


����������	
�����


������	 ��	 �������

���	�������������

Joarder Kamruzzaman
Monash University, Australia

Rezaul K. Begg
Victoria University, Australia

Ruhul A. Sarker
University of New South Wales, Australia

Hershey • London • Melbourne • Singapore

����	 �����	 ����� !�
�



Acquisitions Editor: Michelle Potter
Development Editor: Kristin Roth
Senior Managing Editor: Amanda Appicello
Managing Editor: Jennifer Neidig
Copy Editor: Chuck Pizar
Typesetter: Cindy Consonery
Cover Design: Lisa Tosheff
Printed at: Integrated Book Technology

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax:  717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax:  44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2006 by Idea Group Inc.  All rights reserved. No part of this book may be repro-
duced, stored or distributed in any form or by any means, electronic or mechanical, including
photocopying, without written permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI of the
trademark or registered trademark.

             Library of Congress Cataloging-in-Publication Data

Neural networks in finance and manufacturing / Joarder Kamruzzaman, Rezaul Begg and Ruhul
Sarker, editors.
       p. cm.
  Summary: "This book presents a variety of practical applications of neural networks in two
important domains of economic activity: finance and manufacturing"--Provided by publisher.
  Includes bibliographical references and index.
  ISBN 1-59140-670-6 (hardcover) -- ISBN 1-59140-671-4 (softcover) -- ISBN 1-59140-672-2
(ebook)
 1.  Neural networks (Computer science)--Economic aspects. 2.  Neural networks (Computer
science)--Industrial applications. 3.  Finance--Computer simulation. 4.  Manufacturing processes--
Computer simulation.  I. Kamruzzaman, Joarder. II. Begg, Rezaul. III. Sarker, Ruhul A.
  HD30.2.N48 2006
  332.0285'632--dc22
                                                            2006003560

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in
this book are those of the authors, but not necessarily of the publisher.



����������	
�����	
������	��

�������	���	�������������

"�#��	��	$�������

Preface .......................................................................................................................... vi

SECTION I: INTRODUCTION

Chapter I.
Artificial Neural Networks: Applications in Finance and Manufacturing ...................1

Joarder Kamruzzaman, Monash University, Australia
Ruhul A. Sarker, University of New South Wales, Australia
Rezaul K. Begg, Victoria University, Australia

Chapter II.
Simultaneous Evolution of Network Architectures and Connection Weights in
Artificial Neural Networks ......................................................................................... 28

Ruhul A. Sarker, University of New South Wales, Australia
Hussein A. Abbass, University of New South Wales, Australia

SECTION II: ANNs IN FINANCE

Chapter III.
Neural Network-Based Stock Market Return Forecasting Using Data Mining for
Variable Reduction ...................................................................................................... 43

David Enke, University of Missouri — Rolla, USA

Chapter IV.
Hybrid-Learning Methods for Stock Index Modeling ................................................. 64

Yuehui Chen, Jinan University, P.R. China
Ajith Abraham, Chung-Ang University, Republic of Korea



Chapter V.
Application of Higher-Order Neural Networks to Financial Time-Series
Prediction .................................................................................................................... 80

John Fulcher, University of Wollongong, Australia
Ming Zhang, Christopher Newport University, USA
Shuxiang Xu, University of Tasmania, Australia

Chapter VI.
Hierarchical Neural Networks for Modelling Adaptive Financial Systems ............ 109

Masoud Mohammadian, University of Canberra, Australia
Mark Kingham, University of Canberra, Australia

Chapter VII.
Forecasting the Term Structure of Interest Rates Using Neural Networks ........... 124

Sumit Kumar Bose, Indian Institute of Management, India
Janardhanan Sethuraman, Indian Institute of Management, India
Sadhalaxmi Raipet, Indian Institute of Management, India

Chapter VIII.
Modeling and Prediction of Foreign Currency Exchange Markets ......................... 139

Joarder Kamruzzaman, Monash University, Australia
Ruhul A. Sarker, University of New South Wales, Australia
Rezaul K. Begg, Victoria University, Australia

Chapter IX.
Improving Returns on Stock Investment through Neural Network Selection ......... 152

Tong-Seng Quah, Nanyang Technological University, Republic of Singapore

SECTION III: ANNs IN MANUFACTURING

Chapter X.
Neural Networks in Manufacturing Operations ...................................................... 165

Eldon Gunn, Dalhousie University, Canada
Corinne MacDonald, Dalhousie University, Canada

Chapter XI.
High-Pressure Die-Casting Process Modeling Using Neural Networks ................ 182

M. Imad Khan, Deakin University, Australia
Saeid Nahavandi, Deakin University, Australia
Yakov Frayman, Deakin University, Australia

Chapter XII.
Neural Network Models for the Estimation of Product Costs: An Application in the
Automotive Industry .................................................................................................. 199

Sergio Cavalieri, Università degli Studi di Bergamo, Italy
Paolo Maccarrone, Politecnico di Milano, Italy
Roberto Pinto, Università degli Studi di Bergamo, Italy



Chapter XIII.
A Neural-Network-Assisted Optimization Framework and Its Use for Optimum-
Parameter Identification ........................................................................................... 221

Tapabrata Ray, University of New South Wales, Australia

Chapter XIV.
Artificial Neural Networks in Manufacturing: Scheduling .................................... 236

George A. Rovithakis, Aristotle University of Thessaloniki, Greece
Stelios E. Perrakis, Technical University of Crete, Greece
Manolis A. Christodoulou, Technical University of Crete, Greece

Chapter XV.
Recognition of Lubrication Defects in Cold Forging Process with a
Neural Network ......................................................................................................... 262

Bernard F. Rolfe, Deakin University, Australia
Yakov Frayman, Deakin University, Australia
Georgina L. Kelly, Deakin University, Australia
Saeid Nahavandi, Deakin University, Australia

About the Authors ..................................................................................................... 276

Index .......................................................................................................................... 284



vi

�������

Artificial neural networks (ANNs) have attracted increasing attentions in recent years
for solving many real-world problems. ANNs have been successfully applied in solving
many complex problems where traditional problem-solving methods have failed or proved
insufficient. With significant advances in processing power, neural networks research
has been able to address problems that were often tackled by using simplified assump-
tions in the past. This has resulted in a wealth of new approaches based on neural
networks in many areas, particularly in finance and manufacturing. This is evidenced
by the exponential growth of scientific literature covering applications of neural net-
works in these areas.

Research and development works in ANNs are still growing rapidly due to an increas-
ing number of successful applications of these techniques in diverse disciplines. This
book is intended to cover basic theory and concepts of neural networks followed by
recent applications of such techniques in finance and manufacturing. The book con-
tains 15 chapters divided into three parts as follows:

• Section I: Introduction

• Section II: ANNs in Finance

• Section III: ANNs in Manufacturing

Section I gives an introduction to neural networks and their basic components. The
individual neuron operation, network architecture, and training algorithms are discussed
in the first part of Chapter I. The second part of this chapter provides a brief review of
ANN applications in finance and manufacturing. Chapter II introduces one of the latest
research areas in this field, which is evolving ANNs. In this chapter, the authors inves-
tigate the simultaneous evolution of network architectures and connection weights in
ANNs. In simultaneous evolution, they use the well-known concept of multiobjective
optimization and subsequently evolutionary multiobjective algorithms to evolve ANNs.



vii

The results are promising when compared with the traditional ANN algorithms. It is
expected that this methodology would provide better solutions to many applications of
ANNs.

Section II of this book consists of seven chapters on ANN applications in the financial
domain. Chapter III investigates the use of ANNs for stock market return forecasting.
The authors examined neural network models, for level estimation and classification, to
provide an effective forecasting of future values. A cross-validation technique was
also employed to improve the generalization ability of the models. The results show
that the classification models generate higher accuracy in forecasting ability than the
buy-and-hold strategy, as well as those guided by the level-estimation-based forecasts
of the neural network and benchmark linear regression models.

In Chapter IV, the authors investigate the development of novel reliable and efficient
techniques to model the seemingly chaotic behavior of stock markets. They considered
the flexible neural tree algorithm, a wavelet neural network, local linear wavelet neural
network, and finally a feed-forward artificial neural network. The particle swarm optimi-
zation algorithm optimized the parameters of the different techniques. This chapter
briefly explains how the different learning paradigms can be formulated using various
methods and then investigated as to whether they can provide the required level of
performance. Experimental results revealed that all the models considered could repre-
sent the stock indices behavior very accurately.

In many situations, financial time-series data is characterized by nonlinearities,
discontinuities, and high-frequency multi-polynomial components. The conventional
ANNs have difficulty in modeling such complex data. Chapter V provides an appropri-
ate approach that is capable of extracting higher-order polynomial coefficients in the
data. The authors later incorporated piecewise continuous activation functions and
thresholds, and as a result, they are capable of modeling discontinuous (or piecewise
continuous) data with a higher degree of accuracy. The performance of their approach
was tested using representative financial time-series data such as credit ratings and
exchange rates.

In Chapter VI, an intelligent Hierarchical Neural Network system for prediction and
modeling of interest rates is presented. The proposed system was developed to model
and predict 3-month (quarterly) interest-rate fluctuations. The system was further trained
for 6-month and 1-year periods. The authors nicely analyzed the accuracy of prediction
produced by their approach.

Although many works exist on the issue of modeling the yield curve, there is virtually
no mention in the literature on the issue of forecasting the yield curve. In Chapter VII,
the authors applied neural networks for the purpose of forecasting the zero-coupon
yield curve. First, the yield curve was modeled from the past data using the famous
Nelson-Siegel model. Then, forecasting of the various parameters of the Nelson-Siegel
yield curve was performed using two different techniques — the multilayer perceptron
and generalized feed-forward network. The forecasted Nelson-Siegel parameters were
then used to predict the yield and the price of the various bonds. Results show the
superiority of generalized feed-forward network over the multilayer perceptron for the
purposes of forecasting the term structure of interest rates.

In Chapter VIII, the authors investigated an ANN-based prediction modeling of foreign
currency rates using three different learning algorithms. The models were trained from



viii

historical data using five technical indicators to predict six currency rates against the
Australian dollar. The forecasting performance of the models was evaluated using a
number of widely used statistical metrics. Results show that significantly better predic-
tion can be made using simple technical indicators without extensive knowledge of the
market data. The trading profitability of the neural-network-based forex model over a
forecasted period was also analyzed.

Chapter IX deals with another important financial application — analysis of stock
return for investment. The author applies neural networks for stock selection in the
Singapore market. This chapter shows that neural networks are able to infer the charac-
teristics of performing stocks from the historical patterns. The performance of stocks is
reflective of the profitability and quality of management of the underlying company.
Such information is reflected in financial and technical variables. A neural network
based on a moving window selection system is used to uncover the intricate relation-
ships between the performance of stocks and the related financial and technical vari-
ables. Historical data such as financial variables (inputs) and performance of the stock
(output) is used to train the model. Experimental results show the model is capable of
selecting stocks that yield better investment return.

Section III of the book contains six chapters on ANN applications in a manufacturing
environment. The first chapter in this part (Chapter X) is a review chapter that dis-
cusses a number of examples of the use of neural networks in manufacturing opera-
tions.

Chapter XI presents an application of neural networks to the industrial-process model-
ing of high-pressure die casting. The model was implemented in two stages. The first
stage was to obtain an accurate model of the die-casting process using a feed-forward
multilayer perceptron from the process-condition monitoring data. The second stage
was to evaluate the effect of different process parameters on the level of porosity in
castings by performing sensitivity analysis. The results obtained were very encourag-
ing to model die-casting process accurately.

The estimation of the unit production cost of a product during its design phase can be
extremely difficult, especially if information on similar products previously produced is
missing. In Chapter XII, the authors applied ANNs to determine the correlation be-
tween a product’s cost and its characteristics. The test results seemed very good.

In Chapter XIII, a framework for design optimization is introduced that makes use of
neural-network-based surrogates in lieu of actual analysis to arrive at optimum process
parameters. The performance of the algorithm was studied using a number of math-
ematical benchmarks to instill confidence on its performance before reporting the re-
sults of a spring-back minimization problem. The results clearly indicate that the frame-
work is able to report optimum designs with a substantially low computational cost
while maintaining an acceptable level of accuracy.

In Chapter XIV, a neuro-adaptive scheduling methodology for machines is presented
and evaluated by comparing its performance with conventional schedulers. The au-
thors employed a dynamic neural network model and subsequently derived a continu-
ous-time neural network controller and the control-input discretization process that
yield the actual dispatching times. The developed algorithm guarantees system stabil-
ity and controller-signal boundedness and robustness. The algorithm was evaluated
on an industrial test case that constitutes a highly nonacyclic deterministic job shop



ix

with extremely heterogeneous part-processing times. The simulation study, employing
the idealistic deterministic job-shop abstraction, provided extensive comparison with
conventional schedulers over a broad range of raw-material arrival rates and, through
the extraction of several performance indices, verified its superb performance in terms
of manufacturing system stability and low makespan, low average lead times, work-in-
process inventory, and backlogging costs. Eventually, these extensive experiments
highlighted the practical value and the potential of the mathematical properties of the
proposed neuro-adaptive controller algorithm and its suitability for the control of non-
trivial manufacturing cells.

The final chapter (Chapter XV) describes the application of neural networks to recogni-
tion of lubrication defects typical to industrial cold forging process. The neural-net-
work-based model learned from different features related to the system was able to
recognize all types of lubrication errors to a high accuracy. The overall accuracy of the
neural network model was reported to be around 95% with almost uniform distribution
of errors between all lubrication errors and the normal condition.

It is hoped that this book will trigger great interest in neural network applications in
finance and manufacturing areas, leading to many more articles and books.

Joarder Kamruzzaman, Rezaul Begg, and Ruhul Sarker

Editors



x

���������%����

We would like to express our gratitude to the contributors without whose submissions
this book would not have been published. All of the chapters in this book have under-
gone a peer-review process with each chapter being independently refereed by at least
two reviewers in addition to an editorial review by one of the editors. We owe a great
deal to these reviewers who reviewed one or more chapters and gave the authors and
editors the much needed guidance. Also, we would like to thank those reviewers who
could not contribute through authoring chapters to the current book but helped in
reviewing chapters within a short period of time.

A special note of thanks must go to all of the staff at Idea Group Inc., whose contribu-
tions throughout the whole process from the proposal submission to the final publica-
tion have been invaluable. In fact, this book would not have been possible without the
ongoing professional support from Senior Academic Technology Editor Dr. Mehdi
Khosrow-Pour, Managing Director Ms. Jan Travers, Acquisitions Editor Ms. Renée
Davies, Development Editor Ms. Kristin Roth, and Marketing Manager Ms. Amanda
Phillips at Idea Group Inc.

We would like to thank our university authorities (Monash University, Victoria Univer-
sity, and the University of New South Wales at the Australian Defence Force Academy)
for providing logistic support throughout this project.

Finally, we like to thank our families for their love, support, and patience throughout
this project.

Joarder Kamruzzaman, Rezaul Begg, and Ruhul Sarker

Editors



SECTION I:
INTRODUCTION



Artificial Neural Networks: Applications in Finance and Manufacturing   1

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Artificial Neural
Networks:

Applications in Finance
and Manufacturing
Joarder Kamruzzaman, Monash University, Australia

Ruhul A. Sarker, University of New South Wales, Australia

Rezaul Begg, Victoria University, Australia

Abstract

The primary aim of this chapter is to present an overview of the artificial neural network
basics and operation, architectures, and the major algorithms used for training the
neural network models. As can be seen in subsequent chapters, neural networks have
made many useful contributions to solve theoretical and practical problems in finance
and manufacturing areas. The secondary aim here is therefore to provide a brief review
of artificial neural network applications in finance and manufacturing areas.



2   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Since the seminal work by Rumelhart, McClelland, and the PDP research group (1986),
artificial neural networks (ANNs) have drawn tremendous interest due to the demon-
strated successful applications in pattern recognition (Fukumi, Omatu, & Nishikawa
1997), image processing (Duranton, 1996), document analysis (Marinai, Gori, & Soda,
2005), engineering tasks (Jin, Cheu, & Srinivasan, 2002; Zhenyuan, Yilu, & Griffin, 2000),
financial modeling (Abu-Mostafa, 2001), manufacturing (Kong & Nahavandi, 2002),
biomedical (Nazeran & Behbehani, 2000), optimization (Cho, Shin, & Yoo, 2005), and so
on. In recent years, there has been a wide acceptance of ANNs as a tool for solving many
financial and manufacturing problems. In finance, domain notable applications are in (1)
trading and forecasting including derivative-securities pricing and hedging (Steiner &
Wittkemper, 1997), (2) future price estimation (Torsun, 1996), (3) stock performance and
selection (Kim & Chun, 1998), (4) foreign exchange rate forecasting (Kamruzzaman &
Sarker, 2003), (5) corporate bankruptcy prediction (Atiya, 2001), (6) fraud detection
(Smith & Gupta, 2000), and so on. Many commercial software based on ANNs are also
available today offering solutions to a wide range of financial problems. Applications in
manufacturing includes (1) condition monitoring in different manufacturing operations
such as metal forming (Kong & Nahavandi, 2002), drilling (Brophy, Kelly, & Bryne, 2002),
turning (Choudhury, Jain, & Rama Rao, 1999), and tool wearing and breaking (Choudhury,
Jain, & Rama Rao, 1999; Huang & Chen, 2000), (2) cost estimation (Cavalieri, Maccarrone,
& Pinto, 2004), (3) fault diagnosis (Javadpour & Knapp, 2003), (4) parameter selection
(Wong & Hamouda, 2003), (5) production scheduling (Yang & Wang, 2000), (6) manu-
facturing cell formation (Christodoulou & Gaganis, 1998), and (7) quality control
(Bahlmann, Heidemann, & Ritter, 1999).

Although developed as a model for mimicking human intelligence into machine, neural
networks have excellent capability of learning the relationship between input-output
mapping from a given dataset without any knowledge or assumptions about the
statistical distribution of data. This capability of learning from data without any a priori
knowledge makes neural networks particularly suitable for classification and regression
tasks in practical situations. In most financial and manufacturing applications, classifi-
cation and regression constitute integral parts. Neural networks are also inherently
nonlinear which makes them more practical and accurate in modeling complex data
patterns as opposed to many traditional methods which are linear. In numerous real-world
problems including those in the fields of finance and manufacturing, ANN applications
have been reported to outperform statistical classifiers or multiple-regression tech-
niques in classification and data analysis tasks. Because of their ability to generalize well
on unseen data, they are also suitable to deal with outlying, missing, and/or noisy data.
Neural networks have also been paired with other techniques to harness the strengths
and advantages of both techniques.

Since the intention of this book is to demonstrate innovative and successful applications
of neural networks in finance and manufacturing, this introductory chapter presents a
broad overview of neural networks, various architectures and learning algorithms, and
some convincing applications in finance and manufacturing and discussion on current
research issues in these areas.



Artificial Neural Networks: Applications in Finance and Manufacturing   3

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Artificial Neural Networks

ANNs offer a computational approach that is quite different from conventional digital
computation. Digital computers operate sequentially and can do arithmetic computation
extremely fast. Biological neurons in the human brain are extremely slow devices and are
capable of performing a tremendous amount of computation tasks necessary to do
everyday complex tasks, commonsense reasoning, and dealing with fuzzy situations. The
underlining reason is that, unlike a conventional computer, the brain contains a huge
number of neurons, information processing elements of the biological nervous system,
acting in parallel. ANNs are thus a parallel, distributed information processing structure
consisting of processing elements interconnected via unidirectional signal channels
called connection weights. Although modeled after biological neurons, ANNs are much
simplified and bear only superficial resemblance. Some of the major attributes of ANNs
are: (a) they can learn from examples and generalize well on unseen data, and (b) are able
to deal with situation where the input data are erroneous, incomplete, or fuzzy.

Individual Neuron

The individual processing unit in ANNs receives input from other sources or output
signals of other units and produces an output as shown in Figure 1. The input signals
(x

i
) are multiplied with weights (w

ji
) of connection strength between the sending unit “i”

and receiving unit “j”. The sum of the weighted inputs is passed through an activation
function. The output may be used as an input to the neighboring units or units at the next
layer. Assuming the input signal by a vector x (x

1
, x

2
,…, x

n
) and the corresponding weights

to unit “j” by w
j
 (w

j1
, w

j2
,…, w

jn
), the net input to the unit “j” is given by Equation 1. The

weight w
j0
(=b) is a special weight called bias whose input signal is always +1.

bwxw 0 +=+∑= x w jj
n

njnjnet (1)

 

. 

. 

. 
 

x0=1 

x1 

x2 

xn 

j 

wj1 

wj2 

wjn 

output = f(netj) 

wj0 

Figure 1. An individual unit in a neural network



4   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In general, a neural network is characterized by the following three major components:

• The computational characteristics of each unit, for example, activation function;

• The network architecture; and

• The learning algorithm to train the network.

Activation Function

The computed weighted sum of inputs is transformed into an output value by applying
an activation function. In most cases, the activation function maps the net input between
-1 to +1 or 0 to 1. This type of activation function is particularly useful in classification
tasks. In cases where a neural network is required to produce any real value, linear
activation function may be used at the final layer. A network with multiple layers using
linear activation function at intermediate layers effectively reduces to a single-layer
network. This type of network is incapable of solving nonlinearly separable problems and
has limited capability. Since the most real-world problems are nonlinearly separable,
nonlinearity in the intermediate layer is essential for modeling complex problems. There
are many different activation functions proposed in the literature that are often chosen
to be monotonically increasing functions. The followings are the most commonly used
activation functions (see Table 1).

Network Architecture

Having defined an individual neuron, the next step is to connect them together. A neural
network architecture represents a configuration indicating how the units are grouped
together as well as the interconnection between them. There are many different architec-
tures reported in the literature, however, most of these can be divided into two main broad
categories: feed-forward and feedback. These architectures are shown in Figure 2. In
feed-forward architecture, the information signal always propagates towards the forward
direction while in feedback architecture the final outputs are again fed back at the input

Table 1. Commonly used activation functions

Gaussian

Logistic 
sigmoid

Linear

f(x)=tanh(x)

f(x) = exp(-x2/2σ2)

Activation 
Functions

Mathematical 
Expression

Graphical 
Expression

f(x)=
1+ exp(-x)

1

 

 

 

 

f(x)= x
f(x)

x
f(x)

x

f(x)

x
f(x)

x

Hyperbolic 
tangent

 



Artificial Neural Networks: Applications in Finance and Manufacturing   5

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

layer. The first layer is known as input layer, the last as output layer, and any
intermediate layer(s) as hidden layer(s). A multiple feedforward layer can have one or
more layers of hidden units. The number of units at the input layer and output layer is
determined by the problem at hand. Input layer units correspond to the number of
independent variables while output layer units correspond to the dependent variables
or the predicted values.

While the numbers of input and output units are determined by the task at hand, the
numbers of hidden layers and the units in each layer may vary. There are no widely
accepted rules for designing the configuration of a neural network. A network with fewer
than the required number of hidden units will be unable to learn the input-output
mapping, whereas too many hidden units will generalize poorly of any unseen data.
Several researchers attempted to determine the appropriate size of hidden units. Kung
and Hwang (1988) suggested that the number of hidden units should be equal to the
number of distinct training patterns while Arai (1989) concluded that N input patterns
required N-1 hidden units in a single layer. However, as remarked by Lee (1997), it is rather
difficult to determine the optimum network size in advance. Other studies suggested that
ANNs generalize better when succeeding layers are smaller than the preceding ones
(Kruschke, 1989; Looney, 1996). Although a two-layer network is commonly used in most
problem solving approaches, the determination of an appropriate network configuration
usually requires many trial and error methods. Another way to select network size is to
use constructive approaches. In constructive approaches, the network starts with a
minimal size and grows gradually during the training procedure (Fahlman & Lebiere, 1990;
Lehtokangas, 2000).

Learning Algorithms

A neural network starts with a set of initial weights and then gradually modifies the
weights during the training cycle to settle down to a set of weights capable of realizing
the input-output mapping with either no error or a minimum error set by the user. Learning

 

Input x  

 

 

 

Input x 

(a) (b) 

Hidden 
layer  
weight Wh  

output 
layer  
weight Wo  

Output y  

Figure 2. (a) Feedforward architecture   b) Feedback architecture



6   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in neural networks can be supervised or unsupervised. Supervised learning includes
Backpropagation and its variants, Radial Basis Function Neural Network (RBFNN),
Probabilistic Neural Network (PNN), Generalized Regression Neural Network (GRNN),
and so on. In supervised learning, an input datum is associated with a known output, and
training is done in pairs. Unsupervised learning, for example, Self Organizing Map (SOM),
Adaptive Resonance Theory (ART), and so on, is used when training sets with known
outputs are not available. In the following, we describe some of the widely used ANN
learning algorithms.

Backpropagation Algorithm

A recent study (Wong, Lai, & Lam, 2000) has shown that approximately 95% of the
reported neural network business applications utilize multilayer feed-forward neural
networks with Backpropagation learning algorithm. Backpropagation (Rumelhart et al.,
1986) is a feed-forward network as shown in Figure 2a that updates the weights iteratively
to map a set of input vectors (x

1
,x

2
,…,x

p
) to a set of corresponding output vectors

(y
1
,y

2
,…,y

p
). The input x

p
 corresponding to pattern or data point “p” is presented to the

network and multiplied by the weights. All the weighted inputs to each unit of the upper
layer are summed up, and produce an output governed by the following equations:

),( opop �hWy += f (2)

),( hphp �xWh += f (3)

where W
o
 and W

h
 are the output and hidden layer weight matrices, h

p
 is the vector

denoting the response of hidden layer for pattern “p”, θθθθθo
 and θθθθθh

 are the output and hidden
layer bias vectors, respectively and f(.) is the sigmoid activation function. The cost
function to be minimized in standard Backpropagation is the sum of squared error defined
as:

)()(
2

1
pppp

p

T
E ytyt −∑ −= (4)

where t
p
 is the target output vector for pattern “p”. The algorithm uses gradient descent

technique to adjust the connection weights between neurons. Denoting the fan-in
weights to a single neuron by a weight vector w, its update in the t-th epoch is governed
by the following equation:

1��)( E�� (t) -tt www ww +∇−= = (5)



Artificial Neural Networks: Applications in Finance and Manufacturing   7

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The parameters η and α are the learning rate and the momentum factor, respectively. The
learning rate parameter controls the step size in each iteration. For a large-scale problem,
Backpropagtion learns very slowly and its convergence largely depends on choosing
suitable values of η and α by the user.

Scaled Conjugate Gradient Algorithm

The error surface in Backpropagation may contain long ravines with sharp curvature and
a gently sloping floor, which causes slow convergence. In conjugate gradient methods,
a search is performed along conjugate directions, which produces generally faster
convergence than steepest descent directions (Hagan, Demuth, & Beale, 1996). In
steepest descent search, a new direction is perpendicular to the old direction. This
approach to the minimum is a zigzag path and one step can be mostly undone by the next.
In conjugate gradient methods, a new search direction spoils as little as possible the
minimization achieved by the previous direction and the step size is adjusted in each
iteration. The general procedure to determine the new search direction is to combine the
new steepest descent direction with the previous search direction so that the current and
previous search directions are conjugate. Conjugate gradient techniques are based on
the assumption that, for a general nonquadratic error function, error in the neighborhood
of a given point is locally quadratic. The weight changes in successive steps are given
by the following equations:

dww tttt �1 +=+ (6)

dgd 1� −+−= tttt (7)

with

wwwg t)( =∇≡ Et (8)

gg

gg

dg

gg

gg

gg

11

1

11

1

11

T

T

T

T

T

T

��or� or
−−

−

−−

−

−−

∆
=

∆
==

ttt t

tt
t

t

tt
t

t

tt
t (9)

where d
t
 and d

t-1
 are the conjugate directions in successive iterations. The step size is

governed by the coefficient α
t,
 and the search direction is determined by β

t
. In scaled

conjugate gradient, the step size α
t
 is calculated by the following equations:

δ t

tt
t

gdT

� −= (10)



8   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2T ddHd tttttt λδ += (11)

where λ
t
 is the scaling coefficient and H

t
 is the Hessian matrix at iteration t. λ is introduced

because, in case of nonquadratic error function, the Hessian matrix need not be positive
definite. In this case, without λ, δ may become negative and a weight update may lead
to an increase in error function. With sufficiently large λ, the modified Hessian is
guaranteed to be positive (δ

 
> 0). However, for large values of λ, step size will be smaller.

If the error function is not quadratic or δ < 0, λ can be increased to make δ> 0. In case of

δ
 
< 0, Moller (1993) suggested the appropriate scale coefficient λ t  to be:













−=

−

2
2

t

t
tt

d

δλλ (12)

Rescaled value 
−

tδ of tδ  is then be expressed as:

2
)( ttttt dλλδδ −+=

−
(13)

The scaled coefficient also needs adjustment to validate the local quadratic approxima-
tion. The measure of quadratic approximation accuracy, ∆τ, is expressed by:

ttt

tttt
t

EE

gd

dww
T

)}()({2

α
α+−

=∆ (14)

If ∆
t
 is close to 1, then the approximation is a good one and the value of λ

t
 can be decreased

(Bishop, 1995). On the contrary, if ∆
t
 is small, the value of λ

t
 has to be increased. Some

prescribed values suggested in Moller (1993) are as follows:

For ∆
t
 > 0.75, λ

t+1
=λ

t
/2

For ∆
t
 < 0.25, λ

t+1
=4λ

t

Otherwise, λ
t+1

=λ
t

Bayesian Regularization Algorithm

A desired neural network model should produce small error not only on sample data but
also on out of sample data. To produce a network with better generalization ability,



Artificial Neural Networks: Applications in Finance and Manufacturing   9

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

MacKay (1992) proposed a method to constrain the size of network parameters by
regularization. Regularization technique forces the network to settle to a set of weights
and biases having smaller values. This causes the network response to be smoother and
less likely to overfit (Hagan et al., 1996) and capture noise. In regularization technique,
the cost function F is defined as:

EEF WD )1( γγ −+= (15)

where E
D
 is the same as E defined in Equation 4, E

w 
= 2/

2
w is the sum of squares of the

network parameters, and γ (<1.0) is the performance ratio parameter, the magnitude of
which dictates the emphasis of the training on regularization. A large γ will drive the error
E

D
 to small value whereas a small γ will emphasize parameter size reduction at the expense

of error and yield smoother network response. One approach of determining optimum
regularization parameter automatically is the Bayesian framework (Mackay, 1992). It
considers a probability distribution over the weight space, representing the relative
degrees of belief in different values for the weights. The weight space is initially assigned
some prior distribution. Let D = {x

m
, t

m
} be the data set of the input-target pair, m being

a label running over the pair and M be a particular neural network model. After the data
is taken, the posterior-probability distribution for the weight p(w|D,γ,M) is given
according to the Bayesian rule.

M),|(D

M)(),|(D
),D,(

γ
γγγ

p

pMp
Mp

,|ww,
|w = (16)

where p(w|γ,M) is the prior distribution, p(D|w,γ,M) is the likelihood function, and
p(D|γ,M) is a normalization factor. In Bayesian framework, the optimal weight should
maximize the posterior probability p(w|D,γ,M), which is equivalent to maximizing the
function in Equation 15. Applying the Bayes’ rule optimizes the performance ratio
parameter.

M)|(D

M)|(),|(D
)D,|(

p

pMp
Mp

γγγ = (17)

If we assume a uniform prior distribution p(γ|M) for the regularization parameter γ, then
maximizing the posterior probability is achieved by maximizing the likelihood function
p(D|γ,M). Since all probabilities have a Gaussian form it can be expressed as:

)()]1/([)/(),|( 2/2/ γγπγπγ ZMDp F
LN −= −− (18)



10   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

where L is the total number of parameters in the neural network (NN). Supposing that F
has a single minimum as a function of w at w* and has the shape of a quadratic function
in a small area surrounding that point, Z

F
 is approximated as (Mackay, 1992):

))(exp(det)2( **2/12/
wFHZ

L
F −≈ −π (19)

where H = γ∇2E
D
 + (1-γ)∇2E

W
 is the Hessian matrix of the objective function. Using

Equation 19 in Equation 18, the optimum value of γ at the minimum point can be
determined.

Foresee and Hagan (1997) proposed to apply the Gauss-Newton approximation to the
Hessian matrix, which can be conveniently implemented if the Lebenberg-Marquart
optimization algorithm (More, 1977) is used to locate the minimum point. This minimizes
the additional computation required for regularization.

Radial Basis Function Neural Network

Figure 3 shows a radial basis function neural network (RBFNN). A radial-basis-function
network has a hidden layer of radial units and a linear-output layer units. Similar to
biological receptor fields, RBFNNs employ local receptor fields to perform function
mappings. Unlike hidden layer units in preceding algorithms where the activation level
of a unit is determined using weighted sum, a radial unit (i.e., local receptor field) is defined
by its center point and a radius. The activation level of the i-th radial unit is:

)()( � i/iRiRihi uxx −== (20)

Output y 

 

 

 

Input x 

Basis 
functions 

h1 h2 h3 hn 

Figure 3. A radial-basis-function neural network (Note: not all the interconnections
are shown; each basis finction acts like a hidden unit.)



Artificial Neural Networks: Applications in Finance and Manufacturing   11

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

where x is the input vector, u
i
 is a vector with the same dimension as x denoting the center,

σ is width of the function and R
i
(.) is the i-th radial basis function. Typically R(.) is a

Gaussian function:















 −
=

σ 2

2

2
exp)(

i

i
iR

ux
x (21)

or a logistic function:

σ 22
/)(exp1

1
)(

ii

iR
ux

x
−+

=
(22)

The activation level of radial basis function h
i
 for i-th radial unit is at its maximum when

x is at the center u
i
 of that unit. The i-th component of the final output y of a RBFNN can

be computed as the weighted sum of the outputs of the radial units as:

)(� xRy ii
i

i ∑= (23)

where ω
i
 is the connection weight between the radial unit i and the output unit, and the

solution can be written directly as wt = R†y, where R is a vector whose components are
the output of radial units and y is the target vector. The adjustable parameters of the
network, that is, the center and shape of radial basis units (u

i
, σ

i
 and ω

i
) can be trained

by a supervised training algorithm. Centers should be assigned to reflect the natural
clustering of the data. Lowe (1995) proposed a method to determine the centers based
on standard deviations of training data. Moody and Darken (1989) selected the centers
by means of data clustering techniques like k-means clustering and σ’s are then estimated
by taking the average distance to the several nearest neighbors of u

i
’s. Nowlan and

Hinton (1992) proposed soft competition among radial units based on maximum likeli-
hood estimation of the centers.

Probabilistic Neural Network

In case of classification problem neural network learning can be thought of estimating
the probability density function (pdf) from the data. In regression task, the output of the
network can be regarded as the expected value of the model at a given point in input space.
An alternative approach to pdf estimation is the kernel-based approximation and this



12   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

motivates two types of networks that are similar to radial-basis-function networks: (a)
probabilistic neural network (PNN) designed for classification task and (b) generalized
regression neural network (GRNN). Specht (1990) introduced the PNN. It is a supervised
NN that is widely used in the area of pattern recognition, nonlinear mapping, and
estimation of the probability of class membership and likelihood ratios (Specht &
Romsdahl, 1994). It is also closely related to the Bayes classication rule, and Parzen
nonparametric probability density function estimation theory (Parzen, 1962; Specht,
1990). The fact that PNNs offer a way to interpret the network’s structure in terms of
probability-density functions is an important merit of this type of network. PNNs also
achieve faster training than Backpropagation type feedforward neural networks.

The structure of an PNN is similar to that of feedforward NNs, although the architecture
of an PNN is limited to four layers: the input layer, the pattern layer, the summation layer,
and the output layer, as illustrated in Figure 4. An input vector x is applied to the n input
neurons and is passed to the pattern layer. The neurons of the pattern layer are divided
into K groups, one for each class. The i-th pattern neuron in the k-th group computes
its output using a Gaussian kernel of the form:

)
2

,
(exp

2

1
)(

2

2

2/,

||||

)2( σσπ

xx
x

ik
nikF

−
−= (24)

where x
k,i

 is the center of the kernel, and σ, called the spread (smoothing) parameter,
determines the size of the receptive field of the kernel. The summation layer contains one

 

 

    

 

F1,1 F1,M1
 F2,1 F1,M2

 Fk,1 Fk,Mk
 

G1 G2 Gk 

C 

x1 x2 xn 

Input Layer 

Pattern Layer 

Summation Layer 

Output Layer 

Figure 4. A probabilistic neural network



Artificial Neural Networks: Applications in Finance and Manufacturing   13

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

neuron for each class. The summation layer of the network computes the approximation
of the conditional class probability functions through a combination of the previously
computed densities as per the following equation:

},,,1{),()(
1

Kk
M

FG ki

k

i
kik �∈= ∑

=
xx ω (25)

where M
k
 is the number of pattern neurons of class k, and ω

ki
 are positive coefficients

satisfying, .11 =∑ =
M k
i kiω  Pattern vector x belongs to the class that corresponds to the

summation unit with the maximum output.

The parameter that needs to be determined for an optimal PNN is the smoothing
parameter. One way of determining this parameter is to select an arbitrary set of σ,
train the network, and test on the validation set. The procedure is repeated to find
the set of σ that produces the least misclassification. An alternative way to search
the optimal smoothing parameter was proposed by Masters (1995). The main disad-
vantages of a PNN algorithm is that the network can grow very big and become slow,
especially when executing a large training set, making it impractical for a large
classification problem.

Generalized Regression Neural Network

As mentioned earlier, a generalized regression neural network (GRNN) is also based on
radial basis function and operates in a similar way to PNN but performs regression instead
of classification tasks. Like PNN, GRNN architecture is comprised of four layers: the
input, pattern, summation, and output layers. An GRNN represents each training sample
as a kernel and establishes a regression surface by using a Parzen-window estimator
(Parzen, 1962) with all the kernel widths assumed to be identical and spherical in shape.
Assuming the function to be approximated by y = g(x) where x ∈ ℜn  is an independent
variable vector and y ∈ ℜ is the dependent variable, regression in an GRNN is carried out
by the expected conditional mean of y as shown in the following equation:

∫
∫

∞
∞−

∞
∞−=

dyyg

dyyyg
yE

),(

),(
]|[

x

x
x (26)

where g(x,y) is the Parzen probability density estimator, E[y|x)] is the expected value of
y given x. When value of g(x,y) is unknown, it can be estimated from a sample of
observations of x and y. For a nonparametric estimates of g(x,y), the class of consistent
estimators proposed by Parzen (1962) and extended to the multidimensional case by
Cacoullos (1966) is used. The predicted output produced by GRNN network is given by:



14   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

∑
−

−
∑

−

−

=
m

i
i

i

m

i
i

i

i

y

y

)
2

(exp

)
2

(exp

)(ˆ

2

2

2

2

||||

||||

σ

σ

xx

xx

x

(27)

where (x
i
,y

i
) represents the i-th sample and m is the number of training samples. One of

the main drawbacks of the GRNN is the extensive computational resources necessary for
processing kernels and optimizing its width. Different approaches were also proposed
to reduce the number of kernels in the GRNN.

The unsupervised learning algorithms like Adaptive Resonance Theory (ART), Self
Organizing Map (SOM) are not so commonly used in financial and manufacturing
applications and hence left out of discussion for the current chapter. Interested readers
may consult works by Carpenter and Grossberg (1988) and Kohonen (1998).

Neural Network Applications in Finance

One of the main applications of neural networks in finance is trading and financial
forecasting. Successful applications of neural networks includes a wide range of real
world problems, for example, future price estimation, derivative securities pricing and
hedging, exchange rate forecasting, bankruptcy prediction, stock performance and
selection, portfolio assignment and optimization, financial volatility assessment, and so
on. Demonstrated results and novelty of neural network applications have attracted
practitioners in this field. Some of these applications are briefly reviewed in the following
section.

Bankruptcy Prediction

Bankruptcy prediction has been an important and widely studied topic. The prediction
of the likelihood of failure of a company given a number of financial measures, how soon
an “ill” business can be identified, possibility of identifying the factors that put a
business at risk — these are of main interest in bank lending. Atiya (2001) and Vellido,
Lisboa, and Vaughan (1999) conducted a survey on the use of neural networks in
business applications that contains a list of works covering bankruptcy prediction.
Supervised neural network models have been tested against a number of techniques, like
discriminant analysis (Kiviluoto, 1998; Olmeda & Fernandez, 1997); regression (Fletcher
& Goss, 1993; Leshno & Spector; 1996); decision trees (Tam & Kiang, 1992); k-nearest
neighbor (Kiviluoto); multiple adaptive regression splines (MARS) (Olmeda & Fernandez);
case-based reasoning (Jo, Han, & Lee, 1997), and so on. In most cases, neural network
models attained significantly better accuracy compared to other methods.



Artificial Neural Networks: Applications in Finance and Manufacturing   15

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Credit Scoring

Credit scoring is another area of finance where neural network applications have been
explored. From a bank lending point of view, it is important to distinguish a good debtor
from a bad debtor by assessing the credit risk factor of each applicant. It can be
distinguished from the past behavioral or performance scoring in which the repayment
behavior of an applicant is analyzed to make a credit decision. The availability of data
in this field is rather restricted (Desay, Crook, & Overstreet, 1996). Hecht-Nielson Co. has
developed a credit-scoring system that increased profitability by 27% by identifying
good credit risk and poor credit risk (Harston, 1990). Glorfeld and Hardgrave (1996),
Jagielska and Jaworski (1996), Leigh (1995), Piramuthu, Shaw, and Gentry (1994), Torsun
(1996), among others, have also reported similar works on credit evaluation and scoring.
A variety of data sizes, ranges of variables, and techniques to select appropriate
variables were investigated in those studies.

Investment Portfolio

For every investment, there is a tradeoff between risk and return. So, it is necessary to
ensure a balance between these two factors. Optimizing one’s portfolio investment by
analyzing those factors, maximizing the expected returns for a given risk, and rebalancing
when needed is crucial for secure investment. Steiner and Wittkemper (1997) developed
a portfolio structure optimization model on a day-to-day trading basis. While the stock
decisions are derived from a nonlinear dynamic capital market model, the underlying
estimation and forecast modules are based on the neural network model. Using German
stock prices from 1990 to 1994, this model leads to a portfolio that outperforms the market
portfolio by about 60%. Hung, Liang, and Liu (1996) proposed an integration of arbitrage
pricing theory (APT) and an ANN to support portfolio management and report that the
integrated model beats the benchmark and outperforms the traditional ARIMA model.
Yeo, Smith, Willis, and Brooks (2002) also used k-means clustering and neural networks
for optimal portfolio selection. Classification of policy holders into risk groups and
predicting the claim cost of each group were done using k-means clustering while price
sensitivity of each group was estimated by neural networks. Chapados and Bengio (2001)
showed that a neural network-based asset allocation model can significantly outperform
the benchmark market performance.

Foreign Currency Exchange Rates

Modeling foreign currency exchange rates is an important issue for the business
community. The investment companies are dependent on the prediction of accurate
exchange rates so that they may make investment decisions. This is quite a challenging
job as the rates are inherently noisy, nonstationary, and deterministically chaotic. Yao
& Tan (2000) developed a neural network model using six simple indicators to predict the
exchange rate of six different currencies against the U.S. dollar. The ANN model



16   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

demonstrated superior performance in comparison with the ARIMA-based model.
Kamruzzaman and Sarker (2003) used three different neural network learning algorithms
to predict exchange rates and found that all algorithms performed better than traditional
methods when compared against with five different performance metrics. Medeiros,
Veiga, and Pedreira (2001) proposed a novel flexible model called neurocoefficient
smooth transition autoregression (NCSTAR), an ANN to test for and model the
nonlinearities in monthly exchange rates.

Stock Market Analysis

Stock analysis has long been one of the most important applications of neural networks
in finance. Most international investment bankers and brokerage firms have major stakes
in overseas markets. Hence, this topic has attracted considerable attentions from the
research community. There have been numerous research articles related to this topic.
These include works by Chiang, Urban, and Baldridge (1996), Kim and Chun (1998), and
Teixeira and Rodrigues (1997) on stock market index prediction; Barr and Mani (1994) and
Yoon, Guimaraes, and Swales (1994) on stock performance/selection prediction;
Wittkemper and Steiner (1996) on stock risk prediction; and Brook (1998), Donaldon and
Kamstra (1996), and Refenes and Holt (2001) on stock volatility prediction. In most cases,
neural networks outperformed other statistical methods.

Other Applications

Other applications include detecting financial fraud; creating wealth; and modeling the
relationship among corporate strategy, its financial status, and performance (Smith &
Gupta, 2000). Holder (1995) reports that Visa International deployed a neural network-
based fraud detection system that saved it an estimated $40 million within the first 6
months of its operation.

Apart from theoretical research, Coakely and Brown (2000) describe a number of ANN-
based systems that are widely used in commercial applications. These are:

• FALCON, used by six of the ten largest credit card companies to screen transac-
tions for potential fraud.

• Inspector, used by Chemical Bank to screen foreign currency transactions.

• Several ANNs used to assist in managing investments by making predictions about
debt and equity securities, as well as derivative instruments. Fadlalla and Lin (2001)
cited examples from companies like Falcon Asset management, John Deere and Co.,
Hyman Beck and Company, Multiverse Systems, Advanced Investment Technol-
ogy, and Ward System who used neural network-based systems. It has been
reported that a significant number of Fortune-1000 companies use neural networks
for financial modeling.



Artificial Neural Networks: Applications in Finance and Manufacturing   17

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Several ANNs used for credit granting, including GMAC’s Credit Adviser that
grants instant credit for automobile loans.

• AREAS, used for residential property valuation.

For other financial applications and more detailed survey, interested readers are referred
to the articles by Coakley and Brown (2000), Fadlalla and Lin (2001), Smith and Gupta
(2000), Vellido et al. (1999), and Wong, Lai, and Lam (2000).

Neural Network Applications in Manufacturing

In this section, a brief review of ANN applications in manufacturing design, planning,
and operations will be presented. The overall applications can be classified as condition
monitoring, cost estimation, fault diagnosis, parameter selection, production schedul-
ing, manufacturing cell formation, quality control, and others.

Condition Monitoring

In manufacturing, condition monitoring is a major application area for ANNs. These
applications involve monitoring different manufacturing operations and/or operational
conditions such as tool wearing and breaking, metal forming, and drilling and machining
accuracy.

The process of metal forming involves several dies and punches used progressively to
form a part. Tooling is critical in metal forming, as continual tool replacement and
maintenance reduces productivity, raises manufacturing cost, and increases defective
item production. The ANN models, taking data from an online condition monitoring
system, can predict tool life that would help to generate an appropriate maintenance
schedule. Kong and Nahavandi (2002) developed such a model for the forging process
that uses a multilayer error back propagation network. The inputs of the model were force,
acoustic emission signals, process parameters (such as tool temperature, stroke rates,
and surface lubrication condition of in-feed material), and expected life. The model helps
to predict the tool condition, maintenance schedule, and tool replacement. Similar
techniques can be applied to other metal forming processes.

Turning is a common metal cutting operation in manufacturing. In turning operations,
flank wear on the cutting tool directly affects the work piece dimension and the surface
quality. Choudhury et al. (1999) developed a methodology in which an optoelectronic
sensor was used in conjunction with a multilayered neural network for predicting the
flank wear. The digitized sensor signal, along with the cutting parameters, formed the
inputs to a three-layer feedforward fully connected neural network. The neural network
used a Backpropagation algorithm. Results showed the ability of the neural network to
accurately predict the flank wear.

Huang and Chen (2000) developed an in-process tool breakage detection system using
a neural network for an end mill operation. The inputs of the model were cutting force and



18   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

machining parameters such as spindle speed, feed rate, and depth of cut. The output was
to detect the tool breakage conditions. Per their report, the neural networks were capable
of detecting tool condition accurately. Wu (1992) developed a neural network model to
detect tool failure based on the level of cutting force and vibration or acoustic emission.

Brophy et al. (2002) proposed a two-stage neural network model to detect anomalies in
the drilling process. The network was used to classify drilling operations as normal or
abnormal (e.g., tool breakage or missing tool). The network used spindle power signal
(acquired over all or part of the operation) as the input. A limitation of the approach is
that it requires the full signal before a classification is made.

Cost Estimation

The estimation of future production cost is a key factor in determining the overall
performance of a new product’s development and product redesigning process. Usually,
the cost per unit of a given finished good is the sum of different resources such as raw
materials, components, energy, machinery, and plants. The quantification of the use of
each resource is extremely difficult. Cavalieri et al. (2004) proposed an ANN technique
for the estimation of the unitary manufacturing costs of a new type of brake disks
produced by an Italian manufacturing firm. The results seem to confirm the validity of
the neural network theory in this application field, but not a clear superiority with respect
to the traditional parametric approach. However, the ANN seems to be characterised by
a better trade-off between precision and cost of development. Zhang, Fuh, and Chan
(1996) illustrated the use of a neural network-based model for the estimation of the
packaging cost based on the geometrical characteristics of the packaged product.

Fault Diagnosis

Identifying the cause of process abnormalities is important for process automation.
Knapp and Wang (1992) studied the application of a Backpropagation network to fault
diagnosis of a Computer Numerical Control (CNC) machine using vibration data. Knapp,
Javadpour, and Wang (2000) presented a real-time neural network-based condition
monitoring system for rotating mechanical equipment. There has been much effort
recently in making a fusion of fuzzy logic and neural networks for better performance in
decision making processes. The uncertainties involved in the input description and
output decision are taken care of by the concept of fuzzy sets while the neural net theory
helps in generating the required decision region. Javadpour and Knapp (2003) imple-
mented a neural network model to diagnosis faults with high prediction accuracy in an
automated manufacturing environment. Their model incorporated the fuzzy concept to
capture uncertain input data.

Nondestructive testing for fault detection in welding technology is very expensive.
However, the correct detection of welding faults is important to the successful detection
of an automated welding inspection system. Liao, Triantaphyllou, and Chang (2003)
investigated the performance of a multilayer perception neural networks in welding fault
detection.



Artificial Neural Networks: Applications in Finance and Manufacturing   19

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Parameter Selection

Machining-parameter selection is a crucial task in a manufacturing environment. In the
conventional turning process, the parameters referred are cutting speed, feed rate, and
depth of cut. The parameters play an important role in efficient utilization of machine tools
and significantly influence the overall manufacturing cost. Wong and Hamouda (2003)
used a feedforward neural network to predict optimum machining parameters under
different machining conditions. Although they introduced a new type of artificial neuron,
the Backpropagation algorithm was used to optimize the network component represen-
tation.

Raj et al. (2000) developed a Backpropagation neural network to estimate the cutting
forces based on speed, feed, and depth of cut for machining a mild-steel specimen with
a high-speed steel (HSS) tool. In addition, they modeled the effect of tool geometry (i.e.,
rake angle, cutting edge location, and orientation of tool face) on cutting forces. Viharos,
Monostori, and Markos (1999) applied a neural network to predict the cutting forces
based on cutting parameters for an expected surface roughness.

Wang (2004) proposed a hybrid two-phase neural network approach for modeling a
manufacturing process under a lack of observations, which is designed for determining
cutting parameters in wire Electrical Discharge Machining (EDM). A combination of ANN
and genetic algorithms was also used for determining cutting parameters in machining
operations (Cus & Balic, 2003) and manufacturing-process parameters (Li, Su, & Chiang,
2003).

Zuperl, Cus, Mursec, and Ploj (2004) proposed a new hybrid technique for optimal
selection of cutting parameters. The approach uses 10 technological constraints and is
based on the maximum production rate criteria. It describes the multiobjective optimiza-
tion of cutting conditions by means of an ANN and a routine (known as OPTIS) by taking
into consideration the technological, economic, and organizational limitations. The
analytical module OPTIS selects the optimum cutting conditions from commercial
databases with respect to minimum machining costs. By selection of optimum cutting
conditions, it is possible to reach a favorable ratio between the low machining costs and
high productivity taking into account the given limitation of the cutting process.
Experimental results show that the proposed optimization algorithm for solving the
nonlinear constrained programming (NCP) problems is both effective and efficient, and
can be integrated into an intelligent manufacturing system for solving complex machining
optimization problems.

Production Scheduling

Production scheduling is the allocation of resources over time to perform a collection of
tasks. Of all kinds of production scheduling problems, the job shop scheduling is one
of the most complicated problems. It aims to allocate m machines to perform n jobs in order
to optimize certain criteria. Fonseca and Navaresse (2002) developed a feedforward
multilayered neural network through the back error propagation learning algorithm to
provide a versatile job shop scheduling analysis framework. Yang and Wang (2000)



20   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

proposed a constraint satisfaction adaptive neural network, together with several
heuristics, to solve a generalized job shop scheduling problem. Their results demon-
strated that the proposed neural network and its combined approaches are efficient with
respect to the quality of solution and the solving speed.

Lee and Shaw (2000) considered a classical problem of sequencing a set of jobs that arrive
in different combinations over time in a manufacturing flow shop. They developed a two-
level neural network that incrementally learns sequencing knowledge. Based on the
knowledge gained, the neural network makes real-time sequencing decisions for a set of
jobs. Akyol (2004) used a neural network with six different heuristic algorithms for flow-
shop scheduling.

Manufacturing Cell Formation and Related Problems

The design of a manufacturing cell refers to obtaining good performance measures, such
as using an optimal number of resources, predefined utilization rates, minimizing the
production time, and so on. Christodoulou and Gaganis (1998) presented a neural
network approach in determining the appropriate manufacturing cell configuration that
meets the required performance measures.

Cell formation is a key issue in implementing cellular manufacturing and consists of
decomposing the shop in distinct manufacturing cells, each one dedicated to the
processing of a family of similar part types. Guerrero, Lozano, Smith, Canca, and Kwok
(2002) proposed a methodology for cell formation in which a self-organizing neural
network is used to compute weighted similarity coefficients and cluster parts. Then a
linear network flow model is used to assign machines to families. Moon and Chi (1992)
used a neural network model to solve the part family formation problem. They combined
neural network technique with the flexibility of the similarity coefficient method. Manu-
facturing information such as the sequence of operations, lot size, and multiple process
plans were given special consideration in their approach to solve a generalized part-
family formation problem. Further neural network applications can be found for the part-
machine grouping problem (Kaparthi & Suresh, 1992), part family formation (Lee, Malave,
& Ramachandran, 1992), and machine cell identification (Lee et al., 1992).

Quality Control

Product quality refers to form errors, surface finish and dimensional errors produced on
components during machining. Several factors such as machine accuracy, tool/work
deflections, process conditions, and so on, dictate the product accuracy produced
during manufacturing. Despite significant research work, there is no integrated product
quality model reported to predict the product quality performance in CNC machining.
Suneel, Pande, and Date (2002) reported the development of an intelligent product quality
model for CNC turning using neural network techniques.

Reliable and accurate quality control is an important element in textile manufacturing. For
many textile products, a major quality control requirement is judging seam quality.



Artificial Neural Networks: Applications in Finance and Manufacturing   21

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bahlmann et al. (1999) presented a method for an automated quality control of textile
seams, which is aimed to establish a standardized quality measure and to lower cost in
manufacturing. The system consists of a suitable image acquisition setup, an algorithm
for locating the seam, a feature extraction stage, and a neural network of the self-
organizing map type for feature classification.

Other Applications

Applications of neural network in other problems such as industrial pattern recognition
(Yao, Freeman, Burke, & Yang, 1991), identification of appropriate decision criteria
(Chryssolouris, Lee, & Domroese, 1991), agile and flexible manufacturing (Shimizu,
Tanaka, & Kawada, 2004) and economic order quantity (Ziarati, 2000) have also been
reported in the literature. To differentiate the pattern recognition problems from other
disciplines, we would like to mention here that this problem in this context is to recognize
industrial crews, bolts, and so on.

Conclusion

Artificial neural networks possess many desirable features that have made them suitable
for practical financial and manufacturing applications. In this chapter, we have provided
a brief description of ANN architectures and different learning algorithms that are most
commonly used in these applications. Interested readers are also directed to more
detailed descriptions of the algorithms for their relative advantages and disadvantages
for further information. Specific areas in finance and manufacturing that have experi-
enced remarkable results by modeling with neural networks are described and some of
the important and relevant works are reported. The subsequent chapters of this book will
present some of the recent developments of ANN applications in finance and manufac-
turing, and discuss various modeling issues.

References

Abu-Mostafa, Y. S. (2001). Financial model calibration using consistency hints. IEEE
Transaction on Neural Networks, 12(4), 791-808.

Akyol, D. E. (2004). Applications of neural networks to heuristic scheduling algorithms.
Computers and Industrial Engineering, 46, 679-696.

Arai, M. (1989). Mapping abilities of three layer neural networks. In Proceedings of the
IEEE/INNS International Joint Conference on Neural Networks, Vol. 1 (pp. 419-
423).



22   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Atiya, A. F. (2001). Bankruptcy prediction for credit risk using neural networks: A survey
and new results. IEEE Transactions on Neural Networks, 12(4), 929-935.

Bahlmann, C., Heidemann, G., & Ritter, H. (1999). Artificial neural networks for automated
quality control of textile seams. Pattern Recognition, 32(6), 1049-1060.

Barr, D. S., & Mani, G. (1994). Using neural nets to manage investments. AI Expert, 9, 6-
21.

Becraft, W. R., & Lee, P. L. (1993). An integrated neural network/expert system approach
for fault daignosis. Computers and Chemical Engineering, 17(10), 1001-1014.

Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford
University Press.

Brooks, C. (1998). Predicting stock index volatility: Can market volume help? Journal of
Forecasting, 17, 59-80.

Brophy, B., Kelly, K., & Byrne, G. (2002). AI-based condition monitoring of the drilling
process. Journal of Materials Processing Technology, 124, 305-310.

Cacoullos, T. (1966). Estimation of multivariate density. Annals of the Institute of
Statistical Mathematics, 18(2), 179-189.

Carpenter, G. A., & Grossberg, S. (1988). The art of adaptive pattern recognition by a self-
organizing neural network. Computer, 21(3), 77-88.

Cavalieri, S., Maccarrone, P., & Pinto, R. (2004). Parametric vs neural network models for
the estimation of production costs: A case study in the automotive industry.
International Journal of Production Economics, 91, 165-177.

Chapados, N., & Bengio, M. (2001). Cost functions and model combination for VaR-based
asset allocation using neural networks. IEEE Transactions on Neural Networks,
12(4), 890-907.

Chiang, W., Urban, T. L., & Baldridge, G. W. (1996). A neural network approach to mutual
fund net asset value forecasting. International Journal of Management Science,
24(2), 205-215.

Cho, J. R., Shin, S. W., & Yoo, W. S. (2005). Crown shape optimization for enhancing tire
wear performance by ANN. Computers & Structures, 83, 12-13, 920-933.

Choudhury, S. K., Jain, V. K., & Rama Rao, Ch. V. V. (1999). On-line monitoring of tool
wear in turning using a neural network. International Journal of Machine Tools
and Manufacture, 39, 489-504.

Christodoulou, M., & Gaganis, V. (1998). Neural network in manufacturing cell design.
Computers in Industry, 36, 133-138.

Chryssolouris, G., Lee, M., & Domroese, M. (1991). The use of neural networks in
determining operational policies for manufacturing systems. Journal of Manufac-
turing Systems, 10(2), 166-175.

Coakley, J., & Brown, C. (2000). Artificial neural networks in accounting and finance:
Modeling issues. International Journal of Intelligent Systems in Accounting,
Finance & Management, 9, 119-144.

Cus, F., & Balic, J. (2003). Optimization of cutting process by GA approach. Robotics and
Computer Integrated Manufacturing, 19, 113-121.



Artificial Neural Networks: Applications in Finance and Manufacturing   23

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Desay, V. S., Crook, J. N., & Overstreet, G. A., Jr. (1996). A comparison of neural networks
and linear scoring models in the credit union environment. European Journal of
Operational Research, 95, 24-37.

Donaldson, R. G., & Kamstra, M. (1996). Forecast combining with neural networks.
Journal of Forecasting, 15, 49-61.

Duranton, M. (1996). Image processing by neural networks. IEEE Micro, 16(5), 12-19.

Fadlalla, A., & Lin, C. H. (2001). An analysis of the applications of neural networks in
finance. Interfaces, 31(4), 112-122.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture.
Advances in Neural Information Processing Systems, 2, 524-532.

Fletcher, D., & Goss, E. (1993). Forecasting with neural networks: An application using
bankruptcy data. Information & Management, 24, 159-167.

Fonseca, D., & Navaresse, D. (2002). Artificial neural network for job shop simulation.
Advanced Engineering Informatics, 16, 241-246.

Foresee, F. D., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian
regularization. International Joint Conference Neural Network, 1930-1935.

Fukumi, M., Omatu, S., & Nishikawa, Y. (1997). Rotation-invariant neural pattern recog-
nition system estimating a rotation angle. IEEE Transaction on Neural Networks,
8(3), 568-581.

Glorfeld, L. W. (1996). A methodology for simplification and interpretation of
backpropagation-based neural network models. Expert Systems with Applica-
tions, 10(1), 37-54.

Glorfeld, L. W., Hardgrave, B. C. (1996). An improved method for developing neural
networks: The case of evaluating commercial loan credit worthiness. Computers
& Operations Research, 23, 933-944.

Guerrero, F., Lozano, S., Smith, K., Canca, D., & Kwok, T. (2002). Manufacturing cell
formation using a new self-organizing neural network. Computers & Industrial
Engineering, 42, 377-382.

Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. Boston: PWS
Publishing.

Harston, C. T. (1990). Business with neural networks. In A. Maren, C. Harston, & R. Pap,
(Eds.), Handbook of neural computing applications. CA: Academic Press.

Holder, V. (1995, February 7). War on suspicious payment. Financial Times.

Huang, P. T., & Chen, J. C. (2000). Neural network-based tool breakage monitoring system
for end milling operations. Journal of Industrial Technology, 16(2), 2-7.

Hung, S. Y., Liang, T. P., & Liu, V. W. (1996). Integrating arbitrage pricing theory and
artificial neural networks to support portfolio management. Decision Support
Systems, 18, 301-316.

Jagielska, I., & Jaworski, J. (1996). Neural network for predicting the performance of credit
card accounts. Computational Economics, 9(1), 77-82.



24   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Javadpour, R., & Knapp, G. M. (2003). A fuzzy neural network approach to machine
condition monitoring. Computers & Industrial Engineering, 45, 323-330.

Jin, X., Cheu, R. L., & Srinivasan, D. (2002). Development and adaptation of constructive
probabilistics neural network in freeway incident detection. Transportation Re-
search Part C, 10, 121-147.

Jo, H., Han, I., & Lee, H. (1997). Bankruptcy prediction using case-based reasoning,
neural network and discriminate analysis. Expert Systems with Applications,
13(2), 97-108.

Kamruzzaman, J., & Sarker, R. (2003). Forecasting of currency exchange rates using ANN:
A case study. In Proceedings of the IEEE International Conference on Neural
Network & Signal Processing (pp. 793-797).

Kaparthi, S., & Suresh, N. C. (1992). Machine-component cell formation in group
technology: A neural network approach. International Journal of Production
Research, 30(6), 1353-1367.

Kim, S. H., & Chun, S. H. (1998). Graded forecasting using an array of bipolar predictions:
Application of probabilistic neural networks to a stock market index. International
Journal of Forecasting, 14, 323-337.

Kiviluoto, K. (1998). Predicting bankruptcies with the self-organizing map.
Neurocomputing, 21 (1-3), 203-224.

Knapp, G. M., Javadpour, R., & Wang, H. P. (2000). An ARTMAP neural network-based
machine condition monitoring system. Journal of Quality in Maintenance Engi-
neering, 6(2), 86-105.

Knapp, G. M., & Wang, H. P. (1992). Machine fault classification. A neural network
approach. International Journal of Production Research, 30(4), 811-823.

Kohonen, T. (1988). Self-organisation and associative memory. New York: Springer-
Verlag.

Kong, L. X., & Nahavandi, S. (2002). On-line tool condition monitoring and control
system in forging processes. Journal of Materials Processing Technology, 125-
126, 464-470.

Kruschke, J. K (1989). Improving generalization in backpropagation networks with
distributed bottlenecks. Proceedings of the IEEE/INNS International Joint Con-
ference on Neural Networks, 1, 443-447.

Kung, S. Y., & Hwang, J. N. (1988). An algebraic projection analysis for optimal hidden
units size and learning rate in backpropagation learning. In Proceedings of the
IEEE/INNS International Joint Conference on Neural Networks, Vol. 1 (pp. 363-
370).

Lee, C. W. (1997). Training feedforward neural networks: An algorithm for improving
generalization. Neural Networks, 10, 61-68.

Lee, H., Malave, C. O., & Ramachandran, S. (1992). A self-organizing neural network
approach for the design of cellular manufacturing systems. Journal of Intelligent
Manufacturing, 325-332.



Artificial Neural Networks: Applications in Finance and Manufacturing   25

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Lee, I., & Shaw, M. J. (2000). A neural-net approach to real time flow-shop sequencing.
Computers & Industrial Engineering, 38, 125-147.

Lehtokangas, M. (2000). Modified cascade-correlation learning for classification. IEEE
Transactions on Neural Networks, 11, 795-798.

Leigh, D. (1995). Neural networks for credit scoring. In S. Goonatilake, & P. Treleaven
(Eds.), Intelligent systems for finance & business (pp. 61-69). Chichester: Wiley.

Leshno, M., & Spector, Y. (1996). Neural network prediction analysis: The bankruptcy
case. Neurocomputing, 10, 125-147.

Li, T. S., Su, C. T., & Chiang, T. L. (2003). Applying robust multi-response quality
engineering for parameter selection using a novel neural-genetic algorithm. Com-
puters in Industry, 50, 113-122.

Liao, T. W., Triantaphyllou, E., & Chang, P. C. (2003). Detection of welding flaws with
mlp neural network and case base reasoning. International Journal of Intelligent
Automation and Soft Computing, 9(4), 259-267.

Looney, C. G. (1996). Advances in feedforward neural networks: Demystifying knowl-
edge acquiring black boxes. IEEE Transactions on Knowledge & Data Engineer-
ing, 8, 211-226.

Lowe, D. (1995). Radial basis function networks. In M. A. Arbib (Ed.), The Handbook of
Brain Theory and Neural Networks. Cambridge, MA: MIT Press.

MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4, 415-447.

Marinai, S., Gori, M., & Soda, G. (2005). Artificial neural networks for document analysis
and recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence,
27(1), 23-35.

Masters, T. (1995). Advanced algorithms for neural networks. New York: Wiley.

Medeiros, M. C., Veiga, A., & Pedreira, C. E. (2001). Modelling exchange rates: Smooth
transitions, neural networks, and linear models. IEEE Transactions on Neural
Networks, 12(4), 755-764.

Moller, A. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks, 6, 525-533.

Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing
units. Neural Computation, 1(2), 281-294.

Moon, Y. B., & Chi, S. C. (1992). Generalized part family formation using neural network
techniques. Journal of Manufacturing Systems, 11(3), 149-159.

More, J. J. (1997). The Levenberg-Marquart algorithm: Implementation and theory: G. A.
Watson (Ed.), Numerical analysis. Lecture Notes in Mathematics, 630, 105-116.
London: Springer-Verlag.

Nazeran, H., & Behbehani, K. (2000). Neural networks in processing and analysis of
biomedical signals. In M. Akay (Ed.), Nonlinear biomedical signal processing:
Fuzzy logic, neural networks and new algorithms. New York: IEEE Press.

Nowlan, S. J., & Hinton, G. E. (1992). Simplifying neural networks by soft weight-sharing.
Neural Computation, 4(4), 473-493.



26   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Olmeda, I., & Fernandez, E. (1997). Hybrid classifiers for financial multicriteria decision
making: The case of bankruptcy prediction. Computational Economics, 10(4), 317-
335.

Parzen, E. (1962). On the estimation of a probability density function and mode. Annals
of Mathematical Statistics, 3, 1065-1076.

Piramuthu, S., Shaw, M. J., Gentry, J. A. (1994). A classification approach using multi-
layered neural networks. Decision Support Systems, 11, 509-525.

Raj, K. H., Sharma, R. S., Srivastava, S., & Patvardham, C. (2000). Modeling of manufac-
turing processes with ANNs for intelligent manufacturing. International Journal
of Machine Tools & Manufacture, 40, 851-868.

Refenes, A. P. N., & Holt, W. T. (2001). Forecasting volatility with neural regression: A
contribution to model adequacy. IEEE Transactions on Neural Networks, 12(4),
850-865.

Rumelhart, D. E., McClelland, J. L., & the PDP research group (1986). Parallel Distributed
Processing, 1. MIT Press.

Shimizu, Y., Tanaka, Y., & Kawada, A. (2004). Multi-objective optimization system,
MOON2 on the Internet. Computers & Chemical Engineering, 28, 821-828.

Smith, K., & Gupta J. (2000). Neural networks in business: Techniques and applications
for the operations researcher. Computer & Operation Research, 27, 1023-1044.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 1(13), 109-118.

Specht, D. F., & Romsdahl, H. (1994). Experience with adaptive probabilistic neural
network and adaptive general regression neural network. In Proceedings of the
IEEE/INNS International Joint Conference on Neural Networks, Vol. 2 (pp. 1203-
1208).

Steiner, M., & Wittkemper, H. G. (1997). Portfolio optimization with a neural network
implementation of the coherent market hypothesis. European Journal of Opera-
tional Research, 100, 27-40.

Suneel, T. S., Pande, S. S., & Date, P. P. (2002). A technical note on integrated product
quality model using artificial neural networks. Journal of Materials Processing
Technology, 121(1), 77-86.

Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of the neural networks: The
case of bank failure predictions. Management Science, 38(7), 926-947.

Teixeira, J. C., & Rodrigues, A. J. (1997). An applied study on recursive estimation
methods, neural networks and forecasting. European Journal of Operational
Research, 101, 406-417.

Torsun, I. S. (1996). A neural network for a loan application scoring system. The New
Review of Applied Expert Systems, 2, 47-62.

Vellido, A., Lisboa, P., & Vaughan, J. (1999). Neural networks in business: A survey of
applications (1992-1998). Expert System with Applications, 17, 51-70.

Viharos, Z. J., Monostori, L., & Markos, S. (1999). Selection of input and output variables
of ANN based modelling of cutting processes. In Proceedings of the Workshop on
Supervising and Diagnostics of Machining Systems, Poland (pp. 121-131).



Artificial Neural Networks: Applications in Finance and Manufacturing   27

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Wang, G. N. (2004). Two-phase reverse neural network approach for modeling a compli-
cate manufacturing process with small size. Neural Information Processing —
Letters and Reviews, 2(1), 1-9.

Wittkemper, H. G., & Steiner, M. (1996). Using neural networks to forecast the systematic
risk of stocks. European Journal of Operational Research, 90, 577-588.

Wong, B., Lai, V., & Lam, J. (2000). A bibliography of neural network business applica-
tions research: 1994-1998. Computer & Operation Research, 27, 1045-1076.

Wong, S. V., & Hamouda, A. M. S. (2003). Machinability data representation with artificial
neural network. Journal of Materials Processing Technology, 138, 538-544.

Wu, B. (1992). An introduction to neural networks and their applications in manufactur-
ing. Journal of Intelligent Manufacturing, 3, 391-403.

Yang, S., & Wang, D. (2000). Constraint satisfaction adaptive neural network and
heuristics combined approaches for generalized job-shop scheduling. IEEE Trans-
actions on Neural Network, 11(2), 474-486.

Yao, J., & Tan, C. T. (2000). A case study on using neural networks to perform technical
forecasting of forex. Neurocomputing, 34, 79-98.

Yao, Y., Freeman, W. J., Burke, B., & Yang, Q. (1991). Pattern recognition by a distributed
neural network: An industrial application. Neural Networks, 4, 103-121.

Yeo, A. C., Smith, K. A., Willis, R. J., & Brooks, M. (2002). A mathematical programming
approach to optimize insurance premium pricing within a data mining framework.
Journal of Operation Research Society, 53, 1197-1203.

Yoon, Y., Guimaraes, T., & Swales, G. (1994). Integrating artificial neural networks with
rule-based expert systems. Decision Support Systems, 11, 497-507.

Zhang, Y. F., Fuh, J. Y., & Chan, W. T. (1996). Feature-based cost estimation for packaging
products using neural networks. Computers in Industry, 32, 95-113.

Zhenyuan W., Yilu L., & Griffin, P. J. (2000). Neural net and expert system diagnose
transformer faults. Computer Applications in Power, 13(1), 50-55.

Ziarati, M. (2000). Improving the supply chain in the automotive industry using kaizen
engineering. MPhill transfer thesis, De Montfort University, UK.

Zuperl, U., Cus, F., Mursec, B., & Ploj, T. (2004). A hybrid analytical-neural network
approach to the determination of optimal cutting conditions. Journal of Materials
Processing Technology, 82-90.



28   Sarker and Abbass

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

Simultaneous
Evolution of Network

Architectures and
Connection Weights in

Artificial Neural
Networks

Ruhul A. Sarker, University of New South Wales, Australia

Hussein A. Abbass, University of New South Wales, Australia

Abstract

Artificial Neural Networks (ANNs) have become popular among researchers and
practitioners for modeling complex real-world problems. One of the latest research
areas in this field is evolving ANNs. In this chapter, we investigate the simultaneous
evolution of network architectures and connection weights in ANNs. In simultaneous
evolution, we use the well-known concept of multiobjective optimization and
subsequently evolutionary multiobjective algorithms to evolve ANNs. The results are
promising when compared with the traditional ANN algorithms. It is expected that this
methodology would provide better solutions to many applications of ANNs.



Simultaneous Evolution of Network Architectures and Connection Weights   29

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Feed-forward ANNs have found extensive acceptance in many disciplines for modeling
complex real-world problems including the finance and manufacturing domains. An ANN
is formed from a group of units, called neurons or processing elements, connected with
arcs, called synapses or links, where each arc is associated with a weight representing
the strength of the connection, and usually the nodes are organized in layers. Each
neuron has an input equal to the weighted sum of the outputs of those neurons connected
to it. The weighted sum of the inputs represents the activation of the neuron. The
activation signal is passed through a transfer function to produce a single neuron’s
output. The transfer function introduces nonlinearity to the network. The behavior of a
neural network is determined by the transfer functions, the learning rule by which arcs
update their weights, and the architecture itself in terms of the number of connections
and layers. Training is the process of adjusting the networks’ weights to minimize the
difference between the network output and the desired output on a suitable metric space.
Once the network is trained, it can be tested by a new dataset.

As previously mentioned, the performance of a neural network for a given problem
depends on the transfer function, network architecture, connection weights, inputs, and
learning rule. The architecture of an ANN includes its topological structure, that is,
connectivity and number of nodes in the network. The architectural design is crucial for
successful application of ANNs because the architecture has a significant impact on the
overall processing capabilities of the network. In most function-approximation problems,
one hidden layer is sufficient to approximate continuous functions (Basheer, 2000;
Hecht-Nielsen, 1990). Generally, two hidden layers may be necessary for learning
functions with discontinuities (Hecht-Nielsen, 1990). The determination of the appropri-
ate number of hidden layers and number of hidden nodes in each layer is one of the
important tasks in ANN design. A network with too few hidden nodes would be incapable
of differentiating between complex patterns, leading to a lower estimate of the actual
trend. In contrast, if the network has too many hidden nodes it will follow the noise in
the data due to overparameterization leading to poor generalization for test data (Basheer
& Hajmeer, 2000). As the number of hidden nodes increases, training becomes exces-
sively time-consuming.

The most popular approach to finding the optimal number of hidden nodes is by trial and
error. Methods for network growing such as cascade correlation (Fahlman & Lebiere,
1990) and for network pruning such as optimal brain damage (LeCun, Denker, & Solla,
1990) have been used to overcome the unstructured and somehow unmethodical process
for determining good network architecture. However, all these methods still suffer from
their slow convergence and long training time. Nowadays, many researchers use
evolutionary algorithms to find the appropriate network architecture by minimizing the
output error (Kim & Han, 2000; Yao & Liu, 1998).

Weight training in ANNs is usually formulated as a minimization of an error function, such
as the mean square error between target and actual outputs averaged over all examples
(training data) by iteratively adjusting connection weights. Most training algorithms,



30   Sarker and Abbass

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

such as Backpropagation (BP) and conjugate gradient are based on gradient descent
(Basheer & Hajmeer, 2000; Hertz, Krogh, & Palmer, 1991). Although BP has some
successful applications, the algorithm often gets trapped in a local minimum of the error
function and is incapable of finding a global minimum if the error function is multimodal
and/or non-differentiable (Yao, 1999). To overcome this problem, one can use evolution-
ary algorithms for weight training. The application of evolutionary algorithms for weight
training can be found in Kim and Han (2000) and Yao and Liu (1998).

As discussed previously, it is necessary to determine the appropriate network architec-
ture and connection weights to get the best performance out of ANNs. Most researchers
treat network architecture and connection weights as two independent optimization
problems. As Yao (1999) indicated, connection weights have to be learned after a near-
optimal architecture is found. This is especially true if one uses an indirect encoding
scheme, such as the developmental rule method. One major problem with the determina-
tion of architectures is noisy fitness evaluation (Yao & Liu, 1997). In order to reduce such
noise, an architecture usually has to be trained many times from different random initial
weights. This method dramatically increases the computational time for fitness evalua-
tion. If we look at the theoretical side of such optimization problems, this sequential
optimization procedure (first architecture optimization followed by weight optimization)
will usually provide a suboptimal solution for the overall problem.

To overcome this problem, the natural choice is to determine the architecture and
connection weights simultaneously by solving a single optimization problem with two
objectives. Many researchers attempted to ignore the architecture and minimize only the
mean sum square error function (Kim & Han, 2000; Yao & Liu, 1998). A comprehensive
list of papers on this topic can be found in Yao (1999). However, if the contribution to
the objective function of a subproblem is very low compared to the other, the effect of
the first subproblem will not be reflected properly in the overall optimal solution. In such
situations, simultaneous multiobjective optimization would be a better choice.

The purpose of this research is to determine the network architecture and connection
weights of ANNs simultaneously by treating the problem as a multiobjective optimization
problem. We believe the simultaneous evolution of architectures and connection
weights in ANNs using the concept of multiobjective optimization will add a new
direction of research in ANNs. In addition, we will show experimentally that this approach
performs better than BP with much lower computational cost.

The chapter is organized as follows. After introducing the research context, multiobjective
optimization and evolutionary algorithms are introduced in the next section followed by
the proposed algorithm for simultaneous evolution of network architecture and connec-
tion weights. . Experimental results are presented in the “Experiments” section. Appli-
cations of the proposed algorithms to finance and manufacturing are discussed in the
penultimate section, and conclusions are drawn in the final section.



Simultaneous Evolution of Network Architectures and Connection Weights   31

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Multiobjective Optimization and
Evolutionary Algorithms

In this section, we briefly discuss multiobjective optimization, evolutionary algorithms,
and the use of evolutionary algorithms for solving multiobjective optimization problems.

Multiobjective Optimization

Consider a multiobjective optimization model as presented next.

Objective Function f(x)

Subject to x ∈ X

Where x is a vector of decision variables (x
1
, x

2
, …, x

k
), f is a vector objective function with

components f
1
, …, f

n
,. Here f

1
, …, f

n
, are functions on E

n
 and X is a nonempty set in E

n
. The

set X represents simple constraints that could be easily handled explicitly, such as lower
and upper bounds on the variables.

We wish to determine the optimal x, which optimizes f, satisfying the variable bounds.
In the vector objective function, the type of optimization of individual function could be
maximization, minimization, or a mix of maximization and minimization.

In multiobjective optimization, all the objectives must be optimized concurrently to get
the real trade-off for decision-making. In this case, there is no single optimal solution,
but rather a set of alternative solutions. These solutions are optimal in the wider sense
that no other solutions in the search space are superior to them when all objectives are
considered. They are known as Pareto-optimal solutions.

There are several conventional optimization-based algorithms for solving multiobjective
optimization problems (Coello, 1999). These methods are not discussed here since none
of them perform simultaneous optimization. Evolutionary algorithms (EAs) seem to be
particularly suited for multiobjective optimization problems because they process a set
of solutions in parallel, possibly exploiting similarities of solutions by recombination.
Some researchers suggest that multiobjective search and optimization might be a problem
area where EAs do better than other blind search strategies (Fonseca & Fleming, 1993;
Valenzuela-Rendón, & Uresti-Charre, 1997). There are several EAs available in the
literature those are capable of searching for multiple Pareto-optimal solutions concur-
rently in a single run. Some of the popular algorithms are: the Vector Evaluated Genetic
Algorithm (VEGA) (Schaffer, 1985), Hajela and Lin’s (1992) genetic algorithm (HLGA),
Non-dominated Sorting Genetic Algorithms (NSGA) (Srinivas & Deb, 1994), Fonseca and
Fleming’s (1993) evolutionary algorithm (FFES), Niched Pareto Genetic Algorithm
(NPGA) (Horn, Nafpliotis, & Goldberg, 1994), the Strength Pareto Evolutionary Algo-
rithm (SPEA) (Zitzler & Thiele, 1999), the Pareto Archived Evolution Strategy (PAES)
(Knowles & Corne, 1999, 2000), and New Evolutionary Multiobjective Algorithms



32   Sarker and Abbass

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(NEMA) (Sarker, Liang, & Newton, 2002). However, none of these algorithms performs
consistently for all types of problems. Recently, we developed the Pareto-based
Differential Evolution (PDE) approach, which outperforms most existing evolutionary
multiobjective algorithms over continuous domains (Abbass & Sarker, 2002; Abbass,
Sarker, & Newton, 2001; Sarker & Abbass, 2004).

Differential Evolution

Evolutionary algorithms (Fogel, 1995) are a kind of global optimization technique that
uses selection and recombination as its primary operators to tackle optimization prob-
lems. Differential Evolution (DE) is a branch of evolutionary algorithms developed by
Rainer Storn and Kenneth Price (Storn & Price, 1995) for optimization problems over
continuous domains. In DE, each variable is represented in the chromosome by a real
number. The approach works as follows:

1. Create an initial population of potential solutions at random, where repair rules
guarantee that those variables’ values are within their boundaries.

2. Until termination conditions are satisfied:

• Select at random a trial individual for replacement, an individual as the main
parent, and two individuals as supporting parents.

• With some probability, each variable in the main parent is perturbed by
adding to it a ratio, F, of the difference between the two values of this variable
in the other two supporting parents. At least one variable must be changed.
This process represents the crossover operator in DE.

• If the resultant vector is better than the trial solution, it replaces it; otherwise
the trial solution is retained in the population.

• Go to 2 above.

From the previous discussion, DE differs from genetic algorithms (GA) in a number of
points:

• DE uses real number representation while conventional GA uses binary, although
GA sometimes uses integer or real number representation as well.

• In GA, two parents are selected for crossover and the child is a recombination of
the parents. In DE, three parents are selected for crossover and the child is a
perturbation of one of them.

• The new child in DE replaces a randomly selected vector from the population only
if it is better than it. In conventional GA, children replace the parents with some
probability regardless of their fitness.



Simultaneous Evolution of Network Architectures and Connection Weights   33

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A Differential Evolution Algorithm for MOPs

A generic version of the adopted algorithm can be found in Abbass and Sarker (2002).
The PDE algorithm is similar to the DE algorithm with the following modifications:

1. The initial population is initialized according to a Gaussian distribution N(0.5,0.15).

2. The step-length parameter is generated from a Gaussian distribution N(0,1).

3. Reproduction is undertaken only among nondominated solutions in each genera-
tion.

4. The boundary constraints are preserved either by reversing the sign if the variable
is less than 0 or subtracting 1 if it is greater than 1 until the variable is within its
boundaries.

5. Offspring are placed into the population if they dominate the main parent.

The algorithm works as follows. An initial population is generated at random from a
Gaussian distribution with mean 0.5 and standard deviation 0.15. All dominated solutions
are removed from the population. The remaining non-dominated solutions are retained
for reproduction. A child is generated from a selected three parents and is placed into
the population if it dominates the first selected parent; otherwise a new selection process
takes place. This process continues until the population is completed.

Proposed Algorithm

This section presents the nomenclatures and representations used in describing the
algorithm and the details of the differential evolution algorithm for solving multiobjective
optimization problems.

Nomenclatures

From herein, the following notations will be used for a single hidden layer MLP:

• I and H are the number of input and hidden units respectively.

• ( )1 2, ,...., ,  1,..., ,p p p p
Ix x x p P∈ = =X X  Xp is the pth pattern in the input feature space X

of dimension I, and P is the total number of patterns.

• Without any loss of generality, o
p

o YY ∈  is the corresponding scalar of pattern Xp

in the hypothesis space Y
o
.

• w
ih
 and w

ho
, are the weights connecting input unit i, i = 1, ….., I, to hidden unit h,



34   Sarker and Abbass

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

h = 1, …., H, and hidden unit h to the output unit o (where o is assumed to be 1 in
this research) respectively.

• , );()(
0

p
i

I

i ihhh
p

h xwaa ∑ =
==Θ σX h = 1, …., H, is the hth hidden unit’s output

corresponding to the input pattern Xp, where a
h 
is the activation of hidden unit h,

and σ(.) is the activation function that is taken in this research to be the logistic

function ,
1

1
)(

zDe
z −+

=σ with D the function’s sharpness or steepness and is taken

to be 1 unless it is mentioned otherwise.

• )( );(ˆ
0

pH

h hooo
p

o waaY XΘ== ∑ =
σ is the network output and a

o
 is the activation of

output unit o corresponding to the input pattern Xp.

Representation

In deciding on an appropriate representation, we tried to choose a representation that
can be used for other architectures without further modifications. Our chromosome is a
class that contains one matrix Ω and one vector ρ. The matrix Ω is of dimension (I + O)

x (H + O). Each element ,Ω∈ijω  is the weight connecting unit i with unit j, where i = 0,

…, (I-1) is the input unit i, i = I, …..,(I + O -1) is the output unit i-I, j = 0, …., (H-1) is the
hidden unit j, and j = H, ….., (H + O -1) is the output unit ( j – H). This representation has
the following two characteristics that we are not using in the current version but can
easily be incorporated in the algorithm for future work:

1. It allows direct connection from each input to each output units (we allow more than
a single output unit in our representation).

2. It allows recurrent connections between the output units and themselves.

The vector r is of dimension H, where ρ
h
 ∈ ρ is a binary value used to indicate if hidden

unit h exists in the network or not; that is, it works as a switch to turn a hidden unit on

or off. The sum,∑ =

H

h h0
ρ , represents the actual number of hidden units in a network, where

H is the maximum number of hidden units. This representation allows both training the
weights in the network as well as selecting a subset of hidden units.

Methods

We have a function-approximation problem that may arise in many situations including
data mining, forecasting, and estimation. We have no prior knowledge about the nature
of the function.

Based on the discussions in the first section, we have decided to use one input layer,



Simultaneous Evolution of Network Architectures and Connection Weights   35

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

one hidden layer, and one output layer in the network. Our main objective is to estimate
the connection weights by minimizing the total error and select the appropriate number
of hidden nodes. In this chapter, we need to determine the connection weights that are
real variables and select the hidden nodes in the network that are associated each with
a binary variable (1 if the hidden unit exists and 0 for not). We set two objectives in this
problem as follows:

1. Minimization of error

2. Minimization of number of hidden units in the ANN

The problem can be handled as a multiobjective optimization problem. The steps to solve
this problem are given next.

1. Create a random initial population of potential solutions.

2. Until termination conditions are satisfied, repeat:

(a) Evaluate the individuals in the population and label those who are
nondominated.

(b) Delete all dominated solutions from the population.

(c) Repeat:

• Select at random an individual as the main parent and two individuals as
supporting parents.

• With some probability Uniform(0,1), crossover the parents to generate a
child where each weight in the main parent is perturbed by adding to it a
ratio, ∈F Gaussian(0,1), of the difference between the two values of this
variable in the two supporting parents. At least one variable must be
changed.

• If the child dominates the main parent, place it into the population.

(d) Until the maximum population size is reached.

Experiments

In this section, we provide the experimental setup, computation results, and discussions
on results.

Experimental Setup



36   Sarker and Abbass

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To test the performance of our proposed method, we experimented with a known
polynomial function in two variables and of the third degree with noise. Noise was added
to each input with a probability 0.2 from a Gaussian distribution N(0,0.2). The function
took the form

3
2

3
1 xx +

We generated 2000 instances as a training set and another 2000 as a test set. Both training
and test sets were generated independently. Variables were generated from a uniform
distribution between 0 and 1. After computing the output of the function, noises were
added to the inputs only.

For the evolutionary approach, an initial population size of 50 was used and the maximum
number of objective evaluations was set to 20,000. The number of inputs and the maximum
number of hidden nodes were chosen as 2 and 10 respectively. The PDE algorithm was
run with five different crossover rates (0, 0.05, 0.1, 0.5, and 0.9) and five different mutation
rates (0, 0.05, 0.1, 0.5, and 0.9). For each combination of crossover and mutation rates,
results were collected and analyzed over 10 runs with different seed initializations. The
initial population is initialized according to a Gaussian distribution N(0,1). The step-
length parameter F is generated for each variable from a Gaussian distribution N(0,1). The
algorithm is written in standard C++ and ran on a Sun Sparc 4.

The BP algorithm was tested for 10 different architectures created varying the hidden
nodes from 1 to 10. For each architecture, the BP algorithm was run 10 times with 10
different random seeds. The same 10 seeds were used in all BP runs as well as the
evolutionary approach.

Experimental Results and Discussions

For each architecture, the results from each of the 10 runs of the BP algorithm were
recorded and analyzed. The performance of the evolutionary approach is measured by
the average performance of the Pareto set, which is selected on the training set, on the
test set. The average error rate from these 100 runs (10 architectures, each with 10 runs)
is found to be 0.095 with a range of architecture-wise average 0.094 to 0.096. The average
error rates with different crossover and mutation rates for the PDE approach are plotted
in Figures 1 and 2. Each average error rate is a mean of 10 runs for a given crossover and
mutation. In the x-axis of both figures, the numbers 1 to 5 represent the crossover or
mutation rates from 0.0 to 0.9 as discussed earlier.

As seen in Figure 1, the error rate is minimal when the mutation rate is 0.1. At this mutation
rate, the error rate varies within a narrow zone of 0.055 to 0.056. As shown in Figure 2,
for all crossover rates, the error rate versus mutation rate follows a convex-like curve.
Here the error rate decreases up to the minimum, where mutation rate is 0.10, and then
increases. This nice pattern helps in choosing the optimum crossover and mutation rates.



Simultaneous Evolution of Network Architectures and Connection Weights   37

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In our case, a mutation rate of 0.10 and a crossover rate of 0.05 achieved the best
performance with an error rate of 0.055. With this best crossover and mutation rates, the
best error rate in a single run is 0.054 with three hidden nodes (a solution from the Pareto
front).

Taking the average figures in both BP and PDE approaches, it is evident that the PDE
approach reduces the error rate from 0.095 to 0.055, which is around 42% improvement.
This emphasizes the advantages of the evolutionary approach in terms of accuracy and
speed.

We need to emphasize here that the evolutionary approach performed in the same number
of epochs better than what 10 different BP runs did. To explain this further, we needed
to find the best number of hidden units on our test task. To do this, we trained 10 different
neural networks with the number of hidden units ranging from 1 to 10. In the evolutionary

0.05

0.06

0.07

0.08

0.09

0.1

0.11

1 2 3 4 5

Crossover rate (0 , 0.05, 0 .1, 0.5 & 0.9)

E
rr

or
 r

at
e

Mu0

Mu0.05

Mu0.1

Mu0.5

Mu0.9

 

0.05

0.06

0.07

0.08

0.09

0.1

0.11

1 2 3 4 5

Mutation rate (0, 0.05, 0.1 , 0.5 & 0.9)

E
rr

o
r 

ra
te

CR0

CR0.05

CR0.1

CR0.5

CR0.9

 

Figure 1. Error rate vs. crossover rate

Figure 2. Error rate vs. mutation rate



38   Sarker and Abbass

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

approach, however, we sat the maximum number of hidden units and the evolutionary
approach determined the appropriate number without the need of experimenting with 10
different networks. In addition, the crossover is much faster than BP, adding more
advantages to the evolutionary approach.

Applications in Finance and
Manufacturing

A brief review of applications of traditional ANNs in finance and manufacturing is
provided in chapter 1 of this book. The major application areas in finance (Kamruzzaman
& Sarker, 2004a, 2004b) and manufacturing (Khan, Frayman, & Nahavandi, 2003, 2004)
are provided in the following table.

Chapters 3 to 9 of this book present detailed applications of traditional ANNs to different
finance case problems and chapters 10 to 15 provide applications for a number of different
manufacturing operational problems. To the best of our knowledge, not only in this book
but also in open literature, no finance and manufacturing applications used simultaneous
evolution of network architectures and connection weights in ANNs. However, as the
prediction performance of ANNs can be improved using the methodology presented in
this chapter, we are certain that it would provide better results for finance and manufac-
turing applications.

Conclusion and Future Research

In this research, we investigated the simultaneous evolution of architectures and
connection weights in ANNs. In so doing, we proposed the concept of multiobjective
optimization to determine the best architecture and appropriate connection weights
concurrently. The multiobjective optimization problem was then solved using the Pareto
Differential Evolution algorithm. The result on a test problem was significantly better

Finance Manufacturing 
• Stock performance and selection  
• Foreign exchange-rate forecasting  
• Corporate bankruptcy prediction  
• Fraud detection  
• Trading and forecasting  
• Future-price estimation  

• Condition monitoring  
• Tool wearing and breaking  
• Cost estimation  
• Fault diagnosis  
• Parameter selection  
• Quality control  

 

Table 1. Major ANN applications in finance and manufacturing



Simultaneous Evolution of Network Architectures and Connection Weights   39

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

when compared with BP. Although it shows a very promising performance, in our future
work, we will need to experiment with more problems to generalize our findings. However,
it is expected that it would provide better performances for most general cases.

Acknowledgment

This work is supported by the University of New South Wales at the Australian Defence
Force Academy (UNSW@ADFA) Special Research Grants TERM6 2001 DOD02 ZCOM
Z2844 awarded to Dr. H. Abbass and Dr. R. Sarker. The authors would like to thank the
two editors of this book Dr. Joarder Kamruzzaman and Dr. Rezaul Begg for organizing a
quick review of this chapter.

References

Abbass, H., & Sarker, R. (2002). The Pareto differential evolution algorithm. Interna-
tional Journal of Artificial Intelligence Tools, 11(4), 531-552.

Abbass, H. A., Sarker, R., & Newton, C. (2001). A Pareto differential evolution approach
to vector optimisation problems. IEEE Congress on Evolutionary Computation,
2, 971-978.

Basheer, I. (2000). Selection of methodology for modeling hystersis behaviour of soils
using neural networks. Journal of Copmuter-Aided Civil and Infrastructure
Engineering, 5(6), 445-463.

Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, comput-
ing, design, and applications. Journal of Microbiological Methods, 43, 3-31.

Coello, C. (1999). A comprehensive survey of evolutionary-based multiobjective opti-
mization techniques. Knowledge and Information Systems: An International
Journal, 1, 269-308.

Fahlman, S., & Lebiere, C. (1990). The cascade correlation learning architecture (CMU-
CW-90-100). Pittsburgh, PA: Canegie Mellon University.

Fogel, D. B. (1995) Evolutionary computation: Towards a new philosophy of machine
intelligence. New York: IEEE Press.

Fonseca, C., & Fleming, P. (1993). Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In S. Forrest (Ed.), Proceedings of the
Fifth International Conference of Genetic Algorithms (pp. 416-423). San Mateo,
CA: Morgan Kaufmann.

Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal design.
Structural Optimization, 4, 99-107.

Hecht-Nielsen, R. (1990). Neurocomputing. Reading, MA: Addison-Wesley.



40   Sarker and Abbass

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Hertz, J., Krogh, A., & Palmer, R. (1991). Introduction to the theory of neural computa-
tion. Reading, MA: Addison-Wesley.

Horn, J., Nafpliotis, N., & Goldberg, D. (1994). A niched Pareto genetic algorithm for
multiobjective optimisation. In Proceedings of the First IEEE Conference on
Evolutionary Computation, (pp. 82-87). Piscataway, NJ: IEEE Press.

Kamruzzaman, J., & Sarker, R. (2004a). ANN based forecasting of foreign currency
exchange rates. Neural Information Processing — Letters and Reviews, 3(2), 49-
58.

Kamruzzaman, J., & Sarker, R. (2004b). Application of support vector machine to forex
monitoring. IEEJ Transaction on Electronics, Information, and Systems, 124-
C(10), 1944-1951.

Khan, M. I., Frayman, Y., & Nahavandi, S. (2003). Improving the quality of die casting
by using artificial neural network for porosity defect modelling. In (A. K. Dahle
(Ed.), Proceedings of the 1st International Light Metals Technology Conference
(pp. 243-245). Brisbane, Australia: CAST Centre Pty Ltd.

Khan, M. I., Frayman, Y., & Nahavandi, S. (2004). Knowledge extraction from a mixed
transfer function artificial neural network. In R. Alo, V. Kreinovich, & M. Beheshti
(Eds.), Proceedings of the Fifth International Conference on Intelligent Tech-
nologies. Houston, TX: University of Houston Downtown.

Kim, K., & Han, I. (2000). Genetic algorithms approach to feature discretization in artificial
neural networks for the prediction of stock price index. Expert Systems with
Applications, 19, 125-132.

Knowles, J., & Corne, D. (1999). The Pareto archived evolution strategy: A new baseline
algorithm for multiobjective optimization. In 1999 IEEE Congress on Evolutionary
Computation (pp. 149-172). Washington, DC: IEEE Service Centre.

Knowles, J., & Corne, D. (2000). Approximating the nondominated front using the Pareto
archived evolution strategy. Evolutionary Computation, 8(2), 149-172.

LeCun, Y., Denker, J. J., & Solla, S. A. (1990). Optimal brain damage. In D. Touretzky (Ed.),
Advances in neural information processing systems (pp. 598-605). San Mateo, CA:
Morgan Kaufmann.

Sarker, R., & Abbass, H. (2004). Differential evolution for solving multi-objective
optimization problems. Asia-Pacific Journal of Operations Research, 21(2), 225-
240.

Sarker, R., Liang, K., & Newton, C. (2002). A new evolutionary algorithm for multiobjective
optimization. European Journal of Operational Research, 140(1), 12-23.

Schaffer, J. (1985). Multiple objective optimization with vector evaluated genetic algo-
rithms. In Genetic Algorithms and their Applications: Proceedings of the First
International Conference on Genetic Algorithms (pp. 93-100). Hillsdale, NJ:
Lawrence Erlbaum.

Srinivas, N., & Deb, K. (1994). Multiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary Computation, 2(3), 221-248.

Storn, R., & Price, K. (1995). Differential evolution: A simple and efficient adaptive



Simultaneous Evolution of Network Architectures and Connection Weights   41

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

scheme for global optimization over continuous spaces (TR-95-012). Berkeley,
CA: International Computer Science Institute.

Valenzuela-Rendón, M., & Uresti-Charre, M. (1997). A non-generational genetic algo-
rithm for multiobjective optimization. In Proceedings of the Seventh International
Conference on Genetic Algorithms (pp. 658-665). San Mateo, CA: Morgan
Kaufmann.

Yao, X. (1999). Evolving artificial neural networks. In Proceedings of the IEEE, Vol. 87,
No. 9 (pp. 1423-1447).

Yao, X., & Liu, Y. (1997). A new evolutionary system for evolving artificial neural
networks. IEEE Transaction on Neural Networks, 8(3), 694-713.

Yao, X., & Liu, Y. (1998). Making use of population information in evolutionary artificial
neural networks. IEEE Transaction on Systems, Man and Cybernetics, 28(3), 417-
425.

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative
case study and the strength Pareto approach. IEEE Transaction on Evolutionary
Computation, 3(4), 257-271.



SECTION II:
ANNs IN FINANCE



Neural Network-Based Stock Market Return Forecasting Using Data Mining   43

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

Neural Network-Based
Stock Market Return

Forecasting Using
Data Mining for

Variable Reduction
David Enke, University of Missouri – Rolla, USA

Abstract

Researchers have known for some time that nonlinearity exists in the financial markets
and that neural networks can be used to forecast market returns. Unfortunately, many
of these studies fail to consider alternative forecasting techniques, or the relevance of
the input variables. The following research utilizes an information-gain technique
from machine learning to evaluate the predictive relationships of numerous financial
and economic input variables. Neural network models for level estimation and
classification are then examined for their ability to provide an effective forecast of
future values. A cross-validation technique is also employed to improve the
generalization ability of the models. The results show that the classification models
generate higher accuracy in forecasting ability than the buy-and-hold strategy, as well
as those guided by the level-estimation-based forecasts of the neural network and
benchmark linear regression models.



44   Enke

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Important changes have taken place over the last two decades within the financial
markets, including the use of powerful communication and trading platforms that have
increased the number of investors entering the markets (Elton & Gruber, 1991). Tradi-
tional capital market theory has also changed, and methods of financial analysis have
improved (Poddig & Rehkugler, 1996). Stock-return forecasting has attracted the atten-
tion of researchers for many years and typically involves an assumption that fundamental
information publicly available in the past has some predictive relationships to future
stock returns or indices. The samples of such information include economic variables,
exchange rates, industry- and sector-specific information, and individual corporate
financial statements. This perspective is opposed to the general tenets of the efficient
market hypothesis (Fama, 1970) which states that all available information affecting the
current stock value is constituted by the market before the general public can make trades
based on it (Jensen, 1978). Therefore, it is impossible to forecast future returns since they
already reflect all information currently known about the stocks. This is still an empirical
issue since there is contradictory evidence that markets are not fully efficient, and that
it is possible to predict the future returns with results that are better than random (Lo &
MacKinlay, 1988).

With this in mind, Balvers, Cosimano, and McDonald (1990), Breen, Glosten, and
Jagannathan (1990), Campbell (1987), Fama and French (1988, 1989), Fama and Schwert
(1977), Ferson (1989), Keim and Stambaugh (1986), and Schwert (1990), among others,
provide evidence that stock market returns are predictable by means of publicly available
information such as time-series data on financial and economic variables. These studies
identify that variables such as interest rates, monetary-growth rates, changes in indus-
trial production, and inflation rates are statistically important for predicting a portion of
the stock returns. However, most of the studies just mentioned that attempt to capture
the relationship between the available information and the stock returns rely on simple
linear regression assumptions, even though there is no evidence that the relationship
between the stock returns and the financial and economic variables is linear. Since there
exists significant residual variance of the actual stock return from the prediction of the
regression equation, it is possible that nonlinear models could be used to explain this
residual variance and produce more reliable predictions of the stock price movements
(Mills, 1990; Priestley, 1988).

Since many of the current modeling techniques are based on linear assumptions, a
method of financial analysis that considers the nonlinear analysis of integrated financial
markets needs to be considered. Although it is possible to perform a nonlinear regres-
sion, most of these techniques require that the nonlinear model must be specified before
the estimation of parameters can be determined. Neural networks are a nonlinear modeling
technique that may overcome these problems (Hill, O’Conner, & Remus, 1996). Neural
networks offer a novel technique that does not require a prespecification during the
modeling process since they independently learn the relationship inherent in the
variables. This is especially useful in security investment and other financial areas where
much is assumed and little is known about the nature of the processes determining asset
prices (Burrell & Folarin, 1997). Neural networks also offer the flexibility of numerous



Neural Network-Based Stock Market Return Forecasting Using Data Mining   45

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

architecture types, learning algorithms, and validation procedures. Current studies that
reflect recent interest in applying neural networks to answer future stock behaviors
include Abhyankar, Copeland, and Wong (1997), Chenoweth and Obradovic (1996),
Desai and Bharati (1998), Gencay (1998), Leung, Daouk, and Chen (2000), Motiwalla and
Wahab (2000), Pantazopoulos, Tsoukalas, Bourbakis, Brun, and Houstis (1998), Qi and
Maddala (1999), and Wood and Dasgupta (1996).

In addition to model-development issues, it has also been found that stock trading driven
by a certain forecast with a small forecasting error may not be as profitable as trading
guided by an accurate prediction of the sign of stock return (Aggarwal & Demaskey, 1997;
Leung et al., 2000; Maberly, 1986; Wu & Zhang, 1997). Furthermore, given the existence
of a vast number of articles addressing the predictabilities of stock market return, most
of the proposed models rely on various assumptions and often employ a particular series
of input variables without justification as to why they were chosen. A systematic
approach to determine what inputs are important is necessary. Therefore, the following
research will begin with a discussion of an information-gain data-mining technique for
performing the variable-relevance analysis. Two neural network approaches that can be
used for classification and level estimation will also be briefly reviewed, followed by a
discussion of the neural network models, including the generalized regression, proba-
bilistic, and multilayer feed-forward neural networks that were developed to estimate the
value (level) and classify the direction (sign) of excess stock returns on the S&P 500 stock
index portfolio. Five-fold cross validation and early-stopping techniques are also
implemented in this study to improve the generalization ability of the feed-forward neural
networks. The resulting data selection and model development, empirical results, and
discussion and conclusion will then be presented. Data sources and descriptions are
given in the Appendix.

Methodology for Data Selection

Whenever possible, large-scale deterministic components, such as trends and seasonal
variations, should be eliminated from the inputs since the network will attempt to learn
the trend and use it in the prediction (Nelson, Hill, Remus, & O’Conner, 1999;
Pantazopoulos et al., 1998). Therefore, the data collected in this study, excluding DIV,
T1, SP, DY, and ER, were seasonally adjusted. The source and definition of all the
variables are given in the Appendix. In addition, due to the lag associated with the
publication of macroeconomic indicators as mentioned by Qi and Maddala (1999), certain
data, particularly PP, IP, CP, and M1, were included in the base set with a two-month
time lag while the rest of the variables were included with a one-month time lag. This was
done to simulate how this data would be received in the real setting, such that only
observable, but not future, data would be provided as inputs to the forecasting models.

For this study, the differences [P
t
 – P

t-1
] of the variables were provided to the networks

so that different input variables can be compared in terms of relative change to the
monthly stock returns, since the relative change of variables may be more meaningful to
the models than the original values when forecasting a financial time series. Monthly data



46   Enke

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

from March 1976 to December 1999, for a total of 286 periods and for each of 31 financial
and economic variables, were collected and analyzed. These variables, including PP

t-1
,

CP
t-1

, IP
t-1

, M1
t-1

, T3
t
, T6

t
, T12

t
, T60

t
, T120

t
, CD1

t
, CD3

t
, CD6

t
, AAA

t
, BAA

t
, DIV

t
, T1

t
, SP

t
,

DY
t
, TE1

t
, TE2

t
, TE3

t
, TE4

t
, TE5

t
, TE6

t
, DE1

t
, DE2

t
, DE3

t
, DE4

t
, DE5

t
, DE6

t
, and DE7

t
, were

primarily employed to predict the level and to classify the sign of the excess stock returns
(ER

t+1
) on the S&P 500 index portfolio. These data consisted of a mixture of the variables

conducted by various researchers, including Desai and Bharati (1998), Leung et al. (2000),
Motiwalla and Wahab (2000), and Qi and Maddala (1999). However, two variables often
used in the literature, long-term treasury rates and commercial paper, were not applicable
due to the fact that the 30-year treasury rate provided by the Federal Reserve Board of
Governors started from February 1977, while the series of commercial papers had been
discontinued because of a change in methodology in September 1997. Several financial
instruments, such as CD and T-bill rates with additional maturities, were included to
supplement unavailable data in this study.

While uncertainty in selecting the predictive variables to forecast stock returns still
exists, as can be observed from a variety of input variables used in a recent literature
survey, several techniques such as regression coefficients (Qi & Maddala, 1999),
autocorrelations (Desai & Bharati, 1998), backward stepwise regression (Motiwalla &
Wahab, 2000), and genetic algorithms (Motiwalla & Wahab, 2000) have been employed
by a few studies to perform variable subset selection. In addition, several researchers,
such as Leung et al. (2000), Gencay (1998), and Pantazopoulos et al. (1998), have
subjectively selected the subsets of variables based on empirical evaluations. None of
these studies have incorporated all available variables previously mentioned in the
literature to uncover the predictive input variables, while at the same time eliminating
irrelevant or redundant data. It is critical to consider all the data since leaving out relevant
variables or keeping irrelevant variables may be detrimental, causing confusion to the
neural network models. Besides, the use of too many variables would require a neural
network that contains unnecessary neurons and hidden layers. Unfortunately, there is
no consistent method that has been used to pick out the useful variables in stock return
forecasting. This may be due to the fact that the behavior of this data is not well known.

One alternative that can be used to extract valuable information and knowledge from large
amounts of data involves the use of data mining (Han & Micheline, 2000). Specifically,
there have been studies in the various areas of data mining (i.e., machine learning, fuzzy
logic, statistics, and rough-set theories) on variable relevance analysis. Relevance
analysis can also be performed on financial data with the aim of removing any irrelevant
or redundant variables from the learning process. The general idea behind variable
relevance analysis is to compute some measures that can be used to quantify the
relevance of variables hidden in a large data set with respect to a given class or concept
description. Such measures include information gain, the Gini index, uncertainty, and
correlation coefficients. For this research, an inductive learning decision tree algorithm
that integrates an information gain analysis technique with a dimension-based data
analysis method was selected as it can be effectively used for variable subset selection
(Han & Micheline, 2000). The resulting method removes the less information producing
variables and collects the variables that contain more information. Therefore, it may be
the most appropriate data-mining technique to perform variable subset selection when
the usefulness of the data is unknown. While using the information gain analysis



Neural Network-Based Stock Market Return Forecasting Using Data Mining   47

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

technique, the predicted directions of excess stock returns were used as class distribu-
tions. The resulting variables with the high information gain were chosen as the relevance
input variables provided to the neural network models. The following paragraphs give
an introduction to the information-gain calculation. It is recommended that readers who
are interested in full details of the information gain algorithm should refer to Quinlan
(1993).

Let S be a set consisting of s data samples. Suppose the class label variable has m distinct
values defining m distinct classes, C

i
 (for i = 1, 2, …, m). Let s

i
 be the number of samples

of S in class C
i
. The expected information for classification is given by:

∑
=

−=
m

1i
i2im321 )(plogp)s,.....,s,s,I(s (1)

where p
i
 is the probability that an arbitrary sample belongs to class C

i
 and is estimated

by s
i 
/ s. Note that a log function to the base 2 is used since the information is encoded

in bits. Let variable A have v distinct values denoted in order from small to large values
as {a

1
, a

2
, a

3
,…, a

v
}. Any split value lying between a

i 
and a

i+1
 will have the same effect

of dividing the samples into those whose value of the variable A lies in {a
1
, a

2
, a

3
,…, a

i
}

and those whose value is in {a
i+1

, a
i+2

, a
i+3

,…, a
v
}. However, the midpoint of each interval

is usually chosen as the representative split. It is defined as (a
i
 + a

i+1
) / 2. Thus, there

are v – 1 possible splits on A, all of which are examined. Note that examining all v – 1 splits
is necessary to determine the highest information gain of A.

Variable A can therefore be used to partition S into 2 subsets, {S
1
, S

2
}, where S

j
 contains

those samples in S that have values {a
1
, a

2
, a

3
,…, a

i
} or {a

i+1
, a

i+2
, a

i+3
,…, a

v
} of A. Let

S
j
 contain s

ij
 samples of class C

i
. The expected information based on this partitioning by

A, also known as the “entropy” of A, is given by:

)s,.....,s,s(I
s

s.....ss
)A(E mjj2j1

v

1j

mjj2j1∑
=

+++
= . (2)

The term (s
1j 

+ s
2j 

+…+ s
mj

) / s acts as the weight of the jth subset and is the number of
samples in the subset (i.e., having value a

j
 of A) divided by the total number of samples

in S. Note that for a given subset S
j
,

∑
=

−=
m

1i
ij2ijmjj2j1 )p(logp)s,.....,s,s(I (3)

where p
ij
 = s

ij
 / |S

j
| and is the probability that a sample in S

j
 belongs to class C

i
. The

information gain obtained by this partitioning of the split on A is defined by:



48   Enke

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

)A(E)s,.....,s,s,s(I)A(Gain m −= 321 . (4)

In this approach to relevance analysis, the highest information gain for each of the
variables defining the samples in S can be obtained. The variable with the highest
information gain is considered the most discriminating variable of the given set. By
computing the information gain for each variable, a ranking of the variables can be
obtained. Finally, the relevance threshold was determined to select only the strong
relevance variables to be used in the forecasting models, and was chosen to eliminate
the variables that contributed less than 0.1% of the total variation in the data set. This
number relates to previous research with principle component analysis, and is also a
result of trial-and-error. It allows the network to train efficiently, and also cuts the input
data set in half.

For this research, each of the neural network models was compared against a linear
regression model, as well as a buy-and-hold strategy. For all models, the data set used
in this study was divided into two periods: The first period runs from March 1976 to Oct
1992 for a total of 200 months while the second period runs from November 1992 to
December 1999 for a total of 86 months. The former was used for determining the
specifications of the models and parameters of the forecasting techniques. The latter was
reserved for out-of-sample evaluation and comparison of performances among the
forecasting models.

Neural Network Models

Neural networks mimic the human brain and are characterized by the pattern of connec-
tions between the various network layers, the numbers of neurons in each layer, the
learning algorithm, and the neuron activation functions. Generally speaking, a neural
network is a set of connected input and output units where each connection has a weight
associated with it. During the learning phase, the network learns by adjusting the weights
so as to be able to correctly predict or classify the output target of a given set of input
samples. Given the numerous types of neural network architectures that have been
developed in the literature, three important types of neural networks were implemented
in this study to compare their predictive ability against the classical linear regression
model. The following three subsections give a brief introduction of these three neural
network models.

Multilayer Feed-Forward Neural Network

Multilayer feed-forward neural networks have been widely used for financial forecasting
due to their ability to correctly classify and predict the dependent variable (Vellido,
Lisboa, & Vaughan, 1999). Backpropagation is by far the most popular neural network
training algorithm that has been used to perform learning for multilayer feed-forward



Neural Network-Based Stock Market Return Forecasting Using Data Mining   49

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

neural networks. Since the feed-forward neural networks are well known and described
elsewhere, the network structures and backpropagation algorithms are not described
here. However, readers who are interested in greater detail can refer to earlier chapters
or to Rumelhart and McClelland (1986) for a comprehensive explanation of the
backpropagation algorithm used to train multilayer feed-forward neural networks.

During neural network modeling, Malliaris and Salchenberger (1993) suggest that
validation techniques are required to identify the proper number of hidden layer nodes,
thus avoiding underfitting (too few neurons) and overfitting (too many neurons)
problems. Generally, too many neurons in the hidden layers results in excessive
connections, resulting in a neural network that memorizes the data and lacks the ability
to generalize. One approach that can be used to avoid over-fitting is n-fold cross-
validation (Peterson, St Clair, Aylward, & Bond, 1995). A five-fold cross-validation,
which was used in this experiment, can be described as follows: The data sample is
randomly partitioned into five equal-sized folds and the network is trained five times. In
each of the training passes, one fold is omitted from the training data and the resulting
model is validated on the cases in that omitted fold, which is also known as a validation
set. The first period (200 months) of the data set is used for the five-fold cross-validation
experiment, leaving the second period for truly untouched out-of-sample data. The
average root-mean-squared error over the five unseen validation sets is normally a good
predictor of the error rate of a model built from all the data.

Another approach that can be used to achieve better generalization in trained neural
networks is called early stopping (Demuth & Beale, 1998). This technique can be
effectively used with the cross-validation experiment. The validation set is used to decide
when to stop training. When the network begins to over-fit the data, the error on the
validation cases will typically begin to rise. In this study, the training was stopped when
the validation error increased for five iterations, causing a return of the weights and
biases to the minimum of the validation error. The average error results of the validation
cases (40 months in each fold for this study) from the n-fold cross-validation experiment
are then used as criteria for determining the network structure, namely the number of
hidden layers, number of neurons, learning algorithms, learning rates, and activation
functions.

Generalized Regression Neural Network

While a number of articles address the ability of multilayer feed-forward neural network
models for financial forecasting, none of these studies has practically applied the
generalized regression neural network (GRNN) to forecast stock returns. Similar to the
feed-forward neural networks, the GRNN can be used for function approximation to
estimate the values of continuous dependent variables, such as future position, future
values, and multivariable interpolation. The GRNN is a kind of radial-basis-function
network and also looks similar to a feed-forward neural network responding to an input
pattern by processing the input variables from one layer to the next with no feedback
paths (Specht, 1991). However, its operation is fundamentally different. The GRNN is
based on nonlinear regression theory that can be used when an assumption of linearity
is not justified.



50   Enke

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The training set contains the values of x (independent variables) that correspond to the
value of y (dependent variable). This regression method will produce the optimal
expected value of y, which minimizes the mean-squared error. The GRNN approach uses
a method that frees the necessity to assume a specific functional form, allowing the
appropriate form to be expressed as a probability density function that is empirically
determined from observed data using the window estimation (Parzen, 1962). Therefore,
this approach is not limited to any particular forms and requires no prior knowledge of
the estimated function. The GRNN formula is briefly described as follows:

[ ]
dy)y,x(f

dy)y,x(yf

      x/y E

∫

∫
∞

∞−

∞

∞−=
(5)

where y is the output of the estimator, x is the estimator input vector, E [y / x] is the
expected value of y given x, and ƒ(x, y) is the known joint continuous probability density
function of x and y. When the density ƒ(x, y) is not known, it will be estimated from a sample
of observations of x and y. For a nonparametric estimate of ƒ(x, y), the class of consistent
estimators proposed by Parzen (1962) is used. As a result, the following equation gives
the optimal expected value of y:

∑

∑

=

==
n

1i
i

n

1i
ii

h

wh
  y

(6)

Input Layer Hidden Layer 1

Output Layer

Hidden Layer 2

Output

s

w1

t

s/t

∑

∑

x1

x2

xn

h1

h2

hn

w2

wn

y

Input Layer Hidden Layer 1

Output Layer

Hidden Layer 2

Output

s

w1

t

s/t

∑

∑

x1

x2

xn

h1

h2

hn

w2

wn

y

Figure 1. Generalized regression neural network architecture



Neural Network-Based Stock Market Return Forecasting Using Data Mining   51

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

where w
i
 is the target output corresponding to the input training vector x

i
 and the output

y, h
i
 = exp[-D

i
2 / (2σ2)] is the output of hidden neuron, D

i
2 = (x-u

i
)T(x-u

i
) is the squared

distance between the input vector x and the training vector u, and s is a smoothing
parameter of the radial basis function. The GRNN architecture is shown in Figure 1. The
neuron of the hidden layer 1 is created to hold the input vector. The weight between the
newly created hidden neuron and the neuron of the hidden layer 2 is assigned the target
value.

Probabilistic Neural Network

In contrast to the GRNN used to estimate the values of continuous variables, the
probabilistic neural network (PNN) finds decision boundaries between categories of
patterns. Therefore, the PNN is mainly used for classification problems and has been
successfully used for classifying the direction of financial time series (Thawornwong,
Enke, & Dagli, 2001). The PNN is a parallel implementation of a standard Bayesian
classifier and has a four-layer network that can perform pattern classification. It is based
essentially on the estimation of probability density functions for various classes as
learned from training samples. The PNN learns from the sample data instantaneously and
uses these probability density functions to compute the nonlinear decision boundaries
between classes in a way that approaches the Bayes optimal (Specht, 1990). The PNN
formula is explained as follows:

∑
=σπ

=
n

1i
iP2/P

 A z
n)2(

1
  )x(f (7)

where f
A
(x) is the probability density function estimator for class A, p is the dimension-

ality of training vector, z
i
 = exp[-D

i
 / (2σ2)] is the output of hidden neuron, D

i
 = (x - u

i
)T(x

- u
i
) is the distance between the input vector x and the training vector u from category

A, and σ is a smoothing parameter.

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

fA(X)x1

xn

fB(X)

Output

zn

z1
Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

fA(X)x1

xn

fB(X)

Output

zn

z1

 

Figure 2. Probabilistic neural network architecture



52   Enke

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Theoretically, the PNN can classify an out-of-sample data with the maximum probability
of success when enough training data is given (Wasserman, 1993). Figure 2 presents the
PNN architecture. When an input is presented to the hidden layer 1, it computes distances
from the input vector to the training vectors and produces a vector whose elements
indicate how close the input is to the vectors of the training set. The hidden layer 2 then
sums these elements for each class of inputs to produce a vector of probabilities as its
net output. Finally, the activation function of the PNN output layer picks the maximum
of these probabilities and classifies it into specific output classes.

Data Selection and Model Development

The selection of the input variables is a modeling decision that can greatly affect the
model performance. For the neural network modeling, an information-gain data-mining
analysis was used to find good subsets of the full set of the first-period input variables.
Of the 31 variables, 15 variables were selected by the information gain data mining
analysis as strong relevance predictors for the data set used in this study. They include
M1, T3, T6, T120, CD1, CD3, CD6, SP, TE2, TE3, TE4, DE2, DE3, DE5, and DE7. Thus,
these variables were consistently used as the input variables for training the neural
networks throughout the modeling stage. The values of the input variables were first
preprocessed by normalizing them within a range of –1 and +1 to minimize the effect of
magnitude among the inputs, thereby increase the effectiveness of the learning algo-
rithm.

It is well known that most trading practices adopted by financial analysts rely on accurate
prediction of the price levels of financial instruments. Nonetheless, some recent studies
have suggested that trading strategies guided by forecasts on the direction of the change
in price level may be more effective and thus can generate higher profits. Aggarwal and
Demaskey (1997) report that the performance of cross hedging improves significantly if
the direction of changes in exchange rates can be predicted. In another study, Maberly
(1986) explores the relationship between the direction of interday and intraday price
changes on the S&P 500 futures. Wu and Zhang (1997) investigate the predictability of
the direction of change in the future spot exchange rate. Leung et al. (2000) found that
the forecasting models based on the direction of stock return outperform the models
based on the level of stock return in terms of predicting the direction of stock market
return and maximizing profits from investment trading.

The previously cited studies demonstrate the usefulness of forecasting the direction of
change in the price or return level by means of a gain or a loss. In fact, the results of these
findings are reasonable because accurate price estimation, as determined by its deviation
from the actual observation, may not be a good predictor of the direction of change in
the price levels of a financial instrument. To facilitate a more effective forecast, the two
forecasting approaches, namely classification and level estimation, were investigated to
evaluate the resulting performances of the model development. Specifically, the feed-
forward neural networks were developed to both estimate the value (level) and classify
the direction (sign) of excess stock returns on the S&P 500 index portfolio. For this study,



Neural Network-Based Stock Market Return Forecasting Using Data Mining   53

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the GRNN was used to estimate the level of excess stock return, while the PNN was
employed to classify the sign of excess stock return. Finally, the conventional linear
regression model was developed to serve as a benchmark for performance comparison
purposes. Note that the second period test data were never used during the model
development so that these forecasting models were always tested on truly untouched
out-of-sample data.

Neural Network Models for Level Estimation

For the feed-forward neural network using the backpropagation learning algorithm, a
sigmoid hyperbolic tangent function was selected as the activation function to generate
an even distribution over the input values. A single hidden layer was chosen for the
neural network model since it has been successfully used for financial classification and
prediction (Swales & Yoon, 1992). Accordingly, the feed-forward neural network was
built with three layers (input layer, hidden layer, and output layer). Each of the relevant
15 input variables was assigned a separate input neuron to the input layer of the feed-
forward neural network. One output neuron was used in the output layer to represent the
predicted excess stock return of a given set of the 15 input variables. In this study, the
connection weights were initially randomized and then determined during the
backpropagation training process.

After numerous experiments with various numbers of hidden-layer neurons, learning
algorithms, and learning rates, the feed-forward neural network employing 15 neurons
in the input layer, 21 neurons in the hidden layer, 0.2 learning rate, and a resilient
backpropagation learning algorithm (Riedmiller & Braun, 1993) was found to be the best
network architecture based on the lowest average root-mean-squared error (RMSE) over
the five-fold cross-validation experiment. In other words, this network architecture
generated the lowest average RMSE over the five omitted folds (validation sets) in this
study. The RMSE used in the feed-forward neural network for level estimation is defined
as:

( )
2n

1i
ii ty

n

1 ∑
=

−=RMSE (8)

where y
i
 is the predicted excess stock return, t

i
 is the actual excess stock return, and n is

the number of validation cases (40 in this study). The average RMSE results were
calculated only after the neural network outputs have been scaled back to their normal
values. By conducting the five-fold cross-validation experiment, the forecasting results
will not be based on a single network output because five neural network models were
developed from the five different data sets. For this reason, the predicted excess stock
returns of the five network outputs were averaged to generate the weighted excess return
in this experiment.



54   Enke

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To further improve the forecasting performance, we also examined a portfolio network
model consisting of the network architecture that produced the lowest RMSE in each
omitted fold cross-validation experiment. In other words, the neural network model
generating the lowest RMSE from each omitted fold experiment was chosen as one of the
five neural networks deliberately combined as the portfolio network model. The resulting
portfolio network architectures using the lowest RMSE in each omitted fold experiment
are provided in Table 1. It is observed that the suitable neurons used in the hidden layer
of the five combined portfolio networks that were trained based on different omitted folds
are different. This observation suggests the importance of network modeling for a
separate omitted fold experiment because the potentially better trained neural network
may be obtained from the specific validation cases. Again, the WER of the portfolio
network model was calculated from the five combined portfolio network outputs.

Unlike the feed-forward neural networks, the GRNN can be designed very quickly, and
no early stopping technique is required during its training. Therefore, there would be no
need to randomly partition the data into equal-sized folds for cross-validation. This
allowed the first period (200 months) of the data set to be used in network training for
predicting the excess stock returns of the last 86 months. In this study, a smoothing
parameter of the radial-basis function equal to 1.00 was selected to approximate the
network function more efficiently. The GRNN training process employed the same input
variables, preprocessing techniques, and postprocessing techniques as those of the
feed-forward neural network models.

Neural Network Models for Classification

Other than the output-layer structure, the feed-forward neural network for classification
employed the same network structures as those used for level estimation. Since there are
two classes for the sign of excess stock return, two output neurons were employed for
the output layer to represent the different classes of the predicted excess stock return.
For this research, the [+1 –1] and [–1 +1] classes represented the predicted positive and
negative signs of excess stock return, respectively. The output neuron with the highest
value was taken to represent the predicted sign of excess stock return based on a given
set of the 15 input variables.

During testing, a feed-forward neural network employing 15 neurons in the input layer,
27 neurons in the hidden layer, 0.3 learning rate, and a resilient backpropagation learning

Omitted Folds 
Input-layer  

Neurons 
Hidden-layer  

Neurons 
Learning Rate 

1 15 23 0.3 
2 15 27 0.2 
3 15 24 0.3 
4 15 11 0.2 
5 15 21 0.2 

 

Table 1. Portfolio neural network model for level estimation



Neural Network-Based Stock Market Return Forecasting Using Data Mining   55

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

algorithm was found to be the best network architecture with the lowest average RMSE
over the five-fold cross-validation experiment. The RMSE used in the feed-forward neural
network for classification is defined as:

( ) ( ){ }∑
=

−+−=
n

1i

2

i2i2
2

i1i1 tyty
n2

1
RMSE (9)

where y
1
 and y

2
 are the predicted classes of excess stock return of the two output neurons,

t
1
 and t

2
 are the actual classes of excess stock return, and n is the number of validation

cases. Just like the previously developed feed-forward neural network models for level
estimation, the forecasting results will be based on five network outputs. Therefore, the
majority of the signs of five network outputs are used to determine the decisive predicted
sign of excess stock return. For example, when the five network models generate three
positive predicted signs and two negative predicted signs of excess stock return based
on a given set of the 15 input variables, the decisive predicted sign of excess stock return
is resolved to be positive.

In addition, a portfolio network model for classification that consists of the network
architecture producing the lowest RMSE in each omitted fold cross-validation experi-
ment was explored. The resulting portfolio network architectures using the lowest RMSE
in each omitted fold experiment are given in Table 2. As can be seen, the suitable hidden
layer neurons of the five combined portfolio networks are different, implying a similar
observation to those of the portfolio network model for level estimation. Similarly, the
decisive predicted sign of excess stock return of the portfolio network model was derived
from the majority of the five combined portfolio network outputs.

Like the GRNN, the design of the PNN is fast and straightforward. In fact, neither training
nor an early stopping technique is required during its design. Therefore, the first period
(200 months) of the data set was used in the network modeling for predicting the sign of
the excess stock returns of the last 86 months. Also, a smoothing parameter equal to 1.00
was selected to consider several nearby design vectors. Again, the PNN design
employed the same input variables and preprocessing techniques as those of the feed-
forward neural network models.

Omitted Folds 
Input-layer  

Neurons 
Hidden-layer 

Neurons 
Learning Rate 

1 15 21 0.3 
2 15 19 0.2 
3 15 28 0.3 
4 15 27 0.3 
5 15 23 0.3 

 

Table 2. Portfolio neural network model for classification



56   Enke

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Linear Regression for Level Estimation

For the linear regression forecasting, the backward stepwise regression for dimension-
ality reduction was employed to assume a linear additive relationship. This method
started with the full set of variables in the model. The worst of the original variables was
determined and removed from the full set. At each subsequent iteration or step, the worst
of the remaining variables was removed from the last updated set. The significant t-
statistics were used as criteria for retention of the significant input variables in the linear
regression model. The remaining variables were thus used in predicting excess stock
returns. In this study, the backward stepwise technique kept 10 variables, PP, M1, T3,
T12, T60, CD1, CD6, BAA, SP, and DE7, as the significant input variables in the
regression model (a = 0.05). The regression model has the following function:

ER
t+1

 = –0.444+(0.959×PP
t-1

)+(0.100×M1
t-1

)+(2.525×T3
t
)+(5.981×T12

t
)+(–4.584×T60

t
)

+(–1.050×CD1
t
)+(–5.472×CD6

t
) +(–1.437×BAA

t
)+(–0.027×SP

t
)+(8.295×DE7

t
) (10)

where all the regression coefficients are significant and the F-statistic is 2.027 (p-value
0.033), indicating that these forecasting variables contain information about future
excess stock returns (F-critical = 1.91). The regression model shows that the relative
changes of PP, M1, T3, T12, and DE7 have a positive effect on predictions of excess
stock return, whereas the effect on excess stock returns of T60, CD1, CD6, BAA, and SP
is negative.

Results

The predictive performances of the developed models were evaluated using the un-
touched out-of-sample data (second period). This is due to the fact that the superior in-
sample performance does not always guarantee the validity of the forecasting accuracy.
One possible approach for evaluating the forecasting performance is to investigate
whether traditional error measures such as those based on the RMSE or correlation
(CORR) between the actual out-of-sample returns and their predicted values are small or

 CORR RMSE SIGN 
Original Level NN 0.0231 1.1614 0.6628* 
Portfolio Level NN 0.0528 1.1206 0.6860* 

GRNN 0.0714 1.1206 0.6860* 

Levelestimation 
Models 

Regression 0.0300 1.4467 0.4767 
     

Original Class NN 0.2300 1.2200 0.6279* 
Portfolio Class NN 0.3150 1.0997 0.6977* 

Classification 
Models 

PNN 0.3020 1.2575 0.6047* 

Table 3. Testing set performance measures



Neural Network-Based Stock Market Return Forecasting Using Data Mining   57

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

highly correlate, respectively. However, there is some evidence in the literature suggest-
ing that traditional measures of forecasting performance may not be strongly related to
profits from trading (Pesaran & Timmermann, 1995). An alternative approach is to look
at the proportion of time that the signs of excess stock returns (SIGN) are correctly
predicted. In fact, Leitch and Tanner (1991) state that the forecast performance based on
the sign measure matches more closely to the profit performance than do traditional
criteria.

Table 3 reports all the three performance measures of the original level estimation feed-
forward neural network (NN) using the lowest average RMSE (Original level NN), the
portfolio level estimation feed-forward neural network using the lowest RMSE in each
omitted fold (Portfolio level NN), the GRNN, the linear regression model (Regression),
the original classification feed-forward neural network using the lowest average RMSE
(Original Class NN), the portfolio classification feed-forward neural network using the
lowest RMSE in each omitted fold (Portfolio Class NN), and the PNN from November 1992
to December 1999. RMSE in Table 3 represents the root-mean-squared error between the
actual and predicted signs of excess stock return. CORR refers to the Pearson correlation
coefficient between the actual and predicted signs of excess stock return (Pesaran &
Timmermann, 1992). SIGN denotes the proportion of times the predicted signs of excess
stock returns are correctly classified. Note that the +1 and –1, representing the positive
and negative decisive predicted signs from the PNN and the classification feed-forward
neural networks, were used to compute the resulting classification performances in the
study. To compare the classification performances with those of the Regression, the
GRNN, and the feed-forward neural networks for level estimation, the original RMSE and
CORR performance measures of these level estimation models were recalculated in
connection with the signs of +1 and –1 of the classification models. That is, when the
level-estimation models generate a positive predicted value of excess stock return, it will
be converted to +1, or vice versa. The reason for this recalculation is that the PNN model
is designed to give the exact signs of +1 and –1. Therefore, the prediction of the other
forecasting models is required to adjust for unbiased performance comparisons.

According to Table 3, the empirical results show that neither the classification nor the
level-estimation neural network models can accurately predict the signs of excess stock
return because of the relatively low correlation relationship, although each of these
models, except the Original Level NN model, is unquestionably better than the model
using linear regression. This is due to the fact that the CORR of these models indicates
higher positive relationship between the actual and predicted signs of excess stock
return. It is also observed that the CORR of the classification models is constantly better
than that of the level estimation models. In particular, the Portfolio Class NN has the
highest CORR (0.3150) that can be obtained from the experiment. This reveals that the
neural networks, especially the classification models, perform more accurately in cor-
rectly predicting the portion of future excess stock returns.

Regarding the second performance measure, the results again confirm that the linear
regression model is the least accurate performer because it generates the highest RMSE
(1.4467) compared to that of the neural network models. In contrast, the Portfolio Class
NN model produces the lowest RMSE (1.0997). Nonetheless, the remaining two classi-
fication models, the Original Class NN and PNN models, signal slightly higher RMSE



58   Enke

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

results than those of the level-estimation neural network models. For the third perfor-
mance measure, the results show that the percentage of the correct signs (SIGN)
generated by the neural network models is far more accurate and consistently predictive
than that of the linear regression forecast. This is because the correct signs produced
by all of the neural network models are always greater than 0.6047. For statistical
evaluation, the null hypothesis of no predictive effectiveness was calculated by
conducting a one-sided test of H

o
: p = 0.50 against H

a
: p > 0.50. The SIGN marked with

an asterisk (*) in Table 3 indicates the significant differences from the benchmark of 0.5
at a 95% level of confidence. More importantly, the Portfolio Class NN model once again
signals the highest SIGN (0.6977) obtainable from the study, whereas the linear regres-
sion forecast has obtained only 0.4767 of the correct signs. This result verifies that the
correct signs generated by each neural network model are better than random. In
summary, the overall out-of-sample forecasts using the GRNN and Portfolio Class NN
models are more accurate than those using the Original Level NN and Portfolio Level NN,
Original Class NN, PNN, and Regression models with respect to their approaches.
Particularly, the Portfolio Class NN model is proven to be the best performer in all of the
performance measures used in this study. These findings strongly support the nonlinearity
relationship between the past financial and economic variables and the future stock
returns in the financial markets.

Discussion and Conclusion

An attempt has been made in this study to investigate the predictive power of financial
and economic variables by adopting the variable-relevance-analysis technique in ma-
chine learning for data mining. This approach seems particularly attractive in selecting
the variables when the usefulness of the data is unknown, especially when nonlinearity
exists in the financial market as found in this study. Since it is known that the determinant
between the variables and their interrelationships over stock returns could change over
time, different relevance input variables may be obtained by conducting this data-mining
technique under different time periods. In particular, we examined the effectiveness of
the neural network models used for level estimation and classification, and noted the
differences.

The feed-forward neural network training is usually not very stable since the training
process may depend on the choice of a random start. Training is also computationally
expensive in terms of the training times used to figure out the appropriate network
structure. The degree of success, therefore, may fluctuate from one training pass to
another. The empirical findings in this study show that our proposed development of the
portfolio network models using the n-fold cross-validation and early stopping tech-
niques does not sacrifice any of the first-period data used for training and validating the
networks. This is especially useful when the data size is limited. In particular, we find that
the method for improving the generalization ability of the feed-forward neural networks,
a combination of n-fold cross-validation and early stopping techniques, clearly help
improve the out-of-sample forecasts. In addition to the early stopping advantage,



Neural Network-Based Stock Market Return Forecasting Using Data Mining   59

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

improvement may be due to the fact that five-time network modeling allows the networks
to extract more useful information from the data. Thus, the prediction based on the
weighted excess return or the majority of excess return sign could effectively be used to
reduce the prediction error. As a result, the portfolio network models for both classifi-
cation and level estimation consistently outperform the linear regression, the generalized
regression neural network, the probabilistic neural network, and the buy-and-hold
account.

In conclusion, both researchers and practitioners have studied stock market prediction
for many years. Many studies conclude that stock returns can be predicted by some
financial and economic variables. To this end, our finding suggests that financial
forecasting is always and will remain difficult since such data are greatly influenced by
economical, political, international, and even natural events. Obviously, this study
covers only fundamental available information, while the technical analysis approach
remains intact. It is far from perfect as the technical analysis has been proved to provide
invaluable information during stock-price and stock-return forecasting, and to some
extent has been known to offer a relative mixture of human, political, and economical
events. In fact, there are many studies done by both academics and practitioners in this
area. If both technical and fundamental approaches are thoroughly examined and
included during the variable relevance analysis modeling, it would no doubt be a major
improvement in predicting stock returns. This study did not consider profitability and
assumes that any trading strategies of investing in either the stock index portfolio or risk-
free account will occur in the absence of trading costs. Future research should consider
profitability and trading simulation under the scenarios of stock dividends, transaction
costs, and individual tax brackets to replicate the realistic investment practices.

Acknowledgments

The author would like to acknowledge the contributions of Suraphan Thawornwong. Dr.
Thawornwong was instrumental with model development, testing, and the preparation
of this chapter.

References

Abhyankar A., Copeland, L. S., & Wong, W. (1997). Uncovering nonlinear structure in
real-time stock-market indexes: The S&P 500, the DAX, the Nikkei 225, and the
FTSE-100. Journal of Business & Economic Statistics, 15, 1-14.

Aggarwal, R., & Demaskey, A. (1997). Using derivatives in major currencies for cross-
hedging currency risks in Asian emerging markets. Journal of Future Markets, 17,
781-796.



60   Enke

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Balvers, R. J., Cosimano, T. F., & McDonald, B. (1990). Predicting stock returns in an
efficient market. Journal of Finance, 55, 1109-1128.

Breen, W., Glosten, L. R., & Jagannathan, R. (1990). Predictable variations in stock index
returns. Journal of Finance, 44, 1177-1189.

Burrell, P. R., & Folarin, B. O. (1997). The impact of neural networks in finance. Neural
Computing & Applications, 6, 193-200.

Campbell, J. (1987). Stock returns and the term structure. Journal of Financial Econom-
ics, 18, 373-399.

Chenoweth, T., & Obradovic, Z. (1996). A multi-component nonlinear prediction system
for the S&P 500 Index. Neurocomputing, 10, 275-290.

Demuth, H., & Beale, M. (1998). Neural Network Toolbox: For use with MATLAB (5th ed.).
Natick, MA: The Math Works, Inc.

Desai, V. S., & Bharati, R. (1998). The efficiency of neural networks in predicting returns
on stock and bond indices. Decision Sciences, 29, 405-425.

Elton, E. J., & Gruber, M. J. (1991). Modern Portfolio Theory and Investment Analysis
(4th ed.). New York: John Wiley & Sons.

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work.
Journal of Finance, 25, 383-417.

Fama, E. F., & French, K. R. (1988). Dividend yields and expected stock returns. Journal
of Financial Economics, 22, 3-25.

Fama, E. F., & French, K. R. (1989). Business conditions and expected returns on stocks
and bonds. Journal of Financial Economics, 25, 23-49.

Fama, E. F., & Schwert, W. G. (1977). Asset returns and inflation. Journal of Financial
Economics, 5, 115-146.

Ferson, W. (1989). Changes in expected security returns, risk, and the level of interest
rates. Journal of Finance, 44, 1191-1217.

Gencay, R. (1998). Optimization of technical trading strategies and the profitability in
securities markets. Economics Letters, 59, 249-254.

Han, J., & Micheline, K. (2000). Data mining: Concepts and techniques. San Francisco:
Morgan Kaufmann.

Hill, T., O’Connor, M., & Remus, W. (1996). Neural network models for time series
forecast. Management Science, 42, 1082-1092.

Jensen, M. (1978). Some anomalous evidence regarding market efficiency. Journal of
Financial Economics, 6, 95-101.

Keim, D., & Stambaugh, R. (1986). Predicting returns in the stock and bond markets.
Journal of Financial Economics, 17, 357-390.

Leitch, G., & Tanner, J. E. (1991). Economic forecast evaluation: Profits versus the
conventional error measures. American Economic Review, 81, 580-590.

Leung, M. T., Daouk, H., & Chen, A. S. (2000). Forecasting stock indices: A comparison
of classification and level estimation models. International Journal of Forecast-
ing, 16, 173-190.



Neural Network-Based Stock Market Return Forecasting Using Data Mining   61

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks:
Evidence from a simple specification test. Review of Financial Studies, 1, 41-66.

Maberly, E. D. (1986). The informational content of the interday price change with respect
to stock index futures. Journal of Futures Markets, 6, 385-295.

Malliaris, M., & Salchenberger, L. (1993). A neural network model for estimating option
prices. Journal of Applied Intelligence, 3, 193-206.

Mills, T. C. (1990). Non-linear time series models in economics. Journal of Economic
Surveys, 5, 215-241.

Motiwalla, L., & Wahab, M. (2000). Predictable variation and profitable trading of US
equities: A trading simulation using neural networks. Computer & Operations
Research, 27, 1111-1129.

Nelson, M., Hill, T., Remus, W., & O’Connor, M. (1999). Time series forecasting using
neural networks: Should the data be deseasonalized first? Journal of Forecasting,
18, 359-367.

Pantazopoulos, K. N., Tsoukalas, L. H., Bourbakis, N. G., Brun, M. J., & Houstis, E. N.
(1998). Financial prediction and trading strategies using neurofuzzy approaches.
IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 28,
520-530.

Parzen, E. (1962). On estimation of a probability density function and mode. Annals of
Mathematical Statistics, 33, 1065-1076.

Pesaran, M. H., & Timmermann, A. (1992). A simple nonparametric test of predictive
performance. Journal of Business & Economic Statistics, 10, 461-465.

Pesaran, M. H., & Timmermann, A. (1995). Predictability of stock returns: Robustness and
economic significance. Journal of Finance, 50, 1201-1227.

Peterson, G. E., St Clair, D. C., Aylward, S. R., & Bond, W. E. (1995). Using Taguchi’s
method of experimental design to control errors in layered perceptrons. IEEE
Transactions on Neural Networks, 6, 949-961.

Poddig, T., & Rehkugler, H. (1996). A world of integrated financial markets using artificial
neural networks. Neurocomputing, 10, 251-273.

Priestley, M. B. (1988). Non-linear and non-stationary time series analysis. London:
Academic Press.

Qi, M., & Maddala, G. S. (1999). Economic factors and the stock market: A new
perspective. Journal of Forecasting, 18, 151-166.

Quinlan, J. (1993). C4.5: Programs for machine learning. San Francisco: Morgan
Kaufmann.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In Proceedings of the IEEE International Confer-
ence on Neural Networks (pp. 586-591). San Francisco.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explora-
tions in the microstructure of cognition. Cambridge, MA: The MIT Press.

Schwert, W. (1990). Stock returns and real activity: A century of evidence. Journal of
Finance, 45, 1237-1257.



62   Enke

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3, 109-118.

Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural
Networks, 2, 568-576.

Swales, G. S., & Yoon, Y. (1992). Applying artificial neural networks to investment
analysis. Financial Analysts Journal, 48, 78-80.

Thawornwong, S., Enke, D., & Dagli, C. (2001, November). Neural network models for
classifying the direction of excess stock return. Paper presented at the 32nd
Annual Meeting of the Decision Sciences Institute, San Francisco, CA.

Vellido, A., Lisboa, P. J. G., & Vaughan, J. (1999). Neural networks in business: A survey
of application (1992-1998). Expert Systems with Applications, 17, 51-70.

Wasserman, P. D. (1993). Advanced methods in neural computing. New York: Van
Nostrand Reinhold.

Wood, D., & Dasgupta, B. (1996). Classifying trend movements in the MSCI U.S.A.
capital market index — A comparison of regression, ARIMA, and neural network
methods. Computers & Operations Research, 23, 611-622.

Wu, Y., & Zhang, H. (1997). Forward premiums as unbiased predictors of future currency
depreciation: A non-parametric analysis. Journal of International Money and
Finance, 16, 609-623.

Appendix

SP Nominal Standard & Poor’s 500 index at the close of the last trading day of each
month. Source: Commodity Systems, Inc. (CSI).

DIV Nominal dividends per share for the S&P 500 portfolio paid during the month.
Source: Annual dividend record / Standard & Poor’s Corporation.

T1 Annualized average of bid and ask yields on 1-month T-bill rate on the last trading
day of the month. It refers to the shortest maturity T-bills not less than 1 month in
maturity. Source: CRSP tapes. The Fama risk-free-rate files.

T1H Monthly holding-period return on 1-month T-bill rate on the last trading day of the
month, calculated as T1/12.

R Nominal stock returns on the S&P 500 portfolio, calculated as R
t
 = (SP

t
 – SP

t-1
)/SP

t-

1
.

ER Excess stock returns on the S&P 500 portfolio, calculated as ER
t
 = R

t
 – T1H

t-1
.

DY Dividend yield on the S&P 500 portfolio, calculated as DY
t
 = DIV

t
/SP

t
.

T3 3-month T-bill rate, secondary market, averages of business days, discount basis.
Source: H.15 Release — Federal Reserve Board of Governors.

T6 6-month T-bill rate, secondary market, averages of business days, discount basis.
Source: H.15 Release — Federal Reserve Board of Governors.



Neural Network-Based Stock Market Return Forecasting Using Data Mining   63

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

T12 1-year T-bill rate, secondary market, averages of business days, discount basis.
Source: H.15 Release — Federal Reserve Board of Governors.

T60 5-year T-bill constant maturity rate, secondary market, averages of business days.
Source: H.15 Release — Federal Reserve Board of Governors.

T120 10-year T-bill constant-maturity rate, secondary market, averages of business
days. Source: H.15 Release — Federal Reserve Board of Governors.

CD1 1-month certificate-of-deposit rate, averages of business days. Source: H.15
Release — Federal Reserve Board of Governors.

CD3 3-month certificate-of-deposit rate, averages of business days. Source: H.15
Release — Federal Reserve Board of Governors.

CD6 6-month certificate-of-deposit rate, averages of business days. Source: H.15
Release — Federal Reserve Board of Governors.

AAA Moody’s seasoned Aaa corporate-bond yield, averages of business days. Source:
The Federal Reserve Bank of St. Louis.

BAA Moody’s seasoned Baa corporate-bond yield, averages of business days. Source:
The Federal Reserve Bank of St. Louis.

PP Producer Price Index: Finished Goods. Source: U.S. Department of Labor, Bureau
of Labor Statistics.

IP Industrial Production Index: Market Groups and Industry Groups. Source: G.17
Statistical Release — Federal Reserve Statistical Release.

CP Consumer Price Index: CPI for All Urban Consumers. Source: U.S. Department of
Labor, Bureau of Labor Statistics.

M1 M1 Money Stock. Source: H.6 Release — Federal Reserve Board of Governors.

TE1 Term spread between T120 and T1, calculated as TE1 = T120 – T1.

TE2 Term spread between T120 and T3, calculated as TE2 = T120 – T3.

TE3 Term spread between T120 and T6, calculated as TE3 = T120 – T6.

TE4 Term spread between T120 and T12, calculated as TE4 = T120 – T12.

TE5 Term spread between T3 and T1, calculated as TE5 = T3 – T1.

TE6 Term spread between T6 and T1, calculated as TE6 = T6 – T1.

DE1 Default spread between BAA and AAA, calculated as DE1 = BAA – AAA.

DE2 Default spread between BAA and T120, calculated as DE2 = BAA – T120.

DE3 Default spread between BAA and T12, calculated as DE3 = BAA – T12.

DE4 Default spread between BAA and T6, calculated as DE4 = BAA – T6.

DE5 Default spread between BAA and T3, calculated as DE5 = BAA – T3.

DE6 Default spread between BAA and T1, calculated as DE6 = BAA – T1.

DE7 Default spread between CD6 and T6, calculated as DE7 = CD6 – T6.



64   Chen and Abraham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

Hybrid-Learning
Methods for Stock

Index Modeling
Yuehui Chen, Jinan University, China

Ajith Abraham, Chung-Ang University, Republic of Korea

Abstract

The use of intelligent systems for stock market prediction has been widely established.
In this paper, we investigate how the seemingly chaotic behavior of stock markets could
be well represented using several connectionist paradigms and soft computing
techniques. To demonstrate the different techniques, we consider the Nasdaq-100
index of Nasdaq Stock MarketSM and the S&P CNX NIFTY stock index. We analyze 7-
year Nasdaq 100 main-index values and 4-year NIFTY index values. This chapter
investigates the development of novel, reliable, and efficient techniques to model the
seemingly chaotic behavior of stock markets. We consider the flexible neural tree
algorithm, a wavelet neural network, local linear wavelet neural network, and finally
a feed-forward artificial neural network. The particle-swarm-optimization algorithm
optimizes the parameters of the different techniques. This paper briefly explains how
the different learning paradigms could be formulated using various methods and then
investigates whether they can provide the required level of performance — in other



Hybrid-Learning Methods for Stock Index Modeling   65

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

words, whether they are sufficiently good and robust so as to provide a reliable forecast
model for stock market indices. Experiment results reveal that all the models considered
could represent the stock indices behavior very accurately.

Introduction

Prediction of stocks is generally believed to be a very difficult task — it behaves like a
random walk process and time varying. The obvious complexity of the problem paves the
way for the importance of intelligent prediction paradigms (Abraham, Nath, & Mahanti,
2001). During the last decade, stocks and futures traders have come to rely upon various
types of intelligent systems to make trading decisions (Abraham, Philip, & Saratchandran,
2003; Chan & Liu, 2002; Francis, Tay, & Cao, 2002; Leigh, Modani, Purvis, & Roberts,
2002; Leigh, Purvis, & Ragusa, 2002; Oh & Kim, 2002; Quah & Srinivasan, 1999; Wang,
2002). Several intelligent systems have in recent years been developed for modeling
expertise, decision support, and complicated automation tasks (Berkeley, 1997; Bischi &
Valori, 2000; Cios, 2001; Kim & Han, 2000; Koulouriotis, Diakoulakis, & Emiris, 2001;
Lebaron, 2001; Palma-dos-Reis & Zahedi, 1999; Wuthrich et al., 1998). In this chapter, we
analyse the seemingly chaotic behavior of two well-known stock indices namely the
Nasdaq-100 index of NasdaqSM and the S&P CNX NIFTY stock index.

The Nasdaq-100 index reflects Nasdaq’s largest companies across major industry
groups, including computer hardware and software, telecommunications, retail/whole-
sale trade, and biotechnology. The Nasdaq-100 index is a modified capitalization-
weighted index, designed to limit domination of the Index by a few large stocks while
generally retaining the capitalization ranking of companies. Through an investment in
Nasdaq-100 index tracking stock, investors can participate in the collective performance
of many of the Nasdaq stocks that are often in the news or have become household names.
Similarly, S&P CNX NIFTY is a well-diversified 50-stock index accounting for 25 sectors
of the economy. It is used for a variety of purposes such as benchmarking fund portfolios,
index-based derivatives, and index funds. The CNX indices are computed using the
market capitalization weighted method, wherein the level of the index reflects the total
market value of all the stocks in the index relative to a particular base period. The method
also takes into account constituent changes in the index and importantly corporate
actions such as stock splits, rights, and so on, without affecting the index value.

Our research investigates the performance analysis of four different connectionist
paradigms for modeling the Nasdaq-100 and NIFTY stock market indices. We consider
the Flexible Neural Tree (FNT) algorithm (Chen, Yang, and Dong, 2004), a Wavelet Neural
Network (WNN), Local Linear Wavelet Neural Network (LLWNN) (Chen et al., 2006) and
finally a feed-forward Neural Network (ANN) (Chen et al., 2004). The particle-swarm-
optimization algorithm optimizes the parameters of the different techniques (Kennedy &
Eberhart, 1995). We analysed the Nasdaq-100 index value from 11 January 1995 to 11
January 2002 and the NIFTY index from 01 January 1998 to 03 December 2001. For both
indices, we divided the entire data into roughly two equal halves. No special rules were
used to select the training set other than ensuring a reasonable representation of the



66   Chen and Abraham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

parameter space of the problem domain (Abraham et al., 2003). The complexity of the
training and test data sets for both indices is depicted in Figure 1. In the section entitled
“Hybrid-learning Models,” we briefly describe the different learning algorithms. This is
section is followed by the “Experimentation Setup and Results” section. This is, in turn,
followed by the “Conclusions” section.

Particle-Swarm-Optimization (PSO)
Algorithm

The PSO conducts searches using a population of particles that correspond to individu-
als in an Evolutionary Algorithm (EA). Initially, a population of particles is randomly
generated. Each particle represents a potential solution and has a position represented
by a position vector x

i
. A swarm of particles moves through the problem space, with the

moving velocity of each particle represented by a velocity vector v
i
. At each time step,

a function f
i
  — representing a quality measure — is calculated by using x

i
 as input. Each

Figure 1. (a) Training and test data sets for the Nasdaq-100 index and (b) the NIFTY
index



Hybrid-Learning Methods for Stock Index Modeling   67

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

particle keeps track of its own best position, which is associated with the best fitness it
has achieved so far in a vector p

i
. Furthermore, the best position among all the particles

obtained so far in the population is kept track of as p
g
. In addition to this global version,

another version of PSO keeps track of the best position among all the topological
neighbors of a particle. At each time step t, by using the individual best position, p

i
(t),

and the global best position, p
g
(t), a new velocity for particle i is updated by:

))()(())()(()()1( 2211 txtpctxtpctvtv igiiii −+−+=+ φφ (1)

where c
1
 and c

2
 are positive constants and φ

1
  and φ

2
 are uniformly distributed random

numbers in [0,1]. The term c
i 
is limited to the range of ±V

max
 (if the velocity violates this

limit, it is set to its proper limit). Changing velocity this way enables the particle i to search
around both its individual best position, p

i
, and global best position, p

g
. Based on the

updated velocities, each particle changes its position according to:

)1()()1( ++=+ tvtxtx iii (2)

The PSO algorithm is employed to optimize the parameter vectors of FNT, ANN, and
WNN.

Hybrid-Learning Models

Flexible Neural Tree Model

In this research, a tree-structured encoding method with specific instruction set is
selected for representing a FNT model (Chen et al., 2004, 2005).

Flexible Neuron Instructor and FNT Model

The function set F and terminal instruction set T used for generating a FNT model are
described as follows:

},,,{},,,{ 2132 nN xxxTFS ���� +++== (3)

where +
i
(i = 2, 3, ..., N) denote nonleaf nodes’ instructions and taking i arguments. x

1
, x

2
,

..., x
n
 are leaf nodes’ instructions and taking no other arguments. The output of a nonleaf



68   Chen and Abraham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

node is calculated as a flexible neuron model (see Figure 2). From this point of view, the
instruction +

i 
is also called a flexible neuron operator with i inputs.

In the construction process of a neural tree, if a nonterminal instruction, that is, +
i
(i =

2, 3, ..., N) is selected, i real values are randomly generated and used for representing the
connection strength between the node +

i
 and its children. In addition, two adjustable

parameters a
i
 and b

i
 are randomly created as flexible activation function parameters.

For developing the FNT model, the following flexible activation function is used:

)
)(

exp();,(
2

2

i

i
ii

b

ax
xbaf

−
−=  (4)

The output of a flexible neuron +
n
 can be calculated as follows. The total excitation of +

n

is:

∑
=

=
n

j
jjn xwnet

1

(5)

where x
j
(j = 1, 2, ..., n) are the inputs to node +

n
. The output of the node +

n
 is then calculated

by:

)
)(

exp(),,(
2

2

n

nn
nnnn

b

anet
netbafout

−−== (6)

 

Figure 2. A flexible neuron operator (left), and a typical representation of the FNT with
function instruction set F = {+

2
, +

3
, ..., +

6
}, and terminal instruction set T = {x

1
, x

2
, x

3
}



Hybrid-Learning Methods for Stock Index Modeling   69

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A typical flexible neuron operator and a neural tree model are illustrated in Figure 2. The
overall output of the flexible neural tree can be recursively computed from left to right
by the depth-first method.

Optimization of the FNT Model

The optimization of FNT includes both tree-structure and parameter optimization.
Finding an optimal or near-optimal neural tree is formulated as a product of evolution.
A number of neural tree variation operators are developed as follows:

• Mutation

Four different mutation operators were employed to generate offspring from the parents.
These mutation operators are as follows:

(1) Changing one terminal node: Randomly select one terminal node in the neural tree
and replace it with another terminal node.

(2) Changing all the terminal nodes: Select each and every terminal node in the neural
tree and replace it with another terminal node.

(3) Growing: Select a random leaf in the hidden layer of the neural tree and replace it
with a newly generated subtree.

(4) Pruning: Randomly select a function node in the neural tree and replace it with a
terminal node.

The neural tree operators were applied to each of the parents to generate an offspring
using the following steps:

(a) A Poission random number N, with mean λ , was generated.

(b) N random mutation operators were uniformly selected with replacement from the
previous four-mutation operator set.

(c) These N mutation operators were applied in sequence one after the other to the
parents to get the offspring.

• Crossover

Select two neural trees at random and select one nonterminal node in the hidden layer
for each neural tree randomly, then swap the selected subtree. The crossover operator
is implemented with a predefined probability of 0.3 in this study.



70   Chen and Abraham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Selection

Evolutionary-programming (EP) tournament selection was applied to select the parents
for the next generation. Pairwise comparison is conducted for the union of µ parents and
µ offspring. For each individual, q opponents are chosen uniformly at random from all the
parents and offspring. For each comparison, if the individual’s fitness is no smaller than
the opponent’s, it is selected. Then select µ  individuals from parents and offspring that
have most wins to form the next generation.

• Parameter Optimization by PSO

Parameter optimization is achieved by the PSO algorithm as described in the “The
Particle-swarm-optimization (PSO) Algorithm” section. In this stage, the FNT architec-
ture is fixed, as the best tree developed by the end of run of the structured search. The
parameters (weights and flexible activation-function parameters) encoded in the best tree
formulate a particle. The PSO algorithm works as follows:

(a) An initial population is randomly generated. The learning parameters c
1
 and c

2
 in

PSO should be assigned in advance.

(b) The objective function value is calculated for each particle.

(c) Modification of search point — the current search point of each particle is changed
using Equations 1 and 2.

(d) If the maximum number of generations is reached or no better parameter vector is
found for a significantly long time (~100 steps), then stop, otherwise go to step (b).

The Artificial Neural Network (ANN) Model

A neural network classifier trained using the PSO algorithm with flexible bipolar sigmoid
activation functions at hidden layer was constructed for the stock data. Before describ-
ing the details of the algorithm for training the ANN classifier, the issue of coding needs
to be addressed. Coding concerns the way the weights and the flexible activation-
function parameters of the ANN are represented by individuals or particles. A floating-
point coding scheme is adopted here. For neural network (NN) coding, suppose there are
M nodes in the hidden layer and one node in the output layer and n input variables, then
the number of total weights is n × M + M × 1, the number of thresholds is M + 1 and the
number of flexible activation-function parameters is M + 1, therefore the total number of
free parameters in the ANN to be coded is n × M + M + 2(M + 1). These parameters are
coded into an individual or particle orderly. The simple proposed training algorithm for
a neural network is the same as the PSO algorithm.



Hybrid-Learning Methods for Stock Index Modeling   71

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The WNN-Prediction Model

In terms of wavelet transformation theory, wavelets in the following form:

},,:)({ 2

1
ZiRba

a

bx
a ii

i

i
ii ∈∈

−
== − ϕψψ (7)

),,,(),,,,(),,,,( 212121 iniiiiniiin bbbbaaaaxxxx ��� ===

are a family of functions generated from one single function ϕ(x) by the operation of
dilation and translation. ϕ(x), which is localized in both the time space and the frequency
space, is called a mother wavelet and the parameters a

i
 and b

i
 are named the scale and

translation parameters, respectively.

In the standard form of a wavelet neural network, output is given by:

∑∑
=

−

=

−==
M

i i

i
ii

M

i
ii a

bx
axxf

1
2

1

1

)()()( ϕωψω (8)

where ψ
i
 is the wavelet activation function of i-th unit of the hidden layer and ω

i
 is the

weight connecting the i-th unit of the hidden layer to the output-layer unit. Note that for
the n-dimensional input space, the multivariate wavelet-basis function can be calculated
by the tensor product of n single wavelet-basis functions as follows:

∏
=

=
n

i
ixx

1

)()( ϕϕ (9)

Before describing details of the PSO algorithm for training WNNs, the issue of coding
needs to be addressed. Coding concerns the way the weights, dilation, and translation
parameters of WNNs are represented by individuals or particles. A floating-point coding
scheme is adopted here. For WNN coding, suppose there are M nodes in the hidden layer
and n input variables, then the total number of parameters to be coded is (2n + 1)M. The
coding of a WNN into an individual or particle is as follows:

||||| 1122221211111111 nnnnnnnnnnn babababababa ωωω ����



72   Chen and Abraham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The simple proposed training algorithm for a WNN is as follows:

Step 1: An initial population is randomly generated. The learning parameters, such as c
1
,

c
2
 in PSO should be assigned in advance.

Step 2: Parameter optimization with PSO algorithm.

Step 3: if the maximum number of generations is reached or no better parameter vector
is found for a significantly long time (~100 steps), then go to Step 4; otherwise go
to Step 2.

Step 4: Parameter optimization with gradient-descent algorithm.

Step 5: If a satisfactory solution is found then stop; otherwise go to Step 4.

The Local Linear WNN Prediction Model

An intrinsic feature of basis-function networks is the localized activation of the hidden-
layer units, so that the connection weights associated with the units can be viewed as
locally accurate piecewise constant models whose validity for any given input is
indicated by the activation functions. Compared to the multilayer perceptron neural
network, this local capacity provides some advantages, such as learning efficiency and
structure transparency. However, the problem of basis-function networks requires some
special attention. Due to the crudeness of the local approximation, a large number of
basis-function units have to be employed to approximate a given system. A shortcoming
of the wavelet neural network is that for higher dimensional problems many hidden-layer
units are needed.

In order to take advantage of the local capacity of the wavelet-basis functions while not
having too many hidden units, here we propose an alternative type of WNN. The
architecture of the proposed local linear WNN (LLWNN) is shown in Figure 3. Its output
in the output layer is given by:

∑

∑

=

−

=

−+++

=+++=

M

i i

i
ininii

M

i
ininii

a

bx
axx

xxxy

1

2

1

110

1
110

)()(

)()(

ϕωωω

ψωωω

�

�

 (10)

where x = (x
1
, x

2
, ..., x

n
). Instead of the straightforward weight ω

i
 (piecewise constant

model), a linear model:

niniii xxv ωωω +∧++= 110 (11)



Hybrid-Learning Methods for Stock Index Modeling   73

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is introduced. The activities of the linear model v
i
 (i = 1, 2, ..., M) are determined by the

associated locally active wavelet function ψ
i
(x)(i = 1, 2, ..., M), thus v

i
 is only locally

significant. The motivations for introducing local linear models into a WNN are as
follows: (1) Local-linear models have been studied in some neurofuzzy systems (Abraham,
2001) and offer good performances; and (2) Local-linear models should provide a more
parsimonious interpolation in high-dimension spaces when modeling samples are
sparse. The scale and translation parameters and local-linear-model parameters are
randomly initialized at the beginning and are optimized by the PSO algorithm.

Experiment Setup and Results

We considered 7-year stock data for the Nasdaq-100 Index and 4-year for the NIFTY
index. Our target was to develop efficient forecast models that could predict the index
value of the following trading day based on the opening, closing, and maximum values
on any given day. The training and test patterns for both indices (scaled values) are
illustrated in Figure 1. We used the same training- and test-data sets to evaluate the
different connectionist models. More details are reported in the following sections.
Experiments were carried out on a Pentium IV, 2.8 GHz Machine with 512 MB RAM and
the programs implemented in C/C++. Test data was presented to the trained connectionist
models, and the output from the network compared with the actual index values in the
time series.

 

Figure 3. Architecture of a local linear wavelet neural network



74   Chen and Abraham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The assessment of the prediction performance of the different connectionist paradigms
were done by quantifying the prediction obtained on an independent data set. The root-
mean-squared error (RMSE), maximum-absolute-percentage error (MAP), mean-abso-
lute-percentage error (MAPE), and correlation coefficient (CC) were used to study the
performance of the trained forecasting model for the test data.

MAP is defined as follows:

ac tu a l, p red icted ,

p red icted ,

i i

i

P P
M A P m ax 1 0 0

P (12)

where P
actual, i

 is the actual index value on day i and P
predicted, i

 is the forecast value of the
index on that day. Similarly MAPE is given as:

actual, predicted,

1 actual,

1
100

N
i i

i i

P P
MAPE

N P (13)

where N represents the total number of days.

• FNT Algorithm

We used the instruction set S = {+
2
, +

3
, ..., +

10
, x

0
, x

1
, x

2
} modeling the Nasdaq-100 index

and instruction set S = {+
2
, +

3
, ..., +

10
, x

0
, x

1
, x

2
, x

3
, x

4
} modeling the NIFTY index. We used

the flexible activation function of Equation 4 for the hidden neurons. Training was
terminated after 80 epochs on each dataset.

• NN-PSO Training

A feed-forward neural network with three input nodes and a single hidden layer
consisting of 10 neurons was used for modeling the Nasdaq-100 index. A feed-forward
neural network with five input nodes and a single hidden layer consisting of 10 neurons
was used for modeling the NIFTY index. Training was terminated after 3000 epochs on
each dataset.

• WNN-PSO

A WNN with three input nodes and a single hidden layer consisting of 10 neurons was
used for modeling the Nasdaq-100 index. A WNN with five input nodes and a single



Hybrid-Learning Methods for Stock Index Modeling   75

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hidden layer consisting of 10 neurons was used for modeling the NIFTY index. Training
was terminated after 4000 epochs on each dataset.

• LLWNN-PSO

A LLWNN with three input nodes and a hidden layer consisting of five neurons for
modeling Nasdaq-100 index. A LLWNN with five input nodes and a single hidden layer
consisting of five neurons for modeling NIFTY index. Training was terminated after 4500
epochs on each dataset.

Figure 4. Test results showing the performance of the different methods for modeling
the Nasdaq-100 index

Figure 5. Test results showing the performance of the different methods for modeling
the NIFTY index



76   Chen and Abraham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Performance and Results Achieved

Table 1 summarizes the training and test results achieved for the two stock indices using
the four different approaches. The statistical analysis of the four learning methods is
depicted in Table 2. Figures 4 and 5 depict the test results for the 1-day-ahead prediction
of Nasdaq-100 index and NIFTY index respectively.

Conclusion

In this chapter, we have demonstrated how the chaotic behavior of stock indices could
be well-represented by different hybrid learning paradigms. Empirical results on the two
data sets using four different learning models clearly reveal the efficiency of the
proposed techniques. In terms of RMSE values, for the Nasdaq-100 index, WNN
performed marginally better than the other models and for the NIFTY index, the NN
approach gave the lowest generalization RMSE values. For both data sets, LLWNN had
the lowest training error. For the Nasdaq-100 index (test data), WNN had the highest CC,
but the lowest values of MAPE and MAP were achieved by using the FNT model. The
highest CC together with the best MAPE/MAP values for the NIFTY index were achieved
using the NN trained using the PSO model. A low MAP value is a crucial indicator for
evaluating the stability of a market under unforeseen fluctuations. In the present example,
the predictability ensures that the decrease in trade is only a temporary cyclic variation
that is perfectly under control.

Our research was to predict the share price for the following trading day based on the
opening, closing, and maximum values on any given day. Our experimental results

FNT NN-PSO WNN-PSO LLWNN-PSO 
 

Training results  
Nasdaq-100 0.02598 0.02573 0.02586 0.02551 
NIFTY 0.01847 0.01729 0.01829 0.01691 
 Testing results  
Nasdaq-100 0.01882 0.01864 0.01789 0.01968 
NIFTY 0.01428 0.01326 0.01426 0.01564 

Table 1. Empirical comparison of RMSE results for four learning methods

Table 2. Statistical analysis of four learning methods (test data)

FNT NN-PSO WNN-PSO LLWNN-PSO  
Nasdaq-100 

CC 0.997579 0.997704 0.997721 0.997623 
MAP 98.107 141.363 152.754 230.514 
MAPE 6.205 6.528 6.570 6.952 
 NIFTY 
CC 0.996298 0.997079 0.996399 0.996291 
MAP 39.987 27.257 39.671 30.814 
MAPE 3.328 3.092 3.408 4.146 



Hybrid-Learning Methods for Stock Index Modeling   77

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

indicate that the most prominent parameters that affect share prices are their immediate
opening and closing values. The fluctuations in the share market are chaotic in the sense
that they heavily depend on the values of their immediate forerunning fluctuations.
Long-term trends exist, but are slow variations and this information is useful for long-
term investment strategies. Our study focused on short-term floor trades in which the risk
is higher. However, the results of our study show that even with seemingly random
fluctuations, there is an underlying deterministic feature that is directly enciphered in the
opening, closing, and maximum values of the index of any day making predictability
possible.

Empirical results also show that there are various advantages and disadvantages for the
different techniques considered. There is little reason to expect that one can find a
uniformly best learning algorithm for optimization of the performance for different stock
indices. This is in accordance with the no-free-lunch theorem, which explains that for any
algorithm, any elevated performance over one class of problems is exactly paid for in
performance over another class (Macready & Wolpert, 1997). Our future research will be
oriented towards determining the optimal way to combine the different learning para-
digms using an ensemble approach (Maqsood, Kahn, & Abraham, 2004) so as to
complement the advantages and disadvantages of the different methods considered.

Acknowledgment

This research was partially supported by the Natural Science Foundation of China under
grant number 60573065, and The Provincial Science and Technology Development
Program of Shandong under grant number SDSP2004-0720-03.

References

Abraham, A. (2001). NeuroFuzzy systems: State-of-the-art modeling techniques. In J.
Mira & A. Prieto (Eds.), Proceedings of the 7th International Work Conference on
Artificial and Neural Networks, Connectionist Models of Neurons, Learning
Processes, and Artificial Intelligence, Granada, Spain (pp. 269-276). Germany:
Springer-Verlag.

Abraham, A., Nath, B., & Mahanti, P. K. (2001). Hybrid intelligent systems for stock
market analysis. In V. N. Alexandrov, J. Dongarra, B. A. Julianno, R. S. Renner, &
C J. K. Tan (Eds.), Computational science (pp. 337-345). Germany: Springer-Verlag.

Abraham, A., Philip, N. S., & Saratchandran, P. (2003). Modeling chaotic behavior of
stock indices using intelligent paradigms. International Journal of Neural, Par-
allel & Scientific Computations, 11(1-2), 143-160. 



78   Chen and Abraham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Berkeley, A. R. (1997). Nasdaq’s technology floor: Its president takes stock. IEEE
Spectrum, 34(2), 66-67.

Bischi, G. I., & Valori, V. (2000). Nonlinear effects in a discrete-time dynamic model of a
stock market. Chaos, Solitons & Fractals, 11(13), 2103-2121.

Chan, W. S., & Liu, W. N. (2002). Diagnosing shocks in stock markets of Southeast Asia,
Australia, and New Zealand. Mathematics and Computers in Simulation, 59(1-3),
223-232.

Chen, Y., Yang, B., & Dong, J. (2004). Nonlinear system modeling via optimal design of
neural trees. International Journal of Neural Systems, 14(2), 125-137.

Chen, Y., Yang, B., & Dong, J. (2006). Time-series prediction using a local linear wavelet
neural network. International Journal of Neural Systems, 69(4-6), 449-465.

Chen, Y., Yang, B., Dong, J., & Abraham, A. (2005). Time-series forecasting using flexible
neural tree model. Information Science, 174(3-4), 219-235.

Cios, K. J. (2001). Data mining in finance: Advances in relational and hybrid methods.
Neurocomputing, 36(1-4), 245-246.

Francis, E. H., Tay, H., & Cao, L. J. (2002). Modified support vector machines in financial
time series forecasting. Neurocomputing, 48(1-4), 847-861.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings IEEE
International Conference on Neural Networks (pp. 1942-1948), Perth, Australia.
Piscataway, NJ: IEEE Service Center.

Kim, K. J., & Han, I. (2000). Genetic algorithms approach to feature discretization in
artificial neural networks for the prediction of stock price index. Expert Systems
with Applications, 19(2), 125-132.

Koulouriotis, D. E., Diakoulakis, I. E., & Emiris, D. M. (2001). A fuzzy cognitive map-based
stock market model: Synthesis, analysis and experimental results. In Proceedings
of the 10th IEEE International Conference on Fuzzy Systems, Vol. 1 (pp. 465-468).

Lebaron, B. (2001). Empirical regularities from interacting long- and short-memory
investors in an agent-based stock market. IEEE Transactions on Evolutionary
Computation, 5(5), 442-455.

Leigh, W., Modani, N., Purvis, R., & Roberts, T. (2002). Stock market trading rule
discovery using technical charting heuristics. Expert Systems with Applications,
23(2), 155-159.

Leigh, W., Purvis, R., & Ragusa, J. M. (2002). Forecasting the NYSE composite index with
technical analysis, pattern recognizer, neural network, and genetic algorithm: A
case study in romantic decision support. Decision Support Systems, 32(4), 361-
377.

Macready, W. G., & Wolpert, D. H. (1997). The no free lunch theorems. IEEE Transaction
on Evolutionary Computing, 1(1), 67-82.

Maqsood, I., Khan, M. R., & Abraham, A. (2004). Neural network ensemble method for
weather forecasting. Neural Computing & Applications, 13(2), 112-122.



Hybrid-Learning Methods for Stock Index Modeling   79

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Nasdaq Stock MarketSM. (n.d.). Retrieved February 8, 2006, from http://www.nasdaq.com

National Stock Exchange of India Limited. (n.d.). Retrieved February 8, 2006, from http:/
/www.nse-india.com

Oh, K. J., & Kim, K. J. (2002). Analyzing stock market tick data using piecewise nonlinear
model. Expert Systems with Applications, 22(3), 249-255.

Palma-dos-Reis, A., & Zahedi, F. (1999). Designing personalized intelligent financial
decision support systems. Decision Support Systems, 26(1), 31-47.

Quah, T. S., & Srinivasan, B. (1999). Improving returns on stock investment through
neural network selection. Expert Systems with Applications, 17(4), 295-301.

Wang, Y. F. (2002). Mining stock price using fuzzy rough set system. Expert Systems with
Applications, 24(1), 13-23.

Wuthrich, B., Cho, V., Leung, S., Permunetilleke, D., Sankaran, K., & Zhang, J. (1998).
Daily stock market forecast from textual web data. Proceedings IEEE International
Conference on Systems, Man, and Cybernetics, 3, 2720-2725.



80   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

Application of
Higher-Order Neural
Networks to Financial
Time-Series Prediction

John Fulcher, University of Wollongong, Australia

Ming Zhang, Christopher Newport University, USA

Shuxiang Xu, University of Tasmania, Australia

Abstract

Financial time-series data is characterized by nonlinearities, discontinuities, and
high-frequency multipolynomial components. Not surprisingly, conventional artificial
neural networks (ANNs) have difficulty in modeling such complex data. A more
appropriate approach is to apply higher-order ANNs, which are capable of extracting
higher-order polynomial coefficients in the data. Moreover, since there is a one-to-one
correspondence between network weights and polynomial coefficients, higher-order
neural networks (HONNs) — unlike ANNs generally — can be considered open-, rather
than “closed-box” solutions, and thus hold more appeal to the financial community.
After developing polynomial and trigonometric HONNs (P[T]HONNs), we introduce
the concept of HONN groups. The latter incorporate piecewise continuous-activation



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   81

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

functions and thresholds, and as a result are capable of modeling discontinuous (or
piecewise-continuous) data, and what is more to any degree of accuracy. Several other
PHONN variants are also described. The performance of P(T)HONN and HONN groups
on representative financial time series is described (i.e., credit ratings and exchange
rates). In short, HONNs offer roughly twice the performance of MLP/BP on financial
time-series prediction, and HONN groups around 10% further improvement.

Financial Time Series Prediction

It is clear that there are pattern(s) underlying some time series. For example, the 11-year
cycle observed in sunspot data (University of California, Irvine, 2005). Whether this is
the case with financial time-series data is debatable. For instance, do underlying “forces”
actually drive financial markets, and if so can their existence be deduced by observations
of stock price and volume movements (Back, 2004)?

Alternatively, do so-called “market inefficiencies” exist, whereby it is possible to devise
strategies to consistently “beat the market” in terms of return-on-investment (Edelman
& Davy, 2004)? If this is in fact the case, then it runs counter to the so-called Efficient
Markets Hypothesis, namely that the present pricing of a financial asset is a reflection
of all the available information about that asset, whether this be private (insider), public,
or previous pricing (if based solely on the latter, then this is referred to as the “weak form”
of the EMH).

Market traders, by contrast, tend to base their decisions not only on the previous
considerations, but also on many other factors, including hunches (intuition). Quanti-
fying these often complex decision-making processes (expertise) is a difficult, if not
impossible, task akin to the fundamental problem inherent in designing any Expert
System. An overriding consideration is that any model (system) tends to break down in
the face of singularities, such as stock market crashes (e.g., “Black Tuesday”, October
1987), war, political upheaval, business scandals, rumor, panic buying, and so on.

“Steady-state” markets, on the other hand, tend to exhibit some predictability, albeit
minor — for example, so-called “calendar effects”: lower returns on Mondays, higher
returns on the last day of the month and just prior to public holidays, higher returns in
January, and so on (Kingdon, 1997).

Now, while it is possible that financial time-series data on occasion can be described by
a linear function, most often it is characterized by nonlinearities, discontinuities, and
high-frequency multipolynomial components.

If there is an underlying market model, then it has remained largely impervious to
statistical (and other forms of) modeling. We can take a lead here from adaptive control
systems and/or machine learning; in other words, if a system is too complex to model, try
learning it. This is where techniques such as ANNs can play a role.

Many different techniques have been applied to financial time-series forecasting over
the years, ranging from conventional, model-based, statistical approaches to more
esoteric, data-driven, experimental ones (Harris & Sollis, 2003; Mills, 1993; Reinsel, 1997).



82   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Some examples of the former are Auto Regression (AR), ARCH, Box-Jenkins (Box &
Jenkins, 1976), and Kalman Filter (Harvey, 1989). Some examples of the latter are ANNs
(Zhang, Patuwo, & Hu, 1998), Fuzzy Logic and variants (Sisman-Yilmaz, Alpaslan, & Jain,
2004), Evolutionary Algorithms (Allen & Karjalainen, 1999; Chen, 2002), Genetic Pro-
gramming (Chen, 2002; Iba & Sasaki, 1999), Support Vector Machines (Edelman & Davy,
2004; Tay & Cao, 2001), Independent Component Analysis (Back, 2004), and other so-
called (often biologically inspired) “soft computing” techniques (Kingdon, 1997). We
focus on ANNs in this chapter, more specifically on higher-order neural networks, for
reasons that we shall elaborate upon shortly.

Artificial Neural Networks (ANNs)

When people speak of ANNs, they are most likely referring to feed-forward Multilayer
Perceptrons (MLPs), which employ the backpropagation (BP) training algorithm (e.g.,
Lapedes & Farber, 1987; Refenes, 1994; Schoneberg, 1990). Following the lead of the M-
competition for different forecasting techniques (Makridakis, Andersoen, Carbone,
Fildes, Hibon, Lewandowski, et al., 1982), in which such ANNs compared favorably with
the Box-Jenkins method, Weigand and Gershenfeld (1993) compared nonlinear forecast-
ing techniques on a number of different time series, one of which being currency
exchange rate. ANNs, along with state-space reconstruction techniques, fared well in
this more recent comparative study.

At first sight, it would appear that MLP/BPs should perform reasonably well at financial
time-series forecasting, since they are known to excel at (static) pattern recognition and/
or classification; in this particular case, the patterns of interest are simply different time-
shifted samples taken from the same data series.

Now Hornik (1991) has shown that an MLP with an arbitrary bounded nonconstant
activation is capable of universal approximation. More specifically, a single hidden layer
MLP/BP can approximate arbitrarily closely any suitably smooth function (Hecht-
Nielsen, 1987; Hornik, Stinchcombe, & White, 1989). Furthermore, this approximation
improves as the number of nodes in the hidden layer increases. In other words, a suitable
network can always be found.

A similar but more extended result for learning conditional probability distributions was
found by Allen and Taylor (1994). Here, two network layers are required in order to
produce a smooth limit when the stochastic series (such as financial data) being modeled
becomes noise free.

During learning, the outputs of a supervised neural network come to approximate the
target values given the inputs in the training set. This ability may be useful in itself, but
more often the purpose of using a neural net is to generalize — in other words, to have
the network outputs approximate target values given inputs that are not in the training
set.

Generally speaking, there are three conditions that are typically necessary — although
not sufficient — for good generalization.



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   83

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The first necessary condition is that the network inputs contain sufficient information
pertaining to the target, so that there exists a mathematical function relating correct
outputs to inputs with the desired degree of accuracy (Caudill & Butler, 1990).

The second necessary condition is that the function we are attempting to learn (relating
inputs to desired outputs) be, in some sense, smooth (Devroye, Gyorfi, & Lugosi, 1996;
Plotkin, 1993). In other words, small changes in inputs should produce small changes in
outputs, at least most of the time. For continuous inputs and targets, function smooth-
ness implies continuity and restrictions on the first derivative over most of the input
space. Now some neural networks — including the present authors’ HONN models —
are able to learn discontinuities, provided the function consists of a finite number of
continuous pieces. Conversely, very nonsmooth functions (such as those produced by
pseudorandom number generators and encryption algorithms) are not able to be gener-
alized by standard neural networks.

The third necessary condition for good generalization is that the training exemplars
constitute a sufficiently large and representative subset (“sample” in statistics terminol-
ogy) of the set of all cases we want to generalize to (the “population” in statistics
terminology) (Wolpert, 1996a, 1996b). The importance of this condition is related to the
fact that there are, generally speaking, two different types of generalization: interpolation
and extrapolation. Interpolation applies to cases that are more or less surrounded by
nearby training cases; everything else is extrapolation. In particular, cases that are
outside the range of the training data require extrapolation. Cases inside large “holes”
in the training data may also effectively require extrapolation. Interpolation can often be
performed reliably, but extrapolation is notoriously unreliable. Hence, it is important to
have sufficient training data to avoid the need for extrapolation. Methods for selecting
good training sets are discussed in numerous statistical textbooks on sample surveys
and experimental design (e.g., Diamond & Jeffries, 2001).

Despite the universal approximation capability of MLP/BP networks, their performance
is limited when applied to financial time-series modeling and/or prediction (forecasting).
This is due in part to two limitations of feed-forward ANNs, namely (Zhang, Xu, &
Fulcher, 2002):

1. Their activation functions have fixed parameters only (e.g., sigmoid, radial-basis
function, and so on), and

2. They are capable of continuous function approximation only; MLPs are unable to
handle discontinuous and/or piecewise-continuous (economic) time-series data.

Networks with adaptive activation functions seem to provide better fitting properties
than classical architectures with fixed activation-function neurons. Vecci, Piazza, and
Uncini (1998) studied the properties of a feed-forward neural network (FNN) which was
able to adapt its activation function by varying the control points of a Catmull-Rom cubic
spline. Their simulations confirmed that the special learning mechanism allows us to use
the network’s free parameters in a very effective way. In Chen and Chang (1996), real
variables a (gain) and b (slope) in the generalized sigmoid activation function were
adjusted during the learning process. They showed that from the perspective of static



84   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and dynamical system modeling, use of adaptive sigmoids (in other words, sigmoids with
free parameters) leads to improved data modeling compared with classical FNNs.
Campolucci, Capparelli, Guarnieri, Piazza, and Uncini (1996) built an adaptive activation
function as a piecewise approximation with suitable cubic splines. This function had
arbitrary shape and allowed the overall size of the neural network to be reduced, trading
connection complexity against activation function complexity. Several other authors (Hu
& Shao, 1992; Yamada & Yabuta, 1992) have also studied the properties of neural
networks that utilize adaptive activation functions.

In short, some researchers have devoted their attention to more sophisticated, alterna-
tive ANN models. One natural extension is to incorporate unit time delays (memory
elements) to turn the MLP/BP into a recurrent network, in order to recognize (classify)
dynamic rather than static input patterns. Alternatively, replication of network nodes and
weights across time leads to time-delay neural networks, in which the layer inputs are
time-shifted versions from the same time-series data. Such attempts to incorporate
temporal units into an ANN have not usually led to significant improvements in financial
time-series modeling/predicting performance though.

Higher-Order Neural Networks (HONNs)

Traditional areas in which ANNs are known to excel are pattern recognition, pattern
matching, and mathematical function approximation (nonlinear regression). However,
they suffer from several well-known limitations. They can often become stuck in local,
rather than global minima, as well as taking unacceptably long times to converge in
practice. Of particular concern, especially from the perspective of financial time-series
prediction, is their inability to handle nonsmooth, discontinuous training data and
complex mappings (associations). Another limitation of ANNs is their “black box” nature
— meaning that explanations (reasons) for their decisions are not immediately obvious,
unlike some other techniques, such as decision trees.

This then is the motivation for developing higher-order neural networks (HONNs).

Background on HONNs

The term “higher-order” neural network can mean different things to different people,
ranging from a description of the neuron activation function to preprocessing of the
neuron inputs, signifying connections to more than one layer or just ANN functionality
(in other words, their ability to extract higher-order correlations from the training data).
In this chapter, we use “HONN” to refer to the incorporation of a range of neuron types:
linear, power, multiplicative, sigmoid, and logarithmic (see Figure 3).

HONNs have traditionally been characterized as those in which the input to a computa-
tional neuron is a weighted sum of the products of its inputs (Lee et al., 1986). Such
neurons are sometimes called higher-order processing units (HPUs) (Lippmann, 1989).
It has been established that HONNs can successfully perform invariant pattern recog-
nition (Psaltis, Park, & Hong, 1988; Reid, Spirkovska, & Ochoa, 1989; Wood & Shawe-



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   85

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Taylor, 1996). Giles and Maxwell (1987) showed that HONNs have impressive computa-
tional, storage, and learning capabilities. Redding, Kowalski and Downs (1993) proved
that HONNs were at least as powerful as any other (similar order) FNN. Kosmatopoulos,
Polycarpou, Christodoulou, & Ioannou (1995) studied the approximation and learning
properties of one class of recurrent HONNs and applied these architectures to the
identification of dynamical systems. Thimm and Fiesler (1997) proposed a suitable
initialization method for HONNs and compared this with FNN-weight initialization.

First-order neural networks can be formulated as follows, assuming simple McCullough-
and-Pitts-type neurons (Giles & Maxwell, 1987):









= ∑

N

j
i jxjiWfxy )(),()( (1)

where {x(j)} = an N-element input vector, W(i,j) = adaptable weights from all other
neurons to neuron-i, and f = neuron threshold function (e.g., sigmoid). Such neurons are
said to be linear, since they are only capable of capturing first-order correlations in the
training data. In this sense, they can be likened to Least Mean Squared or Delta learning,
as used in ADALINE. It is well known that Rosenblatt’s original (two-layer) perceptron
was only capable of classifying linearly separable training data. It was not until the
emergence of Multilayer Perceptrons (which incorporated nonlinear activation func-
tions, such as sigmoid) that more complex (nonlinear) data could be discriminated.

Higher-order correlations in the training data require more complex neuron activation
functions, characterized as follows (Barron, Gilstrap, & Shrier, 1987; Giles & Maxwell,
1987; Psaltis, Park, & Hong, 1988):









++= ∑∑∑

M

k
i

N

j

N

j
ii kxjxkjiWjxjiWiWfxy ...)()(),,()(),()()( 0 (2)

 y0 yi yl 
Output 

1 x(j) 
Input 

x(k) 

Wi(i,j) Wi(i,k) W0(i) Wi(i,j,k) 

Figure 1. Higher-order neural network architecture-I

W
0
(i) W

i
(i , j) W

i
( i ,k) W

i
( i , j ,k)



86   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Neurons that include terms up to and including degree-k are referred to as kth-order
neurons (nodes). Figure 1 further explains the subscripts i, j, and k used in Equation 2.

The following alternative, simpler formulation is due to Lisboa and Perantonis (1991):









+= ∑∑∑ p

p
kijpik

ki
ij xxxwWfxy ...,...)( ,...
0

                        (3)

where a single weight is applied to all n-tuples x
i
… x

p
 in order to generate output-y

i
 from

that particular neuron.

This is reminiscent of Rumelhart, Hinton, and Williams (1986) formulation of their so-

called “sigma-pi” neurons ( ∑ ∏ kij xixixiw ...21 ), for which they show that the generalized

Delta Rule (standard backpropagation) can be applied as readily as for simple additive

neurons ( ∑ iij xw ). Moreover, the increased computational load resulting from the large

increase in network weights means that the complex input-output mappings, normally
only achievable in multilayered networks, can now be realized in a single HONN layer
(Zhang & Fulcher, 2004).

In summary, HONN activation functions incorporate multiplicative terms.

Now the output of a kth-order single-layer HONN neuron will be a nonlinear function
comprising polynomials of up to kth-order. Moreover, since no hidden layers are
involved, both Hebbian and perceptron learning rules can be employed (Shin & Ghosh,
1991).

Multiplicative interconnections within ANNs have been applied to many different
problems, including invariant pattern recognition (Giles, Griffin, & Maxwell, 1988; 1991;
Goggin, Johnson, & Gustafson, 1993; Lisboa & Pentonis, 1991), however their complexity
usually limits their usefulness.

Figure 2. Higher-order neural network architecture-II

 y0(x) 
Output 

1 xi 
Input 

xk 

Wi
 0 Wik…p.j 

yj(x) yl(x) 

xp 

W
i
0 W

ik. . .p . j



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   87

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Karayiannis and Venetsanopoulos (1993) make the observation that the performance of
first-order ANNs can be improved, within bounds, by utilizing sophisticated learning
algorithms. By contrast, HONNs can achieve superior performance even if the learning
algorithm is based on the simpler outer-product rule.

A different approach was taken by Redding, Kowalczy, and Downs (1993) and involved
the development of a constructive HONN architecture that solved the binary mapping
in polynomial time. Central to this process was the selection of the multiplicative
nonlinearities as hidden nodes within the HONN, depending on their relevance to the
pattern data of interest.

Polynomial HONNs

The authors have developed several different HONN models during the past decade or
so. We now present a brief background on the development of polynomial, trigonometric,
and similar HONN models. A more comprehensive coverage, including derivations of
weight-update equations, is presented in Zhang and Fulcher (2004).

Firstly, all PHONNs described in this section utilize various combinations of linear,
power, and multiplicative (and sometimes other) neuron types and are trained using
standard backpropagation. The generic HONN architecture is shown in Figure 3, where
there are two network inputs (independent variables) x and y, and a single network output
(dependent variable) z.

In the first hidden layer, the white neurons are either cos(x) or sin(y), and the grey neurons
either cos2(x) or sin2(y). All (black) neurons in the second hidden layer are multiplicative,
and the (hashed) output neurons either linear (PHONN#1) or a sigmoid-logarithmic pair
(PHONN#2), as described later. Some of the intermediate weights are fixed and some
variable, according to the formulation of the polynomial being synthesized. All of the
weights connecting the second hidden layer to the output layer are adaptable
(PHONN#1,2). By contrast, only the latter are adjustable in PHONN#0; the first two-layer
weights are fixed (=1).

1 (bias) 

x 

y 

z 

Figure 3. Polynomial higher-order neural network (PHONN)



88   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The first model (PHONN#0) facilitates extraction of the linear coefficients a
k1k2

 from the
general nth-order polynomial:

 ∑=
21

21
21),(

kk

k
i

k
ikki yxayxz (4)

Now, since variable weights are present in only one layer here, PHONN#0 can be
compared with Rosenblatt’s (two-layer) perceptron, which is well-known to be limited to
solving linearly separable problems.

In PHONN#1, the general nth-order polynomial of Equation 4 is expanded as follows:

 ∑
=

=
n

kk

ky
kk

kx
kkkki yaxaayxz

021

2
21

1
21

0
21 ][])[(),( (5)

Each coefficient from Equation 4 has now been replaced by three terms in Equation 5.
Moreover, we now have two adjustable layers at our disposal, such that PHONN#1 has
similar discrimination capability to an MLP.

The linear output neuron of PHONN#1 is replaced by a sigmoid-logarithmic neuron pair
in PHONN#2, which leads to faster network convergence. Model PHONN#3 comprises
groups of PHONN#2 neurons (ANN groups are discussed in the following section).

If we use a PHONN to simulate the training data, the model will “learn” the coefficients
and order of the polynomial function. If we use adaptive HONN models to simulate the
data, the models will not only “learn” the coefficients and order, but also the different

Date Exchange 
Rate 

Input#1 
(X) 

Input#2 
(Y) 

Desired 
Output (Z) 

1 0.7847 0.093 0.000 0.057 
2 0.7834 0.000 0.057 0.607 
3 0.7842 0.057 0.607 0.650 
4 0.7919 0.607 0.650 1.000 
7 0.7925 0.650 1.000 0.686 
8 0.7974 1.000 0.686 0.479 
9 0.7930 0.686 0.479 0.729 
10 0.7901 0.479 0.729 0.229 
11 0.7936 0.729 0.229 0.429 
14 0.7866 0.229 0.429 0.800 
15 0.7894 0.429 0.800 0.714 
16 0.7946 0.800 0.714 0.736 
17 0.7935 0.714 0.736  
18 0.7937 0.736   

 

Table 1. $A-$US exchange rate (March 2005)



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   89

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

functions. In other words, the model “learns” the polynomial function if the data is in fact
a polynomial function.

Now, instead of employing a polynomial series expansion, we could alternatively use a
trigonometric one, as indicated in Equation 6.

Z = a
00

 + a
01

sin(y) a
02

sin2(y) + a
10

cos(x) + a
11

cos(x)sin(y) + a
12

cos(x)sin2(y) +

a
20

cos2(y) + a
21

cos2(x)sin(y) + a
22

cos2(x)sin2(y) + … (6)

This naturally leads to the development of THONN models (and likewise THONN groups
— see subsequent paragraphs).

One significant feature of models P(T)HONN#1 and higher is that we have opened up the
“black box” or closed architecture normally associated with ANNs. In other words, we
are able to associate individual network weights with polynomial coefficients and vice
versa. This is a significant finding, since users — especially those in the financial sector
— invariably prefer explanations (justifications) for the decisions made by their predic-
tors, regardless of the nature of the underlying decision engine.

We now proceed to illustrate the use of PHONNs by way of a simple example, namely
exchange-rate prediction. Table 1 shows how the Australian-US dollar exchange rate
varied during March 2005 (Federal Reserve Board, 2005).

The following formula was used to scale the data to within the range 0 to 1, in order to
meet constraints:

)}_()_{(
)}_()_{(

ratelowestratehighest
ratelowestrateindividual

−
−

(7)

 

Figure 4. PHONN Simulator main window



90   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Equation 7 was applied to each separate entry of a given set of simulation data — in other
words, the individual_rate. The smallest entry in the data set serves as the lowest_rate,
and the largest entry ss the highest_rate. After applying Equation 7, the data have been
converted into the Input#1 column of Table 1.

We use previous day and current-day exchange rates to predict the next day’s rate.
Accordingly, we copy the data from 3/2/2005 to 3/18/2005 to the Input#2 column of Table
1 — this being the second input to the PHONN — and copy the data from 3/3/2005 to 3/
18/2005 to the Output column of Table 1 (in other words, the desired PHONN output).

The PHONN simulation system was written in the C language, and runs under X-
Windows on a SUN workstation. It incorporates a user-friendly graphical user interface
(GUI), which enables any step, data, or calculation to be reviewed and modified
dynamically in different windows. At the top of the PHONN simulator main window are
three pull-down menus: Data, Translators, and Neural Network, as illustrated in Figure
4 (which, by the way, shows the result of network training using the data of Table 1).

Each of these offers several options, and selecting a particular option creates another
window for further processing. For instance, once we have selected a data set via the Data
menu, two options are presented for data loading and graphical display.

Data is automatically loaded when the Load option is selected. Alternatively, the Display
option displays data not only in graphical form, but also translated, if so desired (e.g.,
rotation, elevation, grids, smooth, influence, etc.). The Translators menu is used to
convert the selected raw data into network form, while the Neural Network menu is used
to convert the data into a nominated model (an example of which appears in Figure 5).
These two menus allow the user to select different models and data, in order to generate

Figure 5. “PHONN Network Model” subwindow

 



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   91

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and compare results. Figure 5 shows the network weights resulting from training using
the data of Table 1.

All of the previous steps can be simply performed using a mouse. Hence, changing data
or network model and comparing results can all be achieved easily and efficiently.

There are more than twelve windows and subwindows in the PHONN Simulator system;
both the system mode and its operation can be viewed dynamically, in terms of:

• Input/output data,

• Neural network models,

• Coefficients/parameters, and so on.

 

 

Figure 7. “Generate Definition File” subwindow

Figure 6. “Load Network Model File” subwindow



92   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The simulator operates as a general neural network system and includes the following
functions:

• Load a data file,

• Load a neural network model (Figure 6) for Table 1 data,

• Generate a definition file (Figure 7) for Table 1 data,

• Write a definition file,

• Save report,

• Save coefficients (Figure 8) for Table 1 data, and so on.

The “System mode” windows allow the user to view, in real time, how the neural network
model learns from the input training data (in other words, how it extracts the weight
values).

 

Figure 9. “Graph” subwindow

 

Figure 8. “Coefficients” subwindow



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   93

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

When the system is running, the following system-mode windows can be opened
simultaneously from within the main window:

• “Display Data (Training, Evolved, Superimposed, and Difference),”

• “Show/Set Parameters,”

• “Network Model (including all weights),” and

• “Coefficients.”

Thus, every aspect of the system’s operation can be viewed graphically.

A particularly useful feature of this system is that one is able to view the mode, modify
it, or alternatively change other parameters in real time. For example, when the user
chooses the “Display Data” window to view the input-training data file, they can change
the graph format for the most appropriate type of display (in other words, modify the
graph’s rotation, elevation, grids, smoothing, and influence).

During data processing, the “Display Data” window offers four different models to
display the results, which can be changed in real time, namely: “Training,” “Evolution,”
“Superimposed,” and “Difference (using the same format selected for the input data),”
as indicated in Figure 9 for Table 1 data.

• “Training” displays the data set used to train the network,

• “Evolved” displays the data set produced by the network (and is unavailable if a
network definition file has not been loaded),

• “Superimposed” displays both the training and the evolved data sets together (so
they can be directly compared in the one graph), and

• “Difference” displays the difference between the “Training” and the “Evolved”
data sets.

 

Figure 10. Report generation within PHONN Simulator



94   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The “Rotation” command changes the angle of rotation at which the wire-frame mesh is
projected onto the screen. This allows the user to “fly” around the wire-frame surface.
The default value is 30º, but is adjustable from 0º to 355º in increments of 5º, with
wraparound from 360º to 0º (this value can be simply adjusted with either the “up/down”
buttons or by entering a number directly).

“Elevation” changes the angle of elevation at which the wire-frame mesh is projected
onto the screen. This allows the user to “fly” either above or below the wire-frame surface
(usage is similar to Rotation).

The “Grids” command changes the number of wires used in the wire-frame mesh. It is
adjustable between 6 and 30, using either the “up/down” buttons or by directly entering
a number. Low grid numbers allow fast display, but with decreased resolution; high
numbers provide a more accurate rendition of the surface, but at the cost of increased
display time.

If the user is not satisfied with the results and wants a better outcome (a higher degree
of model accuracy), they can stop the processing and set new values for the model
parameters, such as learning rate, momentum, error threshold, and random seed. The
neural network model can be easily changed as well.

As usual with neural network software, the operating procedure is as follows:

Step 1: Data pre-processing (encoding),

Step 2: Load and view data,

Step 3: Choose and load neural network model,

Step 4: Show/Set the network parameters,

Step 5: Run the program,

Step 6: Check the results:

 If satisfactory, then go to Step 7, otherwise go to Step 3,

Step 7: Save and export the results,

Step 8: Data decoding (postprocessing).

There are two basic requirements that must be satisfied before the PHONN simulator is
able to start running: One is input training data and the other is input the network. The
users must also have loaded some training data and loaded a network.

Figure 10 shows the running report for Table 1 data, from which we see the average error
is 17.4011%. Returning to Figure 8, we see that the following formula can be used to
represent the data of interest (exchange rate), thereby relating network weights to
polynomial coefficients:

Z = 0.3990-0.0031X-0.0123X*X+0.4663Y-0.0834X*Y-0.0274X*X*Y

      -0.0027Y*Y-0.0310X*Y*Y-0.1446X*X*Y*Y (8)



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   95

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

HONN Groups

Prior to our development of ANN groups, we were aware of earlier work on groups of
individual neurons (Hu & Pan, 1992; Willcox, 1991). What motivated our development
of firstly ANN groups and thenceforth P(T)HONN groups was the poor performance of
ANNs on human-face recognition, which we investigated in the context of airport
security (Zhang & Fulcher, 1996).

It is possible to define a neural network group in the usual set theory terms, as follows:

...SVMARTRBFSOMMLPANN ∪∪∪∪= (9)

MLP is thus a subset of the set ANN; likewise a particular instance of MLP (say
MLP100:70:20) is a subset of MLP. Moreover, providing either the sum and/or product
can be defined for every two elements in a nonempty set N ⊂ ANN (Inui, Tanabe &
Onodera, 1978; Naimark & Stern, 1982), and then we refer to this set as a neural network
group.

ANN groups are particularly useful in situations involving discontinuous data, since we
can define piecewise function groups, as follows:

O
i
 + O

j
= O

i
(A < I < B)

= O
j

(B < I < C) (10)

where I = ANN input, O = ANN output, and for every two elements Nnn ji ∋, , the sum

n
i
 + n

j
 is a piecewise function.

Now in the same vein as Hornik (1991) and Leshno (1993), it is possible to show that
piecewise function groups (of MLPs employing locally bounded, piecewise continuous
activation functions and thresholds) are capable of approximating any piecewise con-
tinuous function, to any degree of accuracy (Zhang, Fulcher, & Scofield, 1997).

Not surprisingly, such ANN groups offer superior performance compared with ANNs
when dealing with discontinuous, nonsmooth, complex training data, which is often the
case with financial time series.

HONN Applications

The three application areas in which we have focused our endeavors to date are (1)
human-face recognition (Zhang & Fulcher, 1996), (2) satellite weather forecasting
(Zhang, Fulcher, & Scofield, 1997; Zhang & Fulcher, 2004), and (3) financial time-series
prediction (Zhang, Xu, & Fulcher, 2002; Zhang, Zhang, & Fulcher, 2000). In each case,
we are typically dealing with discontinuous, nonsmooth, complex training data, and thus
HONN (and HONN groups) come into their own.



96   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Automatic Face Recognition

Automatic (1-of-n) facial recognition is a complex pattern recognition task, especially for
real-time operation under variable lighting conditions, where faces are tilted or rotated,
and where n is large. There can also be significant repercussions for false positives, and
more especially false negatives (that is, failure to detect a “wanted person”). The
advantage of using ANN groups in such an application is that if one particular ANN
model cannot perform the desired recognition, then perhaps another model belonging to
the ANN set (group) can do better.

Using ANN group trees can extend this approach further. Nodes and interconnecting
weights in such trees grow adaptively during the training process, according to both the
desired number of “wanted” leaf-node faces and the variability contained within the
training exemplars. As a result, such a network is capable of recognizing tilted or rotated
facial images as being the same person; in other words, it can handle topological
deformations and/or 3D translations. Zhang and Fulcher (1996) describe such ANN
group trees in terms of Tolerance Space Theory (Chen, 1981; Zeeman, 1962).

Group-based adaptive-tolerance (GAT) trees have been successfully applied to auto-
matic face recognition (Zhang & Fulcher, 1996). For this study, ten (28*28 pixel, 256-level
gray scale) images of 78 different faces (front, tilted, rotated, smiling, glasses, beard, etc.)
were used for both training (87) and testing (693) purposes. For front-face recognition,
the error rate was 0.15% (1 face); for tilted and rotated faces (of up to15%), the error rates
were 0.16% and 0.31%, respectively. Thus GAT trees were more “tolerant” in their
classification.

Rainfall Estimation

Global weather prediction is acknowledged as one of computing’s “grand challenges”
(Computing Research Associates, 2005). The world’s fastest (parallel vector)

0

5

10

15

20

25

30

35

40

N
ov

-9
6

F
eb

-9
7

M
ay

-9
7

A
ug

-9
7

N
ov

-9
7

F
eb

-9
8

M
ay

-9
8

A
ug

-9
8

N
ov

-9
8

F
eb

-9
9

M
ay

-9
9

A
ug

-9
9

N
ov

-9
9

F
eb

-0
0

M
ay

-0
0

A
ug

-0
0

N
ov

-0
0

F
eb

-0
1

M
ay

-0
1

A
ug

-0
1

N
ov

-0
1

A$

Figure 11. Commonwealth Bank of Australia share prices (November 1996-November
2001)



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   97

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

supercomputer — at least up until 2004 (Meuer, Stronmaier, Dongarra, & Simon, 2005)
— was devoted to simulation of the earth for purposes of global weather forecasting.

Rainfall estimation is a complicated, nonlinear, discontinuous process. Single ANNs are
unable to deal with discontinuous, nonsmooth input training data; ANN groups, on the
other hand, are well-suited to such problems.

ANNs and ANN groups both outperform conventional rainfall estimation, yielding error
rates of around 17% and 3.9%, respectively (compared with ~30.4% with the latter)
(Zhang & Fulcher, 2004; Zhang, Fulcher, & Scofield, 1997). ANN groups were subse-
quently used as the reasoning engine within the ANSER Expert System developed for
satellite-derived rainfall estimation.

In Zhang and Fulcher (2004), PHONN variants (PT-, A- and M-) are applied to half-hourly
rainfall prediction. Another model — the Neuron-Adaptive HONN (described in the next
section) — led to a marginal error reduction (3.75%).

Another variant — the Sigmoid PHONN — has been shown to offer marginal performance
improvement over both PHONN and M-PHONN when applied to rainfall estimation (more
specifically, 5.263% average error compared with 6.36% and 5.42%, respectively) (Zhang,
Crane, & Bailey, 2003).

Application of HONNs to
Financial Time Series Data

Both polynomial and trigonometric HONNs have been used to both simulate and predict
financial time-series data (Reserve Bank of Australia Bulletin, 2005), to around 90%
accuracy (Zhang, Murugesan, & Sadeghi, 1995; Zhang, Zhang, & Keen, 1999).

In the former study, all the available data was used during training. In the latter, the data
was split in two — one half being used for training and the other half for testing (and where
data from the previous 2 months was used to predict the next month’s data). More

0

5

10

15

20

25

30

35

40

original data simulated data

A$

Figure 12. Simulation of Commonwealth Bank of Australia share prices (November
2000-November 2001) using NAHONN



98   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

recently, the polynomial/trigonometric HONN (Lu & Zhang, 2000) and Multiple-PHONN
(Zhang & Lu, 2001) models have been shown to offer improved performance, compared
with P(T)HONNs.

It was mentioned previously that PHONN Model#3 comprises groups of PHONN#2
neurons. When applied to financial time-series prediction, PHONN groups produce up
to an order of magnitude performance improvement over PHONNs — more specifically
around 1.2% error for simulation (compared with 11%) and 5.6% error for prediction
(compared with 12.7%) (Zhang, Zhang, & Fulcher, 2000). Similar improvements in
performance are observed with THONN groups (Zhang, Zhang, & Fulcher, 1996, 1997).

The neuron-adaptive HONN (and NAHONN group) leads to faster convergence, much
reduced network size and more accurate curve fitting, compared with P(T)HONNs
(Zhang, Xu, & Fulcher, 2002). Each element of the NAHONN group is a standard
multilayer HONN comprising adaptive neurons, but which employs locally bounded,
piecewise continuous (rather than polynomial) activation functions and thresholds.

The (1-Dimensional) neuron activation function is defined as follows:

Month

Raw 
Exchange 

Rate Input 1#1 Input#2 Desired Output

January 0.7576 0.95 0.93 1.00
February 0.7566 0.93 1.00 0.96
March 0.761 1.00 0.96 0.37
April 0.7584 0.96 0.37 0.03
May 0.7198 0.37 0.03 0.26
June 0.697 0.03 0.26 0.14
July 0.7125 0.26 0.14 0.00
August 0.7042 0.14 0.00 0.43
September 0.6952 0.00 0.43 0.75
October 0.7232 0.43 0.75
November 0.7447 0.75

Australian Dollar/U.S. Dollar Exchange Rate (2004)

 

Figure 13. Input data for Sigmoid PHONN simulation (prediction)

Table 2. $A-$US exchange rate (2004)



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   99

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 ∑
=

==
s

h
kihkikikikiki netfnetonet

1
,,,,,,, )()()(ψ (11)

where net
i,k

 is the input (internal state) of the ith neuron in the kth layer, and w
i,j,k

 is the
weight connecting the jth neuron in layer-(k-1) with the ith neuron in layer-k. This
formulation, along with nD and multi n-Dimensional NAHONNs, incorporate free
parameters which can be adjusted, along with the weights, during training (unlike
conventional feed-forward ANNs). The NAHONN learning algorithm is based on
steepest descent, but since the hidden-layer variables are adjustable, NAHONN offers
more flexibility and more accurate approximation capability compared with (fixed activa-
tion function) MLP/BPs (Zhang, Xu, & Fulcher, 2002).

In one comparative experiment, a NAHONN with nonlinear neuron activation function
led to around half the RMS error compared with PHONN, and a NAHONN which utilized
piecewise NAFs required less than half the number of hidden-layer neurons, converged
in less than a third of the time and led to an RMS output error two orders of magnitude
lower than PHONN (Zhang, Xu, & Fulcher, 2002; Figure 12).

Now as with the earlier P(T)HONN groups, it is possible to prove a similar general result
to that found previously by Hornik (1991) for ANNs, namely that NAHONN groups are
capable of approximating any kind of piecewise-continuous function to any degree of
accuracy (a proof is provided in Zhang, Xu, & Fulcher, 2002). Moreover, these models
are capable of automatically selecting not only the optimum model for a particular time
series, but also the appropriate model order.

Returning to the Sigmoid PHONN (Zhang, Crane, & Bailey, 2003), the $Australian-$US
exchange rate data of Table 2 was used to predict the following month’s rate — in other
words, based on the previous two months rates, as follows:

imumimum

imummonthcurrent
input

minmax

min_
1#

−
−= (12)

Figure 14. Sigmoid PHONN training (convergence)

 



100   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 16. Sigmoid PHONN network performance

 

Figure 15. Sigmoid PHONN network weights

 

imumimum

imummonthnext
input

minmax

min_
2#

−
−= (13)

imumimum

imumnextaftermonth
outputdesired

minmax

min__
_

−
−= (14)



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   101

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Thus, only the data within the box was used for this exercise.

This input training data is plotted in Figure 13 (X = input#1, Y = input#2, and Z = desired
output, respectively).

Convergence of the Sigmoid PHONN is shown in Figure 14 and the final network weights
in Figure 15. In this example, convergence occurs after roughly 700 epochs, despite
Figure 14 showing 10,000 epochs total (and to an error of around 7%).

In Figure 15, the third (uppermost, lefthand side) network input is the bias term, the
remaining ones being input#1 (based on the current monthly rate) and input#2 (based

0

0.5

1

1.5

2

2.5

3

Aug-96 Sep-96 Oct-96 Nov-96 Dec-96 Jan-97 Feb-97 M ar-97 Apr-97 M ay-97 Jun-97

THONN

PT-HONN

M -PHONN

PL-HONN

Figure 17. HONN performance comparison (Reserve Bank of Australia: Credit-card
lending, August 1996-June 1997)

0

1

2

3

4

5

6

Aug-96 Sep-96 Oct-96 Nov-96 Dec-96 Jan-97 Feb-97 M ar-97 Apr-97 M ay-97 Jun-97

THONN

PT-HONN

M -PHONN

PL-HONN

Figure 18. HONN performance comparison (Reserve Bank of Australia: Dollar-yen
exchange rate (August 1996-June 1997)



102   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

on the next month’s exchange rate); the network output is the desired (month after next)
currency exchange rate, as previously explained. The grey neurons are sigmoid types,
the white neurons linear, and the black ones multiplicative.

The performance of this Sigmoid PHONN (actual vs. desired outputs) is summarized in
Figure 16.

More recently, Zhang (2003) has developed a multiPHONN, which employs a logarithmic
activation function, and as its name suggests, is capable of simulating not only
polynomial and/or trigonometric functions, but also combinations of these, as well as
sigmoid and/or logarithmic functions. As a result, they are better able to approximate real
world economic time series data. It can be seen in Figures 17 and 18 that PL-HONN offers
significant performance improvement over THONNs, and marginal improvement over
both PT- and M-PHONNs, when applied to typical financial time series data (Reserve
Bank of Australia Bulletin: www.abs.gov.au/ausstats/abs@.nsf/w2.3).

The main finding from these experiments is that the more sophisticated PHONN variants
significantly outperform THONN on typical financial time-series data, however all yield
significantly lower errors compared with conventional feed-forward ANNs (not shown
in this chapter’s figures).

Conclusion

We have introduced the concepts of higher-order artificial neural networks and ANN
groups. Such models offer significant advantages over classical feed-forward ANN
models such as MLP/BP, due to their ability to better approximate complex, nonsmooth,
often discontinuous training data. Important findings about the general approximation
ability of such HONNs (and HONN groups) have been presented, which extend the earlier
findings of Hecht-Nielsen (1987), Hornik (1991), and Leshno, Lin, Pinkus, and Schoken
(1993).

Acknowledgments

We would like to acknowledge the financial assistance of the following organizations in
our development of higher-order neural networks: Societe International de Telecommu-
nications Aeronautique, Fujitsu Research Laboratories, Japan, the U.S. National Re-
search Council, and the Australian Research Council.



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   103

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Allen, D. W., & Taylor, J. G. (1994). Learning time series by neural networks. In M.
Marinaro & P. Morasso (Eds.), Proceedings of the International Conference on
Neural Networks, Sorrento, Italy (pp. 529-532). Berlin: Springer.

Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading
rules. J. Financial Economics, 51(2), 245-271.

Azema-Barac, M. E., & Refenes, A. N. (1997). Neural networks for financial applications.
In E. Fiesler, & R. Beale (Eds.), Handbook of neural computation (G6.3; pp. 1-7).
Oxford, UK: Oxford University Press.

Azoff, E. (1994). Neural network time series forecasting of financial markets. New York:
Wiley.

Back, A. (2004). Independent component analysis. In J. Fulcher, & L. C. Jain (Eds.),
Applied intelligent systems: New directions (pp. 59-95). Berlin: Springer.

Barron, R., Gilstrap, L., & Shrier, S. (1987). Polynomial and neural networks: Analogies
and engineering applications. In Proceedings of the International Conference on
Neural Networks, New York, Vol. 2 (pp. 431-439).

Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (rev.
ed.). San Francisco: Holden Day.

Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods (2nd ed.). New
York: Springer.

Campolucci, P., Capparelli, F., Guarnieri, S., Piazza, F., & Uncini, A. (1996). Neural
networks with adaptive spline activation function. In Proceedings of the IEEE
MELECON’96 Conference, Bari, Italy (pp. 1442-1445).

Caudill, M., & Butler, C. (1990). Naturally intelligent systems. Cambridge, MA: MIT
Press.

Chakraborty, K., Mehrotra, K., Mohan, C., & Ranka, S. (1992). Forecasting the behaviour
of multivariate time series using neural networks. Neural Networks, 5, 961-970.

Chang, P. T. (1997). Fuzzy seasonality forecasting. Fuzzy Sets and Systems, 112, 381-394.

Chatfield, C. (1996). The analysis of time series: An introduction. London: Chapman &
Hall.

Chen, C. T., & Chang, W. D. (1996). A feedforward neural network with function shape
autotuning. Neural Networks, 9(4), 627-641.

Chen, L. (1981). Topological structure in visual perception. Science, 218, 699.

Chen, S.-H. (Ed.). (2002). Genetic algorithms and genetic programming in computa-
tional finance. Boston: Kluwer.

Computing Research Associates, 2005). Retrieved April 2005, from www.cra.org

Devroye, L., Gyorfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern recogni-
tion. New York: Springer.



104   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Diamond, I., & Jeffries, J. (2001). Beginning statistics: An introduction for social
sciences. London: Sage Publications.

Edelman, D., & Davy, P. (2004). Adaptive technical analysis in the financial markets using
machine learning: A statistical view. In J. Fulcher, & L. C. Jain (Eds.), Applied
intelligent systems: New directions (pp. 1-16). Berlin: Springer.

Federal Reserve Board. (2005). Retrieved April 2005, from http://www.federalreserve.gov/
releases/

Giles, L., Griffin, R., & Maxwell, T. (1988). Encoding geometric invariances in high-order
neural networks. In D. Anderson (Ed.),  Proceedings Neural Information Process-
ing Systems (pp. 301-309).

Giles, L., & Maxwell, T. (1987). Learning, invariance and generalisation in high-order
neural networks. Applied Optics, 26(23), 4972-4978.

Goggin, S., Johnson, K., & Gustafson, K. (1993). A second-order translation, rotation and
scale invariant neural network. In R. Lippmann, J. E. Moody, & D. S. Touretzky
(Eds.), Advances in neural information processing systems 3. San Mateo, CA:
Morgan Kauffman.

Gorr, W. L. (1994). Research perspective on neural network forecasting. International
Journal of Forecasting, 10(1), 1-4.

Harris, R., & Sollis, R. (2003). Applied time series modelling and forecasting. Chichester,
UK: Wiley.

Harvey, A. C. (1989). Forecasting, structural times series models and the kalman filter.
Cambridge, UK: Cambridge University Press.

Hecht-Nielsen, R. (1987). Kolmogorov’s mapping neural network existence theorem. In
Proceedings of the International Conference on Neural Networks, Vol. 3 (pp. 11-
13). New York: IEEE Press.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neu-
ral Networks, 4, 251-257.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multi-layer feedforward networks are
universal approximators. Neural Networks, 2, 359-366.

Hu, S., & Yan, P. (1992). Level-by-level learning for artificial neural groups. Electronica
Sinica, 20, 10, 39-43.

Hu, Z., & Shao, H. (1992). The study of neural network adaptive control systems. Control
and Decision, 7, 361-366.

Iba, H., & Sasaki, T. (1999). Using genetic programming to predict financial data. In
Proceedings of the 1999 Congress on Evolutionary Computation — CEC99, Vol.
1 (pp. 244-251). New Jersey: IEEE Press.

Inui, T., Tanabe, Y., & Onodera, Y. (1978). Group theory and its application in physics.
Berlin: Springer.

Karayiannis, N., & Venetsanopoulos, A. (1993). Artificial neural networks: Learning
algorithms, performance evaluation and applications. Boston: Kluwer.



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   105

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kingdon, J. (1997). Intelligent systems and financial forecasting. Berlin: Springer.

Kosmatopoulos, E. B., Polycarpou, M. M., Christodoulou, M. A., & Ioannou, P. A. (1995).
High-order neural network structures for identification of dynamical systems. IEEE
Transactions on Neural Networks, 6(2), 422-431.

Lapedes, A. S., & Farber, R. (1987). Non-linear signal processing using neural networks:
Prediction and system modelling. Los Alamos National Laboratory (Technical
Report LA-UR-87).

Lee, Y. C., Doolen, G., Chen, H., Sun, G., Maxwell, T., Lee, H., et al. (1986). Machine
learning using a higher order correlation network. Physica D: Nonlinear Phenom-
ena, 22, 276-306.

Leshno, M., Lin, V., Pinkus, A., & Schoken, S. (1993). Multi-layer feedforward networks
with a non-polynomial activation can approximate any function. Neural Networks,
6, 861-867.

Lippmann, R. P. (1989). Pattern classification using neural networks. IEEE Communica-
tions Magazine, 27, 47-64.

Lisboa, P., & Perantonis, S. (1991, November 18-21). Invariant pattern recognition using
third-order networks and zernlike moments. In Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks, Singapore, Vol. II (pp. 1421-1425).

Lu, B., & Zhang, M. (2000, May 15-17). Using PT-HONN models for multi-polynomial
function simulation. In Proceedings of IASTED International Conference on
Neural Networks, Pittsburgh, PA.

Makridakis, S., Andersoen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., et
al. (1982). The accuracy of extrapolation methods: Results of a forecasting compe-
tition. Journal of Forecasting, 1(2), 111-153.

Meuer, H., Stronmaier, E., Dongarra, J., & Simon, H. D. (2005). Retrieved April 2005, from
http://www.top500.org

Mills, T. C. (1993). The econometric modelling of financial time series. Cambridge, UK:
Cambridge University Press.

Naimark, M., & Stern, A. (1982). Theory of group representation. Berlin: Springer.

Plotkin, H. (1993). Darwin machines and the nature of knowledge. Cambridge, MA:
Harvard University Press.

Psaltis, D., Park, C., & Hong, J. (1988). Higher order associative memories and their optical
implementations. Neural Networks, 1, 149-163.

Redding, N., Kowalczyk, A., & Downs, T. (1993). Constructive higher-order network
algorithm that is polynomial time. Neural Networks, 6, 997-1010.

Refenes, A. N. (Ed.). (1994). Neural networks in the capital markets. Chichester, UK:
Wiley.

Reid, M. B., Spirkovska, L., & Ochoa, E. (1989). Simultaneous position, scale, rotation
invariant pattern classification using third-order neural networks. International
Journal of Neural Networks, 1, 154-159.



106   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Reinsel, G. C. (1997). Elements of multivariate time series analysis. New York: Springer.

Reserve Bank of Australia Bulletin. (2005). Retrieved April 2005, from http://abs.gov.au/
ausstats/

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by
error propagation. In D. Rumelhart, & J. McClelland (Eds.), Parallel distributed
processing: Explorations in the microstructure of cognition, Volume 1 — Foun-
dations. Cambridge, MA: MIT Press.

Schoneburg, E. (1990). Stock market prediction using neural networks: A project report.
Neurocomputing, 2, 17-27.

Shin, Y., & Ghosh, J. (1991, July). The Pi-Sigma Network: An efficient higher-order neural
network for pattern classification and function approximation. In Proceedings of
the International Joint Conference on Neural Networks, Seattle, WA (pp. I: 13-
18).

Sisman-Yilmaz, N. A., Alpaslan, F. N., & Jain, L. C. (2004). Fuzzy mulivariate auto-
regression method and its application. In J. Fulcher, & L. C. Jain (Eds.), Applied
intelligent systems: New directions (pp. 281-300). Berlin: Springer.

Tay, E. H., & Cao, L. J. (2001). Application of support vector machines in financial time
series forecasting. Omega, 29, 309-317.

Thimm, G., & Fiesler, E. (1997). High-order and multilayer perceptron initialization. IEEE
Transactions on Neural Networks, 8(2), 349-359.

Trippi, R. R., & Turban, E. (Eds.). (1993). Neural networks in finance and investing.
Chicago: Probus.

Tseng, F. M., Tzeng, G. H., Yu, H. C., & Yuan, B. J. C. (2001). Fuzzy ARIMA model for
forecasting the foreign exchange market. Fuzzy Sets and Systems, 118, 9-19.

University of California, Irvine. (2005). Retrieved April 2005, from http://www.ics.uci.edu/
~mlearn/MLrepository.html

Vecci, L., Piazza, F., & Uncini, A. (1998). Learning and approximation capabilities of
adaptive spline activation function neural networks. Neural Networks, 11, 259-
270.

Vemuri, V., & Rogers, R. (1994). Artificial neural networks: Forecasting time series.
Piscataway, NJ: IEEE Computer Society Press.

Watada, J. (1992). Fuzzy time series analysis and forecasting of sales volume. In J.
Kacprzyk, & M. Fedrizzi (Eds.), Studies in fuzziness Vol.1: Fuzzy regression
analysis. Berlin: Springer.

Weigend, A. S., & Gershenfeld, N. A. (Eds.). (1993). Time series prediction: Forecasting
the future and understanding the past. Reading, MA: Addison Wesley.

Welstead, S. T. (1994). Neural networks and fuzzy logic applications in C/C++. New
York: Wiley.

Wilcox, C. (1991). Understanding hierarchical neural network behaviour: A renormalization
group approach. Journal of Physics A, 24, 2644-2655.

Wolpert, D. H. (1996a). The existence of a priori distinctions between learning algorithms.
Neural Computation, 8, 1391-1420.



Application of Higher-Order Neural Networks to Financial Time-Series Prediction   107

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Wolpert, D. H. (1996b). The lack of a priori distinctions between learning algorithms.
Neural Computation, 8, 1341-1390.

Wood, J., & Shawe-Taylor, J. (1996). A unifying framework for invariant pattern recog-
nition. Pattern Recognition Letters, 17, 1415-1422.

Yamada, T., & Yabuta, T. (1992). Remarks on a neural network controller which uses an
auto-tuning method for nonlinear functions. In Proceedings of the International
Joint Conference on Neural Networks, Vol. 2 (pp. 775-780).

Zeeman, E. (1962). The topology of the brain and visual perception. In M. Fork, Jr. (Ed.),
Topology of 3-manifolds and related topics. Englewood Cliffs, NJ: Prentice Hall.

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks:
The state of the art. International Journal of Forecasting, 14, 35-62.

Zhang, M. (2003, May 13-15). Financial data simulation using PL-HONN Model. In
Proceedings IASTED International Conference on Modelling and Simulation,
Marina del Rey, CA (pp. 229-233).

Zhang, M., Crane, J., & Bailey, J. (2003, June 21-24). Rainfall estimation using SPHONN
model. In Proceedings of the International Conference on Artificial Intelligence,
Las Vegas, NV (pp. 695-701).

Zhang, M., & Fulcher, J. (1996). Face recognition using artificial neural network group-
based adaptive tolerance (GAT) trees. IEEE Transactions on Neural Networks,
7(3), 555-567.

Zhang, M., & Fulcher, J. (2004). Higher order neural networks for satellite weather
prediction. In J. Fulcher, & L. C. Jain (Eds.), Applied intelligent systems: New
directions (pp. 17-57). Berlin: Springer.

Zhang, M., Fulcher, J., & Scofield, R. (1997). Rainfall estimation using artificial neural
network group. Neurocomputing, 16(2), 97-115.

Zhang, M., & Lu, B. (2001, July). Financial data simulation using M-PHONN model. In
Proceedings of the International Joint Conference on Neural Networks, Wash-
ington, DC (pp. 1828-1832).

Zhang, M., Murugesan, S., & Sadeghi, M. (1995, October 30-November 3). Polynomial
higher order neural network for economic data simulation. In Proceedings of the
International Conference on Neural Information Processing, Beijing, China (pp.
493-496).

Zhang, M., Zhang, J. C., & Fulcher, J. (1996, March 23-25). Financial simulation system
using higher order trigonometric polynomial neural network group model. In
Proceedings of the IEEE/IAFE Conference on Computational Intelligence for
Financial Engineering, New York, NY (pp. 189-194).

Zhang, M., Zhang, J. C., & Fulcher, J. (1997, June 8-12). Financial prediction system using
higher order trigonometric polynomial neural network group model. In Proceed-
ings of the IEEE International Conference on Neural Networks, Houston, TX (pp.
2231-2234).

Zhang, M., Zhang, J. C., & Fulcher, J. (2000). Higher-order neural network group models
for data approximation. International Journal of Neural Systems, 10(2), 123-142.



108   Fulcher, Zhang, and Xu

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Zhang, M., Zhang, J. C., & Keen, S. (1999, August 9-12). Using THONN system for higher
frequency non-linear data simulation and prediction. In Proceedings of the IASTED
International Conference on Artificial Intelligence & Soft Computing, Honolulu,
HI (pp. 320-323).

Zhang, M., Xu, S., & Fulcher, J. (2002). Neuron-adaptive higher-order neural network
models for automated financial data modelling. IEEE Transactions on Neural
Networks, 13(1), 188-204.

Additional Sources

Machine Learning Databases: http://www.ics.uci.edu/~mlearn/MLrepository.html

Australian Bureau of Statistics, 19. Free sample data: http://www.abs.gov.au/ausstats/
abs@.nsf/w2.3

National Library of Australia. Financial indicators: http://www.nla.gov.au/oz/stats.html



Hierarchical Neural Networks for Modelling Adaptive Financial Systems   109

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

Hierarchical
Neural Networks for
Modelling Adaptive
Financial Systems
Masoud Mohammadian, University of Canberra, Australia

Mark Kingham, University of Canberra, Australia

Abstract

In this chapter, an intelligent hierarchical neural network system for prediction and
modelling of interest rates in Australia is developed. A hierarchical neural network
system is developed to model and predict 3 months’ (quarterly) interest-rate fluctuations.
The system is further trained to model and predict interest rates for 6-month and 1-year
periods. The proposed system is developed with first four and then five hierarchical
neural networks to model and predict interest rates. Conclusions on the accuracy of
prediction using hierarchical neural networks are also reported.



110   Mohammadian and Kingham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

The prediction of uncertain dynamic systems, which are subject to external disturbances,
uncertainty, and sheer complexity, is of considerable interest. Conventional modelling
and prediction methods involve the construction of mathematical models describing the
dynamic systems to be controlled and the application of analytical techniques to the
model to derive prediction and control laws (Caudell, Xiao, & Healy, 2003; Kosko, 1992;
Medsker, 1995; Rakovic, 1977; Vidyasagar, 1978; Wang, Devabhaktuni, & Zhang, 1998;
Zadeh, 1965, 1973, 1994;). These models work well provided the system does meet the
requirements and assumptions of synthesis techniques. However, due to uncertainty or
sheer complexity of the actual dynamic system, it is very difficult to ensure that the
mathematical model does not break down.

Neural network technology is an active research area (Chester, 1993; Grossberg, 1988;
Kosko, 1992). It has been found useful when the process is either difficult to predict or
difficult to model by conventional methods. Neural network modelling has numerous
practical applications in control, prediction, and inference.

Time series are a special form of data where past values in the series may influence future
values, depending on the presence of underlying deterministic forces. These are trend
cycles and nonstationary behaviour in the time-series data are used in predictive models.
Predictive models attempt to recognise patterns and nonlinear relationships in the time-
series data. Due to the nature of data in time series, linear models are found to be
inaccurate and there has been a great interest in nonlinear modelling techniques.

Recently, techniques from artificial-intelligence fields such as neural networks (NNs),
fuzzy logic (FL), and genetic algorithms (GA) have been successfully used in the place
of the complex mathematical systems for forecasting of time series (Azoff, 1994; Bauer,
1994; Cox, 1993, 1994; Davis, 1991; Gallant, 1993; Goldberg, 1989; Karr, 1991; Lee, 1990;
Lee & Takagi, 1993; Mamdani, 1993; Michalewicz, 1992; Ruelle, 1989; Schaffer, 1994).
These new techniques are capable of responding quickly and efficiently to the uncer-
tainty and ambiguity of the system.

Neural networks (Azzof, 1994; Chester, 1993; Gallant, 1993; Hung, 1993; Karr, 1994;
Knigham, 1996; Kingham, & Mohammadian, 1996; Welstead, 1994; Zuruda, 1994;) can be
trained in an adaptive manner to map past and future values of a time series and thereby
extract hidden structure and relationships governing the data (Lapedes, & Farber, 1987).

Investors and governments alike are interested in the ability to predict future interest-
rate fluctuations from current economic data. Investors are trying to maximise their gains
on the capital markets, while government departments need to know the current position
of the economy and where it is likely to be in the near future for the well being of a
country’s people (Madden, 1995).

In the next section, the development of a hierarchical neural network system is consid-
ered. This section also describes the financial data that can be used to predict the
fluctuations of interest rates in Australia. The application of hierarchical neural network
systems for the prediction of quarterly interest rates in Australia is then considered.

Comparison of the results from single neural networks and the proposed hierarchical-
neural network-system is made. The long-term prediction of interest rates by increasing



Hierarchical Neural Networks for Modelling Adaptive Financial Systems   111

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the forecast time to first 6-month then 1-year time periods is also considered. A
hierarchical neural network system for predicting 6-month then 1-year time periods is
compared with a traditional neural network system. Results of simulations are presented
and conclusions and further-research directions are given in the last section of the
chapter.

Neural Networks for the
Prediction of Interest Rates

To predict fluctuations in the interest rate, a neural network system was created. There
are a number of steps to perform to create the neural network system:

1. Identify the inputs and outputs for neural network system.

2. Preprocess data if required, and split into training and test suites.

3. Create a neural network system to predict the interest using training data.

4. Use the developed neural network on test data to evaluate the accuracy of the
prediction of the system.

Identify the Inputs and Outputs for Neural Network
System

To design a neural network system, the actual inputs and outputs must first be
determined. There are a number of possible indicators that could be used to predict the
interest rate. Some of the main economic indicators released by the Australian Govern-
ment are:

• Interest Rate, which is the indicator being predicted. The interest rate used here
is the Australian Commonwealth government 10-year treasury bonds.

• Job Vacancies are where a position is available for immediate filling or for which
recruitment action has been taken.

• The Unemployment Rate is the percentage of the labour force actively looking for
work in the country.

• Gross Domestic Product (GDP) is an average aggregate measure of the value of
economic production in a given period.

• The Consumer Price Index (CPI) is a general indicator of the rate of change in
prices paid by consumers for goods and services.



112   Mohammadian and Kingham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Household Saving Ratio is the ratio of household income saved to a household’s
disposable income.

• Home Loans measure the supply of finance for home loans, not the demand for
housing.

• Average Weekly Earnings is the average amount of wages that a full-time worker
takes home before any taxes.

• Current Account is the sum of the balances on merchandise trade, services trade,
income, and unrequited transfers.

• Trade Weighted Index measures changes in Australian currency relative to the
currencies of our main trading partners.

• RBA Commodity Price Index provides an early indication of trends in Australia’s
export Prices.

• All Industrial Index provides an indication of price movements on the Australian
Stock Market.

• Company Profits are defined as net operating profits or losses before income tax.

• New Motor Vehicles is the number of new vehicles registered in Australia.

The current interest rate is included in the input indicators to the system as the predicted
interest rate is highly dependent on the current rate as there is only likely to be a small
fluctuation in the interest rate. The current interest rate gives the neural network system
an indication as to the expected “ball park” area of the predicted rate.

Preprocess Data

In most time-series predictions, there is some preprocessing of the data so that it is in
a format that the system can use. This may be where data is normalised so it fits within
certain boundaries, formatted into an appropriate form for the neural network system to
use. It is also where decisions on how the data is represented are made.

There are a number of ways in which the raw data from the above indicators could be
represented. Firstly, the system could just use the data “as is” and make its predictions
from that. Alternatively, the system could instead use the difference from the previous
quarter to the current quarter. The system could also take into consideration the effects
of inflation on the raw data and compensate appropriately.

In our system, the change from one quarter to the next is used for the GDP and CPI
indicators, while the interest rate is the actual reported rate from the Australian Bureau
of Statistics.

Once the data has been preprocessed, it must be split into some groups for the training
and testing of the system. For this system, the first two-thirds of the data was assigned
to the training set while the other one-third was assigned to the test set. The system uses



Hierarchical Neural Networks for Modelling Adaptive Financial Systems   113

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the training set to train the neural network system. The neural network system is then
tested on the test set.

Hierarchical Neural Network for Prediction of Interest
Rates

In this section, a neural network is created to predict the following quarter’s interest rate
in Australia. The system uses the economic indicators described earlier. A hierarchical
neural network system is used to predict the following quarter’s interest rate. The first
model uses the structure as shown in Figure 1, where the input parameters are split into
a number of smaller related groups and their output is fed into the final group, which then
produces the final interest-rate prediction. The second model used a single neural
network system where all the input parameters were presented to the system and an
interest-rate prediction was made.

In order for the neural network to use the economic data for predicting the following
quarter’s interest rate, a number of preprocessing steps must be performed. This allows
the data to be presented to the neural network in a format with which it can easily work.
Data presented to the neural network must fall within certain ranges (usually 0 to +1 or
-1 to +1 (Rao & Rao, 1994)) due to the fact that the network uses a Sigmoid Activation
function in its middle (or hidden) layers.

The neural network system formats the data for processing where the difference from the
current quarter to the previous quarter is used as the data for the input. The change from
one quarter to the next is used by all the indicators except the interest rate, where the
actual interest rate is used. For example the Gross Domestic Product (GDP) would be
formatted as shown in Table 1.

As Table 1 shows, there can still be a large range between the smallest and largest values.
To reduce this into a more useable range, the data is modified by the following equation:

New Data = (current data - Mean) / standard deviation                                    (1)

The new data that has been calculated represents the distance from the mean value as
a fraction of the standard deviation. This gives a good variability to the data, with only
a few values that are out of the 0 to +1 or -1 to +1 range.

Year Quarter Data Difference 
1986 1 79856.0 N/A 
1986 2 79520.0 -336.0 
1986 3 79619.0 99.0 
1986 4 79319.0 -300.0 
1987 1 80201.0 882.0 

Table 1. Difference in data from current quarter to previous quarter



114   Mohammadian and Kingham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The next step in the preprocessing stage is to squash the data so that it falls between
the required range of 0 to +1 for this simulation. For this system, a Sigmoid squashing
function is performed. The equation for this step is:

Squash data = 1 / (1 + exp(-Norm Data))) (2)

After performing the sigmoid squashing function on the data, all the values fall in the
range 0 to +1.

As well as using the indicators as inputs for the neural network, we also present data to
the system that relates to the rate of change in the data, which is the second derivative
of the data set (Rao & Rao, 1994). This accents changes in the data set between one
quarter and the next. The equation for this is:

mov diff = (current val - previous val ) / (current val + previous val) (3)

The above equation is performed on the original data (before any preprocessing steps
are performed) and will give a value between -1 and 1. The result from this equation
becomes an additional input to the system. Therefore, for each input into the system, an
additional input is created, doubling the number of input parameters to the neural
network.

Hierarchical Neural Network System

In this section, we develop a number of neural network systems. These are then combined
into a hierarchical neural network system to predict interest rates. Specifically, we look
at why a hierarchical neural network system is important compared to a single neural
network system and compare the results from single neural network systems with a
hierarchical neural network.

The hierarchical neural network structure is formed by having the most influential inputs
as the system variables in the first level of the hierarchy, the next important inputs in the
second layer, and so on.

The first level of the hierarchy gives an approximate output, which is then modified by
the second level and so on. This is repeated for all succeeding levels of the hierarchy.
One problem occurs when it is not known which inputs to the system have more influence
than the others. This is the case when using the economic indicators discussed earlier.
Statistical analysis could be performed on the inputs to determine which ones have more
bearing on the interest rate, however, without the advise of a statistician, it may be
difficult to decide which statistical method to use.

The method used in this chapter is to split the inputs into a number of related groups.
These inputs in these groups are related because they have some common connection



Hierarchical Neural Networks for Modelling Adaptive Financial Systems   115

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

between the inputs, such as dealing with employment, or imports and exports. This
changes the hierarchy into a two-level hierarchy, with the outputs from all the groups
in the top layer giving their results as inputs into the bottom layer (Figure 1). Using the
economic indicators already indicated we can develop five separate groups. These
groups are as follows:

1. Country Group — This group contains Gross Domestic Product and Consumer
Price Index.

2. Employment Group — This group contains the Unemployment Rate and the Job
Vacancies indicators.

3. Savings Group — This group contains Household Saving Ratio, Home Loans, and
Average Weekly Earnings.

4. Company Group — This group contains All Industrial Index, Company Profit, and
New Motor Vehicles indicators.

5. Foreign Group — This group contains Current Account, Trade Weight Index, and
also the RBA Commodity Index.

These five groups each produce a predicted interest rate for the next quarter. These are
then fed into the next layer of the hierarchy where the final predicted interest rate is found,
as shown in Figure 1. For each of these groups, the current quarter’s interest rate is
included in the indicators used. The current interest rate has the biggest influence on the
following quarters’ interest rates.

The five neural network systems created form the top layer of the hierarchy. They are
connected together to form a final neural network system. The final neural network
system uses the predicted interest rate from the five above groups to produce a final
interest-rate prediction.

In the following sections, we first create each of the neural network systems required for
the top layer of the hierarchy. We then combine first four and then all five groups together
to form the final hierarchical neural network system to predict the quarterly interest rate
in Australia.

Figure 1. Hierarchical neural network system for interest-rate prediction

 
     Country      Employment                Saving                   Company                 Foreign 
  

 
 
 
 
 

Final Neural Networks System  
 

Predicted Quarterly Interest Rate 
 



116   Mohammadian and Kingham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Country Neural Network

The country neural network contains information relating to countries current economic
performance. These indicators are: Consumer Price Index and Gross Domestic Product.
As a measure of how well a group predicts the following quarters’ interest rates, we
calculate the average error of the system for the training set and tests sets. This is
calculated using the following formula:

 E

abs Pi Ai

n
i

n

=
−

=
∑ ( )

1 (4)

where E is the average error, Pi is the predicted interest rate at time period i, Ai is the actual
interest rate for the quarter, and n is the number of quarters predicted.

The Table 2 shows the results for the average error for country group.

Table 2 shows the training-average error is less than the test-average error as the test
set uses data that has not been used in the training of the neural network system.

Company Neural Network

The company neural network contains information relating to the corporate sector of the
market. This information includes: All Industrial Index, Company Profit, and New Motor
Vehicle Registrations. These three indicators, combined with the Interest Rate, are used
to predict the following quarter’s interest rate.

Using the training data, the system is able to predict the following quarters’ interest rates
with only a few fluctuations from the actual interest rate. However, the same problems
occur when predicting the interest rate on the test data.

The average error of the company group of indicators is shown in Table 3. It shows that
there was a slight decrease in the average error of the simulation when compared to the

Training Average Test Average Overall Average 
0.401 1.023 0.591 

Table 2. Average error for neural network country group

Training Average Test Average Overall Average 
0.228 1.290 0.548 

Table 3. Average error for neural network company group



Hierarchical Neural Networks for Modelling Adaptive Financial Systems   117

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

country group. However, the test-set average error is larger than that of the country
group.

Employment Neural Network

The employment neural network contains information relating to the employment sector
of the economy. This information includes: Unemployment Rate and Job Vacancies.

These two indicators, combined with the Interest Rate, are used to predict the following
quarters’ interest rates. Using the training data, the neural network system is able to
predict the following quarter’s interest rate, with some fluctuations from the actual
interest rate. The performance of the neural network system for predicting the interest
rate on the test data looks slightly better than that achieved by the neural network in the
country or company groups. The average error of the employment group of indicators
is shown in Table 4.

Savings Neural Network

The savings neural network contains the following indicators: Savings Ratio, Home Loan
approvals, and Average Weekly Earnings. These three indicators, combined with the
Interest Rate, are used to predict the following quarter’s interest rate. The neural network
system for the savings group has a number of error amount peaks up as high as 2%,
however during the training period, there are only the two peaks, with the others
happening during the test period. This compares well with the other groups looked at so
far, as while there are some fairly large error amounts, there are a number of quarters where
there is a very low amount of error.

The average error of the savings group of indicators is shown in Table 5.

Training Average Test Average Overall Average 
0.352 0.742 0.471 

Training Average Test Average Overall Average 
0.378 0.923 0.534 

Table 4. Average error for neural network employment group

Table 5. Average error for neural network savings group



118   Mohammadian and Kingham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Foreign Neural Network

The foreign neural network contains information relating to Australia’s current economic
position in relation to the rest of the world. The indicators used are: Current Account,
Reserve Bank of Australia Commodity Price Index, and Trade Weight Index. These three
indicators, when combined with the Interest Rate, are used to predict the following
quarter’s interest rate. The neural network system for this group has a number of
fluctuations in interest rate that are not accurately predicted by the neural network
system. In one quarter (quarter 46), there is a difference between the actual and predicted
interest rate of more than 3%. However, the rest of the quarters perform better than this
and compare favourably with previously generated neural network system for other
groups.

The average error of the foreign group of indicators is shown in Table 6. It shows that
the training-average error amount is larger than that achieved by both the savings and
Company groups.

Building a Hierarchical Neural Network
System by Combining the Neural
Network Systems for Each Group

After creating the above neural network system, we must combine them so that we can
utilise the information they present and obtain better predictions of each quarter’s
interest rate than any of the neural network systems previously created.

Combining first four and then all five of the neural network systems from the previous
section created a hierarchical neural network system. The way these groups were
combined to form the hierarchical neural network system is illustrated in Table 7.

Combine four groups Combine five groups 
(as in Figure 1) 

company group company group 
country group country group 
employment group employment group 
savings group savings group 
 foreign group 

Table 7. Hierarchical neural network system groups

Training Average Test Average Overall Average 
0.387 0.714 0.487 

Table 6. Average error for neural network foreign group



Hierarchical Neural Networks for Modelling Adaptive Financial Systems   119

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A backpropagation neural network is used with two hidden layers, each consisting of
20 neurons; output layer consists of one node. This was found to produce a quicker and
more accurate result than using a single hidden layer. Sigmoid learning is used to predict
the following quarter’s interest rate. The error tolerance was set to 0.0001, the Learning
Parameter (Beta) was set to 0.6, momentum (alpha) and Noise Factor were both set to 0.
The neural network was trained for 10000 cycles.

As Table 8 shows, the range of results for the different systems is very diverse. The
training-average error, which is the average error, recorded during the training period of
40 quarters, ranges from a high value of 0.318 for the four groups down to 0.039 for the
all-indicator neural network. The all-indicator neural network was able to learn the
training data almost perfectly.

The test-average error is the average error recorded during the test period, which is where
the system is presented with inputs that it has not been trained on. These compare
favourably with all indicator neural network systems had disappointing test-average
error results.

Long-Term Predictions

So far we have looked at predicting the following quarter’s interest rate, which is 3 months
from the current quarter. There are a number of situations in which this time period is too
short a prediction length, such as when investors have to decide whether to move from
the bond market into the property market before the end of the financial year.

In the next section, a hierarchical neural network system for predicting interest rates, 6
months (biyearly) from the current quarter is developed, followed by a hierarchical neural
network system that predicts the interest rate one year ahead of the current quarter. The
structure and grouping of the inputs and neural network systems in the following section
for the hierarchical neural network system for long-term prediction is the same as the
hierarchical neural network system described above for quarterly interest-rate predic-
tion.

 Average 
Training Error 

Average 
Test Error 

Average 
Overall Error 

Four-group hierarchical neural 
network 

0.318 0.681 0.428 

Five-group hierarchical neural 
network 

0.354 0.607 0.431 

All indicators single neural network 0.039 0.880 0.296 
 

Table 8. Comparison of neural network systems



120   Mohammadian and Kingham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Comparison Between Neural Networks for Long-Term
Predictions

From the figures given in the table below, it can be seen that the results for long-term
predictions produce similar results to the short-term predictions (i.e. quarterly). Table 9
shows a comparison between the hierarchical neural network predictions and the single
neural network predictions for 6 months and 1 year.

From these results, it can be seen that the hierarchical neural network systems have a
much better test-average error when compared to the all indicator single neural network
systems. The training-average error results were similar for most of the prediction
systems, with only the all-indicator single neural network system, for both 6-month and
1-year predictions, which had very low training results. However, the average-test-error
amounts for the all-indicator single neural network systems were the highest of all the
systems.

From these results, we can conclude that using 14 economic indicators and training the
system for 40 quarters, the hierarchical systems provide much better prediction results
than the all-indicators single neural network systems. From the results obtained in Table
9, it can be seen that the average-training error results were similar for most of the
prediction systems, with only the all-indicators single neural network system, for both
6-month and 1-year predictions, which had very low training results. However, the
average test-error amounts for the all-indicator systems were the highest of all the
systems.

From these results, we can conclude that using 14 economic indicators and training the
system for 40 quarters, the hierarchical neural network systems provide much better
prediction results than the all-indicators single neural network systems. These results
are similar to the comparisons found in the previous section where the Interest Rate
predictions for one quarter by the hierarchical neural networks system provided better
prediction results than the all-indicator neural network system.

6-Month Predictions Training Error Test Error Overall Error 
Four-group hierarchical 
neural network 

0.196 0.794 0.378 

Five-group hierarchical 
neural network 

0.197 0.813 0.383 

All indicators single 
neural network 

0.079 1.421 0.480 

1-Year Predictions    
Four-group hierarchical 
neural network 

0.110 1.248 0.456 

Five-group hierarchical 
neural network 

0.139 1.114 0.435 

All indicators single 
neural network 

0.054 1.320 0.439 

Table 10. Comparison of results for long-term predictions



Hierarchical Neural Networks for Modelling Adaptive Financial Systems   121

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion and
Further Research Direction

This chapter has presented a method in which a hierarchical neural networks system can
be used to model and predict the fluctuations of the Australian Interest Rate using
Australian economic data.

The application of the proposed method to modelling and prediction of interest rate using
Australian economic indicators is considered.

From simulation results, it was found that the hierarchical neural networks system is
capable of making accurate predictions of the following quarter’s interest rate. The
results from the hierarchical neural networks were compared to a neural network that used
all the indicators as inputs.

Long-term predictions for 6 months and 1 year from the current quarter were then
undertaken with the hierarchical neural network systems proving to be more accurate in
their predictions than the neural network systems. These results were found to be similar
to those obtained when quarterly interest rates were predicted.

Having a time lag for some economic indicators may increase prediction accuracy. There
are some indicators whose effect is not felt on the interest rate for a number of quarters,
such as Consumer Price Index (Larrain, 1991). Delaying the indicator results in the system
using the indicator when it has more effect on the interest rate. The accuracy of the
hierarchical neural network system may also be increased if an indicator that fluctuates
greatly between quarters is smoothed out using some form of moving average (such as
2-quarter, or 6-month, moving average). This would then remove any sudden peaks (or
valleys) that the indicator may exhibit which could greatly affect the prediction accuracy.

Finally the structure of the hierarchical neural network system may affect the performance
of the system. This is the subject of our further research.

References

Azzof, E. M. (1994). Neural networks time series forecasting of financial markets. New
York: John Wiley & Sons.

Bauer, R. J. (1994). Genetic algorithms and investment strategies. New York: John Wiley
& Sons.

Caudell, T. P., Xiao, Y., & Healy, M. J. (2003), ELoom and Flatland: Specification,
simulation and visualization engines for the study of arbitrary hierarchical neural
architectures. In D. C. Wunsch, II, M. Hasselmo, K. Venayagamoorthy, & D. Wang
(Eds.), Advances in neural network research.

Chester, M. (1993). Neural networks: A tutorial. Englewood Cliffs, NJ: Prentice-Hall.

Cox, E. (1993, February). Adaptive fuzzy systems. IEEE Spectrum, 27-31.



122   Mohammadian and Kingham

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cox, E. (1994). The fuzzy systems handbook: A practitioner’s guide to building, using
and maintaining fuzzy systems. New York: Academic Press.

Davis, L. (1991). Handbook of genetic algorithms. New York: Van Nostrand Reinhold.

Gallant, S. I. (1993). Neural network learning and expert systems. Cambridge, MA: MIT
Press.

Goldberg, D. (1989). Genetic algorithms in search, optimisation and machine learning.
Reading, MA: Addison Wesley.

Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and achitectures.
Neural Networks, 1, 17-68.

Hung, C. (1993). Building a neuro-fuzzy learning control system. AI Expert, 8(11), 40-49.

Karr, C. (1991). Genetic algorithms for fuzzy controllers. AI Expert, 6(2), 26-33.

Karr, C. (1994). In R. R. Yager, & L. A. Zadeh (Eds.), Adaptive control with fuzzy logic
and genetic algorithms, fuzzy sets and neural networks, and soft computing. New
York: Van Nostrand ReinHold.

Kingham, M., & Mohammadian, M. (1996, November). Financial modelling and predic-
tion of interest rate using fuzzy logic and genetic algorithms. In 4th Australian and
New Zealand Intelligent Information Systems Conference (ANZIIS ’96).

Kosko, B. (1992). Neural networks and fuzzy systems, a dynamic system. Englewood
Cliffs, NJ: Prentice-Hall.

Kosko, B., & Isaka, S. (1993, July). Fuzzy logic. Scientific American, 76-81.

Lapedes, A., & Farber, R. (1987). Nonlinear signal processing using neural networks,
prediction and system modelling (Los Alamos Report No. LA-Ur-87-2662). Los
Alamos, NM: Los Alamos National Laboratory.

Larrain, M. (1991, September-October). Testing chaos and non linearities in T-bill rates.
Financial Analysts Journal, 51-62.

Lee, C. C. (1990). Fuzzy logic in control systems: Fuzzy controllers — Part I, Part II. IEEE
Transactions on Systems, Man and Cybernetics, 2092, 404-435.

Lee, M. A., & Takagi, H. (1993, July 17-22). Dynamic control of genetic algorithm using
fuzzy logic techniques. In Proceedings of the 5th International Conference on
Genetic Algorithms (pp. 76-83).

Madden, R. (1995). Measuring Australian economy (Catalogue No. 1360.0). Australian
Bureau of Statistics.

Mamdani, E. H. (1993). Twenty years of fuzzy control: Experiences gained and lessons
learnt. In Proceedings of 2nd IEEE International Conference on Fuzzy Systems,
San Diego, CA (pp. 339-344).

McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed
processing. Cambridge, MA: MIT Press.

Medsker, L. (1995). Hybrid intelligent systems. Norwell, MA: Kluwer Academic.

Michalewicz, Z. (1992). Genetic algorithms + data structure = evolution programs.
Spring Verlag.



Hierarchical Neural Networks for Modelling Adaptive Financial Systems   123

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Mohammadian, M., & Stonier, R. J. (1994, July 18-20). Tuning and optimisation of
membership functions of fuzzy logic controllers by genetic algorithms. In 3rd
International Workshop on Robot Human Communication RO-MAN’94, Japan,
Nagoya.

Rakovic, D. (1997). In L. Rakic, G. Kostopoulos, D. Rakovic, & D. Koruga (Eds.),
Proceedings of ECPD Workshop (ECPD) (pp. 189-204).

Rao, V. B., & Rao, H. V. (1994). C++ neural networks and fuzzy logic. MIS Press.

Refenes, A. (1995). Neural networks in the capital markets. New York: Wiley.

Ruelle, D. (1989). Chaotic evolution and strange attractors: The statistical analysis of
time series for deterministic nonlinear systems. Cambridge University Press.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explora-
tion in the microstructure of cognition. MIT Press.

Schaffer, J. D. (1994). Combinations of genetic algorithms with neural networks of fuzzy
systems. In Zurada, Marks, & Robinson (Eds.), (pp. 371-382).

Schwenker, F., & Kestler, H. A. (2001). 3-D visual object classification with hierarchical
RBF networks. In R. J. Howlett, & L. C. Jain (Eds.), Radial basis function neural
networks 2: New advances in design (pp. 269-294). Physica-Verlag.

Takagi, T., & Sugeno, M. (1983). Derivation of fuzzy control rules from human operator’s
control actions. In Proceedings of the IFAC Symposium on Fuzzy Information,
Knowledge Representation and Decision Analysis (pp. 55-60).

Vidyasagar, M. (1978). Nonlinear systems and analysis. Englewood Cliffs, NJ: Prentice
Hall.

Wang, F., Devabhaktuni, V., & Zhang, V. (1998). Hierarchical neural network approach
to the development of library of neural models for microwave design. IEEE
Transaction Microwave Theory and Techniques, 46, 2391-2403.

Welstead, T. (1994). Neural networks and fuzzy logic applications in C/C++. New York:
Wiley.

Zadeh, L. (1965). Fuzzy sets. Inf. Control, 8, 338-353.

Zadeh, L. (1973). Outline of a new approach to the analysis of complex systems and
decision processes. IEEE Transaction Syst. Man. Cybern, SMC-3, 28-44.

Zadeh, L. (1994). Fuzzy logic, neural networks, and soft computing. Communications of
the ACM, 37(3), 77-84.



124   Bose, Sethuraman, and Raipet

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

Forecasting the
Term Structure of

Interest Rates Using
Neural Networks

Sumit Kumar Bose, Indian Institute of Management, India

Janardhanan Sethuraman, Indian Institute of Management, India

Sadhalaxmi Raipet, Indian Institute of Management, India

Abstract

The term structure of interest rates holds a place of prominence in the financial and
economic world. Though there is a vast array of literature on the issue of modeling the
yield curve, there is virtually no mention of the issue of forecasting the yield curve. In
the current chapter, we apply neural networks for the purpose of forecasting the zero-
coupon yield curve. First the yield curve is modeled from the past data using the famous
Nelson-Siegel model. Then, forecasting of the various parameters of the Nelson-Siegel
yield curve is done using two different techniques: the multilayer perceptron and the
feed-forward network. The forecasted Nelson-Siegel parameters are then used to
predict the yield and the price of the various bonds. Results show the superiority of the
feed-forward network over the multilayer perceptron for the purposes of forecasting the
term structure of interest rates.



Forecasting the Term Structure of Interest Rates Using Neural Networks   125

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

The term structure of interest rates is a relation of the yield and the maturity of default-
free zero-coupon securities and provides a measure of the returns that an investor might
expect for different investment periods in a fixed income market. The term structure of
interest rates is a topic of central importance in economic and financial theory. As a result,
the modeling and estimation of the term structure has received considerable attention of
a number of researchers right from the early sixties. Broadly speaking, there are two
popular approaches for modeling the term structure of interest rates: a) fitting curves to
the data using standard statistical techniques and, b) dynamic asset-pricing method. The
parsimonious representation dictated by an exponential decay term such as Nelson and
Siegel (1987), Svensson (1994) and the spline representation categorized into parametric
and nonparametric splines such as Adams and van Deventer (1994), Fama and Bliss
(1987), Fisher, Nychka, and Zervos (1995), McCulloch (1971, 1975), McCulloch and Kwon
(1993), Tanggaard (1997), Vasicek and Fong (1982), and Waggoner (1997) belong to the
former approach of estimating the term structure. While Vasicek and Fong (1982) explore
the possibility of using exponential splines, McCulloch (1975) explores the possibility
of fitting parametric cubic splines. Dynamic asset pricing method of estimating the term
structure includes no-arbitrage models of Heath, Jarrow, and Morton (1992), Ho and Lee
(1986), Hull and White (1990) and the various equilibrium models such as the affine
general equilibrium models, for example the model of Pearson and Sun (1994). Affine
models hypothesize yield as affine function of the state variables and include the models
of Cox, Ingersoll, and Ross (1985) and Duffie and Kan (1996) apart from others. In spite
of a flurry of research activity on modeling the yield curve, there has been little research
effort on forecasting the yield curve (Diebold & Li, 2002). Forecasting the term structure
of interest rates is important from the viewpoint of investment decisions of firms, saving
decisions of consumers, policy decisions of governments, pricing and hedging deci-
sions of derivatives, valuation decisions of various financial products especially the
debt instruments and managing the bond portfolio apart from a host of other decisions.
No-arbitrage models are applicable only at a particular time slice as their focus is on fitting
the cross section of interest rates at a particular time. The models therefore fail to capture
the time-series dynamics. These models are hence not very useful for forecasting
purposes. The equilibrium models, on the other hand, are able to capture the time-series
dynamics, but fail to pay attention to fitting the cross section of interest rates at any given
time. Though the equilibrium models are better candidates in contrast to the no-arbitrage
models for forecasting purposes, the forecasts generated by the equilibrium models have
been shown to be extremely poor. Most models so far in the literature — including the
no-arbitrage models and the equilibrium models — fail to model the dynamic relationship
between the parameters of a term-structure model. Models of McCulloch (1993), Nelson-
Siegel, and others try to explain the movements of the term structure with the aid of
various factors and consequently attach labels to these factors having important
macroeconomic and monetary policy underpinnings. Others such as Pearson and Sun
(1994) interpret the factors in their model as “short rate” and “inflation,” and Litterman
and Scheinkman (1991) interpret the factors used in the model as “level,” “slope,” and
“curvature.” The labels attached to the factors stand for the influence the factors have



126   Bose, Sethuraman, and Raipet

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

on the yield curve and describe how the yield curve shifts or changes shape in response
to the changes in the factor. The forecasting ability of most of the existing term-structure
models, however, is poor. This has motivated us to try out the neural network theory for
the purposes of forecasting the yield curve in the present research.

Following the work of Diebold and Li (2002), in the present paper we adopt the Nelson-
Siegel (1987) framework to model the yield curve in each period. We then design a neural
network model to directly model the relationships between the time varying parameters
in each period.

The second section discusses the appropriateness of neural networks for financial
modeling. The third section describes the dynamics of the yield curve. The Nelson-Siegel
method of modeling the term structure and the interpretation of the various Nelson-Siegel
parameters are also provided. The fourth section describes the methodology and the
neural network architecture in detail. The fifth section discusses the results. Conclusion
and various issues associated with the application of the neural networks are explained
in the sixth section.

Why Neural-Network-Based
Models are Appropriate

Traditional forecasting techniques such as regression analysis, moving averages, and
smoothing methods require assumptions about the form of the population distribution.
For example, the regression models assume that the underlying population is normally
distributed. On the other hand, the neural network models (Hassoun, 1995) do not require
any such assumption about the distribution for the underlying population. Moreover,
the various factors in the economy interact in a number of complex ways to affect the yield
curve. The complexity of interactions is hard to model mathematically and the relation-
ships between the variables underlying these factors are more likely to be nonlinear than
linear. Thus assuming a mathematical model a-priori, may provide an oversimplistic
picture of the interactions than are actually present. Such nonlinear relationships
amongst the various factors make it difficult for the traditional methods to discern any
meaningful relationship between the factors, whereas neural networks are able to infer
such complex nonlinear relationships between the effected variable and its determinants.
Activities undertaken in the financial and economic systems, though designed by
humans, are highly complex. The complexity arises from the different expectations and
diverse reactions of the different players in the market. Such complex systems are difficult
to capture in terms of mathematical equations and hence neural-network-based models
seem appropriate. One of the most successful applications of neural networks in the
finance literature is of Hutchinson, Lo and Poggio (1994 ). They have shown that the
Black-Scholes formula can be successfully learnt using the neural network models.
Furthermore, they have demonstrated the ability of the neural network models to
successfully learn a relationship between the option and the underlying risk factors.



Forecasting the Term Structure of Interest Rates Using Neural Networks   127

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Yield-Curve Dynamics and the
Nelson-Siegel Method

Here we introduce the fundamentals of the yield curve. We also build the framework for
modeling and forecasting the yield curve, where we argue in favor of the appropriateness
of the Nelson-Siegel method for the purposes of modeling the yield curve.

If PV
t
(τ) represents the price of a τ period discount bond and y

t
(τ) represents its

continuously compounded zero-coupon nominal yield to maturity (YTM), then the

discount curve can be obtained from the yield curve as: ( )( ) ty
tP e τ ττ −= . We can then derive

the instantaneous forward rate curve from the discount curve as '( ) ( ) / ( )t t tf P Pτ τ τ= − . The

relationship between the yield to maturity and the forward rate is therefore given as:

0

( )
( ) t

t

f u du
y

τ

τ
τ

= ∫

or,

'( ) ( ) ( )t t tf y yτ τ τ τ= +

This means that the zero-coupon yield is an equally weighted mean of the forward rates.
It is therefore possible to price any coupon bond as the sum of the present values of future
cash flows (coupon payments and the principal payment), if the yield curve or the
forward-rate curve is given.

Nelson-Siegel Yield Curve and Its Interpretation

Nelson-Siegel models the instantaneous forward-rate curve as:

0 1 2( ) t t

t t t t tf e eλ τ λ ττ β β β λτ− −= + + .

This implies that the equation of the Nelson-Siegel yield curve is given as:

0 1 2

1 1
( )

t t

t
t t t t

t t

e e
y e

λ τ λ τ
λ ττ β β β

λτ λτ

− −
−   − −= + + −   

   
.



128   Bose, Sethuraman, and Raipet

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Nelson-Siegel forward-rate curve can be interpreted as laguerre function plus a constant.
Laguerre function is a highly popular mathematical approximating function and is
polynomial times an exponential decay term. The rate of exponential decay is governed
by the parameter λ

t
. Large values of λ

t 
produce faster decay and can fit the curve at short

maturities; small values of  λ
t 
produce slower decay and better fit the curve at longer

maturities. β
0t
, β

1t
, β

2t 
can be interpreted as three latent factors. β

0t 
can be interpreted as

the long-term factor, as the loading on β
0t 

is 1, which is a constant and does not change

with time. β
1t 

can be interpreted as the short-term factor as the loading on β
1t 

is 
1 t

t

e λ τ

λτ

− −
 
 

,

a function that starts at 1 and in the limit decreases to zero exponentially and monotoni-
cally. β

2t
, can similarly be interpreted as the medium-term factor as the loading on β

2t 
that

is, 
1 t

t

t

e
e

λ τ
λ τ

λτ

−
− − − 

 
 first increases from 0 and then drops down to 0. Thus, the three factors

β
0t
, β

1t
, β

2t
 govern three important aspects of the yield-curve level, slope, and curvature

and can therefore appropriately be called level, slope, and curvature respectively instead
of long-term, short-term, and medium-term.

Justification for Using the Nelson-Siegel Model

The justification of using the Nelson-Siegel exponential functional form over the spline-
based methods is many. First, because of its parsimony, its users are able to remove noise
from the data and avoid overfitting of risk. This allows identification of only the salient
features of the bond dataset and at the same time avoids fitting the random features of
the data set that may not recur. Second, the empirical analysis by Litterman and
Scheinkman (1991) has shown that three factors are sufficient to completely explain the
dynamics of the term structure of interest rates. Third, the number of parameters to be
estimated in the Nelson-Siegel framework is much less than that in a spline-based
approach. Fourth, the assumption of a unique functional form for the discount function
over the complete range of maturities allows some of the fundamental properties of the
discount function to be imposed a-priori. Fifth, comparative assessment of many a past
research works has shown that Nelson and Siegel and its extension by Svensson (1994),
are better performers than their spline counterparts. Sixth, the assumption of a unique
functional form for the discount function automatically imposes the no-arbitrage condi-
tion because it is possible to obtain the discount function only if the assumption of no
arbitrage holds. The functional form postulated by Nelson and Siegel is able to accom-
modate diverse shapes of the forward rate curves like the monotonic and humped shapes.
Moreover it provides an intuitive explanation of the parameters: β

0
 is the long rate, β

1
 is

the short rate and β
2
 is the weight attached to the medium rate. This allows us to forecast

long- and short-rate movements. Also, as suggested by Nelson and Siegel, the existing
framework provides a solid ground for generalization to higher-order models.



Forecasting the Term Structure of Interest Rates Using Neural Networks   129

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Methodology

In this chapter, we adopt the Nelson-Siegel model for fitting the yield data. Once the
Nelson-Siegel exponential form has been selected as the approximating function, the
parameters of the function have to be estimated using one of the several approaches such
as maximum likelihood, iterative programming, weighted least squares, linear program-
ming amongst a host of other approaches. In this chapter, we adopt the method of least
squares. We estimate the parameters β

0t
, β

1t
, β

2t 
in the manner illustrated in the original

work of Nelson and Siegel. For each day t we fix the value of λ
t
 and compute the values

of the two regressors, that is the factor loadings, and then apply the least-square method
to estimate β

0t
, β

1t
, β

2t
. This is repeated for different values of λ

t
, and that value of λ

t 
is

retained for which the error is least. When we apply the least square method to the yield
data of each day, we get the time series of the estimates of β

0t
, β

1t
, β

2t
. Figure 1 shows the

modeled Nelson-Siegel yield curve for the two selected dates. It is seen from the diagram
that the three-factor Nelson-Siegel yield curve can sufficiently replicate the different
shapes of the yield curve.

The values of the parameters obtained by fitting the Nelson-Siegel curve to the yield data
of the previous day is fed to a neural network for forecasting the parameters of the Nelson-
Siegel curve for the coming day. This is then used to predict the yield and hence the price
of the bond.

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

0.
02

0
.8

1

1
.5

9

2
.3

8

3.
16

3
.9

5

4
.7

4

5.
52

6
.3

1

7
.1

7.
88

8
.6

7

9
.4

5

10
.2 11

1
1.

8

1
2.

6

13
.4

1
4.

2

1
5

15
.7

16
.5

1
7.

3

1
8.

1

18
.9

1
9.

7

Maturity (years)

Sp
ot

 in
te

re
st

 r
at

es

24-Jan-03 25-Jan-03

Figure 1. Plot of the term structure (zero-coupon yield curve) for dates 24 January 2003
and 25 January 2003



130   Bose, Sethuraman, and Raipet

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Modeling Yield Curves

As already mentioned, we fit the yield data using Nelson-Siegel’s three-factor model.

0 1 2

1 1
( )

t t

t

t t t t
t t

e e
y e

λ τ λ τ
λ ττ β β β

λτ λτ

− −
−   − −= + + −   

   
.

The reason for choosing the Nelson-Siegel model for fitting the yield curve as cited earlier
is the natural interpretation of the three beta parameters of the curve and the easiness
with which it can model the different shapes of the curve. It is parsimonious and has a
discount function that starts at zero and in the limit approaches zero. Bliss (1997) made
a comparison of the different yield-curve fitting methods and noted that the Nelson-
Siegel method outperforms most other methods. Moreover Diebold and Li (2002) show
the ability of the Nelson-Siegel model to replicate the various stylized facts of the yield
curve and the inability of affine models to do the same (Duffee, 2002). Hence, the Nelson-
Siegel method is a natural choice for modeling the yield curve.

Forecasting the Yield-Curve Parameters

Neural Network Architecture

The Nelson-Siegel parameters viz β
0
, β

1
, β

2
 and λ in period t-1 are defined as inputs and

the Nelson-Siegel parameters in period t are defined as the output to which the neural
network maps the inputs. After sufficient training (MSE of 0.01 or 1000 epochs which ever
is earlier), the network can be used to predict yield for an out-of-sample period. We
consider models based on two different network architectures — the first based on
multilayer perceptron and the second based on feed-forward networks.

Multilayer Perceptron

The perceptron is the simplest neural network and consists of a single input layer and
a single output layer. The perceptron is a feed-forward network where neurons in any
layer are only connected to successor layers. This means there cannot be any connec-
tions from one layer to layers other than the adjacent ones. The multilayer perceptron
can contain an arbitrary number of hidden layers. Input patterns propagate through the
multilayer perceptron using the same feed-forward algorithm as the perceptron. The main
difference is the addition of a weight matrix between each hidden layer or between a
hidden layer and the output layer. As opposed to a threshold activation function, many
multilayer perceptrons use an alternate activation function known as the “Linear Tanh”
activation function. The Linear Tanh Axon substitutes the intermediate portion of the
tanh by a line of slope b, making it a piecewise linear approximation of the tanh.



Forecasting the Term Structure of Interest Rates Using Neural Networks   131

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Backpropagation learning is a popular learning algorithm that is used in many multilayer
perceptrons. The algorithm creates an error function that is defined over the entire
possible space of the weights for the network. This global minimum represents an error
value of zero and would correspond to the ideal weight values for a given input pattern.
Weights are updated by following the steepest slope or gradient of the error function.
However, a problem arises when local minima are present. The algorithm may find a local
minimum value as opposed to the global minimum leaving the optimal weight values
unobtainable. Thus, the weights that may be obtained after the termination of the
algorithm may be substantially different from the desired global minima that capture the
desired features of the underlying problem. This problem is particularly acute when the
error surface is highly uneven. We therefore use a variation of the backpropagation
learning algorithm called the momentum learning rule (Haykin, 1999), with an additional
momentum term in the weight updation rule. Multilayer perceptrons have been widely
used in various financial-forecasting techniques like the currency exchange-rate predic-
tions, gilt futures pricing, and so on (Refenes, Azema-Barac, Chen, & Karoussos, 1993).

Generalized Feed-Forward Network

Generalized feed-forward networks are a generalization of the MLP such that connections
can jump over one or more layers. In theory, an MLP can solve any problem that a
generalized feed-forward network can solve. In practice, however, generalized feed-
forward networks often solve the problem much more efficiently. A classic example of this
is the two-spiral problem (Whitley & Karunanithi, 1991).

Learning Algorithm

We used the momentum learning rule (Haykin, 1998), a supervised learning rule, for both
MLP as well as feed-forward training. The momentum learning is similar to the
backpropagation algorithm (BP). The key idea is to present the input vector to the
network; calculate in the forward direction of the output of each layer and the final output
of the network. For the output layer, the desired values are known and therefore the
weights can be adjusted as is done in the case of single layer network. To calculate the
weight changes in the hidden layer, the error in the output layer is backpropagated to
these layers according to their connecting weights. This process is repeated for each
sample in the training set. Momentum learning is an improvement over the gradient
descent search in the sense that a memory term (the past increment to the weight) is used
to speed up and stabilize convergence (Rao & Principe, 2000). The weight increment is
then adjusted to include some fraction a of the previous weight update; therefore it
becomes:

( 1) ( ) (1 ) ( ) ( 1)w m w m a Dw m aDw m+ = + − + −

Where Dw(m–1) = w(m) – w(m–1) is the past weight change.



132   Bose, Sethuraman, and Raipet

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The fraction a should not be negative, and for stability it must be less than 1.0. Normally,
it should be set between 0.5 and 1.0. If a = 0, the algorithm is reduced to the standard
backpropagation. This rule is called momentum learning due to the form of the last term,
which resembles the momentum in mechanics. For the current experiment, we chose a
value of 0.7 for the momentum parameter a. Thus, the weights are changed proportionally
to how much they were updated in the last iteration. Therefore, if the search is going down
the hill and finds a flat region, the weights are still changed, not because of the gradient,
but because of the rate of change in the weights.

Data Samples: Testing and Training Sets

The data of different bonds maturing at various time intervals offering different rate of
returns for the purpose of conducting the experiments is taken from NSE (National stock
exchange, India).

• Training-Data Set — The training-data set consisted of 600 Nelson-Siegel param-
eters (300 in years 2001 & 2002 and 300 in years 2003 & 2004).

• Testing-Data Set — The testing-data set consisted of 60 betas (30 in years 2001
and 2002 and 30 in years 2003 and 2004). Additionally, 20 days in 2004 were selected
at random from the test-data set, and the forecasted betas corresponding to these
days were used to forecast the prices for various different bonds. An average 20
different bonds were taken on each of the 20 days (thus 400 bond instances) for
the previously mentioned testing purposes.

Error Measures of Prediction

Two different measures were considered for assessing the quality of forecast. The first
one is the mean-square error (MSE), and the second measure is the percentage error in
prediction. Mean-squared error is calculated as the mean of squares of the difference
between market price and the predicted price. Thus:

2( )Market Price of the bond Predicted Price
MSE

Total number of test samples

 Σ −=  
 

Percentage error in prediction is calculated by the following formula:

( )
% *100

Market Price of the bond Predicted Price
error in Prediction

Market Price of the bond

 −=  
 



Forecasting the Term Structure of Interest Rates Using Neural Networks   133

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Results

Several experiments were conducted with various architectures of MLP & feed-forward
networks. After a number of experiments, the number of hidden layers in both the cases
was fixed at one. Each hidden layer consisted of four processing units. Theoretically, it
has been shown that MLPs with a wide variety of continuous hidden-layer activation
functions, one hidden layer with an arbitrarily large number of units suffices for the
“universal approximation” property (Hornik, 1993; Hornik, Stinchcombe, & White,1989).

Fit of the parameters, that is β
0
, β

1
, β

2
, λ during the testing phase of MLP are depicted in

Figure 2(a)-(d). Similar diagrams can be shown for the feed-forward network, though they
are purposefully avoided. Table 1 shows the average error in prediction of β

0
, β

1
, β

2 
 and

λ with actual values modeled by Nelson-Siegel method on the test-data set. However,
what matters most is the error generated in forecasting the bond price calculated using

Actual Desired Output and Neural-network Output:beta0

0

2

4

6

8

10

12

14

16

18

1 26 51 76 101 126 151 176 201 226 251

Exemplar

O
ut

pu
t

Actual Desired Output and Neural-network Output: beta1 

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
1 26 51 76 101 126 151 176 201 226 251

Exemplar

O
ut

pu
t

Figure 2(b). Variation between actual and neural network values of β
1
 on out-of-

sample data (MLP)

Figure 2(a). Variation between actual and neural network values of β
0 

on out-of-
sample data (MLP)



134   Bose, Sethuraman, and Raipet

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2(c). Variation between actual and neural network values of β
2 
on out of sample

data (MLP)

Actual Desired Output and Neural Network Output:beta2

-20

-15

-10

-5

0

5

10

1 26 51 76 101 126 151 176 201 226 251

Exemplar

O
ut

pu
t

 

Figure 2(d). Variation between actual and neural network values of  λ on out-of-sample
data (MLP)

��������	
��	������������	�������	����������������

0

2

4

6

8

10

12

14

16

18

1 26 51 76 101 126 151 176 201 226 251

Exemplar

O
ut

pu
t

Table 1. Average percentage error in prediction  of β
0
, β

1
, β

2
 and  λ using MLP and feed-

forward architectures

Average Percentage Error 
Parameters 

(MLP) (Feed forward) 

0β  7.09128 6.851593 

1β  6.00752 5.86612 

2β  13.59411 13.05343 

� 16.85239 16.91081 



Forecasting the Term Structure of Interest Rates Using Neural Networks   135

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the forecasted values of the Nelson-Siegel parameters of the yield curve. So, in some
sense, the comparison of the forecasted Nelson-Siegel parameters with the modeled
Nelson-Siegel parameters on the test data is of only of pseudoimportance.

Tables 2 and 3 give the MSE and the average percentage error in prediction of bond prices
for both MLP and feed-forward networks. Comparative performance of the feed-forward
networks is better than the MLP. The model based on a feed-forward network is better
able to capture the diverse facets of the term structure than the model based on multilayer
perceptron.

The models where we make use of the Nelson-Siegel method along with the neural
network models produce significantly fewer pricing errors and seem to forecast the yield
and bond price accurately. Percentage error in prediction is less than 1% in both the
network models, which indicates a good forecast.

From Figure 2(d) it can be observed that the fit for the parameter λ on the out-of-the-test
samples is not quite good. However, the low values for the errors for predicting bond
prices using the forecasted parameters suggest that λ does not contribute much toward
the forecasting of the yield curve.

Conclusion and Issues

In this chapter, we have successfully established neural networks as a tool for forecast-
ing the term structure of interest rates. The forecasted yield curve can not only be used
for predicting the yield and the bond prices but also for predicting various other economic
indicators like gross domestic product, growth, inflation, and so on. However, one of the
major limitations of the neural network is its inability to explain its behavior. It is difficult,
for example, to explain the relative importance of the various inputs. Often, weight-
sensitivity analysis is carried out to develop an understanding of the model’s behavior.
Though we have not done the weight sensitivity analysis, this forms the basis for the
formulation of rules, which govern the dynamics of the yield curve as exemplified by the
model. Moreover, the generalization ability and hence the predictive ability of the
networks decreases as the training time increases. The net is able to decipher the

Multilayer Perceptron Feed-forward Network 
7.377 4.094 

Multilayer Perceptron Feed-forward Network 

0.00709 -0.00023 

Table 3. Average percentage error in prediction of bond price

Table 2. Mean-square error in prediction of bond price



136   Bose, Sethuraman, and Raipet

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

important features in the dataset after a few passes only. As training progresses, the
possibility of overfitting of the data is extremely high. The generated results will have
a high R-square with little practical significance, as the ability to recognize and predict
patterns outside the training set will be severely hampered. Also, a small change in
network design, learning times, and so on, can produce a large change in the network
behavior; and, as a result, stability of the predictions by the neural networks may be
adversely affected. Choice of an appropriate learning rate is a major issue while
developing models based on neural networks. A small value of the learning rate implies
lower speed of convergence while a large value of the learning rate results in oscillations.
Correctly identifying the optimal network architecture, choosing the appropriate initial
weights, and selecting the right activation function governs the predictive capability and
hence the performance of the neural network model. It has also been shown that the use
of only a few significant variables will produce considerably better results than trying
to use every available variable as inputs to the neural network model. Thus, considerable
domain expertise is needed while developing a neural network model for various
applications. In spite of the improved problem-solving capability of neural networks,
tackling the issues cited earlier demands experience on working with the neural networks
apart from understanding the domain to which they are being applied. The future scope
of work is to develop some sort of rule base using the domain expertise of analysts to
make accurate forecasts. This can be achieved by incorporating the fuzzy systems inside
the neural network learning.

References

Adams, K. J., & van Deventer, D. (1994). Fitting yield curves and forward rate curves with
maximum smoothness. Journal of Fixed Income, 4(1), 52-62.

Bliss, R. (1997). Testing term structure estimation methods. Advances in Futures and
Options Research, 9, 97-231.

Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A theory of the term structure of interest
rates. Econometrica, 53, 385-407.

Diebold, F. X., & Li., C. (2002). Forecasting the term structure of government bond yields.
Unpublished manuscript, University of Pennsylvania, Philadelphia, PA.

Duffee, G. (2002). Term premia and interest rate forecasts in affine models. Journal of
Finance, 57, 405-443.

Duffie, D., & Kan, R. (1996). A yield-factor model of interest rates. Mathematical
Finance, 6, 379-406.

Fama, E., & Bliss, R. (1987). The information in long-maturity forward rates. American
Economic Review, 77, 680-692.

Fisher, M., Nychka, D., & Zervos, D. (1995). Fitting the term structure of interest rates
with smoothing splines (FEDS Working Paper).

Hassoun, M. H. (1995). Fundamentals of artificial neural networks. Cambridge, MA:
MIT Press.



Forecasting the Term Structure of Interest Rates Using Neural Networks   137

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Haykin, S. (1998). Neural networks: A comprehensive foundation (2nd ed.) New York:
Prentice-Hall.

Heath, D., Jarrow, R., & Morton, A. (1992). Bond pricing and the term structure of interest
rates: A new methodology for contingent claims valuation. Econometrica, 60, 77-
105.

Ho, T. S., & Lee, S. B. (1986). Term structure movements and the pricing of interest rate
contingent claims. Journal of Finance, 41, 1011-1029.

Hornik, K. (1993). Some new results on neural network approximation. Neural Networks,
6, 1069-1072.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2, 359-366.

Hull, J., & White, A. (1990). Pricing interest-rate-derivative securities. Review of Finan-
cial Studies, 3, 573-592.

Hutchinson, J. M., Lo, A., & Poggio, T. (1994). A nonparametric approach to pricing and
hedging derivative securities via learning networks. Journal of Finance, 49, 851-
889.

Litterman, R., & Scheinkman, J. (1991). Common factors affecting bond returns. Journal
of Fixed Income, 1, 51-61.

McCulloch, J. H. (1971). Measuring the term structure of interest rates. Journal of
Business, 34, 19-31.

McCulloch, J. H. (1975). The tax adjusted yield curve. Journal of Finance, 30, 811-830.

McCulloch, J. H., & Kwon, H. (1993). U.S. term structure data, 1947-1991 (Working
Paper 93-6). Ohio State University.

Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural networks.
Cambridge, MA: MIT Press.

Nelson, C. R., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of
Business, 60, 473-489.

Pearson, N., & Sun, T. S. (1994). Exploiting the conditional density in estimating the term
structure: An application to the Cox, Ingersoll and Ross model. Journal of Finance,
54, 1279-1304.

Rao, Y. N., & Principe, J. C. (2000). A fast, on-line algorithm for PCA and its convergence
characteristics. In Proceedings IEEE Workshop on Neural Networks for Signal
Processing.

Refenes, A. N., Azema-Barac, M., Chen, L., & Karoussos, S. A. (1993). Currency
exchange rate prediction and neural network design strategies. London: Springer-
Verlag, Limited.

Svensson, L. (1994). Estimating and interpreting forward interest rates: Sweden 1992-
1994 (IMF Working Paper  No. WP/94/114). Washington, DC: National Bureau of
Economic Research, Inc.

Tanggaard, C. (1997). Nonparametric smoothing of yield curves. Review of Quantitative
Finance and Accounting, 9(3), 251-267.



138   Bose, Sethuraman, and Raipet

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Vasicek, O. A., & Fong, H. G. (1982). Term structure modeling using exponential splines.
Journal of Finance, 37, 339-348.

Waggoner, D. (1997). Spline methods for extracting interest rate curves from coupon
bond prices (Working Paper 97). Georgia: Federal Reserve Bank of Atlanta.

Whitley, D., & Karunanithi, N. (1991). Generalization in feed forward neural networks. In
International Joint Conference on Neural Networks, Vol. 2, Seattle, WA (pp. 77-
82).



Modeling and Prediction of Foreign Currency Exchange Markets   139

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

Modeling and
Prediction of

Foreign Currency
Exchange Markets

Joarder Kamruzzaman, Monash University, Australia

Ruhul A. Sarker, University of New South Wales, Australia

Rezaul K. Begg, Victoria University, Australia

Abstract

In today’s global market economy, currency exchange rates play a vital role in national
economy of the trading nations. In this chapter, we present an overview of neural
network-based forecasting models for foreign currency exchange (forex) rates. To
demonstrate the suitability of neural network in forex forecasting, a case study on the
forex rates of six different currencies against the Australian dollar is presented. We used
three different learning algorithms in this case study, and a comparison based on
several performance metrics and trading profitability is provided. Future research
direction for enhancement of neural network models is also discussed.



140   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

In an era of increasing global competition and integrated economies, the forex rate has
become one of the key factors for international trading and open economics. Exchange
rates become important when a business or individual purchases goods or services
produced in another country because the buyers require to pay the total cost using an
appropriate currency demanded by the producer. So the buyers have to purchase other
currency for running their businesses. Foreign currency traders make a profit through
buying and selling currencies at different rates with fluctuating demands. In fact, the
exchange rates play a crucial role in controlling the dynamics of the import-export
markets. For example, if the Australian currency is weaker than the U.S. currency, the U.S.
traders would prefer to import certain Australian goods, and the Australian producers
and traders would find the U.S. as an attractive export market. On the other hand, if
Australia is dependent on the U.S. for importing certain goods, it will then be too costly
for the Australian consumers under the current exchange rates. In that case, Australia
may look for a cheaper source that means shifting from the U.S. to a new import market.
As we can imagine, the trade relation and the cost of export/import of goods is directly
dependent on the currency exchange rate of the trading partners. Although the foreign
exchange market has been estimated at a daily turnover of more than US$1 trillion (Gan
& Ng, 1995), the exchange rates vary continuously during the trading hours. As a result,
an accurate prediction of exchange rates is a crucial factor for the success of many
businesses and financial institutions.

The risk associated with exchange rate fluctuations that puts companies and individuals
into risks has increased substantially over the past decades. In particular, after the
breakdown of the Bretton Woods Agreement in the early 1970s, the foreign currency
market has become volatile. The market has experienced unprecedented growth over the
last few decades, mainly due to floating exchange rates and a push towards further
liberalization of trades through the General Agreement on Trade and Tariffs. At times,
combined with other financial risks, the exchange rate market becomes so volatile that
it contributes to leading the whole national economy into crisis which, for example, was
evident in Mexico (1994), Southeast Asia (1997), Russia (1998), and Argentina (2002).

Due to the reasons as outlined earlier, significant efforts have been made over the years
to predict foreign exchange rates in order to facilitate financial decision making and risk
management. However, exchange rate behavior may exhibit complex characteristics that
make it difficult to predict exchange rates within an acceptable accuracy limit (Chinn,
2003). This is illustrated by a recent comment by Alan Greenspan (2002): “There may be
more forecasting of exchange rates, with less success, than almost any other economic
variable.” Furthermore, opposing views existed for years between practicing and aca-
demic communities about statistical properties of exchange rates. Practitioners believed
exchange rates to have persistent trends while academics considered evidences support-
ing random walk hypothesis and efficient market hypothesis, which implies that rate
changes are independent. The recent empirical studies have presented strong evidence
that exchange rates are not independent of the past changes and dismissed the prevalent
view in economic literature that exchange rates follow a random walk (Tenti, 1996). There
is evidence that shows little support for linear dependence and exhibits the existence of



Modeling and Prediction of Foreign Currency Exchange Markets   141

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

nonlinearities in exchange rates (Fang, Lai, & Lai, 1994; Grauwe, Dewachter, & Embrechts,
1993). The rates are also characterized as high noise, nonstationary, and chaotic, using
high frequency (weekly, daily, or even hourly) past prices (Deboeck, 1994; Tinte, 1996;
Yaser & Atiya, 1996). These inherent attributes suggest that past behavior can not be
fully exploited to establish the dependency between future rates and that of the past. One
general assumption made in such cases is that the historical data incorporate all those
behaviors. As a result, the historical data are the major players in the prediction process.
Although the well-known conventional forecasting techniques provide predictions for
many stable forecasting systems of acceptable quality, these techniques seem inappro-
priate for non-stationary and chaotic systems such as forex.

Fundamental vs. Technical Analysis

All the various methods that have been developed in modeling forex rates can be broadly
categorized into the following two groups.

• Fundamental analysis — In this case, the analysis is based on the exact knowledge
of various factors that influence the economy and the relationship between those
factors. The analysis focuses in depth at the financial condition of the country and
studies the effect of supply and demand on each currency. The empirical models,
like, the balance-of-payment-flow model, currency substitution model, monetary
model of forex, and byrid monetary/fiscal policy model are some of the examples of
fundamental analysis.

• Technical analysis — In this case, the prediction relies on the discovery of strong
empirical regularities by analyzing a set of historical data by various methods like
time series analysis, regression analysis, expert systems, and so on. It assumes that
the future movement follows some trends and these trends can be captured.

The main problem with fundamental analysis is that the knowledge of the rules that
govern the forex behavior is not readily available (Kodogiannis & Lolis, 2001). Research
has shown that fundamental analysis-based models can be used to explore the long-term
trends in forex movements but are inadequate in explaining the short- and medium-term
fluctuations (Rosenberg, 1981). On the other hand, many technical-analysis-based
models have been found to be successful in forecasting short-term exchange rates. The
success of technical analysis-based models has made this analysis extremely popular
among market participants (Ghoshray, 1996).



142   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Neural Network-Based Forecasting of
Exchange Rates

Many techniques have been proposed over the past few decades for reliable forecasting
of exchange rates. The traditional statistical forecasting methods — for example, the Box-
Jenkins’ Auto-Regressive Integrated Moving Average (ARIMA) — have relied on linear
models (Box & Jenkins, 1976). However, ARIMA is a general univariate model and it is
developed based on the assumption that the time series being forecasted are linear and
stationary. The drawback of the linear model has led to the development of alternative
methods among which artificial neural networks (ANNs) have emerged as a promising
forecasting tool. Over the last decade, researchers and practitioners alike have shown
growing interest in applying ANNs in time series analysis and forecasting. ANNs are an
effective tool to realize any nonlinear input-output mapping. It has been demonstrated
that, with sufficient number of hidden layer units, an ANN is capable of approximating
any continuous function to any desired degree of accuracy (Cybenko, 1989). Due to the
nature of their learning process, ANNs can be regarded as nonlinear autoregressive
models.

Neural networks, well known for their approximation capability in prediction and system
modeling, have recently demonstrated their great applicability in many time series
analysis and forecasting applications in diverse disciplines. ANNs assist multivariate
analysis. Multivariate models can rely on greater information, where not only the lagged
time series is being forecast, but also other indicators (such as technical, fundamental,
intermarker, etc., for the financial market) are combined to act as predictors. In addition,
ANNs are more effective in describing the dynamics of nonstationary time series due to
their unique nonparametric, noise-tolerant, and adaptive properties.

One of the early works using ANNs for forex forecasting was done by Refenes, Barac,
Chen, and Karoussos (1992). The system used a standard backpropagation algorithm
(Rumelhart, 1986) to predict the exchange rate between the U.S. dollar and deutsche mark
using the data for the period 1988-1989 on hourly updates. The architecture consisted
of a two-layer network with a fixed number of inputs modeling a window moving along
the time in fixed steps. The first 6 months were used for training and the following 6
months as the test set. The network produced accurate predictions, making at least 20%
profit on the last 60 trading days of 1989. Gan and Ng (1995) developed two ANN models,
also built on standard backpropagation algorithm, using univariate and multivariate time
series to forecast the Swiss franc, deutsche mark, and yen against the U.S. dollar. Their
results showed that ANN models were able to predict better than a benchmark random
walk model. Tenti (1996) proposed recurrent neural network models with the view that
such networks, where input layers’ activity patterns pass through the network more than
once before generating a new output pattern, are capable of learning extremely complex
patterns. He tested three different recurrent architectures by comparing their prediction
accuracy of the deutsche mark against the U.S. dollar. The author reported that two of
three recurrent architectures produced better profitability and generalization ability than
standard backpropagation on repeated tests performed in his experiments. Profitability
was measured in terms of Return on Equity (ROE) and Return on Capital (ROC).



Modeling and Prediction of Foreign Currency Exchange Markets   143

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Francesco and Schiavo (1999) performed experiments with a long period of data, the
monthly exchange rate of four major European currencies (French franc, deutsche mark,
Italian lira and British pound against the U.S. dollar) from 1973 to 1995 to provide a
comparative evaluation of neural network and chaotic models over the same data sets
and variables. A two-layer network trained by standard backpropagation was consid-
ered. The prediction performances were measured in terms of normalized mean-squared
error and statistical significance. Neural networks performed better than chaotic models,
and both models performed substantially better than random walk. In terms of statistical
significance by Mizrach’s test, both models were found to be statistically equivalent.

Yao and Tan (2000) used technical indicators and time series data to build a neural
network model using weekly data for the period of May 1984 to October 1993 of Singpore
Foreign Exchange and predicted closing prices for the period of November 1993 to July
1995. They also used a two-layer network trained by a standard backpropagation
algorithm. A validation set was used to build the model. Six major currencies were studied.
It was shown that a network built on a time delayed series can only predict rate movement
direction by little above 50%, while it rises to about 74% when the model was built using
technical indicators. The results also confirmed that such a neural network model
performed significantly better than the traditional ARIMA model when compared in
terms of normalized mean-squared error, directional change of movement, and profitabil-
ity. The works showed that, without extensive market data or knowledge, useful
prediction and significant profit could be made by a neura network-based forex forecast-
ing model (Yao & Tan, 2000). Extensive experimentation with a single currency (Swiss
franc) established the consistency of a neural network’s ability in forecasting exchange
rates. A similar study by Voginovic, Kecman, and Seidel (2001) used a radial basis
function neural network for forecasting the daily closing exchange rate of the New
Zealand dollar against the U.S. dollar. The model performed significantly better than
traditional linear autoregressive model in both directional change and accuracy. The
study also investigated the impact of model order, number of hidden layer and training
set size on prediction accuracy.

The neural network models for forex prediction are usually trained off-line. MacDonald
(1999) and Schinasi et al. (1989) argued that a more appropriate way of enhancing
performance of prediction models would be to allow the coefficients to evolve over time.
Economic theories also indicate that factors like money demand instabilities, policy
changes, and global trade patterns could lead to parameter instability and a changed
relationship. Minghui, Sratchandran, and Sundararajan (2003) proposed an online
training of a neural network called Minimum Resource Allocating Network (MRAN) to
address the issue of time varying parameters. The MRAN model incorporating economic
fundamentals as inputs was found to perform much better than random walk and feed-
forward neural network models. The study claimed that the MRAN model could forecast
the trend turning points accurately for some periods, while the random walk model was
incapable of doing so. Chen and Leung (2004) proposed a hybrid approach to model
building that employed two stages. First, a time series model generates estimates of
exchange rates, then a general regression neural network (details provided in Chapter I
of this book) corrects the errors of the estimates. Chen and Leung used a data set provided
by the International Monetary Fund that covered 22 years from January 1980 to December
2001 and adopted the macroeconomic variables expressed in modified Uncovered



144   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Interest Parity (UIP) relationship. Results showed the two-stage hybrid approach
produced more accurate exchange rate prediction and higher return (0.61% improvement
in annual return) than a single stage model.

Apart from simply using ANN models for prediction, several other studies used neural
networks to enhance the understanding of empirical phenomena. White and Racine
(2001) used the bootstrap method of inference using neural networks to test a forex market
efficiency hypothesis. They concluded that there is evidence that supports the existence
of predictive information in past rate changes, but “the nature of the predictive relations
evolves through time.”

A Case Study: Australian Forex Market

In the following, we present a case study to forecast six different currency rates, namely,
the U.S. dollar (USD), Great British pound (GBP), Japanese yen (JPY), Singapore dollar
(SGD), New Zealand dollar (NZD) and Swiss franc (CHF) against the Australian dollar
using their historical exchange rate data. The case study is based on our previous study
(Kamruzzaman & Sarker, 2004). In most of the previous studies related to forex forecast-
ing, the neural network algorithms used were: Standard Backpropation (SBP), Radial
Basis Function (RBF), or Generalized Regression Neural Network (GRNN). In this case
study, we used two other improved feed-forward learning algorithms, namely the Scaled
Conjugated Gradient (SCG) and Bayesian Reguralization (BR) algorithms, to build the
model and investigate how the algorithms performed compared to standard
backpropagation in terms of prediction accuracy and profitability.

Dataset. The data used in this study is the foreign exchange rate of six different currencies
against the Australian dollar from January 1991 to July 2002 made available by the
Reserve Bank of Australia. A total of 565 weekly data of the previously mentioned
currencies were considered, of which first 500 weekly data were used for training and the
remaining 65 weekly data for evaluating the model. The plots of historical rates for USD,
GBP, SGD, NZD, and CHF are shown in Figure 1(a) and for JPY in Figure 1(b).

Figure 1. Historical exchange rates for (a) USD, GBP, SGD, NZD and CHF and (b) JPN
against Australian dollar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 51 101 151 201 251 301 351 401 451 501 551

Week Number

E
xc

h
an

g
e 

R
at

e

USD GBP SGD
NZD CHF

0

20

40

60

80

100

120

1 51 101 151 201 251 301 351 401 451 501 551
Week Number

E
xc

h
an

g
e 

ra
te

JPY

(a)                                                                                                  (b) 
Figure 1. Historical exchange rates for (a) USD, GBP, SGD, NZD and CHF (b) JPN against 



Modeling and Prediction of Foreign Currency Exchange Markets   145

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Indicators. The time delay moving average is used as a technical indicator.
The advantage of the moving average is its tendency to smooth out some of the
irregularity that exits between market days. We used moving average values of past
weeks to feed to the neural network to predict the following week’s rate. The indicators
are MA5, MA10, MA20, MA60, MA120, and X

i
, namely, moving average of 1 week, 2

weeks, 1 month, 1 quarter, half year, and last week’s closing rate, respectively. The
predicted value is X

i+1
. The model has six inputs for six indicators, one hidden layer, and

one output unit to predict exchange rate. It has been reported in another study that
increasing the number of inputs does not necessarily improve forecasting performance
(Yao & Tan, 2000).

Learning Algorithms. In most of the previous studies, a standard backpropagation
algorithm has been investigated. However, backpropagation suffers from slow conver-
gence and sometimes fails to learn the time series within a reasonable computational time
limit. A desired neural network model should produce small error not only on sample data
but also on out of sample data. In this case study, we investigated with Scaled Conjugated
Gradient (Moller, 1993) and Bayesian Reguralization (MacKey, 1992) algorithms that
have been reported to produce improved results than the standard backpropagation in
a number of other studies. A detailed description of the algorithms is presented in Chapter
1 of this book.

Evaluation of Prediction Accuracy. The most common measure to evaluate how closely
the model is capable of predicting future rate is measured by Normalized Mean-Square
Error (NMSE). The other measure important to the trader is correct prediction of
movement. We used four other measures, which are: Mean Absolute Error (MAE),
Directional Symmetry (DS), Correct Up trend (CU) and Correct Down trend (CD). These
criteria are defined in Table 1, where xk and xkˆ  are the actual and predicted values,

∑ −
∑ −

∑ −
==

k
kk

k
kk

k
kk

xx
x

xx
NMSE

Nx
)(

)(

)(
ˆ

ˆ
2

22

2

1

σ
 

xx kk
N

MAE ˆ
1 −=  

∑=
k

kd
N

DS
100

,  


 ≥−−

= −−

otherwise

0)ˆˆ()(if

0

1 11 xxxx kkkk
kd  

∑

∑
=

k
k

k
k

t

d
CU 100 ,  



 −−−

=
≥> −−−

otherwise

0)ˆˆ()(,0)ˆˆ(if

0

1 111 xxxxxx kkkkkk
kd , 



 −

=
>−

otherwise

0)(if

0

1 1xx kk
kt  

∑
∑

=

k
k

k
k

t

d
CD 100  



 −−−

=
≥< −−−

otherwise

0)ˆˆ()(,0)ˆˆ(if

0

1 111 xxxxxx kkkkkk
kd , 



 −

=
<−

otherwise

0)(if

0

1 1xx kk
kt  

Table 1. Performance metrics to evaluate the forecasting accuracy of the model



146   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

respectively. NMSE and MAE measure the deviation between actual and forecast value.
Smaller values of these metrics indicate higher accuracy in forecasting. Additional
evaluation measures include the calculation of correct matching number of the actual and
predicted values with respect to sign and directional change. DS measures correctness
in predicted directions while CU and CD measure the correctness of predicted up and
down trends, respectively.

Profitability. The traders are more interested in making a profit by buying and selling in
forex market. In order to assess the profitability attainable by using the model, we
simulated a trading over the forecasted period. Similar simulated trading is also used in
another study (Yao & Tan, 2000). Seed money is used to trade according to the following
strategy:

if ( xkˆ 1+ - xk ) > 0 then buy otherwise sell.

At the ending the trading period, the currency is converted to the original seed money.
The profit return is then calculated as:

1
/52

−





=

MoneySeed

ObtainedMoney
Return

w

where Money Obtained is the money at the end of the testing period and w is the number
of weeks in the testing period.

Simulation Results

Neural network models were trained with six inputs representing the six technical
indicators, a hidden layer, and an output unit to predict the exchange rate. Since the final
model at the end of training a neural network depends on many factors, like, number of
hidden units, parameter setting, initial weights, stopping criteria, and so on, we trained
30 different networks with different initial weights, learning parameters, ands hidden unit
number. The number of hidden units was varied between 3 to 7 and the training was
terminated at iteration number between 5000 to 10000. Out of all the trials, the network
that yielded the best result in each algorithm is presented here.

We measured the performance metrics on the test data to investigate how well the neural
network forecasting model captured the underlying trend of the movement of each
currency against Australian dollar. Table 2 shows the performance metrics achieved by
each model over a forecasting period of 35 weeks and Table 3 shows the same over 65
weeks (previous 35 weeks plus additional 30 weeks) and also compared with an ARIMA-
based model. All the ANN-based models perform much superiorly compared to the
ARIMA model in respect to all the evaluation criteria. This finding is consistent with
other studies (Yao & Tan, 2000; Zoran et al. 2001). The results show that the SCG and
BR models consistently perform better than the SBP model in terms of all performance
metrics in almost all the currency exchange rates. For example, in case of forecasting the



Modeling and Prediction of Foreign Currency Exchange Markets   147

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

U.S. dollar rate over 35 weeks, the NMSE achieved by SCG and BR is quite low and is
almost half of that achieved by SBP. This means these models are capable of predicting
exchange rates more closely than SBP. Also, in predicting trend directions SCG and BR
is almost 10% more accurate than SBP. The reason of better performance by the SCG and
BR algorithms is the improved learning technique, which allows them to search efficiently
in weight space for solution. Similar trend is observed in predicting other currencies.

Between the SCG and BR models, the former performs better in all currencies except the
Japanese yen in terms of the two most commonly used criteria, that is, NMSE and MAE.
In terms of other metrics, SCG yields slightly better performance in the case of the Swiss
franc, the BR was slightly better in the U.S. dollar and British pound, and both the SCG
and BR perform equally in case of the Japanese yen and the Singapore and New Zealand
dollars. In both algorithms, the directional change prediction accuracy is above 80%,
which is much improved from the 70% accuracy achieved in a similar study (Yao & Tan,
2000).

In building a neural network model, we need to be attentive to few factors that influence
the performance of the network. The generalization ability of neural networks, that is, its
ability to produce correct output in response to an unseen input is influenced by a number

Performance metrics 
Currency 

NN 
model NMSE MAE DS CU CD 

ARIMA 1.0322 0.0069 52.94 0.00 100.00 
SBP 0.5041 0.0047 71.42 76.47 70.58 
SCG 0.2366 

6 
0.0033 

 
82.85 82.35 88.23 

 

U.S. 
dollar 

BR 0.2787 0.0036 82.85 82.35 88.23 
ARIMA 0.9344 

 
0.0065 

 
55.88 

 
0.00 

 
100.00 

 SBP 0.5388 0.0053 77.14 
 

75.00 
 

78.94 
SCG 0.1578 0.0030 77.14 81.25 73.68 

B. pound 

BR 0.1724 0.0031 82.85 93.75 73.68 
ARIMA 1.2220 

 
1.77859 

 
38.23 

 
0.00 

 
100.00 

 SBP 0.1530 
 

0.6372 
 

74.28 
 

72.72 
 

76.92 
 SCG 0.1264 0.6243 80.00 81.81 76.92 

J. yen 

BR 0.1091 0.5806 80.00 81.81 76.92 
ARIMA 1.1765 

 
0.0184 

 
52.94 

 
0.00 100.00 

SBP 0.2950 
 

0.0094 
 

85.71 
 

82.35 
 

88.88 
 SCG 0.2321 0.0076 82.85 82.35 83.33 

S. dollar 

BR 0.2495 0.0080 82.85 82.35 83.33 
ARIMA 0.9728 

 
0.0139 

 
52.94 

 
0.00 100.00 

SBP 0.1200 
 

0.0046 
 

77.14 
 

75.00 
 

78.94 
 SCG 0.0878 0.0038 85.71 87.50 84.21 

NZ dollar 

BR 0.0898 0.0039 85.71 87.50 84.21 
ARIMA 0.9378 

 
0.0285 

 
44.11 

 
0.00 100.00 

SBP 0.1316 
 

0.0101 
 

80.00 
 

75.00 
 

86.66 
 SCG 0.0485 0.0059 82.85 80.00 86.66 

S. franc 

BR 0.0496 0.0057 80.00 75.00 86.66 

Table 2. Measurement of prediction performance over 35-week prediction



148   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of factors: (1) the size of the training set, (2) the degrees of freedom of the network related
to the architecture, and (3) the physical complexity of the problem at hand. Practically,
we have no control on the problem complexity, and in our simulation the size of the
training set is fixed. This leaves the generalization ability, that is, the performance of the
model dependent on the architecture of the corresponding neural network. Generaliza-
tion performance can also be related to the complexity of the model in the sense that, in
order to achieve best generalization, it is important to optimize the complexity of the
prediction model (Bishop, 1995). In the case of neural networks, changing the number of
adaptive parameters in the network can vary the complexity. A network with fewer
weights is less complex than the one with more weights. It is well known that the “simplest
hypothesis/model is least likely to overfit.” A network that uses the least number of
weights and biases to achieve a given mapping is least likely to overfit the data and is
most likely to generalize well on the unseen data. If redundancy is added in the form of
extra hidden unit or additional parameters, it is likely to degrade performance because
more than the necessary number of parameters is used to achieve the same mapping. In
the case of nonlinear regression, two extreme solutions should be avoided: filtering out
the underlying function or underfitting (not enough hidden neurons), or modeling of
noise or overfitting data (too many hidden neurons). This situation is also known as bias-

Performance metrics 
Currency 

NN 
model NMSE MAE DS CU CD 

ARIMA 1.7187 0.0171 42.19 0.00 100.00 
SBP 0.0937 0.0043 75.38 81.57 69.23 
SCG 0.0437 

 
0.0031 

 
83.07 

 
78.94 

 
92.30 

 

U.S. 
dollar 

BR 0.0441 0.0030 83.07 78.94 92.30 
ARIMA 1.2791 

 
0.0094 

 
50.00 

 
0.00 

 
100.00 

 SBP 0.2231 
 

0.0038 
 

80.00 
 

75.75 
 

87.09 
 SCG 0.0729 0.0023 84.61 87.87 83.87 

B. pound 

BR 0.0790 0.0024 87.69 93.93 83.87 
ARIMA 2.3872 

 
4.1329 

 
43.75 

 
0.00 100.00 

SBP 0.0502 
 

0.5603 
 

76.92 
 

75.67 
 

78.57 
 SCG 0.0411 05188 81.53 83.78 78.57 

J. yen 

BR 0.0367 0.5043 81.53 83.78 78.57 
ARIMA 1.6472 

 
0.0313 

 
48.43 

 
0.00 100.00 

SBP 0.0935 
 

0.0069 
 

83.07 
 

82.35 
 

83.87 
 SCG 0.0760 0.0060 86.15 88.23 83.87 

S. dollar 

BR 0.0827 0.0063 86.15 88.23 83.87 
ARIMA 1.1365 

 
0.0233 

 
56.25 

 
0.00 100.00 

 SBP 0.0342 
 

0.0042 
 

78.46 
 

71.42 
 

86.11 
 SCG 0.0217 0.0033 84.61 82.14 88.88 

NZ dollar 

BR 0.0221 0.0033 84.61 82.14 88.88 
ARIMA 0.9158 

 
0.0273 

 
46.87 

 
0.00 100.00 

SBP 0.1266 
 

0.0098 
 

83.07 
 

80.00 
 

86.66 
 SCG 0.0389 0.0052 84.61 84.61 86.66 

S. franc 

BR 0.0413 0.0051 81.53 77.14 86.66 

Table 3. Measurement of prediction performance over a 65-week prediction



Modeling and Prediction of Foreign Currency Exchange Markets   149

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

variance dilemma. One way of controlling the effective complexity of the model in practice
is to compare a range of models having different architectures and to select the one that
yields the best performance on the test data.

Although the performance measures presented earlier show the better performance of
SCG and BR models over a standard backpropagation model, the profitability of these
models plays an important roll in the actual trading environment. Table 4 shows the
profitability attainable by various models over the testing period. This confirms the
better performance of SCG and BR over standard backpropagation in terms of trading
prospect.

Conclusion

In this chapter, we have presented an overview of foreign exchange rate prediction,
especially by models based on neural networks, and presented a case study on
Australian foreign exchange market. Neural network models are well suited to learn
nonlinearities in the exchange rates, the existence of which is evidenced in many studies.
However, the performance of such models depends on the economic variables used in
modeling, as well as how well a particular learning algorithm can generalize on the sample
data. In the case study, we investigated with three different neural network learning
algorithms and found that scaled conjugate gradient and Bayesian regularization were
significantly better in performance than standard backpropagation. Though a few other
algorithms have been studied in the literature, there is a need for a more comprehensive
study with extensive data to determine which algorithm is best suited for modeling
exchange rate prediction, both short- and long-term. For example, genetic algorithms may
be used to select the optimum architecture and parameters of a neural network during the
training phase or a hybrid system using fuzzy measure and wavelet techniques may lead
to a better prediction.

CU 
U.S. dollar 9.29 14.17 14.20 

B. pound 10.16 15.81 12.21 

J. yen 6.29 10.91 11.58 

S. dollar 9.07 7.56 8.41 

NZ dollar 6.48 8.73 9.02 

S. franc 3.23 4.15 1.98 

Table 4. Return of currency trading of different models



150   Kamruzzaman, Sarker, and Begg

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford
University Press.

Box, G. E. P., & Jenkins, G. M. (1990). Time series analysis: Forecasting and control. San
Francisco: Holden-Day.

Chen, A. S., & Leung, M. T. (2004). Regression neural network for error correction in
foreign exchange forecasting and trading. Computers and Operations Research,
31, 1049-1068.

Chinn, M. (2003). Explaining exchange rate behavior. National Bureau of Economic
Research.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals, and Systems, 2(4), 303-314.

Deboeck, G. (1994). Trading on the edge: Neural, genetic and fuzzy systems for chaotic
financial markets. New York: Wiley.

Fang, H., Lai, S., & Lai, M. (1994). Fractal structure in currency futures price dynamics.
Journal of Futures Markets, 14, 169-181.

Francesco, L., & Schiavo, R. A. (1999). A comparison between neural networks and
chaotic models for exchange rate prediction. Computational Statistics & Data
Analysis, 30, 87-102.

Gan, W. S., & Ng, K. H (1995). Multivariate FOREX forcasting using artificial neural
networks. In Proceedings IEEE International Conference on Neural Networks,
Vol. 2 (pp. 1018-1022).

Ghoshray, S. (1996). Currency exchange rate prediction technique by fuzzy inferencing
on the chaotic nature of time series data. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 4(5), 431-448.

Grauwe, D. P., Dewachter, H., & Embrechts, M. (1993). Exchange rate theory: chaotic
models of foreign exchange markets. London: Blackwell.

Greenspan, A. (2002, June 16). Testimony of the federal reserve board’s semiannual
monetary policy report to the congress, before the Committee on Banking,
Housing, and Urban Affairs, U.S. Senate. Washington, D.C.

Kamruzzaman, J., & Sarker, R. (2004). ANN-based forecasting of foreign currency
exchange rates. Neural Information Processing — Letter & Review, 3(2), 49-58.

Kodogiannis, V., & Lolis, A. (2001). A comparison between neural network and fuzzy
system models for foreign exchange rates prediction. Neural, Parallel, & Scien-
tific Computations, 9(3-4), 417-427.

MacDonald, R. (1999). What do we really know about real exchange rates? In R.
MacDonald, & J. Stein (Eds.), Equilibrium exchange rates. Amsterdam: Kluwer.

Mackay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4, 415-447.



Modeling and Prediction of Foreign Currency Exchange Markets   151

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Medeiros, M. C., Veiga, A., & Pedreira, C. E. (2001). Modeling exchange rates: Smooth
transitions, neural network and linear models. IEEE Transaction Neural Networks,
12(4), 2001.

Minghui, H., Sratchandran, P., & Sundararajan, N. (2003). A sequential learning neural
network for foreign exchange rate forecasting. IEEE International Conference on
Systems, Man and Cybernetics, 4, 3963-3968.

Moller, A. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks, 6, 525-533.

Refenes, A. N., Barac, M. A., Chen, L., & Karoussos, A. S. (1992). Currency exchange rate
prediction and neural network design strategies. Neural Computing and Applica-
tions, 1, 46-58.

Rosenberg, M. (1981, June). Is technical analysis right for currency forecasting?
Euromoney, 125-131.

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group (1986). Parallel Distrib-
uted Processing, 1. MIT Press.

Schinasi, G., & Swamy, P. A. (1989). The out-of-sample forecasting performance of
exchange rate models when coefficients are allowed to change. Journal of Inter-
national Money and Finance, 8, 375-390.

Tenti, P. (1996). Forecasting foreign exchange rates using recurrent neural networks.
Applied Artificial Intelligence, 10, 567-581.

Vojinovic, Z., Kecman, V., & Seidel, R. (2001). A data mining approach to financial time
series modeling and forecasting. International Journal of Intelligent Systems in
Accounting, Finance & Management, 10, 225-239.

Yao, J., Li, Y., & Tan, C. L. (2000). Option price forecasting using neural networks.
OMEGA: International Journal of Management Science, 28, 455-466.

Yao, J., & Tan, C. T. (2000). A case study on using neural networks to perform technical
forecasting of forex. Neurocomputing, 34, 79-98.

Yaser, S., & Atiya, A. (1996). Introduction to Financial Forecasting, Applied Intelli-
gence, 6, 205-213.

Zhang, G., & Hu, M. Y. (1998). Neural network forecasting of the British Pound/US dollar
exchange rate. OMEGA: International Journal of Management Science, 26, 495-
506.

Zhenyuan, W., Yilu, L., & Griffin, P. J. (2000). Neural net and expert system diagnose
transformer faults. Computer Applications in Power, 13(1), 50-55.



152   Quah

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Improving Returns
On Stock Investment

through Neural
Network Selection

Tong-Seng Quah, Nanyang Technological University, Republic of Singapore

Abstract

Artificial neural networks’ (ANNs’) generalization powers have in recent years
received admiration of finance researchers and practitioners. Their usage in such
areas as bankruptcy prediction, debt-risk assessment, and security-market applications
has yielded promising results. With such intensive research and proven ability of the
ANN in the area of security-market application and the growing importance of the role
of equity securities in Singapore, it has motivated the conceptual development of this
work in using the ANN in stock selection. With their proven generalization ability,
neural networks are able to infer the characteristics of performing stocks from the
historical patterns. The performance of stocks is reflective of the profitability and
quality of management of the underlying company. Such information is reflected in
financial and technical variables. As such, the ANN is used as a tool to uncover the
intricate relationships between the performance of stocks and the related financial and
technical variables. Historical data, such as financial variables (inputs) and
performance of the stock (output) is used in this ANN application. Experimental results
obtained thus far have been very encouraging.



Improving Returns on Stock Investment through Neural Network Selection   153

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

With the growing importance in the role of equities to both international and local
investors, the selection of attractive stocks is of utmost importance to ensure a good
return. Therefore, a reliable tool in the selection process can be of great assistance to
these investors. An effective and efficient tool/system gives the investor the competitive
edge over others as he/she can identify the performing stocks with minimum effort.

In assisting the investors in their decision-making process, both the academics and
practitioners have devised trading strategies, rules, and concepts based on fundamental
and technical analysis. Innovative investors opt to employ information technology to
improve the efficiency in the process. This is done through transforming trading
strategies into computer-known language so as to exploit the logical processing power
of the computer. This greatly reduces the time and effort in short-listing the list of
attractive stocks.

In the age where information technology is dominant, such computerized rule-based expert
systems have severe limitations that will affect their effectiveness and efficiency. In
particular, their inability in handling nonlinear relationships between financial variables
and stock prices has been a major shortcoming. However, with the significant advancement
in the field of ANNs, these limitations have found a solution. In this work, the generalization
ability of the ANN is being harnessed in creating an effective and efficient tool for stock
selection. Results of the research in this field have so far been very encouraging.

Application of Neural Network in
Stock Investment

One of the earliest studies was by Halquist and Schmoll (1989), who used a neural network
model to predict trends in the S&P 500 index. They found that the model was able to
predict the trends 61% of the time. This was followed by Trippi and DeSieno (1992) and
Grudnitski and Osburn (1993). Trippi and DeSieno (1992) devised an S&P 500 trading
system that consisted of several trained neural networks and a set of rules for combining
the network results to generate a composite recommended trading strategy. The trading
system was used to predict S&P 500 index futures and the results showed that this system
significantly outperformed the passive buy-and-hold strategy. Grudnitski and Osburn
(1993) used a neural network to predict the monthly price changes and trading return in
the S&P 500 index futures. The results showed that the neural network was able to predict
correctly 75% of the time and gave a positive return above risk.

Another work on predicting S&P 500 index futures was by Tsaih, Hsu, and Lai (1998).
Similar to Trippi and DeSieno (1992), Tsaih et al. (1998) also integrated a rule-based
system technique with a neural network to produce a trading system. However, in the
Tsaih et al. (1998) study, they used reasoning neural networks instead of the
backpropagation method used by Trippi and Desieno (1992). Empirical results in the daily
prediction of price changes in the S&P 500 index futures showed that this hybrid artificial-
intelligence (AI) approach outperformed the passive buy-and-hold investment strategy.



154   Quah

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Similar works on predicting the S&P 500 index were also carried out by Min (1999) and
Min and Maddala (1999). Essentially, these two papers were trying to compare whether
nonlinear models like neural networks were able to show better predictive accuracy than
linear models like the linear regression, since several studies had shown the nonlinearity
in stock returns. Both papers had shown that the predictive accuracy of stock returns
by neural network models was better than their linear counterparts both in in-sample and
out-of-sample forecasts.

Encouraged by the success of earlier researchers, many now apply neural networks in
modeling their national stock markets. Olson and Mossman (2003) forecasted the
Canadian stock returns by training a neural network to recognize relationships between
accounting ratios and stock price movements. Likewise, Chen, Leung, and Daouk (2003)
used an ANN to forecast and trade on the Taiwan stock index. Perez, Torra, and Andrada
(2005) found that ANNs consistently outperformed auto-regression models in forecast-
ing the Spanish Ibex-35 stock index. Last but not least, Cao, Leggio, and Schniederjans
(2005) applied ANNs on the Chinese stock market and obtained results that are better
than linear models.

ANN Model for Stock Selection

In this section, the architecture and design of the ANN model are described.

Neural Architecture

The computer software selected for training and testing the network is Neural Planner
version 3.71. Stephen Wolstenholme programmed this software. It is an ANN simulator
strictly designed for only one backpropagation learning algorithm. There are four major
issues in the selection of the appropriate network (Gately, 1996):

1. Selection of the appropriate algorithm.

2. Architecture of the ANN.

3. Selection of the learning rule.

4. Selection of the appropriate learning rates and momentum.

Select the Appropriate Algorithm

The sole purpose of this work is to identify the top performing stocks, and the historical
data that is used for the training process will have a known outcome (whether it is
considered top performer or otherwise). Therefore, algorithms designed for supervised
learning are ideal. Among the available algorithms, the backpropagation algorithm
designed by Rumelhart, Hinton, and Williams (1986) is the most suitable, as it is being



Improving Returns on Stock Investment through Neural Network Selection   155

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

intensively tested in finance. Moreover, it is recognized as a good algorithm for
generalization purposes.

Architecture of ANN

Architecture, in this context, refers to the entire structural design of the ANN, including
the input layer, hidden layer, and output layer. It involves determining the appropriate
number of neurons required for each layer and also the appropriate number of layers
within the hidden layer. The logic of the backpropagation method is the hidden layer. The
hidden layer can be considered as the crux of the backpropagation method. This is
because the hidden layer can extract higher-level features and facilitate generalization,
if the input vectors have low-level features of a problem domain or if the output/input
relationship is complex. The fewer the hidden units, the better is the ANN able to
generalize. It is important not to overfit the ANN with a larger number of hidden units than
required until it can memorize the data. This is because the nature of the hidden units is
like a storage device. It learns noise present in the training set, as well as the key
structures. No generalization ability can be expected in these. This is undesirable, as it
does not have much explanatory power in a different situation/environment.

Selection of the Learning Rule

The learning rule is the rule that the network follows in its error-reducing process. This
is to facilitate the derivation of the relationships between the input(s) and output(s). The
generalized delta rule developed by Rumelhart, et al. (1986) is used in the calculations of
the weights. This particular rule is selected because it is widely used and proven effective
in finance research.

Selection of the Appropriate Learning Rate and Momentum

The learning rate and momentum are parameters in the learning rule that aid the
convergence of error, so as to arrive at the appropriate weights that are representative
of the existing relationships between the input(s) and the output(s).

As for the appropriate learning rate and momentum to use, the NEURAL PLANNER
Software has a feature that can determine appropriate learning rate and momentum with
which the network will be able to start training. This function is known as “Smart Start.”
Once this function is activated, the network will be tested using different values of
learning rate and momentum to find a combination that yields the lowest average error
after a single learning cycle. These are the optimum starting values, as using these rates
improves the error-converging process thus requiring less processing time.

Another attractive feature is that the software comes with an “auto-decay” function that
can be enabled or disabled. This function automatically adjusts the learning rate and
momentum to enable a faster and more accurate convergence. In this function, the
software will sample the average error periodically, and if it is higher than the previous



156   Quah

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sample then the learning rate is reduced by 1%. The momentum is “decayed” using the
same method but the sampling rate is half of that used for the learning rate. If both the
learning rate and momentum decay are enabled, then the momentum will decay slower
than the learning rate.

In general cases, where these features are not available, a high learning rate and
momentum (e.g., 0.9 for both the learning rate and momentum) are recommended as the
network will converge at a faster rate than when lower figures are used. However, too high
a learning rate and momentum will cause the error to oscillate and thus prevent the
converging process. Therefore, the choice of learning rate and momentum are dependent
on the structure of the data and the objective of using the ANN.

Variables Selection

In general, financial variables chosen are constrained by data availability. They are
chosen first on the significant influences over stock returns based on past literature
searches and practitioners’ opinions and then on the availability of such data. Most data
used in this research is provided by Credit Lyonnais Securities (2005). Stock prices are
extracted from Bloomberg (2005) financial database.

Broadly, factors that can affect stocks prices can be classified into three categories:
economic factors, political factors, and firm/stock specific factors. Economic factors have
significant influence on the returns of individual stock as well as stock index in general as
they possess significant impact on the growth and earnings’ prospects of the underlying
companies thus affecting the valuation and returns. Moreover, economic variables also
have significant influence on the liquidity of the stock market. Some of the economic
variables used are: inflation rates, employment figures, and producers’ price index.

Many researchers have found that it is difficult to account for more than one third of the
monthly variations in individual stock returns on the basis of systematic economic
influences and shown that political factors could help to explain some of the missing
variations. Political stability is vital to the existence of business activities and the main
driving force in building a strong and stable economy. Therefore, it is only natural that
political factors such as fiscal policies, budget surplus/deficit, and so on do have effects
on stock price movements.

Firm specific factors affect only individual stock returns. For example, financial ratios and
some technical information that affects the return structure of specific stocks, such as
yield factors, growth factors, momentum factors, risk factors, and liquidity factors. As
far as stock selection is concerned, firm specific factors constitute to important consid-
erations, as it is these factors that determine whether a firm is a bright star or a dim light
in the industry. Such firm specific factors can be classified into five major categories:

1. Yield factors: These include “historical P/E ratio” and “prospective P/E ratio.” The
former is computed by price/earning per share; the latter is derived by price/
consensus earnings per share estimate. Another variable is the “cashflow yield,”
which is basically price/operating cashflow of the latest 12 months.



Improving Returns on Stock Investment through Neural Network Selection   157

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. Liquidity factors: The most important variable is the “market capitalization,” which
is determined by “price of share x number of shares outstanding.”

3. Risk factors: The representative variable is the “earning per share uncertainty,”
which is defined as “percentage deviation about the median Earning Per Share
(EPS) estimates.”

4. Growth factors: Basically, this means the “return on equity (ROE),” and is com-
puted by “net profit after tax before extraordinary items/shareholders equity.”

5. Momentum factors: A proxy is derived by “average of the price appreciation over
the quarter with half of its weights on the last month and remaining weights being
distributed equally in the remaining two months.”

The inputs of the neural network stock selections system are the previous seven inputs
and the output is the return differences between the stock and the market return (excess
returns). This is to enable the neural network to establish the relationships between
inputs and the output (excess returns). In this work, political factors and economic
factors are not taken into consideration as the stock counters used in this study are listed
on the same stock exchange (and are therefore subjected to the same forces).

The training data set includes all data available until the quarter before the testing
quarter. This is to ensure that the latest changes in the relationship of the inputs and the
output are being captured in the training process.

Experiment

The quarterly data required in this work is generally stock prices and financial variables
(inputs to the ANN stock selection system) from 1/1/93 to 31/12/96. Credit Lyonais
Securities (Singapore) Pte Ltd. provided most of the data used in this work.

The download stock prices served as the basis to calculate stock returns. These stock
returns — adjusted for dividends, stock splits, and bonus issues — will be used as output
in the ANN-training process.

One unique feature of this research is that the prospective P/E ratio, measured as price/
consensus earnings per share estimate, is being used as a forecasting variable. This
variable has not received much attention in financial research. Prospective P/E ratio is
used among practitioners as it can reflect the perceived value of stock with respect to
earnings-per-share (EPS) expectations. It is used as a value indicator, which has similar
implications as that of the historical P/E ratio. As such, a low prospective P/E suggests
that the stock is undervalued with respect to its future earnings and vice versa. With its
explanatory power, prospective P/E ratio qualifies as an input in the stock selection
system. Data on earnings-per-share estimates, which is used for the calculation of EPS
uncertainty and prospective P/E ratio, is available in the Estimates Directory (Singapore
Exchange, 2006). This is a compilation of EPS estimates and recommendations put
forward by financial analysts. The coverage has estimates from January 1993.



158   Quah

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Research Design

The purpose of this ANN stock selection system is to select stocks that are top
performers from the market (stock that outperformed the market by 5%) and to avoid
selecting under performers (stocks that under-performed the market by 5%). More
importantly, the aim is to beat the market benchmark (quarterly return on the SESALL
index) on a portfolio basis.

This ANN stock selection system employs a quarterly portfolio rebalancing strategy
whereby it will select stocks in the beginning of the quarter, and performance (the return
of the portfolio) will be assessed at the end of the quarter.

Design 1 (Basic System)

In this research design, the sample used for training consists of stocks that out- and
underperformed the market quarterly by 5% from 1/1/93 to 30/6/95.

The inputs of the ANN stock selection system are the seven inputs chosen in the in earlier
section and the output will be the return differences between the stock and the market
return (excess returns). This is to enable the ANN to establish the relationships between
inputs and the output (excess returns).

The training data set includes all data available until the quarter before the testing
quarter. This is to ensure that the latest changes in the relationship of the inputs and the
output are being captured in the training process.

In order to ensure the generalization ability of the ANN in selecting top performing stocks
as well as its ability to perform consistently over time, sufficient training is important. The
data used for the selection process are from 3rd quarter of 1995 (1/7/95-30/9/95), the 4th
quarter of 1995 (1/10/95-31/12/95), 1st quarter of 1996 (1/1/1996-31/3/1996), 2nd quarter
of 1996 (1/4/1996-30/6/1996), 3rd quarter of 1996 (1/7/1996-30/9/1996), 1/10/1996-31/12/
1996 (1/10/1996-31/12/1996).

The testing inputs are being injected into the system and the predicted output will be
calculated using the established weights. After which, the top 25 stocks with the highest
output value will be selected to form a portfolio of stocks. These 25 stocks are the top
25 stocks recommended for purchase at the beginning of the quarter. Generalization
ability of the ANN will be determined by the performance of the portfolio, measured by
excess returns over the market as well as the percentage of top performers in the portfolio
as compared to the benchmark portfolio (testing portfolio) at the end of the month.

Design 2 (Moving-Window System)

The Basic System is constrained by meeting the minimum sample size required for training
process. However, this second design is going to forgo the recommended minimum
sample size and introduce a moving-window concept. This is to analyze the ANN ability
to perform under a restricted sample size environment.



Improving Returns on Stock Investment through Neural Network Selection   159

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The input and output variables are identical to that of the Basic System but the training
and testing samples are different. The Moving-Window System uses three quarters as
training samples and the subsequent quarter as the testing sample. The selection criteria
are also identical to that of the Basic System in research Design 1.

Results

The ANN is made to train with 10,000 and 15,000 cycles. The reason for using these
numbers of cycles for training is because the error converging is generally slow after
10,000, thus suggesting adequate training. Moreover, it does not converge beyond
15,000. This is an indicator that the network is overtrained (see Figure 1).

On a Pentium 100 Mhz PC, the training of four hidden neurons for 10,000 cycles takes
approximately 1.5 hours, eight hidden neurons takes about 3 hours, and the most complex
(14 hidden neurons) took about 6 hours. As for those architectures that require 15,000
cycles, it usually takes about 1.5 times the time it takes to train the network for 10,000
cycles.

The results of the Basic System based on the training and testing schedules mentioned
are presented in two forms: (1) the excess return format and (2) the percentage of the top
performers in the selected portfolio. These two techniques will be used to assess the
performance and generalization ability of the ANN.

Testing results show that the ANN is able to “beat” the market overtime, as shown by
positive compounded excess returns achieved consistently throughout all architectures
and training cycles. This implies that the ANN can generalize relationships over time.
Even at the individual quarters’ level, the relationships between the inputs and the output
established by the training process is proven successful by “beating” the market in six
out of eight possible quarters, which is a reasonable 75% (see Figure 2).

The Basic System has consistently performed better than the testing portfolio over time.
This is evident by the fact that the selected portfolios have higher percentages of top

Figure 1. ANN Training at 15,000 cycles

Note: Numbers in key represent the number of hidden layer neurons

Graphical Presentation of Excess Returns for 15000 Cycles

100.00%

120.00%

140.00%

1995-3 1995-4 1996-1 1996-2 1996-3 1996-4

Testing Quarters

P
o

si
ti

o
n

 o
f 

S
el

ec
te

d
 

P
o

rt
fo

lio
 B

as
ed

 o
n

 
C

o
m

p
o

u
n

d
ed

 E
xc

es
s 

R
et

u
rn

s

4

8

10

12

14



160   Quah

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

performing stocks (above 5%) than the testing portfolio over time (see Figure 3). This
ability has also enabled the network to better the performance of the market (SESALL
Index) presented earlier.

The Moving-Window System is designed to test the generalization power of the ANN
in an environment with limited data.

The generalization ability of the ANN is again evident in the Moving-Window System,
as it outperformed the testing portfolio in 9 out of 13 testing quarters (69.23%). This can
be seen in the graphical presentation where the line representing the selected portfolio
is above the line representing the testing portfolio most of the time (see Figure 4).
Moreover, the compounded excess returns and the annualized compounded excess
returns are better than that of the testing portfolio by two times over. The selected
portfolios have outperformed the market 10 out of 13 (76.92%) testing quarters and excess
returns (127.48% for the 13 quarters and 36.5% for the Annualized compounded return)
which proved its consistent performance over the market (SESALL index) overtime.

The selected portfolios have outperformed the testing portfolio in nine quarters (69.23%)
and equal the performance in 1 quarter. This further proves the generalization ability of
the ANN. Moreover, the ability to avoid selecting undesirable stocks is also evident by
the fact that the selected portfolios have less of this kind of stocks than the testing
portfolio in 10 out of 13 occasions (76.92%).

From the experimental results, the selected portfolios outperformed the testing and
market portfolios in terms of compounded actual returns over time. The reason is
because the selected portfolios outperform the two categories of portfolios in most
of the testing quarters, thus achieving better overall position at the end of the testing
period (see Figure 5).

Figure 2. Performance of ANN above market

Note: Numbers in key represent the number of hidden layer neurons

Performance of Portfolios with Percentage of Stocks 
with Actual Return of 5% above Market for 10,000 

Cycles

0.00%

20.00%

40.00%

60.00%

80.00%

19
95

-3

19
95

-4

19
96

-1

19
96

-2

19
96

-3

19
96

-4

Testing Quarters

P
er

ce
n

ta
g

es

4

8

10

12

14

Testing Portfolio



Improving Returns on Stock Investment through Neural Network Selection   161

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion and Future Works

The ANN has demonstrated its generalization ability in this particular application. The
results clearly show that improved returns are achieved when an ANN is used to pick out
the better stocks. This is evident through the ability to single out performing stock
counters and having excess returns in the Basic System over time. Moreover, the neural
network has also showed its ability in deriving relationships in a constrained environ-
ment in the Moving-Window System, thus making it even more attractive for applications

Graphical Presentation of Excess Returns of Portfolio

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

19
93

-4

19
94

-1

19
94

-2

19
94

-3

19
94

-4

19
95

-1

19
95

-2

19
95

-3

19
95

-4

19
96

-1

19
96

-2

19
96

-3

19
96

-4

Testing Quarters

E
xc

es
s 

R
et

u
rn

s

Excess Return of
Selected Portfolio

Excess Return of
Testing Sample

Figure 3. Excess return of ANN-selected portfolio

Figure 4. Excess return of ANN-selected portfolio (Moving-Window System)

% of Top Performers in the Portfolio—Moving-window System

0%

10%

20%

30%

40%

50%

60%

70%

19
93

-4

19
94

-1

19
94

-2

19
94

-3

19
94

-4

19
95

-1

19
95

-2

19
95

-3

19
95

-4

19
96

-1

19
96

-2

19
96

-3

19
96

-4

Testing Quarters

%
 o

f 
T

o
p

 P
er

fo
rm

er
s 

in
 t

h
e 

P
o

rt
fo

lio

Selected Portfolio
Percentage above 5%

Testing Porfolio Percentage
above 5%



162   Quah

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in the field of Finance. This work is a preamble for a stock recommendation system that
can assist fund managers in getting better returns for portfolios managed by them. For
individual investors, an ANN system will be able to provide a guide for wiser selection
of counters, thus achieving better wealth growth.

For this work, the modeling horizons chosen were mainly short-term. While the results
are true for short-term forecasting, they might not hold for longer-term price movements.
Investors with a long-term view to investing might not find our neural network helpful.
Therefore, an area of future research would be to investigate the longer-term modeling
of stock counters.

As a related point, as this work focuses on short-term modeling, we have opted not to
use any macroeconomic variables as they are collected, at best, only on a monthly basis
and thus might be inappropriate for daily predictions. However, ignoring macroeconomic
variables also has its own perils as these variables definitely have an impact on the stock
markets. Perhaps to compensate for the slower release of these variables, future
researches can instead use leading economic indicators to forecast the stock prices.

Also, this work is largely constrained by the availability of data. Therefore, when more
data is available, performance of the neural networks can be better assessed in the various
kinds of market conditions — such as bull, bear, high inflation, low inflation, or even
political conditions — each of which has a different impact on stocks.

Figure 5. Comparing performances

Actual Returns—Moving-window System

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

19
93

-4

19
94

-1

19
94

-2

19
94

-3

19
94

-4

19
95

-1

19
95

-2

19
95

-3

19
95

-4

19
96

-1

19
96

-2

19
96

-3

19
96

-4

Testing Quarters

A
ct

u
al

 R
et

u
rn

Selected Portfolio

Testing Portfolio

Market Portfolio
(SESALL index)



Improving Returns on Stock Investment through Neural Network Selection   163

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Last but not least, as researchers are discovering more powerful neural architectures at
a fast pace, it is good to repeat the experiments using several architectures and compare
the results. The best performance structure may then be employed.

References

Bloomberg. (2005). Bloomberg Financial Database. Retrieved from http://
www.bloomberg.com/

Cao, Q., Leggio, K. B., Schniederjans, M. J. (2005). A comparison between Fama and
French’s model and ANNs in predicting the Chinese stock market. Computers and
Operations Research, 32(10), 2499-2512.

Chen, A. S., Leung, M. T., & Daouk, H. (2003). Application of neural networks to an
emerging financial market: Forecasting and trading the Taiwan stock index. Com-
puters and Operations Research, 30(6), 901-923.

Credit Lyonnais Securities. (2005). Credit Lyonnais Securities Financial Database.
Retrieved from https://www.lcl.fr/

Gately, E. (1996). Neural networks forfinancial forecasting—Top techniques for design-
ing and applying the latest trading systems. New York: John Wiley & Sons.

Grudnitski, G., & Osburn, L. (1993). Forecasting S&P and gold futures prices: An
application of neural networks. The Journal of Future Market, 13(6), 631-643.

Halquist, C., & Schmoll, G. (1989). Neural networks: A trading perspective. Technical
Analysis of Stocks and Commodities, 7(11), 48-54.

Min, Q. (1999). Nonlinear predictabiltiy of stock returns using financial and economic
variables. Journal of Business & Economic Statistics, 17(4), 419-429.

Min, Q., & Maddala, G. S. (1999). Economic factors and the stock market: A new
perspective. Journal of Forecasting, 18, 151-166.

Olson, D., & Mossman, C. (2003). Neural network forecasts of Canadian stock returns
using accounting ratios. International Journal of Forecasting, 19(3), 453-465.

Perez, J. V., Torra, S., & Andrada, F. J. (2005). STAR and ANN models: Forecasting
performance on the Spanish IBEX-35 stock index. Journal of Empirical Finance,
12(3), 490-509.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning the internal represen-
tations by error propagation. In D. E. Rumelhart, & J. L. McClelland (Eds.),  Parallel
distributed processing, Vol. 1 and 2. Cambridge, MA: MIT Press.

Singapore Exchange. (2006). Singapore Exchange Limited (SGX). Retrieved from http:/
/www.ses.com.sg/

Trippi, R. R., & DeSieno, D. (1992). Trading equity index futures with a neural network.
The Journal of Portfolio Management, 19(1), 27-33.

Tsaih, R., Hsu, Y., & Lai, C. (1998). Forecasting S&P 500 index futures with a hybrid AI
system. Decision Support Systems, 23, 161-174.



SECTION III:
ANNs in Manufacturing



Neural Networks in Manufacturing Operations   165

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

Neural Networks in
Manufacturing

Operations
Eldon Gunn, Dalhousie University, Canada

Corinne MacDonald, Dalhousie University, Canada

Abstract

This chapter provides some examples from the literature of how feed-forward neural
networks are used in three different contexts in manufacturing operations. Operational
design problems involve the determination of design parameters, such as number of
kanbans, in order to optimize the performance of the system. Operational-system
decision support refers to the use of neural networks as decision-support mechanisms
in predicting system performance in response to certain settings of system parameters
and current environmental factors. Operational-system-control problems are
distinguished from decision support in that the consequences of a control decision are
both an immediate return and putting the system in a new state from which another
control decision needs to be taken. In operational control, new ideas are emerging
using neural networks in approximate dynamic programming. Manufacturing systems
can be very complex. There are many factors that may influence the performance of these
systems; yet in many cases, the true relationship between these factors and the system
outcomes is not fully understood. Neural networks have been given a great deal of



166   Gunn and MacDonald

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

attention in recent years with their ability to learn complex mappings even when
presented with a partial, and even noisy, set of data. This has resulted in their being
considered as a means to study and perhaps even optimize the performance of
manufacturing operations.

This chapter provides some examples from the literature of how neural networks are
used in three different contexts in manufacturing systems. The categories (1) operational
design, (2) operational decision-support systems, and (3) operational control are
distinguished by the time context within which the models are used. Some examples
make use of simulation models to produce training data, while some use actual
production data. In some applications, the network is used to simply predict performance
or outcomes, while in others the neural network is used in the determination of optimal
parameters or to recommend good settings. Readers who wish to explore further
examples of neural networks in manufacturing can examine Udo (1992), Zhang and
Huang (1995), and Wang, Tang, and Roze (2001).

We begin with two areas in which neural networks have found extensive use in
manufacturing. Operational-system design has seen considerable use of neural networks
as metamodels that can stand in place of the system, as we attempt to understand its
behavior and optimize design parameters. Operational-system decision support refers
to the use of neural networks as decision-support mechanisms in predicting system
performance in response to certain settings of system parameters. We close with a short
introduction to an area where we anticipate seeing growing numbers of applications,
namely the use of approximate dynamic programming methods to develop real-time
controllers for manufacturing systems.

Operational-System Design Using
Neural Networks

In the design of manufacturing operations, there are usually several performance
measurements of interest, such as throughput, average work-in-process inventory WIP,
or machine utilization. These measures are interrelated and sometimes conflicting. There
may also be several design variables, such as number of kanbans or buffer sizes at each
station, which will influence these measurements. Because of the complexity of these
systems, simulation models are used to estimate system performance given a set of
design values. Depending on the number of input variables, and the number of values
that those variables could take on, the number of variable combinations can be so large
that simulating all of them is not practical or even possible. Therefore, further work is
necessary to ascertain the set of design parameters that will lead to the desired or optimal
system performance.

Simulation optimization techniques (Andradottir, 1998; Fu, 2002; Tekin & Sabuncuoglu,
2004) have been employed in the search for the best set of design parameters. However,
what may be a preferable approach is to develop a simulation metamodel. Metamodels
are constructed to approximate the functional relationship between the inputs and



Neural Networks in Manufacturing Operations   167

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

outputs of the simulation model. The particular approach we want to look at is the use
of feed-forward neural networks (Figure 1) as simulation metamodels. Barton (1998) gives
a broader overview of simulation metamodels, including response surface modeling. The
main idea is that networks are trained on a subset of possible design parameter
combinations using the resulting performance measurements obtained from the simula-
tion model.

In the next two sections, different uses of neural network metamodels are described. One
involves approximating the relationship between design parameters and system perfor-
mance, and the other involves using a neural network metamodel of the inverse of the
simulation model. Our focus in the discussion is on the use of the neural network as a
metamodel. We do not discuss the process of training, although several of the references
we cite discuss how their particular network is trained.

Neural Networks as Simulation Metamodels

The starting point is a simulation of a manufacturing system operating under a certain
set of design parameters. Then a neural network can be trained to estimate the perfor-
mance measurements (outputs). Once trained, the networks may then be used to perform
scenario analysis rather than using the original simulation model. The network model may
also be used to determine an optimal set of input parameters, based on minimizing
(maximizing) a single output or a cost function of multiple outputs. Further simulations
may be carried out near the “optimal solution” to validate the result. The network
metamodel may also be used to identify input regions of interest, where the outputs
satisfy a set of constraints, and more in-depth analysis of these regions should be carried
out.

Hurrion (1997) developed a method for finding the optimal number of kanbans in a
manufacturing system using a neural network as an alternative to simulation-optimiza-
tion techniques. The example system used in this case consisted of two manufacturing

Input

Input
Layer

Hidden
Layer(s)

Output
Layer

Output

.

.

.

.

.

.

Figure 1. Feed-forward neural network



168   Gunn and MacDonald

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cells that produced three intermediate parts and four finished products. Demand for each
product arrived according to a Poisson process, and processing times at both cells varied
by component. The system was to be controlled using kanbans, and therefore the
problem was to determine the number of kanbans to be assigned to the seven stock
points. The system was to be evaluated using a composite cost function, which was a
function of the average WIP and the product-delay time (defined as the amount of time
between the receipt of an order and the completion of the product). A Visual Interactive
Simulation (VIS) model of a manufacturing system was built and run under different
configurations, and a feed-forward neural network was trained using backpropagation.
Inputs to the network consisted of 7 nodes (one for each kanban), and 10 output nodes
consisting of an upper and lower confidence interval for the five response variables.
These were the product-delay times for the four products and the average WIP.

The network was then used to evaluate all possible combinations of kanban allocations
and determine the combination that minimized the cost function. The solution given by
the network demonstrated that the cost function was fairly flat in the region of this
solution. This solution and all other feasible adjacent solutions were further evaluated
using the original simulation model, and a statistical test was conducted to determine the
best solution amongst this set. This technique was repeated for two further iterations
until the final optimal solution was determined.

The author acknowledged that a Response Surface Methodology (RSM) could have
been used, but would only have been valid for the cost function used. In this approach,

Figure 2. Neural network metamodeling approaches

Manufacturing
System

Simulation
Model

Neural Network
Metamodel

Optimization
Technique (based
on cost function)

Scenario
Analysis

Regions of
Interest (based on

performance
constraints)

Further simulation
experiments to
confirm results

Development of a
more refined neural

network model
concentrated in an

area of interest



Neural Networks in Manufacturing Operations   169

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

if a different cost function were to be evaluated, the neural network developed by this
technique could be used, as only the last procedure need be repeated.

In an extension to the Hurrion (1997) study, Savsar and Choueiki (2000) developed a
“Generalized Systematic Procedure (GSP)” for determining the optimal number of kanbans
in a just-in-time (JIT) controlled production line. At each station of the production line,
there are two different types of kanbans required for each product the station produces:
production ordering kanbans, which authorize production at the preceding station, and
withdrawal kanbans, which show the number of parts that the subsequent station must
withdraw.

The GSP involves six steps: (1) determining all possible Kanban combinations and
selecting a limited set of these combinations to represent the space; (2) developing a
simulation model of the system (including identifying the performance measures of
interest) and simulating under each of the combinations chosen in the first step; (3)
developing an objective function involving performance measurements of the system
such as WIP and delay time; (4) training a neural network model with the outcome of the
objective function as the target output of the network; (5) validating the neural network
model; and (6) using the neural network to evaluate all possible kanban combinations
with respect to the objective function and to determine the optimal combination.

The case problem used to illustrate the procedure was an example from an electronics
production line. The serial production line had five stations, with random (Erlang-
distributed) processing times and demand arrivals. The possible combinations were
limited to a total of 5 kanbans at each station and a total of 25 kanbans for the entire
system. Even with this limitation, the number of possible kanban combinations was
determined to be 100,000. Therefore, a combination of knowledge and factorial design
was used to limit the training dataset to 243 kanban combinations. The simulation model
was developed and run with all of these kanban combinations, and the resulting WIP and
delay times were observed. A cost function, which was a weighted combination of delay
and WIP costs, was determined, and the total cost of each of the 243 kanban combinations
tested was calculated. A feed-forward neural network consisting of 10 input nodes (one
for each type of kanban at each of the five stations), six hidden nodes, and one output
node (system cost) was built and trained using backpropagation. A regression model was
then constructed using the same training data as was used to train the network. The
network was shown to outperform the regression model in its ability to interpolate
accurately within the design space. Finally, the network was used to test all possible
kanban combinations, and the combination with the lowest total cost was determined.
Other possible combinations with total costs less than 1% different than the optimal
solution were also determined, although no further evaluation of these possible solu-
tions was performed.

For an example of a printed circuit board (PCB) manufacturing plant, Chen and Yang
(2002) developed a neural network metamodel using simulation. Given a goal of maximiz-
ing the yield of the plant, they first developed a neural network metamodel of the system,
with lot size, degree of line balance in the system, mean time between failures of machines,
mean time to repair, time limit of the paste life, and capacity of the input buffer as the inputs
to the model, and yield as the output. Once a BP network model had been trained, the
resulting function was maximized — subject to constraints on the inputs — using a



170   Gunn and MacDonald

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

simulated annealing optimization method. The best solution produced by their technique
was better than that of Shang and Takikamalla, who had used a regression metamodel and
RSM for the same problem (as cited in Chen and Yang [2002]).

Some other examples include Altiparmak, Dengiz, and Bulgak (2002), who also used a
neural network and simulated annealing approach to determine the buffer size configu-
ration that would produce the highest production yield in an asynchronous assembly
system. Chambers and Mount-Campbell (2002) use neural networks to predict the
sojourn time of jobs at each station in a manufacturing system given the buffer sizes at
each station and other information about the system. They then use the network to
determine the optimal buffer sizes in order to minimize the sojourn time while maintaining
the desired product mix. Markham, Mathieu, and Wray (2000) compared the use of neural
networks and decision trees in kanban setting for a manufacturing shop. They found that
neural networks were comparable to classification and regression trees in predicting the
optimal number of kanbans.

Inverse Neural Network Metamodels

If a simulation can be seen as a function from a set of input parameters to an output, this
raises the question of the existence of an inverse function that maps the system
performance to the inputs that produce it. A number of authors have attempted to train
a neural network metamodel to approximate the inverse function of the simulation model.
This is done by using the performance measurements from the simulation model as the
inputs in the training data and the corresponding system-parameter settings as the
output. Validation of the results may be achieved by testing the solution provided by the
neural network in the original simulation model. This approach has obvious challenges,
since several different settings of the simulation inputs may have the same (approxi-
mately) simulation outputs so that the inverse is not in fact a function (i.e., 1-1).

Chryssolouris, Lee, Pierce, and Domroese (1990) used a neural network to determine the
appropriate number of resources to assign to work centers within a job shop. A simulation
model was used to produce the dataset used in training the neural network. The

Manufacturing
System

Simulation
Model

Neural Network
Inverse Metamodel

Estimated System
Settings

Desired
Performance

Figure 3. Inverse neural network metamodel



Neural Networks in Manufacturing Operations   171

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

simulation model produced performance measures for the system, such as mean tardiness
and mean resource utilization, given a certain number of resources allocated at each
station, work load, and operational policy. The authors then trained a multilayer
perceptron neural network, using the performance measures as the input, and the number
of resources at each station as the output. Thus, the role of the network was to act as
the inverse to the simulation. Once trained, the desired performance measurements can
be entered, and the network predicts the appropriate number of resources at each station
to achieve the desired result. The authors noted the importance of using contrary type
performance measures, and the desirability of screening criteria to eliminate poor design
combinations, and only training the network with good results.

Using a similar methodology, Mollaghasemi, LeCroy, and Georgiopoulos (1998) devel-
oped a Decision Support System (DSS) for determining the optimal allocation of
resources and queueing strategy in the test operation of a major semiconductor
manufacturing company. The operation involved three different types of testers, and the
goal was to determine the number of each type of tester and the type of queueing strategy
(FIFO, SPT, highest demand, or lowest slack) in order to achieve desired performance
measurements such as cycle time, WIP, and utilization of the three different types of
testers. A simulation model of the operation was used to generate the estimates of
performance for different combinations of resource allocations and queueing strategies.

Because the feed-forward neural network was to be used as the inverse to the simulation
model, the network was trained using the performance outcomes as inputs and the
corresponding design values (number of testers, type of queueing strategy) as the
output. For each performance measurement, five ranges of possible values were deter-
mined, and five input nodes were used to represent these ranges — if the value of the
measurement fell in a particular range, the corresponding input was set to one, otherwise
it was zero. As well, the output nodes of the network represented each possible value
for each design parameter; for example, since there were four possible queueing
strategies, four output nodes were assigned. The training data was transformed such that
if a particular strategy were used in the example, the node was set to one; otherwise, it
was set to zero. The resulting network had 25 input nodes and 13 output nodes. The
network was trained using backpropagation.

Once the network was trained, the desired combination of performance ranges (WIP,
cycle time, etc.) could be presented as input to the network, and the network would then
identify the corresponding combination of design parameter values to achieve that
performance. The authors tested the network by presenting a combination of perfor-
mance outcomes that were not included in the original training set. The outputs of the
network were not exactly zero or one. Therefore, for each set of output nodes, the nodes
with values closest to one were chosen as the solution. The authors acknowledged that
if the network was presented with a combination of performance measurements that were
infeasible (given the conflicting nature of these measures), the neural network would still
produce a set of operational parameters; therefore, once such a result is obtained, it
should be further tested with the original simulation model to ensure it is an achievable
result.

The use of an inverse neural network metamodel does assume that an inverse of the
performance function exists, which may not be the case. There may be multiple combi-



172   Gunn and MacDonald

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

nations of design parameters that would result in the desired outcomes. This technique
would only produce one such solution. Further investigation using the original simula-
tion model, as previously mentioned, would normally be required.

Operational Decision Support
Using Neural Networks

Another common situation in industrial operations is that the outcome of a manufactur-
ing process is often influenced by many variables; however, only a subset (perhaps only
one) of these variables is controllable. Operators must determine the “right” setting for
a process or course of action to take, given information about the current situation, in
order to achieve desired outcomes or to produce a “good” product. Sometimes the
decision can be made based on previous experience, but often trial and error is necessary
when previously unseen combinations of values are encountered. Neural networks can
be used to assist in the decision making process by being trained to learn the relationship
between these variables and process outcomes. The data used for this training may be
taken from previously collected process data, or collected through experimentation. The
trained network may then be used to test certain settings to determine the output, or may
be further analyzed to provide the optimal setting or best decision given the current
situation.

Coit, Jackson, and Smith (1998) demonstrate the use of neural networks in two industry
examples; wave soldering and slip casting. In the wave soldering example, the problem
was to develop a model to determine the best process settings (i.e., preheater temperature
and belt speed) for the wave soldering machine in order to minimize the number of solder
connection defects in the printed circuit boards (PCBs). Each PCB had several design
characteristics, such as mass, size, and component density, and the firm produced many
different models. As the thermal condition of the card when it enters the solder wave was
considered the most important determinant of the soldering quality, this data was
collected using special testing apparatus over a period of two months. Thermal condition
of a card is described by the mean temperature, standard deviation, and temperature
gradient at the wave.

Process
Setting(s)

Process
Outcome(s)

State Variables
Process Variables

Manufacturing
System

Figure 4. Manufacturing process decision problem



Neural Networks in Manufacturing Operations   173

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Three feed-forward neural networks, each with one output node, were constructed to
predict the thermal condition (mean temperature, standard deviation and gradient) based
on the design parameters of the PCBs and the process settings. Each network consisted
of 14 inputs: design inputs, such as length of the card, card mass, and thickness; and
process settings, which included four preheater temperatures and the belt speed. Finally,
another neural network was constructed to use the thermal predictions as input and
predict the category of solder quality (i.e., excellent, good, or fair).

Coit, Jackson, and Smith (1998) also detail the use of neural networks in predicting quality
in a slip-casting process. While slip casting allows for the production of complex shapes
such as sinks or statues, it is difficult to produce products that are free from defects, given
the number of variables that can affect the quality of the casting. In order to avoid
fractures and/or deformities in a casting, the moisture gradient within the casting should
be as uniform as possible. As well, another output measurement of the process is casting
rate, which is the thickness of the cast achieved during the casting time; the higher the
casting rate, the less time the cast must spend in the mold.

In this application, neural networks were used to predict the moisture gradient and
casting rate given ambient conditions (relative humidity and temperature), the casting
time and properties of the slip (such as moisture content, viscosity, and temperature).
The manufacturer had substantial production data with these parameters, and additional
experiments were conducted to measure the effects of extreme values of the ambient
temperature, humidity, and sulfate content in the slip. In all, ten slip variables, the two
ambient or state variables, and the casting time were used as input to two feed-forward
neural networks with either moisture gradient or casting rate as the single output. Lam,

Production
Data

Trained
Neural Network

Neural Network

Neural Network

Optimization
Procedure

Current Values of State 
and Process Variables

Current Values of State 
and Process Variables, 

Choice of Process Setting

Step 1:  Train the Network

Step 2:  Use the network to aid in the decision making process

Expected Outcome

Recommended 
Process Setting

OR

Figure 5. Neural network decision support



174   Gunn and MacDonald

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Petri, and Smith (2000) discuss the process improvement module and the fuzzy-logic
expert system which used these neural networks to recommend the best set of control-
lable variables and casting times. This system has been implemented at a major U.S. plant.

Another example is that of Philipoom, Wiegmann, and Rees (1997) in the assignment of
due dates to jobs arriving at a shop, where there is work in process, and the processing
times at each stage of production are random variables. The goal is to assign a due date
(date for completion as quoted to the customer) to an arriving job that will minimize the
expected penalty cost due to early or late completion. Here, the authors assume that the
cost for late completion is different than for early completion. Three different shop
configurations were simulated, and then 23 job-specific and shop-specific characteris-
tics were measured each time a job entered the simulated shop. The departure time of each
job was also measured. A neural network was then trained using the 23 characteristics
as input and the departure times as outputs. Mathematical programming and OLS
regression techniques were also used to predict the completion time of each incoming
job. Each model was presented with new data, and then the difference between the
predicted completion date (assigned due date) and the simulated completion date were
used to calculate the penalty cost incurred for each job. Overall, the neural network
performed as well or better than the other techniques tested for these examples.

Schlang et al. (1997) reported on the use of neural networks in the steel industry. One
application was in a wide-strip hot-rolling process, where steel sheets underwent
prerolling in a roughing mill prior to being brought to a final thickness by a finishing mill.
The width of the sheets could only be controlled at the roughing stage, although material
characteristics and the state of the finishing mill were also known to be factors in the final
width of the sheets after the finishing stage. Due to the variability in processing, a safety
margin of several millimeters was used to ensure the sheet was not too narrow after
finishing. Any excess width after the finishing stage was trimmed off and recycled. A
neural network was built and trained to predict the width of a sheet of steel after the
finishing stage, given such information as the material composition, material tempera-
ture, and finishing mill parameters, and also the initial settings at the prerolling stage.
Because the network could more accurately predict the final width of the sheet, the safety
margin could be reduced, therefore reducing the amount of recycling.

Kilmer, Smith, and Shuman (1999) developed parallel neural networks as metamodels for
discrete event simulations. They modeled an (s,S) inventory system and determined the
expected system cost and variance, given selected values of setup cost, stockout cost,
and values of s and S. Two neural networks were then trained; one with the expected
system cost as the output and the other with the variance of the average cost from multiple
replications of the simulation at each point. These estimates were then used as confi-
dence intervals for the expected total cost, and shown to closely replicate results from
the simulation model itself when tested on data points not originally in the training set.

Sabuncuoglu and Touhami (2002) estimate manufacturing system performance using
neural networks. They experimented with both simple and complex systems, and with
using deterministic and stochastic processing times and interarrival times. In these
experiments, a due date for an arriving job is determined based on the total work content
of the job multiplied by a tightness factor. The simulation models were run with varying
interarrival times, tightness factors, and queue waiting discipline (shortest processing
time, earliest due date, or modified operation due date). The mean machine utilization,



Neural Networks in Manufacturing Operations   175

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

mean job tardiness and mean job flow time for each job were recorded. A feed-forward
neural network was then trained (using backpropagation with momentum) for each
experiment with the interarrival time, tightness factor and queue-waiting disciplines as
inputs, and one of the performance measurements as the output.

Huang, et al. (1999) examined the use of neural networks to predict the WIP levels and
throughput for operation stages of a wafer-fabrication process. The goal was to develop
a network which could predict the WIP level and throughput of an operation stage in the
next time period, given information on the current situation, so that managers could
proactively implement corrective actions. They determined through testing that using
the current WIP levels and throughput at an operation stage, as well as the same levels
from the two upstream operation stages, as inputs to a feed-forward neural network
trained with backpropagation provided the best prediction results. They recommended
a two-stage procedure for the implementation of the network. The predicted WIP levels
and throughput from the network were compared to the standard performance measures
and represented as “high,” “normal,” or “low.” Predictions other than “normal” indicated
that managers needed to implement corrective actions.

The ability of feed-forward neural networks to approximate the functional relationship
between input and output variables, even with incomplete data, is very useful in this
application. One perhaps obvious caution is that a trained network is only valid for the
process data on which it was trained. The examples presented earlier are static, in that
it is assumed that the system itself does not change. If the process is changed, the
network should be retrained. Since processes may change over time, periodic testing and/
or retraining should also be implemented.

Operational System Control Using
Neural Networks

Control problems are distinguished from decision support in that the consequences of
a control decision are both an immediate cost or benefit and the fact that the system is
now in a new state from which another control decision needs to be taken. The view of
manufacturing systems as a manufacturing-control problem has been current for some
time now (Gershwin, Hildebrant, Suri, & Mitter, 1986). Typically, these control systems
are challenging to optimize.

Although the focus of this chapter is on feed-forward networks used as approximators,
it is worth noting that recurrent neural networks have been developed (Rovithakis,
Gaganis, Perrakis, & Christodoulou, 1999) to provide controllers for quite complex
manufacturing systems. The aim of the controller is to maintain the system at prescribed
buffer levels (WIP levels) in a stable manner. In Rovithakis, Perrakis, and Christodoulou
(2001), an application of this neural network control is reported to perform well on a real
manufacturing system aimed at controlling WIP levels for 18 product types in a job-shop
environment.



176   Gunn and MacDonald

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A more general approach to manufacturing control will not seek to maintain fixed WIP
levels but instead seek to optimize an objective function of some sort. A natural approach
to the manufacturing control problem has been dynamic programming, but typically most
real manufacturing systems have such large state spaces that render this approach
infeasible. However, ideas developed in neurodynamic programming (Bertsekas &
Tsitsiklis, 1996), also known as reinforcement learning (Sutton & Barto, 1998), have
begun to have important applications in manufacturing and we anticipate considerable
growth in these types of applications. It will thus be useful to sketch out how these ideas
work in order to see the important role that feed-forward neural networks play. Bertsekas
(2001) gives a nice summary article on neurodynamic programming that is the basis for
much of the discussion that follows.

The basic finite horizon dynamic programming model can be summarized as follows. We
have a dynamic system that evolves according to x

t+1
 = f(x

t
, u

t
, w

t
), where x

t 
is the system

state, u
t 
is a control action, and w

t 
is a random disturbance. For an infinite horizon control

problem with discrete time periods, the task facing us is to compute the state cost-to-go

function J(x), which solves Bellman’s Equation. The goal is to maximize E gt (
t=1,T

∑ xt,ut ,wt )
 

 
 

 

 
 

by taking allowable control actions u
t 
∈ A(x

t
). The g

t
(x

t
, u

t
, w

t
) is a reward earned on the

tth stage of this process.

The dynamic programming approach consists of attempting to solve the recursive

equation Jt (xt ) = Max
u∈A(xt )

E gt (xt,ut ,wt ) + Jt +1(xt +1)[ ]{ } . Taking this to a control model, with

stationary reward functions g(), and stationary probability functions, the Bellman’s
Equation is:

[ ]{ }),,(;)(),,(),,()(
)(

wuxfxxJwuxwuxgEMaxxJ
xAu

=′′+=
∈

α                                     (1)

The problem as portrayed here is the minimization of discounted rewards with a discount
factor α(x, u, w). The dependency on the x, u, and w is meant to indicate that this procedure
can deal with both standard markov processes but also semi-markov processes where
the transition time depends on the state, the decision, and the random variable. The use
of discounting to deal with the infinite horizon is simple for exposition. However, an
objective that maximizes average rewards per unit time is equally possible. Both
Bertsekas and Tsitsiklis (1996) and Sutton and Barto (1998) provide the details that are
lacking above. Das, Gosavi, Mahadevan, and Marchellack (1999) develop a generic
algorithm for the use of reinforcement learning techniques to minimize average costs in
a semi-markov decision setting.

There are two basic approaches to solving the DP model: value iteration and policy
iteration. There are several types of approximation that form the basis of NDP/RL
approaches. The simplest is approximation to the cost-to-go function. Bellman equations
can be thought of as a recursive approach to learning the value of the cost-to go function
J(). Algorithms based on this are known as value iteration. The problem is that the number
of possible state variables is very large (often continuous). This means it is impossible



Neural Networks in Manufacturing Operations   177

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to evaluate the J(x) for all possible x. A natural approach is to use a neural network J(x,r)
where r are the weights of a feed-forward neural network to fit the current estimates J'(x

i
),

i  = 1, N. This neural network can be used to update the estimates J' again using:

[ ]{ }),,(;),(),,(),,()(
)(

wuxfxrxJwuxwuxgEMaxxJ
xAu

=′′+=′
∈

α                               (2)

and a new neural network fit to the current J'. The estimates of  J' can be updated either
synchronously (all of the states x) or asynchronously (selected states).

A second approach is that of Q-learning. The Q factor is the function Q(x,u) given by:

[ ] ),,(;)(),,(),,(),( wuxfxxJwuxwuxgEuxQ =′′+= α                                          (3)

There are several approaches to estimating the Q-factors. One is to use a neural network
to approximate J and then to estimate the expected value by simulation. Another is to
estimate J itself by simulation of a heuristic policy and use this simulation to estimate
Q(x,u). There are a broad variety of ways to build up approximations of Q(x,u) using a
variety of learning algorithms. However, in most practical cases, the dimension of the
state and action space is again so large that the Q-factors can be evaluated at only a small
number of potential states. A feed-forward neural network can then be used to approxi-
mate Q as Q(x,u;r) where r are again the weights of some appropriately chosen neural
network architecture. (Note we are using r throughout this section to denote weights/
parameters of the fitting architecture and are obviously not the same quantities from one
type of approximation to the next. The meaning should be clear from the context). This

gives J(x) = Max
u∈A (x )

Q(x,u; ′ r ){ } and the optimal control policy as u(x) = argmax
u∈A(x )

Q(x,u; ′ r ){ }.

The third opportunity involves the approximation of the policy function itself. If we have
a good estimate of the cost-to-go function J() or a good estimate of the Q-factors, then
an approximate policy is:

[ ]{ }),,(;),(),,(),,(maxarg)(
)(

wuxfxrxJwuxwuxgExu
xAu

=′′+=
∈

α

or

u(x) = argmax
u∈A (x )

Q(x,u;s){ }.

Again it is often the case that there are such a large number of states that it is unrealistic
to evaluate u(x) at every state x. A possible solution is the development of a policy
network u(x;r) that approximates those states where the evaluation has been carried out.



178   Gunn and MacDonald

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the quite common situation where only a reasonably small finite number of policy
actions are available, this network becomes a classification network.

The SMART algorithm developed in Das, Gosavi, Mahadevan, and Marchellack (1999)
applies reinforcement-learning theory in a case of semi-markov decisions and with an
objective of average costs, not discounted. The technique is effectively building up an
approximation of the Q factors through simulation and learning updates. Then, a feed-
forward neural network is used to extend the estimates at the simulated states and actions
to the entire state and action space. In Das, et al. (1999), the SMART algorithm is applied
to large preventive maintenance problem (approximately 107 states). Paternina-Arboleda
and Das (2001) give an application of SMART to develop control policies for serial
production lines that are an improvement on conventional kanban, CONWIP, and other
control policies.

Shervais, Shannon, and Lendaris (2003) use a neurodynamic-programming approach to
a problem of physical distribution in the supply chain. They modeled the supply chain
process with a simulation and then fit a neural network to the simulation results. From
that point on, the neural network acted as the model of the system dynamics. Their
approach is essentially a policy iteration algorithm. Any policy is developed at a finite
set of state points and then extended to the entire space using a policy network.

Gershwin (1989) has pointed out the generality of the dynamic programming framework
for the optimal control of manufacturing systems. This suggests that as the ideas of
neurodynamic programming become better known in the manufacturing community, we
will see increased use of this approach and a corresponding increase in the use of neural
networks to approximate the cost-to-go function, the Q factors, and the policy functions.

Conclusion

The preceding sections provided some examples of how neural networks are being
applied in manufacturing operations. Neural networks are well suited to manufacturing
applications, which tend to be very complex with interrelated outputs. While the use of
neural networks continues to grow, there are still some outstanding research issues in
this area, as well as practical issues in their application.

The attraction of using neural networks has to do with the ability to map many inputs onto
multiple outputs without knowing the underlying function. One practical issue in
manufacturing is determining which inputs do in fact affect the outputs. For example, in
decision-support systems, which of the environmental factors (e.g., plant temperature,
type of tooling used, etc.) have a significant impact on the performance measurement of
interest? Including input variables, which, in reality, do not affect the process outcomes,
will over-complicate the network design and perhaps lead to difficulties during training.
While expert opinion may be solicited prior to the construction of the network, sometimes
the applicators will be looking to the network to determine whether or not there is any
relationship. Unfortunately, trained feed-forward neural networks are like a “black box”
and do not provide insight or general rules for the relationship between the input and
the output of the network.



Neural Networks in Manufacturing Operations   179

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

When there are a very large number of combinations of possible inputs, determining the
correct composition of the training dataset is a challenge in itself. In order to ensure good
generalization within the sample space, a broad range of sample points should be chosen.
In the case of decision-support systems for manufacturing processes, where actual
production data is used for training, it may be necessary to conduct experiments to capture
observations for certain rarely seen or extreme combinations of process variables, as they
may not exist in the historical production data. Otherwise, in future, one may be calling
upon the network to extrapolate, which may lead to highly inaccurate results.

The architecture design of the networks remains a challenge. The principle of Occam’s
Razor would argue that simpler functions (fewer hidden nodes/layers) are more desirable,
yet the resulting network may not fit the underlying function closely enough. Overfitting
must also be addressed to ensure the network has good generalization properties. This
is usually addressed by splitting the data into a training set and a testing set and stopping
the training of the network when the error between the network output and the testing
set begins to rise. While there are rules of thumb for determining the number of hidden
nodes, often the approach is to test various architectures and choose the one that
provides the best compromise between generalization and error minimization.

The use of metamodels does not guarantee an easy means to optimization. Even with an
analytical function, optimization is not an easy problem and heuristic methods may be
necessary to generate a good, but not necessarily optimal, solution.

Neural network approaches can bring designers and operators closer to the right design
or decision faster than traditional approaches. Although careful design and testing can
improve the accuracy of the network’s approximations, the output is still in fact an
approximation. Further testing and validation may be necessary before system implemen-
tation.

References

Altiparmak, F., Dengiz, B., & Bulgak., A. A. (2002). Optimization of buffer sizes in
assembly systems using intelligent techniques. In E. Yucesan, C. H. Chen, J. L.
Snowdon, & J. M. Charnes (Eds.), Proceedings of the 2002 Winter Simulation
Conference, Vol. 2 (pp. 1157-1162).

Andradottir, S. (1998). A review of simulation optimization techniques. In D. J. Medeiros,
E. F. Watson, J. S. Carson, & M. S. Manivannan, (Eds.), Proceedings of the 1998
Winter Simulation Conference (pp. 151-158).

Barton, R. R. (1998). Simulation metamodels. In D. J. Medeiros, E. F. Watson, J. S. Carson,
& M.S. Manivannan (Eds.), Proceedings of the 1998 Winter Simulation Confer-
ence (pp. 167-174).

Bertsekas, D. P. (2001). Neuro-dynamic programming: An overview. In C. A. Floudas, &
P. M. Pardalos (Eds.), Encyclopedia of Optimization, 17 (pp. 17-22).

Bertsekas, D. P., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Belmont, MA:
Athena.



180   Gunn and MacDonald

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chambers, M., & Mount-Campbell, C. A. (2002). Process optimization via neural network
metamodeling. International Journal of Production Economics, 79, 93-100.

Chen, M. C., & Yang, T. (2002). Design of manufacturing systems by a hybrid approach
with neural network metamodelling and stochastic local search. International
Journal of Production Research, 40, 71-92.

Chryssolouris, G., Lee, M., Pierce, J., & Domroese, M. (1990). Use of neural networks for
the design of manufacturing systems. Manufacturing Review, 3, 187-194.

Coit, D. W., Jackson, B. T., & Smith, A. E. (1998). Static neural network process models:
Considerations and case studies. International Journal of Production Research,
36, 2953-2967.

Das, T. K., Gosavi, A., Mahadevan, S., & Marchellack, N. (1999). Solving semi-markov
decision problems using average reward reinforcement learning. Management
Science, 45, 560-574.

Fu, M. (2002). Optimization for simulation: Theory vs. practice. INFORMS Journal on
Computing, 14, 192-215.

Gershwin, S. B. (1989). Hierarchical flow control: A framework for scheduling and
planning discrete events in manufacturing systems. Proceedings of the IEEE,
77(1), 195-209.

Gershwin, S. B., Hildebrant, R. R., Suri, R., & Mitter, S. K. (1986). A control perspective
on recent trends in manufacturing systems. IEEE Control Systems Magazine, 6(2),
3-15.

Huang, C. L., Huang, Y. H., Chang, T. Y., Chang, S. H., Chung, C. H., Huang, D. T., et al.
(1999). The construction of production performance prediction system for semi-
conductor manufacturing with artificial neural networks. International Journal of
Production Research, 37, 1387-1402.

Hurrion, R. D. (1997). An example of simulation optimisation using a neural network
metamodel: Finding the optimum number of kanbans in a manufacturing system.
Journal of the Operational Research Society, 48, 1105-1112.

Kilmer, R. A., Smith, A. E., & Shuman, L. J. (1999). Computing confidence intervals for
stochastic simulation using neural network metamodels. Computers & Industrial
Engineering, 36, 391-407.

Lam, S. S. Y., Petri, K. L., & Smith, A. E. (2000). Prediction and optimization of a ceramic
casting process using a hierarchical hybrid system of neural networks and fuzzy
logic. IIE Transactions, 32, 83-91.

Markham, I. S., Mathieu, R. G., & Wray, B. A. (2000). Kanban setting through artificial
intelligence: A comparative study of artificial neural networks and decision trees.
Integrated Manufacturing Systems, 11(4), 239-246.

Mollaghasemi, M., LeCroy, K., & Georgiopoulos, M. (1998). Application of neural
networks and simulation modeling in manufacturing design. Interfaces, 25(5), 100-
114.

Paternina-Arboleda, C. D., & Das, T. K. (2001). Intelligent dynamic control of single-
product serial production lines. IIE Transactions, 33, 65-77.



Neural Networks in Manufacturing Operations   181

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Philipoom, P. R., Wiegmann, L., & Rees, L. P. (1997). Cost-based due-date assignment
with the use of classical and neural-network approaches. Naval Research Logis-
tics, 44, 21-46.

Rovithakis, G. A., Gaganis, V. I., Perrakis, S. E., & Christodoulou, M. A. (1999). Real time
control of manufacturing cells using dynamic neural networks. Automatica, 35,
139-149.

Rovithakis, G. A., Perrakis, S. E., & Christodoulou, M. A. (2001). Application of a neural-
network scheduler on a real manufacturing system. IEEE Transactions on Control
Systems Technology, 9, 261-270.

Sabuncuoglu, I., & Touhami, S. (2002). Simulation metamodelling with neural networks:
An experimental investigation. International Journal of Production Research, 40,
2483-2505.

Savsar, M., & Choueiki, M. H. (2000). A neural network procedure for kanban allocation
in JIT production control systems. International Journal of Production Research,
38, 3247-3265.

Schlang, M., Broese, E., Feldkeller, B., Gramckow, O., Jansen, M., Poppe, T., et al. (1997).
Neural networks for process control in steel manufacturing. In 1997 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, Vol. 1 (pp.
155-158).

Shervais, S., Shannon, T. T., & Lendaris, G. G. (2003). Intelligent supply chain manage-
ment using adaptive critic learning. IEEE Transactions on Systems, Man, and
Cybernetics — Part A: Systems And Humans, 33, 235-244.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cam-
bridge, MA: MIT Press.

Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on
theory and applications. IIE Transactions, 36, 1067-1081.

Udo, G. (1992). Neural networks applications in manufacturing processes. Computers &
Industrial Engineering, 23, 97-100.

Wang, J., Tang, W. S., & Roze, C. (2001). Neural network applications in intelligent
manufacturing: An updated survey. In A. Kusiak, & J. Wang (Eds.), Computa-
tional intelligence in manufacturing (chap. 2). Boca Raton, FL: CRC Press.

Zhang, H. C., & Huang, S. H. (1995). Applications of neural networks in manufacturing:
A state of the art survey. International Journal of Production Research, 33, 705-
728.



182   Khan, Nahavandi, and Frayman

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XI

High-Pressure
Die-Casting Process

Modeling Using
Neural Networks

M. Imad Khan, Deakin University, Australia

Saeid Nahavandi, Deakin University, Australia

Yakov Frayman, Deakin University, Australia

Abstract

This chapter presents the application of a neural network to the industrial process
modeling of high-pressure die casting (HPDC). The large number of inter- and
intradependent process parameters makes it difficult to obtain an accurate physical
model of the HPDC process that is paramount to understanding the effects of process
parameters on casting defects such as porosity. The first stage of the work was to obtain
an accurate model of the die-casting process using a feed-forward multilayer perceptron
(MLP) from the process condition monitoring data. The second stage of the work was
to find out the effect of different process parameters on the level of porosity in castings
by performing sensitivity analysis. The results obtained are in agreement with the
current knowledge of the effects of different process parameters on porosity defects,
demonstrating the ability of the MLP to model the die-casting process accurately.



High-Pressure Die-Casting Process Modeling Using Neural Networks   183

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

HPDC is a process used to produce various structural elements for the automotive
industry, such as transmission cases, engine sump, rocker covers, and so on. The
process begins with pouring melted aluminum in the shot sleeve cylinder through a ladle.
After the die is closed, the metal is pushed inside the die cavity by moving a plunger. The
plunger starts initially with a low velocity, then the velocity increases during the piston’s
motion, and the velocity is decreased at the end when nearly all the liquid metal is injected
into the die. The metal is injected through gate and runner system at a high velocity and
pressure. The die is then opened and a robotic arm extracts the solidified part. The die
is lubricated to facilitate the extraction of casting and to avoid soldering of the metal with
the die surface. The extracted casting with a biscuit is then cooled down with water and
is placed on a conveyer belt for further treatment or otherwise stored on a rack for quality-
control tests.

The HPDC process is a complex process, consisting of over 150 inter- and intradependent
process parameters. For example, there is a dependency between the gate velocity, the
fill time, and the die temperature (Davis, 1978). If the fill time and the gate velocity are
optimized, the die temperature becomes less critical. The interaction between the fill time
and the metal pressure is also well-known (Walkington, 1990). The complexity of the
process results in many problems like blistering and porosity. While the complexity of
HPDC makes it difficult to obtain an accurate physical model of the process, having an
accurate model of the die-casting process is paramount in order to understand the effects
of process parameters on casting defects such as porosity.

Porosity is a defect in which the HPDC machine produces castings with pores in them
as a result of either gas entrapment or vacuum due to poor metal flow at the location of
pore occurrence. Porosity is by far the most highly occurring defect in automotive engine
castings, resulting in the largest percentage of scrap of engine-component castings
(Andresen & Guthrie, 1989). At the same time, porosity is one of the most difficult defects
to eliminate in die casting. It is in the best interest of the industry (e.g., car manufacturers)
and the consumer of die castings that porosity is eliminated completely from the castings,
but this is not always possible to do with the current level of process understanding. The
industry generally has to settle to move porosity to different noncritical locations in a
casting rather than to remove it completely. In addition, attempts to eliminate porosity
defects can affect other process settings and result in other casting defects.

Understanding of how HPDC process parameters influence casting defects such as
porosity can eventually lead to determining the optimal process parameters to reduce the
chance of defects occurring in the castings. The variety and often conflicting nature of
the states of process parameters makes it hard in practice to achieve a globally optimized
process with no defects in castings. Thus, the industry is generally opting for defect
reduction on the basis of intended use of the casting; for example, a casting that has to
be attached to other parts using bolts should not have weakness close to the bolt hole.
It is crucial that there is either low or no porosity in the area close to the hole, while defects
that lie in other parts of the same casting that does not affect structural integrity of the
casting can be tolerated.



184   Khan, Nahavandi, and Frayman

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Background

The porosity defect can be divided into three major types, which are gas porosity,
shrinkage porosity, and flow porosity. In HPDC, the first two types of porosity are mostly
encountered. The gas porosity is the porosity in casting due to the presence of gas. This
type can arise from gas produced during process, entrapped air, and melt composition.
The shrinkage porosity is due to shrinkage of metal, so that the metal loses volume and
hence more metal is required to fill the voids produced. In HPDC, it is hoped that this
problem can be minimized with the application of high pressure to fill the voids when metal
is in the solidification state. Formation of porosity in aluminium castings is a combination
of die-casting process parameters, such as melt composition and solidification proper-
ties, under high pressure. Main process-related porosity formation mechanisms include
solidification and entrapped-gas-related formation. Melt related porosity formation is of
minor importance, primarily because hydrogen entrapment in HPDC is not a big problem
(Walkington, 1997). Hydrogen entrapment can be a serious problem if there is a
significant amount of scrap being remelted. The specific reasons for porosity formation
are undesirable states of shot sleeve, cavity, runners, vent and gates, solidification
pressure, lubricant quantity, and steam formation from water during the process.

Porosity formation is a subject of active research that can be divided into discussions
of porosity types, whether gas or shrinkage (Garber & Draper, 1979) or the specific issues
regarding porosity formation like entrapped air in shot sleeve or cavity (Garber, 1981,
1982; Thome & Brevick, 1995), gate and runner systems (Andresen & Guthrie, 1989),
pressure (Kay, Wollenburg, Brevick, & Wronowicz, 1987; Murray, Chadwick &
Ghomashchi, 1990), and melt composition (Kaghatil, 1987; LaVelle, 1962).

Shot-Related Porosity Formation

Shot-sleeve-related parameters are perhaps the most sensitive ones when it comes to
entrapped-air porosity. The parameters like acceleration, stage velocities, diameter, or
even deceleration are all shot-related parameters determining the formation of metal-
wave patterns, which can be crucial factors in deciding whether air becomes entrapped.
Other important parameters are shot-delay time and the percentage fill of the shot sleeve.

As soon as the metal is ladled, the goal of HPDC is to begin injection as soon as possible
but still at the right time in the case of a cold-chamber die-casting machine. Metal injection
should begin soon because the metal starts to solidify in the shot sleeve; and, if metal
with solid particles is injected into the die, the high velocities can cause die wear and may
contribute to die erosion and towards a deterioration of the quality of the castings. It is
not recommended to inject immediately because it can destroy the wave pattern and can
entrap air in different forms. Hence, shot-command delay is the first process parameter
to be selected carefully. Then it is the first stage velocity. If it is too low and too high,
it can contribute to wrong wave formation. The wave is formed if shot velocity (first-stage
velocity) is too slow. The wave gets on top of the air, and the air is injected into the cavity
(Thompson, 1996; Garber, 1982).



High-Pressure Die-Casting Process Modeling Using Neural Networks   185

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The other sleeve-related process parameters are acceleration to attain different stages
of velocity and fill percentage. The acceleration can also be a deciding factor in porosity
formation. Shot-sleeve percentage fill can also affect the wave formation. If the sleeve
is full of metal, the air quantity is less when compared to a lesser extent of fill, and hence
higher velocities can be applied safely to fill the cavity without forming deteriorated wave
patterns. Plauchniak and Millage (1993) has described a four-stage shot system that adds
a deceleration phase between stages in the hope to minimize impact pressure.

The process parameters affecting the entrapped air in the shot sleeve are the velocities
of the plunger, shot-sleeve fill percentage and the acceleration to reach the first stage
of desired velocity (Thompson, 1996). A too low first-stage velocity can form an inward
wave of air entrapment in the sleeve (Figure 1). A too high velocity can form different flow
in the metal towards the die cavity within shot sleeve that can result in entrapment of the
air in a forward direction (Figure 2). It helps if the shot sleeve is filled more than 50%
(Thompson, 1996; Walkington, 1997). It is possible to instantaneously accelerate the
plunger from zero to first-stage velocity without producing porosity in 50% fill. The
pressure requirements, fill time, and gate velocity very often make the 50% fill impossible
(Walkington, 1997).

Garber (1982) has developed a mathematical model of the effects of plunger-related
process parameters. It is noticeable that his model does not include the shot-sleeve
parameter—the acceleration of plunger. In fact, in his previous work, Garber (1981)

Figure 1. Air is entrapped when shot velocity it too low in the backward reflected wave

Figure 2. Air is entrapped if the shot velocity if too high; the three small arrowheads
show the problematic flow responsible for entrapment

 

Reflected wave Air entrapment

 

Bouncing wave
Air entrapment



186   Khan, Nahavandi, and Frayman

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

vehemently denies the importance of acceleration at all. The view that a smooth
acceleration can minimize air entrapment in castings from shot sleeve, while doubtful for
Garber, is considered very important by other authors (Thome and Brevick, 1995;
Thompson, 1996). Thome and Brevick (1995), similar to Thompson (1996), discuss
optimal acceleration to reach different stages of velocities. The authors advocate control
of acceleration to reduce turbulence in shot sleeve and to minimize air entrapment for less
than 50% fills. Backer and Sant (1997) found a direct effect of acceleration during a slow
shot of velocity. The authors have found that high accelerations break the waves at the
ends of the plunger that has the potential to entrap air while the metal is being injected
in the die cavity. Slow accelerations, on the other hand, were found to be optimal in the
sense that they do not break the wave and there is a low probability of air entrapment
in this case. A study conducted by Brevick, Duran, and Karni (1991) addresses the issue
of acceleration with respect to Garber’s optimal velocities (Garber, 1982) to minimize air
entrapment. It was found that an acceleration of 2 in/sec/in1 further minimizes air
entrapment at Garber’s critical velocity. If acceleration is considered important, the
concept of critical velocity can be applied to further low percentages of shot sleeve fills.
Brevick, Duran, and Karni (1991) report achievement of nonbreaking waves up to as low
a percent initial fill as 20%.

A series of work dealing with the application of control engineering to die casting
emphasizes acceleration and provides the mechanism to measure and control the
acceleration of the plunger for successful die casting with minimum scrap (Hadenhag,
1989; Shu & Kazuki, 1997; Vann, 1993). Vann and Shen (1989) claimed that controlled
acceleration during the whole shot press (shot cycle) minimizes air entrapment and hence
porosity. Hadenhag (1989) made similar claims that using controlled acceleration and
deceleration gets rapid paybacks with fewer rejects, metal savings, and higher machine
utilization. Similar results and conclusions have been drawn about acceleration in older
die-casting literature (Kruger and Bosch, 1966; Pomplas, 1972). It seems that only Garber
(1982) has disagreed with the importance of acceleration.

The velocities of first and second stages of plunger movement are other process
parameters that effect the formation of porosity for pretty much the same reasons as
acceleration. Both are related to the formation of “wrong” motion of liquid aluminum
(waves) inside the plunger. Figures 1 and 2 show the cases with too high and a too low
initial (first-stage) shot velocity (Thompson, 1996). The change over position naturally
becomes important when the velocity has to be changed from first to second stage.
According to Garber (1981, 1982), Thome and Brevick (1995), and Thompson (1996),
porosity arises out of the suboptimal settings of parameters — namely settling time after
pouring; first-stage velocity; inappropriate changeover position; and, to some extent,
second-stage velocity.

Garber’s pioneering paper (1982), supported with a mathematical model of porosity
formation, remained the center of discussion for a decade and a half. Garber identified
further two shot-sleeve-related parameters that affect air entrapment in a cold-chamber
machine. They are initial fill percentage and diameter of the plunger itself.

Hairy, Hemon, and Marmier (1991) designed an expert system to diagnose and suggest
solutions to the die-casting problems. According to the authors, most defects result from
poor settings of machine parameters like first- and second-stage velocities and overpres-
sure.



High-Pressure Die-Casting Process Modeling Using Neural Networks   187

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Asquith (1997) studies the effect of first- and second-stage plunger velocities, changeover
position, intensification pressure, and biscuit length. The author observes an increase
in porosity with increasing first-stage velocity with no significant effect on surface or
X-ray quality test results. Second-stage velocity should be low to achieve low porosity
but a higher second-stage velocity is required to minimize surface defects. It is suggested
to have a 3.5 m/s second-stage velocity considering other factors like die wear and
flashing that can occur with higher velocities.

Asquith (1997) and others (Andresen & Guthrie, 1989; Backer & Sant, 1997; Brevick,
Duran, & Karni, 1991; Garber, 1982; Garber & Draper, 1979a, 1979b; Hadenhag, 1989;
Kruger and Bosch, 1966; Plauchniak & Millage, 1993; Shu & Kazuki, 1997; Vann & Shen,
1989) have unanimous agreement that shot velocities are crucial to the quality including
occurrence of porosity in high-pressure die casting. Aforementioned authors describe
all their systems under two stages of velocities in sharp contrast to Plauchniak and
Millage, who argue that third-, even fourth-stage velocity systems are better. The first
two stages are essentially the same for elimination of gases through forming a wave that
eliminates them before entering gate and runner systems. Second stage is to fill the cavity
by matching the resistance offered to the flow-by runner. The third stage is to enhance
solidification (intensification) pressure. The fourth-stage system described by the
authors actually adds a deceleration stage between the first two stages. The authors
argue that this stage breaks any spike in pressure developed when the cavity is filled and
can increase die life.

The effect of the changeover position is very interesting. The porosity decreases with
an increase in the changeover position. Increasing it to 600 mm produced the least
porosity, and all castings passed the visual tests. Asquith (1997) does not point out the
effect of a high second-stage velocity and a high changeover position. It is worth
studying if it is possible to have a high second-stage velocity with a high changeover
position to minimize porosity, as well as surface defects. The effects of combination of
this configuration on die wear and die flashing can also be investigated.

Vents, Pressure, and Gas-Related Porosity

The air in a cavity can be entrapped due to the problems in runners or ventilation. The
vents should be big enough to let the air escape and be located near the last spot to
solidify. The runner should not have sharp corners in general. If the vents are working
properly, the air entrapped can escape to a sufficient extent (Walkington, 1997).

The purpose of the application of high pressure in die casting is to minimize shrinkage
apart from rapid production, low costs, and to achieve a lower cycle time. In HPDC, no
extra metal is generally provided to reduce shrinkage porosity that is a result of volumetric
contraction. Many die casters still find shrinkage-related porosity despite applying
enough pressure, because the applied pressure can be different than the actual pressure
developed inside cavity. This happens because of insufficient biscuit size or too big a
size and unexpected solidification. If the biscuit is too small, it can solidify first or even
metal in the shot sleeve can solidify which can take pressure off the cavity.

Asquith (1997) observed double porosity when he applied “no intensification pressure”
(which means that a base pressure of 25.8MPa was applied). Here, the author was able



188   Khan, Nahavandi, and Frayman

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to test the plunger movement with high pressure and concluded that high intensification
pressure has a more significant effect on porosity than the plunger-speed configuration.
It is worthwhile here to point out that the porosities that result from velocity profiles and
intensification are two entirely different kinds of porosities: gas and shrinkage porosities.

The quantity or type of lubricants used to grease the die and plunger can be a significant
contributor to porosity if they get burnt and result in the formation of gas. The purpose
of die lubricant is easy extraction of the part after solidification, while plunger lubricant
is used to facilitate motion of the heavy plunger through the cylinder.

Due to the extreme temperatures in the die-casting environment, some of the lubricant
gets burnt and produces gases. An optimal amount of lubricant that is dispersed evenly
is used to reduce lubricant porosity. Water is an integral part of die lubricants, and it can
occur as steam porosity due to high temperatures. Water can accumulate on a die from
a sprayer and leaking water-cooling lines.

Porosity Models

Gordon, Meszaros, Naizer, and Mobley (1993) have developed a model to calculate
porosity in terms like the volume of liquid in the casting cavity, which does not require
extra metal supply to compensate for shrinkage, volume of cavity, temperature of the gas
in the casting cavity, pressure applied to the gas during solidification, liquid alloy density
at the melting temperature, solid alloy density at the melting temperature, quantity of gas
contained in the casting at standard temperature and pressure (STP), solubility limit of
gas in the solid at the melting point, or solidus temperature at STP. It is noticeable that
some of these are not die-casting machine parameters. The authors correlate the results
of other researchers in terms of die-casting process parameters like volume of die
lubricant per casting, plunger lubricant (amount), state of shot sleeve, cavity fill time,
fast-shot velocity, die-temperature gradient, metal temperature in the furnace, and die
open time.

This work is of particular interest to the authors of this chapter because the model
proposed by Gordon et al. (1993) is helpful in calculating porosity but does not provide
any direct recommendations on how to reduce it, as it does not address the formation of
porosity in terms of die-casting process parameters. This warrants further work to verify
the model given by Gordon et al. (1993). The authors do not have a framework to fit in
the die-casting process parameters in their mathematical model; however, die-casting
process is essentially controlled by its process parameters. One of the observations
going against the model of Gordon et al. 1993), as reported by Garber and Draper (1979a),
is the decrease in porosity with the decrease in holding temperature. It is assumed that
the decrease in temperature may affect the volume of liquid in the casting cavity that is
not supplied with extra liquid metal (because it is not required to) to compensate for
solidification shrinkage and the gas that is entrapped in the casting cavity. This is further
needed to be investigated and can result in a change in the model of Gordon et al. (1993).

Significant work has been done in Australia recently with novel approaches and
applications to the porosity-modeling problem (Rogers, Yang, Gershenzon, & Vandertouw,
2003). The authors put emphasis on the data-acquisition (shot-monitoring) kit. They



High-Pressure Die-Casting Process Modeling Using Neural Networks   189

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have developed revolutionary technology that has the ability to “look into a casting” and
signal the red/green light to indicate rejects. Our work (Khan, Frayman, & Nahavandi,
2003) uses an artificial neural network (ANN) to predict porosity reliably in aluminium
HPDC. The work by Huang, Callau, and Conley (1998) is a similar attempt, but it is not
related to HPDC. Yarlagadda and Chiang (1999) have used neural networks to find out
the intradependence of process parameters in the die-casting process. Our work is
different from the work noted previously since it is an attempt to model HPDC process
defects given the process parameters, which represent the state of the machine at a given
instant of time.

Biscuit Size

Very low and very high biscuit sizes generally result in higher porosities. An increase
from 13 mm to 15 mm lengths dramatically decreased porosity (Asquith, 1997). It is
recommended to use a minimum 25 mm biscuit length with maximum intensification for
sake of passing the X-ray test for the casting, with ladle consistency being taken into
account to maintain the size. It is noticeable that in Gordon et al. (1993) the authors do
not attempt to relate the size of the biscuit to their equations. Further research can be
conducted to relate biscuit size to equations or a new term added to the equations to take
the biscuit size into account. The exploitation of a neural network can be a good idea,
because it offers the utility of adding the biscuit size to the inputs of the network.

Methodology

Computational intelligence techniques that include ANNs, genetic algorithms, simulated
annealing, and fuzzy logic have shown promise in many areas including industrial
engineering where the use of neural networks, genetic algorithms, and fuzzy logic is quite
prominent. The capability of ANNs to learn complex relationships well has made them
a popular methodology for modeling the behavior of complex systems. Computationally,
ANNs in their most common form of a multilayer perceptron (MLP) are distributed
parallel-processing systems capable of a fault tolerant and efficient learning and are
resistant to noise and disturbances. They are connectionist structures composed of
nodes called neurons and arcs connecting the neurons with weights associated with the
arcs. Weights are adaptable and are the main learning parameters of the network. The
network learns typically by using a backpropagation learning algorithm (Rumelhart,
Hinton, & Williams, 1986) that updates the weights. The network has generally three
types of layers called input, output, and hidden layers. The information is presented in
a preprocessed or raw format into the input layer of the network and the predictions are
obtained at the output layer of the network.

MLPs are quite useful in developing an inductive model of the problem at hand with a
fair accuracy when there is no mathematical/physical model available and have been used
in the die-casting industry (Huang, Callau, & Conley, 1998; Yarlagadda & Chiang, 1999;



190   Khan, Nahavandi, and Frayman

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Khan, Frayman, & Nahavandi, 2003).

A MLP can be represented symbolically as:

∑ ∑ ∑
=

=

=

=

=
=

=
=

Φ=
L N mj

ni

j
i

iji
p

nr

L

xy
γ

γ

η

η
θ

1 1
1
1

, )(

Here:

p
nry ,  is a noisy output especially in the case of real-world data,

p is a pattern number,

r represents noise (random distribution),

n is the number of output components (neurons),

θ ij is the adjustable parameter of the model (weight),

Φ is the transfer function, and

i and j are the neuron numbers.

An MLP was selected for this work, and the aim of the work is the understanding and
modeling of the casting defects in terms of machine parameters.

Experimental Setup

An MLP with one hidden layer has been used in this work to model location and quantity
of porosity in a casting. The data used to train the network consisted of process
parameters related to porosity and location and quantity measures of porosity in the
castings. The process parameters (the inputs to the ANN) to use were chosen on the basis
of existing knowledge of the porosity-related parameters from the die-casting domain.
These parameters are: first-stage velocity, second-stage velocity, changeover position,
intensity of tip pressure, cavity pressure, squeeze-tip pressure, squeeze-cavity pressure,
and biscuit thickness. A dataset consisting of 306 data points and obtained from data
logging the operation of a multicavity HPDC machine in a die-casting manufacturing
environment has been used. The first 204 data points in a dataset were used for training,
and the remaining 102 points were used for testing.

The level of porosity was quantified using X-ray grades at two different locations labeled
as A and E. These X-ray grades are quality measures ranging from 1 to 4, with 1
representing minimum level of porosity at the designated location and 4 representing the
worst porosity level. Occurrence of porosity level of 4 in any of the locations on the
casting results in the casting being rejected. The outputs of MLP are the levels of
porosity (quality) measures at location A and E in the casting.



High-Pressure Die-Casting Process Modeling Using Neural Networks   191

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We obtained the neural network model of porosity by training the network using a
backpropagation learning algorithm (Rumelhart, Hinton & Williams, 1986) with a different
number of hidden neurons and selected the one that provided the best generalization on
unseen test data. The best-generalized neural network obtained has four hidden neurons
consisting of a sigmoid transfer function.

After modeling the die-casting process with an MLP to a sufficient degree of accuracy,
we conducted conventional die-casting tests by varying one of the process parameters
and keeping the others constant. This was done with a simulated process rather than on
an actual die-casting machine, as experimentation on an actual die-casting machine could
result in a considerable waste of resources in terms of metal, manpower, and energy and
incur a significant cost. There are several types of sensitivity analyses that can be
performed including the weight-based sensitivity analysis based on the change in
outputs (Baba, Enbutu, & Yoda, 1990) and the sensitivity analysis based on energy
functions (Wang, Jones & Partridge, 2000). We have selected the sensitivity analysis
based on the changes in output with respect to a change in one of the input variables
as it gives us a clear indication of which input (process parameter) is having what
quantitative effect on the output (the porosity).

The sensitivity analysis is generally performed around the average values of the
elements of an input vector with one element going through a change between two
extremes in an operating window.

For input set X of column vectors:

X = [X
1
, X

2
, X

3
, ..., X

n
]

Each column vector consists of further scalars:

X
p
 = [x

1
, x

2
, x

3
, ..., x

m
]

We defined the average for all elements of the set X, except the element X
S 
that was being

considered for analysis to find out the effect ∆O on the output O of the MLP model.

∑
=

=
m

l

l
j m

x
X

1

Here jX  is the average of the jth column vector jX  in input domain set X, m is total number

of scalars of which jX  is comprised of, and l is summation index.

The X
S
 varied between the two extremes, while all other elements were kept constant at

jX . The interval of the variation of X
S 
was set as [a, b]. The variation started from a and

terminated on b by an increment ∆. The data D to analyze Xs were generated initially by



192   Khan, Nahavandi, and Frayman

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

D = a + ∆

and then for the rest of iteration by

D = D + ∆

The iteration was stopped when D had reached b. During the variation of  X
S
, the output

is logged and plotted to visualize the change in ∆O. The general equation through which
this is generated and averaged data is passed was:

),,( ihho netXjDfnetO =

Here net
ho

 are the weights associated with hidden and output layers and net
ih 

are the

weights between hidden and input layers. jX  is the average of all inputs other than X
S
,

since D is the representative of X
S
, and f is the function performed by the hidden layer

of the MLP model.

Results and Discussion

The criterion that was used to judge the model quality was the agreement of the MLP
model with the existing work in porosity modeling. We have found that in most cases,
the MLP model of porosity formation was able to represent the underlying process well.
Figure 3 shows that the obtained MLP model was able to predict accurately that the
increase in first-stage velocity has a decreasing effect on the level of porosity in
agreement with Garber (1981, 1982) and Thome and Brevick (1995).

Figure 4 shows that the obtained MLP model was able to predict accurately that an
increase in second-stage velocity (high-speed velocity) decreases the amount of
porosity in accordance with the concept of critical velocity (Garber, 1982). The porosity
decreases sharply with initial increases in the high-speed velocity and then tends to
stabilize as it reaches the critical velocity when it matches the resistance offered by the
gate and runner system in order to inject the metal immediately as it reaches the end of
the shot sleeve.

Figure 5 shows that the obtained MLP model predicts that an increase in changeover
position decreases the amount of porosity. This result is in conflict with the existing work
on porosity (Asquith, 1997). Further investigation is needed to determine why the MLP
model has determined it in such a way.

Figure 6 shows that the increase in tip-intensification pressure is increasing the amount
of porosity contrary to what should happen. Part of the problem is the pressure that is
transferred inside the cavity. This result has to be seen in tandem with the next result and



High-Pressure Die-Casting Process Modeling Using Neural Networks   193

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4. Relationship between the level of porosity and the high-stage velocity (also
known as second-stage velocity) measured in meters per second (m/s)

Figure 3. Relationship between the level of porosity and the slow-stage velocity (also
known as first-stage velocity) measured in meters per second (m/s); the Y-axis represents
the quantity of porosity between levels 1 to 4, with one as minimum and four as maximum

Figure 5. Relationship between the level of porosity and the changeover position (mm)

Network Output(s) for Varied Input Average slow speed 
vel.

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

0.224 0.226 0.227 0.229 0.231 0.233 0.235 0.237 0.239 0.240 0.242 0.244

Varied Input Average slow speed vel. (m/s)

P
o

ro
si

ty
 L

ev
el

A

E

 

Network Output(s) for Varied Input Average high speed 
vel.

2.2
2.25
2.3

2.35
2.4

2.45
2.5

2.55
2.6

2.65
2.7

2.75

1.424 1.482 1.540 1.597 1.655 1.713 1.770 1.828 1.885 1.943 2.001 2.058

Varied Input Average high speed vel. (m/s)

P
o

ro
si

ty
 L

ev
el

A

E

 

Network Output(s) for Varied Input Change-over 
position

2.2
2.25
2.3

2.35
2.4

2.45
2.5

2.55
2.6

2.65
2.7

2.75

371.825 372.233 372.642 373.051 373.459 373.868 374.277 374.685 375.094 375.503 375.911 376.320

Varied Input Change-over position (mm)

P
o

ro
si

ty
 L

ev
el

A

E

 

Varied Input Changeover Position (mm)



194   Khan, Nahavandi, and Frayman

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7. Relationship between the level of porosity and the maximum cavity-
intensification pressure (MPa)

Figure 6. Relationship between the level of porosity and the intensification of tip
pressure (MPa)

has shown the capability of the MLP to model the HPDC process well. Figure 7 shows
that the increase in cavity-intensification pressure lowers the porosity. It is the pressure
that develops inside the cavity and is a result of a tip-intensification pressure.

The porosity is supposed to decrease with increasing pressure (Kay et al., 1987; Murray
et al., 1990). Figure 6 shows an increase in porosity with increasing tip pressure while
Figure 7 shows a decrease with increasing cavity pressure in accordance to Kay et al.
(1987) and Murray et al. (1990). That means that the MLP has been able to learn that the
cavity pressure has a real decreasing effect on porosity. Applying more pressure
normally reduces gas porosity. The pressure helps the gas to escape out of the casting.
It is the pressure that reaches the casting rather then the applied pressure that makes the
difference and the MLP has been able to predict this accurately.

Network Output(s) for Varied Input Maximum 
Intensification of Tip pressure

0

0.5

1

1.5

2

2.5

3

3.5

45.668 48.044 50.421 52.797 55.174 57.550 59.926 62.303 64.679 67.056 69.432 71.809

Varied Input Maximum Intensification of Tip pressure (Mpa)

P
o

ro
si

ty
 L

ev
el

A

E

 

Network Output(s) for Varied Input Maximum cavity  
Intensification pressure

0

0.5

1

1.5

2

2.5

3

3.5

35.833 37.583 39.333 41.083 42.833 44.583 46.333 48.083 49.833 51.584 53.334 55.084

Varied Input Maximum cav.  Intensification pressure (Mpa)

P
o

ro
si

ty
 L

ev
el

A

E

 



High-Pressure Die-Casting Process Modeling Using Neural Networks   195

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The dataset that we used had larger biscuit sizes (greater than 25 mm). The porosity is
increasing with an increase in biscuit size — in accordance with the literature (Asquith,
1997). According to Asquith, a very low biscuit size (i.e., lower than 13 mm) and a biscuit
size higher than 25 mm further increases porosity. In our dataset, the biscuit sizes happen
to be higher than 25 mm.

Future Work

We have recently developed a novel type of MLP — a Mixed Transfer Function Artificial
Neural Network (MTFANN), customized to obtain insights into data domain from the
developed MLP model (Khan, Frayman & Nahavandi, 2004). The novel MLP contains
more than one type of transfer function that simplifies the process of knowledge
extraction from an MLP model. The application of the MTFANN to HPDC process-
monitoring data is on our future agenda to provide further insights into the HPDC
process.

In this chapter, we have followed the classical approach used by the die-casting industry
to vary a process parameter in order to discover its effect on the quality of output
(casting). The industry has a limitation of resources that prevents it from further
increasing the combinatorial complexity of experiments. We can however change more
than one process parameter at the same time using ANNs to study combinatorial effects
of the inputs (process parameters) on the output.

Conclusion

The developed neural network model of the presented work is able to model the complex
realities of HPDC. Several previous attempts in the field to model porosity using simpler

Figure 8. Relationship between the level of porosity and the biscuit size (mm)

Network Output(s) for Varied Input Biscuit thickness

0

0.5

1

1.5

2

2.5

3

36.783 37.670 38.558 39.445 40.333 41.220 42.108 42.995 43.883 44.770 45.658 46.545

Varied Input Biscuit thickness (mm)

P
o

ro
si

ty
 L

ev
el

A

E

 



196   Khan, Nahavandi, and Frayman

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

methods produce contradictory results. We believe that the usage of simpler methods
is the main reason that there has not been much consensus in the work on HPDC
modeling. If advanced computational intelligence techniques, such as neural networks,
are further used and receive favorable response from material scientists, then it is a
possibility that some sort of consensus can be obtained.

Acknowledgments

Special thanks are due to Mr. Gary Savage of CAST, Nissan, and CSIRO for providing
data. The funding for the project is provided by Co-operative Research Center for CAST
metals, manufacturing under the grant number AD0281.

References

Andresen, W. T., & Guthrie, B. (1989). Using Taguchi and meltflow to determine
relationships between process variables and porosity (Transaction No. G-T89-
082). In Transactions of the 15th International Die Casting Congress and Expo-
sition, NADCA.

Asquith, B. M. (1997). The use of process monitoring to minimize scrap in the die casting
process (Transaction No. M-T97-063). In Transactions of the International Die
Casting Congress, NADCA.

Baba, K., Enbutu, I., & Yoda, M. (1990). Explicit representation of knowledge acquired
from plant historical data using neural network. In Proceedings of the Interna-
tional Conference on Neural Networks (pp. 155-160). New York: IEEE.

Backer, G., & Sant, F. (1997). Using finite element simulation for the development of shot
sleeve velocity profiles (Transaction No. M-T97-014). In Transactions of the
International Die Casting Congress, NADCA.

Brevick, J. R., Duran, M., & Karni, Y. (1991). Experimental determination of slow shot
velocity-position profile to minimize air entrapment (Transaction No. D-T91-OC4).
In Transactions of the 16th International Die Casting Congress, NADCA.

Davis, A. J. (1978, March-April). Graphical method of analyzing and controlling hot
chamber die casting process. Die Casting Engineer (2).

Garber, L. W. (1981, July-August). Filling of cold chamber during slow-shot travel. Die
Casting Engineer (4).

Garber, L. W. (1982, May-June). Theoretical analysis and experimental observation of air
entrapment during cold chamber filling. Die Casting Engineer (3), 14-22.

Garber, L. W., & Draper, A. B. (1979a). The effects of process variables on the internal
quality of aluminium die castings (Transaction No. G-T79-022). In Transactions of
10th SDCE International Die Casting Congress, NADCA.



High-Pressure Die-Casting Process Modeling Using Neural Networks   197

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Garber, L. W., & Draper, A. B. (1979b, November-December). Shrinkage in #380A
aluminium alloy. Die Casting Engineer (6).

Gordon, A., Meszaros, G., Naizer, J., & Mobley, C. (1993). Equations for predicting the
percent porosity in die castings (Transaction No. C-T93-024). In Transactions of
the 17th International Die Casting Congress, NADCA.

Hadenhag, J. G. (1989). Real time closed-loop control system for the shot end (Transac-
tion No. G-T89-022). In Transactions of the 15th International Die Casting
Congress and Exposition, NADCA.

Hairy, P., Hemon, Y., & Marmier, J. Y. (1991). Diadem — An expert system for pressure
die casting (Transaction No. G-T91-053). In Transactions of the 15th International
Die Casting Congress and Exposition, NADCA.

Huang, J., Callau, P., & Conley, J. G. (1998, June). A study of neural networks for porosity
prediction in aluminium alloy A356 castings. In B. G. Thomas & C. Beckermann
(Eds.), Modelling of casting, welding, and solidification processes, VIII, TMS (pp.
1111-1118).

Jain, A. S., & Meeran, S. (1998). A state-of-the-art review of job-shop scheduling
techniques (Technical Report). Dundee, Scotland: University of Dundee, Depart-
ment of Applied Physics, Electronic and Mechanical Engineering.

Kaghatil, S. S. (1987). Effects of silicon content on porosity in aluminium die castings with
more then — inches wall thickness (Transaction No. T-T87-012). In SDCE 14th
International Congress and Exposition, NADCA.

Kay, A., Wollenburg, A., Brevick, J., & Wronowicz, J. (1987). The effect of solidification
pressure on the porosity distribution in a large aluminium die casting (Transaction
No. M-T97-094). In Transactions of The International Die Casting Congress,
NADCA.

Khan, M. I., Frayman, Y., & Nahavandi, S. (2003). Improving the quality of die casting
by using artificial neural network for porosity defect modelling. In Proceedings of
the 1st International Light Metals Technology Conference 2003 (pp. 243-245).
Australia: CAST Centre Pty Ltd.

Khan, M. I., Frayman, Y., & Nahavandi, S. (2004). Knowledge extraction from a mixed
transfer function artificial neural network. InTech’04 Proceedings of the Fifth
International Conference on Intelligent Technologies 2004. Houston, TX: Uni-
versity of Houston, Downtown.

Kruger, G. H., & Bosch, R. (1966). Oscillographic studies of plunger velocity and metal
pressure relationships during and after the filling of a die. In 4th International Die
Casting Exposition and Congress (Paper 1304).

LaVelle, D. L. (1962). Aluminium die casting and factors affecting pressure tightness.
Transactions of American Foundrymen’s Society, 70, 641-647.

Murray, M. T., Chadwick, G. A., & Ghomashchi, M. R. (1990, June). Aluminium alloy
solidification in high pressure die casting. Materials Australasia, 22(5), 20-21.

Plauchniak, M., & Millage, B. A. (1993, November-December). New closed shot control
system features total integration. Die Casting Engineer (6).



198   Khan, Nahavandi, and Frayman

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Pomplas, L. J. (1972). Digital servo control of shot plunger velocity and acceleration. In
Transactions of the 7th International Die Casting Congress and Expositio (Paper
P1572).

Rogers, K., Yang, S., Gershenzon, M., & Vandertouw, J. (2003, October). Detecting
porosity rejects in pressure die castings from shot monitoring. In Proceedings 9th

International Conference on Manufacturing Excellence (ICME’03), Melbourne,
Australia.

Rumelhart, D., Hinton, G., & Williams R. (1986). Learning internal representations by error
propagation. In D. Rumelhart et al. (Eds.), Parallel distributed processing: Explo-
rations in the microstructure of cognition, Vol. 1: Foundations (pp. 318-362). MIT
Press.

Shu, S., & Kazuki, H. (1997). Direct drive closed loop shot control (Transaction No. M-
T97-062). In Transactions of the International Die Casting Congress, NADCA.

Thome, M., & Brevick, J. R. Optimal slow shot velocity profiles for cold chamber die
casting (Transaction No. I-T95-024). In Transactions of the 18th International Die
Casting Congress, NADCA.

Thompson, S. (1996). Mechanisms of leaker formation in aluminium high pressure die
casting. Unpublished master’s thesis, The University of Queensland, Department
of Mining and Metallurgical Engineering, Australia.

Vann, J. R. (1993). Real time dynamic shot control for improved quality and productivity
(Transaction No. C93-125). In Transactions of the 17th International Die Casting
Congress, NADCA.

Vann, & Shen (1989). Computer integrated information and control systems for improved
quality and profit (Paper No. G-T89-021). In Transactions of the 15TH Interna-
tional Die Casting Congress and Exposition.

Walkington, W. G. (1990, September-October). Current die casting research projects
conducted at Ohio State University. Die Casting Engineer.

Walkington, W.G. (1997). Die casting defects. Rosemont, IL: NADCA.

Wang, W., Jones, P., & Partridge, D. (2000). Assessing the impact of input features in
a feed-forward neural network. Neural Computing and Applications, 9, 101-112.

Yarlagadda, P. K. D. V, & Chiang, E. C. W. (1999). A neural network system for the
prediction of process parameters in pressure die casting. Journal of Materials
Processing Technology, 89-90, 583-590.

Endnote

1 The acceleration is measured in L/T/L dimensions rather than L/T/T in die casting.



Neural Network Models for the Estimation of Product Costs   199

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XII

Neural Network Models
for the Estimation of

Product Costs:
An Application in the
Automotive Industry
Sergio Cavalieri, Università degli Studi di Bergamo, Italy

Paolo Maccarrone, Politecnico di Milano, Italy

Roberto Pinto, Università degli Studi di Bergamo, Italy

Abstract

The estimation of the production cost per unit of a product during its design phase can
be extremely difficult, especially if information about previous similar products is
missing. On the other hand, most of the costs that will be sustained during the
production activity are implicitly determined mainly in the design phase, depending
on the choice of characteristics and performance of the new product. Hence, the earlier
the information about costs becomes available, the better the trade-off between costs
and product performances can be managed. These considerations have led to the
development of different design rules and techniques, such as Design to Cost, which



200   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

aims at helping designers and engineers understand the impact of their alternative
decisions on the final cost of the developing product. Other approaches, which are
based on information about already designed and industrialised products, aim at
correlating the product cost with the product’s specific characteristics. The real
challenging task is to determine such a correlation function that is generally quite
difficult. The previous observation led the authors to believe that an artificial neural
network (ANN) could be the best tool to determine the correlation between a product’s
cost and its characteristics. Several authors hold that an ANN can be seen as a
universal regressor, able to approximate any kind of function within a desirable range,
without the necessity to impose any kind of hypothesis a priori on the characteristics
of the correlation function. Indeed, test results seem to confirm the validity of the neural
network approach in this application field.

Introduction

The ever-growing competitive pressures that characterise most industry sectors force
firms to develop business strategies based on a large number of differentiation factors:
higher quality and service levels, as well as customisation and continuous innovation.

The research of organisational, technological, and managerial solutions and tools that
can shift the trade-off line between costs and differentiation is extremely important in a
competitive environment. In this perspective, the “process view” has been given great
attention in all managerial and organisational disciplines, and the development of the
theory of “management by processes” has led to the gradual elimination of functional
barriers. In addition to being responsible for the results of his or her unit, each functional
manager is usually in charge of the overall effectiveness of the processes in which his
or her unit is involved, following to a typical input-output logic (Berliner & Brimson, 1988;
Hammer & Stanton, 1999; Zeleny, 1988).

Obviously, this process reorientation requires the implementation of a radical cultural
change supported by a tailor-made re-engineering of the organisational structure and of
the management-control systems, with particular regard to performance-measurement
systems.

In particular, the R&D department is one of the areas most involved in the process of
organisational change. Since the R&D unit is mainly made up of technical or scientific
experts, during the new product development (NPD) process this unit traditionally puts
much more emphasis on the technologically innovative contents and on the absolute
performance of the product, rather than on the impact of the adopted solutions on
convenience and results (like the manufacturing costs or the contribution margin
generated by the new product).

The estimation of future product costs is a key factor in determining the overall
performance of an NPD process; the earlier the information is known, the better the
relationship between costs and product performances will be managed. Typically, the
cost per unit of a given finished product is the sum of different kinds of resources — raw



Neural Network Models for the Estimation of Product Costs   201

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

materials, components, energy, machinery, plants, and so on — and the quantification
of the usage of each resource is extremely difficult in the first stages of the life cycle (and
particularly in the early phases of the product-development process), given the reduced
amount of information and the low level of definition of the project.

All these considerations justify the effort made in the development of techniques and
approaches to cope with the problem of estimation of manufacturing costs in highly
uncertain contexts. This chapter illustrates the results of a study aimed at comparing the
results of the application of two techniques: the parametric approach (perhaps one of the
most diffused in practice) and a predictive model based on the neural network theory.

Six sections follow the introductory section. The following one deals with the strategic
relevance of cost management in modern competitive scenarios. Then, authors provide
a brief review of the main cost-estimation approaches found in scientific literature, while
the fourth section illustrates the basic theoretical elements of ANNs. The following three
sections illustrate a case study first describing the application context (the characteris-
tics of the firm, of the product, and of production technologies), and then illustrating the
design, development, and refinement phases of the two models, as well as the comparison
of results. The last section is devoted to the conclusions.

The Strategic Relevance of
the Cost Variable in the

New-Product-Development Process

The process view of the firm can be of great help in making designers and product
engineers more aware of the critical role played in determining the overall economic
performance of a firm, as proved by the “life-cycle-costing” theory (Blanchard, 1979;
Fabrycky, 1991; Shields & Young, 1991).

The life-cycle-costing theory states that, although the great majority of costs of a
finished good are generated in the manufacturing/distribution stage (given also the
repetitive nature of these activities for almost all kinds of products), most of these costs
are implicitly determined in the early phases of development. Figure 1 shows the
difference between the “actual costs” and the “committed costs” curves. The latter one
is built by “translating” the costs incurred in the various stages of the life cycle back to
the instant in which the different decisional processes that implicitly fixed those costs
took place.

These considerations have led to the development of a group of techniques, whose
objective is to help engineers and designers in their decisional processes and make them
aware of the implications of the alternative design solutions on the future costs of the
product (Ulrich & Eppinger, 1995).

The approaches are named after their specific application context and their emphasis on
economic figures (Huang, 1996), but two main types can be identified:



202   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Design for “X” family (which, in turn, includes Design for Manufacturing/
Assembly, Design for Inspection and Testing, Design for Maintenance, etc.):
design rules finalised mainly to the reduction of costs through the standardisation
of components and simplification of subsequent manufacturing and product-
maintenance processes;

• Design to Cost: if compared to the “Design for X” approaches, a more structured
and analytical approach, whose aim is the quantification of the economic impact
of the different design solutions adopted.1

The strategic relevance of future production costs has lead to the development of a new,
rather revolutionary, approach to the management of the new product-development
process: Target Costing (Ansari, Bell, & the CAM-I Target Cost Core Group, 1997;
Cooper, 1997; Hiromoto, 1988; Sakurai, 1989).

While in the “traditional” process the economic/financial justification (the investment
appraisal) is conducted only in the last phases of the NPD process (after the design or
even during the engineering phase), according to the Target Costing philosophy
(particularly diffused in the Japanese automotive industry) the starting point is the
determination of the estimated market price of the new product, given the estimated
release time and the target market segment. Such information, coupled with the expected
(desired) profitability margin, leads to the identification of the sustainable production
cost per unit. All the subsequent design and development phases must then be “cost”
driven (i.e., all decisions must be made according to the final objective of meeting the
target production cost). The overall production cost is then divided into two main parts:
external and internal costs. These are then split into “third level” costs (respectively, one
for each purchased part or acquired service, and one for each main internal process/

Figure 1. Committed costs and actual costs along the life cycle of a product

 

Committed costs 

Actual costs 

Cumulated 
costs 

t 

Concept definition, 
Design and Engineering 

Manufacturing/Distribution/
Post-sale 



Neural Network Models for the Estimation of Product Costs   203

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

activity). Consequently, these costs become the fundamental reference elements in all
the subsequent steps of the NPD process; all decisional processes must take into
consideration the effects on these figures. Indeed, the overall estimated production cost
must not be higher than the initial target cost.

All the aforementioned managerial approaches highlight the strategic relevance of the
information regarding the future manufacturing cost of the product (or of its compo-
nents). Indeed, in the life-cycle theory, the overall objective resides on the minimisation
of the (expected) cumulated life-cycle cost. Hence, the first step is the estimation of costs
in each phase of the life cycle. Manufacturing costs usually represent the most relevant
component.

Similarly, in a firm which adopts the target-cost approach, the accurate estimation of
future manufacturing costs is fundamental to understand whether the overall target cost
can really be reached or not. Moreover, if an assembler firm can make reliable predictions
about the production costs of its suppliers (for purchased components), its bargaining
power will be higher due to the reduction of information asymmetry (Porter, 1980). This
appears particularly critical in the target-cost approach, due to the “pressure” that is
made on suppliers to meet the objective.

The next section is devoted to the illustration of the state-of-the-art on the cost-
estimation issue, with particular regard to the latest developments.

The Cost-Estimating Techniques

In literature, three main quantitative cost-estimation approaches can be identified:

• Analogy-based techniques: These techniques belong to the category of qualita-
tive estimation methods. They are based on the definition and analysis of the
degree of similarity between the new product and another one already produced
by the firm. The underlying concept is to derive the estimation from actual
information regarding real products. However, many problems exist in the applica-
tion of this approach, due to:

• The difficulties faced in the operationalisation of the concept of “degree of
similarity” (how to measure it?); and

• The difficulty of incorporating the effect of technological progress and
context factors in the parameter.

• This kind of technique is mainly adopted in the first phase of the development
process of a product because it allows obtaining a rough but reliable estimation of
the future costs involved.



204   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Parametric models: According to these quantitative techniques, the cost is
expressed as an analytical function of a set of variables. These variables usually
consist in some features of the product (product performances, morphological
characteristics, type of materials used), which are assumed to have a major impact
on the final cost of the product (for this reason, they are generally named “cost
drivers”). These analytical functions are usually named Cost Estimation Relation-
ships (CER), and are built through the application of statistical methodologies,
such as regression techniques (e.g., see NASA, 1996). They can be adopted during
the development of new products and as a control during the implementation,
providing a target for the final cost of the product. Although they are mainly used
for the estimation of the cost of large projects (such as in the aeronautical field),
they could be effective also for the estimation of the cost of those products, where
the cost drivers could be easily identified.

• Engineering approaches: Following this approach, the estimation is based on
the detailed analysis of the features of the product and of its manufacturing
process. The estimated cost of the product is calculated in a detailed analytical
way, as the sum of its elementary components, constituted by the value of the
resources used in each step of the production process (e.g., raw materials,
components, labour, equipment, etc.). The result is the so-called “standard cost”
of the product.

Moving from the first to the last, the average precision of the methodology increases
(obviously along with its cost). However, the choice between the three methodologies
is not completely free. Each one of them suits to different stages of the NPD process,
given their different degree of analyticity and the different amount of input data needed.
While the analogy-based models can be implemented already in the early stages of the
process, the engineering approach can be used only when all the characteristics of the
production process and of the product are well defined (i.e., at the end of the engineering
phase).

Within these methods, the parametric model represents a good trade-off between
precision and effort required in the model definition, especially when regression tech-
niques are used in order to identify the CER (i.e., to correlate input factors — character-
istics of the products — to output factors — the product’s performances). Indeed, the
regression technique has well-known mathematical basis and has proven to be a robust
model in many situations.

For this reason, in the remainder of the chapter, a parametric model is assumed as a basis
for the comparison of the performances of the ANN.



Neural Network Models for the Estimation of Product Costs   205

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Artificial Neural Networks
for Cost Estimation

Literature Review of Manufacturing Applications of
ANNs

Although the neural network theory has been applied in most disparate sectors, this
approach was first used in the manufacturing sector for planning, emulation, and
management of production processes and plants For example, Cavalieri and Taisch
(1996), Cavalieri, Garetti, and Taisch (1995), and Cavalieri, Rabe, and Taisch (1997) have
developed ANNs for the design of hybrid intelligent systems and of process plants.

Many other works are devoted to the application of ANNs to forecasting problems, such
as those of Hill, O’Connor, and Remus (1996) — in which ANNs are compared with other
statistical forecasting methods, showing better performances — and O’Rourke (1998),
which deals with neural networks for the estimation of the market value of equity stocks,
and concludes that the results achieved are better than those of a linear predictive model.

In the field of cost estimation, the work of Shtub and Zimerman (1993) should be
mentioned, which presents the results of the application of ANNs vs. regression models
for the determination of product costs in assembly industries.

In the specific case reported in the present chapter, the use of ANNs for product-cost
estimation represents a relatively new approach grown in popularity in the last years,
although a little amount of research seems to exist in this field at present.

One of the most significant works is that of Zhang, Fuh, and Chan (1996), which illustrates
the use of a neural-network-based model for the estimation of the packaging cost, based
on the geometrical characteristics of the packaged product (the so-called feature-based
cost). The paper states that the elements impacting the final cost of the product can be
classified into two subsets: (1) explicit cost drivers (such as material cost) obtained
directly; and (2) implicit cost drivers (such as the relationship between explicit cost
drivers) inferred by historical data. In other words, while explicit cost drivers are the basic
elements of cost, the implicit drivers represent the function that links those elements in
order to obtain the final cost of the product.

The ANNs, in this context, are suitable for the identification of such implicit cost drivers

Based on the analysis of the literature and the research conducted, the main benefits of
the ANNs for the cost estimation can be summarised as follows:

• Nonlinearity: Neurons are nonlinear processors, thus, the output provided is a
nonlinear function of the input. As a consequence, the network itself is a nonlinear
architecture. Due to this characteristic, the ANN could cope with nonlinear data
and environment.



206   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Autofitting transfer function: One of the most important applications of ANNs is
the modelling of a system with an unknown input-output relationship; through the
learning process, ANNs can infer such a relationship without any a priori
hypothesis. In this sense, ANNs are often referred to as universal regression
systems (Hornik, Stinchcombe, & White 1989).

• Adaptivity: ANNs have the ability to adapt their response to the changes in the
surrounding environment. Indeed, an ANN can be retrained if the environment
changes substantially.

• Fault tolerance with respect to the data: ANNs can provide good response even
if the input data are not completely correct.

With regard to the architecture of ANNs, in literature there is a multitude of architectures
and several classification frameworks. As an example, Chester (1993) classifies ANNs
according to the learning method or to the organisation of the neurons.

In the present work, the ANN used is a Multilayer Perceptron (MLP) with backpropagation
learning algorithm, in which neurons are organised in different layers. Each neuron has
a specific function: the first one is the input layer (fed by input data), while the last one
is the output layer (which provides the answer of the network). Between input and output
layers there could be several other hidden layers (see Figure 2). The number of hidden
layers has an important role in determining the generalisation ability of the MLP (e.g., see
Lawrence, Giles, and Tsoi [1996]).

As shown in Figure 2, the general structure of a neuron is composed of two main
components: the first component is the summation operator (Σ) which sums up the
weighted impulses coming from the neurons belonging to the previous layer. The second
component is the propagation operator, which applies the transfer function f to the
results of the summation operator and propagates the outcome to the following layer.

The reason behind the choice of the MLP resides on its main nature of “universal
regression tools” (Hornik et al., 1989; Mason & Smith, 1997). Such tools allow for the

Figure 2. Structure of a multilayer neural network

 

INPUT 
LAYER 

HIDDEN 
LAYER 

OUTPUT 
LAYER 

1ST
 INPUT 

nTH
 INPUT 

. 

. 

. 
OUTPUT 

f(sum) 



Neural Network Models for the Estimation of Product Costs   207

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

identification of relationships between different data sets, even if the form of these
relationships is not defined ex ante. In particular, the work by Mason and Smith (1997)
compares the performance of regression and neural network approaches for cost
estimation purposes. The results show that the ANN-based models are more precise,
especially when the analytical expression that links input and output variables is
unknown, or when it cannot be expressed in a polynomial form.

Case Study

In order to provide an example of the application of the neural network tools in cost
estimation, the following section describes an industrial case study. The objective of the
research was to compare the results achieved with the application of a traditional cost-
estimation technique — with particular emphasis on multiple linear regression — with
those obtained through the design and implementation of an ad hoc MLP. The compara-
tive analysis is especially interesting because of the lack of literature on the topic.

The analysis was conducted through a real case study provided by an industrial
company operating in the automotive sector, whose main mission is the design,
production, and sale of braking components and integrated systems for civil and
industrial vehicles.

The customers are mainly very large industrial contractors (the major automotive
multinational companies) that faced the general crisis of the sector in the last decade. The
competitiveness of the automotive component sector forces firms to search for differen-
tiation elements. At the same time, due to the relatively poor bargaining power (with
respect to large customers) great attention is paid to price levels. Hence, one of the
strategic objectives that has been identified by the company’s top management is the
analysis and reduction of product costs (both the purchasing costs of components and
the internal production and assembly costs).

In this context, the adoption of formal methodologies for the accurate estimation of
manufacturing costs of new products has been considered very important in order to
pursue the claimed strategic objective of the company.

The case study focuses on the estimation of the production costs of cast-iron disk
brakes, which are then assembled with other components to produce braking systems,
or can be also sold directly in the spare parts market.

The overall production system of this typology of disk brakes is sketched out in Figure
3; three main production phases can be identified:

1. Foundry, which produces raw disks starting from cast iron;

2. Mechanical manufacturing, which produces the finished disks with the dimen-
sional and surface features as specified in the project specifications; and

3. Assembly, which realises the final braking system assembling the disk with other
components.



208   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Each phase has characteristics and peculiarities that contribute to the creation of a valuable
product for the customers. In this context, the cost-estimation modelling techniques can
be used to quantify a reference cost value for the raw disk and the finished disk as well.

In the following, for the purpose of this chapter, we focused our attention on the first
phase of the production process (foundry).

The Design of the Parametric
and Neural Models

As stated previously, given the objectives and specific application context of the cost-
estimation methodology in the analysed firm, the performance of an ANN has been
compared to the performance of another cost-estimation technique. Among the “classi-
cal” methodologies, the parametric model has been chosen.

As stated in the section “Cost-Estimation Techniques”, the cost of a product in a
parametric model can be expressed as an analytical function of a set of variables that
represents the features of the product (e.g., performance, morphological characteristics,
type of materials used, etc.). This analytical function, also called CER, is built through
the application of statistical methodologies and the linear form of such a function is used
most of the time due to its simplicity. Thus, given a set of N variables (or features) v

1
…v

N
,

the total cost TC of the product could be expressed as:

TC = α + β
1
 v

1
 + β

2
 v

2
 + … + β

N
 v

N
(1)

where α, β
i
 are the parameters of the function and are derived through the application of

the multiple-regression technique.

This approach has a well-known mathematical basis and is easily applicable, once a
consistent set of numerical data is available. On the other hand, the limit of the method
is that it always considers the relationship that connects the variables linear, which is
not always a realistic hypothesis.

The process followed in the development of the two models for cost estimation could be
schematised as follow: (1) problem definition and data collection, (2) data analysis and
model definitions, (3) model testing, (4) model comparison.

Each phase is described hereafter.

Figure 3. Main phases of disk-brake production process

 
FOUNDRY MECHANICAL 

MANUFACTURING ASSEMBLY FINISHED 

PRODUCT 
RAW 

MATERIAL 



Neural Network Models for the Estimation of Product Costs   209

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Problem Definition and Data Collection

Although this first phase could appear trivial, it is critical for the success of the
subsequent activities. The aim of this phase is the definition of the project’s objectives
and constraints in order to clearly identify the elements that are supposed to be kept into
consideration in the following analysis phase.

Moreover, the first phase is quite important in a complex company, where all the main
actors of the product design and production processes must accept and share all
objectives, strategies, and activities to be implemented.

Once the problem constraints and the methodology to be used have been defined, it is
necessary to proceed to the collection of product data used to perform the analysis. Data
collection also includes the identification of information sources and the corresponding
business functions responsible for their maintenance and update.

With regard to the foundry phase of the production process, the main types of data are:

• Technological data, related to the production processes (i.e., type of operations
performed on the product)

• Design data, related to the morphological features of the product (i.e., physical
dimension and materials used)

• Cost data, such as labour costs, raw-material costs, final-product costs, and so on

Collected data represent the basis of the estimation models.

Data Analysis and Models Definition

Once the data-collection phase is terminated, the analysis of the data allows for the
identification of the most meaningful cost drivers that are to be kept into account in the
model’s definition. One of the main characteristics of these drivers is that their calculation
should be relatively simple even in the preliminary phases of the product-development
process, when only first raw design specifications are assessed.

The selection of these drivers is based on the analysis of the production processes and
on the identification of all the elements that play a role in such a process.

For example, in the case of a cast-iron raw product, it is clear that the weight of the product
is relevant in order to define the final cost — the heavier the product, the more the
necessary raw material.

On the other hand, other drivers are not so obvious. For example, the diameter of the raw
disk could appear to be irrelevant if we consider only the product. But if we consider also
the process, the diameter becomes relevant, since it affects the number of raw disks that
could be cast in a single pouring — the larger the diameter of the disk and the fewer the
number of meltable disks, the longer the process and the higher the costs.



210   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Once the product cost drivers have been defined, it is necessary to evaluate the
consistency of the available data in terms of measurability, reliability, and completeness
(i.e., real information content). In particular, with regard to the last point, data could result
unsuitable or insufficient leading to recycles on the previous phases or they could be
redundant causing inefficiencies. The identified drivers are reported in Table 1.

Once the statistical consistency of the sample set of data has been tested, statistical and
linear regression models are used to find out the relationship between each of the selected
cost drivers and the dependent variable (i.e., the product cost).

Design of the Parametric Model

A parametric model expresses the relationship within the output variable (i.e., the cost
of the raw disk) and the cost drivers (reported in Table 1 through an algebraic expression.
If the expression is in the form of Equation 1, the model is linear and the parameter a and
b

i
 could be easily derived using the method of least squares.

Hence, using the well-assessed theory of multiple linear regression, it is possible to
model the relationship between two or more explanatory variables and a response
variable by fitting a linear equation to the observed data.

The major drawback of this method is that often the real relationship between different
variables is not linear, so the linear regression could provide only an approximation of
the real relation.

For example, Figure 4 illustrates the relation between the design weight of the raw disks
(on the X axis) and their final cost (on the Y axis).

Equation 2 expresses the regression line in Figure 4:

Cost = α + β ·Weight (2)

where a and b have been obtained through the method of least squares.

Both the graph and the analysis of the coefficient R2 makes it evident that such a model
is not really meaningful (coefficient R2 is expected to be closer to 1 for a good model);
thus, it is possible to conclude that the weight has a certain relation with the final cost
but it is not enough to explain the overall cost.

COST DRIVER 
Raw-disk weight 
Type of raw material 
Number and type of foundry cores 
Type of disk 
External diameter 

Table 1. List of the identified cost drivers



Neural Network Models for the Estimation of Product Costs   211

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Hence, the simple regression model so far illustrated must be complemented with other
parameters to improve its performance.

In order to reduce the error of the model, more cost drivers from Table 1 are added to
Equation 2, and Equation 3 is obtained:

∑∑
∈∈

⋅+⋅+⋅+⋅+⋅+=
Tj

jj
Ci

ii DiskTypeCastIronDiameterNumCoresWeightCost βββββα 321

(3)

where:

• CastIron
i
 is a binary variable indicating the type of raw material used for the disk;

there are six types of raw material that compose the set C; obviously, for each disk
only one of these variables could be set to 1.

• DiskType
j
 is a binary variable indicating the two types of disks, normal and special,

that compose the set T; also in this case, for each disk only one of these variables
could be set to 1.

Equation 3 states that the cost of the raw disk depends on:

• Factor β
1
 related to the weight of the disk,

• Factor β
2
 related to the number of foundry cores requested, and

R2 = 0,43

5

7

9

11

13

15

17

19

21

23

2.5 3 3.5 4 4.5 5 5.5 6 6.5

Weight

C
o

st

Figure 4. Approximated linear relationship between the weight and the cost of the raw
disks



212   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Factor β
3
 related to the external diameter.

In addition, there are three further elements that contribute to the total cost:

• The type of the disk (by a factor β
j
),

• The type of raw material (by a factor β
i
), and

• A residual factor α.

After its validation, the model is applied to the sample used for the estimation of the
parameters, and a mean absolute percentage error (MAPE, Equation (4)) of about 9-10%
is obtained. The result is a relatively good response.

Due to the fact that the parametric model assumed so far is linear, it is reasonable to
suppose that the application of a nonlinear model, like an ANN, could provide even better
results.

∑
=

⋅
−

=
N

i i

ii

ActualCost

ActualCostostEstimatedC

N
MAPE

1

100
1

(4)

Design and Training of the
Artificial Neural Network

In the discussed case, an ANN represents a valid tool for the identification of the transfer
function of the analysed process, through an implicit link between the input value (the
morphological and technological characteristics of the disk) and the output value (the
cost).

INPUT 

NUMBER 
DATA TYPE RANGE 

1 Disk weight Real (3 ÷ 6) 
2 Number of cores Integer (0 ÷ 2) 
3 External diameter Real (240 ÷ 255) 
4 Cast Iron type A Binary {0 , 1} 
5 Cast Iron type B Binary {0 , 1} 
6 Cast Iron type C Binary {0 , 1} 
7 Cast Iron type D Binary {0 , 1} 
8 Cast Iron type E Binary {0 , 1} 
9 Cast Iron type F Binary {0 , 1} 
10 Disk type normal Binary {0 , 1} 
11 Disk type special Binary {0 , 1} 

Table 2. Input of the neural-network model



Neural Network Models for the Estimation of Product Costs   213

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

With regard to the specific neural architecture used, it could be noted that the analysed
problem could be traced back to a nonlinear regression problem, as explained in the
previous section. Due to this consideration, the multilayer perceptron (MLP) with
backpropagation has been preferred, since it usually leads to the most satisfactory
results.

Regarding the structure of the network, the input layer is composed of 11 neurons, as
explained in Table 2. The output layer is composed of only one neuron, which provides
the response of the network (i.e., the cost).

The input neurons from the 4th to the 11th represent the on-off characteristics, that is, a
disk could be made of only one type of cast iron and could be, of course, special or normal.

The definition of the internal structure of the ANN (i.e., number of hidden layers, number
of neurons per layer, type of activation function) is generally a trial-and-error process,
since no analytical procedure exists for determining the correct number of neurons and
layers. After having tested more ANN configurations with different numbers of hidden
layers, different numbers of neurons for each level, and different activation functions
(mainly linear and sigmoid functions), the proper structure has been selected. Table 3
illustrates the ANN structures that have been tested.

More learning algorithms, such as the Levenberg-Marquardt algorithm — suitable in the
case of few samples in the training set and moderate-sized ANNs — and the Resilient
backpropagation algorithm, have been also experimented.

Models Testing

For the testing of both models, the set of samples has been divided into three subsets:
(1) the first one, composed of 40 samples, has been used as a training set (in order to adjust
the weight of the connections and to store the knowledge); (2) the second one, composed
of 10 samples, has been used as a validation set, in order to avoid the network overfitting

Network Neurons in 
hidden layer 1 

Neurons in 
hidden layer 2 

1 5 0 

2 6 0 

3 7 0 

4 8 0 

5 9 0 

6 10 0 

7 5 3 

8 6 3 

9 7 3 

10 5 5 

11 6 5 

12 7 5 

Table 3. Results of the neural-network models



214   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

problem (that occurs when the network fits very accurately the training data while results
in a poor generalisation on out-of-sample data) during the learning phase, applying the
early stopping procedure; (3) the third one, composed of 10 samples, has been used as
a test set to evaluate the responses of the net on unseen data (in order to evaluate the
degree of generalisation).

The parametric and ANN models have been tested by comparing the model results and
the actual costs of the training set used for the definition of the parameters and for the
training of the ANN. The results refer to the Levenberg-Marquardt (LM) and to a Resilient
Backpropagation (RP) learning algorithm.

In Figure 5 and 6, the performances of the models, measured through the MAPE indicator,
are reported.

It is evident that the one- and two-layer configurations show almost the same perfor-
mance, especially using the LM learning algorithm.

Error on training set

0%

1%

2%

3%

4%

5%

6%

1 2 3 4 5 6 7 8 9 10 11 12

Network

M
A

P
E LM

RP

Error on test set

0%

2%

4%

6%

8%

10%

12%

1 2 3 4 5 6 7 8 9 10 11 12

Network

M
A

P
E LM

RP

Figure 5. Estimation error on the training set

Figure 6. Estimation error on the test set



Neural Network Models for the Estimation of Product Costs   215

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

-1,5 -1 -0,5 0 0,5 1 1,5 2 2,5

Error Parametric model

Error ANN model

 
 Regression model Neural network 
 Average Max Min 
MAPE on training set 10% 2% 4% 1% 
MAPE on test set 10% 7% 9% 7% 
Generalization factor 50% 65% 80% 50% 

 

Figure 7. Neural network and parametric model results comparison

Comparison of Results

After the validation of the two models, the out-coming results have been compared
considering the MAPE and the Generalisation factor (Gf), defined as:

100⋅=
M

k
Gf (5)

where M is the number of patterns that compose the test set and k is the number of such
patterns estimated with an error less then 10% (this value having been fixed as a threshold
level).

The statistical analysis shows the superiority of the ANN model compared to the linear
regression technique; the average MAPE on the training set falls from about 10% to about
2%. Figure 7 highlights the ANN model’s outperformance of the parametric model on the
major part of the training set. The ANN model shows a better behaviour on the test set
as well.



216   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The excellent results on all the test samples (about 7.5%) of the experimental trials show
the robustness of the ANN.

The analysis of the Gf shows that the performance of the ANN is better than that of the
linear-regression model even on an unknown sample. The better performance indicates
a better ability to generalise.

Finally, Figure 8 shows the actual cost versus the estimated cost with the two models;
the closer the points to the dotted line, the better the estimation.

Conclusion

The adoption of cost-estimation predictive models in the first stages of the product
development process is extremely important in order to provide a comprehensive
technical and economical view of a new product concept according to a firm’s overall

Regression model

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00

Actual cost

E
st

im
at

ed
 c

o
st

Neural network

0

2

4

6

8

10

12

14

0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00

Actual cost

E
st

im
at

ed
 c

o
st

Figure 8. Actual cost vs. estimated cost



Neural Network Models for the Estimation of Product Costs   217

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

competitive strategy and key success factors. Knowing in advance the cause-and-effect
relationship between design solutions and production costs is extremely useful both for
internal manufacturing activities and for purchased parts.

The choice of the predictive model is generally based on the classical cost/benefit ratio;
in this sense, regression models usually provide better results. However, more recently
developed ANNs seem to represent a valid alternative, especially when the CER form is
unknown and cannot be logically argued.

In the case study illustrated in this chapter, the ANN has shown better results in all the
validation samples than a parametric model, without any significant variance problems
(i.e., the dependence of the model on the data set used to construct it).

It is also interesting to extend the analysis beyond the quantitative data to include some
qualitative considerations.

The most relevant point concerns the inherent logic of the two approaches. Whereas the
use of a parametric model requires the specification of the analytical expression of the
relationship that links input and output, the specification is not necessary with a neural
network. In fact, ANNs are able to determine autonomously the most appropriate form
of the relationship.

Summing up:

• The ex ante analysis of the problem is much leaner and faster and the outcome of
very complex or innovative problems is independent from the ability of the analysts
to find the key independent variables and the most appropriate kind of analytical
expression.

• At the same time, a limit of the neural network approach is the impossibility to know
the kind of relationship, since it is not clear how the results are achieved. In other
words, in the neural network approach the object of analysis is treated as a
“blackbox”; hence, it is impossible to give a theoretical interpretation of the
obtained results, especially if there are unpredicted or (at least intuitively) unjus-
tified values. This fact has often led to some scepticism about this methodology
in several application contexts. The treatment is also due to the difficulty that the
users of the methodology face when they are asked to prove the quality of the
outcome in case of counterintuitive or questionable results.

Moreover, it could be objected that if the knowledge of the form of the relationship is not
necessary to implement a neural network approach, it is nevertheless necessary to
predetermine the structure of the network. The possible answers to this critical consid-
eration are the following:

• The application contexts of the network structures that have been developed so
far (e.g., multilayer, Adaptive Resonance Theory or ART, self-organising, etc.) are
quite well-known, and the identification of the most appropriate structure is
relatively simple.



218   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Software packages for the design of neural networks are generally coupled with
tools aimed at evaluating the “learning attitude” of the network, and, at implement-
ing the appropriate modifications if the obtained response is unsatisfactory.

The users of parametric models often cite the excellent (or at least satisfactory) quality/
cost ratio. However, the implementation cost of a neural network is generally quite similar
to that of a parametric model. Indeed, the lower cost of preliminary analysis is balanced
by the higher costs of developing and testing the ANN. However, the higher robustness
of the ANN methodology and the consequent higher propensity to deal with redundant
or wrong information enables the elimination or consistent reduction of very time
consuming and quite expensive data analysis.

Another strength of neural networks is their flexibility to changes made in the structure
of the analysed system after the completion of the model’s development. For example,
if the production process of a firm is modified through the implementation of new
technologies, the parametric model must be completely revised and retested; but, by
using a neural network, it will be sufficient to conduct a new training program with a new
set of data (the structure of the network may not even be modified).

Finally, neural networks are completely data-driven and require the definition of a proper
data set. Although data are also required in the CER-developing process (for example,
for the estimation of the parameters of the model), the ANN application has to face the
problem of overfitting, which could dramatically reduce the generalisation ability of the
ANN. Using proper techniques, such as early stopping and validation data set, could
smooth such an effect.

References

Ansari, S. L., Bell, J. A., & the CAM-I Target Cost Core Group (Eds.). (1997). Target cost:
The next frontier in strategic cost management. New York: Irwin.

Berliner, C., & Brimson, J. A. (Eds.). (1988). Cost management for todays’ advanced
manufacturing. Boston: Harvard Business School Press.

Blanchard, B. S. (1979). Design and manage to life cycle cost. Portland, OR: M/A Press.

Cavalieri, S., Garetti, M., & Taisch, M. (1995, August 6-10). A predictive neural network
modelling system for process plants. In Proceedings of The 13th International
Conference on Production Research, 1, 571-573.

Cavalieri, S., Rabe, M., & Taisch, M. (1997, March 18-21). A neural network approach to
the plant design problem. In Proceedings of The 1st International Conference on
Engineering Design and Automation, Bangkok, Thailand.

Cavalieri, S., & Taisch, M. (1996, November 4-6). Neural networks in hybrid intelligent
manufacturing systems. In Proceedings of the APMS ’96 — International Confer-
ence on Advances in Production Systems, Kyoto, Japan.



Neural Network Models for the Estimation of Product Costs   219

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chester, J. (1993). Neural networks: A tutorial. New York: Prentice Hall.

Cooper, R. (1997). Target costing and value engineering. New York: Productivity Press.

Fabrycky, W. J. (1991). Life cycle cost and economic analysis. New York: Prentice Hall.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance
dilemma. Neural Computation, 4, 1-58.

Hammer, M., & Stanton, S. (1999, November-December). How process enterprise really
work. Harvard Business Review, 108-118.

Hill, T., O’Connor, M., & Remus, W. (1996). Neural network model for time series
forecasts. Management Science, 42(7), 1082-1092.

Hiromoto, T. (1988, July-August). Another hidden edge — Japanese management
accounting. Harvard Business Review, 22-26.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2, 359-366.

Huang, G. Q. (1996). Design for X: Concurrent engineering imperatives. London:
Chapman & Hall.

Lawrence, S., Giles, C. L., & Tsoi, A. C. (1996). What size neural network gives optimal
generalization? Convergence properties of backpropagation. (Technical Report
UMIACSTR-96-22 and CSTR-3617). College, Park, MD: Institute for Advanced
Computer Studies, University of Maryland.

Mason, A. K., & Smith, A. E. (1997). Cost estimation predictive modeling: Regression
versus neural network. The Engineering Economist, 42(2), 137-162.

NASA. (1996). Parametric cost estimating handbook. Retrieved from http://
www.jsc.nasa.gov/bu2/pcehg.html

O’Rourke B. (1998). Neural nets forecast futures prices. Financial Engineering News.
Retrieved from http://fenews.com/1998/Issue3/029802.htm

Porter, M. E. (1980). Competitive strategy—Techniques for analysing industries and
competitors. New York: The Free Press.

Sakurai, M. (1989, Summer). Target costing and how to use it. Journal of Cost Manage-
ment, 39-50.

Shields, M. D., & Young, S. M. (1991, Fall). Managing product life cycle costs: An
organisational model. Journal of Cost Management, 5(3), 39-52.

Shtub, A., & Zimerman, Y. (1993). A neural-network-based approach for estimating the
cost of assembly systems. International Journal of Production Economics, 32(2),
189-207.

Twomey, J. M., & Smith, A. E. (1993). Nonparametric error estimation methods for
validating artificial neural networks. Intelligent Engineering Systems Through
Artificial Neural Networks, 3, 233-238.

Ulrich, K. T., & Eppinger, S. D. (1995). Product design and development. New York:
McGraw-Hill International Editions.

Zeleny, M. (1988). What is integrated process management. Human Systems Manage-
ment, 7, 265-267



220   Cavalieri, Maccarrone, and Pinto

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Zhang, Y. F., Fuh, J. Y., & Chan, W. T. (1996). Feature-based cost estimation for packaging
products using neural networks. Computers in Industry, 32, 95-113.

Endnote

1 It must be noticed that sometimes the term “redesign to cost” is used with a totally
different meaning: it is referred to the redesign of business processes, and not of
products, and includes all the organisational tools and rules aimed at the redesign
of business processes in a cost-reduction perspective (someway similar to the BPR
theory).



A Neural-Network-Assisted Optimization Framework and Its Use   221

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIII

A Neural-Network-
Assisted Optimization

Framework and
Its Use for

Optimum-Parameter
Identification

Tapabrata Ray, University of New South Wales, Australia

Abstract

Surrogate-assisted optimization frameworks are of great use in solving practical
computationally expensive process-design-optimization problems. In this chapter, a
framework for design optimization is introduced that makes use of neural-network-
based surrogates in lieu of actual analysis to arrive at optimum process parameters.
The performance of the algorithm is studied using a number of mathematical benchmarks
to instill confidence on its performance before reporting the results of a springback
minimization problem. The results clearly indicate that the framework is able to report
optimum designs with a substantially low computational cost while maintaining an
acceptable level of accuracy.



222   Ray

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

There are numerous problems in the area of process design in which a designer is faced
with the challenge to identify optimum process parameters that maximize one or more
performance measures while satisfying constraints posed by statutory requirements,
physical laws, and resource limitations. Currently, a vast majority of such applications
are guided by trial and error and user experience. Such problems are nontrivial to solve
as there are a large number of parameters that could be varied; the performance function
is highly nonlinear and computationally expensive as it often involves calculations
based on finite element methods (FEM), computational fluid dynamics (CFD), and so on.

Population-based, stochastic optimization methods like Genetic Algorithm (GA), Evolu-
tionary Algorithm (EA), Differential Evolution (DE), and Particle Swarm Optimization
(PSO) methods have been quite successful in solving highly nonlinear, mixed-variable
optimization problems. However, all the aforementioned methods are known to be
computationally expensive, as they need to sample numerous candidate solutions and
hence cannot be used outright to deal with optimum process-parameter-identification
problems involving computationally expensive simulations. In order to contain the
computational time within affordable limits, two schemes are usually adopted within a
population based stochastic algorithm, namely (a) use of multiple processors to evaluate
different candidate solutions and (b) use of approximations (surrogate models) in lieu of
actual expensive simulations.

In order to use approximations and surrogate models within an optimization framework,
one needs to decide on the following: (a) representation accuracy of the surrogate model
and (b) choice of a particular surrogate model. Surrogate models often have large
approximation errors and can introduce false optima (Jin, Olhofer, & Sendhoff, 2002).
Introduction of these false optima is a particularly serious problem when used in
conjunction with stochastic optimization methods like GAs and EAs as they could
converge incorrectly, referred to as ill-validation (Jin, Olhofer, & Sendhoff, 2000). The
problem of ill-validation is seldom addressed in the literature, and most reported
applications using approximate functions tend to use a once-for-all approximation
function throughout the course of optimization without even a check on the validity of
approximation at different stages of optimization (Jin et al., 2000). A naïve application of
the approximate model repeatedly without retraining may thus lead to incongruity
between the original and surrogate search spaces. Ratle (1998) suggested a heuristic
convergence criterion used to determine the retraining frequency based on the conver-
gence stability and the correlation between the actual and approximate function spaces.

The second issue relates to the choice of a surrogate model. The choice could range from
Quadratic Response Surfaces, artificial-neural-network- (ANN-) based approximators
like Multilayer Perceptrons (MLPs), Radial Basis Function Networks (RBFs), or
geostatistical methods like Kriging and Cokriging. ANN-based approximators, that is
MLPs and RBFs are particularly well suited for the present purpose as they are able to
capture nonlinear relationships and known to be universal function approximators
(Hornik, Stinchcombe, & White, 1989; Poggio & Girosi, 1989). An extensive discussion
of these two networks can be found in Haykin (1999).



A Neural-Network-Assisted Optimization Framework and Its Use   223

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The following section presents the details of the neural-network-assisted framework.
The optimization algorithm is a population-based, stochastic, zero-order, elite-preserv-
ing algorithm that makes use of approximate function evaluations in lieu of actual
function evaluations. Two surrogate models are available for a designer to choose from:
(a) RBF and (b) MLP. The surrogate model is periodically retrained after a few generations
and a scheme based on controlled elitism is incorporated to ensure convergence in the
actual function space. The performance of the surrogate assisted optimization framework
is validated using mathematical test functions prior to its use in solving the springback
minimization problem.

Numerical simulation of a sheet-metal-forming-process is important, as actual experimen-
tation is expensive. Analytical solutions are limited due to the nonlinearity of the
deformation process and the complexity of the shape of the dies. In a sheet-metal-forming
operation, the blank material is closely formed to correspond to the die shape. However,
when the load is released and the part is taken out of the press, there is often an unwanted
change in shape. This phenomenon is known as springback, and it is a major quality
concern in stamping operations. If the shape deviation due to springback exceeds the
given tolerance, it could create serious problems for subsequent assembly operations.
Therefore, the springback problem is of crucial practical importance. To compensate the
shape deviation caused by springback, a common method is to modify the die topology.
This is a challenging task and is largely made by the experienced designers using the trial-
and-error method. Research on factors influencing springback has focused mainly on the
geometric and material parameters, which are related to the tools and the blank sheet. In
dealing with the springback problem, three approaches have been commonly used:
analytical methods, experimental methods, and numerical methods. The pioneering work
on the optimal process design for metal forming is led by Richmond and Devenpeck
(1962), who applied the slip-line method to optimize forming energy. Roy, Ghosh, and
Shivpuri (1996) employed the genetic algorithm for the design optimization of drawing
and forging processes. In this study, a springback-minimization problem is solved using
the surrogate assisted optimization framework and optimum process parameters are
identified. It is clear that the framework is able to identify solutions with far less
computational cost without significant deterioration in the solution quality. The follow-
ing sections present the details of the pringback minimization problem and list the major
observations of this study.

Mathematical Model

A constrained, single-objective optimization problem in the context of minimization is
presented next.



224   Ray

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Minimize:

f(x) (1)

where x = [x
1
, x

2
, ..., x

n
] is the vector of n process parameters, f(x) is the objective that needs

to be minimized.

Subject to:

qiag ii ,1,2,,)x( �=≥ (2)

where q is the number of inequality constraints.

For a set of M candidate solutions in a population, the objective can be represented as
follows:



















=

Mf

f

f

OBJECTIVE
�

2

1

(3)

For each candidate solution, the constraint satisfaction vector c = [c
1
, c

2
, ..., c

q
] is given

by:









−
=

violatedisconstraintif:)(ga

satisfiedisconstraintif:
c

ii
i x

0
(4)

For the above c
i
 ‘s, c

i
 = 0 indicates the ith constraint is satisfied, whereas c

i 
> 0 indicates

the violation of the constraint. The constraint matrix for a population of M candidate
solutions assumes the form:





















=

MqMM

q

q

ccc

ccc

ccc

CONSTRAINT

21

22221

11211

����

�

�

(5)



A Neural-Network-Assisted Optimization Framework and Its Use   225

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Given a set of M candidate solutions, the feasible and the infeasible solutions are
separated into two sets F and IF respectively. Let us assume that there are M1 solutions
in Set F and M2 solutions in Set IF. The set of feasible solutions (F) are assigned ranks
based on nondominance using (Nondominated Sorting) such that the best solution has
a rank = 1 and the worst solution has a rank of R. The rank of the infeasible solutions is
derived using nondominated sorting based on the constraint matrix. The rank of each
infeasible solution is then incremented by a constant value (in this case it is R) that is
equal to the rank of the worst feasible solution. The rank of every solution in the
population is then converted to fitness as follows:

)i(RankRank.Max)i(Fitness −−= 1 (6)

where Max.Rank is the Maximum Rank of an individual in the population. Ray, Tai, and
Seow (2001) introduced the concept of handling constraints via nondominace.

The pseudocode of the algorithm is presented next and all other details of the mechanisms
are described in subsequent sections.

START

Initialize a Population, 0=gen and Specify γλ,

Evaluate Individuals to compute )(1 xf and constraints ]ccc[ q�21=c(x)

Create a Surrogate Model to Approximate )(1 xf and ]ccc[ q�21=c(x)

While <gen λ Do

1+= gengen
Rank Solutions
Preserve Elites
To Fill the remaining members of the Population

Do Select Parents for Mating via Roulette Wheel based on fitness
Generate a Child via Recombination
Call Surrogate Model to compute Performance of the Child.

  End

If ( 0=γmodgen ) Retrain the Surrogate Model

End While
END.

Where λ denotes the maximum number of generations allowed for the evolution process
and γ denotes the periodic retraining frequency of the surrogate model.



226   Ray

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Initialization

The solutions are created using Equation 7:

)xx(xx~ lowupplow −δ+= (7)

where x~  denotes the initialized variable, x
low 

and x
upp 

denotes the lower and upper bounds
of the variable and δ is a uniform random number lying between 0 and 1. For practical
problems, one could use sampling based on Design of Experiments (DOE) instead of
random sampling.

Recombination

The recombination operator used in this study creates a child as follows:

1. Scale every variable between 0 and 1 using the maximum and minimum value of
variables in the population.

2. ( )∑ =
−= M

j

j
F

j
L II

1

2
D ; j = 1, ..., M variables; j

LI denotes the jth variable of the leader

(P) and j
LI  denotes the jth variable of the follower (F).

3. C(i) = P(i) +N(µ = 0, σ).D; where s =1.0 is the variance of the normal distribution,
i = 1, ..., M variables.

4. Transform C(i)s back to original scale to get the new location of the individual F.

The user is free to choose or use any other recombination schemes like Parent Centric
Crossover PCX) or Simulated Binary Crossover (SBX).

K-Means Clustering Algorithm

The k-means clustering algorithm is used to identify k data sets that are used to create
the surrogate model. Consider m data sets {x

1
, x

2
, ..., x

m
} in n-dimensional space. We

would like to obtain k centers, that is, C = {c
1
, ..., c

k
} using the k-means algorithm. The

steps involved can be summarized as follows:

1. Assign first k datasets as k centers, i.e., C = {x
1
, ..., x

k
} = {c

1
, ..., c

k
}.

2. For each data point x
i
, compute its membership function, ψ and weight, w:



A Neural-Network-Assisted Optimization Framework and Its Use   227

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.





 −==ψ

otherwise

cx ifxc
;

minargl;)( jij
il

0

1
2

. (8)

( ) m,,iw i �11 =∀=x . (9)

It can be seen from the definition of the membership function that k-means uses a
hard membership and a constant weight function that gives all data points equal
importance.

3. For each center c
j
, recompute its location from all data points x

i
 according to their

memberships and weights:

( )
( )ii

m

i j

iii

m

i j

j
w)(

w)(

xxc

xxxc
c

∑
∑

=

=

ψ

ψ
=

1

1 . (10)

4. Repeat steps 2 and 3 until convergence is achieved. Usually this is done by
ensuring the membership function is unchanged for all data points between
iteration. The k-means clustering is a popular choice as it is easy to understand and
implement.

Radial Basis Function Network

Radial basis functions belong to the class of artificial neural networks and are a popular
choice for approximating nonlinear functions. In this section, the necessary details of
implementing a radial basis function network are included for completeness. A radial
basis function (RBF) φ is one, whose output is symmetric around an associated center,

µµµµµ. That is: ( ) ( )�xx −= φφ , where the argument of φ  is a vector norm. A Gaussian function

has been used for the RBF by selecting ( )
22

σ−=φ rer , where σ is the width or scale

parameter. A set of RBFs can serve as a basis for representing a wide class of functions
that are expressible as linear combinations of the chosen RBFs:

( ) ( )j

m

j
jwy xxx −φ= ∑

=1
. (11)

However Equation 11 is usually very expensive to implement if the number of data set
is large. Thus a generalized RBF network is usually adopted of the following form:



228   Ray

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

( ) ( )j

k

j
jwy �xx −φ= ∑

=1
. (12)

Here k is typically smaller than m and w
j
, which are the unknown parameters that are to

be “learned.” The k number of dataset is determined from the k-means clustering
mentioned previously. The training is usually achieved via the least square solution:

dAw += . (13)

Here A+ is the pseudoinverse and d the target output vector. The pseudoinverse is used
as typically A is a rectangular matrix and thus no inverse exists. However, the compu-
tation of the pseudoinverse requires a matrix inversion that is computationally expensive
for large problems and thus the recursive least-squares estimation has been often used.

Multilayer Perceptron

Multilayer perceptrons are also quite popularly used as generic function approximators.
The number of input nodes of a MLP is equal to the number of independent variables,
while the number of outputs is equal to the number of functions being approximated by
the network. The layers lying between the input and the output layers are referred to as
hidden layers and the complexity of a network depends on the number of such layers and
the number of nodes in each of them. The predictive capability of the network is captured
by the nodal interconnections (weights) and the transfer functions. The process of
neural network training refers to identifying the best set of weights such that the error
in prediction is minimum. Ray, Gokarn, and Sha (1996) proposed the use of Modified
Marquardt Levenberg algorithm for a faster training of neural networks. The capability
of the network for prediction at the end of its learning process is tested on a test data
set that is exclusive from the training data set.

Test Function Expression 

Spherical ∑
=

=
n

i
ix)(f

1

2x  

Ellipsoidal ∑
=

=
n

i
iix)(f

1

2x  

Schwefel 
2

1 1
∑ ∑

= =






=

n

i

i

j
jx)(f x  

Rosenbrock ∑
−

=
+−+−=

1

1

2
1

22 1001
n

i
iii )xx()x()(f x

 

Rastrigin ∑
=

π−+=
n

i
ii ))xcos(x(n)(f

1

2 21010x

 

Table 1. List of test functions



A Neural-Network-Assisted Optimization Framework and Its Use   229

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Numerical Examples

In the following section, the behavior of the surrogate assisted optimization model is
studied using five 20-dimensional mathematical test functions and subsequently the
springback-minimization problem is solved to demonstrate the efficacy of the proposed
method.

A detailed study on the performance of the surrogate assisted optimization framework
appears in Won, Ray, and Kang (2003).

Mathematical Test Functions

The test functions are Spherical, Rosenbrock, Rastrigin, Schwefel, and Ellipsoidal, and
their forms are listed in Table 1. All numerical simulations are carried out using the
optimization framework with the following assumptions:

• The population size of 10n was used for all the simulation.

• s, where n is the number of variables for the problem.

• For all the test cases, 10 independent runs were conducted with the number of
generations being 1,000.

• The search space was between [-5.12, 5.12] for the Spherical, Ellipsoidal, Schwefel,
and Rastrigin functions while a search space of [-2.048, 2.048] was selected for the
Rosenbrock function in accordance to the convention in the literature.

• A radial-basis function (RBF) network was used with 5n centers and two nearest
neighbor in accordance with Haykin (1999).

• The parent-centric crossover (PCX) operator was used to create a child from three
parents.

• Retraining the RBF network was done after every 10 generations.

• The entire simulation process was executed using a Pentium® 4, 2.4GHz CPU
processor.

Results presented in Table 2 indicate the performance of the optimization algorithm (OA)
when actual evaluations have been used throughout the course of optimization. The
number of actual function evaluations used by the OA model is listed in Column 3 of Table
3. To achieve the same mean level of convergence as compared to the OA model, the RBF-
OA model typically uses around 50% less actual function evaluations as shown in
Column 4 of Table 3. The number of approximations used by the RBF-OA model is listed
in Column 5 of Table 3. The computational time required by the OA model and the RBF-
OA model is presented in Table 4 and Table 5. The results of the surrogate-assisted
optimization framework on these 20-dimensional highly nonlinear problems clearly show



230   Ray

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Test  
Function 

Best  
Fitness 

Worst  
Fitness 

Mean  
Fitness 

Median Fitness 
Standard 
Deviation 

Spherical 3.3851 x 10-22 1.0224 x 10-20 2.9952 x 10-21 1.9470 x 10-21 2.7881 x 10-21 
Ellipsoidal 1.5937 x 10-10 3.7958 x 10-7 4.7247 x 10-8 9.3724 x 10-9 1.1121 x 10-7 
Schwefel 1.3206 x 10-6 5.9133 x 10-5 2.0129 x 10-5 1.0319 x 10-5 1.987 x 10-5 

Rosenbrock 14.9216 19.5135 17.6649 17.5303 1.2013 
Rastrigin 10.0065 39.2395 22.0698 23.3051 7.8031 

 

Table 2. Statistics for 20-D results using Optimization Algorithm (OA)

Test 
Function 

Tolerance 

Optimization 
Algorithm 

(Actual function 
evaluations) 

Surrogate Assisted 
(Actual function 

evaluations) 

Surrogate Assisted 
(Approx. function 

evaluations) 

Spherical 2.9952x10-21 199200 110467 1091640 
Ellipsoidal 4.7247x10-8 199200 81534 805200 
Schwefel 2.0129x10-5 199200 144267 1426260 

Rosenbrock 17.6649 70447 21201 207900 
Rastrigin 22.0698 101650 28020 213040 

Table 3. Function evaluations required for same tolerance (20-D)

Number of actual function evaluations 199200 
Total time for Actual Evaluations 37.311s 

Total elapsed time (Wall clock time) 420.315s 

Table 4. Summary of 20-D computational efforts using Actual Evaluations (OA)

Number of actual function evaluations 20201 
Number of approximate function evaluations 198000 

Total time for training with RBF 77.363s 
Total time for RBF approximations 416.851s 

Total time for actual function evaluations 3.643s 
Total elapsed time (Wall clock time) 887.537s 

Table 5. Summary of 20-D computational efforts using approximations (RBF-OA)

 Aluminum 
(1) 

AK Steel 
(2) 

HT Steel (3) 

Young’s Modulus (GPa) 69 206 206 
Poisson’s Ratio 0.330 0.300 0.300 
Strength coefficient (MPa) 570 567 671 
Hardening exponent for yield strength 0.347 0.264 0.219 
Flow potential exponent in Barlat’s model 8 6 6 
Anisotropy Coefficient 0.710 1.770 1.730 
Sheet Thickness (mm) 1.00 1.00 1.00 

Table 6. Material properties of the sheets



A Neural-Network-Assisted Optimization Framework and Its Use   231

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that a saving of nearly 50% of actual function evaluations is possible while maintaining
an acceptable accuracy. This is of great significance as it could mean cutting down
expensive CFD or FEM computations while maintaining an acceptable accuracy.

Springback Minimization

In this section, the springback-minimization problem is modeled and solved using an
MLP-assisted optimization algorithm although one could use an RBF-assisted model,
too. This problem has been modeled as a seven-variable, unconstrained discrete
optimization problem where the first variable is the material type, while the other six are
process parameters. LS-DYNA3D has been used to model springback and a simple
axisymmetric stamping problem was selected for numerical study. In this study, a blank
sheet with dimension 177.8 ́  177.8mm, punch speed of 25.4mm/min; and a range of punch
penetrations between 1.27 to 21.6 mm was used. Springback is calculated with an implicit
analysis, which can simulate the unloading of the blank, due to the removal of the tools.
The accuracy of the prediction of springback by numerical simulation depends strictly
on the accuracy of the stress distribution computed by deep drawing simulation, which
is very sensitive to the accuracy with which the process is modeled. The methodology
employed for the validation of the simulation codes is based on the definition of the
numerical parameters suited to reduce CPU time, without affecting the accuracy of the
simulation results. In this approach, the dome height was adopted as the metric for
evaluation of springback.

The problem of springback minimization is solved using the following methods: Random
Search (RS), Optimization Algorithm (OA) with all actual computations, and Surrogate
Assisted Optimization Algorithm (MLP-OA). The material variables and process param-
eters with their possible states are listed in Tables 6 and 7, respectively. For this single-

Table 7. Set of process parameters

 P1 P2 P3 P4 P5 P6 
1 0.10 0.15 0.15 0.20 0.10 0.20 
2 0.04 0.10 0.0 0.10 0.15 0.15 
3 0.02 0.10 0.15 0.20 0.02 0.12 
4 0.11 0.12 0.15 0.15 0.05 0.10 
5 0.12 0.15 0.13 0.10 0.15 0.20 
6 0.10 0.11 0.20 0.17 0.20 0.20 
7 0.15 0.14 0.20 0.18 0.14 0.11 
8 0.16 0.10 0.15 0.14 0.14 0.15 
9 0.15 0.20 0.12 0.11 0.10 0.10 

10 0.10 0.18 0.11 0.10 0.12 0.15 
11 0.15 0.10 0.09 0.14 0.16 0.11 
12 0.13 0.16 0.10 0.12 0.15 0.13 
13 0.14 0.12 0.18 0.15 0.10 0.11 
14 0.15 0.15 0.20 0.20 0.15 0.15 
15 0.08 0.10 0.10 0.11 0.16 0.15 

P1: Dynamic Friction on Punch/Sheet P4: Static Friction on Die/Sheet 
P2: Static Friction on Punch/Sheet P5: Dynamic Friction on Holder/Sheet 
P3: Dynamic Friction on Die/Sheet P6: Static Friction on Holder/Sheet 



232   Ray

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Method Function 
Evaluations 

Function Value 
(Springback) 

(mm) 
Random Search 10 Min.: 0.3890 

Max.: 0.9390 
Random Search 25 Min.: 0.3870 

Max.: 0.9390 
Random Search 70 Min.: 0.3830 

Max.: 0.9440 
Optimization 

Algorithm 
25 Min.: 0.3840 

Max.: 0.3970 
Optimization 

Algorithm 
169 Min.: 0.3830 

Max.: 0.3880 

Table 8. Comparison of results

Methods Springback  
(mm) 

OA 1 0.3830 (Actual) 
OA 2 0.3840 (Actual) 
OA 3 0.3850 (Actual) 
MLP-OA 1 0.3817/0.3870 (Predicted/Actual) 
MLP-OA 2 0.3818/0.3850 (Predicted/Actual) 
MLP-OA 3 0.3823/0.3880 (Predicted/Actual) 

Table 9. Top three solutions from OA and MLP-OA

0 5 10 15 20 25
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. Springback (initial population)

objective, unconstrained, discrete springback-minimization problem there are 571,536
solutions. Table 8 presents the results obtained using various approaches.

Random Search: With a random search at 10 points, the minimum and maximum
springback values are 0.3890mm and 0.9390mm. With a random search at 70 points, the
best springback is 0.3830mm while the worst is 0.9440.

Optimization Algorithm: Figure 1 presents the springback values of the solutions in the
initial population. It can be observed from Figure 1 that there are three distinct bands of



A Neural-Network-Assisted Optimization Framework and Its Use   233

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

springback values varying between 0.38mm and 1.0mm. With a mere 25 function
evaluations, OA reports a solution with springback of 0.3840 mm, which is 0.26% worse
than the best value of 0.3830mm. The maximum springback value of the solutions in the
final population is 0.3970mm, which indicates a good convergence of the solutions to the
lowermost band. On increasing the number of function evaluations to 169, the best
solution has a springback of 0.3830mm while the maximum springback in the final
population is 0.3880mm. The top three solutions are listed in Table 9. The average
springback computation takes around 12 minutes of CPU time. The springback values of
the solutions of the final population are presented in Figure 2. It can be noted that the
springback values of the solutions of the final population lie between 0.3830 and 0.3970,
clearly indicating that the solutions improved over the generations and reached the
lowermost band of springback.

Multilayer Perceptron Embedded Optimization Algorithm: The MLP of the MLP-OA
model has been trained using 70 data sets, while its prediction capabilities are tested on
25 data sets that are exclusive of the training set. Two architectures are tested—one
having five hidden-layer neurons, while the other had four hidden-layer neurons. The
prediction capabilities of the network are illustrated in Figures 3 and 5 on training sets
and Figures 4 and 6 on test-data sets for the above architectures. The CPU time for
training the 7x4x1 and the 7 x5x1 neural network architectures are 61.193 seconds and
118.616 seconds respectively on SGI Origin 2000. It can be observed from Figures 4 and
6 that the neural networks are capable of predicting reasonable accurate springback
values (within +/- 2%) that can be used by the optimization algorithm as an approximation.
In order to study the behavior of the MLP-OA model, the springback-evaluation process
is removed and the springback-estimation process is introduced using the 7x5x1-network
architecture. Using a population of 25 individuals and with 67 calls to the approximator,
the algorithm converged to the final population. The plot of the initial and final population
using the MLP-OA model is shown in Figures 10 and 11. It can be observed that MLP-
OA is capable of minimizing the springback and converge to a final population just like
the optimization algorithm (OA) alone. The introduction of the neural-network-based
approximator within the optimization algorithm resulted in the reduction of actual

0 2 4 6 8 10 12 14 16 18 20
0.382

0.384

0.386

0.388

0.39

0.392

0.394

0.396

0.398

0.4

Figure 2. Springback (final population)



234   Ray

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

springback computations from 169 to 70 (as the network was trained on 70 data sets) that
translates to about 1,200 minutes of CPU time saving. Table 4 presents the top three
alternatives as obtained by the optimization algorithm (OA) and the MLP-OA.

Discussion and Conclusion

Optimum product and process-design problems are known to involve computationally
expensive analysis and exhibit a highly nonlinear functional behavior. In order to
effectively and efficiently solve such problems, surrogate assistance plays an important
role. It is clearly visible from the studied examples that the surrogate-assisted optimiza-
tion framework could arrive at competitive solutions with far less number of actual
function calls. It is also interesting to observe that both the neural-network-based
approximators (RBF and MLP) could approximate nonlinear functions reasonably well for
both the mathematical test functions and the springback-minimization problem. The
process of periodic retraining of the MLPs and RBFs within the framework ensures
adequate generalization of the network at different stages of the optimization process and
is the key to avoid ill-validation problems.

Although a single objective, unconstrained, discrete problem of springback minimization
was solved, constrained optimization problems and problems with multiple objectives
could be solved using the same framework. It can be seen that with the introduction of
the neural-network-based approximator, there is a significant reduction in the number of
actual springback computations and thus the CPU time needed to optimize the design.
Although the algorithm can be easily ported to run on multiple processors, the speedup
is limited by the number of commercial licenses of the analysis codes that an organization
might have. We are currently working on the optimization framework via approximations
to deal with shape optimization problems for aerospace applications.

References

Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Upper Saddle
River, NJ: Prentice-Hall Internal Inc.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2, 359-366.

Jin, Y., Olhofer, M., & Sendhoff, B. (2000). On evolutionary optimization with approximate
fitness functions. In Proceedings of Genetic and Evolutionary Computation
Conference (pp. 786-792). Morgan Kaufmann.

Jin, Y., Olhofer, M., & Sendhoff, B. (2002). A framework for evolutionary optimization with
approximate fitness functions. IEEE Transactions on Evolutionary Computation,
6(5), 481-494.



A Neural-Network-Assisted Optimization Framework and Its Use   235

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Liew, K. M., Ray, T., Tan, H., & Tan, M. J. (2002). Evolutionary optimization and use of
neural network for optimum stamping process design for minimum springback.
Transaction ASME Journal of Computing and Information Science in Engineer-
ing, 2, 38-44.

Poggio, T., & Girosi, F. (1989). Networks and the best approximation property. Biological
Cybernetics, 63, 169-176.

Ratle, A. (1998). Accelerating the convergence of evolutionary algorithms by fitness
landscape approximation. In A. Eiben, Th. Bäck, M. Schoenauer, & H.-P. Schwefel
(Eds.),  Parallel problem solving from nature (pp. 87-96). Berlin: Springer.

Ray, T., Gokarn, R. P., & Sha, O. P. (1996). Neural network applications in naval
architecture and marine engineering. Artificial Intelligence in Engineering, 1, 213-
226.

Ray, T., Tai, K., & Seow, K. C. (2001). Multiobjective design optimization by an
evolutionary algorithm. Engineering Optimization, 33, 399-424.

Richmond, O., & Davenpeck, M. L. (1962). A die profile for maximum efficiency in strip
drawing. In Proceedings of the Fourth U.S. Congress. Applied Mechanics, ASME
(pp. 1053).

Roy, S., Ghosh, S., & Shivpuri, R. (1996). Optimum design of process variables in multi-
pass wire drawing by genetic algorithms. Journal of Manufacturing Science and
Engineering, 118, 244-251.

Won, K. S., Ray, T., & Kang, T. (2003, December 6-8). A framework for optimization using
approximate functions. In Proceedings of the IEEE Congress on Evolutionary
Computing, Canberra, Australia.



236   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIV

Artificial Neural
Networks in

Manufacturing:
Scheduling

George A. Rovithakis, Aristotle University of Thessaloniki, Greece

Stelios E. Perrakis, Technical University of Crete, Greece

Manolis A. Christodoulou, Technical University of Crete, Greece

Abstract

In this chapter, a neuroadaptive scheduling methodology, approaching machine
scheduling as a control-regulation problem, is presented and evaluated by comparing
its performance with conventional schedulers. Initially, after a brief reference to the
context of existing solutions, the evaluated controller is thoroughly described. Namely,
the employed dynamic neural network model, the subsequently derived continuous
time neural network controller and the control input discretization that yield the
actual dispatching times are presented. Next, the algorithm guaranteeing system
stability and controller-signal boundedness and robustness are evaluated on an
existing industrial test case that constitutes a highly nonacyclic deterministic job shop
with extremely heterogeneous part-processing times. The major simulation study,
employing the idealistic deterministic job-shop abstraction, provides extensive



Artificial Neural Networks in Manufacturing: Scheduling   237

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

comparison with conventional schedulers, over a broad range of raw-material arrival
rates, and through the extraction of several performance indices verifies its superb
performance in terms of manufacturing-system stability and low makespan, low average
lead times, WIP, inventory, and backlogging costs. Eventually, these extensive
experiments highlight the practical value and the potential of the mathematical
properties of the proposed neuroadaptive controller algorithm and its suitability for
the control of nontrivial manufacturing cells.

Introduction

Production scheduling deals with the allocation of the available resources over time for
the manufacture of goods. It involves the decision-making mechanism whose objective
is finding a way to assign and use the sequence of shared resources (labor, material,
equipment), such that production constraints are satisfied and production costs are
minimized.
In this chapter we address a machine-scheduling problem that, while constituting a
simplified formalism of the production scheduling, still captures its fundamental com-
plexity. More precisely, we focus on the deterministic job-shop scheduling, whereas a
set of n jobs is processed on a finite set of m machines, with precedence constraints
imposed on the sequence of individual operations.
The examined scheduling problem, deterministic job-shop scheduling, is the most
general classical scheduling problem and due to its factorial explosion is classified into
the large class of intractable numerical problems (NP) known as NP-hard, that is, problems
that cannot be solved in time polynomial to the dimension of the problem under
consideration. Job-shop scheduling due to its importance to the efficient management
of manufacturing processes has been addressed by a plethora of approaches.
Next, a reference to industrial practice and to the existing approaches to job-shop
scheduling is made, and the essence of our proposed scheduler along with the intended
evaluation methodology is outlined.

Background

Current industrial practice has been mainly based on assisting experienced human
schedulers with major software packages that implement distinct scheduling philoso-
phies like manufacturing resource planning (MRP), just-in-time (JIT) production
(Schonberger, 1983), and optimized production timetables (OPT), while more recently
enterprise-resource planning systems (ERPs) are utilized in process industries (James,
1996).
Although production scheduling has been traditionally addressed by management
science, operations research, and industrial engineering, its complexity and importance



238   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have recently concentrated the efforts of different research communities concerned with
artificial intelligence (Kusiak, 1987), dynamic programming, queuing-network theory
(Jackson, 1963), systems simulation, large-scale systems, control theory, and other
branches of engineering and computer science (Gupta, Evans, & Gupta, 1991; Rodammer,
1988).
In this work, we specifically focus on the deterministic job-shop scheduling. Job-shop
scheduling due to its importance has been addressed by a plethora of approaches. Some
of the elder techniques have been enumerative algorithms that provide exact solutions
either by means of elaborate and sophisticated mathematical constructs — such as linear
programming (Lawler, Lenstra, Rinnooy, & Shmoys, 1993), decomposition techniques,
and Lagrangian relaxation—or by means of the branch and bound enumerative strategy,
which involves search of a dynamically constructed tree that represents the solution
space (Brandimarte & Villa, 1995). Limitations of the aforementioned enumeration
techniques has led to suboptimal approximation methods, such as priority dispatch rules,
that involve assignment of priority to each job primarily via heuristics (Panwalkar &
Iskander, 1977), while recently, approaches employing fuzzy-logic techniques have
emerged (Grabot & Geneste, 1994). Scheduling has been dominated by a set of innovative
heuristic-approximation algorithms including the shifting-bottleneck procedure (Adams,
Balas, & Zawack, 1988), tabu search (Glover, 1989), simulated annealing (Van Laarhoven,
1988), and genetic algorithms (Cheng et al., 1999). Furthermore, artificial intelligence
methods have been applied ranging from neural networks (NNs) (Kim, Lee, & Agnihotri
1995; Sabuncuoglou & Gurgun, 1996) to constraint satisfaction techniques and expert
systems. Recently, hybrid techniques that involve searching strategies that navigate
heuristic algorithms in a problem domain away from local optima have been applied. Such
techniques are genetic local search (Yamada & Nakano, 1996), and large-step optimiza-
tion (Lourenco, 1995).
In this chapter, we present and systematically evaluate a novel neuroadaptive schedul-
ing methodology (Rovithakis, Gaganis, Perrakis, & Christodoulou, 1999) by considering
its application on a challenging existing industrial test case (Rovithakis, Perrakis, &
Christodoulou, 2001). The examined neural network scheduler approaches the produc-
tion-scheduling problem from a control-theory viewpoint (Gershwin, Hildebrant, Suri, &
Mitter, 1986), in which scheduling is considered a dynamic activity. Thus, by defining
release and dispatching times, setup times and maintenance as control input, and levels
of inventory and machine status as system states, scheduling can be considered either
as a regulation or tracking problem, where the requirements are to drive the state vector
to some desired value (production requirement) or to follow some distributed over-time
trajectory (Ioannou & Sun, 1995), respectively.
By taking advantage of current experience in the neuroadaptive control field (Rovithakis
& Christodoulou, 1994, 1995, 1997) based on dynamic neural networks (NN), the
deterministic job-shop scheduling problem has been considered a control-regulation
problem, where system states (buffer levels) have to reach some prespecified values by
means of control input commands. Based on a dynamic neural network model of the buffer
states, derived in Rovithakis, Perrakis, and Christodoulou (1996, 1997, 1999), an adaptive
continuous-time neural network controller has been developed. Dispatching commands
are issued by means of a discretization process of the continuous-control input, which
is defined as the operating frequency with which each distinct manufacturing operation



Artificial Neural Networks in Manufacturing: Scheduling   239

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

must occur while the controller guarantees the uniform ultimate boundedness of the
control error as well as the boundedness of all other signals in the closed loop.
Further evaluation of the neural network scheduler is pursued by applying it on real data
derived from a challenging manufacturing system (Rovithakis et al., 2001). The selected
test case — the mechanical workshop of a German company — constitutes a complex job
shop with extremely heterogeneous part-processing times, with 18 product types that
may visit 18 different machines having to be produced, thus demanding sequencing of
a total of 273 jobs, that is the production of a total of 273 parts. The performance of the
algorithm is compared with modified versions of the well-established conventional
scheduling policies First In First Out (FIFO), Clear a Fraction (CAF), and Clear Largest
Buffer (CLB). All schedulers are compared over a range of raw-material-arrival rates and
their performance is evaluated by means of the observed makespan, work in process
(WIP), inventory, backlogging costs, and average lead times.
Thus, the derived simulation results, revealing superb performance in issues of manu-
facturing-system stability, low WIP, average lead times, backlogging and inventory
costs for the NN scheduler, establish the proposed scheduler’s applicability on the
control of nontrivial manufacturing cells.
The structure of the chapter proceeds as follows: In “Problem Formulation and the DNN
Architecture,” a description of the proposed NN scheduler is presented. In “Test Case:
SHW Mechanical Workshop,” the scheduling problem for the selected test case is
defined and the conventional schedulers employed to facilitate comparisons in this
study are described. In “Results,” critical presentation of the derived results is provided,
and we conclude in the final section.

Problem Formulation and the
DNN Architecture

This section is devoted to a brief presentation of the evaluated approach on the
scheduling problem in manufacturing cells. These results, regarding the application of
dynamic NNs to adaptively control FMS have been recently introduced in Rovithakis,
Perrakis, and Christodoulou (1996, 1997, 1999).

Problem Formulation

The considered manufacturing systems resemble job shops in their layout, consist of M
machines, and produce a multiple of P part types. Each part type requires a number of
operations to be performed in a given sequence, defined by its route. Multiple routing
is possible and parts may visit some machines several times. Each machine m is assumed
to consist of a number N(m) of submachines equal to the number of different part types
it is able to process. Each submachine actually represents an operating mode of machine
m. Let O(m) be a set such that s∈O(m) implies that submachine s is a submachine of the



240   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

actual machine m. The cardinality ofO(m) is equal to N(m). Let also )(
1 i

M

iM mNN ∑ =
= . Only

one submachine is allowed to be working at a time, processing parts of a single type.
Machine operation times are supposed to be constant, that is deterministic, where
different operation times for every submachine are allowed. Set-up times are assumed to
be insignificant. A machine will be called “idle with respect to a part type”, if it is idling
or is processing some part type different from the specified one.
The objective is to steer, through appropriate scheduling (sequences of dispatching
commands), the manufacturing-system output buffers to reach a small neighborhood of
predefined finished products, while keeping all intermediate buffers within their accept-
able values.

Continuous Control Input Definition

It is assumed that an equivalent machine-operation frequency is used as a control input
to the system, defined as the inverse of the time between two successive machine-starts.
Using this definition, frequencies range between zero and a fixed finite value. The lower
bound equal to zero, corresponds to an infinite idling time. The upper bound umax,
corresponds to a minimum (zero) idling time-thus a maximum working rate, and equals to
the reciprocal of machine operation time. It should be observed that this definition is a
crucial point in our work, since it enables the transition from a discrete-event system to
a continuous time one.

The Manufacturing Cell Dynamic Model

Recalling from (Rovithakis, Perrakis, & Christodoulou, 1996, 1997, 1999), the dynamic
model from the evolution of the level xi of a buffer, is assumed to be given by:

)(),( 10 iiiiii ufuuxfx
i

+=&      (1)

where ix  is the vector containing the levels of all directly connected preceding buffers,

iu is the vector containing the frequencies of all submachines collecting products from

xi , ui is the frequency of the submachine feeding buffer i, and )()( 10 ⋅⋅ iff
i

 are unknown

functions of their arguments, specifically )(0 ⋅
i

f is the increasing rate of buffer i, and

)(1 ⋅if  is its decreasing rate.

Since both )()( 10 ⋅⋅ iff
i

 are unknown functions of their arguments, neural networks of the
form described in the next subsection are employed to obtain an accurate model for the
manufacturing cell.



Artificial Neural Networks in Manufacturing: Scheduling   241

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Dynamic Neural Network Architecture

The dynamic neural networks that are used, called Recurrent High-Order Neural
Networks (RHONN), are fully interconnected nets, containing dynamical elements in
their neurons. Therefore, these neural networks are described by the following set of
differential equations:

x&) =W0 S0(x, u)u+1S(u)                (2)

where Bx ℜ∈) , the inputs Bu ℜ∈ , W0 and W1 are B × L and B × L0 matrices respectively
of adjustable synaptic weights. S0(x,u) is a L × B matrix with elements Sim(z), i = 1,2,…,L,
m = 1,2,…,B, of the form:

Sim(z)=∏
∈ im

j

Ij

mid
jzs ),()]([ (3)

where Iim, i=1,2,…,L and m=1,2,…,B are collections of L×B not ordered subsets of
{1,2,…,B}, dj(i,m) are non-negative integers and z=[x,u]. Similarly, S1(u) is a L0-dimen-
sional vector with elements SK(u) of the form:

SK(u)=∏
∈ k

j

Ij

kd
jus )()]([               (4)

For all k=1, 2, …,B where Ik are collections of L0 not-ordered subsets of {1, 2, …, B} and
dj(k) are nonnegative integers. In both (2.3) and (2.4) s(zj) is a monotone increasing,
smooth, function, which is usually represented by sigmoidals of the form:

S(zj)= λ
µ

+
+ − jzle 01

(5)

For all j=1, 2, …,2B, with the parameters , l0, to represent the bound and slope of the
sigmoid’s curvature and  a bias constant. Equation (2.2) can also be written in the
equivalent form:

)(),( 1100 ii
T

iiiii
T

ii uSWuuxSWx +=&) (6)



242   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For all i = 1, 2, B. For the neural network model, there exists the following approximation
theorem (Kosmatopoulos, Polycarpou, & Christodoulou, 1995):

Theorem 1: Suppose that the system (1) and the model (6) are initially at the same state

 xi(0)= ix&) (0), ∀i=1, 2,…,B. Then for any εi>0, i=1,2,…,B and any finite T>0, there exists

integers L, L0 and matrices W*
0, W

*
1, such that the state )(txi

)  of the dynamic neural
network model (6) with L × B +L0 higher order connections and weight values W0=W0

*,
W1=W1

*, satisfies:

iii
Tt

txtx ε≤−
≤≤

|)()(|sup
0

)

Theorem 1 prerequisites that the unknown vector fields )(,),( 10 iiii ufuxf
i

, i = 1,2,…,B are
continuous and satisfy a local Lipschitz condition such that (1) has a unique solution
in the sense of Caratheodory (Hale, 1969) Moreover, the previous theorem proves that
if sufficiently large number of higher order connections are allowed in the dynamic neural
network model, then it is possible to approximate a very large class of dynamical systems
of the form (1), to any degree of accuracy.
Due to the approximation capabilities of the dynamic neural networks, it can be assumed,
with no loss of generality, that the unknown system (1) can be completely described by
a dynamic neural network plus a modeling error term ),,( iiii uuxε . In other words, there

exist weight values *
1

*
0 , ii WandW  such that the system (1) can be written as:

),,()(),( 1
*

10
*

0 iiiiii
T

iiiii
T

i uuxuSWuuxSWx ε++=& (7)

where ix  is the vector containing the levels of all directly connected preceding buffers,

iu is the vector containing the frequencies of all submachines collecting products from
xi , uiis the frequency of the submachine feeding buffer i, and εi(.) is a modeling error term
assumed bounded, i.e. || εi(.) ≤||εi with εi arbitrarily small. FinallyW*

0i, and W*
1i represent the

optimal weight values (as optimal we define these weight values that lead to minimum
modeling error εi) of the NN and ii SS 10 ,  are vectors that contain sigmoid functions.



Artificial Neural Networks in Manufacturing: Scheduling   243

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Continuous Time Control Law

Let by xt(i) i = 1,2,….,B with B the total number of buffers, denote the target value for each

buffer. Define the control error
ice  as )(itic xxe

i
−=

∆

. To derive stable control and update
laws Lyapunov stability theory is employed following the analysis presented in Rovithakis,
Perrakis, & Christodoulou (1997, 1999), the control and weight update laws listed later
are derived:

ui = - qi sgn ( )),(00 iii
T
i uxSW sgn (

ice ) (8)

qi= [ ]|||)(|||1
11 icii

T
i

i

euSW
w

γ+− (9)





−
≥

otherwise
),ux(SW

)),ux(S(W iii
T

oi
iii

T
oi 1

0if1
=sgn 0

0 (10)









>

=

<−

0if1

0if0

0if1

=)sgn(

i

i

i

i

c

c

c

c

e

e
e

e
(11)

where , wi
-
 are design constants.















<∂∈








 +
−

≥∂∈

∈

0),(andWif

||||1
),(),(

0),(andWor

Wif),(

=

000i0

0

2

0

0
000

000i0

0i00

0

iiii
T

ici

i
i

i
iiii

T
iciiiic

iiii
T

ici

iiiiic

i

WuuxSeW

W
w
W

WuuxSeuuxSe

WuuxSeW

WuuxSe

W

i

ii

i

i

&

(12)



244   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.









<∂∈+
≥∂∈

∈

0andWif
0andWor

Wif
=

1i121

1i1

1i11

1

ri

ri

i

i

CWDD
CW

WD
W&

(13)

where D1= )(1 iii uSe , D2= iiii
T WwWWD 1

2
1111 )/|)|1(( +− , and Cr= i

T
ii WuSe 11 )( .

These control and update laws guarantee the uniform ultimate boundedness with respect
to the arbitrary small set:

ε
ic =









>≤ 0,||:)( γ
γ
ε i

cc ii
ete

The previous results practically state that if we start from inside the set εci then eci are

uniformly bounded by εi /γ . Otherwise there exists a finite time in which
ice reaches the

boundary of εci and remains there in for all time thereafter. It is obvious that the
performance of the continuous time control law is controlled by εi and γ. The first term

i is strongly related to the continuous time model accuracy, while γ is a design constant
which can be chosen arbitrary. This practically means that no matter what the initial error,
the proposed direct adaptive control scheme guarantees that all buffer states will
approach their target values in finite time, always staying in close proximity to them.
Hence, this direct adaptive control scheme, ensures that all buffer states can in finite time
approach their target values, and always stay in close proximity to them, and by further
controller fine-tuning they can get arbitrarily close to their target. Obviously, when
considering the output buffers of the manufacturing cell, it is clear that it has been proven
that this approach can lead arbitrarily close to the production goal in finite time.

Real Time Scheduling

The control input signal obtained by the control law (Equations (8) through (13)) is a
continuous frequency signal. Therefore, some dispatching policy has to be employed to
determine the actual parts dispatching times.
For the single product case where only one submachine is allowed, the algorithm is as
follows. The controller output is sampled at a certain time instant, and the corresponding
operating frequency is transformed to a time interval by taking its reciprocal. At the same
time instant a new command is sent to the specific submachine. Control and update laws
are allowed to evolve in time while the submachine is left untouched until the precalculated
time interval is completed. This interval is greater or equal to the machine operation time,
since the control input frequency is less than or equal to umax. Afterwards, a new sample



Artificial Neural Networks in Manufacturing: Scheduling   245

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the control input is taken and the process is repeated. Clearly, this control input
discretization introduces some modeling error, to be discussed in the following subsec-
tion.
For the case of FMS systems containing multiproduct machines, in order to determine
which buffer is to be served, the use of some criterion representing a measure of the
priority to be given is proposed. For a certain machine m containing N (m) submachines,
the criterion is calculated on each route which employs any submachine s∈O (m). The
derivation of the criterion value is based on the semifinished product availability, (work-
in-process, WIP), as well as on the control error of the route’s output buffer. According
to the proposed policy, the route to be served is the one with the largest criterion value.
The proposed criterion value for each submachine s is given by:

∏
=

+++++−−−−−−−








+

+++++++=
)(

1
2

2

2211)()(2211 1
....)()()(....)()()(

sN

i
NsNsNis

B

BB e
exgxgxfxfxfxfJ λλλλλλ

(14)

where
−
ix , i =1,2, …, NB(s) are submachine s preceding buffer levels and +

ix i =1,2, …, N
are the levels of the buffers that follow on the same route, while N denotes the number
of submachines that follow submachine s along its route including the output buffer.

The control error for the later is denoted by e. The parameters −
iλ  and +

iλ  are weighting
factors to be determined. The dependence of each argument on s has been omitted for
the sake of simplicity.

Continuous Control Input Discretization

In the previous definition, f (.) is a positive monotonically increasing non-linear function,
with f(0) = 0 and f(c) = 1, where c stands for the corresponding buffer capacity. Obviously
this function outputs the largest value for the case of a large product accumulation on
the feeding buffer. Similarly, g(.) is a mirrored version of f (.), with g (0) = 1 and g(c) = 0.
This function outputs the maximum value if the following buffers are almost empty. In
this way conditions like the feeding buffer is almost empty and/or the following buffers
are in the vicinity of their maximum capacity, lead to small Js which in turn means that the
corresponding route will not be served. Functions f (.) and g (.) can be closely approxi-
mated by shifted sigmoids, as in Rovithakis, Perrakis, and Christodoulou (1997, 1999) to
summarize the discrete dispatching decision algorithm in the multi product case is as
follows:



246   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Algorithm II.1 (Discrete Dispatching Decision-Multi Product Case)
Input Bu ℜ∈ , Bx ℜ∈ B

ce ℜ∈
   If machine is not FMS then
         I.1 Controller output is sampled at a certain time instant.
              A time interval equal to the reciprocal of the sample
              is computed
         I.2 At the same time instant a new command is sent to the
              specific submachine.
         I.3 As soon as the time interval is completed, go to Step I.1
   Else if the machine is FMS then
         II. for all submachines that are not idling and conflict.
              II.1    calculates Js as in (14).
              II.2    selects the submachine with the largest Js.
         III. Apply the appropriate command for the selected
              submachine i.e., execute steps I.1, I.2 of the non-FMS
              machine case
         IV. When the currently working submachine finishes processing and
            starts idling goto Step II

Discretization Effects

The continuous time controller developed previously, contains the actual scheduling as
follows:

ui= ),,( iiiid uuxu
i

ω+

where ui is the continuous time control law,
idu  is the actual scheduling applied and

),,( iiii uuxω  is the bounded difference between the aforementioned signals.

It can be shown (Rovithakis, Perrakis, & Christodoulou, 1999) that in this case the control
error

ice  possesses a uniform ultimate boundedness property with respect to the arbitrary
small set:

εci= 









>
+

≤
+

0,
|),,(|

||:)( 0 γ
γ

εωι iiiii
cc

uuxw
ete

ii

The term γεωι /)|),,(|( 0 iiiii uuxw ++  serves as a performance index that can be improved
mostly by allowing the design constant to admit larger values. Moreover, better
approximation of the continuous control law by the actual scheduling will lead to smaller
values of ),,( iii uuxιω  which in turn will improve further the overall performance.

Hence the convergence and robustness properties of the controller is still retained,
whatever definition of Js.



Artificial Neural Networks in Manufacturing: Scheduling   247

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Test Case: SHW Mechanical Workshop

To investigate, assess and establish the applicability and value of the proposed
approach to the scheduling problem, it has been considered necessary to examine data
taken from existing manufacturing systems, with all the constraints, and complexity
inherent in real-world cases. Thus an existing German industry, producing machine tools,
has been chosen in order to evaluate the algorithm’s performance on production
processes crucial for the company’s prosperity.
The test case is derived from one of the oldest industrial enterprises in Germany,
Schwaebische Huettenwerke (SHW), and specifically from the mechanical workshop of
its Machine Tool Division. Department products are tools ranging from simple milling
machines to universal milling, boring, and turning centers, and in their vast majority are
produced on demand. Since on demand production characterizes the machine tool
division operation, production is organized according to orders arriving on the division.
Hence the scheduling problem has been formulated by a representative, bulky subset of
the entire set of orders processed over several months of workshop operation. Therefore,
the SHW scheduling problem has been posed as the problem of production of 18 different
order types demanding an equal number of product types. The different product type
routes are shown in Table 1.

Manufacturing Cell Topology

All numbers under the label “Processing Routes” are identification numbers of mechani-
cal workshop machines and the external to the workshop assembly points visited. In the

Order Processing Routes
1331 737 753 773 704 737 704
1414 753 773 704
1623 753 773 704
2409 753 999 773 704
2420 753 999 999 736 704
1953 731 704 999 773 739 737 704 775
2422 773 783 704
2685 783 704
2766 708 731 774 739 783 783 774 704
3057 999 753 999 773 775 999 737 999 999 704
3061 753 966 773 736 704
2694 728 732 722 783 704 783
2783 732 752 731 777 999 777 731 722 783 783 704
2900 773 704
2904 966 966 704
1312 704 775 732 783 704
2916 753 773 704
3207 999 999 753 773 999 999 999 704

Table 1. Manufacturing-cell topology



248   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tabulated set of part type routes, 18 different types of products are produced in this cell
of 18 processing locations, following routes in which a part type may visit a machine more
than once, while no assembly operations are involved. Each entry of the table represents
a processing step of a specific duration. In Table 1, the (i,j) entry being equal to m, means
that the i-th product in its j-th processing step, visits machine with label m and from the
non-linear adaptive controller viewpoint each such distinct operation corresponds to a
unique submachine.
Table 2 shows the duration of the processing steps. The respective submachine will be
referred as si, j and controls the state of a buffer attached to its output which will be noted
as xi, j. Furthermore, a neural adaptive controller is assigned to every submachine and the
output signal of the controller which regulates the state of the xi, j buffer (i.e., the
frequency signal controlling the operation of submachine si, j), will be denoted as ui, j.
Also, the first submachine of every product route, si,1, i = 1 …. 18 is preceded by a buffer
that temporarily stores raw materials of the respective, i-th product, which will be referred
as xi,0. L(i), i = 1 …18 will denote the number of processing steps in route i, thus xi, L(i) will
be the output buffer collecting the finished products of route i. Also, xt(i, m) will stand for
the target state of buffer xi,m, thus xt (i, L(i)) will denote the demand for product type i. Any
further information necessary for the complete definition of the scheduling problem will
be presented with direct reference to the cell topology, as provided in Table 1.
The duration in minutes of all processing steps underlying the presented cell topology
is given in Table 2, where the value T(i, j) of its (i, j) element stands for the duration of
the (i, j) processing step.
The scheduling problem will be completely defined, by specifying the desired target
states, the capacity and the initial state values, for all buffers in the system, as well as
the rates under which raw materials for the different part types arrive in the system.

Table 2. Processing steps duration

Order Processing Routes
1331 31.0   25.2   30.6   20.0   9.4   20.0
1414 23.4   15.6   20.0
1623 21.0   15.6   20.0
2409 43.2   3.0    27.0   20.0
2420 34.2   0.5    3.6    34.2   20.0
2422 16.8   1.2    20.0
2685 2.4    20.0
2766 7.7    1179 244.2 348.0 46.8 25.2 111.6 20.0
3057 20.0 37.2   20.0    46.0   20.0    20.0   14.4   61.2   90.0 20.0
1953 162 20.0    20.0    119.0 72.0   65.0 20.0    20.0
3061 22.8   153 18.2   45.0   20.0
2694 876 43.4   990.0 36.0   20.0    1.8
2783 14.2   351 444.0 8.4    20.0    8.4   1260 1539 10.8   12.6 20.0
2900 24.0   20.0
2904 1.2    6.2    20.0
1312 20.0   20.0   11.0   1.2    20.0
2916 22.8   25.8   20.0
3207 20.0   20.0   22.8   19.8   3.6    4.8   24.6    20.0



Artificial Neural Networks in Manufacturing: Scheduling   249

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Specifically, all intermediate buffers’ target states have been set equal to one and their
capacity buffers with the exception of buffers x8,1, x12,1, x13,1 where three parts capacity
are allowed.
All buffers are considered to be initially empty. Raw material buffers have a two-part
capacity; and when this capacity is reached, arrival of raw materials is ceased until the
raw material buffer level is decreased.
Thus, considering its potential aspects of difficulty, the formulated problem constitutes
a reasonably complicated one, mainly due to the diversities and variability of part
processing times in the various submachines, the inequalities in machine’s workload and
its dimension. It is a problem of challenging dimensionality since it involves 18 different
final product types, visiting 18 machines and a total of 95 different operations take place,
thus implying the existence of 95 submachines, for the neural network scheduling
algorithm.
The most extreme differences exist for the 13th product type 2783, where the processing
times in the 11 submachines visited range from 8.4 to 1539.0 minutes. Obviously, the
equivalent problem, in the sense of our proposed scheduler, of efficiently regulating in
real time the state of 95 buffers, will be a task far from trivial, justifying the selection of
the SHW test case, as a means of ultimate neural scheduler verification.
In order to gain further understanding of the underlying neural network controller
structure, a subset of the interconnections of the inherent submachine topology is
described next. Following the notation introduced in (Rovithakis, Perrakis, &
Christodoulou, 1996, 1997, 1999) let O(m) denote the set of submachines si, j of machine
m and N(m) its cardinality. Let B+(s) be the set of input buffers to submachine s, B-(s) be
the set of output buffers of submachine s, and M-(b) the set of submachines fed by buffer
b. For the specific test case we obtain: B+(si,j)={xi,j-1}∀i, j, B-(si,j)={xi,j}∀i, j
For example, close examination of the cell definition yields the set of submachines related
to machine 773:

O(773)={s1,3, s2,2, s3,2, s4,3, s6,4, s7,1, s10,4, s11,3, s14,1, s17,2, s18,4}, thus N(773)=11 .

Moreover, the sets that completely define the route of the 11th product type are given
next.
Sets of input buffers:

B+(s11,1) = { x11,0 }, B+(s11,2) = { x11,1 }, B+(s11,3 ) = { x11,2 }, B+(s11,4 ) = {x11,3 }, B+(s11,5)
={x11,4}



250   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sets of output buffers:

B-(s11,1) = { x11,1}, B-(s11,2) = { x11,2}, B-(s11,3) = { x11,3}, B-(s11,4) = {x11,4},
B-(s11, 5) = {x11, 5}

Finally, the sets of submachines fed by each buffer in route 11 are listed:

M-(x11,0) = {s11,1}, M-(x11,1) = { s11,2}, M-(x11,2) = { s11,3 }
M-(x11,3) = {s11,4}, M-(x11,4) = { s11,5}, M-(x11,5) = {Ø}

Taking up to fourth-order terms for each argument, the dynamic equations employed for
the buffers of the 11th product route are:

),,()(])(,)([ 2,111,111,112,11
*

1,11,11,111,111,11
*

1,11,01,11 uuxuSWuuSxSWx TTTTT
ε++=&

),,()(])(,)([ 3,112,112,113,11
*

2,11,12,112,112,11
*

2,11,02,11 uuxuSWuuSxSWx TTTTT
ε++=&

),,()(])(,)([ 4,113,113,114,11
*

3,11,13,113,113,11
*

3,11,03,11 uuxuSWuuSxSWx TTTTT
ε++=&

),,()(])(,)([ 5,114,114,115,11
*

4,11,14,114,114,11
*

4,11,04,11 uuxuSWuuSxSWx TTTTT
ε++=&

),(])(,)([ 5,115,115,115,115,11
*

5,11,05,11 uxuuSxSWx TTTT
ε+=&

with )]()()()([)( ,
4

,
3

,
2

,, jijijijiji xsxsxsxsxS = T

T
jijijijiji ususususuS )]()()()([)( ,

4
,

3
,

2
,, =

T
jijijijiji ususususuS )]()()()([)( ,

4
,

3
,

2
,,1 =

where W0, j
* }5,...,2,1{8 ∈∀∈ jR and W1, j

* }4,...,2,1{4 ∈∀∈ jR

The NN model is further used in the development through Equations (8) to (13) of the
continuous time control law u11,j j = 1, …, 5

Conventional Scheduling Policies Used Modifications

A set of conventional scheduling methodologies has been selected for comparison
purposes. The employed methods, real-time priority dispatch rules, distributed and of
local scope, are the following:



Artificial Neural Networks in Manufacturing: Scheduling   251

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(1) First In, First Out (FIFO): Select submachine si, j whose input buffer xi, j-1, contains
the part which arrived earlier than all parts contained in the input buffer of any other
submachine in O(m).

(2) Clear Largest Buffer (CLB): Select si,j
* such that x*

i,j-1(t) ≥xi,j-1(t)∀si,j∈O(m).

(3) Clear a fraction (CAF): Select si, j
* such that x*

i, j-1(t) ≥ ∑ = − ∈∀
)(

1 ,1, )(mN

j jiji mOsxε .

Clearing methods, CAF & CLB, process all parts of the selected buffer until it becomes
empty, while FIFO processes a single part at a time.
It should be noted that the actually employed policies are variations of the previous
definitions, which incorporate the following modifications, for stability reasons:

(1) All dispatching commands for submachines whose output buffers have reached
their capacity are ignored.

(2) Selection is restricted to the set of submachines that participate in part type routes
for which production has not been fulfilled.

The first modification concerns cancelling the application of the currently issued
dispatching command for a specific submachine, whenever the corresponding buffer
reaches its capacity limit. The second modification has been employed to overcome
problems such as overall production paralysis or continuous processing of specific
routes, by restricting production scheduling only to those product types for which
production has not been fulfilled. Precisely, this modification adds a global perspective

Figure 1. Production makespan
x 104

4

3.5

3

2.5

2

1.5

1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Raw material arrival rate

M
ak

es
pa

n 
(m

in
ut

es
)

FIFO
NN
CLB
CAF



252   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to the criteria, since their original local scope and reliance on information only about jobs
in the examined machine’s queue becomes insufficient for the current problem.
For a more detailed justification of the use of these two modifications to the conventional
scheduler the interested reader is referred to Rovithakis et al. (2001).

Results

Extensive simulation experiments that pursue the systematic extraction of the properties
of the proposed scheduler, the investigation of its overall performance and validity and
accuracy of the derived solutions’ qualities, is the theme addressed in this section.
In what follows, we shall discuss the results obtained when demanding 15, 25, 20, 20, 25,
20, 20, 3, 10, 8, 15, 5, 2, 20, 20, 15, 10, 20 parts for the 18 product types respectively,
beginning from clear intermediate and output buffers.
The evaluation study, adopts the commonly occurring in literature (Angsana & Passino,
1994) computation of a number of performance indices, which are mostly related with the
time a job spends in the shop. Besides the yielded makespan that illustrates the rapidity
in production goal achievement, indices of WIP, inventory, and backlogging cost have
been selected, due to their popularity and the accuracy in investigating some of most
primitive and important costs inherent in any manufacturing process. Measures of sum
of maximum intermediate and output buffers states are included since they highlight
schedulers’ ability of maintaining stability with respect to capacity limitations while lead
times are computed as average estimations of the delay for the production of a single part
in a cell, which is invaluable information for higher levels of production planning
decisions.

Figure 2. Sum of maximum intermediate buffer states

400

350

300

200

150

100

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Raw material arrival rate

S
um

 o
f m

ax
im

um
 In

te
rm

ed
ia

te
 b

uf
fe

rs

FIFO
NN
CLB
CAF

250



Artificial Neural Networks in Manufacturing: Scheduling   253

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Makespan

More precisely, in Figure1 the makespan, (i.e., the time period elapsing until the
production goal is achieved for all product types), is plotted for various raw-material-
arrival rates.
Examination of this set of curves reveals that for all raw material arrival rates greater than
0.0018 parts per minute, the proposed neural network scheduling methodology, results
in significant speedup of the achievement of production demand. Considering the
modified conventional schedulers, the achievement of production goal requires longer
time intervals. Due to the potential instability of the selected policies, the inability of CLB
to terminate is observed for rates greater than or equal to 0.002 parts per minute. Thus,
in this and in all subsequent figures, CLB values are plotted only for the range of rates
for which production goal is achieved (i.e., for rates less than 0.002). In the subsequent
analysis the somewhat arbitrary definition that rates lower than 0.0027 are low is used,
while rates greater than 0.0027 will be referred to as high. Hence, for low raw-material-
arrival rates similar or even identical performance for all compared schedulers is ob-
served. This originates from the fact that for lower raw-material-arrival rates, makespan
is dominated by the time required for the entrance in the cell of all raw materials for the
product types with the highest demand. It has been assumed that initially, all raw material
buffers contain a single part. Since a maximum demand of 25 parts has been defined, and
one part arrives every 1/rate minutes, it is easily derived that 24 × 1/rate minutes must
elapse before all necessary raw materials have entered the system.
For the case of high rates, it is necessary, for comparison purposes, to extract a lower
bound for the corresponding makespan. An obvious one should be the maximum over
all machines of the sum of the duration of the minimum work that should be done by all
submachines of each machine, plus the minimum time required for a single part to reach

Figure 3. Sum of maximum output buffer states; both FIFO and NN-based scheduling
algorithms coincide for all raw-material-arrival rates

320

310

300

280

270

260
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

S
um

 o
f m

ax
im

um
 o

ut
pu

t b
uf

fe
rs

FIFO
NN
CLB
CAF

290

Raw material arrival rate



254   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

machine input. The derivation of this lower bound relies on the assumption that except
for the first part to be processed in a machine, there are parts always available in the input
buffers of its submachines, which is obviously optimistic for the majority of submachines
in this complex cell. Thus, the previous maximum is calculated under the assumption that
no machine is idling. The minimum work that any submachine in the cell should do is equal
to the corresponding product demand. Thus, the time required for the minimum work of
machine m is

Tm = ∑ ∈
×

)( ))(,(,
, mOs iLitji
ji

xT .

In the specific test case the lower bound has been found equal to 8947.3 min.
The neural network methodology achieves the production goal in 9778 minutes thus
obtaining a deviation from the lower bound equal to 9.29 % for raw-material-arrival rates
greater than or equal to 0.0027. Meanwhile, optimal performance for the conventional
schedulers FIFO, CAF and CLB occur at much lower rates, specifically for 0.0018, 0.0009
and 0.0009 parts per minute, where the lower bounds are provided by the formula 24 ×
1/rate with corresponding deviations 0.867%, 1.865%, 1.87% and makespan 13449, 27164
and 27165 minutes respectively.
Simulations with higher raw-material-arrival rates, which provide higher raw-material
availability, resulted in no change of the makespan for both the neural network and FIFO
schedulers, while analogous performance is yielded by CAF.

Figure 4. Average WIP cost

FIFO
NN
CLB
CAF

x 104

5

4.5

3.5

3

2

1.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Raw material arrival rate

Av
er

ag
e 

W
IP

4

1

0.5

2.5



Artificial Neural Networks in Manufacturing: Scheduling   255

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sum of Maximum Intermediate and Output Buffer States

An overview of the peak buffer states experienced by the intermediate buffers is
presented in Figure 2, using the sum of the maximum state of all intermediate buffers. For
the case of neural network scheduler this sum is equal to the number of intermediate
buffers in the cell (i.e., 77), since the algorithm assigns a target value of one for all
intermediate buffers, which cannot be exceeded as the control law forces its output to
become zero whenever a buffer state reaches its target value.
When the conventional policies are used, this sum becomes considerably larger and as
can be seen from Figure 2, it can be more than five times higher as in the case of CAF.
Specifically, while for very low rates, this sum slightly exceeds the limit of 77, a slight
increase in the rate results in a considerable increase in the sum of the maximum states
for intermediate buffers with most extreme case that of CAF at 0.001 parts per minute.
The NN scheduler controls robustly the maximum possible states of the buffers with
respect to raw-material-arrival rates. This is obviously not the case for all conventional
schedulers studied that, at higher rates, even force the buffers to reach their capacity
limits. Therefore, the proposed scheduler ensures stable manufacturing system opera-
tion and minimum capacity requirements for buffers.
Figure 3 presents the sum of maximum output buffers states. The achieved results for
both FIFO and NN are identical and equal to the total demand of 273 parts for all product
types. This sum for the case of the rest of the schedulers, acquires larger values, thus
denoting the production of a surplus of parts. This excess of parts originates in the
clearing nature of the employed policies (i.e., CAF, since CLB is not functioning for rates
greater than 0.002).

Figure 5. Average inventory cost

FIFO
NN
CLB
CAF

x 105

6

5.5

4.5

4

3

2.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Raw material arrival rate

A
ve

ra
ge

 In
ve

nt
or

y 
C

os
t

5

2

1.5

3.5

1



256   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

At low rates, all schedulers result in precise achievement of the production goal, due to
the fact that all operations, even the clearing ones, empty buffers containing very few
parts, causing submachines that output finished products, to process buffers which
contain a single part only. Both FIFO & NN emerge as schedulers guaranteeing accurate
achievement of production.

WIP and Inventory Costs

The next two figures represent cost measures for storing parts in buffers, intermediate
and output respectively. Let the cost for holding xi,j parts at a buffer for T time units be
considered equal to ki,j xi,j T, where ki,j is the cost for storing a single part in the output
buffer of submachine si,j, per time unit. Integrating the previous quantity over the entire
makespan yields the cost for storing parts in a single buffer. Thus, assuming for simplicity
that for all buffers in the system ki, j=1, the cost measure evolves into a plain integral of
the respective buffer states. Specifically measures for the Work In Process (WIP) and
Inventory costs, are provided by means of the average integral of the intermediate and

output buffer states respectively, (i.e. WIP equals to (1/Ni) ∑ ∫∑ −

==

1)(

1 0 ,
18

1

iL

j

T

jii
dtx , while

Inventory cost is (1/No) ∑ ∫=
oN

i

T

iLi dtx
1 0 )(,  where Ni=77, No=18 are the number of intermediate

and output buffers in the cell and T is the production makespan yielded by each
scheduling methodology). Due to the low intermediate buffer states guaranteed by the
neural network algorithm, a lower WIP is observed, while the rest of the schedulers
introduce considerably larger costs.

Figure 6. Average backlogging cost

FIFO
NN
CLB
CAF

x 104

4.5

4

3

1.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Raw material arrival rate

A
ve

ra
ge

 B
ac

kl
og

3.5

0.5

2

1

2.5



Artificial Neural Networks in Manufacturing: Scheduling   257

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Thus, the neural network algorithm achieves the most efficient WIP cost control, by
keeping intermediate buffer state as small as desired, while guaranteeing system stability.
Inventory costs are also considerably smaller than those occurring when employing the
conventional scheduling policies due to the overall faster fulfilment of the production
demand.
For lower rates, when all schedulers achieve total production almost simultaneously,
deviations between the inventory costs yielded by the considered policies, and the one
introduced by the NN are not really significant with the exception of the far worst
performance of CLB. However, the increase in rates is causing the occurrence of a
considerably larger peak in intermediate and output buffer states as well as significant
differences in makespan, which sufficiently justify, the observed extremely greater WIP
& inventory cost for the case of the conventional schedulers, shown in Figures 4 and
5. For higher rates the NN scheduler presents a far more robust-stable behavior when
compared to FIFO and CAF. Thus, NN superiority with respect to these popular cost
measures is obvious.

Backlogging Cost and Lead Time

Considering backlogging costs, (i.e., the cost resulting from the delay in achieving
production targets), the NN scheduler reaches production goal with the minimum cost
when compared to the rest of the examined policies. Specifically, the employed backlog-

ging cost has been defined as follows: ∑ ∫∑ =
p

t

pOp pO dNtN
0

)()/1()()/1( ττβψ  where

p(t)=Ip(t)-Op(t) with Ip(t), Op(t) the number of parts of type p that have entered and exit the
cell until time t.

Figure 7. Average lead time

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Raw material arrival rate

A
ve

ra
ge

 L
ea

d 
Ti

m
e

500

1000

FIFO
NN
CLB
CAF2500

1500

2000



258   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As Figure 6 demonstrates, backlogging costs remain small for relatively low rates, since
buffers in the system contain few parts, less conflicts among submachines occur and thus
finished products are outputted with reduced delays. On the other hand, increase in raw-
material-arrival rates, leads to overall increased buffer levels and conflicts, thus making
the output of finished products to occur with a considerably larger delay. For any rate,
the NN constitutes a considerably less expensive methodology (with respect to back-
logging cost) than all examined policies.
Finally, Figure 7 gives the average lead time, (i.e., the average of the time elapsing between
the input of a raw material in the cell and the output of the respective finished product),
for all product types and all parts produced in the cell. Practically, lead time is equivalent
to the widely used cost index of average flowtime (Silver, Pyke, & Peterson, 1998).
Comparing this plot with backlogging cost curves, an impressive similarity in slope and
shape is immediately observed. Actually all reasoning about the causes of backlogging
cost, also apply for the case of product lead times, where the superiority of the NN
algorithm is once again justified by the smaller production makespan.
Considering implementation issues, these simulations justify the claim that the NN
scheduler constitutes a real time algorithm. Simulation of almost 10.000 minutes of cell
operation lasted about 20 minutes on a Solaris workstation, featuring a Pentium II/266
MHz processor. Computation of the control vector u(t) given the current buffer states,
demanded 0.1616 seconds of CPU time. Moreover, a hardware implementation of the
algorithm is expected to be characterized by negligible computational delays, yielding
a distributed real-time nonmyopic robust controller structure.

Conclusion

In this chapter our scheduling methodology previously proposed in Rovithakis, Perrakis,
and Christodoulou (1996, 1997, 1999, 2001) has been thoroughly presented. A challeng-
ing real world manufacturing cell has been considered and for a wide range of raw-
material-arrival rates presented superb performance when compared with a set of
conventional schedulers. With the exception of extremely low rates, where all schedulers
converge to an almost identical performance in the remaining range of higher rates, the
proposed algorithm features superb stability and robustness as well as efficient control
of critical costs such as WIP, inventory and backlogging, outperforming all the conven-
tional schedulers discussed.
Thus, the previous analysis establishes the proposed neuroadaptive architecture’s
features of robustness and its potential of efficiently solving general, moderate sized and
of arbitrary complexity dynamic, deterministic job shop problems. The appealing prop-
erties of the algorithm should be considered in conjunction with its real time property that
enables immediate derivation of scheduling decisions and their application in the active
manufacturing processes. The merits of the algorithm include the following features: (a)
the capability of immediately incorporating demand alterations and thus instantly
redefining targets for the appropriate buffers and its dimensionality, and (b) its size that
grows linearly with the size of the examined scheduling problem, as one additional DNN



Artificial Neural Networks in Manufacturing: Scheduling   259

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

controller is demanded for every new distinct operation type, that is, every new spot of
manufacturing activity in the production cell.
The presented methodology possible applications for the task of production scheduling
range from employment as a simulation tool determining dispatch lists for shop floor on
regular time intervals, to hardware implementation, where the latter would be obviously
characterized by the capability of efficiently handling scheduling problems considerably
larger in dimension and complexity than the current test case.
Enhancing our developed methodology may involve investigation of alternative model
developments and thus appropriate control and update laws should be derived. Extend-
ing current framework in order to handle further manufacturing systems categories may
result in several interesting issues. Thus, extending the methodology to include disas-
sembly operations is a modest goal of future work, while enhancing current theory to
allow for operation dependent setup time present in alternation in submachine operation
may also be an interesting aspect. Moreover, theory enhancement such that bounded
variabilities are allowed for machine operation times, without affecting the current
robustness properties of the algorithm emerges as a challenging subject.
Furthermore, since the existing model is based on continuous time model, it could readily
facilitate continuous flow systems where the buffer contents are continuously modified
by fractional continuous flow of material at each individual time instant that the
respective submachine is operating. The encouraging success of the present results,
propose as a major research challenge, the investigation of ways of coupling discrete
event dynamic systems (DEDS) with adaptive control techniques and adoption of
RHONN structures as plant modeling mechanisms. It is hoped that such an approach if
feasible, may facilitate inherently more accurate models while the yielded control system
may be characterized by the attractive properties of real time adaptability, stability, and
robustness.
In conclusion, the evaluated methodology constitutes a novel one, featuring real time
operation together with the guarantees of stable and robust operation in the presence
of any source of disturbances where the qualities of the resulting schedules establish
it as a promising alternative to job shop scheduling in particular and in production
scheduling in general.

References

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job-shop
scheduling. Management Science, 34(3), 391-401

Angsana, A., & Passino, K. M. (1994). Distributed fuzzy control of flexible manufacturing
systems, IEEE Transactions on Control Systems Technology, 2(4).

Blazewicz, J., Domschke, W., & Pesch, E. (1996). The job-shop scheduling problem:
Conventional and new solution techniques. European Journal of Operational
Research, 93, 1-33.



260   Rovithakis, Perrakis, and Christodoulou

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Brandimarte, P., & Villa, A. (1995). Advanced models for manufacturing systems manage-
ment. CRC Press.

Brucker, P. (1995). Scheduling algorithms. Berlin: Springer.
Cheng, Runwei, Gen, Mitsuo, Tsujimura, Yasuhiro. (1999). A tutorial survey of job-shop

scheduling problems using genetic algorithms, Part II: Hybrid genetic search
strategies. Computers and Industrial Engineering, 36, 343-364

Fox, M. S., Allen, B. P., Smith, S. F., & Strohm, G. A. (June 1983). ISIS: A constraint-
directed reasoning approach to job shop scheduling: System summary (CMU-RI-
TR-83-3-8). Pittsburgh, PA: Carnegie-Mellon University, the Robotics Institute.

Gershwin, S. B., Hildebrant, R. R, Suri, R., &. Mitter, S. K (1986). A control perspective
on recent trends in manufacturing systems. IEEE Control Systems, 3-15

Glover, F. (1989). Tabu search-part I. ORSA Journal on Computing, 1(3), 190-206
Grabot, B., & Geneste, L. (1994). Dispatching rules in scheduling: A fuzzy approach.

International Journal of Production Research, 32(4), 904-915
Gupta, Y. P., Evans, G. W., & Gupta, M. C. (1991). A review of multicriteria approaches

to FMS scheduling problems. International Journal of Production Economics,
22, 13-31

Hale, J. K. (1969). Ordinary differential equations. New York: Willey-InterScience.
Ioannou, P. A., & Sun, J. (1996). Robust adaptive control. Upper Saddle River, NJ:

Prentice-Hall.
Jackson, J. R. (1963). Job shop like queuing systems. Management Science, 10(1), 131-

142.
James, S. (October 1996). A renaissance for process manufacturers. APICS-The Perfor-

mance Advantage, 46-51.
Kim, S. Y., Lee, Y. H., & Agnihotri, O. (1995). A hybrid approach for sequencing jobs using

heuristic rules and neural networks. Production Planning and Control, 6(2), 445-
454

Kosmatopoulos, E. B., Polycarpou, M. M., Christodoulou, M. A., & Ioannou, P. A. (1995).
Higher order neural network structures for identification of dynamical systems.
IEEE Transactions on Neural Networks, (6), 422-431

Kusiak, A. (1987). Designing expert systems for scheduling of automated manufacturing.
Ind. Eng, 42-46

Lawler, E. L., Lenstra, J. K., Rinnooy, K., & Shmoys, D. B. (1993). Sequencing and
scheduling: Algorithms and complexity. Handbook in Operations Research and
Management Science, 4, Logistics of Production and Inventory.

Lourenco, H. R. D. (1995). Job-shop scheduling: Computational study of local search and
large step optimization methods. European Journal of Operational Research, 83,
347-364.

Morton, T. E., & Pentico, D. W. (1993). Heuristic scheduling systems. New York: Wiley.
Panwalkar, S. S., & Iskander, W. (1977). A survey of scheduling rules. Operations

Research, 25(1), 45-61.



Artificial Neural Networks in Manufacturing: Scheduling   261

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Rodammer, F. A., & White, K. P. (1988). A recent survey of production scheduling. IEEE
Transactions on Systems, Man and Cybernetics, 18(6), 841-851

Rovithakis, G. A., & Christodoulou, M. (1994, March). Adaptive control of unknown
plants using dynamical neural networks. IEEE Transactions on Systems, Man and
Cybernetics, 24(3).

Rovithakis, G. A., & Christodoulou, M. (1995). A direct adaptive regulation of unknown
nonlinear dynamical systems via dynamic neural networks. IEEE Transactions on
Systems Man and Cybernetics, 25(12), 1578-1594.

Rovithakis, G. A., & Christodoulou, M. A. (1997). Neural adaptive regulation of unknown
nonlinear dynamical systems. IEEE Transactions on Systems Man and Cybernet-
ics, (27), 810-822.

Rovithakis, G. A., Gaganis, V. I., Perrakis, S. E., &. Christodoulou, M. A. (1996, December).
A recurrent neural network model to describe manufacturing cell dynamics. In Proc.
IEEE Conf. Decision Control, Kobe, Japan.

Rovithakis, G. A., Gaganis, V. I., Perrakis, S. E., &. Christodoulou, M. A. (1997, Deccember).
Dynamic neural networks for real time control of FMS. In Proc. IEEE Conf. Decision
Control, San Diego, CA.

Rovithakis, G. A., Gaganis, V. I., Perrakis, S. E., & Christodoulou, M. A. (1999). Real-time
control of manufacturing cells using dynamic neural networks. Automatica, 35,
139-149.

Rovithakis, G. A., Perrakis, S. E., & Christodoulou, M. A. (2001). Application of a neural-
network scheduler on a real manufacturing system. IEEE Transactions on Control
Systems Technology, 9(2), 261-270

Sabuncuoglou, I., & Gurgun, B. (1996). A neural network for scheduling problems.
European Journal of Operational Research, 93, 288-299.

Schonberger, R. J (1983). Application of single-card and dual-card kanban. INTER-
FACES, 13(4), 56-57.

Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production
planning and scheduling. Wiley.

Van Laarhoven, P. J. M., Aarts, G. L., & Lenstra, J. K. (1988). Job-shop scheduling by
simulated annealing (Report OS-R8809). Amsterdam, The Netherlands: Centrum
vor Winskundeen Informatica.

Yamada, T., & Nakano, R. (1996). Job shop scheduling by simulated annealing combined
with deterministic local search. In Meta-heuristics: Theory and applications (pp.
237-248). Hingham, MA: Kluwer Academic Publishers.



262   Rolfe, Frayman, Kelly, and Nahavandi

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XV

Recognition of
Lubrication Defects in
Cold Forging Process

with a Neural Network
Bernard F. Rolfe, Deakin University, Australia

Yakov Frayman, Deakin University, Australia

Georgina L. Kelly, Deakin University, Australia

Saeid Nahavandi, Deakin University, Australia

Abstract

This chapter describes the application of neural networks to recognition of lubrication
defects typical to industrial cold forging process. The accurate recognition of lubrication
errors is very important to the quality of the final product in fastener manufacture.
Lubrication errors lead to increased forging loads and premature tool failure.
Lubrication coating provides a barrier between the work material and the die during
the drawing operation. Several types of lubrication errors, typical to production of
fasteners, were introduced to sample rods, which were subsequently drawn under both
laboratory and normal production conditions. The drawing force was measured, from
which a limited set of statistical features was extracted. The neural-network-based



Recognition of Lubrication Defects in Cold Forging Process with a Neural Network   263

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model learned from these features is able to recognize all types of lubrication errors
to a high accuracy. The overall accuracy of the neural-network model is around 95%
with almost uniform distribution of errors between all lubrication errors and the
normal condition.

Introduction

Cold forging includes many processes such as bending, cold drawing, cold heading,
coining, extrusion, punching, and thread rolling to produce a diverse range of part
shapes. These include various shaft-like components, cup-shaped geometry parts,
hollow parts with stems and shafts, all kinds of upset (headed) and bent configurations,
as well as combinations of these geometries. The temperature of metals being cold forged
may range from room temperature to several hundred degrees.

Often chosen for integral design features, such as built-in flanges and bosses, cold
forging is frequently used in automotive steering and suspension parts, antilock-braking
systems, hardware, defence components, and other applications where high strength,
close tolerances and volume production makes it an economical choice.

In the cold forging process, a chemically lubricated slug is forced into a closed die under
extreme pressure. The unheated metal thus flows into the desired shape.

Upsetting, or heading, a common technique for making fasteners, gathers steel in the
head and other sections along the length of the part. In upsetting, the metal flows at right
angles to the ram force, increasing the diameter and reducing the length.

A typical fastener manufacturing process uses batch production material transfer. The
plant is divided into three main areas:

• Preprocessing that involves descaling and application of lubrication consisting of
the zinc phosphate carrier and a soap stearate lubricant coating;

• Primary processing that involves wire drawing and extrusion (cold forging);

• Postprocessing that involves cleaning, heat treatment, and the application of a
protective coating.

The lubrication used during preprocessing has a major impact on the productivity of the
primary processing area. For example, if preprocessing fails to produce high-quality
coated rod or the coating is damaged during the material handling then the output
efficiency of the primary processing is decreased. This is a result of increased forging
loads and premature tool failure, as well as increased defect sorting and the reprocessing
of the coated rod. The lubrication coating must provide a barrier between the work
material and die during the drawing operation, while still being sufficiently robust to
remain on the wire during the transfer to the extrusion operation, where the wire
undergoes multistage deformation without the application of additional lubrication.



264   Rolfe, Frayman, Kelly, and Nahavandi

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This chapter describes the application of neural networks to the recognition of lubrica-
tion defects typical to an industrial cold-forging process employed by fastener manufac-
turers. The accurate recognition of lubrication errors, such as coating not being applied
properly or damaged during material handling, is very important to the quality of the final
product in fastener manufacture.

Background

The evaluation of the coating performance is done in industry usually through produc-
tion-based methods. The main measures for coating performance are tooling changeover
rates, and the detection of score marks appearing on drawn and forged surfaces. These
production-evaluation techniques, while being valuable long-term indicators of coating
performance, are reactive methods and are unable to assess the coating condition before
it enters the primary processing area. This leads to tooling and product damage.

The evaluation technique developed at the School of Engineering and Technology,
Deakin University (Savage, Kershaw, & Hodgson, 1999) uses a process-simulation test
rig and a selection of analysis tools to evaluate the coating performance (Figure 1). This
technique allows lubrication evaluation to be performed in isolation to production,
enabling analysis to be done without interfering with day-to-day running of the
production line.

The main performance requirements for the lubrication coating in fasteners manufactur-
ing are from the preforge wire-drawing operation and the extrusion stages in the cold
forging process. In the developed process-simulation test-rig, multi-reduction drawing
simulates these stages in the fastener manufacturing process. The first reduction
simulates the predrawing process while a second reduction simulates the extrusion stage
of the cold forging process (Savage et al., 1999). The test rig was constructed from a
variable-speed, continuous-drawing machine where quick-change multireduction die

Figure 1. The multidraw test rig



Recognition of Lubrication Defects in Cold Forging Process with a Neural Network   265

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hostings, a quick-change rod-clamping mechanism, and a constrained flatbed were
designed and installed. Strain gauges were mounted on the rod-clamping mechanism to
detect drawing force at both the first and second reductions. Force signals are collected
and conditioned by National Instruments hardware and Labview software. In this work,
we deal with preforge wire drawing operation only.

Experimental Set-Up

Laboratory Testing

A two-layer solid lubricant system was used on the rods. This was applied in a plant
environment with conditions kept as close as possible to those used for standard
production. Fifty samples were produced with a two-layer coating applied: zinc phos-
phate carrier and calcium stearate lubricant coating. The rods are pickled to clean them
and a zinc-phosphate layer is deposited followed by a calcium-stearate layer. Another
20 samples were produced as before but with an additional coating of soap lubricant. This
final coat of powdered lubricant was added to minimize the damage of the sensor’s
drawing die on the production wire the same way as it is done in plant.

Four different kinds of defects common in production of fasteners were introduced into
the coatings (Figure 2):

1. No coating, where heat shrink-wrap was applied to rods prior to all steps in the
coating process. This corresponds to missing coatings from a preprocessing
stage;

2. Zinc phosphate only, where heat shrink-wrap was applied after the zinc-phosphate
application. This corresponds to the missing calcium-stearate layer coating from
a preprocessing stage;

3. Hammer peening of the surface of the bar. This type of error simulates defects
introduced during material handling from preprocessing area to the primary
processing;

Figure 2. Sample rod for the laboratory trial



266   Rolfe, Frayman, Kelly, and Nahavandi

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4. Scratching of the coating by its removal parallel to the bar. This was introduced by
filing the coating off. This type of error simulates coils being dragged across the
shop floor during transfer from preprocessing area to the primary processing.

All defects were approximately 50mm in length and applied to the circumference of the
rod with defects being separated by variable fully-coated lengths of rod.
The experimental test rig was used to produce the rod samples drawn with a 0.35 mm
reduction from the starting diameter of 0.50 mm. The samples were drawn with an area
reduction of approximately 7%, and the loads on the drawing die were monitored by strain
gauges on the rod-clamping mechanism. All defects resulted in increased drawing loads.
In the case of the hammer peening, this is likely to be due to the resulting irregularity of

Figure 3. Typical nonlubricated rod sample for the laboratory trial

Figure 4. Typical lubricated rod sample for the laboratory trial



Recognition of Lubrication Defects in Cold Forging Process with a Neural Network   267

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the rod diameter. In the other three cases, reduced efficiency of the coatings is due to
missing lubrication components. The defect with only zinc phosphate layer resulted in
the highest friction. The zinc phosphate is a soft coating and thus is likely to produce
a galling or sticking effect as the rod passes through the die.

The typical force signatures for the rods with two layers of lubricants (labelled as
nonlubricated samples) and for the rods with an extra layer of soap lubricant applied
(labelled as the lubricated samples) are shown in Figures 3 and 4.

As can be seen, Error 4 (scratching of the coating) is visually indistinguishable from the
normal condition (the one without any errors) on nonlubricated data, and only Error 3
(peening of the surface of the bar) is readily distinguished from the normal condition on
the lubricated data.

The force signatures from these 70 trials were collated to create two time series, one for
nonlubricated samples, and another for lubricated samples with all five possible lubricant
conditions (normal condition and the four defects) appropriately prelabelled with a
corresponding condition label being manually applied to each time step of the drawing
force signal.

Production Testing

A two-layer solid lubricant system was used on the rods same as with laboratory testing.
This was applied in a plant environment to a continuous wire as part of the standard
production. The rod samples were drawn with a 0.008 mm reduction from a starting
diameter of 1.400 mm.

Two plant trials were made with two-layer coating applied: zinc-phosphate carrier and
calcium-stearate lubricant coating (Figure 5). Another two plant trials were done as
before but with an additional coating of soap lubricant (Figure 6). This final coat of
powdered lubricant was added to minimize the damage of the sensor’s drawing die on the
production wire.

Figure 5. Nonlubricated wire used in production trials

 



268   Rolfe, Frayman, Kelly, and Nahavandi

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Three different kinds of defects common in production of fasteners were introduced into
the coatings (Figure 7):

1. Zinc phosphate only, where heat shrink-wrap was applied after the zinc-phosphate
application

2. Hammer peening of the surface of the bar

3. Scratching of the coating by its removal parallel to the bar

No coating defect that was introduced in the laboratory testing was not evaluated in the
production trials due to a potential tooling and sensor damage.

The defects were varied in length and in the order of appearance in contrast to the
laboratory trial and applied to the circumference of the rod with defects being separated
by variable fully-coated lengths of rod.

The samples were drawn with an area reduction of approximately 0.54% and a load cell
monitored the loads on the drawing die. All defects resulted in increased drawing loads

Figure 6. Lubricated wire used in production trials

Figure 7. Experimental set-up for production trials

 

 



Recognition of Lubrication Defects in Cold Forging Process with a Neural Network   269

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

similar to laboratory trial. The defect with only a zinc-phosphate layer resulted in the
highest friction similar to laboratory trial.

The typical force signatures for the rods with two layers of lubricants (labeled as
nonlubricated samples) and for the rods with an extra layer of lubricant applied (labeled
as the lubricated samples) are shown in Figures 8 and 9.

As can be seen, Error 3 (peening of the surface of the wire) is visually indistinguishable
from the normal condition (the one without any errors) on nonlubricated data, and only
Error 4 (scratching of the coating) is readily distinguished from the normal condition on
the lubricated data.

Figure 8. Typical nonlubricated wire sample in production trials

Figure 9. Typical lubricated wire sample in production trials

 



270   Rolfe, Frayman, Kelly, and Nahavandi

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The force signatures from these four plant trials were again collated to create two time
series, one for nonlubricated samples, and another for lubricated samples with all four
possible lubricant conditions (normal condition and the three defects) appropriately
prelabeled with a corresponding condition label to each time step of the drawing-force
signal based on recording from a manual-error flagging (Figure 7). The data logging of
lubrication defects was activated manually at the start and the end of each error
condition. This resulted in the just approximate recordings of the start and the end of the
error sequence in contrast to laboratory data where this information was more accurate.

Methodology

The main aim of this work is to develop an inductive model to identify accurately the
lubrication errors in cold-forging by analyzing a force signature. That is, force variations
from the nominal values are to be linked to various lubrication defects. This type of
problem is generally called condition monitoring and uses advanced technologies in
order to determine equipment condition and potentially predict failure. It includes, but
is not limited to, technologies such as:

• Vibration measurement and analysis (e.g., Zheng & McFadden, 1999)

• Infrared thermography (e.g., Mattsson, Hellman, & Ljungberg, 2001)

• Oil analysis and tribology (e.g., De A Leao, Jones, & Roylance, 1996)

• Ultrasonics (e.g., Oh, Shin, & Furgason, 1994)

• Motor Current Analysis (e.g., Pöyhönen, Negrea, Arkkio, Hyötyniemi, & Koivo,
2002)

There are several possible approaches to the task of accurately identifying lubrication
errors by analyzing the force signature. The most common approach is to formulate the
problem as a classification (pattern recognition) problem (Breiman, Friedman, Olshen, &
Stone, 1984).

We are interested in separating accurately the normal condition from all types of
lubrication defects. However, a single drawing force value reveals very little information
about what sort of condition the process is in. Extracting some useful statistical features
from a set of contiguous force values can alleviate this limitation.

( )niiji xxPf += ,..., ,



Recognition of Lubrication Defects in Cold Forging Process with a Neural Network   271

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

where f
i
 is the feature, P

j 
is the jth feature extractor function, x

i 
is the first force value of

the set, x
i+n 

is the last force value of the set, and n is the size of the set.

The set of force values is defined as a sliding window. Associated with each sliding
window is the lubrication condition or the output class:

( ) ( )err4err1,...,normal,,...,1 ∈mffh ,

where ( ).h  is the lubrication condition and 
mf

f ,...,1 are the extracted features of the window.

Therefore, we can associate each sliding window and its features with a corresponding
lubrication condition. The true lubrication condition was chosen to be the output class
associated with each sample point, x

i+n 
of the sliding window. In this case, the sliding

window always extracts features from the past drawing force data. The size of a sliding
window was 300 time steps and selected based on the minimal root-mean-square error
between the predicted condition by the model and the actual condition of the lubricant.

The usefulness of the features extracted from the drawing force signal was analyzed by
sensitivity analysis to evaluate their impact on the recognition rate for each lubrication
condition and only the most important ones were retained.

The following statistical features were selected:

• Maximum force value within a sliding window;

• Minimum force value within a sliding window;

• Arithmetic mean (average) force value within a sliding window;

• Geometrical mean (median) force value within a sliding window;

• Standard deviation of the force values within a sliding window. This is a measure
of how widely force values are dispersed from the average force value (the mean);

• Average deviation of the force values within a sliding window. This is a measure
of the variability in a data set. It is the average of the absolute deviations of force
data points from their mean;

• Skewness of the force values within a sliding window. This characterizes the degree
of asymmetry of a force data distribution around its mean;

• Kurtosis of the force values within a sliding window. This characterizes the relative
peakedness or flatness of a force data distribution compared with the normal
distribution;

• Correlation between the force values within the current and the previous sliding
windows;

• Covariance between the force values within the current and the previous sliding
windows. This is the average of the products of deviations for each force data-point
pair.



272   Rolfe, Frayman, Kelly, and Nahavandi

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In addition to extracted features, we also used the current force signal and the past force
signals with different time delays ranging from 25 time steps to 400 time steps also
selected based on the minimal root-mean-square error between the predicted condition
by the model and the actual condition of the lubricant. This resulted in 21 variables being
available as inputs to the model: 10 statistical features as above, the measured force
signal and 9 past force signal with different time delays as above.

Alternative methods for feature extraction used in condition monitoring include spectral
analysis using Fast Fourier Transforms (FFT) (Kumar, Ravindra, & Srinivasa, 1997) and
Wavelet Analysis (Luo, Osypiw, & Irle, 2003). However, our experiments have indicated
that statistical features extracted from the force signal provided more information to
distinguish between the normal condition of a lubricant and lubrication errors.

The outputs of the model were in normal condition (no lubrication defects), and all types
of lubrication defects that were for laboratory data: no coating, zinc-phosphate layer
only, peening and scratching, and for production data: zinc-phosphate layer only and
peening and scratching. No defect representing no coating was introduced in the plant
environment, due to possible damage to tooling and sensors in the plant.

As an inductive model within a patter recognition framework we used a feed-forward
multilayer perceptron (MLP) with backpropagation learning algorithm with a momentum
term.

An attractive feature of an MLP network is that, given the appropriate network topology
and the rigorous training procedures, they are capable of reliably characterizing a
nonlinear functional relationship (Ripley, 1996). We used a hyperbolic tangent as the
activation function of the MLP model. A pattern (online) learning and early stopping was
employed. All input variables were normalized with zero-mean-unit average normaliza-
tion.

The data used for modeling was obtained by data logging at the rate of 250 samples per
second-strain gauges on the rod-clamping mechanism. As mentioned in the Experimental
Set-up section, for the laboratory data these force signatures were collated to create two
time series, one for nonlubricated samples and another for lubricated samples with all five
possible lubricant conditions (normal condition and the four defects) appropriately
prelabelled with a corresponding condition label being manually applied to each time step
of the drawing force signal. For the production data, the force signatures resulted in two
time series (as continuous rods were used), one for nonlubricated samples and another
for lubricated samples with all four possible lubricant conditions (normal condition and
the three defects) appropriately prelabeled with a corresponding condition label to each
time step of the drawing force signal based on activating data logging of lubrication
defects manually at the start and the end of each error condition. This resulted in the just
approximate recordings of the start and the end of the error sequence in contrast to
laboratory data where this information was more accurate.

As a result, four time series were obtained with 64,260 samples for nonlubricated
laboratory trials, 51,140 for lubricated laboratory trials, 60,143 for lubricated production
trials, and 64,736 for lubricated production trials. These four time series were split in two
parts: first 70% of the data tuples were used for training and validation, and the remaining
30% were used to test the model generalization ability. An oversampling of the lubrication
defect data points for training data was utilized to create an equal distribution of training-



Recognition of Lubrication Defects in Cold Forging Process with a Neural Network   273

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

data tuples for each lubrication condition to avoid the problem of small disjunct
(Frayman, Ting, & Wang, 1999; Weiss & Hirsh, 2000) as the data for the normal condition
of lubrication (the one without any defects) dominates the available data tuples (being
around 75% of all available data). However, the testing of the model generalization ability
was performed on unmodified data samples.

The optimal parameters of the MLP were selected based on preliminary experiments. The
parameters that resulted in the smallest root-mean-squared-error between the predicted
lubrication conditions and the actual lubrication conditions were used. The selected
MLP model consisted of 21 inputs and 5 outputs for the laboratory data (4 outputs for
the production data) with two hidden layers; the first hidden layer has 50 nodes, and the
second hidden layer has 45 nodes. The learning rate selected was 0.05; the momentum
term was 0.99.

Results and Discussion

The overall prediction results of the MLP model and the corresponding confusion
matrices for both laboratory and plant trials are in Tables 1 and 2. From Tables 1 and 2,
it is clear that the performance of the MLP model is extremely accurate. The MLP model
is able to distinguish almost perfectly the boundaries between all the errors for both

Table 1. Model-prediction results for each of the lubrication conditions for the
laboratory trial

Lab Trial Nonlubricated samples Lubricated samples 
Lub condition NC Err1 Err2 Err3 Err4 NC Err1 Err2 Err3 Err4 
Recognition rate 93.6 

% 
99.5 
% 

99.5% 98.0% 99.7% 94.4 
% 

99.3
% 

99.6
% 

97.8
% 

99.1
% 

13,407 8 4 21 3 11,090 6 3 11 7 
109 1,497 0 0 0 253 878 1 0 0 
68 0 1,362 0 0 131 0 895 3 0 
226 0 3 1,076 0 69 0 0 977 0 

 
Confusion 
matrices 

510 0 0 1 983 209 0 0 8 801 
 

Table 2. Model prediction results for each of the lubrication conditions for the plant
trial

Plant Trial Nonlubricated samples Lubricated samples 
Lub condition NC Err2 Err3 Err4 NC Err2 Err3 Err4 
Recognition 
rate 

97.4 
% 

98.4 
% 

97.2 
% 

98.1 
% 

94.6 
% 

98.8 
% 

99.6 
% 

99.8 
% 

10,277 31 69 21 11,110 33 11 5 
74 2,338 0 29 128 2,770 0 0 
169 6 2,416 0 360 0 2,680 0 

 
Confusion 
matrices 

36 1 0 2,576 145 0 0 2,179 
 



274   Rolfe, Frayman, Kelly, and Nahavandi

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

laboratory and production trials and only has some difficulty with recognition of the
boundaries between the normal condition and the errors. Even these boundaries are
recognized with a very high accuracy between 93% and 97%.

In Table 1, NC represents normal condition, Err1 represents no coating, Err2 represents
zinc phosphate layer only, Err3 represents peening, and Err4 represents scratching.
Confusion matrices here are 5 by 5 matrices showing how many samples belonging to a
particular condition were classified accurately and how many samples were misclassified
as other conditions, for example 13,407 nonlubricated samples were classified accurately
as NC, 109 as Err1, 68 as Err2, 226 as Err3, and 510 as Err4.

Most importantly, while the extra layer of calcium-stearate coating applied to lubricated
samples makes the defects visually indistinguishable from the normal condition except
for Error 3 (peening) in the laboratory trial and Error 4 (scratching) in production trials,
an MLP model is able to recognize them almost as accurately as for nonlubricated samples
where only the Error 4 (scratching) for the laboratory trial and Error 3 (peening) in
production trials are visually indistinguishable from the normal condition.

In Table 2, NC represents normal condition, Err2 represents zinc-phosphate layer only,
Err3 represents peening, and Err4 represents scratching; no Err1 representing no coating
was introduced, due to possible damage to tooling and sensors in the plant. Confusion
matrices here are 4 by 4 matrices, showing how many samples belonging to a particular
condition were classified accurately and how many samples were misclassified as other
conditions. For example, 10,277 nonlubricated samples were classified accurately as NC,
74 as Err2, 169 as Err3, and 36 as Err4.

Conclusion

This chapter investigates the application of neural networks to the recognition of
lubrication defects typical to an industrial cold-forging process employed by fastener
manufacturers. Several types of lubrication errors, typical to production of fasteners,
were introduced to a set of sample rods drawn both in the laboratory environment and
as part of a standard production. The drawing force was measured, from which a limited
set of features were extracted. The neural-network-based model learned from these
features is able to recognize all types of lubrication errors to a high accuracy. The overall
accuracy of the neural-network model is around 95% in both laboratory and production
environments with almost uniform distribution of errors between all four errors and the
normal condition.

Acknowledgments

The authors wish to thank John Vella for the preparation of test samples and data
acquisition and Scott Savage for the design and development of a test rig.



Recognition of Lubrication Defects in Cold Forging Process with a Neural Network   275

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and
regression trees. Belmont, CA: Wansworth and Brooks.

De A Leao, V. M., Jones, M. H., & Roylance, B. J. (1996). Condition monitoring of
industrial machinery through lubricant analysis, Tribotest, 2(4), 317-328.

Frayman, Y., Ting, K. M., & Wang, L. (1999). A fuzzy neural network for datamining:
Dealing with the problem of small disjuncts. Proceedings of the International Joint
Conference on Neural Networks (IJCNN’99), 4, 2490-2493.

Kumar, S. A., Ravindra, H. V., & Srinivasa, Y. G. (1997). In-process tool wear monitoring
through time series modeling and pattern recognition. International Journal of
Production Research, 35, 739-751

Luo, G. Y., Osypiw, D., & Irle, M. (2003). On-line vibration analysis with fast continuous
wavelet algorithm for condition monitoring of bearing. Journal of Vibration and
Control, 9(8), 931-947

Mattsson, M., Hellman, E., & Ljungberg, S. A. (2001). Airborne thermography for
condition monitoring of a public baths buildings. Proceedings SPIE, 4360 (pp. 244-
251).

Oh, S. J., Shin, Y. C., & Furgason, E. S. (1994). Surface roughness evaluation via ultrasonic
scanning. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency
Control, 41(6), 1-9.

Pöyhönen, S., Negrea, M., Arkkio, A., Hyötyniemi, H., & Koivo, H. (2002). Fault
diagnostics of an electrical machine with multiple support vector classifiers.
Proceedings of the 17th IEEE International Symposium on Intelligent Control
(ISIC’02) (Vol. 1, pp. 373-378).

Ripley, B. D. (1996). Pattern recognition and neural networks. New York: Cambridge
University Press.

Savage, S. C., Kershaw, D. I., & Hodgson, P. D. (1999). Lubrication coating evaluation
technique for a cold heading operation. Proceedings of the IMEA Tooling 99
Conference (pp. 55-60).

Weiss, G. M., & Hirsh, H. A. (2000). Quantitative study of small disjuncts. Proceedings
of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000)
(pp. 665-670).

Zheng, G. T., & McFadden, P. D. (1999). A time-frequency distribution for analysis of
signals with transient components and its application to vibration analysis. ASME
Transactions Journal of Vibration and Acoustics, 121(3), 328-333.



276   About the Authors

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Authors

Rezaul K. Begg received a BSc and MSc in electrical and electronic engineering from
Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh, and
a PhD in biomedical engineering from the University of Aberdeen, UK. Currently, he is
a faculty member at Victoria University, Melbourne, Australia. Previously, he worked
with Deakin University and BUET. He researches in biomedical engineering, biomechan-
ics, and machine learning and has published over 100 research papers in these areas. He
is a regular reviewer for several international journals and was on the TPC for a number
of major international conferences. He received several awards, including the BUET gold
medal and the Chancellor prize for academic excellence.

Joarder Kamruzzaman received a BSc and an MSc in electrical engineering from
Bangladesh University of Engineering & Technology, Dhaka, Bangladesh (1986 and
1989, respectively), and a PhD in information system engineering from Muroran Institute
of Technology, Japan (1993). Currently, he is a faculty member in the Faculty of
Information Technology, Monash University, Australia. His research interest includes
computational intelligence, computer networks, bioinformatics, and so on. He has
published more than 90 refereed papers in international journals and conference proceed-
ings. He is currently serving as a program committee member of a number of international
conferences.

Ruhul A. Sarker obtained his PhD from DalTech (former TUNS), Dalhousie University,
Halifax, Canada. He is currently a senior academic at the School of Information Technol-
ogy and Electrical Engineering, University of New South Wales (UNSW), Canberra,
Australia. Before joining UNSW, Dr. Sarker worked with Monash University and



About the Authors   277

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bangladesh University of Engineering and Technology. He has published over 100
refereed technical papers in international journals, edited reference books, and confer-
ence proceedings. He has written two books, edited six reference books and several
proceedings, and served as guest editor and technical reviewer for a number of
international journals. Dr. Sarker was a technical co-chair of IEEE-CEC 2003 and served
many international conferences in the capacity of chair, co-chair, or PC member.

*    *    *

Hussein A. Abbass is a senior lecturer and the director of the Artificial Life and Adaptive
Robotics Laboratory at the School of Information Technology and Electrical Engineering
at the Australian Defence Force Academy campus of the University of New South Wales.
Dr. Abbass is a senior member of the IEEE and has more than 15 years experience in
industry and academia and more than 100 fully refereed papers in international journals
and conferences. He teaches computational intelligence related subjects and his re-
search focuses on multiagent systems, data mining, and artificial-life models with
applications to defence, security, and business.

Ajith Abraham currently works as a distinguished visiting professor under the South
Korean government’s Institute of Information Technology Assessment (IITA) profes-
sorship programme at Chung-Ang University, Korea. His primary research interests are
in computational intelligence with a focus on using evolutionary computation tech-
niques for designing intelligent paradigms. Application areas include several real-world
knowledge-mining applications like information security, bioinformatics, Web intelli-
gence, energy management, financial modelling, weather analysis, fault monitoring,
multicriteria decision-makingand so on. He has associated with over 150 research
publications in peer-reviewed reputed journals, book chapters, and conference proceed-
ings of which three have won “best paper” awards. He is the founding coeditor-in-chief
of The International Journal of Hybrid Intelligent Systems (IJHIS), IOS Press, Nether-
lands, and the Journal of Information Assurance and Security (JIAS). He is also the
associate editor of the International Journal of Systems Science (IJSS), Taylor &
Francis, UK, and Neurocomputing Journal, Elsevier Science, The Netherlands. He is
also an editorial board member of Journal of Universal Computer Science (J.UCS),
Springer, Austria; Journal of Information and Knowledge Management (JIKM), World
Scientific, Singapore; Journal of Digital and Information Management (JDIM), Digital
Information Research Foundation; and International Journal of Neural Parallel and
Scientific Computations (NPSC), Dynamic Publishers, Inc., USA. Since 2001, he has been
actively involved in the Hybrid Intelligent Systems (HIS) and the Intelligent Systems
Design and Applications (ISDA) series of annual international conferences. He is also
the general co-chair of the Fourth IEEE International Workshop on Soft Computing as
Transdisciplinary Science and Technology (WSTST05), Muroran, Japan, and the pro-
gram co-chair of the Inaugural IEEE Conference on Next Generation Web Services
Practices, Seoul, Korea. During the last four years, he has also served the technical
committee of over 40 artificial-intelligence-related international conferences and has also
given a number of conference tutorials in Europe and USA. He is a member of IEEE, IEEE



278   About the Authors

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(CS), ACM, IEE (UK), IEAust, and also works closely with several academic working
groups like EvoNet, EUSFLAT, WFSC, and so on. He received a PhD degree from Monash
University, Australia.

Sumit Kumar Bose obtained his bachelor’s degree in engineering in mechanical engi-
neering from the University of Delhi (2000). He has approximately one year of experience
in automotive design and manufacturing. Presently, he is pursuing a doctoral degree in
management information systems at the Indian Institute of Management, Calcutta, India.
Sumit’s research interest includes production management, operations research, busi-
ness intelligence, and financial applications of neural networks.

Sergio Cavalieri is an associate professor with the Department of Industrial Engineering
of the University of Bergamo. He graduated with a degree in 1994 in management and
production engineering. In 1998, he got a PhD in management engineering at the
University of Padua. His main fields of interest are modelling and simulation of manufac-
turing systems, application of multiagent systems and soft-computing techniques (e.g.,
genetic algorithms, ANNs, expert systems) for operations and supply-chain manage-
ment. He has been participating in various research projects at the national and
international level. He has published two books and about 40 papers in national and
international journals and conference proceedings. He is currently coordinator of the
IMS Network of Excellence Special Interest Group on Benchmarking of Production
Scheduling Systems and a member of the IFAC-TC on Advanced Manufacturing
Technology.

Yuehui Chen was born in 1964. He received his BSc in mathematics/automatics from the
Shandong University of China (1985), and a PhD in electrical engineering from the
Kumamoto University of Japan (2001). During 2001-2003, he had worked as senior
researcher of the Memory-Tech Corporation at Tokyo. Since 2003, he has been a member
of the faculty of electrical engineering in Jinan University, where he is currently head of
the Laboratory of Computational Intelligence. His research interests include evolution-
ary computation, neural networks, fuzzy systems, hybrid computational intelligence, and
their applications in time-series prediction, system identification, and intelligent control.
He is the author and coauthor of more than 60 papers. Dr. Chen is a member of IEEE, the
IEEE Systems, Man and Cybernetics Society and the Computational Intelligence Society.

Manolis A. Christodoulou was born in Kifissia, Greece, in 1955. He received a diploma
from the National Technical University of Athens, Greece, an MS from the University of
Maryland, College Park, MD, a degree of engineering from the University of Southern
California, Los Angeles, and a PhD from the Democritus University, Thrace, Greece. After
being at the University of Patras, he joined the Technical University of Crete, Greece in
1988, where he is currently a professor of control. He has been visiting Georgia Tech,
Syracuse University, USC, TUFTS, Victoria University, and MIT. He has authored and
co-authored over 160 journal articles, book chapters, books, and conference publications
in the areas of control theory and applications, robotics, robotics in medicine, factory



About the Authors   279

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

automation, computer integrated manufacturing in engineering, neural networks for
dynamic system identification and control, the use of adaptive neural networks for
collision avoidance in free flight as well as in scheduling of land-aircraft operations in
congested hub airports, and recently systems biology. His works have been cited in
international literature by several hundred authors worldwide. He is the organizer of
various conferences and sessions of IEEE and IFAC and guest editor in various special
issues of international journals. He is managing and cooperating on various research
projects in Greece, in the European Union, and in collaboration with the United States.
He has held many administrative positions, such as the vice presidency of the Technical
University of Crete, chairman of the Office of Sponsored research, and a member of the
founding board of governors at the University of Peloponnese. He is also the president
of the Automation and Systems European Technology Institute. Dr. Christodoulou is a
member of the Technical Chamber of Greece. He has been active in the IEEE CS society
as the founder and first chairman of the IEEE CS Greek Chapter. He received the 1997 Best
Chapter of the Year Award. He is also the founder of the IEEE Mediterranean Conference
on Control and Automation, which has become a successful annual event.

David Enke is an assistant professor of engineering management and systems engineer-
ing at the University of Missouri, Rolla, and director of the Laboratory for Investment
and Financial Engineering. His research involves the development of intelligent systems,
specifically using neural networks and knowledge-based systems in the areas of financial
engineering, investment, financial forecasting, capital planning and budgeting, electrical
load and price forecasting, and artificial vision.

Yakov Frayman received an MSc from the State Polytechnic Academy of Belarus, ME,
from Victoria University of Technology, Australia, and a PhD from Deakin University,
Australia. After working in industry for over 20 years as a control/system engineer, he
has joined Deakin University in 2000 as a research academic where he is conducting
research in neural networks, machine learning, data mining, and machine vision. Dr.
Frayman has published over 30 refereed papers in the areas of intelligent modeling and
control and the applications of soft computing to manufacturing.

John Fulcher is currently a professor of information technology in the School of IT &
Computer Science and director of the Health Informatics Research Centre at the Univer-
sity of Wollongong, Australia. He holds a BEE (Hon.) from the University of Queensland
(1972), a research master’s degree from LaTrobe University, Melbourne (1981), and a PhD
from the University of Wollongong (1999). John is a member of the Association for
Computing Machinery and a senior member of the Institute of Electrical & Electronic
Engineers. Apart from serving as a preferred reviewer for ACM Computing Reviews, he
is on the editorial boards of both Computer Science Education and the International
Journal of Intelligent & Fuzzy Systems and serves as reviewer for 13 other journals
(including IEEE Transactions). His 100 or so publications include a best-selling textbook
on microcomputer interfacing, a recent Springer research monograph on applied intelli-
gent systems (coedited with Professor Lakhmi Jain), and three book chapters in the
Oxford University Press Handbook of Neural Computing. Dr. Fulcher was an invited



280   About the Authors

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

keynote speaker at the 5th National Thai Computer Science & Engineering Conference.
His research interests include microcomputer interfacing, computer science education,
artificial neural networks (especially higher-order ANNs), health informatics, and parallel
computing.

Eldon Gunn is professor of industrial engineering at Dalhousie University. He holds a
PhD in industrial engineering from the University of Toronto. He served as president of
the Canadian Operational Research Society in 1992-1993. From 1996 to 2004, he was head
of the Industrial Engineering Department at Dalhousie. He is a registered professional
engineer in the Province of Nova Scotia. His research interests include modeling and
optimization in both manufacturing and natural-resources settings.

Georgina L. Kelly has a PhD in materials science from Monash University, Australia. She
has worked on a number of aspects of mechanical testing and characterisation of
materials. She has been at Deakin University for 6 years and leads the surface-perfor-
mance research team, undertaking both fundamental and contract research. Her current
work focuses on surfaces and lubrication, with an emphasis on metal forming.

M. Imad Khan received a BSc in computer science from the University of Karachi where
he was associated with the Fuzzy Logic and Soft Computing Research Group for his final
thesis. After graduation, Mr. Khan has worked as a software engineer at Avanza
Solutions (Pvt) Ltd. In 2002, he has joined Karachi Institute of Information Technology
as a research assistant. Currently, he is a doctoral student at the School of Engineering
and Technology, Deakin University, Australia.

Mark Kingham has a master’s degree in computer science from Edith Cowan University,
Perth, Australia. His research interests include adaptive self-learning intelligent sys-
tems, and their application to business and financial systems.

Paolo Maccarrone graduated cum laude in management and production engineering (5-
year degree) at Politecnico di Milano University in 1992. In 1997, he earned his PhD at
the University of Padova, discussing a thesis on “The Post-Audit of Capital Investment
Projects.” At the moment, he is an associate professor at Politecnico di Milano, where
he teaches business economics and organisation and management control systems. He
is also member of the faculty of the MIP Politecnico di Milano Business School, where
he lectures in management accounting and control systems in the Executive MBA
program and other postgraduate master’s programs. At MIP he is also co-director of
Executive MBA and of the Advanced Course in Information Security Management. His
research activities can be grouped into three main fields: (a) management accounting/
control and performance measurement systems in for-profit firms (and related executive
information systems), (b) corporate social responsibility, (c) the strategic/managerial/
organisational aspects of information security management. He is author of several
publications on books and international refereed journals. In 2000, he received the



About the Authors   281

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Literati Club Award for the best paper published on the 1999 volume of Business Process
Management Journal.

Corinne MacDonald received her BEng in industrial engineering from the Technical
University of Nova Scotia (1989). She is a registered professional engineer in the Province
of Nova Scotia. She is currently a PhD candidate and a lecturer in the Department of
Industrial Engineering, Dalhousie University.

Masoud Mohammadian is a member of over 30 international conferences and has chaired
several international conferences in computational intelligence and intelligent agents.
He has been a keynote speaker at several international conferences on computational
intelligence. He is currently a senior lecturer at the school of computing at the University
of Canberra in Australia.

Saeid Nahavandi received a BSc (Hon.), MSc and PhD from Durham University, UK. In
1991, he joined Massey University, New Zealand, as a senior lecturer in robotics. In 1998,
he became an associate professor at Deakin University, Australia, and the leader for the
Intelligent Systems research group. In 2002, Professor Nahavandi took the position of
chair in engineering in the same university. Dr. Nahavandi has published over 190
reviewed papers. He is the recipient of four international awards, best paper award at the
World Automation Congress, USA, and the Young Engineer of the Year award. Professor
Nahavandi is the founder of the World Manufacturing Congress series and the Autono-
mous Intelligent Systems Congress series. He is a fellow of IEAust and IEE. His current
research interests include modeling and control and the application of soft computing
to industrial processes.

Stelios E. Perrakis was born in Chania, Crete, Greece, in 1972. He received a BSc in
computer science from the University of Crete, Greece (1995) and an MSc in electronic
and computer engineering from the Technical University of Crete (2001). His current
research interests are in dynamic neural networks and computer implementations for real-
time manufacturing-systems scheduling.

Roberto Pinto graduated in management and production engineering (5-year degree) at
Politecnico di Milano University in 2001. He is currently assistant professor at the
Department of Industrial Engineering of the University of Bergamo. His main research
areas are operations and knowledge management in supply chains, business process
modelling and simulation, soft-computing techniques like artificial neural networks,
genetic algorithms, and constraint programming. He has published about 15 papers on
national and international journals and conference proceedings.

Tong-Seng Quah is currently an assistant professor with the School of Electrical and
Electronic Engineering, Nanyang Technological University. Dr. Quah lectures in both



282   About the Authors

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

undergrad as well as graduate courses such as Software Development Methodology,
Software Quality Assurance and Project Management, Object-oriented System Analysis
and Design, and Software Engineering. His research interests include financial market
modeling using neural networks, software reliability, and e-commerce. Other than
academic services, Dr. Quah has undertaken joint projects with major companies in
banking and airline industries, as well as statutory boards of the government body. Prior
to his academic pursuits, Dr. Quah was a director of a local company dealing with
industrial chemicals.

Sadhalaxmi Raipet obtained her master’s degree in commerce from the Osmania Univer-
sity (2001). Additionally, she is also a graduate in cost and work accountancy and has
completed the company secretary course from the Institute of Company Secretaries of
India. Currently, she is in the dissertation phase of the doctoral program in finance and
control at the Indian Institute of Management, Calcutta, India. Her research interests
include corporate governance, company law, capital markets, regulatory reform, and
interest-rate modeling.

Tapabrata Ray obtained his BTech (Hon.), MTech, and PhD from the Indian Institute of
Technology (IIT), Kharagpur, India. He worked with three major research institutes in
Singapore, namely the Information Technology Institute (ITI), Institute of High Perfor-
mance Computing (IHPC), and Temasek Laboratories, National University of Singapore.
His research interests are in the area of multiobjective and constrained optimization,
surrogate-assisted optimization, and robust-design optimization. He is currently a lecturer
in the School of Aerospace, Civil and Mechanical Engineering, Australian Defence Force
Academy, University of New South Wales, Canberra, Australia.

Bernard F. Rolfe completed a combined economics and engineering degree with honours
in 1995 from the Australian National University (ANU). He worked for several years as
an IT consultant before starting a PhD at the ANU. His doctorate investigated novel
methods of inverse modelling for metal-forming processes and was completed in 2002.
This research included an IMechE award-winning journal paper. Currently, he is a
lecturer at Deakin University. He is part of a $1.8 million research project between Deakin
and Ford investigating the use of advanced high-strength steels in the automotive
industry. He has written over 20 refereed publications.

George A. Rovithakis was born in Chania, Crete, Greece in 1967. He received the diploma
in electrical engineering from the Aristotle University of Thessaloniki, Greece (1990) and
MS and PhD degrees in electronic and computer engineering both from the Technical
University of Crete, Greece (1994 and 1995, respectively). After holding a visiting
assistant professor position with the Department of Electronic and Computer Engineer-
ing, Technical University of Crete (1995-2002), he joined the Aristotle University of
Thessaloniki where he is currently an assistant professor with the Department of
Electrical and Computer Engineering. His research interests include nonlinear systems,
neural-network systems, robust adaptive control, identification control of unknown



About the Authors   283

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

systems using neural networks, production control, intelligent control, fault detection,
isolation and accommodation in nonlinear dynamical systems, and automated inspection
systems. He has authored or coauthored over 80 publications in scientific journals,
referred conference proceedings, and book chapters. He has also coauthored the book
Adaptive Control with Recurrent High-Order Neural Networks (London, Springer-
Verlag, 2000). Dr. Rovithakis serves as a reviewer for various journals and conferences
and has served as session chairman or cochairman in international conferences. He is a
member of the Technical Chamber of Greece and a senior member of the IEEE.

Janardhanan Sethuraman obtained his BE in electronics and communication engineering
from University of Madras with distinction (2001). Currently, Sethuraman is a doctoral
student with Management Information Systems group, at the Indian Institute of Manage-
ment, Calcutta, India. He also specializes in finance and control. Additionally, he is a EURO-
IFORS fellow, 2004. His areas of interest include telecommunications design and planning,
business cases involving ICT deployments, artificial intelligence, and data mining and its
applications in finance. He is interested in applying systems concepts to the development
sector, especially e-governance. Sethuraman is one of the founding members of EURO
working group on “Young People for OR in Developing Countries” (YORC).

Shuxiang Xu has been a lecturer of computing in the School of Computing at the
University of Tasmania, Tasmania, Australia, since 1999. He holds a Bachelor’s of
Applied Mathematics (1986) from the University of Electronic Science and Technology
of China, Chengdu, China, a Master’s of Applied Mathematics from Sichuan Normal
University (1989), Chengdu, China, and a PhD in computing from the University of
Western Sydney (2000), Australia. He received an Overseas Postgraduate Research
Award from the Australian government in 1996. His current interests include the theory
and applications of artificial neural networks and genetic algorithms.

Ming Zhang was born in Shanghai, China. He received an MS in information processing
and a PhD in the research area of computer vision from East China Normal University,
Shanghai, China (1982 and 1989, respectively). He held postdoctoral fellowships in
artificial neural networks with the Chinese Academy of the Sciences in 1989 and the USA
National Research Council in 1991. He was a face-recognition airport-security-system
project manager and Ph.D. cosupervisor at the University of Wollongong, Australia, in
1992. Since 1994, he has been a lecturer at Monash University, Australia, with a research
area of artificial-neural-network financial-information systems. From 1995 to 1999, he was
a senior lecturer and PhD supervisor at the University of Western Sydney, Australia, with
the research interest of artificial neural networks. He also held a senior research associate
fellowship in artificial neural networks with the USA National Research Council in 1999.
He is currently an associate professor and graduate-student supervisor in computer
science at the Christopher Newport University, VA, USA. With more than 100 papers
published, his current research includes artificial neural network models for face recog-
nition, weather forecasting, financial-data simulation, and management.



284   Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Index

A

activation function  4
actual costs  201
affine models  125
ANN model for stock selection  154
ARIMA  142
artificial neural network  2, 142,  154, 200,

222

B

backpropagation algorithm  6
bankruptcy prediction  14
Bayesian Regularization algorithm  8,  144
biomedical  2
biscuit sizes  189
Black-Scholes  126
buffers  240

C

cell topology  247
cold forging  263
committed costs  201
condition monitoring  2, 17
connection weights  29
connections  29

control  238
-regulation problem  238

conventional optimization  31
corporate bankruptcy prediction  2
correct

down trend  145
up trend  145

cost estimation  18
credit

ratings  81
scoring  15

crossover  69

D

data-mining  45
deterministic job shop scheduling  237
differential evolution  32

algorithm  33
directional symmetry  145
discretization  238
dispatching times  244
document analysis  2
dynamic

asset-pricing  125
model  240



Index   285

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

E

economic factors  156
engineering tasks  2
equilibrium models  125
equity  152
evolutionary

algorithm (EA)  29,  222
multiobjective algorithms  28

evolving ANNs  28
exchange rates  81

F

factor loadings  129
fault diagnosis  2, 18
feed-forward  124

ANNs  29
artificial neural network  64
neural networks  165

financial  152
forecasting  48
modeling  2
systems  109
time-series  81

flexible neural tree  67
Fonseca and Fleming’s evolutionary
forecasting  110, 142, 154
foreign currency exchange

(forex)  139
rate  15

forecasting  2
forward-rate  127
fraud detection  2
fundamental analysis  141
future-price estimation  2

G

gas-related porosity  187
generalization  152
generalized regression neural network  13,

49,  144
genetic algorithms  110
growth factors  156

H

Hajela and Lin’s genetic algorithm  31

hidden
layers  29
nodes  29

hierarchical neural network  109
high-pressure die casting  182
higher-order ANNs  80
HONN groups  80
HONNs  80
hybrid-learning  67

I

image processing  2
individual neuron  3
information-gain  43
intelligent systems  64
interest-rate  109,  124
investment portfolio  15

J

job shops  239
just-in-time (JIT) production  237

K

kanbans  165

L

Lagrangian relaxation  238
laguerre function  128
learning algorithms  5
life-cycle-costing  201
linear

programming  238
regression  43
Tanh Axon  130

liquidity factors  157
local linear wavelet neural network  64

M

machines  239
manufacturing  2

cell formation  2, 20
control  175
operations  165
process  263
resource planning  237



286   Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

mean
absolute error  145
-squared error  49

mechanical workshop  247
modelling  109
moving window  159
multilayer perceptron  124
multimodal  30
multiobjective optimization  28, 31
mutation  69

N

Nasdaq  64
Nelson-Siegel yield curve  124
network architecture  4, 29
neural network  70, 109,  238, 264

-assisted framework  223
neuroadaptive scheduling methodology
238
neurons  29
new evolutionary multiobjective algorithms

31
niched pareto genetic algorithm  31
NIFTY  64
non-differentiable  30
non-dominated solutions  33
non-dominated sorting genetic algorithms

31
nonlinear

autoregressive models  142
regression  49

nonparametric  125
normalized mean-square error  145
NP-hard  237

O

operational
control  166
decision-support  166
design  166

optimization  30
optimized production timetables  237

P

parameter

optimization  70
selection  2, 19

parametric  125
pareto

archived evolution strategy  31
-based differential evolution  32
-optimal solutions  31

part types  239
particle-swarm-optimization  66
pattern recognition  2
political factors  156
polynomial

coefficients  80
HONNs  87

porosity
formation  184
models  188

prediction  81, 109
present values  127
probabilistic neural network  11, 51
processing elements  29
product costs  199
production scheduling  2, 19

Q

quality control  2, 20

R

radial basis function  144
neural network  10

recognition of lubrication defects  264
recurrent high-order neural networks  241
regulation  238
representation  34
risk factors  157

S

scaled conjugate gradient  144
algorithm  7

scheduling  237
selection  69
sheet metal forming  223
simulation

metamodels  167
models  166



Index   287

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

simultaneous evolution  28
soft computing  64
splines  125
standard backpropation  144
stock

market  64
analysis  16
returns  44

performance  2
selection  152

strength pareto evolutionary algorithm  31
submachines  239
surrogate models  222

T

technical analysis  141
term structure  124
time series  110

analysis  142
topological structure  29
tracking  238
trading and forecasting  2
transfer function  29
trigonometric HONNs  80

V

vector evaluated genetic algorithm  31
visual interactive simulation (VIS)  168

W

wavelet neural network  64
weights  29

Y

yield
factors  156
to maturity  127




