) + xy.

Proof.

We substitute x = cos α, y = cos β, and use

1 − cos2 α = sin2 α;

cos α cos β =
cos(α − β) + cos(α + β)

2
;

sin α sin β =
cos(α − β) − cos(α + β)

2
;

and find

z

∣∣∣∣
cos(α − β) − cos(α + β)

2

∣∣∣∣+
cos(α − β) + cos(α + β)

2
= w.

Write this as

z

∣∣∣∣
a − b

2

∣∣∣∣+
a + b

2
= w,
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where a, b ∈ (−1, 1). As the left-hand side is linear in z, its extreme values must

occur when z = 1 or −1. It is easy to check that in these cases w ∈ (−1, 1). �

Let g be a density on Rn for which all marginal and conditional marginal densities

satisfy the absolute continuity conditions implicit in the relative information inte-

grals. g1,...,k denotes the marginal over x1, . . . , xk and g1,...,k−1|k,...,n denotes the

marginal over x1, . . . , xk−1 conditional on xk, . . . , xn. E1,...,k denotes expectation

taken over x1, . . . , xk.

Lemma 4.8

1.

I

(
g |

n∏

i=1

gi

)
= I

(
gk,...,n |

n∏

i=k

gi

)
+ Ek,...,nI

(
g1,...,k−1 | k,...,n |

k−1∏

i=1

gi

)
.

2.

I

(
g |

n∏

i=1

gi

)
=

n−1∑

j=1

E1,...,j I (gj+1|1,...,j | gj+1).

3.

E2,...,nI (g1|2,...,n | g1) + E1,...,n−1I (gn|1,...,n−1 | gn) =

E2,...,n−1

(
I (g1,n|2,...,n−1 | g1|2,...,n−1gn|2,...,n−1) + I (g1,n|2,...,n−1 | g1gn)

)
.

4.

2I

(
g |

n∏

i=1

gi

)
= I

(
g2,...,n |

n∏

i=2

gi

)
+ I

(
g1,...,n−1 |

n−1∏

i=1

gi

)
+

+E2,...,n−1I (g1,n|2,...,n−1|g1|2,...,n−1gn|2,...,n−1) + I (g |g1gng2,...,n−1).

Proof.

We indicate the main steps, leaving the computational details to the reader.

1. For g on the left-hand side fill in g = g1,...k−1|k,...ngk,...n.

2. This follows from the above by iteration.

3. The integrals on the left-hand side can be combined, and the logarithm under

the integral has the argument:

gg

g2,...ng1,...n−1g1gn

.

This can be re-written as
g1,n|2,...n−1

g1|2,...n−1gn|2,...n−1

g1,n|2,...n−1

g1gn

.

By writing the log of this product as the sum of logarithms of its terms, the

result on the right-hand side is obtained.
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4. This follows from the previous statement by noting

E2,...n−1I (g1,n|2,...n−1 | g1gn) = I (g | g1gng2,...n−1). �

Theorem 4.3 Let g be an n-dimensional density satisfying the bivariate-vine

specification (F,V;B) with density g and one-dimensional marginal densities

g1, . . . , gn, then

I

(
g |

n∏

i=1

gi

)
=

n−1∑

i=1

∑

e(j,k)∈Ei

EDeI (gCe,j ,Ce,kDe | gCe,j |De · gCe,k |De ). (4.22)

If gCe,j ,Ce,k |De is the unique density satisfying (F,V;B), which minimizes

I (gCe,j ,Ce,k |De | gCe,j |De · gCe,k |De ); i = 1, . . . , n − 1; e(j, k) ∈ Ei,

then g is the unique density satisfying (F,V, B) and minimizing

I

(
g |

n∏

i=1

gi

)
.

Proof.

The theorem is proved by induction on n. En−1 has one element, say e(1, 2), and we

may assume that Ce,1 = x1, Ce,2 = xn. We define a vine specification (F 1,V1, B1)

on {x2, . . . , xn}:

F 1 = F2, . . . , Fn;

N1
i = N1

i \x1;

E1
i = Ei\{j, k} if j = x1 or k = x1;

B1
e(j,k) = Be(j,k) if {Ce,j , Ce,k, De} ⊂ {x2, . . . , xn}.

We define vine specifications (F n,Vn, Bn) on {x1, . . . , xn−1} and (F 1,n,V1,n, B1,n)

on {x2, . . . , xn−1} in the same manner. From the definition of regularity, it follows

immediately that V1, Vn and V1,n are regular. g2,...,n, g1,...,n−1 and g2,...,n−1 satisfy

the conditions of the theorem for these specifications. In other words,

I

(
g1,...,n−1 |

n−1∏

i=1

gi

)

is minimal for densities satisfying Bn, and

I

(
g2,...,n |

n∏

i=2

gi

)

is minimal for densities satisfying B1.
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We now claim that

I

(
g |

n∏

i=1

gi

)
=

n−1∑

i=1

∑

e(j,k)∈Ei

EDeI (gCe,j ,Ce,k |De | gCe,j |De · gCe,k |De ). (4.23)

The claim is proved by applying Lemma 4.8(4); the last term in the preceding

sum is the expectation in Lemma 4.8(4). By applying the induction hypothesis to

the vine specification (F 1,n,V1,n, B1,n), we note that the terms in the expansion of

I (g2,...n−1 |
∏n−1

i=2 gi) are exactly those that are counted twice in the expansion of

I

(
g2,...,n |

n∏

i=2

gi

)
+ I

(
g1,...,n−1 |

n−1∏

i=1

gi

)
,

from which the claim follows. Since g minimizes each information term in equation

(4.23), it also minimizes each expectation, and the theorem is proved. �

Theorem 4.4 For any regular vine on n elements, there is a one-to-one correspon-

dence between the set of n × n full-rank correlation matrices and the set of partial

correlation specifications for the vine.

Proof.

Clearly, the correlations determine the partial correlations via the recursive rela-

tions (3.3).

(1) We first show that the correlations ρij = ρ(Xi , Xj ) can be calculated from

the partial correlations specified by the vine. The theorem is proved by induction

on the number of elements n. The base case (n = 2) is trivial. Assume that the

theorem holds for i = 2, . . . , n − 1. For a regular vine over n elements, the tree

Tn−1 has one edge, say e = {j, k}. By Lemma 4.3, #De = n − 2. By re-indexing

the variables X1, . . .Xn if necessary, we may assume that

Ce,j = U∗
j \ De = X1,

Ce,k = U∗
k \ De = Xn,

U∗
j = {1, . . . , n − 1}

U∗
k = {2, . . . , n}

De = {2, . . . , n − 1}.

The correlations over U∗
j and U∗

k are determined by the induction step. The corre-

lation ρ1n remains to be determined. The left-hand side of

ρ1n;2...n−1 =
ρ1n;3...n−1 − ρ12;3...n−1ρ2n;3...n−1√

1 − ρ2
12;3...n−1

√
1 − ρ2

2n;3...n−1

is determined by the vine specification. The terms

ρ12;3...n−1, ρ2n;3...n−1
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are determined by the induction hypothesis. It follows from Lemma 4.7 that we

can solve the preceding equation for ρ1n;3...n−1, and write

ρ1n;3...n−1 =
ρ1n;4...n−1 − ρ13;4...n−1ρ3n;4...n−1√

1 − ρ2
13;4...n−1

√
1 − ρ2

3n;4...n−1

Proceeding in this manner, we eventually find

ρ1n;n−1 =
ρ1n − ρ1n−1ρnn−1√

1 − ρ2
1n−1

√
1 − ρ2

nn−1

.

This equation may now be solved for ρ1n. This shows that if two distributions have

the same partial correlations on a regular vine, then they have the same correlation

matrix.

(2) To go the other way, we show that for any regular vine and any assign-

ment of partial correlations to its edges with values in (−1, 1), there is a joint

distribution with these partial correlations. This is proved by induction on the

number n of variables. As in (1), we may assume that the variables are indexed

so that ρ1,n ; 2,...,n−1 is the partial correlation of the tree Tn−1. By the induction

hypothesis, there are variables X1, . . . , Xn−1 and X̃2, . . . , X̃n realizing the par-

tial correlations of the sub-vines on U∗
j and U∗

k . Without loss of generality, we

may assume that these are (possibly correlated) standard normal variables and that

(X2, . . . , Xn−1) = (X̃2, . . . , X̃n−1). We may further assume that

X1 = A1W1 +
n−1∑

j=2

AjXj , (4.24)

Xn = BnWn +
n−1∑

j=2

BjXj , (4.25)

where W1, Wn are any standard normal variables independent of (X2, . . . , Xn−1).

Indeed, the coefficients Ai are obtained from the linear least squares predictor X̂1

of X1 from W1, X2, . . . , Xn−1 (Whittaker (1990)):

X̂1 = Cov(X1, (W1, X2, . . . , Xn−1))Var(W1, X2, . . . , Xn−1)
−1

(W1, X2, . . . , Xn−1)
T ,

and similarly, for Xn, X1, . . . , Xn are joint normal. Since for the joint normal

distribution partial and conditional correlation are equal (Proposition 3.29), we

have

ρ1,n ; 2,...,n−1 = ρ1,n | 2,...,n−1 = ρ(A1W1, BnWn) = ρ(W1, Wn), (4.26)

and we may choose W1, Wn to have the required correlation. �
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For the next theorem, we reproduce the relevant formulae for multiple correla-

tion R1{2...n} for convenience.

1 − R2
1{2,...,n} = (1 − ρ2

1,n)(1 − ρ2
1,n−1;n) . . . (1 − ρ2

1,2;3...n). (4.27)

R1{2,...,n} is invariant under permutation of {2, . . . , n} and

D =
(
1 − R2

1{2,...,n}
) (

1 − R2
2{3,...,n}

)
. . .
(
1 − R2

n−1{n}
)
, (4.28)

where Rn−1{n} = ρn−1,n.

Theorem 4.5

Let D be the determinant of the correlation matrix of variables 1, . . . , n; with

D > 0. For any partial correlation vine;

D =
n−1∏

i=1

∏

e∈Ei

(1 − ρ2
j,k;De

), (4.29)

where {j, k} and De are the conditioned and conditioning set of e.

Proof. Re-indexing if necessary, let {1, 2|3, . . . , n} denote the constraint of the

single node of the topmost tree Tn−1. Collect all m-descendents of this node con-

taining variable 1. By Lemma 4.6; 1 occurs only in the conditioned sets of the

m-descendent nodes, and the conditioning set of an m-child is a subset of the con-

ditioning set of its m-parent. By Lemma 4.5 variable 1 occurs exactly once with

every other variable in the conditioned set of some node. By re-indexing {2, . . . , n}
if necessary, we may write the constraints of the m-descendents containing 1 of

the top node as

{1, 2|3, . . . , n}, {1, 3|4, . . . , n}, . . . {1, n − 1|n}, {1, n}.

The partial correlations associated with these m-descendent nodes are

ρ1,2;3,...,n, ρ1,3;4,...,n, . . . ρ1,n−1;n, ρ1,n

and are exactly the terms occurring in (4.27); hence, we may replace the terms in

the product on the right-hand side of (4.29) containing these partial correlations by

1 − R2
1{2,...,n}. Note that (4.27) is invariant under permutation of {2, . . . , n}. Remove

variable 1 and nodes containing 1; these are just the nodes whose constraints are

given in the preceding text. We obtain the sub-vine over variables {2, . . . , n}. By

Lemma 4.6; 2 is in the conditioned set of the top node of this sub-vine. We apply

the same argument, re-indexing {3, . . . , n} if necessary. With this re-indexing, we

may replace the product of terms in (4.29)

(1 − ρ2
2,3;4,...,n), (1 − ρ2

2,4;5,...,n), . . . (1 − ρ2
2,n)

by 1 − R2
2{3,...,n}. Proceeding in this way we obtain (4.29). �
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4.9.2 Results for Section 4.4.6

We now show how the relationship between partial and conditional correlations

on a vine can be established for a fourvariate distribution obtained by the vine-

elliptical copula method. For a given 4 × 4 correlation matrix, using the recursive

formula (3.3), a partial correlation specification on the C-vine on four variables

can be obtained

ρ12, ρ13, ρ14,

ρ23;1, ρ24;1,
ρ34;12.

(4.30)

We must find a rank correlation specification on the C-vine that corresponds to the

partial correlation specification (4.30):

r12, r13, r14,

r23|1, r24|1,
r34|12.

(4.31)

Clearly, r1i = ρ1i, i = 2, 3, 4. The r23|1, r24|1 that correspond to ρ23;1, ρ24;1, respec-

tively, can be found from (4.11), hence r23|1 = ψ−1(ρ23;1) and r24|1 = ψ−1(ρ24;1).
Now we must find r34|12 that corresponds to ρ34;12. Using the sampling procedure

for the C-vine (see Chapter 6), the correlation ρ34 can be calculated as

ρ34 = 12

∫

I4
x3x4 du1 du2 du3 du4.

By simplifying and using partial correlation formula (3.3), we get

ρ34;1 = 2

∫

I3
g(r23|1, u2, u3) · g(r24|1, u2, g(r34|12, u3, u4)), (4.32)

where the integration is with respect to u2, u3 and u4 and

g(r, u, v) = sin

[
π(
√

1 − r2

√
1

4
− u2 sin(πv) + ru)

]
.

Hence, ρ34;1 depends on r23|1, r24|1 that are already chosen and r34|12 that we are

looking for. Denoting this relationship by ρ34;1 = �(r34|12, r23|1, r24|1) and using

the partial correlation formula (3.3), the relationship between ρ34;12 and r34;12 can

be denoted as

ρ34;12 =
�(r34|12, r23|1, r24|1) − ρ23;1ρ24;1√

(1 − ρ2
23;1)(1 − ρ2

24;1)
. (4.33)

This cannot be solved analytically, but using numerical integration, we can search

for r34|12 that corresponds to the given ρ34;12.
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Notice that for

ρ34;12 =
ρ34;1 − ρ23;1ρ24;1√

(1 − ρ2
23;1)(1 − ρ2

24;1)
,

where ρ34;1 is given by (4.32) and ρ23;1, given by (4.10) and ρ24;1 calculated as

ρ24;1 = ρ24−ρ12ρ14√
1−ρ2

12

√
1−ρ2

14

. If r34|12 = 1, then

ρ34;12 =

2
∫
I2 g(r23|1,u2,u3)g(r24|1,u2,u3)−4

∫
I2 sin(πu2)g(r23|1,u2,u3)

∫
I2 sin(πu2)g(r24|1,u2,u3)√

(1−(2
∫
I2 sin(πu2)g(r23|1,u2,u3))2)(1−(2

∫
I2 sin(πu2)g(r24|1,u2,u3))2))

,

where all integrals are with respect to u2, u3. This, in general, is not equal to 1,

but we can show the following:

Proposition 4.2 If r34|12 = 1 and r23|1 = r24|1, then ρ34;12 = 1.

Proof. It suffices to show that

2

∫

I2
g(r23|1, u2, u3)

2 du2 du3 = 1.

We get

2

∫

I2
g(r23|1, u2, u3)

2 du2 du3

= 2

∫

I2
sin2(π [

√
1 − r2

23|1

√
1

4
− u2

2 sin(πu3) + r23|1u2]) du2 du3

=
∫

I2
1 − cos(2π [

√
1 − r2

23|1

√
1

4
− u2

2 sin(πu3) + r23|1u2]) du2 du3.

Using the formula for cosine of a sum of two angles and noticing that∫
I2 sin(2πr23|1u2) du2 du3 = 0, we obtain

1 −
∫

I2
cos(2π

√
1 − r2

23|1

√
1

4
− u2

2 sin(πu3)) cos(2πr23|1u2) du2 du3.

Integrating the preceding integral by parts and simplifying, we get

1 −
1

2πr23|1

∫
I2 sin(2π

√
1 − r2

23|1

√
1

4
− u2

2 sin(πu3)) sin(2πr23|1u2)

u2√
1
4
− u2

2

du2 du3.

Since the integrand in preceding integral is such that f (u2, u3) = −f (−u2,−u3)

and f (−u2, u3) = −f (u2,−u3), we find ρ34;12 = 1. �
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4.9.3 Example of fourvariate correlation matrices

The following example shows how the rank correlation specification on the C-vine

on four variables can be found to realize a given correlation structure.

Example 4.8 Let us consider a matrix

A =




1.0000 −0.3609 0.3764 −0.3254

−0.3609 1.0000 0.6519 −0.3604

0.3764 0.6519 1.0000 −0.2919

−0.3254 −0.3604 −0.2919 1.0000


 .

The partial correlation specification on the C-vine is

ρ12, ρ13, ρ14, −0.3609, 0.3764, −0.3254,

ρ23;1, ρ24;1, = 0.9117, −0.5419,

ρ34;12, 0.8707.

The corresponding rank correlation specification is the following:

r12, r13, r14, −0.3609, 0.3764, −0.3254,

r23|1, r24|1, = 0.9170, −0.5557,

r34|12, 0.9392,

where r23|1, r24|1 are found by applying (4.11) to ρ23;1 and ρ24;1 respectively and

r34|12 from (4.33).

The sampling procedure (6.2) with the elliptical copula and preceding rank corre-

lations gives us a distribution with rank correlation matrix A up to sampling and

numerical errors.

The matrix A in preceding example was chosen such that after transformation

(4.1), it becomes non-positive definite. Hence, A is not a rank correlation matrix of

joint normal distribution but can be realized with the vine-elliptical copula method.

The next example shows a four-dimensional correlation matrix that cannot be

realized with the vine-elliptical copula method.

Example 4.9 Let us consider a matrix

A =




1.0000 0.8000 0.6000 −0.3000

0.8000 1.0000 0.2400 −0.6979

0.6000 0.2400 1.0000 0.5178

−0.3000 −0.6979 0.5178 1.0000


 .

The partial correlation specification on the C-vine is

ρ12, ρ13, ρ14, 0.8, 0.6, −0.3,

ρ23;1, ρ24;1, = −0.5, −0.8,

ρ34;12, 0.99.
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We can find that r23|1 = −0.5137, and r24|1 = −0.8101, which correspond to ρ23;1 =
−0.5, and ρ24;1 = −0.8, respectively. However, assigning r34|12 = 1 yields ρ34;12

that is equal only to 0.9892. The preceding matrix is also not a rank correlation

matrix for joint normal.

4.9.4 Results for Section 4.5.2

Theorem 4.6 The following statements hold:

a. All recalculated partial correlations are in the interval (−1, 1).

b. Changing the value of the partial correlation on the vine leads to changing

only one correlation in the matrix and does not affect correlations that were

already changed.

c. There is a linear relationship between the altered value of the partial correlation

and the correlation with the same conditioned set in the proto-correlation

matrix.

d. This method always produces a positive definite matrix.

Proof.

a. This condition follows directly from Lemma 4.7.

b. Observe that changing the value of the correlation ρs+1,j ;12...s in the algorithm

(4.14) leads to the recalculation of correlations of lower order but only with

the same indices before ‘;’, that is, s + 1, j .

c. Since ρs+1,j ;12...t−1 is linear in ρs+1,j ;12...t for all t = s, s − 1, . . . , 1, the linear

relationship between ρs+1,j and ρs+1,j ;12...s follows by substitution.

d. Applying the algorithm (4.14) whenever a partial correlation is found outside

the interval (−1, 1), we eventually obtain that all partial correlations in the

partial correlation specification on the vine are in (−1, 1); that is, the altered

matrix is positive definite. �
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Other Graphical Models

5.1 Introduction

This chapter discusses other graphical models, in particular, Bayesian belief nets

and independence graphs. These models are not intended for, and are not suited for,

generic uncertainty analysis, and our treatment will not be exhaustive. Some results

published in the literature will be mentioned without proof. The most significant

point of comparison with the vine-copula approach of the previous chapter is the

problem of inferring a model from data. This provides the occasion for elaborating

a theory of vine inference. We will refer to specific instances of sampling regular

vines, but the full development of sampling procedures must wait for Chapter 6.

5.2 Bayesian belief nets

Bayesian belief nets (bbn’s) are directed acyclic graphs (DAGs). They provide a

compact representation of high-dimensional uncertainty distribution over a set of

variables (X1, . . . , Xn) (Cowell et al. (1999); Jensen (1996, 2001); Pearl (1988)).

A bbn encodes the probability density or mass function (whichever is appropriate)

on (X1, . . . , Xn) by specifying a set of conditional independence statements in a

form of acyclic directed graph and a set of probability functions.

Given any ordering of the variables, the joint density, or mass function can be

written as:

f (x1, x2, . . . , xn) = f (x1)

n∏

i=2

f (xi |x1 . . . xi−1). (5.1)

Note that specifying this joint mass/density involves specifying values of an

n-dimensional function. The directed graph of a bbn induces a (generally

Uncertainty Analysis with High Dimensional Dependence Modelling D. Kurowicka and R. Cooke

 2006 John Wiley & Sons, Ltd
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non-unique) ordering, and stipulates that each variable is conditionally indepen-

dent of all predecessors in the ordering given its direct predecessors, that is its

parents1.

Each variable is associated with a conditional probability function of the vari-

able given its parents in the graph, f (Xi |Xpa(i)), i = 1, . . . , n. The conditional

independence statements encoded in the graph allow us to express the joint prob-

ability as

f (x1, x2, . . . , xn) =
n∏

i=1

f (xi |xpa(i)),

where f (xi |xpa(i)) = f (xi) if pa(i) = ∅. If k is the maximal number of parents

of any node in the graph, we now have only to specify functions of dimension not

greater than k. This is the simplification achieved by representing the density/mass

function via a bbn.

5.2.1 Discrete bbn’s

In Figure 5.1 a simple example of bbn on 4 variables is shown. This graph tells us

that variables 1, 2 and 3 are independent and the distribution of 4 is the assessed

conditional on 1, 2 and 3.

Assuming that all variables take only two values, say ‘true’ and ‘false’ then to

specify a joint distribution given by this structure the marginal distributions of 1,

2 and 3

1 True False 2 True False 3 True False
0.5 0.5 0.8 0.2 0.1 0.9

and the conditional distribution of 4 given 1, 2, 3 as given below are required.

False
2 True
1 True

False True False
3 True False True False True False True False

True 0.6 0.5 1 0.1 0.7 0.6 0.3 1
False 0.4 0.5 0 0.9 0.3 0.4 0.7 0

1 3

4

2

Figure 5.1 Bayesian belief net on 4 variables.

1Note that any variables X and Y are independent given X
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Even for such a simple example, figuring out the right probabilities in the

probability tables requires some work (e.g. statistical data or expert’s opinions).

For a large net with many dependencies and nodes taking more values, this is

daunting. A project at the end of this chapter shows how to create conditional

probability tables using vine dependence.

Applications involving high complexity in data-sparse environments, relying

on expert judgment, place a premium on traceability, modelling flexibility and

maintainability. These features stress the bbn methodology in current form at some

of its weakest points which are as follows:

1. Assessment burden/traceability: Most serious is the very high assessment

burden. If a given node X has K incoming ‘influences’, where each influence

originates from a chance node with M possible outcomes, then the conditional

distribution of X must be assessed for each of the MK input influences.

The excessive assessment burden invites rapid, informal and indefensible

numerical input.

2. Discretization/flexibility: This assessment burden can only be reduced by

grossly coarse-graining the outputs from nodes and/or introducing simpli-

fying assumptions for the compounding of ‘influences’. In practice, chance

nodes are often restricted to two possible values. In many cases, it would be

more natural to use continuous nodes, but these are currently insupportable

unless the joint distribution is joint normal.

3. Maintainability: Whereas bbn’s are very flexible with respect to recalculation

and updating; they are not flexible with respect to changes in modelling. If

we add one parent node, then we must redo all previous quantification for

the children of this node. In a fluid modelling environment, this is a serious

drawback. We should much prefer to be able to add a new node by adding

one number for each child node, indicating influence, without redoing the

previous quantification.

Such considerations motivate the development of a vine-based approach to bbn

modelling.

Updating bbn’s The main use of bbn’s is to update distributions given observa-

tions. If some variables have been observed, we want to infer the probabilities of

other events, which have not yet been observed. Using Bayes Theorem, it is then

possible to update the values of all the other probabilities in the bbn. Updating

bbn’s is complex, but with the algorithm proposed by Lauritzen and Spiegelhalter

(1998), it is possible to perform fast updating in large bbn’s.

5.2.2 Continuous bbn’s

Discrete-normal continuous bbn’s Continuous bbn’s (Pearl (1988); Shachter

and Kenley (1989)) developed for joint normal variables interpret ‘influence’ of
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the parents on a child as partial regression coefficients when the child is regressed

on the parents. They require means, conditional variances and partial regression

coefficients, which can be specified in an algebraically independent manner. The

partial regression coefficients together with the conditional standard deviations form

a Cholesky decomposition of the covariance matrix.

More precisely, let X = (X1, . . . , Xn) have a multivariate normal distribution

with mean vector µ = (µ1, . . . , µn) and covariance matrix �. For normal bbn’s,

the conditional probability functions in (5.1) are of the form

f (Xi |Xpa(i)) ∼ N


µi +

∑

j∈pa(i)

bij (Xj − µj ); νi


 (5.2)

where ν = (ν1, . . . , νn) is a vector of conditional variances and bij are linear coef-

ficients that can be thought of as partial regression coefficients

bij = bij ;pa(i)\j .

We show now that means, conditional variances and partial regression coef-

ficients can be specified in an algebraically independent manner (Shachter and

Kenley (1989)).

Theorem 5.1 � is positive (semi-)definite if and only if ν > 0 (≥ 0). Furthermore,

the rank of � is equal to the number of nonzero elements in ν.

In ‘Discrete normal’ bbn’s, continuous variables follow a multivariate normal dis-

tribution given the discrete variables. Discrete normal bbn’s allow discrete parents

of continuous nodes, but no discrete children of continuous nodes.

Continuous bbn’s as above are much easier to construct than their discrete coun-

terparts. The price, of course, is the restriction to the joint normal distribution and

in the absence of data to experts who can estimate partial regression coefficients

and conditional variances. With regard to maintainability the following should be

noted: If a continuous parent node is added or removed, the child node must be

requantified. This reflects the fact that partial regression coefficients depend on the

set of regressors; adding or removing a regressor entails changing all partial regres-

sion coefficients. To circumvent the restriction to normality, one could transform

a given distribution to joint normal (Rosenblat (1952)). This involves transform-

ing conditional distributions (Xk|X1 . . . Xk−1) to normal with required mean and

variance, for every value of the conditioning variables. This option is primarily

of theoretical interest. Another idea is to use the theory of linear least squares

predictors as applied to arbitrary joint distributions. Suppose (X1, . . . , Xk−1) are

the ancestors of Xk in an ordered Bbn.2 We could interpret the ‘influence’ of Xj

on Xk as the partial regression of Xk on Xj given 1, . . . , j − 1, j + 1, . . . , k − 1.

2Y is an ancestor of X with respect to an ordering of the variables, which preserves the parent–child

relations, that is, an ordering such that parents occur before their children in the ordering.
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If j is not a parent of k, then j and k are conditionally independent given the

parents of k; however, it is not generally true that the partial regression of k on j

is zero (Proposition 3.12 and Kurowicka and Cooke (2000)). This means that the

partial regression coefficients do not reflect the conditional independence structure

of the bbn.

Non-parametric continuous bbn’s Let us associate nodes of a bbn with contin-

uous univariate random variables and each arc with a (conditional) parent–child

rank correlation according to the protocol given below. We specify nested sets

of high-dimensional joint distributions using the vine-copula approach described

in Chapter 4, where any copula with invertible conditional cumulative distribu-

tion functions may be used as long as the chosen copula represents (conditional)

independence as zero (conditional) correlation. The conditional rank correlations

(like the partial regression coefficients) are algebraically independent, and there are

tested protocols for their use in structured expert judgment (discussed in Chapter 2).

We note that quantifying bbn’s in this way requires assessing all (continuous,

invertible) one-dimensional marginal distributions. On the other hand, the depen-

dence structure is meaningful for any such quantification, and need not be revised

if the univariate distributions are changed. In fact, when comparing different deci-

sions or assessing the value of different observations, it is frequently sufficient to

observe the effects on the quantiles of each node. For such comparisons, we do

not need to assess the one-dimensional margins at all.

The theory presented here can be extended to include ‘ordinal’ variables; that

is, variables, which can be written as monotone transforms of uniform variables,

perhaps taking finitely many values. The dependence structure must be defined with

respect to the uniform variates. Further, we consider here only the case where the

conditional correlations associated with the nodes of vines are constant; however,

the sampling algorithms discussed in Chapter 6 will work mutatis mutandis for

conditional correlations depending on the values of the conditioning variables.

The vine-based approach is quite general and of course this comes at a price:

These bbn’s must be evaluated by Monte Carlo simulation. We assume throughout

that all univariate distributions have been transformed to uniform distributions on

(0, 1). To determine which (conditional) correlations are necessary, we adopt the

following protocol:

1. Construct a sampling order for the nodes, that is, an ordering such that all

ancestors of node i appear before i in the ordering. A sampling order begins

with a source node and ends with a sink node. Of course, the sampling order

is not in general unique. Index the nodes according to the sampling order

1, . . . , n.

2. Factorize the joint in the standard way following the sampling order. If the

sampling order is 1, 2, . . . , n, write:

P (1, . . . , n) = P (1)P (2|1)P (3|21) . . . P (n|n − 1, n − 2, . . . , 1).
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3. Underscore those nodes in each condition, which are not parents of the

conditioned variable and thus, are not necessary in sampling the conditioned

variable. This uses some of the conditional independence relations in the

belief net. Hence, if in sampling 2, . . . , n variable 1 is not necessary (i.e.

there is no influence from 1 to any other variable) then

P (1, . . . , n) = P (1)P (2|1)P (3|21) . . . P (n|n − 1, n − 2, . . . , 1). (5.3)

The underscored nodes could be omitted thereby yielding the familiar factor-

ization of the bbn as a product of conditional probabilities, with each node

conditionalized on its parents (for source nodes the set of parents is empty).

4. For each term, i with parents (non-underscored variables) i1 . . . ip(i) in (5.3),

associate the arc ip(i)−k −→ i with the conditional rank correlation

r(i, ip(i)) ; k = 0

r(i, ip(i)−k|ip(i), . . . ip(i)−k+1); 1 ≤ k ≤ p(i) − 1, (5.4)

where the assignment is vacuous if {i1 . . . ip(i)} = ∅. Assigning conditional

rank correlations for i = 1, . . . , n, every arc in the bbn is assigned a condi-

tional rank correlation between parent and child.

Let Di denote a D-vine on i variables ordered (i, i − 1, . . . , 1). The following

theorem shows that these assignments uniquely determine the joint distribution and

are algebraically independent:

Theorem 5.2 Given

1. a directed acyclic graph (DAG) with n nodes specifying conditional indepen-

dence relationships in a bbn,

2. the specification of conditional rank correlations (5.4), i = 1, . . . , n and

3. a copula realizing all correlations [−1, 1] for which correlation 0 entails

independence;

the joint distribution is uniquely determined. This joint distribution satisfies the

characteristic factorization (5.3) and the conditional rank correlations in (5.4) are

algebraically independent.

Sampling procedures for regular vines are discussed in the next chapter. Suffice

to say here that we can sample Xi using the sampling procedure for Di . When

using vines to sample a continuous bbn, it is not in general possible to keep the

same order of variables in successive D-vines. In other words, we will have to

reorder the variables before constructing Di+1 and sampling Xi+1, and this will

involve calculating some conditional distributions.
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Example 5.1 For the bbn in Figure 5.1 the factorization is P (1)P (2|1)

P (3|21)P (4|321). Hence the preceding protocol would require assignment of (con-

ditional) correlations r43, r42|3 and r41|23 to the edges of that bbn. In this case, the

order of variables in each DK can be kept the same. Figure 5.2 shows D2,D3,D4.

Hence this bbn can be represented as one D-vine in Figure 5.3.

Example 5.2 Consider the following bbn on 5 variables.

1

2

3

4

5

Choose the sampling order: 1, 2, 3, 4, 5.

The factorization is then: P (1)P (2|1)P (3|21)P (4|321)P (5|4321).

The following rank correlations have to be assessed:

r21, r31, r43, r54, r52|4.

In this case D4 = D(4, 3, 2, 1), but the order of variables in D5 must be

D(5, 4, 2, 3, 1). Hence this bbn cannot be represented as one vine. Rather, we must

2 1
0 0

3 2 1

0

r43
4 3 2 1

r42|3

r14|23

Figure 5.2 D2,D3,D4 for example 5.1.

r43 0 0
4 3 2 1

r42|3 0

r14|23

Figure 5.3 D-vine for example 5.1.
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recalculate the conditional rank correlations in D5. A more detailed discussion is

given in the next chapter.

Updating Continuous bbn’s The main use of bbn’s is in situations that require

updating on observations. After observing some events, we might want to infer the

probabilities of other unobserved events. Alternatively, we might consider perform-

ing (expensive) observations and may wish to see how the results would impact our

beliefs in other events of interest. Updating continuous bbn’s requires resampling.

We discuss this approach in Chapter 6. Updating with resampling is not so elegant

as updating schemes for discrete or discrete-normal bbn’s. For large models other

options should be considered.

For updating continuous bbn’s, a hybrid technique can be used that combines

the virtues of continuous approach (influences as conditional correlations) with the

fast updating for discrete bbn’s (see Section 6.4.4).

Example: Flight crew alertness model We show how continuous bbn’s can be

applied to quantify and update the flight crew alertness model adopted from the

discrete model described in Roelen et al. (2003). In the original model, all chance

nodes were discretized to take one of two values ‘OK’ or ‘Not OK’. The names of

nodes has been altered to indicate how, with greater realism, these can be modelled

as continuous variables. Alertness is measured by performance on a simple track-

ing test programmed on a palmtop computer. Crew members did this test during

breaks in-flight under various conditions. The results are scored on an increasing

scale and can be modelled as a continuous variable.

In Figure 5.4 the flight crew alertness model is presented. Continuous distri-

butions for each node must be gathered from existing data or expert judgment.

The distribution functions are used to transform each variable to uniform on the

interval (0,1). Required (conditional) rank correlations are found using the protocol

described in Section 5.2.2. These can be assessed by experts in the way described

in Chapter 2. In Figure 5.4, a (conditional) rank correlation is assigned to each arc

of the bbn. These numbers are chosen to illustrate this approach and are based on

in-house expert judgment.

The sampling procedure and the updating for this model are described in

Chapter 6.

The main use of bbn’s in decision support is updating on the basis of possible

observations. Let us suppose that we know before the flight that the crew did not

have enough sleep. Let us assume that the crew’s hours of sleep correspond to

the 25th percentile of hours of sleep distribution. We would like to know how

this information will influence a distribution of the crew alertness. Without this

assumption the crew alertness distribution would be uniform on (0,1). The distri-

bution of crew alertness given that hours of sleep of the crew are equal to 25th

percentile is shown in Figure 5.5. We can see that knowing that the flight crew did

not have enough sleep reduces crew alertness (e.g. with probability 50% the crew



OTHER GRAPHICAL MODELS 139

Crew alertness
(8)

Hours of night time 
flight (7)

Pre-flight fitness
(3)

Operational load
(6)

Fly duty
period (4)

Rest time on
flight(5)

Hours of
sleep (2)

Recent
workload (1)

0.9 −0.9|2

0.5

0.8

−0.95|4

−0.8

0.85|6

−0.4|6,3

Figure 5.4 Flight crew alertness model.
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Figure 5.5 Distributions of crew alertness given hours of sleep equal to 25th

percentile and recent workload equal to 80th percentile.

alertness is less than or equal to 35th percentile). If we assume additionally that

the crew had significant recent workload (corresponding to the 80th percentile)

then situation further deteriorates (now, with probability 50 25th percentile, see

Figure 5.5).
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Figure 5.6 Distributions of crew alertness given hours of sleep equal to 25th

percentile and fly duty period equal to 10th or 80th percentile.

Figure 5.6 shows distributions of the crew alertness in situations when the

crew’s hours of sleep are equal to 25th percentile and flight duty period is short

(equal to 10th percentile) or long (equal to 80th percentile). We see that the short

hours of sleep are not so important in case of a short flight but in case of a long

flight the effect on crew alertness is alarming (e.g. with probability 50% alertness

is less than or equal to 15th percentile of its unconditional distribution).

Is it possible to improve alertness of the flight crew in case the crew did not

have much sleep and their recent flight duty period was long? We could compensate

loss of the crew alertness in this situation by introducing a few policies. Firstly,

we require that the number of night hours on the flight should be small (equal

to 10th percentile). This improves the situation a bit (dotted line in Figure 5.7).

Alternatively we could require having long resting time on a flight (equal to 90th

percentile). This results in a significant improvement of the crew alertness distri-

bution (see dashed line in Figure 5.7). Combining both these policies improves the

result even more.

Notice that in comparing different polices it is not necessary to know the

actual distributions of the variables. Our decisions can be based on quantile infor-

mation. We might think of the transformation from quantiles to physical units of
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Figure 5.7 Four conditional distributions of crew alertness.

the variables as being absorbed into a monotonic utility function. Thus, conclu-

sions based on quantiles will hold for all monotonic utility functions of the random

variables.

If the individual nodes are discretized to two possible outcomes, we must assess

22 independent probabilities. If we wish to add a third possible outcome to each

node, the number of independent probabilities to be assessed jumps to 104; for five

outcomes the number is 736. On the other hand, the quantification with continuous

nodes requires eight algebraically independent numbers. This demonstrates the

reduction of assessment burden obtained by quantifying influence as conditional

rank correlation.

5.3 Independence graphs

The conditional independence graph is a powerful way of representing conditional

independence relationships between variables (Kiiveri and Speed (1984); Whittaker
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(1990)). This graphical structure, however, does not specify a joint distribution. It

gives only information about conditional independence statements.

An undirected graph is an independence graph, if there is no edge between

two vertices whenever the pair of variables is independent given all remaining

variables.

Definition 5.1 (Independence graph) Let X = (X1, X2, . . . , Xn). The indepen-

dence graph of X is the undirected graph G = (N, E), where N = {1, 2, . . . , n}
and {i, j} �∈ E if and only if Xi and Xj are conditionally independent given

XN\{i,j}.

If there is no edge between Xi and Xj in the independence graph, then

Xi and Xj are conditionally independent given XN\{i,j}, which we denote Xi ⊥
Xj |XN\{i,j}. For independence graphs one can conclude that not all variables

XN\{i,j} are necessary to insure conditional independence of Xi and Xj . This set

can be reduced to variables that separate Xi and Xj in the graph.

Theorem 5.1 (The separation theorem) (Whittaker (1990)) If Xa, Xb and Xc are

vectors containing disjoint subsets of variables from X, and if, in the independence

graph of X, each vertex in b is separated from each vertex in c by the subset of

a, then

Xb ⊥ Xc|Xa .

5.4 Model inference

In situations when the data does not exist or is very sparse we must rely on expert

judgment to define the graphical structure and assess required parameters. However,

if the data is available we would like to extract a best fitting model from the data.

Model learning or model inference is concerned with this problem. We discuss

here briefly basic ideas behind model inference for bbn’s, independence graphs

and vines. To illustrate the methods that will be presented we use the following

example treated in Callies et al. (2003).

Example 5.3 Observations of local December mean temperatures at four European

stations were taken from the World Monthly Station Climatology of the National

Center for Atmospheric Research. Corresponding diagnostic ‘forecasts’ between

1990 and 1993 were produced by regressing local temperatures on monthly mean

regional scale atmospheric sea level pressure distributions as represented by 5o × 5o

analysis Trenberth and Paolino (1980) at 60 grid points covering region 40oN to

64oN and 20oW to 25oE. The regressions scheme was calibrated for 1960–1980.

Prior to regression, both regional and local data were filtered by standard princi-

ple components analysis to reduce the number of degrees of freedom and to avoid

overfitting. Only four degrees of freedom were retained.
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The following (8 × 8) sample correlation matrix contains all information about

the interactions between observations, θ and the corresponding forecasts, F , at the

four stations Geneva (G), Innsbruck (I), Budapest (B) and Copenhagen (K).

S =

θK θG θ I θB FK FG F I FB



1 .35 .50 .49 .68 .38 .50 .59

1 .79 .69 .12 .64 .62 .49

1 .72 .18 .61 .58 .43

1 .05 .46 .47 .43

1 .33 .51 .71

1 .97 .77

1 .90

1




(5.5)

5.4.1 Inference for bbn’s

There is a rich literature concerning learning bbn’s, an introduction to which is

found in Cowell et al. (1999); Hackerman (1998) together with references for more

extensive treatment of this problem. The present brief discussion merely gives the

flavour. It is well known that probabilistic influence is non-directional; if ran-

dom variable X influences random variable Y in the sense that P (Y |X) �= P (Y ),

then Y also influences X. Hence the directionality in a bbn cannot in general3

be inferred from data with purely statistical methods. It necessarily reflects some

external structure, for example, causal or temporal ordering. We find it convenient

to think of the directionality in a bbn as specifying an information flow in a sam-

pling algorithm. Commercial interest in these algorithms may result in incomplete

descriptions in the open literature. Be that as it may, learning bbn’s consists of two

parts as follows:

1. Model selection,

2. Learning the conditional probabilities.

Inferring conditional probabilities, given the model structure, can proceed using

a number of standard statistical techniques. We focus on model selection. The

graphical probabilistic model learning is usually approached in one of two ways:

the search and scoring methods and the dependency analysis methods. In the first

approach, we start with a graph without any edges. We use a search method to

add an edge to the current graph and then use some scoring function to decide

whether the new structure is better then the old one. This procedure iterates until

no new structure is better then the previous ones. The second approach tries to

discover dependencies from the data and uses them to infer the structure. We

sketch the algorithm explained in detail in Cheng et al. (1997). Recall that the

mutual information of a bivariate distribution is the relative information of this

distribution with respect to the product of the one-dimensional margins.

3The directionality can be inferred from data in some cases. The bbn in Figure 5.1 is a good example.
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1. Calculate the mutual information of each pair of nodes. Store those that are

greater than a certain small value ǫ and sort them in descending order. Create

a draft tree, by connecting nodes with the highest mutual information.

2. Examine all pairs of nodes for which the mutual information is bigger than

ǫ but are not directly connected in the draft. Check if there exists a cut set

in the graph that makes them conditionally independent given variables in

the cut set; if not, connect these nodes. A group of conditional independence

tests is used here.

3. Apply groups of conditional independence tests to check if the new connec-

tions are really necessary. If not then, the edge is removed permanently.

4. Orient the edges of the graph by identifying triplets of nodes (X, Y, Z) such

that X and Y and Y and Z are directly connected but X and Z are not directly

connected. Only the structure X → Y ← Z corresponds to the preceding

information. Y is called a collider, hence this algorithm finds all colliders

in the graph and orients edges in the bbn accordingly. After this procedure,

however, some edges may not be oriented.4

5.4.2 Inference for independence graphs

In Whittaker (1990) the problem of model inference is cast as a problem of iden-

tifying conditional independence. The joint distribution of variables X1, . . . , Xn is

assumed to be joint normal. The approach is sketched as follows:

1. Estimate the variance V by the sample variance matrix S.

2. Compute its inverse S−1, rescale this inverse so that the diagonal entries are

1; the off-diagonal cell {i, j} contains the negative of the partial correlation

of i, j with respect to all remaining variables K .

3. Set any sufficiently small partial correlations in S−1 equal to zero; call the

resulting matrix P ∗5.

4. Find a positive definite matrix P ‘as close as possible’ to P ∗; the zero’s

of P correspond to pairs of variables which are modelled as conditionally

independent given all other variables.

4We were unable to find a Bayesian Belief Net programme, which has implemented a learning

algorithm for continuous variables. Although several programs have algorithms, which could be applied

to discretized versions of continuous distributions, the results were found to depend strongly on the

method of discretization.
5The process of removing links corresponding to small partial correlations can be carried out sequen-

tially. After each removal, the correlation matrix and partial correlations are updated. The decision to

remove a link is based on the (a) ‘edge exclusion-’ and (b) ‘edge inclusion-deviance’. These are entropy-

based measures that reflect (a) the additional disturbance of the original distribution caused by removing

an additional edge and (b) the reduction in disturbance achieved by restoring previously removed edge.

The process stops when the minimum edge exclusion deviance is much bigger than the maximum edge

inclusion deviance.
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Figure 5.8 Independence graph from Whitakker method.

The procedure for finding the positive definite matrix P uses iterative propor-

tional fitting, and relies heavily on the properties of the joint normal distribution.

P and P ∗ have the same zeros. Goodness of fit tests are available to determine

whether P−1 is ‘close enough’ to the original sample variance S.

The resulting structure is expressed as an independence graph. Starting with the

saturated undirected graph over all variables, edges between variables are removed

if the partial correlation of these variables, given the remaining variables, is zero.

The remaining edges connect variables having an interaction in the inferred model.

In Figure 5.8, the independence graph for Example 5.3 is shown. Whittaker’s

method removed 17 of the 28 edges in the saturated graph.

5.4.3 Inference for vines

We shall approach model learning as a problem of inferring a regular vine from

data with certain desirable properties. To this end, we shall associate nodes in a

regular vine with partial correlations (see Chapter 3); partial correlation ρij ;K may

be associated with an edge in a regular vine if K is the conditioning set, and

{i, j} the conditioned set of the edge. The result of such an association is a partial

correlation vine (see Chapter 4).

As shown in Chapter 4, a partial correlation vine fully characterizes the cor-

relation structure of the joint distribution and the values of the partial correlations

are algebraically independent. Unlike the values in a correlation matrix, the partial

correlations in a regular vine need not satisfy an algebraic constraint like positive

definiteness. Moreover, the partial correlation vine represents a factorization of the

determinant of the correlation matrix. The determinant of the correlation matrix is

a measure of linear dependence in a joint distribution. If all variables are indepen-

dent, the determinant is 1, and if there is linear dependence between the variables,

the determinant is zero. Intermediate values reflect intermediate dependence.
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Following the approach of Whittaker, we would like to change partial corre-

lations in the vine to zero while disturbing the determinant as little as possible.

In this case, however, we can first choose the partial correlation vine, which best

lends itself to this purpose. Moreover, by Theorem 4.4, any such change will be

consistent. There is no need for an analogue to the iterative proportional fitting

algorithm in the independence graph method.

As proven in Chapter 4, the product of 1 minus the square partial correlations

on a regular vine equals the determinant of the correlation matrix. We can write

− log(D) = −
∑

{i,j}
log(1 − ρ2

ij ;K(ij)) (5.6)

= −
∑

{i,j}
aij ;K(ij), (5.7)

where D is the determinant of the correlation matrix. The terms aij ;K(ij) will depend

on the regular vine, which we choose to represent the second order structure, how-

ever, the sum of these terms must satisfy (5.7). We seek a partial correlation vine

for which the terms aij ;K(ij) in (5.7) are ‘as spread out’ as possible. This concept

is made precise with the notion of majorization (Marshall and Olkin (1979)).

Definition 5.2 Let x,y ∈ Rn be such that
∑n

i=1 xi =
∑n

i=1 yi; then x majorizes y

if for all k; k = 1, . . . , n

k∑

j=1

x(j) ≤
k∑

j=1

y(j), (5.8)

where x(j) is the increasing arrangement of the components of x, and similarly

for y.

In view of (5.7), the model inference problem may be cast as the problem

of finding a regular vine whose terms aij ;K(ij) are non-dominated in the sense of

majorization. In that case, setting those partial correlations equal to zero whose

square is smallest will change the determinant as little as possible. Finding non-

dominated solutions may be difficult, but a necessary condition for non-dominance

can be found by maximizing any Schur convex function.

Definition 5.3 A function f : Rk → R is Schur convex if f (x) ≥ f (y) whenever

x majorizes y.

Schur convex functions have been studied extensively. A sufficient condition

for Schur convexity is given by (Marshall and Olkin (1979)):

Proposition 5.1 If f : Rk → R may be written as f (x) =
∑

fi(xi) with fi convex,

then f is Schur convex.
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The following strategy for model inference suggests itself:

1. Choose a Schur convex function f : R
n(n−1)

2 → R;

2. Find a partial correlation vine V whose vector aij ;K(ij) maximizes f ;

3. Set the partial correlations in V equal to zero for which the terms aij ;K(ij)

are smallest;

4. Using the sampling distribution for the determinant, verify that the change

in the determinant is not statistically significant.

If the joint distribution is normal, then the sampling distribution of the deter-

minant is given by (Rao (1973)):

Theorem 5.1 Let X = (X1, . . . , XN ) be samples of a n-dimensional normal vector

with sample mean X, variance V and normalized sample variance

S = N−1
N∑

i=1

(Xi − X)(Xi − X)T ,

then

Ndet(S)

det(V )
∼

N∏

i=1

Ti, (5.9)

where {Ti} are independent chi-square distributed variables with N − i + 1 degrees

of freedom.

If the distribution is not joint normal, we could estimate the distribution of the

determinant with the bootstrap. Evidently, this strategy depends on the choice of

Schur convex function. Searching the set of all partial correlation vines is not easy;

at present heuristic constraints are required.

The determinant D of the sample correlation matrix (5.5) is:

−log(D) = 11.4406.

We wish to ‘add independence’. This will produce a new correlation matrix whose

determinant D∗ will be larger, or equivalently, −log(D∗) < −log(D). Roughly, we

would like to add as much independence as possible, while keeping the increment in

the determinant as small as possible. Application of the independence graph method

(previous subsection) led to setting 17 of the 28 partial correlations in the scaled

inverse covariance matrix equal to zero. We find in this case −log(D∗) = 10.7763.

To compare this with the vine-based approach, we adopt a heuristic search on

the basis of maximizing the Schur convex function

f (x) =
∑

xi ln(xi) (5.10)
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The heuristic works as follows:

1. Choose an ordering of the variables;

2. Start with subvine consisting of variables 1 and 2 in the ordering. For j = 3

to n; find the subvine extending the current subvine by adjoining variable

j + 1, so as to maximize (5.10). Store the vine obtained for j = n;

3. Go to 1;

4. Choose the optimal partial correlation vine maximizing (5.10) among all

those stored.

In general, it is not feasible to search all permutations; heuristic search methods

or Monte Carlo sampling must be used.

When we set the 17 smallest partial correlations in the optimal vine equal to

zero, we find −log(D∗) = 11.0970, which is closer to the sample value than that

found by the independence graph method. In this sense, the vine method retains the

same number of interactions as the independence graph method, while perturbing

the sample distribution less. It must be noted, however, that both the independence

graph and the regular vine entail more conditional independencies than are directly

represented in the graphs.

Figure 5.9 shows the first tree in the optimal vine. Note that it is neither

a canonical nor D-vine; node 2 has degree 4. Figure 5.10 shows the matrix of

partial correlations, in which the 17 smallest partial correlations have been set

equal to zero. Figure 5.11 shows the independence graph obtained by the method

of Whittaker (1990). Figure 5.12 uses a similar format to show the 11 significant

interactions from the vine method. We term this an ‘interaction graph’; it is not

an independence graph in so far as the partial correlations corresponding to edges

may not be conditioned on all remaining variables.

7

1 2 3 5 4

6

8

Figure 5.9 Tree 1 in optimal vine, node 2 has degree 4.
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Figure 5.10 Partial correlations after setting 17 smallest equal to zero in optimal

vine.

62

3

4

1 5

8

7

Figure 5.11 Independence graph from method of Whittaker.
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Figure 5.12 Interaction graph from optimal vine.



150 OTHER GRAPHICAL MODELS

5.5 Conclusions

Independence graphs provide a powerful and elegant way of inferring conditional

independence structure in joint normal data. This method has been adopted to vine

inference. For the joint normal distribution, conditional and partial correlations are

equal. The vine inference strategy makes a similar assumption. However, it does

not require iterative proportional fitting and in this sense is less beholden to the

joint normal distribution.

Model inference is a new and active area, and much remains to be done. In

particular, methods for searching the set of regular vines and incorporating extra

probabilistic information require further work. The vine inference could be followed

by a copula inference procedure. In combination with the vine, this could be used

to infer a joint distribution, which could be tested against the sample.

5.6 Unicorn projects

A chapter on other graphical models is a good place to introduce the min-cost-flow

solver in UNICORN. Three illustrative projects are given illustrating an expanding

set of features and applications.

UNICORN incorporates a network optimization program DUALNET developed

at the TU Delft (Koster (1995)). DUALNET computes minimum cost flows on

directed networks. The version of DUALNET adopted uses integer-valued costs

and bounds. You may assign these (positive) random variables in UNICORN with

continuous distributions, and the distributions will be converted to integer-valued

distributions. Lower bounds, upper bounds and supplies must be non-negative;

costs may be positive or negative. The min-cost solver computes the cheapest way

of shipping the supplies to the demands, where the supplies, demands, costs and

bounds may be random variables, or user-defined functions (UDF’s) of random

variables.

We refer to the UNICORN help file for a full discussion. All simulations are

done with random seed 1 and 1 run (100 simulations).

Project 5.1 Min cost flow networks

This simple project simply introduces the capabilities. From the FILE menu

choose New DUALNET Model. The graphic model builder is opened. You can spec-

ify supply nodes and demand nodes, and also one arc between nodes. A UNICORN

variable file is created automatically, according to the following conventions:

• each node is represented by an integer between 1 and 99, except for the ‘last

node’, which is represented as ‘x’;

• each arc is associated with three input variables with names: ‘iCj’, ‘iLj’, ‘iUj’.

i and j are the names of the source and sink nodes respectively; (i.e. i is an

integer between 1 and 99, or is ‘x’) iCj is the cost of shipping one unit from i
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to j , iLj is the lower bound of the number of items shipped, iUj is the upper

bound of items shipped. iLj and/or iUj are assigned default constant values

0 and 1 respectively; they may be deleted from the list of variables and these

assignments will be maintained. Alternatively, they may be assigned arbitrary

positive valued distributions.

• supply to node i is represented by an input variable named Si,

• demand to be extracted from node j is named Dj.

These conventions must be strictly followed, names cannot be changed. The graph-

ical model builder always adds cost and flow variables from the lower index to the

higher index, in the case of supply nodes, or from supply to demand. You may add

reverse flows in the UNICORN variable file.

On each simulation, the supply must equal demand; therefore if supply and/or

demand is uncertain, a special demand variable Dx =
∑

supplies −
∑

demands is

needed. Dx must be positive. Dx may be assigned an arbitrary distribution, and its

value will be adjusted if necessary to insure that supply equals demand. Supplies and

demands must be non-negative. These variables are created as random variables by

the graphic interface. They may be deleted from the random variables and computed

as UDF’s, – that is, as functions of (arbitrarily named) variables, using the formula

editor. However, the naming conventions must be respected. Additional UDF’s may

also be defined. The following output variables are created automatically:

• iFj: flow from i to j ,

• iMj: the marginal cost associated with arc (i, j),

• OPT: the cost of the optimum solution.

Create 2 supply nodes, S1 and S2, and one demand node D3 (naming is auto-

matic) with an arc between (S1,S2), (S1,D3), and (S2,D3). The model should look

as in Figure 5.13.

Go to the variable panel and verify that the flow and cost variables have been

created with default assignments. Edit the variables so that the supply to S1 = 0 and

the cost of shipping from S2 to D3 is 10. The costs of shipping from S1 to S2, and

from S1 to D3 are both 1 (default). It would be cheaper to supply D3 by shipping

from S2 to S1, and from S1 to D3. However, the graphic model builder created only

the arc from S1 to S2. From the Simulate panel, run the model with 100 samples

(the minimum number) and view the report. We see that nothing is shipped from S1

to S2, and one unit flows from S2 to D3, with a cost (output variable OPT) of 10.

Now from the variable panel, delete the variable 1C2 and add the variable 2C1

with constant value 1. This reverses the arc so that it goes from 2 to 1. Variables

2L1 and 2U1 are created internally with constant values 0 and 1 respectively. Run

again; the cost is now 2, since S2 ships to S1 (cost 1) and S1 ships to D3 (cost 1).
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Figure 5.13 Min-cost flow network.

Project 5.2 Min-cost flow for project risk management

This is a illustration of using stochastic min-cost flow networks for managing

project risks under uncertainty. The problem is to estimate the completion time of

a large project, in which several sub-projects are linked. A typical example is con-

struction: roofing cannot begin until the prefabricated materials are delivered, and

the walls are built. A critical path network starts with a single source, the begin-

ning of the project and ends with a single demand at the right. Figure 5.14 shows

a simple example: This graph says, for example, that project 5 cannot be started

until projects 2 and 3 are completed, project 6 cannot be started until projects 3

and 4 are completed, and the whole project is finished only when both 5 and 6 are

completed. If the completion times are given, we can compute the completion time

of the whole project as the length of the critical path, that is, the path from 1 to 7

whose summed completion times are greatest. We can treat this as a min-cost flow

network if we put a unit supply at node S1, and a unit demand at D7, and make

the costs equal to the negative completion times. Then the path with minimal cost

(most negative) for shipping one unit from S1 to D7 will be the path with the longest

summed completion times. Enter the preceding graph. Set S2, . . . , S6 = 0. Input the
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Figure 5.14 Project risk network.

following costs:

1c2 = −3; 1c3 = −5; 1c4 = −7; 2c5 = −2; 3c5 = −4;

3c6 = −6; 4c6 = −8; 5c7 = −9; 6c7 = −10.

Run the simulation and verify that the minimal completion time, that is, the

length of the critical path, is 25.

Now assign 1C2 a beta distribution on the interval [−30, −20], with parameters

2, 2. The arc between nodes S1 and S2 was previously not on the critical path, now

it is. The average completion time is 35.9 with 5- and 95-% quantiles of 32.7 and

39.2 respectively (these numbers depend on the random sample). The critical path

now always includes the arc S1–S2 and the completion time is between 31 and 41.

Now assign the costs 1C4; 4C6; and 6C7 a uniform distribution on [−15,−5].

The expected project completion time hardly changes; and we see that the expec-

tation of 1F4 is 0.11. In roughly 11 of 100 cases the critical path runs over arc

S1–S4.
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Make now a simple dependence tree with 4C6 and 6C7 attached to 1C4 with

rank correlation 0.85 (Frank’s copula). Now the critical path includes the arc S1–S4

in 33 of the 100 simulations.

Project 5.3 Social networks

Social networks interpret costs on an arc as the intensity of ‘contact’ between

the nodes. This may be anything from the rate of phone calls between terrorists,

the rate of gossiping between pairs group members, the number citations of sci-

entists, and so on. Lets consider a gossip network. The nodes represent members;

the cost of an arc is the number of gossips between the source and sink. Member

nr 1 (you) want to send a message to member nr 10, and you want to minimize

the number of other people who might learn the message due to gossip. From

the EDIT menu, you can arrange the nodes in a circle (or other forms). Attach

Dx to S10 so that the graph looks like Figure 5.15. Assign supply one to S1 and

zero to all other supply nodes. Let the cost of each arc equal the index of the

sink node, for example, 5C6 = 6. Running the simulation (in this case there is no

uncertainty and all simulations are identical). We find that the cheapest path is

1-5-6-8-10.

Figure 5.15 Social network.
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Project 5.4 Conditional probability tables

This project shows how to use UNICORN in combination with EXCEL to cre-

ate probability tables for discrete bbn’s, using D-vines. We consider the bbn in

Figure 5.1. Vines are used to define dependence structures for four uniform vari-

ates. When using vines in bbn’s, we must therefore assume that the one dimensional

distributions are known to be uniform. Of course we can transform any continuous

invertible distribution function to uniform; the point is that a bbn in which influence

is interpreted as conditional rank correlations via a vine will yield the joint distri-

bution of the uniform transforms of the original variables, it will not yield the joint

distribution of the variables themselves. To get these, we must apply the inverse

cumulative distribution functions to the uniform variates.

UNICORN regards a discrete random variable as a transformation of a uniform

random variable. If we wish to specify a probability table using vines, we must sup-

ply the transformations from uniform variates. This is equivalent to saying that we

must supply the marginal probabilities of the discrete variables. Given these and a

suitable vine structure, we can derive the conditional probability tables.

Using the generalized indicator functions in the formula panel, you can create

discrete variables in the same way that UNICORN creates them from the variable

panel. In this project, we let you create your own discrete variables in the formula

panel. You may check these results against results gotten by specifying discrete

variables from the variable panel.

• Create a case named PROBTAB. Go to the variables panel and create vari-

ables V 1, V 2, V 3, V 4 with uniform distributions on [0, 1].

• Go to the formula panel and create UDF’s as shown in Figure 5.16. Notice

that U4 has probability 0.2 of returning the value ‘1’. The other variables

equal ‘1’ with probability 0.5. Since we are making a conditional probabil-

ity table given values of U1, U2, U3, the distributions of the latter are not

important.

• Make a D-vine as shown in Figure 5.17.

• Now run this case with 1000 samples, saving the output. The output is stored

in two files, one with the extension ‘*.sam’ that is used for graphics, and

Formula and user defined functions

Total Formulas: 4 
1  U1: i1 {0.5,V1,1}
2  U2: i1 {0.5,V2,1}
3  U3: i1 {0.5,V3,1}
4  U1: i1 {0.8,V4,1}

Figure 5.16 User defined functions for bbn probability table.
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V4

Dependence structure

Total dependence nodes: 4

Dependence structure type: D-vine

Copula type: Diagonal band. Vine name: V4|V3|V2|V1

0.7000

V3

0.7000

0.7000

V2 V1

0.7000
−0.7000 0.0000

Figure 5.17 Vine for bbn probability table.

one with extension ‘*.sae’ in comma separated EXCEL-compliant textfile for-

mat. We are going to count the number of samples in which U4 = 1 and

U1, U2, U3 take a given vector of values. This is easily done in EXCEL

and illustrates the use of EXCEL to perform special analyses of simulation

output.

• After running, open EXCEL, choose ‘Open file’ in the directory where the

UNICORN output file lives. Type ‘*.sae’ as the file name, the file ‘Probtab.sae’

appears, open this file. EXCEL recognizes this as a text file. EXCEL asks how

the file is delimited, choose comma delimited. A spreadsheet is created with

the variable names in the first row, and the sample values in succeeding rows.

Each row is one sample.

• You can use an ‘array function’ to perform the required counting. Go to an

empty cell and type

=SUM(A2:A1001*B2:B1001*C2:C1001*D2:D1001)/

SUM(A2:A1001*B2:B1001*C2:C1001).

This is an EXCEL array function, you enter it by hitting

‘control+shift+ENTER’. The value is the ratio of number of occurrences

of U1 = 1, U2 = 1, U3 = 1, U4 = 1 to number of occurrences of U1 = 1,

U2 = 1, U3 = 1. In the next cell type

= SUM(A2:A1001* B2:B1001* (1-C2:C1001)*D2:D1001)/

SUM(A2:A1001* B2:B1001*(1-C2:C1001)).

Using such array functions you can create a table like that shown in

Figure 5.18.
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Probability table P(U4 = 1) = 0.8

1

1 1 0
U1
U2
U3 1 1 1 100

0

0 0

P(U4 = 1|*) 0.239316 0 0.831933 0.119658 0.045802 0 0.403226 0

P(U4 = 0|*) 0.760684 1 0.168067 0.880342 0.954198 1 0.596774 1

0

Figure 5.18 Probability table, P(U4 = 1) = 0.8.

Probability table P(U4 = 1) = 0.5

U1

U2

U3 00

0 1

0

0 0

0

1111

1

1

P(U4 = 1|*) 0.794872 0.106061 0.983193 0.581197 0.450382 0.007752 0.895161 0.21374

P(U4 = 0|*) 0.205128 0.893939 0.016807 0.418803 0.549618 0.992248 0.104839 0.78626

Figure 5.19 Probability table, P(U4 = 1) = 0.5.

Notice that the probabilities for U4=1 are zero conditional on (1, 1, 0), (0, 1, 0)

and (0, 0, 0). This is caused by the low probability of this in relation to the sample

size. If you repeat the same procedure but with 10,000 samples, you will find that

P (U4 = 0 |U1 = 1, U2 = 0, U3 = 1) = 0.000781.

To see the effect of the marginal probability of U4 on the conditional probability

table, repeat this exercise but with the following UDF for U4: i1{0.5, V 4, 1}. The

resulting conditional probability table should look like that in Figure 5.19.

5.7 Supplement

Theorem 5.1 � is positive (semi-)definite if and only if ν > 0(≥ 0). Furthermore,

the rank of � is equal to the number of nonzero elements in ν.

Proof. We assume without loss of generality that the sequence of indices is ordered,

so that the matrix B = [bij ], i, j = 1, . . . , n is strictly upper triangular. Let D and

S be the diagonal matrices formed from the conditional variances and standard

deviations respectively, that is, D = diag(ν) = ST S. The conditional model can

be seen as a set of regression equations:

Xi = µi +
∑

j∈pa(i)

bij (Xj − µj ) +
√

νZj , j = 1, . . . , n,

where Z = (Z1, . . . , Zn) are independent standard normal variables. This can be

written as

X − µ = BT (X − µ) + ST Z.
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From the above

ST Z = (I − BT )(X − µ).

Since B is strictly upper triangular, then (I − BT ) is invertible and

X − µ = (I − BT )−1ST Z = UT ST Z = AT Z,

where U = (I − B)−1 and A = SU . We get

� = V ar(X) = V ar(X − µ) = V ar(AT Z) = AT ZA

= AT A = UT ST SU = UT DU.

The preceding factorization of the covariance matrix concludes the proof. �

Theorem 5.2 Given

1. a directed acyclic graph (DAG) with n nodes specifying conditional indepen-

dence relationships in a bbn,

2. the specification of conditional rank correlations (5.4), i = 1, . . . , n and

3. a copula realizing all correlations [−1, 1] for which correlation 0 entails

independence

the joint distribution is uniquely determined. This joint distribution satisfies the

characteristic factorization (5.3) and the conditional rank correlations in (5.4) are

algebraically independent.

Proof. The first term in (5.3) is determined vacuously. We assume the joint dis-

tribution for {1, . . . , i − 1} has been determined. Term i of the factorization (5.4)

involves i − 1 conditional variables, of which {ip(i)+1, . . . , ii−1} are conditionally

independent of i given {i1, . . . , ip(i)}. We assign

r(i, ij |i1, . . . ip(i)) = 0; ip(i) < ij ≤ i − 1. (5.11)

Then the conditional rank correlations (5.4) and (5.11) are exactly those on Di

involving variable i. The other conditional bivariate distributions on Di are already

determined. It follows that the distribution on {1, . . . i} is uniquely determined.

Since zero conditional rank correlation implies conditional independence,

P (1, . . . i) = P (i|1 . . . i − 1)P (1, . . . , i − 1) = P (i|i1 . . . ip(i))P (1, . . . , i − 1)

from which it follows that the factorization (5.3) holds. �
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Sampling Methods

6.1 Introduction

Given a joint distribution for (X1, . . . , Xk), this has to be pushed through the model

M to yield a distribution on the model output. In a few very simple cases, we can

perform these calculations analytically. For example, if (X1, X2) is joint normal,

then M = X1 + X2 is also normal. A similar relation holds for gamma-distributed

variables with the same scale factor. Beyond such simple examples, we must have a

recourse to simulation. We must obtain a number, say n, of random samples of the

input vector and compute M on each sample, yielding m1, . . . , mn. The distribution

built up after n samples, m1, . . . , mn, is called the sample or empirical distribution

Fn(m) = (1/n)
∑n

i=1 I(−∞,m](mi), where IA is the indicator function of set A.

The classic Glivenko Cantelli theorem (Glivenko (1933)) states that the empirical

distribution function converges uniformly to the true distribution function as n →
∞. We also know that for any m, (Fn(m) − F(m)) is asymptotically normally

distributed, with variance going to zero as 1/n.

We can use these results to determine the distribution of M if we could draw ran-

dom samples. The computer cannot really draw random samples but can simulate

random numbers as pseudo-random numbers. If the model M is very expensive, the

rate of convergence of (pseudo-) random numbers may be too slow. If we are will-

ing to give up some features of random sampling, notably serial independence, then

variance reduction techniques may be invoked. These include quasi-random num-

bers and stratified and Latin hypercube sampling. Quasi-random numbers could be

used with copulae to sample dependent distributions. However, their lack of serial

independence may induce spurious dependencies, the effects of which are largely

unexplored. Other variance reduction techniques are also ungraceful in dealing

with dependence. The first two sections of this chapter discuss pseudo-random and

reduced variance sampling.

Uncertainty Analysis with High Dimensional Dependence Modelling D. Kurowicka and R. Cooke

 2006 John Wiley & Sons, Ltd
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The lion’s share of this chapter deals with sampling the structures introduced

in Chapter 4. These require only independent random sampling; dependence is cre-

ated by transforming these using the cumulative conditional distribution functions

obtained from copulae.

6.2 (Pseudo-) random sampling

The subject of random number generators and pseudo-random numbers is large;

good general texts are Ripley (1987) and Rubinstein (1981), and recent information

can be obtained online from http://mathworld.wolfram.com/RandomNumber. Only

a cursory treatment can be given here.

Under random sampling, different input vector values (x1, . . . , xk) are drawn

‘pseudo-randomly’ from the joint distribution of (X1, . . . , Xk). We assume for the

time being that X1, . . . , Xk are independent. ‘Pseudo’ refers to the fact that the

procedure followed by a computer is not really random, and only a finite number

of distinct numbers can be generated. Common procedures depend on the choice

of a seed. A large number of samples may be required to achieve results that are

insensitive to the choice of seed.

The way in which distributions are represented will also affect the run time.

Suppose that we wish to sample a variable X with continuous invertible univariate

distribution function F . By definition, F(x) = P (X ≤ x); so for r ∈ [0, 1],

P (F(X) ≤ r) = P (X ≤ F−1(r)) = F(F−1(r)) = r,

which says that F(X) follows a uniform distribution on the interval [0, 1]. There-

fore, we can sample X by calling a random number on our computer, returning a

realization u of (pseudo-) uniform variable U on [0, 1]. We then apply the transfor-

mation x = F−1(u). However, if the function F−1 must be computed numerically,

it will cost time if required repeatedly.

An important property of pseudo-random numbers is that they display serial

independence. Hence, we can simulate the independent variables X1, . . . , Xk by

repeatedly calling a random number on our computer. However, it is well known

that pseudo-random numbers may display clustering effects.

The most common method for generating pseudo-random numbers is the mul-

tiplicative congruential method: Start with a seed x0 and compute

xn = axn−1 mod[m],

where a and m are the given positive integers. The seed is x0. Thus, xi takes

values in {0, . . . , m − 1} and xi/m is approximately uniformly distributed on [0, 1].

The IBM System/360 Uniform Random Number Generator used in many statistics

library packages takes m = 231 − 1 and a = 75. This choice has been extensively

tested and gives good results. The tests check for a variety of features including

relative frequency of digits and words, serial independence, excursion length, first

passage times and periodicity (Rubinstein (1981)).
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Mixed congruential generators are of the type

xn = (axn−1 + c) mod[m].

The multiplicative generators correspond to the special case of c = 0. It can be

shown (Greenberger (1961); Rubinstein (1981)) that for generators of this type, the

Pearson correlation coefficient of Xi and Xi+1 lies between

1

a
−

6c

am

(
1 −

c

m

)
±

a

m
.

m is often chosen equal to the computer’s word length, since this makes the com-

putations mod[m] very efficient.

6.3 Reduced variance sampling

We discuss a number of strategies for speeding up the convergence obtained with

pseudo-random sampling.

6.3.1 Quasi-random sampling

Quasi-random number1 sequences, otherwise known as low-discrepancy sequences,

are presented as an alternative to pseudo-random numbers. They are generated to

cover the k-dimensional unit cube I k = [0, 1)k more uniformly, thereby increasing

the rate of convergence at the expense of serial independence. One of the most

well-known generators is that of Sobol (1967), which is based on the concept

of primitive polynomials. Other generators include those of Faure (implemented in

Fox (1986); Niederreiter (1988), the one-dimensional Van Der Corput sequence and

its multidimensional analogue, the Halton sequence (Halton (1960))). We briefly

describe the Sobol’ generator here. For more information about the topic, we refer

the interested readers to original papers.

Discrepancy The discrepancy of a quasi-random sequence is a measure of the

uniformity of the distribution of a finite number of points over the unit hyper-

cube. Informally, a sequence of points is considered to be uniformly distributed

in the s-dimensional unit cube I s = [0, 1)s if, in the limit, the fraction of points

lying in any measurable set of I s is equal to the area of that set. A more formal

definition follows.

Following the notation of Niederreiter (Niederreither (1992), p. 14), let P

denote the set of points x1, x2, . . . , xN ∈ I s and B some arbitrary subset of I s .

Let A(B;P ) be a counting function of the number of points n (1 ≤ n ≤ N ) for

which xi ∈ B. Let B∗ be a non-empty family of subsets of I s of the form

B =
s∏

i=1

[0, ai),

1This section was co-authored by Belinda Chiera.
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Figure 6.1 An example of taking measurable subsets to compute D∗
n(u) of a set

of quasi-random points.

with s-dimensional volume a1a2 . . . as ; then the star discrepancy D∗
n(u) of P is

D∗
n(B

∗;P ) = sup
B∈B∗

∣∣∣∣
A(B;P )

N
− µs(B)

∣∣∣∣ , (6.1)

where µs(B) is the theoretical number of points in B and 0 ≤ D∗
n(B

∗;P ) ≤ 1

(Niederreither (1992)). An example of measuring discrepancy is illustrated in

Figure 6.1.

The smaller the discrepancy, the more uniform the spacing of the points in the

hypercube. A sharp bound on the discrepancy of quasi-random number sequences

is given in Niederreither (1992),

D∗
n(P ) = O(n−1(log n)s),

although Kocis and Whiten (1997) have found that this asymptotic result may

not be representative of the sample sizes N used in practice, especially in higher

dimensions.

The Sobol’ generator A Sobol’ sequence is based on a set of ‘direction numbers’,

{vi}, defined as

vi =
mi

2i
,

where the mi are odd, positive integers, such that 0 < mi < 2i .
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The vi must be chosen so that they satisfy a recurrence relation using the

coefficients of a primitive polynomial (mod 2),2

P ≡ xd + a1x
d−1 + · · · + ad−1x + 1,

where each ai is 0 or 1 and P is a primitive polynomial of degree d (mod 2).3

Once the primitive polynomial has been chosen, a recurrence relation for cal-

culating vi must be set up. We define vi as

vi = a1vi−1 ⊕ a2vi−2 ⊕ · · · ⊕ ad−1vi−d+1 ⊕ vi−d ⊕
⌊vi−d

2d

⌋
, i > d,

where ⊕ is the XOR (exclusive or, binary summation) operation. An equivalent

expression of this recurrence is as follows.

mi = 2a1mi−1 ⊕ 22a2mi−2 ⊕ · · · ⊕ 2d−1ad−1mi−d+1 ⊕ 2dmi−d ⊕ mi−d .

To generate the nth number in the sequence, compute

xn = b1v1 ⊕ b2v2 ⊕ b3v3 ⊕ · · · ,

where . . . b3b2b1 is the binary representation of n. Let us consider the following

example.

Example 6.1 Consider the primitive polynomial

P ≡ x3 + x + 1

of degree d = 3. The corresponding recurrence is as follows.

mi = 4mi−2 ⊕ 8mi−3 ⊕ mi−3.

Let m1 = 1, m2 = 3, m3 = 7. Then

m4 = 12 ⊕ 8 ⊕ 1

= 1100 ⊕ 1000 ⊕ 0001(in binary)

= 0101

= 5.

Similarly, m5 = 28 ⊕ 24 ⊕ 3 = 7, m6 = 20 ⊕ 56 ⊕ 7 = 43, and so forth.

We calculate nth number in the sequence as follows.

2The order of a polynomial P (x) with P (0) �= 0 is defined as the smallest integer e for which

P (x) divides xe − 1. A polynomial of degree n with coefficients 0 and 1 is primitive (mod 2) if it has

polynomial order 2n − 1.
3Examples of primitive polynomials: x2 + x + 1 – order 3, x5 + x2 + 1 – order 31.
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n b3 b2 b1 xn = b1v1 ⊕ b2v2 ⊕ b3v3 ⊕ · · ·
1 0 0 1 v1 = 0.1 = 1

2
,

2 0 1 0 v2 = 0.11 = 3
4
,

3 0 1 1 v1 ⊕ v2 = 0.1 ⊕ 0.11 = 0.01 = 1
4
,

4 1 0 0 v3 = 0.111 = 7
8
,

5 1 0 1 v1 ⊕ v3 = 0.111 ⊕ 0.1 = 0.011 = 3
8
,

...

An example of Sobol’ points is given in Figure 6.2.

The objective for a finite pseudo-random sequence is to appear as if it is a

sequence of realizations of independent identically distributed uniform random

variables. The objective of a quasi-random sequence is that it fills a unit hypercube

as uniformly as possible. Hence, using quasi-random numbers, the convergence of

the Monte Carlo method towards a solution can be much faster than with pseudo-

random numbers. The difference between pseudo- and quasi-random numbers is

highlighted in Figure 6.3.

6.3.2 Stratified sampling

In stratified sampling, the sampling space is divided into a number of non-

overlapping subregions, called strata, of known probability. A given number of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.2 An example of the Sobol’ sequence, with N = 512. The Sobol’ prim-

itive polynomial is x5 + x2 + x0.
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Figure 6.3 A plot of a Halton sequence (a) and a pseudo-random number sequence

(b). (Sample size = 1024.)

values are randomly sampled from each strata, often only one. We illustrate the

idea underlying stratified sampling as follows.

Let U be a uniform [0, 1] variable. The cumulative distribution function of

U is F(r) = r, r ∈ [0, 1]. Suppose we wish to determine the distribution of U by

simulation, we draw, say 30 samples, from U and compute the sample cdf:

F30(r) = (#samples ≤ r)/30.

F30 converges uniformly to F , but for a small number of samples, F �= F30. The

situation after 30 samples is pictured in Figure 6.4 (u-dark line).

Suppose we decide to sample the first 15 values uniformly from [0, 0.5], and

the second 15 from [0.5, 1]. Then, the 15th ordered sample will always be less than

0.5 and the 16th will always be greater than 0.5. The empirical distribution function

obtained in this way will always converge more quickly (see stratified-light line in

Figure 6.4).

Complications arise in stratified sampling of dependent distributions. Again, a

very simple example best illustrates the issues. Suppose we have two independent

variables, X1, X2, uniformly distributed on [−1, 1]. We wish to apply stratified

sampling, such that for each variable, half the values are sampled uniformly from

[−1, 0] and from [0, 1]. This, however, does not determine a sampling strategy,

rather we must decide how to sample the four cells:

(−1, 0) × (−1, 0),

(−1, 0) × (0, 1),

(0, 1) × (−1, 0),

(0, 1) × (0, 1).
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Figure 6.4 Empirical distributions functions for random sampling (u-dark line) and

stratified sampling (stratified-light line).

If the variables are independent, we must ensure that our sampling strategy

does not introduce a spurious correlation. If the variables are not independent, then

the sampling strategy must represent the dependence.

6.3.3 Latin hypercube sampling

Latin hypercube sampling (LHS) (Iman and Helton (1988); Iman and Shortencarier

(1984); McKay et al. (1979)) has found extensive application in uncertainty anal-

ysis. This sampling procedure is based on dividing the range of each variable into

N intervals of equal probability. For each variable, one value is selected randomly

from each interval. Then, the N values for first variable are paired at random and

without replacement with the N values of second variable. These N pairs are com-

bined in a random manner without replacement with N values of third variable,

and so on.

More precisely, if X1, . . . , Xn are mutually independent random variables with

invertible distribution functions Fj , j = 1, . . . , n, respectively, then the i-th Latin

hypercube sample for the j -th variable can be created as

x
(i)
j = F−1

j

(
πij − 1 + ξij

N

)
,
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Figure 6.5 Pseudo (a) and Latin hypercube (b) sampling for two uniform on

[0, 1] variables. (Sampling size = 10.)

where P = [πij ] is an N × n matrix with independent random permutations of

{1, 2, . . . , N} in columns of P , and � = [ξij ] is an N × n matrix containing inde-

pendent random numbers uniformly distributed on [0, 1] independent of P .

In Figure 6.5 we see 10 samples of two uniform variables on [0, 1] obtained

with pseudo-random and LHS schemes. We can see that the result of LHS is more

spread out and does not display the clustering effects found in pseudo-random

sampling.

Samples from non-uniform variables are obtained using the inverse cumulative

distribution of each variable. LHS is used when the models are computationally

expensive, so that a large number of samples is not practicable. It gives unbiased

estimates for means.

Correlations: the Iman and Conover method The Latin Hypercube codes incor-

porate ‘distribution-free’ techniques for representing correlations (Iman and Conver

(1982)). The idea is the same as that in Chapter 4:

• Draw N LHS samples of k variables; convert these to ranks and place them

in an N × k matrix.

• Draw N samples from a k-dimensional joint normal distribution with corre-

lation matrix R.

• Convert the normal variables to ranks.

• Permute the columns of the LHS matrix so that the ranks in each column

coincide with those of the normal matrix.

• Unrank the LHS variables.

As discussed in Chapter 4, this procedure will not yield a rank correlation matrix

R. The remarks in Chapter 4 apply here as well.
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6.4 Sampling trees, vines and continuous bbn’s

In sampling dependence structures, we will require independent uniform variables,

and we will induce dependence by transforming these in a way that uses previously

sampled values. The transformations will be the conditional cumulative and inverse

cumulative distributions of the copulae in an appropriate tree or vine representation.

The serial independence property of pseudo-random numbers is therefore essential.

6.4.1 Sampling a tree

Distributions specified using dependence trees can be sampled on the fly. In per-

forming the conditional sampling, it is always a bivariate distribution specified by

the copula that is conditionalized. In Figure 6.6 a sampling procedure for a tree on

three uniform on [0, 1] variables X1, X2, X3 is shown. X1 and X2 are joined by

the diagonal band copula with the rank correlation r12 and X1 and X3 are joined by

the diagonal band copula with r13. First, we sample a realization of X1, say x1.

For the diagonal copula, the conditional distributions are very simple. We see in

Figure 6.6 the conditional densities c2|1 and c3|1. By sampling from these distribu-

tions, the samples for X2 and X3 can be found.

The sampling procedure involves sampling three independent uniform (0, 1)

variables U1, U2, U3.

1. Sample U1, U2, U3. Denote realizations as u1, u2, u3.

2. x1 = u1.

3. Find FX2|X1=x1
and FX3|X1=x1

for shorthand-denoted Fr12;x1
, Fr13;x1

.

4. x2 = F−1
r12;x1

(u2).

5. x3 = F−1
r13;x1

(u3).

X1

x1

c3|1

r12 r13

c2|1

X2 X3

Figure 6.6 A sampling procedure for a tree on three variables.
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Note that X2 and X3 are conditionally independent given X1. Moreover, note

that only correlations r12 and r13 are specified. The correlation value between X2

and X3 is determined by the tree structure and a choice of copula. For the diagonal

band and the minimum information copula, r23 is approximately equal to (and for

the elliptical copula exactly equal to) the product r12 × r13 (see Exercise 4.2).

6.4.2 Sampling a regular vine

The rank correlation specification on regular vine plus copula determines the whole

joint distribution. We recall the conditional rank correlations need not be constant.

The procedure of sampling such a distribution can be written for any regular vine.

There are two strategies for sampling such a distribution, which we term the cumu-

lative and density approaches. We first show the cumulative sampling procedures for

the canonical and the D-vines followed by a general cumulative sampling procedure

for a regular vine. The density approach will be presented in Section 6.4.3.

Canonical vine For the canonical vine, the sampling algorithm takes a simple

form. We illustrate the following algorithm for a canonical vine on four variables,

as shown in Figure 6.7.

The algorithm involves sampling four independent uniform (0, 1) variables

U1, . . . , U4. We assume that the variables X1, . . . , X4 are also uniform. Let ri,j |k
denote the conditional correlation between variables (i, j) given k. Let Fri,j |k;Ui

(Xj )

denote the cumulative distribution function for Xj given Ui under the conditional

copula with correlation ri,j |k . The algorithm can now be stated as follows:

x1 = u1;
x2 = F−1

r12;u1
(u2);

x3 = F−1
r13;u1

(
F−1

r23|1;u2
(u3)

)
;

x4 = F−1
r14;u1

(
F−1

r24|1;u2

(
F−1

r34|12;u3
(u4)

))
.

(6.2)

1

2

3

4

r12 r13 r14

r23|1

r24|1

r34|12

Figure 6.7 The canonical vine on four variables with (conditional) rank correlations

assigned to the edges.
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X4

X1 F2|1

F4|1

F4|1 F4|12

F4|12

F3|12

u4

F4|123

u3u2u1
x4

r34|12
r24|1

r14

Figure 6.8 Graphical representation of sampling value of x4 in canonical vine.

We see that the uniform variables U1, . . . , U4 are sampled independently, and

the variables X1, . . . , X4 are obtained by applying successive inverse cumulative

distribution functions.

Figure 6.8 shows the procedure of sampling the value of x4 graphically. Notice

that u1, u2 and u3 are values of X1, F2|1 and F3|12 respectively; hence, conditional

distributions F4|1, F4|12 and F4|123 can be easily found by conditionalizing copu-

lae (in Figure 6.8 the diagonal band copula was used) with correlations r14, r24|1
and r34|12 on values of u1, u2 and u3, respectively. Inverting value of u4 through

F4|1, F4|12 and F4|123 gives x4.

In general, we can sample an n-dimensional distribution represented graphically

by the canonical vine on n variables with (conditional) rank correlations

r12, r13, r14, . . . r1n,

r23|1, r24|1, . . . r2n|1,
r34|12, . . . r3n|12,

. . .

rn−1,n|12...n−2,

assigned to the edges of the vine by sampling n independent, uniform (0, 1) vari-

ables, say U1, U2, . . . , Un, and calculating

x1 = u1;

x2 = F−1
r12;u1

(u2);

x3 = F−1
r13;u1

(
F−1

r23|1;u2
(u3)

)
;

x4 = F−1
r14;u1

(
F−1

r24|1;u2

(
F−1

r34|12;u3
(u4)

))
;

. . .

xn = F−1
r1n;u1

(
F−1

r2n|1;u2

(
F−1

r3n|12;u3

(
. . .
(
F−1

rn−1,n|12...n−2;un−1
(un)

)
. . .
)))

.

D-vine The sampling algorithm for the D-vine is more complicated than that of

the canonical vine. We illustrate sampling algorithm for a D-vine on four variables,

as shown in Figure 6.9.
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1 2
r23

r13|2

r14|23

r24|3

r12 r34
3 4

Figure 6.9 D-vine of four variables with (conditional) rank correlations.

The sampling procedure for the D-vine in Figure 6.9 is the following:

1. x1 = u1;

2. x2 = F−1
r12;x1

(u2);

3. x3 = F−1
r23;x2

(
F−1

r13|2;Fr12;x2
(x1)(u3)

)
;

4. x4 = F−1
r34;x3

(
F−1

r24|3;Fr23;x3
(x2)

(
F−1

r14|23;Fr13|2;Fr23;x2
(x3)(Fr12;x2

(x1))(u4)

))
.

Notice that the sampling procedure for D-vine uses conditional distributions and

inverse conditional distributions and hence will be much slower than the procedure

for the canonical vine. To shorten the notation that is used to describe the general

sampling procedure for D-vine, the preceding algorithm can be stated as:

x1 = u1;

x2 = F−1
2|1:x1

(u2);

x3 = F−1
3|2:x2

(
F−1

3|12:F1|2(x1)(u3)
)
;

x4 = F−1
4|3:x3

(
F−1

4|23:F2|3(x2)

(
F−1

4|123:F1|23(x1)(u4)
))

.

Figure 6.10 shows the procedure of sampling value of x4 graphically. Notice

that for the D-vine, values of F2|3 and F1|23 that are used to conditionalize copulae

X4

F2|3

F4|3

F4|3 F4|23

F4|23

F1|23

F4|123

F2|3(x2)

F1|23(x1)

r 24|3

u4

r14|23

X3

x4

r34x3

Figure 6.10 Graphical representation of sampling value of x4 in D-vine.
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X4

F4|23

F4|3

F4|123 U4

F−1
4|123(u4)

u4

x4

Figure 6.11 Staircase graph representation of D-vine sampling procedure.

with correlations r24|3 and r14|23 to obtain F4|23 and F4|123, respectively, have to be

calculated. This is in contrast to the canonical vine, where values of ui are used.

The ‘staircase graphs’ in Figure 6.11 show the sampling procedure graphically.

The horizontal and vertical lines represent the (0, 1) interval; the intervals are

connected via conditional cumulative distribution functions. In Figure 6.11, the

diagonal band copula is used.

In general, we can sample an n-dimensional distribution represented graphically

by the D-vine on n variables with (conditional) rank correlations

r12, r13|2, r14|23, r15|234, . . . r1,n−1|2...n−2, r1,n|2...n−1,

r23, r24|3, r25|34, . . . r2,n−1|3...n−2, r2,n|3...n−1,

r34, r35|4, . . . r3,n−1|4...n−2, r3,n|4...n−1,

. . .

rn−2,n−1, rn−2,n|n−1,

rn−1,n,

assigned to the edges of the vine as follows.

x1 = u1;

x2 = F−1
2|1:x1

(u2);

x3 = F−1
3|2:x2

(
F−1

3|12:F1|2(x1)(u3)
)
;

x4 = F−1
4|3:x3

(
F−1

4|23:F2|3(x2)

(
F−1

4|123:F1|23(x1)(u4)
))

;

x5 = F−1
5|4:x4

(
F−1

5|34:F3|4(x3)

(
F−1

5|234:F2|34(x2)

(
F−1

5|1234:F1|234(x1)(u5)
)))

;

. . .

xn = F−1
n|n−1:xn−1

(
F−1

n|n−2,n−1:Fn−2|n−1(xn−2)

(
. . .

(
F−1

n|1...n−1:F1|2...n−1(x1)(un)
)

. . .
))

.
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Regular vines A regular vine on n nodes will have a single node in tree

n − 1. It suffices to show how to sample one of the conditioned variables in this

node, say n. Assuming we have sampled all the other variables, we proceed as

follows.

1. By Lemma 4.6 of Chapter 4, the variable n occurs in trees 1, . . . , n − 1

exactly once as a conditioned variable. The variable with which it is con-

ditioned in tree j is called its ‘j -partner’. We define an ordering for n as

follows: Index the j -partner of variable n as variable j . We denote the

conditional bivariate constraints corresponding to the partners of n as:

(n, 1|∅), (n, 2|Dn
2 ), (n, 3|Dn

3 ) . . . (n, n − 1|Dn
n−1).

Again by Lemma 4.6 of Chapter 4, variables 1, . . . , n − 1 first appear as

conditioned variables (to the left of ‘|’) before appearing as conditioning

variables (to the right of ‘|’). Also,

0 = #Dn
1 < #Dn

2 < · · · < #Dn
n−1 = n − 2.

2. Assuming we have sampled all variables except n, sample one variable uni-

formly distributed on the interval (0, 1), denoted as un. We use the general

notation Fa|b,C to denote Fa,b|C:Fb|C , which is the conditional copula for

{a, b|C} conditional on a value of the cumulative conditional distribution

Fb|C . Here, {a, b|C} is the conditional bivariate constraint corresponding to

a node in the vine.

3. Sample xn as follows.

xn = F−1
n|1,Dn

1

(
F−1

n|2,Dn
2

(
. . .
(
F−1

n|n−1,Dn
n−1

(un)
)

. . .
))

(6.3)

The innermost term of (6.3) is:

F−1
n|n−1,Dn

n−1
= F−1

n,n−1|Dn
n−1:Fn−1|Dn

n−1

= F−1
n,n−1|Dn

n−1:F
n−1,(n−2)′|Dn−1

(n−2)′ :F
(n−2)′|Dn−1

(n−2)′

.

Example 6.2 We illustrate the sampling procedure for the regular vine on five vari-

ables in Figure 6.12, which is neither a canonical nor a D-vine. The top node is

{34|125}. Assuming we have sampled variables 2,5,1,3 already, the sampling pro-

cedure for x4 is:

x4 = F−1
4|2

(
F−1

4|52

(
F−1

4|152

(
F−1

4|3152(u4)
)))

.
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3

2

5

1 4
4,2

3,2

5,2

1,2

5,4|2

1,3|2

5,1|2

1,4|25

3,5|12

3,4|125

Figure 6.12 Regular vine with five variables.

6.4.3 Density approach to sampling regular vine

When the vine-copula distribution is given as a density, the density approach to

sampling may be used. For tree Ti , let Ei be the edge set, and for e ∈ Ei with

conditioning set De and conditioned set {j, k}, let cjk|De be the copula density

associated with e, then the density for a distribution specified by the assignment

of copulae to the edges of V is given by the expression in Theorem 4.2, which we

reproduce here for convenience.

n−1∏

i=1

∏

e∈Ei

cjk|De (Fj |De (xj ), Fk|De (xk))f1(x1) . . . fn(xn) (6.4)

=
n−1∏

i=1

∏

e∈Ei

cjk|De (Fj |De (xj ), Fk|De (xk)), (6.5)

where, by uniformity, the density fi(xi) = 1.

This expression may be used to sample the vine distribution; that is, a large

number of samples (x1, . . . , xn) is drawn uniformly and then these are resam-

pled with probability proportional to (6.5). This is less efficient than the general

sampling algorithm given previously; however, it may be more convenient for

conditionalization.

6.4.4 Sampling a continuous bbn

In Chapter 5, we have shown simple examples of continuous Bayesian belief nets

(bbn’s) and the relationship between continuous bbn’s and vines. To sample a

continuous bbn, we use the sampling procedure for the D-vine presented earlier.
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We start with the bbn in Figure 5.1. This simple bbn can be represented as one

D-vine, as in Figure 5.3.

Since variables 1, 2, 3 are mutually independent, the sampling procedure can

be simplified to

1. x1 = u1;

2. x2 = u2;

3. x3 = u3;

4. x4 = F−1
r34;x3

(
F−1

r24|3;x2

(
F−1

r14|23;x1
(u4)

))
.

Most bbn’s cannot be represented as one D-vine. In this case, the sampling

algorithm consists of sampling the i-th variable in the ordering according to Di

and possibly calculating some conditional distributions. Independencies present in

bbn lead to simplifications of this sampling procedure. We show how the sampling

procedure can be created for the crew alertness model in Figure 5.5 as follows.

The sampling order: 1, 2, 3, 4, 5, 6, 7, 8.

Factorization: P (1)P (2|1)P (3|21)P (4|321)P (5|4321)

P (6|54321)P (7|654321)P (8|6375421).

Variables 1, 2 are independent, hence

x1 = u1 and x2 = u2.

To sample the variable 3, we use the sampling procedure for D3(3, 2, 1)

x3 = F−1
r23;x2

(
F−1

r13|2;Fr12;x2
(x1)(u3)

)
.

Since variables 1 and 2 are independent, Fr12;x2
(x1) = x1 and the preceding expres-

sion can be simplified to

x3 = F−1
r23;x2

(
F−1

r13|2;x1
(u3)

)
.

Further, since the variable 4 is independent of 1, 2, 3, sampling D4(4, 3, 2, 1)

simplifies to x4 = u4. The variable 5 depends only on 4, so

x5 = F−1
r54;x4

(u5).

By sampling variable 6 according to D6(6, 5, 4, 3, 2, 1) and by noticing that 6

depends only on 4 and 5, we get

x6 = F−1
r64;x4

(
F−1

r65|4;F5|4(x5)
(u6)

)
.
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The variable 7 is sampled independently, x7 = u7, and 8 is sampled in the following

way

x8 = F−1
r86;x6

(
F−1

r83|6;x3

(
F−1

r87|36;x7
(u8)

))
.

This sampling procedure does not require any additional calculations. All nec-

essary distributions are given.

The results of sampling the crew alertness model in Figure 5.5, conditional

on certain values of variables ‘Hour of sleep’, ‘Fly duty period’, and so on, were

obtained using the density approach. The density of the copula for the crew alertness

model is:

g(u1, . . . , u8) = c23(u2, u3)c13|2(u1, F3|2(u3))c45(u4, u5)c46(u4, u6)

c65|4(F6|4(u6), F5|4(u5))c86(u6, u8)c83|6(F8|6(u8), u3)

c87|36(F8|36(u8), u7).

Frank’s copula was used. Updating is done by resampling the network each time

a new policy is evaluated. This approach would be time-consuming for large net-

works . Moreover, as shown in Example 6.3, sampling may require some additional

calculations. The following example illustrates the complications that can arise in

sampling continuous bbn’s.

Example 6.3 Consider the following bbn on five variables.

1

2

3

4

5

Sampling order: 1, 2, 3, 4, 5.

Factorization: P (1)P (2|1)P (3|21)P (4|321)P (5|4321).

The following rank correlations must be assessed:

r21, r31, r43, r54, r52|4.

In this case, D4 = D(4, 3, 1, 2), but the order of variables in D5 must be

D(5, 4, 2, 3, 1). Hence, this bbn cannot be represented as one vine.

Using conditional independence properties of the bbn, the sampling procedure

can be simplified as follows.

x1 = u1;

x2 = F−1
r21;x1

(u2);
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x3 = F−1
r31;x1

(u3);

x4 = F−1
r43;x3

(u4);

x5 = F−1
r54;x4

(
F−1

r52|4;F2|4(x2)(u5)
)

.

Notice that the conditional distribution F2|4(x2) is not given and must be found

by calculating:

f (x2, x4) =
∫∫

[0,1]2
c12(x1, x2)c13(x2, x3)c34(x3, x4) dx1 dx3,

F2|4(x2) =
∫ x2

0

f (v, x4) dv.

This is caused by the different order of variables in D4 and D5.

For bbn’s of moderate size, we may use the technique of Section 4.4.5 to cir-

cumvent these problems. We realize the rank correlation vine via a normal vine and

transform the normal vine to a normal vine with re-ordered variables by computing

the re-ordered partial correlations. Hence, using normal vine in Example 6.3, we

may calculate correlations in D5 = D(5, 4, 2, 3, 1) by reordering the vine D4 and

calculating the required re-ordered partial correlations. Notice that no integration

is now required.

Updating with NETICA Constructing and quantifying a large model takes a long

time. One can wait for a few months to have a good model quantified with traceable

and defensible methods. One would even be prepared to run such a model for a

few days. However, if the client wants to consider new polices, check ‘what would

happen if. . . ’ he/she would not be prepared to wait for days or even hours for the

results. In these cases, the advantages of fast-updating algorithms for discrete bbn′s
are decisive. We would like to combine the reduced assessment burden and mod-

elling flexibility of the continuous bbn with the fast-updating algorithms of discrete

bbn’s. This can be done using vine sampling with existing discrete bbn software:

• Quantify nodes of a bbn as continuous univariate (not necessarily uniform)

random variables and arcs as parent–child rank correlations.

• Sample this structure, creating a large sample file.

• Use this sample file to build conditional probability tables, not too crude, for

a discretized version of the continuous bbn. (This can be done automatically

in the bbn program NETICA using option ‘Relation/Incorporate Case File’.)

• Perform fast-updating for the discretized bbn.

Figure 6.13 shows the crew alertness model in NETICA. Each variable was dis-

cretized to 10 states. A specially prepared case file with 800,000 samples, obtained
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Crew_alertness

0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1 

10.1
9.52
10.1
10.3
9.88
10.1
10.4
10.2
9.63
9.87

0.5 ± 0.29

Hours_sleep

0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1 

9.67
9.99
10.1
10.1
10.0
9.44
10.1
10.1
10.5
9.93

0.5 ± 0.29

Preflight_fitness

0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1 

9.93
10.4
9.97
10.1
10.6
9.86
9.46
9.46
10.4
9.77

0.5 ± 0.29

Rest_time

0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1 

11.0
10.5
8.68
10.7
9.91
10.2
9.49
9.77
9.99
9.73

0.49 ± 0.29

Fly_duty_period

0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1 

10.8
10.4
9.75
9.81
9.96
10.0
9.60
9.68
10.8
9.17

0.49 ± 0.29

Operational_load

0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1 

9.41
9.94
10.2
10.8
9.73
10.7
10.1
10.2
9.35
9.63

0.5 ± 0.28

Hours_night_time

0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1 

10.2
9.81
10.1
10.2
9.42
9.96
10.3
10.5
9.94
9.60

0.5 ± 0.29

Recent_workload
0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1 

9.92
10.1
9.90
10.3
9.74
9.78
10.2
9.56
10.3
10.2

0.5 ± 0.29

Figure 6.13 The crew alertness model in NETICA (Uniform (0, 1) distribution

discretized to 10 states).

using the sampling procedure presented in the preceding text, was used to generate

the probability tables for the discretized bbn.

The quantification of the discretized bbn requires more than 12,000 probabili-

ties. The conditional probability table of Crew alertness (8) given Operational load

(6), Preflight fitness (3) and Hours of night-time flight (7) alone requires 10,000

probabilities. The quantification with continuous nodes requires only eight alge-

braically independent conditional rank correlations and eight continuous invertible

distribution functions.

Figure 6.14 compares the updating results in three cases:

1. Hours of sleep (2) is equal to 0.25 and Flight duty period (4) is equal to 0.8

(vines conditionalized on point values);

2. Hours of sleep from [0.2, 0.3] and Flight duty period from [0.8, 0.9] (vines

conditionalized on intervals);

3. conditionalizing in NETICA, where the distributions were conditionalized on

intervals as in the case 2 in the preceding text.

The entire procedure involves two approximations: the discretization and the

conditionalization on discretized values, which is actually conditionalization on
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Figure 6.14 Comparison of updating results in vines and NETICA (conditional

probability tables in NETICA obtained using 800,000 samples).

the interval. Thus, conditionalizing on the discretized value 0.25 corresponds to

conditionalizing on the interval [0.2, 0.3].

In Figure 6.14 the probability tables were built with 800,000 samples, and the

conditional distribution from NETICA agrees admirably with that obtained from

vines with sampling in case 2. Figure 6.15 is similar to Figure 6.14 except that the
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NETICA

Figure 6.15 Comparison of updating results in vines and NETICA (conditional

probability tables in NETICA obtained using 10,000 samples).
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conditional probability tables in NETICA were built using only 10,000 samples.

The agreement is considerably degraded, and the reason is not hard to find. There

are 1000 different input vectors for node 8, each requiring 10 probabilities for the

distribution of 8 given the input. With 10,000 samples, we expect each of the 1000

different inputs to occur 10 times, and we expect a distribution on 10 outcomes

to be very poorly estimated with 10 samples. If our bbn contains nodes with large

numbers of inputs, then we must make very large sample files. The good news is

that this only needs to be done once.

6.5 Conclusions

The subjects of stipulating, sampling and communicating high-dimensional depen-

dence information are intimately related. One way to stipulate a distribution is to

stipulate all its moments and to stipulate conditions on the distribution’s support,

which entail that the moments uniquely determine the distribution. This might be

useful for some purposes, but it would not tell us how to sample this distribution.

Giving a sampling algorithm is another way to stipulate a distribution. Obviously,

when dealing with complex objects, it is useful to view it from different perspectives.

Trees, vines and bbn’s, in combination with copulae, provide practical and

flexible ways of stipulating high-dimensional distributions.

The emphasis here has been on sampling distributions specified in this way. It

is worth mentioning that these techniques can also be used for prediction. If we

can infer a graphical model from a data set, and if we subsequently observe some

values of variables sampled from the same distribution, we may use the conditional

distributions, given the observed values, to predict unobserved values.

6.6 Unicorn projects

Project 6.1 Stratified sampling

This example illustrates stratified sampling with conditionalization and user-

defined quantiles. We must estimate the probability of flooding in a region protected

by five dike sections. Each section has a design height of 6 m, and flooding occurs if

the effective water height exceeds 6 m at one or more sections. Effective water height

is the sum of contributions from the North Sea, wave action and the Rhine discharge.

Sophisticated models compute these effects and translate them into effective water

heights; we will consider them simply as random variables affecting all sections at

once during the yearly maximum water level in the North Sea above the baseline

level. In addition, each section may sink, and the amount of sinkage at different

sections are independent.

Create a case with variables

• h (dike height); constant 6;

• ns (yearly maximum north sea) lognormal; median 2, error factor 1.5;
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• w (wave) lognormal; median 0.2, error factor 2;

• r (Rhine); lognormal; median 0.1, error factor 2;

• sink1, . . . ,sink5 (sinkages at sections 1, . . . ,5); lognormal; median 0.1, error

factor 2.

Create user-defined functions (UDFs)

• dike1: h-ns-w-r-sink1;

• dike2: h-ns-w-r-sink2;

• dike3: h-ns-w-r-sink3;

• dike4: h-ns-w-r-sink4;

• dike5: h-ns-w-r-sink5;

• flood: min{dike1, dike2, dike3, dike4, dike5};

• nrflrs: prev(0) + i1{≪, f lood, 0};

• condition: i1{3, ns,≫}.

This last UDF contains UNICORN’s generalized indicator function. The outer

numbers (3 and ≫) are (inclusive) bounds. The function returns the integer value

‘1’ if the middle variable is between the bounds (≫ denotes infinity). The bounds

may themselves be random variables. If we had used ik{L, v1, . . . , vn, H }, this

would return ‘1’ if at least k of v1, . . . , vn are between L and H.

In UNICORN, conditional sampling is accomplished by having a UDF named

condition. A sample is retained only if ‘condition’ takes the value 1 and is rejected

otherwise.

Beware: ‘condition’ must be integer valued. Real numbers on a computer sometimes

behave unpredictably many places after the decimal point.

Flooding occurs if the variable flood is less than or equal to zero. We will need

1,000,000 samples to reliably estimate the probability of flooding. This will take

some time. Drawing and processing 1,000,000 samples takes about 20 minutes on

an average computer. We can reduce runtime by observing that flooding is extremely

unlikely if the water height in the North Sea is less than 3 m. We therefore condition

on ns ≥ 3 with the UDF, where ‘≫’ denotes infinity:

condition : i1{3, ns,≫}.

Only samples in which ns > 3 are retained for further computing and processing.

With conditionalization, the simulation takes 3 minutes.

The variable nrflrs counts the number of failures, starting with 0; it adds 1 if

f lood ≤ 0.
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Before running the simulation with 10,000 runs (1,000,000 samples), check the

box User Defined Quantiles. After hitting Run, a dialogue box appears, in which

the user can select one or more output variables and stipulate the extreme quan-

tiles to be computed. For the variable flood, choose Q1 = 0.0001, Q2 = 0.0002,

Q3 = 0.0003, Q4 = 0.0004 and Q5 = 0.0005. These quantiles can then be included

in the report.

From the report, we see that 50,534 samples are selected from the 1,000,000.

In these samples, the maximal value of nrflrs is 8. The percentage of failures in

the retained sample is thus 0.000158. We see from the user-defined quantiles that

f lood ≤ 0 is between 0.0001 and 0.0002. With respect to the unconditional sample,

the probability of flooding is 8E−6.

Project 6.2 Powergrid: vines in trees

This is a highly stylized version of a planning problem inspired by Papefthymiou

et al. (2004–2005). It is used to demonstrate the technique of building complex high-

dimensional distributions by treating a vine as a variable in a tree. When a vine

is attached to a tree, the first node is rank correlated with the other nodes in the

tree. This technique is useful in building large dependence structures with localized

complexity, as illustrated in this project.

The design of electric power-generating systems must increasingly cope with

the power generated by ‘non-dispatchable technologies’ (i.e. renewables). These

complicate the design problem in two ways: (1) their contribution to the grid is

stochastic, depending on what power engineers like to call the ‘prime mover’ (i.e.

wind, insolation, rainfall) and (2) their uncertainties are coupled because of (a)

coupling to the prime mover and (b) similarities of design and operation. We are

interested in being able to generate more power than the load requires (we consider

only load not covered by base – load units and ‘dispatchable generators’).

Our grid consists of three Metropolitan Areas – 1, 2 and 3. Each area has four

wind parks of either the old or the new design. The windspeed distributions, as

measured at one meteo tower in each area, are:

• W1: Weibull shape 0.85, scale 25;

• W2: Weibull shape 1.2, scale 25;

• W3: Weibull shape 1.2 scale 20.

The power output of a windpark is basically proportional to windspeed if the

latter does not exceed a maximal capacity value. At windspeeds above this maximal

capacity value, the windparks must shut down for safety reasons, and no power is

generated. We arrange that power output is equal to windspeed for values below

maximal capacity. At the old units, the maximal capacity is 50 km/hour; for the new

units this is 60 km/hour.

The actual wind at each park is strongly correlated with the wind at the area’s

meteo tower Wi, and the area windspeeds are correlated to the prime mover. The

total generable power at windpark j in area i (not taking maximum capacity into
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account) has the same distribution as Wi and is rank correlated with Wi. Units with

the same design will have an additional rank correlation given Wi.

The total generable power from the old park j in area i is denoted by Nij; new

parks are notated Nnij. At area 1, we have the variables N11, N12, Nn13 and Nn14,

each with the distribution of W1. Similar variables characterize area 2 and 3.

We model the situation at area 1 with a C-vine, with W1 as root. All parks are

rank correlated with W1 at 0.9. Given W1, N12 and N13 are rank correlated at

0.5. Similarly, given W1, N11, N12 and the new parks Nn13 and Nn14 are rank

correlated at 0.5. It is not difficult to show (see Exercise 6.1) that this is also the

rank correlation of Nn13 and Nn14 given W1.

Load is identically distributed (Normal, mean 30 std 7) in all areas and is mod-

erately correlated with Wi (0.7). Conditional on Wi, the load and the generation

variables are independent.

Hence, the C-vine for area 1, named ‘area1’, will look like the one in Figure 6.16.

Similar C-vines apply for areas 2 and 3.

The vines are connected via their root Wi to the prime mover. They are also

connected to the load in area i. Indeed, when wind is high, temperatures are lower,

people stay indoors and consume more energy. We capture all this in a tree with

prime mover as root, as shown in Figure 6.17.

Notice that the vines are treated just as variables in the PM dependence tree.

We are interested in the reserve, that is, the difference between the total gener-

ated power and the total load. We distinguish the old units with maximal capacity

of 50 km/hour and new units with maximal capacity of 60 km/hour. Indicator func-

tions truncate the generation variables at maximal capacity. Hence, we enter the

following three UDFs:

W1

(0.90) N11

(0.90) N12

(0.90) Nn13

(0.90) Nn14

N11|W1

(0.50) N12

(0.00) Nn13

(0.00) Nn14

N12|N11,W1

(0.00) Nn14

(0.00) Nn13 Nn13|N12,N11,W1

(0.50) Nn14

Figure 6.16 C-vine for area 1.

PM

(0.70) L1

(0.90) (V ) area1

(0.70) L2

(0.90) (V ) area2

(0.70) L3

(0.90) (V ) area3

Figure 6.17 Tree with prime mover.
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oldunits:

i1{0,N11,50}*N11+i1{0,N12,50}*N12+i1{0,N21,50}*N21

+i1{0,N22,50}*N22+i1{0,N31,50}*N31;

newunits:

i1{0,Nn13,60}*Nn13+i1{0,Nn14,60}*Nn14+i1{0,Nn23,60}*Nn23

+i1{0,Nn23,60}*Nn24+i1{0,Nn33,60}*Nn33+i1{0,Nn34,60}*Nn34;

reserve:

oldunits+newunits-L1-L2-L3.

If we run this case with 5000 samples, we find that the reserve is negative with

probability about 20% (look at percentiles of reserve). If we had ignored the global

correlation to the prime mover, this would be about 7%.

Cobweb plots tell the full story. We select only the UDFs, the area variables and

the prime mover and arrange the variables as shown in the unconditional cobweb

plot in Plate 4.

Observe that the loads are normal and thus concentrated in the middle of their

range, whereas the Wi are Weibull. Notice that W1 has a much higher maximal

value than W2 or W3.

Now, when we conditionalize on the samples for which reserve is negative, we

see in Plate 5 that there are two scenarios. Negative reserve can arise with very

high wind or with very low wind. Note that in these cases load and area wind tend

to be anti-correlated.

6.7 Exercise

Ex 6.1 Consider a C-vine, C(1,2,3,4), with Frank’s or diagonal band copula with

r12 = r13 = r14 = r34|12 = 0.9 and all other conditional correlations equal to 0.

Use the density formulation of the vine distribution to show that the density satisfies

f (v3, v4|v1, v2) = f (v3, v4).

Try this in UNICORN and look at the scatter plots. The plots for (v1, v2) and

(v3, v4) are the same. This is NOT true for the elliptical copula; the scatter plot for

(v3, v4) is not elliptical. Why not?

Ex 6.2 If you have access to a mathematical package (MATLAB, MAPLE), write

the distribution function for x4 conditional on x1, x2, x3 for the C-vine in Figure 6.7

and for the D-vine in Figure 6.9 using Frank’s copula with parameter θ = 1
2

for

all nodes. Plot the conditional distribution function for x1 = x2 = x3 = 0.5 and for

x1 = x2 = x3 = 0.95.

Ex 6.3 Show that every regular vine on three variables is a D-vine and also a

C-vine. Show that every regular vine on four variables is either a C- or a D-vine.
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Visualization

7.1 Introduction

‘A picture is worth a thousand words’1 is true in many areas of statistical anal-

ysis and in modelling. Graphs contribute to the formulation and construction of

conceptual models and facilitate the examination of underlying assumptions. Data

visualization is an area of considerable scientific challenges, particularly, when

faced with high-dimensional problems characteristic of uncertainty analysis.

A literature search reveals very little in the way of theoretical development for

graphical methods in sensitivity and uncertainty analysis apart from certain refer-

ence books, for example, Cleveland (1993). Perhaps it is the nature of these methods

that one simply ‘sees’ what is going on. Cleveland studies visualizing univariate,

bivariate and general multivariate data. Our focus, however, is not visualizing data

in general, but rather visualization to support uncertainty and sensitivity analysis.

The main sources for graphical methods are software packages. Standard graphical

tools such as scatter plots and histograms are available in almost all packages, but

the more challenging multidimensional visualization tools are less widely available.

In this chapter, we first choose a simple problem for illustrating generic graph-

ical techniques. The virtue of a simple problem is that we can easily understand

what is going on, and therefore we can appreciate what the various techniques are

and are not revealing. Then in subsequent sections, we will discuss more generic

techniques that can be used for more complex problems. The generic techniques

discussed here are tornado graphs, radar plots, matrix and overlay scatter plots and

cobweb plots. Where appropriate, the software producing the plots and/or analysis

will be indicated.

In the last sections of this chapter, having grasped what graphical techniques

can do, it is instructive to apply them to real problems where we do not immediately

1This chapter was adapted from Cooke and van Noortwijk (2000).

Uncertainty Analysis with High Dimensional Dependence Modelling D. Kurowicka and R. Cooke

 2006 John Wiley & Sons, Ltd
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‘see’ what is going on. First, a problem concerning dike ring reliability is used to

illustrate the use of cobweb plots in identifying local probabilistically important

parameters. The second problem from internal dosimetry illustrates the use of radar

plots to scan a very large set of parameters for important contributors to the overall

uncertainty. The detailed discussion of these problems can be found in the original

reports; in this chapter, we concentrate rather on the usefulness of the different

graphical techniques in providing insights into the model behaviour.

7.2 A simple problem

The following problem serves to illustrate the generic techniques (see Project 7.2).

Suppose, we are interested in how long a car will start after the headlights have

stopped working. We build a simple reliability model of the car consisting of three

components:

• the battery (bat),

• the headlight lampbulb (bulb),

• the starter motor (strtr).

The headlight fails when either the battery or the bulb fail. The car’s ignition

fails when either the battery or the starter motor fail. Thus considering bat, bulb

and strtr as life variables:

headlite = min(bat, bulb),

ignitn = min(bat, strtr).

In other words, the headlight lives until either the battery or the bulb expires,

and similarly, the ignition lives until either the battery or the starter expires.

The variable of interest is then

ign-head = ignitn − headlite.

Note that this quantity may be either positive or negative, and that it equals

zero whenever the battery fails before the bulb and before the starter motor.

We shall assume that bat, bulb and strtr are independent exponential variables

with unit expected lifetime. The question is, which variable is most important

to the quantity of interest, ign-head? We shall now present some more special-

ized graphical tools, using this simple example to illustrate their construction and

interpretation.

7.3 Tornado graphs

Tornado graphs are simply bar graphs where (in this case) the rank correlation

between the factors and the model response is arranged vertically in order of
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Sensitivity chart

Target forecast: ign-head

Measured by rank correlation
0.5−0.5−1 0 1

strtr .56

bulb −.54

ign .48

headlite −.46

bat −.00

Figure 7.1 Tornado graph.

descending absolute value. The spreadsheet add-on Crystal Ball performs uncer-

tainty analysis and gives graphic output for sensitivity analysis in the form of

tornado graphs (without using this designation). After selecting a ‘target forecast

variable’, in this case ign-head, Crystal Ball shows the rank correlations of other

input variables and other forecast variables as in Figure 7.1.

The values, in this case, the rank correlation coefficients, are arranged in

decreasing order of absolute value. Hence the variable strtr with rank correla-

tion 0.56 is first, and bulb with rank correlation −0.54 is second, and so on. When

influence on the target variable, ign-head, is interpreted as rank correlation, it is

easy to pick out the most important variables from such graphs. Note that bat is

shown as having rank correlation 0 with the target variable ign-head. This would

suggest that bat was completely unimportant for ign-head. Obviously, any of the

other global sensitivity measures mentioned in Chapter 8 could be used instead of

rank correlation (see also Kleijnen and Helton (1999)).

7.4 Radar graphs

Continuing with this simple example, another graphical tool, radar graphs is

introduced. A radar graph provides another way of showing the information in

Figure 7.1. Figure 7.2 shows a radar graph made in EXCEL (1995) by entering

the rank correlations from Figure 7.1.

Each variable corresponds to a ray in the graph. The axis on each ray spans

the absolute value of the correlation values (−0.6, 0.6), and the value of the rank

correlation for each factor is then plotted on the corresponding ray and connected.

The variable with the highest rank correlation is plotted furthest from the midpoint,

and the variable with the lowest rank correlation is plotted closest to the midpoint.
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Rank correlation with ign-head
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bulb
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bat
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Figure 7.2 Radar plot.

Thus, bulb and headlite are plotted closest to the midpoint and strtr and ignitn

plotted furthest. The discussion of the internal dosimetry problem in Section 7.8

shows that the real value of radar plots lies in their ability to handle a large number

of variables.

7.5 Scatter plots, matrix and overlay scatter plots

Scatter plots simply plot bi-variate data in R2 with the variables as axes. Figure 7.3

shows a scatter plot for Bat and Ign-head, from which we can easily see why the

Figure 7.3 Scatter plot for Bat and Ign-Head.
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correlation between these two is zero; the plot is symmetric around Ign-head = 0.

(The transformation to ranks would not disturb this symmetry, hence the rank

correlation is also zero.) On the other hand, it is immediately apparent that these

variables are not independent: the conditional distribution for Ign-head given Bat

depends on the value of Bat.

The simple scatter plot has also been the subject of some development for use

in multivariate cases. Such extensions include the matrix scatter plot and the idea

of overlaying multiple scatter plots on the same scale. Many statistical packages

support these (and other) variations of scatter plots. For example, SPSS (1997)

provides a matrix scatter plot facility. Simulation data produced by UNICORN for

1000 samples has been read into SPSS to produce the matrix scatter plot shown in

Figure 7.4. We see pairwise scatter plots of the variables in our problem. The first

row, for example, shows the scatter plots of ign-head and, respectively, bat, bulb,

strtr, ignitn and headlite. The matrix scatter plot is symmetrical and we need only

focus on the top right plots, since they are replicated in the lower left.

Figure 7.4 summarizes the relationships between each pair of variables in the

problem (15 such individual plots). Let (a,b) denote the scatter plot in row a and col-

umn b, thus (1, 2) denotes the second plot in the first row with ign-head on the ver-

tical axis and bat on the horizontal axis; as in Figure 7.3. Note that (2, 1) shows the

same scatter plot, but with bat on the vertical and ign-head on the horizontal axes.

Ign_head

Bat

Bulb

Strtr

Ignitn

Headlite

Figure 7.4 Multiple scatter plots.
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Figure 7.4 shows that the value of bat can say a great deal about ign-head.

Thus, if bat assumes its lowest possible value, then the values of ign-head are

severely constrained. This reflects the fact that if bat is smaller than bulb and strtr,

then ignitn = headlite, and ign-head = 0. From (1, 3), we see that large values of

bulb tend to associate with small values of ign-head. If the bulb is large, then the

headlight may live longer than the ignition making ign-head negative. Similarly,

(1, 4) shows that large values of strtr are associated with large values of ign-head.

These latter facts are reflected in the rank correlations of Figure 7.1.

Inspite of the preceding remarks, the relation between rank correlations depicted

in Figure 7.1 and the scatter plots of Figure 7.4 is not direct. Thus, bat and bulb

are statistically independent, but if we look at (2, 3), we might infer that high

values of bat tend to associate with low values of bulb. This however is an artifact

of the simulation. There are very few, very high values of bat, and as these are

independent of bulb, the corresponding values of bulb are not extreme. If we had

a scatter plot of the rank of bat with the rank of bulb, then the points would be

uniformly distributed on the unit square. This simple example again emphasizes

the importance of graphically examining relationships and not simply relying on

summary statistics such as the correlation coefficient.

Continuing with the developments for simple scatter plots, we consider the

idea of overlaying separate plots (on the same scale) and using different symbols

to convey additional information, see Figure 7.5 for an example:

7006005004003002001000

300

200

100

0

−100

−200

−300

−100

Ign_head

Strtr

Ign_head

Bulb

Ign_head

Bat

Figure 7.5 Overlay scatter plots.
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Ign-head is depicted on the vertical axis, and the values for bat, bulb and

strtr are shown as squares, triangles and diamonds respectively. Figure 7.5 is a

superposition of plots (1, 2), (1, 3) and (1, 4) of Figure 7.4. However, Figure 7.5

is more than just a superposition. Inspecting Figure 7.5 closely, we see that there

are always a square, triangle and diamond corresponding to each realized value on

the vertical axis. Thus, at the very top there is a triangle at ign-head = 238 and

bulb slightly greater than zero. There is a square and diamond also corresponding

to ign-head = 238. These three points correspond to the same sample. Indeed,

ign-head attains its maximum value when strtr is very large and bulb is very

small. If a value of ign-head is realized twice, then there will be two triples of

squares-triangle-diamonds on a horizontal line corresponding to this value, and it

is impossible to resolve the two separate data points. For ign-head = 0, there are

about 300 realizations.

The joint distribution underlying Figure 7.4 is six dimensional. Figure 7.4 does

not show this distribution, but rather shows 30 two-dimensional (marginal) pro-

jections from this distribution. Figure 7.5 shows more than a collection of two-

dimensional projections, as we can sometimes resolve the individual data points

for bat bulb, strtr and ign-head, but it does not enable us to resolve all data points.

The full distribution can however be shown in cobweb plots.

7.6 Cobweb plots

The uncertainty analysis program UNICORN contains a graphical feature that

enables interactive visualization of a moderately high-dimensional distribution. Our

sample problem contains six random variables. Suppose, we represent the possible

values of these variables as parallel vertical lines2. One sample from this distribu-

tion is a six-dimensional vector. We mark the six values on the six vertical lines and

connect the marks by a jagged line. If we repeat this 200 times, we get Figure 7.6

below:

The number of samples (200) is chosen for black-white reproduction. On screen,

the lines may be colour coded according to the leftmost variable: for example, the

bottom 25% of the axis is yellow, the next 25% is green, then blue, then red.

This allows the eye to resolve a greater number of samples and greatly aids visual

inspection. From the cobweb plot, we can recognize the exponential distributions

of bat, bulb and strtr. Ignitn and headlite, being the minimum of independent expo-

nentials, are also exponential. Ign-head has a more complicated distribution. The

graphs at the top are the ‘cross densities’; they show the density of line cross-

ings midway between the vertical axes. The role of these in depicting dependence

becomes clear when we transform the six variables to ranks or percentiles, as in

Figure 7.7.

A number of striking features emerge when we transform to the percentile

cobweb plot. First of all, there is a curious hole in the distribution of ign-head.

2Wegman (1990) introduced parallel plots, of which cobweb plots are an independent implementation

incorporating extended user interaction.
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Figure 7.6 Cobweb plot, natural scale.

This is explained as follows. On one-third of the samples, bat is the minimum of

bat, bulb, strtr. On these samples ignitn = headlite and ign-head = 0. Hence the

distribution of ign-head has an atom at zero with weight 0.33. On one-third of the

samples strtr is the minimum and on these samples ign-headlite is negative, and

on the remaining third, bulb is the minimum and ign-head is positive. Hence, the

atom at zero means that the percentiles 0.33 up to 0.66 are all equal to zero. The

first positive number is the 67th percentile. If there is no atom, then the points at

which the jagged lines intersect the vertical lines corresponding to the variables

will be uniformly distributed.

Note the cross densities in Figure 7.7. One can show the following for two

adjacent continuously distributed variables X and Y in a (unconditional) percentile

cobweb plot (see exercise 7.2):

• If the rank correlation between X and Y = 1 then the cross density is uniform.

• If X and Y are independent (rank correlation 0), then the cross density is

triangular.
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Figure 7.7 Cobweb plot, percentile scale.

• If the rank correlation between X and Y = −1, then the cross density is a

spike in the middle.

Intermediate values of the rank correlation yield intermediate pictures. The cross

density of ignitn and headlite is intermediate between uniform and triangular; and

the rank correlation between these variables is 0.42.

Cobweb plots support interactive conditionalization; that is, the user can define

regions on the various axes and select only those samples that intersect the chosen

region. Figure 7.8 shows the result of conditionalizing on ign-head = 0.

Notice that if ign-head = 0, then bat is almost always the minimum of

bat,bulb,strtr, and ignitn is almost always equal to headlite. This is reflected in

the conditional rank correlation between ignitn and headlite almost equals to 1. We

see that the conditional correlation as in Figure 7.8 can be very different from the

unconditional correlation of Figure 7.7. From Figure 7.8, we also see that bat is

almost always less than bulb and strtr.

Cobweb plots allow us to examine local sensitivity. Thus, we can say, suppose

ign-head is very large, what values should the other variables take? The answer is

obtained simply by conditionalizing on high values of ign-head. Figure 7.9 shows

conditionalization on high values of ign-head, Figure 7.10 conditionalizes on low

values (the number of unconditional samples has been increased to 1000).
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Figure 7.8 Conditional cobweb plot, ign-head = 0.

Figure 7.9 Conditional cobweb plot, ign-head high.
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Figure 7.10 Conditional cobweb plot, ign-head low.

If ign-head is high, then bat, strtr and ignitn must be high, and bulb must be

low. If ign-head is low, then bat, bulb and headlite must be high. Note that bat is

high in both cases. Hence, we should conclude that bat is very important both for

high values and for low values of ign-head. This is a different conclusion than we

would have drawn if we considered only the rank correlations of Figures 7.1, 7.2.

These facts can also be readily understood from the formulae themselves. Of

course, the methods come into their own in complex problems where we cannot

see these relationships immediately from the formula. The graphical methods then

draw our attention to patterns that we must then seek to understand. The following

three sections illustrate graphical methods used in anger, that is, for real problems

where our intuitive understanding of the many complex relationships is assisted by

the graphical tools introduced earlier.

7.7 Cobweb plots local sensitivity: dike ring

reliability

In this section, we discuss a recent application in which graphical methods were

used to identify important parameters in a complex uncertainty analysis. This
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application concerns the uncertainty in the dike ring reliability and was discussed

in Cooke and Noortwijk (1998). The dike ring in question is built up of more than

30 dike sections. The reliability of each dike section i is modelled as:

Reliabilityi = Strengthi − Loadi .

The reliability of the dike ring is:

relia = Reliability ring = min{Reliabilityi}.

The dike ring fails when relia ≤ 0. Plate 6 shows the unconditional3 per-

centile cobweb plot for relia and 10 explanatory variables. From left to right the

variables are: roughness (‘rough’), storm length (‘storm’), model factors for load,

strength, significant wave period, significant wave height and local water level

(‘mload’, ‘mstrn’, ‘mwvpr’, ‘mwvht’ and ‘mlwat’, respectively), wind (‘wind’),

North Sea (‘nsea’) and Rhine discharge (‘rhine’). For a further discussion of these

variables and their role in determining reliability, we refer to Cooke and Noortwijk

(1998).

The unconditional cobweb plot is not terribly revealing. Indeed, all these vari-

ables have product moment correlation with ‘relia’ between 0.05 and −0.05. Note

from the cross densities that nsea and rhine are negatively correlated, whereas nsea

and wind are positively correlated. The conditional cobweb plot Figures 7.11, 7.12

and 7.13 show the results of conditionalizing, respectively, on the upper 5% of

relia, the 6th–8th percentiles, and the bottom 3%. Failure occurs at the 2 per-

centiles, hence Figure 7.13 shows conditionalization on ‘dangerous’ values of the

dike ring reliability.

We make the following observations:

• Very large values of relia are associated with very high values of mstrn

and low values of storm; other variables are hardly affected by this condi-

tionalization, and their conditional distributions are practically equal to their

unconditional distributions (i.e. uniformly distributed over percentiles).

• For values of relia between the 8th and 6th percentile, mstrn must be rather

low, Storm must be high, and other variables are hardly affected by the

conditionalization.

• For dangerous values of relia, the lowest 3%, nsea and wind must be high,

other variables are unaffected by the conditionalization.

• For dangerous values of relia, the correlations wind-nsea and nsea-rhine are

weaker than in the unconditional sample.

3The dikes in this study are between 5 and 6 m above ‘standard’ sea level; all these simulations are

all based on a local water level above 3 m.
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Figure 7.11 Cobweb for dike ring, relia high.

Figure 7.12 Cobweb for dike ring, relia 6–8%.
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Figure 7.13 Cobweb for dike ring, relia 0–3%.

We interpret ‘unaffected by the conditionalization’ in this context as unimportant

for the values of ‘relia’ on which we conditionalize, for example, knowing that

reliability is very high, we should expect that storm length is low and the model factor

for strength is very high. With regard to other variables, knowing that relia is very

high does not affect our knowledge about what values these variables might take.

Something else in the preceding figures illustrates one of the more curious fea-

tures of probabilistic reasoning, called probabilistic dissonance. The variable relia

is monotonically decreasing in storm; in any given sample, if we would increase

the storm length, the reliability must go down. Now compare Figures 7.12, 7.13.

Stochastically, storm is greater in Figure 7.12 than in 7.13, even though reliability

is lower in the latter figure than in the former. relia is functionally decreasing and

stochastically increasing in the variable storm. How is that possible? A project at

the end of this chapter discusses and shows, how this can arise.

This example shows that importance in the preceding sense is local. The vari-

ables that are important for high values of relia are not necessarily the same

variables as those, which are important for very low values of relia.
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Intuitively, when we conditionalize an output variable on a given range of

values, those input variables which are important for the given range are those

whose conditional distributions differ most markedly from their unconditional dis-

tributions. One convenient measure of this is the derivative of the conditional

expectation of the input variable (Cooke and Noortwijk (1998) see also Chapter 8).

More precisely, the local probabilistic sensitivity measure (LPSM) of variable X

for model G when G takes value g is the rate of change of the expectation of

X conditional on G = g. In the special case that G is a linear combination of

independent normals, LPSM(X, G) is just the product moment correlation between

X and G (i.e. it does not depend on g). If LPSM(X, G) = 0, then the conditional

expectation of X given G = g is not changing in the neighbourhood of g, which

is taken to mean that X is probabilistically not important for G = g. Conversely

large absolute values of LPSM(X, G) suggest that X is important for G = g. These

notions are applied in the following example.

7.8 Radar plots for importance; internal

dosimetry

An extended joint study of the European Union and the US Nuclear Regulatory

Commission quantified the uncertainty for accident consequence models for nuclear

power plants, based on structured expert judgment (Goossens et al. (1997)). The

number of uncertain variables is in the order of 500. Not all of these can be con-

sidered in the Monte Carlo uncertainty analysis. In this study there are a large

number of output variables. In the example discussed here, there are six output

variables corresponding to collective dose to six important organs. Moreover, we

are not interested in all values of these collective doses, rather, we are interested

in those variables that are important for high values of collective dose, for some

organ. Hence, the LPSM(X, cdi) (see Chapter 8) is applied to measure the sen-

sitivity of input variable X for high values of collective dose to organ i. There

are 161 uncertain variables, which might in principle be important for high collec-

tive dose.

With this number of input variables and output variables, and given current

screen sizes, cobweb plots are not useful. An EXCEL bar chart in Figure 7.14

shows LPSM(X, cdi), for the first 30 variables (the full set of variables requires a

7-page bar chart).

This provides a good way of picking out the important variables. Bars extend-

ing beyond, say, −0.2 or beyond 0.2 indicate that the corresponding variable is

important for high values of a collective dose to some organ. Of course, the entire

bar chart is too large for presentation here. Instead the radar charts may be used

to put all the data on one page, as in Plate 7. Although compressed for the cur-

rent page size, this figure enables us to compare all variables in one view. The 6

different output variables corresponding to collective dose to six organs are colour
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Truncated bar chart, 30 input variables, 6 collective dose
measures
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Figure 7.14 Bar chart for collective dose.

coded. Each ray corresponds to an input variable, and each point corresponds to

the LPSM for that variable, with respect to one of the six output variables. The

same information in Bar chart form requires 7 pages.

In principle, from such a plot, we are able to identify the most important

variables.
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7.9 Conclusions

This chapter has discussed a number of graphical methods; tornado graphs, radar

graphs, scatter plots, matrix scatter plots, overlay scatter plots and cobweb plots.

These tools have different strengths and weaknesses, and lend themselves to dif-

ferent problems. The results deduced from the graphical analysis should always

be backed up by the more formal tools which are described in other chapters.

Together, they provide powerful tools for exploring model behaviour.

For presenting a large number of functional relationships, the radar plots of

Plate 7 are the most powerful technique. For studying arbitrary stochastic relations

between two variables, scatter plots are the most familiar technique, and therefore

require no explanations. However, extensions of scatter plots to multivariate data,

such as overlay scatter plots and matrix scatter plots, do require explanation and

do not always give the full picture. For multivariate problems with, say, less than

15 variables, cobweb plots give a full picture. Perhaps the most powerful feature

of cobweb plots is user-interaction. The UNICORN implementation supports scale

transformations, variable rearrangement and selection and conditionalization. Con-

ditionalization can be used to discover relationships, which are not reflected in

global sensitivity measures. Cobweb plots are more complex and less familiar than

other techniques, and their use therefore requires explanation. In our experience,

however, they are much more intuitive than multiple or overlay scatter plots, and

the interactive possibilities are very helpful in this regard. For problems of very

high dimensionality there are, as yet, no generic graphical tools. It is a question

of ‘flying by the seat of our pants’, and finding subsets of variables of lower

dimension, which can be studied with the preceding techniques.

Finally, we note that graphical tools facilitate communication with decision

makers, users and stakeholders. All of the tools discussed here are used not only

for analysis but also for communicating results.

7.10 Unicorn projects

Project 7.1 Probabilistic dissonance

One of the many subtleties of probabilistic reasoning involves the phenomenon

of probabilistic dissonance: A function G of X and Y can be strictly increasing in

each variable, yet for some values of G, it can be stochastically decreasing. X and Y

are independent, Y is uniform [0,1] and X is uniform on [0, 1] ∪ [2, 3]. G(X, Y ) =
X + Y . G is continuous and monotonically increasing in X and Y ; the partial deriva-

tives in each argument are unity, suggesting that a small increase in Y or X is

associated with an equal increase in G. For δ > 0, δ → 0 the conditional distribu-

tion of Y |G = 2 − δ becomes concentrated at 1; while the conditional distribution

of Y |G = 2 + δ becomes concentrated at 0. Probabilistically, Y is decreasing in G

at G = 2 in the sense that for all r

P (Y > r|G = 2 − δ) ≤ (P (Y > r|G = 2 + δ)).

(In prose, the probability that Y is large goes down as G increases.)
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X is a mixture of a uniform variate on [0,1] and a uniform variate on [2,3]. If

v1, v2, v3 are uniform [0,1], then X can be written as

v1 ∗ i1{0, v3, 0.5} + (v2 + 2) ∗ i1{0.5, v3, 1}.

Determine E(Y |G(X, Y ) ∈ (1.95, 2)) and E(X|G(X, Y ) ∈ (2, 2.1)) and explain the

result.

Project 7.2 Strtlite

The ignition system in your car depends on both the battery and the starting

motor. The headlights depend on both the battery and the lamp bulb. The lifetimes

of the battery, the bulb and the starter motor are exponentially distributed with

failure rate 0.01. Consider the following questions:

• What is the dependence between the ignition and the headlights?

• What is the dependence between ignition, headlights and the battery?

• What is the dependence between the ignition and the length of time, which

the engine keeps starting after the headlights have failed?

Create three variables named

BAT, BULB, STRTR

and assign them each an exponential distribution with failure rate 0.01.

Create a UDFs:

‘headlite’: min{BAT, BULB},
‘ignitn’: min{BAT, STRTR},
‘ign head’: ignitn - headlite.

Save this as STRTLITE. The difference between rank and product moment corre-

lation is small in this case and is not the issue. The point is whether the numbers

in the correlation table reveal the significant features of the dependencies in this

example. Notice that for 1000 samples:

• the correlation between ign head and BAT is 0.05, suggesting that Bat is not

important for ign head;

• ign head and ignitn have correlation 0.61, suggesting a modest tendency to

covary;

• ignitn and headlite both have correlation about 0.5 with BAT, again suggest-

ing mild covariation; (see exercise)

The correlations do not suggest any interesting structure. Now go to UNIGRAPH

and make a cobweb plot with 200 samples for the following sequence of variables,
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(IN THIS ORDER):

bat; bulb; strtr; ign head, ignitn; headlite.

There is a hole in ign head! Why? ign head is the difference between ignitn

and headlite. Each of these minimizes over bat. If bat is smaller than bulb and

strtr, then both ignitn and headlite will in fact equal bat. ign head is the differ-

ence ignitn − headlite, and when bat is the smallest, ign headlite will be zero. This

is most likely to happen when bat is very small. Note that this simple problem

contains only continuous functions and continuous distributions, yet results in a

discontinuous distribution. The hole in ign head is caused by a discontinuity in the

distribution of ign head. ign head has about 1/3 of its mass concentrated at zero.

Zero corresponds to the 33rd percentile of its distribution. Since 33% of all sam-

ples are equal to the 33rd percentile, the next percentile is the 67th. If you switch

to the natural scale, the discontinuity disappears. Note also the triangular cross

density between bat and bulb; this is characteristic of independent variables (see

Figure 7.7).

Whenever we have an interesting point in a cobweb plot, the thing to do, is

to look at just those lines passing through that point. Conditionalize this cob-

web plot by using the mouse. Click just above the 33rd percentile of ign head

and just below this percentile. The region selected should be highlighted. Now

double click. Only the lines passing through the highlighted region are shown

(Figure 7.8).

We see that on those samples passing through the atom at ign head = 33%,

the variables ignitn and headlite are almost perfectly correlated. This is because in

almost all of these samples, both are equal to bat. Notice also that most of these

lines go though the bottom part of the percentiles of bat. This accords with the expla-

nation given in the preceding text. Unconditionalize on ign head by right clicking

and choosing ‘remove filter’. Now conditionalize on the top and bottom 10% of

ign headlite (Figure 7.9, 7.10). We see the complex relations between ign headlite

and headlite. When ign headlite is conditioned on low values, headlite is forced to be

high. However, when ign headlite conditioned on high values, headlite’s distribution

is not strongly affected.

7.11 Exercises

Ex 7.1 Show that if ρr(X, Y ) = 1, then when these variables are adjacent on a

percentile cobweb plot, the cross density is uniform. Show that if ρr (X, Y ) = −1,

then when these variables are adjacent on a percentile cobweb plot, the cross density

has unit mass at 0.5.

Ex 7.2 Show that if X and Y are independent and continuously distributed, then

when these two variables are adjacent in a percentile cobweb plot, the cross density

is triangular (hint, show that this cross density is the density of X + Y ).
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Ex 7.3 Prove that ρ(headlite, Bat) = 0.5. Hint, the problem is unchanged if you

assume that the failure rate of Bat and Bulb = 1. Then headlite has the marginal

distribution of an exponential variable with failure rate 2. Put X = headlite, Y =
Bat, Z = Bulb. It suffices to show that

∫

z

(∫

y≥z

z min{y, z}e−ye−z dy +
∫

y<z

z min{y, z}e−ye−z dy

)
dz = 0.75.
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Probabilistic Sensitivity

Measures

8.1 Introduction

Sensitivity analysis is concerned with identifying ‘important parameters’. This may

be used either in a pre- or post-analysis mode. Before conducting an analysis, we

may want to filter out unimportant parameters to reduce modelling effort. Screening

techniques are designed for this purpose. After an analysis has been carried out, we

want to identify important parameters to support subsequent decisions. Our emphasis

in this chapter is on probabilistic sensitivity analysis; we explore techniques which

utilize distributions over input parameters. These techniques may be either global or

local. By their nature, screening techniques will not typically utilize distributional

information, as this is not usually available prior to an analysis. We briefly introduce

two popular screening techniques in the first section. Subsequent sections treat global

and local probabilistic sensitivity analysis. For non-probabilistic sensitivity analysis

see (Saltelli et al. (2000, 2004); Scott and Saltelli (1997)).

We let G = G(X1, . . . , Xn) denote the quantity of interest, which is a function

of random variables X1, . . . , Xn. If we knew the true values of the uncertain argu-

ments of G, say x1, . . . , xn, then we could express the sensitivity of G to input xi ,

or to combinations of inputs, simply by computing partial derivatives. When we do

not have this knowledge, we must search for other ways of representing sensitivity.

8.2 Screening techniques

8.2.1 Morris’ method

This method was presented in Morris (1991). It is a randomized experimental plan

which is global in the sense that it covers the entire space over which factors

Uncertainty Analysis with High Dimensional Dependence Modelling D. Kurowicka and R. Cooke

 2006 John Wiley & Sons, Ltd
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may vary. It allows us to determine which factors have negligible effects, linear

or additive effects or non-linear or interaction effects. This design is one of the

so-called one at a time (OAT) designs.

We first must scale all factors Xi , i = 1, . . . , n to take values in the inter-

val [0,1]. Hence the region of interest for our experiment is the n-dimensional unit

hypercube. The n-dimensional unit hypercube can be discretized to an

n-dimensional p-level grid, where each element Xi can take values xi from

{0, 1/(p − 1), 2/(p − 1), . . . , 1}. Let � be a predetermined multiple of 1/(p − 1),

then for all x = [x1, . . . , xn] such that xi < 1 − � we can define the elementary

effect of the i-th factor as

di(x) =
G(x1, . . . , xi−1, xi + �, xi+1, . . . , xn) − G(x)

�
, (8.1)

where G denotes output. Notice that di is just an approximation to the partial

derivative of G with respect to xi at the point x. Morris estimates the main effect

of a factor by computing r elementary effects at different points {x1, x2, . . . , xr}.
We obtain r samples of i-th elementary effect, and we summarize these in terms of

their mean µi and standard deviation σi . A large absolute mean indicates a factor

with a strong influence on the output. A large standard deviation indicates either

a factor interacting with other factors or a factor whose effect is non-linear. An

illustration of the sampling strategy for 3-dimensional parameter space is shown in

Figure 8.1.

We can see in (8.1) that each elementary effect requires the evaluation of G

twice, hence the total computational effort to estimate all elementary effects with r

samples is 2rn. Morris proposed a design that requires only (n + 1)r evaluations of

G. This more economical design uses the fact that some runs are used to calculate

more then one elementary effect. Let us assume that p is even and � = p/[2(p −
1)]. We start by constructing an (n + 1) × n matrix B of elements ‘0’ and ‘1’ with

Figure 8.1 Two samples of elementary effects of each parameter in case of

3-dimensional parameter space with 4-level grid.
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the property that for every column there are two rows of B that differ only in that

column. The matrix B could be chosen for example, as follows:

B =




0 0 0 . . . 0

1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0

. . . . . . . . . . . . . . .

1 1 1 . . . 1




Now, taking a randomly chosen base value x∗ of x, we obtain a design matrix

B ′ = Jn+1,1x∗ + �B,

where Jn+1,1 is a (n + 1) × 1 matrix of ones. Model evaluations corresponding

to B ′ would provide n elementary effects in one run based on only n + 1 model

evaluations but they would not be randomly chosen. A randomized version of the

design matrix is given by

B∗ = (Jn+1,1x∗ + (�/2)[(2B − Jn+1,n)D
∗ + Jn+1,n])P ∗

where

D∗ is a n-dimensional diagonal matrix with either +1 or −1 with equal proba-

bility,

P ∗ is a n × n random permutation matrix in which each column contains one

element equal to 1 and all the others equal to 0 and no two columns have

1’s in the same position, where each of such matrices has equal probability

of selection.

It is shown in Morris (1991) that the orientation matrix B∗ provides samples of

elementary effects for each factor that are randomly selected.

Example 8.1 Let n = 3, p = 4 and � = 2/3. In Figure 8.1, two random samples

of the elementary effect of each parameter in this case are shown. Our three factors

can take values from {0, 1/3, 2/3, 1}. We start with the matrix B

B =




0 0 0

1 0 0

1 1 0

1 1 1




and the randomly chosen

x∗ = (1/3, 1/3, 0), D∗ =




1 0 0

0 1 0

0 0 −1


 , P ∗ =




1 0 0

0 1 0

0 0 1


 .
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Then the orientation matrix is given by

B∗ =




1/3 1/3 2/3

1 1/3 2/3

1 1 2/3

1 1 0


 .

The matrix B∗ gives one sample for each elementary effect. Choosing randomly

other r − 1 orientation matrices, we can get r independent samples for each ele-

mentary effect.

In Figures 8.2 and 8.3 two graphical representations of the results of the Morris’

method are given. We considered two models with four variables X1, X2, X3, X4

taking values in the interval [0,1]

- First model: G1 = 2X1 + sin(X2) + 3X3X4,

- Second model: G2 = X10
1 − X2

2 + X3X4.

In both cases p = 4, � = 2/3 and r = 9. For each factor we plot, the estimated

elementary effect’s mean against its standard deviation. Two lines are also graphed

that relate to the estimated mean d i and standard deviation Si in the following way

d i = ±2SEMi = ±2
Si√
r
,

where SEMi is a standard error of the mean. If the coordinates (d i, Si) of i-th effect

lie outside of the wedge formed by these two lines, this may suggest significant

evidence that the expectation of the elementary effect is not zero.

For the first model, Figure 8.2, (d1, S1) = (2, 0) clearly indicates that G1 is

linear with respect to X1. The output G1 is not linear with respect to X2 but the

much shorter distance of the point (d2, S2) from the origin indicates less importance

of X2. (d3, S4) and (d4, S4) lie within the wedge. Their standard deviations are

large, which indicates that X3 and X4 are involved in interactions or their effects

are highly non-linear.

For the second model, Figure 8.3 shows that the importance of input X1 is not

negligible, X2 is quite important but not linear and X3, X4 have non-linear effects

or involve interactions.

The Morris’ method allows us to rank inputs with respect to their importance.

This can be done by introducing a measure of importance, for example, as distance

of (d i, Si) from the origin. It is one of many screening techniques, for the review

and references consult Saltelli et al. (2000).

8.2.2 Design of experiments

Design of experiments was first introduced by Fisher (1935). This technique allows

us to choose input variables (factors) that mostly effect output by providing a

pattern of factor combinations (design points) that give the most information about

the input–output relationship. We explain this technique on an example with three
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Figure 8.2 The graphical representation of the results of Morris method for the

model G1 = 2X1 + sin(X2) + 3X3X4, (n = 4, p = 4, � = 2/3 and r = 9).
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Figure 8.3 The graphical representation of the results of Morris method for the

model G2 = X10
1 − X2

2 + X3X4 (n = 4, p = 4, � = 2/3 and r = 9).
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Figure 8.4 A 23 full factorial design.

factors X1, X2, X3 that can take two possible values (levels) (−1, 1) (low and

high). This design is called two-level full factorial design or 23 design.

Two-level full factorial design - 23 design. The 23 design requires 8 runs. Graph-

ically, this can be represented by the cube in Figure 8.4. The arrows show the

directions of increase of the factors. The numbers assigned to the corners corre-

spond to the run number in the ‘standard order’, shown also in Table 8.1. This

design can be presented in the following tabular form called design table or design

matrix.

Run X1 X2 X3

1 −1 −1 −1

2 1 −1 −1

3 −1 1 −1

4 1 1 −1

5 −1 −1 1

6 1 −1 1

7 −1 1 1

8 1 1 1

Table 8.1 A 23 full factorial design table.
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I X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 G

1 −1 −1 −1 1 1 1 −1 g1

1 1 −1 −1 −1 −1 1 1 g2

1 −1 1 −1 −1 1 −1 1 g3

1 1 1 −1 1 −1 −1 −1 g4

1 −1 −1 1 1 −1 −1 1 g5

1 1 −1 1 −1 1 −1 −1 g6

1 −1 1 1 −1 −1 1 −1 g7

1 1 1 1 1 1 1 1 g8

Table 8.2 Analysis matrix for a 23 experiment.

The 8 × 3 matrix in Table 8.1 can be extended by columns that represent

the interactions between variables, which are created by multiplying respective

columns. This extended matrix is called the model matrix or analysis matrix. In

the Table 8.2, we see the analysis matrix extended to include a column of ones (I )

and a column of outcomes (G).

Notice that the analysis matrix has columns that are all pairwise orthogonal and

sum to 0. Let us denote the analysis matrix by A = [Aij ]. To estimate main and

interaction effects of the factors, we must multiply the corresponding column of

the analysis matrix (say [A.j ]) by column G and average this result by the number

of plus signs in the column. Hence

Ej =
∑n

i=1 Aij × gj

n/2
. (8.2)

The main effect of e.g. X2 can be calculated as

E2 =
−g1 − g2 + g3 + g4 − g5 − g6 + g7 + g8

4
,

which is equivalent to calculating the difference between the average response for

the high (1) level and average response for the low (−1) level of X2. Analogously

to 8.1, this can also be seen as an approximation to an average derivative. A

geometric representation is shown in Figure 8.5.

In the full factorial design, we must run all possible factor combinations. This

allows us to estimate all main and interaction effects, that is, all beta coefficients

{β0, β1, . . . , β123} that appear in the full model

G = β0 + β1X1 + β2X2 + β3X3

β12X1X2 + β13X1X3 + β23X2X3

β123X1X2X3.

(8.3)

In practice, to improve this design one can add some centre points and ran-

domized experimental runs to protect the experiment against extraneous factors

possibly effecting the results.
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Figure 8.5 The graphical representation of the main effect for X2.

Full factorial designs even without centre points can require many runs. For

six factors, a two-level full factorial design requires 26 = 64 runs. In some cases,

we can use only a fraction of the runs specified by the full factorial design. The

right choice of design points is then very important. In general, we pick a fraction

such as 1/2, 1/4, and so on, of the runs.

Fractional factorial design. To construct 23−1 half fraction two-level factorial

design, we start with 22 full factorial design and then assign the third factor to the

interaction column.

The design shown in Table 8.3 chooses for dark points is Figure 8.6. If we

assign X3 = −X1 ∗ X2, then we obtain the design in Table 8.4. Both these designs

allow us to estimate main effects of the factors. Of course, our estimates can differ

in these designs and will not be as good as for full factorial design.

Run X1 X2 X1X2 = X3

1 −1 −1 1

2 1 −1 −1

3 −1 1 −1

4 1 1 1

Table 8.3 A 23−1 factorial design table.
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Figure 8.6 A 23 factorial design with dark and light points representing different

choices of 23−1 design.

Run X1 X2 −X1X2 = X3

1 −1 −1 −1

2 1 −1 1

3 −1 1 1

4 1 1 −1

Table 8.4 A 23−1 factorial design table.

By assigning X1X2 = X3, we reduced numbers of required runs but we are not

able now to calculate interaction effect for X1X2. The assumption X1X2 = X3 is

acceptable if β12 is small compared to β3 in (8.3). Our computation of the main

effect for X3 in a 23−1 design in fact computes a sum of main effect for X3 and

interaction effect for X1X2. This is called confounding or aliasing.

In our example of fractional factorial design, we assumed that the column for

X3, that is 3, is equal to the column X1X2, that is 1 · 2, in full factorial design.

We can write this as 3 = 1 · 2. By simple algebraical operations, remembering that

multiplication means multiplying columns, we can find the complete set of aliases:

{1 = 2 · 3, 2 = 1 · 3, 3 = 1 · 2, I = 1 · 2 · 3} where I is a column consisting only

of ones.
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8.3 Global sensitivity measures

Global sensitivity measures are based on the entire distribution of the input vari-

ables. Several measures of uncertainty contribution have been proposed in the

literature:

Product moment correlation coefficients

Log correlation coefficients

Rank correlation coefficients

Linear regression coefficients

Loglinear regression coefficients

Rank regression coefficients

Logrank correlation coefficients

Partial correlation coefficients

Partial regression coefficients

Partial rank correlation coefficients

Partial rank regression coefficients

Correlation ratios/Variance decompositions

Sobol indices/Total effect indices.

Evidently, there is a need to adopt a unifying viewpoint. The idea underlying

all these is prediction; how well can we predict the output (G) on the basis of input.

If we restrict to linear predictors, then the linear regression coefficient measures

the rate of change in the prediction, relative to a unit increase in the (single)

input variable. Considering a set of input variables gives the partial regression

coefficients. Since this depends on the unit of measuring the input variables, we

may standardize the ‘unit increase’ of the input variables by scaling them to have

unit standard deviation. This leads to the product moment correlation and partial

correlation. Alternatively, we may first apply transformations before attempting

linear prediction, this leads to log- and rank regression or correlation.

Let us consider a function f of input X, such that f (X) yields the best linear

prediction of output G. The correlation ratio is the square correlation of G and

f (X), and thus unifies most of the ideas represented in the above list. It also is

related to variance decomposition. We therefore restrict the discussion of global

sensitivity to the correlation ratio, and their close relatives, Sobol indices. For a

rich exposition of global measures see Hamby (1994); Helton (1993); Iman and

Davenport (1982); Kleijnen and Helton (1999); Saltelli et al. (2000).
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8.3.1 Correlation ratio

The problem of finding the most important parameters can be viewed as decompos-

ing the variance of the output according to the input variables. We would like to be

able to apportion the uncertainty of the output G that ‘comes’ from uncertainties of

model inputs Xi, i = 1, . . . , n. If we could fix Xi at a certain value and calculate

how much the variance of G decreased, this would give us an indication about the

importance of Xi . Hence the following quantity could be considered

Var(G|Xi = x∗
i ).

However, we do not know which value x∗
i should be chosen. Moreover, for non-

linear models Var(G|Xi = x∗
i ) can be bigger than Var(G). To overcome these

problems, one may average over all values of Xi . Hence we could consider the

following measure of importance of the variable Xi :

E(Var(G|Xi)), (8.4)

where the expectation is taken with respect to distribution of Xi . The smaller (8.4)

the more important Xi . It is well known that (see exercise 8.3):

E (Var(G|Xi)) + Var (E(G|Xi)) = Var (G) . (8.5)

Instead of (8.4), we could as well use the quantity Var (E(G|Xi)). The higher

Var (E(G|Xi)) the more important Xi . From the above the following definition

suggests itself:

Definition 8.1 (Correlation ratio) For random variables G, X1, . . .Xn, the cor-

relation ratio of G with Xi is

CR(G, Xi) =
Var (E(G|Xi))

Var (G)
.

Unlike correlation, the correlation ratio is not symmetric; that is CR(G, X) �=
CR(X, G). We motivated the correlation ratio from the perspective of variance

decomposition. We can also motivate it from the viewpoint of prediction. For sim-

plicity, we suppress subscripts and consider three random variables, X, Y, G with

σ 2
G < ∞. We may ask for which function f (X) with σ 2

f (X) < ∞ is ρ2(G, f (X))

maximal? The answer is given in Proposition 8.1.

Proposition 8.1 If σ 2
G < ∞ then

(i)Cov(G, E(G|X)) = σ 2
E(G|X),

(ii) maxf ;σ 2
f (X)

<∞ρ2(G, f (X)) = ρ2(G, E(G|X)) =
σ 2
E(G|X)

σ 2
G

.

The function that maximizes ρ2(G, f (X)) is conditional expectation of G given

X and ρ2(G, E(G|X)) = CR(G, X). If E(G|X) is linear then ρ2(G, X) is equal
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to the correlation ratio of G with X. Hence the ratio of the square correlation to

the correlation ratio can be taken as the measure of linearity of E(G|X), called the

linearity index.

The correlation ratio is one of the most important non-directional measures

of uncertainty contribution. Note that the correlation ratio is always positive, and

hence gives no information regarding the direction of the influence. In the next

two propositions, we explore some properties of the correlation ratio.

Proposition 8.2 Let G(X, Y ) = f (X) + h(Y ), where f and h are invertible func-

tions with σ 2
f < ∞, σ 2

h < ∞ and X, Y are not both simultaneously constant

(σ 2
G > 0). If X and Y are independent then:

ρ2(G, E(G|X)) + ρ2(G, E(G|Y)) = 1.

Proposition 8.3 Let G = G(X, Y ), with Cov(E(G|X), E(G|Y)) = 0 then

ρ2(G, E(G|X)) + ρ2(G, E(G|Y)) ≤ 1.

Computing correlation ratio’s Computing correlation ratios may be tricky, as it

involves a conditional expectation, which is not generally available in closed form.

However, if we can sample Y ′ from the conditional distribution (Y |X) indepen-

dently of Y , and if the evaluation of G is not too expensive, then the following

simple algorithm may be applied (Ishigami and Homma (1990)):

1. Sample (x, y) from (X, Y ),

2. Compute G(x, y),

3. Sample y ′ from (Y |X = x) independent of Y = y,

4. Compute G′ = G(x, y ′)

5. Store Z = G ∗ G′

6. Repeat

The average value of Z will approximate E(E2(G|X)), from which the correlation

ratio may be computed as

E(E2(G|X)) − E2(G)

σ 2
G

.

If Y and X are independent, then this algorithm poses no problems. If Y and

X are not independent, then it may be difficult to sample from (Y |X).

‘Pedestrian’ method

If Y and X are not independent, then problems arise in computing the variance

of a conditional expectation. An obvious, although bad, idea is the ‘pedestrian’

method:

• Save N samples of (G, X, Y );
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• Order the X values x(1), . . . , x(N) from smallest to largest;

• where N = k × m, divide the samples into m cells C1, . . . , Cm, where C1

contains the samples with the k smallest X values, C2 contains samples with

the k smallest X values which are bigger than those in C1, and so on.

• compute E(G|X ∈ Ci), i = 1, . . . , m;

• compute the variance of these conditional expectations.

This is an intuitive transliteration of the mathematical definition, and yet it is a

bad idea. The good news is that its badness is illuminating. The problem lies in the

choice of m. If m = N , then Ci contains exactly one sample, say (g′, x ′, y ′) and

E(G|X ∈ Ci) = g′ = G(x ′, y ′). Taking the variance of these numbers will simply

return the unconditional variance of G. On the other hand, if we take m = 1, then

all sample values (g′, x ′, y ′) will satisfy x ′ ∈ C1 and E(G|X ∈ C1) = E(G), so

the variance of the conditional expectation will be zero. Appropriately choosing m

we traverse the values between Var(G) and 0.

Kernel estimation methods

Kernel estimation methods are more sophisticated versions of the pedestrian

method, for an overview of this and related methods see Wand and Jones (1995).

Assume that samples (x1, g1), . . . , (xN , gN ) of X and G are given. We will estimate

the conditional expectation at point x as the average of observations in some

neighbourhood of x. The samples close to x should get a higher weight than those

further from x.

E(G|X = x) =
∑N

i=1 Kh(xi − x)gi∑n
i=1 Kh(xi − x)

, (8.6)

where Kh(·) = K(·/h)/h for some weight function K(·) and parameter h > 0.

The parameter h is called the bandwidth. The kernel function K(·) is usually a

symmetric probability density. Commonly used kernel functions are

a. the Gaussian kernel

K(x) =
1

√
2π

exp

(
−

x2

2

)

b. the Epanechnikov kernel

K(x) =
{ 3

4
(1 − x2), if |x| < 1,

0, otherwise;

c. the tricube kernel

K(x) =
{ 70

81
(1 − |x|3)3, if |x| < 1,

0, otherwise.

The bandwidth h controls the local character of kernel regression. If h is small,

only samples close to x get non-negligible weights, if h is large, samples further



218 PROBABILISTIC SENSITIVITY MEASURES

from x are also included. The estimator (8.6) depends on a choice of bandwidth and

on the choice of kernel function. The discussion of the pedestrian method should

alert us that this freedom of choice is not an advantage.

Maximize squared correlation

This method uses the interpretation of the correlation ratio presented in Propo-

sition 8.1. To calculate CR(G, X) we find a function of X whose square correlation

with G is maximal. This maximum is attained for f (X) = E(G|X). We will not

try to estimate E(G|X = xi) for each value of xi in the sample file as in the

previous method. Rather, we assume that the conditional expectation can be approx-

imated by a (possibly high order) polynomial P (x) and use optimization to find

the coefficients of P (x) that maximize ρ2(G, P (X)). Suppose we choose third-

degree polynomials: P (x) = a + bx + cx2 + dx3. We first generate a sample file

of values for G, X, Y , and then solve

Maximize: ρ2(G, a + bx + cx2 + dx3).

This problem is equivalent to minimizing sum-squared error (Exercise (8.5)):

Minimize:
∑

(G − a + bx + cx2 + dx3)2.

If the approximation E(G|X = x) ∼ P (x) is poor, the result may not be sat-

isfactory. Unlike the previous approaches, however, we know how to improve the

approximation: choose higher order polynomials. If we increase the degree of P (x)

without increasing the sample size, then we will eventually start overfitting. Indeed,

for fixed sample size N , we can always find a polynomial PN of degree N such

that for each sample i; i = 1 . . .N , PN (xi) = yi . Obviously ρ(y, PN (x)) = 1.

The virtue of maximizing squared correlation is that it affords a prophylactic

against overfitting. Suppose that we have found Pk which correlates very strongly

with G. If we have overfit, then if we draw a second independent set of N samples,

it is most likely that the Pk we fit from the first sample would not exhibit strong cor-

relation with G on the second sample set. This indeed is what ‘overfitting’ means.

On the other hand, if Pk really was the regression function Pk(X) = E(G|X), then

we should expect the performance on the two samples to be statistically equivalent.

There are many ways to implement this idea; we sketch two which work well

in practice (Duintjer-Tebbens (2006)).

Rank test

• Split the sample into two equal pieces N = N1 ∪ N2,

• Fit polynomial P (X) on N1,

• Divide N1 and N2 each into 10 equal pieces N1,1 . . . N2,10,

• Compute ρ2
i,j (G, P (X)) on Ni,j , i = 1, 2; j = 1 . . . 10,
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• Use the Wilcoxon (or some similar rank test) to test the hypothesis that the

numbers ρ2
1,j are not significantly higher ranked than ρ2

2,j ,

• If the hypothesis is rejected, then P (X) is overfit.

Inflection criterion

• Split the sample into two equal pieces N = N1 ∪ N2,

• Set k = 1,

• Fit polynomials Pk(X) and Pk+1(X) of order k and k + 1 on N1,

• If on N2, ρ2(G, Pk(X)) > ρ2(G, Pk+1(X)) then stop; otherwise set k :=
k + 1 and repeat previous step,

UNICORN implements the first procedure with user control over the degree k.

Generalization of CR The multivariate generalization of the correlation ratio is

straightforward:

Definition 8.2 (Correlation ratio) Let G, X1, X2, . . . , Xn be random variables

with Var(G) < ∞ and i1, i2, . . . , is ∈ {1, 2, . . . , n}; then the correlation ratio G

with Xi1 , . . . , Xis is

CR(G, {Xi1, . . . , Xis }) =
Var(E(G|{Xi1 , . . . , Xis }))

Var(G)
.

The computation of higher dimensional correlation ratio’s in the manner

described above poses no special problems. The interpretation in terms of maximal

squared correlation in Proposition 8.1 generalizes in a straightforward manner, as

do the results on polynomial fitting.

8.3.2 Sobol indices

The Sobol method is a variation of the correlation ratio method. Let Y = G(X)

be a function of vector X = (X1, . . . , Xn), where Xi, i = 1, . . . , n are uniformly

distributed on [0, 1] and independent.

The function G can be decomposed in the following way (Sobol (1993)):

G(X1, . . . , Xn) = g0 +
n∑

i=1

gi(Xi) +
∑

1≤i<j≤n

gij (Xi, Xj ) + · · ·+

g1,2,...,n(X1, . . . , Xn).

(8.7)

g0 must be a constant and the integrals of every summand over any of its own

variables must be equal to zero. Hence
∫ 1

0

gi1,...,is (Xi1, . . . , Xis ) dXil = 0 1 ≤ l ≤ s.
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It can be shown that

g0 =
∫ 1

0

. . .

∫ 1

0

g(X1, . . . , Xn) dX1 . . . dXn.

Moreover, all summands in (8.7) are orthogonal, that is, if (i1, . . . , is) �=
(j1, . . . , js), then

∫

Kn

gi1,...,is gj1,...,js dX = 0.

The decomposition (8.7) is unique whenever G(X) is integrable over Kn and

all 2n summands can be evaluated in the following way

g0 = E(G),

gi(Xi) = E(G|Xi) − g0, 1 ≤ i ≤ n

gij (Xi, Xj ) = E(G|XiXj ) − E(G|Xi) − E(G|Xj ) + g0, 1 ≤ i < j ≤ n

gijk(Xi, Xj , Xk) = E(G|XiXjXk) − E(G|XiXj ) − E(G|XiXk) − E(G|XkXj )

+E(G|Xi) + E(G|Xj ) + E(G|Xk) − g0

. . .

Since all summands in (8.7) are orthogonal then variance of G is a sum of

variances of all elements of this decomposition. Hence, if we denote D = Var(G)

and Di1,...,is = Var(gi1,...,is ), then

D =
n∑

i=1

Di +
∑

1≤i<j≤n

Dij + · · · + D1,...,n.

The measure of the uncertainty contribution of variables Xi1 , . . . , Xis to the

model can be now defined as:

Si1,...,is =
Di1,...,is

D
. (8.8)

It can be easily checked that

Si =
Di

D
= CR(G, Xi), 1 ≤ i ≤ n (8.9)

Sij =
Dij

D
= CR(G, {Xi, Xj }), 1 ≤ i < j ≤ n (8.10)

. . . (8.11)

Computation of Sobol indices Since the variables are assumed independent, the

idea of (Ishigami and Homma (1990)) can be applied to compute Sobol indices.
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The sensitivity indices Si can be calculated via Monte Carlo methods. For a given

sample size N , the following estimates can be obtained (the hat denotes the esti-

mate)

ĝ0 =
1

N

N∑

k=1

G(xk)

where xk is a sampled point in [0, 1]n; similarly,

D̂i + ĝ2
0 =

1

N

N∑

k=1

G(uk, xik)G(vk, xik), (8.12)

where uk, vk ∈ [0, 1]n−1. In other words, D̂i is obtained by summing products of

two values of the function G; one with all the variables sampled and the other with

all the variables resampled except the variable Xi . The second-order terms Dij can

be estimated as (Homma and Saltelli (1996))

D̂ij + D̂i + D̂j + ĝ2
0 =

1

N

N∑

k=1

G(sk, xik, xjk) × G(tk, xik, xjk), (8.13)

where sk, tk ∈ [0, 1]n−2. Similar expressions can be derived for higher order terms

(see Homma and Saltelli (1996)).

When calculating the estimators of Di1,...,ıs , it is important that the resam-

pled variables are always generated using the same random numbers. This can

be accomplished by sampling a random matrix of size N × (2n). (This matrix

can be generated using pseudo, quasi, stratified or Latin Hypercube sampling see

Chapter 6.) The first n columns of this matrix can be used for sampled values and

last n columns for resampled values in (8.12) and (8.13).

To compute each of Si1,...,ıs , one separate sample of size N is needed. Since,

there are 2n − 1 elements in (8.9) and one sample is needed to estimate g0, then

N × 2n model evaluations must be computed. For large number of variables this

can be too expensive.

Total effect indices One variation of the above method uses the total effect

indices (Homma and Saltelli (1996)). In this case the function G is decomposed

in the following way:

G(X) = g0 + gi(Xi) + g\i(X\i) + gi,\i(Xi, X\i)

where gi(Xi) denotes terms only involving Xi , g\i(X\i) denotes the terms not con-

taining Xi and gi,\i(Xi, X\i) denotes the terms representing the interaction between

Xi and the other variables X\i . A sensitivity index STi
is introduced which gives

the ‘total’ effect of the variable Xi . It adds the fraction of variance accounted for

by variable Xi alone and the fraction accounted for by any combination of Xi with

the remaining variables. Using the above notation, the total effect index of Xi can
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be calculated as

STi
= Si + Si,\i = 1 − S\i .

This can be computed very efficiently with Monte Carlo calculations by N ×
(n + 1) model evaluations as follows:

ŜTi
=

1

D

1

N

N∑

k=1

G(uk, xik)G(uk, x ′
ik) − ĝ2

0,

where D denotes the total variance, uk ∈ [0, 1]n−1 and prime denotes resampling.

8.4 Local sensitivity measures

When our goal is to determine sensitivity in a given region of the output, then

global sensitivity measures are not indicated. The paradigm example of this occurs

in structural reliability. The reliability of a structure is defined as strength – load,

where strength and load are random variables. Normally, the reliability is positive.

When the structure is weakened or threatened, the reliability decreases, and when

the reliability becomes zero the structure fails. Failure is a rare event.

We are typically interested in the factors that drive reliability when the structure

is threatened. This requires a local sensitivity analysis in the region of zero reliabil-

ity. If the model is linear, and the input variables are independent, then there is no

difference between local and global behaviour. In general, however, the results of

local and global analyses may differ greatly. The dike ring reliability example in the

previous chapter gave striking visual evidence of strong local behaviour in combi-

nation with weak global behaviour. Two methods will be discussed here, namely:

First Order Reliability Method (FORM)

Local Probabilistic Sensitivity Measure (LPSM)

FORM methods involve linearizing a reliability model at a ‘design point’ and hence

can mask the differences between local and global sensitivity. Local methods can

reveal the differences, and pose challenges for computations.

8.4.1 First order reliability method

We suppose that we are interested in a given point x∗, called the design point,

of the input space. Let G = G(X) be a function of vector X = (X1, . . . , Xn). In

typical applications, x∗ is a point of maximum probability in the set where G takes

a specified value, say 0. Assuming that G can be represented as a Taylor series,

we can linearize it in the neighbourhood of some point x∗ = (x∗
1 , . . . , x∗

n)

G(X) = G(x∗) +
n∑

i=1

∂iG(x∗)(Xi − x∗
i ) + HOT, (8.14)

where ∂i denotes ∂
∂Xi

and HOT means ‘higher order terms’.
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Let µi and σi denote mean and standard deviation of Xi , respectively. Neglect-

ing the higher order terms in (8.14) we obtain

G(X) ∼ G(x∗) +
n∑

i=1

(Xi − x∗
i )∂iG(x∗),

E(G) ∼ G(x∗) +
n∑

i=1

(µi − x∗
i )∂iG(x∗),

Var(G) ∼
n∑

i,j=1

Cov(Xi, Xj )∂iG(x∗)∂jG(x∗).

If Xi are all uncorrelated then

Cov(G, Xi) = σ 2
i ∂iG = ρ(G, Xi)σGσi .

Hence, in the linear uncorrelated model, the rate of change of G with respect

to Xi may be expressed as

∂iG = Cov(G, Xi)/σ
2
i . (8.15)

We note that the left-hand side depends on the point x∗ whereas the right-hand

side does not. This of course reflects the assumption of non-correlation and the

neglect of HOT’s. A familiar sensitivity measure involves a ‘sum square normal-

ization’:

αi = ρ(G, Xi) =
∂iG(x∗)σi

σG

.

The factor αi gives the influence of the standard deviation of variable Xi on the

standard deviation of G. It depends on the slope of the tangent line of G in the

design point. For the linear model and when Xis are uncorrelated,

R2 =
n∑

i=1

α2
i = 1.

This can be considered as a measure of the variance of G explained by the

linear model. If R2 is less then one, this may be caused either by dependencies

among Xis or by the contribution of higher order terms neglected in (8.14).

8.4.2 Local probabilistic sensitivity measure

LPSM were introduced in Cooke and Noortwijk (1998) to describe the importance

of an input variable X to a given contour of an output variable G:

LPSM(X) =
σG

σX

∂E(X|G = g)

∂G

|g=go =
σG

σX

∂E(X|go)

∂go

. (8.16)
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The local sensitivity measure (8.16) is intended to measure the rate of change

with respect to G of ‘some function’ of X|G at a given point. For the uncorrelated

linear model, ‘global’ and ‘local’ are equivalent, hence the global and local mea-

sures should coincide. This motivates choosing ‘some function’ as a normalized

conditional expectation in (8.16). In fact, local probabilistic and global sensitivity

measures may be seen as dual, in the following sense. Using the Taylor expansion

of E(X|G):

Cov(G, X) = Cov(G, E(X|G))

∼ Cov

(
G, E(X|go) + (G − go)

∂E(X|go)

∂go

)

= σ 2
G

∂E(X|go)

∂go

.

Thus, if the regression of X on G is linear, then higher order terms vanish and

∂E(X|go)

∂go

=
Cov(G, X)

σ 2
G

(8.17)

which may be compared with (8.15).

The obvious way to approximate LPSM(X) in Monte Carlo simulations is to

compute

E(X|G ∈ (go, go + ǫ)) − E(X|G ∈ (go − ǫ, go))

E(G|G ∈ (go, go + ǫ)) − E(G|G ∈ (go − ǫ, go))
. (8.18)

In some cases this is very unstable. Consider the following example1:

Example 8.2 X and Y are independent standard normal

G(X, Y ) = min(3 − X, 3 − Y)

then

E(X|G = g) = E(X|G = g, X < Y)P (X < Y)

+E(X|G = g, Y ≤ X)P (Y ≤ X)

=
E(X|Y = 3 − g, X < Y) + E(X|X = 3 − g, X ≥ Y)

2

=
E(X|X < 3 − g) + E(X|X = 3 − g, Y < 3 − g)

2

=
(E(X|X < 3 − g) + 3 − g)

2
.

1We are grateful to Ton Vrouwenvelder for this example.
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where

E(X|X < 3 − g) =
∫ 3−g

−∞ xφ(x) dx
∫ 3−g

−∞ φ(x) dx

and φ is the standard normal density, with cumulative distribution function �. The

partial derivative of the right hand side at g = 0 is

−3φ(3)�(3) + φ(3)
∫ 3

−∞ xφ(x) dx

2�(3)2
− 0.5 = −0.507.

On a Monte Carlo simulation with 5,000,000 samples and ǫ = 0.1 the above

method 8.18 yields the estimates

∂

∂g
E(X|g = 0)simulation = −0.517,

∂

∂g
E(Y |g = 0)simulation = −0.807.

Of course, by symmetry these two derivatives must be equal. The number of

samples used is unrealistically large, and still performance is poor. This is explained

by a number of factors. First if high accuracy is desired, ǫ must be chosen small

in (8.18). On the other hand, the difference in conditional expectations must be

large enough to be statistically significant. In the above example, this difference

was barely significant at the 5% level for Y and was not significant for X. In

this case, the difference in conditional expectations in (8.18) is small, because,

roughly speaking, X feels the effect of conditionalizing on G = 0 on only one

half of the samples. Finally, conditionalizing on extreme values of G, as in this

case, can introduce strong correlations between the input variables. In this case the

conditional correlations are negative (as can be checked with UNICORN). This

means that sampling fluctuations in the estimates of the conditional expectations in

(8.18) will be correlated. Indeed, it required an unrealistically large number simply

to obtain estimates whose signs were both negative. Clearly, alternative methods

of calculating the LPSM are needed.

8.4.3 Computing
∂E(X|go)

∂go

We discuss two methods for computing the derivative of a conditional expectation.

Both are better than the (8.18), but neither is wholly satisfactory. To evaluate

performance, we must have examples for which the conditional expectation can be

put in closed form.

Assume that X, Y are independent and uniformly distributed on [0, 1], and let

G(X, Y ) be sufficiently differentiable in both arguments. To compute the expec-

tation of X given G = go, we define a density along the contour G = go which

is proportional to arc length. If the contour is simple, we may parametrize arc
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length in terms of x and write go = G(x, y(x)). The arc length element, ds and

conditional expectation are given by

ds =
√

dx2 + dy2 = dx
√

1 + (dy/dx)2.

E(X|go) =
∫

xf (X|go) dx

=
∫

x
√

1 + (dy/dx)2 dx
∫ √

1 + (dy/dx)2 dx
.

The reader may verify the following examples:

Example 8.3

G(X, Y ) = 2X + Y ; f (x|go) = 2/go; 0 < x < go/2,

G(X, Y ) = XY; f (x|go) =
√

1+g2
o/x4

∫ 1
go

√
1+g2

o/x4
; 0 ≤ go ≤ 1,

go < x < 1,

G(X, Y ) = X2Y ; f (x|go) =
√

1+4g2
o/x6

∫ 1√
go

√
1+4g2

o/x6
; 0 ≤ go ≤ 1,√

go < x < 1,

G(X, Y ) = X2 + Y 2; f (x|go) =
√

1+x2/(g2
o−y2)

∫√go
0

√
1+x2/(g2

o−y2)
; 0 ≤ go ≤ 1,

0 < x <
√

go.

Method 1: Linearization via reweighted Monte Carlo simulation The follow-

ing is an example of new approaches to calculating ∂E(X|go)

∂go
(Cooke et al. (2003)).

The idea is to make the duality relation (8.17) approximately true by reweight-

ing the sample emerging from a Monte Carlo simulation. Since E(X|G) can be

expanded around go as

E(X|G) = E(X|go) + (G − go)
∂E(X|go)

∂go

+
1

2
(G − go)

2 ∂2E(X|go)

∂g2
o

+ HOT

then

Cov(X, G) = Cov(E(X|G), G)

= ∼
∂E(X|go)

∂go

Var G +
1

2

∂2E(X|go)

∂g2
o

{E(G − go)
3

+(go − E(G))(E(G − go)
2)}.

We assign a ‘local distribution’ to G such that the terms between curly brackets

are equal to zero, then

∂E(X|go)

∂go

=
Cov(X, G)

Var(G)
.

To achieve this, the local distribution should be chosen so that

EG = go
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and

E(G − go)
3 = 0

where G means G with a local distribution. We want this distribution to be as close

as possible to the distribution of G. In our case, we take the distribution which

minimizes the relative information with respect to the original distribution of G.

With regard to the example G = min{3 − X, 3 − Y }, the results are better than

those obtained with (8.18), but not overwhelming. With 5,000,000 samples, we find

∂E(X|G = g)

∂g
|g=0 = −0.5029,

∂E(Y |G = g)

∂g
|g=0 = −0.5038.

Needless to say, this number of samples is not realistic in practice. With only

10,000 samples, the results were not acceptable.

Method 2: Conditional expectation calculated via reweighted Monte Carlo

samples. A different approach uses Monte Carlo reweighting to calculate the

conditional expectation directly2. Monte Carlo simulations have been performed to

obtain N samples gi = G(xi, yi). The conditional expectation of X given G = g0

can be estimated:

E(X|g0) =
1

∑N
i=1 w(di)

N∑

i=1

w(di)xi

with some weighted function w ∈ [0, 1] that depends on di = |gi − g0|.
∂

∂go
E(X|go) can now be calculated as

∂

∂go

E(X|go) =
1

∑N
i=1 w(di)

(
N∑

i=1

∂w(di)

∂go

(xi − E(X|go))

)
.

With regard to the example G = min{3 − X, 3 − Y }, the results are better than

those obtained with (8.18) and better then with the above reweighting scheme.

Using the weight function of the form K(x) = 1
1+x4 and calculating weights as

w(di) = K(di/h) (h = 0.1 is the bandwidth) with 500,000 samples we got satis-

factory results.

8.5 Conclusions

In the last years, there has been considerable convergence of opinion regarding the

choice of sensitivity measures. Proposition 8.1 provides a strong motivation for

2We are grateful to Ulrich Callies for this method
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the choice of the correlation ratio to measure global, no-directional influence. Its

main disadvantages are computational in nature. UNICORN’s sensitivity analysis

satellite program tested many computational approaches. Best results for a generic

program were obtained with optimization-based methods. We select a degree of

polynomial to approximate the regression function, and find the coefficients by

optimization, and check against overfitting.

Calculating the correlation ratio, as with other regression-or correlation-based

methods, typically requires Monte Carlo simulation. When evaluation of the func-

tions is very expensive, Monte Carlo methods become infeasible. DOE and Morris’

method may be seen as shortcuts when Monte Carlo simulation is not on.

The Local Probabilistic Sensitivity measures have a strong intuitive appeal in

certain applications, but we still lack good overall methods of computation.

8.6 Unicorn projects

The projects in this section are used to illustrate features of the sensitivity analysis

satellite program. This program reads a UNICORN output file and computes many

of the measures discussed in this chapter. The program has a great many features

and an elaborate help file which contains definitions and calculational details. The

projects below simply step through the analysis of some of the cases presented in

previous chapters.

Project 8.1 VineInvest

Use the Invest Dvine created in Chapter 4. Create a sample file with 20 runs.

After sampling, the button ‘Sen.Analysis’ is available, hit it. The sensitivity analysis

satellite program is opened, and asks which variables you wish to import. For large

cases, it is convenient to select the subset of interest. In this case accept all.

The main panel now opens, showing two check lists. The ‘predicted variables’

are those whose behaviour you want to explain in terms of other variables, called

the ‘base variables’. We are interested in the variable ‘5yrreturn’, and we want

to see how this depends on the interest rate in each of the five years. Choose

V 1, V 2, . . . , V 5 as base variables and hit RUN. You should see the screen shot

in Figure 8.7.

The right-hand panel is now filled with results. Each line shows sensitivity

indices for a given base variable, for the indicated predicted variable. If you go

to TOOLS/Options, you can influence the choice of sensitivity indices which are

displayed.

The help file contains the definitions of all these measures, and the user is

encouraged to explore all the program’s features. We simply take the first few steps

here. Note that V 3 has the highest correlation to ‘5yrreturn’, V 1 has the smallest.

All linearity indices are close to 1, though V5 is the smallest3.

3Theoretically the linearity index is less than or equal to one. In practice, we can get values greater

than one owing to approximations in computing the correlation ratio.
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Figure 8.7 Sensitivity analysis Main Panel.

Hit the button ‘detailed results’; the selector under ‘item id’ allows you to see

the effect of each base variable on the predicted variable. The first graph plots the

predicted variable against the base variable, and shows the linear regression line.

The second graph plots the regression of the predictor against the base variable.

This is an approximation gotten by polynomial fitting.

Select the other variables and view their regressions. This is a case where the

relation between the predictor and base variables is very well behaved, and the

global measures give a good picture of the relationship.

Project 8.2 Strtlite sensitivity

Open the file ‘Strtlite’ constructed in the previous chapter, simulate with 20

runs and choose sensitivity analysis. Select all variables, and use ‘ign headlite’

as predicted variable, all others being base variables. The main sensitivity indices

are shown in (Figure 8.8). These results are copied to the clipboard and pasted

into any suitable document. This case offers more interesting regression functions;

Figure 8.9 shows the regression of ign headlite against strtr. Note the non-linearity

in the regression function. In such cases, the correlation ratio is a better index of

influence than product moment correlation or regression coefficients.
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Figure 8.8 Sensitivity analysis Main Panel.

Project 8.3 Shock and awe

This one is for fun. Take the case ‘Probdiss’ and add the following UDFs:

x : v1 ∗ i1{0, v3, .5} + (2 + v2) ∗ i1{.5000001, v3, 1};

g : x + y;

h : x2 + y2;

k : sin(h);

m : x ∗ y;

n : m/k;

q : m ∗ k;

The regressions of some interesting variables are shown in Plate 8 and in Figure 8.10.

The cobweb of this case is also quite fetching.

8.7 Exercises

Ex 8.1 Construct a 23 full factorial design for the following model

G(v1, v2, v3) = v210 − v1 ∗ v2 + max v1, v2, v3, (8.19)
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Figure 8.9 Regression ign headlite against strtr.
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Figure 8.10 Regressions from Probdiss.

where v1, v2, v3 are independent variables uniform on [0, 1]. Calculate main and

interaction effects and interpret the results.

Ex 8.2 Find the product moment correlation and the rank correlations of G with

vi as well as CR(G, vi), i = 1, 2, 3 for the model 8.19, where v1, v2 and v3 are the
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Figure 8.10 (continued )

independent standard normal variables. Explore conditional cobweb plots for high

and low values of G. Interpret the results.

Ex 8.3 Prove that

Var(G) = Var(E(G|X)) + E(V ar(G|X)).



234 PROBABILISTIC SENSITIVITY MEASURES

2.7E+0

1.8E+0

9.0E−1

2.2E−16

q

−9.0E−1

−1.8E+0

Regression of q on h

2.0E+00.0E+0 4.0E+0 6.0E+0 8.0E+0

h

1.0E+0

5.1E−1

0.0E+0

−5.1E−1

−1.0E+0

E
(q

|h
)

0.0E+0 2.0E+0 4.0E+0 6.0E+0 8.0E+0

Conditional expectation E(q lh) plot

h

Samples Regression line

Figure 8.10 (continued )

Hint: Var(G|X) = E(G2|X) − E2(G|X); take expectations of both sides.

Ex 8.4 Verify that

∫∫∫
(E(G|x1, x2) − E(G|x1) − E(G|x2) + g0)(E(G|x1, x3) − E(G|x1)

− E(G|x3) + g0) dx1 dx2 dx3 = 0.
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Ex 8.5 Suppose, we have a sample (Gi, xi); i = 1 . . .N . Show that the following

two problems are equivalent:

Maximize: ρ2(G, a + bx + cx2 + dx3).

Minimize:
∑

i

(Gi − a + bxi + cx2
i + dx3

i )
2.



236 PROBABILISTIC SENSITIVITY MEASURES

Hint: maximizing ρ2(G, a + bx + cx2 + dx3) is equivalent to maximizing

ln(ρ2(G, a + bx + cx2 + dx3)). Show that both problems entail solving

E

(
G ×

∂f

∂α

)
= E

(
f ×

∂f

∂α

)

where f (x) = a + bx + cx2 + dx3 and α is any of the parameters in f (x).

Ex 8.6 Compute the regression function E(headlite|Bat) in the project SRTLITE

of Chapter 7. Compare your result with the graph generated by UNICORN’s sensi-

tivity analysis package.

Ex 8.7 Prove Exercise 8.3.

8.8 Supplement

8.8.1 Proofs

Proposition 8.1 If σ 2
G < ∞ then

(i)Cov(G, E(G|X)) = σ 2
E(G|X),

(ii) maxf ;σ 2
f (X)

<∞ρ2(G, f (X)) = ρ2(G, E(G|X)) =
σ 2
E(G|X)

σ 2
G

.

Proof.

(i) Cov(G, E(G|X)) = E(E(GE(G|X)|X)) − EGE(E(G|X)) = E(E2(G|X)) −
E2(E(G|X)).

(ii) Let δ(X) be any function with finite variance.

Put A = σ 2
E(G|X), B = Cov(E(G|X), δ(X)), C = σ 2

G, and D = σ 2
δ . Then

ρ2(G, E(G|X) + δ(X)) =
(A + B)2

C(A + D + 2B)
; (8.20)

σ 2
E(G|X)

σ 2
G

=
A

C
. (8.21)

(A + B)2

C(A + D + 2B)
≤

A

C
⇐⇒ B2 ≤ AD. (8.22)

The latter inequality follows from the Cauchy Schwarz inequality. This is similar

to a result in (Whittle (1992)). �

Proposition 8.2 Let G(X, Y ) = f (X) + h(Y ), where f and g are invertible func-

tions with σ 2
f < ∞, σ 2

h < ∞ and X, Y are not both simultaneously constant (σ 2
G >

0). If X and Y are independent then:

ρ2(G, E(G|X)) + ρ2(G, E(G|Y)) = 1.
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Proof.

We have E(G|X) = E(G|f (X)), and h(Y )⊥E(G|f (X)), f (X)⊥E(G|h(Y ));

therefore,

σ 2
G = Cov(G, G) = Cov(G, f (X) + h(Y ))

= Cov(G, f (X)) + Cov(G, h(Y ))

= Cov(E(G|f (X)), f (X)) + Cov(E(G|h(Y )), h(Y ))

= Cov(E(G|f (X)) + E(G|h(Y )), f (X) + h(Y ))

= Cov(E(G|f (X)) + E(G|h(Y ))), G

= Cov(E(G|X) + E(G|Y), G) = σ 2
E(G|X) + σ 2

E(G|Y )

The result now follows with Fact (8.1). �
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Probabilistic Inversion

9.1 Introduction

Chapter 1 discussed a recent application in which probabilistic inversion played

a central role. In this chapter, we define probabilistic inversion problems, discuss

existing algorithms for solving such problems and study new algorithms based on

iterative re-weighting of a sample.

We know what it means to invert a function at some value in its range. When we

invert the function at a random variable, this is called probabilistic inversion. More

precisely, a probabilistic inversion problem may be characterized as follows: Given

a random vector Y, taking values in RM and a measurable function G : RN → RM ,

find a random vector X such that G(X) ∼ Y, where ∼ means that G(X) and Y

share the same distribution. X is sometimes termed the input to model G and Y the

output. If G(X) ∈ {Y|Y ∈ C}, where C is a subset of random vectors on RM , then

X is called a probabilistic inverse of G at C. X is sometimes termed the input to

model G and Y the output. If the problem is feasible, it may have many solutions,

and we require a preferred solution; if it is infeasible, we seek a random vector X

for which G(X) is ‘as close as possible’ to Y. Such problems arise in quantifying

uncertainty in physical models with expert judgment (Kraan and Cooke (2000a)).

We wish to quantify the uncertainty on parameters of some model using expert

judgment, but the parameters do not possess a clear physical meaning and are not

associated with the physical measurements with which experts are familiar. Often

the models are new and do not command universal assent. We must then find the

observable quantities Y functionally related with X that can be assessed by experts.

Inferring uncertainties on X from uncertainties on Y, as specified by experts, is

clearly an inverse problem.

In practical applications, the vector Y is characterized in terms of some per-

centiles or quantiles of the marginal distributions Y1, . . . , YM . In this case, we

seek a random vector X such that G(X) satisfies quantile constraints imposed

Uncertainty Analysis with High Dimensional Dependence Modelling D. Kurowicka and R. Cooke

 2006 John Wiley & Sons, Ltd
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on Y1, . . . , YM . There may be other constraints, which may reflect mathematical

desiderata when we require independence between variables, as in Section 9.6.

Physical considerations may also impose constraints on X1. A few algorithms

for solving such problems are available in literature, namely, conditional sam-

pling, PARFUM (PARameter Fitting for Uncertain Models) (Cooke (1994); Hora

and Young algorithm Harper et al. (1994)) and PREJUDICE (Kraan and Bed-

ford (2005); Kraan and Cooke (2000a,b)). We summarize existing approaches to

probabilistic inversion in Section 9.2.

The function G to be inverted will not generally be given in closed form; indeed,

it may be given as a large computer code. Inverting this function may therefore

be quite expensive. The most attractive algorithms for probabilistic inversion do

not actually invert the function G but use a technique called sample re-weighting.

Special knowledge about the problem at hand and complicated heuristic steering

on the part of the user are not required. Moreover, the operations on the sample

can be performed one variable at a time, so that the entire sample need not be held

in memory. This means that there is virtually no size limitation.

One type of algorithm is known from the literature as iterative proportional

fitting (IPF) (IPF) (Kruithof (1937)). Starting from a given sample distribution, we

may consider the starting point of the IPF algorithm as the uniform distribution

over the sample points. IPF iteratively re-weights these sample points. IPF need

not converge, but if it does, it converges to a solution that is minimally informative

with respect to the starting distribution (Csiszar (1975)).

A variation on this is an iterative version of the PARFUM algorithm. We show

that this algorithm has fixed points minimizing an information functional even if

the problem is infeasible. If the problem is feasible, the fixed points are solutions.

We discuss IPF and PARFUM algorithms in Section 9.3 and then show how they

can be applied to solve probabilistic inversion problems.

9.2 Existing algorithms for probabilistic inversion

The algorithms discussed here look for an inverse of a partially specified random

vector Y = (Y1, . . . , YM). Typically, we specify quantiles of the marginal random

variables Y1, . . . , YM . In other words, for each variable Yi , we specify an ordered

set of numbers and the probability that Yi falls between these numbers. The first

algorithm applies only when M = 1.

9.2.1 Conditional sampling

Let Y consist of only one variable Y . A simple conditional sampling technique can

be used on the basis of the following result (Kraan and Cooke (1997)).

1In some cases, probabilistic inversion problems may have trivial solutions, for example, if under G,

X makes the coordinates of Y completely rank correlated. Such solutions may be rejected on physical

grounds; hence, physical constraints may stipulate the support of X. Other physical constraints are

discussed in the example in Section 9.5.
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Proposition 9.1 Let X and Y be independent random variables with range

{1, . . . , k}. P (X = i) > 0, P (Y = i) > 0, i = 1, . . . , k. Let XX=Y denote a random

variable with distribution

P (XX=Y = i) = P (X = i|X = Y).

Then, XX=Y ∼ Y if and only if X is uniformly distributed.

Proof. Put pi = P (X = i), qi = P (Y = i), i = 1, . . . , k. Then,

P (XX=Y = i) =
piqi∑
pjqj

.

For all i = 1, . . . k, piqi/
∑

pjqj = qi if and only if pi =
∑

pjqj ; that is, pi does

not depend on i. �

Consider a random vector X = (X1, X2, . . . , Xn) and function G : Rn → R

such that G(X) and Y are concentrated on an interval I with invertible cumulative

distribution functions FG and FY , respectively. Let G∗ be a discretized version

of G(X) such that the cumulative distribution function FG∗ is concentrated on

Id = {1/k, 2/k, . . . , 1}. In other words, define G∗ as:

G∗(X) =
k∑

j=1

F−1
G

(
j

k

)
I( j−1

k
,

j
k

](FG(X)), (9.1)

where IA denotes the indicator function of a set A.

FG∗(G(X)) is uniformly distributed on Id . FG∗(Y ) is concentrated on Id but

is not necessarily uniform. The following procedure is used to find the conditional

distribution of G(X) that approximates the distribution of Y :

1. Sample X and Y independently of X.

2. If FG∗(G(X)) = FG∗(Y ), then retain the sample, otherwise discard the

sample.

3. Repeat steps 1 and 2.

Since FG∗(G(X)) is uniformly distributed in the unconditional sample, the

preceding proposition shows that in the conditional sample, FG∗(G(X)) ∼ FG∗(Y ).

The conditional distribution, Pcond of G(X), approximates the distribution of Y in

the sense that

Pcond

(
G(X) ∈

{
F−1

G

(
i

k

)
, F−1

G

(
i + 1

k

)})
= P

(
Y ∈

{
F−1

G

(
i

k

)
,

F−1
G

(
i + 1

k

)})
.

The advantage of this technique is its simplicity. Its disadvantage is that it works

only for one output variable.
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9.2.2 PARFUM

Let Y = (Y1, Y2, . . . , YM) be a random vector with marginal densities (f1, . . . , fM)

and let Gm : Rn → R, m = 1, 2, . . . , M be the measurable functions. The PAR-

FUM algorithm can be described in the following steps Cooke (1994):

1. Choose a finite set X ⊂ Rn; #(X) = K , where # means the number of points.

2. Define the conditional mass function Qm of Ym on the image Gm(X ) of X

under Gm, where x ∈ X :

Qm(Gm(x)) =
fm(Gm(x))∑

z∈X fm(Gm(z))
.

3. Define the minimally informative distribution on X , the push-forward distri-

bution Pm on Gm(X ) of which agrees with Qm, that is, for x ∈ X

Pm(x) =
Qm(Gm(x))

#{z ∈ X |Gm(z) = Gm(x)}
.

4. Find a distribution P on X that minimizes the relative information∑M
m=1 I (Pm|P ), where

I (Pm|P ) =
∑

X∈X
Pm(x) ln

(
Pm(x)

P (x)

)
.

Let

SK =
{

s ∈ RK |sk ≥ 0,

K∑

k=1

sk = 1

}
. (9.2)

It is not difficult to show (Cooke (1994)) the following proposition:

Proposition 9.2 Let Pm ∈ SK , m = 1, . . . , M . Then

min
P∈SK

M∑

m=1

I (Pm|P ) =
M∑

m=1

I (Pm|P ∗)

if and only if P ∗ = (1/M)
∑M

m=1 Pm.

The advantage of this method is that it is always feasible and easily imple-

mented. One disadvantage is that the conditional distributions Qm might be dif-

ferent to those of Ym, but this may be steered by a judicious choice of X . More

serious is the fact that the push forward of P need not have marginal distributions

that agree with those of the Ym. This can also be influenced by steering but is more

difficult. When this algorithm is iterated, all fixed points are feasible if the set of

feasible points is non-empty (Theorem 9.3).
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9.2.3 Hora-Young and PREJUDICE algorithms

Instead of basing the fitting on the conditional measure Qm, which may be different

from Fm, the Hora-Young method constrains the choice of P to the set P, whose

margins for Gm(X ) satisfy the quantile constraints

P {Gm(X ) ∈ [ymk−1, ymk]} = Fm(ymk) − Fm(ymk−1), k = 2, . . . , K,

where ym1, . . . , ymK are in the range of Ym, m = 1, . . . , n, P (Gm(X )) is the push-

forward measure on the range of Ym induced by the probability measure P on X

and Fm is the cumulative distribution function of Ym. The disadvantage of this

method is that it may be infeasible; that is, for a given choice of X , there may be

no measure P satisfying the constraints.

The algorithm PREJUDICE is an elaboration of this algorithm. Using dual-

ity theory for constrained optimization, it performs model inversions, thereby

augmenting the set X in a way that optimally reduces infeasibility. Performing

model inversions can be very expensive. Although PREJUDICE represents the

most sophisticated method to date for probabilistic inversion, the use of model

inversions makes it unsuitable for a generic uncertainty analysis system. For some

models, the inversion step may simply be too difficult. For more information about

this method we refer the reader to Kraan (2002); Kraan and Bedford (2005).

9.3 Iterative algorithms

In this section, we introduce two iterative algorithms applied to solve the prob-

abilistic problem in the next section. First, we introduce the necessary notation,

definitions and simple facts and present IPF and PARFUM algorithms for the

discrete distributions. We formulate the problem and show results only for the

two-dimensional case (M = 2). We indicate the results that can be generalized.

The generalizations of these algorithms are presented in the Supplement.

Let K ∈ N; p·,j =
∑K

i=1 pij , j = 1, . . . , K and pi,· =
∑K

j=1 pij , i =
1, . . . , K . Let

SK×K =



p ∈ RK×K |pij ≥ 0,

K∑

i,j=1

pij = 1



 ,

S∗K×K = {p ∈ SK×K |pi,. > 0, p.,j > 0, i, j = 1, . . . , K}

be the sets of probability vectors in RK×K and in RK×K with non-degenerate mar-

gins, respectively. Our problem can be now formulated as follows.

For given p ∈ S∗K×K and a, b ∈ SK , find a distribution q ∈ S∗K×K such that

I (q|p) =
K∑

i,j=1

qij log
qij

pij

is minimum,



244 PROBABILISTIC INVERSION

subject to the following constraints

1. q·,j = bj , j = 1, . . . , K;

2. qi,· = ai, i = 1, . . . , K .

Let

Q1 = {q ∈ S∗K×K |qi,· = ai, i = 1, . . . , K},

Q2 = {q ∈ S∗K×K |q·,j = bj , j = 1, . . . , K}.

We shall assume throughout that ai > 0, bj > 0; i, j = 1, . . . , K . As in Csiszar

(1975), we define the I -projection of p onto the set of distributions with one fixed

margin as a closest distribution, in sense of relative information, with this margin

fixed.

Definition 9.1 LetQm, m = 1, 2 be as defined in the preceding text. An I -projection

pQm of p on Qm is

pQm = argminq∈QmI (q|p).

Since Qm is convex and p ∈ S∗K×K , it follows from Theorem 2.2 of Csiszar (1975)

that pQm is unique and is of the form

p
Q1
ij = pij

ai

pi,·
,

(
p
Q2
ij = pij

bj

p·,j

)

for i, j = 1, . . .K , respectively.

9.3.1 Iterative proportional fitting

The IPF algorithm (Kruithof (1937)) projects a starting measure onto the set with

fixed first margins (Q1), then projects this projection onto the set with fixed second

margins (Q2), projects this again onto the set Q1, and so on. Hence, if we have

arrived at vector p by projecting onto Q1, the next iteration is

p′ = pQ2 .

This algorithm was first used to estimate cell probabilities in a contingency

table, subject to certain marginal constraints. It is easy to see that if p satisfies the

constraints, then p is a fixed point of this algorithm.

The convergence of the IPF algorithm has been studied by many authors;

see Bishop (1967); Brown (1959); Fienberg (1970); Haberman (1974, 1984) and

Csiszar (1975). Csiszar shows that if the IPF algorithm converges, then it converges

to the I -projection of the starting probability vector on the set of probability vectors

satisfying the constraints. He further showed that starting with a probability vector

p, IPF converges if there is a vector r satisfying the constraints and having zeros

in the cells where p is zero

pij = 0 ⇒ rij = 0, i, j = 1, . . . , K. (9.3)

The reverse implication need not hold.
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For the two-dimensional case, the IPF algorithm is equivalent to an alternating

minimization procedure studied in Csiszar and Tusnady (1984). It is proven there

that if sequences {Pn} and {Qn} from Q1 and Q2, respectively, are obtained by

alternating minimization of I (Pn|Qn) with respect to Pn resp. Qn, then I (Pn|Qn)

converges to the infimum of I (P |Q) on Q1 ×Q2, where Q1 is a set of all P ∈ Q1

such that I (P |Qn) < ∞ for some n. Moreover, the convergence of the sequences

{Pn} and {Qn} is proven. Csiszar and Tusnady (1984) proved this result for a

general case where the sets Q1 and Q2 are convex sets of finite measures, and the

function that is minimized in alternating minimization procedure is an extended

real-valued function.

9.3.2 Iterative PARFUM

The iterative PARFUM algorithm is an algorithm based on the result in Propo-

sition 9.4. In contrast to IPF, the iterative PARFUM algorithm projects a starting

distribution on Q1 and on Q2 and takes the average of these two distributions.

If we have arrived at the probability vector p, we define the next iteration p′ as

follows.

p′ =
pQ1 + pQ2

2
. (9.4)

Each measure pQi adapts the measure p to have the ith margin fixed. We see

that p′ is the probability vector that is ‘closest’, in the sense of relative information,

to both the measures pQi (Proposition 9.4). If p satisfies the constraints, then

p′ = p. In other words, the iterative PARFUM algorithm has fixed points at all

feasible probability vectors.

The following theorem shows that the relative information functional of the

iterates of this algorithm always converge even when the constraints cannot be

satisfied.

Theorem 9.1 Let Q1,Q2 be closed convex subsets of SK×K . For p(j) ∈ S∗K×K ,

let q(j)m be the I-projection of p(j) on Qm, m = 1, 2. Let p(j + 1) = q(j)1+q(j)2

2
.

Then I (p(j + 1)|p(j)) → 0 as j → ∞.

The set Qm may be regarded as the set of vectors satisfying the mth constraint.

The term (9.7) (in Supplement) can be written as

J (q(j)1, q(j)2) =
2∑

m=1

I (q(j)i |p(j + 1))

=
2∑

m=1

I

(
q(j)m

∣∣∣∣∣

∑2
m=1 q(j)m

2

)
.
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The iterative PARFUM algorithm may be seen as minimizing the function J ,

and the minimal value of J may be taken as a measure of ‘how infeasible’ the

problem is.

If Q1 ∩Q2 = ∅, then the problem is infeasible. If Q1 ∩Q2 = Q �= ∅, then the

algorithm converges to an element of Q and J (q(j)1, q(j)2) → 0 (see Theorem 9.3

below).

A sufficient condition for feasibility of the problem is given in the following

theorems:

Theorem 9.2 Let p be a fixed point of the PARFUM algorithm with pij > 0 for

all i, j = 1, . . . , K then p is feasible, that is, pi,· = ai, i = 1, . . . , K and p·,j =
bj , j = 1, . . . , K .

Theorem 9.3 Let Q1 ∩Q2 = Q �= ∅. If p is a fixed point of the PARFUM algo-

rithm, then p ∈ Q.

For easier presentation, we have assumed that both margins are from SK . This

can be trivially extended. Moreover, the results presented in this section can be

generalized to higher dimensions (M > 2). This generalization will be used in the

next section to solve probabilistic inversion problem.

9.4 Sample re-weighting

In this section, we show how sample re-weighting combined with iterative algo-

rithms presented in Section 9.3 can solve probabilistic inversion problems. This

yields generic methods for probabilistic inversion that do not require model

inversion. The idea of re-weighting a sample to perform probabilistic inver-

sion can be sketched roughly as follows. Starting with a random vector X, we

generate a large sample from X : (X1, . . . , Xn), Y1 = G1(X), . . . , YM = GM(X).

Let the i-th sample be denoted as si ∈ RN+M . Obviously, each sample si =
(x

(i)
1 , . . . , x

(i)
n , y

(i)
1 , . . . , y

(i)
M ) has the same probability of occurrence. If N samples

have been drawn, then the sampling distribution assigning p(si) = 1/N approxi-

mates the original distribution from which the samples were drawn.

The idea is now to change the probabilities p(si) so as to ensure that the

distributions of Y1, . . . , YM satisfy the specified quantile constraints. No model

inversions are performed; that is, we do not invert the function G. To achieve

reasonable results, the sample size N may have to be very large. This places

strong restrictions on the type of methods that can be implemented in a generic

uncertainty analysis program.

9.4.1 Notation

Since the variables X1, . . . , Xn play no role in choosing the weights p(si), we may

leave them out of the problem description, hence si = (y
(i)
1 , . . . , y

(i)
M ). We denote

p(si) as pi , and introduce:



PROBABILISTIC INVERSION 247

Data matrix: M variables, all with N samples, are grouped in matrix Y . Hence,

Y = [Y1, Y2, . . . , YM ], where Ym = [Ym1, Ym2, . . . , YmN ]T , m = 1, 2, . . . , M .

Inter-quantile vector: We consider a vector q = [q1, q2, . . . , qK ] of lengths of

inter-quantile, or inter-percentile, intervals. If we specify the 5%, 50% and

95% quantiles, then K = 4 and q = [0.05, 0.45, 0.45, 0.05].

Constraints: A matrix R = [rjm], j = 1, . . . , K − 1; m = 1, . . . , M, contains the

percentiles that we want to impose: rjm is the number for which P {Ym ≤
rjm} = q1 + · · · + qj . Thus, we want the probability vector [p1, . . . , pN ] to

satisfy the constraint set C:

for all k = 1, 2, . . . , K and all m = 1, 2, . . . , M
∑N

i=1 piIJk,m
(Yi,m) = qk

where IA denotes the indicator function of a set A and the interval Jk,m is

defined as:

J1m = (−∞, r1,m],

Jkm = (rk−1,m, rkm], k = 2, . . . , K − 1,

JK,m = (rKm,∞),

for all m = 1, 2, . . . , M .

We note that these constraints do not really say, for example, rm1 is the q1-th

quantile of Ym. Indeed, the q1-th quantile is defined as the least number, a,

satisfying the constraint P (Ym < a) = q1. If Ym is concentrated on a few

points, then there may be many values satisfying the preceding constraints.

Partitions of samples To each variable Ym, we associate a partition of the samples

Am = {Am
k }Kk=1; m = 1, . . . , M, (9.5)

where

Am
k = set of samples for which Ym falls in inter-quantile interval k.

The output of a re-weighting scheme is a vector p = [p1, p2, . . . , pN ] of

weights. After re-weighting the samples with these weights, the constraints C are

satisfied ‘as nearly as possible’.

9.4.2 Optimization approaches

It is natural to approach the problem of probabilistic inversion as a constrained non-

linear optimization problem. The constraints C are linear, and a convex objective

function will have a unique solution if the constraints are consistent. Minimal
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information is a natural choice of objective function. This yields the following

optimization problem:

Find p = [p1, p2, . . . , pN ] such that p has minimum information with respect

to the uniform distribution, that is,

minimize

N∑

i=1

pi ln(pi)

under the constraints C.

Good performance for this problem has been obtained with an interior point

solver if the problem is feasible.

If the problem is not feasible – and this is frequently the case – then several

lines of attack are suggested, of which we mention two. First, an objective function

must be defined, whose optimization will minimize infeasibility. For example, one

could minimize the quantity �:

� =
M∑

m=1

K∑

k=1

[
N∑

i=1

piI(rk−1,m,rk,m](Yi,m) − qk

]2

.

Of course, this quantity has nothing to do with minimum information and has noth-

ing in particular to recommend it. Many other choices would be equally defensible.

Solvers tested thus far have been unable to handle very large problems.

Another approach would be to relax the constraints C by replacing equality

with ‘equality up to ǫ’. In this case, the choice of ǫ will be driving the solution,

and this choice will be largely heuristic.

To date, experience with infeasible problems has not been wholly satisfactory.

9.4.3 IPF and PARFUM for sample re-weighting probabilistic

inversion

Iterative algorithms involve successively updating a probability vector [p1, . . . , pN ]

so as to approach a solution satisfying constraints C, or satisfying these constraints

as closely as possible. Note that samples si and sj , which fall in the same inter-

quantile intervals, for Y1, . . . , YM , will be treated in exactly the same way. Hence,

the weights for these samples must be the same. Starting with the uniform vector

pi = 1/N for si , we may redistribute all samples over KM cells and obtain KM -

dimensional discrete distribution [pi1,i2...,iM ] in the following way.

pi1,i2...,iM =
1

N

N∑

n=1

IA1
i1
∩···∩AM

iM

(sn),

where im ∈ {1, 2, . . . , K}, m = 1, 2, . . . , M . pi1,i2...,iM must be changed in a min-

imum information manner so that all one-dimensional marginal distributions are

[q1, q2, . . . , qK ].
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Taking pi1,i2...,iM as a starting distribution, the IPF or PARFUM algorithms

discussed in Section 9.3 may be applied to change this distribution so as to satisfy

the quantile constraints if these are feasible. Otherwise, a fixed point of PARFUM

minimizes infeasibility in the sense of (9.5). The probability mass assigned to the

(i1, i2 . . . , iM) cell of the stationary distribution must be distributed uniformly over

weights corresponding to samples in A1
i1
∩ A2

i2
∩ . . . ∩ AM

iM
.

9.5 Applications

We first illustrate PARFUM and IPF with a simple example involving dispersion

coefficients from Harper et al. (1994), which is also extensively used in Kraan

(2002) to explain the steps of probabilistic inversion technique involving model

inversion. We then present results from a recent study involving a chicken process-

ing line.

9.5.1 Dispersion coefficients

The lateral spread σ of an airborne plume dispersing in the downwind direction x

is modelled as the power law function of distance x from the source of release:

σ(x) = AxB, (9.6)

where the coefficients A and B depend on the stability of atmosphere at the time of

release. Of course, there may be more variables such as wind, surface roughness,

and so on. It is however recognized that model (9.6) captures the uncertainty

associated with plume spread well enough. The joint distribution of A and B

must be found in order to find the uncertainty on σ for any downwind distance

x. Parameters A and B are not observable, but the plume spread σ at any given

downwind distance is an observable quantity. Eight experts were therefore asked to

quantify their uncertainty on σ(xi) for downwind distance x1, . . . , x5. The experts

were asked to express their uncertainty in terms of 5, 50 and 95% quantile points

on plum spread at downwind distances of 500 m, 1 km, 3 km, 10 km and 30

km. The performance-based weighted combinations of the experts’ distributions

led to results presented in Table 9.1 (for more information about structured expert

judgment for this example, see Cooke and Goossens (2000b)).

One can see in Kraan (2002) how the distributions of A and B are obtained

using the PREJUDICE method. To simplify the presentation, we consider only two

Quantile σ(500 m) σ (1 km) σ (3 km) σ (10 km) σ (30 km)

5% 33 64.8 175 448 1100

50% 94.9 172 446 1220 2820

95% 195 346 1040 3370 8250

Table 9.1 Assessments of σ .
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downwind distances here, that is, 500 m and 1 km, and show how this problem

can be solved with iterative procedures PARFUM and IPF. Let us take A to be

uniform on the interval (0,1.5) and B to be uniform on the interval (0.5,1.3).

Now, by sampling N values of A and B, (ai, bi), i = 1, . . . , N , we apply (9.6) to

each sample for both downwind distances, say y1i = ai500bi and y2i = ai1000bi .

We assign each sample to a cell in a 4 × 4 matrix according to the inter-quantile

intervals of Y1, Y2 catching the sample. Thus, if y1i ≤ 33 and 64.8 < y2i ≤ 172,

then Y1 falls in the first inter-quantile interval and Y2 in the second. Let c be the

4 × 4 matrix obtained in this way.

The distribution p(0) is obtained from the matrix c by dividing each cell of c

by the number of samples N = 10,000: p(0) = 1
N

c. Hence, we get

p(0) =




0.1966 0.0006 0 0

0.0407 0.1642 0.0050 0

0 0.0094 0.1196 0.0155

0 0 0.0008 0.4476


 .

It may be noticed that the cells (4, 1), (4, 2) are empty. Indeed, these cells are

physically impossible, since a plume cannot be wider at 500 m than at 1000 m.

After 200 iterations, we get the following results using PARFUM and IPF

respectively:

pPARFUM =




0.0439 0.0061 0 0

0.0061 0.4229 0.0210 0

0 0.0210 0.4233 0.0057

0 0 0.0057 0.0443




pIPF =




0.0461 0.0039 0 0

0.0039 0.4253 0.0208 0

0 0.0208 0.4270 0.0022

0 0 0.0022 0.0478




One can verify that both marginal distributions for pPARFUM and pIPF are equal

to q = [0.05, 0.45, 0.45, 0.05]. The relative information of pPARFUM and pIPF with

respect to p(0) is 0.8219 and 0.8166, respectively. The vector of samples weights

can be obtained from pPARFUM or pIPF by distributing probabilities in each cell of

pPARFUM or pIPF uniformly over all samples that fall in this cell. The number of

samples (10,000) is not unrealistic, and iterative algorithms are quite fast. There is,

however, no guidance on how the initial distributions of A and B have to be chosen.

Initially, (A, B) had a joint distribution uniform on [0, 1.5] × [0.5, 1.3].

Figure 9.1 shows how the joint distribution of (A, B) has changed after apply-

ing PARFUM algorithm. One can see that A and B are now highly negatively

correlated.

The marginal distributions of σ(500) and σ(1000) are also changed to match

expert’s quantile information. Figure 9.2 shows the difference between the original

marginal distributions for σ(500) and σ(1000) and marginal distributions after

applying PARFUM algorithm.
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Figure 9.1 A joint distribution of (A, B) after applying PARFUM algorithm.
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Figure 9.2 Marginal distributions of σ(500) (a) and σ(1000) (b) before (more

diffuse) and after (less diffuse) applying PARFUM algorithm.
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9.5.2 Chicken processing line

A model of a chicken processing line is presented in Chapter 1. For details see Van

der Fels-Klerx et al. (2005). Suffice to say that for each of the phases, scalding,

evisceration, defeathering, 5, 50 and 95% quantiles were determined for six pre-

dicted variables using structured expert judgment. Probabilistic inversion was used

to pull this distribution back onto the parameter space of the model. The param-

eters in this case are transfer coefficients. The table in Figure 9.3 summarizes the

results with IPF and with PARFUM. In each phase, 50,000 samples were generated

from a diffuse distribution over the transfer coefficients, and for each sample, the

values of the predicted variables were computed. In each case, 50 iterations were

performed, beyond which no significant improvements were observed.

In all cases, there was discrepancy between the percentile aimed for and the

percentile realized by the probabilistic inversion. This indicated that the inversion

problem for the given samples is not feasible. Of course, one option would be to

take more samples; however, after some effort in this direction, it was concluded

that the expert assessments were not really compliant with the model to be fit-

ted – a situation that arises not infrequently in practice. The table in Figure 9.3

thus illustrates the behaviour of these algorithms on infeasible problems. Note that

in each case PARFUM has lower relative information with respect to the starting

distribution, that is, the distribution assigning each sample the weight 1/50,000.

Indeed, IPF converges to the I-projection of the starting measure on the set of

feasible measures, but when the problem is infeasible, the set of feasible measures

Prediction
variable Percentile

5% 0.050 0.050 0.060 0.063 0.053 0.014
50%1 0.497 0.500 0.541 0.618 0.424 0.175
95% 0.950 0.950 0.957 0.962 0.871 0.719

5% 0.050 0.050 0.050 0.062 0.370 0.357
50%2 0.497 0.500 0.539 0.618 0.736 0.921
95% 0.950 0.950 0.957 0.962 0.972 0.993

5% 0.090 0.161 0.043 0.050 0.053 0.014
50%3 0.557 0.559 0.464 0.498 0.424 0.175
95% 0.956 0.956 0.940 0.954 0.871 0.719

5% 0.032 0.040 0.033 0.034 0.030 0.033
50%4 0.404 0.403 0.386 0.357 0.256 0.151
95% 0.851 0.853 0.857 0.912 0.543 0.654

5% 0.121 0.116 0.137 0.068 0.184 0.158
50%5 0.532 0.540 0.572 0.531 0.501 0.702
95% 0.942 0.884 0.959 0.943 0.839 0.969

5% 0.065 0.050 0.106 0.050 0.133 0.050
50%6

Relative information

0.647 0.500 0.628 0.500 0.606 0.500
95% 0.966 0.950 0.966 0.950 0.972 0.950

6.0769949 6.604376 4.591191 6.796448 4.591191 8.42945

PARFUM IPF PARFUM IPF PARFUM IPF

Evisceration Scalding Defeathering

Figure 9.3 Comparison PARFUM and IPF – 50,000 samples, 50 iterations
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is empty and very little is known about IPF’s behaviour. It should be noted that

IPF is stopped after cycling through all six variables, hence for the sixth vari-

able, the constraints are always satisfied. Glancing at the other variables, each of

whose constraints would be satisfied at an appropriate point in the cycle, we can

appreciate that the IPF algorithm is far from converging. We note that in case of

infeasibility, PARFUM’s performance seems to degrade more gracefully than that

of IPF, though no quantitative measures have been applied in this regard.

9.6 Convolution constraints with prescribed

margins

The iterative re-weighting algorithms can be used to impose constraints on the

joint distribution when these can be expressed as quantile constraints on functions

of the margins. To illustrate this, assume that samples (xi, yi), i = 1, . . . , N from

variables (X, Y ) are given. The samples have to be re-weighted in such a way that

the quantiles of the distribution of X + Y will agree with those of the convolu-

tion X ∗ Y , that is, with the distribution of the sum of independent variables with

margins X and Y 2. We conjecture that imposing more constraints of this form will

make the distributions of X and Y more independent, as suggested by the following

(Girardin and Limnios (2001)) remark.

Remark 9.1 Let (X, Y ) be a random vector such that for all a, b ∈ R, aX + bY is

distributed as the convolution of aX and bY ; then X and Y are independent.

We illustrate this with the following example:

Example 9.1 Let U, V, W be three independent standard normal variables. Let

X = U + W and Y = V + W . Clearly, X and Y are not independent. Let us draw

N = 10,000 samples from X and Y , say (xi, yi). We re-weight these samples such

that X and Y satisfy 5, 50 and 95% quantiles for the exponential distribution

with parameter λ = 1 (0.0513, 0.6931, 2.9957). Since, if X and Y are independent

exponentials, X + Y has a gamma distribution with scale 2 and shape 1, we require

additionally that the sum of samples xi + yi satisfies quantile constraints for the

gamma distribution (0.3554, 1.6783, 4.7439).

The PARFUM algorithm was used for this problem and the result is presented

in Figure 9.4. We can see in Figure 9.4 how closely the sum of re-weighted samples

resembles the gamma distribution. For this example we obtained a very good fit

using only three quantiles.

In Figure 9.5 (a) 5000 samples from the original distribution of X and Y

are shown. Since X = U + W and Y = V + W with U, V, W independent stan-

dard normals, the correlation between X and Y is approximately equal to 0.5.

2X ∗ Y is the random variable, the characteristic function of which is a product of the characteristic

functions of X and Y .



254 PROBABILISTIC INVERSION

-10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9.4 The result of re-weighting samples to match three quantiles for the

exponential distribution and three quantiles for the gamma distribution for the sum

of X and Y . The solid curve represents gamma distribution with scale 2 and shape

1; the ‘circle’ curve shows the distribution of the sum of re-weighted PARFUM

algorithm samples.
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Figure 9.5 Scatter plots with 5000 samples from the original distribution of X

and Y (correlation 0.4999) (a) and the distribution after re-weighting to match

three quantiles of the exponential distribution and three quantiles of the gamma

distribution for the sum of the re-weighted samples (correlation 0.2043) (b).
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Figure 9.6 Scatter plots with 5000 samples from the distribution after re-weighting

to match seven quantiles of the exponential distribution and seven quantiles of

X + Y (correlation 0.1449) (a) and the distribution after re-weighting to match

seven quantiles of the exponential distribution and seven quantiles for X + Y ,

X + 2Y and X + 4Y (correlation 0.1328) (b).

Figure 9.5 (b) shows the scatter plot of the distribution after re-weighting samples

to match three quantiles of the exponential distribution and three quantiles of the

gamma distribution for the sum of the re-weighted samples. Since we fit only three

quantiles, the probability that the samples will be negative is still quite high. In

Figure 9.6 (a) we present the scatter plot for the same case when seven quantiles

(1%, 5%, 25%, 50%, 75%, 95%, 99%) were used. One can see that increasing the

number of quantiles leads to a better approximation of the independent exponen-

tial distributions. By adding one constraint concerning the sum of the re-weighted

samples, we could reduce the correlation to 0.2043 in case of three quantiles and

to 0.1449 in case of seven quantiles. Adding additional constraints on linear com-

binations of X and Y leads to greater reduction of correlation (Figure 9.6 (b)).

For the preceding examples we could easily stipulate quantile constraints on

aX + bY for a > 0 and b > 0 because it is known that if a = b, then aX + bY has

a gamma distribution, and if a �= b, it has a generalized Erlang distribution with

density faX+bY (z) = 1
a−b

e−z/a + 1
b−a

e−z/b. If we do not know the distribution of

the sum of independent linear combinations of X and Y , then this distribution must

first be simulated to extract the quantile constraints.

9.7 Conclusions

We see that iterative algorithms possess attractive features for solving probabilistic

inversion problems. These algorithms do not require intelligent steering, other than
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the choice of the initial sample. Further, they do not pose size restrictions on the

sample, so the sample may be large. Of course, large samples will increase run time.

We note that in practice probabilistic inversions are typically infeasible. In

such cases, IPF is problematic, as little is known about its behaviour in the case of

infeasibility. The iterative PARFUM algorithm, on the other hand, always converges

to a distribution that minimizes the sum of relative information of the marginal

distributions of the solution, relative to their arithmetic average.

9.8 Unicorn projects

Project 9.1

We consider Example 9.1. Create a case with three standard normal input vari-

ables U, V, W . Create UDFs

X : U + W

Y : V + W

Z : X + Y

Evidently, X and Y are not independent. Following Example 9.1, we wish to re-

weight a sample file so that X and Y are independent and follow an exponential

distribution.

Run this case with 100 runs, saving input and output samples. Name the case

‘probinver’. When the simulation is complete, hit ‘Prob. Inversion’. This satellite

program is an EXCEL spreadsheet. The IPF and PARFUM algorithms are pro-

grammed in Visual Basic, and the aficionado is invited to peruse the code to see

how it works. This can serve as a model for writing your own post-processing

programs, which we hope you will share with us.

When samples are saved, UNICORN creates a *.sam file and an *.sae file, the

latter in EXCEL-compliant format. The spreadsheet automatically imports the sae

file. Note that you must have given this file a name, otherwise EXCEL has a run

time error. On the prompt, select the output variables X, Y and Z for inclusion.

The help file here is very summary. To specify the quantile constraints you wish to

impose, hit ‘% Enter quantiles’. You are asked to specify the number of quantiles

and their values. Enter ‘3’ and then enter 0.05, 0.50 and 0.95. Next, you are asked

to specify the quantile numbers; these are the numbers that will correspond to the

5, 50 and 95% quantiles. Enter the values from Exercise 9.1: For X and Y these are

(0.0513, 0.6931, 2.9957) and for Z these are (0.3554, 1.6783, 4.7439). When this

is done, hit ‘build constraint matrix’. If you entered K quantiles, there are K + 1

inter-quantile intervals into which each sample might fall. The constraint matrix

consists of K + 1 columns for each variable. For each sample a ‘1’ is placed in

the column corresponding to the interval in which the sample falls; other columns

are assigned ‘0’. To view the constraint matrix, hit ‘see constraint matrix’. You can
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Nr. Variable Mean Variance 5% Perc 50% Perc 95% Perc

16 z 1.99E + 000 2.42E + 000 3.67E − 001 1.69E + 000 4.76E + 000
15 y 1.00E + 000 9.78E − 001 3.28E − 002 6.97E − 001 3.02E + 000
14 x 9.84E − 001 9.15E − 001 5.90E − 002 6.93E − 001 2.89E + 000

Figure 9.7 Probabilistic inversion quantile output.

verify that the ‘0s’ and ‘1s’ have been placed correctly by viewing the data and

comparing with the quantile numbers you have entered. The first sample should

fall beneath the 5% quantile for all three variables, so the first column under each

variable contains the ‘1’. You may have to widen the columns in the data worksheet

to view the numbers.

You are now ready to calculate weights. Hit IPF, and choose 20 iterations.

The average error on each iteration is shown, as well as the probability of mass

falling beneath the specified quantile numbers. In this case, the quantile constraints

are satisfied exactly after 20 iterations. For all three variables, the quantiles after

re-weighting are 0.05, 0.5 and 0.95, exactly as specified.

You can now hit ‘export prob.file’. This writes a file named ‘probinver.prb’ to

the directory where the file probinver.unc lives.

You can now re-sample the sample file with the weights just calculated. To do

this, first close UNICORN and re-launch. This closes the open *.sam and *.sae files.

Create a new UNICORN file; instead of defining variables and assigning them dis-

tributions and dependencies, you will simply use the sample file ‘probinver.sam’.

To do this hit ‘Batch’ and choose ‘Create from sample file. . . ’. You are shown a list

of all resident *.sam files. Choose ‘probinver.sam’. You can choose the variables

that you wish to import; choose all. You are told that a prb file is not specified; hit

‘browse’ to see the list of resident prb files. Choose ‘probinver.prb’, which you have

just created.

You are now ready to re-sample. Go to Run/Simulate and choose 200 runs, sav-

ing input and output. Sampling takes a bit longer, as UNICORN must read the prb

file. When sampling is finished, the report confirms that the quantile constraints

have been satisfied up to sampling error (see Figure 9.7).

Go to graphics. The cumulative distribution function for Z should resemble

that of Figure 9.4. The scatter plot of X and Y should resemble the one shown

in Figure 9.8. To reproduce this scatter plot, you will have to use the sliders to

adjust the vertical and horizontal axes. Although the quantile constraints are sat-

isfied, there are samples of X and Y below zero, which of course is impossible

for the exponential distribution. As indicated in the text of Example 9.1, you can

impose additional constraints and concentrate more weight in the positive quad-

rant, and you can introduce another UDF ZZ = X + 2Y to make X and Y less

dependent.



258 PROBABILISTIC INVERSION

4.1

3.3

2.5

1.7

0.84

0.014

0.027
0.84 1.7

y
2.5 3.3 4.1

−0.81

−0.79−1.6−2.4−3.2−4

−1.6

−2.5

−3.3

−4.1

x

Figure 9.8 Probabilistic inversion scatter plot for X and Y .

9.9 Supplement

9.9.1 Proofs

Theorem 9.1

Let Q1,Q2 be closed convex subsets of SK×K . For p(j) ∈ S∗K×K , let q(j)m be the

I -projection of p(j) on Qm, m = 1, 2. Let p(j + 1) = q(j)1+q(j)2

2
. Then I (p(j +

1)|p(j)) → 0 as j → ∞.

Proof. Since Qm is closed and convex, q(j)m exists and is unique (Csiszar (1975),

Theorem 2.1). Define F(p(j)) = I (q(j)1|p(j)) + I (q(j)2|p(j)) ≥ 0. By Proposi-

tion 9.2 and the fact that q(j + 1)m is the I -projection of p(j + 1) on Qm, we have

F(p(j)) = I (q(j)1|p(j)) + I (q(j)2|p(j)) (9.7)

≥ I (q(j)1|p(j + 1)) + I (q(j)2|p(j + 1)) (9.8)

≥ I (q(j + 1)1|p(j + 1)) + I (q(j + 1)2|p(j + 1)) = F(p(j + 1)). (9.9)

Equality holds if and only if p(j) = p(j + 1). Thus, F(p(j)) is decreasing in

j and converges. To show that I (p(j + 1)|p(j)) converges to zero, pick ε > 0
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and j ∈ N such that F(p(j)) − F(p(j + 1)) < ε. Then
∑2

m=1 I (q(j)m|p(j)) −∑2
m=1 I (q(j)m|p(j + 1)) < ε. Writing this inequality element-wise:

2∑

m=1

K∑

i,k=1

q(j)mik(ln(q(j)mik/p(j)ik) − ln(q(j)mik/p(j + 1)ik)) < ε.

Reversing the order of summation and substituting
∑2

m=1 q(j)mik = 2p(j + 1)ik ,

we find 2I (p(j + 1)|p(j)) < ε. �

Theorem 9.2

Let p be a fixed point of the PARFUM algorithm with pij > 0 for all i, j = 1, . . . , K

then p is feasible, that is, pi,· = ai, i = 1, . . . , K and p·,j = bj , j = 1, . . . , K .

Proof. Since p is a fixed point we have:

2pij = pij

(
ai

pi,·
+

bj

p·,j

)
. (9.10)

Since pij > 0, we may divide both sides by pij and obtain:

(
2 −

ai

pi,·

)
p·,j = bj .

Summing both sides over j we find

(
2 −

ai

pi,·

)
= 1 =

bj

p·,j
.

Similarly, we can show that ai

pi,·
= 1. �

Theorem 9.3

Let Q1 ∩Q2 = Q �= ∅. If p is a fixed point of the PARFUM algorithm, then p ∈ Q.

We have formulated this theorem only for the two-dimensional case. This case

is easy to demonstrate and shows all steps of the proof. This theorem can be

generalized to higher dimensions and the proof for higher dimensions is similar.

Before we start the proof of Theorem 9.3, we introduce the necessary notation,

definitions and facts used later on in the proof.

Let r(0) denote a starting point of the PARFUM algorithm and s ∈ A, hence

s is a solution. For two-dimensional case, r(0), p and s are K × K (K-number of

inter-quantile intervals) matrices. It is easy to notice the following:

Proposition 9.3 The problem will remain unchanged if we exchange row i1 and i2
of p, r(0) and s, simultaneously. The same applies to columns.
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Definition 9.2 We call two columns j∗ and j∗∗ of p related if there exists a sequence

(ik, jk), k = 1, . . . , t satisfying

j∗ = j1,

ik = ik−1 when k is even and 1 < k < t,

jk = jk−1 when k is odd and 1 < k < t,

jt = j∗∗,

where pik ,jk
> 0 for all k = 1, 2, . . . , t .

In prose, the column j∗ is related to j∗∗ (j∗Rj∗∗) if there exists a ‘route’ through

the non-zero cells of p from column j∗ to column j∗∗.

Proposition 9.4 If jRj∗, then

qj

p.,j

=
qj∗

p.,j∗

Proof.

Since p is a fixed point of PARFUM and pik ,jk
> 0 for all k = 1, 2, . . . , t , we can

divide both sides of the equation given below by pik,jk
.

pik ,jk
=

pik ,jk

2

(
qik

pik ,.

+
qjk

p.,jk

)

Applying this to all cells in the ‘route’ we get

2 =
(

qi1

pi1,.

+
qj1

p.,j1

)
=
(

qi1

pi1,.

+
qj

p.,j

)

2 =
(

qi2

pi2,.

+
qj2

p.,j2

)
=
(

qi1

pi1,.

+
qj2

p.,j2

)

2 =
(

qi3

pi3,.

+
qj3

p.,j3

)
=
(

qi3

pi3,.

+
qj2

p.,j2

)

2 =
(

qi4

pi4,.

+
qj4

p.,j4

)
=
(

qi3

pi3,.

+
qj4

p.,j4

)

. . .

2 =
(

qit−1

pit−1,.

+
qjt−1

p.,jt−1

)
=
(

qit

pit ,.

+
qjt−1

p.,jt−1

)

2 =
(

qit

pit ,.

+
qjt

p.,jt

)
=
(

qit

pit ,.

+
qj∗

p.,j∗

)
.
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Thus,

qj

p.,j

=
qj1

p.,j1

=
qj2

p.,j2

= . . . =
qj∗

p.,j∗
,

which concludes the proof. �

We call
qj

p.,j
the weight of the column j . Thus, the preceding proposition says that

if two columns are related then they have the same weights.

Proof of Theorem 9.3.

We start the proof by rearranging columns and rows of r(0), p and s, simultane-

ously.

Step 1. Choose one column of p, say column 1, and find all columns related to

1. Rearrange these columns to the left of p. We denote this changed distribution

by T1p, where T1 is a matrix operator in step 1. T1p is a fixed point of PARFUM

such that columns 1 to n1 are related and not related with any other columns.

Step 2. Next, we rearrange rows of T1p. All rows such that
∑n1

1 T1pi,j �= 0 are

moved to the upper part of the matrix. Let us assume that we have found m1 rows

in this manner; hence, in this step we have obtained the matrix T2T1p with the

‘lower-left’ sub-matrix consisting of 0s (it can of course happen that m1 = K).

If m1 < K , then we claim that upper-right sub-matrix of T2T1p consists of 0s.

Otherwise, there exists T2T1pi∗,j∗ > 0 where i∗ ≤ m1, j∗ > n1. By the construction,

there exists j∗∗ ≤ n1 satisfying T2T1pi∗,j∗∗ > 0; thus, columns j∗ and j∗∗ are related,

which is impossible because we have chosen all n1 related columns already.

Step 3. By induction we can rearrange the whole p, finding all related columns,

hence the matrix transformation T3 of this step can be written as

T3p = T l
2 T

l
1 T

l−1
2 T l−1

1 . . .T 1
2 T

1
1 p

and the obtained matrix can be written as

T3p =




Ŵ1

Ŵ2

. . .

Ŵl




Step 4. In this step we rearrange Ŵi such that corresponding to columns of Ŵi

weights are in increasing order. We also combine Ŵi and Ŵj if their corresponding

columns weights are equal. After this step we obtain the following matrix.

T4T3p =




�1

�2

. . .

�r




such that weights wi corresponding to columns of sub-matrices �i satisfy w1 <

w2 < . . . < wr , r ≤ l.
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All matrix operations were performed on p, r(0) and s. From now on, when

we refer to p, r(0) or s, we mean T4T3p, T4T3r(0) or T4T3s, respectively.

Since the problem is feasible, there exists a solution s satisfying the marginal

constraints q that is absolutely continuous with respect to the starting point r(0).

After transformations in Steps 1–4, we get that

p =
[

�1 01

02 �others

]
,

where 01 and 02 are matrices of zeros with respective sizes and

�others =




�2

�3

. . .

�r


 .

The rearranged solution is:

s =
[

�1 �2

�3 �4

]
,

where the sizes of respective matrices in p and s are the same. Let �1 and �1 be

m1 × n1 matrices. In order to prove our theorem, we must show that r = 1 and

hence that p = �1. Suppose on the contrary that r > 1, then w1 has to be smaller

than, 1 since w2 > w1. By the definition of weight, we get

qj

p.,j

= w1, j = 1, 2, . . . , n1,

qi

pi,.

= 2 − w1, i = 1, 2, . . . , m1.

If we denote the sum of all elements of the matrix X by ‖ X ‖, then we get

n1∑

j=1

qj = w1

n1∑

j=1

p.,j = w1 ‖ �1 + 02 ‖= w1 ‖ �1 + 01 ‖

= w1

m1∑

i=1

pi,. =
w1

2 − w1

m1∑

i=1

qi .

Since w1 < 1, w1
2−w1

< 1, so from the above we get that
∑n1

j=1 qj <
∑m1

i=1 qi .

The solution s satisfies the marginal constraints q, hence from the above we get

‖�1 + �3‖ =
n1∑

j=1

qj <

m1∑

i=1

qi = ‖�1 + �2‖,

which implies that

‖�2‖ > ‖�3‖ ≥ 0.
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From the above, it is seen that there exists at least one cell in �2 that is non-zero.

Let si∗,j∗ > 0, i∗ ≤ m1, j∗ > n1. s is absolutely continuous with respect to r(0),

hence r(0)i∗,j∗ > 0. Notice also that pi∗,j∗ = 0, since it is one of the elements of 01.

We have a situation where a non-zero cell in the initial distribution r(0) con-

verges to zero by the PARFUM algorithm. Let us consider the following.

1

2

(
qi∗

r(n)i∗,.
+

qj∗

r(n).,j∗

)
→

1

2

(
qi∗

pi∗,.
+

qj∗

p.,j∗

)
= λ,

where r(n) denotes nth step of the PARFUM algorithm. The (n + 1)th step of

PARFUM algorithm is given

r(n + 1)i∗,j∗ =
r(n)i∗,j∗

2

(
qi∗

r(n)i∗,.
+

qj∗

r(n).,j∗

)
.

Since r(n)i∗,j∗ → 0 as n → ∞, there exists a monotonically convergent sub-

sequence of r(n)i∗,j∗ that converges to zero. Hence

λ ≤ 1. (9.11)

Since i∗ ≤ m1,
qi∗
pi∗,.

= 2 − w1. We also know that
qj∗
p.,j∗

= wf , where 1 < f < r

and w1 < wf . Hence

λ =
1

2

(
qi∗

pi∗,.
+

qj∗

p.,j∗

)
=

1

2
(2 − w1 + wf ) >

1

2
2 = 1.

This contradicts (9.11); hence r = 1 that implies that p has both margins equal to

q and hence p is a solution. �

Remark 9.2 Note that in the proof of Theorem 9.3, both margins are equal to q.

The proof will be valid if the margins are different.

9.9.2 IPF and PARFUM

Relationship between IPF and PARFUM IPF and PARFUM algorithms are

both easy to apply. In case of a feasible problem, IPF converges quite fast to the

I -projection of a starting distribution onto a set of distributions with given margins.

Some remarks about the ‘speed’ of convergence can be found in Haberman (1974).

For infeasible problems in two dimensions, IPF oscillates between two distributions

(Csiszar and Tusnady (1984)). The PARFUM algorithm is shown to have fixed

points minimizing an information functional, even if the problem is not feasible,

and is shown to have only feasible fixed points if the problem is feasible. The

algorithm is not shown to converge, but the relative information of successive

iterates is shown to converge to zero. The PARFUM algorithm is slower then IPF.

We show now that for two-dimensional problem there is a relationship between

fixed points of PARFUM and oscillation point of IPF.
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Proposition 9.5 Let r be a fixed point of PARFUM and let p, q be I-projections of

r onto Q1 and Q2, respectively, then q is the I-projection of p on Q2 and p is the

I-projection of q on Q1.

Proof. We get

pij = rij

ai

ri,·
(9.12)

and

qij = rij

bj

r·,j
. (9.13)

Since r is a fixed point of PARFUM algorithm, r = 1
2
(p + q), hence from (9.12)

pij =
1
2
(pij + qij )ai

1
2
(pi,· + qi,·)

.

Since p ∈ Q1, pi,· = ai , and from the above we get

pij (ai + qi,·) = (pij + qij )ai .

Hence

qij

pij

=
qi,·

ai

.

Similarly, from (9.13)

qij

pij

=
bj

p·,j
.

Now, assuming that z is an I -projection of p onto Q2 we get that zij = pij
bj

p·,j
,

and from the above

zij

pij

=
bj

p·,j
=

qij

pij

.

Hence z = q. Similarly, we can show that p is an I -projection of q onto Q1. �

We show now that the average of the oscillating distributions of IPF is a fixed

point of PARFUM.

Proposition 9.6 Let p ∈ Q1 and q ∈ Q2 be such that q is the I-projection of p on

Q2 and p is the I-projection of q on Q1, then r = 1
2
(p + q) is a fixed point of the

PARFUM algorithm.

Proof. We notice that for all i = 1, . . . , K , j = 1, . . . , M , pij = 0 if and only if

qij = 0. Hence even rij = 0 if and only if pij = 0. Since

pij = qij

ai

qi,·
qij = pij

bj

p·,j
,
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for all i, j such that pij �= 0

ai

qi,·

bj

p·,j
= 1. (9.14)

To show that r is a fixed point of PARFUM is enough to show that
(

ai

ri,·
+

bj

r·,j

)
= 2.

We get

ai

ri,·
=

ai

0.5(ai + qi,·)
=

1

0.5
(

1 + qi,·
ai

)

bj

r·,j
=

bi

0.5(p·,j + bj )
=

1

0.5
(

1 + p·,j
bj

) .

From the above and using (9.14) we obtain

ai

ri,·
+

bj

r·,j
=


 1

0.5
(

1 + qi,·
ai

) +
1

0.5
(

1 + p·,j
bj

)


 = 2. �

Remark 9.3 Notice that from Propositions 9.5 and 9.6 it does not follow that the

fixed point of the PARFUM algorithm is equal to an average of oscillating distribu-

tions of the IPF algorithm.

In the example below, we illustrate the performance of IPF and PARFUM in

case of an infeasible problem. You can see that the average of oscillating distribu-

tions of the IPF algorithm is different from the fixed point of PARFUM.

Example 9.2 Let us consider a distribution:

p =




0.1 0 0.1 0.1

0 0 0.1 0.1

0.1 0 0 0

0.1 0.1 0.1 0.1


 .

We would like to find the closest distribution to p, in a sense of relative information,

with both margins equal to a = b = [0.05, 0.45, 0.45, 0.05].

Clearly, this problem is infeasible. The PARFUM algorithm leads to the following

result (marginal distributions printed in bold).

0.05 0.0000 0 0.0491 0.0009

0.45 0 0 0.4009 0.0491

0.25 0.2500 0 0 0

0.25 0.0000 0.2500 0.0000 0.0000

0.25 0.25 0.45 0.05
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The IPF algorithm cycles between following two distributions.

0.05 0.0000 0 0.0450 0.0050

0.45 0 0 0.4050 0.0450

0.05 0.0500 0 0 0

0.45 0.0000 0.4500 0.0000 0.0000

0.05 0.45 0.45 0.05

0.05 0.0000 0 0.0450 0.0050

0.45 0 0 0.4050 0.045

0.45 0.4500 0 0 0

0.05 0.0000 0.0500 0.0000 0.0000

0.45 0.05 0.45 0.05

The average of oscillating distributions of IPF is:

0.05 0.0000 0 0.0450 0.0050

0.45 0 0 0.4050 0.0450

0.25 0.2500 0 0 0

0.25 0.0000 0.2500 0.0000 0.0000

0.25 0.25 0.45 0.05

Let us denote the PARFUM result by pPAR and the oscillating distributions

of IPF by p1
IPF and p2

IPF. p1
IPF and p2

IPF have column and row margins equal to

[0.05 0.45 0.45 0.05], respectively. Moreover, let us denote the average of oscillat-

ing distributions of IPF as pavr
IPF. Notice that the marginal probabilities in the first

and second rows and the fourth and third columns of pPAR and both p1
IPF and p1

IPF,

as well as pavr
IPF, are 0.05 and 0.45, hence cells in these rows and columns will

be invariant, under projections. Projecting pPAR onto Q1 sets p1
PAR(3, 1) = 0.05

and p1
PAR(4, 2) = 0.45; similarly, taking the projection of pPAR onto Q2 makes

p2
PAR(3, 1) = 0.45 and p2

PAR(4, 2) = 0.05. Now it can be easily noticed that the

projection of p2
PAR onto Q1 is equal to p1

PAR and the projection of p1
PAR onto Q2

is equal to p2
PAR, as assured in Proposition 9.5. Moreover, pavr

IPF is a fixed point of

the PARFUM algorithm. However, the average of oscillating distributions of IPF

is not equal to the PARFUM result.

pPAR and pavr
IPF have the same marginal distributions, hence the sum of relative

information obtained with respect to required margins is the same and equal to

0.3681. However, the relative information of pPAR and pavr
IPF with respect to the

starting distribution p are 0.9407 and 0.9378, respectively. From the above, we

conclude that the best distribution for this problem is pavr
IPF.

Results of this subsection, however, do not generalize to higher dimensions. It

is not clear that in case of infeasibility, in higher dimensions, the IPF algorithm

will oscillate. Moreover, using arguments similar to those of Proposition 9.5, we

can easily see that already for the three-dimensional problem, projections of a fixed

point of PARFUM, do not give an oscillating triple for IPF.
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Generalizations of IPF and PARFUM For easier presentation of both the IPF

and the PARFUM algorithms we have assumed that both required margins are from

SK . This can be trivially extended. Moreover, the results presented in Section 9.3

can be generalized to higher dimensions (M > 2). Iterative algorithms can easily be

adopted to satisfy joint and marginal constraints (Kullback (1971)). Generalizations

of the IPF to the continuous case have been introduced in Ireland and Kullback

(1968); Kullback (1968). However, the convergence of the IPF in the continuous

case, under certain regularity conditions, was proven much later in Rüschendorf

(1995). We present here a general formulation of IPF and PARFUM following a

very compact notation used in Whittaker (1990).

Let N = {1, 2, . . . , n} and XN = (X1, . . . , Xn). Suppose that XN is portioned

into two sub-vectors XN = (Xa, Xb). Let the starting distribution be denoted by g0
ab

and the required margins as [fa, fb]. The IPF procedure scales the rows according to

g2k+1
ab = g2k

ab

fa

g2k
a

= g2k
b|afa, k = 0, 1, . . . (9.15)

and the columns according to

g2k+2
ab = g2k+1

ab

fb

g2k+1
a

= g2k+1
a|b fb, k = 0, 1, . . . (9.16)

until some convergence criterion is met. In this case the PARFUM algorithm scales

the rows according to (9.15) and the columns according to (9.16) and averages them

to produce the next iteration.

gk
ab = gk−1

ab

(
fa

gk−1
a

+
fb

gk−1
b

)
, k = 1, 2, . . . (9.17)

Proposition 9.2 extends easily to this case. We must show that for all distributions P

I (gk−1
b|a fa|P ) + I (gk−1

a|b fb|P ) ≥ I (gk−1
b|a fa | gk

ab) + I (gk−1
a|b fb | gk

ab).

Hence

I (gk−1
b|a fa | P ) − I (gk−1

b|a fa | gk
ab) + I (gk−1

a|b fb | P ) − I (gk−1
a|b fb | gk

ab) ≥ 0.

From the definition of relative information and (9.17), we get that the above inequal-

ity is equivalent to

2I (pk−1
ab | P ) ≥ 0,

which always holds (Kullback (1959)). Using the generalized version of Propo-

sition 9.4 in the preceding text, the proof of Theorem 9.1 goes through in this

case. Using the notation in the preceding text, we must show that if the PARFUM

process is given by (9.17), then

I (gk+1
ab ) | gk

ab) → 0 as k → ∞.
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As in the proof of Theorem 9.1, we define

F(gk
ab) = I (gk

a|bfb | gk
ab) + I (gk

b|afa | gk
ab)

By the generalized version of Proposition 9.2 in the preceding text and because

gk+1
a|b fb, gk+1

b|a fa are projections of gk+1
ab onto sets of distributions with margins

equal to fb and fa , respectively, we get

F(gk
ab) ≥ I (gk

a|bfb | gk+1
ab ) + I (gk

b|afa | gk+1
ab )

≥ I (gk+1
a|b fb | gk+1

ab ) + I (gk+1
b|a fa | gk+1

ab ) = F(gk+1
ab ).

Hence, F(gk
ab) decreases in k and converges. To see that I (gk+1

ab | gk
ab) converges

to zero, pick ǫ and k ∈ N such that

F(gk
ab) − F(gk+1

ab ) < ǫ.

We get

F(gk
ab) − F(gk+1

ab )

≥ I (gk
a|bfb | gk

ab) + I (gk
b|afa | gk

ab) − I (gk
a|bfb | gk+1

ab ) − I (gk
b|afa | gk+1

ab )

= 2I (gk+1
ab | gk

ab).

Hence, I (gk+1
ab | gk

ab) converges to zero.

The above can be presented in a more general set-up by considering a set

{a1, . . . , am} of subsets of N such that no ai is contained in aj and N = ∪ai . The

starting distribution is g0
N and the required margins are the those of the distribution

fN . The IPF algorithm proceeds by cycling through the subsets

a = ai, i = 1, . . . , m

and adjusting each margin in turn by

gk+1
ab = gk

b|afa,

where b = N \ ai .

The PARFUM algorithm adjusts each margin and averages the results to obtain

the next iteration. Denoting ac
i = N \ ai , we obtain

gk+1
ab =

1

m

m∑

i=1

gk
ac
i
|ai

fai
.
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Epilogue: Uncertainty and the

United Nation Compensation

Commission

10.1 Introduction

Continents do not collide with a bang. Systems of reasoning in science and law

are two continents colliding with excruciating languor. Each has its own rules

for dealing with uncertainty, and these rules are very different. In jurisprudence,

the traditional scientific expert simply reports on a scientific consensus, and the

individuality of the expert plays no role, provided he can competently report what

any competent expert would report. Think of the testimony of a ballistics expert.

There is no ‘expert uncertainty’.

However, expert input in legal proceedings is often sought in cases where the

experts are not certain, and where all experts do not say the same thing. Differences

in scientific and legal methods of reasoning under uncertainty were brought sharply

into focus in a recent sitting of the United Nations Compensation Commission

(UNCC) UNCC. A short summary of these events forms a fitting conclusion to

this book.

The Governing Council of the UNCC recently completed 12 years of claims

processing at the UNCC for damage claims against Iraq that resulted from the

1990–1991 Gulf War. Since the appointment of the first panels in 1993, over

2.68 million claims, seeking approximately USD 354 billion in compensation,

have been resolved by the various panels of Commissioners. Awards of approxi-

mately USD 52.5 billion have been approved, representing roughly 14.8% of the

amount claimed.

Uncertainty Analysis with High Dimensional Dependence Modelling D. Kurowicka and R. Cooke
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10.2 Claims based on uncertainty

The final sitting included claims from Kuwait for damage to public health resulting

from the oil fires. These claims were based on modelling the dispersion of partic-

ulate matter from the oil fires, estimating the public exposure and estimating the

health consequences. Although most experts agree that exposure to particulate mat-

ter increases mortality, especially because of heart attack, the actual dose–response

relation is uncertain. The Iraqi lawyers accordingly noted:

In all domestic or international tort law systems, in order to succeed with a

claim for damages, it has to be proven with certainty that damage or harm to

a legally protected interest, for example to health, life or property, has actually

occurred. Statistical evidence that damage might have occurred is not sufficient in

any private law system. (Transcripts, UNCC, Wednesday, 15th September 2004,

p. 28, lines 9–15)

The Kuwaiti claim was based on recognition of the uncertainty in the

dose–response relation. Indeed, they endeavoured to quantify this uncertainty in the

best scientific manner. Figure 10.1 shows the uncertainty of six pre-eminent experts

in this area about the percentage increase in mortality among Kuwaiti nationals in

Kuwait at the time of the fires and the number of excess deaths attributable to the

fires. Evidently, the uncertainties are large.

Equally evident, all experts agreed that there will most likely be excess deaths

due to the oil fires; no one believes that the fires have no effect. Quantifying the

uncertainty in attributable deaths for the Commission means somehow combin-

ing each expert’s individual uncertainties. Figure 10.1 also shows the results of

combining the experts with equal weighting and with ‘performance-based weight-

ing’. The latter is sketched very briefly in Chapter 2, in which further references

are given1. The Kuwaiti lawyers thus acknowledged the uncertainty and based a

claim on the performance-based decision maker’s 35 expected deaths due to the

oil fires.

In adjudicating these claims, the UNCC was free to base its decisions on such

precedents that it may choose from national tort law. The Iraqi lawyers pointed out:

What is the role of statistical evidence in a situation of uncertainty, such as the

present one? In some legal systems, for example the French, Belgian, German or

Austrian systems, in a situation of different potential sources of harm the plaintiff

needs to prove with a probability close to certainty that a given source – in our case

burning oil wells – caused him harm. In others, mostly common law systems, notably

the laws of the US and England, in order to presume causation the plaintiff needs

to show that it is more probable than not – that means that there is a 51 per cent

probability at least – that a certain cause, for example toxic emissions, caused his

1Suffice to say that the experts also assessed uncertainty for changes in mortality in London and

Athens during periods of heightened pollution from particulate matter, as well as fluctuations in con-

centration peaks. Performance on these assessment tasks formed the basis for the performance-based

combination.
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Kuwait percentage increase in mortality
Experts
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Figure 10.1 Increase in mortality among the Kuwaiti national population exposed

to oil fires (above) and the attributable deaths (below). The 90% central confidence

bands are indicated by ‘[, ] ’, 50% central confidence bands by ‘<, >’ and median’s

by ‘#’.

disease. A probability of causation below this threshold is not sufficient to establish a

presumption of causation. (Transcripts, UNCC, Wednesday, 15th September 2004,

p. 31, lines 10–25)

The continents collide when the Iraqi lawyers quip:

The authors [of the Kuwaiti risk assessment] themselves acknowledge that there

is a considerable uncertainty that may lead to estimates of excess death, ranging

from zero to perhaps several hundreds. This shows, also, that the authors were not

very certain of the results. (Transcripts, UNCC, Wednesday, 15th September 2004,

p. 13, lines 3–7)

The authors were quite certain about the uncertainty.
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10.3 Who pays for uncertainty

The state of Kuwait did not argue that specific deaths were caused by pollution from

the oil fires. We never determine ‘the’ cause of a heart attack. Acknowledging the

uncertainty, Kuwait argued that this same uncertainty entailed 35 excess expected

deaths. Does this warrant compensation? The UNCC’s decision was negative:

However, the evidence submitted by Kuwait is not sufficient to demonstrate either

that 35 premature deaths actually occurred or that any such premature deaths were

the direct result of the invasion and occupation. In particular, Kuwait provides no

information on the specific circumstances of actual deaths that would enable the

Panel to determine whether such premature deaths could reasonably be attributed,

wholly or partially, to factors resulting from Iraq’s invasion and occupation. Con-

sequently, Kuwait has failed to meet the evidentiary requirements for compensation

as specified in article 35(3) of the Rules. Accordingly, the Panel recommends no

compensation for this claim unit. (UNCC Decision, June 30, 2005, p. 89)

Significantly, the Commission did not dispute the assessment of uncertainty

leading to 35 expected deaths, but they required that the ‘specific circumstances of

actual deaths’ be reasonably linked to the oil fires. Of course, this places a proof

burden on victims that far exceeds what is scientifically achievable. Statistical

deaths are thus not actionable.

Pithily put, probable guilt is not guilt. This principle has much to recommend

it. We do not wish to return to the jurisprudence of the Inquisition, in which the

severity of sentence for witchcraft or heresy was proportional to the probability of

guilt. Denying the existence of witches was already good grounds for suspicion, as

this would entail belief that the Church was torturing and burning innocent women,

a manifest heresy.

The Inquisitors also invoked experts to remove uncertainty. The typical sen-

tence read: ‘And wishing to conclude your trial in a manner beyond all doubt,

we convened in solemn council men learned in the Theological Faculty and in the

Canon and Civil Laws, and having diligently examined and discussed each circum-

stance of the process and maturely and carefully considered with the said learned

men everything which has be said and done in this present case, we find that you

have been legally convicted of having been infected with the sin of heresy. . . ’. But

mercy tempers justice: ‘But if it should happen that after the sentence, and when

the prisoner is already at the place where he is to be burned, he should say that

he wishes to confess the truth . . . although it may be presumed that he does this

rather from fear of death than for love of the truth, yet I should be of the opinion

that he may in mercy be received as a penitent heretic and be imprisoned for life’

(Kramer and Sprenger (1971, first published in 1486), p. 212, p. 261).

Unlike the present case, the learned Doctors of the Theological Faculty never

faltered in the removal of doubt. Continents collide slowly.
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Plate 1 Cobweb plot for the transfer coefficients in the extended model.
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Plate 2 Cobweb plot for Mission Completion.
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Plate 4 Unconditional cobweb plot.
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Plate 5 Conditional cobweb plot.
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