|||‘|‘|||’|||

Technical Report
CMU/SEI-92-TR-25
ESD-TR-92-25
September1992

Software Measures and the
Capability Maturity Model

John H. Baumert

Software Process Measurement Project
Resident Affiliate, Computer Sciences Corporation

Mark S. McWhinney

Software Process Measurement Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

SIGNATURE ON FILE

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1992 by Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA
15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

List of Figures

List of Tables

Acknowledgments

1. Introduction

1.1
1.2.
1.3.
1.4.
1.5.

Objectives

Scope

Audience

How to Use This Document
Document Organization

2. Background and Approach

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

Software Measurement

The Capability Maturity Model
Goal-Question-Measure Paradigm
Selection Criteria for Indicators
Assumptions

Approach

3. Overview of the Indicators

4. The Repeatable Level—Maturity Level 2

4.1.
4.2.
4.3.
4.4.
4.5.

4.6.

4.7.

Characteristics of a Repeatable-Level Organization
Progress

Effort

Cost

Quality

4.5.1. Software Quality Assurance Audit Results
4.5.2. Review Results

4.5.3. Trouble Reports

Stability

4.6.1. Requirements Stability

4.6.2. Size Stability

Computer Resource Utilization

5. The Defined Level—Maturity Level 3

5.1.
5.2.
5.3.
5.4.
5.5.

5.6.

Characteristics of a Defined-Level Organization
Progress

Effort

Cost

Quality

5.5.1. Software Quality Assurance Audit Results
5.5.2. Review Results

5.5.3. Trouble Reports

5.5.4. Peer Review Results

Stability

5.6.1. Requirements Stability

Vil

101
105
113
125
125

CMU/SEI-92-TR-25

Table of Contents

5.7.
5.8.

5.6.2. Size Stability

5.6.3. Process Stability
Computer Resource Utilization
Training

133
137
141
143

CMU/SEI-92-TR-25

Table of Contents

6. The Managed Level—Maturity Level 4

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

6.7.

6.8.
6.9.

Characteristics of a Managed-Level Organization
Statistical Process Control—An Overview
Progress

Effort

Cost

Quality

6.6.1. Software Quality Assurance Audit Results
6.6.2. Review Results

6.6.3. Trouble Reports

6.6.4. Peer Review Results

Stability

6.7.1. Requirements Stability

6.7.2. Size Stability

6.7.3. Process Stability

Computer Resource Utilization

Training

7. The Optimizing Level—Maturity Level 5

7.1. Characteristics of an Optimizing-Level Organization
7.2. Progress
7.3. Effort
7.4. Cost
7.5. Quality
7.5.1. Software Quality Assurance Audit Results
7.5.2. Review Results
7.5.3. Trouble Reports
7.5.4. Peer Review Results
7.5.5. Defect Prevention
7.6. Stability
7.7. Computer Resource Utilization
7.8. Training
References

Appendix A: Acronyms

Appendix B: Definitions

149
149
149
153
153
155
159
159
159
161
169
175
175
177
180
181
181

183
183
183
189
193
199
199
199
199
199
201
207
207
207

209
A-1
B-1

Appendix C: Mapping of Software Measurement in the Key Practices of
the Capability Maturity Model to Indicator Categories

C-1

Appendix D: Indicator Categories Traced to Capability Maturity Model
Key Practices

CMU/SEI-92-TR-25

Table of Contents

iv CMU/SEI-92-TR-25

List of Figures

Figure 1.3-1. Software Measurement Users 3
Figure 1.4-1. Relationship of Indicators to CMM Maturity Level and

Indicator Discussion Topics 7
Figure 2.2-1. The Five Levels of Software Process Maturity 11
Figure 2.2-2. The Key Process Areas by Maturity Level 12
Figure 4.2-1. A Typical Gantt Chart 24
Figure 4.2-2. Comparison of Time Between Two Consecutive Events 25
Figure 4.2-3. Actual Completions Compared with Planned Completions 26
Figure 4.2-4. Change in Original Baseline 27
Figure 4.2-5. Actual and Planned Completions with Different Baselines 28
Figure 4.3-1. Total Planned and Actual Staffing Profile 33
Figure 4.3-2. Staffing Profile by Labor Category 36
Figure 4.3-3. Typical Staffing Profile Including Staff Addition and Losses 37
Figure 4.4-1. Cost/Schedule Status Report 42
Figure 4.4-2. Cost/Schedule Status Report Showing Project Cost Overrun

and Schedule Slippage 43
Figure 4.4-3. Cost/Schedule Status Report 44
Figure 4.5.1-1. Total Number of Noncompliance Issues Open Over Time 49
Figure 4.5.1-2. Number of Noncompliance Issues by Individual Audit 50
Figure 4.5.2-1. Total Number of Action Items Open Over Time 53
Figure 4.5.2-2. Number of Action Items by Individual Review 54
Figure 4.5.3-1. Number of Total, Open, and Closed Trouble Reports 60
Figure 4.5.3-2. Number of Opened and Closed Trouble Reports in Reporting

Period 61
Figure 4.5.3-3. Percentage of High Severity Trouble Reports over Time 62
Figure 4.5.3-4. Number of Unevaluated Trouble Reports 63
Figure 4.5.3-5. Trouble Report Density 64
Figure 4.5.3-6. Trouble Reports Created Against Test Cases 65
Figure 4.6.1-1. Current Total Number of Requirements, Cumulative

Changes,

and Number of TBDs Against Time 69
Figure 4.6.1-2. Types of Requirements Changes 70
Figure 4.6.1-3. Number of Requirement Changes Recorded During Each

Reporting Period 71
CMU/SEI-92-TR-25 v

Table of Contents

Figure 4.6.1-4. Number of Requirements per Release 72
Figure 4.6.2-1. Software Size as a Function of Time 75
Figure 4.6.2-2. Planned and Actual Size Over Time 76
Figure 4.6.2-3. Computer Software Unit Release Content 77
Figure 4.7-1. Planned Vs. Actual Memory Utilization 81
Figure 4.7-2. Memory Utilization 82
Figure 5.2-1. Actual Completions Compared with Planned Completion

Range 86
Figure 5.2-2. A Simplified PERT Chart Showing the Critical Path 87
Figure 5.4-1. Cost/Schedule Status Report Showing Allowable Range for

Budgeted Cost for Work Scheduled 93
Figure 5.4-2. Variance Report 94
Figure 5.4-3. Example of a Performance Indices Report 95
Figure 5.5.1-1. Number of Noncompliance Issues by Type 99
Figure 5.5.3-1. Number of Trouble Reports Compared to Range Determined

from Historical Data for Similar Projects 108
Figure 5.5.3-2. Software Engineering Laboratory Error-Rate Model 108
Figure 5.5.3-3. Length of Time that Severity Level X Trouble Reports Are

Open 109
Figure 5.5.3-4. Total Number of Trouble Reports per Computer Software

Configuration Item 110
Figure 5.5.4-1. Number of Total, Open, and Closed Defects 116
Figure 5.5.4-2. Percentage of Total Defects Closed 116
Figure 5.5.4-3. Distribution of Defect Categories for Unit Design Reviews 117
Figure 5.5.4-4. Distribution of the Number of Defects by CSCI 118
Figure 5.5.4-5. Defect Density for CSCls 119
Figure 5.5.4-6. Defect Density for Each Life-Cycle Activity 120
Figure 5.5.4-7. Density of Requirements Defects Found During Peer

Reviews

in Different Life-Cycle Activities 121
Figure 5.5.4-8. Percentage of ltems Requiring a Second Review 122
Figure 5.5.4-9. Peer Review Efficiency 123
Figure 5.6.1-1. Total Number of Requirements Changes 128
Figure 5.6.1-2. Total Number of Requirements Changes and Number of

Changes by Requirement Type 129
Figure 5.6.1-3. Cumulative Number of Waivers and Number per Reporting

Period 130
Figure 5.6.1-4. Length of Time for Change Request Analysis and Action 131

Vi CMU/SEI-92-TR-25

Table of Contents

Figure 5.6.2-1. Software Size as a Function of Time Compared to Similar

Projects 134
Figure 5.6.2-2. Software Size Growth 135
Figure 5.6.3-1. Process Change Requests 139
Figure 5.6.3-2. Waivers from Process Standards 140
Figure 5.8-1. Number of Classes Offered Each Month 145
Figure 5.8-2. Total Attendance 146
Figure 5.8-3. Course Quality 147
Figure 5.8-4. Waivers from Training Courses 148
Figure 6.2-1. Control Chart 150
Figure 6.2-2. Project in Statistical Control 151
Figure 6.2-3. Project out of Statistical Control 152
Figure 6.6.3-1. Number of Trouble Reports per Type of Defect 164
Figure 6.6.3-2. Number of Defects per Type Category 165
Figure 6.6.3-3. Efficiency Indicators for a Project in Statistical Control 166
Figure 6.6.3-4. Efficiency Indicators for a Project out of Statistical Control 167
Figure 6.6.4-1. Defect Detection Efficiency vs. Review Rate 172
Figure 6.7.2-1. Software Size as a Function of Time Showing Upper and

Lower Control Limits 179
Figure 6.7.2-2. Software Size as a Function of Time 179
Figure 7.2-1. A Scatter Diagram of the Ratio of Time Spent in Rework

Activities for Several Projects 185
Figure 7.2-2. The Ratio of Time Spent in Rework Activities for Several

Projects with Control Limits 186
Figure 7.3-1. The Ratio of Effort Spent in Rework Activities for Several

Projects 190
Figure 7.4-2. Cost and Benefit Trade-Offs of Improvement Activities 196
Figure 7.4-3. Cost and Benefits of Peer Review Training 197
Figure 7.5.5-2. Design Defects Detected by Life-Cycle Activity 203
Figure 7.5.5-3. Histogram of Categories of Defects Detected 204
Figure 7.5.5-4. Defect Insertion Rate for Category A Defects 205
CMU/SEI-92-TR-25 Vil

Table of Contents

viii CMU/SEI-92-TR-25

List of Tables

Table 3-1. Indicator Categories and Their Description 18
Table 3-2. Indicators for the Repeatable and Defined Levels 19
Table 3-3. Indicators for the Managed and Optimizing Levels 20
Table 5.5.2-1. Length of Time Action Items Remain Open 102
Table 7.5.5-1. Defect Insertion and Detection by Life-Cycle Activity 202
CMU/SEI-92-TR-25 iX

Table of Contents

X CMU/SEI-92-TR-25

Table of Contents

CMU/SEI-92-TR-25 Xi

Acknowledgments

The authors recognize and thank the individuals who generously contributed their time
to review and comment on earlier drafts of this technical report. We feel that their
comments and suggestions have resulted in a better document. These people are:

John Beck
AT&T Bell Laboratories

Mary Busby
IBM Corporation

David Card
Computer Sciences Corporation

Anita Carleton
Software Engineering Institute

Mary Beth Chrissis
Software Engineering Institute

Bill Curtis
Software Engineering Institute

William Florac
Software Engineering Institute

John Harding

Bull HN Information Systems, Inc.

Jim Hart
Software Engineering Institute

Jeffrey Heimberger
The MITRE Corporation

Watts Humphrey
Software Engineering Institute

Wolfhart Goethert
Software Engineering Institute

Robert Grady
Hewlett-Packard

Shari Lawrence Pfleeger
The MITRE Corporation

Donald McAndrews
Software Engineering Institute

Richard Mendez
AT&T Bell Laboratories

Tim Olson
Software Engineering Institute

Robert Park
Software Engineering Institute

Mark Paulk
Software Engineering Institute

Jane Siegel
Software Engineering Institute

Patricia Van Verth
Canisius College

Dave Zubrow
Software Engineering Institute

We also thank Lori Race for her outstanding secretarial support and patience during
the preparation of this technical report.

CMU/SEI-92-TR-25 xiii

Acknowledgments

Xiv CMU/SEI-92-TR-25

Software Measures and the Capability Maturity
Model

Abstract. This document describes a set of software measures that are
compatible with the measurement practices described in the Capability
Maturity Model for Software. These measures, in the form of software
indicators, cover thirteen different categories that include progress, effort,
cost, and quality. Each indicator category contains example figures which
illustrate behavior that may occur on a project. The text provides users with
tips on how to use these figures or similar ones on their projects. Project
software managers and software engineering process groups can use these
indicators during the software development life cycle to gain insight into the
software development process and software process improvement activities.
The indicators chosen have been successfully used on projects in the
software industry.

1. Introduction

The Software Process Measurement Project at the Software Engineering Institute (SEI)
promotes the use of measurement in improving the management of software
development and the acquisition of software. The project has worked and continues to
work with representatives from industry, government, and academia to develop basic
definitions of software measures and a measurement process that can be used to
systematically and repeatedly measure software development progress, products, and
processes. Four documents that describe these measures have been released [Florac
92], [Goethert 92], [Park 92], and [Rozum 92]. This document complements these
documents by providing a set of software measures in the form of indicators that are
compatible with the measurement practices of the Capability Maturity Model for
Software (CMM) [Paulk 91], [Weber 91]. In this document, indicator is used to mean a
representation of measurement data that provides insight into software development
processes and/or software process improvement activities. A measure quantifies a
characteristic of an item; an indicator may use one or more measures. For example, an
indicator may be the behavior of a measure over time or the ratio of two measures.

1.1. Objectives

The goal of this document is to provide a comprehensive and cohesive set of indicators
that is consistent with the key practices in the CMM. This document describes and
serves as a reference manual for that set of software indicators.

CMU/SEI-92-TR-25 1

Introduction

The objectives of this document are to:

1. Provide software indicators that are consistent with the key practices of the
CMM.

2. Provide software indicators that address the measurement-related goals of the
CMM key process areas.

3. Provide information on the use of the indicators.

4. Provide organizations that have no measurement program with indicators that
can be used when such a program is started.

5. Provide organizations that have a measurement program with indicators that
can be used for comparison with their programs.

The first two objectives address the relationship between the indicators and the CMM.
They also show that measurement is a critical technology which should be practiced at
each maturity level. The third objective emphasizes that it is not sufficient to provide a
list of software indicators; guidance in their use is at least as important.

The last two objectives indicate that the document is written to provide useful
information to organizations with or without a measurement program. An organization
without a measurement program may use this document to determine what measures
can be used and how to use the indicators. An organization with a measurement
program may use this document to compare their measures with the indicators
discussed in this document and add or delete measures accordingly.

A project or organization is not required to use the indicators discussed in this
document. The indicators represent a set that is consistent with the CMM key practices
but do not represent a universal set. Other indicators may exist that are also
compatible and useful within the framework of the CMM.

1.2. Scope

The indicators track both software products and software development processes with
the emphasis on the processes. They are not identified as process or product
indicators because often one indicator can point to either a process or product
characteristic. Also, product characteristics such as maintainability and portability are
not addressed specifically as there are no standard measures of these characteristics.
Occasionally, they can be inferred from the indicators. For example, product reliability
and maintainability can be inferred from the numbers of defects found in the product.

Indicators are given for software development activities only. Due to the limited space
available, only the life-cycle stages from requirements through testing are addressed so
that a comprehensive indicator set for software development could be recommended.
Information on the use of the indicators is focused on software development. Many of
the indicators can also be used in operations and maintenance, but no claims of
completeness are made with respect to indicators for this life-cycle stage.

2 CMU/SEI-92-TR-25

Introduction

The implementation of a broad-scale measurement program is also not discussed.
Such suggestions can be found in a number of sources [DeMarco 82], [Grady 87],
[Jones 91], [Pfleeger 89], [Kuntzmann 92]. The number of indicators and sample
graphs in this document is relatively large and can discourage an organization from
establishing a measurement program. An organization needs to weigh its
measurement goals against its resources to determine the structure and content of its
measurement program. Then it can select indicators from this document or develop its
own that satisfy those goals.

1.3. Audience

This document is written for the project software manager and the software engineering
process group (SEPG). The example graphs and interpretations discussed in this
document provide information that is useful to a project software manager or an SEPG.
Others may use the same or similar graphs but with a different focus and interpretation.
Figure 1.3-1 shows potential users of these software indicators.

. Senior
SW Project |« - - - - - - = - = - - - - - - - - -
M t Management
anagemen
. d Nl Visibility
Planning & Control N

i BRI A

-~ 1

~ 1

: - Y
\ T o

A Customer
SEPG Software o
Indicators racking
Improvement
\ Research
Community
Research
- - - Line of
Internal - > omme O External
t(_) ———————— - [nformation Flow t(_)
Project Project

Figure 1.3-1. Software Measurement Users

CMU/SEI-92-TR-25 3

Introduction

All levels of project management can use the indicators for planning and controlling
project cost, schedule, quality, risks, and resources. In addition, the indicators allow
project managers to make informed decisions and to discuss the status and
performance of the project with senior management and customers.

The SEPG can use the indicators to improve the project as well as the organization, to
determine the quality of the products and processes of the project, and to monitor the
effectiveness of improvements put into place.

Senior management wants visibility into the cost, schedule, quality, risks, resources,
and improvements occurring on each project under its control, but is usually interested
in the project as a whole and not the details. The indicators provide this visibility as well
as a common ground for discussions with the project manager and the customer. The
indicators also provide senior management with information about the capability of the
organization as a whole.

The customer can use the indicators to track the project cost, schedule, risks, and
qguality. The research community is interested in obtaining a consistently defined set of
accurate data and can use the measures that formed the indicators.

1.4. How to Use This Document

The indicators discussed in this document are descriptive and are not intended to be
prescriptive. That is, they are recommended and not mandated. They form a cohesive
set that can serve as the nucleus of a measurement program within an organization.
Each organization is responsible for determining its goals, devising its own process
improvement program, and determining the measurements that best fit its program.

The indicators are discussed in relation to specific maturity levels. However, the use of
the indicators from a particular maturity level will not guarantee that an organization is
performing at that maturity level. Measurement is only part of the CMM. An
organization must also perform other activities, such as training, establishing policies,
verifying implementation, and so forth.

Within the CMM, a higher maturity level encompasses the key practices of the lower
levels. In general, the same is true of the indicators discussed in this document. The
indicator categories are the same for all maturity levels. Additional indicators are
placed in these categories as the organization matures. Indicators from lower levels
may also change as the organization matures. If this occurs, the discussion of the
indicator is appropriate at the higher maturity level. For example, statistical process
control techniques are applied at the Managed Level to certain lower level indicators.
The more simplistic indicators at lower maturity levels may not be used at the higher
levels, but the measures used to derive them are available for use at the higher
maturity levels.

The definitions of input data to the indicators do not change from maturity level to
maturity level. This allows the use of the indicators at different maturity levels. The

4 CMU/SEI-92-TR-25

Introduction

inputs remain constant, but the analysis of the input data may change. Again, this
allows the organization to use historical data to predict performance at higher maturity
levels.

Although each indicator is discussed separately, it should NOT be used or interpreted
in isolation. Indicators are used in conjunction with other indicators to get a more
complete picture of what is occurring on the project and within the organization. For
example, the cost indicator is related to the effort and progress indicators. All three
indicators should be used and interpreted together. In addition, the cost of a project
can increase or decrease depending on the number of requirements changes.
Therefore, the project software manager uses the requirements stability indicator along
with the cost indicator. Similarly, the effort indicator is related to the cost, progress, and
training indicators.

The level of detail given for the indicators at the Repeatable and Defined Levels is
greater than at the Managed and Optimizing Levels. This is an artifact of the
measurement discussion in the CMM. Knowledge of the Managed and Optimizing
Levels is incomplete. Most work in software measurement is concerned with issues
that are covered by key process areas at lower levels of maturity. As organizations
mature, experience with indicators at higher levels will increase, and consequently
more detail can be added to the discussion of the indicators at the higher levels.

If an organization wishes to use the indicators discussed in this document to establish
or modify a measurement program, it is recommended that the organization review the
indicators across all maturity levels to derive a comprehensive and coherent program,
not a program pieced together one maturity level at a time. This is particularly
important with respect to the inputs to the indicators. The data not only need to be
accurate, but they also need to be complete and consistent across all maturity levels.

Many of the indicators involve monitoring a quantity over time. The reporting period
shown in an example graph is arbitrarily selected. In practice, the frequency of
reporting or monitoring is dependent on the size and duration of the project and is
determined by the project. For large projects or multi-year projects, a monthly report is
appropriate. Weekly or biweekly reporting periods are typical of projects with shorter
duration.

The reporting and monitoring frequency is also dependent on the type of indicator and
for whom the report is prepared. For example, lower-level software managers would
monitor progress on a weekly basis for the work under their control but may report
progress on a monthly basis to the project software manager. Likewise, software
guality assurance personnel would monitor results of audits on a biweekly or monthly
basis, but trouble reports on a weekly basis.

CMU/SEI-92-TR-25 5

Introduction

1.5. Document Organization

This document is divided into seven chapters. Chapter 2 provides background material
and the approach used to derive the software indicators that are listed in Chapter 3 and
discussed in detail in Chapters 4 through 7.

The appendices contain a list of acronyms and definitions of terms used in the
document, a mapping of software measurement references in the CMM key practices to
indicator categories, and a mapping of the software indicators to software
measurement references in the CMM key practices.

Each indicator is discussed in a separate section, that is, as a stand-alone entity. The
discussion of each indicator section in Chapters 3 through 7 has the following format:

* Objective of the Indicator—the purpose of the indicator

* Indicators—a listing of the indicators within the indicator category

» Key Process Area Goals Addressed—the CMM key process area goals that are
the focus of the indicators

» Life-Cycle Stage—where in the life cycle the indicator should be used

» Users—people who would be the most likely to find the indicators useful or who
would use the indicators most often

» Users’ Questions—examples of the types of questions users could answer with
the indicator

* Input—the data items or information needed to derive the indicators
* Interpretation—information on the indicators

» Sources—references to material(s) that further explain or describe the
indicators

Figure 1.4-1 shows the relation of the indicators to the CMM maturity level and to
several of the discussion items. Graphs are used to illustrate the use of the indicators.
Unless noted, they are not based on real data. The actual appearance of a graph for a
specific project or organization depends on the implementation of the concepts
presented here and the specific graphing tool used.

6 CMU/SEI-92-TR-25

Introduction

C Maturity Level)

applies to
Indicators
assess progress \
toward achieving used by
Users during
Objectives address use Life-Cycle
Stages
Key Process Areas Input

Figure 1.4-1. Relationship of Indicators to CMM Maturity Level and Indicator
Discussion Topics

CMU/SEI-92-TR-25 7

Introduction

8 CMU/SEI-92-TR-25

2. Background and Approach

This chapter provides background information that serves as a basis for the integration
of the software measures and the Capability Maturity Model for Software (CMM) and
describes the approach used in the integration of the two.

2.1. Software Measurement

Organizations with successful measurement programs report the following benefits:
* Insight into product development
» Capability to quantify tradeoff decisions
» Better planning, control, and monitoring of projects

» Better understanding of both the software development process and the
development environment

* ldentification of areas of potential process improvement as well as an objective
measure of the improvement efforts

* Improved communication

However, many of the potential benefits that an organization can derive from a sound
measurement program is often not achieved due to a half-hearted commitment by
managers to a measurement program. The commitment cannot be just a policy
statement; it must be total commitment. The policy must be followed with the allocation
of resources to the measurement program. This includes allocating staff as well as
tools.

It is important that an individual or group be assigned responsibility for the
measurement program. This group identifies the measures to be collected, establishes
training in measurement, monitors the consistency of the measures across the projects
and throughout the organization, and can help projects initiate measures. This group
can also provide composites of historical data that managers can use in planning and
monitoring of projects.

The human element in a measurement program should not be taken lightly. Success
and failure are tied to people. All staff members need to see the benefits of the
measurement program and understand that the results will not be used against them.
The focus of any measurement program is on the process and the product, not people.
Jones has a section, entitled “The Sociology of Software Measurement,” in the book in
which he discusses data confidentiality, the use of data for staff performance targets,
measuring one-person projects, management information systems vs. systems
software, and measurement expertise [Jones 91].

Grady and Caswell discuss their experiences in establishing a measurement program
at Hewlett-Packard [Grady 87]. All aspects of measurement are discussed: what to

CMU/SEI-92-TR-25 9

Background and Approach

measure, how to convince management and staff of the benefits, validity of data, the
need for a database, training and tools, and so forth. Their practical experience is
invaluable.

Rifkin and Cox summarize the current state of measurement practice in eleven
divisions of eight organizations that have the reputation of having excellent
measurement practices [Rifkin 91]. They describe the patterns that emerged at a
consolidated lessons-learned level but also provide informative material in the individual
case studies.

2.2. The Capability Maturity Model

The CMM is designed to provide organizations with guidance on how to gain control of
their process for developing and maintaining software and how to evolve toward a
culture of software excellence. It does this by serving as a model against which an
organization can determine its current process maturity and by identifying the few
issues most critical to software quality and process improvement.

This section provides a high-level overview of the CMM and its structure. Details are
provided by Paulk and Weber [Paulk 91], [Weber 91]. Additional information on
maturity levels and software process is given by Humphrey [Humphrey 89].

The CMM contains five levels of software process maturity: Initial, Repeatable,
Defined, Managed, and Optimizing (see Figure 2.2-1). An organization at the Initial
Level is characterized as one without a stable environment for developing and
maintaining software. Few stable software processes are in place, and performance
can only be predicted by individual, rather than organizational, capability.

An organization at the Repeatable Level has installed basic software management
controls; that is, stable processes are in place for planning and tracking the software
project. Project software managers track software costs, schedules, and functionality;
problems in meeting commitments are identified when they arise. Software
configuration management procedures are used to baseline and control software
requirements. Project standards exist, and the software quality assurance group
ensures that they are followed. In essence, there is a stable, managed, working
environment.

An organization at the Defined Level has a standard process for developing and
maintaining software across the organization. The software engineering and software
management processes are integrated into a coherent whole. A software engineering
process group (SEPG) facilitates software process definition and improvement efforts.
An organization-wide training program is implemented to ensure that the staff and
managers have the knowledge and skills required to carry out their tasks. Projects use
the organization-wide standard software process to create their own defined software
process that encompasses the unique characteristics of the project. Each project uses
a peer review process to enhance product quality.

10 CMU/SEI-92-TR-25

Background and Approach

process

Predictable Managed
process (4)
Standard, Defined
consistent/ : 3)

Continuously Optir751izing
improving (5)

process
Repeatable
Discipline 2)
process
Initial

(1)

Figure 2.2-1. The Five Levels of Software Process Maturity

An organization at the Managed Level sets quantitative quality goals for software
products. Productivity and quality are measured for important software process
activities across all projects in the organization. A process database is used to collect
and analyze the data from a carefully defined process. Software processes have been
instrumented with well-defined and consistent measures that establish the quantitative
foundation for evaluating project processes and products.

An organization at the Optimizing Level focuses on continuous process improvement.
The organization has the means to identify weak process elements and strengthen
them, with the goal of preventing the occurrence of defects. Statistical evidence is
available on process effectiveness and is used in performing cost-benefit analyses on
new technologies. Innovations that exploit the best software engineering practices are
identified.

A maturity level is composed of several key process areas. Figure 2.2-2 displays the
key process areas for each maturity level. The key process areas identify the issues
that must be addressed to achieve a maturity level. In essence, they may be
considered the requirements for achieving a maturity level. Each key process area
represents a cluster of related activities that, when performed collectively, achieve a set
of goals considered important for enhancing process capability. When these goals

CMU/SEI-92-TR-25 11

Background and Approach

have been accomplished on a continuing basis, the organization can be said to have
institutionalized the process capability characterized by the key process area.

(Optimizing (5)

Process change management
Technology innovation
Defect prevention

(Managed (4)

Quality management
Process measurement and analysis

(Defined (3))
P

Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Organization process definition
Organization process focus

(Repeatable (2)

Software configuration management
Software quality assurance
Software subcontract management
Software project tracking and oversight
Software project planning
Requirements management

(itial (1))

Figure 2.2-2. The Key Process Areas by Maturity Level

The CMM provides a wealth of information for process capability and process
improvement. It also serves as the foundation upon which a measurement program
can be built.

12 CMU/SEI-92-TR-25

Background and Approach

2.3. Goal-Question-Measure Paradigm

Basili and Weiss proposed a methodology for collecting valid software engineering data
that has come to be known as the goal-question-measure paradigm [Basili 84]. The
paradigm states that an organization should have specific goals in mind before data are
collected. This ensures that only appropriate data are collected.

The first step for an organization is to establish the goals of its measurement program.
The organization determines what it is that it is attempting to do with these data. Once
the goals have been established, the organization in the second step develops a list of
guestions that are to be answered by the measurement program. Questions force the
organization to define more sharply the goals of the measurement program. The
guestions ensure that only data appropriate to achieving those goals are collected. If a
data item is not needed in analysis, it is discarded. Also if there is a goal for which
guestions cannot be formulated or for which data cannot be collected, then it is not a
viable measurement goal and is discarded.

The final step is to collect the data. However, when these measures are now made,
they are made for a well-defined purpose.

This paradigm was used in this task to maintain a focus on the measures appropriate to
achieve the goals of the key process areas. There are many measures available for
use in the software industry. Only those indicators that would help an organization in
assessing and improving itself as well as providing useful information to the software
project manager during software development were selected.

2.4. Selection Criteria for Indicators

The following criteria were used in selecting indicators:
» The indicator had to apply to a goal of a key process area within the CMM.

* The indicator could be used both as a status indicator and as a predictor of
future status.

* The indicator is used in measuring software process improvement efforts.

* The indicator is an existing measure; that is, there is a reference to it in the
literature.

* The indicator is easy to derive; that is, it does not require complicated arithmetic
procedures.

* The input items to an indicator require straightforward data collection efforts;
that is, the data collection lends itself to automation.

» The graphing of the trend charts is simple enough to be done by hand or lends
itself to automation.

An indicator had to satisfy a majority of the criteria. Not every criterion had to be
satisfied. Each candidate indicator was evaluated against these criteria and was

CMU/SEI-92-TR-25 13

Background and Approach

selected on how well it satisfied these criteria. The one criterion that every indicator
had to satisfy is the first one: the indicator had to apply to a goal of a CMM key
process area.

2.5. Assumptions

The following assumptions were made during this task:

* The key process areas are not likely to change in the first revision of the CMM.
The CMM was released for comment in August 1991 with the understanding
that it would be revised within a year. It is expected that some of the details in
the key practices will change but that the general structure of the CMM (i.e., the
specific key process areas) will remain the same.

* Projects within an organization may be at varying levels of process maturity.
The indicators are applicable at the different maturity levels. Indicators can be
used by both low and high maturity level projects. As a project and the
organization as a whole mature, the indicators can be used to provide different
levels of information. For example, at the Repeatable Level, a project would
use the indicators primarily to determine its status. As the project and the
organization mature, the indicators would be used for their predictive as well as
current status capability.

* A lower maturity level project does not have to wait to achieve a higher maturity
level to use an indicator discussed at the higher level. For example, if a project
at the Repeatable Level wishes to use the indicators associated with the Peer
Review key process area, it can do so, but the data may be less accurate, and
the indicator may not be as effective.

2.6. Approach

The approach to this research began with two parallel activities: an analysis of the
CMM for measurement activities and a literature search for references to software
measures or indicators.

In the analysis of the CMM, a measurement reference, whether explicitly stated or
inferred from the CMM text, was recorded wherever it was found within the key process
areas. As expected, the majority of the measurement references are found in Activities
Performed, Monitoring Implementation, and Verifying Implementation. Commitment to
Perform and Ability to Perform provided information on who uses the measures.

The literature search quickly revealed the scope and diversity of software measures in
the industry as well as the difficulty of obtaining detailed information on measurement
programs within organizations. The search became quickly constrained to literature in
the public domain as many organizations are protective of their measurement
programs.

14 CMU/SEI-92-TR-25

Background and Approach

The literature search also showed that indicators, rather than basic measures, are more
appropriate for this document. Indicators allow greater latitude on how to actually
measure an item. For example, several ways of determining software size exist.
These include counting lines of code, pages of documentation, or function points. By
using an indicator of size, discussion can focus on trends in size changes and their
implications. This discussion is independent of how size is measured. Whatever
measure an organization uses to measure size, the discussion on variation in software
size is still applicable.

The next step was to integrate the results of the CMM analysis and the literature
search. This was accomplished by applying the goal-question-measure paradigm to
the goals of the key process areas. Questions from the viewpoint of the project
software manager and the software engineering process group were considered.
Using these questions, the indicators contained in this document were selected.

CMU/SEI-92-TR-25 15

Background and Approach

16 CMU/SEI-92-TR-25

3. Overview of the Indicators

The indicators chosen are grouped into the thirteen categories given in Table 3-1. Not
all categories occur at all maturity levels. Table 3-2 and Table 3-3 provide a mapping
of the indicators to the maturity level.

Appendix C explains the links between the indicator categories and the software
measurement references of the Capability Maturity Model key practices. Appendix D
maps the software indicators to software measurement references in the CMM key
practices.

A careful reading of Appendix C and Appendix D shows that there should be risk
indicators. However, no risk indicator is discussed in this document since the literature
search and discussions with Software Engineering Institute personnel in the Risk
Project revealed that the state of the practice in risk management is still too immature.
However, the project software manager can use many of the indicators discussed in
this document as risk analysis tools to determine project risks.

CMU/SEI-92-TR-25 17

Overview of the Indicators

Indicator Category

Description

Progress Provides information on how well the project is
performing with respect to its schedule
commitments.

Effort Provides visibility into the contribution that
staffing has on project costs, schedule adherence,
and product quality.

Cost Provides tracking of actual costs against estimated
costs and predicts future project costs.

Quality

Software Quality Assurance Audit Results

Provides estimation of product quality and
compliance of staff to project processes.

Review Results

Provides status of action items from life-cycle
reviews.

Trouble Reports

Provides insight into the quality of the product and
processes and the effectiveness of testing.

Peer Review Results

Provides insight into the quality of the
intermediate and final products and into the peer
review and devel opment processes.

Defect Prevention

Provides insight into the cause of defects and the
effect of defect prevention activities on defect
insertion rates.

Stability

Requirements Stability

Provides visibility into the magnitude and impact
of requirements changes.

Size Stability Provides insight into the completeness and stability
of the requirements and into the capability of the
staff to complete the project within the current
budget and schedule.

Process Stability Provides insight into the effectiveness and quality

of the defined process.

Computer Resource Utilization

Provides information on how well the project is
performing with respect to its computer resource
utilization goal s/requirements.

Training

Provides visibility into the effectiveness of the
organization’ s training program in meeting the
skill requirements.

Table 3-1. Indicator Categories and Their Description

18

CMU/SEI-92-TR-25

Overview of the Indicators

Indicator Category

Repeatable Level

Defined Level

Progress

Actual vs. planned completions

Actual vs. planned completions

Gantt chart with ranges
Gantt chart
PERT chart
Effort Actual vs. planned staffing profiles | Actual vs. planned staffing profiles
with finer granularity
Cost Actual vs. planned costs Actual vs. planned costs with

Cost and schedule variances

ranges
Cost and schedule performance
indices

Software Quality Assurance Audit
Results

Status of noncompliance issues

Status of noncompliance issues
Audit information
Sampling size information

Review Results

Status of action items

Status of action items

Trouble Reports

Status of trouble reports

Number of trouble reports opened,
closed, unevaluated during
reporting period

Trouble report density

Comparison of trouble reports and
test cases passed

Status of trouble reports

Number of trouble reports
compared with historical data

Length of time trouble reports
remain open

Number of trouble reports per
product

Peer Review Results

Number of opened and closed
defects

Number of defects by product

defect density

Pareto analysis of defects

Preliminary control charts

Defect Prevention

Requirements Stability

Number of requirements changes
and requirements clarifications
Distribution of requirements over

releases

Number of requirements changes
and requirements clarifications
with ranges

Distribution of requirements over
releases

Distribution of requirements
changes by requirement type

Length of time requirements
change requests remain open

Number of waivers requested and
approved from requirements

Size Stability Size growth Size growth with ranges
Distribution of size over releases Distribution of size over releases
Process Stability Number of process changes

Number of waivers from process

Computer Resource Utilization

Actual vs. planned profiles of
computer resource utilization

Actual vs. planned profiles of
computer resource utilization

Training

Actual vs. planned number of
classes offered

Actual vs. planned attendance

Course quality profiles

Number of waivers from training

Table 3-2. Indicators for the Repeatable and Defined Levels

CMU/SEI-92-TR-25

19

Overview of the Indicators

Indicator Category

Managed Level

Optimizing Level

Progress

Actual vs. planned completions
with control limits

Gantt chart

PERT chart

Ratio of rework time to total
project time per project

Rate of time spent in activities
undergoing process change

Effort Same as Defined Level Ratio of rework effort to total
project effort per project
Rate of effort spent in activities
undergoing process change
Cost Actual vs. planned costs with Comparative costs and benefits

control limits
Cost and schedule performance
indices

of alternative process
improvement and defect
prevention activities and
technologies

Actual vs. planned cost and
benefit of an alternative
process improvement activity,
defect prevention activity, or
technology

Software Quality Assurance Audit
Results

Same as Defined Level

Same as Defined Level

Review Results

Same as Defined Level

Same as Defined Level

Trouble Reports

Causes of trouble reports
Testing, development, and
implementation efficiency

Same as Defined and Managed
Levels

Peer Review Results

Number of open and closed
defects

Number of defects by product
defect density

Pareto analysis of defects

Control charts on peer review
characteristics

Same as Defined and Managed
Levels

Defect Prevention

Defect category profiles
Defect insertion rates

Requirements Stability

Same as Defined Level

Same as Defined Level

Size Stability Size growth with control limits Same as Defined and Managed
Distribution of size over releases | Levels
Process Stability Same as Defined Level Same as Defined Level

Computer Resource Utilization

Same as Defined Level

Same as Defined Level

Training

Same as Defined Level

Same as Defined Level

Table 3-3. Indicators for the Managed and Optimizing Levels

20

CMU/SEI-92-TR-25

4. The Repeatable Level—Maturity Level 2

This chapter summarizes the characteristics of an organization with a repeatable
process and discusses the indicators that are appropriate for the Repeatable Level.

4.1. Characteristics of a Repeatable-Level Organization

An organization with a repeatable process is characterized as one with basic project
management processes in place that allow the organization to develop a project plan
and to track software costs, schedule, and functionality against this plan. Results from
previous projects allow realistic commitments to be made for the current project.
Infrastructures are in place to allow proper software quality assurance, configuration
management, requirements management, and subcontract management on the project.
Mechanisms are in place that allow the project to make changes to the plan when
appropriate.

Indicators appropriate for a Repeatable-Level organization are progress, effort, cost,
quality, stability, and computer resource utilization.

4.2. Progress

Progress is measured through the completion of activities on the project schedule.
Progress indicators are used to monitor progress in terms of task completion and task
output. The difference between the actual and planned completions is an indication of
project adherence to the plan. Significant deviations (as determined by the project or
organization) indicate problems. Furthermore, the progress indicators can show trends
that suggest potential future problems.

Progress indicators may be used to monitor activities throughout all life-cycle stages.
Each stage has activities that must be completed and that can be quantitatively
measured with process measurements. Each activity also produces tangible outputs
such as source code or completed design reviews whose effectiveness can be
monitored with product measurements. These measures and others provide managers
with information not only about the product, but also about the processes followed to
develop the product.

Progress indicators may be used by all levels of project management. The first-line
managers prepare their schedule of activities, which includes planned start and
completion dates, and record the actual dates these activities occur. The next level of
managers receive this information, form a composite schedule for their area of control,
and monitor progress against the planned schedule. Schedules and reports are
consolidated so that the project manager obtains an overall view of the project

CMU/SEI-92-TR-25 21

Repeatable Level Progress

progress, but the lower-level data are available, when necessary, to provide detailed
information.

Objective of the Progress Indicators

To provide software managers with information on the progress of the project within
each life-cycle development activity.
Indicators

» The deviation of the actual project progress from that planned

* The trend in the rate of progress

Key Process Area Goals Addressed

Software Project Planning:

* A plan is developed that appropriately and realistically covers the software
activities and commitments.

* The software estimates and plans are documented for use in tracking the
software activities and commitments.
Software Project Tracking and Oversight:
* Actual results and performance of the software project are tracked against
documented and approved plans.
Software Subcontract Management:
» The prime contractor tracks the subcontractor’s actual results and performance
against the commitments.
Life-Cycle Stage: All

Users: All levels of project software management

Users’ Questions

» Are the schedules of activities for the project consistent with each other and
with the software requirements and the software development plan?

* Is the software subcontractor’'s planned schedule consistent with the software
requirements and the software development plan?

» Are the actual results and performance of the software project tracked against
the software development plan?

» Are the actual results and performance of the software subcontractor tracked
against the software development plan?

» Does the actual performance of the project indicate schedule slippage and the
necessity of a replanning effort?

» Does the actual performance of the subcontractor indicate schedule slippage
and the necessity of a replanning effort?

22 CMU/SEI-92-TR-25

Progress Repeatable Level

Input
* Project software development plan

» The planned and actual start and completion dates for the software
development activities

* A count of tasks or task outputs planned and actually produced in the current
reporting period. Task outputs include:

- Requirements analyzed

- Software requirements documented

- Test cases written

- Design elements (e.g., design diagrams) completed
- Units designed, coded, unit tested, and integrated

- Documents completed

- Test cases executed

* Planned software size and the size actually completed and recorded during
each reporting period

Note that the planned start and completion dates are the estimated dates.

This is a recommended set of items to monitor from the Repeatable Level in the
Capability Maturity Model for Software (CMM). Additional items can be monitored as
long as they are planned or estimated and are measurable.

Interpretation

During project planning, software managers prepare Gantt charts from the list of major
activities in the project software development plan. Lower-level managers determine
the activities they are required to perform to satisfy the major project activities. They
then prepare Gantt charts that show the start and completion dates of their activities.

When preparing a Gantt chart, the project manager has the responsibility of ensuring
that the various software development activities carried out by the subcontractor and
project personnel are consistent with each other, the software requirements, and the
software development plan.

Figure 4.2-1 shows a typical Gantt chart. For each activity, the original baseline activity
duration is plotted along a timeline. The planned and actual start and completion dates
are marked on the bar with triangles. The start date is marked at the left end of the
timeline and the end date at the right. The bar is also marked with the current baseline
dates, if different from the original baseline. The actual start and completion dates are
marked along the bar. Also, the amount of schedule slippage is recorded next to the
bar. The schedule slippage indicates the amount of progress deviation. Gantt charts
can also show the total number of activities completed and the number of activities
delayed.

CMU/SEI-92-TR-25 23

Repeatable Level Progress

[Planned
B Acal

Activity 1 EE ‘ 1 A st
Y/ Finish
Activity 2 h
AN
Activity 3 | —:\ 3

Figure 4.2-1. A Typical Gantt Chart

Figure 4.2-1 shows that activities 1 and 2 are completed and that work is still in
progress for activity 3. Activity 1 started one week late and finished one week late.
This indicates that project personnel maintained their planned productivity for this
activity once it began. Activity 2 began one week early but finished as scheduled. The
completion triangle is superimposed on the planned triangle. Activity 3 began three
weeks late. The manager believes that this activity is progressing with its planned
productivity since the projected schedule slippage at this time is only the three-week
delay in the start date. The manager uses the planned versus actual charts for that
activity to monitor the productivity of the staff.

Figure 4.2-1 has a Now timeline (i.e., a vertical slice through the chart) that indicates
the date when the last measurement was made. An alternate approach is to use a
schedule line of balance. This timeline marks where the project is on each activity line
on the date of the report. It emphasizes which activities are ahead or behind schedule.

Information from a Gantt chart can be used to produce another chart, as shown in
Figure 4.2-2, where the planned dates for two consecutive events are compared.

24 CMU/SEI-92-TR-25

Progress Repeatable Level

12 __
10 L CDR
8+ e—e—we
Planned
Month
PDR
4 -
2 =
| | | | | | | | | |
1 2 3 4 5 6 7 8 9 10

Actual Month

Figure 4.2-2. Comparison of Time Between Two Consecutive Events

In Figure 4.2-2, the planned dates of the preliminary design review (PDR) and the
critical design review (CDR) are plotted against time. At month 1, the PDR was
planned for month 4 and CDR for month 8. At month 3, however, the PDR has slipped
to month 5 while the CDR is still scheduled for month 8. As the PDR continues to slip,
the manager should be questioning why the CDR is not slipping. Finally at month 5, the
schedule for the CDR begins to change. Based on the earlier schedule slippage of the
PDR, the CDR could have been rescheduled earlier and more realistically to month 10.

Other progress indicators include the deviations and trends derived from graphs
depicting the cumulative number of planned and actual completions for an item. For
each item, the planned completions (based on current baseline) and the actual
completions to date are plotted against time. (The project defines its completion
criteria. For example, the project may decide to consider a unit design complete when
the design has passed its peer review.) Figure 4.2-3 shows a typical actual-versus-
planned plot. The Now timeline shows the date of the last measurement.

CMU/SEI-92-TR-25 25

Repeatable Level Progress

60
- - - Actual
—— Planned /
50

Test
Cases
Executed

30

20

Now
10

Week

Figure 4.2-3. Actual Completions Compared with Planned Completions

In Figure 4.2-3, the cumulative actual-versus-planned completion of test cases
executed are compared. The manager should expect some deviation from a constant
rate to test completion. This occurs frequently when a critical number of problems has
been identified by testing and must be resolved by the development group before
further significant testing can continue. The actual number of tests executed and/or
passed might drop below the planned number, but it should quickly reach and pass the
planned number after the corrections have been made. Therefore, the actual numbers
may oscillate around the planned number. The extent of the deviation between the
planned and actual completions and the trend in the deviation indicate the readiness of
the computer software configuration item and/or the system for testing, or they may
indicate how much additional time is required to complete testing.

Separate graphs are prepared for the items listed in the input section depending on the
life-cycle stage of the project. Size is given as one of the input items. It can also be
used as a stability indicator and is discussed as such.

Because of replanning, the content, ordering, or timing of tasks and milestones may
differ from the original baseline. Therefore, the number of task completions, the size,
or other progress measures may be affected. Figure 4.2-4 shows how the original
baseline was changed to the current planned baseline to accommodate the actual,
rather than planned, productivity.

26 CMU/SEI-92-TR-25

Progress Repeatable Level

60i— — — — + — — — —— == == — = —

Total Units to be Coded -
L
5 - e
Original Baseline . d /
40 . Current
. Planned
Units Baseline
Coded
30
20
Now
10 | -
S -
.//
Z7 | | | | | | | | |
1 2 3 4 5 6 7 8 9 10

Figure 4.2-4. Change in Original Baseline

In Figure 4.2-4, the manager replanned the completion of the number of units coded at
week 3. Since the total number of units to be coded has not changed, the manager
has accepted the fact that more time is required to complete this activity. The manager
calculates a slippage of approximately four weeks. This number is derived by
determining where the current planned line intersects the total number of items to be
completed and noting the difference between this time and the original completion time.

The original baseline may change due to a change in the number of items to be
completed. Figure 4.2-5 shows how the planned baseline changed as the total number
of software requirements grew.

CMU/SEI-92-TR-25 27

Repeatable Level Progress

120 |

100 Total Software Requirements

80
Requirements
Analyzed
60
40
20

Figure 4.2-5. Actual and Planned Completions with Different Baselines

In Figure 4.2-5, all requirements are scheduled to be analyzed by week 10. At week 3,
ten requirements were added. The planned line shows an increase in slope to account
for the additional requirements. During week 5, twenty more requirements were added.
Again, the slope of the planned line increases since all requirements are scheduled to
be analyzed by the end of week 10. If the productivity of the analysts does not change
(there is no reason why it should at this time), then Figure 4.2-5 implies that more staff
have been added to complete the requirements analysis.

The baseline in Figure 4.2-5 is changed to provide a more accurate report on the
progress during the current reporting period. If the original baseline had not changed to
reflect the growth in software requirements, the deviation of the actual and planned
completion could become unrealistically large.

The manager needs to determine the cause of any deviation in actual-versus-planned
progress. For example, in Figure 4.2-5, is the fact that fewer requirements have been
analyzed than planned the result of the experience level of the staff or the result of
poor planning? Are the personnel less productive than anticipated?

28 CMU/SEI-92-TR-25

10

Progress Repeatable Level

Sources

[AFSC 86] discusses planned and actual completions graphs at the computer software
configuration item (CSCI) level.

[Decker 91] lists requirements diagrams; function specifications; design diagrams; test
cases; units designed, coded, and tested; modules tested; and computer software
components tested as items tracked on planned and actual completions graphs.

[Grady 87] states that calendar measures are part of the Hewlett-Packard metrics
program.

[Landis 90] discusses planned and actual completions graphs for units coded, read,
and tested.

[Rozum 92] has a discussion on Gantt charts in their milestone performance metric and
a discussion of planned and actuals in their development progress metric.

[Schultz 88] discusses software requirements documented in his design progress
metric and the number of computer software units (CSU) designed, coded, tested, and
integrated in his CSU development progress metric. He also discusses the planned
and actual completions of CSCls integrated in his test progress metric.

[STEP 91] discusses a schedule metric upon which Figure 4.2-2 is based and a
development progress metric.

CMU/SEI-92-TR-25 29

Repeatable Level Progress

30 CMU/SEI-92-TR-25

4.3. Effort

Determining the number of staff needed at any one time is an important function
performed by the project software manager. This planning begins once the manager
has determined which work items need to be performed in developing the software
products. A work breakdown structure is useful in defining and placing the individual
work items into manageable work packages. One or more work packages form a cost
account. Staff with the appropriate skills are assigned to perform the work contained in
the work packages, according to the project schedule. By summing the number of staff
during each reporting period, the project software manager establishes the staffing
profile for the project.

The effort indicators allow the project software manager to track the actual and planned
expenditure of personnel resources. In addition, the manager uses them to ensure that
the appropriate skills are being applied to each work package and to indicate when
different skill categories are needed during the project. If the project is following its
staffing profile, the manager may assume that the risk to the project from staffing
issues is low. If a manager is unable to obtain staff with the appropriate skills, the
manager can use the staffing profile to determine when these skills are necessary and
plan accordingly for the appropriate training. In addition, the manager can use the
profiles to determine the amount of office space required to house the staff. This is
particularly important when a facility is running near capacity. The manager who knows
when an increase in the number of staff is to occur can take the necessary steps to
ensure that facilities are available when the additional staff arrives.

Effort indicators may be used by all levels of project management to compare the
actual profile against the plan. During project planning, the first-line managers
prepared their planned staffing profiles. During the implementation of the plan, they
compare the actual with the planned profiles. Each level of management receives this
information from the lower-level managers, forms a composite profile for the area of
control, and monitors the actual profile against that planned. Reports are consolidated
so that the project manager obtains an overall view of the project profile, but the lower-
level data are available, when necessary, to provide detailed information.

Objective of Effort Indicators

To provide software managers visibility into the contribution that staffing has on project
costs, schedule adherence, and product quality and the amount of effort required for
each process.
Indicators

» Trends in the actual staffing levels

« Staffing profile by labor category

» Profile of unplanned staff losses

CMU/SEI-92-TR-25 31

Repeatable Level Effort

Key Process Area Goals Addressed

Software Project Planning:

* A plan is developed that appropriately and realistically covers the software
activities and commitments.

* The software estimates and plans are documented for use in tracking the
software activities and commitments.

Software Project Tracking and Oversight:

* Actual results and performance of the software project are tracked against
documented and approved plans.

» Corrective actions are taken when the actual results and performance of the
software project deviate significantly from the plans.

Software Subcontract Management:
» The prime contractor tracks the subcontractor’s actual results and performance
against the commitments.
Life-Cycle Stage: All

Users: All levels of project software management

Users’ Questions

» Has the software planning process resulted in a staffing profile that is consistent
with the planned schedule and budget?

* Is the software subcontractor's planned effort consistent with its planned
schedule and budget?

* Is enough effort being planned and applied to the project to achieve the desired
schedule?

* Does the actual expenditure of effort indicate that a replanning effort is
necessary?

* Is the rate at which effort is being expended going to overrun/underrun the
planned effort?

* Will the types of effort being applied to the contract have an impact on the
quality of the final product?

Input
» Planned total staff-hours by time period
» Actual total staff-hours expended during time period
» Total number of staff
» Planned staff-hours by time period for each cost account element

* Actual staff-hours expended during the time period for each cost account
element

» Planned staff-hours by life-cycle stage

32 CMU/SEI-92-TR-25

Effort Repeatable Level

» Actual staff-hours expended during life-cycle stage
» Planned staff-hours by time period by labor category

Actual staff-hours expended during time period by labor category
* Number of staff by labor category
* Number of unplanned staff losses during time period

Interpretation

Figure 4.3-1 compares the actual total number of staff with the planned number for
each month. The time period used for the reporting period is determined by the project.
One contributing factor to the reporting frequency is the ease of obtaining the actual
staff-hours expended from the project control office.

150 —
125
100 Planned
Staff
Size
Design Implementation Test
| | | | | | |
3 6 9 12 15 18 21 24 27 30

Months

Figure 4.3-1. Total Planned and Actual Staffing Profile

The planned profile in Figure 4.3-1 is typical for software development projects. The
figure shows the following:

* An increase of staff occurs until implementation. This increase must be
reasonable since time is required for the hiring process.

» Peak staffing occurs during implementation since coding is labor intensive.

CMU/SEI-92-TR-25 33

Repeatable Level Effort

+ Staffing remains relatively stable during implementation.

« Staffing declines rapidly during testing since a full complement of implementors
is not required to correct problems detected during testing. When it is
necessary to retain a large number of implementors due to a large number of
trouble reports written during testing, the manager should question the quality of
the product.

In general, if the staffing profile is too pointed, communication/coordination problems
may occur [Brooks 82]; if the profile is too flat, the schedule could be shortened.

Figure 4.3-1 shows the number of staff for the entire project. Each lower-level manager
prepares similar graphs for the cost accounts under their control. The numbers are
consolidated for each level of management until the final graph shows the staffing
profile for the entire project. As part of the planning process, the lower-level managers
and the project software manager check their staffing profiles with the progress and
cost indicators to ensure that the three indicators form a consistent plan before work
begins.

Managers should expect deviation of the actual number of staff from the planned
number during the reporting period. However, large deviations or an extended
overstaffing or understaffing period requires analysis. An understaffing situation,
extending over several contiguous reporting periods, may be the result of the following:

* An overestimate of the software size

* Insufficient progress

* An increasing number of open trouble reports

» Lack of understanding of requirements

* A very productive team

* A poor quality product
The manager uses other indicators, especially progress, cost, and quality, to determine
the correct explanation. If the true reason is that productivity is not being maintained,
then the understaffing is an early indication of schedule slippage. The manager still
has time to take corrective action before the schedule slippage becomes severe.

Brooks has pointed out that adding staff to a late project seldom improves the schedule
and often causes additional delay [Brooks 82].

An overstaffing situation, extending over several contiguous reporting periods, may be
the result of the following:

* A more complex problem than expected

» Unstable requirements, which cause extensive rework

Staff with the inappropriate skill for the work being performed

Insufficient progress
* Increasing number of trouble reports
* An underestimate of the software size

34 CMU/SEI-92-TR-25

Effort Repeatable Level

As in the case of the understaffing situation, the manager can use other indicators to
determine the reason for the overstaffing.

Once the planned staffing profile has been developed, the project software manager
can determine from the organization’s historical data whether the allocation of staff over
the life-cycle stages is appropriate for that type of software project. Life-cycle stages
are shown in Figure 4.3-1. The manager can derive the percentage of staff-hours
planned for each life-cycle stage and compare them to historical data for similar
projects. If there are significant deviations, the manager needs to decide whether the
allocation is incorrect or whether the project has some unique characteristics that make
it different. One example of how the staffing profiles can be used is reported by Landis
et al [Landis 90]. For their type of projects at the Goddard Space Flight Center, they
find that the initial staffing level should be at least twenty-five percent of the average
staffing level.

Figure 4.3-1 may be used in conjunction with progress indicators to give the manager
an indication of the status of the project. For example, consider the four cases:

1. Actual staff-hours expended is greater than planned, and actual progress is
greater than planned. Even though more effort is being spent, if the trend
continues, the project will be completed ahead of schedule and within the
planned amount of effort.

2. Actual staff-hours expended is less than planned, but the actual progress is
greater than planned. Here less effort is required to complete the work. If the
trend continues, the project will be completed ahead of schedule and with less
effort than planned.

3. Actual staff-hours expended is greater than planned, and the actual progress is
less than planned. In this case, more effort is required to complete less work.
If the trend continues, the project will be completed later than planned and
exceed the planned amount of effort.

4. Actual staff-hours expended is less than planned, and the actual progress is
less than planned. This is a typical understaffing situation. If the trend
continues, the project will finish later than scheduled.

Figure 4.3-1 shows the staffing profile for the entire project. A plot of the staffing profile
by labor category or experience level, as in Figure 4.3-2, is also useful.

CMU/SEI-92-TR-25 35

Repeatable Level Effort

01 P Planned Labor Category 1]
A Actual P P Labor Category 2]
- A
35 Labor Category 3]
- A
30 P A
P
A P A
staff 2° [~
Size
20
15 |~
10 |~
5 —
1 2 3 4 5

Months

Figure 4.3-2. Staffing Profile by Labor Category

The manager of the project in Figure 4.3-2 can use the information in the figure to
determine when it is necessary to add staff for a specific labor category. The manager
needs to have not only the right number of people, but also the right people for the
project. The figure also indicates when to release the appropriate personnel from the
project or when project personnel would be free to go to other projects within the
company. Typically, the more experienced people are needed early in the project
during requirements and design. The greatest number of staff is needed during
implementation. Testing usually requires fewer people.

Figure 4.3-3 shows the total number of staff, the number of staff added, and the
number of staff lost for one labor category. Such a figure can be drawn for each labor
category. The figure can also be drawn for staff experience (average years
experience/person) in place of the labor category.

36 CMU/SEI-92-TR-25

Effort Repeatable Level

30 Total
Added -~ -~~~ "~~~
25 | lost — — — —
staff 20 [
Size
15
10 [~ _
- - /A\ \
— ~ - s~ - ~ -
5 -~ T ~__- NI
- _ P \
| | L~ C | | | | | |
1 2 3 4 5 6 7 8 9 10
Months

Figure 4.3-3. Typical Staffing Profile Including Staff Addition and Losses

The losses of most concern are those that are unplanned. For example, if the losses
are attributable to a planned down staffing, there is no cause for concern. If, on the
other hand, there is a number of requirements analysts who suddenly leave the project
at the beginning of or during requirements analysis, the manager has cause for
concern since their departures were not planned. Furthermore, the manager wants to
know whether the personnel who left unexpectedly are being replaced by other
personnel with similar skills. When drawn for the desired skill mix, Figure 4.3-3 can
help answer that question.

Turnover rate can be monitored with this figure. Turnover is defined as the number of
unplanned staff losses during the reporting period. Since these losses are unplanned,
the personnel need to be replaced. There will always be some turnover on the project,
but if the turnover rate becomes high (typically more than ten to fifteen percent), then
the manager needs to determine the reason for the turnover. For example, the morale
may be low on the project. A project wants to maintain a low turnover rate to retain
continuity within the project, especially between requirements and design activities and
design and implementation activities.

The figures used in the preceding discussion illustrate the use for the project as a
whole. They may also be drawn for each computer software configuration item (CSCI),
or if the software is developed in builds, they can be drawn for each build. The project

CMU/SEI-92-TR-25 37

Repeatable Level Effort

is responsible for deciding the granularity of the figures, both with respect to the
reporting period and the content.

Sources

[AFSC 86] discusses planned and actual staffing total profiles and staffing losses in its
software development personnel indicator.

[Decker 91], [Landis 90], and [Pfleeger 89] discuss the use of planned and actual
staffing profiles.

[Grady 87] reports that staff issues are part of the Hewlett-Packard software metrics
program.

[IEEE 1045] discusses the experience level, size, and turnover rates of the project staff.

[Rozum 92] discusses planned and actual staffing total profiles, experience profiles,
and also planned and actual staffing losses in their effort and staffing metrics.

[Schultz 88] discusses planned and actual staffing total profiles, experience profiles,
and also planned and actual staffing losses in his software personnel metric.

38 CMU/SEI-92-TR-25

4.4. Cost

Estimating cost is an important activity for the success of a project. Managers must
define the work in their area, determine the skill level required to perform the work, and
use productivity estimates and schedule constraints to determine budgeted costs over
time. Most organizations working on federal government contracts use a work
breakdown structure (WBS) to define work packages and often use the WBS to plan
and track costs. For tracking, the managers track actual costs against the budget for
their respective areas of responsibility. For reporting, costs are consolidated, that is,
lower-level software managers report their costs to their manager who reviews and
analyzes each of the reports and then prepares a report for the next level of manager.
The project software manager receives a consolidated report for all software on the
project. For example, the project software manager may receive a report for each
computer software configuration item (CSCI) and the CSCIs combined. Since the
lower-level reports are available, the project software manager can elect to review
those with known or potential problem areas or those with high risk areas.

Objective of the Cost Indicators
To track actual costs against the project plan and to predict future project costs.

Indicators
» Trend in the actual cost of work performed (ACWP)
» Trend in the budgeted cost for work performed (BCWP)

» Trend in the cost variance. Cost variance (CV) is the difference between the
budgeted cost for work performed and the actual cost of the work performed
(CV=BCWP-ACWP).

* Trend in the schedule variance. Schedule variance (SV) is the difference
between the budgeted cost for the work performed and the budgeted cost for
the work scheduled (SV=BCWP-BCWS).

» Estimated cost at completion. The sum of the actual costs to date and the
estimated costs of the work remaining.

Key Process Area Goals Addressed

Software Project Planning:

* A plan is developed that appropriately and realistically covers the software
activities and commitments.

* The software estimates and plans are documented for use in tracking the
software activities and commitments.
Software Project Tracking and Oversight:

* Actual results and performance of the software project are tracked against
documented and approved plans.

CMU/SEI-92-TR-25 39

Repeatable Level Cost

Software Subcontract Management:

» The prime contractor tracks the subcontractor’s actual results and performance
against the commitments.

Life-cycle Stages: All
Users

All levels of management. The managers cited here are not restricted to software
development managers, but include managers of support groups, for example,
software quality assurance, software configuration management, training, etc.

Users’ Questions

» Are the actual results and performance of the software project following the
plan?

* Is the software subcontractor's planned budget consistent with the effort and
schedule required to develop that portion of the software and with the project
software development plan?

* Is the planned budget revised according to established procedures when the
actual results and performance data indicate a replanning is necessary?

» Has the software planning process resulted in a software development plan in
which the planned budget is consistent with the effort and schedule required to
develop the software and the software requirements?

Input
» Budgeted cost for work scheduled (BCWS): the sum of the planned costs for

each work package that has work scheduled to be accomplished during the
reporting period.

» Budgeted cost for work performed (BCWP): the sum of the planned costs for
each work package that has work accomplished during the reporting period.
Work may be accomplished on work packages that have not been scheduled.

» Actual cost of work performed (ACWP): the sum of the costs incurred for each
work package that has work accomplished during the reporting period.

» Budgeted cost at completion: the total budgeted cost of the work scheduled on
the project.

These items are often tied to an “earned value” system in which the activity must pass
some criterion before the work package is said to be completed.

Interpretation

The main feature of the cost indicator at the Repeatable Level is that it provides a
comparison of the actual costs and the budgeted costs over time. The cost variance,
schedule variance, and estimated cost at completion are obtained from a simple plot of
the actual-versus-planned costs. Deriving a budget that is consistent with effort,

40 CMU/SEI-92-TR-25

Cost Repeatable Level

schedule, and the project requirements is the crux of project planning. Simply stated,
project planning involves the following steps:

» Determine the work to be performed

» Compute the effort required to perform the work

» Develop the schedule for performing the work

» Adjust the above estimates for project constraints
» Convert effort to cost

» Assess feasibility of cost and schedule

One approach for determining the work that must be performed is to use a WBS. The
underlying philosophy of a WBS is to take a large task, for example, the development
of a software system, and break it down into smaller pieces that are more manageable.
These pieces can be used to estimate and track costs.

Once the work has been decomposed into manageable work packages, the manager
determines the skills required to perform the work and the number of staff of each skill
level required, and then schedules when the work will begin and end for each work
package. The manager makes adjustments to the effort and schedule based on
project constraints, schedule requirements, and the current software size estimate.

The manager next determines the cost associated with the work. Using the appropriate
labor rates, the manager determines the personnel cost associated with each work
package and adds any non-personnel costs to determine the cost associated with the
work accomplished on the work package per reporting period. In the examples in this
section, the reporting period is monthly. The project software manager then determines
whether the total software costs are within the overall budget allocated and assesses
the feasibility of the cost, effort, and schedule estimates. The manager iterates through
this process until the final cost, effort, and schedule form a consistent package that is
achievable.

Even though the project software manager has the ultimate responsibility for the
planning, tracking, and controlling of the software project, every manager—from the
first-line software managers through the mid-level software managers to the project
software manager—must plan (i.e., budget), track, and control costs within their own
area(s) of responsibility. The subcontractor’'s management also prepares plans for the
work assigned to its organization and submits them to the project software manager.

Once planning is completed, each manager can start drawing Figure 4.4-1. The
software manager begins by drawing in the budgeted cost at completion. This
represents the total cost of the software effort in the current plan. Next the cumulative
BCWS is added. This represents the baseline against which project performance is
compared each reporting period. This line extends from the beginning to the end of the
software project. When the software project ends, the BCWS equals the budgeted
cost at completion.

CMU/SEI-92-TR-25 41

Repeatable Level Cost

300 —
250 |-
Cost Variance
Budgeted Cost at Completion
200
Cost
($1K) Actual Cost of
150 |- Work Performed
Budgeted Cost of Schedule Variance
100 |- Work Scheduled _
50 - -
_ Budgeted Cost of [now
-7 Work Performed
| | | | | |
3 6 9 12 15 18 21 24 27

Months

Figure 4.4-1. Cost/Schedule Status Report

For a reporting period, each software manager determines what work was performed
and the cost of performing that work. (This information may be gathered through the
cost accounting system.) The work actually performed may not be the work that has
been scheduled, nor may the personnel who were originally scheduled to perform the
work be the personnel who actually performed the work; thus, the need for BCWP and
ACWP. During each reporting period, the cumulative BCWP and ACWP are added to
the figure.

Each software manager and the project software manager can now compare the
actuals (in this case, ACWP and BCWP) with the plan (BCWS). By comparing the
BCWP with the BCWS, the manager determines how the project is performing with
respect to the work scheduled. The schedule variance indicates whether the costs
associated with the work are incurred at the rate scheduled. Note that the schedule
variance describes the costs associated with work performed and work scheduled and
is associated with the schedule only through the completion of the activities. This
indicator is to be used with the progress indicator to determine true schedule status. In
Figure 4.4-1, the project is under performing, that is, less work is being performed than
scheduled.

By comparing the ACWP with the BCWP, software managers determine how their part
of the project is performing with respect to cost. The cost variance, the difference
between the BCWP and the ACWP, indicates how fast the project is spending its
budget. In Figure 4.4-1, the project is spending more money than budgeted (CV is
negative).

42 CMU/SEI-92-TR-25

Cost Repeatable Level

The project software manager of the project in Figure 4.4-1 is spending more money
than planned, but is achieving less work than planned. The manager needs to
determine why the work is not completed on time and why it is costing more to perform
the work. Perhaps a more difficult work package is actually being worked on, or more
experienced (and higher priced) personnel are being used. To determine additional
information on the causes of the problems this project is experiencing, the project
software manager needs to look at other indicators, for example, the effort and
progress indicators. The project software manager can use a consolidated report to
present project status.

Figure 4.4-1 can also be used to predict when the project will be completed based on
the trend in the BCWP, and to obtain an estimate at completion based on the trend in
the ACWP as shown in Figure 4.4-2.

300 —

250 Estimated Cost at Completion
Projected Cost
Overrun

200

Cost .
Budgeted Cost at Completion
($1K) 9 p /
150
/ Projected
. Schedule

Slippage

100

50
Now

2 4 6 8 10 12 14 16 18 20
Months

Figure 4.4-2. Cost/Schedule Status Report Showing Project Cost Overrun and
Schedule Slippage

In Figure 4.4-2, the ACWP can be extrapolated (and is parallel to the BCWS since the
work performed is the same as the work scheduled) to intersect the line obtained by
dropping the perpendicular line to the point where the extrapolated BCWP intersects
the budgeted cost at completion line to derive an estimated cost at completion. In the
figure, if the project was to spend the money at the rate projected by the BCWS for the

CMU/SEI-92-TR-25 43

22

Repeatable Level Cost

remainder of the project, a $50K cost overrun is predicted. Furthermore, a straight line
projection of the BCWP indicates that the task will be six months late.

Figure 4.4-3 is a second example of a cost/schedule status report. In this figure, the
cost performance to date is favorable, since the ACWP tracks below the BCWP (the
cost variance is positive). However, the rate of expenditures increased, as evidenced
in the increased slope of ACWP during the past two months (months 5 and 6). The
BCWP line stayed relatively flat. These two lines indicate that the project is spending
money but not accomplishing the work that has been scheduled. Accordingly, the
favorable cost variance that has been accrued in previous months is eroding. There is
also an unfavorable schedule situation. The BCWP continues to track below the
BCWS line (the schedule variance is negative), indicating that this project is behind
schedule. However, since BCWP and BCWS are converging slowly, the amount of
slippage is decreasing.

44 CMU/SEI-92-TR-25

Cost Repeatable Level

300 T Budgeted Cost at Completion
250 |~
200 I~
Cost o~
$1K - _ -]
($1K) 150 // e
Lt BCWP — — —
___/,.4 ---- -7 ACWP " """ -"
100 | e
’,—' —
3 ~
e /
50 b .7 / Now
:I’ /
' ST
' | | | | | | | | |
1 2 3 4 5 6 7 8 9 10
Months

Figure 4.4-3. Cost/Schedule Status Report

In general, the manager looks for the following when analyzing the cost/schedule
reports:

» Large or frequent cost variances

CMU/SEI-92-TR-25 45

Repeatable Level Cost

* Increasing cost/schedule variances

» Large schedule variances

» Failure to evaluate estimated cost at completion

» Consistently optimistic projections

* Frequent and extensive changes to the plans

» Plans that do not reflect actual conditions and are not being revised

Sources
[AFSC 86] has a discussion of these indicators.

[DoD 80] has a thorough discussion on the basics of the cost/schedule control reporting
and provided the definitions for ACWP, BCWP, and BCWS.

[DSDM 89] served as the major source of information in this section.

46 CMU/SEI-92-TR-25

Cost

Repeatable Level

CMU/SEI-92-TR-25

47

4.5. Quality

At the Repeatable Level quality indicators are divided among the results of software
guality assurance audits, the results of life-cycle reviews with the customer, and the
trouble reports written after the implementation team has released the software for
testing. Even though there are numerous similarities among these three indicator
categories, and even though these indicators are discussed together by Florac et al
[Florac 92], they are discussed separately in this document to emphasize that the
information is gathered from three distinct activities and that each is used to obtain a
indication of the quality of the product and process.

4.5.1. Software Quality Assurance Audit Results

One of the goals of software quality assurance is to improve software quality by
monitoring both the software and the development process that produces it. An
effective way to accomplish this goal is through a quality audit. A quality audit checks a
product or process for compliance with project standards, procedures, and progress
reporting policy. When performed by an independent software quality assurance
organization, the project software manager is receiving an objective evaluation of the
product or process.

Objective of the Software Quality Assurance Audit Results Indicators

To provide project software management with an independent evaluation of the quality
of the product and/or adherence of the project staff to project requirements, standards,
and procedures.

Indicators

» Trends in the number, type, and severity of noncompliance issues found during
an audit

» Trends in the rate at which the noncompliance issues are being addressed
» Trends in the rate at which the noncompliance issues are being closed

Key Process Area Goals Addressed

Software Quality Assurance:

* Compliance of the software product and software process with applicable
standards, procedures, and product requirements is independently confirmed.

* When there are compliance problems, management is aware of them.
Life-Cycle Stages: All
Users

Mid-level and higher-level software management

CMU/SEI-92-TR-25 49

Repeatable Level Software Quality Assurance Audit Results

Users’ Questions

Are audits conducted by an independent software quality assurance group for
each step of the software development process?

Are standards and procedures applied on the software project?
Are project personnel applying the standards and procedures correctly?
Are project personnel following the standard processes (where defined)?

Are independent audits conducted for the software subcontractor to ensure
compliance with the software development plan?

Are the noncompliance issues being addressed in an appropriate manner?
Are the noncompliance issues being addressed in a timely manner?

Input

Number of noncompliance issues:
- Total
- Open
- Closed
For each noncompliance issue:
- Date opened

- Type (e.g., a noncompliance issue of the product to a standard or a
noncompliance issue to a process)

- Severity (degree of noncompliance issue, e.g., product cannot be delivered
as is; product must be corrected by next release; recommend process
change)

- Date closed

Interpretation

The project software manager is interested in the number of noncompliance issues
open at any one time and the speed with which the noncompliance issues are
addressed.

Figure 4.5.1-1 is a plot of the number of noncompliance issues open against time. The
figure shows that noncompliance issues are identified in relation to a discrete event, the
audit, and it also indicates progress in addressing the noncompliance issues.

50

CMU/SEI-92-TR-25

Software Quality Assurance Audit Results Repeatable Level

60 1

Open S0 1™
Noncompliance

Issues
40 I~

20 |~

Audit 1 Audit 2 Audit 3
| | | | | | | | |

1 2 3 4 5 6 7 8 9

Figure 4.5.1-1. Total Number of Noncompliance Issues Open Over Time

In Figure 4.5.1-1, three audits occurred: one at month 1, one at month 4, and one at
month 7. The noncompliance issues are being addressed fairly rapidly by project
personnel after each audit, but not all noncompliance issues are closed before the next
audit. The number of noncompliance issues reported at each audit also decreases.
The audits upon which the figure is based do not have to be of the same product or
process. If data were obtained from different products produced by the same
personnel using the same standard, and if they were normalized to account for different
product sizes, then the manager could conclude that the personnel are becoming more
proficient in the application of the relevant standards. Ideally, the manager can expect
fewer noncompliance issues with time since the personnel are more familiar with the
standards and procedures.

One reason that the noncompliance issues in Figure 4.5.1-1 may be addressed fairly
rapidly is that they can involve minor issues, for example, a minor deviation from a
coding or documentation standard. This can be clarified by plotting the severity of the
noncompliance issue. If the number of noncompliance issues is small in each of the
more severe categories, they can be combined to make a more meaningful graph.

The manager is unable to determine from Figure 4.5.1-1 how many of the open
noncompliance issues in month 6 are from the first audit and the second. That
information is contained in Figure 4.5.1-2, which shows the status of noncompliance
issues related to each individual audit. This figure shows the total number of

CMU/SEI-92-TR-25 51

Repeatable Level Software Quality Assurance Audit Results

noncompliance issues for each audit as well as the information displayed in Figure
4.5.1-1: the number of noncompliance issues open at any time and the rate at which
they are closed.

60 Open Closed

50

40
Noncompliance

Issues

30

20

10

Months

Figure 4.5.1-2. Number of Noncompliance Issues by Individual Audit

An alternative to Figure 4.5.1-2 is to plot the data from each audit on Figure 4.5.1-1 on
separate graphs.

Software quality assurance personnel prepare reports summarizing the results of the
audit. The report is distributed to the project software manager and other appropriate
managers. Managers receive a report only if it applies to their area of responsibility.
When severe quality problems exist and/or the noncompliance issues are not being
addressed adequately, the software quality manager reports the noncompliance issues
and their status to senior management.

Sources

[Pfleeger 89] and [Florac 92] discuss the tracking of problems found in a variety of life-
cycle stages. The software quality assurance audit results indicators are an extension
of that discussion.

52 CMU/SEI-92-TR-25

45.2. Review Results

Of the many reviews held on a project, those held with the client are among the most
important. These formal reviews ensure coordination of the technical and business
aspects of the project, make all participating groups aware of the project status, and
either resolve or escalate key issues [Humphrey 89]. These reviews are major events
in the life of the project and are not peer reviews or the periodic status reviews held
with the customer to review cost and schedule issues. In the Department of Defense
2167A model, these reviews are the end-of-phase reviews wherein the customer gives
the approval to proceed to the next life-cycle phase. Also, these reviews can be used
to establish a baseline from which all further work proceeds.

At these reviews, action items are levied which are used in this indicator category. In
this document an action item is defined as any review discrepancy, clarification, or
issue that must be resolved by the project or the customer. Issues raised during peer
reviews are NOT included in the review results indicator. Peer review moderators must
track the action items originating in the peer reviews, but the shortened time scales
within the peer review process render the formalism discussed in this section
impractical.

Objective of the Review Results Indicators

To provide software project management, senior management, and the customer with
the status of action items originating during a life-cycle review.
Indicators

» Trends in the number, type, and priority of action items recorded during a review

» Trends in the rate at which the action items are being addressed

Key Process Area Goals Addressed

Software Project Tracking and Oversight:

* Actual results and performance of the software project are tracked against
documented and approved plans.

» Corrective actions are taken when the actual results and performance of the
software project deviate significantly from the plans.

» Changes to software commitments are understood and agreed to by all affected
groups and individuals.

Software Quality Assurance:

* Compliance of the software product and software process with applicable
standards, procedures, and product requirements is independently confirmed.

* When there are compliance problems, management is aware of them.

CMU/SEI-92-TR-25 53

Repeatable Level Review Results

Software Configuration Management:
» Controlled and stable baselines are established for planning, managing, and
building the system.
Life-cycle stages: All

Users
* Project software manager
» Software engineering process group
» Customer
* Senior management
» Software quality assurance
» Software engineering

Users’ Questions
* Is the review process being followed?
» Are the action items being handled in a timely manner?

* How are the number and types of open action items going to impact the cost,
schedule, and resources?

Input
* Number of action items:
- Total
- Open
- Closed

* For each action item:
- Date opened

- Type (e.g., documentation change, additional analysis required, resolution
of a to-be-determined item, process)

- Priority (e.g., relative ranking of importance of the action item)
- Date closed

Interpretation

The project software manager is interested in the number of action items open at any
time and the speed with which the action items are addressed.

Figure 4.5.2-1 is a plot of the number of action items open against time. The figure
shows that action items are issued in relation to a discrete event, the review, and it also
shows progress in addressing the action items.

54 CMU/SEI-92-TR-25

Review Results Repeatable Level

60 —
50 -
Now
40 |-
Action
ltems
30 -
20
10 _ Preliminary Critical
Requirements Design Design
Review Review Review
| | | | | | | | J
1 2 3 4 5 6 7 8 9 10
Months

Figure 4.5.2-1. Total Number of Action Items Open Over Time

In Figure 4.5.2-1, three reviews occurred: a requirements review (RR) at month 1, a
preliminary design review (PDR) at month 4, and a critical design review (CDR) at
month 8. The action items are being addressed fairly rapidly by project personnel after
each review, but not all action items are closed before the next review. Action items
open for more than sixty days should be closely examined for schedule impact,
especially if the action item has been classified as one of higher priority.

The figure also shows that the number of action items reported at each review is
decreasing. The manager might conclude that the personnel are better prepared at
each review, perhaps as the result of a good understanding of the requirements and
the design process. In general, the number of action items reflects on the quality of the
products reviewed and the review itself.

One reason that the action items in Figure 4.5.2-1 may be addressed fairly rapidly is
that they can involve minor issues. This can be clarified if plots are made by the priority
of the action items. If the number of action items is small in each of the higher priority
categories, they can be combined to make a more meaningful graph. Project
personnel should be addressing the higher priority items before the lower-level items.

In Figure 4.5.2-1, the manager cannot tell how many of the open action items in month
6 are from the RR or the PDR. That information is contained in Figure 4.5.2-2 which
shows the status of action items related to each individual review.

CMU/SEI-92-TR-25 55

Repeatable Level Review Results

60 — Open Closed
RR RR RR
50 RR RR
PDR PDR PDR PDR
40
Action
Items
30 -
20 -
10 —
1 2 3 4 5 6 7
Months

Figure 4.5.2-2. Number of Action Items by Individual Review

Figure 4.5.2-2 shows the total number of action items for each review as well as the
information displayed in Figure 4.5.2-1: the number of action items open at any time
and the rate at which they are closed.

An alternative to Figure 4.5.2-2 is to plot the data from each review shown in Figure
4.5.2-1 on separate graphs. The manager may also want to separate process action
items from those involving product as they are addressed by different groups. The
action items can be separated by their type.

Software quality assurance personnel prepare reports summarizing the results of the
review. These reports are distributed to the project software manager, the customer,
and other appropriate managers.

56 CMU/SEI-92-TR-25

Review Results Repeatable Level

Sources

[AFSC 86] discusses tracking action items in its requirements definition and stability
indicators.

[Florac 92] discusses tracking action items in a general discussion of a problem
management system.

[Rozum 92] discusses tracking action items according to a software defects metric.

[Schultz 88] discusses tracking action items in his software volatility metric.

CMU/SEI-92-TR-25 57

Repeatable Level Review Results

58 CMU/SEI-92-TR-25

45.3. Trouble Reports

Trouble reports provide an indication of the quality of the product not only by their
number, but also by the rate at which they are written. The number of trouble reports
also reflects the amount of rework. A trouble report is a document (electronic or hard
copy) used to recognize, record, track, and close anomalies detected in the software
and its accompanying documentation. Trouble reports are often referred to as problem
reports, discrepancy reports, anomaly reports, etc. In this document, trouble reports
are restricted to those written during the integration and test, and the acceptance test
activities, that is, those activities conducted after the implementation team turns the
software and its accompanying documentation over to an independent testing team.

Terminology is important in the discussion of problems and defects. In this document,
the following definitions are used:

* A defect is a product’s inconsistency with its specification. Examples include
such things as omissions and imperfections found in software during the early
life-cycle phases and faults in software that is sufficiently mature for test or
operation.

* An error is a human action that produces an incorrect result [IEEE 610].

* A fault is an incorrect step, process, or data definition in a computer program
[IEEE 610]. Itis synonymous with bug.

* A failure is the inability of a system or component to perform its required
functions within specified performance requirements [IEEE 610].

* A problem is an unsettled question arising from a situation where it appears that
a change to the software, its documentation, or related hardware is necessary
for successful test or operation of the system [IEEE P1044].

Objective of the Trouble Reports Indicators

To provide software managers with insight into the quality of the product, the software
reliability, and the effectiveness of testing.
Indicators
» Trends in the following:
- Number, type, and severity of the trouble reports
- Trouble report density, that is, the number of trouble reports per unit size
- Rate at which trouble reports are being addressed

* Relationship between the number of trouble reports and the number of test
cases passed

CMU/SEI-92-TR-25 59

Repeatable Level Trouble Reports

Key Process Area Goals Addressed

Software Project Tracking and Oversight:
» Corrective actions are taken when the actual results and performance of the
software project deviate significantly from the plans.
Software Configuration Management:

* Controlled and stable baselines are established for planning, managing, and
building the system.

» The integrity of the system’s configuration is controlled over time.
» The status and content of the software baselines are known.

Life-Cycle Stages
Integration and test, and acceptance testing

Users
» Project software manager
» Software quality assurance personnel
» Software testing manager
 First-line and mid-level software development managers

Users’ Questions
» Are any particular test phases exhibiting unusual characteristics?

» Will undetected or unresolved problems in the product lead to more problems in
the next life-cycle stage?

» Does the number of trouble reports indicate that the software product should be
reworked before proceeding to the next life-cycle stage?

* Is the testing activity complete?

» Does the quality of the product indicate that the product is ready for release to
the customer?

» Are project personnel addressing the trouble reports in a timely manner?

Input
* Number of trouble reports:
- Total
- Open
- Closed

» For each trouble report:
- Date opened
- Date closed

60 CMU/SEI-92-TR-25

Trouble Reports Repeatable Level

- Date trouble report evaluated
- Type
- Severity
* Number of test cases:
- Scheduled
- Passed
* Product size

Interpretation

Numerous graphs can be generated. All are basically a plot of the number of trouble
reports against time. Figures that are recommended at the Repeatable Level are:

» Total number of trouble reports against time

* Number of trouble reports open against time

* Number of trouble reports closed against time

* Number of unevaluated trouble reports against time

The above items can be plotted by type or severity or combinations of types or
severities. The manager can also use plots of the number of trouble reports per unit
size against time and the number of trouble reports against the number of test cases
passed. If there are multiple computer software configuration items (CSCI), the data
can be plotted for each CSCI and/or release of the CSCI.

Figure 4.5.3-1 shows the number of total, open, and closed trouble reports against
time. The total number of trouble reports is the sum of the open and closed trouble
reports. It provides an indication of the quality of the product.

CMU/SEI-92-TR-25 61

Repeatable Level Trouble Reports

150 __

125 |-

100
Trouble

Reports
75 -

50

25

Weeks

Figure 4.5.3-1. Number of Total, Open, and Closed Trouble Reports

In the analysis of Figure 4.5.3-1, the manager looks for the following:
» The total number of trouble reports
* The number of open trouble reports
» The rate at which trouble reports are written

During project planning, the manager estimates the number of trouble reports
expected, based on historical data, and ensures that this estimate is consistent with
cost and schedule estimates. |If the actual number exceeds the estimate, other
estimates, such as cost and schedule, may become invalid. The number of trouble
reports reflects the amount of rework that must be completed before the product can be
delivered to the customer. If the amount of rework was not accurately estimated, cost
and schedule impacts will occur.

Ideally, the number of trouble reports open at any time should remain relatively close to
zero. If it deviates substantially from zero or continues to grow, the manager needs to
reevaluate the allocation of staff resources. Depending on the severity of the open
trouble reports, the manager may redirect staff to work on trouble report closure instead
of continued implementation. Figure 4.5.3-4 can be used in conjunction with Figure
4.5.3-1 to aid in that decision. An alternate way of analyzing the same data is the rate
of convergence between the closed and total numbers of trouble reports. The more

62 CMU/SEI-92-TR-25

Trouble Reports Repeatable Level

rapid the convergence of the total and closed trouble reports, the more quickly the
project is addressing trouble reports.

The rate of newly created trouble reports should decrease as testing progresses, that
is, the curve of total trouble reports decreases over time. Ideally, as testing progresses,
it takes the test team longer and longer to discover new problems since the problems
remaining are more subtle or represent processing paths not frequently run. Early
testing discovers the more common defects. If the number of trouble reports written
does not decrease each reporting period, there may be a serious problem with the
quality of the product or testing strategy, and the manager needs to evaluate whether
the product should be delivered to the customer.

Figure 4.5.3-2 shows the number of trouble reports opened and closed during each
reporting period.

60 —

50

40

Trouble

Reports
30

20

10

Weeks

Figure 4.5.3-2. Number of Opened and Closed Trouble Reports in Reporting Period

The number of open trouble reports in the figure indicates:
* Product quality
» The amount of rework that is necessary due to newly created trouble reports

CMU/SEI-92-TR-25 63

Repeatable Level Trouble Reports

» Test team and external client satisfaction with product (the fewer the number of
defects, presumably the more satisfied they are with the product)

» The cost and time required for trouble report evaluations

The number of closed trouble reports indicates:
» The application of resources to correct the problems

» The need for further investigation. If the number of closed trouble reports is low
for several consecutive reporting period, the manager needs to determine why
they are not being closed, especially if new trouble reports are being written.

The number of closed trouble reports will tend to fluctuate more than the number open
since problems are generally corrected in large manageable groups. In addition, if the
plot extends far enough in time, the number of open trouble reports will rise sharply
whenever a new activity is started, for instance, at the start of a new test for each
release, since the obvious problems will surface quickly.

Figure 4.5.3-3 shows the percentage of trouble reports that have a high severity.
Ideally, the project wants this percentage to be as close to zero as possible, and the
percentage should also steadily decline. The manager should determine the cause of
any spike that occurs. If the higher severity percentage declines sharply while the total
number of trouble reports remains high, this may indicate that the test team is now
detecting more user-oriented defects.

12
% of 10 |-
High
Severity
Trouble 8 |_
Reports
6 |-
4 1
2 =
| | | | | | | | | J

Months

Figure 4.5.3-3. Percentage of High Severity Trouble Reports over Time

64 CMU/SEI-92-TR-25

Trouble Reports Repeatable Level

Figure 4.5.3-4 shows the number of unevaluated trouble reports for each reporting
period. This number varies with the number of trouble reports generated and the
resources applied to evaluate them. The more unevaluated trouble reports, the less
knowledge the manager has of the amount of resources required to fix inherent
problems and the effect of the problems on the schedule. The figure shows the
manager when extra resources are needed to reduce the number of unevaluated
reports and to minimize the difference between the total number of trouble reports and
the number of evaluated ones.

150 __

125 |-

100

Trouble
Reports 75 |-

50

25 |-

Figure 4.5.3-4. Number of Unevaluated Trouble Reports

Figure 4.5.3-5 shows the number of trouble reports per size over time, that is, the figure
is a plot of the number of trouble reports originated to date divided by the size of the
software under test. This figure is plotted for every release and for the software system
as a whole or for each CSCI. The size of the product is nearly constant since any
changes in the size of the product result from fixes to problems and should be small
compared to the product size. The number of trouble reports is cumulative and grows
each time a trouble report is created. Hence, this ratio will always increase. As testing
progresses, the curve should flatten out as fewer trouble reports are created.

CMU/SEI-92-TR-25 65

Repeatable Level Trouble Reports

Trouble
Reports/
Size —

Months

Figure 4.5.3-5. Trouble Report Density

Ideally, the defect density should be plotted rather than the trouble report density, since
several different trouble reports can lead to the same defect. At the Repeatable Level,
however, the defect data may not be suitable for such an analysis. Accordingly, the
trouble report density is used. At the Defined and higher maturity levels, it is
appropriate to use the defect density.

Figure 4.5.3-5 is plotted for a single release. If desired, the figure can be continued
over time. In this case, the observed trouble report density will drop each time a new
build or release is delivered to the test group since the size of product under testing
increased. After the initial decrease, the density will resume increasing as new trouble
reports are generated. The observed density will approach, or oscillate around, the
value characteristic of the quality of the developed product.

When Figure 4.5.3-5 is used in conjunction with a plot of the number of test cases
created against the number of test cases passed (see Figure 4.5.3-6), the manager can
predict the final quality of the product and can determine whether and when the product
is ready for delivery to the customer.

66 CMU/SEI-92-TR-25

Trouble Reports Repeatable Level

150

125 |-

100
Trouble

Reports
Created 75

50

25

| | | | | | | J
10 20 30 40 50 60 70 80

Test Cases Passed

Figure 4.5.3-6. Trouble Reports Created Against Test Cases

Figure 4.5.3-6 shows the number of trouble reports created versus testing progress.
The manager uses this figure to determine the adequacy of testing. As testing
progresses, the yield in terms of new trouble reports created with each new test case
declines. The curve should flatten out since it requires more test cases to detect new
problems. If the curve continues to rise steadily, more test cases may be required. As
long as the curve continues to rise the product is not ready for delivery to the customer.

This figure is more appropriately drawn for each severity class or combination of
severities. It is often difficult to deliver a product with no trouble reports open. It is
important that all the higher severity trouble reports have been addressed prior to
delivery. If Figure 4.5.3-5 is drawn for the total number of trouble reports, the lower
severity problems may mask persistent higher severity problems.

The project determines the frequency of the reports and the length of the reporting
period. Due to the shortness of the testing period and the dynamics involved between
the test team and the implementation team that analyzes the trouble report and fixes
the defect, the information is much more useful if provided on a weekly basis, rather
than a biweekly or monthly basis.

CMU/SEI-92-TR-25 67

Repeatable Level Trouble Reports

Sources

[AFSC 87], [Buckley 90], [Card 90], [Decker 91], [Grady 87], [IEEE 1061], [Landis 90],
[Pfleeger 89], and [Rozum 92] discuss trouble reports.

[Florac 92] has a thorough discussion of trouble reports and serves as the main source
of information for this section.

68 CMU/SEI-92-TR-25

4.6. Stability

At the Repeatable Level the stability indicators concentrate on the stability of the
requirements and the size. Requirements stability is concerned with the number of
changes to the requirements and the amount of information that still needs to be
determined with regard to the requirements. Size stability is concerned with the stability
of code size and size estimates.

4.6.1. Requirements Stability

The lack of requirements stability can lead to poor product quality, increased project
cost, and/or lengthened project schedule. The requirements stability indicators consist
of trend charts that show the total number of requirements, the cumulative number of
changes, and the number of to-be-determineds (TBDs) over time.l Landis et al report
that a large number of TBDs in the requirements and specifications, combined with a
large number of requirements changes, have caused systems in their environment to
grow up to forty percent larger than size estimates made at preliminary design review
[Landis 90].

Objective of the Requirements Stability Indicators

To provide the software manager with visibility into whether requirements changes are
responsible for cost overruns, schedule delays, and decreased product quality.
Indicators

» Trends in the total number of requirements changes

* Trends in the number of TBDs

Key Process Area Goals Addressed

Requirements Management:

* The system requirements allocated to software provide a clearly stated,
verifiable, and testable foundation for software engineering and software
management.

» The allocated requirements define the scope of the software effort.

* The allocated requirements and changes to the allocated requirements are
incorporated into the software plans, products, and activities in an orderly
manner.

1 The organization must have a definition for what constitutes a unit of requirements such as a
numbered paragraph containing the word “shall.”

CMU/SEI-92-TR-25 69

Repeatable Level Requirements Stability

Software Project Tracking and Oversight:

» Changes to software commitments are understood and agreed to by all affected
groups and individuals.

Software Configuration Management:

* Controlled and stable baselines are established for planning, managing, and
building the system.

» The integrity of the system’s configuration is controlled over time.
» The status and content of the software baselines are known.

Life-Cycle Stages: All, but most important during requirements and design.

Users
» Software engineering manager for controlling and monitoring of requirements.
» Software engineering process group for sources of and reasons for instability.

Users’ Questions
* Is the number of changes to the requirements manageable?

* Are the requirements scheduled for implementation in a particular release
actually addressed as planned?

 Is the number of changes to requirements decreasing with time?
* Is the number of TBDs preventing satisfactory completion of the product?

* Is the number of TBDs decreasing with time, that is, are the TBDs being
resolved in a timely manner?

Input

» Total number of requirements

* Number of requirements changes:
- Proposed
- Open
- Approved
- Incorporated into baseline

» For each requirements change:
- The computer software configuration item(s) (CSCI) affected
- Major source of request (customer, software engineering, etc.)
- Requirement type (functional, performance, etc.)

* Number of TBDs in requirements specifications

* Number of requirements scheduled for each software build or release

70 CMU/SEI-92-TR-25

Requirements Stability Repeatable Level

Interpretation

Figure 4.6.1-1 shows the current total number of requirements, the cumulative number
of changes to requirements, and the number of TBDs remaining in the requirements
over time for the entire project. Similar plots can be made for each CSCI. Such a
graph shows the distribution of changes over the CSCls and highlights the CSCI(s)
responsible for the majority of the changes, if the changes are not equally distributed
across the CSCils.

600 __
500 L Total
400 |_
Requirements
300 | Cumulative
Changes .7
200 | P
- - TBD P - - Now
-_— - - - - - ~ ~ ” -~
100 | _ Lo T T T T
' < \
=" ~N
_---" SSR PDR N CDR
-t | | | | | | | J
2 3 4 5 6 7 8 9 10
Months

Figure 4.6.1-1. Current Total Number of Requirements, Cumulative Changes, and
Number of TBDs Against Time

Typically, the plot of cumulative changes can be expected to rise more steeply from the
software specification review (SSR) to preliminary design review (PDR) and to level off
after the critical design review (CDR). This is a consequence of the activities occurring
on the project. During requirements analysis, the software engineering group is
analyzing the system requirements allocated to software. This analysis can lead to
changes in the software requirements. By the time the project reaches the CDR
milestone, requirements issues should be fully addressed. Changes can still occur, but
the frequency of the changes and the number of change requests should fall off
dramatically. If this does not occur, it may be necessary to delay the implementation of
the CSCI or the portion of the CSCI that is responsible for the high number of
requirements changes until the requirements are stabilized. If significant changes
occur in requirements after CDR, the manager runs the risk of substantial rework in

CMU/SEI-92-TR-25 71

Repeatable Level Requirements Stability

previously developed products. Also, any changes occurring after CDR can be
expected to have a significant schedule impact, even if the change is the deletion of a
requirement.

Similarly, the number of TBDs should decrease at each review and ideally be zero by
CDR. The number should decrease since the analysis of requirements leads to the
resolution of the items that need to be determined. If the number does not decrease,
the manager must be aware of the fact that the longer it takes to eliminate a TBD, the
greater the likelihood of rework on that requirement with a corresponding impact on
cost and schedule. The manager’s risk increases the longer each TBD remains
unresolved.

Figure 4.6.1-2 shows requirements changes broken down by type. The different types
of requirements changes impact projects differently. Added requirements tend to
increase the size of the product and the effort and cost. Modified and deleted
requirements tend to affect the quality of the product, particularly if made late in the
development life cycle.

60 __ -
. - =~ Modified
/
0 |- ’ Added
/I/
40 |)
Requirements L7 ’
Changes i’
9 30 I L
20 —
Deleted
10 e
e
_ -
| | | | | | | | | |
1 2 3 4 5 6 7 8 9 10

Months

Figure 4.6.1-2. Types of Requirements Changes

72 CMU/SEI-92-TR-25

Requirements Stability Repeatable Level

Figure 4.6.1-3 shows the number of requirements changes recorded during each
reporting period. It displays more emphatically the fact that significant changes can
occur to system requirements during the requirements definition and preliminary design
activities and that the number of changes decreases during detailed design.

60

40 |~
Requirements
Changes

30

10
SSR PDR CDR

Months

Figure 4.6.1-3. Number of Requirement Changes Recorded During
Each Reporting Period

Figure 4.6.1-4 shows the number of requirements planned for implementation in each
software release and the number of requirements actually implemented. The actual
number of requirements satisfied should stay close to the planned number of
requirements satisfied in each build or release. The number in any one build or release
may grow as a result of the addition of requirements.

CMU/SEI-92-TR-25 73

Repeatable Level Requirements Stability

10

600 —
Original Plan

- Current Estimate

500 |_ e — - -
P e Release 3
400 |_
Requirements Release 2A
300 Release 2
200 |_)
Release 1 Now

10 L "7 “- ..

| | | | | | | | J

1 2 3 4 5 6 7 8 9

Months

Figure 4.6.1-4. Number of Requirements per Release

The project shown in the figure may be experiencing schedule trouble. The number of
requirements satisfied in the first release did not match the plan, and the same trend
has occurred for the second release. The project planned on satisfying these
requirements in release 2A but, again, the project is not meeting its goals. The number
of requirements for release 3 is increasing, but past history indicates a schedule
slippage for the project.

Sources
[AFSC 86] has a similar indicator that uses software size.
[Decker 91], [Pfleeger 89], and [Schultz 88] discuss requirements stability.

[Grady 87] uses a requirements stability as an input to Hewlett-Packard’s difficulty
metric.

[Landis 90] discusses two indicators that are related to this but uses software size in
the trend chart.

74 CMU/SEI-92-TR-25

4.6.2. Size Stability

Size is an important input in the planning process. The project software manager
needs a good estimate of the size of the software to derive accurate estimates of the
effort, cost, and schedule of the project. Changes in the size ripple through the project
with effects on effort, cost, and schedule.

The project software manager selects from the approved organizational methods the
technique to be used by the project for determining size. There are many units of
measure for software size, for example, source lines of code, delivered source
instructions, function points, objects, or tokens. While this document makes no
recommendation on how to determine size (examples of counting lines of code are
given by Park [Park 92]), it does describe how to interpret trends in the size measure.

Objective of the Size Stability Indicators

To provide the project software manager and the project manager with an indication of
the completeness and stability of the requirements and of the capability of the
implementation staff to produce the software product within the current budget and
schedule.

Indicators
e Trends in the code size

» The variation of actual software size from size estimates
» Variation of actual software size from estimated size by build or release

Key Process Area Goals Addressed

Software Project Planning:

» All affected groups and individuals understand the software estimates and plans
and commit to support them.

* The software estimates and plans are documented for use in tracking the
software activities and commitments.

Software Project Tracking and Oversight:

* Actual results and performance of the software project are tracked against
documented and approved plans.

» Corrective actions are taken when the actual results and performance of the
software project deviate significantly from the plans.

» Changes to software commitments are understood and agreed to by all affected
groups and individuals.

Software Subcontract Management:

* The software standards, procedures, and product requirements for the
subcontractor comply with the prime contractor’'s commitments.

CMU/SEI-92-TR-25 75

Repeatable Level Size Stability

» The prime contractor tracks the subcontractor’s actual results and performance
against the commitments.

Software Configuration Management:

* Controlled and stable baselines are established for planning, managing, and
building the system.

» The integrity of the system’s configuration is controlled over time.
» The status and content of the software baselines are known.

Life-Cycle Stages: All
Users

Software engineering and project software managers for controlling and monitoring of
project
Users’ Questions

* How much have the size estimates changed over time during development?

* How much do the actual values deviate from their estimated values?

* How much does the trend of the actual values affect the development
schedule?

* Is the estimated productivity sufficient to allow the completion of added code on
schedule or are more staff required?

Input

» Software size (estimates and actual values):
- Total size
- By computer software configuration item (CSCI)
- New code
- Off-the-shelf code
- Reused code

* Amount of software scheduled for completion by build or release

Interpretation

Figure 4.6.2-1 shows how the total software size, as well as the new and reused code,
changed over time. The amount of generated, converted, or removed code can also be
plotted. The growth of software size should reflect requirements stability, if the size
estimates are accurate. Any change in size can then be directly linked to a
requirements change. In practice, this linkage is not so obvious, but the growth in size
should be compared to the number of requirements changes.

76 CMU/SEI-92-TR-25

Size Stability

Repeatable Level

Size

SSI/R Ve PIDR | CDR TRR | PCA

1 2 3 4 5 6 7 8 9 10

Figure 4.6.2-1. Software Size as a Function of Time

If the project is monitoring size with lines of code, the software manager should be
aware of the following experiences when analyzing a figure like Figure 4.6.2-1 [Landis

90]:

There will be periods of sharp growth in lines of code that are separated by
periods of more moderate growth.

Ten percent of the code may be produced after testing starts due to
requirements changes.

A steady growth of software size from approximately the midpoint of
implementation through acceptance testing can occur due to response to
trouble reports.

Exaggerated flat spots on the curve (i.e., periods with no change) or large
jumps in the curve (many changes made at the same time) indicate the need for
an analysis to determine why there is no activity or why there is a sudden
increase in size.

Changes can result from a better understanding of the requirements. These
changes should also be reflected in schedule and staffing. This implies that this
indicator can be used in conjunction with effort and progress indicators.

Decker mentions that projects are not likely to deliver fewer lines of code than initially
estimated unless a major descoping of the project occurs [Decker 91].

CMU/SEI-92-TR-25

77

Repeatable Level Size Stability

Figure 4.6.2-2 plots the planned and actual size of the software over time. Major
deviations of the actual size from the planned size can result from the following:

* An unrealistic original estimate

* Instability in the requirements or design

* Problems in understanding the requirements

» An inexperienced team that cannot achieve the planned productivity rate

* A very experienced team that is working at higher than planned productivity
rates

* An unachievable productivity rate

Planned

Size | e
7
Actual
SSR PDR CDR TRR PCA
| | | | | | | | | |
1 2 3 4 5 6 7 8 9 10
Months

Figure 4.6.2-2. Planned and Actual Size Over Time

Figure 4.6.2-3 is an example that compares the number of software units planned for
implementation in each software release and the number actually implemented. The
figure is similar to that of Figure 4.6.1-4 and has the same interpretation. The only
difference between the two figures is the replacement of requirements by software
units. Figure 4.6.1-4 gives the project software manager an indication of how well the
project is satisfying the requirements. Figure 4.6.2-3 provides similar information but in
terms of software size.

78 CMU/SEI-92-TR-25

Size Stability Repeatable Level

600 |~ Original Plan

- - Current Estimate
500 |- -

et --- Release 3
400
Release 2A
Software —
Units TTTT
300 |~ Release 2
200 I~
Release 1 Now

100 | T

| | | | | | | | |

1 2 3 4 5 6 7 8 9 10

Months

Figure 4.6.2-3. Computer Software Unit Release Content

Figures 4.6.2-1 through 4.6.2-3 show the data for the entire project. This should also
be done for each CSCI.

Sources

[AFSC 86], [Decker 91], [Landis 90], [Pfleeger 89], and [Schultz 88] all discuss tracking
software size.

CMU/SEI-92-TR-25 79

Repeatable Level Size Stability

80 CMU/SEI-92-TR-25

4.7. Computer Resource Utilization

All software must work within the constraints of available system resources. For some
software, the constraints significantly affect the design, implementation, and test. For
those cases it is important to monitor computer resource utilization. Computer resource
utilization indicators show if software is using the planned amount of system resources.
They can also be used to replan, reestimate, and guide resource acquisition.

Objective of the Computer Resource Utilization Indicators

To monitor computer resource utilization to ensure compliance with requirements and
to track convergence/divergence to plans and estimates.

Indicators
Trends in the deviation between planned or estimated and actual utilization
Key Process Area Goals Addressed

Software Project Planning:

* A plan is developed that appropriately and realistically covers the software
activities and commitments.

» All affected groups and individuals understand the software estimates and plans
and commit to support them.

* The software estimates and plans are documented for use in tracking the
software activities and commitments.

Software Project Tracking and Oversight:

* Actual results and performance of the software project are tracked against
documented and approved plans.

» Corrective actions are taken when the actual results and performance of the
software project deviate significantly from the plans.

» Changes to software commitments are understood and agreed to by all affected
groups and individuals.

Software Subcontract Management:

* The software standards, procedures, and product requirements for the
subcontractor comply with the prime contractor’'s commitments.

» The prime contractor tracks the subcontractor’s actual results and performance
against the commitments.

CMU/SEI-92-TR-25 81

Repeatable Level Computer Resource Utilization

Life-Cycle Stages

Computer resource utilization is planned during the requirements activity and reviewed
during the design activity. Resources are monitored from the start of the
implementation activity to the end of the life cycle.

Users

The project software manager reviews consolidated graphs of the significant or high-
risk resources. Lower level managers review detailed graphs of resources for
components under their control (e.g., memory used by a computer software
configuration item [CSCI]).

Users’ Questions
» Are the actual values of the computer resources within the allowable limits?

* Do the trends of the actuals indicate that the computer resources will remain
within the allowable limits?

» Should more computer resources be acquired?
Input

System or software requirements and design that contain specifications or estimations
of the maximum allowable? resource utilization for:

* Computer memory
* 1/O throughput
* |1/O channels

Interpretation

The software managers monitor the utilization level of each resource over time. Figure
4.7-1 shows a typical plot of the planned and actual utilization of memory while Figure
4.7-2 shows the actual memory used to-date expressed as a percentage of that
allowed. Both figures show the maximum allowable utilization for that resource. The
maximum allowable utilization may be set by physical constraints, the contract, or by
modeling the software system. For example, a development plan may call for a 50
percent memory reserve for future expansion. Thus, the remaining fifty percent would
be the one hundred percent allowable utilization. This number is determined by
physical constraints, contract, or by modeling the software system.

For each figure, the manager compares the actual computer resource utilization with
the maximum allowed. |If the actual utilization is above the maximum allowed,

2 The maximum allowable utilization may be set by physical constraints, the contract, or by
modeling the software system. For example, a development plan may call for a fifty percent
memory reserve for future expansion. Thus, the fifty percent level would be the one hundred
percent allowable utilization.

82 CMU/SEI-92-TR-25

Computer Resource Utilization Repeatable Level

corrective action is required. When examining the trend of the actual utilization line, the
manager looks for sudden changes in the slope of the line. Such changes may
indicate a problem. When analyzing Figure 4.7-1, the manager compares the deviation
between the planned and actual lines. When the deviation exceeds a predefined limit,
the manager needs to determine why and to take appropriate corrective action. As
long as the deviations are small, the manager may assume that they represent no
cause for concern. If, however, the deviation continues to grow during each reporting
period, the manager may wish to determine the cause prior to the times when deviation
exceeds the predefined limit.

Figures 4.7-1 and Figure 4.7-2 do not specify whether they are for a particular CSCI or
for an entire computer system. The managers determine whether the plots will be
prepared for the host and/or target machines, the software system as a whole, or for
each computer software configuration item.

Other computer resources, such as database capacity or performance (e.g., response
time), should be monitored where applicable. The project manager determines which
computer resources will be tracked based on the nature of the project. The monitored
computer resources may be development resources (host) or end-user resources
(target).

60 __ .
Maximum

50

40
KBytes
30

P Actual

20

Now
10

Release

Figure 4.7-1. Planned Vs. Actual Memory Utilization

CMU/SEI-92-TR-25 83

Repeatable Level

Computer Resource Utilization

120 —
Maximum
100
80 |
Utilization
% 60 |
40 L Actual
20 Now
| | | | | | | |
1 2 3 4 5 6 8 9 10
Months
Figure 4.7-2. Memory Utilization
Sources

[AFSC 87], [Decker 91], [Landis 90], [Rozum 92], and [Schultz 88] discuss computer

resource utilization.

84

CMU/SEI-92-TR-25

5. The Defined Level—Maturity Level 3

This chapter summarizes the characteristics of an organization with a defined process
and discusses the indicators that are appropriate for the Defined Level.

5.1. Characteristics of a Defined-Level Organization

An organization with a defined process is characterized as one with a standard process
for developing and maintaining software. The process is documented and integrates
both the software engineering and software management process into a coherent
whole. Emphasis has shifted from project issues to organizational issues. A software
engineering process group (SEPG) exists and facilitates process definition and process
improvement. An organization-wide training program also exists to train the staff and
managers in the skills required to carry out their tasks.

Since basic project management processes are now in place, the organization has the
opportunity to concentrate on its software development processes. Managers will
continue to use the indicators discussed in Chapter 4, but measures can now be made
to determine the effectiveness of the organization’s overall software development
processes and of some detailed processes, such as peer review and training.

More historical data are available to a Defined-Level organization since it was collecting
data at the Repeatable Level. An organization can use these historical data to define
the normal range for measured items or by placing upper and lower bounds on these
items. This allows the project manager to compare the project to the “norm.” If an item
is out-of-bounds, the manager has more reliable data available to determine whether
the item is out-of-bounds due to a breakdown in the process or to an inherent
characteristic of the item. The project manager cannot routinely perform such an
analysis at the Repeatable Level since the process may not have been well-defined or
even stable. However, at the Defined Level, the project manager has the advantage of
more mature and defined processes. In Section 6 of their work, Landis et al have
numerous illustrations of how a project manager can use ranges [Landis 90].

Indicators appropriate for a Defined-Level organization are progress, effort, cost,
quality, stability, computer resource utilization, and training.

5.2. Progress

The progress indicators for the Defined Level are essentially the same as those at the
Repeatable Level: Gantt charts and actual-versus-planned-completion charts (see
Section 4.2). The main difference is the addition of “normal” ranges around the
planned completion lines. The organization establishes the normal range for each
activity by selecting some percentage around the planned completion line. This

CMU/SEI-92-TR-25 85

Defined Level Progress

number is derived from data reported by previous projects. The software managers
then monitor the actual completions and take necessary corrective action when
progress is not maintained at the planned rate.

Objective of the Progress Indicators

To provide software managers with information on the progress of the project and to
monitor progress with respect to the defined ranges within each life-cycle development
activity.

Indicators

From the Repeatable Level:
* The trend in the rate of progress

For the Defined Level:
» The deviation of the actual project progress outside the normal range

Key Process Area Goals Addressed

Organization Process Definition:

» A standard software process for the organization is defined and maintained as a
basis for stabilizing, analyzing, and improving the performance of software
projects.

Training Program:

» The staff and managers effectively use, or are prepared to use, the capabilities

and features of the existing and planned work environment.
Integrated Software Management:

 The planning and managing of each software project is based on the
organization’s standard software process.

» Technical and management data from past and current projects are available
and used to effectively and efficiently estimate, plan, track, and replan the
software projects.

Software Product Engineering:

» State-of-the-practice software engineering tools and methods are used, as

appropriate, to build and maintain the software system.
Intergroup Coordination:

* The project groups are appropriately involved in intergroup activities and in

identifying, tracking, and addressing intergroup issues.
Life-Cycle Stages: All

Users: All levels of project software management

86 CMU/SEI-92-TR-25

Progress

Defined Level

Users’ Questions

Are there process activities that are routinely completed late or early?

Are the schedules of activities for the project consistent with each other and
with the software requirements and the software development plan?

Is the software subcontractor’'s planned schedule consistent with the software
requirements and the software development plan?

Are the actual results and performance of the software project tracked against
the software development plan?

Are the actual results and performance of the software subcontractor tracked
against the software development plan?

Is the actual performance of the project outside the range of planned
completions thereby indicating schedule slippage and the necessity for a
replanning effort?

Is the actual performance of the subcontractor outside the range of planned
completions thereby indicating schedule slippage and the necessity for a
replanning effort?

Input

From the Repeatable Level:

Project software development plan

The planned and actual start and completion dates for the software
development activities

A count of tasks or task outputs planned and actually produced in the current
reporting period. Task outputs include:

- Requirements analyzed

- Software requirements documented

- Test cases written

- Design elements (e.g., design diagrams) completed
- Units designed, coded, unit tested, and integrated

- Documents completed

- Test cases executed

Planned software size and the size actually completed and recorded during
each reporting period

For the Defined Level:

The normal range of deviation for each task

A count of activities or items planned and actually accomplished in the current
reporting period. These include:

- Training classes

CMU/SEI-92-TR-25

87

Defined Level Progress

- Staff taught
Interpretation

Figure 5.2-1 shows a typical actual-versus-planned completion graph, in this case a
graph of the number of test cases executed. This figure is identical to Figure 4.2-3
except for the addition of the range around the planned line.

60

- - = Actual
—— Planned /

Test
Cases
Executed

Now

Week

Figure 5.2-1. Actual Completions Compared with Planned Completion Range

The interpretation of the figure remains as in Section 4.2. However, the manager now
has the advantage of knowing how the project tracks not only against the plan, but also
against the allowable range. As long as the project stays within the allowable range,
there is not much cause for concern (even though concern increases the closer the
project approaches a lower limit) since the deviation may be “normal.” In our example,
the range is £10 percent. The range represents a comfort zone for the project software
manager. If the manager is cautious, a smaller percentage can be selected than that
obtained from the historical data.

In Figure 5.2-1 the project started well; it actually performed better than planned.
During week 3 and continuing to the present, the project has stayed within the ten
percent range even though the project oscillated about the planned completion line.
However, the trend for the last two weeks (week 6 through 8) indicates that the project

88 CMU/SEI-92-TR-25

Progress Defined Level

is not executing the number of test cases planned. If the current trend continues
through week 9, the project will fall out of the allowable range. The manager needs to
determine the reason for this trend.

The manager should also be concerned if the project exceeds the upper bound of the
range, that is, the project is performing better than planned. On the surface, this
appears to be good news in that the project is performing better than anticipated.
However, it may indicate that other activities are not being performed or that the
manager’s planning and estimation processes are poor.

As in the Repeatable Level, separate graphs are prepared for the items listed in the
input section depending on the life-cycle stage of the project. The number of staff
taught and the number of training classes held can be tracked to provide the project
software manager with information on the progress of the project training.

The use of Gantt charts is the same as for the Repeatable Level.

At the Defined Level, the project software manager analyzes the dependencies of the
activities listed on the Gantt chart and conducts a critical path analysis to determine
which activities lie on the critical path. This is often facilitated by the preparation of a
program-evaluation-and-review-technique (PERT) chart as shown in Figure 5.2-2.

'

Activity 2 Activity 4

Activity 1 Activity 6

\ Activity 3

Figure 5.2-2. A Simplified PERT Chart Showing the Critical Path

Activity 5

'

This figure shows the dependencies of six activities needed to complete the project.
The path defined by activities 1-2-5-6 is known as the critical path and denotes the
minimum time in which the project can be completed. A slippage in the completion of
any one of these activities results in a corresponding slippage in the completion of the
project. During project monitoring, the project manager pays particular attention to the
activities on the critical path.

Sources
From the Repeatable Level:

[AFSC 86] discusses planned and actual completions graphs at the computer software
configuration item (CSCI) level.

CMU/SEI-92-TR-25 89

Defined Level Progress

[Decker 91] lists requirements diagrams; function specifications; design diagrams; test
cases; units designed, coded, and tested; modules tested; and computer software
components tested as items tracked on planned and actual completions graphs.

[Grady 87] states that calendar measures are part of the Hewlett-Packard metrics
program.

[Landis 90] discusses planned and actual completions graphs for units coded, read,
and tested.

[Rozum 92] has a discussion on Gantt charts in their milestone performance metric and
a discussion of planned and actuals in their development progress metric.

[Schultz 88] discusses software requirements documented in his design progress
metric and the number of computer software units (CSU) designed, coded, tested, and
integrated in his CSU development progress metric. He also discusses the planned
and actual completions of CSCls integrated in his test progress metric.

[STEP 91] discusses a schedule metric upon which Figure 4.2-2 is based and a
development progress metric.

For the Defined Level:

[Lockyer 84] discusses Gantt charts and the critical path method.

90 CMU/SEI-92-TR-25

5.3. Effort

The effort indicators at the Defined Level are the same as those at the Repeatable
Level. The main difference lies in the granularity of the measures, that is, effort data
can be taken to a lower-level of detail. At the Defined Level, the processes are well-
defined so that the managers can collect and analyze data for the lower-level activities
as well as for the main activities. The staff has an understanding of the processes and
can accurately record their effort at the process and subprocess level. For example,
the software engineering group can record the effort expended in analyzing proposed
requirement change requests and for getting agreement on the disposition of the
change requests. The finer granularity, combined with data on the skill level of the staff
performing the activity, allows the manager to begin to understand the staff profiles
over the life of the project and to think about the suitability of the skill levels used to
perform the activities.

CMU/SEI-92-TR-25 91

Defined Level Effort

92 CMU/SEI-92-TR-25

5.4. Cost

At the Repeatable Level, managers monitored actual costs against the budgeted costs.
At the Defined Level, managers can use historical data from other similar projects that
allow them not only to track actual project costs against the budgeted costs, but also to
compare of the performance of the project with previous, similar projects. This frame of
reference is in the form of a range centered on the planned costs. Any variation from
the plan that is still within this range is considered normal or low risk. Variations outside
this normal range require analysis by the manager.

Also at the Defined Level, the defined processes allow the manager the opportunity to
track costs to a lower-level of detail, that is, the cost of a particular activity or sub-
activity can be determined. For example, the manager can track the costs of process
definition and improvement activities. The manager can then use this knowledge in an
analysis of the process or a change to the process.

Objective of the Cost Indicators
To track actual costs against the project plan and to predict future project costs.

Indicators

» Performance of the actual cost of work performed against budgeted cost for
work scheduled

» Performance of the budgeted cost for work performed against the budgeted
cost for work scheduled

e Trends in the cost variance
e Trends in the schedule variance
» Trends in the cost and schedule performance indices

Key Process Area Goals Addressed

Integrated Software Management:

 The planning and managing of each software project is based on the
organization’s standard software process.

» Technical and management data from past and current projects are available
and used to effectively and efficiently estimate, plan, track, and replan the
software projects.

Life-Cycle Stages: All

CMU/SEI-92-TR-25 93

Defined Level Cost

Users

All levels of management. The managers cited here are not restricted to software
development managers but include managers of support groups, for example, software
quality assurance, software configuration management, training, and so forth.

Users’ Questions

» Are the actual costs and performance of the software project tracking against
the plan?

» Are the actual costs within the range established for the software project?
» Are the corrective actions reducing the cost and variances?

Input
» Budgeted cost for work scheduled (BCWS)
» Budgeted cost for work performed (BCWP)
» Actual cost of work performed (ACWP)
» Budgeted cost at completion (BCAC)

Interpretation

Figure 5.4-1 shows a typical cost/schedule status report. This figure is identical to
Figure 4.4-3 except for the range around the budgeted cost for work scheduled. The
organization establishes the normal range by selecting some percentage around the
budgeted-cost-for-work-scheduled line. This number is derived from data reported by
previous projects.

The interpretation of Figure 5.4-1 is the same as in Section 4.4. By adding the range, it
is easy to tell at a glance how poorly this project is tracking against the plan. The
software manager needs to determine the causes of the cost and schedule variances
and to determine appropriate corrective action.

In Figure 5.4-1 the cost performance to-date is favorable, since the ACWP tracks below
BCWP (cost variance is positive). However, the rate of expenditures increased, as
evidenced in the increased slope of ACWP during the past two months. The BCWP
line stayed relatively flat. These two lines indicate that the project is spending money,
but not accomplishing the work that has been scheduled. Accordingly, the favorable
cost variance that has accrued in previous months is eroding. There is also an
unfavorable schedule situation (schedule variance is negative). The BCWP continues
to track below the BCWS line, indicating that this project is behind schedule. However,
since BCWP and BCWS are converging slowly, the amount of slippage is decreasing.

94 CMU/SEI-92-TR-25

Cost Defined Level

300 _ .
Budgeted Cost at Completion
250 /
200
Cost
$1K
(319 150 BCWS
BCWP — — —
ACWP
100
50 Now
| | J
1 2 3 4 5 6 7 8 9 10

Months

Figure 5.4-1. Cost/Schedule Status Report Showing Allowable Range for Budgeted
Cost for Work Scheduled

Figure 5.4-2 shows the performance of the cost and schedule variances over time for a
different project. The figure focuses on the variances themselves and usually
illustrates more convincingly the problems or successes of the project.

Figure 5.4-2 shows that this project began with a negative cost variance, achieved a
turn around, but again in month 6 returned to a negative slope. The steep negative
slope from month 5 through month 7 indicates that the project is headed for a serious
problem. In fact, the large negative schedule variance in the preceding months actually
foretold the problem. In the attempt to make up for the schedule problem, the project
has over spent and thus brought about a forthcoming cost overrun condition.

CMU/SEI-92-TR-25 95

Defined Level Cost
B Cost variance .
Schedule variance ~——
+20 |-
+10 |- -
Variance (%) 0 .- :
A . , - -
10 |- -
-20 Now
| | | | | | | | J
1 2 3 4 5 6 7 8 9 10
Months
Figure 5.4-2. Variance Report
Variance is to be expected; the amount and sign of variance is important. An

organization uses its historical data to determine the normal ranges of cost and
schedule variances. An organization uses these ranges to establish threshold limits on
variances. For example, an organization can adopt £10 percent to signify low risk, +10-
15 percent to signify moderate risk (and the possible need for corrective action), and
any variance over =15 percent to signify a high risk that requires corrective action. The
manager of the area that exceeds the threshold explains to the next level of
management the cause(s) of the variance and the corrective action to be taken (if any).
If variances consistently remain beyond the thresholds, the organization may wish to
reexamine its estimating and scheduling processes. Likewise, if the variances
consistently stay within the threshold, management may want to redefine the threshold
by setting smaller tolerances.

When the variances become so large that the plan is no longer valid, the managers
replan the elements of the project according to the documented procedure for the
project.

Another way of analyzing the performance of the project is through cost and schedule
performance indices. The cost performance index (CPI) is the ratio of the budgeted
cost for work performed and the actual cost of the work performed, expressed as a
percentage [CPI=(BCWP/ACWP)*100%)]. The schedule performance index (SPI) is the
ratio of the budgeted cost for the work performed and the budgeted cost for the work
scheduled, expressed as a percentage [SPI=(BCWP/BCW S)*100%].

96 CMU/SEI-92-TR-25

Cost Defined Level

Figure 5.4-3 illustrates a sample behavior of the cost performance, and schedule
performance indices. Both performance indices are really efficiency indicators. A cost
performance index of fifty percent indicates that only half as much budgeted work was
accomplished as the actual cost to achieve it. This is very poor performance, and the
reason for that performance must be determined. Similarly, if half of the scheduled
work, measured in dollars, had actually been performed, the schedule performance
index would be fifty percent.

100 —
90 |- CPI
SPI - -
80
Performance
Index (%)
60 |
Now
50
| | | | | | | | |
1 2 3 4 5 6 7 8 9

Months

Figure 5.4-3. Example of a Performance Indices Report

Figures 5.4-2 and 5.4-3 represent typical monthly reports. They are prepared for each
software manager, with the higher-level software managers receiving a consolidated
report for the area(s) of their responsibility. The higher-level software managers also
have access to the lower-level data and graphs.

The budgeted cost at completion (BCAC) shown in Figure 5.4-1 represents the
manager’'s original estimate for the total cost of work. Each reporting period, the
manager should develop an estimated cost at completion. This estimate is based on
the actual cost of work performed to date and the manager’'s estimate of the cost for
the remaining work. To obtain this estimate, the manager considers the project
performance to date (current and cumulative variances and productivity), the impact of
approved corrective action plans, and known or anticipated problems. This estimate is
often based on the manager’s professional judgment. A check on this judgment can be

CMU/SEI-92-TR-25 97

10

Defined Level Cost

obtained through the use of the actual costs and the performance indices. For
example, an estimated cost at completion can be obtained from the following equation
[AFSC 86]:

Estimated cost at completion = ACWP + [BCAC - BCWP] / [0.2(SPI) + 0.8(CP1I)]

Other estimates can be obtained through the use of parametric cost models. Ideally,
the organization should develop its own equation from its historical cost data. The
manager compares the estimated cost at completion with that derived from the data
and explains any differences. The final estimated cost at completion must be reviewed
for realism and appropriateness.

Sources
[AFSC 86] has a discussion of these indicators.
[DoD 80] discusses the basics of ACWP, BCWP, and BCWS.

[DSDM 89] served as the major source of information in this section.

98 CMU/SEI-92-TR-25

5.5. Quality

The Defined Level quality indicators are divided among the results of software quality
assurance audits, the results of life-cycle reviews with the customer, the trouble reports
written after the implementation team has released the software for testing, and the
results obtained from peer reviews.

5.5.1. Software Quality Assurance Audit Results

The quality indicators from software quality assurance audits are essentially the same
as those at the Repeatable Level (see Section 4.5.1). One difference is that software
guality assurance personnel routinely conduct process audits as well as product audits
since the organization’s process is now defined. Also, the software quality assurance
organization begins to collect data about the audit process itself, for example, number
and types of audits.

During a process audit, the software quality assurance group audits the processes for
developing and revising the project's defined software processes; managing the
project’s software cost, schedule, risk, and technical activities; and using and
controlling the software process database for software planning and estimating.

Objective of the Software Quality Assurance Audit Results

To provide project software management with an independent evaluation of the quality
of the product and the adherence of the project staff to the processes that created the
product.

Indicators

» Trends in the number, type, and severity of noncompliance issues found during
an audit

» Trends in the rate at which the noncompliance issues are being addressed

These indicators are the same as the Repeatable Level, but they apply as well to the
process audits of the higher maturity levels.

Key Process Area Goals Addressed

Organization Process Definition:

» A standard software process for the organization is defined and maintained as a
basis for stabilizing, analyzing, and improving the performance of the software
projects.

Integrated Software Management:

 The planning and managing of each software project is based on the
organization’s standard software process.

CMU/SEI-92-TR-25 99

Defined Level Software Quality Assurance Audit Results

Life-Cycle Stages: All

Users
» Mid-level managers
* Project software manager
» Senior management
» Software quality assurance

Users’ Questions

From the Repeatable Level:

» Are audits conducted by an independent software quality assurance group for
each step of the software development process?

» Are standards and procedures applied on the software project?
» Are project personnel applying the standards and procedures correctly?
» Are project personnel following the standard processes (where defined)?

* Are independent audits conducted for the software subcontractor to ensure
compliance with the software development plan?

» Are the noncompliance issues being addressed in an appropriate manner?
» Are the noncompliance issues being addressed in a timely manner?

For the Defined Level:
* What types of noncompliance issues are detected during an audit?
* Is the software quality assurance organization reviewing a sufficient number of
samples during its audit?
Input

From the Repeatable Level:
* Number of noncompliance issues:
- Total
- Open
- Closed
» For each noncompliance issue:
- Date opened

- Type (e.g., a noncompliance of the product to a standard or noncompliance
to a process)

Severity (degree of noncompliance: e.g., product cannot be delivered as
is, product must be corrected by next release, process change be
recommended)

Date closed

100 CMU/SEI-92-TR-25

Software Quality Assurance Audit Results Defined Level

For the Defined Level:
* Number of audits conducted
* For each audit:
- Type of audit, for example, product audit or process audit
- Sample size (for each product audit)

Interpretation

Regardless of whether a product or process audit is conducted, the figures and their
interpretation are the same as the Repeatable Level in Section 4.5.1. At the Defined
Level, however, the project and organization can use the audit results and the
indicators for peer reviews (Section 5.5.4) to evaluate inspection efficiencies. Figure
5.5.1-1 compares the number of policy, product, and process noncompliance issues
detected during software quality assurance audits in a reporting period.

50 __
Number of 40
Noncompliance
Issues 30
20
10

Process Product Policy

Type of Noncompliance Issue

Figure 5.5.1-1. Number of Noncompliance Issues by Type

The figure shows that the peer review process is effective since few product
noncompliance issues are reported. These noncompliance issues have presumably
been found in peer reviews and were corrected prior to the audits and delivery. This
can be verified by analyzing the peer review indicators.

The software quality assurance manager can also prepare a report on a regular basis
that summarizes the software quality assurance organization’s audit activities. This

CMU/SEI-92-TR-25 101

Defined Level Software Quality Assurance Audit Results

report can include the number of each type of audit conducted and summary
information on each audit. This information includes sample size and the percentage
of the total that the sample size represents.

Sources

[Pfleeger 89] and [Florac 92] discuss the tracking of problems found in a variety of life-
cycle stages. The indicators of software quality assurance audit results are an
extension of that discussion.

102 CMU/SEI-92-TR-25

5.5.2. Review Results

The quality indicators from reviews are the same as those at the Repeatable Level (see
Section 4.5.2). Also, the software quality assurance organization begins to collect data
about the review process itself.

Objective of the Review Results Indicators

To provide software project management, senior management, and the customer with
the status of action items originating during a life-cycle review.

Indicators

From the Repeatable Level:
» Trends in the number, type, and priority of action items recorded during a review
» Trends in the rate at which the action items are being addressed

Key Process Area Goals Addressed

Integrated Software Management:
 The planning and managing of each software project is based on the
organization’s standard software process.
Life-Cycle Stages: All

Users

From the Repeatable Level:
* Project software manager
» Customer
» Senior management

Software quality assurance

Software engineering
Users’ Questions

From the Repeatable Level:
» Are the action items being handled in a timely manner?
* How are the number and types of open action items going to impact the cost,
schedule, and resources?
For the Defined Level:

* Are the process action items being handled as expeditiously as the product
action items?

CMU/SEI-92-TR-25 103

Defined Level

Review Results

Input

From the Repeatable Level:
* Number of action items:
- Total
- Open
- Closed
» For each action item:
- Date opened

- Type (e.g., documentation change, additional analysis required, resolution
of a to-be-determined item, process)

- Priority (e.g., relative ranking of importance of the action item)

- Date closed

Interpretation

The figures and interpretations are the same as the Repeatable Level in Section 4.5.2.

At the Defined Level the organization has its processes defined and has historical data
to use. One use is to predict how long an activity will take. The project software
manager can use the data from previous projects and from earlier project reviews to
predict how long it will take to close an action item of a given priority or type. This
information can be obtained by determining the average length of time the action items
of each priority or type from previous reviews on similar projects remained open. The
manager can determine the performance of the project against these averages. Table
5.5.2-1 compares the performance of a project in addressing review action items
against the averages obtained from historical data.

Action Iltems Average Value Project Value to Date
Product Priority
1 4 hours 3 hours
2 4 hours 4 hours
3 1 week 1 week
4 1 month 3 weeks
All Product 9 days 7 days
All Process 3 months 3.5 months
Table 5.5.2-1. Length of Time Action Items Remain Open

104

CMU/SEI-92-TR-25

Review Results Defined Level

The project is addressing the highest and lowest priority action items faster than the
average project and is performing just as an average project with respect to the middle
priority action items. The project is also addressing all product action items (all
priorities combined) faster than the average, but is not performing as well with respect
to the process related action items.

Sources
From the Repeatable Level:

[AFSC 86] discusses tracking action items in its requirements definition and stability
indicators.

[Florac 92] discusses tracking action items in their general discussion of a problem
management system.

[Rozum 92] discusses tracking action items in their software defects metric.

[Schultz 88] discusses tracking action items in his software volatility metric.

CMU/SEI-92-TR-25 105

Defined Level Review Results

106 CMU/SEI-92-TR-25

5.5.3. Trouble Reports

The quality indicators from trouble reports include the indicators from the Repeatable
Level. At the Defined Level, the organization begins to gather and analyze the
information on its trouble reporting process and on the development processes.

Objective of the Trouble Reports Indicators

To provide software managers with an insight into the quality of the product, the
software reliability, and the effectiveness of testing and to provide the software
engineering process group with information on the development processes.

Indicators

From the Repeatable Level:
» Trends in the following:
- Number, type, and severity of the trouble reports
- Trouble report density, that is, the number of trouble reports per unit size
- Rate at which trouble reports are being addressed
* Relationship between the number of trouble reports and the number of test
cases passed
For the Defined Level:
» Trends in the following:
- Rate at which trouble reports are being written
- Number of defects in each software component

Key Process Area Goals Addressed

Software Product Engineering:

* The software engineering activities are well-defined, integrated, and used
consistently to produce a software system.

» State-of-the-practice software engineering tools and methods are used, as
appropriate, to build and maintain the software system.

Life-Cycle Stages

Integration and acceptance test

CMU/SEI-92-TR-25 107

Defined Level Trouble Reports

Users

From the Repeatable Level:
* Project software manager
» Software quality assurance personnel
» Software testing manager
 First-line and mid-level software development managers

For the Defined Level:
» Software engineering process group

Users’ Questions

From the Repeatable Level:

» Does the quality of the product indicate that it is ready for release to the
customer?

* Will undetected or unresolved problems in the product lead to more problems in
the next life-cycle stage?

» Does the number of trouble reports indicate that the software product should be
reworked before proceeding to the next life-cycle stage?

* Is the testing activity complete?
» Are project personnel addressing the trouble reports in a timely manner?

For the Defined Level:
» Do the types of defects suggest areas for process changes?

* How does this project compare to others with regard to the number and types of
defects discovered?

* Which components tend to be error prone?

Input

* Number of trouble reports:
- Total
- Open
- Closed

* Number of test cases:
- Scheduled
- Passed

* Product size

» For each trouble report:
- Date opened
- Date closed

108 CMU/SEI-92-TR-25

Trouble Reports Defined Level

- Date trouble report evaluated

- Type

- Severity

- Type (category) of defect

- Severity of defect

- Product identification

- Trouble report identification

- Source of problem

- Cause of defect

- Life-cycle stage in which trouble report is written
- Activity in which defect was introduced
- Units affected by defect

Note that some of the information requested for each trouble report can be provided
only after the problem has been analyzed and the defect fixed.

Interpretation

The plots used at the Repeatable Level are also applicable at the Defined Level. At the
Defined Level, the figures are more meaningful if prepared for each computer software
configuration item (CSCI) instead of for the project as a whole. Also, at the Defined
Level, the project can use historical data to compare itself against similar projects and
to predict the number of trouble reports it can expect.

Figure 5.5.3-1 compares the total number of trouble reports written against the range of
the average total number of trouble reports written per week obtained from historical
data. The project software manager needs to determine why at week 7 this CSCI
started to exceed the norm. Did the test team postpone the start of the more complex
tests? Has the quality of the CSCI suddenly decreased? Have the early tests not been
sufficient to detect these defects? How does this CSCI compare to the other CSCls on
the project? In general, if the number of trouble reports exceeds the upper threshold,
possible causes are unreliable software, misinterpreted requirements, or extremely
complex software. If the number of trouble reports is less than the lower threshold,
possible causes are reliable software or inadequate testing.

Figure 5.5.3-2 is an example of what an organization can do with historical data. This
figure (adapted from [Landis 90]) shows the number of errors detected per thousand
source lines of code (KSLOC) for each life-cycle stage for the project and the range
observed from the historical data. Landis et al report that their data in the Software
Engineering Laboratory supports a “halving” model in which the rate is cut by fifty
percent at each stage [Landis 90]. Typically, their projects have about four errors per
thousand SLOC during build/release testing, two errors per thousand during system
testing, and one error per thousand during acceptance testing.

CMU/SEI-92-TR-25 109

Defined Level Trouble Reports

150
- Planned
Actual
125 |
100 |_
Trouble
Reports
75 -
50 L
25
b4
/
/ | | | | | | | | |
1 2 3 4 5 6 7 8 9 10
Weeks

Figure 5.5.3-1. Number of Trouble Reports Compared to Range Determined from
Historical Data for Similar Projects

Release Testing I System Test | Acceptance Test I
7
6
Errors
per 5
KSLOC

Schedule

Figure 5.5.3-2. Software Engineering Laboratory Error-Rate Model

110 CMU/SEI-92-TR-25

Trouble Reports Defined Level

In addition to plotting the total number of trouble reports written for each CSCI, the
project software manager also looks at the plots of the number of open and closed
trouble reports. One way of looking at these is shown in Figure 4.5.3-1. Figure 5.5.3-3
shows an alternative way of tracking open trouble reports. This figure, prepared for
each reporting period, shows how long trouble reports of a given severity remain open.
Such a figure is most useful for higher levels because these are the problems that are
addressed first. Lower severity problems are usually fixed when there are several to
repair or on a time-available basis until the number of problems at that level becomes
high. The figure indicates how rapidly the software development team is addressing
the problems at this severity. If length of time becomes unreasonably long, the
manager needs to know and understand the reason(s).

30

25 |-
Number of

Open Trouble
Reports for 20

Severity
Level X
15
10
5 L

Figure 5.5.3-3. Length of Time that Severity Level X Trouble Reports Are Open

Figure 5.5.3-4 shows the number of trouble reports written for each software work
product. In this example, CSCls are used as the work product, but the figure can also
use modules, units, or computer software components as the work products. This
figure is intentionally left ambiguous with regard to frequency of reporting. If the
software products are being tested in parallel, then the comparison on a weekly,
biweekly, or monthly basis is valid. If, however, the work products are tested
sequentially, the figure is meaningful only at the end of the testing activity, that is, when

CMU/SEI-92-TR-25 111

10

Defined Level Trouble Reports

the data for all products are available. Also, to allow for varying product sizes, the
number of trouble reports written should be normalized, for example, the number
written per thousand lines of code. Lastly, the manager may want to draw the figure by
severity level, rather than using all severity levels to eliminate any dominating effect
which lower severity level trouble reports may have. Regardless how the specific figure
is drawn, it allows the project software manager to do the following:

» Compare trouble report data for multiple related work products

* ldentify those work products that may require further analysis to determine
possible process or product problems resulting in the higher number of trouble
reports

* ldentify work products on which few trouble reports were issued. These
products may also warrant some analysis to determine what is being done right
so the same processes can be used for other similar products.

* ldentify products that are of lower quality

60 __
50 |
40 |-
Number of
Trouble
Reports 30 |-
20 |-
) J
A B C D E F

CSCl

Figure 5.5.3-4. Total Number of Trouble Reports per Computer Software Configuration
Item

112 CMU/SEI-92-TR-25

Trouble Reports Defined Level

Sources
From the Repeatable Level:

[AFSC 87], [Buckley 90], [Card 90], [Decker 91], [Grady 87], [IEEE 1061], [Landis 90],
[Pfleeger 89], and [Rozum 92] discuss trouble reports.

[Florac 92] has a thorough discussion of trouble reports and serves as the main source
of information for this section.

From the Defined Level:
[Florac 92] has a thorough discussion of problem reports.

[IEEE 1044] was used to determine the inputs for this indicator.

CMU/SEI-92-TR-25 113

Defined Level Trouble Reports

114 CMU/SEI-92-TR-25

5.5.4. Peer Review Results

Peer reviews can be a powerful tool for the project software manager. The basic
principle of the peer review process is to find defects in the intermediate software
products and remove them so that the final product is of high quality. Peer reviews
should begin early in the life cycle. An error discovered during the operations stage
may be as much as one hundred times more expensive to repair than if it were
corrected in the preliminary design stage.

Measurements taken from peer review data can provide information on the number and
types of defects recorded. These data document the efficiency and efficacy of the peer
reviews and can point to potential problems in the processes used to develop the
product, as well as identify defects in the product.

Objective of Peer Review Results Indicators

» To provide the software managers and the software quality assurance
personnel insight into the quality of the intermediate and final products.

* To provide the SEPG with insight into the peer review and development
processes.
Indicators

Trends in the following:
* Number of defects detected during peer reviews
» Type and severity of defects
* Number of re-reviews required
* Rate at which defects are being addressed
* Number of defects in each software component
* Number of defects in each product type
» Defect detection efficiency

Key Process Area Goals Addressed

Peer Reviews:
» Product defects are identified and fixed early in the life cycle.

» Appropriate product improvements are identified and implemented early in the
life cycle.

» The staff members become more effective through a better understanding of
their work products and knowledge of errors that can be prevented.

* A rigorous group process for reviewing and evaluating product quality is
established and used.

CMU/SEI-92-TR-25 115

Defined Level Peer Review Results

Software Product Engineering:

* The software engineering activities are well-defined, integrated, and used
consistently to produce a software system.

» State-of-the-practice software engineering tools and methods are used, as
appropriate, to build and maintain the software system.
Life-Cycle Stages: All

Users
» Software managers
» Software quality assurance personnel
» Software engineering process group

Users’ Questions

» Does the peer review indicate that the product quality is sufficient to allow the
product to proceed to the next stage?

» Does the number of re-reviews suggest that there may be product quality and/or
process problems?

» Do the types of defects detected during peer reviews suggest areas for process
change?

» Do the peer reviews effectively detect defects?

Input

» For each peer review:
- Type of review (e.g., requirements review, design review, code review)
- Number of items reviewed
- Action items open
- Action items closed
- ldentification of product reviewed
- Product size
- Preparation lead time
- Preparation time for each reviewer
- Length of time of review
- Size of review team
- Experience of review team
- Structure of review team
- Number of defects detected

116 CMU/SEI-92-TR-25

Peer Review Results Defined Level

e For each defect:
- Severity

- Type
- Rework effort
- Life-cycle stage in which it was introduced into product
- Number of units affected by defect
- Number of units containing defect
* Number of peer reviews
* Number of re-reviews

Note: Some of the inputs may not be used until higher maturity levels.
Interpretation

Defects detected during testing are not discussed in this section. They are discussed
in the trouble reports indicator Sections 4.5.3 and 5.5.3. The defects discussed here
are those detected during peer reviews. However, techniques and graphs discussed in
this section can also be used for the defects detected through testing and recorded on
the trouble reports.

Similarly, action items are not treated in this section. As noted in Section 4.5.2, the
action items detected in peer reviews need to be tracked to closure, but the time scales
usually involved with the peer review process do not allow for the formalism proposed
in Section 4.5.2. A manager may choose to treat peer review action items in the same
fashion as in Section 4.5.2.

Figure 5.5.4-1 shows the number of defects open and closed and the total number of
defects versus time. This graph is similar to Figure 4.5.3-1 and has similar
interpretation.

Figure 5.5.4-2 shows an alternate view of the data. In this figure, the percentage of
defects corrected against the reported total is plotted against time. This provides a
measure of the rate at which the development team is responding to the defect reports.
In the figure, the development team exhibited a tendency not to actively pursue the
correction of defects. After week 3, the team’s performance with respect to the defects
improved and remained fairly constant around seventy-five percent until week 7, after
which the team was very responsive to the defects. If the team had not changed its
performance, a backlog of defects would have occurred. When analyzing Figure 5.5.4-
2, the managers should be cognizant of the size of the changes. If the majority of the
defects addressed by the team require only minor changes to the product, only a small
amount of effort may be needed to fix them. This can falsely indicate that the
development personnel are addressing the defects in a timely manner when, in reality,
major rework may be required to close a defect.

CMU/SEI-92-TR-25 117

Defined Level Peer Review Results

150 __

125 |-

100

Defects

75 -

50

25 -

Weeks

Figure 5.5.4-1. Number of Total, Open, and Closed Defects

100 —

0 |-

80 |-

Defects
Closed 70
%

60 |-

50 -

Figure 5.5.4-2. Percentage of Total Defects Closed

118 CMU/SEI-92-TR-25

Peer Review Results Defined Level

Upon completion of a particular life-cycle activity, a Pareto analysis can be performed
on the types of defects discovered during that activity. Figure 5.5.4-3 shows an
example of the distribution of several possible defect categories for unit design reviews.
The figure can be used to determine which categories are the major source of defects
in a particular type of review. In this example, failure to be compliant with standards is
the dominant defect category. Interface errors also represent a major defect category.
The figure indicates that software quality assurance personnel could teach a refresher
course on the unit design standards prior to the next unit design activity. In addition,
the SEPG may wish to review the design process to determine whether the process
can be changed in a manner to lower the relatively high value of interface defects.
However, the defects may be the result of carelessness or sloppiness on the part of the
designers.

50

Number
of Defects

Standards Interface Logic Other
Violation Defect Defect

Figure 5.5.4-3. Distribution of Defect Categories for Unit Design Reviews

Figure 5.5.4-4 shows the number of defects discovered in each software product
(CSCI). The figure can be drawn at the module or computer software component level.
The manager or software quality assurance personnel use the figure:

» To compare defect data for multiple related work products.

CMU/SEI-92-TR-25 119

Defined Level Peer Review Results

» As a predictor of which CSCI or software component is more likely to generate
more trouble reports, require more testing, or require more maintenance effort
after delivery.

» To identify those work products which may require further analysis to identify
possible process or product problems causing a higher number of defects.

» To determine a work product for which few defects were issued. This product
may warrant some analysis to determine why it had fewer defects than the other
products. If a different process was used, perhaps it can be applied to the other
products.

Figure 5.5.4-4 assumes that all CSClIs are of equal importance. This may not be the
case in reality. However, the manager can use the importance of each CSCI and the
information in the figure to determine overall quality. If the preponderance of defects is
limited to an unimportant CSCI, the total quality of the software from the customer’s
point of view may be good.

60 —
50 -
40
Total Number
of Defects
Discovered 30 |~
20 -
) J
A B C D E F

CSClI

Figure 5.5.4-4. Distribution of the Number of Defects by CSCI

An alternate way of viewing the data is shown in Figure 5.5.4-5. Here the data are
normalized to give defect density for each CSCI. The figure shows an upper limit on
the defect density. The limit is based on historical data or is the project’s or
organization’s quality goal. The example highlights that software quality assurance

120 CMU/SEI-92-TR-25

Peer Review Results Defined Level

personnel or the manager needs to determine why CSCI D has a considerably lower
defect density and CSCI E has a higher defect density than the other CSCIs. An
unusually low defect density may indicate a high quality product or a poor quality peer
review process.

30

25

20 Upper Limit
Defects
er KLOC
P 15 |-

1.0

) j

A B C D E F

CSClI

Figure 5.5.4-5. Defect Density for CSCls

Figure 5.5.4-6 shows the defect density observed for each life-cycle activity. This
figure is a plot of the total number of defects detected for a particular type of peer
review (e.g., code review) during a particular build or release divided by the number of
that type of review held during that life-cycle stage (e.g., the number of defects found
during a peer review of products for requirements analysis divided by the number of
requirements analysis peer reviews). The figure provides information on the
effectiveness of the different type of reviews. |If defect density is less in the early
activities than in later activities, the SEPG may want to analyze the peer review process
for the earlier activities since it is desirable to find defects early. Once data have been
collected for multiple projects, they can be used to establish estimates of the number of
defects expected. Detection of defects early in the life cycle may indicate a mature
software process, but it may also indicate that the project has the personnel with the
right skills and experience level working on the project at that time.

CMU/SEI-92-TR-25 121

Defined Level Peer Review Results

5 __
4 |
Defects
per 3

Inspection

2
1_I Il

Requirements Design Unit Unit Unit Integration
Analysis Detailed Code Test and Test
Design

Life-Cycle Activity

Figure 5.5.4-6. Defect Density for Each Life-Cycle Activity

As noted above, it is desirable to detect defects as early in the life cycle as possible.
Figure 5.5.4-7 shows the number of requirements defects detected during each life-
cycle activity. If the majority of such defects are found late in the life cycle, either the
peer review processes occurring in the early stages or the requirements definition
process needs to be improved. Similar figures can be drawn for defects detected
during design and coding. The figure could also be plotted by using the percentage of
requirements defects found in each life-cycle stage. The interpretation remains the
same.

122 CMU/SEI-92-TR-25

Peer Review Results Defined Level

5 —
4
Defect 3 |
Density
2 —
| l
|
Requirements Design Unit Unit Unit Integration
Analysis Detailed Code Test and Test
Design

Life-Cycle Activity

Figure 5.5.4-7. Density of Requirements Defects Found During Peer Reviews in
Different Life-Cycle Activities

During a build or release, the project software manager can get an indication of the
quality of the products under development by the number of items that required a
second peer review. As part of the peer review process, acceptance criteria are
established for each type of product. If the product does not satisfy these criteria, an
additional review is required before the product can proceed to the next development
stage. If the team is developing high quality products, the number of items requiring a
second review is small. If a large percentage of the items have a second review, the
reasons for this must be determined: the items are complex, the personnel doing the
work do not have the necessary skills, the process needs improvement, and so forth.
The ideal is to have no item re-reviewed, that is, the goal is a zero-defect product.
Every defect discovered indicates rework which the project wants to minimize.

Figure 5.5.4-8 shows the re-review rate for designed units for a particular CSCI. The
percentage is obtained by dividing the number of items that required a second review
by the total number of initial reviews during the reporting period and multiplying by one
hundred. The frequency of the figure is weekly, but depending on the project and its
schedule, the manager can review such plots on a monthly basis. The figure also
indicates the range within which the re-review rate can be expected to lie. This normal
range is determined from historical data, when available. At the Managed Level, the
upper and lower limits can be established using statistical techniques.

CMU/SEI-92-TR-25 123

Defined Level Peer Review Results

6
5
1
% of ltems .
Re-reviewed
3 - ¢ Normal Range
2 b - _i
1 =
| | | | | | | | | |

Figure 5.5.4-8. Percentage of Items Requiring a Second Review

Figure 5.5.4-9 shows the defect detection efficiency of the peer review process. The
ratio of defects detected in peer reviews over the total number of defects detected is
plotted over time for products from a project or all projects in an organization. The total
number of defects detected is the number detected in both peer reviews and testing,
therefore a datum on this figure cannot be plotted until testing is complete for the
product. In an organization with a good peer review process, most defects will be
detected before the test activity. In this example, the organization has made
improvements in its peer review process. The results show that the organization is
detecting significantly more errors before testing, when it is less expensive to remove
them. However, the majority of defects continue to go undetected until testing.

124 CMU/SEI-92-TR-25

Peer Review Results Defined Level

60 __
50 |-
% of
Defects
Detected 40 |_
in Peer
Reviews
30 |-
20 |-
10 —
| | | | | | | | | |
1 2 3 4 5 6 7 8 9 10
Months
Figure 5.5.4-9. Peer Review Efficiency
Sources

[Decker 91] and [Florac 92] were the major sources of information for this section.

[AFSC 87], [Buckley 90], [Card 90], [Grady 87], [IEEE 1061], [Landis 90], [Pfleeger 89],
and [Rozum 92] discuss concepts on tracking and analyzing trouble reports that are
applicable to peer review data.

[[EEE 1044] was consulted for the types of inspection data to be collected.

[Pyzdek 89] discusses Pareto analysis.

CMU/SEI-92-TR-25 125

Defined Level Peer Review Results

126 CMU/SEI-92-TR-25

5.6. Stability

At the Defined Level the stability indicators concentrate on the stability of the
requirements, size, and process. Requirements stability is concerned with the number
of changes to the requirements, the number of waivers from requirements, and the
length of time the requests for changes to requirements are open. Size stability is
concerned with code size and size estimates. Process stability is concerned with the
number of changes to the software process and the number of waivers from the
process.

5.6.1. Requirements Stability

The lack of requirements stability can lead to poor product quality, increased project
cost, and/or lengthened project schedule. At the Defined Level, the project continues
to use the requirements stability indicators of the Repeatable Level, but starts to
investigate which categories of requirements are changing the most and to analyze the
waiver requests from the contractual software requirements.

Objective of the Requirements Stability Indicators

To provide the project software manager and the software engineering process group
(SEPG) with visibility into the nature and magnitude of requirements changes.

Indicators

From the Repeatable Level:
* Trends in the total number of
- Requirements changes
- TBDs

For the Defined Level:

e Trends in the total number of waivers from contractual software process
requirements

» Length of time for analysis and action on change requests
* Amount of effort required to implement change requests

Key Process Area Goals Addressed

Integrated Software Management:

 The planning and managing of each software project is based on the
organization’s standard software process.

CMU/SEI-92-TR-25 127

Defined Level Requirements Stability

» Technical and management data from past and current projects are available
and used to effectively and efficiently estimate, plan, track, and replan the
software projects.

128 CMU/SEI-92-TR-25

Requirements Stability Defined Level

Software Product Engineering:

* The software engineering activities are well-defined, integrated, and used
consistently to produce software systems.

» State-of-the-practice software engineering tools and methods are used, as
appropriate, to build and maintain the software system.
Life-Cycle Stages: All, most important during requirements and design

Users

From the Repeatable Level:
» Software engineering manager for control and monitoring of requirements
» Software engineering process group for sources of and reasons for instability

For the Defined Level:
* Project software manager

Users’ Questions

From the Repeatable Level:
* Is the number of changes to the requirements manageable?

* Are the requirements scheduled for implementation in a particular release
actually addressed as planned?

* Is the number of requirements changes decreasing with time?
* Is the number of TBDs preventing satisfactory completion of the product?
* Is the number of TBDs decreasing with time, that is, are the TBDs being
resolved in a timely manner?
For the Defined Level:

* What categories of requirements are responsible for the majority of
requirements changes?

* How does the number of requirements changes on this project compare to past,
similar projects?

* How responsive are the staff addressing requirements change requests?

* How does the number of waivers of requirements on this project compare to
past, similar projects?

* What is the impact of requirements changes on effort and cost?
Input

From the Repeatable Level:
» Total number of requirements

CMU/SEI-92-TR-25 129

Defined Level Requirements Stability

* Number of requirements changes:
- Proposed
- Open
- Approved

Incorporated into baseline
» For each requirements change:
- The computer software configuration item(s) (CSCI) affected
- Major source of request (customer, software engineering, etc.)
- Requirement type (functional, performance, etc.)
* Number of TBDs in requirements specifications
* Number of requirements scheduled for each software build or release

For the Defined Level:
» Date of change request
» Date change request approved
» Effort and cost to analyze the proposed changes and to achieve agreement

» Size and cost to implement and test, including initial estimate and actuals (for
major changes only)

* Number of waivers for deviations from contractual software process
requirements:

- Number requested
- Number approved
- Number rejected

Interpretation

Figure 5.6.1-1 shows the number of changes to requirements and the range of
requirements changes observed on past, similar projects. Ideally, the number of
requirements changes decreases as the project advances through the life cycle. This
is evidenced by the smaller range in changes at critical design review (CDR) than at the
system design review (SDR). The project software manager can track how the project
is doing compared to other past, similar projects. In this case, the project is very similar
to others. If the project lies outside the range, the manager needs to determine the
cause. For an excessive number of changes, the requirements specification may be of
poor quality, and the manager and the customer need to address this issue. If the
actual number of requirements changes tracks closely to the planned profile, the
project software manager can use the figure to predict how many more requirements
changes the project can expect. This information can be used with the progress and
effort indicators to check the current estimates for progress and effort. When analyzing
Figure 5.6.1-1, the project software manager needs to be cognizant of the size of each
change. One change can have a large impact on the cost, effort, and schedule.

130 CMU/SEI-92-TR-25

Requirements Stability Defined Level

Conversely, several small requirements changes can have little impact on cost, effort,
and schedule.

150 _

- --- Planned
1251 Actual
100

Requirements
Changes

Months

Figure 5.6.1-1. Total Number of Requirements Changes

CMU/SEI-92-TR-25 131

Defined Level Requirements Stability

Figure 5.6.1-2 shows the total number of requirements changes approved to date and
breaks this total into component requirements types. The project manager, the SEPG,
or software engineering personnel can determine whether any one type is dominating
or chiefly responsible for the requirements changes. |If the figure shows that the
majority of the total changes is due to one category, then the cause needs to be
determined. Did the process that produced the requirements break down? Does the
process need to be changed? Would a change to the process help? The types in the
figure are chosen as representative of the types of requirements and are not complete.

50 —

25 I~ Total

20
Approved
Requirements
Changes 15
Interface
— -
10 e ..l _._._.--7"" performance
5 - - - = - - - - Functional
SSR PDR CDR
| | | | | J
1 2 3 4 5 6 7 8 9 10

Months

Figure 5.6.1-2. Total Number of Requirements Changes and Number of Changes by
Requirement Type

132 CMU/SEI-92-TR-25

Requirements Stability Defined Level

Figure 5.6.1-3 shows the total number of waiver requests on the project to-date as well
as the number requested per reporting period. The manager needs to compare the
numbers on the project with the historical data to determine whether the numbers are
within bounds. The manager may wish to plot only the approved waivers or the total
number requested and the approved number. If the number requested or approved is
excessive, the manager, the SEPG, or software engineering personnel need to
determine the cause for the high numbers. If the number requested or approved is
lower than the normal range, the same groups monitor the products to ensure that the
project personnel understand the requirements. Well-written requirements can result in
a lower number of waiver requests.

35 —

30 -

Total
25 |

Waivers 20

15 |

10 | —
Per Reporting

~ Period

Months

Figure 5.6.1-3. Cumulative Number of Waivers and Number per Reporting Period

CMU/SEI-92-TR-25 133

Defined Level Requirements Stability

Figure 5.6.1-4 shows the number of change requests that have been analyzed and
acted upon per time interval. It shows how much time is required for a change request
to be analyzed and acted upon (either approved or rejected). The main indicator in
which the manager or software engineers are interested is the amount of time required
for an “average” or typical change request to be resolved. Minor changes require less
time than complex changes. From a process point of view, software engineers want to
minimize the amount of time required to analyze the request, and the manager wants to
minimize the control process without jeopardizing the quality of the analysis and the
control board deliberations.

30

25

20
Change

Requests
15

10

Figure 5.6.1-4. Length of Time for Change Request Analysis and Action

A figure similar to Figure 5.6.1-4 can be prepared that shows the amount of effort or
magnitude of the change for change requests, that is, the figure would show the
number of change requests by either the size of the change (measured in the number
of units or lines of code, for example) or the amount of effort required to make the
approved change. The analysis of this figure would be similar to that of Figure 5.6.1-4.

134 CMU/SEI-92-TR-25

Requirements Stability Defined Level

Sources
[AFSC 86] has a similar indicator that uses software size.
[Decker 91] discusses a software volatility/software requirements measure.

[Grady 87] uses a requirements stability as an input to Hewlett-Packard’s difficulty
metric.

[Landis 90] has two indicators that are related to this but use software size in their trend
chart.

[Pfleeger 89] discusses a requirements volatility metric.

[Schultz 88] discusses a software volatility metric.

CMU/SEI-92-TR-25 135

5.6.2. Size Stability

The indicators for size stability are the same as those at the Repeatable Level. At the
Defined Level, managers can use historical data from other similar projects that allow
them not only to track actual size against the planned size, but also as a frame of
reference for making the original size estimates. This frame of reference is in the form
of a range centered on the planned size. Any variation from the plan that is still within
this range is considered normal. Variations outside this normal range require analysis
by the manager.

Objective of the Size Stability Indicators

To provide the project software manager and the project manager with an indication of
the completeness and stability of the requirements and of the capability of the
implementation staff to produce the software product within the current budget and
schedule.

Indicators

Same as the Repeatable Level:
» Trends in the code size
» The variation of actual software size from size estimates
» Variation of actual software size from estimated size by build or release

Key Process Area Addressed

Integrated Software Management:

» Technical and management data from past and current projects are available
and used to effectively and efficiently estimate, plan, track, and replan the
software projects.

Life-Cycle Stages: All
Users

Software engineering and project software managers for controlling and monitoring of
project

Users’ Questions

From the Repeatable Level:
* How much have the size estimates changed over time during development?
* How much do the actual values deviate from their estimated values?

* How much does the trend of the actual values affect the development
schedule?

* Is the estimated productivity sufficient to allow the completion of added code on
schedule or are more staff required?

CMU/SEI-92-TR-25 137

Defined Level Size Stability

Input

From the Repeatable Level:

» Software size estimates:
- Total size
- By computer software configuration item (CSCI)
- New code
- Off-the-shelf code
- Reused code

* Amount of software scheduled for completion by build or release

Interpretation

Figure 5.6.2-1 shows the change in software size over time for the project and also in
comparison with similar projects. The interpretation of the figure remains the same as
that of the Repeatable Level except for the comparison with the historical data. This
figure is similar to Figure 4.6.2-1, but the range of software sizes determined from
historical data for similar projects has been added, and the size of the new and reused
software has been omitted. This comparison allows the manager to determine how the
project is tracking against the “norm.” If deviations from the norm occur, the manager
needs to determine the reason.

Planned

— Actual

Size

SSR PDR CDR TRR PCA
| | | | | | | | | J

1 2 3 4 5 6 7 8 9 10

Months

Figure 5.6.2-1. Software Size as a Function of Time Compared to Similar Projects

138 CMU/SEI-92-TR-25

Size Stability Defined Level

Figure 5.6.2-2 shows an alternate way to analyze the size growth data. The figure is
based on the work of Landis et al and shows the Software Engineering Laboratory
(SEL) Size Estimate Model [Landis 90]. Growth is expressed as a percentage and is
determined at key points in the life cycle. Their data show that as the details of the
unknown portions of the requirements (the to-be-determineds) become known, the size
growth grows more rapidly. Hence, the range of accepted growth narrows as the
system becomes better defined.

+50 —

+40

+30

+20

+10
Size
Growth 0
%
-10
-20
System Acceptance
Design Implementation Test Test
| | | | | | | | |
3 6 9 12 15 18 21 24 27 30

Months

Figure 5.6.2-2. Software Size Growth

If the actual growth is greater than planned, the manager can look for an incomplete
design (especially during implementation) or numerous changes in the requirements.
The manager can use the requirements stability indicator for the latter. If there is little
or no growth in the size estimate after the preliminary design reviews, the project may
be fortunate to have an experienced team that is familiar with the application and/or
has a set of stable, well-defined requirements. The manager can use the requirements
stability indicator or the effort indicator to verify these assumptions.

CMU/SEI-92-TR-25 139

Defined Level Size Stability

Figures 5.6.2-1 and 5.6.2-2 show the data for the entire project. They can also be
drawn for each CSCI.

Sources
From the Repeatable Level:

[AFSC 86], [Decker 91], [Landis 90], [Pfleeger 89], and [Schultz 88] all discuss tracking
software size.

140 CMU/SEI-92-TR-25

5.6.3. Process Stability

A characteristic of the Defined Level is a well-defined process whereby project
personnel perform their work. The process stability indicators provide information on
the stability of the process by monitoring the number of requests to change the process
and the number of waivers to the process. A large number of requests may indicate
that the defined processes are not as efficient as believed or may not be appropriate to
a particular project. A large number of changes or waivers granted may indicate that
the processes are actually undergoing ad hoc revision and are not as stable as
believed.

Objective of the Process Stability Indicators

To provide an indication of the stability of the defined process and to provide the
software engineering process group (SEPG) with an indication of the quality of the
defined process.

Indicators

Trends in the number of the following:
» Software process change requests
* Waivers to the software process requirements

Key Process Area Goals Addressed

Organization Process Definition:

» A standard software process for the organization is defined and maintained as a
basis for stabilizing, analyzing, and improving the performance of the software
projects.

Integrated Software Management:

 The planning and managing of each software project is based on the
organization’s standard software process.

Software Product Engineering:

» Software engineering issues for the product and the process are properly
addressed in the system requirements and system design.

* The software engineering activities are well-defined, integrated, and used
consistently to produce software systems.

» State-of-the-practice software engineering tools and method are used, as
appropriate, to build and maintain the software system.

Life-Cycle Stages: All

CMU/SEI-92-TR-25 141

Defined Level Process Stability

Users
» Project software manager
* SEPG
* Senior management

Users’ Questions
* How stable is the process?
» Are process problems due to a poor process definition or poor implementation?

Input

* Process plan

» Process change requests:
- Number open
- Number approved
- Number rejected
- Number incorporated

* Waiver requests:
- Number approved
- Number rejected

» For each process change or waiver request:
- Source of request (e.g., group, department)
- Impact of request (e.g., minor or major)

Interpretation

Figure 5.6.3-1 shows the total number of change requests and the number of approved
requests per reporting period. A high number of change requests indicates that the
personnel do not sufficiently understand the process or that the standard process may
be inappropriate and should be revised. A high number of approved change requests
indicates that the process may be unstable. An objective, thorough analysis is
necessary to determine the reasons for the high approval rate. The figure can also be
plotted with cumulative change requests.

Not shown on the figure are the numbers of requests that have been approved and not
incorporated. Process changes must be carefully managed just like requirements
changes. A change to a process can be approved, but the appropriate planning for
introducing the change must occur. Minor changes can be saved and introduced
organization-wide quarterly, semiannually, or whenever appropriate. Major changes, of
course, can be made as soon as possible after approval if the organization is ready
(e.g., there is sufficient funding, training, staffing, etc.).

142 CMU/SEI-92-TR-25

Process Stability Defined Level

30 —
25 |-
Requested
Process
Change 20
Requests
15
10 L-~-_-- S L7 S Approved
~ N
~ N - -
5 - - RN
| | | | | | | | | J
1 2 3 4 5 6 7 8 9 10
Months

Figure 5.6.3-1. Process Change Requests

CMU/SEI-92-TR-25 143

Defined Level Process Stability

Figure 5.6.3-2 shows the total number of requests for waivers and the number of
approved requests per reporting period. A high number of requests for waiver indicates
that the process may be inappropriate or that the process may be appropriate but is not
designed for flexibility. A high number of approved waivers indicates that the process
may be unstable and may in fact be changing in an uncontrolled manner. The figure
can also be plotted with cumulative change requests.

60 —

50 I~

Requested

Waivers

20 4 ~ Approved

10 |~

Months

Figure 5.6.3-2. Waivers from Process Standards
Sources

[Humphrey 89] discusses the role of the SEPG in process development and monitoring.

144 CMU/SEI-92-TR-25

5.7. Computer Resource Utilization

The indicators for computer resource utilization are the same as those at the
Repeatable Level (see Section 4.7.). At the Defined Level these indicators address the
Integrated Software Management key process area.

CMU/SEI-92-TR-25 145

Defined Level Computer Resource Utilization

146 CMU/SEI-92-TR-25

5.8. Training

A trained staff is a valuable asset for the project software manager. The manager
ensures that the staff has the skills to perform its assigned tasks. The training indicator
provides the manager with information on the training program.

Objective of the Training Indicators

To provide managers visibility into their training process, to ensure effective utilization
of training, and to provide project software managers with an indication of their staff's
mixture of skills.
Indicators
» Deviations in the number of the following:
- Classes taught from the number of classes planned
- Staff taught from the number planned
* Quality of the training program
* Number of waivers from training:
- Requested
- Approved

Key Process Area Goals Addressed

Training Program:
» The staff and managers have the skills and knowledge to perform their jobs.

» The staff and managers effectively use, or are prepared to use, the capabilities
and features of the existing and planned worked environment.

* The staff and managers are provided with opportunities to improve their
professional skills.
Life-Cycle Stages: All

Users
* Project software manager for the details on the project

» Senior management for consolidated cost figures of the organizational training
program

» Software engineering process group for appropriateness and effectiveness of
training program
Users’ Questions
* Who is attending training?
» Are the appropriate people being trained?

CMU/SEI-92-TR-25 147

Defined Level Training

* How many of the staff are being trained?

» How many of the staff have completed their training?

» Does the staff have the appropriate mixture of skills for the project?
* How is the project performing with respect to its training plan?

» What is the quality/effectiveness of the training?

* How many waivers from training have been requested?

* How many waivers from training have been approved?

* What is the cost of training (total and per capita)?

Input
» Training plans
* Number of classes actually taught
» Attendance records
» Types of people trained (e.g., technical, support personnel, managers)
» Training survey results
* Waiver requests:
- Number of requests (by course and by project)
- Number approved (by course and by project)
» For each waiver request:
- Reason for request
- Source of request (e.qg., skill level of staff, project, department)

Interpretation

In the discussion that follows the terms “course” and “class” are used. A course is an
offering in a particular subject, for example, a course in requirements analysis. A class
is the number of offerings of a particular course. For example, there may be one course
in requirements analysis, but there are six classes in one month for that course. There
are also different levels of courses. They range from an overview of a particular
subject to an in-depth discussion of that subject. The organization needs to determine
what the goals of its training program are and develop the appropriate courses,
whether they are overview, refresher, or in-depth courses. The organization also needs
to determine the number of classes required to meet the demand for training.

Figure 5.8-1 shows the planned number of classes offered versus the actual number
offered in each reporting period. There is a chart for every course. Deviation from the
plan may indicate a lack of accurate planning or commitment to the training program.
Since training affects skill mix, a project’s mixture of skills may not be what it should be.
Deviation may also reflect lack of available instructors, a decline in funds for training, or
an insufficient number of students requiring the course.

148 CMU/SEI-92-TR-25

Training Defined Level

12 ST

Planned 1
1
10 |~ :
____________ 1
s |- 1+ Actual
____________________ 1
Classes
6 —
Now
4 —
2 —
| | | | | | | | |
1 2 3 4 5 6 7 8 9 10
Months

Figure 5.8-1. Number of Classes Offered Each Month

Figure 5.8-1 is drawn for the total number of classes. The number of courses should
also be monitored to ensure that the appropriate subject matter is being offered. It is
important to maintain the appropriate skill level needed for a project. For example, prior
to each life-cycle stage, the project software manager wants to make sure that the staff
has the appropriate skills for the next stage. Or if an organization determines that it will
introduce a new technology, the requisite training must occur before the staff is
expected to use that new technology.

CMU/SEI-92-TR-25 149

Defined Level Training

Figure 5.8-2 shows the planned attendance versus actual attendance. There is a chart
for every course. Deviation for the plan may indicate lack of time, money, or interest of
participants. Since training affects the skill of the staff, the project’s mixture of skills
may not be what it should be.

Planned

150

125 ! .

1 - - - -
: Actual

100 [~ ' :
Attendance
ICH B
Now

50

Months

Figure 5.8-2. Total Attendance

150 CMU/SEI-92-TR-25

Training Defined Level

Figure 5.8-3 shows an example plot that depicts the quality of a course. The x-axis is
labeled with example quality attributes. The training plan defines which attributes are
collected and tracked. The y-axis runs from 1 to 5: the higher the number, the better
the attribute. There is a chart for every class of every course, if appropriate. Low
scores indicate that personnel are not receiving the training needed for the project. A
low instructor rating may indicate an instructor who lacks in-depth knowledge of the
material. Such courses may be flagged for an improvement effort .

_ Current
|: | Average
5 —
4
Student
Reported
Scores 3
2
1

Overall Applicability Presentation Course
Quality to Project Work Material

Figure 5.8-3. Course Quality

CMU/SEI-92-TR-25 151

Defined Level Training

Figure 5.8-4 shows the number of waivers requested and the number approved. There
should be a chart for every project, course, or labor category where appropriate. A high
number of requests may be indicative of a low quality, ineffective, or inappropriate
course. If so, the training plan should be reevaluated. A high number of approved
requests also indicates that the training plan has become unstable or unenforced.
This may lead to a mismatch in a project’s mixture of skills.

60 —
50 |-
Requested
40
Waivers
30
L, S o Approved
20 |- - S~ oo e
10 |-
| | | | | | | | | J
1 2 3 4 5 6 7 8 9 10
Months
Figure 5.8-4. Waivers from Training Courses
Sources

[London 89] discusses high-quality, cost-effective employee training in organizations.

152 CMU/SEI-92-TR-25

6. The Managed Level—Maturity Level 4

This chapter summarizes the characteristics of an organization with a managed
process, provides a brief introduction to statistical process control, and discusses the
indicators that are appropriate for the Managed Level.

6.1. Characteristics of a Managed-Level Organization

An organization with a managed process is characterized as one that sets quantitative
guality goals for software products, measures productivity and quality for important
software process activities across all projects in the organization, and uses a process
database to collect and analyze data. A Managed-Level organization uses a set of
well-defined and consistently-defined measures to establish acceptable quantitative
boundaries for product and process performance. This allows meaningful performance
variation to be distinguished from random variation.

Indicators appropriate for a Managed-Level organization are progress, effort, cost,
quality, stability, computer resource utilization, and training. As noted in Chapter 1,
there are few examples of proven indicators for this maturity level. Some discussion of
indicators in this chapter is based on expected practice. As organizations mature,
experience with indicators at this maturity level will increase, and the information in this
chapter could change.

6.2. Statistical Process Control—An Overview

At the Defined Level, the concept of ranges of the planned items was introduced. At
that level, historical data are used to select a range around the plan based on some
percentage of the planned value. At the Managed Level, however, the organization
can use statistical methods to establish ranges and set the limits of variation around the
plan. The organization makes extensive use of statistical process control (SPC)
techniques.

Pyzdek defines SPC as the use of statistical methods to identify the existence of
special causes of variation in a process [Pyzdek 89]. SPC has a basic rule: variation
from common cause systems should be left to chance, but special causes of variation
should be identified and eliminated. In other words, an organization uses SPC to
identify when a process is out of control by looking at control charts to determine when
an observed variation from the plan is due to special cause and not normal, random
variation.

Figure 5.5.4-8 shows an example of a control chart for the percentage of items re-
reviewed during each reporting period. In the figure, the manager visually determined
the control limits. Most of the values were around three percent, so the manager

CMU/SEI-92-TR-25 153

Managed Level Statistical Process Control

established +1 percent control limits around the three percent value. There is no firm
basis for this assumption other than “it looks reasonable.” In SPC, the manager can
determine an average value and the standard deviation. According to the normal
distribution, 99 percent of all values lie within £3 standard deviations. SPC uses this
fact to establish the upper and lower control limits as three standard deviations above
and below the average values, respectively. Log-normal distribution can be used to
calculate the lower control limit so that it does not go below zero. Likewise, for figures
that have a natural upper bound (e.g., one hundred percent), beta distribution can be
used to prevent the upper control limit from going above the boundary.

Figure 6.2-1 summarizes the concepts attached to a control chart. Normal fluctuations
are those that lie within the control limits, that is, they are natural variations. Any value
lying above the upper control limit or below the lower control limit may indicate a
process problem. The cause of the variation must be determined.

Determine Cause of Deviation

Upper Control Limit

3 Standard Deviations
Average Normal

Variation

Measure
3 Standard Deviations
Lower Control Limit

Determine Cause of Deviation

Time —®

Figure 6.2-1. Control Chart

According to Pyzdek [Pyzdek 84], the following criteria indicate when a process is out
of control:

* Any value exceeds a three standard deviation control line
* Four of five consecutive values exceed the +1 standard deviation line
« Two of three consecutive values exceed a +2 standard deviation line

» S even or more consecutive values lie on same side of the average

154 CMU/SEI-92-TR-25

Statistical Process Control Managed Level

Figures 6.2-2 and 6.2-3 show the defect rate (defects per thousand source lines of
code) for each release of two projects, one in SPC (Figure 6.2-2) and one out of SPC
(Figure 6.2-3). Both projects have the same control limits (the lower limit is zero). The
project in control has a defect rate that is within the control limit for each release. The
second project was in control until release seven when there was a dramatic increase
in the defect rate. The project is obviously out of control. Such a situation can occur
when a release becomes so large that an unreasonable productivity rate has to be
achieved to complete the release on schedule, and product quality is sacrificed to
maintain the schedule.

Defect
Rate

Upper Control Limit

2

Release

Figure 6.2-2. Project in Statistical Control

CMU/SEI-92-TR-25 155

Managed Level Statistical Process Control

Defect
Rate

Upper Control Limit

Release

Figure 6.2-3. Project out of Statistical Control

156 CMU/SEI-92-TR-25

6.3. Progress

The progress indicators for the Managed Level are the same as those at the Defined
Level (Gantt and PERT charts and actual-versus-planned-completions charts). (See
Section 5.2.) The difference between these two levels is in the application of SPC to
the actual-versus-planned-completion charts. At the Defined Level, the range was set
at some percentage of the planned completion. At the Managed Level, the project
software manager uses historical data and statistical calculations to establish the
control limits.

6.4. Effort

The effort indicators for the Managed Level are the same as those at the Repeatable
and Defined Levels (see Section 4.3 and Section 5.3). In addition, the organization
may wish to consider monitoring the following:

* Non-cumulative staff-hours by life-cycle activity over time
» Separately needed or special development skills

» Experience level with domain/application

» Experience level with development architecture

» Experience level with tools/methods over time

» Productivity of staff against the years of experience

CMU/SEI-92-TR-25 157

Managed Level Effort

158 CMU/SEI-92-TR-25

6.5. Cost

The cost indicators for the Managed Level are the same as those at the Defined Level,
that is, cost/schedule status and variance reports. The difference between these two
levels is in the application of statistical process control to the cost/schedule status
report. At the Defined Level, the control limits were set at some percentage around the
line representing budgeted cost for work scheduled. At the Managed Level, the project
software manager uses historical data and statistical calculations to establish the
control limits. For the monitoring of the cost performance, the manager determines the
cause when the budgeted cost for work performed and the actual cost for work
performed fall outside the control limits.

Also at the Managed Level, the cost of quality is measured in addition to the cost of
other project elements.

Objective of the Cost Indicator
To track actual costs against the project plan and to predict future project costs.
Indicators

From the Defined Level:

» Performance of the actual cost of work performed against budgeted cost for
work scheduled

» Performance of the budgeted cost of the work performed against the budgeted
cost for work scheduled

e Trends in the cost variance
e Trends in the schedule variance
» Trends in the cost and schedule performance indices

Key Process Area Goals Addressed

Process Measurement and Analysis:

* The organization’s standard software process is stable and under statistical
process control.

» The relationship between product quality, productivity, and product development
cycle time is understood in quantitative terms.

» Special causes of process variation (i.e., variations attributable to specific
applications of the process and not inherent in the process) are identified and
controlled.

Quality Management:

* Measurable goals for process quality are established for all groups involved in
the software process.

CMU/SEI-92-TR-25 159

Managed Level Cost

* The software plans, design, and process are adjusted to bring forecasted
process and product quality in line with the goals.

* Process measurements are used to manage the software project.
Life-Cycle Stages: All
Users

All levels of management. The managers cited here are not restricted to software
development managers but include managers of support groups, for example, software
quality assurance, software configuration management, training, and so forth.

Users’ Questions

From the Defined Level:

» Are the actual costs and performance of the software project tracking against
the plan?

» Are the actual costs within the range established for the software project?
» Are the corrective actions taken bringing the actual cost of work performed and
the budgeted cost for work performed back within the low-risk range?
Input

From the Repeatable Level:
» Budgeted cost for work scheduled (BCWS)
» Budgeted cost for work performed (BCWP)
» Actual cost of work performed (ACWP)
» Budgeted cost at completion (BCAC)

For the Managed Level:

« BCWS, BCWP, and ACWP are determined for all activities on the project
including (but not limited to):

- Managing requirements

- Software planning activities

- Technical work

- Subcontractor activities

- Managing the subcontract

- Software quality assurance activities

- Software configuration management activities
- Process definition and improvement activities
- Intergroup coordination activities

- Process measurement and analysis activities

160 CMU/SEI-92-TR-25

Cost Managed Level

- Defect prevention activities (for the Optimizing Level)
- Technology innovation activities (for the Optimizing Level)

Interpretation
The graphs and their interpretation are the same as those for the Defined Level.

The cost data for each project element allows the organization to determine cost of
quality and to make informed decisions regarding tradeoffs. A Managed-Level
organization has complete, accurate cost data for each activity on a project. For
example, it knows how much it is spending on the collection and analysis of data, how
much is spent on peer review activities and rework, and how much it saved by detecting
defects early in the life cycle.

As part of the activities of a Managed-Level organization, quantitative product and
process quality goals are established. When these quality goals conflict, (i.e., one goal
cannot be achieved without compromising another), the project reviews and analyzes
the software requirements, design, development plan and its quality plan, makes the
necessary tradeoffs, and revises the quality goals appropriately. In order to make an
informed decision, the costs for achieving the goals are part of software project
planning. The cost information comes from the historical data. As part of the analysis,
the project and the organization consider the customer and end users as well as the
long-term business strategy and short-term priorities.

Sources

From the Defined Level:

[AFSC 86] has a discussion of these indicators.

[DoD 80] discusses the basics of ACWP, BCWP, and BCWS.

[DSDM 89] served as the major source of information in this section.

CMU/SEI-92-TR-25 161

Managed Level Cost

162 CMU/SEI-92-TR-25

6.6. Quality

At the Managed Level, the quality indicators are divided among the results of software
guality assurance audits, the results of life-cycle reviews with the customer, the trouble
reports written after the implementation team has released the software for testing, and
the results obtained from peer reviews.

6.6.1. Software Quality Assurance Audit Results

The software quality assurance audit results indicators for the Managed Level are the
same as those at the Defined Level (see Section 5.5.1). A difference between these
two levels is in the expectation of the numbers and types of noncompliance issues. At
the Defined Level, a stable and well-defined software process exists. By the time an
organization progresses to the Managed Level, the staff should be thoroughly familiar
with the software process. Therefore, the organization should expect noncompliance
issues resulting from process audits to be approaching zero. Similarly, the number of
noncompliance issues can be expected to be less than at the Repeatable or Defined
Levels. The number of product noncompliance issues may or may not approach zero;
a reasonable goal can be obtained from the historical data.

6.6.2. Review Results

The review results indicators for the Managed Level are the same as those at the
Defined Level (see Section 5.5.2).

CMU/SEI-92-TR-25 163

Managed Level Review Results

164 CMU/SEI-92-TR-25

6.6.3. Trouble Reports

At the Repeatable and Defined Levels, the number of trouble reports are used to
denote quality. By itself, this is not a particularly objective quality indicator due to the
different classes of people who write trouble reports (a consistency issue) and due to
the range in severity of trouble reports. At the Managed Level, an organization can use
other information besides trouble reports to determine the quality of the product and the
process.

Objective of the Trouble Reports Indicator

To provide software managers with an insight into the quality of the product, the
software reliability, and the effectiveness of testing and to provide the software
engineering process group with information on the development processes.

Indicators

From the Defined Level:
» Trends in the following:
- Number, type, and severity of the trouble reports
- Trouble report density, that is, the number of trouble reports per unit size
- Rate at which trouble reports are being addressed
- Rate at which trouble reports are being written
- Number of defects in each software component

* Relationship between the number of trouble reports and the number of test
cases passed

For the Managed Level:
» Trends in the following:
- Cause of the trouble reports
- Testing, development, and implementation efficiency

Key Process Area Goals Addressed

Process Measurement and Analysis:

» Special causes of process variation (i.e., variations attributable to specific
applications of the process, and not inherent in the process) are identified and
controlled.

Quality Management:

* Measurable goals and priorities for product quality are established and
maintained for each software project through interaction with the customer, end
users, and project groups.

CMU/SEI-92-TR-25 165

Managed Level Trouble Reports

* Measurable goals for process quality are established for all groups involved in
the software process.

* Process measurements are used to manage the software project quantitatively.

Life-Cycle Stages
* Integration and acceptance test
* Operations and maintenance

Users

From the Defined Level:
* Project software manager
» Software quality assurance personnel

Software testing manager
 First-line and mid-level software development managers
» Software engineering process group

Users’ Questions

From the Defined Level:

» Does the quality of the product indicate that the product is ready for release to
the customer?

* Will undetected or unresolved problems in the product lead to more problems in
the next life-cycle stage?

» Does the number of trouble reports indicate that the software product should be
reworked before proceeding to the next life-cycle stage?

* Is the testing activity complete?
» Are project personnel addressing the trouble reports in a timely manner?
» Do the types of defects suggest areas for process changes?

» How does this project compare to others with regard to the number and types of
defects discovered?

* Which components tend to be error prone?

For the Managed Level:
» Do the types of defects suggest areas for process changes?

» How does this project compare to others with regard to the number and types of
defects discovered?

» How well is the project meeting its goals with respect to trouble reports?

166 CMU/SEI-92-TR-25

Trouble Reports

Managed Level

Input

From the Defined Level:

* Number of trouble reports:

Total number
Open
Closed

* Number of test cases passed

e Product size

» For each trouble report:

Date opened

Date closed

Date trouble report evaluated
Type

Severity

Type (category) of defect
Severity of defect

Product identification
Trouble report identification
Source of problem

Cause of defect

Life-cycle stage in which trouble report is written
Activity in which defect was introduced

Units affected by defect

Interpretation

The interpretation of the indicators used at the Defined Level remains the same at the
Managed Level, but the analysis of trouble reports focuses more on the analysis of the

types of defects detected and testing efficiency.

Figure 6.6.3-1 shows the number of trouble reports for each type of defect and

compares the numbers on this project to historical data.

This figure is useful in

determining what types of defects are generating the most trouble reports and suggests

processes that may require improvement.

categories.

The organization defines its own defect

CMU/SEI-92-TR-25

167

Managed Level Trouble Reports

6
51 Historical
Comparison
Number of 4 [~
Trouble
Reports per
KLOC 3 [
=
1

Documentation Logic Does Data Interface
Error Not
Satisfy

Requirement

Figure 6.6.3-1. Number of Trouble Reports per Type of Defect

Once the defect type of each trouble report has been defined, the SEPG can determine
the areas that are the sources of the trouble reports. Figure 6.6.3-2 shows the number
of defects by type category [Mays 90].

168 CMU/SEI-92-TR-25

Trouble Reports Managed Level

60 __

50 |-

40

Number of

Defects 30

20

10

Oversight Transcription Education Communication

Figure 6.6.3-2. Number of Defects per Type Category

The figure has the following interpretation:

» A high number of defects due to oversight points out that a more rigorous
review process may be necessary. More attention needs to be made to
checking for consistency, completeness, and traceability.

* A high number of transcription defects points out that much more care needs to
be taken when identifying variable names, etc. Simple errors in text
transcription can be picked up by spell checkers, but variable names and so
forth may require a rigorous review process. Further identification of the types
of transcription defects experienced is necessary.

» A high number of defects due to education points out that some training may be
needed to eliminate this type of problem. Further analysis is necessary to
determine where the education is needed, such as in the process used to
produce the product or in the skill level of the people developing the product.

* A high number of communication defects points out that the team is not working
well together and the flow of information is not occurring efficiently. Analysis of
where communication failures or bottlenecks are occurring is necessary. This
may indicate need for training in communication techniques or a change in
communication process.

At the Repeatable Level, the number of trouble reports generated were used to indicate
the quality of the product. At the Managed Level, the number of defects recorded on
the trouble reports provides efficiency indicators. Figure 6.6.3-3 shows three efficiency
indicators for nine software releases of a project under statistical process control. The

CMU/SEI-92-TR-25 169

Managed Level Trouble Reports

delivered error rate for each release represents the development efficiency. It indicates
the quality of the product released to the customer since it is a measure of the number
of errors per thousand lines of code detected by the users during the warranty period or
some set time period (e.g., the first six months after release). The implementation error
rate represents the implementation efficiency. It indicates the quality of the products
released to the independent test team since it measures the number of errors per
thousand lines of code discovered by the test team. The test efficiency indicates the
quality of the independent testing and is the ratio of the errors found by the
independent test team to the total errors found by the test team and the customer
during the warranty of set time period. The statistical control limits are also shown in
the figure. If trouble report data during warranty or other set time period are not
available from the customer, total error rate is the number of errors per thousand lines
of code in each release delivered to the customer. The testing efficiency is the ratio of
the errors found by the independent test team to the total number of errors found by
both the independent test team and the acceptance test team. Figure 6.6.3-4 shows a
similar figure for a project out of statistical control.

5 —100
. . . — \
Testing EfflcEmy/ — ~ _ - -
4 - N - - 80
Defects Lower Control Limit for Testing
per KLOC Testing
3 —] 60 Efficiency
(%)
Upper Control Limit for Error Rate
2 40
Implementation Error Rate -~ .
1 — 20

Release

Figure 6.6.3-3. Efficiency Indicators for a Project in Statistical Control

170 CMU/SEI-92-TR-25

Trouble Reports Managed Level

S~ —~ —100
— - ~N
7" Testing Efficiency > — ~
- N
~— .
Defects Lower Control Limit for Testing Testl_ng
per 3L L _1 60 Efficiency
KLOC / (%)
r
Upper Control Limit for Error Rate ’
2 JRARN _ < 40
L7 ~ _ Implementation Error Rate 7
7 S o == - ’
1L — 20
| |

Release

Figure 6.6.3-4. Efficiency Indicators for a Project out of Statistical Control

When interpreting efficiency indicators, the project software manger needs to
remember to always look for process defects, not personnel defects. There may be a
number of causes responsible for the defects. For example, an unrealistic
implementation schedule or lack of appropriate resources can result in poor
implementation efficiency, and inadequate time or resources for independent testing
can result in poor testing efficiency.

Sources
From the Defined Level:

[AFSC 87], [Buckley 90], [Card 90], [Decker 91], [Grady 87], [IEEE 1061], [Landis 90],
[Pfleeger 89], and [Rozum 92] discuss trouble reports.

[Florac 92] has a thorough discussion of trouble reports and serves as the main source
of information for this section.

[Florac 92] has a thorough discussion of problem reports.

[IEEE 1044] was used to determine the inputs for this indicator.

For the Managed Level:

[DSDM 89] served as the source of information for the efficiency indicators.

[Mays 90] provided the categories in Figure 6.6.3-2.

CMU/SEI-92-TR-25 171

Managed Level Trouble Reports

172 CMU/SEI-92-TR-25

6.6.4. Peer Review Results

Peer review results indicators are the same as those at the Defined Level. The
difference between the two levels is in the use of statistical process control with the
indicators, especially the number of defects detected during peer review and the
number of re-reviews required. Additional analyses of defect data also occur,
particularly in determining the characteristics of peer reviews.

Objectives of the Peer Review Results

» To provide the software managers and the software quality assurance
personnel insight into the quality of the intermediate and final products.

* To provide the SEPG with insight into the peer review and development
processes.
Indicators

From the Defined Level:
» Trends in the following:
- Number of defects detected during peer reviews
- Type and severity of defects
- Number of re-reviews required
- Rate at which defects are being addressed
- Number of defects in each software component
* Number of defects in each product type
» Defect detection efficiency

Key Process Area Goals Addressed

Process Measurement and Analysis:

* The organization’s standard software process is stable and under statistical
process control.

» The relationship between product quality, productivity, and product development
cycle time is understood in quantitative terms.

» Special causes of process variation (i.e., variations attributable to specific
applications of the process and not inherent in the process) are identified and
controlled.

Quality Management:

* Measurable goals and priorities for product quality are established and
maintained for each software project through interaction with the customer, end
users, and project groups.

CMU/SEI-92-TR-25 173

Managed Level Peer Review Results

* Measurable goals for process quality are established for all groups involved in
the software process.

* Process measurements are used to manage the software project.
Life-Cycle Stages: All
Users

From the Defined Level:
» Software managers
» Software quality assurance personnel
» Software engineering process group

Users’ Questions

From the Defined Level:

» Does the peer review indicate that the product quality is sufficient to allow the
product to proceed to the next stage?

» Does the number of re-reviews suggest that there may be product quality and/or
process problems?

» Do the types of defects detected during peer reviews suggest areas for process
change?

» Do the peer reviews effectively detect defects?
Input

From the Defined Level:

» For each peer review:
- Type of review (e.g., requirements review, design review, code review)
- Number of items reviewed
- Action items open
- Action items closed
- ldentification of product reviewed
- Product size
- Preparation lead time
- Preparation time for each reviewer
- Length of time of review
- Size of review team
- Experience of review team
- Structure of review team
- Number of defects detected

174 CMU/SEI-92-TR-25

Peer Review Results Managed Level

* For each defect:
- Severity

- Type
- Rework effort
- Life-cycle stage in which it was introduced into product
- Number of units affected by defect
- Number of units containing defect
* Number of peer reviews
* Number of re-reviews

Interpretation

At the Managed Level, the organization continues to use the peer review indicators
from the Defined Level, but now focuses on the characteristics of the peer review
process. For example, each project can determine the following:

* The number KLOC reviewed per each hour in a review (KLOC/review-hour)

* The number KLOC reviewed per each hour of preparation (KLOC/preparation-
hour)

» The number of hours it takes to detect a major defect (hours/major defect)
* The ratio of major to minor defects

A project can compare the values it has for these items and can compare them to the
values for the organization as a whole and/or the project can compare the values it
obtains for each release. For the latter, the project software manager can expect an
improvement in each of the quantities since the project staff gain expertise both with
the technical application and with the review process.

In Chapter 15, Humphrey has additional examples [Humphrey 89]. He shows plots of
the number of errors per thousand lines of code (errors/KLOC) versus the review rate
(KLOC/hour), review rate (KLOC/hour) versus preparation rate (KLOC/hour of
preparation), and review rate (lines/hour) versus preparation time (hours/KLOC).

Figure 6.6.4-1 shows how defect detection efficiency varies with the inspection rate.
The efficiency of each product review is plotted by its review rate. There is a curve
fitted to the points that shows the overall view. This figure shows that as the review
rate increases, the efficiency drops. It also shows that as the inspection rate
decreases, the efficiency increases only to a point. Slower review rates are not cost
effective. In this example, the lower defect detection efficiency for reviews that
inspected source code at less than 75 LOC/hour may indicate that those review teams
are not adequately trained in peer reviews. Preparation rate may also be used in
addition to, or instead of, review rate.

CMU/SEI-92-TR-25 175

Managed Level Peer Review Results

A figure similar to Figure 6.6.4-1 can be used to plot defect detection rates (defects
detected/hour) versus review rates. The same interpretation may be used.

Defect data also lends itself to statistical process control techniques since the sample is
large enough, and the data are homogeneous (at least for a particular type of review).
Humphrey also shows example control charts for the number of lines of code reviewed
per hour, the number of defects detected per total review hours, the number of defects
detected per thousand lines of code, and the number of hours of preparation per hour
of review for each component of a project [Humphrey 89].

60 __ -
50 - - -
Defect
Detection 40 |-
Efficiency
%
30 -
20 -
10 -
| | | | | | | | | J
25 50 75 100 125 150 175 200 225 250
LOC Reviewed per Hour
Figure 6.6.4-1. Defect Detection Efficiency vs. Review Rate
Sources

From the Defined Level:
[Decker 91] and [Florac 92] were the major sources of information for this section.

[AFSC 87], [Buckley 90], [Card 90], [Grady 87], [IEEE 1061], [Landis 90], [Pfleeger 89],
and [Rozum 92] discuss concepts on tracking and analyzing trouble reports that are
applicable to peer review data.

[[EEE 1044] was consulted for the types of inspection data to be collected.

176 CMU/SEI-92-TR-25

Peer Review Results Managed Level

[Pyzdek 89] discusses Pareto analysis.
For the Managed Level:

[Humphrey 89] discusses measurement of the peer review process.

CMU/SEI-92-TR-25 177

Managed Level Peer Review Results

178 CMU/SEI-92-TR-25

6.7. Stability

At the Managed Level the stability indicators concentrate on the stability of the
requirements, size, and process. Requirements stability is concerned with the number
of changes to the requirements, the number of waivers from requirements, and the
length of time the requests for changes to requirements are open. Size stability is
concerned with code size and size estimates. Process stability is concerned with the
number of changes to the software process and the number of waivers from the
process.

6.7.1. Requirements Stability

The requirements stability indicators for the Managed Level are the same as those at
the Defined Level (see Section 5.6.1).

CMU/SEI-92-TR-25 179

Managed Level Training

180 CMU/SEI-92-TR-25

6.7.2. Size Stability

The size indicators for the Managed Level are the same as those at the Defined Level.
At the Managed Level, the manager can apply statistical process control to the
historical data from other similar projects. Any variation from the plan that is still within
the upper and lower statistical limits is considered normal. Variations outside this
normal range require analysis.

Objective of the Size Stability Indicator

To provide the project software manager and the project manager with an indication of
the completeness and stability of the requirements and of the capability of the
implementation staff to produce the software product within the current budget and
schedule.

Indicators

Same as the Repeatable Level:
» Trends in the code size
» The variation of actual software size from size estimates
» Variation of actual software size from estimated size by build or release

Key Process Area Goals Addressed

Process Measurement and Analysis:
» The relationship between product quality, productivity, and product development
cycle time is understood in quantitative terms.
Quality Management:

* The software plans, design, and process are adjusted to bring forecasted
process and product quality in line with the goals.

* Process measurements are used to manage the software project quantitatively.
Life-Cycle Stages: All
Users

Software engineering and project software managers for controlling and monitoring of
project

Users’ Questions

From the Defined Level:
* How much have the size estimates changed over time during development?
« How much do the actual values deviate from their estimated values?

CMU/SEI-92-TR-25 181

Managed Level Training

* How much does the trend of the actual values affect the development
schedule?

* Is the estimated productivity sufficient to allow the completion of added code on
schedule or are more staff required?

For the Managed Level:
» Are the variations in the size estimates becoming smaller over time?
» Are the variations in the size estimates within the control limits?

Input

From the Defined Level:

» Software size estimates:
- Total size
- By computer software configuration item (CSCI)
- New code
- Off-the-shelf code
- Reused code

* Amount of software scheduled for completion by build or release

Interpretation

Figure 5.6.2-1 shows the change in software size over time for the project and in
comparison with similar projects. Figure 6.7.2-1 shows a similar figure. The planned
line represents the planned software size at various times in the development life cycle.
The actual line represents the actual software size on those dates. The upper and
lower control limits along the Now line are derived from historical data for similar
projects and show whether the difference between the planned and actual lines is part
of the normal variation. The interpretation of the figure remains the same as for Figure
5.6.2-1.

Figure 6.7.2-2 shows a similar figure. In this example, the planned size estimate has
remained constant since month 5. The actual software size has also stayed within the
statistical limits. The differences fluctuate about the planned line. No immediate action
is required by the project manager. The manager, however, may wish to establish a
goal of minimizing the variation or to at least have the difference between the planned
and actual lines constant since the fluctuations are an indication of the amount of
rework that is occurring.

182 CMU/SEI-92-TR-25

Training Managed Level

— — Upper Control Limit

- Planned _ - | Lower Control Limit
-7
-~ - -
Size - - =7 Actual
7
7
7
7
— ,/
7
7
7
4
B Now
| | | | | | | | J
1 2 3 4 5 6 7 8 9 10
Months

Figure 6.7.2-1. Software Size as a Function of Time Showing Upper and Lower
Control Limits

s~ -~ 7 I~ Upper Control Limit

Planned / — Lower Control Limit

Size | ’

/

Now

Months

Figure 6.7.2-2. Software Size as a Function of Time

CMU/SEI-92-TR-25 183

Managed Level Training

Sources
From the Repeatable Level:

[AFSC 86], [Decker 91], [Landis 90], [Pfleeger 89], and [Schultz 88] all discuss tracking
software size.

6.7.3. Process Stability

The process stability indicators are the same as the Defined Level (see Section 5.6.3).

184 CMU/SEI-92-TR-25

6.8. Computer Resource Utilization

The computer resource utilization indicators are the same as the Repeatable Level (see
Section 4.7.).

6.9. Training

The training indicators are the same as the Defined Level (see Section 5.8).

CMU/SEI-92-TR-25 185

Managed Level Training

186 CMU/SEI-92-TR-25

7. The Optimizing Level—Maturity Level 5

This chapter summarizes the characteristics of an organization with an optimizing
process and discusses the indicators that are appropriate for the Optimizing Level.

7.1. Characteristics of an Optimizing-Level Organization

An organization with an optimizing process is characterized as one that has the means
to identify weak process elements and strengthen them, with the goal of preventing the
occurrence of defects. Statistical evidence is available on process effectiveness and is
used in performing cost benefit analyses on new technologies. Innovations that exploit
the best software engineering practices are identified.

Indicators appropriate for the Optimizing Level are progress, effort, cost, quality,
stability, computer resource utilization, and training. As noted in Chapter 1, there are
few examples of proven indicators for this maturity level. The discussion of indicators
in this chapter is based on expected practice. As organizations mature, experience
with indicators at this maturity level will increase, and the information in this chapter
could change.

7.2. Progress

At the Managed Level, progress is controlled and statistically measured. The progress
indicators at the Optimizing Level examine the effect of process improvement activities,
technology innovation, and defect prevention activities on progress. Changes to the
development process should cause time spent in activities to decrease (increased
productivity). While changes to processes occur, progress is not under statistical
control, but will stabilize after a period of time. The new progress rates should be
higher, and the variation in performance should be tighter. That is, the control limits will
be closer to the average. While the processes are changing, progress should be
monitored closely to ensure that the changes are not detrimental.

Objective of the Progress Indicators

To provide managers with information on the effects of defect prevention, technology
innovation, and process improvement on projects’ progress.
Indicators

» Ratio of rework time to total project time per project

» Trend in the rate of time spent in activities undergoing process change

CMU/SEI-92-TR-25 187

Optimizing Level Progress

Key Process Area Goals Addressed

Defect Prevention

» Sources of product defects that are inherent or repeatedly occur in the software
process activities are identified and eliminated.

Technology Innovation

» Selection and transfer of new technology into the organization is orderly and
thorough.

Process Change Management
* The organization’s standard software process and the projects’ defined
software processes continually improve.

Life-Cycle Stages: All

Users
» All levels of project software management
» Software Engineering Process Group (SEPG)

Users’ Questions

To what extent have defect prevention, technology innovation, and process
improvement shortened total development time?

Input

* Project software development plan
» Planned and actual time spent in activities

Interpretation

The use of defect causal analysis and defect prevention procedures can reduce the
time spent in rework activities. Likewise, improvements made by changes to the
development processes and technical innovation can reduce the time spent in other
activities. This reduces total development time (time to market). The SEPG tracks the
ratio of time spent in changed activities to the total project time for all projects. Figure
7.2-1 shows a scatter diagram of the rework ratios for several projects.

188 CMU/SEI-92-TR-25

Progress Optimizing Level

In Figure 7.2-1, the y-axis is the ratio of time spent in rework to total project time. Each
point in the diagram is a project that completed in that month. Projects that started
before the defect prevention procedures were enacted and were completed afterwards
show only a partial drop in the ratio. Projects started after the procedures were enacted
have lower ratios and tend to group together. Once the amount of rework is reduced,
schedules can correspondingly be shortened as the productivity has improved.

6
Defect Prevention
Procedures Enacted
S5 L= -
Ratio of
Rework to [- -
Total time -
s L - - -)
2 L -
1L - - -
| | | | | | | | |

1 2 3 4 5 6 7 8 9 10
Months

Figure 7.2-1. A Scatter Diagram of the Ratio of Time Spent in Rework Activities for
Several Projects

CMU/SEI-92-TR-25 189

Optimizing Level Progress

Figure 7.2-2 shows the same diagram with control limits and an average line derived
from the data. Before month 4, the ratios are high and vary widely. Defect prevention
procedures are enacted during month 5. Although there is still large variation during
month 5 through month 7, the trend indicates that the procedures are effective. By
month 8, the new procedures have stabilized, the ratios have dropped to a steady state
and new control limits are established.

6
Defect Prevention
Upper Control Limit Procedures Enacted
S5 = -
Ratio of
Rework to B - -
Total time -
3L - - - -
- T Average Ratio -
2 L - -
Upper Control Limit
1 Lower Control Limit - Z N
Lower Control Limit
| | | | | | pover Sqpiror timj
1 2 3 4 5 6 7 8 9 10
Months

Figure 7.2-2. The Ratio of Time Spent in Rework Activities for Several Projects with
Control Limits

This figure can also be used to track the ratios of peer reviews, coding, testing, and
other activities to the total development time. In turn, this allows an organization to
determine its performance with respect to preventive and reactive efforts, that is, the
organization can compare the time spent in design as opposed to coding or the time
spent in peer reviews to testing. The emphasis should be on preventive activities.

Sources
From the Repeatable Level:

[AFSC 86] discusses planned and actual completions graphs at the computer software
configuration item (CSCI) level.

190 CMU/SEI-92-TR-25

Progress Optimizing Level

[Decker 91] lists requirements diagrams; function specifications; design diagrams; test
cases; units designed, coded, and tested; modules tested; and computer software
components tested as items tracked on planned and actual completions graphs.

[Grady 87] states that calendar measures are part of the Hewlett-Packard metrics
program.

[Landis 90] discusses planned and actual completions graphs for units coded, read,
and tested.

[Rozum 92] has a discussion on Gantt charts in their milestone performance metric and
a discussion of planned and actuals in their development progress metric.

[Schultz 88] discusses software requirements documented in his design progress
metric and the number of computer software units (CSU) designed, coded, tested, and
integrated in his CSU development progress metric. He also discusses the planned
and actual completions of CSCls integrated in his test progress metric.

[STEP 91] discusses a schedule metric upon which Figure 4.2-2 is based and a
development progress metric.

From the Defined Level:
[Lockyer 84] discusses Gantt charts and the critical path method.
For the Optimizing Level:

[Pyzdek 89] discusses SPC techniques.

CMU/SEI-92-TR-25 191

Optimizing Level Progress

192 CMU/SEI-92-TR-25

7.3. Effort

The effort indicators at the Optimizing Level examine the effects of process
improvement activities, technology innovation, and defect prevention activities on effort.
Changes to the development process should cause effort spent in activities to
decrease.

Objective of the Effort Indicators

To provide managers with information on the effects of defect prevention, technology
innovation, and process improvement on projects’ effort.
Indicators

» Ratio of rework effort to total project effort per project

» Trend in the rate of effort spent in activities undergoing process change

Key Process Area Goals Addressed

Defect Prevention:
» Sources of product defects that are inherent or repeatedly occur in the software
process activities are identified and eliminated.
Technology Innovation:

» Selection and transfer of new technology into the organization is orderly and
thorough.

» Technology innovations are tied to quality and productivity improvements of the
organization’s standard software process.
Process Change Management:
* The organization’s standard software process and the projects’ defined
software processes continually improve.
Life-Cycle Stages: All

Users
» All levels of project software management
» Software Engineering Process Group (SEPG)

Users’ Questions

To what extent have defect prevention, technology innovation, and process
improvement reduced effort?
Input

* Project software development plan

» Planned and actual effort spent in activities

CMU/SEI-92-TR-25 193

Optimizing Level Effort

Interpretation

The use of defect causal analysis and defect prevention procedures can reduce the
effort spent in rework activities. Likewise, improvements made by changes to the
development processes and technical innovation can reduce the effort spent in other
activities. This reduces total development effort (improved productivity). The SEPG
tracks the ratio of effort spent in changed activities to the total project effort for all
projects. Figure 7.3-1 shows a scatter diagram of the rework ratios for several projects
with control limits and an average line derived from the data.

6
Defect Prevention
Upper Control Limit Procedures Enacted
S5 L= -
Ratio of
Rework to B - -
Total - +
Effort 3 L - - - .
- - Average Ratio -
2 - Upper Control Limit
1 Lower Control Limit -
-ogve-r C-Io- tr-oI-LiFn't
| | | | | | power Cqnurortimy

1 2 3 4 5 6 7 8 9 10

Figure 7.3-1. The Ratio of Effort Spent in Rework Activities for Several Projects

In Figure 7.3-1, the y-axis is the ratio of effort spent in rework to total project effort.
Each point in the diagram is a project that completed in that month. Projects that
started before the defect prevention procedures were enacted and were completed
afterwards show only a partial drop in the ratio. Projects started after the procedures
were enacted have lower ratios and tend to be clumped together. Once the amount of
rework is reduced, productivity improves since the staff does not have to repeat work in
a particular activity. Fewer iterations are required to complete the activity or product.

In the figure, the ratios are high and vary widely before month 4. Defect prevention
procedures are enacted during month 5. Although there is still large variation during
month 5 through month 7, the trend indicates that the procedures are effective. After

194 CMU/SEI-92-TR-25

Effort Optimizing Level

month 8, the ratios have dropped to a steady state and new control limits are
established.

This figure can also be used to track the ratios of the effort spent in peer reviews,
coding, testing, and other activities to the total development effort. In turn, this allows
an organization to determine its performance with respect to preventive and reactive
efforts; that is, the organization can compare the effort expended in design as opposed
to coding or the effort expended in peer reviews to testing. The emphasis should be on
the preventive activities.

Sources
From the Repeatable Level:

[AFSC 86] discusses planned and actual staffing total profiles and staffing losses in its
software development personnel indicator.

[Decker 91], [Landis 90], and [Pfleeger 89] discuss the use of planned and actual
staffing profiles.

[Grady 87] reports that staff issues are part of the Hewlett-Packard software metrics
program.

[IEEE 1045] discusses the experience level, size, and turnover rates of the project staff.

[Rozum 92] discusses planned and actual staffing total profiles, experience profiles,
and also planned and actual staffing losses in their effort and staffing metrics.

[Schultz 88] discusses planned and actual staffing total profiles, experience profiles,
and also planned and actual staffing losses in his software personnel metric.

For the Optimizing Level:

[Pyzdek 89] discusses SPC techniques.

CMU/SEI-92-TR-25 195

Optimizing Level Effort

196 CMU/SEI-92-TR-25

7.4. Cost

At the Managed Level, the project software manager has a thorough understanding of
the detailed costs on the project. At the Optimizing Level, the project software
manager can take advantage of this knowledge to conduct cost/benefit analyses
whenever there is the need or desire to insert a new technology or introduce a process
modification.

Objective of the Cost Indicators

To provide management with information that supports cost/benefit analyses for
making process improvement, technological innovation, and defect prevention planning
decisions.
Indicators

» Comparative costs and benefits of alternative process improvement activities,
defect prevention activities, or technologies.

* Planned versus actual cost and benefit of an alternative process improvement
activity, defect prevention activity, or technology.
Key Process Area Goals Addressed

Technology Innovation:

» The organization has a software process and technology capability to allow it to
develop or capitalize on the best available technologies in the industry.

» Selection and transfer of new technology into the organization is orderly and
thorough.
Life-Cycle Stages: All

Users: All levels of management

Users’ Questions

* Has the cost estimation process improved so that the cost and schedule
variances are approaching zero?

» Do the variances indicate areas that need process improvement?

* Which technology from the alternatives is best suited to address problem
areas?

* Is the process improvement activity, or defect prevention activity, or technology
producing the desired results?
Input

From the Repeatable Level:
» Budgeted cost for work scheduled (BCWS)
» Budgeted cost for work performed (BCWP)

CMU/SEI-92-TR-25 197

Optimizing Level Cost

» Actual cost of work performed (ACWP)
» Budgeted cost at completion (BCAC)

From the Managed Level:

« BCWS, BCWP, and ACWP are determined for all activities on the project
including (but not limited to):

- Managing requirements

- Software planning activities

- Technical work

- Subcontractor activities

- Managing the subcontract

- Software quality assurance activities

- Software configuration management activities

- Process definition and improvement activities

- Intergroup coordination activities

- Process measurement and analysis activities

- Defect prevention activities (for the Optimizing Level)
- Technology innovation activities (for the Optimizing Level)

For the Optimizing Level:

* Planned and actual cost and benefit for each alternative process improvement
activity, defect prevention activity, or technology.

Interpretation

One goal of an organization is to continuously improve its estimating process. The cost
and schedule variances formed from the BCWS, BCWP, and ACWP allow the
organization to determine the efficiency of its cost estimation process as shown in
Figure 7.4-1.

Figure 7.4-1 is a plot of the final cost variances for projects within the organization. As
time progresses and the cost estimation process improves, the variances decrease.
This shows that the process improvement that was implemented is effective since the
estimates are becoming more reliable and accurate.

An analysis of the cost and schedule variances at lower levels within the work
breakdown structure can indicate areas that need improvement. If an activity routinely
has a larger variance than other activities on the project or on several projects, the
organization can identify this as an activity that needs a process change or may benefit
from a different method or technology.

198 CMU/SEI-92-TR-25

Cost Optimizing Level

30

25

Project
Cost 20 | -
Variances
(%)
15

10

1 2 3 4 5 6 7 8 9 10
Months

Figure 7.4-1. Project Cost Variances

To improve a process or use a new technology, the organization first selects alternative
process improvement activities, defect prevention activities, or technologies that may
improve the software development process. These activities and technology
alternatives must be selected, in part, on the basis of their cost and benefit. The cost is
an estimate of the amount of investment that must be made to get a return (benefit).
The costs and benefits are estimates based on total costs and benefits over a
predetermined period of time. Figure 7.4-2 shows the cost and the benefit for several
alternative activities that are not necessarily mutually exclusive.

CMU/SEI-92-TR-25 199

Optimizing Level Cost

60 __
Cost Benefit
50 L
Cost
and
Benefit 40 |_
($1 K)
30 L
20 L
10 -
A B C D E
Activities

Figure 7.4-2. Cost and Benefit Trade-Offs of Improvement Activities

The activities in Figure 7.4-2 are ordered from left to right by the size of the difference
between their cost and benefit. Activity A has a greater cost and a higher cost/benefit
ratio than activity B, but A has a greater, positive difference between cost and benefit.
That is, A has a greater net benefit. Since the costs and benefits are estimates,
activities C and D could be considered equivalent. In addition to the analysis in the
figure, the organization must consider, at a minimum, the difficulty in implementing the
various alternatives, the readiness of the organization for the change, and the length of
time to implement the change before it makes its final decision.

Once an activity, technology, tool, or method has been selected and implemented, the
actual cost and benefits must be tracked against the original estimates. Figure 7.4-3
shows the estimated and actual cumulative cost and benefits for peer review training.

200 CMU/SEI-92-TR-25

Cost Optimizing Level

60 __ Estimated Benefit
_-" ” Benefit
50 L _ "
-
! Cost
Cost 40 L Estimated Cost
and
Benefit
($1K) 30 |-
20 L
10
| | | | | | | | | |
1 2 3 4 5 6 7 8 9 10

Months

Figure 7.4-3. Cost and Benefits of Peer Review Training

The estimated cost and benefit lines in Figure 7.4-3 represent the total cost and benefit
over time. In this example, the cost of the training has already exceeded the original
estimate but is no longer growing. The benefit due to early, lower-cost defect removal
has not yet reached the original estimate but is approaching it.

Sources
From the Repeatable Level:
[AFSC 86] and [DoD 80] discuss the basics of ACWP, BCWP, and BCWS.

[DSDM 89] discusses the basics of cost and schedule variance.

CMU/SEI-92-TR-25 201

Optimizing Level Cost

202 CMU/SEI-92-TR-25

7.5. Quality

At the Optimizing Level, quality indicators are divided among the results of software
quality assurance audits, the results of life-cycle reviews with the customer, the trouble
reports written after the implementation team has released the software for testing, the
results obtained from peer reviews, and defect prevention.

7.5.1. Software Quality Assurance Audit Results

The software quality assurance audit results indicators for the Optimizing Level are the
same as the Defined and Managed Levels (see Section 4.5.1 and Section 5.5.1).

7.5.2. Review Results

The review results indicators for the Optimizing Level are the same as those for the
Defined Level (see Section 5.5.2).

7.5.3. Trouble Reports

The trouble reports indicators for the Optimizing Level are the same as those for the
Managed Level (see Section 5.5.3).

7.5.4. Peer Review Results

The peer review results indicators for the Optimizing Level are the same as those for
the Managed Level (see Section 5.5.4).

CMU/SEI-92-TR-25 203

Optimizing Level Peer Review Results

204 CMU/SEI-92-TR-25

7.5.5. Defect Prevention

Defect prevention should be a goal for every project member. If zero defects is not
achievable, an alternate goal is to eliminate those defects that occur repeatedly. The
defect prevention indicators enable the project management, the software engineering
process group (SEPG), and software quality assurance personnel to determine the
most common defects on projects and provide the capability to determine whether their
defect prevention processes are effective.

Objective of the Defect Prevention Indicators

To provide software managers, SEPG, and software quality assurance personnel
insight into the cause of defects and the effect of defect prevention activities on
defection insertion rates.
Indicators

» Defect category profiles

* Trend in defect insertion rate

Key Process Area Goals Addressed

Defect Prevention:
» Sources of product defects that are inherent or repeatedly occur in the software
process activities are identified and eliminated.
Life-Cycle Stages: All

Users
» Software managers
» Software engineering process group
» Software quality assurance personnel

Users’ Questions
* What types of defects are being inserted?
* Which types of defects are being inserted the most?

* What is the effect on the defect insertion rate when defect prevention
procedures are enacted?

» Are defect prevention procedures actually preventing defects?

Input
» Trouble reports
» Size and effort (for normalizing the defect data)

CMU/SEI-92-TR-25 205

Optimizing Level

Defect Prevention

Interpretation

Table 7.5.5-1 shows where defects are being inserted and detected by life-cycle
activities. The rows of the table list the development activities where defects were
detected. The columns list the activities where defects were inserted. In this example,
the spread is what would be expected except for the high number of requirements and
preliminary-design defects that are not caught until the acceptance test. The table can
also be used for specific categories of defects.

| ted . - "

nsere Requirements Preliminary Critical Code
Detected Design Design
Requirements 43
Preliminary 27 32
Design
Critical Design 14 17 55
Code 3 7 26 73
Unit Test 3 4 17 58
Integration 4 5 4 18
Test
Acceptance 12 10 2 12
Test

Table 7.5.5-1. Defect Insertion and Detection by Life-Cycle Activity

206

CMU/SEI-92-TR-25

Defect Prevention Optimizing Level

A variation of Table 7.5.5-1 is Figure 7.5.5-2 which shows a horizontal or vertical slice
of the table. The figure can show where defects are inserted and how long it takes to
detect them, or it can show where the defects detected in an activity originated. This
example shows the percentage of defects inserted in the preliminary design activity that
are detected in design and subsequent activities. The raw number of defects can also
be used.

50

40
Design

Defects
% Found 30
by Activity

20

10

Preliminary Critical Code Unit Integration
Design Design Test Test

Figure 7.5.5-2. Design Defects Detected by Life-Cycle Activity

CMU/SEI-92-TR-25 207

Optimizing Level Defect Prevention

Figure 7.5.5-3 is a histogram of the number of defects detected by category. The
figure can also use percentages to allow inter-project comparisons. Pareto analysis
can be performed to find which types of defects are most prevalent.

60 __

50

Total 40
Defects
Detected

30

20

10

A B C D E F G H I

Categories of Defects

Figure 7.5.5-3. Histogram of Categories of Defects Detected

Some defects are more costly to remove than others; therefore, a category with
relatively few defects may represent a greater cost than other categories with more
defects. A variation of Figure 7.5.5-3 can be used to show the total cost of defects for
all defects in a category. This information can be used to select appropriate defect
prevention procedures.

208 CMU/SEI-92-TR-25

Defect Prevention Optimizing Level

Figure 7.5.5-4 addresses the defect prevention process. It shows what happens to a
particular defect category when defect prevention procedures are enacted. The x-axis
is time or stages. The y-axis is the raw number of defects inserted or the number of
defects inserted normalized by size. In this example, prior to month 4, there is a high
insertion rate which varies widely from month to month for type A defects. After the
defect prevention procedures were enacted, the insertion rate dropped. By month 7
the rate stabilized and new, narrower control limits were placed on the rate.

60 __
50 _ Defect Prevention
— Upper Control Limit
Defect] = --------=---- Procedures Enacted
Insertion -
Rate for 40 |_
Category
A Defects |}
30 Lower Control Limit
Upper Control Limit
20 |-
10 L Lower Control Limit
| | | | | | | | | |
1 2 3 4 5 6 7 8 9 10
Months
Figure 7.5.5-4. Defect Insertion Rate for Category A Defects
Sources

[Mays 90] discusses defect prevention.

CMU/SEI-92-TR-25 209

Optimizing Level Defect Prevention

210 CMU/SEI-92-TR-25

7.6. Stability

The stability indicators for the Optimizing Level are the same as those for the Defined
and Managed Levels (see Sections 5.6 and 6.7).

7.7. Computer Resource Utilization

The computer resource utilization indicators for the Optimizing Level are the same as
those for the Repeatable Level (see Section 4.7).

7.8. Training

The training indicators for the Optimizing Level are the same as those for the Defined
Level (see Section 5.8).

CMU/SEI-92-TR-25 211

Optimizing Level Training

212 CMU/SEI-92-TR-25

References

[AFSC 86]

[AFSC 87]

[Basili 84]

[Brooks 82]

[Buckley 89]

[Buckley 90]

[Card 88]

[Card 90]

[Card 91]

[Decker 91]

[DeMarco 82]

[Deming 82]

Department of the Air Force. Air Force Systems Command
Software Management Indicators (AFSC Pamphlet 800-43).
Washington, DC: Andrews Air Force Base, 1986.

Department of the Air Force. Air Force Systems Command
Software Quality Indicators (AFSC Pamphlet 800-14).
Washington, DC: Andrews Air Force Base, 1987.

Basili, Victor R.; & Weiss, David M. “A Methodology for
Collecting Valid Software Engineering Data.” IEEE
Transactions on Software Engineering SE-10, 6 (November
1984): 728-738.

Brooks, F. P. Jr. The Mythical Man-Month: Essays on
Software Engineering. Reading, MA: Addison-Wesley
Publishing Co., 1982.

Buckley, Fletcher J. “Standard Set of Useful Software Metrics
is Urgently Needed.” IEEE Computer 22, 7 (July 1989): 88-89.

Buckley, Fletcher J. “Establishing a Standard Metrics
Program.” IEEE Computer 23, 6 (June 1990): 85-86.

Card, David N. “Software Product Assurance: Measurement
and Control.” Information and Software Technology 30, 6
(July/August 1988): 322-330.

Card, David N.; & Glass, Robert L. Measuring Software
Design Quality. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1990.

Card, David N. “What Makes a Software Measure
Successful?” American Programmer 4, 9 (September 1991):
2-8.

Decker, William J.; Baumert, John H.; Card, David N.;
Wheeler, J. Ladd; & Wood, Richard J. SEAS Software
Measurement System Handbook (CSC/TR-89/6166).

Beltsville, MD: Computer Sciences Corporation, 1991.

DeMarco, Tom. Controlling Software Projects: Management,
Measurement, and Estimation. New York, NY: Yourdon Press,
1982.

Deming, W. E. Quality, Productivity, and Competitive Position.
Cambridge, MA: MIT Press, 1982.

CMU/SEI-92-TR-25

213

References

[DoD 80]

[DSDM 89]

[Dunn 90]

[Florac 92]

[Gilb 77]

[Goethert 92]

[Grady 87]

[Humphrey 89]

[IEEE 610]

[IEEE 1044]

[IEEE 1045]

Departments of the Air Force, the Army, the Navy, and the
Defense Logistic Agency. Cost/Schedule Control Systems
Criteria Joint Implementation Guide (AFSC 173-5, AFLCP
173-5, DARCOM-P 715-5, NAVMAT P5240, DLAH 8315.2).
October 1, 1980.

Computer Sciences Corporation. Digital System Development
Methodology, Version 3. Falls Church, VA: December 1989.

Dunn, Robert H. Software Quality: Concepts and Plans.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1990.

Florac, William A.; The Quality Subgroup of the Software
Metrics Definition Working Group; & the Software Process
Measurement Project Team. Software Quality Measurement:
A Framework for Counting Problems and Defects (CMU/SEI-
92-TR-22, ESC-TR-22). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, September 1992.

Gilb, Tom. Software Metrics. Cambridge, MA: Winthrop
Publishers, Inc., 1977.

Goethert, Wolfhart B.; Bailey, Elizabeth K.; Busby, Mary B.;
The Effort and Schedule Subgroup of the Software Metrics
Definition Working Group; & the Software Process
Measurement Project Team. Software Effort and Schedule
Measurement: A Framework for Counting Staff-Hours and
Reporting Schedule Information (CMU/SEI-92-TR-21, ESC-
TR-21). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, September 1992.

Grady, Robert B.; & Caswell, Deborah L. Software Metrics:
Establishing a Company-Wide Program. Englewood Cliffs,
N.J.: Prentice-Hall, Inc., 1987.

Humphrey, Watts S. Managing the Software Process.
Reading, MA: Addison-Wesley, 1989.

Institute of Electrical and Electronics Engineers. IEEE
Standard Glossary of Software Engineering Terminology
(ANSI/IEEE std 610.12-1990). New York, NY: December 10,
1990.

Institute of Electrical and Electronics Engineers. A Standard
Classification for Software Errors, Faults, and Failures (Draft)
(IEEE P1044/D3). New York, NY: 1987.

Institute of Electrical and Electronics Engineers. Standard for
Software Productivity Metrics (Draft) (IEEE P1045/D4.0).
New York, NY: December 1990.

214

CMU/SEI-92-TR-25

References

[IEEE 1061]

[Jones 91]

[Kuntzmann 92]

[Landis 90]

[Lockyer 84]

[London 89]

[Mays 90]

[Murine 88]

[Park 92]

[Paulk 91]

Institute of Electrical and Electronics Engineers. Standard for
Software Quality Metrics Methodology (Draft) (IEEE
P1061/D21). New York, NY: 1990.

Jones, Capers. Applied Software Measurement. New York,
NY: McGraw-Hill, Inc., 1991.

Kuntzmann-Combelles, Annie; Comer, Peter; Holdsworth,
Jacqueline; & Shirlaw, Stephen. Metrics Users’ Handbook.
Cambridge, England: Application of Metrics in Industry (AMI),
1992.

Landis, Linda; McGarry, Frank; Waligora, Sharon; Pajerski,
Rose; Stark, Mike; Kester, Rush; McDermott, Tim; & Miller,
John. Manager's Handbook for Software Development,
Revision 1 (SEL-84-101). Greenbelt, MD: NASA Goddard
Space Flight Center, 1990.

Lockyer, Keith. Critical Path Analysis and Other Project
Network Techniques, 4th ed. London, England: Pitman
Publishing, 1984.

London, Manuel. Managing the Training Enterprise: High-
Quiality, Cost-Effective Employee Training in Organizations.
San Francisco, CA: Jossey-Bass, 1989.

Mays, R.G.; Holloway, G.J. & Studinski, D.P. “Experiences
with Defect Prevention.” IBM Systems Journal 29, 1 (1990): 4-
32.

Murine, Gerald E. “Integrating Software Quality Metrics with
Software QA.” Quality Progress 21, 11 (November 1988): 38-
43.

Park, Robert E.; The Size Subgroup of the Software Metrics
Definition Working Group; & the Software Process
Measurement Project Team. Software Size Measurement: A
Framework for Counting Source Statements (CMU/SEI-92-
TR-20, ESC-TR-20). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, September 1992.

Paulk, Mark C.; Curtis, Bill; Chrissis, Mary Beth; Averill,
Edward L.; Bamberger, Judy; Kasse, Timothy C.; Konrad,
Mike; Perdue, Jeffrey R.; Weber, Charles V.; & Withey James
V. Capability Maturity Model for Software (CMU/SEI-91-TR-
24, ADA240603). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1991.

CMU/SEI-92-TR-25

215

References

[Pfleeger 89]

[Pyzdek 84]

[Pyzdek 89]

[Rifkin 91]

[Rozum 92]

[Schulmeyer 87]

[Schultz 88]

[STEP 91]

[Vincent 88]

[Weber 91]

Pfleeger, Shari Lawrence. Recommendations for an Initial Set
of Software Metrics (CTC-TR-89-017). Chantilly, VA: Contel,
1989.

Pyzdek, Thomas. An SPC Primer. Tucson, AZ: Quality
America, Inc., 1984.

Pyzdek, Thomas. Pyzdek’'s Guide to SPC. Vol. 1,
Fundamentals. Tucson, AZ: Quality America, Inc., 1989.

Rifkin, Stan; & Cox, Charles. Measurement in Practice
(CMU/SEI-91-TR-16, ADA 241781). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1991.

Rozum, James A.; & Software Acquisition Metrics Working
Group. Software Measurement Concepts for Acquisition
Program Managers (CMU/SEI-92-TR-11, ESC-TR-11).
Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, September 1992.

Schulmeyer, G. Gordon; & McManus, James I. Handbook of
Software Quality Assurance. New York, NY: Van Nostrand
Reinhold Company, Inc., 1987.

Schultz, Herman P. Software Management Metrics (ESD-TR-
88-001). Bedford, MA: MITRE Corporation, 1988.

Betz, Henry P.; & O’Neill, Patrick J. Army Software Test and
Evaluation Panel (STEP) Software Metrics Initiatives Report
(Draft). March 1991.

Vincent, James; Waters, Albert; & Sinclair, John. Software
Quality Assurance. Vol. 1, Practice and Implementation.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988.

Weber, Charles V.; Paulk, Mark C.; Wise, Cynthia J.; &
Withey, James V. Key Practices of the Capability Maturity
Model (CMU/SEI-TR-25, ADA240604). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University,
1991.

216

CMU/SEI-92-TR-25

Appendix A:

ACWP
BCAC
BCWP
BCWS
CDR
CMM
CPI
CSCl
CSu
Ccv
IEEE

I/1O
Kbytes
KLOC
KSLOC
LOC
PCA
PERT
PDR
RR
SDR
SPC
SEI
SEPG
SLOC
SPI
SSR
SV
TBD

Acronyms

actual cost of work performed
budgeted cost at completion
budgeted cost for work performed
budgeted cost for work scheduled
critical design review

Capability Maturity Model for Software
cost performance index

computer software configuration item
computer software unit

cost variance

Institute of Electrical and Electronics
Engineers, Inc.

input/output

thousand bytes

thousand lines of code
thousand source lines of code
line of code

physical configuration audit

program evaluation and review technique

preliminary design review
requirements review

system design review

statistical process control

Software Engineering Institute
software engineering process group
source line(s) of code

schedule performance index
software specification review
schedule variance

to-be-determined

CMU/SEI-92-TR-25

Appendix A: Acronyms

TRR test readiness review

WBS work breakdown structure

A-2 CMU/SEI-92-TR-25

Appendix B: Definitions

action item - Any review discrepancy, clarification, or issue that must be resolved by
the project or the customer. In the context of this document, an action item arises out
of formal reviews with the customer and from peer reviews. The review result indicator
only tracks action items from the formal reviews.

actual cost of work performed - The costs actually incurred and recorded in
accomplishing the work performed within a given time period [DoD 80].

budgeted cost at completion - The sum of the budgeted cost for all work to be
performed on the project.

budgeted cost for work performed - The sum of the budgets for completed work
packages and completed portions of open work packages, plus the appropriate portion
of the budgets for level of effort and apportioned effort [DoD 80].

budgeted cost for work scheduled - The sum of the budgets for all work packages,
planning packages, etc., scheduled to be accomplished (including in-process work
packages), plus the amount of effort and apportioned effort scheduled to be
accomplished within a given time period [DoD 80].

class - The number of times a particular course is offered. For example, there may be
six classes of the requirements analysis course in one month.

cost account - A management control point at which actual costs can be accumulated
and compared to budgeted cost for work performed. A cost account is a natural control
point for cost/schedule planning and control since it represents the work assigned to
one responsible organizational element on one contract work breakdown structure
element [DoD 80].

cost performance index - The ratio of the budgeted cost for work performed and the
actual cost of the work performed, expressed as a percentage.

cost variance - The difference between the budgeted cost for work performed and the
actual cost of work performed.

course - An offering in particular subject.

data - Something given or admitted, especially as a basis for reasoning or inference;
factual material used as a basis especially for discussion or decision; something used
as a basis for calculating or measuring.

defect - A product’s inconsistency with its specification. Examples include such things
as omissions and imperfections found in software during the early life-cycle phases and
faults contained in software sufficiently mature for test or operation.

error - (1) The difference between a computed, observed, or measured value or
condition and the true, specified, or theoretically correct value or condition. (2) An

CMU/SEI-92-TR-25 B-1

Appendix B: Definitions

incorrect step, process, or data definition. (3) An incorrect result. (4) A human action
that produces an incorrect result [IEEE 610].

estimated cost at completion - Actual costs to date plus the estimate of costs for
authorized work remaining (based on [DoD 80]).

failure - The inability of a system or component to perform its required functions within
specified performance requirements [IEEE 610].

fault - An incorrect step, process, or data definition in a computer program. In common
usage, the terms “error” and “bug” are used to express this meaning [IEEE 610].

first-line software manager - A manager who has direct management responsibility
(including providing technical direction and administering the personnel and salary
functions) for the staff and activities of a single department of software engineers and
other related staff.

formal review - A formal meeting at which a product is presented to the end user,
customer, or other interested parties for comment and approval. It can also be a review
of the management and technical activities and progress of the hardware/software
development project.

indicator - A representation of measurement data that provides insight into software
development processes and/or software process improvement activities.

labor category - A way of classifying labor. Labor categories can be direct or indirect,
or broken down by job classification or skill.

measure - n. A standard or unit of measurement; the extent, dimensions, capacity, etc.
of anything, especially as determined by a standard; an act or process of measuring; a
result of measurement. v. To ascertain the quantity, mass, extent, or degree of
something in terms of a standard unit or fixed amount, usually by means of an
instrument or process; to compute the size of something from dimensional
measurements; to estimate the extent, strength, worth, or character of something; to
take measurements.

measurement - The act or process of measuring something. Also a result, such as a
figure expressing the extent or value that is obtained by measuring.

metric - In this document, metric is used as a synonym for measure.

mid-level software manager - A manager who reports directly or indirectly (i.e.,
through another manager) to the project software manager and who has direct
management responsibility (including providing technical and management direction
and administering the personnel and salary functions) for other software managers.

noncompliance - The failure of an intermediate or final product to comply with a
standard or of an activity to comply with its process.

priority - The level of importance assigned to an item by an individual. Priority is
related to how quickly an item gets addressed.

B-2 CMU/SEI-92-TR-25

Appendix B: Definitions

problem - An unsettled question arising from a situation where it appears that a
change to the software, its documentation, or related hardware is necessary for
successful test or operation of the system [IEEE P1044].

process - A series of actions, changes, or functions that achieve an end or result.

project software manager - A manager who has total responsibility for all the software
activities for the entire project. The project software manager is the person the project
manager deals with in terms of software commitments, etc., and the person who
controls all the software development staff for a project.

guality audit - The review of a product or process for compliance with standards,
procedures, and progress reporting policy by an independent software quality
assurance group.

schedule performance index - The ratio of the budgeted cost for the work performed
and the budgeted cost for the work scheduled, expressed as a percentage.

schedule variance - The difference between the budgeted cost for the work performed
and the budgeted cost for work scheduled.

senior manager - A manager at a high enough level that his/her primary focus would
be expected to be the long-term vitality of the company and organization, rather than
short-term project and contractual concerns and pressures. In general, a senior
manager for engineering would have responsibility for multiple projects.

severity - The degree of impact that a requirement, module, error, fault, failure, or other
item has on the development or operation of a system [IEEE 610].

software engineering process group - A group of specialists who facilitate the
definition and improvement of the software process used by the organization.

staff-hour - An hour of time expended by a member of the staff [[EEE 1045].

statistical process control - The use of statistical methods to identify the existence of
special causes of variation in a process.

trouble report - A document (electronic or hard copy) used to recognize, record, track,
and close anomalies detected in the software and its accompanying documentation. In
this document, a trouble report is restricted to that written during integration and test,
and the acceptance test activities.

turnover - The number of unplanned staff losses during a reporting period.

variance - The difference between planned and actual performance which requires
further review, analysis, or action [DoD 80].

work breakdown structure - A product-oriented family tree division of hardware,
software, services, and other work tasks which organizes, defines, and graphically
displays the product to be produced as well as the work to be accomplished to achieve
the specified product [DoD 80].

CMU/SEI-92-TR-25 B-3

Appendix B: Definitions

work package - Detailed short-span jobs, or material items, identified by the contractor
for accomplishing work required to complete the contract [DoD 80].

B-4 CMU/SEI-92-TR-25

Appendix C: Mapping

Appendix C: Mapping of Software Measurement in the
Key Practices of the Capability Maturity Model to
Indicator Categories

This appendix provides the software measurement references contained within the key
process areas of the Capability Maturity Model for Software (CMM) [Weber 91]. The
information is provided in five columns. The first column repeats the goals of the key
process area from the CMM. The second column list questions that can be asked
about the goals. In most cases, these questions are concerned with measurement.
The third column lists the measures that are explicitly stated or inferred from the CMM
text. The reference for each measure is given in the fourth column. Each entry
consists of a letter indicating whether the measure is explicitly stated (E) or inferred (1)
in the CMM text and a citation code. This code has the format

key process area.common feature.top-level key practice number.subordinate key
practice number.item in subordinate key practice statement

Thus, E RM.MO.1.2.1 means that the measure number of requirements changes over
time is explicitly stated (E) in the Requirements Management (RM) key process area,
the Monitoring implementation (MO) common feature, top-level key practice statement
1, subordinate key practice statement 2, and item 1 within the subordinate key practice
statement. The code key for the CMM reference is given on the next page.

The five common features of the key practices for each key process area are the
following:

* Commitment to perform specifies the actions the organization must take to
ensure that the process is established and will endure.

» Ability to perform specifies the preconditions that must exist in the project or
organization to implement the process competently.

» Activities performed specifies the steps that must be performed to effectively
establish the key process area.

* Monitoring implementation specifies the steps that must be performed to
measure the process, analyze the measurements, and take action based on the
results.

» Verifying implementation specifies the steps that must be performed to guide
and ensure that the activities are performed in compliance with the process that
has been specified.

The last column lists the indicator category to which the measurement applies.

CMU/SEI-92-TR-25
C-1

Appendix C: Mapping

CMM Reference Key

Abbreviation Meaning

Key Process Area:

RM Requirements Management
PP Software Project Planning
TO Software Tracking and Oversight
SM Software Subcontract Management
QA Software Quality Assurance
CM Software Configuration Management
PF Organization Process Focus
PD Organization Process Definition
TR Training
IM Integrated Software Management
PE Software Product Engineering
IC Intergroup Coordination
PR Peer Reviews
PA Process Measurement and Analysis
QM Quality Management
DP Defect Prevention
TI Technology Innovation
PC Process Change Management
Common Feature:
Cco Commitment to perform
AB Ability to perform
AC Activities performed
MO Monitoring implementation
VE Verifying implementation
C-2 CMU/SEI-92-TR-

25

Appendix C: Mapping

CMU/SEI-92-TR-25
C-3

Appendix C: Mapping

Requirements M anagement

Key Process Area Goals

The system requirements all ocated
to software provide a clearly stated,
verifiable, and testable foundation
for software engineering and
software management.

The allocated requirements define
the scope of the software effort.

The allocated requirements and
changes are incorporated into the
software plans, products, and
activitiesin an orderly manner.

Questions

Does the requirements management
process track the number of changes
to the requirements?

Does the requirements management
process monitor the compl eteness of
the requirements?

Does the software development plan
appropriately address requirements
implementation?

25

CMU/SEI-92-TR-

Appendix C: Mapping

Requirements M anagement

Measurement

Total number of allocated
requirements, over time
Number of allocated requirements,
over time, by type:

Functional

Performance

Operational

Programmatic
Cost for managing requirements
Schedule of activities for
managing reguirements
Total number of changes, over
time, from each major source:

Customer

End user

Software engineering group

System engineering group

System test group
Total number of changes, over time

Proposed

Open

Approved

Incorporated into basdline
Number of items affected by
requirements change
Number of SQA reviews
Number of SQA audits
Number of deviations and product
deficiencies

Open

Closd

Type

CMM Category

| RM.AC.1

| RM.AC.1

ERM.MO.1
ERM.MO.1

ERM.MO.1.2.1

ERM.MO.1.2.2

| RM.AC.4.5

E RM.VE.3
E RM.VE.3
| RM.VE.3

Indicator Category

Requirements stability

Requirements stability

Cost
Progress

Requirements stability

Requirements stability

Requirements stability

SQA audit results
SQA audit results
SQA audit results

CMU/SEI-92-TR-25
C-5

Appendix C: Mapping

Software Project Planning

Key Process Area Goals

A plan is devel oped that
appropriately and realistically covers
the software activities and
commitments.

All affected groups and individuals
understand the software estimates
and plans and commit to support
them.

The software estimates and plans
are documented for usein tracking
the software activities and
commitments.

Questions

Has the software planning process
resulted in a software devel opment
plan that has the planned budget,
effort, and schedule consistent with
each other and the software
requirements?

Are the software subcontractor’s
planned budget, effort, and schedule
consistent with each other, the
software requirements, and the
software development plan?

25

CMU/SEI-92-TR-

Appendix C: Mapping

Software Project Planning

Measurement

I dentification of software products
to be devel oped, including:
Major products used by
software engineering group
Products used by other groups
Products for external delivery
Size estimates for software
products and activities
Staff resource estimates by
Life-cycle stage
Task
Spread over time
Skill level
Effort for project planning activities
Cost estimates by
Life-cycle stage
Task
Spread over time
Codt for project planning activities
Software project schedules

Total number of risks
Number of risks by type
Technical
Cost
Resource
Schedule
Critical computer resource
estimates
Memory capacity
Computer process use
Communication channe capacity
Number of SQA reviews
Number of SQA audits
Number of deviations and product
deficiencies
Open
Closd
Type
Number of staff trained

CMM Category

EPP.AC.7.4

E PP.AC.7.5 EPP.ACO.1

E PP.AC.7.6, E PP.AC.10.3.3

E PP.AC.10.3.4
E PP.MO.1
E PP.AC.10.3.3

E PP.MO.1

E PP.AC.7.7, EPP.AC.12.3,
E PP.AC.12.4, EPP.MO.1
E PP.AC.7.8

| PP.AC.7.8, EPP.AC.13

E PP.AC.11.1, EPPAC.11.2

E PP.VE.2
E PP.VE.2
| PP.VE.2

E PP.AB.5

Indicator Category

Progress

Size stability

Effort

Effort
Cost

Cost
Progress

Computer resource utilizatic

SQA audit results
SQA audit results
SQA audit results

Training

CMU/SEI-92-TR-25
C-7

Appendix C: Mapping

Software Project Tracking and Oversight

Key Process Area Goals

Actual results and performance of
the software project are tracked
against documented and approved
plans.

Corrective actions are taken when
the actual results and performance
of the software project deviate
significantly from the plans.

Changes to software commitments
are understood and agreed to by all
affected groups and individuals.

Questions

Arethe actual results and
performance of the software project
tracked against the software
development plan?

Arethe planned budget, effort, and
schedul e revised when necessary
with the procedure used to derive
the original budget, effort, and
schedule?

Isthere a mechanism for the

review of the cost, schedule,
resource, and technical risk status of
the software devel opment project?

25

CMU/SEI-92-TR-

Appendix C: Mapping

Software Project Tracking and Oversight

Measurement CMM Category Indicator Category
Size for software products and ETO.AC4.1 Progress
activities
Actual size of ETO.ACA4.2 Progress
Generated code
Fully tested code
Delivered code
Units of delivered documentation ETO.ACA4.3 Progress, Size stahility
Total software size ETO.AC44 Progress, Size stahility
Actual costs over time ETO.AC5.1, ETO.MO.1.3, Cost
ETO.VE.1.2, ETO.VE.2.1
Software costs per element ETO.AC5.2,ETO.MO.1.2 Cost
Effort and staffing ETO.AC.5.3, ETO.MO.1.3, Effort
ETO.VE.1.2, ETO.VE.2.1
Critical computer resource ETO.AC.6.1, ETO.VE.1.3 Computer resource utilizatic
Memory capacity

Computer process use
Communication channel capacity

Schedule ETO.AC.7, ETO.MO.1.1, Progress
ETO.VE.1.2, ETO.VE.2.1
Software units designed ETO.AC.7.2 Progress
Software units coded ETO.AC.7.2 Progress
Software units tested ETO.AC.7.2 Progress
Software units integrated ETO.AC.7.2 Progress
Completion dates of test ETO.AC.7.3 Progress
executions
Software activity completion dates ETO.AC.7.4 Progress
System rel ease contents ETO.AC.8.2 Progress, Requirements stat
Size stability
Trouble reports ETO.AC.8.3 Trouble reports
Software risks ETO.AC.9, ETO.VE.16,
ETO.VE.2.3
Technical
Cost
Resource
Schedule
Number of action items ETO.AC.12.6 Review results

CMU/SEI-92-TR-25
C-9

Appendix C: Mapping

C-10 CMU/SEI-92-
TR-25

Appendix C: Mapping

Software Project Tracking and
Oversight (Continued)

M easurement CMM Category Indicator Category
Number of SQA reviews ETO.VE.3 SQA audit results
Number of SQA audits ETO.VE.3 SQA audit results
Number of deviations and product | TOVE.3 SQA audit results
deficiencies

Open

Closed

Type
Number of staff trained E TO.AB.6, ETO.AB.7 Training

CMU/SEI-92-TR-25
C-11

Appendix C: Mapping

Softwar e Subcontract M anagement

Key Process Area Goals Questions

The prime contractor selects Arethe actual results and

qualified subcontractors. performance of the software
subcontractor tracked against the

The software standards, procedures, software development plan?

and product requirements for the

subcontractor comply with the Is there a mechanism for the

prime contractor’ s commitments. review of the status of the cost, effort,
schedule, and technical risks of the

Commitments between the prime software subcontractor?

contractor and subcontractor are

understood and agreed to by both

parties.

The prime contractor tracks the
subcontractor’ s actual results and
performance against the
commitments.

C-12 CMU/SEI-92-
TR-25

Appendix C: Mapping

Softwar e Subcontract M anagement

Measurement

Size estimates
Cost estimates
Schedul e estimates
Critical computer resource
estimates
Actual subcontractor costs
Actual subcontractor effort
Actual subcontractor schedule
performance
Subcontractor critical computer
resources
Action items
Software risks
Number of SQA reviews
Number of SQA audits
Number of deviations and product
deficiencies

Open

Closed

Type
Cost for managing subcontract
Schedul e status of managing
subcontract activities
Number of staff trained

CMM Category

ESM.AC3.7.1
E SM.AC.3.7.2
ESM.AC.3.7.3
ESM.AC3.74

E SM.AC.7.2
E SM.AC.7.2
E SM.AC.7.2

E SM.AC.7.3

E SM.AC.9.3
ESM.AC94
E SM.AC.10.2, ESM.VE.3
E SM.AC.11.3, ESM.VE.3

| SM.AC.10.2, | SM.AC.11.3,

| SM.VE.3

E SM.MO.1
E SM.MO.1

E SM.AB.2, ESM.AB.3

Indicator Category

Progress, Size stahility
Progress

Progress

Computer resource utilizatic

Cost

Effort

Progress

Computer resource utilizatic
Review results

SQA audit results

SQA audit results
SQA audit results

Cost
Progress

Training

CMU/SEI-92-TR-25
C-13

Appendix C: Mapping

Softwar e Quality Assurance

Key Process Area Goals

Compliance of the software product
and software process with
applicable standards, procedures,
and product requirementsis
independently confirmed.

When there are compliance
problems, management is aware of
them.

Senior management addresses
noncompliance issues.

Questions

Areindependent audits conducted
for each step of the software
development process?

Are standards and procedures
applied on the software devel opment
project?

Areindependent audits conducted
for the software subcontractor to
ensure compliance with the
software development plan?

C-14
TR-25

CMU/SEI-92-

Appendix C: Mapping

Softwar e Quality Assurance

M easurement
Number of SQA reviews
Number of SQA audits

Number of deviations and product
deficiencies

Open

Closd

Type
Cost of SQA activities
Schedule status for SQA activities
Effort expended for SQA activities
Number of staff trained

CMM Category

E QA.AC.25 E QA.ACA4,
E QA.MO.1.3

E QA.AC.25 E QA.ACA4,
E QA.MO.1.3

E QA.AC4.2, EQA.ACS5.3

EQA.MO.1.2
EQA.MO.1L1, E QA.MO.1.2
EQA.MO.1.2

EQA.AB.2, EQA.AB.3

Indicator Category

SQA audit results
SQA audit results

SQA audit results

Cost
Progress
Effort
Training

CMU/SEI-92-TR-25
C-15

Appendix C: Mapping

Software Configuration M anagement

Key Process Area Goals Questions
Controlled and stable basglines are Is there a mechanism for identifying
established for planning, managing, software baseline(s)?

and building the system.
Does the configuration management

The integrity of the system’s process track the number of changes
configuration is controlled over to the software baseline(s)?
time.

The status and content of the
software baselines are known.

C-16
TR-25

CMU/SEI-92-

Appendix C: Mapping

Software Configuration M anagement

Measurement
Total number of configuration items

Number of configuration items by
type

Number of change requests, over
time
Number of trouble reports

Open

Approved

Closed
Cost for SCM activities
Effort for SCM activities
Schedule status for SCM activities
Number of baseline audits
Number of reviews

Number of SQA audits
Number of deviations and product
deficiencies
Open
Closd
Type
Number of staff trained

CMM Category

ECM.ACS5

ECM.AC5.1

E CM.AC.6

E CM.AC.6

E CM.MO.1.2

E CM.MO.1.2
ECM.MO.1.1, ECM.MO.1.2
ECM.AC11, ECM.VEA4

E CM.CO.1.5 ECM.VE.SS,
ECM.AC.7.3,ECM.VE4

E CM.VE.4

| CM.AC.7.3,1 CM.VE.3,

| CM.VE4, | CM.AC.11

E CM.AB.4, ECM.AB.5

Indicator Category

Progress, Requirements stat
Size stability
Progress, Requirements stat

Size stability
Requirements stability

Trouble reports

Cost

Effort

Progress

SQA audit results
SQA audit results

SQA audit results
SQA audit results

Training

CMU/SEI-92-TR-25
C-17

Appendix C: Mapping

Organization Process Focus

Key Process Area Goals

Current strengths and weaknesses
of the organization’s software
process are understood and plans
are established to systematically
address the weaknesses.

A group is established with
appropriate knowledge, skills, and
resources to define a standard
software process for the
organization.

The organization provides the
resources and support needed to
record and analyze the use of the
organization’s standard software
process to maintain and improveit.

Questions

Has a software engineering process
group (SEPG) been established?

Has the SEPG a charter that directs
it tofocuson the organization’s
process?

C-18
TR-25

CMU/SEI-92-

Appendix C: Mapping

Organization Process Focus

Measurement CMM Category Indicator Category
Schedule for process definition and EPF.MO.1.1 Progress
improvement activities

Effort expended for process EPF.MO.1.1 Effort

definition and improvement

activities

Cost for process definition and EPF.MO.1.1 Cost

improvement activities

Number of staff trained E PF.AB.2, E PF.AB.3 Training

CMU/SEI-92-TR-25
C-19

Appendix C: Mapping

Organization Process Definition

Key Process Area Goals

A standard software process for the
organization is defined and
maintained as a basis for stabilizing,
analyzing, and improving the
performance of the software
projects.

Specifications of common software
processes and documented process
experiences from past and current

projects are collected and available.

Questions

Isthe standard software process
stable?

Are process problems the result of
poor process definition or of improper
implementation of the process?

C-20
TR-25

CMU/SEI-92-

Appendix C: Mapping

Organization Process Definition

Measurement CMM Category Indicator Category
Number of changes to the software EPD.AC.7.2 Process stability
software process
Number of waivers to the software E PD.AC.9.2 Process stability
process
Schedule for process definition E PD.MO.1.1 Progress
activities
Effort expended for process | PD.MO.1 Effort
definition activities
Cost for process definition E PD.MO.1.2 Cost
activities
Number of SQA reviews EPD.VE.1 SQA audit results
Number of SQA audits EPD.VE.1 SQA audit results
Number of deviations and product | PD.VE.1 SQA audit results
deficiencies

Open

Closed

Type
Number of staff trained E PD.AB.2, EPD.AB.3, Training

E PD.AB.4

CMU/SEI-92-TR-25
C-21

Appendix C: Mapping

Training Program

Key Process Area Goals

The staff and managers have the
skills and knowledge to perform their
jobs.

The staff and managers effectively
use, or are prepared to use, the
capabilities and features of the
existing and planned work
environment.

The staff and managers are
provided with opportunitiesto
improve their professional skills.

Questions

Does the staff have the appropriate
skill mix for the project?

How many of the staff are being
trained?

How many of the staff have completed
their training programs?

How isthe project performing with
respect to itstraining plan?

Who is attending training?

Arethe appropriate people being
trained?

What is the quality/effectiveness of
the training?

How many waivers from training have
been requested?

C-22
TR-25

CMU/SEI-92-

Appendix C: Mapping

Training Program
M easurement

Number of waivers
Approved over time for each
project
Approved over time for each
course

Number of staff trained

Number who completed their
designated required courses
Number of courses offered
Course quality
Number of SQA reviews
Number of SQA audits
Number of deviations and product
deficiencies

Open

Closd

Type

CMM Category

ETRAC4, ETRMO.1.3

ETRACS8.1, ETRMO.11,
ETRAB.2, ETRAB.3
ETRACS8.1, ETRMO.11,
ETRAB.2, ETRAB.3
ETRMO.1.2

E TR.MO.2

ETRVE.4

ETRVE.4

| TRVE4

Indicator Category

Training

Training
Training

Training, Progress
Training

SQA audit results
SQA audit results
SQA audit results

CMU/SEI-92-TR-25
C-23

Appendix C: Mapping

Integrated Software M anagement

Key Process Area Goals

The planning and managing of each
software project is based on the
organization’s standard software
process.

Technical and management data
from past and current projects are
available and used to effectively and
efficiently estimate, plan, track, and
replan the software projects.

Questions

Has the software planning process
resulted in a software devel opment
plan that has the planned budget,
effort, and schedule consistent with
each other and the software
requirements?

Are the software subcontractor’s
planned budget, effort, and schedule
consistent with each other, the
software requirements, and the
software development plan?

Arethe actual results and
performance of the software project
tracked against the software
development plan?

Arethe planned budget, effort, and
schedul e revised when necessary
with the procedure used to derive
the original budget, effort, and
schedule?

Isthere a mechanism for the

review of the cost, schedule,
resource, and technical risk status of
the software devel opment project?

Does the requirements management
process track the number of changes
to the requirements?

Does the requirements management
process monitor the compl eteness of
the requirements?

Does the software development plan
appropriately address requirements
implementation?

C-24
TR-25

CMU/SEI-92-

Appendix C: Mapping

Integrated Software M anagement

Measurement

Total number of allocated
requirements, over time
Number of waiversto the software
process

Approved

Rejected
Number of waivers to the contract
software process reguirements

Approved

Rejected
Number of software process
change requests

Open

Approved

Rejected

Incorporated
Number of action items

Open

Closd

Type

Priority
Software size

New
Off-the-shelf
Reused
Project software costs
Critical computer resources
Memory capacity
Computer process use
Communication channel capacity
Software project schedule

Total number of risks

Number of risks by type

CMM Category

EIM.AB.2

EIM.AC.1.2.2

EIM.AC.1.3

EIM.AC.2.2

I IM.AC.3

EIM.AC6.1, EIM.AC.6.6.1,
EIM.MO.1.1

EIM.AC.7, EIM.MO.1.3
EIM.AC.8, EIM.MO.3.3

EIM.AC.9, EIM.MO.1.2,
EIM.MO.3.2

EIM.AC.10, E IM.MO.3,

E PP.AC.7.8

I IM.AC.10, | PP.AC.7.8,

E PP.AC.13, ETO.AC.9,
ETO.VE.1.6, ETO.VE.2.3,
ESM.AC94

Indicator Category

Requirements stability

Process stability

Process stability

Process stability

Review results

Size stahility, Progress

Cost

Computer resource utilizatic

Progress

CMU/SEI-92-TR-25
C-25

Appendix C: Mapping

Integrated Software M anagement (Continued)

Key Process Area Goals

Questions

Areindependent audits conducted
for each step of the software
development process?

Are standards and procedures
applied on the software devel opment
project?

Is there a mechanism for identifying
software baseline(s)?

Does the configuration management
process track the number of changes
to the software baseline(s)?

C-26
TR-25

CMU/SEI-92-

Appendix C: Mapping

Integrated Software M anagement (Continued)

Measurement

Technical

Cost

Resource

Schedule
Number of defects
Number of replans

Cause

Magnitude
Staff resources by

Life-cycle stage

Task

Skill level
Number of SQA reviews
Number of SQA audits
Number of deviations and product
deficiencies

Open

Closd

Type
Number of staff trained

CMM Category

EIM.MO.14
EIM.MO.2

EIM.MO.3.1

EIM.VE.3
EIM.VE.3
I IM.VE.3

EIM.AB.5

Indicator Category

Peer review results

Effort

SQA audit results
SQA audit results
SQA audit results

Training

CMU/SEI-92-TR-25
Cc-27

Appendix C: Mapping

Software Product Engineering

Key Process Area Goals

Software engineering issues for the
product and the process are properly
addressed in the system
requirements and system design.

The software engineering activities
are well-defined, integrated, and
used consistently to produce
software systems.

State-of-the-practice software
engineering tools and methods are
used, as appropriate, to build and
maintain the software system.

Software engineering products that
are consistent with each other and
appropriate for building and
maintaining the software system are
systematically devel oped.

Questions

Does the quality of the product
indicate that the product is ready to
proceed to the next life-cycle stage or
that it isready for release to the
customer?

Will undetected or unresolved
problems in the product lead to more
problems in the next life-cycle stage?

Does the number of trouble reports
indicate that the software product
should be reworked before
proceeding to the next life-cycle
stage?

Do the types of defects suggest areas
for process changes?

Isthe testing activity complete?

Are project personnel addressing
trouble reports, requirements change
regquests, and waiver requestsin a
timely manner?

Are the numbers of requirements
changes, to-be-determineds, trouble
reports, and waiver requests
decreasing with time?

What category of requirements are
responsible for the majority of the
requirements changes?

C-28
TR-25

CMU/SEI-92-

Appendix C: Mapping

Software Product Engineering

Measurement

Total number of allocated
requirements, over time
Number of allocated requirements,
over time, by type:
Functional
Performance
Operational
Programmatic
Total number of changes, over
time, from each major source:
Customer
End user
Software engineering group
System engineering group
System test group
Total number of changes, over time

Proposed

Open

Approved

Incorporated into basdline
Trouble reports

Open

Approved

Closd
Total number of defects detected

Number of defects

by type/category
by severity
by life-cycle stage
by activity introduced
Number of units affected by defect

Number of units containing defect

Number of changes to the software
process

Number of SQA reviews

Number of SQA audits

CMM Category

E PE.AC.3.5 EPEMO.1.2,
EPEMO.2.1

E PE.AC.3.1.1, EPEMO.1.2,
E PEMO.2.1

E PE.MO.2.3

E PE.MO.2.3

E PE.MO.2.2, EPE.VE.3.9

E PE.AC.10, EPE.MO.1.1

E PE.AC.10.2, EPEIMO.1.1
E PE.AC.10.3, EPEIMO.1.1
EPEMO.1.1
E PE.AC.10.6
E PE.AC.10.5

E PE.AC.10.4

EPE.AC.114

E PE.VE.3
E PE.VE.3

Indicator Category

Requirements stability

Requirements stability

Requirements stability

Requirements stability, Effc
Cost

Trouble reports

Trouble reports, Peer review
results

Trouble reports, Peer review
results

Trouble reports, Peer review
results

Trouble reports, Peer review
results

Process stability

SQA audit results
SQA audit results

CMU/SEI-92-TR-25
C-29

Appendix C: Mapping

C-30 CMU/SEI-92-
TR-25

Appendix C: Mapping

Software Product Engineering (Continued)

M easurement CMM Category Indicator Category
Number of deviations and product | PE.VE.3 SQA audit results
deficiencies

Open

Closed

Type
Number of staff trained E PE.AB.2, E PE.AB.3 Training

CMU/SEI-92-TR-25
C-31

Appendix C: Mapping

Intergroup Coordination

Key Process Area Goals

The project’ stechnical goals and
objectives are understood and
agreed to by its staff and managers.

The responsibilities assigned to
each of the project groups and the
working interfaces between these
groups are known to all groups.

The project groups are appropriately
involved in intergroup activities and
in identifying, tracking, and
addressing intergroup issues.

The project works as a team.

Questions

Arethe project personnel working
together effectively to accomplish the
software development plan?

Arethe project personnel following
the standard software process?

C-32
TR-25

CMU/SEI-92-

Appendix C: Mapping

Intergroup Coordination

Measurement

Critical dependencies
Cost of intergroup coordination
activities
Effort of intergroup coordination
activities
Schedule of intergroup coordination
activities
Number of SQA reviews
Number of SQA audits
Number of deviations and product
deficiencies

Open

Closd

Type
Number of staff trained

CMM Category

EIGAC4
EIGMO.1.1, EIGMO.1.2

EIGMO.1.1, EIGMO.1.2
EIGMO.1.3 EIGMO.1.4
EIG.VE.3

EIG.VE.3
I IG.VE.3

E1G.AB.3, EIG.AB.4,
EI1G.AB.5

Indicator Category

Progress
Cost

Effort
Progress
SQA audit results

SQA audit results
SQA audit results

Training

CMU/SEI-92-TR-25
C-33

Appendix C: Mapping

Peer Reviews

Key Process Area Goals

Product defects are identified and
fixed early in thelife cycle.

Appraopriate product improvements
are identified and implemented early
in thelife cycle.

The staff members become more
effective through a better
understanding of their work products
and knowledge of errorsthat can be
prevented.

A rigorous group process for
reviewing and evaluating product
quality is established and used.

Questions

Isthere a peer review processin
place that allows the detection of
product defects early in the life
cycle?

Are action items resulting from
peer reviews tracked to closure?

Arethe defect data used to identify
weaknesses in the software
development process?

C-34
TR-25

CMU/SEI-92-

Appendix C: Mapping

Peer Reviews
M easurement CMM Category Indicator Category
Number of peer reviews | PRAC.1 Peer review results
Number of re-reviews | PRAC.3, EPRMO.1 Peer review results
Action items EPRAC.25 EPRAC.3.6 Peer review results

Open

Closed
Number of items reviewed at meeting | PRAC.3.1 Peer review results
Product size EPRAC.3.2, EPRMO.1.3 Peer review results
Preparation lead time EPRMO.1.1 Peer review results
Preparation time for each reviewer EPRAC.3.3, EPRMO.1.2 Peer review results
Length of time of review E PRAC.3.4, EPRMO.1.6 Peer review results
Size of review team | PRAC.14, EPRMO.14 Peer review results
Experience of review team EPRAC.1.4, EPRMO.1.5 Peer review results
Structure of review team EPRAC.14 Peer review results
Number of defects detected EPRAC.35 Peer review results
Number of defects identified by EPRAC.35 Peer review results
type
Rework effort EPRAC.3.7,EPRMO.1.8 Peer review results
Number of SQA reviews EPRVE.1 SQA audit results
Number of SQA audits EPRVE.1 SQA audit results
Number of deviations and product | PRVE.1 SQA audit results
deficiencies

Open

Closd

Type
Number of staff trained E PRAB.1, EPRAB.2 Training

CMU/SEI-92-TR-25
C-35

Appendix C: Mapping

Process M easurement and Analysis

Key Process Area Goals

The organization’ s standard
software processis stable and under
statistical process control.

The relationship between product
quality, productivity, and product
development cycletimeis

understood in quantitative terms.

Special causes of process variation
(i.e., variations attributable to
specific applications of the process
and not inherent in the process) are
identified and controlled.

Questions

Isthe organization’ s standard
software process stable and under
statistical process control?

Are process variations analyzed and
corrective action taken when
necessary?

Are process and product metrics
collected, analyzed, and used to
monitor and control products and
processes?

C-36
TR-25

CMU/SEI-92-

Appendix C: Mapping

Process M easurement and Analysis

Measurement

Number of staff trained
Product and process metrics

Number of change requests
Cost of process measurement and
analysis activities
Schedule for process
measurement and analysis
activities
Number of SQA reviews
Number of SQA audits
Number of deviations and product
deficiencies

Open

Closd

Type

CMM Category

E PA .AB.3, EPA.AB.4
EPA.AC35

EPAACT7.1
E PA.MO.1

EPA.MO.1

E PA.VE.5

E PA.VE.5
| PA.VE.S

Indicator Category

Training
Progress, Effort, Cost, Qual

Stability, Computer resourc
results

Process stability

Cost

Progress
SQA audit results

SQA audit results
SQA audit results

CMU/SEI-92-TR-25
C-37

Appendix C: Mapping

Quality M anagement

Key Process Area Goals

Measurable goals and priorities for
product quality are established and
maintained for each software project
through interaction with the
customer, end users, and project
groups.

Measurable goals for process
quality are established for all groups
involved in the software process.

The software plans, design, and
process are adjusted to bring
forecasted process and product
quality in line with the goals.

Process measurements are used to
manage the software project
quantitatively.

Questions

Are quantitative product and process
quality goals established and revised
throughout the software life cycle?

Are quality metrics collected,
analyzed, and used to monitor and
control products and processes?

Arevariations from the quality goals
analyzed and corrective action taken
when necessary?

C-38
TR-25

CMU/SEI-92-

Appendix C: Mapping

Quality M anagement

M easurement CMM Category Indicator Category
Number of trained staff E QM.AB.2, E QM.AB.3 Training
Cost of achieving quality goals EQM.AC.11.1, EQM.MO.1.2 Cost
Cost of quality EQM.MO.1.1 Cost
Number of SQA reviews E QM.VE.4 SQA audit results
Number of SQA audits E QM.VE.4 SQA audit results
Number of deviations and product | QM.VE.4 SQA audit results
deficiencies

Open

Closed

Type

CMU/SEI-92-TR-25
C-39

Appendix C: Mapping

Defect Prevention

Key Process Area Goals

Sources of product defects that are
inherent or repeatedly occur in the
software process activities are
identified and eliminated.

Questions

What types of defects are being
inserted?

Which types of defects are being
inserted the most?

What is the effect on the defect
insertion rate when defect prevention
procedures are enacted?

C-40
TR-25

CMU/SEI-92-

Appendix C: Mapping

Defect Prevention

Measurement

Number of trained staff
Total number of defects detected

Number of defects
by type/category

by life-cycle stage
by activity introduced

Number of changes to the process
Number of changes to the software
Cost of defect prevention activities

Schedule of defect prevention
activities
Effort spent on defect prevention
activities
Number of SQA reviews
Number of SQA audits
Number of deviations and product
deficiencies

Open

Closd

Type

CMM Category

E DP.AB.4
EDP.AC.2.2

EDP.AC.2.3, EDP.VE.11
EDPAC.7.1, EDP.MO.2
EDPAC.7.1, EDP.MO.2

E DP.AC.6

E DP.AC.6

E DP.MO.1.1, EDPMO.1.2,
E DP.VE.1L5, EDP.VE.1.6
EDP.MO.1.1

E DP.MO.1.2
E DP.VE.2

E DP.VE.2
| DP.VE.2

Indicator Category

Training

Trouble reports, Peer review
results,

Defect prevention

Trouble reports, Peer review
results, Defect prevention
Trouble reports, Peer review
results, Defect prevention
Trouble reports, Peer review
results, Defect prevention

Process stability

Size stability
Cost

Progress
Effort
SQA audit results

SQA audit results
SQA audit results

CMU/SEI-92-TR-25
C-41

Appendix C: Mapping

Technology Innovation

Key Process Area Goals

The organization has a software
process and technol ogy capahility to
allow it to develop or capitalize on
the best avail able technologiesin
theindustry.

Selection and transfer of new
technology into the organization is
orderly and thorough.

Technology innovations are tied to
quality and productivity
improvements of the organization’s
standard software process.

Questions

Is the organization actively seeking
and ingtalling new technology in an
orderly fashion?

C-42
TR-25

CMU/SEI-92-

Appendix C: Mapping

Technology Innovation

Measurement CMM Category Indicator Category
Product and process metrics ETI.AB.3 Progress, Effort, Cost, Qual
Stahility
Number of trained staff ETI.AB.4, ETI.AC.L5, Training
ETI.AC.7.6

Number of changes to the software ETI.AC.7 Process stability
process
Cost of technology innovation ETI.MO.1, ETI.MO.2 Cost
activities
Schedule of technology innovation ETI.MO.2 Progress
activities
Number of SQA reviews ETI.VE.2 SQA audit results
Number of SQA audits ETI.VE.2 SQA audit results
Number of deviations and product | TLVE.2 SQA audit results
deficiencies

Open

Closed

Type

CMU/SEI-92-TR-25
C-43

Appendix C: Mapping

Process Change M anagement

Key Process Area Goals

The organization’s staff and
managers are actively involved in
setting quantitative, measurable
improvement goals and in improving
the software process.

The organization’ s standard
software process and the projects
defined software processes
continually improve.

The organization’ s staff and
managers are ableto use the
evolving software processes and
their supporting tools and methods
properly and effectively.

Questions

Is the organization continually
working to improve its standard
software process?

Is the organization meeting its
software process improvement goals?

C-44
TR-25

CMU/SEI-92-

Appendix C: Mapping

Process Change M anagement

M easurement
Number of peopletrained

Cost of process improvement
activities
Effort of process improvement
activities
Number of process changes
Number of software process
change requests

Open

Approved

Rejected

Incorporated
Number of SQA reviews
Number of SQA audits
Number of deviations and product
deficiencies

Open

Closd

Type

CMM Category

E PC.AB.4, EPC.ACS,
E PC.AC.9.7
E PC.AC.7

E PC.AC.7

EPC.AC9.21EPCAC.9.25
E PC.AC.1.6, EPC.AC.1.7,

E PC.AC.5, EPC.AC.6,

E PC.AC.10, EPC.MO.1.1

E PC.VE.2
E PC.VE.2
| PC.VE.2

Indicator Category

Training
Cost
Effort

Process stability, Progress
Process stability

SQA audit results
SQA audit results
SQA audit results

CMU/SEI-92-TR-25
C-45

Appendix C: Mapping

C-46 CMU/SEI-92-
TR-25

Appendix D: Indicator Categories Traced to Capability
Maturity Model Key Practices

This appendix traces the software indicators to the software measurement references
contained within the key process areas of the Capability Maturity Model (CMM) [Weber
91]. The information is in two columns. The first column gives the software indicator
while the second column lists the CMM reference. Each entry consists of a letter
indicating whether the measure is explicitly stated (E) or inferred (1) in the CMM text and
a citation code. This code has the format

key process area.common feature.top-level key practice number.subordinate key
practice number.item in subordinate key practice statement

Thus, E RM.MO.1.2.1 means that the measure number of requirements changes over
time is explicitly stated (E) in the Requirements Management (RM) key process area,
the Monitoring implementation (MO) common feature, top-level key practice statement
1, subordinate key practice statement 2, and item 1 within the subordinate key practice
statement. The code key for the CMM reference is given on the next page.

The five common features of the key practices for each key process area are the
following:

 Commitment to perform specifies the actions the organization must take to
ensure that the process is established and will endure.

» Ability to perform specifies the preconditions that must exist in the project or
organization to implement the process competently.

» Activities performed specifies the steps that must be performed to effectively
establish the key process area.

* Monitoring implementation specifies the steps that must be performed to
measure the process, analyze the measurements, and take action based on the
results.

» Verifying implementation specifies the steps that must be performed to guide
and ensure that the activities are performed in compliance with the process that
has been specified.

The table ends with a risk indicator category, but as noted in the text, no indicator is
given in this document for risk. The reference to risk is included for completeness.

CMU/SEI-92-TR-25 D-1

Appendix D: Indicators Traced to CMM Key Practices

Abbreviation

Key Process Area:

Common Feature:

CO
AB
AC
MO
VE

CMM Reference Key

Meaning

Requirements Management
Software Project Planning

Software Tracking and Oversight
Software Subcontract Management
Software Quality Assurance
Software Configuration Management
Organization Process Focus
Organization Process Definition
Training

Integrated Software Management
Software Product Engineering
Intergroup Coordination

Peer Reviews

Process Measurement and Analysis
Quality Management

Defect Prevention

Technology Innovation

Process Change Management

Commitment to perform
Ability to perform
Activities performed
Monitoring implementation

Verifying implementation

CMU/SEI-92-TR-25

Practices

Appendix D: Indicators Traced to CMM Key

Progress
Indicator

Schedule estimates
Software project schedules

Critical dependencies

Actual subcontractor schedule

performance

Schedule status of managing

subcontract activities

Schedule for SQA activities

Schedule of activities for

managing requirements

Schedule status SCM activities

Schedule for process definition
and

improvement activities

Schedule for process definition

activities

Schedule of intergroup

coordination activities

Schedule for process

measurement and analysis

activities

Schedule of defect prevention

activities

Schedule of technology innovation

activities

Software activity completion dates

Identification of software products

to be developed, including:
Major products used by
software engineering group
Products used by other groups
Products for external delivery

Size estimates

Size for software products and

activities

Total software size

CMM Category

E SM.AC.3.7.3

E PP.AC.7.7, E PP.AC.12.3,
E PP.AC.12.4, E PP.MO.1,
E TO.AC.7, ETO.MO.1.1,
ETO.VE.1.2, ETO.VE.2.1,
E IM.AC.9, E IM.MO.1.2,

E IM.MO.3.2

EIG.AC.4

E SM.AC.7.2

E SM.MO.1

E QA.MO.1.1, E QA.MO.1.2
E RM.MO.1

E CM.MO.1.1, E CM.MO.1.2
E PF.MO.1.1

E PD.MO.1.1

E IG.MO.1.3, EIG.MO.1.4

E PAMO.1

E DP.MO.1.1
E TI.LMO.2

ETO.AC.7.4
E PP.AC.7.4

E SM.AC.3.7.1
ETO.AC4.1

ETO.AC4.4

CMU/SEI-92-TR-25

Appendix D: Indicators Traced to CMM Key Practices

Progress (Continued)
Indicator

Actual size of

Generated code

Fully tested code

Delivered code

New

Off-the-shelf

Reused
Units of delivered documentation
Software units tested
Software units integrated
Completion dates of test
executions
System release contents
Cost estimates

Total number of configuration
items

Number of configuration items by

type

Number of courses offered
Number of process changes

Product and process metrics

CMM Category

E TO.AC.4.2, E IM.MO.1.1,
E IM.AC.6.1, EIM.AC.6.6.1

ETO.AC.4.3
E TO.AC.7.2
E TO.AC.7.2
E TO.AC.7.3

E TO.AC.8.2
E SM.AC.3.7.2
E CM.AC.5

E CM.AC.5.1

E TR.MO.1.2

E PC.AC.9.2.1,

E PC.AC.9.2.5

E PA.AC.3.5, ETI.LAB.3

CMU/SEI-92-TR-25

Practices

Appendix D: Indicators Traced to CMM Key

Effort
Indicator

Staff resource estimates by

Life-cycle stage
Task
Spread over time
Skill level

Effort and staffing

Actual subcontractor effort

Effort for project planning activities
Effort expended for SQA activities

Effort for SCM activities
Effort expended for process
definition and improvement
activities

Effort expended for process
definition activities

Effort of intergroup coordination

activities

Effort spent on defect prevention

activities

Effort of process improvement

activities

Total number of changes, over

time

Proposed

Open

Approved

Incorporated into baseline
Product and process metrics

CMM Category

E PP.AC.7.6,
E PP.AC.10.3.3,
E IM.MO.3.1

E PP.AC.10.3.4

E TO.AC.5.3, ETO.MO.1.3,
ETO.VE.1.2, ETO.VE.2.1
E SM.AC.7.2

E PP.MO.1

E QA.MO.1.2

E CM.MO.1.2

E PF.MO.1.1

| PD.MO.1

E IG.MO.1.1, EIG.MO.1.2

E DP.MO.1.2

E PC.AC.7

E PE.MO.2.3

E PA.AC.3.5, ETI.LAB.3

CMU/SEI-92-TR-25

Appendix D: Indicators Traced to CMM Key Practices

Cost
Indicator

Cost estimates by
Life-cycle stage
Task
Spread over time

Actual costs over time

Software costs per element
Actual subcontractor costs

Cost for managing requirements
Cost for project planning activities
Cost for managing subcontract
Cost of SQA activities

Cost for SCM activities

Cost for process definition and
improvement activities

Cost for process definition
activities

Cost of intergroup coordination
activities

Cost of process measurement and
analysis activities

Cost of achieving quality goals

Cost of quality
Cost of defect prevention activities

Cost of technology innovation
activities
Cost of process improvement
activities
Total number of changes, over
time

Proposed

Open

Approved

Incorporated into baseline
Product and process metrics

CMM Category

E PP.AC.10.3.3,

E IM.AC.7, E IM.MO.1.3

E TO.AC.5.1, ETO.MO.1.3,
ETO.VE.1.2, ETO.VE.2.1
ETO.AC5.2, ETO. MO.1.2
E SM.AC.7.2

E RM.MO.1

E PP.MO.1

E SM.MO.1

E QA.MO.1.2

E CM.MO.1.2

E PF.MO.1.1

E PD.MO.1.2
E IG.MO.1.1, EIG.MO.1.2
E PAMO.1

E QM.AC.11.1, E
QM.MO.1.2
E QM.MO.1.1

E DP.MO.1.1, E DP MO.1.2,
E DP.VE.1.5, E DP.VE.1.6
E TI.LMO.1, E TI.MO.2

E PC.AC.7

E PE.MO.2.3

E PA.AC.3.5, ETI.LAB.3

CMU/SEI-92-TR-25

Appendix D: Indicators Traced to CMM Key
Practices

Software Quality Assurance Audit Results

Indicator CMM Cateqgory

Number of SQA reviews E RM.VE.3, E PP.VE.2,
E TO.VE.3, E TR.VE.4,
E SM.AC.10.2, E SM.VE.3,
E QA.AC.2.5, E QA.AC.4,
E QA.MO.1.3, E PD.VE.1,
E CM.CO.1.5, E CM.VE.3,
E CM.AC.7.3, E CM.VE .4,
E IM.VE.3, E PE.VE.3,
E IG.VE.3, E PR.VE.1,
E PA.VE.5, E QM.VE.5,
E DP.VE.2, E TI.VE.2,

E PC.VE.2
Number of baseline audits E CM.AC.11, E CM.VE.4
Number of SQA audits E RM.VE.3, E PP.VE.2,

E TO.VE.3, E SM.AC.11.3,

E SM.VE.3, E QA.MO.1.3,

E QA.AC.2.5, E QA.AC.4,

E CM.VE .4, E PD.VE.1,

E TR.VE.4, E IM.VE.3,

E PE.VE.3, E IG.VE.3,

E PR.VE.1, E DP.VE.2,

E PA.VE.5, E QM.VE.5,

E TI.VE.2, E PC.VE.2
Number of deviations and product | RM.VE.3, | PP.VE.2,

deficiencies | TO.VE.3, | SM.VE.3,
Open | SM.AC.10.2, | SM.AC.11.3,
Closed E QA.AC.4.2, E QA.AC.5.3,
Type | CM.AC.7.3, | CM.VE.3,

| CM.VE.4, | CM.AC.11,
| PD.VE.1, | TR.VE.4,

I IM.VE.3, | PE.VE.3,

| PR.VE.1, | IG.VE.3,

| PAVE.5, | QM.VE.5,

| DP.VE.2, | TL.VE.2,

| PC.VE.2

CMU/SEI-92-TR-25 D-7

Appendix D: Indicators Traced to CMM Key Practices

Review Results

Indicator CMM Cateqgory

Number of action items E TO.AC.12.6, E SM.AC.9.3,
Open I IM.AC.3
Closed
Type
Priority

CMU/SEI-92-TR-25

Appendix D: Indicators Traced to CMM Key
Practices

Trouble Reports

Indicator CMM Category
Number of trouble reports E TO.AC.8.3, E CM.AC.6,
Open E PE.MO.2.2, E PE.VE.3.9
Approved
Closed
Total number of defects detected E PE.AC.10, E PE.MO.1.1,
E DP.AC.2.2
Number of defects
by type/category E PE.AC.10.2, E PE.MO.1.1,
E DP.AC.2.3, EDP.VE.1.1
by severity E PE.AC.10.3, E PE.MO.1.1
by life-cycle stage E PE.MO.1.1, EDP AC.7.1,
E DP.MO.2
by activity introduced E PE.AC.10.6, E DP AC.7.1,
E DP.MO.2

Number of units affected by defect E PE.AC.10.5
Number of units containing defect E PE.AC.10.4

CMU/SEI-92-TR-25 D-9

Appendix D: Indicators Traced to CMM Key Practices

Peer Review Results
Indicator

Number of peer reviews
Number of re-reviews
Action items
Open
Closed
Number of items reviewed at

meeting
Product size

Preparation lead time

Preparation time for each reviewer

Length of time of review
Size of review team
Experience of review team
Structure of review team
Number of defects detected

Number of defects
by type/category

by severity
by life-cycle stage

by activity introduced

Number of defects identified by

type

Number of units affected by defect
Number of units containing defect

Rework effort

CMM Category

| PR.AC.1
| PR.AC.3, EPR.MO.1
E PR.AC.2.5, E PR.AC.3.6

| PR.AC.3.1

E PR.AC.3.2, E PR.MO.1.3
E PR.MO.1.1

E PR.AC.3.3, E PR.MO.1.2
E PR.AC.3.4, E PR.MO.1.6
| PR.AC.1.4, EPR.MO.1.4
E PR.AC.1.4, E PR.MO.1.5
E PR.AC.1.4

E PR.AC.3.5, E IM.MO.1.4,
E PE.AC.10, E PE.MO.1.1,
E DP.AC.2.2

E PE.AC.10.2, E PE.MO.1.1,
E DP.AC.2.3, EDP.VE.1.1
E PE.AC.10.3, E PE.MO.1.1
E PE.MO.1.1, E DP AC.7.1,
E DP.MO.2

E PE.AC.10.6, E DP AC.7.1,
E DP.MO.2

E PR.AC.3.5

E PE.AC.10.5
E PC.AC.10.4
E PR.AC.3.7, E PR.MO.1.8

D-10

CMU/SEI-92-TR-25

Appendix D: Indicators Traced to CMM Key
Practices

Defect Prevention

Indicator CMM Cateqgory

Total number of defects detected E DP.AC.2.2
Number of defects

by type/category E DP.AC.2.3, EDP.VE.1.1
by life-cycle stage E DP AC.7.1, E DP.MO.2
by activity introduced E DP AC.7.1, E DP.MO.2

CMU/SEI-92-TR-25 D-11

Appendix D: Indicators Traced to CMM Key Practices

Requirements Stability
Indicator

Total number of allocated
requirements, over time
Number of allocated requirements,

over time, by type:
Functional
Performance
Operational
Programmatic
Total number of changes, over
time, from each major source
Customer
End user
Software engineering group
System engineering group
System test group
Total number of changes, over
time
Proposed
Open
Approved
Incorporated into baseline
Number of items affected by
requirements change
Total number of configuration
items
Number of configuration items by
type
Number of change requests, over
time
System release contents

CMM Category

E PE.AC.3.5, E PE.MO.1.2,
E PE.MO.2.1, E IM.AB.2

E PE.AC.3.1.1, E
PE.MO.1.2,
E PE.MO.2.1

E RM.MO.1.2.1,
E PE.MO.2.3

E RM.MO.1.2.2,

E PE.MO.2.3

| RM.AC.4.5

E CM.AC.5
E CM.AC.5.1

E CM.AC.6

E TO.AC.8.2

D-12

CMU/SEI-92-TR-25

Practices

Appendix D: Indicators Traced to CMM Key

Size Stability
Indicator

Size estimates for software
products and activities
Total software size
Software size

New
Off-the-shelf
Reused
Units of delivered documentation
System release contents
Total number of configuration
items
Number of configuration items by
type
Number of changes to the
software

CMM Category

E PP.AC.7.5, E PP.AC.9.1,
E SM.AC.3.7.1
ETO.AC4.4

E IM.AC.6.1, E IM.AC.6.6.1,
E IM.MO.1.1

ETO.AC.4.3
E TO.AC.8.2
E CM.AC.5

E CM.AC.5.1

E DP.AC.6

CMU/SEI-92-TR-25

D-13

Appendix D: Indicators Traced to CMM Key Practices

Process Stability

Indicator CMM Cateqgory

Number of changes to the E PD.AC.7.2, E PE.AC.11.4,
software

process E DP.AC.6, E TI.LAC.7,

E PC.AC.9.2.1, EPC.AC.9.2.5
Number of waivers to the software E PD.AC.9.2, E IM.AC.1.2.2
process
Approved
Rejected
Number of waivers to the contract E IM.AC.1.3
software process requirements

Approved
Rejected
Number of software process E IM.AC.2.2, E PA.AC.7.1,
change requests E PC.AC.1.6, E PC.AC.1.7,
Open E PC.AC.5, E PC.AC.6,
Approved E PC.AC.10, EPC.MO.1.1
Rejected
Incorporated

D-14

CMU/SEI-92-TR-25

Appendix D: Indicators Traced to CMM Key
Practices

Computer Resource Utilization

Indicator CMM Category

Critical computer resource E PP.AC.11.1,

estimates E PP.AC.11.2,
Memory capacity E TO.AC.6.1, ETO.VE.1.3,
Computer process use E SM.AC.3.7.4, E IM.AC.8,
Communication channel capacity E IM.MO.3.3
estimates

Subcontractor critical computer

resources E SM.AC.7.3

CMU/SEI-92-TR-25 D-15

Appendix D: Indicators Traced to CMM Key Practices

Training Program
Indicator

Number of waivers
Approved over time for each
project
Approved over time for each
course
Number who completed their
designated required courses
Number of courses offered
Course quality
Number of staff trained

CMM Category

E TR.AC.4, ETR.MO.1.3

E TR.AC.8.1, E TR.MO.1.1,
E TR.AB.2, E TR.AB.3
E TR.MO.1.2

E TR.MO.2

E TR.AC.8.1, E TR.MO.1.1,
E TR.AB.2, E TR.AB.3,
E PP.AB.5, E PD.AB.4,
E QA.AB.2, E QA.AB.3,
E CM.AB.4, E CM.AB.5,
E PF.AB.2, E PF.AB.3,
E PD.AB.2, E PD.AB.3,
E SM.AB.2, E SM.AB.3,
E TO.AB.6, E TO.AB.7,
E IM.AB.5, E PR.AB.2,
E PE.AB.2, E PE.AB.3,
E IG.AB.3, E IG.AB.4,

E IG.AB.5, E PR.AB.1,
E PA .AB.3, E PA.AB.4,
E QM.AB.2, E QM.AB.3,
E DP.AB.4, E TI.AC.7.6,
E TI.AB.4, E TI.AC.1.5,
E PC.AB.4, E PC.AC.5,
E PC.AC.9.7

D-16

CMU/SEI-92-TR-25

Appendix D: Indicators Traced to CMM Key

Practices

Risk

Indicator CMM Category

Total number of risks E PP.AC.7.8, E IM.AC.10,

E IM.MO.3, E SM.AC.9.4

Number of risks by type | PP.AC.7.8, E PP.AC.13,
Technical E TO.AC.9, E TO.VE.1.6,
Cost E TO.VE.2.3, E SM.AC.9.4,
Resource | IM.AC.10, | PP.AC.7.8,
Schedule E PP.AC.13, E TO.AC.9,

E TO.VE.1.6, ETO.VE.2.3

CMU/SEI-92-TR-25 D-17

Insert DD Form 1473 here

