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Preface

The treatment of uncertainties in the analysis of engineering structures re-
mains one of the premium challenges in modern structural mechanics. It is
only in recent years that the developments in stochastic and deterministic
computational mechanics began to be synchronized. To foster these devel-
opments, novel computational procedures for the uncertainty assessment of
large finite element systems are presented in this monograph. The stochastic
input is modeled by the so-called Karhunen-Loève expansion, which is formu-
lated in this context both for scalar and vector stochastic processes as well as
for random fields. Particularly for strongly non-linear structures and systems
the direct Monte Carlo simulation technique has proven to be most advanta-
geous as method of solution. The capabilities of the developed procedures are
demonstrated by showing some practical applications.

Innsbruck, Christian A. Schenk
March 2005 Gerhart I. Schuëller
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1

Objectives

Complex deterministic systems under deterministic loading are generally an-
alyzed by the finite element method. This is mainly due to the most versatile
applicability of this method as well as the sophisticated solution algorithms
available for purely deterministic analyses, see e.g. [37, 14, 66, 64, 16].
Quite frequently, however, neither the loading nor some structural parame-
ters are deterministic quantities, i.e. they exhibit an inherent randomness and
hence forcing also the response of the system to be an uncertain quantity.
Deterministic analysis thus generally represents only an approximation of the
actual reality, i.e. because of unavoidable uncertainties in the structural prop-
erties as well as in loading processes.
In many cases it suffices to take into account this inherent randomness by
introducing empirically chosen safety factors, tacitly accepting all the disad-
vantages of such an approach, such as overly conservative designs, etc. In this
regard it has to be mentioned, that in the past there was also – due to the
limited computational facilities available – no other possibility of proceeding.
Nowadays, with ever improving modern computational facilities at hand, one
can certainly do better.
Since a stochastic analysis is significantly more involved than its deterministic
counterpart, a large number of the procedures available in stochastic mechan-
ics are applicable only to small systems, i.e. single or multi degree of freedom
systems, respectively, or to structures, where analytical solutions are avail-
able. Consequently, the mathematical and/or mechanical model used in many
of these investigations simplify reality in such a way that the usefulness of the
numerical prediction as a whole might be questionable. Many approaches do
not allow to incorporate statistical data of measurements into the analysis.
For example, the assumption of homogeneity or stationarity of a stochastic
process is most often an idealization and hence a restriction, yet this mathe-
matical model rarely fits the data.
From the awareness of the random properties of the parameters in struc-
tural analysis the field of stochastic mechanics in the late fifties of the last
century has emerged. See e.g. [124, 119] for a state-of-the-art review on

C.A. Schenk, G.I. Schuëller: Uncertainty Assessment, LNACM 24, pp. 1–7, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 1 Objectives

the developments and the current status of the fields of stochastic struc-
tural analysis and reliability in general and computational stochastic me-
chanics in particular. Still, in 2004, the analysis of large finite element sys-
tems involving uncertain quantities is subject of intensive research efforts, see
e.g. [67, 118, 120, 125, 126]. The information captured by the stochastic re-
sponse, either in terms of statistical moments or in probability densities, is
considerably more comprehensive than that of the deterministic response –
which in fact describes what one could compare to the mean function only.
The acceptance of the notion of a stochastic analysis in engineering practice
is strongly related to the state-of-the-art of deterministic analysis as used
within the stochastic analysis, hence implying that stochastic analysis is in
competition with deterministic analysis. It thus seems to be advantageous, to
incorporate deterministic algorithms and approaches into a stochastic analysis
wherever this is feasible. This ensures on one hand, that current developments
in deterministic mechanics can be directly exploited and on the other hand,
that engineers familiar with deterministic mechanics might feel more comfort-
able with stochastic approaches.

These introductory remarks allow to define the objectives of this mono-
graph, which are in the description of the computational procedures allowing
the performance of an uncertainty analysis of large finite element systems.
Special attention is devoted to the applicability of the developed procedures
in the engineering practice, i.e. the procedures should

(i) be capable to handle large finite element systems,
(ii) rely on a high degree on deterministic solution algorithms in order to allow

the to use of commercial finite element packages,
(iii) be able to incorporate measured data if available.

Part II of this monograph encompasses the theoretical background of the
methods subsequently used for practical applications as discussed in Part III.
Some of these procedures are well known and hence summarized only briefly.
The rational treatment of uncertainties forms the basis of the developments as
outlined in this monograph. For this purpose the notions of random variables,
processes and fields, respectively are described and discussed. Their Gaus-
sian properties play a central role in the theory as well as in the application of
stochastic methods. The most common representations of stochastic processes
are spectral representation, Karhunen-Loève and polynomial chaos represen-
tation, respectively, as well as wavelets representation, where for practical
applications the Karhunen-Loève expansion [73] of the covariance function
proves to be most efficient. Since it is applicable for Gaussian processes only,
uncertainties in terms of second statistical moments (variances) can be quanti-
fied easily, even for larger structural systems.The polynomial chaos expansion
can be viewed as a generalization of the Karhunen-Loève expansion and is
also applicable for non-Gaussian processes and fields, respectively.
The most generally applicable tool to compute the response of stochastically
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excited structures – with either deterministic or stochastic properties respec-
tively – is the Monte Carlo simulation procedure, see e.g. [45]. It is based on
random sampling, where the laws of statistics are exploited to derive informa-
tion on the variability of the response. For calculating the confidence in the
calculated response, statistical estimation procedures are applied. This also
governs the number of simulations required to reach a certain accuracy of the
estimator.
For non linear systems the method of statistical equivalent linearization is ap-
plied quite frequently. While the Monte Carlo simulation procedure provides
the information of the entire probability structure, this method provides only
the second order statistics of the response, see e.g. [102, 109].
For larger non linear finite element systems, maintaining the superposition
principle that is applicable for linear systems is of paramount importance,
particularly for computational efficiency. Again, the basic idea for the compu-
tation of the stochastic response is based on the Karhunen-Loève expansion of
the stochastic loading. This is accomplished by computing for each Karhunen-
Loève vector of the loading the corresponding Karhunen-Loève vector of the
response. Since not all second moment characteristics of all degrees of freedom
are of equal importance, the computational efforts can be reduced significantly,
i.e. by reduction of the dimension of the problem.

In order to place the procedures described in this monograph into perspec-
tives, historical and also other current developments are illuminated below.
In this context, two areas of particular practical interest are treated in de-
tail, i.e. the stability analysis of systems with random imperfections and the
dynamic analysis of deterministic systems subjected to stochastic loading, re-
spectively.
The stability problem of thin shell structures has received worldwide partic-
ular attention because of the distinct discrepancy between experiments and
classical numerical prediction of the buckling loads. The combined effects of
non-linearity and imperfections, respectively, are the reason for this discrep-
ancy and, moreover, for the large scatter observed in experimentally deter-
mined limit loads [15, 61].
So far most of the research work carried out in this field concentrates on
the effects of traditional, i.e. geometric imperfections. However, other sources
of imperfections may have also a strong effect on the critical load, such as
thickness imperfections, non-perfect boundary conditions, misalignment in
the loading, fluctuations in material properties, etc. In this context – and
already at an early stage – measurements of geometric imperfections revealed
that even shells from the same manufacturing process differ in shape and
magnitude. It is this inherent randomness in geometric and also other im-
perfections, introduced during the production and construction process, that
reduces the evidence of deterministic predictions of the critical load in par-
ticular of cylindrical shells considerably. Therefore, the design of thin shell
structures at present based on either deterministic classical, asymptotic or
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general non-linear analysis, respectively, still needs to be corrected on the ba-
sis of experimental data by using empirical, so-called ”knock down” factors,
leading to potentially overly conservative designs. This lower bound concept
may be justified in cases where the total weight of the shell structure as well
as the cost of the material do not play a significant role in the design process.
In all other cases, a more general stability analysis should be applied taking
into account the stochastic nature of the stability behavior of shells.
Nowadays highly sophisticated numerical methods are available, which are
capable to incorporate several sources of imperfections into the analysis. How-
ever, these imperfections are described by means of deterministic parameters,
allowing not to predict the aforementioned scatter in the critical load observed
in experiments. Under these circumstances it seems to be quite natural to in-
troduce a concept for a stability analysis, which allows to take into account
the uncertainties in order to be able to predict the complex stability behav-
ior of thin shell structures. It should be noted, that such an analysis should
rest on the same sophisticated mechanical and mathematical formulations in
structural stability as its purely deterministic counterpart (e.g. in terms of
worst case studies) and thus yielding more realistic results.

A probabilistic approach in structural stability for imperfection sensitive
structures dates already back to the late fifties (see e.g. [19]), followed by
several other investigators, e.g. [46], [2], [110] and [58]). However, due to the
lack of experimental evidence about the type of geometric imperfections that
occur in practice, the aforementioned investigators had to work with some
form of idealized, i.e assumed, imperfection distribution. A numerical mea-
sure for the significance of the various possible shapes of imperfections on the
buckling strength of a structure in terms of reliability analysis is suggested in
[87]. The Fourier coefficients of measured imperfections are treated in [42] as
random variables, whereby the histogram of the limit load has been obtained
either by Monte Carlo simulation or approximate methods. Common to these
approaches, see also [7, 28, 159, 137], is the determination of the critical load
by means of analytical or semi-analytical procedures. This may also be the
reason for the stochastic representation of geometric imperfections by means
of a two dimensional Fourier series with random Fourier coefficients, since an
analytical buckling analysis of e.g cylindrical shells yields a two dimensional
Fourier series representation of the critical modes.
It is well known, that severe shortcomings of analytical or semi-analytical ap-
proaches, respectively, for predicting buckling, are on one hand their limited
capability in modeling more complex shell structures and on the other hand
the implementation of a more general type of imperfection. For example, many
practical applications of cylindrical shells do require the presence of either re-
inforced or unreinforced large cutouts, which are in most cases not amenable
for analytical solutions (see e.g. [1, 144, 156, 127, 164, 60, 145, 149, 3]) and
require in general a non-linear analysis. Moreover, linear bifurcation the-
ory can not take into account significant stress redistributions taking place
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near the edges of the cutouts, leading possibly to overly conservative re-
sults. It is thus clear, that more modern approaches which consider random
imperfections, the finite element method is the method of first choice, see
e.g. [18, 31, 32, 83, 71, 138, 17, 8, 146], where some idealized second moment
properties of imperfections have been assumed in most cases. Considerable
research has been done in the field of axially compressed cylindrical shells
with random traditional, i.e. initial geometric imperfections, but to the au-
thors knowledge no studies on the individual and combined effects of random
boundary imperfections and random geometric imperfections on the buckling
behavior of axially compressed cylindrical shells exist. As pointed out in [4],
the sensitivity of anisotropic shells to boundary imperfections may exceed sig-
nificantly that of traditional geometric imperfections, implying that boundary
imperfections do have a crucial influence on the value as well as on the scatter
of the limit load. Several studies have been presented dealing with the effect
of a in thin shell structures, see e.g. [59]. Again, to the authors’ knowledge,
the effect of random geometric imperfections on the critical load of axially
compressed cylindrical shells with a cutout has not been investigated so far.
This may partially be due to the fact, that – depending on the size of the
cutout – the cutout itself represents a predictable imperfection that might
be more significant than unavoidable geometric imperfections. In this case, of
course, there is no need to incorporate imperfections into the analysis. How-
ever, if the cutout is small, e.g. the effect of the imperfection introduced by
the cutout lies in the range of that of geometric imperfections, also geometric
imperfections should be incorporated into the analysis.

The various methods available to analyze large deterministic linear finite
element systems subjected to Gaussian white or linearly filtered Gaussian
white noise, respectively, can be distinguished into methods operating in the
time or in frequency domain, respectively, see e.g [36, 72, 141, 75]. The re-
sponse in this case is also Gaussian and these methods rationally quantify
the uncertainties in structural analysis in terms of statistical second moment
characteristics, i.e. the mean, covariance and/or the power spectral density
function, respectively. For stationary solutions of linear structures, the spec-
tral density of the response can be computed from the spectral density of the
excitation using frequency response functions in the frequency domain. Solu-
tions for non-stationary excitation, particularly in the frequency domain, are
rather involved and even intractable for larger finite element systems. In this
case, quite frequently, methods for the solution of the so-called Lyapunov ma-
trix differential equation in the time domain (e.g. [53]), are applied. Whether
or not systems are proportionally damped, the solution of the Lyapunov equa-
tion can be transformed into a reduced subspace using either modal analy-
sis or complex modal analysis, respectively, thus being able to calculate the
stochastic response of large finite element structures efficiently. However, in
these cases, the white noise input process is quite often filtered and/or mod-
ulated in time, see e.g. [163, 81] for a more sophisticated model of earthquake
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excitation. Excitation models based on white noise do work well for single
and multi degree of freedom systems, see e.g. [89, 10], but are not adequate
for finite element models with thousands of degrees of freedom, because of
unrealistic high frequency excitations and responses, respectively. Moreover,
white noise always represents a mathematical abstraction of a real excitation
process and hence may not easily adjusted to second moment properties of
potentially available statistical data. Alternatively, the excitation can be for-
mulated by the Karhunen-Loève representation (e.g. [39, 73, 49, 98, 139]). For
a finite number of terms, the associated Karhunen-Loève representation of
the response can be determined quite easily by deterministic analysis and the
frequency range can be controlled in a simple manner.

The situation is quite different for non-linear systems subjected to addi-
tive and/or multiplicative Gaussian white noise, where the response forms
also a vector Markov process. It has been revealed by a benchmark study on
non-linear stochastic structural dynamics [148, 123], the procedures available
to analyze such systems are limited – with only a few exceptions – to multi
degree of freedom systems, see e.g. [96]. Methods for calculating higher or-
der moments or response probabilities like the so-called moment equations or
Fokker-Planck equations increase in complexity at least exponentially with the
state space dimension. Hence so far they are not applicable to larger systems.
Approaches based on the numerical solution of the Fokker-Planck equation us-
ing Galerkin, finite element and path integral methods, respectively, are fea-
sible only for state space dimensions up to four, see e.g. [143, 82, 63, 155, 158]
. The exceptions mentioned above which are capable to analyze the stochastic
response of large systems are Monte Carlo simulation, see e.g. [152, 56] and
equivalent statistical linearization, see e.g. [102]. Reviewing the literature with
respect to equivalent statistical linearization, it is apparent that procedures
for general non-linear elements have not been developed and tested to such a
degree that this linearization technique can be recommended for general use.
Research has been devoted almost exclusively to one-dimensional elements,
where the so-called “Bouc-Wen” hysteretic model, see e.g. [12], has been dis-
cussed and studied most extensively.
A multi-dimensional non-linear element requires a numerical integration in the
dimension according to the length of the state vector describing the element -
obviously this is not feasible for higher state space dimensions. Two basic ap-
proaches are available when applying equivalent statistical linearization: Com-
plex modal analysis and stochastic versions of direct step by step integration
schemes. The use of complex modal analysis has been suggested e.g. in [29]
for treating non-stationary filtered white noise excitation for earthquake prob-
lems. Due to the increase in dimension of the system equations and emerging
asymmetric matrices, complex modal analysis is computationally considerably
more involved than classical modal analysis. Hence, complex modal analysis
is not well suited for treating larger finite element systems. Updating proce-
dures, as suggested in [97], based on the solution of the classical eigenvalue
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problem and component mode synthesis overcome the aforementioned short-
comings of complex modal analysis, thus making the analysis of non-linear
finite element systems feasible. Still, this approach cannot be recommended
for non-zero mean problems, where the modal properties change fundamen-
tally in each time step. Stochastic versions of special integration schemes have
been suggested e.g. in [151, 79, 86]. All these proposed procedures operate ex-
plicitly on the covariance matrix and hence – due to storage requirements –
cannot be applied efficiently to finite element systems, particularly for systems
with a large number of degrees of freedom.
Recently a solution technique which avoids the storage and direct integra-
tion of the full covariance matrix has been developed [98, 100]. There it is
suggested that the covariance matrix of the response is represented by a trun-
cated Karhunen-Loève expansion. Continuous white noise is approximated
by discrete noise applied at one instant in each time step. The Karhunen-
Loève vectors can be integrated by any available and appropriate determinis-
tic step by step integration scheme. Due to the discrete white noise loading,
the Karhunen-Loève vectors have to be updated in each time step, rendering
the calculation of the stochastic response rather involved.



2

Outline

The monograph is structured as follows:

Part I including Chapts. 3–6 reviews briefly the theoretical background
of the deterministic methods and procedures as used in subsequent chapters.
From the proposed procedures, particularly from the mathematical point of
view, the so-called spectral theorem is most important. It is particularly use-
ful when dealing with finite dimensional operators.
Part II comprises probabilistic methods and procedures relevant for the practi-
cal applications shown in Part III. Starting with a general chapter on the ratio-
nal treatment of uncertainties in computational stochastic mechanics (Chap.
7), the focus of Chapt. 8 lies on the discrete version of the Karhunen-Loève ex-
pansion. Well known tools in computational stochastic mechanics such as the
Monte Carlo simulation technique and equivalent statistical linearization are
treated in Chapts. 9 and 10. Chapter 11 describes an efficient procedure for
the calculation of statistical second moment characteristics of large linear and
non-linear finite element systems subjected to stochastic dynamic loading.
Some practical applications of the procedures treated in Part I and II are
shown in Part III. Chapter 12 concentrates on the uncertainty assessment of
large non-linear imperfection sensitive finite element systems, special empha-
sis is given to the stability analysis of axially compressed cylindrical shells.
Chapt. 13 is devoted to random vibration problems, in particular to the cal-
culation of the response of a large 6-story office building subjected to dynamic
stochastic loading.
The monograph is concluded with Part IV. Appendix A describes briefly an
imperfection database, which provided the basis for the estimation of the
second moment properties of geometric and boundary imperfections, respec-
tively, of cylindrical shells. For the sake of completeness, the fundamentals of
the Lyapunov matrix differential equation are shown in Appendix B.
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Spectral Analysis of Finite Dimensional
Operators

A great number of engineering problems can be viewed as an input to output
mapping, as shown in Fig. 3.1, where the system represents the law for the
mapping between input and output. Mathematically speaking, the system
represents an operator, which transforms input to output. The systems treated
in this monograph can be described most generally in the form

Lu(t) = f (t) , (3.1)

where L denotes the operator, u(t) denotes the displacement vector and f(t)
is an external force vector. In particular, the operator for dynamical non-
linear finite element systems can be written, denoting M as the mass matrix,
according to

LDu(t) = M
d2u(t)

dt2
+ r

!
u(t),

du(t)
dt

#
= Mü(t) + r(u(t), u̇(t)) , (3.2)

while for systems where inertia and damping forces can be omitted, L reads

LSu(t) = r(u(t)) . (3.3)

In both equations (3.2) and (3.3), r(·) denotes a non-linear restoring force
vector which is governed by the state of the system. It is known from ex-
perimental data that loading conditions, geometry, material properties, etc.
exhibit inherent fluctuations, that can generally not not be described by de-
terministic means. Fluctuations or variations in the system input cause also
fluctuations in the system output. In this monograph, the external force vec-
tor f(t) in (3.2) and the initial state of the displacement vector u(0) in (3.3)
are considered to be uncertain, i.e. these quantities can be represented by
stochastic processes. The Karhunen-Loève expansion, see Chap. 8, will be
used in order to model the second moment statistics of f (t) in (3.2) and u(0)
in (3.3), so that the integral operator LK defined by

LKψ(s) =
 b

a

Γ (t, s)ψ(s)ds , (3.4)
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where Γ (t, s) denotes the covariance kernel of the stochastic input and ψ(s) a
corresponding eigenfunction, is of paramount importance for the subsequent
chapters. Although (3.2) and (3.3) describe non-linear operators, the solution

Input System Output

Fig. 3.1. Schematic drawing of a general mechanical system.

of these equations will be obtained by some type of piecewise linearization.
Keeping this in mind, equations (3.2)–(3.4), i.e. matrix differential (LD), ma-
trix (LS) and integral equations (LK), respectively, can be treated in a uni-
fied manner by linear operator theory, see e.g. [84]. In this regard, it is worth
mentioning that in computational stochastic mechanics, due to necessary dis-
cretization, equations (3.2)-(3.4) are always defined over finite dimensional
domains.

In this chapter, a brief overview is given of the theoretical background
needed for the development of computational procedures in order to solve
(3.2) and (3.3) in context with (3.4). Hereby, the so-called spectral theorem of
linear, finite dimensional, symmetric operators plays a central role. As already
mentioned, the spaces over which (3.2)-(3.4) are defined are - due to spatial
and/or temporal discretization - always finite dimensional. As a consequence,
one can leave aside topological considerations (Cauchy sequence, complete-
ness, etc), i.e. one has not to resort on the theory of infinite dimensional
Hilbert spaces. This would be necessary, for example, if distributed parame-
ter systems or continuous stochastic processes are considered. The reason why
finite dimensional vector spaces are much more easier to deal with is based
on the following statements [84]:

(i) all finite dimensional normed linear spaces are Hilbert spaces,
(ii) every linear subspace of a finite dimensional normed linear space is closed,
(iii) boundedness implies total boundedness, and
(iv) all linear transformations are continuous.

A most important consequence of these statements is that convergence of
an orthogonal series in such finite dimensional spaces is not an issue. It is
well known, that finite dimensional linear transformations can be represented
by matrices, a representation of linear operators which is extensively used in
computational mechanics. A linear transformation and its matrix representa-
tion, however, are not the same. While a linear transformation defines a rule
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for assigning the input to the output, the corresponding matrix represents the
transformation relative to the bases of the input and output.

Let L be a linear symmetric operator defined on a finite dimensional vector
space V = Rn. Basically, the idea of the spectral theorem is to break up V into
a finite number of parts in such a way, that the operation of L on each part is
particularly simple. In this context, the definition of orthogonal projections Pi

appears to be useful. Orthogonal projections satisfy the following conditions:
a) Pi is linear and b) P 2

i = Pi (idempotent), see e.g. [57]. The so-called
resolution of the identity, {Pi}n

i=1 satisfies the condition

n'
i=1

Pi = 1 . (3.5)

This allows to define the spectral theorem. Let {Pi}n
i=1 be a resolution of the

identity on a finite dimensional normed linear vector space and let

L =
n'

i=1

λiPi , (3.6)

where {λi}n
i=1 are distinct scalars. Then there exists an orthonormal basis

{φi}n
i=1 of eigenvectors of L, defined by

Lφi = λiφi . (3.7)

Moreover, every vector x ∈ V can be written in the form (using (·) for the
inner product)

x =
n'

i=1

(x, φi)φi (3.8)

and

Lx =
n'

i=1

λi(x, φi)φi . (3.9)

Equation (3.8) represents the well known expansion theorem. By comparing
(3.5) with (3.9) one obtains

Pi = φiφ
T
i (3.10)

and it follows that Pi = PT
i . Especially useful when dealing with matrices, the

spectral theorem can be formulated in a different manner. Let V be a finite
dimensional vector space and L : V → V be a symmetric linear operator. Then
there is a basis {φ}n

i=1 in V , that the matrix Λ that represents V in this basis
is a diagonal matrix, i.e.

Λ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 . (3.11)
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It follows from above, that the spectral theorem for a linear operator L with
respect to its matrix representation L represents an eigenvalue decomposition
of L, i.e.

Lφi = λiφi . (3.12)

Some important properties of the eigenvalue decomposition of real, symmetric
matrices are, see e.g. [78]:

(i) all eigenvectors φ and eigenvalues λ are real,
(ii) two eigenvectors corresponding to distinct eigenvalues are orthogonal,
(iii) eigenvalue λi with algebraic multiplicity mi does have exactly mi linearly

independent corresponding eigenvectors (not uniquely defined), i.e. {φ}mi

i ,
which can be rendered to be orthogonal (algebraic multiplicity is equal ge-
ometric multiplicity), thus

(iv) L is non-defective (i.e. algebraic multiplicity does not exceed geometric
multiplicity),

(v) L is diagonalizable by means of a similarity transformation of its modal
matrix Φ, i.e. ΦT LΦ = Λ, where the eigenvalue matrix Λ is defined
according to (3.11) and

Φ =
�
φ1 φ2 · · · φn

�
. (3.13)

While the eigenvalue problem of a single matrix is often referred to the
standard eigenvalue problem and is needed e.g. in context with a linearized
buckling analysis (see Sec. 5.4), the eigenvalue problem of a real symmetric
matrix K and a real symmetric positive definite matrix M given by

Kφi = λiMφi , (3.14)

is denoted as the generalized eigenvalue problem, which occurs in the dynamic
analysis of finite element systems in context with mode superposition meth-
ods. In principal, the generalized eigenvalue problem can be reduced to the
standard eigenvalue problem by a Cholesky decomposition of M , i.e.

M = RT R . (3.15)

By substituting (3.15) into (3.14) one obtains the standard eigenvalue problem

K̃φ̃i = λiφ̃i , (3.16)

where
φ̃i = Rφi , K̃ = (R−1)T KR−1 . (3.17)

It should be mentioned that if the eigenvalues φ̃i of K̃ are scaled such that
they are mutually orthonormal, i.e.

φ̃iφ̃j = δij , (3.18)
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where δij is the Kronecker delta, then the eigenvectors φ associated with
(3.14) are normalized such that

φT
i Mφj = δij , φT

i Kφj = λi (3.19)

holds.
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Finite Element Method

In this chapter, the fundamentals of the displacement-based finite element
method are reiterated in a concise form, details can be found in a number of
textbooks and the references therein. For larger finite element systems, model
reduction techniques are commonly applied in order to save computational ef-
forts, so that in this chapter two most commonly applied model reduction tech-
niques – the mode displacement method and the mode acceleration method
– are reviewed. Various formulations of the finite element method have been
developed in the past years, e.g. the displacement-based finite element for-
mulation and several mixed finite element formulations. However, the most
frequently used formulation of the finite element method is the displacement-
based formulation, i.e. the displacements are the unknown variables which
have to satisfy certain boundary conditions. Once the displacements have been
determined, strains and stresses can be calculated. The displacement-based
finite element analysis can be derived by the principal of virtual displacements
(or work), which in turn is equivalent to setting the first variation of the total
potential energy equal to zero. The principal of virtual work can be cast into
the form, see e.g. [14], 

V

�̄T τ dV� �� �
internal virtual work

=
 

V

ūT fB dV +
 

Sf

ūT
S fS dS +

'
i

ūiT f i
C� �� �

external virtual work

, (4.1)

implying that the total internal virtual work is equal to the total external vir-
tual work. In (4.1) the virtual displacements are denoted by ū, �̄ denote the
corresponding virtual strains and fB , fC and fSf

are the externally applied
body forces (per unit volume), surface tractions (per unit surface area) and
concentrated forces, respectively. For a structure with given geometry, applied
forces, boundary conditions, material stress-strain law and initial stresses, re-
spectively, the displacements u and associated strains � and τ can be calcu-
lated. The vector τ contains the correct stresses if and only if (4.1) is satisfied
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for any arbitrary virtual displacement field ū that is continuous and zero at
and corresponding to the prescribed displacements on the surface [14].

The displacements u(e) of each element in element specific (local) coordi-
nates are related to all displacements u in global coordinates by the so-called
displacement interpolation matrix H(e), i.e.

u(e) = H(e)u . (4.2)

In a similar way, the element strains �(e) can be calculated

�(e) = B(e)u , (4.3)

where B(e) is the strain-displacement matrix. The element stresses τ (e) are
related to the element strains and the initial stresses τ I(e) according to

τ (e) = C(e)�(e) + τ I(e) , (4.4)

where the material law for each element is specified in C(e). Assuming unit
virtual displacements in (4.1), together with (4.2)–(4.4) one arrives, e.g. for
undamped dynamical systems, at the linear equation of motion

Mü + Ku = f , (4.5)

where the mass and the stiffness matrix is given by

M =
'

e

 
V (e)

ρ(e)H(e)T H(e)dV (e) (4.6)

and
K =

'
e

 
V (e)

B(e)T C(e)B(e)dV (e) , (4.7)

respectively. The load vector is specified by

f = fB + fC − f I + fC , (4.8)

where the components of f are defined by

fB =
'

e

 
V (e)

H(e)T fB(e)dV (e) , (4.9)

fS =
'

e

 
S

(e)
1 ,...,S

(e)
q

HS(e)T fS(e)dS(e) (4.10)

and
f I =

'
e

 
V (e)

B(e)T τ I(e)dV (e) . (4.11)

The approximation in the finite element method lies in the approximation of
the differential equilibrium, while the nodal point equilibrium and the element
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equilibrium are – independent from the mesh used – always satisfied. Thus
for the nodal point equilibrium the following relation holds

r =
'

e

 
V (e)

B(e)T τ (e)dV (e) ≡ f , (4.12)

where r denote the element nodal point forces. This relation represents, most
generally, the starting point of a non-linear finite element analysis.
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Non-Linear Static Analysis

The state of the art in the capability to predict the stability behavior of shell
structures refers to areas such as asymptotic analysis [69] and general non-
linear analysis (see e.g. [16, 30]). In both approaches, the solution of equilib-
rium equations under variation of a number of parameters such as load level,
imperfection magnitude etc., is necessary. Of paramount interest is the de-
termination of the so-called critical points. Two fundamental problems have
to be distinguished in the field of structural stability: the buckling problem
and the collapse or snap-through problem, respectively. The corresponding
critical points are denoted as bifurcation points and limit points. By defini-
tion a bifurcation point describes the equilibrium state of a structure where
distinct non-interacting solutions are possible. The limit point on the other
hand characterizes the local maximum of the load-deflection curve. Contrary
to perfect structures, imperfect structures do not show a clear separation of
response modes. Instead, the response is a combination of all excited modes.
Depending on the magnitude of the imperfection, it is possible that bifurca-
tion points may vanish.
Asymptotic analysis rests on perturbation theory by expanding the solution
into a power series, being asymptotically exact at the bifurcation point. While
asymptotic analysis has contributed significant physical insight into the buck-
ling process for a certain class of perfect as well as for imperfect shell struc-
tures, the general non-linear analysis allows to determine the equilibrium path
of arbitrary structures. A general non-linear analysis – belonging to the class
of continuation methods – allows to determine the response of a structure that
is not confined to a particular region of the solution space. One of the key
differences between the asymptotic analysis, frequently denoted as Koiter’s
method, and the general non-linear analysis is the use of iteration methods in
the latter one, see e.g. [106]. Early applications of continuation methods were
quite limited because of severe convergence difficulties in the neighborhood
of limit points as well as their low computational efficiency due to necessary
iterations. However, introducing adaptive continuation parameters accompa-
nied by the fast evolution of digital computers, a general non-linear analysis
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is nowadays the most versatile technique for the investigation of the stability
behavior of shell structures.

In a non-linear analysis, the equilibrium of the structure between the ap-
plied load vector f and the element nodal point forces r(u)

tf − tr = 0 , (5.1)

see (4.12), has to be determined. In (5.1) the superscript t describes the state
of the system, rather than the time as used frequently in a dynamic analysis.
Assuming that the equilibrium at state t is satisfied, the equilibrium for the
state t + ∆t

t+∆tf − t+∆tr = 0 (5.2)

is sought. For the element nodal point forces at state t + ∆t one can write

t+∆tr = tr + ∆r , (5.3)

where ∆r denotes the increment in nodal point forces associated with the
increment ∆u of the displacements from t to t + ∆t. In general, the non-
linear function r(u) can be expanded in a first order Taylor series around the
state tu, i.e.

r(u) ≈ r( tu) +
∂r

∂u

(((
tu

(u − tu) , (5.4)

where the Jacobian matrix is frequently denoted as the tangent stiffness ma-
trix

tK =
∂r

∂u

(((
tu

. (5.5)

Now the increment in nodal point forces can be approximated by

∆r = tK∆u . (5.6)

If t+∆tf is independent of the displacement field t+∆tu, i.e. no so-called fol-
lower forces, then the displacement increment can be calculated by substitut-
ing (5.3) and (5.6) into (5.2) yielding

tK∆u = t+∆tf − tr , (5.7)

thus one obtains the displacements at t + ∆t according to

t+∆tu = tu + ∆u . (5.8)

Because (5.8) is just an approximation of the actual displacements at t + ∆t
due to (5.4), iterations are necessary in order to obtain the displacement field
t+∆tu within a given tolerance. The most frequently applied iteration schemes
in a non-linear finite element analysis are the full Newton-Raphson scheme
and the modified Newton-Raphson scheme.
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5.1 Full Newton-Raphson Scheme

A characteristic of the full Newton-Raphson scheme is that the tangent stiff-
ness matrix (5.5) is updated in every iteration s. Thus (5.2) is solved by the
relations

t+∆tK(s−1)∆u(s) = t+∆tf − t+∆tr(s−1) (5.9)

and
t+∆tu(s) = t+∆tu(s−1) + ∆u(s) , (5.10)

where
t+∆tK(s−1) =

∂r

∂u

(((
t+∆tu(s−1)

. (5.11)

The initial condition for each iteration cycle are given by

t+∆tu(0) = tu , t+∆tK(0) = tK , t+∆tr(0) = tr . (5.12)

5.2 Modified Newton-Raphson Scheme

In the full or true Newton-Raphson scheme the major computational time is
spent for updating the tangent stiffness matrix (5.11) in every iteration. In
the modified Newton-Raphson scheme, the tangent stiffness matrix is held
constant as long as no convergence difficulties occur, thus (5.9) is replaced by

τK∆u(s) = t+∆tf − t+∆tr(s−1) , (5.13)

where τK denotes a tangent stiffness matrix corresponding to a previous
calculated equilibrium state. In order to save computational time, the modified
Newton-Raphson scheme is the method of first choice as long the structure
behaves rather linearly. If the non-linearity increases, it may be advantageous
to switch to the full Newton-Raphson scheme because of its faster convergence
when compared to the modified Newton-Raphson scheme.

5.3 Arc-Length Control Technique

In the various Newton-Raphson schemes available, usually the load or the
displacements are parameterized, i.e. increased incrementally. However, when
the solution is close to limit points, convergence difficulties can occur. These
difficulties can be circumvented if some path length parameter is used as
independent parameter. These methods have been introduced first by Riks,
see e.g. [107]. Generally one can rewrite (5.2) for a parameterized loading
according to

t+∆tλf − t+∆tr = 0 , (5.14)
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where t+∆tλ is the unknown scalar load multiplier. This parameter can in-
crease or decrease depending on the state of the structure. For example, (5.13)
can be rewritten as

τK∆u(s) = ( tλ + ∆λ(i))f − t+∆tr(s−1) . (5.15)

Because now n+1 unknowns have to be determined, an additional constraint
equation between the load multiplier λ and the displacements u is required,
most generally given in the form

f(∆λ(i), ∆u(i)) = 0 . (5.16)

5.4 Linearized Buckling Analysis

The so-called fundamental path 0AC of a perfect shell structure is schematized
in Fig. 5.1, its maximum load level is denoted as λlim

nl,p. Along this primary

λ

displacement

λlim
nl,p

λbif
nl

λlim
nl

A

B

C

D

E

F

0

Fig. 5.1. Simplistic load-deflection curve showing limit and bifurcation points. Solid
line: perfect shell structure (fundamental path); dashed line: imperfect shell shell
structure; dashed-dotted line: post-buckling path [25]

path, there might be a bifurcation point at B, denoted as λbif
nl . If the funda-

mental path corresponds to axi-symmetric deformation and the post-buckling
path BD corresponds to asymmetric deformation, than λlim

nl,p of the perfect
structure is of less engineering significance than λbif

nl . For real shell structures
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having unavoidable imperfections, pure bifurcation buckling does not exist. In
this case, the shell structure will follow the path 0EF , a failure mode which
is frequently denoted as snap-through at load level λlim

nl in point E [25].
Limit points λlim

nl , see Fig. 5.1, can be computed by a general non-linear anal-
ysis using the arc-length control technique very accurately, depending on the
tolerances of the iteration process. Also bifurcation points λbif

nl can be de-
tected because the stiffness matrix in this case is singular. However, the exact
value of a bifurcation point is rather difficult to estimate by path following
methods, because the only information one has is that between two subse-
quent states the sign of the determinant of the tangent stiffness matrix has
changed. An accurate estimate of a bifurcation point can be obtained by car-
rying out a linearized buckling analysis based on a non-linear stress state of
the structure. An additional advantage of such a buckling analysis is that it
gives information of secondary solution paths before the bifurcation point has
been passed. In a linearized buckling analysis, it is assumed that the tangent
stiffness matrix between the states t and t + ∆t varies linearly according to

τK = t−∆tK + λ( tK − t−∆tK) , (5.17)

see e.g. [14]. A similar relation for the loading is assumed by
τf = t−∆tf + λ( tf − t−∆tf) . (5.18)

Because the tangent stiffness matrix at collapse or buckling is singular, its
determinant must vanish

det τK = 0 . (5.19)

This condition is equivalent to the standard eigenvalue problem of the stiffness
matrix where the right hand side is zero, i.e.

τKφi = 0 , (5.20)

where φ is a non-zero eigenvector. Substituting (5.17) in (5.20) the standard
eigenvalue problem is transformed into a generalized eigenvalue problem

t−∆tKφi = λi( t−∆tK − tK)φi , (5.21)

where the matrix t−∆tK − tK is in general indefinite ( t−∆tK and tK are
still positive definite). Introducing

γi =
λi − 1

λi
, (5.22)

(5.21) can be further simplified to
tKφ = γi

t−∆tKφ, (5.23)

where γi is always positive. Denoting the smallest eigenvalue as λmin then the
critical load (buckling or collapse) is given by

τf crit = t−∆tf + λmin( tf − t−∆tf) . (5.24)
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Dynamic Analysis

6.1 System Equations

A general dynamical system subjected to an external force vector f (t) with a
n-dimensional response u(t) satisfies the non-linear second-order differential
equation

Mü + r(u, u̇, q) = f(t) , (6.1)

where “.” derivatives with respect to time t and r(u, u̇, q) is the non-linear
restoring force, respectively. Where the time variability of the response quanti-
ties is obvious, it has not been explicitly stated in the subsequent derivations.
The mass matrix M is assumed to be positive definite and time invariant. The
internal restoring force vector r(u, u̇, q) is a function of the displacements u,
the velocities u̇ and a set of variables q, which describe the respective state
of the non-linear elements. The evolution of these variables may be described
by a first order differential equation, i.e.

q̇ = g(u, u̇, q) , (6.2)

where the vector valued function g(.) is in general non-linear. Provided that
the non-linearity of a system described by (6.1) does not exhibit instability-
like behavior, the response u(t) can be computed – at least within certain
time intervals – quite efficiently with a constant damping matrix C and a
stiffness matrix K, shifting the remaining non-linear restoring force vector to
the right hand side of (6.1). For this purpose, it is assumed that the variables
q are selected in a way, that r(u, u̇, q) can be split into a linear force Cu̇+Ku
and a non-linear force r̄(u, u̇, q), i.e.

r(u, u̇, q) = Cu̇ + Ku + r̄(u, u̇, q) , (6.3)

leading to
Mü + Cu̇ + Ku = f(t) − r̄(u, u̇, q) = f̄(t) . (6.4)
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It follows that f̄ (t) is a function of (u, u̇, q) so that iterative procedures are re-
quired in order to satisfy equilibrium conditions. It is obvious that the smaller
the term r̄(u, u̇, q), the faster the convergence for satisfying the equilibrium
conditions will be. Hence, the constant matrices C and K should be selected
such that the vector r̄(u, u̇, q) remains small over a reasonable long time span.
Equation (6.4) is especially well suited for cases where most of the elements
of the structure remain linear and only a few reveal a non-linear behavior. In
the following, it will be assumed that r̄(u, u̇, q) can be expressed by

r̄(u, u̇, q) = −Rq(u, u̇) . (6.5)

Here, R denotes a constant matrix of size n×nq, where nq is the number of so-
called auxiliary variables. For systems, where non-linearity can be neglected,
(6.4) reduces to

Mü + Cu̇ + Ku = f(t) . (6.6)

6.2 Time Integration

In a finite element analysis, (6.4) or (6.6) can be solved either in the original
space by direct integration or in a reduced subspace by mode superposition.
In the first approach, no transformation of the equation of motion is carried
out prior to time integration. If the time span for which the response of the
system has to be computed is relatively short, direct integration might be
more efficient than mode superposition, since the time consuming solution of
the general eigenvalue problem is not required. In addition, mode superposi-
tion methods approximate the response of the system due to mode truncation,
which is not the case when direct integration is applied. In earthquake engi-
neering, for example, the time span for which the response is calculated is in
general in the range of 10-20 seconds, thus mode superposition tends to be in
this field by far more efficient than direct integration.
For non-linear systems, unconditionally stable integration methods should
be applied in order to ensure numerical stability. The Newmark integration
scheme is a popular time integration method belonging to the class of implicit
integration schemes. For specific values of integration parameters α and δ, see
Sec. 6.2.1, it is unconditionally stable. Thus, the Newmark integration scheme
is applied advantageously for solving (6.4) or (6.6) by both direct integration
and the mode superposition (see Sec. 6.4), although any other appropriate
time integration scheme may be used.

6.2.1 Newmark Method

Numerical integration in general implies a discretization of both the excitation
and the response in time, ensuring static equilibrium for every time step. For
the unconditionally stable Newmark method the integration parameters
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δ ≥ 0.50 , α ≥ 0.25(0.5 + δ)2 , (6.7)

are usually taken as δ = 0.50 and α = 0.25, see e.g. [14]. The Newmark
coefficients are defined by

a0 =
1

α∆t2
, a1 =

δ

α∆t
, a2 =

1
α∆t

, a3 =
1
2α

− 1 , (6.8)

and

a4 =
δ

α
− 1 , a5 =

∆t

2

! δ

α
− 2

#
, a6 = ∆t(1− δ) , a7 = δt . (6.9)

The so-called effective stiffness matrix K̂ is given by

K̂ = K + a0M + a1C , (6.10)

and is thus a function of the system matrices and the chosen parameters α, δ
and ∆t. For every time t + ∆t the effective load vector is calculated according
to

t+∆tf̂ = t+∆tf +M (a0
tu+a2

tu̇+a3
tü)+C(a1

tu+a4
tu̇+a5

tü) . (6.11)

The displacements for time t + ∆t become available by solving

K̂ t+∆tu = t+∆tf̂ . (6.12)

As can be seen, (6.12) has to be solved for every time step, thus, as men-
tioned earlier, the Newmark integration scheme belongs to class of implicit
integration schemes. When the displacements at time t + ∆t are known, the
corresponding accelerations and the velocities can be determined by

t+∆tü = a0( t+∆tu − tu)) − a2
tu̇ − a3

tü , (6.13)

and
t+∆tu̇ = tu + a6

tü + a7
t+∆tü . (6.14)

6.3 Mode Displacement Method

Mode superposition makes use of a transformation of the equation of motion
onto a subspace prior to integration, thus being very efficient for the compu-
tation of the structural response of linear and – depending on the type of non-
linearity – also for non-linear systems. Different model reduction techniques
are available in the literature, see e.g. [77] for a more advanced projection
technique. The equation of motion of a general dynamical system is given by,
see e.g. [80, 20],

Mü(t) + (G + C)u̇(t) + (K + H)u(t) = f(t) , (6.15)
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where M , C, K denote the symmetric mass, damping and stiffness matrices,
respectively, i.e.

M = MT , C = CT , K = KT , (6.16)

and G, H denote the skew symmetric gyroscopic and circulatory matrices,
i.e.

G = −GT , H = −HT . (6.17)

In case no gyroscopic and circulatory forces are present, (6.15) can be reduced
to

Mü(t) + Cu̇(t) + Ku(t) = f(t) . (6.18)

Assuming a solution of (6.18) to have the form

u(t) = estφ , (6.19)

where s is a constant scalar and φ is a constant displacement vector, the
generalized eigenvalue problem associated with (6.18) can be formulated as

Kφi = λiMφi , (6.20)

where
λi = −s2

i or si = ±
&
−λi . (6.21)

Vector φ denotes the eigenvector associated with the scalar eigenvalue λ. The
eigenvectors might be normalized such that the relations

φT
i Mφj = δij , ΦT MΦ = I ,

φT
i Kφj = λiδij , ΦT KΦ = Λ ,

(6.22)

hold, with
Φ = [φ1, φ2, . . . , φN ] , (6.23)

and

Λ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λN

 , (6.24)

where N is the number of modes used. In general, both the mass matrix M
and the stiffness matrix K are positive definite, hence all eigenvalues are real
and positive (λi > 0) and all eigenvectors φi are real (see Chap. 3). In presence
of rigid body modes, i.e. the stiffness matrix K is positive semi-definite, all
eigenvalues are real and equal or larger than zero (λi ≥ 0). Defining the
eigenfrequencies of the system by ωi =

√
λi it follows that

si = ±jωi (6.25)
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with j =
√−1. For proportional damping (see e.g. [14]), i.e.

C = αM + βK , (6.26)

where α and β are constants, the damping matrix can be diagonalized by the
eigenmodes according to

φiCφj = 2ωiξiδij . (6.27)

Here, ξi denotes the damping of the i-th mode. The equivalent modal damping
for a given proportional damping can be determined by

ξi =
α + βω2

i

2ωi
. (6.28)

Introducing the linear transformation

u =
'

i

ziφi , (6.29)

where z denotes the vector of generalized or modal coordinates, the coupled
system of equations given by (6.18) can be decoupled for proportional or
modal damping. Using e.g. the Duhamel integral method, the general solution
of (6.18) reads using (3.19), see e.g. [35],

zi(t) =
1
ω�

i

 t

0

φT
i f(τ)e−ξiωi(t−τ) sin(ω�

i(t − τ))dτ

+ zi(0)e−ξiωit cos(ω�
it) +

1
ω�

i

�
żi(0) + ξiωizi(0)

�
e−ξiωit sin(ω�

it) ,

(6.30)

which simplifies for conservative systems to

zi(t) =
1
ωi

 t

0

φT
i f(τ) sin(ωi(t − τ))dτ + zi(0) cos(ωit) +

1
ωi

żi(0) sin(ω�
it) .

(6.31)
In (6.29), ω�

i is the circular eigenfrequency of the damped system given by
ω�

i = ωi

&
1 − ξ2

i . The mode displacement method given by (6.29)–(6.30) or
(6.31) may converge for large finite element systems rather slowly, i.e. a large
number of modes has to be considered in (6.29). This is particularly true when
stresses have to be evaluated, since in this case also higher modes contribute
significantly to the overall response. The so-called mode acceleration method
circumvents some of the drawbacks of the mode displacement method and
will be reviewed in Sec. 6.4.
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6.4 Mode Acceleration Method

The mode acceleration method again requires solutions of the general eigen-
value problem, see also (6.20). Using all n eigenvalues and eigenvectors, re-
spectively, where n denotes the number of degrees of freedom of the structural
system, it is possible to construct the flexibility matrix

K−1 =
n'

i=1

1
λi

φiφ
T
i . (6.32)

However, the advantage of mode superposition is the reduced set of N << n
modal coordinates. That is, generally, only a relatively small number N of
modes will be considered in the analysis. In the mode displacement method,
the contribution of the remaining modes to the structural response is ignored.
In the mode acceleration method, however, their contribution to the overall

response is approximated by their static response. This approach is justified
because higher order modes react essentially in a static manner when excited
by low frequencies.
Hence, the response consists of a dynamic part ud(t) and a static part us(t),
i.e.

u(t) = ud(t) + us(t) . (6.33)

The dynamic modal response is represented by a linear combination of modal
coordinates z(t),

ud(t) =
N'

i=1

φizi(t) = Φz(t) , (6.34)

and the remaining static part by the solution, see e.g. [33],

us(t) = [K−1 −
N'

i=1

1
λi

φiφ
T
i ]f̄ (t) = [K−1 − ΦΛ−1ΦT ]f̄(t) . (6.35)

Here,
f̄(t) = f(t) + Rq(t) , (6.36)

denotes the loading as introduced in (6.4). The modal coordinates z(t) are
determined by the solution of the decoupled single degree of freedom systems
(e.g. Duhamel, Runge-Kutta, Newmark, etc.) using suitable modal damping
ratios ζ, i.e.

z̈i(t) + 2ζiωiżi(t) + ω2
i zi(t) = φT

i f̄ (t) . (6.37)

The static part of the response can be calculated by

us(t) = B̂a(t) + R̂q(t) , (6.38)

where the constant matrices B̂ and R̂ are specified by
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B̂ = K−1B − ΦΛ−1ΦT B , R̂ = K−1R − ΦΛ−1ΦT R , (6.39)

respectively and B = −MIa. Equation (6.35) allows one to derive (6.39)
which has to be computed only once. The fully populated matrix K−1 in (6.35)
is not required in order to compute the matrices in (6.39). These matrices are
computed by pre-multiplying (6.39) with K and solving the resulting equation
by simple Gaussian elimination. The relations given above allow now to specify
uniquely the state of the structural response by

u(t) = Φz(t) + B̂a(t) + R̂q(t) , (6.40)

and
u̇(t) =

d

dt
u(t) = Φż(t) + B̂ȧ(t) + R̂q̇(t) . (6.41)

Integration of the equations of motion for longer time spans in the subspace
spanned by (6.40) and (6.41) is by far more efficient than direct integration
of (6.4), where, for large finite element systems, more than three orders of
magnitude of unknowns might by involved.
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Rational Treatment of Uncertainties

Structural analysis up to this date, generally is still based on a determinis-
tic conception. Observed variations in loading conditions, material properties,
geometry, etc. are taken into account by either selecting extremely high or
low or average values, respectively, for representing the parameters. Hence,
by this, uncertainties inherent in almost every analysis process are considered
just intuitively. Observations and measurements of physical processes, how-
ever, clearly show their random characteristics. Statistical and probabilistic
procedures provide a sound frame work for a rational treatment of analysis
of these uncertainties. Moreover there are various types of uncertainties to be

Entire Spectrum

PhysicalMechanical

Model

Fig. 7.1. Spectrum of Uncertainties

dealt with (see Fig. 7.1). While the uncertainties in mechanical modeling can
be reduced as additional knowledge becomes available, the physical or intrin-
sic uncertainties can not. Furthermore, the entire spectrum of uncertainties
is also not known. In reality, neither the true model nor the model parame-
ters are deterministically known. Assuming that by finite element procedures
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structures and continua can be represented reasonably well, the question of
the effect of the discretization still remains. It is generally expected, that an
increase in the size of the structural models – in terms of degrees of freedom
– will increase the level of realism of the model. Comparisons with measure-
ments, however, clearly show that this expectation can not be confirmed. An
ever refined finite element model just decreases the discretization error, but
all other aspects contributing to the discrepancy between prediction and mea-
surement will not be improved. There are several reasons for this. Among them
is the fact that the finite element model, which is a mathematical idealiza-
tion, represents the physical behavior not exactly but with a certain accuracy
only. Typical examples for this are strongly non-linear interactions in a linear
model, ignoring flexibilities at joints, inaccurate modeling of the boundary
conditions, ignoring the non-linear interaction, etc. Furthermore, even if it
is assumed that the idealized mathematical finite element model represents
the structural behavior, the model parameters do show uncertainties. As al-
ready stated above, these uncertainties refer to both loading – environmental
loading such as water waves, wind, earthquakes, etc. are good examples for
this – as well as to structural properties, such as imperfections of geometry,
thickness, Young’s modulus, material strength, fracture toughness, damping
characteristics, etc. It is also well known, that the results of experimental mea-
surements are subjected to uncontrollable random effects. This is the main
reason, why they are so difficult to reproduce. This fact leads directly to the
claim as made before, i.e. that an increase in the number of degrees of free-
dom does not compensate for the insufficient modeling of physical phenomena,
such as not taking into account the uncertainties in the boundary conditions,
etc. Needless to say that it is most important that the model reflects physical
phenomena. This of course includes the uncertainties in both the structural
properties and loading conditions respectively.

While in the deterministic conception a single value is considered to suffice
for the representation of a particular variable, it is in fact a great number of
values – each associated with a certain probability of occurrence of a particular
value – which is needed for a realistic description, see Fig. 7.2. Hence the vari-
ables in their basic form may be described as so-called random variables X .
Typical examples are e.g. the yield strength of materials. etc. The associated
uncertainty are quantified by probability measures, e.g. described as probabil-
ity density functions. In other words, the probability that a parameter takes
on values within an interval is,

P (a < X ≤ b) =
 b

a

f(x) dx . (7.1)

This one dimensional definition certainly can be expanded easily for multi
dimensional cases. The distribution of the occurrence of the various values i.e.
f(x), also denoted as the probability density function, is generally character-
ized by certain types of function such as the normal or Gaussian distribution,
etc. The parameters, such as the central tendency or mean value as well as
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the variance, are estimated by statistical procedures. For time variant or sta-
tionary processes, the probability density refers not only to one time instant,
but to other times as well i.e. to a family of random variables X(t1), X(t2)
more simply denoted by X(t). Again, if the distribution of X(t1), X(t2) are
of Gaussian characteristics, such a process is denoted as Gaussian stochastic
process, see Sec. 7.1. Typical examples are wind, wave, earthquake records,
etc.
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Fig. 7.2. Deterministic Conception versus Concept including Uncertainties

Finite element models generally contain quite a large number of param-
eters like elasticity constants, geometry specifications, loading parameters,
boundary conditions, etc., of which most values are not perfectly known. It
was already stated above, that the so called “true” parameters can, if at all,
be determined in exceptional cases only, i.e. by experiments. Hence the values
used in deterministic finite element analysis are so called nominal values which
deviate to a certain extent from the unknown true value. The uncertainties
within the input parameters naturally result in uncertainties of the output,
i.e. the response. Since response predictions are the central goal of any finite
element analysis, and all predictions depend more or less on the uncertain
input parameters, a rational approach has to include these unavoidable un-
certainties.
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Data are always scarce. Accessible statistical information, if any, might be
restricted to the mean value, the standard deviation, upper and lower fractile
values or upper and lower bounds. However, with this concept, whatever infor-
mation is available, it can be used and – as new information or data becomes
available – updated. Under these circumstances, it is reasonable to select the
most convenient distribution which reflects the known or assumed variability
or uncertainty and avoids realizations which are not physically meaningful.
For many reasons, the Gaussian normal distribution and sometimes the log-
normal distribution respectively are preferred. Since the uncertain input is
specified mathematically by probability laws, the response follows also such
laws, i.e. has a well defined unique distribution.

7.1 Gaussian Stochastic Process

The Gaussian stochastic process plays a central role in the theory as well as in
the application of probabilistic methods. Its significant importance is based on
the well known Central Limit theorem, which states that if a physical process
is the result of many additive effects, that process tends to be normally dis-
tributed. But also in cases, where the Gaussian process represents only a rough
approximation for a physical phenomenon, this model is the starting point for
many non-Gaussian models of stochastic processes. A stochastic process x(t),
see Chap. 8, is called a Gaussian or normal stochastic process, if, for every
finite set {t1, t2, ...tn} in D ⊆ R1, where D = [0, T ], the n random variables
x(t1), x(t2), ..., x(tn) have the joint probability density function according to

fn(x1, ...xn; t1, ..., t2) =

(2π)(−n/2)|Γ xx(t)|−1/2e−
1
2 (x−µx(t))T Γ xx(t)−1(x−µx(t))

, (7.2)

where xT = [x1, x2, ...xn], µx(t) is the mean vector

µx(t) = E{x(t)} (7.3)

and Γ xx(t) is the covariance matrix, whose elements Γij are given by

Γij(t) = E{(x(ti) − µxi(ti))(x(tj) − µxi(tj))} . (7.4)

The expectation operator E{·} of a continuous process is defined by

E{g(x(t))} =
 ∞

−∞
g(x)fg(x, t) dx , (7.5)

if the improper integral is absolutely convergent, i.e. ∞

−∞
g(x)fg(x, t) dx < ∞ . (7.6)

Also from the theoretical point of view, the Gaussian process has some very
important properties, see e.g. [141]:
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(i) The marginal or first order probability density function of a stochastic
process x(t) at a fixed time t has the form

f1(x, t) =
∂F1(x, t)

∂x
= (

1√
2πσx

e
�
(x−µx)2/(2σ2

x)
�

. (7.7)

The corresponding first order cumulative distribution function F1(x, t) is
given by

F1(x, t) =
1√

2πσx

 x

∞
e
�
(u−µx)2/(2σ2

x)
�
du . (7.8)

(ii) A Gaussian stochastic process is completely specified by its mean func-
tion µx(t) and covariance function γxx(t). The n-th moment of a general
stochastic process is defined by

µn
x(t) = E{xn(t)} =

 ∞

−∞
xnf1(x, t) dx . (7.9)

The n-th central moment is given by

γn
x (t) = E{(x(t) − µx(t))n} =

 ∞

−∞
(x − µx(t))nf1(x, t) dx , (7.10)

where µ1
x(t) := µx(t). For a Gaussian stochastic process the central mo-

ments are

µn
x =

�
0 if n is odd ,

1 · 3 · · · (n − 1)σn
x if n is even .

(7.11)

The nm-th joint central moment is given by

γnm
xx (t1, t2) = E{(x(t1) − µx(t1))n(x(t2) − µx(t2))m} = ∞

−∞
(x1 − µx(t1))n(x2 − µx(t2))mf2(x1, x2; t1, t2) dx .

(7.12)

As a consequence for Gaussian stochastic processes, all odd-order joint
central moments vanish.

(iii) Weak stationarity implies strict stationarity.
(iv) A Gaussian stochastic process remains Gaussian under linear transforma-

tions, a property that plays a central role in the procedure described in
Chap. 11.

7.2 Representation of Stochastic Processes

Many physical quantities involving random fluctuations in time and space
might be adequately described by stochastic processes, fields and waves. Typ-
ical examples of engineering interest are earthquake ground motion, sea waves,
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wind turbulence, road roughness, imperfection of shells, fluctuating properties
in random media, etc. For these quantities, probabilistic characteristics of the
process are known from various measurements and investigations in the past.
In structural engineering, the available probabilistic characteristics of random
quantities affecting the loading or the mechanical system can be often not
utilized directly to account for the randomness of the structural response due
to its complexity. For example, in the case of stability analyses of thin shell
structures, the structural response will be in general non-linear exhibiting crit-
ical points along the solution path and it might be too difficult to compute
the probabilistic characteristics of the response by other means than Monte
Carlo simulation. For the purpose of Monte Carlo simulation sample functions
of the involved stochastic process must be generated. These sample functions
should represent accurately the characteristics of the underlying stochastic
process or fields and might be stationary and non-stationary, homogeneous or
non-homogeneous, one-dimensional or multi-dimensional, uni-variate or multi-
variate, Gaussian or non-Gaussian, depending very much on the requirements
of accuracy of realistic representation of the physical behavior and on the
available statistical data.
The main requirement on the sample function is its accurate representation of
the available stochastic information of the process. The associated mathemat-
ical model can be selected in any convenient manner as long it reproduces the
required stochastic properties. Therfore, quite different representations have
been developed and might be utilized for this purpose. The most common
representations for stochastic processes are:

(i) Spectral representation,
(ii) Karhunen-Loève representation and polynomial chaos representation,
(iii) Wavelets representation.

7.2.1 Spectral Representation

Among the various methods listed above, the spectral representation appears
to be most widely used (see e.g. [105, 134, 128]). According to this procedure,
samples with specified power spectral density information are generated. For
the stationary or homogeneous case the fast Fourier transform techniques is
utilized for a dramatic improvement of its computational efficiency (see e.g.
[161, 162]). Recent advances in this field provide efficient procedures for the
generation of two-dimensional and three-dimensional homogeneous Gaussian
stochastic fields using the fast Fourier transform technique (see e.g. [129, 130,
131, 132, 133]). The spectral representation method generates ergodic sample
functions of which each fulfills exactly the requirements of a target power
spectrum. These procedures can be extended to the non-stationary case, to the
generation of stochastic waves (see e.g. [40]) and to incorporate non-Gaussian
stochastic fields (see e.g. [160]) by a memoryless nonlinear transformation
together with an iterative procedure to meet the target spectral density.
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7.2.2 Karhunen-Loève Representation and Polynomial Chaos
Representation

A quite general representation utilized for Gaussian stochastic processes and
fields is the Karhunen-Loève expansion of the covariance function, see Chap.
8 for a thorough treatment of this subject. A generalization of the Karhunen-
Loève expansion denoted as polynomial chaos expansion has been proposed
for applications where the covariance function is not known a priori (see
[27, 50, 47, 111, 44]). These polynomials are orthogonal. For the special case
of a Gaussian random process the polynomial chaos representation coincides
with the Karhunen-Loève expansion. The polynomial chaos expansion is ad-
justable in two ways: Increasing the number of random coefficients results in
a refinement of the random fluctuations, while an increase of the maximum
order of the polynomial captures non-linear (non-Gaussian) behavior of the
process. However, the problem when dealing with the polynomial chaos expan-
sion is the large number of terms required to represent strong non-Gaussian
processes.

7.2.3 Wavelets Representation

The spectral representation by Fourier analysis is not well suited to describe
local feature in the time or space domain. This disadvantage is overcome in
wavelets analysis which provides an alternative of breaking a signal down into
its constituent parts. This representation has found important applications
in signal processing (see e.g. [38, 85]) and it has been recently utilized in
stochastic mechanics for representing e.g. random sea motion [154] and ran-
dom fields [165]. For a large class of stochastic problems, wavelet expansion
can be considered as an approximate Karhunen-Loève expansion. For system
identification and damage detection purposes, wavelet analysis may prove to
be an advantageous approach.

7.2.4 Non-Gaussian Models

In some cases of applications the physics or data might be inconsistent with
the Gaussian distribution. For such cases, non-Gaussian models have been de-
veloped employing various concepts to meet the desired target distribution as
well as the target correlation structure (spectral density). Certainly the most
straight forward procedures is the memoryless non-linear transformation of
Gaussian processes (e.g. [160]) utilizing the spectral representation. An alter-
native approach utilizes non-linear filters to represent non-Gaussian processes
and fields excited by Gaussian white noise. Non-linear filters are utilized in
the recent works to generate a stationary non-Gaussian stochastic process in
agreement with a given first-order probability density function and the spec-
tral density [26]. For generating samples of the non-linear filter represented
by a stochastic differential equations, well developed numerical procedures
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are available (see e.g. [68]). For an extensive overview of non-Gaussian data,
mathematical models generating non-Gaussian processes, and classes of non-
Gaussian processes it is referred to e.g. [55].



8

Karhunen-Loève Expansion

In the following, second order stochastic processes are considered, i.e. random
functions x(t) satisfying

E{x(t)2} < ∞ , t ∈ D ⊆ R1 , (8.1)

where t is a temporal or spatial parameter, and D = [0, T ] denotes the interval
over which x(t) is defined. With regard to uncertainty analysis, the most
important characteristics of a stochastic process x(t) are captured by its mean
function

µx(t) = E{x(t)} (8.2)

and its covariance function

Γxx(t, s) = E{(x(t) − µx(t))(x(s) − µx(s))} . (8.3)

Among the various definitions of stochastic processes available, the parametric
one can be seen as the basis for the group of orthogonal series representations
of a stochastic process. Following this definition, a stochastic process can be
described by an explicit analytical expression involving an at-most countable
set of random variables as parameters

x(t) = φ(t; ζ1, ζ2, ...) , (8.4)

in which φ is a specified deterministic function of t and {ζ1, ζ2, ...} denotes a
countable set of random variables. The probability law of x(t) is fully defined
by the joint probability distribution of these random variables together with
the functional form of φ(t) [141]. Being more precise, a stochastic process can
be represented in terms of orthonormal functions ψ(t) according to

x(t) =
∞'

i=1

αiψi(t) , (8.5)

where the ψ(t)’s are satisfying the relation

C.A. Schenk, G.I. Schuëller: Uncertainty Assessment, LNACM 24, pp. 47–58, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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D

ψi(t)ψj(t) dt = δij . (8.6)

The random coefficients α can be calculated according to the Fourier series
theorem

αi =
 

D

x(t)ψi(t) dt . (8.7)

The mean values µα and the covariances σαα of the random coefficients are
given by

µαi =
 

D

µx(t)ψi(t) dt (8.8)

and
σαiαj =

 
D

 
D

Γxx(t, s)ψi(t)ψj(s) dt ds . (8.9)

For zero mean Gaussian stochastic processes, the random coefficients are
Gaussian random variables with mean values equal to zero, which are, de-
pending on the orthonormal functions used, not necessarily uncorrelated
[142]. Several orthogonal series expansions of stochastic processes are doc-
umented in the literature, e.g. the random trigonometric polynomials [41, 54],
which belong to the class orthogonal series expansions with correlated ran-
dom coefficients. In recent years the so-called Karhunen-Loève expansion, see
e.g. [39, 73, 50, 147, 11, 93, 92], has quite often been used in stochastic me-
chanics because of its attractive features:

(i) The mean-square error resulting from a finite representation of a stochas-
tic the process is minimized. In other words, the eigenfunctions of the
Karhunen-Loève expansion are adapted in a way that they allow a most
efficient representation of this covariance kernel.

(ii) The Karhunen-Loève expansion represents Gaussian stationary as well as
non-stationary processes, respectively. This is also true – but not gener-
ally – for a finite number of terms in (8.5).

(iii) For Gaussian stochastic processes the random coefficients α are uncorre-
lated and thus independent random variables. This property makes the
Karhunen-Loève expansion very useful for generating samples of Gaussian
stochastic processes.

For stochastic processes of arbitrary marginal probability density functions,
the Karhunen-Loève expansion is still valid, although in this case the random
variables are not uncorrelated anymore [48].

The stochastic process x(t) has been considered in the preceding dis-
cussion to be continuous, i.e. the domain over which x(t) is defined corre-
sponds to infinite dimensional Hilbert spaces. However, due to a necessary
discretization of the parameter t in computational mechanics, only discrete
stochastic processes are treated in this monograph, implying that the discrete
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version of the Karhunen-Loève expansion – in the following denoted as dis-
crete Karhunen-Loève expansion – is applied. Quite frequently, the discrete
Karhunen-Loève expansion is also called principal component analysis. In the
subsequent sections, the discrete Karhunen-Loève expansion is discussed for
scalar stochastic processes, vector stochastic processes and random fields.
In order to keep notations clear, the continuous Karhunen-Loève expansion is
exclusively used in the derivations for the described procedures in the subse-
quent chapters.

8.1 Scalar Stochastic Processes

A continuous stochastic process x(t) can be discretized (sampled) at ordinarily
equal intervals ∆t, yielding a vector x whose elements are related to the value
of x(t) at a certain t, i.e.

x =



x(0)
x(1∆t)
x(2∆t)

...
x(T )


. (8.10)

Using the relation tk = k∆t, the following notation will be used

x(tk) = x[k] , x(0 ≤ t ≤ T ) = x[:] = x , (8.11)

where the “colon” specifies all elements of a vector or a column or row of
a matrix, see e.g. [51]. The Karhunen-Loève expansion of a scalar discrete
Gaussian second order stochastic process x, is defined as

x = µx +
Nx'
j=1

ξj

&
λjψj ≡ x(0) +

Nx'
j=1

ξjx
(j) , (8.12)

where µx and Nx = T/∆t + 1 denote the mean vector and the number of
elements of x, respectively. Let x(r), r = 1, 2, ..., n denote the r-th realization
of the stochastic process x. Then the covariance matrix Γxx of x is defined
according to

Γ xx = E{(x − µx)(x − µx)T } = lim
n→∞

1
n

n'
r=1

(x(r) − µx(r))(x(r) − µx(r))
T } .

(8.13)
The Karhunen-Loève vectors x(j) =

&
λjψj associated with x are determined

by solving the algebraic eigenvalue problem

Γxxψj = λjψj . (8.14)

The orthonormality relation for eigenvectors ψ is given by
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ψT
i ψj = δij . (8.15)

The Gaussian random variables ξ as used in (8.12) are defined according to

ξj =
1&
λj

(x − µx)T ψj , (8.16)

a relation which holds because of

ξj =
1&
λj

! Nx'
l=1

ξl

&
λlψl

#T

ψj . (8.17)

In addition, (8.16) defines the random variables ξ(r),i corresponding to a spe-
cific realization of x, i.e. x(r),

ξ(r),j =
1&
λj

(x(r) − µx(r)
)T ψj . (8.18)

As previously mentioned, the Gaussian random variables ξ have the properties

E{ξi} = 0 , E{ξiξj} = δij . (8.19)

The first one follows from E{x} = µx, while the second one makes use of the
relation

ξT
j = ξj =

1&
λj

ψT
j (x − µx) . (8.20)

Substituting (8.16) and (8.20) in the second part of (8.19) one obtains

E{ξjξl} = E
� 1&

λj

ψT
j (x − µx)

1√
λl

(x − µx)T ψl



, (8.21)

which can be, using (8.13) and (8.14), simplified to

E{ξjξl} = E
� 1&

λj

1√
λl

ψT
j Γ xxψl



= E

� 1&
λj

1√
λl

ψT
j λlψl



= δjl . (8.22)

The mean µ[k] of an element x[k] of x can be calculated by

µ[k] = x(0)[k] . (8.23)

With regard to (8.13), the covariance of two elements x[k] and x[l] is given
by

Γxx[k, l] = E
� Nx'

i=1

ξix
(i)[k]

Nx'
j=1

ξjx
(j)[l]



=

Nx'
j=1

x(j)[k]x(j)[l] , (8.24)

in particular
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Γxx[k, k] = σ2
x[k] =

Nx'
j=1

x[k](j)
2

. (8.25)

The Karhunen-Loève representation of the full covariance matrix is thus given
by

Γxx =
Nx'
j=1

x(j)x(j)T . (8.26)

Second moment characteristics of a linear combination

z =
'

k

ckx[k] (8.27)

with constants ck can be calculated by

µz =
'

k

ckx(0)[k] (8.28)

and

σ2
z =

Nx'
j=1

!'
k

ckx(j)[k]
#2

. (8.29)

The covariance of two linear combinations

z1 =
'

i

cix[i] , z2 =
'

k

ckx[k] (8.30)

with constants ci and ck, respectively, is given by

σz1z2 =
Nx'
j=1

!'
i

cix
(j)[i]

#!'
k

ckx(j)[k]
#

. (8.31)

8.2 Vector Stochastic Processes

So far, the theory of the discrete Karhunen-Loève expansion has been ap-
plied to a scalar stochastic process x, after discretizing a continuous pro-
cess x(t) with respect to the parameter t. However, when dealing with the
Karhunen-Loève expansion in context with finite element systems as described
in Chap. 6, this theory has to be extended to vector stochastic processes. A
m-dimensional continuous vector stochastic process x(t) with the components
x1(t), x2(t), ..., xm(t) is defined by

x(t) =


x1(t)
x2(t)

...
xm(t)

 . (8.32)
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For vector stochastic processes, the second order information can be related
to the correlation between different components of x(t) at the same time or
location t

Γ xx(t) = E{(x(t) − µx(t))(x(t) − µx(t))T } , (8.33)

and the correlation between different components between different times or
locations

Γ xx(t, s) = E{(x(t) − µx(t))(x(s) − µx(s))T } , (8.34)

being both functions of m×m matrices. Similar and in order to preserve the
previously defined notation, a discrete vector stochastic process is defined by

x[:, k] =


x1[k]
x2[k]

...
xm[k]

 =


x1(k∆t)
x2(k∆t)

...
xm(k∆t)

 , (8.35)

where x represents a matrix of size m×Nx (Nx = T/∆t +1, see above). The
discrete counterparts of (8.33) and (8.34) are represented by three- and four-
dimensional matrices of sizes m×m×Nx and m×m×Nx×Nx, respectively,
i.e.

Γ xx[:, :, k] = E{(x[:, k] − µx[:, k])(x[:, k] − µx[:, k])T } (8.36)

and

Γ xx[:, :, k, l] = E{(x[:, k] − µx[:, k])(x[: l] − µx[:, l])T } . (8.37)

The Karhunen-Loève representation of discrete vector stochastic processes can
be obtained by reshaping the vector process x to a one dimensional (scalar)
process X according to

X =


x1

x2

...
xm

 . (8.38)

Then the covariance matrix ΓXX is defined by

Γ XX = E{(X − µX)(X − µX)T } , (8.39)

having the structure

ΓXX =

Γ x1x1 · · · Γ x1xm

...
. . .

...
Γ xmx1 · · · Γ xmxm

 . (8.40)

Matrix ΓXX is of size NX × NX where NX = mNx and the corresponding
Karhunen-Loève vectors are defined by
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ΓXXψj = λjψj . (8.41)

The Karhunen-Loève representation of X then reads

X = µX +
NX'
j=1

ξj

&
λjψj ≡ X(0) +

NX'
j=1

ξjX
(j) . (8.42)

The Karhunen-Loève vectors X(j) are of size NX × 1. Extracting from these
vectors all elements of X(j) corresponding to a certain tk = k∆t and denoting
these vectors by X(j,k) (size m × 1), the corresponding Karhunen-Loève rep-
resentations of (8.33) and (8.34) read

Γxx[:, :, k] =
NX'
j=1

X(j,k)X(j,k)T (8.43)

and

Γxx[:, :, k, l] =
NX'
j=1

X(j,k)X(j,l)T , (8.44)

respectively. Equation (8.43) deserves special attention. As has been already
mentioned, Γxx[:, :, k] is of size m×m×Nx, thus – according to the spectral
theorem – a complete basis for Γxx[:, :, k] is spanned by the m eigenvectors
x(j,k) of Γxx[:, :, k], and not, as indicated in (8.43), by the NX eigenvectors
X(j,k). This observation seems at first sight to be of little use because for
the determination of the Karhunen-Loève vectors x(j,k) the covariance matrix
Γxx[:, :, k] has to be known. However, it should be noted that the basis of
Γxx[:, :, k] is considerably smaller than that of ΓXX , an observation which is
discussed in Sec. 13.6.

8.3 Random Fields

Random fields can be seen as an extension of scalar or vector stochastic pro-
cesses. In the theory of stochastic processes, the parameter t usually indexes
a one-dimensional space (temporal or spatial), while in case of random fields
this parameter is associated with multi-dimensional spaces. Thus a random
field is defined by, see. e.g. [153],

x(t); t ∈ D ⊆ Rn, (8.45)

where

t =


t1
t2
...
tn

 . (8.46)
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Second order characteristics are defined similar to those of stochastic pro-
cesses, i.e.

µx(t) = E{x(t)} (8.47)

and
Γxx(t, s) = E{(x(t) − µx(t))(x(s) − µx(s))} . (8.48)

Due to the multi-dimensional space over which a random field is defined, the
discretization of continuous random fields is more involved that that of (one-
dimensional) stochastic processes. A vast amount of literature is devoted to
this special field, see e.g. [21, 70, 95] and their references therein, very often
in context with stochastic finite elements, see e.g. [135, 52]. The most com-
monly used discretization methods are point discretization methods (midpoint
method, nodal point method, integration point method), the local averaging
method, the interpolation method and the series expansion methods (e.g. ba-
sis random variable method). Once a proper discretization method has been
selected, the random field can be seen as an indexed set of random variables.
This is equivalent to the definition of a discrete scalar stochastic process,
where at a fixed t, the stochastic process is a random variable. Thus

x =



x(t0)
x(t1)

...
x(tk)

...
x(tn)


, (8.49)

where tk may be defined for equal intervals as

tk =


k1∆t1
k2∆t2

...
kn∆tn

 . (8.50)

The Karhunen-Loève representation of a discrete random field has thus been
transformed to that of a scalar stochastic process, so that everything stated
in Sec. 8.1 is also valid for discrete (univariate) random fields.

8.4 Comparison Between Discrete and Continuous
Karhunen-Loève Expansion

The difficulty when dealing with the Karhunen-Loève expansion is related to
the the determination of the eigenvalues and the associated eigenvectors of the
covariance kernel. Especially for the continuous Karhunen-Loève expansion,
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their calculation is quite involved. The continuous Karhunen-Loève expansion
of a zero mean, second order process is similar to (8.12), i.e.

x(t) = lim
N→∞

N'
i=1

ξi

&
λiφi(t), t ∈ D ⊆ R1 . (8.51)

However, the simple algebraic eigenvalue problem as stated in (8.14) is re-
placed in this case by a so-called homogeneous Fredholm integral equation of
the second kind, compare with (3.4) or see e.g. [34], 

D

Γxx(t, s)φi(s) ds = λiφi(t) , (8.52)

where the eigenfunctions φ satisfy the condition 
D

φi(t)φj(t) dt = δij (8.53)

and the random variables ξ are given by

ξi =
1√
λi

 
D

x(t)φi(t)dt . (8.54)

Again, the orthonormality relation for random variables ξ reads

E{ξiξj} = δij . (8.55)

Analytical solutions of the Fredholm integral equation do seldom exist, so
several numerical algorithms are reported in the literature for the solution
of (8.52) for various covariance kernels. For example, in [49] a Galerkin type
procedure is used for this purpose, [65] makes use of the Nyström method
and [136, 94] apply a wavelet-Galerkin scheme. The majority of the existing
numerical solutions for (8.52) transform the integral eigenvalue problem into
an algebraic eigenvalue problem, where the transformation represents an ad-
ditional approximation and computational burden, respectively. However the
eigenpairs (λi, φi(t)) of the discrete version of the Karhunen-Loève expansion
are obtained by solving directly the algebraic eigenvalue problem (8.14) instead
of (8.52), which overcomes the shortcomings of the aforementioned transfor-
mation. Nevertheless, the accuracy of the discrete version of the Karhunen-
Loève expansion when compared to its continuous form has to be addressed.
In particular, the eigenvalues and the associated eigenvectors obtained by the
algebraic and the integral eigenvalue problem, respectively, are compared. A
covariance kernel commonly used in stochastic finite elements is, see Fig. 8.1,

Γxx(t, s) = e−|t−s|/b , t ∈ (−a, a) . (8.56)

In this case, an analytical solution of the eigenfunctions of (8.53) is available,
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Fig. 8.1. Surface plot of covariance function Γxx(t, s) = e−|t−s|/b in the interval
[-0.5,0,5], b = 1.

see e.g. [49]. The eigenpairs for even i are given by

λi =
2c

ω2
i + c2

, φi(t) =
cos(ωit)%

a + sin (2ωia)
2ωi

, (8.57)

where
c − ω tan(ωa) = 0 . (8.58)

Similar, for odd i, the eigenpairs (λi, φi(t)) are defined by

λi =
2c

ω2
i + c2

, φi(t) =
sin(ωit)%

a − sin (2ωia)
2ωi

, (8.59)

where
ω + c tan(ωa) = 0 . (8.60)

As can be seen from Figs. 8.2–8.3 (compare also to Figs. 2.1–2.2 in [49]),
the discrete form of the Karhunen-Loève expansion agrees very well with
the analytical solution of its continuous counterpart. It has to be noted that
the eigenfunctions for the discrete Karhunen-Loève expansion in Fig. 8.2 are
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normalized by (8.53) instead of (8.15). The eigenvalues have been weighted
accordingly.
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Fig. 8.2. Eigenfunctions {ψi(t)}4
i=1 of covariance function Γxx(t, s) = e−|t−s|/b in

the interval [-0.5,0,5], b = 1 obtained by (8.14): i = 1 (solid), i = 2 (dashed), i = 3
(dash-dot), i = 4 (dotted). Corresponding analytical eigenfunctions φ(t) obtained
by (8.52) are plotted with a thin solid line.

The results from this simple test case can be generalized and allow to sum-
marize some important features of the discrete Karhunen-Loève expansion:

(i) The solution of the algebraic eigenvalue problem as given by (8.14) is
available as a standard procedure in many software packages, i.e. sophis-
ticated algorithms for solving efficiently the standard eigenvalue problem
of symmetric matrices can be applied.

(ii) Contrary to many numerical solutions of (8.53), the eigenvalue problem
can be applied directly on the covariance matrix, i.e. no prior transforma-
tion of the integral eigenvalue problem is required. It should be mentioned,
that numerical solutions of (8.53) which are based on a series expansion
of the eigenvectors of the covariance kernel, introduce an additional nu-
merical approximation.



58 8 Karhunen-Loève Expansion
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Fig. 8.3. Eigenvalues {λi}4
i=1 of covariance function Γxx(t, s) = e−|t−s|/b in the

interval [-0.5,0,5], b = 1 obtained by (8.14) (circle). Corresponding analytical eigen-
values λi(t) obtained by (8.52) are denoted with “+”.

(iii) The eigenpairs obtained by the discrete Karhunen-Loève expansion agree
very well with their continuous counterparts, being theoretically identical
if an infinite small interval for discretization is used.
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Direct Monte Carlo Simulation

The evaluation of the stochastic response by the Monte Carlo simulation tech-
nique is a powerful method for highly nonlinear systems as well as for systems
where the input is modeled by large number of random variables.

9.1 Basic Principles

Figure 9.1 depicts the basic principles of Monte Carlo sampling, where the
laws of statistics are exploited to derive information on the variability of the
response. By using a suitable number generator (see e.g. randlib [23]) statis-
tically independent samples of the input are generated by a type of game of
chance, and which follow the prescribed probability distributions of the uncer-
tain parameters. Let the system be described by the operator L, so that a set

f(xi)

f(xl)

f(xi, xl)

f(yj)

f(yk)

f(yj , yk)

Input Response

deterministic

finite element
analyses

Fig. 9.1. Stochastic Analysis based on Monte Carlo Sampling

of random input variables collected in a vector x defined in a m-dimensional

C.A. Schenk, G.I. Schuëller: Uncertainty Assessment, LNACM 24, pp. 59–61, 2005.
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vector space is mapped to the r-dimensional output y, i.e.

Lx = y . (9.1)

In the simplest form of the Monte Carlo simulation technique – denoted as
direct Monte Carlo simulation – for each generated sample of the input x(i)

the corresponding output y(i) is calculated. Hence, the input distribution
f(x1, x2, . . . , xm) is represented according to statistical laws by a finite num-
ber n of independent samples {x(i)}n

i=1. Each vector x(i) specifies for each
uncertain parameter a deterministic discrete value and consequently defines
deterministically the response which might be represented by the vector

y(i) = Lx(i) . (9.2)

Hence, traditional deterministic finite element analyses can be used to provide
the mapping given by (9.2) between input and response.
In the simplest case, it might be justified to assume that all uncertainties
are independent. Such an assumption is reasonable as long as this assumption
does not contradict experience and physical properties. When the components
are considered as independent, each component can be generated by available
random number generators where distribution and its parameters must be
supplied. The above simple and straight forward procedure is getting more
involved for cases where correlations between random variables need to be
considered, as it is the case for stochastic processes or random fields.

9.2 Error Assessment

Let the unknown mean and variance of a component yk of the output be
denoted with

µyk
= E{yk} and σ2

yk
= E{(yk − µyk

)2} , (9.3)

respectively. The estimator of the response is defined by

ȳk =
1
n

n'
i=1

y
(i)
k . (9.4)

and is itself a random variable. It can be shown, see e.g. [45], that the mean
and the variance of the estimator of the response are given by

E{ȳk} = µyk
(9.5)

and

Var(ȳk) = E{(ȳk − E{ȳk})2} =
σ2

yk

n
. (9.6)

Tschebyschev’s inequality provides a basis for error assessment, i.e.



9.2 Error Assessment 61

P{|ȳ − µy| < !} ≥ 1 − 1
!2

σ2
y

n
, (9.7)

where ! denotes a tolerance. By specifying a confidence level 1 − δ, a “worst
case” minimum sample size can be calculated by

nmin ≥ σ2
yk

!2
1
δ

. (9.8)

By definition, (9.8) is valid for any sample size and any probability distribution
of yk and specifies a larger sample size than is necessary. Due to the central
limit theorem, however, the sum of a large number of not necessarily Gaussian
random variables yields a Gaussian random variable. Specifically, the distribu-
tion of ȳk is N(µyk

, σyk
/
√

n), so that for n → ∞ it follows that ȳk → µyk
. This

allow one to specify a minimum sample size for a sufficiently large number n
of simulations under the assumption that σ2

yk
≈ Var(yk) (“known variance”)

nN,min ≥ σ2
y

!2
�
Φ−1(1 − δ/2)

�2
, (9.9)

where Φ−1(·) denotes the inverse of the normal cumulative distribution func-
tion. Equivalently, for a given number n of simulations and a specified confi-
dence level, the corresponding confidence interval for µyk

is given by

µyk,1−δ =
"
ŷk − Φ−1(1 − δ/2)

σyk√
n

; ŷk + Φ−1(1 − δ/2)
σyk√

n

$
. (9.10)

Among all methods that utilize a n-point estimation in the m-dimensional
parameter space, the direct Monte Carlo method has an absolute estima-
tion error that decreases with n−1/2, independently of the dimension m as
seen from (9.6), whereas all other approaches have errors which decrease with
n−1/m at best, see e.g. [45].
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Equivalent Statistical Linearization

The solution of non-linear vibration problems in terms of probabilistic charac-
teristics of the response is a complex task, since no general methods of solution
are available. If second order statistics of the response have to be calculated,
however, the method of equivalent statistical linearization , see e.g. [109, 140],
is conceptional simple and straight forward to apply.
In the following, the concept of equivalent statistical linearization is first re-
viewed for scalar valued transformations and extended later on for vector
valued transformations, which commonly appear in non-linear finite element
models.

10.1 Scalar Valued Transformations

A non-linear scalar valued function representing the rate of change of the
process z(t) can be seen as a transformation with memory of the input y(t)
to the output z(t), i.e.

g(z(t), y(t)) = ż(t) , (10.1)

where

y(t) =


y1(t)
y2(t)

...
yn(t)

 . (10.2)

The non-linear scalar valued function is replaced by a linear one

a1(t)ỹ1(t) + a2(t)ỹ2(t) + ... + an(t)ỹn(t) + b(t)z̃(t) + c(t)

= a(t)T ỹ(t) + b(t)z̃(t) + c(t) = ż(t) ,
(10.3)

where ỹ(t) denotes the centered input process

ỹ(t) = y(t) − µy(t) , (10.4)

C.A. Schenk, G.I. Schuëller: Uncertainty Assessment, LNACM 24, pp. 63–65, 2005.
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z̃(t) = z(t) − µz(t) and the vector

a(t) =


a1(t)
a2(t)

...
an(t)

 (10.5)

comprises the so-called linearization coefficients, respectively. By defining the
error between the non-linear and the linear system by

!(t) = g(z(t), y(t)) − a(t)T ỹ(t) − b(t)z̃(t) − c(t) , (10.6)

the equivalent statistical linearization technique minimizes this error in the
mean square sense, i.e.

e(t) = E{!2(t)} → min , (10.7)

where the minimum can be obtained from the conditions

∂e(t)
∂ai(t)

= 0,
∂e(t)
∂b(t)

= 0, and
∂e(t)
∂c(t)

= 0 . (10.8)

By direct calculations one arrives at the set of algebraic equations

E{ỹ(t)ỹ(t)T }a(t) = E{ỹ(t)g(z(t), y(t))} , (10.9)

E{z̃(t)z̃(t)}b(t) = E{z̃(t)g(z(t), y(t))} , (10.10)

and
c(t) = E{g(z(t), y(t))} . (10.11)

For a Gaussian input process it has been shown in [9], that the relation

E{ỹ(t)g(z(t), y(t))} = E{ỹ(t)ỹ(t)T }E{∇g(z(t), y(t))} (10.12)

holds, where

∇ =


∂

∂y1
∂

∂y2
...
∂

∂yn

 , (10.13)

and thus (10.9) can be simplified to

a(t) = E{∇g(z(t), y(t))} or ai(t) = E

�
∂g(z(t), y(t))

∂yi

�
. (10.14)

In a similar way, also a relation for b(t) can be derived.
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10.2 Vector Valued Transformations

In a finite element analysis, where a hysteretic behavior of the system is
generally modeled by several non-linear elements, the concept reviewed in
section 10.1 has to be extended to vector valued transformation. In this case,
the non-linear relation reads

g(z(t), y(t)) = ż(t) , (10.15)

where

g(z(t), y(t)) =


g1(z(t), y(t))
g2(z(t), y(t))

...
gm(z(t), y(t))

 . (10.16)

Again, this transformation is replaced by a linear one,

A(t)ỹ(t) + B(t)z̃(t) + c(t) = ż(t) , (10.17)

where the linearization coefficients are now elements of the m×n matrix A(t)
and the m×m matrix B(t). Applying the same steps as shown previously for
scalar valued transformations, one arrives at

aij = E

�
∂gi(z(t), y(t))

∂yj

�
, (10.18)

bij = E

�
∂gi(z(t), y(t))

∂zj

�
, (10.19)

and

c = E

�
g(z(t), y(t))

�
. (10.20)
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Random Vibrations of Large Finite Element
Systems

The basic idea for the computation of the stochastic response is based on
the Karhunen-Loève expansion of the stochastic loading. For each Karhunen-
Loève vector of the loading the corresponding Karhunen-Loève vector of the
response of the system is computed. This allows – applying the superposi-
tion principle – to calculate the covariance matrix of the output quantities
(e.g. displacements, velocities etc.).
Quite frequently, however, only second moment characteristics of a few degrees
of freedom are of interest, which can also be determined most efficiently by
the described procedure without calculating the full covariance matrix. This
feature is especially important for systems modeled with a large number n of
degrees of freedom, since the storage of the non-sparse covariance matrix with
dimensions 2n × 2n for large systems represents still nowadays a hardware
problem.
In presence of non-linearities, the system equations are linearized by the equiv-
alent statistical linearization technique, so that the superposition principle
is still valid. The described procedure is straightforward and attractive for
the deterministic engineering community, since deterministic integration al-
gorithms as part of many commercial finite element packages are applied for
the integration of Karhunen-Loève vectors. The efficiency of the described
method can be significantly enhanced when the deterministic integration is
carried out in a reduced subspace, i.e. by applying a mode superposition tech-
nique.

11.1 Stochastic Excitation

The external loading f (t) as used in (6.4) or (6.6) is assumed to be a simplified
representation of earthquake excitation, i.e.

f(t) = −MIaa(t) , (11.1)

C.A. Schenk, G.I. Schuëller: Uncertainty Assessment, LNACM 24, pp. 67–77, 2005.
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where Ia is a displacement transformation matrix that expresses the displace-
ment of each degree of freedom due to static application of a unit support
displacement, see e.g. [33]. Vector a(t) denotes the discrete, stochastic earth-
quake acceleration

a(t) =


ax(t)
ay(t)
az(t)

 (11.2)

applied at the structure’s supports. The components ax(t), ay(t) and az(t), are
assumed to be mutually statistically independent. The Karhunen-Loève rep-
resentation of e.g. ax(t), can be written as, see (8.12),

ax(t) = a(0)
x (t) +

Na'
j=1

ξjxa(j)
x (t) ≈ a(0)

x (t) +
m'

j=1

ξjxa(j)
x (t) , (11.3)

where a
(0)
x (t) and a

(j)
x (t) denote the mean function and the j-th Karhunen-

Loève vector of ax(t), respectively, and m is the order of truncation of the
series expansion. Thus, the truncated Karhunen-Loève representation of a(t)
is given by

a(t) ≈ a(0)(t) +
m'

j=1

ξja
(j)(t) , (11.4)

where

ξj =

ξjx 0 0
0 ξjy 0
0 0 ξjz

 . (11.5)

In case the components of a(t) are correlated, a Karhunen-Loève represen-
tation in the form of (8.42), see Sec. 8.2, would be necessary. For uncorre-
lated ground accelerations, however, the Karhunen-Loève representation of
the loading vector is given by

f(t) ≈ f (0)(t) +
3m'
j=1

ξ̄jf
(j)(t)

≈ −MIa

!
a(0)(t) +

m'
j=1

ξja
(j)(t)

#
,

(11.6)

where, again, f (0)(t) and f (j)(t) denote the mean function and the j-th
Karhunen-Loève vector of f(t), respectively, and

{ξ̄j}m
j=1 = {ξjx}m

j=1 ,

{ξ̄j}2m
j=m+1 = {ξjy}m

j=1 ,

{ξ̄j}3m
j=2m+1 = {ξjz}m

j=1 .

(11.7)
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11.2 Response Statistics

Based on the superposition principle and the representation of the loading
as a sum of independent loading vectors according to (11.6), the structural
response in terms of displacements, velocities and auxiliary variables, see (6.4),

x(t) = {uT (t), u̇T (t), qT (t)}T , (11.8)

can be represented by

x(t) = x(0)(t) +
3m'
j=1

ξ̄jx
(j)(t) . (11.9)

Now all vectors {x(j)}3m
j=0, which uniquely specify the first two moments of

the stochastic response
µx(t) = x(0)(t) (11.10)

and

Γ xx(t, s) = E{(x(t) − µx(t))(x(s) − µx(s))T }

=
3m'
j=1

x(j)(t)x(j)T (s)
(11.11)

have to be determined. For each deterministic Karhunen-Loève vector of the
loading the associated deterministic structural response can be calculated.
Symbolically, this can be written as

{f (j)}3m
j=0 �→

!
{u(j)}3m

j=0, {u̇(j)}3m
j=0, {q(j)}3m

j=0

#
. (11.12)

The second moment characteristics of the structural response can be calcu-
lated according to

µu(t) = E{u(t)} = u(0)(t) ,

µu̇(t) = E{u̇(t)} = u̇(0)(t) ,

µq(t) = E{q(t)} = q(0)(t) ,

(11.13)

and

Γ uu(t, s) =
3m'
j=1

u(j)(t)u(j)T
(s) ,

Γ u̇u̇(t, s) =
3m'
j=1

u̇(j)(t)u̇(j)T
(s) ,

Γ qq(t, s) =
3m'
j=1

q(j)(t)q(j)T
(s) .

(11.14)

It remains now to show how the Karhunen-Loève vectors of the structural
response quantities – depending on the type of system – can be calculated.
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11.2.1 Linear Systems

For linear systems described by (6.6), response statistics can be calculated in
a straightforward manner. Using direct integration, this requires the solution
of

M ü(j) + C u̇(j) + K u(j) = f (j) j ≥ 0 , (11.15)

which is also valid for non-zero mean problems. When applying a mode su-
perposition method like e.g. the mode acceleration method, see Sec. 6.4, the
set of equations given by

z̈
(j)
i + ż

(j)
i 2ζiωi + z

(j)
i ω2

i = φT
i f (j) ,

u
(j,s)
d = Φ z(j,s) , u̇

(j,s)
d = Φ ż(j,s) ,

u(j,s)
s = B̂ a(j) , u̇(j,s)

s = B̂ ȧ(j) , (11.16)

u(j,s) = u
(j,s)
d + u(j,s)

s ,

u̇(j,s) = u̇
(j,s)
d + u̇(j,s)

s

has to be solved.

11.2.2 Non-Linear Systems

The non-linearity treated in the following is of hysteretic type. A simplified
hysteretic behavior can be described by non-linear ordinary differential equa-
tions, which are based on the well known Bouc-Wen model, see e.g. [157]. The
constants appearing in these equations may be adapted such that a wide vari-
ety of hysteresis loops may be modeled. The hysteretic elements described in
section 13.2 can be seen as non-linear transformations with memory, since the
auxiliary variables q(t) at an arbitrary time t, representing the output of the
transformation, depend on the entire history of the system response defined
by u(t) and u̇(t).

Modeling in Local Element Coordinates

The most suitable and straightforward approach in modeling the non-linear
restoring force r̄(u, u̇, q), see (6.4), is in local element coordinates [43, 100].
Hereby, r̄(u, u̇, q) is represented in a minimal number of coordinates, where
in the following the superscript “(e)” denotes the non-linear element and the
subscript “L” indicates local coordinates. For global coordinates the subscript
“G” is omitted where the meaning is clear.
The local element displacements u

(e)
L and velocities u̇

(e)
L are related to the

global nodal displacements u(e) and velocities u̇(e), respectively, by a linear
transformation T (e), i.e.

u
(e)
L = T (e)u(e) , u̇

(e)
L = T (e)u̇(e) , (11.17)
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where

u(e) =

�
u

(e)
1

u
(e)
2

�
(11.18)

is a vector of the global nodal degrees of freedom to which the non-linear
element is related. The element specific quantity q(e) does not require a dis-
tinction between local and global, i.e.

q
(e)
L = q(e) . (11.19)

The non-linear part of r
(e)
L , i.e. r̄

(e)
L , can thus be calculated by, see (6.5),

r̄
(e)
L = −R

(e)
L q(e)(u(e)

L , u̇
(e)
L ) . (11.20)

Using the fundamental transformation laws, the loading in global coordinates
can be determined by

r̄
(e)
G = T (e)T r̄

(e)
L = −R

(e)
G q(e)(u(e)

L , u̇
(e)
L ) , (11.21)

where
R

(e)
G = T (e)T R

(e)
L . (11.22)

Assembling all element matrices R
(e)
G and q(e) into a matrix and a vector,

respectively, '
e

R
(e)
G �→ R ,

'
e

q(e) �→ q , (11.23)

allows one to represent the additional loading due to the non-linear elements
by the product

r̄(u, u̇, q) = −Rq(u, u̇) . (11.24)

Equivalent Statistical Linearization

The described procedure relies on the Karhunen-Loève representation of the
covariance matrix of the response. As it is well known that the superposition
principle is valid only for linear systems described by (6.6), the non-linear
system equations given by (6.4) have to be linearized for each time step. For
this purpose equivalent statistical linearization is applied, see Sec. 10, which
in fact has been developed from the deterministic equivalent linearization pro-
cedure.
Applying equivalent statistical linearization to general non-linear elements
implies integration over an r-dimensional space, where r denotes the length
of the state vector required to specify the non-linear element. An accurate
integration over larger dimensions, say r > 4, is computationally not feasi-
ble. An approximation using Monte Carlo simulation in combination with a
least square solution has been suggested as a generally applicable solution in
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[99, 121]. The described procedure, however, uses equivalent statistical lin-
earization as an existing tool in stochastic mechanics and thus in this mono-
graph the well tested one-dimensional non-linear elements have been used for
modeling the non-linear system behavior. Linearizing the non-linear vector
function (6.2) leads to a linear first order vector differential equation for the
temporal evolution of the auxiliary variables, see Chap. 10, i.e.

q̇ = g(u, u̇, q) ≈ b + Uũ + V ˙̃u + Wq̃ , (11.25)

where the vector b and the matrices U ,V and W contain the so-called lin-
earization coefficients with

b = E{g(u, u̇, q)} , (11.26)

and zero mean vectors

ũ = u − µu , µu = E{u} ,

˙̃u = u̇ − µu̇ , µu̇ = E{u̇} ,

q̃ = q − µq , µq = E{q} .

(11.27)

In equivalent statistical linearization, the input and consequently the response
are commonly assumed to be jointly Gaussian distributed, whereby second
order characteristics of the response have to be known in advance. On the other
hand, the response statistics depend on the linearization coefficients contained
in b, U ,V and W as determined by equivalent statistical linearization. This
mutual dependency is resolved by an iterative procedure, as will be described
in detail in the next section.

Direct Integration

The following is a detailed description of an iteration scheme for the calcu-
lation of the unknown structural response as written symbolically in (11.12).
Hereby the zero mean loading process as well as a symmetric hysteresis loop
is assumed. Non-zero mean problems are treated in Sec. 11.3. It is assumed
that the system response is known for time t, i.e.

t{u(j)}3m
j=0 , t{u̇(j)}3m

j=0 and t{q(j)}3m
j=0 (11.28)

and is sought for time t + ∆t, i.e.

t+∆t{u(j)}3m
j=0 , t+∆t{u̇(j)}3m

j=0 and t+∆t{q(j)}3m
j=0 . (11.29)

Using direct integration, (6.4) has to be solved for each deterministic Karhunen-
Loève vector according to

M t+∆tü(j,s) + C t+∆tu̇(j,s) + K t+∆tu(j,s) =
t+∆tf (j) + R t+∆tq(j,s−1) ,

(11.30)
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where s denotes the iteration cycle. Due to the additional loading obtained
by the shift of the non-linear restoring force vector to the right hand site of
(6.4), the Karhunen-Loève vectors can not be calculated directly, but in an
iterative manner. At the beginning of each iteration it is assumed that the
relation

t+∆tq(j,0) := tq(j) , (11.31)

holds. The linearization of the non-linear elements is done independently in
local coordinates. Therefore, the set of equations (11.25)–(11.27) is rewritten
in local coordinates, yielding

q̇(e,s) ≈ b(e,s) + U (e,s)ũ
(e,s)
L + V (e,s) ˙̃u

(e,s)

L + W (e,s)q̃(e,s−1) , (11.32)

with
b(e,s) = E{g(e,s)(u(e,s)

L , u̇
(e,s)
L , q(e,s−1))} (11.33)

and the zero mean processes

ũ
(e)
L = u

(e)
L − µ

u
(e)
L

,

˙̃u
(e)

L = u̇
(e)
L − µ

u̇
(e)
L

,

q̃(e) = q(e) − µq(e) .

(11.34)

The linearization in local coordinates requires the first two moments of the
stochastic response

x(e,s) =


u

(e,s)
L

u̇
(e,s)
L

q(e,s−1)

 , (11.35)

i.e. its mean µ
(e)
x and covariance matrix Γ (e)

xx

µ(e)
x = E{x(e)} ,

Γ (e)
xx = E{(x(e) − µ(e)

x )(x(e) − µ(e)
x )T } ,

(11.36)

where (11.35) has again a Karhunen-Loève representation

x(e)(t) = x(e,0)(t) +
3m'
j=1

ξ̄jx
(e,j)(t) , (11.37)

with

u
(e,j)
L = T (e)u(j) ,

u̇
(e,j)
L = T (e)u̇(j) ,

(11.38)

and
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x(e,s,j)(t) =


u(e,s,j)(t)
u̇(e,s,j)(t)

q(e,s−1,j)(t)

 . (11.39)

For the integration of q̇(j) with respect to time, the simple trapezoidal inte-
gration

t+∆tq(e,j,s) = tq(e,j) +
1
2
∆t[ tq̇(e,j) + t+∆tq̇(e,j,s)] (11.40)

may often be sufficient. Again, for the beginning of the iteration scheme it is
assumed that

t+∆tq̇(j,0) := tq̇(j) (11.41)

holds. Convergence is achieved in case the condition

d

s
≤ ! (11.42)

is satisfied, where ! is a suited real number, e.g. 1 · 10−6, and

d =
n+nq'
i=1

|µ(s)
x[i] − µ(s−1)

zi
| + |σ(s)

x[i] − σ
(s−1)
x[i] | ,

s =
n+nq'
i=1

|µ(s)
x[i] + µ(s−1)

zi
| + σ

(s)
x[i] + σ

(s−1)
x[i] .

(11.43)

In (11.43), n and nq denotes the number of degrees of freedom and the num-
ber of auxiliary variables, respectively, and x[i] denotes the i-th element of
the state vector x. To improve the convergence properties of the iterative pro-
cedure, e.g. to avoid oscillatory behavior, q(j) might be replaced by a linear
combination of the actual and previous iterative solution, i.e.

q̄(j,s) = βq(j,s) + (1 − β)q̄(j,s−1) , (11.44)

with
0 < β ≤ 1 . (11.45)

The value β is set to 1 at the beginning of the iteration and is decreased after
two iterations, e.g. to β = 0.5.

Mode Acceleration Method

According to (6.37), the decoupled equations

t+∆tz̈
(j,s)
i +t+∆t ż

(j,s)
i 2ζiωi

+t+∆tz
(j,s)
i ω2

i = φT
i

!
t+∆tf (j) + Rt+∆tq(j,s−1)

#
,

(11.46)
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have to be integrated, applying any available and appropriate deterministic
step by step integration scheme. For the beginning of the iteration scheme
it is assumed that (11.31) holds. Integration of (11.46) yields the associated
Karhunen-Loève vectors of the dynamic part of the structural response ud

and u̇d,

t+∆tu
(j,s)
d = Φ t+∆tz(j,s) , t+∆tu̇

(j,s)
d = Φ t+∆tż(j,s) . (11.47)

In addition, the associated Karhunen-Loève vectors of the static part of the
structural response us and u̇s have to be determined according to (6.38)

t+∆tu(j,s)
s = B̂ t+∆ta(j) + R̂ t+∆tq(j,s−1) ,

t+∆tu̇(j,s)
s = B̂ t+∆tȧ(j) + R̂ t+∆tq̇(j,s−1) .

(11.48)

Again, for the beginning of the iteration scheme it is assumed that (11.41)
holds. Finally, the sums of (11.47) and (11.48) define the Karhunen-Loève vec-
tors of the structural response

t+∆tu(j,s) = t+∆tu
(j,s)
d +t+∆t u(j,s)

s ,

t+∆tu̇(j,s) = t+∆tu̇
(j,s)
d +t+∆t u̇(j,s)

s .
(11.49)

In a next step, the additional variables t+∆t{x(e,s)
1 }3m

j=0 and t+∆t{x(e,s)
2 }3m

j=0

according to (13.29) have to be calculated for every non-linear element, al-
lowing subsequently to determine the linearization coefficients as defined in
(13.34)-(13.36) and (13.38)-(13.40). The local element coordinates are related
to the reduced global coordinates (z, ż, q) by

u
(e,s)
L (t) = Q

(e,s)
1 z(t) + Q

(e,s)
2 a(t) + Q

(e,s−1)
3 q(t) , (11.50)

and
u̇

(e,s)
L (t) = Q

(e,s)
1 ż(t) + Q

(e,s)
2 ȧ(t) + Q

(e,s−1)
3 q̇(t) . (11.51)

Here, the constant transformation matrices read

Q
(e)
1 = T (e)Φ , Q

(e)
2 = T (e)B̂ , Q

(e)
3 = T (e)R̂ , (11.52)

where the element specific transformation vector T (e) has been introduced
in (11.17). The matrices Q

(e)
2 and Q

(e)
3 stem from the approximation of the

response of the higher modes. They are supposed to be small when compared
with the effect of the modal quantities. With (11.51) and (11.52) the state
vector of the response at element level is available, see (11.35),

x(e,s) =


u

(e,s)
L

u̇
(e,s)
L

q(e,s−1)

 . (11.53)

thus (11.36)–(11.45) are also valid.
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11.3 Non-Zero Mean Response

The described procedure provides also a framework for addressing problems
characterized by a non-zero mean response, i.e. u(0) �= 0 and u̇(0) �= 0. This
situation typically arises when there is non-zero mean loading, i.e. f (0) �= 0, or
when the hysteresis loop shown in Fig. 13.6 shows a non-symmetric behavior.
But also for zero mean loading and a symmetric hysteresis loop, the vector
q is a non-zero mean vector stochastic process. Since this vector comprises
non-decreasing, non-reversible functions of time, a stationary solution does
not exist whenever the response reacts non-linearly. In such cases, however,
µ

(e)
q1 = −µ

(e)
q2 and thus the resulting non-linear restoring force Rq is equal to

zero.
While for linear systems the mean and the covariance function, respectively,
can be solved independently, they are mutual dependent for non-linear sys-
tems. In other words, the zero-th Karhunen-Loève vector of the response
affects the variability of the response and thus the higher order Karhunen-
Loève vectors, which in turn contribute to the mean response of the system.
Similar to Secs. 11.2.2 or 11.2.2, this dependency has to be resolved itera-
tively, but now two iteration loops are required in order to satisfy equilibrium
conditions.

11.3.1 Direct Integration

Starting point for problems with a non-zero mean response is again (6.4). In
case of direct integration, (11.30) together with (13.30) and (13.31) has to be
solved within the first iteration loop for j = 0. Denoting the iteration cycle
with r this yields

M t+∆tü(0,r) + C t+∆tu̇(0,r) + K t+∆tu(0,r) =
t+∆tf (j) + R t+∆tq(0,r−1)

(11.54)

and
q(0,r) =

 
g(u(0,r), u̇(0,r), q(0,r−1))dt . (11.55)

At the beginning of the iteration scheme, i.e. r = 1, it is assumed that the
condition

t+∆tq(0,0) = tq(0) (11.56)

holds. Once equilibrium is satisfied for (11.54) and (11.55) at iteration cycle
r = R, the variability of the response can be estimated by computing the
higher order Karhunen-Loève vectors according to

M t+∆tü(j,s) + C t+∆tu̇(j,s) + K t+∆tu(j,s) =
t+∆tf (j) + R t+∆tq(j,s−1) j > 0 ,

(11.57)
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where the iteration cycle is now denoted with s. Applying equivalent statistical
linearization, the auxiliary variables can be calculated by

q(0,s) =
 

E{g(u(s), u̇(s), q(s−1))} dt (11.58)

and
q(j,s) =

 
(Uũ(j,s) + V ˙̃u

(j,s)
+ Wq̃(j,s−1))dt . (11.59)

Here, at the beginning of the iteration scheme, i.e. s = 1, it is assumed that
the conditions

t+∆tq(0,0) = t+∆tq(0,R) (11.60)

and
t+∆tq(j,0) = tq(j) (11.61)

hold. As can be seen, the variability of the response contributes to q(0), which
requires to update the zero-th Karhunen-Loève-vectors of the response. After
equilibrium is satisfied for the second iteration loop at s = S, this is done by
solving (11.54) and (11.55) iteratively, but now instead of (11.56) the initial
condition reads

t+∆tq(0,0) = t+∆tq(0,S) . (11.62)

For both iteration loops convergence is achieved according to the relations
defined in (11.42) and (11.43).

11.3.2 Mode Acceleration Method

If the mode acceleration method is used for the time integration of the prob-
lems characterized by a non-zero mean response, everything written in Sec.
11.3.1 is valid and can be applied accordingly.
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Stability Analysis of Cylindrical Shells with
Random Imperfections

As an example of imperfection sensitive structures, the axially compressed
cylindrical shell is analyzed in the subsequent sections. Despite of its simple
geometry, a non-linear static finite element analysis of an isotropic cylindrical
shell is from the computational point of view quite demanding. For the de-
termination of the collapse load of the imperfect cylindrical shell a non-linear
static finite element analysis using STAGS [104] is carried out. The analysis
takes into account non-linearities due to large displacements and large rota-
tions, but is restricted to small strains. The stress-strain relation is assumed
to be linear. STAGS is designed for general purpose analysis of shell struc-
tures of arbitrary shape and complexity and proves to be most instrumental
for involved, non-linear shell problems. It is particularly suited for the use in
context with automatized Monte Carlo simulation.

12.1 Stochastic Modeling of Geometric and Boundary
Imperfections

The theory of stochastic processes, in particular the theory of random fields,
can be applied most advantageously in order to capture the inherent random-
ness of geometric imperfections of cylindrical shells and other types of shell
structures, see Sec. 8.3 and [115, 112].

12.1.1 Estimation of the Covariance Matrix of Geometric
Imperfections

With respect to (8.45), geometric imperfections represent a two-dimensional
random field

g(t); t ∈ D ⊆ R2 , (12.1)

where

C.A. Schenk, G.I. Schuëller: Uncertainty Assessment, LNACM 24, pp. 81–109, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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t =
	

η
ζ

�
(12.2)

describes a Cartesian coordinate system defined on the surface of the cylin-
drical shell, see Fig. 12.1. Based on a database of measured imperfections (see

η

ζ

L

R g(η, ζ)

b(ζ)

Fig. 12.1. Surface coordinates η, ζ of cylindrical shell. Geometric imperfections
g(η, ζ) are defined normal to the shell surface, boundary imperfections b(ζ) are
defined in axial direction. L and R denote the length and the radius of the shell,
respectively.

Appendix A), the covariance matrix has been estimated according to (8.13)

Γ gg =
1

n − 1

n'
r=1

(g(r) − µg(r))(g(r) − µg(r))
T } , (12.3)

using n = 7. Contrary to (8.13), (12.3) represents the best unbiased estimator
for the covariance matrix. The structure of the estimated covariance matrix
clearly reveals that these measured geometric imperfections represent a non-
homogeneous random field, i.e.

Γgg((η1, ζ1), (η2, ζ2)) �= Γgg(η2 − η1, ζ2 − ζ1) . (12.4)

The covariance function Γgg(t, s) between two points (η1, ζ1) and (η2, ζ2) of
the random field thus depends not only on the relative distance between these
points but also on the location of these points. The covariance matrix is ca-
pable to describe such a shift variant correlation structure without any sim-
plifications or assumptions.
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12.1.2 Correlation Structure of Geometric Imperfections

In applied stochastic mechanics the frequently used, so-called correlation
length describes in a concise way the correlation structure of a homogeneous
random field. It is the purpose of this section – by introducing only for a
moment the assumption of homogeneity – to determine the correlation length
for the so-called A-shells (see Appendix A).
The correlation length Lc determines the decay of the mutual influence of
two different random field locations, e.g. g(t1) and g(t2), and is a measure for
the number of uncorrelated random variables which are required to describe
the random field with a given quality. For an exponential or convex type of
covariance function, the correlation length Lc defines the distance where the
covariance function Γgg(∆η, ∆ζ) takes on the value Γgg = σ2

g/e, where e de-
notes the Euler number and σ2

g the variance of the random field, respectively,
and

∆η = η2 − η1, ∆ζ = ζ2 − ζ1 . (12.5)

According to this definition, a correlation length tending towards infinity de-
scribes a fully correlated random field, which means that all random variables
representing the random field are linearly dependent. A correlation length
equal to zero describes an uncorrelated random field, see e.g. [117].

From Figs. A.1(a)–A.4 shown in Appendix A it can be assumed that the
variation of the imperfections along the axes η and ζ is independent. This
has been substantiated by the data, so it is consistent to imply a fully sep-
arable correlation structure of g(t). Under the assumption of zero mean and
homogeneity the covariance function can then be expressed as, see e.g. [153],

Γgg (∆η, ∆y) = σ2
g;η (∆η) ;ζ (∆ζ) , (12.6)

where ;η, ;ζ are the correlation coefficient functions along the axes η and ζ.
This allows to split the correlation structure of the geometric imperfections
into two one dimensional problems. In Figs. 12.2 and 12.3 the different cor-
relation coefficient functions for the axial and circumferential direction are
shown. The shape of the correlation coefficient function ;ζ can be explained
as follows. Its symmetry is due to the fact, that the maximum lag ∆ζ is half of
the circumference, while the extremes are due to the low frequencies ruling the
imperfections in the circumferential direction. Because of the fully separable
correlation structure of the imperfections, the correlation length can now be
defined for the axial and the circumferential direction individually. According
to the definition of the correlation length mentioned before, for the measured
geometric imperfections the values

Lcη ≈ 0.6L , Lcζ
≈ 0.06(2Rπ) , (12.7)

have been obtained, where Lcη and Lcζ
denote the correlation lengths in axial

and circumferential direction, respectively.
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Fig. 12.2. Correlation coefficient function (%η(∆η), ∆η = [0, L]) in axial direction of
the A-shells under the assumption of homogeneity and a fully separated correlation
structure.

The two dimensional covariance function Γgg(∆η, ∆ζ) of the imperfections
according to (12.6) is shown in Fig. 12.4. A separable correlation structure
assures a so called quadrant symmetry, i.e. the covariance function defined
for positive lags ∆η and ∆ζ fully represents the correlation structure of the
imperfections g(t) [153].

12.1.3 Estimation of the Covariance Function of Boundary
Imperfections

Boundary imperfections of cylindrical shells will be considered in the following
and are defined, according to Fig. 12.1, by

b(t); t ∈ D ⊆ R1 , (12.8)

where
t =

�
ζ
�

. (12.9)

Second moment characteristics of boundary imperfections cylindrical shells
have been estimated from results of a flatness survey (see Fig A.5 and Fig. 4
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Fig. 12.3. Correlation coefficient function (%ζ(∆ζ), ∆ζ = [0, 2Rπ]) in circumfer-
ential direction of the A-shells under the assumption of homogeneity and a fully
separated correlation structure.

in [4]) of one of the end-rings used in a test setup for buckling experiments
of anisotropic shells. Since this is the only sample that has been available,
ergodicity is assumed, i.e. the covariance function Γbb(ζ2 − ζ1) = Γbb(∆ζ)
shown in Fig. 12.5, has been calculated by spatial averaging, see also [113].
Its symmetry is due to the fact, that the maximum lag ∆ζ is half of the
circumference.

12.2 Modeling of Imperfect Shell Structures by Finite
Elements

Three different cylindrical shells are analyzed next, see Table 12.1 and 12.2,
respectively: A very thin cylindrical shell in presence of geometric and/or
boundary imperfections (shell #1, see Fig. 12.6 and [114]), and two shells
with a cutout in presence of geometric imperfections (shell #2 and #3, see
Fig. 12.7 - 12.8 and [113, 116]).

All finite element models are established by an assumed natural strain 9-
node quadrilateral shell element [88] with 5 degrees of freedom per node. This
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Fig. 12.4. Two dimensional covariance function Γgg(∆η, ∆ζ) of the A-shells under
the assumption of homogeneity and a fully separated correlation structure.

Shell R [m] t [m] L [m] E [N/m2] ν [-]

#1 0.1016 0.00011597 0.2023 1.0441·1011 0.3
#2 0.1016 0.00115970 0.2023 1.0441·1011 0.3
#3 0.1016 0.00115970 0.2023 1.0441·1011 0.3

Table 12.1. Dimensions and material properties of finite element models. Radius
R, thickness t, length L, Young’s modulus E and Poisson’s ratio ν.

element is referred to as ’480’ element in [104], in particular 9 Gauss integra-
tion points has been used. Contrary to other shell elements used for modeling
very thin shell structures, this element does not show so called “hourglass-
modes” and performs very well with regard to an accelerated convergence
[103].

On both edges ’1’ and ’3’ of the shell shown in Fig. 12.9, the classical simply-
supported (SS-3) boundary condition is employed, i.e. v = w = 0 and u �= 0,
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Fig. 12.5. Covariance function Γbb(∆ζ) of boundary imperfections under the as-
sumption of homogeneity.

Shell H [m] H/W [-] λbif
lin λbif

nl λlim
nl

#1 - - 1.0 0.87382 -
#2 0.0154 2.564 0.24390 0.48736 0.65619
#3 0.0456 2.564 0.45387 0.53338 0.56691

Table 12.2. Cutout height H , aspect ratio H/W , bifurcation load obtained by
linear analysis λbif

lin , bifurcation load obtained by non-linear analysis λbif
nl , limit load

obtained by non-linear analysis λlim
nl .

technique.

The use of a Fourier series for the representation of deterministic or random
imperfections has been justified in the past mainly because of two reasons. The
first one is that in an analytical buckling analysis of cylindrical shells imper-
fections can only be incorporated if they are similar to critical buckling modes.
The second one is that unfortunately only few measurements of imperfections
do exist, hence the best choice is again to model imperfections similar to some

ru �= 0. In order to ensure an uniform axial displacement of edges ’1’ and
’3’, additional constraints have been imposed using the Lagrange multiplier
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Fig. 12.6. Finite element model of shell #1: mesh 101 × 193.

critical buckling modes (worst case analysis). For an uncertainty analysis of
cylindrical shells, it is thus quite obvious that random geometric imperfections
have been represented in the past by using random trigonometric polynomi-
als, in particular half-wave cosine or half-wave sine representations. Moreover
this approach allows to incorporate only those modes of imperfections, which
are expected to have a crucial influence on the buckling behavior of the shell.
However, nowadays highly sophisticated numerical methods, such as the fi-
nite element method are available for the determination of the critical load,
which provide extensive modeling capabilities and allow the incorporation of
general geometric imperfections in terms of nodal displacements. Thus there
is no need anymore for the transformation of measured imperfections from
the space domain into the spatial frequency domain.
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Fig. 12.7. Finite element model of shell #2: mesh 53 × 65.

Dealing with random imperfections, the Karhunen-Loève expansion is per-
fectly suited for a stability analysis in context with the finite element method,
because no simplifications of the shape of imperfections are introduced. A mi-
nor disadvantage of such an approach is the necessity to model the complete
shell due to missing symmetry planes, which of course increases the compu-
tational time needed.
Geometric imperfections are defined as nodal displacements in the w-direction
representing perturbations of the idealized shell geometry, whereby higher or-
der strains, as e.g. used in [108], are not considered in the following.
Boundary imperfections are modeled as a full contact problem using a two
step approach. The first step introduces boundary imperfections a prescribed
displacements in the u-direction on both edges of the shell. This step intro-
duces rather localized stress fields close to the edges of the shell. In the second
step, the external nodal forces as a result of the first step are applied on both
edges of the shell together with the axial loading. The resulting effect of this
two step approach is a non-uniformly axial loading, governed by the shape of
the boundary imperfections.
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Fig. 12.8. Finite element model of shell #3: mesh 53 × 65.

12.3 Buckling Load of Perfect Shell

12.3.1 Cylindrial Shell without Cutout

In the following, all load levels are normalized by the classical buckling load
of an axially compressed isotropic shell with SS-3 boundary condition on both
edges after [74] and [150],

Ncl = E (3
"
1 − ν2

$
)−0.5 t2 R−1 . (12.10)

Isotropic shells under axial compression do have the peculiarity that the non-
uniformity and non-linearity of the pre-buckling state near the edges reduces
the predicted critical load considerably, moreover the asymmetric bifurcation
buckling load is very close to the axi-symmetric buckling load (see e.g. [25]).
Keeping this in mind, the two lowest eigenvalues obtained by a non-linear
bifurcation analysis carried out by STAGS together with their corresponding
buckling modes have been compared with semi-analytical results available,
see e.g. [13].

yy
xx

zz
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Fig. 12.9. Cylindrical shell: radius R, thickness t, length L, cutout height H , cutout
width W , see Table 12.1.

For this purpose the batch tool ANILISA [6] as part of SDAS [62], proves to
be most instrumental. ANILISA is based on Donnell type equations where
first the axi-symmetric non-linear pre-buckling path of the perfect shell is
calculated. After a range of circumferential wave numbers has been selected,
load levels at which bifurcation occurs are calculated. This is achieved by solv-
ing numerically the resulting eigenvalue problem, whereby the user selected
boundary conditions, in this case SS-3, are satisfied rigorously.

Dimensions and material properties of the finite element model are given
in Table 12.1 and 12.2, respectively, in particular shell #1 is obtained by
averaging the corresponding parameters available in [5] and included in Table
A.1. The two lowest bifurcation loads as obtained by ANILISA for such a shell
are

λbif
nl,sym = 0.844343 (n = 24), λbif

nl,asym = 0.844343 (n = 24) , (12.11)

where n denotes the number of circumferential full-waves. The lowest buckling
loads occur at a relatively high wave number (n = 24) in the circumferen-
tial direction and do involve very short wave patterns in the axial direction,
close to the edges of the shell. In Fig. 12.10(a) the characteristic pre-buckling
deformation of the perfect shell as obtained by ANILISA is shown. The axi-
symmetric buckling mode with respect to L/2 is shown in Fig. 12.10(b). It is
quite obvious, that the finite element mesh has to be rather fine in order to
be able to predict the correct buckling behavior of the perfect shell. In this
regard, at least two elements or five grid points should represent a half wave,
yielding 193 grid points for the circumferential direction.
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(a) Axial trace of pre-buckling deformation.

(b) Axial trace of axi-symmetric buckling mode.

Fig. 12.10. Pre-buckling deformation and buckling mode for perfect cylindrical
shell by SDAS.
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A convergence study, see Fig. 12.11, where the number of nodes in both cir-
cumferential and axial direction is varied, revealed that the mesh 101×193
predicts the correct behavior of the perfect shell with a rather small dis-
cretization error (∼3%), i.e.

λbif
nl,sym = 0.873822 (n = 24), λbif

nl,asym = 0.873825 (n = 24) . (12.12)
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Fig. 12.11. Two dimensional convergence study using STAGS of the perfect shell
in axial direction (dashed) and circumferential direction (dash-dot). Labels denote
finite element mesh (axial grid points × circumferential grid points). Semi-analytical
solution by SDAS (solid).

The pre-buckling deformation as obtained by STAGS is shown in Fig. 12.12,
the lowest axi-symmetric buckling mode is plotted in Fig. 12.13(a) and
12.13(b). As can be seen, these plots do agree very well with the correspond-
ing ANILISA plots. It seems to be justified to assume that the response of
the imperfect shell is also computed accurately by using this mesh. It should
be noted that the mesh 101 × 103 yields a finite element model of approxi-
mately 100,000 degrees of freedom. Even nowadays, this is – particularly in
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Fig. 12.12. Axial trace of pre-buckling deformation of the perfect shell by STAGS.

context with direct Monte Carlo simulation – computationally quite demand-
ing. Therefore, in order to reduce the number of degrees of freedom of the finite
element model, also non-uniformly meshes in axial direction, as proposed in
[24], have been tested. Contrary to [24], the size of an element has been con-
tinuously increased, with very small elements near the edges of the shell and
a rather coarse mesh around L/2. However, while for the perfect shell the
computational effort can indeed be reduced considerably, for imperfect shells
this approach leads to rather inaccurate results. One of the reasons for this
might be, that for imperfect shells an isolated buckle may occur, governed
by the shape of geometric imperfections, not only close to the edges of the
shell but also in the region where the mesh is rather coarse. A “detrimental”
buckling mode can obviously not be represented with such a coarse mesh.

12.3.2 Cylindrial Shell with Cutout

Dimensions of shells #2 and #3 are given in Table 12.1 and 12.2, respectively.
Again, all load levels are normalized by the classical buckling load of an ax-
ially compressed isotropic shell with SS-3 boundary condition on both ends,
see (12.10).
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(b) Circumferential trace (45◦ shell-segment).

Fig. 12.13. Axi-symmetric buckling mode of the perfect shell by STAGS.
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First, a two-dimensional convergence study has been carried out for the shell
with no cutout, showing that the mesh 53×65 (∼ 25,000 degrees of freedom)
predicts the behavior of the perfect shell acceptably well. The discretization
error in this case is about 2.5% when compared with semi-analytical results
predicted by ANILISA. The lowest buckling load λbif

nl as obtained by a non-
linear analysis carried out by STAGS with the aforementioned discretization
is

λbif
nl = 0.8658071 (n = 8) , (12.13)

where n denotes the number of circumferential full waves. The effect of a
cutout on the buckling load of a cylindrical shell under axial compression is
at first sight quite obvious: the cutout weakens the structure. However, due to
geometry change in the cylinder the strain energy from the rapidly deforming
regions is transferred to other regions which are capable to withstand more
axial compression before becoming unstable, see e.g. [25]. This is the reason
why in this case a linear bifurcation analysis (λbif

lin ) underestimates failure
(λbif

nl ) considerably, see Table 12.2.
For a realistic prediction of the buckling behavior and to minimize the dis-
cretization error, the finite element mesh has been refined near the edges of the
cutout. In order to ensure that the mesh transition close to the cutouts does
not introduce artificial imperfections, the results obtained using this mesh
have been verified with a 100,000 degrees of freedom finite element model
using the standard uniform meshing available in STAGS. According to Ta-
ble 12.2, for both cutouts there is a single bifurcation point λbif

nl along the
equilibrium path before the limit load λlim

nl is reached.

12.4 Buckling Load of Imperfect Shells

Due to the highly non-linear buckling behavior of imperfect, axially com-
pressed cylindrical shells, direct Monte Carlo simulation seems to be the only
possible approach in order to obtain reliable statistical characteristics of the
limit load. This is particularly true when several sources of imperfections are
considered, since their interaction is rather involved. Thus it is clear, that
accelerated Monte Carlo simulation techniques such as variance reduction
methods, which themselves require information on the region where failure is
most likely to occur, can not be applied in an effective way.
As already mentioned above, a non-linear static finite element analysis with
up to 100,000 degrees of freedom is a quite demanding task. In order to deter-
mine reliable second order characteristics of the limit load by means of direct
Monte Carlo simulation, several finite element analyses are necessary, the re-
sulting computational efforts are enormous. It is clear that the feasibility of
such an undertaking depends on a number of factors, such as an optimized so-
lution control for the non-linear analysis, an efficient simulation procedure for
generating realizations of geometric imperfections, an appropriate computer



12.4 Buckling Load of Imperfect Shells 97

hardware and a fully automatized simulation procedure allowing to connect
the different software packages needed without user interaction.
In this context, besides STAGS, also the codes STAR [22], MATLAB [76]
and PERL [90], respectively, have been used. The generation of realization
of geometric and boundary imperfections has been written in MATLAB and
performed on a PC with 450 MHz One MATLAB run took a few seconds
only and hence can be neglected when compared with the overall processing
time. The computationally demanding non-linear static analysis by STAGS
has been performed on a SUN Solaris ULTRA 2/400. Using a Network Queu-
ing System, it was possible to vary the number of jobs running simultaneously
depending on the time of the day.
The non-linear static analysis was terminated when passing the limit load
level. In a subsequent run a bifurcation analysis based on that non-linear
pre-stress state has been carried out. Therefore, the input files of the bifurca-
tion analysis had to be modified in accordance to the results of the foregoing
static analysis without user interaction. For post-processing purposes the post-
processor STAPL as part of the STAGS standard distribution has been used
as well as MATLAB. Since the complete simulation procedure has been dis-
tributed over geographically different locations, the PERL has been used for
carrying out the necessary network administration tasks, e.g. for data transfer
and synchronization of the codes STAGS, STAR and MATLAB.

12.4.1 Cylindrical Shell with Random Geometric Imperfections

Geometric imperfections have been measured with meshes in the range of
15 × 49 and 31 × 49, see Table A.1, which are considerably coarser than the
mesh required for being able to represent the critical buckling modes. There-
fore, the simulated imperfections have been mapped by bi-cubic interpolation
to the actual finite element mesh.
In presence of imperfections, the bifurcation point of a perfect cylindrical shell
may be replaced by the limit point, i.e. failure occurs as a snap-through when
the load level reaches the limit load. This limit load, also often referred as
collapse load, has been identified in a non-linear static analysis as the maxi-
mum of the load-deflection curve. The starting load factor and starting load
factor increment for all non-linear static analyses carried out was 0.05NCl and
0.1NCl, respectively, see (12.10). After the first two load steps the solution
control was switched from load control to arc-length control. For the solution
of the non-linear equation system the modified Newton-Raphson scheme has
been applied.
As mentioned in [104], it is possible to gain some more insight about the size
of the margin of safety against collapse through the execution of an analysis
of bifurcation from the non-linear stress state corresponding to the limit load,
in particular if convergence difficulties occur. The so obtained eigenvalue rep-
resents according to (5.19) an estimate of the location of the limit point, the
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of the deformations at the limit load.

Vicarious for all non-linear static analyses carried out, the deformation
of shell #1 with geometric imperfections according to shell A-8 [5] is shown.
While Fig. 12.14 represents the deformation of the shell in the pre-buckling
state, Fig. 12.15 shows the deformation pattern at the limit load. Fig. 12.16
shows the first eigenmode belonging to the lowest eigenvalue obtained by a
bifurcation analysis based on the non-linear stress state at the limit load.

Fig. 12.14. Deformation (prebuckling) for shell A-8 by STAGS.

Monte Carlo simulation has been carried out with 250 realizations of geomet-
ric imperfections generated by the Karhunen-Loève expansion, the numerically
predicted limit loads by a non-linear analysis as well as estimates of the limit
load obtained by a buckling analysis are shown in Fig. 12.17.
One analysis, i.e. a non-linear and a bifurcation analysis, respectively, took

about 7,000 CPU seconds on a a SUN Solaris ULTRA 2/400. The overall
processing time (at least two analyses run simultaneously) for these 250 non-
linear and bifurcation analyses, respectively, was about two weeks. As a final
result the histogram of the calculated limit loads is presented in Fig. 12.18(a).

corresponding eigenmode represents physically an estimate of the increment
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Fig. 12.15. Deformation at the limit point for shell A-8 by STAGS.

By comparing Fig. 12.18(a) with Fig. 12.19(b) it can be observed, that the
experimentally determined scatter in the limit load can be predicted numer-
ically. The coefficient of variation of the limit load calculated by STAGS
is VSTAGS = 0.0820, whereby for the A-shells the corresponding value is
Vexp = 0.0867. The calculated mean value µSTAGS = 0.7793 of the limit
load is considerably higher when compared with the experimentally deter-
mined counterpart µexp = 0.6430. This can be explained by the fact, that
the test specimen of course do have in addition to geometric imperfections
also thickness imperfections, varying material properties (Young’s modulus),
non-perfect boundary conditions and misalignments in the loading. Geomet-
ric and boundary imperfections, respectively, are considered in Sec. 12.4.2,
nevertheless, as shown, geometric imperfections do have a strong effect on the
limit load of cylindrical shells.

An interesting insight into the stability behavior of cylindrical shells from
the reliability point of view provides Fig. 12.20. Here, the ξ’s of the Karhunen-
Loève expansion (representing the standard normal space) for realizations of
geometric imperfections, which have a most detrimental effect on the limit
load (λlim

nl < 0.6) are shown. The ξ’s belonging to a particular realization are
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Fig. 12.16. First eigenmode for shell A-8 by STAGS at the limit load, representing
the growth of the deformations at the limit point.

connected by a dotted line. As can be seen, it appears that there is no ten-
dency regarding a certain constellation of the ξ’s which lowers the limit load
significantly. This observation shows again that direct Monte Carlo simula-
tion seems to the only possible method of solution for such highly non-linear
systems.

12.4.2 Cylindrical Shell with Random Geometric and Boundary
Imperfections

In order to verify the two step approach as described in Sec. 12.2, a type of
“worst case” study is carried out, i.e. one triggers the critical buckling load
with 24 full waves of the perfect shell with an appropriate shape of boundary
imperfections on the shell boundaries ’1’ and ’3’, see Fig. 12.9. That is,

b1 = α t cos 24ζ, b3 = −α t cos 24ζ. (12.14)

The presence of harmonically varying boundary imperfections given by (12.14)
(symmetric with respect to L/2) and a magnitude of one-tenth of the wall
thickness, i.e. α = 0.1, reduces the buckling of the perfect shell about 71%,
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Fig. 12.17. Monte Carlo simulations of the limit load for shell #1: non-linear
analysis (solid), bifurcation analysis (dash-dot), i denotes the number of simulation.

which is even more than reported in [4] for anisotropic shells.
When comparing the shape of a boundary imperfection as shown in Fig. A.5
with the idealized shape given in (12.14), two remarks are in order. Firstly,
the simulated boundary imperfections are governed by rather low frequencies
and secondly, the magnitudes of the simulated boundary imperfections are
considerably larger. The first statement implies that the simulated boundary
imperfections are unlikely to trigger the critical buckling mode with n=24 full
waves, whereby the larger magnitude of the simulated imperfections would
reduce the limit load in an unrealistic way, keeping in mind, that the lowest
measured limit load observed for the so-called A-shells [5] was about λ=0.565.
This contradiction could be explained in the way boundary imperfections are
modeled in the non-linear analysis as compared to the experimental setup. As
mentioned in Sec. 12.2, the 2-step approach simulates a full contact problem
between the end-rings and the shell boundaries. In the experimental setup
this assumption has been met only partially. Here, the effect of boundary im-
perfections have been attempted to be compensated by filling in both edges
of the shell with a special material for the purpose to ensure uniform loading
conditions over the entire circumference. However, the Young’s modulus of
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(b) Boundary imperfections (50 simulations) by STAGS.

Fig. 12.18. Histograms of the limit load for shell #1 (geometric or boundary im-
perfections).
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Fig. 12.19. Histograms of the limit load for shell #1 (geometric and boundary
imperfections and experimental results).
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Fig. 12.20. Random variables ξ of the Karhunen-Loève expansion for most detri-
mental geometric imperfections for shell #1 (λlim

nl < 0.6).

this filling material was lower than that of the shell, with the result that there
are still boundary imperfections, however with less detrimental effects on the
limit load. In order to take into account this effect, a parameter study has
been carried out by varying the magnitude of the boundary imperfections,
revealing that it appears to be reasonable to use 15% of the magnitude of
boundary imperfections as shown in Fig. A.5. The histogram of 50 simula-
tions in presence of boundary imperfection is shown in Fig. 12.18(b).

In Fig. 12.19(a) the combined effects of random boundary and geometric
imperfections of the limit load are presented. The two step approach as defined
in Sec. 12.2 for modeling boundary imperfections has been modified in such
a way, that in the second step also geometric imperfections are incorporated
into the analysis. 50 simulations with the identical boundary imperfections as
used in the simulation where only boundary imperfections are considered have
been carried out. As can be seen, the calculated mean values and coefficients
of variation do agree quite well with their experimentally determined counter-
parts. Considering both sources of imperfections – boundary and geometric
ones – leads to a lower mean value and a larger coefficient of variation when
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compared with the results obtained for boundary imperfections only. This, of
course, was to be expected.

12.4.3 Cylindrical Shell with Cutout and Random Geometric
Imperfections

Geometric imperfections have been measured for very thin cylindrical shells
(R/t ≈ 900, see [5]), when compared with the shell used in this example
(R/t ≈ 90). In order to take this into account, the imperfection magnitude
has been been normalized with respect to the shell thickness t. The maximum
imperfection magnitude is about three times the shell thickness. The effect
of three different magnitudes of geometric imperfections on the critical load
have been investigated, i.e. 3.0 t, 1.5 t and 0.3 t. According to the effect of the
shape and magnitude of the generated imperfections on the stability behavior
of the shell, different criteria of failure have been defined:

(i) If collapse occurs, e.g. no bifurcation point has been passed along the
equilibrium path, then the critical load is defined to be the limit load.

(ii) If bifurcation occurs at a load level higher than the bifurcation load of the
perfect shell λbif

perf (corresponding to λbif
nl in Table 12.2) and the load step

before is lower than λbif
perf , then λbif

perf is assumed to be the critical load. In
this case the imperfections do have no significant influence on the buckling
behavior of the shell, implying that the imperfect shell behaves similar to
the perfect shell. In general, this would require an investigation of the
secondary solution path, but this is for automated Monte Carlo simula-
tion rather difficult to achieve. In this case however, the definition of the
bifurcation load as the critical load yields a conservative approximation
of the critical load.

(iii) If bifurcation occurs at a load level below or above the bifurcation load
of the perfect shell, then the mean value of that load step and the load
step before is assumed to be the critical load. It has to be noted, that the
calculation of a bifurcation point is not as straight forward as the calcu-
lation of the limit load and requires in general a restart of the analysis.
Again, for Monte Carlo simulation this is rather difficult to achieve.

Direct Monte Carlo simulation for two different cutout sizes and three
different magnitudes of imperfections has been carried out. In particular, 50
simulations for each case, see Fig. 12.21(a) - 12.23(b), have been performed.
The CPU time required for a non-linear analysis was in the range of 2,500
and 4,000 seconds on a SUN Solaris ULTRA 2/400, depending on the critical
load level and the necessary number of iterations, governed by the shape and
magnitude of the geometric imperfections. As can be seen from Fig. 12.21(a)
- 12.23(b), the mean value is monotonically increasing with a decreasing im-
perfection magnitude for both sizes of cutouts. It has to be noted that for
shell #2 and imperfection magnitudes 1.5 t and 0.3 t (see Fig. 12.22(a) and
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Fig. 12.23(a), respectively), the mean value µSTAGS of the critical load is
higher than the bifurcation load of the perfect shell. This is not the case for
shell #3, where for all cases µSTAGS is lower than the bifurcation load of the
perfect shell. The coefficient of variation VSTAGS of the critical load for shell
#3 clearly decreases with decreasing imperfection magnitude. This tendency
can not be observed for shell #2, where VSTAGS for imperfection magnitude
0.3 t is larger than for 1.5 t.

12.5 Summarizing Remarks

At the end of this chapter, some important features of the described proce-
dure for the stability analysis of large finite element systems with random
imperfection are summarized.
Random geometric imperfections have been modeled according to the theory
of random fields, therefore no idealization in terms of modal geometric im-
perfections has to be made, i.e. imperfections are modeled in a more realistic
way. In this context, the Karhunen-Loève expansion, being capable to gener-
ate non-homogeneous geometric imperfections, turns out to be an appropriate
tool in the context with Monte Carlo simulation.
Random boundary imperfections have been modeled as a stationary process.
In this case, too, no idealization in terms of modal boundary imperfections is
therefore necessary.
The Monte Carlo simulation technique has been successfully applied in pre-
dicting the scatter in the limit load of axially compressed cylindrical shells,
as it is observed in experiments. Due to the extensive modeling capabilities of
the finite element method, this methodology can be extended to a more com-
plex stability analysis, e.g. with additional sources of non-linearities as well
as complex shell structures. This attractive feature has been demonstrated by
applying the method to cylindrical shells with a cutout and random geometric
imperfections.
A minor drawback of this approach is that the finite element mesh for thin
shell structures has to be rather fine in order to reproduce the shell response
sufficiently well. Hence this approach is computationally expensive. However,
it is the authors’ belief that the fast and continuing evolution of digital com-
puters will compensate for this drawback already in the immediate future.
A database of measured imperfections, for instance for shells structures manu-
factured through a certain production process, should be available in order to
fully exploit the capabilities of this approach. Using the method as presented
in this monograph enables one to assess the critical load in a more realistic
way, hence providing the analyst with a tool for predicting the critical load in
terms of its second moment characteristics. This most valuable information
can be used for the theoretical verification of design recommendations for im-
perfection sensitive shell structures, as shown for cylindrical shells with and
without cutouts under axial compression.
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Fig. 12.21. Histograms of the limit load for shell #2 and shell #3 (3.0t).
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Fig. 12.22. Histograms of the limit load for shell #2 and shell #3 (1.5t).
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Fig. 12.23. Histograms of the limit load for shell #2 and shell #3 (0.3t).
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Random Vibrations of Multi-Story Structures

The procedure described in Sec.11 is now applied to both a multi degree of
freedom system (12-story building, 36 degrees of freedom) and a large finite
element system (6-story office building with 24,984 degrees of freedom). In all
these numerical examples, non-linearity is modeled by hysteretic elements as
described in Sec. 13.2. Because of the need to represent filtered white noise
by the Karhunen-Loève expansion in these numerical examples, a rather large
number of Karhunen-Loève vectors is required in order to keep the truncation
error acceptably small, which, in fact, may not be true for modeling measured
excitation processes. Finally, it is quite obvious, that the computational effort
of the proposed approach correlates strongly with the number of Karhunen-
Loève vectors used.

13.1 Stochastic Modeling of Earthquake Excitation

As in many cases, due to the lack of experimental data and other pertinent geo-
tectonic information, the excitation for both systems will be modeled as non-
stationary, Gaussian, filtered white noise. The Karhunen-Loève representation
is valid for any type of non-white excitation and can be easily determined if
second moment properties of the underlying process are known.

13.1.1 Karhunen-Loève Representation of Filtered White Noise

The components a(t) of the vector of accelerations a(t) are modeled as sta-
tistically independent stochastic processes defined as filtered white noise, i.e.

a(t) = Qfv(t) , (13.1)

where Qf denotes a constant matrix and the filter follows the first order
differential equation

C.A. Schenk, G.I. Schuëller: Uncertainty Assessment, LNACM 24, pp. 111–139, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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v̇(t) = Afv(t) + bf (t)w(t) , (13.2)

see also (B.11). In this context, v, Af and bf denote the state vector, the
system matrix and the so-called distribution matrix of the filter, respectively,
and w(t) denotes the white noise vector as defined in (B.18) and (B.20). The
covariance matrix Γ vv(t), describing the correlation of the filter parameters
for a specific time t, can be calculated using the Lyapunov matrix differential
equation, see also (B.22),

Γ̇ vv(t) = AfΓvv(t) + Γvv(t)AT
f + bf (t)Iw(t)bT

f (t) . (13.3)

In addition, the covariance matrix Γvv(t, s), describing the correlation of the
filter parameters between the two time instances t and s, can be calculated
according to the matrix differential equation, see e.g. [141],

∂

∂t
Γvv(t, s) = AfΓvv(t, s) , (13.4)

where
Γvv(s, s) = Γvv(s) . (13.5)

The covariance function Γaa(t, s) can then, using (13.1), be calculated by

Γaa(t, s) = E{Qfv(t)vT (s)QT
f } . (13.6)

By solving the algebraic eigenvalue problem of the matrix Γ aa(t, s) – obtained
by discretizing Γaa(t, s) – as stated in (8.14), the Karhunen-Loève represen-
tation of the filtered white noise process a(t) can then be determined.
The power spectral density Saa(ω) of the stationary ground acceleration cap-
tures some of the excitation characteristics of the non-stationary ground ac-
celeration and provides information on the frequency content of the excitation
process. It can be obtained by the Fourier transformation of the stationary
form of (13.6), yielding

Saa(ω) = QfSvv(ω)QT
f . (13.7)

For this purpose, the power spectral density matrix Svv(ω) of the stationary
filter outputs defined by, see (13.14),

bf =


0
1
0
0

 , (13.8)

has to be determined. This can be done by using the relation

Svv(ω) = H∗(ω)Sww(ω)HT (ω) = H∗(ω)
1
2π

bfIwbT
f HT (ω) , (13.9)
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where the stationary frequency response function H(ω) is given by

H(ω) = (−Af + jωI)−1 , (13.10)

j =
√−1 and the superscript ’∗’ indicates complex conjugate. The frequently

used one-sided power spectral density Gaa(ω) can be determined according to

Gaa(ω) = 2Saa(ω) , 0 ≤ ω ≤ ∞ . (13.11)

Using this methodology, the Karhunen-Loève representation of filtered white
noise can calculated efficiently. It should be stressed, however, that the
Karhunen-Loève expansion is a much more powerful tool in representing non-
stationary second moment properties of stochastic processes when compared
with linearly filtered white noise. The covariance matrix of a stochastic process
can capture by definition non-stationary processes, while there is no unique
definition of the associated time-varying power spectrum [163]. The theory of
evolutionary spectra [101] is capable describing the second moment charac-
teristics of a non-stationary stochastic process, its implementation in random
vibrations is, however, rather involved.

13.1.2 Filtered White Noise Model

With respect to (13.1), it is assumed that

Qf =
�
Ω2

1g 0 −Ω2
2g −2ζ2gΩ2g

�
, (13.12)

Af =


0 1 0 0

−Ω2
1g −2ζ1gΩ1g 0 0

0 0 0 1
Ω2

1g 2ζ1gΩ1g −Ω2
2g −2ζ2gΩ2g

 , (13.13)

and

bf =


0

e(t)
0
0

 , (13.14)

where the time modulation function e(t) is assumed to

e(t) =
e−at − e−bt

max(e−at − e−bt)
. (13.15)

13.1.3 Comparison Between Karhunen-Loève Representation and
Filtered White Noise

In this section, the equivalence of modeling a second order process by either
its Karhunen-Loève expansion or by filtered white noise is discussed. In par-
ticular, the accuracy of the Karhunen-Loève representation with regard to the
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order of truncation of the Karhunen-Loève expansion is addressed. While used
here in a different context, it is also possible to apply the Karhunen-Loève rep-
resentation of filtered white noise for an effective reduction of dimensionality
in reliability analysis of dynamical systems, where quite large number of ap-
proaches rely on white noise input.
The covariance matrix of a component of the ground acceleration Γ aa(t, s)
has been obtained by (13.6), where the covariance matrix Γvv(t, s) of the filter
output between two time instances has been determined according to (13.3)
and (13.4) by a Runge-Kutta algorithm.
A time span of [0,20] seconds has been integrated with a time step ∆t = 0.01
seconds, yielding a size 2001×2001 for Γ aa(t, s). The values Ω1g = 15.0 rad/s,
ζ1g = 0.8, Ω2g = 0.3 rad/s, ζ2g = 0.995, and the white noise intensity I =
0.18 m2/s3 have been used for the filter system matrix (13.13) and the white
noise loading process.
The eigenvalues {λi}1000

i=1 of Γ aa(t, s) are shown in Fig. 13.1 in a semi-
logarithmic (base 10) scale. By definition, Γ aa(t, s) is a real self adjoint matrix

i
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Fig. 13.1. Eigenvalues {λi}1000
i=1 of the covariance matrix Γ aa(t, s).

operator, thus all eigenvalues and eigenvectors are real. As can be seen from
Fig. 13.1, the eigenvalues λi decrease rather quickly for increasing i. The eigen-
vectors {ψi(t)}4

i=1 are plotted in Fig. 13.2 for the time span of [0,10] seconds.
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For this particular kind of excitation, the lower order eigenvectors are acting
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Fig. 13.2. Eigenvectors ψ(t) of the covariance matrix Γ aa(t, s); i = 1 (solid), i = 2
(dashed), i = 3 (dashdot) and i = 4 (dotted).

localized with regard to the integration time span of 20 seconds. A realization
of the stochastic ground acceleration a(t) using 300 Karhunen-Loève vectors
is shown in Fig. 13.3.
In a next step, the variances of the response of a simple single degree of free-
dom system are compared – obtained by either the Karhunen-Loève represen-
tation or the filtered white noise model for the ground acceleration process,
respectively. In case of the Karhunen-Loève representation of the ground ac-
celerations, the approach as described Chap. 11 is applied. The equation of
motion of a linear single degree of freedom system is given by

Mü + Cu̇ + Ku = f(t) , (13.16)

where the parameters follow the nomenclature of (6.18) and are assumed to
M = 1 kg, C = 0.6 kgs−1, K = 100 kgs−2. In accordance to (11.1), the
external force is taken to f(t) = −Ma(t). The state space equation is given
by

ẋ = Asx + bsf(t) , (13.17)
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Fig. 13.3. Realization of the stochastic ground acceleration a(t) using m = 300
Karhunen-Loève vectors.

where

x =
	

u
u̇

�
, bs(t) =

	
0

M−1

�
, (13.18)

and

As =
�

0 1
−M−1K −M−1C

�
. (13.19)

The state space equation of the combined system (single degree of freedom
system system and filter), i.e. (13.16), (13.1) and (13.2) is given by

ẏ = Ay + b(t)w(t) , (13.20)

where

y =
	

x
v

�
, b(t) =

	
0
bf

�
, (13.21)

and

A =
�
As −bsQ
0 Af

�
. (13.22)

By solving the Lyapunov matrix differential equation of the combined system,
see also (B.22),
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Γ̇ yy(t) = AΓyy(t) + Γyy(t)AT + b(t)IwbT (t) . (13.23)

and by solving (13.16) for every Karhunen-Loève vector a(j)(t), i.e.

ẋ(j) = Asx
(j) − bsMa(j)(t) , (13.24)

it is possible verify the error in the variance function of the response due to
truncation of the Karhunen-Loève expansion.
When integrating the Karhunen-Loève vectors according to (13.24), their con-
tribution after a certain time to the overall response is negligible and could
be omitted. The support of the higher order eigenvectors is less localized, see
Fig. 13.4, but due to the weighting of each eigenvector with the corresponding
eigenvalue, x(j)(t) =

&
λjψj(t), their contribution to the overall response de-

creases for increasing j. This allows to truncate the series expansion at order
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Fig. 13.4. Eigenvectors ψ(t) of the covariance matrix Γ aa(t, s); i = 50 (solid),
i = 100 (dashed), i = 200 (dashdot) and i = 300 (dotted).

m.

In Fig. 13.5 the variance function of the single degree of freedom system system
obtained for different values of m of the Karhunen-Loève expansion compared
to the filtered white noise loading is shown. According to these results, 100
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Fig. 13.5. Comparison of σu(t) (single degree of freedom system system) obtained
by integration of (13.24) (solid) and of (13.23) for a different number of Karhunen-
Loève vectors: m = 50 (dashed), m = 100 (dashdot), m = 200 (dotted).

Karhunen-Loève vectors are sufficient to obtain more or less identical vari-
ances for the single degree of freedom system system in the time span [0.5,14]
seconds, i.e. the maximum of the response is captured very well.

13.2 One Dimensional Hysteretic Elements

Due to the yielding of the material, energy dissipation, as shown in Fig. 13.6,
is introduced in the structural response. All non-linear elements do have the
restoring force

r
(e)
L = k(e)(u(e)

L − (q(e)
1 + q

(e)
2 )) = k(e)u

(e)
L + r̄

(e)
L , (13.25)

where k(e) denotes the initial stiffness of the non-linear element, u
(e)
L the rela-

tive displacement between the two degrees of freedom to which the element is
connected. By building the structural matrices, the initial stiffness of the non-
linear elements has been already considered in order to keep the right hand
side of the non-linear system equation (6.4) small. Hence the force arising
from a non-linear element reads, see also (11.20),
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Fig. 13.6. Hysteretic material behavior.

r̄
(e)
L = −R

(e)
L q(e) = −k(e)(q(e)

1 + q
(e)
2 ) , (13.26)

where
R

(e)
L =

�
k(e), k(e)

�
, (13.27)

and

q(e) =

�
q
(e)
1

q
(e)
2

�
(13.28)

is a vector containing the auxiliary variables, which in turn represent plastic
elongations. Introducing the additional variables

x
(e)
1 = u

(e)
L − (q(e)

1 + q
(e)
2 ) , x

(e)
2 = u̇

(e)
L , (13.29)

the plastic elongations are specified by the non-linear differential equations

q̇1 = g1(x1, x2)

= x2H(x2) · [ H(x1 − sy)
x1 − sy

sp − sy
H(sp − x1) + H(x1 − sp) ] ,

(13.30)

and
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q̇2 = g2(x1, x2)

= −x2H(−x2) · [ H(−x1 − sy)
−x1 − sy

sp − sy
H(sp+

x1) + H(−x1 − sp) ] ,

(13.31)

where the superscript “(e)” in (13.30) and (13.31) has been dropped for better
readability. The symbol H denotes the Heaviside step function, sy is a given
parameter specifying the onset of yielding and k ·sp is the maximum restoring
force of the element. The value sy = 0.70 sp has been assuem for all non-linear
elements. It should be mentioned that variables q1 and q2 provide information
on the total plastic deformation. A typical function g1(x1, x2) is shown in
Fig. 13.7.
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Fig. 13.7. Typical non-linear function g1(x1, x2); (sp = 0.06, sy = 0.02).

The two dimensional Gaussian probability density function for the vari-
ables introduced in (13.29) reads
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p(x1, x2) =
1

2πσ1σ2

&
1 − ρ2

exp
�
− 1

2(1 − ρ2)

�!x1 − µ1

σ1

#2

− 2ρ
!x1 − µ1

σ1

#!x2 − µ2

σ2

#
+

!x2 − µ2

σ2

#2�

,

(13.32)

where µ1 and µ2 denotes the mean, σ1 and σ2 the standard deviation of the
random variables x1 and x2, respectively, and ρ the correlation coefficient, see
Fig. 13.8. The non-linear function (13.30) is replaced by the linear relation
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Fig. 13.8. Typical 2-dimensional Gaussian density p(x1, x2); (µ1 = µ2 = 0, σ1 =
σ2 = 0.03, ρ = 0.3).

q̇1 = bq1 + cq1,1(x1 − E{x1}) + cq1,2(x2 − E{x2}) , (13.33)

where, in accordance to [9], the linearization coefficients can be determined
by the integrals

bq1 = E{g1(x1, x2)} =
 ∞

x1=sy

 ∞

x2=0

g1(x1, x2)p(x1, x2) dx1dx2 (13.34)

and



122 13 Random Vibrations of Multi-Story Structures

cq1,1 = E
�∂g1(x1, x2)

∂x1



=

 sp

x1=sy

 ∞

x2=0

x2

sp − sy
p(x1, x2) dx1dx2 , (13.35)

cq1,2 = E
�∂g1(x1, x2)

∂x2



= ∞

x1=sy

 ∞

x2=0

�x1 − sy

sp − sy
H(sp − x1) + H(x1 − sp)

�
p(x1, x2) dx1dx2 .

(13.36)

The integrands of (13.34)-(13.36) are shown in Fig. 13.9 - 13.11. In the same
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Fig. 13.9. Typical integrand of (13.34); (sp = 0.06, sy = 0.02, µ1 = µ2 = 0,
σ1 = σ2 = 0.03, ρ = 0.3).

way, the non-linear function (13.31) is replaced by the linear relation

q̇2 = bq2 + cq2,1(x1 − E{x1}) + cq2,2(x2 − E{x2}) , (13.37)

and the linearization coefficients can be determined by the integrals

bq2 = E{g2(x1, x2)} =
 ∞

x1=sy

 ∞

x2=0

g2(x1, x2)p(x1, x2) dx1dx2 , (13.38)
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Fig. 13.10. Typical integrand of (13.35); (sp = 0.06, sy = 0.02, µ1 = µ2 = 0,
σ1 = σ2 = 0.03, ρ = 0.3).

and

cq2,1 = E
�∂g2(x1, x2)

∂x1



=

 sp

x1=sy

 ∞

x2=0

x2

sp − sy
p(x1, x2) dx1dx2 , (13.39)

cq2,2 = E
�∂g2(x1, x2)

∂x2



= ∞

x1=sy

 ∞

x2=0

�x1 + sy

sp − sy
H(sp + x1) − H(−x1 − sp)

�
p(x1, x2) dx1dx2 .

(13.40)

Equations (13.32)-(13.40) refer to the element level, hence the superscript
“(e)” has been dropped for better readability.

13.3 Modal Lyapunov Matrix Differential Equation

In the following, results obtained by the modal Lyapunov matrix differential
equation, see also Appendix B, are used as a semi-analytical reference solution
for linear systems.
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Fig. 13.11. Typical integrand of (13.36); (sp = 0.06, sy = 0.02, µ1 = µ2 = 0,
σ1 = σ2 = 0.03, ρ = 0.3).

The mode displacement method as reviewed in Sec. 6.3 can also be applied
to transform the Lyapunov matrix differential equation (B.22) into a reduced
subspace, in which the temporal evolution of the covariance matrix Γ (t) can
be solved very efficiently. The state vector and the loading vector, respectively,
are in this case defined in terms of modal coordinates u = Φz (compare with
first part of (B.2)), i.e.

y =
	

z
ż

�
, b(t) =

	
0

ΦT f(t)

�
(13.41)

with
Φ = [φ1, φ2, . . . , φN ] , (13.42)

where N is the number of modes used. The system matrix for proportional
damping is given by

A =
�

0 I
−diag(ω2

i ) −diag(2ζiωi)

�
, (13.43)
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where

diag(ω2
i ) :=


ω2

1 0 . . . 0

0 ω2
2

. . .
...

...
. . . . . . 0

0 . . . 0 ω2
N

 (13.44)

and

diag(2ζiωi) :=


2ζ1ω1 0 . . . 0

0 2ζ2ω2
. . .

...
...

. . . . . . 0
0 . . . 0 2ζNωN

 . (13.45)

The covariance matrix Γ uu is thus given by

Γ uu(t) = E{u(t)u(t)T } = E{Φz(t)z(t)T ΦT } = ΦΓ zz
yy(t)ΦT . (13.46)

In case of filtered white noise excitation, the state and the loading vector,
respectively, of the combined system (see (B.1) and (13.2)) in the reduced
subspace are given by

y =


z
ż
v

 , b(t) =


0
0
bf

 , (13.47)

where the system matrix for proportional damping is given by

A =

 0 I 0
−diag(ω2

i ) −diag(2ζiωi) −ΦT MIaQ
0 0 Af

 , (13.48)

see also (13.44) and (13.45).

13.4 Multi Degree of Freedom System

13.4.1 Model Description

A floor plan of the building is shown in Fig. 13.12. Each of the 12 floors
is supported by 72 columns. The floor height is 3.5 m, leading to a total
height of 42.0 m. In order to model the dynamic behavior by a multi degree
of freedom system with a relatively low number of degrees of freedom, it
is assumed that each floor may be represented sufficiently accurate as rigid
within the x-y, plane when compared with the flexibility of the columns.
Hence, each floor {i}12

i=1 can be represented by just three degrees of freedom,
i.e. two displacements uxi and uyi in the x and y direction, respectively, and
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Fig. 13.12. 12-story building: Top view with with hysteretic devices D1 - D4.

a rotation uzi. The stiffness between two subsequent floors is assumed to be
constant. The sub-matrices iM and iK, given by

iM =

 1.3 0 −4.7
0 1.3 14.25

−4.7 14.25 1097

 · 106 , iK =

 1.44 0 −4.88
0 1.44 18.0

−4.88 18.0 1390

 · 109 , (13.49)

are referring to the relative displacements and rotation, ur,xi = ux,i − ux,i−1,
ur,y,i = uy,i − uy,i−1 and ur,z,i = uz,i − uz,i−1, respectively, using the units
kilogram [kg], Newton [N] and meter [m]. The damping sub-matrices iC are
assumed to

iC = 0.2388 iM + 0.002116 iK . (13.50)

For an improved earthquake resistance, the structure is reinforced with hys-
teretic devices as described in Sec. 13.2. In each of the twelve floors, four
devices D1 - D4 are implemented. The position of these non-linear elements
is shown in Fig. 13.12. They provide additional resistance against relative dis-
placements between subsequent floors, where the restoring forces acts for the
devices D1 and D3 only in the y-direction, and for the devices D2 and D4 only
in the x-direction. The initial inter-story stiffness, see (13.25), of these devices
is identical within each floor, but varies with respect to the floors: Each de-
vice has within the floors 1 - 4 the stiffness Ik(e) = 6.0 · 108 N/m, within the
floors 5 - 8 the stiffness IIk(e) = 4.5 · 108 N/m, and within the floors 9 - 12 the
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stiffness IIIk(e) = 3.0 · 108 N/m. These stiffnesses lead to modified inter-story
stiffness,

IK =

 2.64 0 −24.08
0 2.64 51.00

−24.08 51.00 4453.00

 · 109 , (13.51)

IIK =

 2.34 0 −19.28
0 2.34 42.75

−19.28 42.75 3687.25

 · 109 , (13.52)

and

IIIK =

 2.04 0 −14.48
0 2.04 34.50

−14.48 34.50 2921.50

 · 109 , (13.53)

which are assembled to the global stiffness matrix K (showing only the upper
triangular elements)

K =



2IK −IK 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

2IK −IK 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

2IK −IK 0 . . . . . . . . . . . . . . . . . . . . . 0
IK +II K −IIK 0 . . . . . . . . . . . . . . 0

. . .
. . .

. . . . . . . . . . 0

2IIIK −IIIK 0 0

2IIIK −IIIK 0

2IIIK −IIIK
IIIK


. (13.54)

Additional constants as required in13.30 and 13.31, are: s
(e)
p = 8 mm for all

devices in the floors 1-4, s
(e)
p = 5 mm for all devices in the floors 5-8, and

s
(e)
p = 3 mm for all devices in the floors 9-12.

13.4.2 Stochastic Excitation

The structure is excited horizontally by earthquake excitation ax(t) and ay(t)
which is assumed to act independently in the x and y direction, respectively.
With respect to (13.1),

a(t) =
	

ax(t)
ay(t)

�
, Qf =

�
Qx 0
0 Qy

�
, v =

	
vx

vy

�
, (13.55)

where
Qx = Qy =

�
Ω2

1g 2ζ1gΩ1g −Ω2
2g −2ζ2gΩ2g

�
. (13.56)

The system matrix and the distribution matrix of the filter, respectively, see
(13.2), are assumed to

Af =
�
Afx 0
0 Afy

�
, bf =

�
bfx 0
0 bfy

�
, (13.57)
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with, see (13.13) and (13.14),

Afx = Afy =


0 1 0 0

−Ω2
1g −2ζ1gΩ1g 0 0

0 0 0 1
Ω2

1g 2ζ1gΩ1g −Ω2
2g −2ζ2gΩ2g

 , (13.58)

and

bfx = bfy =


0

e(t)
0
0

 . (13.59)

For the filter the values Ω1g = 15.6 rad/s, ζ1g = 0.6, Ω2g = 1.0 rad/s and ζ2g

= 0.995 have been used. The white noise intensity I has been assumed to be
0.08 m2/s3. For the envelope function e(t) as defined in (13.15) the parameters
a = 0.25 and b = 0.5 have been used. The normalized power spectral density
of ax and ay corresponding to a stationary ground acceleration, see (13.11),
is shown in Fig. 13.13.
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Fig. 13.13. 12-story building: Normalized one-sided auto spectral density
Gaxax(f) = Gayay (f) for horizontal ground acceleration.

13.4.3 Discussion of Results

In order to demonstrate the accuracy of the proposed procedure, some results
are compared with those as presented in [98]. The equivalent modal damping
ζ for the reinforced structure has been approximated by
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φT
i Cφj = 2ωiζiδij . (13.60)

The effect of the non-stationary stochastic response of the reinforced linear
structure is computed first, see Fig. 13.14. The damping matrix C is assem-
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Fig. 13.14. 12-story building: Standard deviation σD2(t) of relative displacements
between floors at the position of device D2 in x-direction for the linear system
obtained by mode acceleration method (10 structural modes) and 100 Karhunen-
Loève vectors: 1st floor (solid), 5th floor (dashed), 9th floor (dash-dot), 11th floor
(dotted) and 12th floor (points).

bled according to (13.50), and the φ’s are the eigenmodes associated with the
reinforced structure. For the structure without friction devices, of course, the
exact modal damping corresponding to (13.50) could be calculated according
to (6.28).
The convergence behavior regarding the number of Karhunen-Loève vectors
and the structural modes, respectively, for the linear structure without devices
has been extensively investigated in [122]. Based on these results, m = 100
Karhunen-Loève vectors and N = 10 structural modes have been used. For
the solution based on the Lyapunov matrix differential equation, the excita-
tion has been modeled directly by filtered white noise.

The accuracy of several methods of solution has been investigated: (A)
mode acceleration method, see Sec. 6.4, (B) mode displacement method, see
Sec. 6.3 in context with 6.4, and (C) direct integration. For time integra-
tion the Newmark algorithm, see Sec. 11.2.2, has been applied. A comparison
with Fig. 3 in [98] shows excellent agreement between the two different ap-
proaches. However, it should be noted that the proposed procedure is much



130 13 Random Vibrations of Multi-Story Structures

more straight forward to apply and has the capabilities to incorporate any
measured second moment statistics of an excitation process for which the
Karhunen-Loève decomposition exists.
For the linear structure, the results obtained by the various methods (A) - (C)
basically coincide. The temporal evolution of the standard deviation σD2(t)
of the inter-story displacements for the 5th and 9th floor for the hysteretic
system is shown in Fig. 13.15 and 13.16. In order to illustrate the effect of
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Fig. 13.15. 12-story building: Standard deviation σD2(t) of relative displacement of
5th floor at the position of device D2 in x-direction for hysteretic system obtained by
100 Karhunen-Loève vectors applying i) mode acceleration method (10 structural
modes, solid); ii) mode displacement method (10 structural modes, dashed); iii)
direct integration (dash-dot); iv) response for linear system (dotted).

the hysteretic devices, also the linear response is plotted in Fig. 13.15 and
13.16, see also Fig. 13.14. For the non-linear response it is interesting to note
that the approaches (A) - (C) do not yield identical results as it is the case
for the linear response. As can be seen, approaches (A) and (C) do agree very
well with only minor differences. In this regard it should be mentioned that
the modal damping as determined by (13.60) is just an approximation of the
proportional damping (13.50) used for direct integration. However, neglecting
the response of the higher modes in approach (B) underestimates for instance
the maximum value of σD2 (t) about 3% in Fig. 13.15 and overestimates the
maximum value of σD2(t) about 8% in Fig. 13.16.
For comparison: the differences between approaches (A) and (C) plotted in
Fig. 13.15 and 13.16 are below 0.4%. The evolution for the mean value of the
auxiliary variable µq1(t) = −µq2(t) for different floors is shown in 13.17.
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Fig. 13.16. 12-story building: Standard deviation σD2(t) of relative displacement of
12th floor at the position of device D2 in x-direction for hysteretic system obtained
by 100 Karhunen-Loève vectors applying i) mode acceleration method (10 structural
modes, solid); ii) mode displacement method (10 structural modes, dashed); iii)
direct integration (dash-dot); iv) response for linear system (dotted).
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Fig. 13.17. 12-story building: Mean value of auxiliary variable (plastic deforma-
tion) µq1 (t) of 1st, 5th and 9th floor at the position of device D2 in x-direction
for hysteretic system obtained by 100 Karhunen-Loève vectors applying i) mode ac-
celeration method (10 structural modes, solid); ii) mode displacement method (10
structural modes, dashed); iii) direct integration (dash-dot).
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13.5 Finite Element System

13.5.1 Model Description

In order to demonstrate the applicability of the described procedure now for
large finite element systems, the stochastic non-stationary response of a 6-
story office building with 24,984 degrees of freedom has been analyzed.
The L-shaped floor plan of the reinforced concrete structure is shown in
Fig. 13.18, the finite element model consists of 17,351 nodes, 29,592 shell el-
ements and 11,208 beam elements. Properties of the reinforced concrete have
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Fig. 13.18. 6-story building; Top view with corner node C1 and hysteretic devices
D1 - D4. Dash-dotted lines show the rectangular grid of beam elements used for
reinforcement of each floor.

been assumed as follows: Young’s Modulus E = 3.0·1010 N/m2, Poisson ratio
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µ = 0.3 and mass density ; = 2500 kg/m3. Each floor is modeled by 1249
triangular shell elements with a thickness of 0.25 m involving 3747 degrees of
freedom per floor, additionally reinforced by a rectangular grid of beam ele-
ments, see dashed-dotted lines in Fig. 13.18. These beams are of rectangular
shape with a height of 0.75 m and a width of 0.50 m. The floor height of 3.5
m is constant for all floors, leading to a total height of 84.0 m. Each floor is
supported by 76 columns made of reinforced concrete. The outer diameter d
of the quadratic cross section of the columns is d = 0.40 m, the axial and the
bending stiffness is assumed to EA = 0.48 · 1010 N, EI = 0.0064 · 1010 Nm,
respectively. In order to increase the stiffness of the building, reinforced con-
crete walls from the bottom to the top have been added, located at positions
D1 - D4 in Fig. 13.18. These walls are again modeled using triangular shell
elements with a thickness of 0.25 m and with the same material properties E,
µ and ρ as given above.
Non-linear hysteretic shear panels with a material law as described in Sec.
13.2 are located above the reinforced concrete walls and below the upper floor
construction, see positions D1 - D4 in Fig. 13.18 and Fig. 13.19. The vector

columncolumn

Shear pannel

Reinforced concrete wall

0.25

0.50

Fig. 13.19. 6-story building: Shear panel.

q, see (6.4), comprises thus 6 × 4 × 2 = 48 components.
By building the structural matrices, the initial stiffness of the non-linear el-
ements k(e), see (13.25), has been added to keep the right hand side of the
non-linear equation system (6.4) small. The initial inter-story stiffness of these
devices is identical within each floor, but varies with respect to the floors: Each
device has within the floors 1 - 2 the stiffness k(e) = 5.0 · 108 N/m, within the
floors 3 - 4 the stiffness k(e) = 4.0 · 108 N/m, and within the floors 5 - 6 the
stiffness k(e) = 3.0 · 108 N/m, the value s

(e)
p = 6 [mm], see 13.30 and 13.31,

has been used for all non-linear devices.
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13.5.2 Stochastic Excitation

The structure is excited horizontally and vertically by earthquake excitation
ax(t), ay(t) and az(t), which is assumed to act independently in the x, y and
z direction, respectively.
With respect to (13.1), it is assumed that

Qx = Qy = Qz =
�
Ω2

1g 0 −Ω2
2g −2ζ2gΩ2g

�
, (13.61)

the matrices Afx = Afy = Afz are given by (13.58) and the vectors bfx =
bfy = bfz are given by (13.59). The values Ω1g = 15.0 rad/s, ζ1g = 0.8, Ω2g

= 0.3 rad/s, ζ2g = 0.995, and the white noise intensity I = 0.18 m2/s3 have
been used for the filter associated with the horizontal ground accelerations.
For the vertical ground motion, the values Ω1g = 20.0 rad/s, ζ1g = 0.8, Ω2g

= 1.0 rad/s, ζ2g = 0.995, and the white noise intensity I = 0.08 m2/s3 have
been used.
For the exponential envelope function given by (13.15), the values (a, b) =
(0.2,0.4) for the horizontal motion and (a, b) = (0.3,0.6) for the vertical motion
have been assumed. The normalized power spectral densities of ax, ay and az

corresponding to a stationary ground acceleration, see (13.11), are shown in
Fig. 13.20.
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Fig. 13.20. 6-story building: Normalized one-sided auto spectral densities
Gaxax(f) = Gayay (f) (solid) and Gazaz (f) (dash-dot) for horizontal and vertical
ground acceleration.
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13.5.3 Discussion of Numerical Results

Analogous to Sec. 13.4.3, all results have been obtained by using m = 100
Karhunen-Loève vectors. Again, several methods of solution have been com-
pared: (A) mode acceleration method using 109 structural modes, (B) mode
displacement method using 109 structural modes, (C) direct integration and
(D) integration of the modal form of the Lyapunov matrix differential equa-
tion using 109 structural modes, see Sec. 13.3). For approaches (A) - (C) the
Newmark algorithm and for approach (D) a Runge-Kutta algorithm has been
applied, respectively.
The modal damping for all 109 structural modes has been assumed to
{ζ}109

i=1 = 3% while the proportional damping matrix C for direct integra-
tion has been determined by using the relation

C = 0.28895M + 0.0021354K . (13.62)

This is equivalent to ζ1 = ζ6 = 3%. The standard deviation σC1 has been
computed applying approaches (A) - (D) and is shown in Fig. 13.21 and 13.22.
Similar to the 12-story building, the differences between the four approaches
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Fig. 13.21. 6-story building: Standard deviation σC1x
(t) of absolute displacement of

1st, 3rd and 6th floor at the position C1 in x-direction for linear system obtained by
100 Karhunen-Loève vectors applying i) mode acceleration method (109 structural
modes, solid); ii) mode displacement method (109 structural modes, dashed); iii)
direct integration (dash-dot); iv) integration of modal form of Lyapunov matrix
differential equation (dotted).

are rather small for the linear system, in particular the differences between
(A) and (B) are not even visible in Fig. 13.21 - 13.22.
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Fig. 13.22. 6-story building: Standard deviation σC1y
(t) of absolute displacement of

1st, 3rd and 6th floor at the position C1 in y-direction for linear system obtained by
100 Karhunen-Loève vectors applying i) mode acceleration method (109 structural
modes, solid); ii) mode displacement method (109 structural modes, dashed); iii)
direct integration (dash-dot); iv) integration of modal form of Lyapunov matrix
differential equation (dotted).

Some remarks on Fig. 13.21: As already mentioned, for approach (D) the
excitation has been modeled by filtered white noise. This is the reason why
approaches (A) - (C) do deviate considerably outside the time range [1,14]
seconds from approach (D). The accuracy of approaches (A) - (C) outside
this time range could be increased, if the number of Karhunen-Loève vectors is
increased, which in turn decreases the computational efficiency of the proposed
procedure.
Another possible way of increasing the accuracy while keeping the number of
the Karhunen-Loève vectors constant would be to select the most important
Karhunen-Loève vectors for every time step. However, as can be seen from
Fig. 13.21, in the time range [1,14] seconds, all approaches do agree very well.
At the same location, the temporal evolution of the standard deviation for
the hysteretic system has been computed and plotted for various floors in
Fig. 13.23 and Fig. 13.24. Again, also the linear response is shown in order
to illustrate the effect of the hysteretic devices. As it has been observed for
the 12-story building, the static response of the higher modes contributes
significantly to the response of the non-linear system.
The time needed for integrating the hysteretic system in the time range [0,10]
seconds was about 5.5 hours and 120 hours for approach (A) and (C) on
a PC with 1,400 MHz, respectively, which demonstrates the computational
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Fig. 13.23. 6-story building: Standard deviation σC1x
(t) of absolute displacement of

1st, 3rd and 6th floor at the position C1 in x-direction for hysteretic system obtained
by 100 Karhunen-Loève vectors applying i) mode acceleration method (109 struc-
tural modes, solid); ii) mode displacement method (109 structural modes, dashed);
iii) direct integration (dash-dot); iv) response for linear system (dotted).
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Fig. 13.24. 6-story building: Standard deviation σC1y
(t) of absolute displacement

of 1st, 3rd and 6th floor floor at the position C1 in x-direction for hysteretic sys-
tem obtained by 100 Karhunen-Loève vectors applying i) mode acceleration method
(109 structural modes, solid); ii) mode displacement method (109 structural modes,
dashed); iii) direct integration (dash-dot); iv) response for linear system (dotted).
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efficiency of the proposed method by reducing the dimension of the system
equations using modal analysis. The mean function of the plastic deformation
µq1 is shown in Fig. 13.25.

µ
q
1
(t

)
[m

]

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
1st

2nd

3rd

4th

5th

Fig. 13.25. 6-story building: Mean value of auxiliary variable (plastic deformation)
µq1(t)(t) of 1st, 2nd, 3rd, 4th and 5th floor at the position of device D1 in x-
direction for hysteretic system obtained by 100 Karhunen-Loève vectors applying
i) mode acceleration method (10 structural modes, solid); ii) mode displacement
method (10 structural modes, dashed); iii) direct integration (dash-dot).

13.6 Summarizing Remarks

At the end of this chapter, some important features of the described procedure
are summarized.
Potentially available statistical data of an excitation process can be incorpo-
rated rather easily in the analysis. Since the covariance matrix describes the
second moment characteristics of both stationary and non-stationary stochas-
tic processes, the proposed method is capable to compute both the station-
ary and the non-stationary system response, respectively, i.e. in an efficient
manner. Many of the simplifications and physical inconsistencies, as they are
introduced by procedures relying on white noise models of the excitation pro-
cess, are avoided by the present approach. This applies, for instance, to the
well known problem that the white noise model introduces unrealistic high
frequency excitations and thus unrealistic responses. Contrary to many other
approaches in stochastic dynamics, non-zero mean problems can be handled
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very efficiently. The proposed approach relies on deterministic integration al-
gorithms, thus limitations on the size of the system are comparable to those
encountered in a purely deterministic analysis.
As a minor limitation, the quality of the approximation of the actual system
response depends clearly on the quality or accuracy of the equivalent statisti-
cal linearization technique. This also holds for the level of non-linearity that
can be dealt with. The use of equivalent statistical linearization requires ad-
ditional codes when applying commercial finite element packages, since so far
equivalent statistical linearization is not yet part of these packages.



A

Imperfection Data Bank

For the stochastic modeling of geometric imperfections as described in Sec. 12.1,
a database [5] has been available. This database provides comprehensive in-
formation to be used to improve the quality of the numerical prediction of
the stability behavior of cylindrical shells. It includes measured imperfections
of cylindrical shells of different sizes manufactured by different processes as
well as experimentally determined buckling loads. In this work, seven copper
electro-plated shells, referred in [5] as A-Shells, are statistically analyzed in
order to model the geometric imperfections most realistically, see Table A.1.
These laboratory scaled cylindrical shells are about 200 mm in length and the
radius is about 100 mm. The largest imperfection magnitude referenced to the
so-called perfect cylinder is in the range of 0.47 mm, which is approximately
three times the shell thickness. [5] showed, that the axi-symmetric imperfec-
tions (parallel to the shell axis) are in general about an order smaller than
the axi-symmetric imperfections. In Figs. A.1–A.4 the geometric imperfec-
tions are unwound from the perfect cylinder. It should be noted, that these
plots should provide a good visual control of the imperfections, i.e. they are
not to scale. To estimate the covariance matrix of the geometric imperfections
according to (12.3), the origin of the coordinate system has to be defined. For
this purpose, the position of the largest imperfection magnitude of every shell
is chosen to define the origin of the shell in circumferential direction. For a
grouping of the shells in axial direction, a notably varying mean-square value
along the axial direction was utilized.
Second moment characteristics of boundary imperfections, see Sec. 12.1, have
been determined from one sample shown in Fig. A.5, see [4].

C.A. Schenk, G.I. Schuëller: Uncertainty Assessment, LNACM 24, pp. 143–148, 2005.
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(b) Shell A-8.

Fig. A.1. Geometric imperfections of electro-plated isotropic cylindrical shells (A7
and A8).
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L2Rπ

t

0
0.2

0.4
0.6

0.8
1

0

0.5

1

-2

-2

-1

-1

0

0

1

2

(b) Shell A-10.

Fig. A.2. Geometric imperfections of electro-plated isotropic cylindrical shells (A9
and A10).
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(b) Shell A-13.

Fig. A.3. Geometric imperfections of electro-plated isotropic cylindrical shells (A12
and A13).
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Fig. A.4. Geometric imperfections of electro-plated shell A-14.

Shell R [m] t [m] L [m] E [N/m2] P [N] λlim
exp

A-7 0.1016 0.000114 0.20320 1.0411·1011 5145.18 0.5901
A-8 0.1016 0.000118 0.20320 1.0480·1011 5539.72 0.6632
A-9 0.1016 0.000115 0.20320 1.0135·1011 5123.67 0.7270
A-10 0.1016 0.000120 0.20320 1.0273·1011 5663.03 0.5645
A-12 0.1016 0.000120 0.20955 1.0480·1011 5777.14 0.6669
A-13 0.1016 0.000113 0.19685 1.0411·1011 5037.43 0.6171
A-14 0.1016 0.000111 0.19685 1.0894·1011 5104.25 0.6745

Table A.1. Dimensions, material properties and experimentally determined limit
loads, respectively, of the seven A-shells [5]. Radius R, thickness t, length L, Young’s
modulus E, measured limit load P and corresponding normalized load level λlim

exp.
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Fig. A.5. Measured boundary imperfections [4].
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B

Lyapunov Matrix Differential Equation

The state space equation of the system defined in (6.18) is given by, see
e.g. [91],

ẏ(t) = Ay(t) + b(t) , (B.1)

where the state vector and the force vector are defined by

y(t) =
	

u
u̇

�
, b(t) =

	
0

M−1f (t)

�
, (B.2)

respectively. Using the symbol I for the identity matrix, the system matrix is
given by

A =
�

0 I

−M−1K −M−1C

�
. (B.3)

In the following it is assumed, that the loading vector b(t) of (B.1) can be
written such that

b(t) = G(t)c(t) (B.4)

holds, where G(t) is the so-called distribution matrix and c(t) is a the actual
loading vector. Commonly, G(t) is time invariant, i.e. G(t) = G. The general
solution of the first order system (B.1) is then given by, see e.g. [141],

y(t) = Υ (t, 0)y(0) +
 t

0

Υ (t, τ)G c(τ) dτ , (B.5)

where Υ (t, τ) is the so-called principal or fundamental matrix and y(0) denote
the stochastic initial conditions. Υ (t, 0) can be given for time invariant systems
in the explicit form of

Υ (t, 0) = eAt =
∞'

j=0

Ajtj

j!
. (B.6)

The principal matrix for different time steps can be obtained by the linear
relation
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Υ (t2, 0) = Υ (t2, t1)Υ (t1, 0) . (B.7)

In order to obtain the covariance matrix of the response

Γ yy(t, s) = E{(y(t) − µy(t))(y(s) − µy(s))T } , (B.8)

the centered (zero mean) response and forcing processes, respectively, are
needed, i.e.

˙̃y(t) = ẏ(t) − µy(t) , (B.9)

and
˙̃c(t) = ḃ(t) − µc(t) . (B.10)

Equation (B.1) and (B.5) can then be rewritten according to

˙̃y(t) = Aỹ(t) + G c̃(t) , (B.11)

and

ỹ(t) = Υ (t, 0)ỹ(0) +
 t

0

Υ (t, τ)G c̃(τ) dτ . (B.12)

Post-multiplying (B.11) with ỹT (s) and substituting (B.12) yields

˙̃y(t)ỹT (s) = Aỹ(t)ỹT (s) + G c̃(t)
�
Υ (s, 0)ỹ(0) +

 t

0

Υ (s, τ)G c̃(τ) dτ
�T

,

(B.13)
which one allows to derive a differential equation for the covariance matrix
between different time instants by taking the expectation of (B.13)

∂

∂t
Γ yy(t, s) = AΓ yy(t, s) + D(t, s) . (B.14)

It should be noted that (B.14) has been obtained under the assumption that
the loading and the initial conditions are uncorrelated. The matrix D(t, s),
commonly denoted as the spectral matrix, is defined as

D(t, s) = G

 s

0

Γ cc(t, τ)GT Υ T (s, τ) dτ . (B.15)

The so-called Lyapunov matrix differential equation describes the temporal
evolution of the covariances and can be derived using the relation

Γ̇ yy(t, t) = Γ̇ yy(t) = E
� d

dt

"
ỹ(t)ỹT (t)

$

= E

�
˙̃y(t)ỹT (t) + ỹ(t) ˙̃y

T
(t)



,

(B.16)
(B.10) and (B.11), yielding

Γ̇ yy(t) = AΓ yy(t) + Γ yy(t)AT + D(t) + DT (t) . (B.17)

Equation (B.17) is rather difficult to solve because of the integration of (B.15).
However, for white noise excitation w(t), i.e. c(t) = w(t) and thus
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Γ ww(t, τ) = E{w(t)wT (t + τ)} = Iw(t)δ(τ) , (B.18)

where δ(τ) and Iw(t) denote the Dirac’s delta function and the white noise
intensity, respectively, the spectral matrix

D(t, s) = G

 s

0

Iw(τ)δ(t − τ)GT Υ T (s, τ) dτ , (B.19)

is zero for t > s. The white noise intensity is related to the power spectral
density S0(t) of the white noise loading by

Iw(t) = 2πS0(t) . (B.20)

Keeping in mind that Υ (t, t) = I, where I denotes the identity matrix, and
that a white noise impulse is responsible for a jump in the velocity response
for the time interval t − ! ≤ t ≤ t + !, where ! is an arbitrary small number,
one arrives for t = s, see e.g. [72], at

D(t, t) =
1
2
G Iw(t)GT . (B.21)

The Lyapunov matrix differential equation for white noise loading is thus
given by

Γ̇ yy(t) = AΓ yy(t) + Γ yy(t)AT + GIw(t)GT . (B.22)

(B.22) is also valid for colored noise loading, as shown in Chap. 13.1.
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enbücher Mechanik, Stuttgart, 1988. Leitfäden der angewandten Mathematik
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