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Preface

Artificial neural networks (ANNS) have attracted increasing attentionsin recent years
for solving many real-world problems. ANNs have been successfully applied in solving
many complex problemswheretraditional problem-solving methods havefailed or proved
insufficient. With significant advances in processing power, neural networks research
has been able to address problems that were often tackled by using simplified assump-
tions in the past. This has resulted in a wealth of new approaches based on neural
networks in many areas, particularly in finance and manufacturing. Thisis evidenced
by the exponential growth of scientific literature covering applications of neural net-
works in these areas.

Research and development worksin ANNs are still growing rapidly dueto an increas-
ing number of successful applications of these techniques in diverse disciplines. This
book is intended to cover basic theory and concepts of neural networks followed by
recent applications of such techniques in finance and manufacturing. The book con-
tains 15 chapters divided into three parts as follows:

e Section |: Introduction
e Sectionll: ANNsin Finance
e Section|ll: ANNsin Manufacturing

Section | gives an introduction to neural networks and their basic components. The
individual neuron operation, network architecture, and training algorithms are discussed
in thefirst part of Chapter |I. The second part of this chapter provides a brief review of
ANN applicationsin finance and manufacturing. Chapter Il introduces one of the latest
research areasin thisfield, whichisevolving ANNSs. In this chapter, the authorsinves-
tigate the simultaneous evolution of network architectures and connection weightsin
ANNSs. In simultaneous evolution, they use the well-known concept of multiobjective
optimization and subsequently evolutionary multiobjective algorithmsto evolve ANNS.
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The results are promising when compared with the traditional ANN algorithms. It is
expected that this methodol ogy would provide better solutions to many applications of
ANNSs.

Section |1 of thisbook consists of seven chapters on ANN applicationsin the financial
domain. Chapter |11 investigates the use of ANNs for stock market return forecasting.
The authors examined neural network models, for level estimation and classification, to
provide an effective forecasting of future values. A cross-validation technique was
also employed to improve the generalization ability of the models. The results show
that the classification models generate higher accuracy in forecasting ability than the
buy-and-hold strategy, aswell as those guided by the level-estimation-based forecasts
of the neural network and benchmark linear regression models.

In Chapter IV, the authors investigate the development of novel reliable and efficient
techniquesto model the seemingly chaotic behavior of stock markets. They considered
the flexible neural tree algorithm, awavel et neural network, local linear wavelet neural
network, and finally afeed-forward artificial neural network. The particle swarm optimi-
zation algorithm optimized the parameters of the different techniques. This chapter
briefly explains how the different learning paradigms can be formulated using various
methods and then investigated as to whether they can provide the required level of
performance. Experimental resultsrevealed that all the models considered could repre-
sent the stock indices behavior very accurately.

In many situations, financial time-series data is characterized by nonlinearities,
discontinuities, and high-frequency multi-polynomial components. The conventional
ANNSs have difficulty in modeling such complex data. Chapter V provides an appropri-
ate approach that is capable of extracting higher-order polynomial coefficientsin the
data. The authors later incorporated piecewise continuous activation functions and
thresholds, and as a result, they are capable of modeling discontinuous (or piecewise
continuous) datawith a higher degree of accuracy. The performance of their approach
was tested using representative financial time-series data such as credit ratings and
exchange rates.

In Chapter VI, an intelligent Hierarchical Neural Network system for prediction and
modeling of interest rates is presented. The proposed system was developed to model
and predict 3-month (quarterly) interest-rate fluctuations. The system was further trained
for 6-month and 1-year periods. The authors nicely analyzed the accuracy of prediction
produced by their approach.

Although many works exist on the issue of modeling theyield curve, thereisvirtually
no mention in the literature on the issue of forecasting the yield curve. In Chapter VI,
the authors applied neural networks for the purpose of forecasting the zero-coupon
yield curve. First, the yield curve was modeled from the past data using the famous
Nelson-Siegel model. Then, forecasting of the various parameters of the Nelson-Siegel
yield curve was performed using two different techniques — the multilayer perceptron
and generalized feed-forward network. The forecasted Nelson-Siegel parameterswere
then used to predict the yield and the price of the various bonds. Results show the
superiority of generalized feed-forward network over the multilayer perceptron for the
purposes of forecasting the term structure of interest rates.

In Chapter V111, the authorsinvestigated an ANN-based prediction modeling of foreign
currency rates using three different learning algorithms. The models were trained from
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historical data using five technical indicators to predict six currency rates against the
Australian dollar. The forecasting performance of the models was evaluated using a
number of widely used statistical metrics. Results show that significantly better predic-
tion can be made using simple technical indicators without extensive knowledge of the
market data. The trading profitability of the neural-network-based forex model over a
forecasted period was also analyzed.

Chapter 1X deals with another important financial application — analysis of stock
return for investment. The author applies neural networks for stock selection in the
Singapore market. This chapter showsthat neural networks are able to infer the charac-
teristics of performing stocks from the historical patterns. The performance of stocksis
reflective of the profitability and quality of management of the underlying company.
Such information is reflected in financial and technical variables. A neural network
based on a moving window selection system is used to uncover the intricate relation-
ships between the performance of stocks and the related financial and technical vari-
ables. Historical data such asfinancial variables (inputs) and performance of the stock
(output) is used to train the model. Experimental results show the model is capable of
selecting stocks that yield better investment return.

Section |11 of the book contains six chapters on ANN applications in a manufacturing
environment. The first chapter in this part (Chapter X) is a review chapter that dis-
cusses a number of examples of the use of neural networks in manufacturing opera-
tions.

Chapter X1 presents an application of neural networksto the industrial-process model -
ing of high-pressure die casting. The model was implemented in two stages. The first
stage was to obtain an accurate model of the die-casting process using a feed-forward
multilayer perceptron from the process-condition monitoring data. The second stage
was to evaluate the effect of different process parameters on the level of porosity in
castings by performing sensitivity analysis. The results obtained were very encourag-
ing to model die-casting process accurately.

The estimation of the unit production cost of a product during its design phase can be
extremely difficult, especially if information on similar products previously produced is
missing. In Chapter XII, the authors applied ANNSs to determine the correlation be-
tween a product’s cost and its characteristics. The test results seemed very good.

In Chapter X111, aframework for design optimization is introduced that makes use of
neural-network-based surrogatesin lieu of actual analysisto arrive at optimum process
parameters. The performance of the algorithm was studied using a number of math-
ematical benchmarksto instill confidence on its performance before reporting the re-
sults of aspring-back minimization problem. Theresults clearly indicate that the frame-
work is able to report optimum designs with a substantially low computational cost
while maintaining an acceptable level of accuracy.

In Chapter X1V, a neuro-adaptive scheduling methodology for machines is presented
and evaluated by comparing its performance with conventional schedulers. The au-
thors employed a dynamic neural network model and subsequently derived a continu-
ous-time neural network controller and the control-input discretization process that
yield the actual dispatching times. The devel oped algorithm guarantees system stabil -
ity and controller-signal boundedness and robustness. The algorithm was evaluated
on an industrial test case that constitutes a highly nonacyclic deterministic job shop



with extremely heterogeneous part-processing times. The simulation study, employing
the idealistic deterministic job-shop abstraction, provided extensive comparison with
conventional schedulers over a broad range of raw-material arrival rates and, through
the extraction of several performanceindices, verified its superb performancein terms
of manufacturing system stability and low makespan, low average lead times, work-in-
process inventory, and backlogging costs. Eventually, these extensive experiments
highlighted the practical value and the potential of the mathematical properties of the
proposed neuro-adaptive controller algorithm and its suitability for the control of non-
trivial manufacturing cells.

Thefinal chapter (Chapter XV) describes the application of neural networksto recogni-
tion of lubrication defects typical to industrial cold forging process. The neural-net-
work-based model learned from different features related to the system was able to
recognize all types of lubrication errorsto ahigh accuracy. The overall accuracy of the
neural network model was reported to be around 95% with almost uniform distribution
of errors between all lubrication errors and the normal condition.

It is hoped that this book will trigger great interest in neural network applications in
finance and manufacturing areas, leading to many more articles and books.

Joarder Kamruzzaman, Rezaul Begg, and Ruhul Sarker
Editors
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Chapter |

Artificial Neur al

Networks:

Applications in Finance
and M anufacturing

Joarder Kamruzzaman, Monash University, Australia
Ruhul A. Sarker, University of New South Wales, Australia

Rezaul Begg, Victoria University, Australia

Abstract

Theprimary aimof thischapter isto present an overview of theartificial neural network
basics and operation, architectures, and the major algorithms used for training the
neural network models. As can be seen in subsequent chapters, neural networks have
made many useful contributionsto solve theoretical and practical problemsin finance
and manufacturing areas. The secondary aimhereisthereforeto provideabrief review
of artificial neural network applications in finance and manufacturing areas.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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| ntroduction

Sincethe seminal work by Rumelhart, McClelland, and the PDP research group (1986),
artificial neural networks (ANNSs) have drawn tremendous interest due to the demon-
strated successful applications in pattern recognition (Fukumi, Omatu, & Nishikawa
1997), image processing (Duranton, 1996), document analysis (Marinai, Gori, & Soda,
2005), engineeringtasks(Jin, Cheu, & Srinivasan, 2002; Zhenyuan, Yilu, & Griffin, 2000),
financial modeling (Abu-Mostafa, 2001), manufacturing (Kong & Nahavandi, 2002),
biomedical (Nazeran & Behbehani, 2000), optimization (Cho, Shin, & Y 0o, 2005), and so
on. Inrecent years, there hasbeen awide acceptance of ANNsasatool for solving many
financial and manufacturing problems. Infinance, domain notableapplicationsarein (1)
trading and forecasting including derivative-securities pricing and hedging (Steiner &
Wittkemper, 1997), (2) future priceestimation (Torsun, 1996), (3) stock performanceand
selection (Kim & Chun, 1998), (4) foreign exchange rate forecasting (Kamruzzaman &
Sarker, 2003), (5) corporate bankruptcy prediction (Atiya, 2001), (6) fraud detection
(Smith & Gupta, 2000), and so on. Many commercial software based on ANNsare also
availabletoday offering solutionsto awiderangeof financial problems. Applicationsin
manufacturing includes (1) condition monitoring in different manufacturing operations
suchasmetal forming (Kong & Nahavandi, 2002), drilling (Brophy, Kelly, & Bryne, 2002),
turning (Choudhury, Jain, & RamaRao, 1999), and tool wearing and breaking (Choudhury,
Jain, & RamaRao, 1999; Huang & Chen, 2000), (2) cost estimation (Cavalieri, Maccarrone,
& Pinto, 2004), (3) fault diagnosis (Javadpour & Knapp, 2003), (4) parameter selection
(Wong & Hamouda, 2003), (5) production scheduling (Y ang & Wang, 2000), (6) manu-
facturing cell formation (Christodoulou & Gaganis, 1998), and (7) quality control
(Bahlmann, Heidemann, & Ritter, 1999).

Although devel oped asamodel for mimicking humanintelligenceinto machine, neural
networks have excellent capability of learning the relationship between input-output
mapping from a given dataset without any knowledge or assumptions about the
statistical distribution of data. Thiscapability of |earning from datawithout any apriori
knowledge makesneural networksparticularly suitablefor classification and regression
tasksin practical situations. In most financial and manufacturing applications, classifi-
cation and regression constitute integral parts. Neural networks are also inherently
nonlinear which makes them more practical and accurate in modeling complex data
patternsasopposed to many traditional methodswhich arelinear. Innumerousreal-world
problemsincluding thosein thefields of finance and manufacturing, ANN applications
have been reported to outperform statistical classifiers or multiple-regression tech-
niquesin classification and dataanal ysi stasks. Because of their ability to generalizewell
on unseen data, they are al so suitableto deal with outlying, missing, and/or noisy data.
Neural networks have also been paired with other techniques to harness the strengths
and advantages of both techniques.

Sincetheintention of thisbook isto demonstrateinnovative and successful applications
of neural networks in finance and manufacturing, this introductory chapter presents a
broad overview of neural networks, various architectures and learning algorithms, and
some convincing applicationsin finance and manufacturing and discussion on current
research issues in these areas.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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Artificial Neural Networ ks

ANNSs offer acomputational approach that is quite different from conventional digital
computation. Digital computersoperate sequentially and can do arithmetic computation
extremely fast. Biological neuronsinthe human brainareextremely slow devicesandare
capable of performing a tremendous amount of computation tasks necessary to do
everyday complex tasks, commonsensereasoning, and dealingwithfuzzy situations. The
underlining reason is that, unlike a conventional computer, the brain contains a huge
number of neurons, information processing elements of the biological nervous system,
actinginparallel. ANNsarethusaparallel, distributed i nformation processing structure
consisting of processing elements interconnected via unidirectional signal channels
called connection weights. Although model ed after biological neurons, ANNsare much
simplified and bear only superficial resemblance. Some of the major attributesof ANNs
are: (a) they canlearnfrom examplesand generalizewell on unseen data, and (b) areable
to deal with situation where the input data are erroneous, incomplete, or fuzzy.

Individual Neuron

The individual processing unit in ANNS receives input from other sources or output
signals of other units and produces an output as shown in Figure 1. The input signals
(x;) aremultiplied with weights (w.) of connection strength betweenthe sending unit“i”
and receiving unit “j”. The sum of the weighted inputs is passed through an activation
function. The output may be used asan input to the neighboring units or units at the next
layer. Assumingtheinput signal by avector x (x,, X,,..., X)) and the corresponding weights
tounit“j” by w, (le, Wiy w, ), thenetinputtotheunit”j” isgiven by Equation 1. The
weight WJ.O(:b) isaspecial weight called bias whose input signal is always +1.

net; =§winxn+wjo=wjx+b (1)

Figure 1. An individual unit in a neural network

Xo=1.

X1

output = f(net;)

»

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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In general, aneural network is characterized by the following three major components;

i The computational characteristics of each unit, for example, activation function;
. The network architecture; and

i Thelearning algorithm to train the network.

Activation Function

The computed weighted sum of inputsistransformed into an output value by applying
an activation function. In most cases, the activation function mapsthe net input between
-1to+1or0to 1. Thistypeof activation functionisparticularly useful in classification
tasks. In cases where a neural network is required to produce any real value, linear
activation function may be used at thefinal layer. A network with multiplelayersusing
linear activation function at intermediate layers effectively reduces to a single-layer
network. Thistype of network isincapabl e of solving nonlinearly separableproblemsand
has limited capability. Since the most real-world problems are nonlinearly separable,
nonlinearity intheintermediatelayer isessential for modeling complex problems. There
are many different activation functions proposed in the literature that are often chosen
to be monotonically increasing functions. The followings are the most commonly used
activation functions (see Table 1).

Network Architecture

Having defined anindividual neuron, the next step isto connect them together. A neural
network architecture represents a configuration indicating how the units are grouped
together aswell astheinterconnection between them. Thereare many different architec-
turesreportedintheliterature, however, most of these can bedividedintotwomain broad
categories. feed-forward and feedback. These architectures are shown in Figure 2. In
feed-forward architecture, theinformation signal alwayspropagatestowardstheforward
directionwhileinfeedback architecturethefinal outputsare again fed back at theinput

Table 1. Commonly used activation functions

Activation Mathematical Graphical
Functions Expression Expression
i f(X
Linear f(X): X )
X
Logistic () 1 f(x)
sigmoid 1+ exp(-X) N

Hyperbolic — f(x)

tangent f(x)=tanh(x) )

Gaussian f(x) = exp(-x*/20%) ‘™
L.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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Figure 2. (a) Feedforward architecture b) Feedback architecture

Output y

layer. The first layer is known as input layer, the last as output layer, and any
intermediate layer(s) as hidden layer(s). A multiple feedforward layer can have one or
more layers of hidden units. The number of units at the input layer and output layer is
determined by the problem at hand. Input layer units correspond to the number of
independent variables while output layer units correspond to the dependent variables
or the predicted values.

While the numbers of input and output units are determined by the task at hand, the
numbers of hidden layers and the units in each layer may vary. There are no widely
accepted rulesfor designing the configuration of aneural network. A network withfewer
than the required number of hidden units will be unable to learn the input-output
mapping, whereas too many hidden units will generalize poorly of any unseen data.
Several researchers attempted to determine the appropriate size of hidden units. Kung
and Hwang (1988) suggested that the number of hidden units should be equal to the
number of distinct training patterns while Arai (1989) concluded that N input patterns
required N-1 hiddenunitsinasinglelayer. However, asremarked by Lee(1997), itisrather
difficult to determinethe optimum network sizein advance. Other studies suggested that
ANNSs generalize better when succeeding layers are smaller than the preceding ones
(Kruschke, 1989; L ooney, 1996). Although atwo-layer network iscommonly used in most
problem solving approaches, the determination of an appropriate network configuration
usually requires many trial and error methods. Another way to select network sizeisto
use constructive approaches. In constructive approaches, the network starts with a
minimal sizeand growsgradually duringthetraining procedure (Fahiman & L ebiere, 1990;
L ehtokangas, 2000).

Learning Algorithms

A neural network starts with a set of initial weights and then gradually modifies the
weights during the training cycle to settle down to a set of weights capable of realizing
theinput-output mappingwith either no error or aminimum error set by theuser. Learning

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



6 Kamruzzaman, Sarker, and Begg

in neural networks can be supervised or unsupervised. Supervised learning includes
Backpropagation and its variants, Radial Basis Function Neural Network (RBFNN),
Probabilistic Neural Network (PNN), Generalized Regression Neural Network (GRNN),
and soon. Insupervised learning, an input datum isassociated with aknown output, and
trainingisdonein pairs. Unsupervised | earning, for example, Self Organizing Map (SOM),
Adaptive Resonance Theory (ART), and so on, is used when training sets with known
outputs are not available. In the following, we describe some of the widely used ANN
learning algorithms.

Backpropagation Algorithm

A recent study (Wong, Lai, & Lam, 2000) has shown that approximately 95% of the
reported neural network business applications utilize multilayer feed-forward neural
networkswith Backpropagation|earning algorithm. Backpropagation (Rumelhartetal .,
1986) isafeed-forward network asshownin Figure 2athat updatestheweightsiteratively
to map a set of input vectors (xl,xz,...,xp) to a set of corresponding output vectors
(Y YgeeerY p). Theinput x o corresponding to pattern or data point “p” is presented to the
network and multiplied by theweights. All theweighted i nputsto each unit of the upper
layer are summed up, and produce an output governed by the following equations:

¥,= T(Wohp*00): (%)

ho=f (Wyxp+ 01): ©)

where W _and W, are the output and hidden layer weight matrices, h is the vector
denoting theresponse of hidden layer for pattern“p”, 8_and 6, arethe output and hidden
layer bias vectors, respectively and f(.) is the sigmoid activation function. The cost
functionto beminimizedin standard Backpropagationisthe sum of squared error defined
as:

E:%%(tp—ypf(tp—yp) (4)

Wheretp isthetarget output vector for pattern“p” . The algorithm uses gradient descent
technique to adjust the connection weights between neurons. Denoting the fan-in
weightsto asingle neuron by aweight vector w, itsupdate in the t-th epoch is governed
by the following equation:

AW, == VE (W)|w - we +a AW 4 ©

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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The parametersm and o. arethelearning rate and the momentum factor, respectively. The
learning rate parameter control sthe step sizeineachiteration. For alarge-scaleproblem,
Backpropagtion learns very slowly and its convergence largely depends on choosing
suitable values of n and o by the user.

Scaled Conjugate Gradient Algorithm

Theerror surfacein Backpropagati on may containlong ravineswith sharp curvatureand
agently sloping floor, which causes slow convergence. In conjugate gradient methods,
a search is performed along conjugate directions, which produces generally faster
convergence than steepest descent directions (Hagan, Demuth, & Beale, 1996). In
steepest descent search, a new direction is perpendicular to the old direction. This
approachto theminimumisazigzag path and one step can be mostly undone by the next.
In conjugate gradient methods, a new search direction spoils as little as possible the
minimization achieved by the previous direction and the step size is adjusted in each
iteration. Thegeneral procedureto determinethe new search directionisto combinethe
new steepest descent direction with the previous search direction so that the current and
previous search directions are conjugate. Conjugate gradient techniques are based on
theassumptionthat, for ageneral nonquadratic error function, error inthe neighborhood
of agiven point islocally quadratic. The weight changesin successive steps are given
by the following equations:

W= Wt + g dy (6)

di=—0,+pdi—1 (7)

with

G =VEM)|w-w ®)

I8 o = 2 g A0 ©)
019 0;.0a 9.9

where d, and d , are the conjugate directions in successive iterations. The step size is
governed by the coefficient o, and the search direction is determined by . In scaled
conjugate gradient, the step size o, is calculated by the following equations:

di 9
=——0 10
ot 5. (10
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Ot =dtTtht+;{1HdtH2 (11)

where, isthescaling coefficientand H, istheHessian matrix atiterationt. A isintroduced
because, in case of nonquadratic error function, the Hessian matrix need not be positive
definite. In this case, without A, & may become negative and aweight update may lead
to an increase in error function. With sufficiently large A, the modified Hessian is
guaranteed to be positive (8> 0). However, for largevaluesof A, stepsizewill besmaller.
If theerror functionisnot quadratic or < 0, A can beincreased to make 6> 0. I n case of

8< 0, Moller (1993) suggested the appropriate scale coefficient 1, to be:

,_ ~ 6(
H[”‘ dﬁ] )

Rescaled value gt of g, isthen be expressed as:

gt = 6( + (Z—/lt)HdtHz (13)

The scal ed coefficient al so needs adjustment to validate the local quadratic approxima-
tion. The measure of quadratic approximation accuracy, A , is expressed by:

_ 2E(w,) - E(w, +0,d,)}

A :
o dt 9

(14)

If A iscloseto 1, thentheapproximationisagood oneand thevalueof A, can bedecreased
(Bishop, 1995). Onthe contrary, if A issmall, the value of A, hasto beincreased. Some
prescribed values suggested in Moller (1993) are asfollows:

For A, >0.75, A=A J2
For A, <0.25, A =40
Otherwise, A=A

Bayesian Regularization Algorithm

A desired neural network model should produce small error not only on sample databut
also on out of sample data. To produce a network with better generalization ability,
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MacKay (1992) proposed a method to constrain the size of network parameters by
regularization. Regularization technique forcesthe network to settle to aset of weights
and biases having smaller values. This causes the network response to be smoother and
lesslikely tooverfit (Hagan et al., 1996) and capture noise. In regularization technique,
the cost function F is defined as:

F=yEo+@-7)Ew (15

where E isthe same as E defined in Equation 4, E = HwH2/ 2isthe sum of squares of the

network parameters, and y (<1.0) isthe performance ratio parameter, the magnitude of
whichdictatesthe emphasisof thetraining onregularization. A largeywill drivetheerror
E, tosmall valuewhereasasmall ywill emphasize parameter sizereduction at theexpense
of error and yield smoother network response. One approach of determining optimum
regularization parameter automatically is the Bayesian framework (Mackay, 1992). It
considers a probability distribution over the weight space, representing the relative
degreesof belief indifferent valuesfor theweights. Theweight spaceisinitially assigned
someprior distribution. LetD ={x_,t } bethedataset of theinput-target pair, mbeing
alabel running over the pair and M be a particular neural network model. After the data
is taken, the posterior-probability distribution for the weight p(w|D,y,M) is given
according to the Bayesian rule.

M): p(D|W,7/,|V|)p(W|y,M)
p(D[y,M)

p(w|D,y, (16)

where p(wl|y,M) is the prior distribution, p(D|w,y,M) is the likelihood function, and
p(Dly,M) isanormalization factor. In Bayesian framework, the optimal weight should
maximize the posterior probability p(w|D,y,M), which is equivalent to maximizing the
function in Equation 15. Applying the Bayes' rule optimizes the performance ratio
parameter.

)= PO17.M)p(r [ M)

p(y ID, o(D | M) (17)

If weassumeauniform prior distribution p(y|M) for theregularization parameter vy, then
maximizing the posterior probability isachieved by maximizing thelikelihood function
p(Dly,M). Sinceall probabilities have a Gaussian form it can be expressed as:

p(D |y, M)=(x/y) N[ i@ *zr () (18)
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10 Kamruzzaman, Sarker, and Begg

where L isthetotal number of parametersin the neural network (NN). Supposing that F
has a single minimum asafunction of w at w* and has the shape of aquadratic function
inasmall areasurrounding that point, Z_is approximated as (Mackay, 1992):

Ze~(2r)" 2 det™V2H exp(-F (w")) (19)

where H = yV?E_ + (1-y)V’E,, is the Hessian matrix of the objective function. Using
Equation 19 in Equation 18, the optimum value of y at the minimum point can be
determined.

Foresee and Hagan (1997) proposed to apply the Gauss-Newton approximation to the
Hessian matrix, which can be conveniently implemented if the L ebenberg-Marquart
optimizationalgorithm (More, 1977) isused tolocatethe minimum point. Thisminimizes
the additional computation required for regul arization.

Radial Basis Function Neural Network

Figure3 showsaradial basisfunction neural network (RBFNN). A radial-basis-function
network has a hidden layer of radial units and a linear-output layer units. Similar to
biological receptor fields, RBFNNs employ local receptor fields to perform function
mappings. Unlike hidden layer unitsin preceding algorithmswhere the activation level
of aunitisdetermined using weighted sum, aradial unit (i.e., local receptor field) isdefined
by its center point and aradius. The activation level of thei-th radial unitis:

hi=Ri (%) =Rj (x—ui/ }) (20

Figure 3. A radial-basis-function neural network (Note: not all the interconnections
are shown; each basis finction acts like a hidden unit.)

Output y

Basis
functions
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wherex istheinput vector, u, isavector withthe samedimensi on asx denoting the center,
o iswidth of the function and R (.) isthei-th radial basis function. Typically R(.) isa
Gaussian function:

2
Ri (X) =ex 7”)(_[“”
! 20'i2 (21)

or alogistic function:

1

Ri (X) =
Lroolubio? @

Theactivationlevel of radial basisfunctionh, fori-thradial unitisatitsmaximumwhen
X isat thecenter u, of that unit. Thei-th component of thefinal outputy of aRBFNN can
be computed as the weighted sum of the outputs of the radial units as:

Yi =zi:(’3i Rj () (23)

where o, is the connection weight between the radial uniti and the output unit, and the
solution can be written directly asw!= Ry, where R isavector whose components are
the output of radial units and y is the target vector. The adjustable parameters of the
network, that is, the center and shape of radial basis units (u;, ¢, and o,) can be trained
by a supervised training algorithm. Centers should be assigned to reflect the natural
clustering of the data. Lowe (1995) proposed a method to determine the centers based
on standard deviations of training data. Moody and Darken (1989) selected the centers
by means of dataclustering techniqueslikek-meansclustering and ¢’ sarethen estimated
by taking the average distance to the several nearest neighbors of u,’s. Nowlan and
Hinton (1992) proposed soft competition among radial units based on maximum likeli-
hood estimation of the centers.

Probabilistic Neural Network

In case of classification problem neural network |earning can be thought of estimating
the probability density function (pdf) from the data. I n regression task, the output of the
network can beregarded asthe expected val ue of themodel at agiven pointininput space.
An alternative approach to pdf estimation is the kernel-based approximation and this
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12 Kamruzzaman, Sarker, and Begg

Figure 4. A probabilistic neural network

Output Layer

motivates two types of networksthat are similar to radial-basis-function networks: (a)
probabilistic neural network (PNN) designed for classification task and (b) generalized
regression neural network (GRNN). Specht (1990) introduced the PNN. Itisasupervised
NN that is widely used in the area of pattern recognition, nonlinear mapping, and
estimation of the probability of class membership and likelihood ratios (Specht &
Romsdahl, 1994). It is also closely related to the Bayes classication rule, and Parzen
nonparametric probability density function estimation theory (Parzen, 1962; Specht,
1990). The fact that PNNs offer away to interpret the network’s structure in terms of
probability-density functionsis an important merit of thistype of network. PNNs also
achieve faster training than Backpropagation type feedforward neural networks.

Thestructure of an PNN issimilar to that of feedforward NNs, although the architecture
of anPNN islimitedtofour layers: theinput layer, the patternlayer, thesummationlayer,
and theoutput layer, asillustrated in Figure4. Aninput vector x isapplied to the ninput
neurons and is passed to the pattern layer. The neurons of the pattern layer are divided
into K groups, one for each class. The i-th pattern neuron in the k-th group computes
its output using a Gaussian kernel of the form:

! Ix—=xkill
Fi (X)—(zﬁdz)n,zexp(— 267 ) (24)

where x, ; is the center of the kernel, and o, called the spread (smoothing) parameter,
determinesthesizeof thereceptivefield of thekernel. The summationlayer containsone
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neuron for each class. The summation layer of the network computesthe approximation
of the conditional class probability functions through a combination of the previously
computed densities as per the following equation:

M
G ()= ;:wHFki(x), ke{l-- K}, (25)

where M, is the number of pattern neurons of classk, and w,, are positive coefficients
satisfying, YMkg,=1. Pattern vector x belongs to the class that corresponds to the
summation unit with the maximum output.

The parameter that needs to be determined for an optimal PNN is the smoothing
parameter. One way of determining this parameter isto select an arbitrary set of G,
train the network, and test on the validation set. The procedure is repeated to find
the set of o that produces the least misclassification. An alternative way to search
the optimal smoothing parameter was proposed by Masters (1995). The main disad-
vantages of aPNN algorithmisthat the network can grow very big and become slow,
especially when executing a large training set, making it impractical for a large
classification problem.

Generalized Regression Neural Network

Asmentioned earlier, ageneralized regression neural network (GRNN) isalso based on
radial basisfunctionand operatesinasimilar way to PNN but performsregressioninstead
of classification tasks. Like PNN, GRNN architecture is comprised of four layers: the
input, pattern, summation, and output layers. An GRNN represents each training sample
as a kernel and establishes a regression surface by using a Parzen-window estimator
(Parzen, 1962) with all the kernel widthsassumed to beidentical and spherical in shape.
Assuming the function to be approximated by y = g(x) where x € R" isan independent
variablevector andy e Risthedependent variable, regressioninan GRNN iscarried out
by the expected conditional mean of y as shown in the following equation:

I~ ya(x, y) dy
Ely|X]|=—"———
17 g(x y)dy (26)

whereg(x,y) isthe Parzen probability density estimator, E[y|x)] isthe expected val ue of
y given x. When value of g(x,y) is unknown, it can be estimated from a sample of
observations of x and y. For anonparametric estimates of g(x,y), the class of consistent
estimators proposed by Parzen (1962) and extended to the multidimensional case by
Cacoullos(1966) isused. Thepredicted output produced by GRNN network isgiven by:
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£ oo X ~xill
9(x)= o
P2 27)
O'i

where (x,,y,) represents thei-th sample and misthe number of training samples. One of
themain drawbacksof the GRNN isthe extensive computational resourcesnecessary for
processing kernels and optimizing its width. Different approaches were also proposed
to reduce the number of kernelsin the GRNN.

The unsupervised learning algorithms like Adaptive Resonance Theory (ART), Self
Organizing Map (SOM) are not so commonly used in financial and manufacturing
applications and hence | eft out of discussion for the current chapter. Interested readers
may consult works by Carpenter and Grossberg (1988) and Kohonen (1998).

Neural Network Applications in Finance

One of the main applications of neural networks in finance is trading and financial
forecasting. Successful applications of neural networks includes a wide range of real
world problems, for example, future price estimation, derivative securities pricing and
hedging, exchange rate forecasting, bankruptcy prediction, stock performance and
selection, portfolio assignment and optimization, financial volatility assessment, and so
on. Demonstrated results and novelty of neural network applications have attracted
practitionersinthisfield. Someof theseapplicationsarebriefly reviewed inthefollowing
section.

Bankruptcy Prediction

Bankruptcy prediction has been an important and widely studied topic. The prediction
of thelikelihood of failure of acompany givenanumber of financial measures, how soon
an “ill” business can be identified, possibility of identifying the factors that put a
business at risk — these are of main interest in bank lending. Atiya (2001) and Vellido,
Lisboa, and Vaughan (1999) conducted a survey on the use of neural networks in
business applications that contains a list of works covering bankruptcy prediction.
Supervised neural network modelshave beentested agai nst anumber of techniques, like
discriminant analysis(Kiviluoto, 1998; Olmeda& Fernandez, 1997); regression (Fletcher
& Goss, 1993; Leshno & Spector; 1996); decisiontrees(Tam & Kiang, 1992); k-nearest
neighbor (Kiviluoto); multipleadaptiveregression splines(MARS) (Olmeda& Fernandez);
case-based reasoning (Jo, Han, & Lee, 1997), and so on. In most cases, neural network
models attained significantly better accuracy compared to other methods.
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Credit Scoring

Credit scoring is another area of finance where neural network applications have been
explored. From abank lending point of view, it isimportant to distinguish agood debtor
from a bad debtor by assessing the credit risk factor of each applicant. It can be
distinguished from the past behavioral or performance scoring in which the repayment
behavior of an applicant is analyzed to make a credit decision. The availability of data
inthisfieldisrather restricted (Desay, Crook, & Overstreet, 1996). Hecht-Nielson Co. has
developed a credit-scoring system that increased profitability by 27% by identifying
good credit risk and poor credit risk (Harston, 1990). Glorfeld and Hardgrave (1996),
Jagiel skaand Jaworski (1996), L eigh (1995), Piramuthu, Shaw, and Gentry (1994), Torsun
(1996), among others, have al so reported similar workson credit eval uation and scoring.
A variety of data sizes, ranges of variables, and techniques to select appropriate
variables were investigated in those studies.

Investment Portfolio

For every investment, there is atradeoff between risk and return. So, it is necessary to
ensure a balance between these two factors. Optimizing one’ s portfolio investment by
analyzingthosefactors, maximizing the expected returnsfor agivenrisk, andrebalancing
when needediscrucial for secureinvestment. Steiner and Wittkemper (1997) devel oped
aportfolio structure optimization model on aday-to-day trading basis. While the stock
decisions are derived from a nonlinear dynamic capital market model, the underlying
estimation and forecast modules are based on the neural network model. Using German
stock pricesfrom 1990to 1994, thismodel |eadsto aportfoliothat outperformsthemarket
portfolioby about 60%. Hung, Liang, and Liu (1996) proposed anintegration of arbitrage
pricing theory (APT) and an ANN to support portfolio management and report that the
integrated model beats the benchmark and outperformsthe traditional ARIMA model.
Y eo, Smith, Willis, and Brooks(2002) al so used k-meansclustering and neural networks
for optimal portfolio selection. Classification of policy holders into risk groups and
predicting the claim cost of each group were done using k-means clustering while price
sensitivity of each group wasesti mated by neural networks. Chapadosand Bengio (2001)
showed that aneural network-based asset all ocation model can significantly outperform
thebenchmark market performance.

Foreign Currency Exchange Rates

Modeling foreign currency exchange rates is an important issue for the business
community. The investment companies are dependent on the prediction of accurate
exchangerates so that they may makeinvestment decisions. Thisisquiteachallenging
job astherates are inherently noisy, nonstationary, and deterministically chaotic. Yao
& Tan (2000) devel oped aneural network model using six simpleindicatorsto predict the
exchange rate of six different currencies against the U.S. dollar. The ANN model
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demonstrated superior performance in comparison with the ARIMA-based model.
Kamruzzaman and Sarker (2003) used three different neural network |learning algorithms
to predict exchangeratesand found that all algorithms performed better than traditional
methods when compared against with five different performance metrics. Medeiros,
Veiga, and Pedreira (2001) proposed a novel flexible model called neurocoefficient
smooth transition autoregression (NCSTAR), an ANN to test for and model the
nonlinearitiesin monthly exchange rates.

Stock Market Analysis

Stock analysis haslong been one of the most important applications of neural networks
infinance. Most international investment bankersand brokeragefirmshave major stakes
in overseas markets. Hence, this topic has attracted considerable attentions from the
research community. There have been numerous research articles related to this topic.
Theseincludeworksby Chiang, Urban, and Baldridge (1996), Kim and Chun (1998), and
Teixeiraand Rodrigues(1997) on stock market index prediction; Barr and Mani (1994) and
Yoon, Guimaraes, and Swales (1994) on stock performance/selection prediction;
Wittkemper and Steiner (1996) on stock risk prediction; and Brook (1998), Donaldonand
Kamstra(1996), and Refenesand Holt (2001) on stock volatility prediction. Inmost cases,
neural networks outperformed other statistical methods.

Other Applications

Other applicationsinclude detecting financial fraud; creating wealth; and modeling the
relationship among corporate strategy, its financial status, and performance (Smith &
Gupta, 2000). Holder (1995) reportsthat Visalnternational deployed aneural network-
based fraud detection system that saved it an estimated $40 million within the first 6
months of its operation.

Apart fromtheoretical research, Coakely and Brown (2000) describeanumber of ANN-
based systems that are widely used in commercial applications. These are:

i FALCON, used by six of theten largest credit card companies to screen transac-
tions for potential fraud.

i Inspector, used by Chemical Bank to screen foreign currency transactions.

i Several ANNsusedto assistin managing investments by making predictionsabout
debt and equity securities, aswell asderivativeinstruments. Fadlallaand Lin (2001)
cited examplesfrom companieslike Fal con A sset management, John Deereand Co.,
Hyman Beck and Company, Multiverse Systems, Advanced | nvestment Technol -
ogy, and Ward System who used neural network-based systems. It has been
reported that asignificant number of Fortune-1000 companiesuseneural networks
for financial modeling.
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i Several ANNSs used for credit granting, including GMAC’s Credit Adviser that
grantsinstant credit for automobile loans.

i AREAS, used for residential property valuation.

For other financial applicationsand moredetailed survey, interested readersarereferred
tothearticlesby Coakley and Brown (2000), Fadlallaand Lin (2001), Smith and Gupta
(2000), Vellidoetal. (1999), and Wong, L ai, and Lam (2000).

Neural Network Applications in Manufacturing

In thissection, abrief review of ANN applicationsin manufacturing design, planning,
and operationswill be presented. The overall applications can beclassified ascondition
monitoring, cost estimation, fault diagnosis, parameter selection, production schedul-
ing, manufacturing cell formation, quality control, and others.

Condition Monitoring

In manufacturing, condition monitoring is a major application area for ANNs. These
applicationsinvolve monitoring different manufacturing operati ons and/or operational
conditionssuch astool wearing and breaking, metal forming, and drillingand machining
accuracy.

The process of metal forming involves several dies and punches used progressively to
form a part. Tooling is critical in metal forming, as continual tool replacement and
mai ntenance reduces productivity, raises manufacturing cost, and increases defective
item production. The ANN models, taking data from an online condition monitoring
system, can predict tool life that would help to generate an appropriate maintenance
schedule. Kong and Nahavandi (2002) developed such amodel for the forging process
that usesamultilayer error back propagation network. Theinputsof themodel wereforce,
acoustic emission signals, process parameters (such as tool temperature, stroke rates,
and surfacelubrication condition of in-feed material), and expected life. Themodel hel ps
to predict the tool condition, maintenance schedule, and tool replacement. Similar
techniques can be applied to other metal forming processes.

Turning isacommon metal cutting operation in manufacturing. In turning operations,
flank wear on the cutting tool directly affects the work piece dimension and the surface
quality. Choudhury et al. (1999) developed a methodology in which an optoelectronic
sensor was used in conjunction with a multilayered neural network for predicting the
flank wear. The digitized sensor signal, along with the cutting parameters, formed the
inputsto athree-layer feedforward fully connected neural network. The neural network
used a Backpropagation algorithm. Results showed the ability of the neural network to
accurately predict the flank wear.

Huang and Chen (2000) developed an in-process tool breakage detection system using
aneural network for anend mill operation. Theinputsof themodel were cutting forceand
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machi ning parameters such as spindl e speed, feed rate, and depth of cut. The output was
to detect thetool breakage conditions. Per their report, the neural networkswere capable
of detecting tool condition accurately. Wu (1992) devel oped aneural network model to
detect tool failure based onthelevel of cutting force and vibration or acoustic emission.

Brophy et al. (2002) proposed atwo-stage neural network model to detect anomaliesin
the drilling process. The network was used to classify drilling operations as normal or
abnormal (e.g., tool breakage or missing tool). The network used spindle power signal
(acquired over all or part of the operation) astheinput. A limitation of the approach is
that it requiresthe full signal before a classification is made.

Cost Estimation

The estimation of future production cost is a key factor in determining the overall
performanceof anew product’ sdevel opment and product redesigning process. Usually,
the cost per unit of agiven finished good is the sum of different resources such as raw
materials, components, energy, machinery, and plants. The quantification of the use of
each resourceisextremely difficult. Cavalieri et al. (2004) proposed an ANN technique
for the estimation of the unitary manufacturing costs of a new type of brake disks
produced by an Italian manufacturing firm. The results seem to confirm the validity of
theneural network theory inthisapplicationfield, but not aclear superiority with respect
tothetraditional parametric approach. However, the ANN seemsto be characterised by
a better trade-off between precision and cost of development. Zhang, Fuh, and Chan
(1996) illustrated the use of a neural network-based model for the estimation of the
packaging cost based on the geometrical characteristics of the packaged product.

Fault Diagnosis

Identifying the cause of process abnormalities is important for process automation.
Knapp and Wang (1992) studied the application of a Backpropagation network to fault
diagnosisof aComputer Numerical Control (CNC) machineusing vibration data. Knapp,
Javadpour, and Wang (2000) presented a real-time neural network-based condition
monitoring system for rotating mechanical equipment. There has been much effort
recently in making afusion of fuzzy logic and neural networksfor better performancein
decision making processes. The uncertainties involved in the input description and
output decision aretaken care of by the concept of fuzzy setswhiletheneural net theory
helps in generating the required decision region. Javadpour and Knapp (2003) imple-
mented a neural network model to diagnosis faults with high prediction accuracy in an
automated manufacturing environment. Their model incorporated the fuzzy concept to
capture uncertain input data.

Nondestructive testing for fault detection in welding technology is very expensive.
However, the correct detection of welding faultsisimportant to the successful detection
of an automated welding inspection system. Liao, Triantaphyllou, and Chang (2003)
investigated the performance of amultilayer perception neural networksinwelding fault
detection.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Artificial Neural Networks: Applications in Finance and Manufacturing 19

Parameter Selection

Machining-parameter selectionisacrucial task in amanufacturing environment. Inthe
conventional turning process, the parameters referred are cutting speed, feed rate, and
depth of cut. Theparametersplay animportant rolein efficient utili zation of machinetools
and significantly influence the overall manufacturing cost. Wong and Hamouda (2003)
used a feedforward neural network to predict optimum machining parameters under
different machining conditions. Althoughthey introduced anew typeof artificial neuron,
the Backpropagation al gorithm was used to optimize the network component represen-
tation.

Raj et al. (2000) developed a Backpropagation neural network to estimate the cutting
forces based on speed, feed, and depth of cut for machining amild-steel specimenwith
ahigh-speed steel (HSS) tool. Inaddition, they model ed the effect of tool geometry (i.e.,
rakeangle, cutting edgelocation, and orientation of tool face) on cutting forces. Viharos,
Monostori, and Markos (1999) applied a neural network to predict the cutting forces
based on cutting parameters for an expected surface roughness.

Wang (2004) proposed a hybrid two-phase neural network approach for modeling a
manufacturing process under alack of observations, which isdesigned for determining
cutting parametersinwireElectrical DischargeMachining (EDM). A combinationof ANN
and genetic algorithms was al so used for determining cutting parametersin machining
operations(Cusé& Balic, 2003) and manufacturing-processparameters(Li, Su, & Chiang,
2003).

Zuperl, Cus, Mursec, and Ploj (2004) proposed a new hybrid technique for optimal
selection of cutting parameters. The approach uses 10 technological constraintsand is
based on the maximum productionratecriteria. It describesthe multi objective optimiza-
tion of cutting conditionsby meansof an ANN and aroutine (knownasOPTIS) by taking
into consideration the technological, economic, and organizational limitations. The
analytical module OPTIS selects the optimum cutting conditions from commercial
databases with respect to minimum machining costs. By selection of optimum cutting
conditions, itispossibleto reach afavorableratio between thelow machining costsand
high productivity taking into account the given limitation of the cutting process.
Experimental results show that the proposed optimization algorithm for solving the
nonlinear constrained programming (NCP) problemsisboth effectiveand efficient, and
canbeintegratedinto anintelligent manufacturing system for sol ving complex machining
optimization problems.

Production Scheduling

Production schedulingistheallocation of resources over timeto perform acollection of
tasks. Of all kinds of production scheduling problems, the job shop scheduling is one
of themost complicated problems. It aimsto allocate mmachinesto performnjobsin order
to optimize certain criteria. Fonseca and Navaresse (2002) developed a feedforward
multilayered neural network through the back error propagation learning algorithm to
provide a versatile job shop scheduling analysis framework. Y ang and Wang (2000)
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proposed a constraint satisfaction adaptive neural network, together with several
heuristics, to solve a generalized job shop scheduling problem. Their results demon-
strated that the proposed neural network and its combined approaches are efficient with
respect to the quality of solution and the solving speed.

L eeand Shaw (2000) considered aclassical problem of sequencing aset of jobsthat arrive
indifferent combinationsover timeinamanufacturing flow shop. They devel oped atwo-
level neural network that incrementally learns sequencing knowledge. Based on the
knowledge gained, the neural network makesreal -time sequencing decisionsfor aset of
jobs. Akyol (2004) used aneural network with six different heuristic algorithmsfor flow-
shop scheduling.

Manufacturing Cell Formation and Related Problems

Thedesign of amanufacturing cell refersto obtaining good performance measures, such
as using an optimal number of resources, predefined utilization rates, minimizing the
production time, and so on. Christodoulou and Gaganis (1998) presented a neural
network approach in determining the appropriate manufacturing cell configuration that
meets the required performance measures.

Cell formation is a key issue in implementing cellular manufacturing and consists of
decomposing the shop in distinct manufacturing cells, each one dedicated to the
processing of afamily of similar part types. Guerrero, Lozano, Smith, Canca, and Kwok
(2002) proposed a methodology for cell formation in which a self-organizing neural
network is used to compute weighted similarity coefficients and cluster parts. Then a
linear network flow model isused to assign machinesto families. Moon and Chi (1992)
used aneural network model to solvethepart family formation problem. They combined
neural network techniquewiththeflexibility of thesimilarity coefficient method. Manu-
facturing information such as the sequence of operations, lot size, and multiple process
plans were given special consideration in their approach to solve a generalized part-
family formation problem. Further neural network applicationscan befound for the part-
machinegrouping problem (Kaparthi & Suresh, 1992), part family formation (Lee, Malave,
& Ramachandran, 1992), and machinecell identification (Leeetal., 1992).

Quality Control

Product quality referstoform errors, surface finish and dimensional errorsproduced on
components during machining. Several factors such as machine accuracy, tool/work
deflections, process conditions, and so on, dictate the product accuracy produced
during manufacturing. Despite significant research work, thereisnointegrated product
quality model reported to predict the product quality performancein CNC machining.
Suneel, Pande, and Date (2002) reported thedevel opment of anintelligent product quality
model for CNC turning using neural network techniques.

Reliableand accuratequality control isanimportant element intextile manufacturing. For
many textile products, a major quality control requirement is judging seam quality.
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Bahlmann et al. (1999) presented a method for an automated quality control of textile
seams, which isaimed to establish a standardized quality measure and to lower cost in
manufacturing. The system consists of asuitable image acquisition setup, an algorithm
for locating the seam, a feature extraction stage, and a neural network of the self-
organizing map type for feature classification.

Other Applications

Applicationsof neural network in other problems such asindustrial pattern recognition
(Yao, Freeman, Burke, & Yang, 1991), identification of appropriate decision criteria
(Chryssolouris, Lee, & Domroese, 1991), agile and flexible manufacturing (Shimizu,
Tanaka, & Kawada, 2004) and economic order quantity (Ziarati, 2000) have also been
reported in the literature. To differentiate the pattern recognition problems from other
disciplines, wewouldliketo mention herethat thisprobleminthiscontextistorecognize
industrial crews, bolts, and so on.

Conclusion

Artificial neural networks possess many desirabl efeaturesthat have madethem suitable
for practical financial and manufacturing applications. Inthischapter, wehaveprovided
abrief description of ANN architecturesand different learning algorithmsthat are most
commonly used in these applications. Interested readers are also directed to more
detailed descriptions of the algorithms for their relative advantages and disadvantages
for further information. Specific areas in finance and manufacturing that have experi-
enced remarkabl e results by modeling with neural networks are described and some of
theimportant and relevant worksarereported. The subsequent chaptersof thisbook will
present some of the recent developments of ANN applicationsin finance and manufac-
turing, and discuss various modeling issues.
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Chapter I 1

S multaneous
Evolution of Networ k
Architecturesand
Connection Weightsin
Artificial Neur al
Networ ks

Ruhul A. Sarker, University of New South Wales, Australia

Hussein A. Abbass, University of New South Wales, Australia

Abstract

Artificial Neural Networks (ANNs) have become popular among researchers and
practitioners for modeling complex real-world problems. One of the latest research
areas in thisfield is evolving ANNs. In this chapter, we investigate the simultaneous
evolution of network architectures and connection weights in ANNSs. In simultaneous
evolution, we use the well-known concept of multiobjective optimization and
subsequently evolutionary multiobjective algorithms to evolve ANNs. The results are
promising when compared with the traditional ANN algorithms. It is expected that this
methodology would provide better solutions to many applications of ANNSs.
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| ntroduction

Feed-forward ANNshavefound extensive acceptancein many disciplinesfor modeling
complex real-world problemsincluding thefinanceand manufacturing domains. ANANN
isformed from agroup of units, called neurons or processing elements, connected with
arcs, called synapses or links, where each arc is associated with aweight representing
the strength of the connection, and usually the nodes are organized in layers. Each
neuron hasan input equal to theweighted sum of the outputs of those neurons connected
to it. The weighted sum of the inputs represents the activation of the neuron. The
activation signal is passed through a transfer function to produce a single neuron’s
output. Thetransfer function introduces nonlinearity to the network. The behavior of a
neural network is determined by the transfer functions, the learning rule by which arcs
update their weights, and the architecture itself in terms of the number of connections
and layers. Training isthe process of adjusting the networks' weights to minimize the
difference between the network output and the desired output on asuitablemetric space.
Once the network is trained, it can be tested by a new dataset.

As previously mentioned, the performance of a neural network for a given problem
dependson thetransfer function, network architecture, connection weights, inputs, and
learning rule. The architecture of an ANN includes its topological structure, that is,
connectivity and number of nodesinthe network. Thearchitectural designiscrucial for
successful application of ANNsbecausethe architecture hasasignificant impact on the
overall processing capabilitiesof thenetwork. I n most function-approximation problems,
one hidden layer is sufficient to approximate continuous functions (Basheer, 2000;
Hecht-Nielsen, 1990). Generally, two hidden layers may be necessary for learning
functionswith discontinuities (Hecht-Nielsen, 1990). Thedetermination of the appropri-
ate number of hidden layers and number of hidden nodes in each layer is one of the
important tasksin ANN design. A network with too few hidden nodeswould beincapable
of differentiating between complex patterns, leading to alower estimate of the actual
trend. In contrast, if the network has too many hidden nodesit will follow the noisein
thedatadueto overparameterization | eading to poor generalizationfor test data(Basheer
& Hajmeer, 2000). Asthe number of hidden nodes increases, training becomes exces-
sively time-consuming.

Themost popular approach to finding the optimal number of hidden nodesisby trial and
error. Methods for network growing such as cascade correlation (Fahlman & Lebiere,
1990) and for network pruning such as optimal brain damage (LeCun, Denker, & Solla,
1990) have been used to overcomethe unstructured and somehow unmethodical process
for determining good network architecture. However, all these methodsstill suffer from
their slow convergence and long training time. Nowadays, many researchers use
evolutionary algorithmsto find the appropriate network architecture by minimizing the
output error (Kim& Han, 2000; Yao & Liu, 1998).

Weight trainingin ANNsisusual ly formul ated asaminimization of an error function, such
asthe mean square error between target and actual outputs averaged over all examples
(training data) by iteratively adjusting connection weights. Most training algorithms,
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such as Backpropagation (BP) and conjugate gradient are based on gradient descent
(Basheer & Hajmeer, 2000; Hertz, Krogh, & Palmer, 1991). Although BP has some
successful applications, the algorithm often getstrapped in alocal minimum of theerror
functionandisincapabl e of findingaglobal minimumif theerror functionismultimodal
and/or non-differentiable (Y ao, 1999). To overcomethisproblem, one can useevol ution-
ary algorithmsfor weight training. Theapplication of evolutionary algorithmsfor weight
training can be found in Kim and Han (2000) and Y ao and Liu (1998).

Asdiscussed previously, it isnecessary to determine the appropriate network architec-
ture and connection weightsto get the best performance out of ANNs. Most researchers
treat network architecture and connection weights as two independent optimization
problems. AsY ao (1999) indicated, connection weights haveto belearned after anear-
optimal architecture is found. Thisis especially true if one uses an indirect encoding
scheme, such asthedevel opmental rule method. Onemajor problemwith thedetermina-
tion of architecturesisnoisy fitnessevaluation (Yao & Liu, 1997). Inorder toreducesuch
noise, an architecture usually hasto betrained many timesfrom different randominitial
weights. Thismethod dramatically increases the computational timefor fitness evalua-
tion. If we look at the theoretical side of such optimization problems, this sequential
optimization procedure (first architecture optimization fol lowed by weight optimization)
will usually provide a suboptimal solution for the overall problem.

To overcome this problem, the natural choice is to determine the architecture and
connection weights simultaneously by solving a single optimization problem with two
objectives. Many researchersattempted toignorethearchitectureand minimizeonly the
mean sum squareerror function (Kim & Han, 2000; Yao & Liu, 1998). A comprehensive
list of paperson thistopic can befound in Yao (1999). However, if the contribution to
the objective function of a subproblem isvery low compared to the other, the effect of
thefirst subproblemwill not bereflected properly intheoverall optimal solution. Insuch
situations, simultaneous multiobjective optimization would be a better choice.

The purpose of this research is to determine the network architecture and connection
weightsof ANNssimultaneously by treating the problem asamultiobjective opti mization
problem. We believe the simultaneous evolution of architectures and connection
weights in ANNs using the concept of multiobjective optimization will add a new
directionof researchin ANNSs. Inaddition, wewill show experimentally that thisapproach
performs better than BP with much lower computational cost.

Thechapterisorganized asfollows. After introducing theresearch context, multiobjective
optimizationand evolutionary algorithmsareintroduced in the next section followed by
the proposed al gorithm for simultaneous evol ution of network architecture and connec-
tion weights. . Experimental results are presented in the “ Experiments” section. Appli-
cations of the proposed algorithms to finance and manufacturing are discussed in the
penultimate section, and conclusions are drawn in the final section.
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Multiobjective Optimization and
Evolutionary Algorithms

Inthissection, webriefly discuss multiobjectiveoptimization, evolutionary algorithms,
and theuse of evolutionary algorithmsfor solving multiobjective optimization problems.

Multiobjective Optimization

Consider amultiobjective optimization model as presented next.

Objective Function f(x)
Subject to xe X

Wherexisavector of decisionvariables(x,, x,, ..., X,), fisavector objectivefunctionwith
componentsf,, ...,f ,.Heref ,...,f ,arefunctionson E and Xisanonempty setinE . The
set X represents simple constraintsthat could be easily handled explicitly, such aslower
and upper bounds on the variables.

We wish to determine the optimal x, which optimizesf, satisfying the variable bounds.
Inthevector objectivefunction, thetypeof optimization of individual function could be
maximization, minimization, or amix of maximizationand minimization.

In multiobjective optimization, all the objectives must be optimized concurrently to get
thereal trade-off for decision-making. In this case, thereis no single optimal solution,
but rather a set of alternative solutions. These solutions are optimal in the wider sense
that no other solutionsin the search space are superior to them when all objectives are
considered. They are known as Pareto-optimal solutions.

Thereareseveral conventional optimization-based algorithmsfor solving multiobjective
optimization problems(Coello, 1999). These methods are not discussed here sincenone
of them perform simultaneous optimization. Evolutionary algorithms (EAs) seemto be
particularly suited for multiobjective optimization problems because they process a set
of solutionsin parallel, possibly exploiting similarities of solutions by recombination.
Someresearcherssuggest that multi objective search and optimization might beaproblem
areawhere EAs do better than other blind search strategies (Fonseca & Fleming, 1993;
Valenzuela-Renddn, & Uresti-Charre, 1997). There are several EAs available in the
literature those are capabl e of searching for multiple Pareto-optimal solutions concur-
rently inasinglerun. Some of the popular algorithmsare: the V ector Evaluated Genetic
Algorithm (VEGA) (Schaffer, 1985), Hajelaand Lin’ s(1992) genetic algorithm (HLGA),
Non-dominated Sorting Genetic Algorithms(NSGA) (Srinivas& Deb, 1994), Fonsecaand
Fleming's (1993) evolutionary algorithm (FFES), Niched Pareto Genetic Algorithm
(NPGA) (Horn, Nafpliotis, & Goldberg, 1994), the Strength Pareto Evol utionary Algo-
rithm (SPEA) (Zitzler & Thiele, 1999), the Pareto Archived Evolution Strategy (PAES)
(Knowles & Corne, 1999, 2000), and New Evolutionary Multiobjective Algorithms
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(NEMA) (Sarker, Liang, & Newton, 2002). However, noneof thesealgorithmsperforms
consistently for all types of problems. Recently, we developed the Pareto-based
Differential Evolution (PDE) approach, which outperforms most existing evolutionary
multiobjective algorithms over continuous domains (Abbass & Sarker, 2002; Abbass,
Sarker, & Newton, 2001; Sarker & Abbass, 2004).

Differential Evolution

Evolutionary algorithms (Fogel, 1995) are akind of global optimization technique that
uses sel ection and recombination asits primary operators to tackle optimization prob-
lems. Differential Evolution (DE) isabranch of evolutionary algorithms devel oped by
Rainer Storn and Kenneth Price (Storn & Price, 1995) for optimization problems over
continuous domains. In DE, each variable is represented in the chromosome by areal
number. The approach works as follows:

1  Createaninitial population of potential solutions at random, where repair rules
guarantee that those variables' values are within their boundaries.

2 Until termination conditions are satisfied:

i Select at random atrial individual for replacement, anindividual asthemain
parent, and two individuals as supporting parents.

i With some probability, each variable in the main parent is perturbed by
addingtoitaratio, F, of thedifference betweenthetwo valuesof thisvariable
in the other two supporting parents. At least one variable must be changed.
This process represents the crossover operator in DE.

i If theresultant vector isbetter than thetrial solution, it replacesit; otherwise
the trial solution is retained in the population.

° Go to 2 above.

From the previous discussion, DE differs from genetic algorithms (GA) in anumber of
points:

i DE usesreal number representation while conventional GA usesbinary, although
GA sometimes usesinteger or real number representation aswell.

i In GA, two parents are selected for crossover and the child is arecombination of
the parents. In DE, three parents are selected for crossover and the child is a
perturbation of one of them.

i Thenew childin DE replacesarandomly selected vector from the popul ation only
if it is better than it. In conventional GA, children replace the parents with some
probability regardless of their fitness.
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A Differential Evolution Algorithm for MOPs

A generic version of the adopted algorithm can be found in Abbass and Sarker (2002).
ThePDE algorithmissimilar tothe DE algorithm with thefollowing modifications:

1  Theinitia populationisinitialized according to aGaussian distribution N(0.5,0.15).
The step-length parameter is generated from a Gaussian distribution N(0O,1).

3. Reproduction isundertaken only among nondominated solutionsin each genera-
tion.

4.  Theboundary constraintsare preserved either by reversingthesignif thevariable
islessthan O or subtracting 1 if it is greater than 1 until the variable iswithin its
boundaries.

5. Offspring are placed into the population if they dominate the main parent.

N

The algorithm works as follows. An initial population is generated at random from a
Gaussian distributionwithmean 0.5 and standard deviation 0.15. All dominated solutions
are removed from the population. The remai ning non-dominated sol utions are retained
for reproduction. A child is generated from a selected three parents and is placed into
thepopulationif it dominatesthefirst sel ected parent; otherwiseanew selection process
takes place. This process continues until the population is completed.

Proposed Algorithm

This section presents the nomenclatures and representations used in describing the
algorithmandthedetailsof thedifferential evolutionalgorithmfor solving multiobjective
optimization problems.

Nomenclatures

From herein, the following notationswill be used for asingle hidden layer MLP:

i | and H are the number of input and hidden units respectively.
. XPeX=(xP%,....x"), p=1,...,P, XPisthep" patternin theinput feature space X
of dimension I, and P is the total number of patterns.

i Without any loss of generality, Y e Y, isthe corresponding scalar of pattern X?
in the hypothesis space Y.

i w, and w, , are the weights connecting input uniti,i=1, ..... , |, to hidden unit h,
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h=1, ....,H, and hidden unit h to the output unit o (whereoisassumedtobe 1in
this research) respectively.
. 0,X")=0(a,); a, :Zi':ovvihxip,h =1, ...., H, is the h'" hidden unit's output

corresponding to the input pattern X?, where a, is the activation of hidden unit h,
and o(.) isthe activation function that is taken in this research to be the logistic

1
function o(2) = Treo’ with D thefunction’ ssharpness or steepnessand istaken

to be 1 unlessit is mentioned otherwise.

. \?0" =0(a,);a, = Z:Zme@(x ?)is the network output and a_ is the activation of
output unit o corresponding to the input pattern Xr.

Representation

In deciding on an appropriate representation, we tried to choose a representation that
can be used for other architectures without further modifications. Our chromosomeisa
classthat contains one matrix 2 and one vector p. The matrix Q isof dimension (I + O)
X (H + O). Each element w; € €2, istheweight connecting unit i with unitj, wherei =0,
.., (I-1) istheinput uniti,i=I, ..... (I +O-1)istheoutput uniti-1,j=0, ....,(H-1) isthe
hiddenunitj,andj=H, ..... ,(H+0O-1)istheoutput unit (j —H). Thisrepresentation has
the following two characteristics that we are not using in the current version but can
easily beincorporated in the algorithm for future work:

1  Italowsdirect connectionfrom eachinputto each output units(weallow morethan
a single output unit in our representation).

2 It alows recurrent connections between the output units and themselves.

Thevector risof dimension H, wherep, € p isabinary value used to indicateif hidden
unit h existsin the network or not; that is, it works as a switch to turn a hidden unit on

or off. Thesum, 2::0 Py, representstheactual number of hidden unitsinanetwork, where

H isthe maximum number of hidden units. Thisrepresentation allows both training the
weights in the network as well as selecting a subset of hidden units.

M ethods

We have afunction-approximation problem that may arisein many situationsincluding
datamining, forecasting, and estimation. We have no prior knowledge about the nature
of the function.

Based on the discussions in the first section, we have decided to use one input layer,
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onehidden layer, and one output layer in the network. Our main objectiveisto estimate
the connection weights by minimizing the total error and select the appropriate number
of hidden nodes. In this chapter, we need to determine the connection weights that are
real variables and select the hidden nodes in the network that are associated each with
abinary variable (1if the hidden unit existsand O for not). We set two objectivesin this
problemasfollows:

1 Minimization of error
2 Minimization of number of hidden unitsinthe ANN

The problem can be handl ed asamultiobjective optimization problem. Thestepsto solve
this problem are given next.

1  Createarandominitial population of potential solutions.
2. Until termination conditions are satisfied, repeat:

(@) Evaluate the individuals in the population and label those who are
nondominated.

(b) Deleteall dominated solutions from the population.
(c) Repeat:
. Select at random an individual asthe main parent and two individualsas
supporting parents.
i With some probability Uniform(0,1), crossover the parentsto generate a
child where each weight in the main parent is perturbed by adding to it a
ratio, F e Gaussian(0,1), of thedifferencebetweenthetwo valuesof this

variable in the two supporting parents. At least one variable must be
changed.

i If the child dominates the main parent, place it into the population.
(d)  Until themaximum population sizeisreached.

Experiments

Inthissection, we providethe experimental setup, computation results, and discussions
on results.

Experimental Setup
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To test the performance of our proposed method, we experimented with a known
polynomial functionintwo variablesand of thethird degreewith noise. Noisewasadded
to each input with aprobability 0.2 from a Gaussian distribution N(0,0.2). Thefunction
took the form

X+

Wegenerated 2000 instancesasatraining set and another 2000 asatest set. Bothtraining
and test sets were generated independently. Variables were generated from a uniform
distribution between 0 and 1. After computing the output of the function, noises were
added to the inputs only.

For theevolutionary approach, aninitial population size of 50 was used and the maximum
number of objectiveeval uationswasset to 20,000. The number of inputsand the maximum
number of hidden nodes were chosen as 2 and 10 respectively. The PDE algorithm was
runwithfivedifferent crossover rates(0,0.05,0.1, 0.5, and 0.9) andfivedifferent mutation
rates (0, 0.05, 0.1, 0.5, and 0.9). For each combination of crossover and mutation rates,
resultswere collected and analyzed over 10 runswith different seed initializations. The
initial population isinitialized according to a Gaussian distribution N(0,1). The step-
length parameter F isgenerated for each variablefromaGaussian distribution N(0,1). The
algorithm iswritten in standard C** and ran on a Sun Sparc 4.

The BP algorithm was tested for 10 different architectures created varying the hidden
nodes from 1 to 10. For each architecture, the BP algorithm was run 10 times with 10
different random seeds. The same 10 seeds were used in all BP runs as well as the
evolutionary approach.

Experimental Results and Discussions

For each architecture, the results from each of the 10 runs of the BP algorithm were
recorded and analyzed. The performance of the evolutionary approach is measured by
the average performance of the Pareto set, which is selected on the training set, on the
test set. Theaverage error rate from these 100 runs (10 architectures, each with 10 runs)
isfoundtobe0.095with arangeof architecture-wiseaverage0.094t00.096. Theaverage
error rateswith different crossover and mutation ratesfor the PDE approach are plotted
inFigures1and 2. Each averageerror rateisamean of 10 runsfor agiven crossover and
mutation. In the x-axis of both figures, the numbers 1 to 5 represent the crossover or
mutation rates from 0.0 to 0.9 as discussed earlier.

AsseeninFigurel, theerror rateisminimal whenthemutationrateis0.1. At thismutation
rate, the error rate varieswithin anarrow zone of 0.055to 0.056. Asshownin Figure 2,
for all crossover rates, the error rate versus mutation rate follows a convex-like curve.
Here the error rate decreases up to the minimum, where mutation rate is 0.10, and then
increases. Thisnice pattern hel psin choosing the optimum crossover and mutation rates.
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Figure 1. Error rate vs. crossover rate
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In our case, a mutation rate of 0.10 and a crossover rate of 0.05 achieved the best
performancewith an error rate of 0.055. With thisbest crossover and mutation rates, the
best error rateinasinglerunis0.054 with three hidden nodes (asolution from the Pareto
front).

Taking the average figuresin both BP and PDE approaches, it is evident that the PDE
approach reducestheerror ratefrom 0.095t0 0.055, whichisaround 42% i mprovement.
This emphasizes the advantages of the evolutionary approach in terms of accuracy and
speed.

We need to emphasize herethat the evol utionary approach performed in the samenumber
of epochs better than what 10 different BP runsdid. To explain thisfurther, we needed
tofind thebest number of hidden unitson our test task. Todothis, wetrained 10 different
neural networkswiththenumber of hidden unitsranging from 1to 10. Intheevolutionary
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Table 1. Major ANN applications in finance and manufacturing

Finance Manufacturing

Parameter selection
Quality control

Trading and forecasting
Future-price estimation

e Stock performance and selection e  Condition monitoring

e Foreign exchange-rate forecasting | ¢  Tool wearing and breaking
e Corporate bankruptcy prediction e Cost estimation

¢ Fraud detection e Fault diagnosis

L] L]

L] °

approach, however, we sat the maximum number of hidden units and the evolutionary
approach determined the appropriate number without the need of experimentingwith 10
different networks. In addition, the crossover is much faster than BP, adding more
advantages to the evolutionary approach.

Applications in Finance and
M anufacturing

A brief review of applications of traditional ANNSs in finance and manufacturing is
providedin chapter 1 of thisbook. Themajor application areasin finance (Kamruzzaman
& Sarker, 20044, 2004b) and manufacturing (K han, Frayman, & Nahavandi, 2003, 2004)
are provided in the following table.

Chapters3to 9 of thisbook present detailed applicationsof traditional ANNstodifferent
finance case problemsand chapters10to 15 provideapplicationsfor anumber of different
manufacturing operational problems. Tothebest of our knowledge, not only inthisbook
but alsoinopenliterature, nofinance and manufacturing applicationsused simultaneous
evolution of network architectures and connection weightsin ANNs. However, as the
prediction performance of ANNs can be improved using the methodology presented in
thischapter, we are certain that it would provide better resultsfor finance and manufac-
turing applications.

Conclusion and Future Resear ch

In this research, we investigated the simultaneous evolution of architectures and
connection weightsin ANNSs. In so doing, we proposed the concept of multiobjective
optimization to determine the best architecture and appropriate connection weights
concurrently. Themultiobjective optimization problem wasthen solved using the Pareto
Differential Evolution algorithm. The result on atest problem was significantly better
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when compared with BP. Althoughit showsavery promising performance, inour future
work, wewill need to experiment with moreproblemsto generalize our findings. However,
it isexpected that it would provide better performances for most general cases.
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Chapter |11

Neur al Networ k-Based
Stock M ar ket Return
ForecastingUsing
DataMiningfor
VariableReduction

David Enke, University of Missouri — Rolla, USA

Abstract

Resear cher s have known for sometime that nonlinearity existsin the financial markets
and that neural networks can be used to forecast market returns. Unfortunately, many
of these studies fail to consider alternative forecasting techniques, or the relevance of
the input variables. The following research utilizes an information-gain technique
from machine |learning to evaluate the predictive relationships of numerous financial
and economic input variables. Neural network models for level estimation and
classification are then examined for their ability to provide an effective forecast of
future values. A cross-validation technique is also employed to improve the
generalization ability of the models. The results show that the classification models
generate higher accuracy in forecasting ability than the buy-and-hold strategy, aswell
as those guided by the level-estimation-based forecasts of the neural network and
benchmark linear regression models.
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| ntroduction

Important changes have taken place over the last two decades within the financial
markets, including the use of powerful communication and trading platformsthat have
increased the number of investors entering the markets (Elton & Gruber, 1991). Tradi-
tional capital market theory has also changed, and methods of financial analysis have
improved (Poddig & Rehkugler, 1996). Stock-return forecasting hasattracted the atten-
tion of researchersfor many yearsandtypically involvesan assumption that fundamental
information publicly available in the past has some predictive relationships to future
stock returns or indices. The samples of such information include economic variables,
exchange rates, industry- and sector-specific information, and individual corporate
financial statements. This perspective is opposed to the general tenets of the efficient
market hypothesis (Fama, 1970) which statesthat all availableinformation affecting the
current stock valueisconstituted by the market beforethe general public can maketrades
based onit (Jensen, 1978). Therefore, itisimpossibletoforecast futurereturnssincethey
already reflect all information currently known about the stocks. Thisisstill anempirical
issue since thereis contradictory evidence that markets are not fully efficient, and that
itispossibleto predict the futurereturns with resultsthat are better than random (Lo &
MacKinlay, 1988).

With this in mind, Balvers, Cosimano, and McDonald (1990), Breen, Glosten, and
Jagannathan (1990), Campbell (1987), Famaand French (1988, 1989), Famaand Schwert
(1977), Ferson (1989), Keim and Stambaugh (1986), and Schwert (1990), among others,
provideevidencethat stock market returnsare predictable by meansof publicly available
information such astime-seriesdataon financial and economic variables. These studies
identify that variables such asinterest rates, monetary-growth rates, changesin indus-
trial production, and inflation rates are statistically important for predicting aportion of
the stock returns. However, most of the studies just mentioned that attempt to capture
the relationship between the available information and the stock returnsrely on simple
linear regression assumptions, even though there is no evidence that the relationship
between the stock returnsand thefinancial and economicvariablesislinear. Sincethere
exists significant residual variance of the actual stock return from the prediction of the
regression equation, it is possible that nonlinear models could be used to explain this
residual variance and produce more reliable predictions of the stock price movements
(Mills, 1990; Priestley, 1988).

Since many of the current modeling techniques are based on linear assumptions, a
method of financial analysisthat considersthe nonlinear analysisof integrated financial
markets needs to be considered. Although it is possible to perform a nonlinear regres-
sion, most of these techniquesrequire that the nonlinear model must be specified before
theestimation of parameterscan bedetermined. Neural networksareanonlinear modeling
techniquethat may overcomethese problems (Hill, O’ Conner, & Remus, 1996). Neural
networks offer a novel technique that does not require a prespecification during the
modeling process since they independently learn the relationship inherent in the
variables. Thisisespecially useful in security investment and other financial areaswhere
much isassumed and little isknown about the nature of the processes determining asset
prices(Burrell & Folarin, 1997). Neural networksalso offer the flexibility of numerous
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architecturetypes, learning algorithms, and validation procedures. Current studiesthat
reflect recent interest in applying neural networks to answer future stock behaviors
include Abhyankar, Copeland, and Wong (1997), Chenoweth and Obradovic (1996),
Desai and Bharati (1998), Gencay (1998), L eung, Daouk, and Chen (2000), Motiwallaand
Wahab (2000), Pantazopoulos, Tsoukalas, Bourbakis, Brun, and Houstis (1998), Qi and
Maddala (1999), and Wood and Dasgupta (1996).

Inadditionto model-devel opmentissues, it hasal so beenfound that stock trading driven
by a certain forecast with a small forecasting error may not be as profitable as trading
guided by anaccurate prediction of thesign of stock return (Aggarwal & Demaskey, 1997;
Leungetal.,2000; Maberly, 1986; Wu & Zhang, 1997). Furthermore, giventheexistence
of avast number of articles addressing the predictabilities of stock market return, most
of the proposed modelsrely on various assumptionsand often employ aparticul ar series
of input variables without justification as to why they were chosen. A systematic
approach to determine what inputs areimportant is necessary. Therefore, the following
research will begin with adiscussion of an information-gain data-mining technique for
performing thevariable-relevanceanalysis. Two neural network approachesthat can be
used for classification and level estimationwill also be briefly reviewed, followed by a
discussion of the neural network models, including the generalized regression, proba-
bilistic, and multilayer feed-forward neural networksthat weredevel oped to estimatethe
value(level) and classify thedirection (sign) of excessstock returnsonthe S& P500 stock
index portfolio. Five-fold cross validation and early-stopping techniques are also
implementedinthisstudy toimprovethegeneralization ability of thefeed-forward neural
networks. The resulting data selection and model development, empirical results, and
discussion and conclusion will then be presented. Data sources and descriptions are
given in the Appendix.

M ethodology for Data Selection

Whenever possible, large-scal e deterministic components, such as trends and seasonal
variations, should be eliminated from the inputs since the network will attempt to learn
the trend and use it in the prediction (Nelson, Hill, Remus, & O’Conner, 1999;
Pantazopoulos et al., 1998). Therefore, the data collected in this study, excluding DIV,
T1, SP, DY, and ER, were seasonally adjusted. The source and definition of all the
variables are given in the Appendix. In addition, due to the lag associated with the
publication of macroeconomicindicatorsas mentioned by Qi and Maddala(1999), certain
data, particularly PP, IP, CP, and M1, were included in the base set with atwo-month
timelag whiletherest of thevariableswereincluded with aone-monthtimelag. Thiswas
done to simulate how this data would be received in the real setting, such that only
observable, but not future, datawould be provided as inputs to the forecasting models.

For this study, the differences [P, — P, ] of the variables were provided to the networks
so that different input variables can be compared in terms of relative change to the
monthly stock returns, sincetherelative change of variables may be more meaningful to
themodel sthantheoriginal valueswhenforecasting afinancial timeseries. Monthly data
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fromMarch 1976to December 1999, for atotal of 286 periodsand for each of 31 financial
and economic variables, were collected and analyzed. These variables, including PP,
Cp_,IP_,M1 ,T3,T6,T12,T60,T120,CD1,CD3,CD6,AAA,BAA,DIV,T1,SP,
DY, TE1, TE2, TE3, TE4, TES, TE6, DEL1, DE2, DE3, DE4, DES5,, DE6, and DE7,, were
primarily employedto predict thelevel andto classify thesign of theexcessstock returns
(ER,,) onthe S& P500index portfolio. These dataconsisted of amixtureof thevariables
conducted by variousresearchers, including Desai and Bharati (1998), Leung et al. (2000),
Motiwallaand Wahab (2000), and Qi and Maddala(1999). However, two variablesoften
usedintheliterature, long-termtreasury ratesand commercial paper, werenot applicable
dueto the fact that the 30-year treasury rate provided by the Federal Reserve Board of
Governorsstarted from February 1977, while the series of commercial papers had been
discontinued because of achange in methodology in September 1997. Several financial
instruments, such as CD and T-bill rates with additional maturities, were included to
supplement unavailable data in this study.

While uncertainty in selecting the predictive variables to forecast stock returns still
exists, as can be observed from a variety of input variables used in arecent literature
survey, several techniques such as regression coefficients (Qi & Maddala, 1999),
autocorrelations (Desai & Bharati, 1998), backward stepwise regression (Motiwalla&
Wahab, 2000), and genetic algorithms (M otiwalla& Wahab, 2000) have been employed
by afew studiesto perform variable subset selection. In addition, several researchers,
such as Leung et al. (2000), Gencay (1998), and Pantazopoulos et al. (1998), have
subjectively selected the subsets of variables based on empirical evaluations. None of
these studies have incorporated all available variables previously mentioned in the
literature to uncover the predictive input variables, while at the same time eliminating
irrelevant or redundant data. Itiscritical to consider all thedatasinceleaving out relevant
variables or keeping irrelevant variables may be detrimental, causing confusion to the
neural network models. Besides, the use of too many variables would require a neural
network that contains unnecessary neurons and hidden layers. Unfortunately, thereis
no consistent method that has been used to pick out the useful variablesin stock return
forecasting. Thismay be dueto thefact that the behavior of thisdataisnot well known.

Onealternativethat can be used to extract val uableinformation and knowledgefromlarge
amountsof datainvolvesthe use of datamining (Han & Micheline, 2000). Specifically,
there have been studiesinthevariousareasof datamining (i.e., machinelearning, fuzzy
logic, statistics, and rough-set theories) on variable relevance analysis. Relevance
analysiscan also beperformed onfinancial datawiththeaim of removing any irrelevant
or redundant variables from the learning process. The general idea behind variable
relevance analysis is to compute some measures that can be used to quantify the
relevance of variables hiddenin alarge data set with respect to agiven class or concept
description. Such measures include information gain, the Gini index, uncertainty, and
correlation coefficients. For thisresearch, aninductivelearning decision tree algorithm
that integrates an information gain analysis technique with a dimension-based data
analysis method was selected as it can be effectively used for variable subset selection
(Han& Micheline, 2000). Theresulting method removesthelessinformation producing
variablesand collectsthe variablesthat contain moreinformation. Therefore, it may be
the most appropriate data-mining technique to perform variabl e subset selection when
the usefulness of the data is unknown. While using the information gain analysis
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technique, the predicted directions of excess stock returns were used as class distribu-
tions. Theresulting variableswiththe highinformation gainwerechosen astherelevance
input variables provided to the neural network models. The following paragraphs give
anintroductiontotheinformation-gain calculation. It isrecommended that readerswho
areinterested in full details of the information gain algorithm should refer to Quinlan
(1993).

L et Sbeaset consisting of sdatasamples. Supposetheclasslabel variablehas mdistinct
valuesdefining mdistinct classes, C (fori=1,2, ..., m). Let s bethe number of samples
of Sin class C,. The expected information for classification is given by:

15,151 S ) == PIOG,(P,) )

i=1

where p, isthe probability that an arbitrary sample belongsto class C, and is estimated
by s/ s. Note that alog function to the base 2 is used since the information is encoded
inbits. Let variable A have v distinct values denoted in order from small to large values
as{a,a,a,...,a}. Any split valuelying between a and a , , will have the same effect
of dividing the samplesinto those whosevalue of thevariable Aliesin{a,, a, a,...,a}
andthosewhosevalueisin{a,,,a,, a,.,...,a}. However,themidpoint of eachinterval
isusually chosen as the representative split. Itisdefined as (a + a,,) / 2. Thus, there
arev—1possiblesplitson A, all of which areexamined. Notethat examiningall v—1 splits
is necessary to determine the highest information gain of A.

Variable A cantherefore be used to partition Sinto 2 subsets, { S, S}, where S contains
those samplesin Sthat havevalues{a, a,, a,,...,a} or{a,,,a,, a, ,...,a} of A Let

S contain S; samplesof class C.. The expected information based on this partitioning by
A, also known as the “entropy” of A, isgiven by:

E(A)=is’“+sz"S I (8,8 Sy ), @

=1

Theterm (51,- +S,+..+ Smj) / s acts as the weight of the j" subset and is the number of
samplesinthe subset (i.e., having value a of A) divided by the total number of samples

in S. Note that for a given subset SJ

I(Slj ’Szj' """ vsmj ):_i pij |ng( pij ) (3)

where P, = S; / |SJ| and is the probability that a sample in S belongs to class C.. The
information gain obtained by this partitioning of the split on A is defined by:
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Gain(A)=1(5S,,S,,S; s s, )—E(A). 4

In this approach to relevance analysis, the highest information gain for each of the
variables defining the samples in S can be obtained. The variable with the highest
information gain is considered the most discriminating variable of the given set. By
computing the information gain for each variable, a ranking of the variables can be
obtained. Finally, the relevance threshold was determined to select only the strong
relevance variables to be used in the forecasting models, and was chosen to eliminate
the variables that contributed less than 0.1% of the total variation in the data set. This
number relates to previous research with principle component analysis, and is also a
result of trial-and-error. It allowsthe network to train efficiently, and al so cutstheinput
data set in half.

For this research, each of the neural network models was compared against a linear
regression model, aswell as a buy-and-hold strategy. For all models, the data set used
inthisstudy wasdivided into two periods: Thefirst period runsfrom March 1976 to Oct
1992 for atotal of 200 months while the second period runs from November 1992 to
December 1999 for a total of 86 months. The former was used for determining the
specificationsof the model sand parameters of theforecasting techniques. Thelatter was
reserved for out-of-sample evaluation and comparison of performances among the
forecasting models.

Neural Network Models

Neural networks mimic the human brain and are characterized by the pattern of connec-
tions between the various network layers, the numbers of neurons in each layer, the
learning algorithm, and the neuron activation functions. Generally speaking, a neural
network isaset of connected input and output unitswhere each connection hasaweight
associatedwithit. During thelearning phase, the network |earnsby adjusting theweights
so as to be able to correctly predict or classify the output target of a given set of input
samples. Given the numerous types of neural network architectures that have been
developedintheliterature, threeimportant types of neural networkswereimplemented
in this study to compare their predictive ability against the classical linear regression
model. The following three subsections give a brief introduction of these three neural
network models.

Multilayer Feed-Forward Neural Network

Multilayer feed-forward neural networkshave beenwidely used for financial forecasting
due to their ability to correctly classify and predict the dependent variable (Vellido,
Lisboa, & Vaughan, 1999). Backpropagation is by far the most popular neural network
training algorithm that has been used to perform learning for multilayer feed-forward
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neural networks. Sincethefeed-forward neural networksarewell known and described
elsewhere, the network structures and backpropagation algorithms are not described
here. However, readerswho are interested in greater detail can refer to earlier chapters
or to Rumelhart and McClelland (1986) for a comprehensive explanation of the
backpropagation algorithm used to train multilayer feed-forward neural networks.

During neural network modeling, Malliaris and Salchenberger (1993) suggest that
validation techniques are required to identify the proper number of hidden layer nodes,
thus avoiding underfitting (too few neurons) and overfitting (too many neurons)
problems. Generally, too many neurons in the hidden layers results in excessive
connections, resulting in aneural network that memorizesthe dataand lacksthe ability
to generalize. One approach that can be used to avoid over-fitting is n-fold cross-
validation (Peterson, St Clair, Aylward, & Bond, 1995). A five-fold cross-validation,
which was used in this experiment, can be described as follows: The data sample is
randomly partitioned into five equal-sized foldsand the network istrained fivetimes. In
each of the training passes, one fold is omitted from the training data and the resulting
model isvalidated on the casesin that omitted fold, which isalso known asavalidation
set. Thefirst period (200 months) of thedatasetisused for thefive-fold cross-validation
experiment, leaving the second period for truly untouched out-of-sample data. The
averageroot-mean-squared error over thefiveunseen validation setsisnormally agood
predictor of the error rate of amodel built from all the data.

Another approach that can be used to achieve better generalization in trained neural
networks is called early stopping (Demuth & Beale, 1998). This technique can be
effectively used with the cross-validation experiment. Thevalidation setisused to decide
when to stop training. When the network begins to over-fit the data, the error on the
validation caseswill typically begintorise. Inthisstudy, thetraining was stopped when
the validation error increased for five iterations, causing a return of the weights and
biasesto the minimum of thevalidation error. Theaverageerror resultsof thevalidation
cases (40 monthsineachfoldfor thisstudy) from then-fold cross-validati on experiment
are then used as criteria for determining the network structure, namely the number of
hidden layers, number of neurons, learning algorithms, learning rates, and activation
functions.

Generalized Regression Neural Network

Whileanumber of articlesaddresstheability of multilayer feed-forward neural network
models for financial forecasting, none of these studies has practically applied the
generalized regression neural network (GRNN) to forecast stock returns. Similar to the
feed-forward neural networks, the GRNN can be used for function approximation to
estimate the values of continuous dependent variables, such as future position, future
values, and multivariable interpolation. The GRNN is akind of radial-basis-function
network and also looks similar to afeed-forward neural network responding to an input
pattern by processing the input variables from one layer to the next with no feedback
paths (Specht, 1991). However, its operation is fundamentally different. The GRNN is
based on nonlinear regression theory that can be used when an assumption of linearity
isnot justified.
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Thetraining set contains the values of x (independent variables) that correspond to the
value of y (dependent variable). This regression method will produce the optimal
expected val ue of y, which minimizesthemean-squared error. The GRNN approach uses
a method that frees the necessity to assume a specific functional form, allowing the
appropriate form to be expressed as a probability density function that is empirically
determined from observed datausing thewindow estimation (Parzen, 1962). Therefore,
this approach is not limited to any particular forms and requires no prior knowledge of
the estimated function. The GRNN formulaisbriefly described asfollows:

[yf(xy)ay
Ely/x] = =

JF(xy)dy

—co

©)

wherey is the output of the estimator, X is the estimator input vector, E [y / X] isthe
expected valueof y given x, and f (X, y) istheknown joint continuous probability density
function of xandy. Whenthedensity f(x, y) isnot known, it will beestimated fromasample
of observationsof xandy. For anonparametric estimate of f(Xx,y), the classof consistent
estimators proposed by Parzen (1962) isused. Asaresult, the following equation gives
the optimal expected value of y:

2hw

y: i=1
h

(©)

n
i=1

Figure 1. Generalized regression neural network architecture

Input Layer  Hidden Layer 1
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where w, isthe target output corresponding to theinput training vector x, and the output
y,h = exp[ D.*/ (20?)] isthe output of hidden neuron, D;* = (x-u,)"(x- u) isthe squared
dlstance between the input vector x and the training vector u, and s is a smoothing
parameter of theradial basisfunction. The GRNN architectureisshowninFigurel. The
neuron of the hidden layer 1 is created to hold theinput vector. The weight between the
newly created hidden neuron and the neuron of the hidden layer 2 is assigned the target
value.

Probabilistic Neural Network

In contrast to the GRNN used to estimate the values of continuous variables, the
probabilistic neural network (PNN) finds decision boundaries between categories of
patterns. Therefore, the PNN is mainly used for classification problems and has been
successfully used for classifying the direction of financial time series (Thawornwong,
Enke, & Dagli, 2001). The PNN is a parallel implementation of a standard Bayesian
classifier and hasafour-layer network that can perform pattern classification. Itisbased
essentially on the estimation of probability density functions for various classes as
learned fromtraining samples. The PNN learnsfrom the sampl edatainstantaneously and
uses these probability density functionsto compute the nonlinear decision boundaries
between classes in away that approaches the Bayes optimal (Specht, 1990). The PNN
formulaisexplained asfollows:

fu(x)= (w,z 2 ™)

(O § Ry

wheref,(x) isthe probability density function estimator for class A, pisthe dimension-
ality of training vector, z = exp[-D, / (26?)] isthe output of hidden neuron, D, = (x- u,)"(x
- u)) is the distance between the input vector x and the training vector u from category
A, and ¢ is asmoothing parameter.

Figure 2. Probabilistic neural network architecture

Hidden Layer 1

Input Layer Hidden Layer 2
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Theoretically, the PNN can classify an out-of-sampl e datawith the maximum probability
of successwhen enough training dataisgiven (Wasserman, 1993). Figure 2 presentsthe
PNN architecture. Whenaninputispresentedtothehiddenlayer 1, it computesdistances
from the input vector to the training vectors and produces a vector whose elements
indicate how closetheinputisto thevectorsof thetraining set. The hidden layer 2 then
sums these elements for each class of inputs to produce a vector of probabilities asits
net output. Finally, the activation function of the PNN output layer picksthe maximum
of these probabilities and classifies it into specific output classes.

Data Selection and Model Development

The selection of the input variables is a modeling decision that can greatly affect the
model performance. For the neural network modeling, aninformation-gain data-mining
analysiswas used to find good subsets of the full set of the first-period input variables.
Of the 31 variables, 15 variables were selected by the information gain data mining
analysis as strong relevance predictors for the data set used in this study. They include
M1, T3,T6,T120,CD1,CD3,CD6, SP, TE2, TE3, TE4, DE2, DE3, DE5, and DE7. Thus,
these variables were consistently used as the input variables for training the neural
networks throughout the modeling stage. The values of the input variables were first
preprocessed by normalizing them within arange of —1 and +1 to minimizethe effect of
magnitude among the inputs, thereby increase the effectiveness of the learning algo-
rithm.

Itiswell known that most trading practicesadopted by financial analystsrely onaccurate
prediction of the pricelevel sof financial instruments. Nonethel ess, some recent studies
have suggested that trading strategi es guided by forecasts on the direction of the change
in pricelevel may be more effective and thus can generate higher profits. Aggarwal and
Demaskey (1997) report that the performanceof crosshedgingimprovessignificantly if
the direction of changesin exchange rates can be predicted. In another study, Maberly
(1986) explores the relationship between the direction of interday and intraday price
changes on the S& P 500 futures. Wu and Zhang (1997) investigate the predictability of
the direction of change in the future spot exchange rate. Leung et al. (2000) found that
the forecasting models based on the direction of stock return outperform the models
based on the level of stock return in terms of predicting the direction of stock market
return and maximizing profitsfrominvestment trading.

The previously cited studies demonstrate the useful ness of forecasting the direction of
changeinthepriceor returnlevel by meansof againor aloss. Infact, theresultsof these
findingsarereasonabl e because accurate price estimation, asdetermined by itsdeviation
from the actual observation, may not be a good predictor of the direction of changein
thepricelevelsof afinancial instrument. To facilitate amore effectiveforecast, thetwo
forecasting approaches, namely classificationandlevel estimation, wereinvestigatedto
evaluate the resulting performances of the model development. Specifically, the feed-
forward neural networkswere developed to both estimate the value (level) and classify
thedirection (sign) of excessstock returnsonthe S& P500index portfolio. For thisstudy,
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the GRNN was used to estimate the level of excess stock return, while the PNN was
employed to classify the sign of excess stock return. Finally, the conventional linear
regression model was devel oped to serve as abenchmark for performance comparison
purposes. Note that the second period test data were never used during the model
development so that these forecasting models were always tested on truly untouched
out-of-sampl e data.

Neural Network Models for Level Estimation

For the feed-forward neural network using the backpropagation learning algorithm, a
sigmoid hyperbolic tangent function was sel ected as the activation function to generate
an even distribution over the input values. A single hidden layer was chosen for the
neural network model sinceit hasbeen successfully used for financial classificationand
prediction (Swales & Yoon, 1992). Accordingly, the feed-forward neural network was
built with threelayers (input layer, hidden layer, and output layer). Each of therelevant
15 input variables was assigned a separate input neuron to the input layer of the feed-
forward neural network. One output neuron was used in the output layer to represent the
predicted excess stock return of a given set of the 15 input variables. In this study, the
connection weights were initially randomized and then determined during the
backpropagation training process.

After numerous experiments with various numbers of hidden-layer neurons, learning
algorithms, and learning rates, the feed-forward neural network employing 15 neurons
in the input layer, 21 neurons in the hidden layer, 0.2 learning rate, and a resilient
backpropagation learning algorithm (Riedmiller & Braun, 1993) wasfound to bethe best
network architecture based onthelowest averageroot-mean-squared error (RM SE) over
the five-fold cross-validation experiment. In other words, this network architecture
generated the lowest average RM SE over the five omitted folds (validation sets) in this
study. TheRM SE used inthefeed-forward neural network for level estimationisdefined
as:

RMSE = 23" (y, -t ®

wherey, isthe predicted excess stock return, t isthe actual excessstock return, andnis
the number of validation cases (40 in this study). The average RM SE results were
calculated only after the neural network outputs have been scaled back to their normal
values. By conducting thefive-fold cross-validation experiment, theforecasting results
will not be based on a single network output because five neural network models were
developed from the five different data sets. For this reason, the predicted excess stock
returnsof thefive network outputswereaveraged to generatetheweighted excessreturn
inthisexperiment.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



54 Enke

Table 1. Portfolio neural network model for level estimation

Input-layer Hidden-layer

Omitted Folds Learning Rate
Neurons Neurons
1 15 23 0.3
2 15 27 0.2
3 15 24 0.3
4 15 11 0.2
5 15 21 0.2

To further improve the forecasting performance, we also examined a portfolio network
model consisting of the network architecture that produced the lowest RMSE in each
omitted fold cross-validation experiment. In other words, the neural network model
generating thelowest RM SE from each omitted fold experiment was chosen asone of the
fiveneural networksdeliberately combined asthe portfolio network model. Theresulting
portfolio network architecturesusing thelowest RM SE in each omitted fol d experiment
areprovidedin Table 1. Itisobserved that the suitable neurons used in the hidden layer
of thefivecombined portfolio networksthat weretrained based on different omitted folds
are different. This observation suggests the importance of network modeling for a
separate omitted fold experiment because the potentially better trained neural network
may be obtained from the specific validation cases. Again, the WER of the portfolio
network model was cal culated from the five combined portfolio network outputs.

Unlikethefeed-forward neural networks, the GRNN can be designed very quickly, and
no early stopping techniqueisrequired duringitstraining. Therefore, therewould beno
need to randomly partition the data into equal-sized folds for cross-validation. This
allowed the first period (200 months) of the data set to be used in network training for
predicting the excess stock returns of the last 86 months. In this study, a smoothing
parameter of the radial-basis function equal to 1.00 was selected to approximate the
network function moreefficiently. The GRNN training processemployed the sameinput
variables, preprocessing techniques, and postprocessing techniques as those of the
feed-forward neural network models.

Neural Network Models for Classification

Other thantheoutput-layer structure, thefeed-forward neural network for classification
employed the same network structuresasthose used for level estimation. Sincethereare
two classes for the sign of excess stock return, two output neurons were employed for
the output layer to represent the different classes of the predicted excess stock return.
For thisresearch, the[+1 —1] and [-1 +1] classes represented the predicted positive and
negative signs of excess stock return, respectively. The output neuron with the highest
value was taken to represent the predicted sign of excess stock return based on agiven
set of the 15 input variables.

During testing, afeed-forward neural network employing 15 neuronsin theinput layer,
27 neuronsinthehiddenlayer, 0.3learningrate, and aresilient backpropagationlearning
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Table 2. Portfolio neural network model for classification

Omitted Folds Inputt-layer Hidden-layer Learning Rate
Neurons Neurons
1 15 21 0.3
2 15 19 0.2
3 15 28 0.3
4 15 27 0.3
5 15 23 0.3

algorithm wasfound to be the best network architecture with the lowest average RM SE
over thefive-fold cross-validation experiment. The RM SE used inthefeed-forward neural
network for classification is defined as:

RMSE:\/ i{yl. | yz. |)2} ©)

=1

wherey, andy, arethe predicted classes of excessstock return of thetwo output neurons,
t, and t, are the actual classes of excess stock return, and n is the number of validation
cases. Just like the previously devel oped feed-forward neural network modelsfor level
estimation, the forecasting resultswill be based on five network outputs. Therefore, the
majority of thesignsof five network outputsare used to determinethedecisive predicted
sign of excess stock return. For example, when the five network models generate three
positive predicted signs and two negative predicted signs of excess stock return based
onagiven set of the15input variabl es, thedecisive predicted sign of excessstock return
isresolved to be positive.

In addition, a portfolio network model for classification that consists of the network
architecture producing the lowest RM SE in each omitted fold cross-validation experi-
ment wasexplored. Theresulting portfolio network architecturesusing thelowest RM SE
in each omitted fold experiment aregivenin Table 2. Ascan be seen, the suitable hidden
layer neurons of the five combined portfolio networks are different, implying asimilar
observation to those of the portfolio network model for level estimation. Similarly, the
decisive predicted sign of excessstock return of theportfolio network model wasderived
from the majority of the five combined portfolio network outputs.

Likethe GRNN, thedesign of the PNN isfast and straightforward. Infact, neither training
nor an early stopping techniqueisrequired during itsdesign. Therefore, thefirst period
(200 months) of the data set was used in the network modeling for predicting the sign of
theexcessstock returns of thelast 86 months. Also, asmoothing parameter equal to 1.00
was selected to consider several nearby design vectors. Again, the PNN design
employed the same input variables and preprocessing techniques as those of the feed-
forward neural network models.
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Linear Regression for Level Estimation

For the linear regression forecasting, the backward stepwise regression for dimension-
ality reduction was employed to assume a linear additive relationship. This method
started withthefull set of variablesinthemodel. Theworst of the original variableswas
determined and removed fromthefull set. At each subsequent iteration or step, theworst
of the remaining variables was removed from the last updated set. The significant t-
statisticswereused ascriteriafor retention of thesignificant input variablesinthelinear
regression model. The remaining variables were thus used in predicting excess stock
returns. In this study, the backward stepwise technique kept 10 variables, PP, M1, T3,
T12, T60, CD1, CD6, BAA, SP, and DE7, as the significant input variables in the
regression model (a= 0.05). Theregression model has the following function:

ER,,=-0.444+(0.959xPP,_)+(0.100xM1, )+(2.525xT3)+(5.981xT12)+(4.584xT60)
+(~1.050xCD1)+(-5.472xCD6)) +(~1.437xBAA )+(~0.027xSP)+(8.295xDE7)  (10)

whereall the regression coefficientsare significant and the F-statisticis2.027 (p-value
0.033), indicating that these forecasting variables contain information about future
excess stock returns (F-critical = 1.91). The regression model shows that the relative
changes of PP, M1, T3, T12, and DE7 have a positive effect on predictions of excess
stock return, whereasthe effect on excess stock returnsof T60, CD1, CD6, BAA, and SP
is negative.

Results

The predictive performances of the developed models were evaluated using the un-
touched out-of-sample data (second period). Thisisdueto the fact that the superior in-
sampl e performance does not always guarantee the validity of the forecasting accuracy.
One possible approach for evaluating the forecasting performance is to investigate
whether traditional error measures such as those based on the RMSE or correlation
(CORR) betweentheactual out-of-samplereturnsand their predicted valuesaresmall or

Table 3. Testing set performance measures

CORR RMSE SIGN
Levelestimation Origina Level NN 0.0231 1.1614 0.6628*
Models Portfolio Level NN 0.0528 1.1206 0.6860*
GRNN 0.0714 1.1206 0.6860*
Regression 0.0300 1.4467 0.4767
Classification Original ClassNN 0.2300 1.2200 0.6279*
Models Portfolio Class NN 0.3150 1.0997 0.6977*
PNN 0.3020 1.2575 0.6047*
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highly correlate, respectively. However, thereissomeevidenceintheliterature suggest-
ing that traditional measures of forecasting performance may not be strongly related to
profitsfromtrading (Pesaran & Timmermann, 1995). An alternative approachistolook
at the proportion of time that the signs of excess stock returns (SIGN) are correctly
predicted. Infact, Leitch and Tanner (1991) statethat theforecast performancebased on
the sigh measure matches more closely to the profit performance than do traditional
criteria.

Table3reportsall thethree performance measures of the original level estimation feed-
forward neural network (NN) using the lowest average RM SE (Original level NN), the
portfolio level estimation feed-forward neural network using the lowest RMSE in each
omittedfold (Portfoliolevel NN), the GRNN, thelinear regression model (Regression),
theoriginal classification feed-forward neural network using thelowest average RM SE
(Original ClassNN), the portfolio classification feed-forward neural network using the
lowest RM SE ineach omittedfold (Portfolio ClassNN), and the PNN from November 1992
to December 1999. RM SE in Table 3 representstheroot-mean-squared error betweenthe
actual and predicted signsof excessstock return. CORR refersto the Pearson correlation
coefficient between the actual and predicted signs of excess stock return (Pesaran &
Timmermann, 1992). SIGN denotesthe proportion of timesthe predicted signsof excess
stock returnsare correctly classified. Note that the +1 and —1, representing the positive
and negativedecisive predicted signsfrom the PNN and the classification feed-forward
neural networks, were used to compute the resulting classification performancesin the
study. To compare the classification performances with those of the Regression, the
GRNN, and thefeed-forward neural networksfor level estimation, theoriginal RM SE and
CORR performance measures of these level estimation models were recalculated in
connection with the signs of +1 and —1 of the classification models. That is, when the
level-estimation model sgenerateapositive predicted val ue of excessstock return, it will
beconvertedto+1, or viceversa. Thereasonfor thisrecal cul ationisthat the PNN model
is designed to give the exact signs of +1 and —1. Therefore, the prediction of the other
forecasting modelsis required to adjust for unbiased performance comparisons.

According to Table 3, the empirical results show that neither the classification nor the
level-estimation neural network models can accurately predict the signs of excess stock
return because of the relatively low correlation relationship, although each of these
models, except the Original Level NN model, is unquestionably better than the model
using linear regression. Thisis dueto the fact that the CORR of these modelsindicates
higher positive relationship between the actual and predicted signs of excess stock
return. Itisalso observed that the CORR of the classification modelsisconstantly better
than that of the level estimation models. In particular, the Portfolio Class NN has the
highest CORR (0.3150) that can be obtained from the experiment. Thisrevealsthat the
neural networks, especially the classification models, perform more accurately in cor-
rectly predicting the portion of future excess stock returns.

Regarding the second performance measure, the results again confirm that the linear
regression model istheleast accurate performer becauseit generatesthe highest RM SE
(1.4467) compared to that of the neural network models. In contrast, the Portfolio Class
NN model producesthe lowest RM SE (1.0997). Nonethel ess, the remaining two classi-
fication models, the Original Class NN and PNN models, signal slightly higher RMSE
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results than those of the level-estimation neural network models. For the third perfor-
mance measure, the results show that the percentage of the correct signs (SIGN)
generated by the neural network modelsisfar moreaccurate and consistently predictive
than that of the linear regression forecast. This is because the correct signs produced
by all of the neural network models are always greater than 0.6047. For statistical
evaluation, the null hypothesis of no predictive effectiveness was calculated by
conducting aone-sided test of H : p=0.50 against H_: p> 0.50. The SIGN marked with
anasterisk (*) in Table 3indicatesthesignificant differencesfromthe benchmark of 0.5
at a95% level of confidence. Moreimportantly, the Portfolio ClassNN model onceagain
signalsthe highest SIGN (0.6977) obtainablefrom the study, whereasthelinear regres-
sion forecast has obtained only 0.4767 of the correct signs. Thisresult verifiesthat the
correct signs generated by each neural network model are better than random. In
summary, the overall out-of-sample forecasts using the GRNN and Portfolio ClassNN
modelsare more accuratethanthose usingthe Original Level NN and PortfolioLevel NN,
Original Class NN, PNN, and Regression models with respect to their approaches.
Particularly, the Portfolio ClassNN model isprovento bethebest performerinall of the
performancemeasuresusedinthisstudy. Thesefindingsstrongly support thenonlinearity
relationship between the past financial and economic variables and the future stock
returnsinthefinancial markets.

Discussion and Conclusion

An attempt has been madein this study to investigate the predictive power of financial
and economic variables by adopting the variable-relevance-analysis technique in ma-
chinelearning for datamining. Thisapproach seems particularly attractivein selecting
the variables when the usefulness of the datais unknown, especially when nonlinearity
existsinthefinancial market asfoundinthisstudy. Sinceitisknown that the determinant
between the variables and their interrel ationships over stock returns could change over
time, different relevanceinput variablesmay be obtai ned by conducting thisdata-mining
technique under different time periods. In particul ar, we examined the effectiveness of
the neural network models used for level estimation and classification, and noted the
differences.

The feed-forward neural network training is usually not very stable since the training
process may depend on the choice of arandom start. Training is also computationally
expensive in terms of the training times used to figure out the appropriate network
structure. The degree of success, therefore, may fluctuate from one training pass to
another. Theempirical findingsinthisstudy show that our proposed devel opment of the
portfolio network models using the n-fold cross-validation and early stopping tech-
niques does not sacrifice any of thefirst-period dataused for training and validating the
networks. Thisisespecially useful whenthedatasizeislimited. In particular, wefind that
themethod for improving thegeneralization ability of thefeed-forward neural networks,
a combination of n-fold cross-validation and early stopping techniques, clearly help
improve the out-of-sample forecasts. In addition to the early stopping advantage,
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improvement may beduetothefact that five-time network modeling allowsthe networks
to extract more useful information from the data. Thus, the prediction based on the
weighted excessreturn or the majority of excessreturn sign could effectively be used to
reduce the prediction error. Asaresult, the portfolio network models for both classifi-
cationand level estimation consistently outperformthelinear regression, thegeneralized
regression neural network, the probabilistic neural network, and the buy-and-hold
account.

In conclusion, both researchers and practitioners have studied stock market prediction
for many years. Many studies conclude that stock returns can be predicted by some
financial and economic variables. To this end, our finding suggests that financial
forecastingisalwaysand will remain difficult since such dataare greatly influenced by
economical, political, international, and even natural events. Obviously, this study
covers only fundamental available information, while the technical analysis approach
remainsintact. Itisfar from perfect asthetechnical analysishasbeen provedto provide
invaluable information during stock-price and stock-return forecasting, and to some
extent has been known to offer arelative mixture of human, political, and economical
events. In fact, there are many studies done by both academics and practitionersin this
area. If both technical and fundamental approaches are thoroughly examined and
included during the variablerelevance analysis modeling, it would no doubt be amajor
improvement in predicting stock returns. This study did not consider profitability and
assumesthat any trading strategiesof investing in either the stock index portfolioor risk-
free account will occur in the absence of trading costs. Future research should consider
profitability and trading simulation under the scenarios of stock dividends, transaction
costs, and individual tax brackets to replicate the realistic investment practices.
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Appendix

SP Nominal Standard & Poor’s 500 index at the close of the last trading day of each
month. Source: Commaodity Systems, Inc. (CSl).

DIV Nominal dividends per share for the S& P 500 portfolio paid during the month.
Source: Annual dividend record / Standard & Poor’s Corporation.

T1 Annualized averageof bid and ask yieldson 1-month T-bill rate onthelast trading
day of the month. It refersto the shortest maturity T-billsnot lessthan 1 monthin
maturity. Source; CRSPtapes. The Famarisk-free-ratefiles.

T1H Monthly holding-period returnon 1-month T-bill rate onthelast trading day of the
month, calculated as T1/12.

R Nominal stock returnsonthe S& P 500 portfolio, calculatedasR = (SP,—SP,,)/SP,
"

ER Excess stock returns on the S& P 500 portfolio, calculated asER = R —T1H, ,.

DY Dividendyield onthe S&P 500 portfolio, calculated asDY, = DIV/SP..

T3  3-month T-hill rate, secondary market, averages of business days, discount basis.
Source: H.15 Release — Federal Reserve Board of Governors.

T6 6-month T-hill rate, secondary market, averages of businessdays, discount basis.
Source: H.15 Release — Federal Reserve Board of Governors.
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T12 1-year T-hill rate, secondary market, averages of business days, discount basis.
Source: H.15 Release — Federal Reserve Board of Governors.

T60 5-year T-bill constant maturity rate, secondary market, averagesof businessdays.
Source: H.15 Release — Federal Reserve Board of Governors.

T12010-year T-bill constant-maturity rate, secondary market, averages of business
days. Source: H.15 Release — Federal Reserve Board of Governors.

CD1 1-month certificate-of-deposit rate, averages of business days. Source: H.15
Release — Federal Reserve Board of Governors.

CD3 3-month certificate-of-deposit rate, averages of business days. Source: H.15
Release — Federal Reserve Board of Governors.

CD6 6-month certificate-of-deposit rate, averages of business days. Source: H.15
Release — Federal Reserve Board of Governors.

AAA Moody’ s seasoned Aaa corporate-bond yield, averages of business days. Source:
The Federal Reserve Bank of St. Louis.

BAA Moody’ s seasoned Baa corporate-bond yield, averages of business days. Source:
The Federal Reserve Bank of St. Louis.

PP Producer Pricelndex: Finished Goods. Source: U.S. Department of Labor, Bureau
of Labor Statistics.

IP  Industrial Production Index: Market Groups and Industry Groups. Source: G.17
Statistical Release— Federal Reserve Statistical Release.

CP  Consumer Pricelndex: CPI for All Urban Consumers. Source: U.S. Department of
Labor, Bureau of Labor Statistics.

M1 M1 Money Stock. Source: H.6 Release — Federal Reserve Board of Governors.
TE1 Term spread between T120 and T1, calculated as TE1 = T120 — T1.

TE2 Term spread between T120 and T3, calculated as TE2 = T120 — T3.

TE3 Term spread between T120 and T6, calculated as TE3 = T120 — T6.

TE4 Term spread between T120 and T12, calculated as TE4 = T120 — T12.
TE5 Term spread between T3 and T1, calculated as TES = T3 —TL1.

TE6 Term spread between T6 and T1, calculated as TE6 = T6 — T1.

DE1 Default spread between BAA and AAA, calculated as DE1 = BAA — AAA.
DE2 Default spread between BAA and T120, calculated as DE2 = BAA — T120.
DE3 Default spread between BAA and T12, calculated as DE3 = BAA—T12.
DE4 Default spread between BAA and T6, calculated as DE4 = BAA —T6.
DE5 Default spread between BAA and T3, calculated as DE5 = BAA - T3.
DE6 Default spread between BAA and T1, calculated as DE6 = BAA —T1.
DE7 Default spread between CD6 and T6, calculated as DE7 = CD6 — T6.
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Chapter |V

Hybrid-L ear ning
M ethodsfor Stock
| ndex M odeling

Yuehui Chen, Jinan University, China

Ajith Abraham, Chung-Ang University, Republic of Korea

Abstract

The use of intelligent systems for stock market prediction has been widely established.
Inthispaper, weinvestigate how the seemingly chaotic behavior of stock marketscould
be well represented using several connectionist paradigms and soft computing
techniques. To demonstrate the different techniques, we consider the Nasdag-100
index of Nasdag Stock Market™ and the S& P CNX NIFTY stock index. We analyze 7-
year Nasdagq 100 main-index values and 4-year NIFTY index values. This chapter
investigates the development of novel, reliable, and efficient techniques to model the
seemingly chaotic behavior of stock markets. We consider the flexible neural tree
algorithm, a wavelet neural network, local linear wavelet neural network, and finally
a feed-forward artificial neural network. The particle-swarm-optimization algorithm
optimizes the parameters of the different techniques. This paper briefly explains how
the different learning paradigms could be formulated using various methods and then
investigates whether they can provide the required level of performance — in other
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wor ds, whether they are sufficiently good and robust so asto provideareliableforecast
model for stock market indices. Experiment resultsreveal that all themodel sconsidered
could represent the stock indices behavior very accurately.

| ntroduction

Prediction of stocksisgenerally believed to be avery difficult task — it behaveslike a
randomwal k processandtimevarying. The obviouscomplexity of the problem pavesthe
way for theimportance of intelligent prediction paradigms (Abraham, Nath, & Mahanti,
2001). During thelast decade, stocks and futurestradershave cometorely upon various
typesof intelligent systemsto maketrading decisions (Abraham, Philip, & Saratchandran,
2003; Chan & Liu, 2002; Francis, Tay, & Cao, 2002; Leigh, Modani, Purvis, & Raoberts,
2002; Leigh, Purvis, & Ragusa, 2002; Oh & Kim, 2002; Quah & Srinivasan, 1999; Wang,
2002). Several intelligent systems have in recent years been developed for modeling
expertise, decision support, and complicated automation tasks (Berkeley, 1997; Bischi &
Valori, 2000; Cios, 2001; Kim & Han, 2000; Koulouriotis, Diakoulakis, & Emiris, 2001;
L ebaron, 2001; Palma-dos-Reis& Zahedi, 1999; Wuthrichetal., 1998). Inthischapter, we
analyse the seemingly chaotic behavior of two well-known stock indices namely the
Nasdag-100 index of Nasdag® and the S& PCNX NIFTY stock index.

The Nasdag-100 index reflects Nasdaq's largest companies across major industry
groups, including computer hardware and software, telecommunications, retail/whole-
sale trade, and biotechnology. The Nasdag-100 index is a modified capitalization-
weighted index, designed to limit domination of the Index by afew large stocks while
generally retaining the capitalization ranking of companies. Through an investment in
Nasdag-100index tracking stock, investorscan participatein the collective performance
of many of the Nasdaq stocksthat are ofteninthe newsor have becomehousehold names.
Similarly, S& PCNX NIFTY isawell-diversified 50-stock index accounting for 25 sectors
of theeconomy. Itisused for avariety of purposessuch asbenchmarking fund portfolios,
index-based derivatives, and index funds. The CNX indices are computed using the
market capitalization weighted method, wherein thelevel of theindex reflectsthe total
market value of all thestocksintheindex relativeto aparticul ar base period. The method
also takes into account constituent changes in the index and importantly corporate
actions such as stock splits, rights, and so on, without affecting the index value.

Our research investigates the performance analysis of four different connectionist
paradigmsfor modeling the Nasdag-100 and NIFTY stock market indices. We consider
theFlexibleNeural Tree(FNT) algorithm (Chen, Y ang, and Dong, 2004), aWavel et Neural
Network (WNN), Local Linear Wavelet Neural Network (LLWNN) (Chenetal., 2006) and
finally afeed-forward Neural Network (ANN) (Chen et al., 2004). The particle-swarm-
optimization algorithm optimizesthe parametersof thedifferent techniques (K ennedy &
Eberhart, 1995). We analysed the Nasdag-100 index value from 11 January 1995to 11
January 2002 and the NIFTY index from 01 January 1998 to 03 December 2001. For both
indices, we divided the entire datainto roughly two equal halves. No special ruleswere
used to select the training set other than ensuring a reasonable representation of the
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Figure 1. (a) Training and test data sets for the Nasdag-100 index and (b) the NIFTY
index
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parameter space of the problem domain (Abraham et al., 2003). The complexity of the
training and test data setsfor both indicesisdepicted in Figure 1. In the section entitled
“Hybrid-learning Models,” webriefly describethedifferent learning algorithms. Thisis
sectionisfollowed by the“ Experimentation Setup and Results” section. Thisis, inturn,
followed by the “Conclusions” section.

Particle-Swar m-Optimization (PSO)
Algorithm

The PSO conducts searches using apopul ation of particlesthat correspond to individu-
alsin an Evolutionary Algorithm (EA). Initially, apopulation of particlesisrandomly
generated. Each particle represents a potential solution and has a position represented
by aposition vector x. A swarm of particles movesthrough the problem space, with the
moving velocity of each particle represented by avelocity vector v,. At each time step,
afunctionf, — representing aquality measure— iscal culated by using x; asinput. Each
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particle keepstrack of itsown best position, which is associated with the best fitnessit
has achieved so far in avector p,. Furthermore, the best position among all the particles
obtained so far in the populationiskept track of asp . In addition to thisglobal version,
another version of PSO keeps track of the best position among all the topological
neighbors of aparticle. At each time step t, by using the individual best position, p,(t),
and the global best position, pg(t), anew velocity for particlei is updated by:

Vi (t+1) = Vi (t) + cagr (pi (1) — X (1) + Co2(Pg (1) — X (1)) @

where ¢, and c, are positive constants and ¢, and ¢, are uniformly distributed random
numbersin[0,1]. Thetermc islimited totherangeof £V __ (if thevelocity violatesthis
limit, itissettoitsproper limit). Changing velocity thisway enablestheparticlei to search
around both itsindividual best position, p,, and global best position, Py Based on the
updated velocities, each particle changes its position according to:

X (t+1) =x () +vi (t+D 2

The PSO algorithm is employed to optimize the parameter vectors of FNT, ANN, and
WNN.

Hybrid-Learning Models

Flexible Neural Tree Model

In this research, a tree-structured encoding method with specific instruction set is
selected for representing aFNT model (Chenet al., 2004, 2005).

Flexible Neuron Instructor and FNT M odel

The function set F and terminal instruction set T used for generating a FNT model are
described as follows:

S=FUT ={#, 45 U{X, X0, X, } ©)

where+ (i = 2,3, -+, N) denote nonleaf nodes’ instructionsand taking i arguments. x,, X,,
-+, X areleaf nodes’ instructionsand taking no other arguments. The output of anonl eaf
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nodeiscalculated asaflexible neuron model (see Figure 2). From thispoint of view, the
instruction + is also called aflexible neuron operator with i inputs.

In the construction process of aneural tree, if anonterminal instruction, that is, +,(i =
2,3,:-,N)isselected, i real valuesarerandomly generated and used for representing the
connection strength between the node +, and its children. In addition, two adjustable
parametersa and b, are randomly created as flexible activation function parameters.

For developing the FNT model, the following flexible activation function is used:

a)?
f(@ b9 =exp(- XA (@)

Theoutput of aflexibleneuron + canbecalculated asfollows. Thetotal excitationof +
is:
n
net, = > WX
=1
©)
Wherexj(j =1,2,-+,n)aretheinputstonode+ . Theoutput of thenode +, isthen calculated

by:

2
net, — a,
outy = f(an,bp,nety) = exp(_%)

(©)

Figure?2. Aflexible neuron operator (left), and a typical representation of the FNT with
functioninstructionset F = {+,, +,, -+, + }, and terminal instructionset T = {X,, X,, X.}
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A typical flexibleneuron operator and aneural treemodel areillustratedin Figure2. The
overall output of the flexible neural tree can be recursively computed from left to right
by the depth-first method.

Optimization of the FNT Model

The optimization of FNT includes both tree-structure and parameter optimization.
Finding an optimal or near-optimal neural treeisformulated as a product of evolution.
A number of neural tree variation operators are developed as follows:

° Mutation

Four different mutation operatorswereemployed to generate of f spring from the parents.
These mutation operators are as follows:

(1) Changingoneterminal node: Randomly select oneterminal nodeintheneural tree
and replaceit with another terminal node.

(2) Changingall theterminal nodes: Select each and every terminal nodeintheneural
tree and replace it with another terminal node.

(3) Growing: Select arandom leaf in the hidden layer of the neural tree and replaceit
with a newly generated subtree.

(4) Pruning: Randomly select afunction node in the neural tree and replace it with a
terminal node.

The neural tree operators were applied to each of the parents to generate an offspring
using the following steps:

(@ A Poission random number N, with mean J) , was generated.

(b) Nrandom mutation operatorswere uniformly selected with replacement from the
previous four-mutation operator set.

(c) These N mutation operators were applied in sequence one after the other to the
parents to get the offspring.

. Crossover

Select two neural trees at random and select one nonterminal node in the hidden layer
for each neural tree randomly, then swap the selected subtree. The crossover operator
isimplemented with a predefined probability of 0.3 in this study.
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° Selection

Evolutionary-programming (EP) tournament sel ection was applied to select the parents
for the next generation. Pai rwise comparison isconducted for theunion of u parentsand
uoffspring. For eachindividual, g opponentsarechosenuniformly at randomfromall the
parentsand offspring. For each comparison, if theindividual’ sfitnessisno smaller than
the opponent’s, it is selected. Then select u individualsfrom parentsand offspring that
have most wins to form the next generation.

i Parameter Optimization by PSO

Parameter optimization is achieved by the PSO algorithm as described in the “The
Particle-swarm-optimization (PSO) Algorithm” section. Inthisstage, the FNT architec-
tureisfixed, asthe best tree developed by the end of run of the structured search. The
parameters (weightsand flexibleactivation-function parameters) encodedinthebest tree
formulateaparticle. The PSO algorithm worksasfollows:

(@ Aninitial populationisrandomly generated. Thelearning parametersc, andc, in
PSO should be assigned in advance.

(b) Theobjective function valueis calculated for each particle.

(c) Maodification of search point— the current search point of each particleischanged
using Equations 1 and 2.

(d) If the maximum number of generationsisreached or no better parameter vector is
foundfor asignificantly long time (~100 steps), then stop, otherwisegoto step (b).

The Artificial Neural Network (ANN) Model

A neural network classifier trained using the PSO al gorithm with flexibl e bipolar sigmoid
activation functions at hidden layer was constructed for the stock data. Before describ-
ingthedetailsof thealgorithmfor training the ANN classifier, theissue of coding needs
to be addressed. Coding concerns the way the weights and the flexible activation-
function parameters of the ANN arerepresented by individualsor particles. A floating-
point coding schemeisadopted here. For neural network (NN) coding, supposethereare
M nodesin the hidden layer and one nodein the output layer and ninput variables, then
the number of total weightsisnx M + M x 1, the number of thresholdsisM + 1 and the
number of flexibleactivation-function parametersisM + 1, thereforethetotal number of
free parametersinthe ANN tobecodedisnx M + M + 2(M + 1). These parametersare
coded into anindividual or particle orderly. The simple proposed training algorithmfor
aneural network isthe same as the PSO algorithm.
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The WNN-Prediction Model

Interms of wavel et transformation theory, waveletsin the following form:

Jox-b .
v={vi=a 2jp(——): a.beRicz} @)
1

X:(vaz"":xn)! Ch :(ailiaiz""’ain)! bi :(bmbiz""'bm)

are afamily of functions generated from one single function ¢(x) by the operation of
dilationandtranslation. ¢(x), whichislocalizedin both thetime space and thefrequency
space, is called a mother wavelet and the parameters a and b, are named the scale and
translation parameters, respectively.

In the standard form of awavelet neural network, output is given by:
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where v, isthe wavel et activation function of i-th unit of the hidden layer and w, is the
weight connecting thei-th unit of the hidden layer to the output-layer unit. Note that for
then-dimensional input space, the multivariate wavel et-basisfunction can be cal cul ated
by the tensor product of n single wavelet-basis functions as follows:

n
o) = [T ©
i=1

Before describing details of the PSO algorithm for training WNNSs, the issue of coding
needs to be addressed. Coding concerns the way the weights, dilation, and translation
parametersof WNNsarerepresented by individual sor particles. A floating-point coding
schemeisadopted here. For WNN coding, supposethereare M nodesin the hidden layer
and ninput variables, then thetotal number of parametersto becodedis(2n+ 1)M. The
coding of aWNN into an individual or particleisasfollows:

| anbn . 'a1nb1nw1 | a21bz1 . 'aznbznwz | | anlbnl . 'annbnnwn
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The simple proposed training algorithm for aWNN isasfollows:

Step 1: Aninitial populationisrandomly generated. Thelearning parameters, suchasc,,
¢, in PSO should be assigned in advance.

Step 2: Parameter optimization with PSO algorithm.

Sep 3: if the maximum number of generationsisreached or no better parameter vector
isfound for asignificantly long time (~100 steps), then go to Step 4; otherwise go
to Step 2.

Step 4: Parameter optimization with gradient-descent algorithm.
Step 5: If a satisfactory solution is found then stop; otherwise go to Step 4.

The Local Linear WNN Prediction Model

Anintrinsicfeature of basis-function networksisthelocalized activation of the hidden-
layer units, so that the connection weights associated with the units can be viewed as
locally accurate piecewise constant models whose validity for any given input is
indicated by the activation functions. Compared to the multilayer perceptron neural
network, thislocal capacity provides some advantages, such aslearning efficiency and
structuretransparency. However, the problem of basis-function networksrequiressome
special attention. Due to the crudeness of the local approximation, a large number of
basis-function unitshaveto beemployed to approximate agiven system. A shortcoming
of thewavel et neural network isthat for higher dimensional problemsmany hidden-layer
units are needed.

In order to take advantage of thelocal capacity of the wavel et-basisfunctionswhile not
having too many hidden units, here we propose an alternative type of WNN. The
architectureof the proposed local linear WNN (LLWNN) isshownin Figure3. Itsoutput
in the output layer is given by:

M
y= Z(wio + O % o+ 0, X )Y (X) =

r\:nl 1 _ 0
Z(wi0+wil)(1+”'+winxn)‘ai‘ 2‘P(%) (10

where x = (X, X,, -+, X ). Instead of the straightforward weight w, (piecewise constant
model), alinear model:

Vi =@jg T ®j1X1 + A+ 0jnXp (11)
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Figure 3. Architecture of a local linear wavelet neural network

isintroduced. The activities of thelinear model v, (i = 1, 2, -+, M) are determined by the
associated locally active wavelet function y,(x)(i = 1, 2, ---, M), thus v, isonly locally
significant. The motivations for introducing local linear models into a WNN are as
follows: (1) L ocal-linear model shave been studied in someneurofuzzy systems(Abraham,
2001) and offer good performances; and (2) Local -linear model s should provideamore
parsimonious interpolation in high-dimension spaces when modeling samples are
sparse. The scale and translation parameters and local-linear-model parameters are
randomly initialized at the beginning and are optimized by the PSO algorithm.

Experiment Setup and Results

We considered 7-year stock data for the Nasdag-100 Index and 4-year for the NIFTY
index. Our target was to develop efficient forecast models that could predict the index
value of the following trading day based on the opening, closing, and maximum values
on any given day. The training and test patterns for both indices (scaled values) are
illustrated in Figure 1. We used the same training- and test-data sets to evaluate the
different connectionist models. More details are reported in the following sections.
Experimentswerecarried out onaPentium|V, 2.8 GHz Machinewith512 MB RAM and
theprogramsimplemented in C/C++. Test datawas presented to thetrai ned connectionist
models, and the output from the network compared with the actual index valuesin the
timeseries.
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The assessment of the prediction performance of the different connectionist paradigms
were done by quantifying the prediction obtained on an independent data set. The root-
mean-squared error (RMSE), maxi mum-absol ute-percentage error (MAP), mean-abso-
lute-percentage error (MAPE), and correlation coefficient (CC) were used to study the
performance of the trained forecasting model for the test data.

MAP isdefined as follows:

Pactual‘i Ppredicted,i
MAP max b 100 (12)

predicted, i

“isthe forecast value of the

whereP_, . . isthe actual index value on day i and P redictedt i

index on that day. Similarly MAPE isgiven as:

1 N Pactual,i Ppredicted,i
ﬁi ) B — 100 (13)

actual, i

MAPE

where N represents the total number of days.
i FNT Algorithm

Weusedtheinstructionset S={+,, +,, -, +,,, X, X, X,} modeling the Nasdag-100 index
andinstructionset S={+,, +,, =, +,,, X, X, X,, X;, X,} modelingtheNIFTY index. Weused
the flexible activation function of Equation 4 for the hidden neurons. Training was

terminated after 80 epochs on each dataset.
i NN-PSOTraining

A feed-forward neural network with three input nodes and a single hidden layer
consisting of 10 neuronswas used for modeling the Nasdag-100 index. A feed-forward
neural network with fiveinput nodes and asingle hidden layer consisting of 10 neurons
was used for modeling the NIFTY index. Training wasterminated after 3000 epochs on
each dataset.

i WNN-PSO

A WNN with three input nodes and a single hidden layer consisting of 10 neuronswas
used for modeling the Nasdag-100 index. A WNN with five input nodes and a single
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hidden layer consisting of 10 neuronswasused for modelingthe NIFTY index. Training
was terminated after 4000 epochs on each dataset.

i LLWNN-PSO

A LLWNN with three input nodes and a hidden layer consisting of five neurons for
modeling Nasdag-100index. A LLWNN with fiveinput nodesand asingle hidden layer
consisting of fiveneuronsfor modeling NIFTY index. Training wasterminated after 4500
epochs on each dataset.

Figure 4. Test results showing the performance of the different methods for modeling
the Nasdag-100 index
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Figure 5. Test results showing the performance of the different methods for modeling
the NIFTY index
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Table 1. Empirical comparison of RMSE results for four learning methods

FNT [ NN-PSO [ WNN-PSO [ LLWNN-PSO
Training results
Nasdag-100 | 0.02598 0.02573 0.02586 0.02551
NIFTY 0.01847 0.01729 0.01829 0.01691
Testing results
Nasdag-100 | 0.01882 0.01864 0.01789 0.01968
NIFTY 0.01428 0.01326 0.01426 0.01564

Table 2. Satistical analysis of four learning methods (test data)

FNT | NN-PSO | WNN-PSO [ LLWNN-PSO
Nasdag-100
CC 0.997579 0.997704 0.997721 0.997623
MAP 98.107 141.363 152.754 230.514
MAPE 6.205 6.528 6.570 6.952
NIFTY
CC 0.996298 0.997079 0.996399 0.996291
MAP 39.987 27.257 39.671 30.814
MAPE 3.328 3.002 3.408 4.146

° Performance and Results Achieved

Table 1 summarizesthetraining and test resultsachieved for thetwo stock indicesusing
the four different approaches. The statistical analysis of the four learning methods is
depictedin Table2. Figures4 and 5 depict thetest resultsfor the 1-day-ahead prediction
of Nasdag-100index and NIFTY index respectively.

Conclusion

In this chapter, we have demonstrated how the chaotic behavior of stock indices could
bewell-represented by different hybridlearning paradigms. Empirical resultsonthetwo
data sets using four different learning models clearly reveal the efficiency of the
proposed techniques. In terms of RMSE values, for the Nasdag-100 index, WNN
performed marginally better than the other models and for the NIFTY index, the NN
approach gavethelowest generalization RM SE val ues. For both datasets, LLWNN had
thelowest training error. For the Nasdag-100index (test data), WNN had thehighest CC,
but the lowest values of MAPE and MAP were achieved by using the FNT model. The
highest CCtogether withthebest MAPE/MAPvaluesfor theNIFTY index wereachieved
using the NN trained using the PSO model. A low MAP valueisacrucial indicator for
evaluating thestability of amarket under unforeseen fluctuations. Inthe present example,
the predictability ensuresthat the decreasein tradeisonly atemporary cyclic variation
that is perfectly under control.

Our research was to predict the share price for the following trading day based on the
opening, closing, and maximum values on any given day. Our experimental results
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indicate that the most prominent parametersthat affect share pricesaretheir immediate
opening and closing val ues. Thefluctuationsin the share market are chaotic in the sense
that they heavily depend on the values of their immediate forerunning fluctuations.
Long-term trends exist, but are slow variations and thisinformation is useful for long-
terminvestment strategies. Our study focused on short-termfloor tradesinwhich therisk
is higher. However, the results of our study show that even with seemingly random
fluctuations, thereisan underlying deterministic featurethat isdirectly encipheredinthe
opening, closing, and maximum values of the index of any day making predictability
possible.

Empirical results also show that there are various advantages and disadvantagesfor the
different techniques considered. There is little reason to expect that one can find a
uniformly best |earning algorithm for optimi zation of the performancefor different stock
indices. Thisisinaccordancewiththe no-free-lunch theorem, which explainsthat for any
algorithm, any elevated performance over one class of problemsis exactly paid for in
performanceover another class(Macready & Wol pert, 1997). Our futureresearchwill be
oriented towards determining the optimal way to combine the different learning para-
digms using an ensemble approach (Magsood, Kahn, & Abraham, 2004) so as to
complement the advantages and disadvantages of the different methods considered.

Acknowledgment

Thisresearchwas partially supported by theNatural Science Foundation of Chinaunder
grant number 60573065, and The Provincial Science and Technology Development
Program of Shandong under grant number SDSP2004-0720-03.

Refer ences

Abraham, A. (2001). NeuroFuzzy systems: State-of-the-art modeling techniques. In J.
Mira& A. Prieto (Eds.), Proceedingsof the 7th I nter national Work Conferenceon
Artificial and Neural Networks, Connectionist Models of Neurons, Learning
Processes, and Artificial Intelligence, Granada, Spain (pp. 269-276). Germany:
Springer-Verlag.

Abraham, A., Nath, B., & Mahanti, P. K. (2001). Hybrid intelligent systems for stock
market analysis. InV.N. Alexandrov, J. Dongarra, B. A. Julianno, R. S. Renner, &
CJ.K.Tan(Eds.), Computational science(pp. 337-345). Germany: Springer-Verlag.

Abraham, A., Philip, N. S., & Saratchandran, P. (2003). Modeling chaotic behavior of
stock indices using intelligent paradigms. International Journal of Neural, Par-
allel & <ientific Computations, 11(1-2), 143-160.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



78 Chen and Abraham

Berkeley, A. R. (1997). Nasdaq's technology floor: Its president takes stock. |EEE
Spectrum, 34(2), 66-67.

Bischi, G.1.,& Valori, V. (2000). Nonlinear effectsin adiscrete-time dynamic model of a
stock market. Chaos, Solitons & Fractals, 11(13), 2103-2121.

Chan,W.S., & Liu, W. N. (2002). Diagnosing shocksin stock marketsof Southeast Asia,
Australia, and New Zealand. Mathematicsand Computersin Simulation, 59(1-3),
223-232.

Chen, Y., Yang, B., & Dong, J. (2004). Nonlinear system modeling viaoptimal design of
neural trees. International Journal of Neural Systems, 14(2), 125-137.

Chen, Y., Yang, B., & Dong, J. (2006). Time-seriespredictionusing alocal linear wavel et
neural network. International Journal of Neural Systems, 69(4-6), 449-465.

Chen,Y.,Yang,B.,Dong, J., & Abraham, A. (2005). Time-seriesforecastingusingflexible
neural treemodel. Information Science, 174(3-4), 219-235.

Cios, K. J. (2001). Datamining in finance: Advancesin relational and hybrid methods.
Neurocomputing, 36(1-4), 245-246.

Francis, E.H., Tay,H., & Cao, L. J. (2002). Modified support vector machinesinfinancial
timeseriesforecasting. Neurocomputing, 48(1-4), 847-861.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings| EEE
International Conference on Neural Networks (pp. 1942-1948), Perth, Australia.
Piscataway, NJ: |EEE Service Center.

Kim, K. J., & Han, |. (2000). Genetic algorithms approach to feature discretization in
artificial neural networks for the prediction of stock price index. Expert Systems
with Applications, 19(2), 125-132.

Koulouriotis, D. E., Diakoulakis, |. E.,& Emiris,D. M. (2001). A fuzzy cognitive map-based
stock market model: Synthesis, analysisand experimental results. In Proceedings
of the 10th | EEE I nter national Conference on Fuzzy Systems, Vol. 1 (pp. 465-468).

Lebaron, B. (2001). Empirical regularities from interacting long- and short-memory
investors in an agent-based stock market. |IEEE Transactions on Evolutionary
Computation, 5(5), 442-455.

Leigh, W., Modani, N., Purvis, R., & Roberts, T. (2002). Stock market trading rule
discovery using technical charting heuristics. Expert Systems with Applications,
23(2),155-159.

Leigh, W., Purvis,R., & Ragusa, J. M. (2002). Forecastingthe N'Y SE compositeindex with
technical analysis, pattern recognizer, neural network, and genetic algorithm: A
case study in romantic decision support. Decision Support Systems, 32(4), 361-
377.

Macready, W. G., & Wolpert, D. H. (1997). Thenofreelunchtheorems. |EEE Transaction
on Evolutionary Computing, 1(1), 67-82.

Magsood, I., Khan, M. R., & Abraham, A. (2004). Neural network ensemble method for
weather forecasting. Neural Computing & Applications, 13(2), 112-122.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Hybrid-Learning Methods for Stock Index Modeling 79

Nasdag Stock MarketsV. (n.d.). Retrieved February 8, 2006, from http://www.nasdag.com

National Stock Exchangeof IndiaLimited. (n.d.). Retrieved February 8, 2006, from http:/
/www.nse-india.com

Oh,K.J., & Kim, K. J.(2002). Analyzing stock market tick datausing piecewisenonlinear
model. Expert Systemswith Applications, 22(3), 249-255.

Palma-dos-Reis, A., & Zahedi, F. (1999). Designing personalized intelligent financial
decision support systems. Decision Support Systems, 26(1), 31-47.

Quah, T. S., & Srinivasan, B. (1999). Improving returns on stock investment through
neural network selection. Expert Systemswith Applications, 17(4), 295-301.

Wang, Y. F. (2002). Mining stock priceusing fuzzy rough set system. Expert Systemswith
Applications, 24(1), 13-23.

Wauthrich, B., Cho, V., Leung, S., Permunetilleke, D., Sankaran, K., & Zhang, J. (1998).
Daily stock market forecast fromtextual web data. Proceedings| EEE International
Conference on Systems, Man, and Cybernetics, 3, 2720-2725.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



80 Fulcher, Zhang, and Xu

Chapter V

Application of
Higher-Order Neur al
Networ kstoFinancial

Time-SeriesPrediction
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Shuxiang Xu, University of Tasmania, Australia

Abstract

Financial time-series data is characterized by nonlinearities, discontinuities, and
high-frequency multipolynomial components. Not surprisingly, conventional artificial
neural networks (ANNs) have difficulty in modeling such complex data. A more
appropriate approach isto apply higher-order ANNSs, which are capable of extracting
higher-order polynomial coefficientsinthe data. Moreover, sincethereisaone-to-one
correspondence between network weights and polynomial coefficients, higher-order
neural networ ks (HONNs) —unlike ANNs generally —can be consider ed open-, rather
than “ closed-box” solutions, and thus hold more appeal to the financial community.
After developing polynomial and trigonometric HONNSs (P[ TIHONNS), we introduce
the concept of HONN groups. The latter incorporate piecewise continuous-activation
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functions and thresholds, and as a result are capable of modeling discontinuous (or
pi ecewi se-continuous) data, and what is moreto any degree of accuracy. Several other
PHONN variantsareal so described. The performance of P(T)HONN and HONN groups
on representative financial time seriesis described (i.e., credit ratings and exchange
rates). In short, HONNSs offer roughly twice the performance of MLP/BP on financial
time-series prediction, and HONN groups around 10% further improvement.

Financial Time Series Prediction

Itisclear that there are pattern(s) underlying sometimeseries. For example, the 11-year
cycleobserved in sunspot data (University of California, Irvine, 2005). Whether thisis
thecasewithfinancial time-seriesdataisdebatable. For instance, dounderlying “forces”
actually drivefinancial markets, andif so cantheir existence be deduced by observations
of stock price and volume movements (Back, 2004)?

Alternatively, do so-called “market inefficiencies” exist, whereby itispossibletodevise
strategiesto consistently “beat the market” in terms of return-on-investment (Edelman
& Davy, 2004)?If thisisin fact the case, then it runs counter to the so-called Efficient
Markets Hypothesis, namely that the present pricing of afinancial asset is areflection
of all theavailableinformation about that asset, whether thisbe private (insider), public,
or previouspricing (if based solely onthelatter, thenthisisreferredto asthe“weak form”
of theEMH).

Market traders, by contrast, tend to base their decisions not only on the previous
considerations, but also on many other factors, including hunches (intuition). Quanti-
fying these often complex decision-making processes (expertise) is a difficult, if not
impossible, task akin to the fundamental problem inherent in designing any Expert
System. An overriding consideration isthat any model (system) tendsto break downin
the face of singularities, such as stock market crashes (e.g., “Black Tuesday”, October
1987), war, political upheaval, business scandals, rumor, panic buying, and so on.

“ Steady-state” markets, on the other hand, tend to exhibit some predictability, albeit
minor — for example, so-called “calendar effects’: lower returns on Mondays, higher
returns on the last day of the month and just prior to public holidays, higher returnsin
January, and so on (Kingdon, 1997).

Now, whileitispossiblethat financial time-seriesdataon occasion can be described by
alinear function, most often it is characterized by nonlinearities, discontinuities, and
high-frequency multipolynomial components.

If there is an underlying market model, then it has remained largely impervious to
statistical (and other forms of) modeling. We can take alead here from adaptive control
systemsand/or machinelearning; inother words, if asystemistoo complex tomodel, try
learning it. Thisis where techniques such as ANNs can play arole.

Many different techniques have been applied to financial time-series forecasting over
the years, ranging from conventional, model-based, statistical approaches to more
esoteric, data-driven, experimental ones(Harris& Sollis, 2003; Mills, 1993; Reinsel, 1997).
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Some exampl es of the former are Auto Regression (AR), ARCH, Box-Jenkins (Box &
Jenkins, 1976), and Kalman Filter (Harvey, 1989). Some examplesof thelatter are ANNs
(Zhang, Patuwo, & Hu, 1998), Fuzzy L ogicandvariants(Sisman-Yilmaz, Alpaslan, & Jain,
2004), Evolutionary Algorithms(Allen & Karjalainen, 1999; Chen, 2002), Genetic Pro-
gramming (Chen, 2002; Iba& Sasaki, 1999), Support V ector Machines(Edelman & Davy,
2004; Tay & Cao, 2001), Independent Component Analysis (Back, 2004), and other so-
called (often biologically inspired) “soft computing” techniques (Kingdon, 1997). We
focuson ANNsin this chapter, more specifically on higher-order neural networks, for
reasons that we shall elaborate upon shortly.

Artificial Neural Networks (ANNS)

When people speak of ANNS, they are most likely referring to feed-forward Multilayer
Perceptrons (ML Ps), which employ the backpropagation (BP) training algorithm (e.g.,
Lapedes& Farber, 1987; Refenes, 1994; Schoneberg, 1990). Following thelead of the M-
competition for different forecasting techniques (Makridakis, Andersoen, Carbone,
Fildes, Hibon, Lewandowski, et al., 1982), inwhich such ANNscompared favorably with
the Box-Jenkinsmethod, Weigand and Gershenfeld (1993) compared nonlinear forecast-
ing techniques on a number of different time series, one of which being currency
exchange rate. ANNSs, along with state-space reconstruction techniques, fared well in
this more recent comparative study.

Atfirstsight, it would appear that ML P/BPs should perform reasonably well at financial
time-seriesforecasting, sincethey areknownto excel at (static) pattern recognition and/
or classification; inthisparticular case, the patternsof interest aresimply different time-
shifted samples taken from the same data series.

Now Hornik (1991) has shown that an MLP with an arbitrary bounded nonconstant
activationiscapableof universal approximation. Morespecifically, asinglehiddenlayer
MLP/BP can approximate arbitrarily closely any suitably smooth function (Hecht-
Nielsen, 1987; Hornik, Stinchcombe, & White, 1989). Furthermore, thisapproximation
improvesasthe number of nodesinthehidden layer increases. In other words, asuitable
network can always be found.

A similar but more extended result for earning conditional probability distributionswas
found by Allen and Taylor (1994). Here, two network layers are required in order to
produceasmooth limit when the stochastic series(such asfinancial data) beingmodeled
becomes noise free.

During learning, the outputs of a supervised neural network come to approximate the
target values given theinputsin the training set. Thisability may be useful initself, but
more often the purpose of using aneural net isto generalize — in other words, to have
the network outputs approximate target values given inputs that are not in the training
set.

Generally speaking, there are three conditions that are typically necessary — although
not sufficient — for good generalization.
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The first necessary condition isthat the network inputs contain sufficient information
pertaining to the target, so that there exists a mathematical function relating correct
outputsto inputs with the desired degree of accuracy (Caudill & Butler, 1990).

The second necessary condition isthat the function we are attempting to learn (relating
inputsto desired outputs) be, in some sense, smooth (Devroye, Gyorfi, & Lugosi, 1996;
Plotkin, 1993). In other words, small changesininputs should produce small changesin
outputs, at least most of the time. For continuous inputs and targets, function smooth-
ness implies continuity and restrictions on the first derivative over most of the input
space. Now some neural networks — including the present authors’ HONN models —
are able to learn discontinuities, provided the function consists of a finite number of
continuous pieces. Conversely, very nonsmooth functions (such as those produced by
pseudorandom number generators and encryption algorithms) are not able to be gener-
alized by standard neural networks.

The third necessary condition for good generalization is that the training exemplars
constituteasufficiently largeand representative subset (“ sample” in statisticsterminol -
ogy) of the set of all cases we want to generalize to (the “population” in statistics
terminology) (Wolpert, 1996a, 1996b). Theimportanceof thisconditionisrelatedtothe
fact that thereare, generally speaking, two different typesof generalization: interpolation
and extrapolation. Interpolation applies to cases that are more or less surrounded by
nearby training cases; everything else is extrapolation. In particular, cases that are
outside the range of the training data require extrapolation. Casesinside large “ holes’
inthetraining datamay al so effectively requireextrapolation. I nterpolation can often be
performed reliably, but extrapolationisnotoriously unreliable. Hence, itisimportant to
have sufficient training datato avoid the need for extrapolation. Methods for selecting
good training sets are discussed in numerous statistical textbooks on sample surveys
and experimental design (e.g., Diamond & Jeffries, 2001).

Despitetheuniversal approximation capability of MLP/BP networks, their performance
islimited when appliedtofinancial time-seriesmodeling and/or prediction (forecasting).
Thisis due in part to two limitations of feed-forward ANNs, namely (Zhang, Xu, &
Fulcher, 2002):

1  Their activation functions have fixed parametersonly (e.g., sigmoid, radial-basis
function, and so on), and

2 They arecapable of continuousfunction approximation only; MLPsareunableto
handl e discontinuous and/or piecewise-continuous (economic) time-series data.

Networks with adaptive activation functions seem to provide better fitting properties
than classical architectures with fixed activation-function neurons. Vecci, Piazza, and
Uncini (1998) studied the propertiesof afeed-forward neural network (FNN) whichwas
abletoadapt itsactivation function by varying the control pointsof aCatmull-Rom cubic
spline. Their simulations confirmed that the special |earning mechanismallowsusto use
the network’ s free parametersin avery effective way. In Chen and Chang (1996), real
variables a (gain) and b (slope) in the generalized sigmoid activation function were
adjusted during the learning process. They showed that from the perspective of static
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and dynamical system modeling, use of adaptive sigmoids (in other words, sigmoidswith
free parameters) leads to improved data modeling compared with classical FNNs.
Campolucci, Capparelli, Guarnieri, Piazza, and Uncini (1996) built an adaptiveactivation
function as a piecewise approximation with suitable cubic splines. This function had
arbitrary shape and allowed the overall size of the neural network to bereduced, trading
connection complexity against activation function complexity. Several other authors(Hu
& Shao, 1992; Yamada & Yabuta, 1992) have also studied the properties of neural
networks that utilize adaptive activation functions.

In short, some researchers have devoted their attention to more sophisticated, alterna-
tive ANN models. One natural extension is to incorporate unit time delays (memory
elements) to turnthe MLP/BP into arecurrent network, in order to recognize (classify)
dynamicrather than staticinput patterns. Alternatively, replication of network nodesand
weights across time |eads to time-delay neural networks, in which the layer inputs are
time-shifted versions from the same time-series data. Such attempts to incorporate
temporal unitsintoan ANN havenot usually led to significantimprovementsinfinancial
time-series modeling/predicting performance though.

Higher-Order Neural Networks (HONNS)

Traditional areas in which ANNs are known to excel are pattern recognition, pattern
matching, and mathematical function approximation (nonlinear regression). However,
they suffer from several well-known limitations. They can often become stuck inlocal,
rather than global minima, as well as taking unacceptably long times to converge in
practice. Of particular concern, especially from the perspective of financial time-series
prediction, is their inability to handle nonsmooth, discontinuous training data and
complex mappings(associations). Another limitation of ANNsistheir “ black box” nature
— meaning that explanations (reasons) for their decisionsare notimmediately obvious,
unlike some other techniques, such as decision trees.

Thisthen isthe motivation for devel oping higher-order neural networks (HONNS).

Background on HONNs

Theterm “higher-order” neural network can mean different thingsto different people,
ranging from a description of the neuron activation function to preprocessing of the
neuron inputs, signifying connectionsto morethan onelayer or just ANN functionality
(inother words, their ability to extract higher-order correlationsfrom thetraining data).
Inthischapter, weuse“HONN?" torefer to theincorporation of arange of neurontypes:
linear, power, multiplicative, sigmoid, and logarithmic (see Figure 3).

HONNSs havetraditionally been characterized asthosein which theinput to acomputa-
tional neuron is a weighted sum of the products of its inputs (Lee et al., 1986). Such
neurons are sometimes called higher-order processing units (HPUs) (Lippmann, 1989).
It has been established that HONNSs can successfully perform invariant pattern recog-
nition (Psaltis, Park, & Hong, 1988; Reid, Spirkovska, & Ochoa, 1989; Wood & Shawe-
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Taylor,1996). Gilesand Maxwell (1987) showed that HONNshaveimpressivecomputa-
tional, storage, and learning capabilities. Redding, Kowal ski and Downs (1993) proved
that HONNswereat | east aspowerful asany other (similar order) FNN. Kosmatopoul os,
Polycarpou, Christodoulou, & loannou (1995) studied the approximation and learning
properties of one class of recurrent HONNs and applied these architectures to the
identification of dynamical systems. Thimm and Fiesler (1997) proposed a suitable
initialization method for HONNsand compared thiswith FNN-weightinitialization.

First-order neural networkscan beformulated asfollows, assuming simple M cCullough-
and-Pitts-typeneurons(Giles& Maxwell, 1987):

0= f[iwa, J)xm} &

where {X(j)} = an N-element input vector, W(i,j) = adaptable weights from all other
neuronsto neuron-i, and f = neuron threshold function (e.g., sigmoid). Such neuronsare
said to belinear, since they are only capable of capturing first-order correlationsin the
training data. Inthissense, they can belikenedto L east Mean Squared or Deltalearning,
asusedin ADALINE. Itiswell knownthat Rosenblatt’ soriginal (two-layer) perceptron
was only capable of classifying linearly separable training data. It was not until the
emergence of Multilayer Perceptrons (which incorporated nonlinear activation func-
tions, such as sigmoid) that more complex (nonlinear) data could be discriminated.

Higher-order correlations in the training data require more complex neuron activation
functions, characterized asfollows(Barron, Gilstrap, & Shrier, 1987; Giles& Maxwell,
1987; Psaltis, Park, & Hong, 1988):

0= f[wo(i)iwo,j)x(mi ivvi(i,j,k)x(j)x(kw..} @

Figure 1. Higher-order neural network architecture-|
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Figure 2. Higher-order neural network architecture-11

Yo(X) ¥i(x) yi(x)
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Neurons that include terms up to and including degree-k are referred to as kth-order
neurons (nodes). Figure 1 further explains the subscriptsi, j, and k used in Equation 2.

Thefollowing alternative, simpler formulationisdueto Lisboaand Perantonis (1991):

y;(x)=f Vvi0+2 2 "'zp,vvik...p,jxi’xk"'xp 3

i k

whereasingleweightisappliedtoall n-tuplesx.... X, inorder to generate output-y, from
that particular neuron.

Thisisreminiscent of Rumelhart, Hinton, and Williams (1986) formulation of their so-

called“sigma-pi” neurons(Zwij 1_[xi1xi2...xik ), for whichthey show that the generalized
Delta Rule (standard backpropagation) can be applied asreadily as for simple additive

neurons ( 2 w; X ). Moreover, theincreased computational load resulting fromthelarge

increase in network weights means that the complex input-output mappings, normally
only achievablein multilayered networks, can now berealized in asingle HONN layer
(Zhang & Fulcher, 2004).

In summary, HONN activation functions incorporate multiplicative terms.

Now the output of akth-order single-layer HONN neuron will be a nonlinear function
comprising polynomials of up to kth-order. Moreover, since no hidden layers are
involved, both Hebbian and perceptron learning rules can be employed (Shin & Ghosh,
1991).

Multiplicative interconnections within ANNs have been applied to many different
problems, including invariant patternrecognition (Giles, Griffin, & Maxwell, 1988; 1991,
Goggin, Johnson, & Gustafson, 1993; Lisboa& Pentonis, 1991), however their compl exity
usually limitstheir usefulness.
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Karayiannisand V enetsanopoul 0s (1993) make the observation that the perf ormance of
first-order ANNSs can be improved, within bounds, by utilizing sophisticated learning
algorithms. By contrast, HONNSs can achieve superior performance evenif thelearning
algorithm is based on the simpler outer-product rule.

A different approach wastaken by Redding, Kowalczy, and Downs (1993) andinvolved
the development of a constructive HONN architecture that solved the binary mapping
in polynomial time. Central to this process was the selection of the multiplicative
nonlinearities as hidden nodes within the HONN, depending on their relevance to the
pattern data of interest.

Polynomial HONNSs

The authors have devel oped several different HONN models during the past decade or
s0. Wenow present abrief background onthedevel opment of polynomial, trigonometric,
and similar HONN models. A more comprehensive coverage, including derivations of
weight-update equations, is presented in Zhang and Fulcher (2004).

Firstly, all PHONNS described in this section utilize various combinations of linear,
power, and multiplicative (and sometimes other) neuron types and are trained using
standard backpropagation. The generic HONN architectureisshownin Figure 3, where
therearetwo network inputs (independent variables) x and y, and asingle network output
(dependent variable) z.

Inthefirst hiddenlayer, thewhiteneuronsareeither cos(x) or sin(y), and thegrey neurons
either cos?(x) or sin?(y). All (black) neuronsinthesecond hiddenlayer are multiplicative,
and the (hashed) output neuronseither linear (PHONN#1) or asigmoid-logarithmic pair
(PHONN#2), as described later. Some of the intermediate weights are fixed and some
variable, according to the formulation of the polynomial being synthesized. All of the
weights connecting the second hidden layer to the output layer are adaptable
(PHONN#1,2). By contrast, only thelatter are adjustablein PHONN#O; thefirst two-layer
weightsarefixed (=1).

Figure 3. Polynomial higher-order neural network (PHONN)
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Thefirst model (PHONN#O) facilitatesextraction of thelinear coefficientsa,, , fromthe
general nth-order polynomial:

z(xy) = z Ak Xikl yik2 4)

kik2

Now, since variable weights are present in only one layer here, PHONN#0 can be
compared with Rosenbl att’ s(two-layer) perceptron, whichiswell-knowntobelimitedto
solving linearly separable problems.

In PHONN#1, the general nth-order polynomial of Equation 4 isexpanded asfollows:

2000) = Y (808X (a1 ©)

kik2=0

Each coefficient from Equation 4 has now been replaced by three termsin Equation 5.
Moreover, we now have two adjustable layers at our disposal, such that PHONN#1 has
similar discrimination capability toanMLP.

Thelinear output neuron of PHONN#1 isreplaced by asigmoid-logarithmic neuron pair
in PHONN#2, which leadsto faster network convergence. Model PHONN#3 comprises
groups of PHONN#2 neurons (ANN groups are discussed in the following section).

If weuseaPHONN to simulatethetraining data, the model will “learn” the coefficients
and order of the polynomial function. If we use adaptive HONN modelsto simulate the
data, the modelswill not only “learn” the coefficients and order, but also the different

Table 1. $A-$US exchange rate (March 2005)

Date Exchange | Input#l | Input#2 | Desired
Rate (X) (Y) Output (2)

1 0.7847 0.093 0.000 0.057
2 0.7834 0.000 0.057 0.607
3 0.7842 0.057 0.607 0.650
4 0.7919 0.607 0.650 1.000
7 0.7925 0.650 1.000 0.686
8 0.7974 1.000 0.686 0.479
9 0.7930 0.686 0.479 0.729
10 0.7901 0.479 0.729 0.229
11 0.7936 0.729 0.229 0.429
14 0.7866 0.229 0.429 0.800
15 0.7894 0.429 0.800 0.714
16 0.7946 0.800 0.714 0.736
17 0.7935 0.714 0.736

18 0.7937 0.736
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functions. In other words, themodel “learns” thepolynomial functionif thedataisin fact
apolynomial function.

Now, instead of employing apolynomial seriesexpansion, we could alternatively usea
trigonometric one, asindicated in Equation 6.

Z=a,+3q,sin(y) a,sin’(y) +a,cos(x) + a,cos(x)sin(y) + a,cos(x)sin*(y) +
a,,cos*(y) + a,,cos’(x)sin(y) + a,,cos*(x)sin*(y) + ... (6)

Thisnaturally leadsto thedevel opment of THONN models(and likewise THONN groups
— see subsequent paragraphs).

Onesignificant feature of modelsP(T)HONN#1 and higher isthat we have opened up the
“black box” or closed architecture normally associated with ANNSs. In other words, we
are able to associate individual network weightswith polynomial coefficientsand vice
versa. Thisisasignificant finding, since users— especially thosein thefinancial sector
— invariably prefer explanations (justifications) for the decisionsmade by their predic-
tors, regardless of the nature of the underlying decision engine.

We now proceed to illustrate the use of PHONNS by way of a simple example, namely
exchange-rate prediction. Table 1 shows how the Australian-US dollar exchange rate
varied during March 2005 (Federal Reserve Board, 2005).

Thefollowing formulawas used to scale the datato within therange 0to 1, in order to
meet constraints:

individual _rate) — (
{(individual _rate) (oweﬂ_rate%highest_rate)—(Iow&st_rate)} Y

Figure 4. PHONN Simulator main window
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Equation 7 wasappliedto each separate entry of agiven set of simulation data— inother
words, theindividual _rate. The smallest entry in the data set servesasthelowest_rate,
and thelargest entry ssthe highest_rate. After applying Equation 7, the datahave been
converted into the Input#1 column of Table 1.

We use previous day and current-day exchange rates to predict the next day’s rate.
Accordingly, wecopy thedatafrom 3/2/2005to 3/18/2005 to the I nput#2 column of Table
1 — thisbeing the second input to the PHONN — and copy the datafrom 3/3/2005 to 3/
18/2005 to the Output column of Table 1 (in other words, the desired PHONN output).

The PHONN simulation system was written in the C language, and runs under X-
WindowsonaSUN workstation. Itincorporatesauser-friendly graphical user interface
(GUI), which enables any step, data, or calculation to be reviewed and modified
dynamically indifferent windows. At thetop of the PHONN simulator mainwindow are
three pull-down menus: Data, Translators, and Neural Network, asillustrated in Figure
4 (which, by the way, shows the result of network training using the data of Table 1).

Each of these offers several options, and selecting a particular option creates another
window for further processing. For instance, oncewehave sel ected adataset viathe Data
menu, two options are presented for data loading and graphical display.

Dataisautomatically loaded when theL oad optionisselected. Alternatively, the Display
option displays data not only in graphical form, but also translated, if so desired (e.g.,
rotation, elevation, grids, smooth, influence, etc.). The Translators menu is used to
convert the selected raw datainto network form, whilethe Neural Network menuisused
to convert the datainto a nominated model (an example of which appearsin Figure 5).
Thesetwo menusallow the user to select different modelsand data, in order to generate

Figure 5. “ PHONN Network Model” subwindow
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and compare results. Figure 5 shows the network weights resulting from training using
the data of Table 1.

All of the previous steps can be simply performed using amouse. Hence, changing data
or network model and comparing results can all be achieved easily and efficiently.

Therearemorethan twelvewindowsand subwindowsinthe PHONN Simulator system;
both the system mode and its operation can be viewed dynamically, in terms of

. Input/output data,
o Neural network models,

. Coefficients/parameters, and so on.

Figure 6. “ Load Network Model File” subwindow

eural Net
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The simulator operates as a general neural network system and includes the following
functions:

. Load adatafile,

i Load aneural network model (Figure 6) for Table 1 data,
i Generate adefinition file (Figure 7) for Table 1 data,

. Writeadefinitionfile,

. Save report,

i Save coefficients (Figure 8) for Table 1 data, and so on.

The" System mode” windowsallow theuser toview, inreal time, how theneural network
model learns from the input training data (in other words, how it extracts the weight
values).

Figure 8. “ Coefficients” subwindow

y x| 00 L)l 0z
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01 04863 -0.0834 00274
02 —0.0027 —0.0310 —0.1446

Figure 9. “ Graph” subwindow
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When the system is running, the following system-mode windows can be opened
simultaneously from within the main window:

i “Display Data(Training, Evolved, Superimposed, and Difference),”
. “ Show/Set Parameters,”
i “Network Model (including all weights),” and

° “Coefficients.”

Thus, every aspect of the system’s operation can be viewed graphically.

A particularly useful feature of this systemisthat oneisableto view the mode, modify
it, or alternatively change other parametersin real time. For example, when the user
choosesthe“ Display Data” window to view theinput-training datafile, they can change
the graph format for the most appropriate type of display (in other words, modify the
graph’srotation, elevation, grids, smoothing, and influence).

During data processing, the “Display Data” window offers four different models to
display theresults, which can be changedinreal time, namely: “ Training,” “Evolution,”
“Superimposed,” and “ Difference (using the same format selected for the input data),”
asindicated in Figure 9 for Table 1 data.

i “Training” displays the data set used to train the network,

i “Evolved” displaysthe data set produced by the network (and is unavailableif a
network definition file has not been loaded),

i “Superimposed” displays both the training and the evolved data sets together (so
they can be directly compared in the one graph), and

i “Difference” displays the difference between the “Training” and the “Evolved”
data sets.

Figure 10. Report generation within PHONN Simulator
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The*Rotation” command changesthe angle of rotation at whichthewire-framemeshis
projected onto the screen. This allows the user to “fly” around the wire-frame surface.
The default value is 30°, but is adjustable from 0° to 355° in increments of 5°, with
wraparound from 360°to 0° (thisval ue can be simply adjusted with either the* up/down”
buttons or by entering a number directly).

“Elevation” changes the angle of elevation at which the wire-frame mesh is projected
ontothescreen. Thisallowstheuserto“fly” either aboveor below thewire-framesurface
(usageissimilar to Rotation).

The “Grids” command changes the number of wires used in the wire-frame mesh. Itis
adjustabl e between 6 and 30, using either the“up/down” buttonsor by directly entering
a number. Low grid numbers allow fast display, but with decreased resolution; high
numbers provide a more accurate rendition of the surface, but at the cost of increased
display time.

If the user is not satisfied with the results and wants a better outcome (a higher degree
of model accuracy), they can stop the processing and set new values for the model
parameters, such as learning rate, momentum, error threshold, and random seed. The
neural network model can be easily changed aswell.

As usual with neural network software, the operating procedure is as follows:

Step 1: Data pre-processing (encoding),
Step 2: Load and view data,
Step 3: Choose and load neural network model,
Step 4: Show/Set the network parameters,
Step 5: Run the program,
Step 6: Check theresults:
If satisfactory, then go to Step 7, otherwise go to Step 3,
Step 7: Save and export the results,
Step 8: Data decoding (postprocessing).

There aretwo basic requirementsthat must be satisfied beforethe PHONN simulator is
ableto start running: Oneisinput training data and the other isinput the network. The
users must also have loaded some training data and loaded a network.

Figure 10 showstherunning report for Table 1 data, fromwhich weseetheaverageerror
is17.4011%. Returning to Figure 8, we see that the following formula can be used to
represent the data of interest (exchange rate), thereby relating network weights to
polynomial coefficients:

Z=0.3990-0.0031X-0.0123X* X+0.4663Y -0.0834X* Y -0.0274X* X*Y
-0.0027Y*Y-0.0310X*Y*Y-0.1446X* X*Y*Y €))
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HONN Groups

Prior to our development of ANN groups, we were aware of earlier work on groups of
individual neurons (Hu & Pan, 1992; Willcox, 1991). What motivated our development
of firstly ANN groups and thenceforth P(T)HONN groupswasthe poor performance of
ANNs on human-face recognition, which we investigated in the context of airport
security (Zhang & Fulcher, 1996).

It is possible to define aneural network group in the usual set theory terms, as follows:

ANN = MLP U SOM U RBF U ART U SVM ... ©)

MLP is thus a subset of the set ANN; likewise a particular instance of MLP (say
MLP100:70:20) isasubset of MLP. Moreover, providing either the sum and/or product
can be defined for every two elements in a nonempty set N — ANN (Inui, Tanabe &
Onodera, 1978; Naimark & Stern, 1982), and then werefer to thisset asaneural network
group.

ANN groupsareparticularly useful in situationsinvolving discontinuous data, sincewe
can define piecewise function groups, as follows:

0,+0, =0, (A<1<B)
=0 (B<1<CQC) (10)

wherel = ANN input, O = ANN output, and for every two elements n;,n; > N, the sum
n+n is a piecewise function.

Now in the same vein as Hornik (1991) and Leshno (1993), it is possible to show that
piecewisefunction groups (of MLPsemploying locally bounded, piecewise continuous

activation functions and thresholds) are capable of approximating any piecewise con-
tinuous function, to any degree of accuracy (Zhang, Fulcher, & Scofield, 1997).

Not surprisingly, such ANN groups offer superior performance compared with ANNs
when dealing with discontinuous, nonsmooth, complex training data, whichisoftenthe
casewith financial time series.

HONN Applications

The three application areas in which we have focused our endeavors to date are (1)
human-face recognition (Zhang & Fulcher, 1996), (2) satellite weather forecasting
(Zhang, Fulcher, & Scofield, 1997; Zhang & Fulcher, 2004), and (3) financial time-series
prediction (Zhang, Xu, & Fulcher, 2002; Zhang, Zhang, & Fulcher, 2000). In each case,
wearetypically dealing with discontinuous, nonsmooth, compl ex trai ning data, and thus
HONN (and HONN groups) comeinto their own.
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Automatic Face Recognition

Automatic (1-of-n) facial recognitionisacomplex patternrecognitiontask, especially for
real-time operation under variablelighting conditions, wherefacesaretilted or rotated,
andwherenislarge. Therecan also be significant repercussionsfor fal se positives, and
more especially false negatives (that is, failure to detect a “wanted person”). The
advantage of using ANN groups in such an application is that if one particular ANN
model cannot perform the desired recognition, then perhapsanother model belonging to
the ANN set (group) can do better.

Using ANN group trees can extend this approach further. Nodes and interconnecting
weightsin such trees grow adaptively during thetraining process, according to both the
desired number of “wanted” |leaf-node faces and the variability contained within the
training exemplars. Asaresult, such anetwork is capabl e of recognizingtilted or rotated
facial images as being the same person; in other words, it can handle topological
deformations and/or 3D translations. Zhang and Fulcher (1996) describe such ANN
group treesin terms of Tolerance Space Theory (Chen, 1981; Zeeman, 1962).

Group-based adaptive-tolerance (GAT) trees have been successfully applied to auto-
maticfacerecognition (Zhang & Fulcher, 1996). For thisstudy, ten (28* 28 pixel, 256-level
gray scale) imagesof 78 different faces(front, tilted, rotated, smiling, glasses, beard, etc.)
were used for both training (87) and testing (693) purposes. For front-face recognition,
theerror ratewas0.15% (1 face); for tilted and rotated faces (of upto15%), theerror rates
were 0.16% and 0.31%, respectively. Thus GAT trees were more “tolerant” in their
classification.

Rainfall Estimation

Global weather prediction is acknowledged as one of computing’ s “grand challenges’
(Computing Research Associates, 2005). The world’s fastest (parallel vector)

Figure 11. Commonweal th Bank of Australia share prices (November 1996-November
2001)
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supercomputer — at least up until 2004 (M euer, Stronmaier, Dongarra, & Simon, 2005)
— was devoted to simulation of the earth for purposes of global weather forecasting.

Rainfall estimationisacomplicated, nonlinear, discontinuousprocess. SingleANNsare
unable to deal with discontinuous, nonsmooth input training data; ANN groups, on the
other hand, are well-suited to such problems.

ANNsand ANN groupsboth outperform conventional rainfall estimation, yieldingerror
rates of around 17% and 3.9%, respectively (compared with ~30.4% with the latter)
(Zhang & Fulcher, 2004; Zhang, Fulcher, & Scofield, 1997). ANN groups were subse-
guently used as the reasoning engine within the ANSER Expert System developed for
satellite-derivedrainfall estimation.

InZhang and Fulcher (2004), PHONN variants(PT-, A- and M-) areapplied to half-hourly
rainfall prediction. Another model — the Neuron-Adaptive HONN (describedinthenext
section) — led to amarginal error reduction (3.75%).

Another variant — the Sigmoid PHONN — hasbeen shownto offer marginal performance
improvement over both PHONN and M-PHONN when appliedtorainfall estimation (more
specifically, 5.263% averageerror compared with 6.36% and 5.42%, respectively) (Zhang,
Crane, & Bailey, 2003).

Application of HONNSs to
Financial Time Series Data

Both polynomial and trigonometric HONNshave been used to both simul ateand predict
financial time-series data (Reserve Bank of Australia Bulletin, 2005), to around 90%
accuracy (Zhang, Murugesan, & Sadeghi, 1995; Zhang, Zhang, & Keen, 1999).

Intheformer study, all the available datawas used during training. Inthelatter, thedata
wassplitintwo— onehalf being used for training and the other half for testing (and where
data from the previous 2 months was used to predict the next month’s data). More

Figure 12. Smulation of Commonwealth Bank of Australia share prices (November
2000-November 2001) using NAHONN
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recently, the polynomial/trigonometricHONN (Lu & Zhang, 2000) and M ultiple-PHONN
(Zhang & Lu, 2001) model shave been shownto offer improved performance, compared
withP(T)HONNSs.

It was mentioned previously that PHONN Model#3 comprises groups of PHONN#2
neurons. When applied to financial time-series prediction, PHONN groups produce up
toan order of magnitude performanceimprovement over PHONNs— morespecifically
around 1.2% error for simulation (compared with 11%) and 5.6% error for prediction
(compared with 12.7%) (Zhang, Zhang, & Fulcher, 2000). Similar improvements in
performanceareobserved with THONN groups(Zhang, Zhang, & Fulcher, 1996, 1997).

The neuron-adaptive HONN (and NAHONN group) leadsto faster convergence, much
reduced network size and more accurate curve fitting, compared with P(TYHONNs
(Zhang, Xu, & Fulcher, 2002). Each element of the NAHONN group is a standard
multilayer HONN comprising adaptive neurons, but which employs locally bounded,
piecewise continuous (rather than polynomial) activation functions and thresholds.

The (1-Dimensional) neuron activation function is defined as follows:

Table 2. $A-$US exchange rate (2004)

Australian Dollar/U.S. Dollar Exchange Rate (2004)

Raw
Exchange
Month Rate Input 1#1 Input#2 Desired Output

January 0.7576 0.95 0.93 1.00
February 0.7566 0.93 1.00 0.96
March 0.761 1.00 0.96 0.37
April 0.7584 0.96 0.37 0.03
May 0.7198 0.37 0.03 0.26
June 0.697 0.03 0.26 0.14
July 0.7125 0.26 0.14 0.00
August 0.7042 0.14 0.00 0.43
September,  0.6952 0.00 0.43 0.75
October 0.7232 0.43 0.75

November 0.7447 0.75

Figure 13. Input data for Sigmoid PHONN simulation (prediction)
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S
Vi (net;, ) =0, (net;,) = z fison (N€t;) (1)
h=1

where net, , istheinput (internal state) of theith neuroninthe kth layer, andw . isthe
weight connectmg the jth neuron in layer-(k-1) with the ith neuron in Iayer k This
formulation, along with nD and multi n-Dimensional NAHONNS, incorporate free
parameters which can be adjusted, along with the weights, during training (unlike
conventional feed-forward ANNs). The NAHONN learning algorithm is based on
steepest descent, but since the hidden-layer variables are adjustable, NAHONN offers
moreflexibility and moreaccurate approximation capability compared with (fixed activa-
tion function) MLP/BPs(Zhang, Xu, & Fulcher, 2002).

In one comparative experiment, aNAHONN with nonlinear neuron activation function
ledto around half theRM Serror compared with PHONN, andaNAHONN which utilized
piecewise NAFsrequired lessthan half the number of hidden-layer neurons, converged
inlessthan athird of thetime and led to an RM S output error two orders of magnitude
lower than PHONN (Zhang, Xu, & Fulcher, 2002; Figure 12).

Now aswiththeearlier P(T)HONN groups, itispossibleto proveasimilar general result
tothat found previously by Hornik (1991) for ANNs, namely that NAHONN groupsare
capable of approximating any kind of piecewise-continuous function to any degree of
accuracy (aproof isprovided in Zhang, Xu, & Fulcher, 2002). Moreover, these models
are capabl e of automatically selecting not only the optimum model for aparticular time
series, but also the appropriate model order.

Returning tothe Sigmoid PHONN (Zhang, Crane, & Bailey, 2003), the$Australian-$US
exchangerate data of Table 2 was used to predict the following month’ srate— in other
words, based on the previous two months rates, as follows:

. current _month—minimum
input#l = = — (12)
max imum-— minimum

Figure 14. Sigmoid PHONN training (convergence)
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Figure 15. Sigmoid PHONN network weights
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Figure 17. HONN performance comparison (Reserve Bank of Australia: Credit-card
lending, August 1996-June 1997)
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Figure 18. HONN performance comparison (Reserve Bank of Australia: Dollar-yen
exchange rate (August 1996-June 1997)
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Thus, only the data within the box was used for this exercise.

Thisinputtraining dataisplotted in Figure 13 (X =input#l, Y =input#2, and Z = desired
output, respectively).

Convergenceof the Sigmoid PHONN isshownin Figure 14 and thefinal network weights

in Figure 15. In this example, convergence occurs after roughly 700 epochs, despite
Figure 14 showing 10,000 epochstotal (and to an error of around 7%).

In Figure 15, the third (uppermost, lefthand side) network input is the bias term, the
remaining ones being input#1 (based on the current monthly rate) and input#2 (based

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



102 Fulcher, Zhang, and Xu

onthe next month’ sexchangerate); the network output isthe desired (month after next)
currency exchangerate, as previously explained. The grey neurons are sigmoid types,
the white neurons linear, and the black ones multiplicative.

The performance of this Sigmoid PHONN (actual vs. desired outputs) issummarizedin
Figure16.

Morerecently, Zhang (2003) hasdevel oped amultiPHONN, which employsalogarithmic
activation function, and as its name suggests, is capable of simulating not only
polynomial and/or trigonometric functions, but also combinations of these, as well as
sigmoidand/or logarithmicfunctions. Asaresult, they are better ableto approximatereal
world economictimeseriesdata. It canbeseeninFigures17 and 18that PL-HONN offers
significant performance improvement over THONNS, and marginal improvement over
both PT- and M-PHONNSs, when applied to typical financial time series data (Reserve
Bank of AustraliaBulletin: www.abs.gov.au/ausstats/abs@.nsf/w2.3).

Themainfinding fromtheseexperimentsisthat themore sophisticated PHONN variants
significantly outperform THONN ontypical financial time-seriesdata, however all yield
significantly lower errors compared with conventional feed-forward ANNs (not shown
in this chapter’sfigures).

Conclusion

We have introduced the concepts of higher-order artificial neural networks and ANN
groups. Such models offer significant advantages over classical feed-forward ANN
modelssuchasMLP/BP, duetotheir ability to better approximate complex, nonsmooth,
often discontinuous training data. |mportant findings about the general approximation
ability of suchHONNs(and HONN groups) havebeen presented, which extendtheearlier
findingsof Hecht-Nielsen (1987), Hornik (1991), and L eshno, Lin, Pinkus, and Schoken
(1993).
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Chapter VI

Hierarchical
Neur al Networ ksfor
M odellingAdaptive
Financial Systems

Masoud Mohammadian, University of Canberra, Australia

Mark Kingham, University of Canberra, Australia

Abstract

In this chapter, an intelligent hierarchical neural network system for prediction and
modelling of interest rates in Australia is developed. A hierarchical neural network
systemisdevel oped to model and predict 3months’ (quarterly) interest-ratefluctuations.
The systemisfurther trained to model and predict interest ratesfor 6-month and 1-year
periods. The proposed system is developed with first four and then five hierarchical
neural networks to model and predict interest rates. Conclusions on the accuracy of
prediction using hierarchical neural networks are also reported.
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| ntroduction

The prediction of uncertain dynamic systems, which are subject to external disturbances,
uncertainty, and sheer complexity, is of considerableinterest. Conventional modelling
and prediction methodsinvolvethe construction of mathematical model sdescribing the
dynamic systems to be controlled and the application of analytical techniques to the
model to derivepredictionand control laws (Caudell, Xiao, & Healy, 2003; K osko, 1992;
Medsker, 1995; Rakovic, 1977; Vidyasagar, 1978; Wang, Devabhaktuni, & Zhang, 1998;
Zadeh, 1965, 1973, 1994;). These modelswork well provided the system does meet the
requirements and assumptions of synthesistechniques. However, dueto uncertainty or
sheer complexity of the actual dynamic system, it is very difficult to ensure that the
mathematical model does not break down.

Neural network technology isan active research area (Chester, 1993; Grossberg, 1988;
Kosko, 1992). It has been found useful when the processis either difficult to predict or
difficult to model by conventional methods. Neural network modelling has numerous
practical applicationsin control, prediction, and inference.

Timeseriesareaspecial form of datawhere past val uesin the seriesmay influencefuture
values, depending on the presence of underlying deterministic forces. These are trend
cyclesand nonstationary behaviour inthetime-seriesdataare used in predictive models.
Predictive model s attempt to recogni se patterns and nonlinear rel ationshipsin thetime-
series data. Due to the nature of data in time series, linear models are found to be
inaccurate and there has been a great interest in nonlinear modelling techniques.

Recently, techniquesfrom artificial-intelligence fields such as neural networks (NNs),
fuzzy logic (FL), and genetic algorithms (GA) have been successfully used in the place
of the complex mathematical systemsfor forecasting of timeseries (Azoff, 1994; Bauer,
1994; Cox, 1993, 1994; Davis, 1991; Gallant, 1993; Goldberg, 1989; Karr, 1991; L ee, 1990;
Lee& Takagi, 1993; Mamdani, 1993; Michalewicz, 1992; Ruelle, 1989; Schaffer, 1994).
These new techniques are capable of responding quickly and efficiently to the uncer-
tainty and ambiguity of the system.

Neural networks (Azzof, 1994; Chester, 1993; Gallant, 1993; Hung, 1993; Karr, 1994,
Knigham, 1996; Kingham, & Mohammadian, 1996; Welstead, 1994; Zuruda, 1994;) canbe
trained in an adaptive manner to map past and future val ues of atime seriesand thereby
extract hidden structure and rel ationshipsgoverning thedata (L apedes, & Farber, 1987).

Investors and governments alike are interested in the ability to predict future interest-
ratefluctuationsfrom current economic data. Investorsaretrying to maximisetheir gains
onthecapital markets, whilegovernment departmentsneed to know the current position
of the economy and where it is likely to be in the near future for the well being of a
country’s people (Madden, 1995).

In the next section, the development of ahierarchical neural network systemis consid-
ered. This section also describes the financial data that can be used to predict the
fluctuationsof interest ratesin Australia. Theapplication of hierarchical neural network
systems for the prediction of quarterly interest ratesin Australiais then considered.

Comparison of the results from single neural networks and the proposed hierarchical-
neural network-systemismade. Thelong-term prediction of interest ratesby increasing
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the forecast time to first 6-month then 1-year time periods is also considered. A
hierarchical neural network system for predicting 6-month then 1-year time periodsis
comparedwith atraditional neural network system. Results of simulationsare presented
and conclusions and further-research directions are given in the last section of the
chapter.

Neural Networks for the
Prediction of Interest Rates

To predict fluctuationsin the interest rate, aneural network system was created. There
are a number of steps to perform to create the neural network system:

Identify the inputs and outputs for neural network system.
Preprocess data if required, and split into training and test suites.
Create a neural network system to predict the interest using training data.

Use the developed neural network on test data to evaluate the accuracy of the
prediction of the system.

D W DN P

I dentify the Inputs and Outputs for Neural Network
System

To design a neural network system, the actual inputs and outputs must first be
determined. There are anumber of possibleindicatorsthat could be used to predict the
interest rate. Some of the main economic indicatorsreleased by the Australian Govern-
ment are:

i Interest Rate, which istheindicator being predicted. The interest rate used here
isthe Australian Commonweal th government 10-year treasury bonds.

i Job Vacanciesarewhereapositionisavailablefor immediatefilling or for which
recruitment action has been taken.

i TheUnemployment Rateisthe percentageof thelabour forceactively looking for
work in the country.

i GrossDomestic Product (GDP) isan average aggregate measure of the val ue of
economic production in agiven period.

i The Consumer Pricelndex (CPI) isageneral indicator of therate of changein
prices paid by consumers for goods and services.
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i Household Saving Ratioistheratio of household income saved to ahousehold’ s
disposable income.

i Home L oans measure the supply of finance for home loans, not the demand for
housing.

i AverageWeekly Earningsistheaverageamount of wagesthat afull-timeworker
takes home before any taxes.

° Current Account isthe sum of the balances on merchandisetrade, servicestrade,
income, and unrequited transfers.

i Trade Weighted I ndex measures changesin Australian currency relative to the
currencies of our main trading partners.

i RBA Commodity Pricelndex providesan early indication of trendsin Australia’ s
export Prices.

i AllIndustrial Index providesanindication of pricemovementsonthe Australian
Stock Market.

i Company Profitsaredefined asnet operating profitsor lossesbeforeincometax.

i New Motor Vehiclesisthe number of new vehiclesregistered in Australia.

Thecurrentinterest rateisincludedintheinput indicatorsto the system asthe predicted
interest rate is highly dependent on the current rate asthereisonly likely to be a small
fluctuationintheinterest rate. The current interest rate givesthe neural network system
an indication as to the expected “ball park” area of the predicted rate.

Preprocess Data

In most time-series predictions, there is some preprocessing of the data so that itisin
aformat that the system can use. This may be where datais normalised so it fitswithin
certain boundaries, formatted into an appropriate form for the neural network systemto
use. It is also where decisions on how the data is represented are made.

There are a number of ways in which the raw data from the above indicators could be
represented. Firstly, the system could just use the data“asis” and makeits predictions
from that. Alternatively, the system could instead use the difference from the previous
quarter to the current quarter. The system could al so take into consideration the effects
of inflation on the raw data and compensate appropriately.

In our system, the change from one quarter to the next is used for the GDP and CPI
indicators, whilethe interest rate isthe actual reported rate from the Australian Bureau
of Statistics.

Once the data has been preprocessed, it must be split into some groups for the training
and testing of the system. For this system, the first two-thirds of the data was assigned
tothetraining set while the other one-third was assigned to the test set. The system uses
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the training set to train the neural network system. The neural network system isthen
tested on the test set.

Hierarchical Neural Network for Prediction of Interest
Rates

Inthissection, aneural network iscreated to predict thefollowing quarter’ sinterest rate
in Australia. The system uses the economic indicators described earlier. A hierarchical
neural network system is used to predict the following quarter’ sinterest rate. The first
model usesthe structure as shown in Figure 1, where the input parametersare split into
anumber of smaller related groupsandtheir output isfedintothefinal group, whichthen
produces the final interest-rate prediction. The second model used a single neural
network system where all the input parameters were presented to the system and an
interest-rate prediction was made.

In order for the neural network to use the economic data for predicting the following
guarter’ sinterest rate, anumber of preprocessing steps must be performed. Thisallows
the datato be presented to the neural network in aformat with which it can easily work.
Data presented to the neural network must fall within certain ranges (usually Oto +1 or
-1to+1 (Rao & Rao, 1994)) dueto the fact that the network uses a Sigmoid Activation
functioninitsmiddle (or hidden) layers.

Theneural network system formatsthedatafor processing wherethedifferencefromthe
current quarter to the previous quarter isused asthe datafor theinput. The change from
one quarter to the next is used by all the indicators except the interest rate, where the
actual interest rate is used. For example the Gross Domestic Product (GDP) would be
formatted as shown in Table 1.

AsTablelshows, therecanstill bealargerange between the smallest and largest val ues.
Toreducethisinto amoreuseablerange, the dataismodified by thefollowing equation:

New Data = (current data - Mean) / standard deviation D)

The new data that has been cal culated represents the distance from the mean value as
afraction of the standard deviation. Thisgivesagood variability to the data, with only
afew valuesthat are out of the0to +1 or -1 to +1 range.

Table 1. Difference in data from current quarter to previous quarter

Y ear Quarter Data Difference
1986 1 79856.0 N/A
1986 2 79520.0 -336.0
1986 3 79619.0 99.0
1986 4 79319.0 -300.0
1987 1 80201.0 882.0
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The next step in the preprocessing stage is to squash the data so that it falls between
the required range of 0 to +1 for this simulation. For this system, a Sigmoid squashing
function is performed. The equation for thisstep is:

Squash data = 1/ (1 + exp(-Norm Data))) @)

After performing the sigmoid squashing function on the data, all the values fall in the
rangeOto +1.

Aswell asusing theindicators asinputsfor the neural network, we also present datato
the system that relates to the rate of change in the data, which is the second derivative
of the data set (Rao & Rao, 1994). This accents changes in the data set between one
guarter and the next. The equation for thisis:

mov diff = (current val - previous val ) / (current val + previous val) )

The above equation is performed on the original data (before any preprocessing steps
are performed) and will give a value between -1 and 1. The result from this equation
becomes an additional input to the system. Therefore, for each input into the system, an
additional input is created, doubling the number of input parameters to the neural
network.

Hierarchical Neural Network System

Inthissection, wedevelop anumber of neural network systems. These are then combined
into ahierarchical neural network systemto predict interest rates. Specifically, welook
at why a hierarchical neural network system isimportant compared to a single neural
network system and compare the results from single neural network systems with a
hierarchical neural network.

Thehierarchical neural network structureisformed by havingthe mostinfluential inputs
asthesystemvariablesinthefirst level of the hierarchy, the next important inputsinthe
second layer, and so on.

Thefirst level of the hierarchy gives an approximate output, which isthen modified by
the second level and so on. Thisisrepeated for all succeeding levels of the hierarchy.
Oneproblemoccurswhenitisnot knownwhichinputstothe system have moreinfluence
than the others. Thisis the case when using the economic indicators discussed earlier.
Statistical analysiscould be performed on theinputsto determinewhich oneshavemore
bearing on the interest rate, however, without the advise of a statistician, it may be
difficult to decide which statistical method to use.

The method used in this chapter isto split the inputs into a number of related groups.
These inputs in these groups are related because they have some common connection
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between the inputs, such as dealing with employment, or imports and exports. This
changes the hierarchy into atwo-level hierarchy, with the outputs from all the groups
inthetop layer giving their results asinputsinto the bottom layer (Figure 1). Using the
economic indicators already indicated we can develop five separate groups. These
groups are as follows:

1  Country Group — Thisgroup contains Gross Domestic Product and Consumer
Pricelndex.

2 Employment Group — Thisgroup containsthe Unemployment Rate and the Job
Vacanciesindicators.

3 SavingsGroup— Thisgroup containsHousehold Saving Ratio, Home L oans, and
Average Weekly Earnings.

4.  Company Group— Thisgroup containsAll Industrial Index, Company Profit, and
New Motor Vehiclesindicators.

5 Foreign Group — Thisgroup contains Current Account, Trade Weight Index, and
alsothe RBA Commodity I ndex.

These five groups each produce a predicted interest rate for the next quarter. These are
thenfedintothenext layer of the hierarchy wherethefinal predictedinterest rateisfound,
as shown in Figure 1. For each of these groups, the current quarter’s interest rate is
includedintheindicatorsused. Thecurrent interest rate hasthe biggest influence onthe
following quarters' interest rates.

The five neural network systems created form the top layer of the hierarchy. They are
connected together to form a final neural network system. The final neural network
system uses the predicted interest rate from the five above groups to produce a final
interest-rate prediction.

Inthefollowing sections, wefirst create each of the neural network systemsrequired for
thetop layer of thehierarchy. Wethen combinefirst four andthenall five groupstogether
toformthefinal hierarchical neural network systemto predict thequarterly interest rate
inAustralia

Figure 1. Hierarchical neural network system for interest-rate prediction

Country Employment Saving Company Foreign

Final Neural Nletworks System

Predicted QuarYerIy Interest Rate
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Country Neural Network

Thecountry neural network contai nsinformation rel ating to countriescurrent economic
performance. Theseindicatorsare: Consumer Price | ndex and Gross Domestic Product.
As a measure of how well a group predicts the following quarters’ interest rates, we
calculate the average error of the system for the training set and tests sets. This is
calculated using the following formula:

iabs(Pi—Ai)

n

o 4

whereEistheaverageerror, Piisthepredictedinterest rateat timeperiodi, Ai istheactual
interest rate for the quarter, and n is the number of quarters predicted.

The Table 2 shows the results for the average error for country group.

Table 2 shows the training-average error is less than the test-average error as the test
set uses data that has not been used in the training of the neural network system.

Company Neural Network

The company neural network containsinformationrelating to the corporate sector of the
market. Thisinformationincludes: All Industrial Index, Company Profit, and New Motor
V ehicleRegistrations. Thesethreeindicators, combined withthelnterest Rate, are used
to predict the following quarter’ sinterest rate.

Usingthetraining data, thesystemisableto predict thefollowing quarters’ interest rates
with only afew fluctuations from the actual interest rate. However, the same problems
occur when predicting the interest rate on the test data.

Theaverage error of the company group of indicatorsisshownin Table 3. It showsthat
there was aslight decrease in the average error of the simulation when compared to the

Table 2. Average error for neural network country group

Training Average

Test Average

Overall Average

0.401

1.023

0.591

Table 3. Average error for neural network company group

Training Average

Test Average

Overall Average

0.228

1.290

0.548
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country group. However, the test-set average error is larger than that of the country
group.

Employment Neural Network

Theemployment neural network contai nsinformationrelating to theemployment sector
of the economy. Thisinformation includes: Unemployment Rate and Job V acancies.

Thesetwo indicators, combined with the I nterest Rate, are used to predict thefollowing
guarters’ interest rates. Using the training data, the neural network system is able to
predict the following quarter’s interest rate, with some fluctuations from the actual
interest rate. The performance of the neural network system for predicting the interest
rate on thetest datalooks slightly better than that achieved by the neural network inthe
country or company groups. The average error of the employment group of indicators
isshownin Table 4.

Savings Neural Network

Thesavingsneural network containsthefollowingindicators: SavingsRatio, HomeL oan
approvals, and Average Weekly Earnings. These three indicators, combined with the
Interest Rate, areused to predict thefollowing quarter’ sinterest rate. Theneural network
system for the savings group has a number of error amount peaks up as high as 2%,
however during the training period, there are only the two peaks, with the others
happening during the test period. Thiscompareswell with the other groupslooked at so
far, aswhiletherearesomefairly large error amounts, thereareanumber of quarterswhere
thereisavery low amount of error.

The average error of the savings group of indicatorsis shownin Table 5.

Table 4. Average error for neural network employment group

Training Average

Test Average

Overall Average

0.352

0.742

0.471

Table 5. Average error for neural network savings group

Training Average

Test Average

Overall Average

0.378

0.923

0.534
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Table 6. Average error for neural network foreign group

Training Average Test Average Overall Average
0.387 0.714 0.487

Foreign Neural Network

Theforeign neural network containsinformationrelatingto Australia’ scurrent economic
position in relation to the rest of the world. The indicators used are: Current Account,
ReserveBank of AustraliaCommodity Pricelndex, and Trade Weight Index. Thesethree
indicators, when combined with the Interest Rate, are used to predict the following
guarter’s interest rate. The neural network system for this group has a number of
fluctuations in interest rate that are not accurately predicted by the neural network
system. Inonequarter (quarter 46), thereisadifference between theactual and predicted
interest rate of more than 3%. However, therest of the quarters perform better than this
and compare favourably with previously generated neural network system for other
groups.

The average error of the foreign group of indicatorsis shown in Table 6. It shows that
the training-average error amount is larger than that achieved by both the savings and
Company groups.

Building a Hierarchical Neural Networ k
System by Combining the Neural
Networ k Systems for Each Group

After creating the above neural network system, we must combine them so that we can
utilise the information they present and obtain better predictions of each quarter’s
interest rate than any of the neural network systems previously created.

Combining first four and then all five of the neural network systems from the previous
section created a hierarchical neural network system. The way these groups were
combined to form the hierarchical neural network systemisillustrated in Table 7.

Table 7. Hierarchical neural network system groups

Combinefour groups Combinefive groups
(asin Figure1)
company group company group
country group country group
employment group employment group
savings group savings group
foreign group
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Table 8. Comparison of neural network systems

Average Average Average
Training Error Test Error Overall Error
Four-group hierarchical neural 0.318 0.681 0.428
network
Five-group hierarchical neural 0.354 0.607 0.431
network
All indicatorssingle neural network 0.039 0.880 0.296

A backpropagation neural network is used with two hidden layers, each consisting of
20 neurons; output layer consists of one node. Thiswas found to produce a quicker and
more accurateresult than using asinglehidden layer. Sigmoidlearningisusedto predict
thefollowing quarter’ sinterest rate. Theerror tolerancewas set to 0.0001, the L earning
Parameter (Beta) was set to 0.6, momentum (al pha) and Noise Factor were both set to O.
The neural network wastrained for 10000 cycles.

As Table 8 shows, the range of results for the different systemsis very diverse. The
training-averageerror, whichistheaverageerror, recorded during thetraining period of
40 quarters, ranges from ahigh value of 0.318 for the four groups down to 0.039 for the
all-indicator neural network. The all-indicator neural network was able to learn the
training data almost perfectly.

Thetest-averageerror istheaverageerror recorded during thetest period, whichiswhere
the system is presented with inputs that it has not been trained on. These compare
favourably with all indicator neural network systems had disappointing test-average
error results.

Long-Term Predictions

Sofar wehavelooked at predicting thefollowing quarter’ sinterest rate, whichis3months
fromthecurrent quarter. Thereareanumber of situationsinwhichthistimeperiodistoo
short a prediction length, such as when investors have to decide whether to move from
the bond market into the property market before the end of the financial year.

Inthe next section, a hierarchical neural network system for predicting interest rates, 6
months(biyearly) fromthecurrent quarter isdevel oped, foll owed by ahierarchical neural
network system that predictstheinterest rate one year ahead of the current quarter. The
structureand grouping of theinputsand neural network systemsin thefollowing section
for the hierarchical neural network system for long-term prediction is the same as the
hierarchical neural network system described above for quarterly interest-rate predic-
tion.
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Table 10. Comparison of results for long-term predictions

6-Month Predictions Training Error Test Error Overall Error
Four-group hierarchical 0.196 0.794 0.378
neural network

Five-group hierarchical 0.197 0.813 0.383
neural network

All indicators single 0.079 1421 0.480
neurad network

1-Year Predictions

Four-group hierarchical 0.110 1.248 0.456
neura network

Five-group hierarchical 0.139 1114 0.435
neural network

All indicators single 0.054 1.320 0.439
neural network

Comparison Between Neural Networks for Long-Term
Predictions

From the figures given in the table below, it can be seen that the results for long-term
predictionsproduce similar resultsto the short-term predictions(i.e. quarterly). Table9
shows acomparison between the hierarchical neural network predictionsand the single
neural network predictionsfor 6 monthsand 1 year.

From these results, it can be seen that the hierarchical neural network systems have a
much better test-average error when compared to theall indicator single neural network
systems. The training-average error results were similar for most of the prediction
systems, with only theall-indicator single neural network system, for both 6-month and
1-year predictions, which had very low training results. However, theaverage-test-error
amounts for the all-indicator single neural network systems were the highest of all the
systems.

From these results, we can conclude that using 14 economic indicators and training the
system for 40 quarters, the hierarchical systems provide much better prediction results
thantheall-indicatorssingleneural network systems. Fromtheresultsobtainedin Table
9, it can be seen that the average-training error results were similar for most of the
prediction systems, with only the all-indicators single neural network system, for both
6-month and 1-year predictions, which had very low training results. However, the
average test-error amounts for the all-indicator systems were the highest of all the
systems.

From these results, we can conclude that using 14 economic indicators and training the
system for 40 quarters, the hierarchical neural network systems provide much better
prediction results than the all-indicators single neural network systems. These results
are similar to the comparisons found in the previous section where the Interest Rate
predictions for one quarter by the hierarchical neural networks system provided better
prediction results than the all-indicator neural network system.
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Conclusion and
Further Research Direction

Thischapter has presented amethod inwhich ahierarchical neural networkssystem can
be used to model and predict the fluctuations of the Australian Interest Rate using
Australian economic data.

Theapplication of the proposed method to model ling and prediction of interest rate using
Australian economic indicators is considered.

From simulation results, it was found that the hierarchical neural networks system is
capable of making accurate predictions of the following quarter’s interest rate. The
resultsfromthehierarchical neural networkswere comparedtoaneural network that used
all the indicators as inputs.

Long-term predictions for 6 months and 1 year from the current quarter were then
undertaken with the hierarchical neural network systemsproving to be moreaccuratein
their predictionsthan the neural network systems. Theseresultswerefoundto be similar
to those obtained when quarterly interest rates were predicted.

Having atimelag for someeconomicindicatorsmay increase prediction accuracy. There
are someindicatorswhose effect isnot felt on theinterest rate for anumber of quarters,
suchasConsumer Pricelndex (Larrain, 1991). Delaying theindicator resultsinthesystem
using the indicator when it has more effect on the interest rate. The accuracy of the
hierarchical neural network system may also beincreased if anindicator that fluctuates
greatly between quartersis smoothed out using some form of moving average (such as
2-quarter, or 6-month, moving average). Thiswould then remove any sudden peaks (or
valleys) that theindicator may exhibit which could greatly affect the prediction accuracy.

Finally thestructureof thehierarchical neural network system may affect the performance
of the system. This s the subject of our further research.
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Abstract

The term structure of interest rates holds a place of prominence in the financial and
economic world. Though thereisa vast array of literature on the issue of modeling the
yield curve, thereisvirtually no mention of the issue of forecasting the yield curve. In
the current chapter, we apply neural networks for the purpose of forecasting the zero-
couponyield curve. First theyield curveismodel ed fromthe past data using the famous
Nelson-Segel model. Then, forecasting of the various parameter s of the Nel son-Siegel
yield curve is done using two different techniques: the multilayer perceptron and the
feed-forward network. The forecasted Nelson-Siegel parameters are then used to
predict theyield and the price of the various bonds. Results show the superiority of the
feed-forward network over themultilayer perceptron for the pur posesof forecastingthe
term structure of interest rates.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Forecasting the Term Structure of Interest Rates Using Neural Networks 125

| ntroduction

Theterm structure of interest ratesisarelation of theyield and the maturity of default-
free zero-coupon securities and provides ameasure of thereturnsthat aninvestor might
expect for different investment periodsin afixed income market. Theterm structure of
interest ratesisatopic of central importancein economic andfinancial theory. Asaresullt,
themodeling and estimation of theterm structure hasreceived considerabl e attention of
a number of researchers right from the early sixties. Broadly speaking, there are two
popular approaches for modeling theterm structure of interest rates: a) fitting curvesto
thedatausing standard statistical techniquesand, b) dynamic asset-pricing method. The
parsimonious representation dictated by an exponential decay term such as Nelson and
Siegel (1987), Svensson (1994) and the splinerepresentati on categorizedinto parametric
and nonparametric splines such as Adams and van Deventer (1994), Fama and Bliss
(1987), Fisher, Nychka, and Zervos(1995), McCulloch (1971, 1975), McCullochand Kwon
(1993), Tanggaard (1997), V asicek and Fong (1982), and Waggoner (1997) belong tothe
former approach of estimating theterm structure. WhileV asicek and Fong (1982) explore
the possibility of using exponential splines, McCulloch (1975) exploresthe possibility
of fitting parametric cubic splines. Dynamic asset pricing method of estimating theterm
structureincludes no-arbitrage modelsof Heath, Jarrow, and Morton (1992), Hoand Lee
(1986), Hull and White (1990) and the various equilibrium models such as the affine
general equilibrium models, for example the model of Pearson and Sun (1994). Affine
model shypothesizeyield asaffinefunction of the state variablesand includethe model s
of Cox, Ingersoll, and Ross (1985) and Duffieand Kan (1996) apart from others. In spite
of aflurry of research activity on modeling theyield curve, there hasbeenlittleresearch
effort onforecastingtheyield curve(Diebold & Li, 2002). Forecasting theterm structure
of interest ratesisimportant from the viewpoint of investment decisionsof firms, saving
decisions of consumers, policy decisions of governments, pricing and hedging deci-
sions of derivatives, valuation decisions of various financial products especially the
debt instruments and managing the bond portfolio apart from a host of other decisions.
No-arbitragemodel sareapplicableonly at aparticular timesliceastheir focusisonfitting
thecrosssection of interest ratesat aparticular time. Themodel sthereforefail to capture
the time-series dynamics. These models are hence not very useful for forecasting
purposes. The equilibrium models, onthe other hand, are ableto capturethetime-series
dynamics, but fail to pay attentiontofitting the crosssection of interest ratesat any given
time. Thoughtheequilibrium modelsare better candidatesin contrast to theno-arbitrage
model sfor forecasting purposes, theforecastsgenerated by the equilibrium modelshave
been shown to be extremely poor. Most models so far in the literature — including the
no-arbitragemodel sand the equilibrium model s—fail to model thedynamicrelationship
between the parametersof aterm-structuremodel. M odel sof M cCulloch (1993), Nelson-
Siegel, and others try to explain the movements of the term structure with the aid of
various factors and consequently attach labels to these factors having important
macroeconomic and monetary policy underpinnings. Others such as Pearson and Sun
(1994) interpret thefactorsin their model as* short rate” and “inflation,” and Litterman
and Scheinkman (1991) interpret the factors used in the model as “level,” “slope,” and
“curvature.” The labels attached to the factors stand for the influence the factors have
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ontheyield curve and describe how the yield curve shifts or changes shapein response
tothechangesinthefactor. Theforecasting ability of most of the existingterm-structure
models, however, ispoor. Thishas motivated usto try out the neural network theory for
the purposes of forecasting the yield curve in the present research.

Following thework of Diebold and Li (2002), inthe present paper we adopt the Nel son-
Siegel (1987) framework to model theyield curvein each period. Wethen design aneural
network model to directly model therelationships between thetimevarying parameters
in each period.

The second section discusses the appropriateness of neural networks for financial
modeling. Thethird section describesthe dynamicsof theyield curve. The Nel son-Siegel
method of modeling theterm structureand theinterpretation of thevariousNel son-Siegel
parameters are also provided. The fourth section describes the methodology and the
neural network architecturein detail. Thefifth section discussestheresults. Conclusion
and various issues associated with the application of the neural networks are explained
in the sixth section.

Why Neural-Networ k-Based
M odels are Appropriate

Traditional forecasting techniques such as regression analysis, moving averages, and
smoothing methods require assumptions about the form of the population distribution.
For exampl e, the regression model s assume that the underlying populationis normally
distributed. Ontheother hand, the neural network models(Hassoun, 1995) do not require
any such assumption about the distribution for the underlying population. Moreover,
thevariousfactorsintheeconomy interactinanumber of complex waysto affect theyield
curve. Thecomplexity of interactionsishard to model mathematically and therelation-
shipsbetween thevariablesunderlying thesefactorsaremorelikely to benonlinear than
linear. Thus assuming a mathematical model a-priori, may provide an oversimplistic
picture of the interactions than are actually present. Such nonlinear relationships
amongst the various factors make it difficult for the traditional methods to discern any
meaningful relationship between the factors, whereas neural networks are ableto infer
such complex nonlinear relationshipsbetween the effected variable and itsdeterminants.
Activities undertaken in the financial and economic systems, though designed by
humans, are highly complex. The complexity arisesfrom the different expectationsand
diversereactionsof thedifferent playersinthemarket. Such complex systemsaredifficult
to capturein terms of mathematical equations and hence neural -network-based models
seem appropriate. One of the most successful applications of neural networks in the
finance literature is of Hutchinson, Lo and Poggio (1994 ). They have shown that the
Black-Scholes formula can be successfully learnt using the neural network models.
Furthermore, they have demonstrated the ability of the neural network models to
successfully learn arelationship between the option and the underlying risk factors.
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Yield-Curve Dynamics and the
Nelson-Siegel Method

Hereweintroducethefundamental s of theyield curve. Weal so build theframework for
modeling and forecasting theyield curve, whereweargueinfavor of theappropriateness
of the Nelson-Siegel method for the purposes of modeling the yield curve.

If PV, (7) represents the price of a 7 period discount bond and y(7) represents its
continuously compounded zero-coupon nominal yield to maturity (YTM), then the

discount curve can beobtained fromtheyield curveas: P (r) = e ™ . Wecanthen derive

theinstantaneousforward rate curvefromthediscount curveas f,(t)=-P (r)/P(z) . The
relationship between the yield to maturity and the forward rate is therefore given as:

%i(t

):;[ f, (L;)du

or,

f.(1) =y, () +7y,(7)

Thismeansthat the zero-couponyield isan equally weighted mean of theforward rates.
Itistherefore possibleto priceany coupon bond asthe sum of the present valuesof future
cash flows (coupon payments and the principal payment), if the yield curve or the
forward-rate curveisgiven.

Nelson-Siegel Yield Curve and |ts Interpretation

Nelson-Siegel models the instantaneous forward-rate curve as:

f(r)= :BOt + ‘Blte*/%f + ﬁZtﬂ‘tTeiM'

Thisimplies that the equation of the Nelson-Siegel yield curveisgiven as:

—ghr 1-e% .
Y (7) = ﬁm"‘ﬁn( At Jﬁzt[ AT € ]
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Nelson-Siegel forward-rate curve can beinterpreted aslaguerrefunction plusaconstant.
Laguerre function is a highly popular mathematical approximating function and is
polynomial timesan exponential decay term. Therate of exponential decay isgoverned
by the parameter 2. Large valuesof A, produce faster decay and can fit the curve at short
maturities; small values of A produce slower decay and better fit the curve at longer
maturities. 3, B,,, B, can be interpreted as three latent factors. 3, can beinterpreted as
the long-term factor, astheloading on 3, is 1, which is a constant and does not change

1-g
withtime. B, can beinterpreted asthe short-termfactor astheloadingon 3, is (_211 ]

afunction that startsat 1 and inthelimit decreasesto zero exponentially and monotoni-
cally. B,, cansimilarly beinterpreted asthe medium-term factor astheloading on 3, that

l-g™ .
is, ( At -e* inrstincreasesfromOand thendropsdownto 0. Thus, thethreefactors

By B, B, govern threeimportant aspects of theyield-curvelevel, slope, and curvature
and canthereforeappropriately becalledlevel, slope, and curvaturerespectively instead
of long-term, short-term, and medium-term.

Justification for Using the NeIson-SiegeI M odel

Thejustification of usingthe Nelson-Siegel exponential functional form over thespline-
based methodsismany. First, because of itsparsimony, itsusersareableto remove noise
from the dataand avoid overfitting of risk. Thisallowsidentification of only the salient
features of the bond dataset and at the same time avoids fitting the random features of
the data set that may not recur. Second, the empirical analysis by Litterman and
Scheinkman (1991) has shown that three factorsare sufficient to completely explain the
dynamics of the term structure of interest rates. Third, the number of parametersto be
estimated in the Nelson-Siegel framework is much less than that in a spline-based
approach. Fourth, the assumption of aunique functional form for the discount function
over the complete range of maturities allows some of the fundamental properties of the
discount function to be imposed a-priori. Fifth, comparative assessment of many a past
research works has shown that Nelson and Siegel and its extension by Svensson (1994),
are better performers than their spline counterparts. Sixth, the assumption of a unique
functional formfor thediscount function automatically imposesthe no-arbitrage condi-
tion because it is possible to obtain the discount function only if the assumption of no
arbitrage holds. The functional form postulated by Nelson and Siegel is ableto accom-
modatediverse shapesof theforward rate curveslikethe monotonic and humped shapes.
Moreover it provides anintuitive explanation of the parameters: B isthelongrate, B, is
theshort rateand 3, isthe weight attached to themediumrate. Thisallowsusto forecast
long- and short-rate movements. Also, as suggested by Nelson and Siegel, the existing
framework providesasolid ground for generalization to higher-order models.
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M ethodology

In this chapter, we adopt the Nelson-Siegel model for fitting the yield data. Once the
Nelson-Siegel exponential form has been selected as the approximating function, the
parametersof thefunction haveto beestimated using one of the several approachessuch
asmaximum likelihood, iterative programming, weighted | east squares, linear program-
ming amongst a host of other approaches. In this chapter, we adopt the method of |east
squares. We estimate the parameters 8, 3,,, 8,,in the manner illustrated in the original
work of Nelson and Siegel. For each day t wefix the value of A and compute the values
of thetwo regressors, that isthe factor |oadings, and then apply thel east-square method
to estimate 8, B,,, B, Thisisrepeated for different values of A, and that value of A is
retained for which theerror isleast. When we apply theleast square method to theyield
dataof each day, we get thetime seriesof the estimatesof 3, B,,, B,,- Figure 1 showsthe
modeled Nelson-Siegel yield curvefor thetwo sel ected dates. Itisseenfromthediagram
that the three-factor Nelson-Siegel yield curve can sufficiently replicate the different
shapes of the yield curve.

Thevaluesof the parameters obtai ned by fitting the Nel son-Siegel curvetotheyield data
of thepreviousday isfedtoaneural network for forecasting the parameters of the Nel son-
Siegel curvefor thecomingday. Thisisthen usedto predict theyield and hencetheprice
of the bond.

Figurel. Plot of thetermstructure (zero-couponyield curve) for dates 24 January 2003
and 25 January 2003
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Modeling_] Yield Curves

Asalready mentioned, wefit the yield data using Nelson-Siegel’ s three-factor model.

B 1-e* 1-e* .
)’t(”‘ﬁm"'ﬁn(?}"ﬁzt[ l{L’ € J

Thereasonfor choosing the Nel son-Siegel model for fittingtheyield curveascited earlier
isthe natural interpretation of the three beta parameters of the curve and the easiness
with which it can model the different shapes of the curve. It is parsimonious and has a
discount function that startsat zero and in the limit approaches zero. Bliss (1997) made
a comparison of the different yield-curve fitting methods and noted that the Nelson-
Siegel method outperforms most other methods. Moreover Diebold and Li (2002) show
the ability of the Nelson-Siegel model toreplicatethe various stylized facts of theyield
curveandtheinability of affinemodel sto do the same (Duffee, 2002). Hence, the Nel son-
Siegel method isanatural choice for modeling theyield curve.

Forecasting_j the Yield-Curve Parameters

Neural Network Architecture

The Nelson-Siegel parametersviz 3, B,, B, and A in periodt-1 are defined asinputs and
the Nelson-Siegel parametersin period t are defined as the output to which the neural
network mapstheinputs. After sufficient training (M SE of 0.01 or 1000 epochswhich ever
is earlier), the network can be used to predict yield for an out-of-sample period. We
consider models based on two different network architectures — the first based on
multilayer perceptron and the second based on feed-forward networks.

Multilayer Perceptron

The perceptron is the simplest neural network and consists of asingleinput layer and
asingle output layer. The perceptron is a feed-forward network where neurons in any
layer are only connected to successor layers. This means there cannot be any connec-
tions from one layer to layers other than the adjacent ones. The multilayer perceptron
can contain an arbitrary number of hidden layers. Input patterns propagate through the
multilayer perceptron using the samefeed-forward al gorithm asthe perceptron. Themain
difference is the addition of aweight matrix between each hidden layer or between a
hidden layer and the output layer. As opposed to athreshold activation function, many
multilayer perceptrons use an alternate activation function known asthe“Linear Tanh”
activation function. The Linear Tanh Axon substitutes the intermediate portion of the
tanh by a line of slope b, making it a piecewise linear approximation of the tanh.
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Backpropagation learningisapopular learning algorithmthat isused in many multilayer
perceptrons. The algorithm creates an error function that is defined over the entire
possible space of the weightsfor the network. Thisglobal minimum representsan error
value of zero and would correspond to theideal weight valuesfor agiveninput pattern.
Weights are updated by following the steepest slope or gradient of the error function.
However, aproblem ariseswhenlocal minimaare present. Thealgorithmmay find alocal
minimum value as opposed to the global minimum leaving the optimal weight values
unobtainable. Thus, the weights that may be obtained after the termination of the
algorithm may be substantially different fromthedesired global minimathat capturethe
desired features of the underlying problem. Thisproblem is particul arly acute when the
error surface is highly uneven. We therefore use a variation of the backpropagation
learning algorithm called themomentum|earning rule (Haykin, 1999), with an additional
momentum term in the weight updation rule. Multilayer perceptrons have been widely
usedinvariousfinancial-forecasting techniqueslikethe currency exchange-rate predic-
tions, gilt futurespricing, and so on (Refenes, Azema-Barac, Chen, & Karoussos, 1993).

Generalized Feed-Forward Network

Generalized feed-forward networksareageneralization of the M L P such that connections
can jump over one or more layers. In theory, an MLP can solve any problem that a
generalized feed-forward network can solve. In practice, however, generalized feed-
forward networksoften solvethe problem much moreefficiently. A classic exampleof this
isthetwo-spiral problem (Whitley & Karunanithi, 1991).

Learning Algorithm

Weused themomentum learning rule (Haykin, 1998), asupervisedlearningrule, for both
MLP as well as feed-forward training. The momentum learning is similar to the
backpropagation algorithm (BP). The key idea is to present the input vector to the
network; cal culateintheforward direction of the output of each layer and thefinal output
of the network. For the output layer, the desired values are known and therefore the
weights can be adjusted as is done in the case of single layer network. To calculate the
weight changes in the hidden layer, the error in the output layer is backpropagated to
these layers according to their connecting weights. This process is repeated for each
sample in the training set. Momentum learning is an improvement over the gradient
descent searchinthe sensethat amemory term (the pastincrement totheweight) isused
to speed up and stabilize convergence (Rao & Principe, 2000). Theweight increment is
then adjusted to include some fraction a of the previous weight update; therefore it
becomes:

w(m+1) = w(m) + (1— a) Dw(m) + aDw(m-1)

Where Dw(m-1) = w(m) —w(m-1) isthe past weight change.
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Thefractionashould not benegative, andfor stability it must belessthan 1.0. Normally,
it should be set between 0.5 and 1.0. If a =0, the algorithm is reduced to the standard
backpropagation. Thisruleiscalled momentum learning duetotheformof thelast term,
which resembles the momentum in mechanics. For the current experiment, we chose a
valueof 0.7 for themomentum parameter a. Thus, theweightsarechanged proportionally
tohow muchthey wereupdatedinthelastiteration. Therefore, if the searchisgoing down
thehill andfindsaflat region, theweightsarestill changed, not because of the gradient,
but because of the rate of change in the weights.

Data Samples: Testing and Training Sets

The data of different bonds maturing at varioustime intervals offering different rate of
returnsfor the purpose of conducting theexperimentsistaken from NSE (National stock
exchange, India).

. Training-Data Set — Thetraining-dataset consisted of 600 Nel son-Siegel param-
eters(300inyears2001 & 2002 and 300 inyears2003 & 2004).

. Testing-Data Set — The testing-data set consisted of 60 betas (30 in years 2001
and 2002 and 30inyears 2003 and 2004). Additionally, 20 daysin 2004 weresel ected
at random from the test-data set, and the forecasted betas corresponding to these
days were used to forecast the prices for various different bonds. An average 20
different bonds were taken on each of the 20 days (thus 400 bond instances) for
the previously mentioned testing purposes.

Error Measures of Prediction

Two different measures were considered for assessing the quality of forecast. Thefirst
oneisthe mean-square error (M SE), and the second measure isthe percentage error in
prediction. Mean-squared error is calculated as the mean of squares of the difference
between market price and the predicted price. Thus:

=

*(Market Priceof thebond — Predicted Price)
Total number of test samples

Percentage error in predictionis cal culated by the following formula:

% error in Prediction = {(Market Priceof thebond — Predicted Price) }*100

Market Priceof the bond

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Forecasting the Term Structure of Interest Rates Using Neural Networks 133

Results

Several experimentswere conducted with variousarchitecturesof MLP & feed-forward
networks. After anumber of experiments, the number of hidden layersin both the cases
wasfixed at one. Each hidden layer consisted of four processing units. Theoretically, it
has been shown that ML Ps with awide variety of continuous hidden-layer activation
functions, one hidden layer with an arbitrarily large number of units suffices for the
“universal approximation” property (Hornik, 1993; Hornik, Stinchcombe, & White,1989).

Fit of the parameters, thatis B, B,, B,, A during the testing phase of ML P are depictedin
Figure2(a)-(d). Similar diagramscan beshownfor thefeed-forward network, though they
are purposefully avoided. Table 1 showstheaverageerror inprediction of 3, B,, 8, and
A with actual values modeled by Nelson-Siegel method on the test-data set. However,
what matters most is the error generated in forecasting the bond price cal culated using

Figure 2(a). Variation between actual and neural network values of 3 on out-of-
sample data (MLP)

Actual Desired Output and Neural-network Output:beta0
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Figure 2(b). Variation between actual and neural network values of j; on out-of-
sample data (MLP)
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Figure2(c). Variation between actual and neural network values of 8,0n out of sample
data (MLP)
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Figure2(d). Variation between actual and neural network valuesof A on out-of-sample
data (MLP)
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Table 1. Average percentageerror inprediction of 3, 8,, 8,and A using MLP and feed-
forward architectures

Average Percentage Error
Parameters
(MLP) (Feed forward)
Bo 7.09128 6.851593
B 6.00752 5.86612
B, 13.59411 13.05343
A 16.85239 16.91081
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Table 2. Mean-square error in prediction of bond price

Multilayer Perceptron Feed-forward Network
7.377 4.094

Table 3. Average percentage error in prediction of bond price

Multilayer Perceptron Feed-forward Network
0.00709 -0.00023

the forecasted val ues of the Nelson-Siegel parameters of the yield curve. So, in some
sense, the comparison of the forecasted Nelson-Siegel parameters with the modeled
Nelson-Siegel parameters on the test data is of only of pseudoimportance.

Tables2 and 3 givetheM SE andtheaverage percentageerror in prediction of bond prices
for both M L Pand feed-forward networks. Comparative performance of thefeed-forward
networksis better than the MLP. The model based on afeed-forward network is better
ableto capturethediversefacetsof theterm structurethan the model based on multilayer
perceptron.

The models where we make use of the Nelson-Siegel method along with the neural
network model sproduce significantly fewer pricing errorsand seemtoforecast theyield
and bond price accurately. Percentage error in prediction is less than 1% in both the
network models, which indicates a good forecast.

From Figure 2(d) it can be observed that thefit for the parameter A on the out-of-the-test
samplesis not quite good. However, the low values for the errors for predicting bond
prices using the forecasted parameters suggest that A does not contribute much toward
the forecasting of the yield curve.

Conclusion and Issues

In thischapter, we have successfully established neural networksasatool for forecast-
ing the term structure of interest rates. The forecasted yield curve can not only be used
for predictingtheyield and thebond pricesbut al so for predicting various other economic
indicatorslikegrossdomestic product, growth, inflation, and so on. However, one of the
major limitationsof theneural network isitsinability toexplainitsbehavior. Itisdifficult,
for example, to explain the relative importance of the various inputs. Often, weight-
sensitivity analysisiscarried out to devel op an understanding of the model’ s behavior.
Though we have not done the weight sensitivity analysis, this forms the basis for the
formulation of rules, which governthe dynamicsof theyield curveasexemplified by the
model. Moreover, the generalization ability and hence the predictive ability of the
networks decreases as the training time increases. The net is able to decipher the
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important features in the dataset after a few passes only. As training progresses, the
possibility of overfitting of the datais extremely high. The generated results will have
ahigh R-square with little practical significance, asthe ability to recognize and predict
patterns outside the training set will be severely hampered. Also, a small change in
network design, learning times, and so on, can produce a large change in the network
behavior; and, as a result, stability of the predictions by the neural networks may be
adversely affected. Choice of an appropriate learning rate is a major issue while
devel oping model s based on neural networks. A small value of thelearning rateimplies
lower speed of convergencewhilealargevalueof thelearning rateresultsin oscillations.
Correctly identifying the optimal network architecture, choosing the appropriateinitial
weights, and sel ecting theright activation function governsthe predictive capability and
hence the performance of the neural network model. It has al so been shown that the use
of only afew significant variables will produce considerably better results than trying
touseevery availablevariableasinputsto theneural network model. Thus, considerable
domain expertise is needed while developing a neural network model for various
applications. In spite of the improved problem-solving capability of neural networks,
tacklingtheissuescited earlier demandsexperienceonworking with theneural networks
apart from understanding the domain to which they are being applied. The future scope
of work isto develop some sort of rule base using the domain expertise of analysts to
makeaccurateforecasts. Thiscan beachieved by incorporating thefuzzy systemsinside
the neural network learning.
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Chapter VIII
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Abstract

Intoday’ sglobal market economy, currency exchangeratesplay avital rolein national
economy of the trading nations. In this chapter, we present an overview of neural
network-based forecasting models for foreign currency exchange (forex) rates. To
demonstrate the suitability of neural network in forex forecasting, a case study on the
forexratesof six different currenciesagainst the Australiandollar ispresented. Weused
three different learning algorithms in this case study, and a comparison based on
several performance metrics and trading profitability is provided. Future research
direction for enhancement of neural network models is also discussed.
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| ntroduction

In an eraof increasing global competition and integrated economies, the forex rate has
become one of the key factorsfor international trading and open economics. Exchange
rates become important when a business or individual purchases goods or services
produced in another country because the buyers require to pay the total cost using an
appropriate currency demanded by the producer. So the buyers have to purchase other
currency for running their businesses. Foreign currency traders make a profit through
buying and selling currencies at different rates with fluctuating demands. In fact, the
exchange rates play a crucial role in controlling the dynamics of the import-export
markets. For example, if the Australian currency isweaker thantheU.S. currency, theU.S.
traders would prefer to import certain Australian goods, and the Australian producers
and traders would find the U.S. as an attractive export market. On the other hand, if
Australiaisdependent onthe U.S. for importing certain goods, it will then betoo costly
for the Australian consumers under the current exchange rates. In that case, Australia
may ook for acheaper sourcethat means shifting fromthe U.S. to anew import market.
Aswe can imagine, the traderelation and the cost of export/import of goodsisdirectly
dependent on the currency exchange rate of the trading partners. Although the foreign
exchange market has been estimated at adaily turnover of morethan US$1 trillion (Gan
& Ng, 1995), the exchangeratesvary continuously during thetrading hours. Asaresult,
an accurate prediction of exchange rates is a crucial factor for the success of many
businesses and financial institutions.

Therisk associated with exchangeratefluctuationsthat putscompaniesand individuals
into risks has increased substantially over the past decades. In particular, after the
breakdown of the Bretton Woods Agreement in the early 1970s, the foreign currency
market hasbecomevolatile. Themarket hasexperienced unprecedented growth over the
last few decades, mainly due to floating exchange rates and a push towards further
liberalization of trades through the General Agreement on Trade and Tariffs. At times,
combined with other financial risks, the exchange rate market becomes so volatile that
it contributesto |eading thewhol e national economy into crisiswhich, for example, was
evidentin Mexico (1994), Southeast Asia(1997), Russia(1998), and Argentina (2002).

Duetothereasonsasoutlined earlier, significant efforts have been made over theyears
topredict foreign exchangeratesin order tofacilitatefinancial decision makingand risk
management. However, exchangerate behavior may exhibit complex characteristicsthat
make it difficult to predict exchange rates within an acceptable accuracy limit (Chinn,
2003). Thisisillustrated by arecent comment by Alan Greenspan (2002): “ There may be
more forecasting of exchange rates, with less success, than almost any other economic
variable.” Furthermore, opposing views existed for years between practicing and aca-
demic communitiesabout statistical propertiesof exchangerates. Practitionersbelieved
exchangeratesto have persistent trendswhileacademics considered evidences support-
ing random walk hypothesis and efficient market hypothesis, which implies that rate
changes are independent. The recent empirical studies have presented strong evidence
that exchangerates are not independent of the past changes and dismissed the preval ent
viewineconomicliteraturethat exchangeratesfollow arandomwalk (Tenti, 1996). There
isevidencethat showslittle support for linear dependence and exhibits the existence of
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nonlinearitiesinexchangerates(Fang, Lai, & Lai, 1994; Grauwe, Dewachter, & Embrechts,
1993). Therates are also characterized as high noise, nonstationary, and chaotic, using
high frequency (weekly, daily, or even hourly) past prices (Deboeck, 1994; Tinte, 1996;
Yaser & Atiya, 1996). These inherent attributes suggest that past behavior can not be
fully exploitedto establish thedependency between futureratesand that of the past. One
general assumption made in such cases is that the historical dataincorporate all those
behaviors. Asaresult, the historical dataarethe major playersinthe prediction process.
Although the well-known conventional forecasting techniques provide predictions for
many stable forecasting systems of acceptable quality, these techniques seem inappro-
priate for non-stationary and chaotic systems such as forex.

Fundamental vs. Technical Analysis

All thevariousmethodsthat have been devel oped in modeling forex rates can be broadly
categorized into the following two groups.

i Fundamental analysis— Inthiscase, theanal ysisisbased on the exact knowledge
of variousfactorsthat influence the economy and the relationship between those
factors. Theanalysisfocusesin depth at the financial condition of the country and
studiesthe effect of supply and demand on each currency. The empirical models,
like, the bal ance-of -payment-flow model, currency substitution model, monetary
model of forex, and byrid monetary/fiscal policy model are some of the exampl es of
fundamental analysis.

i Technical analysis— Inthiscase, the prediction relies on the discovery of strong
empirical regularitiesby analyzing aset of historical databy variousmethodslike
timeseriesanalysis, regression analysis, expert systems, and so on. It assumesthat
the future movement follows some trends and these trends can be captured.

The main problem with fundamental analysis is that the knowledge of the rules that
governtheforex behaviorisnot readily available (K odogiannis& Lolis, 2001). Research
has shown that fundamental analysis-based models can be used to explorethelong-term
trendsinforex movementsbut areinadequatein explaining the short- and medium-term
fluctuations (Rosenberg, 1981). On the other hand, many technical-analysis-based
models have been found to be successful in forecasting short-term exchange rates. The
success of technical analysis-based models has made this analysis extremely popular
among market participants (Ghoshray, 1996).
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Neural Network-Based Forecasting of
Exchange Rates

Many techniques have been proposed over the past few decadesfor reliable forecasting
of exchangerates. Thetraditional statistical forecasting methods— for example, the Box-
Jenkins' Auto-Regressivelntegrated Moving Average (ARIMA) — haverelied onlinear
models(Box & Jenkins, 1976). However, ARIMA isageneral univariatemodel anditis
developed based on the assumption that the time series being forecasted are linear and
stationary. The drawback of the linear model has led to the development of alternative
methods among which artificial neural networks (ANNSs) have emerged as apromising
forecasting tool. Over the last decade, researchers and practitioners alike have shown
growinginterestinapplying ANNsintimeseriesanalysisand forecasting. ANNsarean
effective tool to realize any nonlinear input-output mapping. It has been demonstrated
that, with sufficient number of hidden layer units, an ANN is capabl e of approximating
any continuous function to any desired degree of accuracy (Cybenko, 1989). Dueto the
nature of their learning process, ANNs can be regarded as nonlinear autoregressive
models.

Neural networks, well knownfor their approximation capability in predictionand system
modeling, have recently demonstrated their great applicability in many time series
analysis and forecasting applications in diverse disciplines. ANNs assist multivariate
analysis. Multivariate model scanrely on greater information, wherenot only thelagged
time seriesis being forecast, but also other indicators (such as technical, fundamental,
intermarker, etc., for thefinancial market) arecombinedto act aspredictors. Inaddition,
ANNsare more effectivein describing the dynamics of nonstationary time seriesdueto
their unique nonparametric, noise-tolerant, and adaptive properties.

One of the early works using ANNs for forex forecasting was done by Refenes, Barac,
Chen, and Karoussos (1992). The system used a standard backpropagation algorithm
(Rumelhart, 1986) to predict theexchangerate betweenthe U.S. dollar and deutsche mark
using the data for the period 1988-1989 on hourly updates. The architecture consisted
of atwo-layer network with afixed number of inputs modeling awindow moving along
the timein fixed steps. The first 6 months were used for training and the following 6
months asthetest set. The network produced accurate predictions, making at | east 20%
profit onthelast 60 trading daysof 1989. Ganand Ng (1995) devel oped two ANN models,
also built on standard backpropagation al gorithm, using univariateand multivariatetime
seriesto forecast the Swissfranc, deutsche mark, and yen against the U.S. dollar. Their
results showed that ANN models were able to predict better than a benchmark random
walk model. Tenti (1996) proposed recurrent neural network modelswith the view that
such networks, whereinput layers' activity patternspassthrough the network morethan
oncebefore generating anew output pattern, are capabl e of |earning extremely complex
patterns. Hetested three different recurrent architectures by comparing their prediction
accuracy of the deutsche mark against the U.S. dollar. The author reported that two of
threerecurrent architecturesproduced better profitability and generalization ability than
standard backpropagation on repeated tests performed in his experiments. Profitability
was measured in terms of Return on Equity (ROE) and Return on Capital (ROC).
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Francesco and Schiavo (1999) performed experiments with along period of data, the
monthly exchangerate of four major European currencies (French franc, deutsche mark,
Italian lira and British pound against the U.S. dollar) from 1973 to 1995 to provide a
comparative evaluation of neural network and chaotic models over the same data sets
and variables. A two-layer network trained by standard backpropagation was consid-
ered. Theprediction performanceswere measured intermsof normalized mean-squared
error and statistical significance. Neural networks performed better than chaotic models,
and both model s performed substantially better than randomwalk. Intermsof statistical
significance by Mizrach'’s test, both models were found to be statistically equivalent.

Yao and Tan (2000) used technical indicators and time series data to build a neural
network model using weekly datafor the period of May 1984 to October 1993 of Singpore
Foreign Exchange and predicted closing pricesfor the period of November 1993 to July
1995. They also used a two-layer network trained by a standard backpropagation
algorithm. A validation set wasused to build themodel . Six major currencieswerestudied.
It wasshownthat anetwork built on atimedelayed seriescan only predict rate movement
directionby littleabove50%, whileit risesto about 74% when the model wasbuilt using
technical indicators. The results also confirmed that such a neural network model
performed significantly better than the traditional ARIMA model when compared in
termsof normalized mean-squared error, directional change of movement, and profitabil-
ity. The works showed that, without extensive market data or knowledge, useful
prediction and significant profit could be made by aneuranetwork-based forex forecast-
ingmodel (Yao & Tan, 2000). Extensive experimentation with asinglecurrency (Swiss
franc) established the consistency of aneural network’ sability inforecasting exchange
rates. A similar study by Voginovic, Kecman, and Seidel (2001) used a radial basis
function neural network for forecasting the daily closing exchange rate of the New
Zealand dollar against the U.S. dollar. The model performed significantly better than
traditional linear autoregressive model in both directional change and accuracy. The
study also investigated the impact of model order, number of hidden layer and training
set size on prediction accuracy.

Theneural network modelsfor forex prediction areusually trained off-line. MacDonald
(1999) and Schinasi et al. (1989) argued that a more appropriate way of enhancing
performanceof prediction modelswould beto allow the coefficientsto evol veover time.
Economic theories also indicate that factors like money demand instabilities, policy
changes, and global trade patterns could lead to parameter instability and a changed
relationship. Minghui, Sratchandran, and Sundararajan (2003) proposed an online
training of aneural network called Minimum Resource Allocating Network (MRAN) to
addresstheissue of timevarying parameters. The MRAN model incorporating economic
fundamentals as inputs was found to perform much better than random walk and feed-
forward neural network models. The study claimed that the MRAN model could forecast
the trend turning points accurately for some periods, while the random walk model was
incapable of doing so. Chen and Leung (2004) proposed a hybrid approach to model
building that employed two stages. First, a time series model generates estimates of
exchangerates, then ageneral regression neural network (details provided in Chapter |
of thisbook) correctstheerrorsof theestimates. Chenand L eung used adataset provided
by the International Monetary Fundthat covered 22 yearsfrom January 1980to December
2001 and adopted the macroeconomic variables expressed in modified Uncovered
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Interest Parity (UIP) relationship. Results showed the two-stage hybrid approach
produced moreaccurate exchangerate prediction and higher return (0.61% i mprovement
in annual return) than a single stage model.

Apart from simply using ANN modelsfor prediction, several other studies used neural
networks to enhance the understanding of empirical phenomena. White and Racine
(2001) used thebootstrap method of inferenceusing neural networkstotest aforex market
efficiency hypothesis. They concluded that thereisevidencethat supportsthe existence
of predictiveinformationin past rate changes, but “the nature of the predictiverelations
evolves through time.”

A Case Study: Australian Forex Market

Inthefollowing, wepresent acase study toforecast six different currency rates, namely,
theU.S. dollar (USD), Great British pound (GBP), Japaneseyen (JPY), Singaporedol lar
(SGD), New Zealand dollar (NZD) and Swissfranc (CHF) against the Australian dollar
using their historical exchangerate data. The case study is based on our previous study
(Kamruzzaman & Sarker, 2004). In most of the previousstudiesrel ated to forex forecast-
ing, the neural network algorithms used were: Standard Backpropation (SBP), Radial
BasisFunction (RBF), or Generalized Regression Neural Network (GRNN). Inthiscase
study, we used two other improved feed-forward | earning al gorithms, namely the Scaled
Conjugated Gradient (SCG) and Bayesian Reguralization (BR) algorithms, to build the
model and investigate how the algorithms performed compared to standard
backpropagation in terms of prediction accuracy and profitability.

Dataset. Thedatausedinthisstudy istheforeign exchangerateof six different currencies
against the Australian dollar from January 1991 to July 2002 made available by the
Reserve Bank of Australia. A total of 565 weekly data of the previously mentioned
currencieswereconsidered, of which first 500 weekly datawereused for training and the
remaining 65 weekly datafor eval uating themodel. Theplotsof historical ratesfor USD,
GBP, SGD, NZD, and CHF areshownin Figure 1(a) and for JPY in Figure 1(b).

Figure 1. Historical exchangeratesfor (a) USD, GBP, SGD, NZD and CHF and (b) JPN
against Australian dollar
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Technical Indicators. The time delay moving average is used as atechnical indicator.
The advantage of the moving average is its tendency to smooth out some of the
irregularity that exits between market days. We used moving average values of past
weeksto feed to the neural network to predict thefollowing week’ srate. Theindicators
are MA5, MA10, MA20, MA60, MA 120, and X, namely, moving average of 1 week, 2
weeks, 1 month, 1 quarter, half year, and last week’s closing rate, respectively. The
predictedvalueisX,, . Themodel hassix inputsfor six indicators, one hidden layer, and
one output unit to predict exchange rate. It has been reported in another study that
increasing the number of inputs does not necessarily improve forecasting performance
(Yao & Tan, 2000).

Learning Algorithms. In most of the previous studies, a standard backpropagation
algorithm hasbeen investigated. However, backpropagation suffersfrom slow conver-
genceand sometimesfailstolearnthetimeserieswithinareasonable computational time
limit. A desired neural network model should produce small error not only on sampledata
but al so on out of sampledata. Inthiscase study, weinvestigated with Scaled Conjugated
Gradient (Moller, 1993) and Bayesian Reguralization (MacK ey, 1992) algorithmsthat
have been reported to produce improved results than the standard backpropagation in
anumber of other studies. A detailed description of thealgorithmsispresented in Chapter
1 of this book.

Evaluation of Prediction Accuracy. The most common measureto eval uate how closely
the model is capable of predicting futurerateis measured by Normalized M ean-Square
Error (NMSE). The other measure important to the trader is correct prediction of
movement. We used four other measures, which are: Mean Absolute Error (MAE),
Directional Symmetry (DS), Correct Uptrend (CU) and Correct Downtrend (CD). These

criteria are defined in Table 1, where x and %, are the actual and predicted values,

Table 1. Performance metrics to evaluate the forecasting accuracy of the model
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respectively. NM SE and M A E measurethe deviation between actual and forecast value.
Smaller values of these metrics indicate higher accuracy in forecasting. Additional
eval uation measuresincludethecal culation of correct matching number of theactual and
predicted values with respect to sign and directional change. DS measures correctness
in predicted directions while CU and CD measure the correctness of predicted up and
down trends, respectively.

Profitability. Thetradersare moreinterested in making aprofit by buyingand sellingin
forex market. In order to assess the profitability attainable by using the model, we
simulated atrading over theforecasted period. Similar simulated tradingisalso used in
another study (Yao & Tan, 2000). Seed money isusedtotradeaccordingtothefollowing
strategy:

if (R~ X¢) > 0thenbuy otherwise sell.

At the ending the trading period, the currency is converted to the original seed money.
The profit return is then calculated as:

. 52/ w
Return:[Mone-yObtamedJ 4

Seed Money

where Money Obtained isthe money at the end of thetesting period and wisthe number
of weeks in the testing period.

S mulation Results

Neural network models were trained with six inputs representing the six technical
indicators, ahiddenlayer, and an output unit to predict the exchangerate. Sincethefinal
model at the end of training aneural network depends on many factors, like, number of
hidden units, parameter setting, initial weights, stopping criteria, and so on, we trained
30different networkswithdifferentinitial weights, |earning parameters, andshidden unit
number. The number of hidden units was varied between 3 to 7 and the training was
terminated at iteration number between 5000 to 10000. Out of all thetrials, the network
that yielded the best result in each algorithm is presented here.

Wemeasured the performance metricson thetest datatoinvestigate how well the neural
network forecasting model captured the underlying trend of the movement of each
currency against Australian dollar. Table 2 showsthe performance metrics achieved by
each model over aforecasting period of 35 weeks and Table 3 shows the same over 65
weeks (previous 35 weeksplusadditional 30 weeks) and also comparedwithan ARIMA -
based model. All the ANN-based models perform much superiorly compared to the
ARIMA model in respect to all the evaluation criteria. Thisfinding is consistent with
other studies (Yao & Tan, 2000; Zoran et al. 2001). The results show that the SCG and
BR models consistently perform better than the SBP model in terms of all performance
metricsinalmost all thecurrency exchangerates. For example, in case of forecasting the
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U.S. dollar rate over 35 weeks, the NM SE achieved by SCG and BRisquitelow andis
almost half of that achieved by SBP. This meansthese models are capable of predicting
exchangeratesmoreclosely than SBP. Also, in predicting trend directions SCG and BR
isalmost 10% moreaccuratethan SBP. Thereason of better performance by the SCG and
BRalgorithmsistheimproved |earning technique, which allowsthemto search efficiently
in weight space for solution. Similar trend is observed in predicting other currencies.

Betweenthe SCG and BR models, theformer performsbetter inall currenciesexcept the
Japaneseyenintermsof thetwo most commonly used criteria, thatis, NMSE and MAE.
Intermsof other metrics, SCGyieldsslightly better performanceinthe case of the Swiss
franc, the BR was slightly better inthe U.S. dollar and British pound, and both the SCG
and BR perform equally in case of the Japaneseyen and the Singapore and New Zealand
dollars. In both algorithms, the directional change prediction accuracy is above 80%,
whichismuchimproved fromthe 70% accuracy achievedinasimilar study (Yao & Tan,
2000).

Inbuilding aneural network model, we need to be attentiveto few factorsthat influence
the performanceof the network. Thegeneralization ability of neural networks, thatis, its
ability to produce correct output inresponseto an unseeninput isinfluenced by anumber

Table 2. Measurement of prediction performance over 35-week prediction

NN Performance metrics
Currency
model NMSE MAE DS cu cD
ARIMA | 10322 | 00069 52.94 0.00 100.00
us. SBP 05041 | 0.0047 71.42 76.47 70.58
dollar SCG 0.2366 | 0.0033 82.85 82.35 88.23
BR 0.2787 | 0.0036 82.85 82.35 88.23
ARIMA | 09344 | 00065 55.88 0.00 100.00
B. pound |—2° 05388 | 0.0053 77.14 75.00 78.94
SCG 0.1578 | 0.0030 77.14 81.25 73.68
BR 01724 | 00031 82.85 93.75 73.68
ARIMA | 12220 | 177859 | 3823 0.00 100.00
3 SBP 0.1530 | 06372 74.28 72.72 76.92
-yen SCG | 01264 | 06243 | 8000 | 818l | 7692
BR 0.1091 | 0.5806 80.00 81.81 76.92
ARIMA | 11765 | 0.0184 52.94 0.00 100.00
S dollar SBP 02950 | 0.0094 85.71 82.35 83.88
SCG 02321 | 0.0076 82.85 82.35 83.33
BR 0.2495 | 0.0080 82.85 82.35 83.33
ARIMA | 09728 | 00139 52.94 0.00 100.00
NZ dollar —SBP 0.1200 | 0.0046 77.14 75.00 78.94
SCG 0.0878 | 0.0038 85.71 87.50 84.21
BR 0.0898 | 0.0039 85.71 87.50 84.21
ARIMA | 09378 | 00285 4411 0.00 100.00
S franc SBP 0.1316 | 00101 80.00 75.00 86.66
SCG 0.0485 | 0.0059 82.85 80.00 86.66
BR 0.0496 | 0.0057 80.00 75.00 86.66
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of factors: (1) thesizeof thetraining set, (2) thedegreesof freedom of the network related
to the architecture, and (3) the physical complexity of the problem at hand. Practically,
we have no control on the problem complexity, and in our simulation the size of the
training setisfixed. Thisleavesthegeneralization ability, that is, the performance of the
model dependent on the architecture of the corresponding neural network. Generaliza-
tion performance can al so berelated to the complexity of the model in the sensethat, in
order to achieve best generalization, it isimportant to optimize the complexity of the
prediction model (Bishop, 1995). Inthe case of neural networks, changing the number of
adaptive parameters in the network can vary the complexity. A network with fewer
weightsislesscomplex thantheonewith moreweights. Itiswell knownthat the* simplest
hypothesis/model is least likely to overfit.” A network that uses the least number of
weights and biases to achieve a given mapping isleast likely to overfit thedataand is
most likely to generalize well on the unseen data. If redundancy isadded in the form of
extrahidden unit or additional parameters, it islikely to degrade performance because
more than the necessary number of parametersis used to achieve the same mapping. In
the case of nonlinear regression, two extreme sol utions should be avoided: filtering out
the underlying function or underfitting (not enough hidden neurons), or modeling of
noiseor overfitting data(too many hidden neurons). Thissituationisal so known asbias-

Table 3. Measurement of prediction performance over a 65-week prediction

Currency NN Performance metrics
model NMSE MAE DS cuU CcD
ARIMA | 17187 | o0.0171 42.19 0.00 100.00
u.s. SBP 0.0937 | 0.0043 75.38 8157 69.23
dollar SCG 0.0437 | 0.0031 83.07 78.94 92.30
BR 0.0441 | 0.0030 83.07 78.94 92.30
ARIMA | 12791 | 0.0094 50.00 0.00 100.00
B. pound SBP 0.2231 | 0.0038 80.00 75.75 87.09
SCG 0.0729 | 0.0023 84.61 87.87 83.87
BR 0.0790 | 0.0024 87.69 93.93 83.87
ARIMA | 23872 | 4.1329 4375 0.00 100.00
2yen SBP 0.0502 | 0.5603 76.92 75.67 7857
sCG 0.0411 05188 8153 83.78 7857
BR 0.0367 | 05043 8153 83.78 7857
ARIMA | 16472 | 0.0313 4843 0.00 100.00
S dollar SBP 0.0935 | 0.0069 83.07 82.35 83.87
sCG 0.0760 | 0.0060 86.15 88.23 83.87
BR 0.0827 | 0.0063 86.15 88.23 83.87
ARIMA | 11365 | 0.0233 56.25 0.00 100.00
NZ dollar —SBP 0.0342 | 0.0042 78.46 71.42 86.11
sCG 0.0217 | 0.0033 84.61 82.14 88.88
BR 0.0221 | 0.0033 84.61 82.14 88.88
ARIMA | 09158 | 0.0273 46.87 0.00 100.00
S frenc SBP 0.1266 | 0.0098 83.07 80.00 86.66
SCG 0.0389 | 0.0052 84.61 84.61 86.66
BR 0.0413 | 0.0051 8153 77.14 86.66
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Table 4. Return of currency trading of different models

U.S. dollar 9.29 14.17 14.20
B. pound 10.16 15.81 12.21
J.yen 6.29 10.91 11.58
S. dollar 9.07 7.56 8.41
NZ dollar 6.48 8.73 9.02
S. franc 3.23 4.15 1.98

variancedilemma. Oneway of controlling theeffectivecomplexity of themodel in practice
isto compare arange of models having different architectures and to select the one that
yields the best performance on the test data.

Although the performance measures presented earlier show the better performance of
SCG and BR models over a standard backpropagation model, the profitability of these
models plays an important roll in the actual trading environment. Table 4 shows the
profitability attainable by various models over the testing period. This confirms the
better performance of SCG and BR over standard backpropagation in terms of trading
prospect.

Conclusion

In this chapter, we have presented an overview of foreign exchange rate prediction,
especially by models based on neural networks, and presented a case study on
Australian foreign exchange market. Neural network models are well suited to learn
nonlinearitiesinthe exchangerates, the existence of whichisevidenced in many studies.
However, the performance of such models depends on the economic variables used in
modeling, aswell ashow well aparticular learning algorithm can generalize onthesample
data. In the case study, we investigated with three different neural network learning
algorithms and found that scaled conjugate gradient and Bayesian regularization were
significantly better in performance than standard backpropagation. Though afew other
algorithmshave been studied intheliterature, thereisaneed for amore comprehensive
study with extensive data to determine which algorithm is best suited for modeling
exchangerate prediction, both short- and long-term. For exampl e, genetic algorithmsmay
beused to sel ect the optimum architecture and parameters of aneural network during the
training phase or ahybrid system using fuzzy measure and wavel et techniques may lead
to a better prediction.
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Chapter | X

| mproving Returns
On Stock I nvestment
through Neur al
Networ k Selection

Tong-Seng Quah, Nanyang Technological University, Republic of Singapore

Abstract

Artificial neural networks' (ANNS') generalization powers have in recent years
received admiration of finance researchers and practitioners. Their usage in such
areasasbankruptcy prediction, debt-risk assessment, and secur ity-market applications
has yielded promising results. With such intensive research and proven ability of the
ANN in the area of security-market application and the growing importance of therole
of equity securitiesin Singapore, it has motivated the conceptual development of this
work in using the ANN in stock selection. With their proven generalization ability,
neural networks are able to infer the characteristics of performing stocks from the
historical patterns. The performance of stocks is reflective of the profitability and
quality of management of the underlying company. Such information is reflected in
financial and technical variables. As such, the ANN is used as a tool to uncover the
intricate relationships between the performance of stocks and therelated financial and
technical variables. Historical data, such as financial variables (inputs) and
performance of the stock (output) isused in this ANN application. Experimental results
obtained thus far have been very encouraging.
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| ntroduction

With the growing importance in the role of equities to both international and local
investors, the selection of attractive stocks is of utmost importance to ensure a good
return. Therefore, areliable tool in the selection process can be of great assistance to
theseinvestors. An effectiveand efficient tool/system givestheinvestor thecompetitive
edge over others as he/she can identify the performing stocks with minimum effort.

In assisting the investors in their decision-making process, both the academics and
practitioners have devised trading strategies, rules, and concepts based on fundamental
and technical analysis. Innovative investors opt to employ information technology to
improve the efficiency in the process. This is done through transforming trading
strategiesinto computer-known language so as to exploit the logical processing power
of the computer. This greatly reduces the time and effort in short-listing the list of
attractive stocks.

Intheagewhereinformationtechnol ogy isdominant, such computerized rule-based expert
systems have severe limitations that will affect their effectiveness and efficiency. In
particular, their inability in handling nonlinear relationships between financial variables
and stock priceshasbeen amajor shortcoming. However, withthesignificant advancement
inthefield of ANNSs, theselimitationshavefound asolution. Inthiswork, thegeneralization
ability of the ANN isbeing harnessed in creating an effective and efficient tool for stock
selection. Results of the research in thisfield have so far been very encouraging.

Application of Neural Network in
Stock I nvestment

Oneof theearliest studieswasby Hal quist and Schmoll (1989), who used aneural network
model to predict trends in the S& P 500 index. They found that the model was able to
predict thetrends 61% of thetime. Thiswasfollowed by Trippi and DeSieno (1992) and
Grudnitski and Osburn (1993). Trippi and DeSieno (1992) devised an S& P 500 trading
system that consisted of several trained neural networksand aset of rulesfor combining
the network resultsto generate acomposite recommended trading strategy. Thetrading
systemwasused to predict S& P500index futuresand theresults showed that thissystem
significantly outperformed the passive buy-and-hold strategy. Grudnitski and Osburn
(1993) used aneural network to predict the monthly price changesand trading returnin
the S& P500index futures. Theresultsshowed that the neural network wasableto predict
correctly 75% of the time and gave a positive return above risk.

Another work on predicting S& P 500 index futureswas by Tsaih, Hsu, and Lai (1998).
Similar to Trippi and DeSieno (1992), Tsaih et al. (1998) also integrated a rule-based
system technique with a neural network to produce atrading system. However, in the
Tsaih et al. (1998) study, they used reasoning neural networks instead of the
backpropagation method used by Trippi and Desieno (1992). Empirical resultsinthedaily
prediction of pricechangesinthe S& P500index futuresshowed that thishybrid artificial -
intelligence (Al) approach outperformed the passivebuy-and-hold investment strategy.
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Similar workson predicting the S& P 500 index were al so carried out by Min (1999) and
Minand Maddala(1999). Essentially, thesetwo papersweretrying to compare whether
nonlinear modelslike neural networkswere ableto show better predictive accuracy than
linear modelslikethelinear regression, since several studieshad shownthenonlinearity
in stock returns. Both papers had shown that the predictive accuracy of stock returns
by neural network model swasbetter thantheir linear counterpartsbothinin-sampleand
out-of-sampl e forecasts.

Encouraged by the success of earlier researchers, many now apply neural networksin
modeling their national stock markets. Olson and Mossman (2003) forecasted the
Canadian stock returns by training aneural network to recognize rel ationships between
accounting ratiosand stock pricemovements. Likewise, Chen, Leung, and Daouk (2003)
used an ANN toforecast and trade onthe Taiwan stock index. Perez, Torra, and Andrada
(2005) found that ANNSs consi stently outperformed auto-regression modelsin forecast-
ing the Spanish I bex-35 stock index. Last but not least, Cao, L eggio, and Schniederjans
(2005) applied ANNs on the Chinese stock market and obtained results that are better
than linear models.

ANN Model for Stock Selection

In this section, the architecture and design of the ANN model are described.

Neural Architecture

The computer software selected for training and testing the network is Neural Planner
version 3.71. Stephen Wol stenholme programmed this software. Itisan ANN simul ator
strictly designed for only one backpropagation learning algorithm. Therearefour major
issuesin the selection of the appropriate network (Gately, 1996):

Selection of the appropriate algorithm.

Architecture of the ANN.

Selection of thelearning rule.

Selection of the appropriate |earning rates and momentum.

D WD P

Select the Appropriate Algorithm

The sole purpose of thiswork isto identify the top performing stocks, and the historical
data that is used for the training process will have a known outcome (whether it is
considered top performer or otherwise). Therefore, algorithms designed for supervised
learning are ideal. Among the available algorithms, the backpropagation algorithm
designed by Rumelhart, Hinton, and Williams (1986) isthe most suitable, asitisbeing

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Improving Returns on Stock Investment through Neural Network Selection 155

intensively tested in finance. Moreover, it is recognized as a good algorithm for
generalization purposes.

Architecture of ANN

Architecture, inthiscontext, referstothe entire structural design of the ANN, including
theinput layer, hidden layer, and output layer. It involves determining the appropriate
number of neurons required for each layer and also the appropriate number of layers
withinthehiddenlayer. Thelogic of the backpropagation methodisthehiddenlayer. The
hidden layer can be considered as the crux of the backpropagation method. This is
becausethe hidden layer can extract higher-level features and facilitate generalization,
if the input vectors have low-level features of a problem domain or if the output/input
relationship is complex. The fewer the hidden units, the better is the ANN able to
generalize. Itisimportant not to overfitthe ANN with alarger number of hidden unitsthan
required until it can memorize the data. Thisisbecause the nature of the hidden unitsis
like a storage device. It learns noise present in the training set, as well as the key
structures. No generalization ability can be expected in these. Thisisundesirable, asit
does not have much explanatory power in a different situation/environment.

Selection of the Learning Rule

Thelearning ruleistherulethat the network followsinitserror-reducing process. This
istofacilitatethederivation of therel ationshipsbetween theinput(s) and output(s). The
generalized deltaruledevel oped by Rumelhart, et al . (1986) isused inthe cal cul ations of
theweights. Thisparticular ruleissel ected becauseitiswidely used and proven effective
in finance research.

Selection of the Appropriate Learning Rate and Momentum

The learning rate and momentum are parameters in the learning rule that aid the
convergence of error, so asto arrive at the appropriate weights that are representative
of the existing relationships between the input(s) and the output(s).

As for the appropriate learning rate and momentum to use, the NEURAL PLANNER
Software hasafeaturethat can determine appropriate learning rate and momentum with
whichthenetwork will beableto start training. Thisfunctionisknown as” Smart Start.”
Once this function is activated, the network will be tested using different values of
learning rate and momentum to find a combination that yields the lowest average error
after asinglelearning cycle. These arethe optimum starting val ues, as using theserates
improves the error-converging process thus requiring less processing time.

Another attractivefeatureisthat the software comeswith an “ auto-decay” function that
can be enabled or disabled. This function automatically adjusts the learning rate and
momentum to enable a faster and more accurate convergence. In this function, the
softwarewill samplethe average error periodically, and if it is higher than the previous
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samplethen the learning rateisreduced by 1%. The momentum is*“decayed” using the
same method but the sampling rate is half of that used for the learning rate. If both the
learning rate and momentum decay are enabled, then the momentum will decay slower
than the learning rate.

In general cases, where these features are not available, a high learning rate and
momentum (e.g., 0.9 for both the learning rate and momentum) are recommended asthe
network will convergeat afaster ratethan whenlower figuresareused. However, toohigh
a learning rate and momentum will cause the error to oscillate and thus prevent the
converging process. Therefore, the choiceof |earning rate and momentum are dependent
on the structure of the data and the objective of using the ANN.

Variables Selection

In general, financial variables chosen are constrained by data availability. They are
chosen first on the significant influences over stock returns based on past literature
searches and practitioners' opinionsand then ontheavailability of such data. Most data
used inthisresearchis provided by Credit Lyonnais Securities (2005). Stock pricesare
extracted from Bloomberg (2005) financial database.

Broadly, factors that can affect stocks prices can be classified into three categories:
economicfactors, political factors, and firm/stock specificfactors. Economicfactorshave
significant influence on thereturns of individual stock aswell asstock index ingeneral as
they possess significant impact on the growth and earnings’ prospects of the underlying
companies thus affecting the valuation and returns. Moreover, economic variables also
have significant influence on the liquidity of the stock market. Some of the economic
variables used are: inflation rates, employment figures, and producers’ priceindex.

Many researchershave found that it isdifficult to account for more than onethird of the
monthly variations in individual stock returns on the basis of systematic economic
influences and shown that political factors could help to explain some of the missing
variations. Political stability isvital to the existence of business activities and the main
driving forcein building astrong and stable economy. Therefore, itisonly natural that
political factorssuch asfiscal policies, budget surplus/deficit, and so on do have effects
on stock price movements.

Firmspecificfactorsaffect only individual stock returns. For example, financial ratiosand
some technical information that affects the return structure of specific stocks, such as
yield factors, growth factors, momentum factors, risk factors, and liquidity factors. As
far asstock selection isconcerned, firm specific factors constitute to important consid-
erations, asit isthese factorsthat determinewhether afirmisabright star or adim light
in theindustry. Such firm specific factors can be classified into five major categories:

1  Yieldfactors: Theseinclude* historical P/Eratio” and“ prospectiveP/Eratio.” The
former is computed by price/earning per share; the latter is derived by price/
consensus earnings per share estimate. Another variableisthe “cashflow yield,”
which is basically price/operating cashflow of the latest 12 months.
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2 Liquidity factors: Themostimportant variableisthe“market capitalization,” which
is determined by “price of share x number of shares outstanding.”

3 Risk factors: The representative variable is the “earning per share uncertainty,”
which is defined as “percentage deviation about the median Earning Per Share
(EPS) estimates.”

4. Growth factors: Basically, this means the “return on equity (ROE),” and is com-
puted by “net profit after tax before extraordinary items/sharehol ders equity.”

5. Momentumfactors: A proxy isderived by “average of the price appreciation over
the quarter with half of itsweights on thelast month and remaining weights being
distributed equally in the remaining two months.”

Theinputs of the neural network stock selections system are the previous seven inputs
and the output isthe return differences between the stock and the market return (excess
returns). This is to enable the neural network to establish the relationships between
inputs and the output (excess returns). In this work, political factors and economic
factorsare not taken into consideration asthe stock countersused in thisstudy arelisted
on the same stock exchange (and are therefore subjected to the same forces).

The training data set includes all data available until the quarter before the testing
quarter. Thisisto ensurethat the latest changesin the relationship of theinputsand the
output are being captured in the training process.

Experiment

Thequarterly datarequiredinthiswork isgenerally stock pricesand financial variables
(inputs to the ANN stock selection system) from 1/1/93 to 31/12/96. Credit Lyonais
Securities (Singapore) Pte Ltd. provided most of the data used in this work.

The download stock prices served as the basis to cal culate stock returns. These stock
returns— adjusted for dividends, stock splits, and bonusissues— will be used as output
in the ANN-training process.

One unique feature of thisresearch isthat the prospective P/E ratio, measured as price/
consensus earnings per share estimate, is being used as a forecasting variable. This
variable has not received much attention in financial research. Prospective P/E ratiois
used among practitioners as it can reflect the perceived value of stock with respect to
earnings-per-share (EPS) expectations. It isused asavalueindicator, which hassimilar
implications as that of the historical P/E ratio. Assuch, alow prospective P/E suggests
that the stock isundervalued with respect to itsfuture earnings and vice versa. With its
explanatory power, prospective P/E ratio qualifies as an input in the stock selection
system. Data on earnings-per-share estimates, which is used for the cal culation of EPS
uncertainty and prospective P/E ratio, isavailablein the Estimates Directory (Singapore
Exchange, 2006). This is a compilation of EPS estimates and recommendations put
forward by financial analysts. The coverage has estimates from January 1993.
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Resear ch Design

The purpose of this ANN stock selection system is to select stocks that are top
performers from the market (stock that outperformed the market by 5%) and to avoid
selecting under performers (stocks that under-performed the market by 5%). More
importantly, the aim isto beat the market benchmark (quarterly return on the SESALL
index) on aportfolio basis.

This ANN stock selection system employs a quarterly portfolio rebalancing strategy
whereby it will select stocksinthe beginning of thequarter, and performance (thereturn
of the portfolio) will be assessed at the end of the quarter.

Design 1 (Basic System)

In this research design, the sample used for training consists of stocks that out- and
underperformed the market quarterly by 5% from 1/1/93 to 30/6/95.

Theinputsof the ANN stock selection system aretheseveninputschosenintheinearlier
section and the output will be the return differences between the stock and the market
return (excessreturns). Thisisto enablethe ANN to establish therelati onships between
inputs and the output (excess returns).

The training data set includes all data available until the quarter before the testing
quarter. Thisisto ensurethat the latest changesin the relationship of theinputsand the
output are being captured in the training process.

Inorder to ensurethegeneralization ability of the ANN in sel ecting top performing stocks
aswell asitsability to perform consistently over time, sufficient trainingisimportant. The
dataused for the selection processarefrom 3rd quarter of 1995 (1/7/95-30/9/95), the 4th
quarter of 1995 (1/10/95-31/12/95), 1st quarter of 1996 (1/1/1996-31/3/1996), 2nd quarter
of 1996 (1/4/1996-30/6/1996), 3rd quarter of 1996 (1/7/1996-30/9/1996), 1/10/1996-31/12/
1996(1/10/1996-31/12/1996).

The testing inputs are being injected into the system and the predicted output will be
cal culated using the established weights. After which, thetop 25 stockswith the highest
output value will be selected to form a portfolio of stocks. These 25 stocks are the top
25 stocks recommended for purchase at the beginning of the quarter. Generalization
ability of the ANN will be determined by the performance of the portfolio, measured by
excessreturnsover themarket aswell asthe percentage of top performersintheportfolio
as compared to the benchmark portfolio (testing portfolio) at the end of the month.

Design 2 (Moving-Window System)

TheBasic Systemisconstrai ned by meeting theminimum samplesizerequiredfor training
process. However, this second design is going to forgo the recommended minimum
samplesizeandintroduceamoving-window concept. Thisistoanalyzethe ANN ability
to perform under arestricted sample size environment.
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Theinput and output variables are identical to that of the Basic System but thetraining
and testing samples are different. The Moving-Window System uses three quarters as
training samples and the subsequent quarter asthetesting sample. The selection criteria
are also identical to that of the Basic System in research Design 1.

Results

The ANN is made to train with 10,000 and 15,000 cycles. The reason for using these
numbers of cycles for training is because the error converging is generally slow after
10,000, thus suggesting adequate training. Moreover, it does not converge beyond
15,000. Thisisan indicator that the network is overtrained (see Figure 1).

On aPentium 100 Mhz PC, the training of four hidden neurons for 10,000 cycles takes
approximately 1.5 hours, eight hidden neuronstakesabout 3 hours, and the most complex
(14 hidden neurons) took about 6 hours. As for those architectures that require 15,000
cycles, it usually takes about 1.5 timesthe timeit takesto train the network for 10,000
cycles.

The results of the Basic System based on the training and testing schedul es mentioned
arepresented intwo forms: (1) the excessreturn format and (2) the percentage of thetop
performers in the selected portfolio. These two techniques will be used to assess the
performance and generalization ability of the ANN.

Testing results show that the ANN is ableto “beat” the market overtime, as shown by
positive compounded excess returns achieved consistently throughout all architectures
and training cycles. Thisimpliesthat the ANN can generalize relationships over time.
Evenattheindividual quarters’ level, therelationshipsbetween theinputsand the output
established by the training processis proven successful by “beating” the market in six
out of eight possible quarters, which is areasonable 75% (see Figure 2).

TheBasic System has consistently performed better than thetesting portfolio over time.
Thisis evident by the fact that the selected portfolios have higher percentages of top

Figure 1. ANN Training at 15,000 cycles
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Figure 2. Performance of ANN above market
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performing stocks (above 5%) than the testing portfolio over time (see Figure 3). This
ability has also enabled the network to better the performance of the market (SESALL
Index) presented earlier.

The Moving-Window System is designed to test the generalization power of the ANN
in an environment with limited data.

The generalization ability of the ANN isagain evident inthe Moving-Window System,
asit outperformed thetesting portfolioin 9 out of 13 testing quarters(69.23%). Thiscan
be seen in the graphical presentation where the line representing the selected portfolio
is above the line representing the testing portfolio most of the time (see Figure 4).
Moreover, the compounded excess returns and the annualized compounded excess
returns are better than that of the testing portfolio by two times over. The selected
portfolioshave outperformed themarket 10 out of 13 (76.92%) testing quartersand excess
returns(127.48% for the 13 quartersand 36.5% for the Annualized compounded return)
which proved its consistent performance over the market (SESALL index) overtime.

Theselected portfolioshave outperformed thetesting portfolioin ninequarters (69.23%)
and equal the performancein 1 quarter. Thisfurther provesthe generalization ability of
the ANN. Moreover, the ability to avoid selecting undesirable stocksis also evident by
the fact that the selected portfolios have less of this kind of stocks than the testing
portfolioin 10 out of 13 occasions (76.92%).

From the experimental results, the selected portfolios outperformed the testing and
market portfolios in terms of compounded actual returns over time. The reason is
because the selected portfolios outperform the two categories of portfoliosin most
of thetesting quarters, thusachieving better overall position at the end of thetesting
period (see Figure5).
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Figure 3. Excess return of ANN-selected portfolio
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Figure 4. Excess return of ANN-selected portfolio (Moving-Window System)
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Conclusion and Future Works

The ANN hasdemonstrated its generalization ability in this particular application. The
resultsclearly show that improved returnsareachieved whenan ANN isused to pick out
the better stocks. This is evident through the ability to single out performing stock
countersand having excessreturnsinthe Basic System over time. Moreover, the neural
network has also showed its ability in deriving relationshipsin a constrained environ-
ment inthe Moving-Window System, thusmakingit even moreattractivefor applications
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Figure 5. Comparing performances
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inthefield of Finance. Thiswork isapreamblefor astock recommendation system that
can assist fund managers in getting better returns for portfolios managed by them. For
individual investors, an ANN system will be ableto provide aguide for wiser selection
of counters, thus achieving better wealth growth.

For thiswork, the modeling horizons chosen were mainly short-term. Whiletheresults
aretruefor short-termforecasting, they might not hold for longer-term price movements.
Investorswith along-term view to investing might not find our neural network helpful.
Therefore, an area of future research would be to investigate the longer-term modeling
of stock counters.

As arelated point, as this work focuses on short-term modeling, we have opted not to
use any macroeconomic variables asthey are collected, at best, only on amonthly basis
and thusmight beinappropriatefor daily predictions. However, ignoring macroeconomic
variablesalso hasitsown perilsasthesevariablesdefinitely have animpact on the stock
markets. Perhaps to compensate for the slower release of these variables, future
researches can instead use |eading economic indicators to forecast the stock prices.

Also, thiswork islargely constrained by the availability of data. Therefore, when more
dataisavailable, performanceof theneural networkscan bebetter assessedinthevarious
kinds of market conditions — such as bull, bear, high inflation, low inflation, or even
political conditions — each of which has a different impact on stocks.
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Last but not |east, as researchers are discovering more powerful neural architectures at
afast pace, itisgood to repeat the experiments using several architecturesand compare
the results. The best performance structure may then be employed.
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Chapter X

Neural Networ ksin
M anufacturing
Operations

Eldon Gunn, Dalhousie University, Canada

Corinne MacDonald, Dalhousie University, Canada

Abstract

This chapter provides some examples from the literature of how feed-forward neural
networksare used in threedifferent contextsin manufacturing operations. Oper ational
design problems involve the determination of design parameters, such as number of
kanbans, in order to optimize the performance of the system. Operational-system
decision support refersto the use of neural networks as decision-support mechanisms
in predicting system performance in response to certain settings of system parameters
and current environmental factors. Operational-system-control problems are
distinguished from decision support in that the consequences of a control decision are
both an immediate return and putting the system in a new state from which another
control decision needs to be taken. In operational control, new ideas are emerging
using neural networks in approximate dynamic programming. Manufacturing systems
can bevery complex. Therearemany factor sthat may i nfluence the performance of these
systems; yet in many cases, the true relationship between these factors and the system
outcomes is not fully understood. Neural networks have been given a great deal of
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attention in recent years with their ability to learn complex mappings even when
presented with a partial, and even noisy, set of data. This has resulted in their being
considered as a means to study and perhaps even optimize the performance of
manufacturing operations.

This chapter provides some examples from the literature of how neural networks are
usedinthreedifferent contextsin manufacturing systems. The categories(1) operational
design, (2) operational decision-support systems, and (3) operational control are
distinguished by the time context within which the models are used. Some examples
make use of simulation models to produce training data, while some use actual
productiondata. In someapplications, the networkisused to simply predict performance
or outcomes, whilein othersthe neural network is used in the deter mination of optimal
parameters or to recommend good settings. Readers who wish to explore further
examples of neural networks in manufacturing can examine Udo (1992), Zhang and
Huang (1995), and Wang, Tang, and Roze (2001).

We begin with two areas in which neural networks have found extensive use in
manufacturing. Oper ational-systemdesi gn has seen consi der abl e use of neural networks
as metamodel s that can stand in place of the system, as we attempt to understand its
behavior and optimize design parameters. Oper ational -system decision support refers
to the use of neural networks as decision-support mechanisms in predicting system
performancein responseto certain settings of system parameters. We closewith a short
introduction to an area wher e we anticipate seeing growing numbers of applications,
namely the use of approximate dynamic programming methods to develop real-time
controllers for manufacturing systems.

Operational-System Design Using
Neural Networks

In the design of manufacturing operations, there are usually several performance
measurements of interest, such asthroughput, average work-in-processinventory WIP,
or machineutilization. Thesemeasuresareinterrel ated and sometimesconflicting. There
may al so be several design variables, such as number of kanbans or buffer sizes at each
station, which will influence these measurements. Because of the complexity of these
systems, simulation models are used to estimate system performance given a set of
design values. Depending on the number of input variables, and the number of values
that those variables could take on, the number of variable combinations can be so large
that simulating all of them isnot practical or even possible. Therefore, further work is
necessary to ascertain the set of design parametersthat will lead to thedesired or optimal
system performance.

Simulation optimizationtechniques(Andradottir, 1998; Fu, 2002; Tekin & Sabuncuoglu,
2004) have been employed in the search for the best set of design parameters. However,
what may be a preferable approach isto develop a simulation metamodel. Metamodel s
are constructed to approximate the functional relationship between the inputs and
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Figure 1. Feed-forward neural network
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outputs of the simulation model. The particular approach we want to look at is the use
of feed-forward neural networks(Figure 1) assimulation metamodel s. Barton (1998) gives
abroader overview of simulation metamodels, including response surfacemodeling. The
main idea is that networks are trained on a subset of possible design parameter
combinations using the resulting performance measurements obtained from the simula-
tionmodel.

Inthenext two sections, different usesof neural network metamodel saredescribed. One
involves approximating the rel ationship between design parameters and system perfor-
mance, and the other involves using a neural network metamodel of the inverse of the
simulation model. Our focus in the discussion is on the use of the neural network as a
metamodel. Wedo not discussthe processof training, although several of thereferences
we cite discuss how their particular network is trained.

Neural Networks as Simulation Metamodels

The starting point is a simulation of a manufacturing system operating under a certain
set of design parameters. Then aneural network can be trained to estimate the perfor-
mance measurements (outputs). Oncetrained, the networks may then be used to perform
scenarioanalysisrather than using theoriginal simulation model. The network model may
also be used to determine an optimal set of input parameters, based on minimizing
(maximizing) asingle output or acost function of multiple outputs. Further simulations
may be carried out near the “optimal solution” to validate the result. The network
metamodel may also be used to identify input regions of interest, where the outputs
satisfy aset of constraints, and morein-depth analysis of theseregionsshould becarried
out.

Hurrion (1997) developed a method for finding the optimal number of kanbansin a
manufacturing system using aneural network as an alternative to simulation-optimiza-
tion techniques. The example system used in this case consisted of two manufacturing
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Figure 2. Neural network metamodeling approaches

Manufacturing
System

!

Simulation
Model

.

Neural Network

I_ - - Metamodel — _I
r i 1 r S ar Regions of a1
I Scenario I Optimization Interest (based on
Analysis I Technique (based I I performance I
L 1 on cost function) constraints)

L — T — d L — I |

r B I_Developmentofa-I

I more refined neural I
network model

I concentratedinan
areaofinterest

L -  — 4

Further simulation
I experiments to I
confirm results

L — 4

cellsthat produced threeintermediate partsand four finished products. Demand for each
product arrived according to aPoisson process, and processing timesat both cellsvaried
by component. The system was to be controlled using kanbans, and therefore the
problem was to determine the number of kanbans to be assigned to the seven stock
points. The system was to be evaluated using a composite cost function, which was a
function of the average WIP and the product-delay time (defined as the amount of time
between the receipt of an order and the compl etion of the product). A Visual Interactive
Simulation (V1S) model of a manufacturing system was built and run under different
configurations, and afeed-forward neural network was trained using backpropagation.
Inputs to the network consisted of 7 nodes (one for each kanban), and 10 output nodes
consisting of an upper and lower confidence interval for the five response variables.
These were the product-delay times for the four products and the average WIP.

The network was then used to eval uate all possible combinations of kanban allocations
and determine the combination that minimized the cost function. The solution given by
the network demonstrated that the cost function was fairly flat in the region of this
solution. This solution and all other feasible adjacent solutions were further evaluated
usingtheoriginal simulation model, and astatistical test wasconducted to determinethe
best solution amongst this set. This technique was repeated for two further iterations
until the final optimal solution was determined.

The author acknowledged that a Response Surface Methodology (RSM) could have
been used, but would only have been valid for the cost function used. In this approach,
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if adifferent cost function were to be evaluated, the neural network developed by this
technique could be used, as only the last procedure need be repeated.

In an extension to the Hurrion (1997) study, Savsar and Choueiki (2000) developed a
“Generalized Systematic Procedure (GSP)” for determining theoptimal number of kanbans
inajust-in-time (JIT) controlled production line. At each station of the production line,
there are two different types of kanbansrequired for each product the station produces:
production ordering kanbans, which authorize production at the preceding station, and
withdrawal kanbans, which show the number of parts that the subsequent station must
withdraw.

The GSP involves six steps: (1) determining all possible Kanban combinations and
selecting a limited set of these combinations to represent the space; (2) developing a
simulation model of the system (including identifying the performance measures of
interest) and simulating under each of the combinations chosen in the first step; (3)
developing an objective function involving performance measurements of the system
such asWIPand delay time; (4) training aneural network model with the outcome of the
objectivefunction asthetarget output of the network; (5) validating the neural network
model; and (6) using the neural network to evaluate all possible kanban combinations
with respect to the objective function and to determine the optimal combination.

The case problem used to illustrate the procedure was an example from an electronics
production line. The serial production line had five stations, with random (Erlang-
distributed) processing times and demand arrivals. The possible combinations were
limited to atotal of 5 kanbans at each station and a total of 25 kanbans for the entire
system. Even with this limitation, the number of possible kanban combinations was
determined to be 100,000. Therefore, acombination of knowledge and factorial design
wasused tolimit thetraining dataset to 243 kanban combinations. The simulation model
wasdeveloped and runwith all of these kanban combinations, and theresulting WP and
delay timeswereobserved. A cost function, which wasaweighted combination of delay
and WIP costs, wasdetermined, and thetotal cost of each of the 243 kanban combinations
tested was cal culated. A feed-forward neural network consisting of 10input nodes (one
for each type of kanban at each of the five stations), six hidden nodes, and one output
node (system cost) wasbuilt and trai ned using backpropagation. A regression model was
then constructed using the same training data as was used to train the network. The
network was shown to outperform the regression model in its ability to interpolate
accurately within the design space. Finally, the network was used to test all possible
kanban combinations, and the combination with the lowest total cost was determined.
Other possible combinations with total costs less than 1% different than the optimal
solution were also determined, although no further evaluation of these possible solu-
tionswas performed.

For an example of a printed circuit board (PCB) manufacturing plant, Chen and Y ang
(2002) devel oped aneural network metamodel using simulation. Givenagoal of maximiz-
ingtheyield of theplant, they first devel oped aneural network metamodel of the system,
withlot size, degreeof linebal anceinthe system, meantimebetweenfailuresof machines,
meantimetorepair, timelimit of the pastelife, and capacity of theinput buffer astheinputs
to the model, and yield as the output. Once a BP network model had been trained, the
resulting function was maximized — subject to constraints on the inputs — using a
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simul ated annealing optimi zation method. Thebest sol ution produced by their technique
wasbetter than that of Shang and Takikamalla, who had used aregression metamodel and
RSM for the same problem (ascited in Chen and Y ang [2002]).

Some other examplesinclude Altiparmak, Dengiz, and Bulgak (2002), who also used a
neural network and simulated annealing approach to determine the buffer size configu-
ration that would produce the highest production yield in an asynchronous assembly
system. Chambers and Mount-Campbell (2002) use neural networks to predict the
sojourn time of jobs at each station in a manufacturing system given the buffer sizes at
each station and other information about the system. They then use the network to
determinethe optimal buffer sizesin order to minimizethe sojourntimewhilemaintaining
thedesired product mix. Markham, M athieu, and Wray (2000) compared the use of neural
networksand decision treesin kanban setting for amanufacturing shop. They found that
neural networkswere comparableto classification and regressiontreesin predicting the
optimal number of kanbans.

Inverse Neural Network Metamodels

If asimulation can be seen asafunction from aset of input parametersto an output, this
raises the question of the existence of an inverse function that maps the system
performance to the inputsthat produceit. A number of authors have attempted to train
aneural network metamodel to approxi matetheinversefunction of thesimulation model.
Thisisdone by using the performance measurements from the simulation model asthe
inputs in the training data and the corresponding system-parameter settings as the
output. Validation of theresults may be achieved by testing the solution provided by the
neural network intheoriginal simulation model. Thisapproach hasobviouschallenges,
since several different settings of the simulation inputs may have the same (approxi-
mately) simulation outputs so that the inverseis not in fact afunction (i.e., 1-1).

Chryssolouris, Lee, Pierce, and Domroese (1990) used aneural network to determinethe
appropriate number of resourcesto assigntowork centerswithinajob shop. A simulation
model was used to produce the dataset used in training the neural network. The

Figure 3. Inverse neural network metamodel
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simulation model produced performance measuresfor the system, such asmeantardiness
and mean resource utilization, given a certain number of resources allocated at each
station, work load, and operational policy. The authors then trained a multilayer
perceptron neural network, using the performance measuresastheinput, and the number
of resources at each station as the output. Thus, the role of the network was to act as
theinverseto the simulation. Oncetrained, the desired performance measurements can
beentered, and the network predictsthe appropriate number of resources at each station
to achieve the desired result. The authors noted the importance of using contrary type
performance measures, and thedesirability of screening criteriato eliminatepoor design
combinations, and only training the network with good results.

Using asimilar methodol ogy, Mollaghasemi, L eCroy, and Georgiopoul os(1998) devel -
oped a Decision Support System (DSS) for determining the optimal allocation of
resources and queueing strategy in the test operation of a major semiconductor
manufacturing company. The operationinvolved threedifferent typesof testers, and the
goal wasto determinethe number of each type of tester and thetype of queueing strategy
(FIFO, SPT, highest demand, or lowest slack) in order to achieve desired performance
measurements such as cycle time, WIP, and utilization of the three different types of
testers. A simulation model of the operation was used to generate the estimates of
performancefor different combinationsof resourceall ocationsand queueing strategies.

Becausethefeed-forward neural network wasto be used astheinverseto the simulation
model, the network was trained using the performance outcomes as inputs and the
corresponding design values (number of testers, type of queueing strategy) as the
output. For each performance measurement, five ranges of possible values were deter-
mined, and five input nodes were used to represent these ranges — if the value of the
measurement fell inaparticular range, the corresponding input was set to one, otherwise
it was zero. As well, the output nodes of the network represented each possible value
for each design parameter; for example, since there were four possible queueing
strategies, four output nodeswereassigned. Thetraining datawastransformed such that
if aparticular strategy were used in the example, the node was set to one; otherwise, it
was set to zero. The resulting network had 25 input nodes and 13 output nodes. The
network was trained using backpropagation.

Once the network was trained, the desired combination of performance ranges (WIP,
cycletime, etc.) could be presented asinput to the network, and the network would then
identify the corresponding combination of design parameter values to achieve that
performance. The authors tested the network by presenting a combination of perfor-
mance outcomes that were not included in the original training set. The outputs of the
network were not exactly zero or one. Therefore, for each set of output nodes, the nodes
with values closest to one were chosen as the solution. The authors acknowledged that
if thenetwork was presented with acombination of performance measurementsthat were
infeasible(giventhe conflicting nature of these measures), theneural network would still
produce a set of operational parameters; therefore, once such a result is obtained, it
should befurther tested with the original simulation model to ensureit isan achievable
result.

The use of an inverse neural network metamodel does assume that an inverse of the
performance function exists, which may not be the case. There may be multiple combi-
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nations of design parametersthat would result in the desired outcomes. Thistechnique
would only produce one such solution. Further investigation using the original simula-
tion model, as previously mentioned, would normally be required.

Operational Decision Support
Using Neural Networks

Another common situationinindustrial operationsisthat the outcome of a manufactur-
ing processisofteninfluenced by many variables; however, only asubset (perhapsonly
one) of these variablesiscontrollable. Operators must determinethe “right” setting for
aprocess or course of action to take, given information about the current situation, in
order to achieve desired outcomes or to produce a “good” product. Sometimes the
decision can bemade based on previousexperience, but oftentrial and error isnecessary
when previously unseen combinations of values are encountered. Neural networks can
beused to assist in the decision making processby being trained tolearntherelationship
between these variables and process outcomes. The data used for this training may be
takenfrom previously collected processdata, or collected through experimentation. The
trained network may then be used to test certain settingsto determinethe output, or may
be further analyzed to provide the optimal setting or best decision given the current
situation.

Caoit, Jackson, and Smith (1998) demonstrate the use of neural networksin two industry
examples; wave soldering and slip casting. I n the wave soldering example, the problem
wasto develop amodel to determinethebest processsettings(i.e., preheater temperature
and belt speed) for thewave sol dering machinein order to minimizethe number of solder
connection defects in the printed circuit boards (PCBs). Each PCB had several design
characteristics, such asmass, size, and component density, and the firm produced many
different models. Asthethermal condition of the card when it entersthe solder wavewas
considered the most important determinant of the soldering quality, this data was
collected using special testing apparatusover aperiod of two months. Thermal condition
of a card is described by the mean temperature, standard deviation, and temperature
gradient at the wave.

Figure 4. Manufacturing process decision problem

State Variables
Process Variables

|

Process Manufacturing Process
Setting(s) > System > Outcome(s)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Neural Networks in Manufacturing Operations 173

Figure 5. Neural network decision support
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Three feed-forward neural networks, each with one output node, were constructed to
predict thethermal condition (meantemperature, standard deviation and gradient) based
on the design parameters of the PCBs and the process settings. Each network consisted
of 14 inputs: design inputs, such as length of the card, card mass, and thickness; and
processsettings, whichincluded four preheater temperaturesand thebelt speed. Finally,
another neural network was constructed to use the thermal predictions as input and
predict the category of solder quality (i.e., excellent, good, or fair).

Caoit, Jackson, and Smith (1998) al so detail theuse of neural networksin predicting quality
inaslip-casting process. Whileslip casting allowsfor the production of complex shapes
suchassinksor statues, itisdifficultto produce productsthat arefreefrom defects, given
the number of variables that can affect the quality of the casting. In order to avoid
fracturesand/or deformitiesin acasting, the moisture gradient within the casting should
beasuniformaspossible. Aswell, another output measurement of the processiscasting
rate, which is the thickness of the cast achieved during the casting time; the higher the
casting rate, the less time the cast must spend in the mold.

In this application, neural networks were used to predict the moisture gradient and
casting rate given ambient conditions (relative humidity and temperature), the casting
time and properties of the slip (such as moisture content, viscosity, and temperature).
Themanufacturer had substantial production datawith these parameters, and additional
experiments were conducted to measure the effects of extreme values of the ambient
temperature, humidity, and sulfate content in the slip. In all, ten slip variables, the two
ambient or state variables, and the casting time were used as input to two feed-forward
neural networkswith either moisture gradient or casting rate asthe single output. Lam,
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Petri, and Smith (2000) discuss the process improvement module and the fuzzy-logic
expert system which used these neural networks to recommend the best set of control-
lablevariablesand casting times. Thissystem hasbeenimplemented at amajor U.S. plant.

Another exampleisthat of Philipoom, Wiegmann, and Rees (1997) in the assignment of
due datesto jobs arriving at a shop, where thereiswork in process, and the processing
times at each stage of production are random variables. The goal isto assign adue date
(datefor completion as quoted to the customer) to an arriving job that will minimizethe
expected penalty cost dueto early or late completion. Here, the authors assume that the
cost for late completion is different than for early completion. Three different shop
configurations were simulated, and then 23 job-specific and shop-specific characteris-
ticsweremeasured each timeajob entered the simul ated shop. Thedeparturetime of each
job was also measured. A neural network was then trained using the 23 characteristics
as input and the departure times as outputs. Mathematical programming and OLS
regression techniques were also used to predict the completion time of each incoming
job. Each model was presented with new data, and then the difference between the
predicted completion date (assigned due date) and the simulated compl etion date were
used to calculate the penalty cost incurred for each job. Overall, the neural network
performed as well or better than the other techniques tested for these examples.

Schlang et al. (1997) reported on the use of neural networksin the steel industry. One
application was in a wide-strip hot-rolling process, where steel sheets underwent
prerollinginaroughing mill prior to being brought to afinal thicknesshby afinishing mill.
Thewidth of the sheetscould only be controlled at the roughing stage, although material
characteristicsand the state of thefinishing mill wereal soknownto befactorsinthefinal
width of the sheetsafter thefinishing stage. Duetothevariability in processing, asafety
margin of several millimeters was used to ensure the sheet was not too narrow after
finishing. Any excess width after the finishing stage was trimmed off and recycled. A
neural network was built and trained to predict the width of a sheet of steel after the
finishing stage, given such information asthe material composition, material tempera-
ture, and finishing mill parameters, and also theinitial settings at the prerolling stage.
Becausethenetwork could moreaccurately predict thefinal width of the sheet, the saf ety
margin could be reduced, therefore reducing the amount of recycling.

Kilmer, Smith, and Shuman (1999) devel oped parall el neural networksasmetamodel sfor
discrete event simulations. They modeled an (s,S) inventory system and determined the
expected system cost and variance, given selected values of setup cost, stockout cost,
and values of sand S. Two neural networks were then trained; one with the expected
system cost asthe output and the other with the variance of theaverage cost from multiple
replications of the simulation at each point. These estimates were then used as confi-
dence intervals for the expected total cost, and shown to closely replicate results from
the simulation model itself when tested on data points not originally in the training set.

Sabuncuoglu and Touhami (2002) estimate manufacturing system performance using
neural networks. They experimented with both simple and complex systems, and with
using deterministic and stochastic processing times and interarrival times. In these
experiments, aduedatefor anarriving job isdetermined based on the total work content
of thejob multiplied by atightnessfactor. The simulation modelswererunwith varying
interarrival times, tightness factors, and queue waiting discipline (shortest processing
time, earliest due date, or modified operation due date). The mean machine utilization,
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mean job tardiness and mean job flow timefor each job were recorded. A feed-forward
neural network was then trained (using backpropagation with momentum) for each
experiment with theinterarrival time, tightnessfactor and queue-waiting disciplinesas
inputs, and one of the performance measurements as the output.

Huang, et al. (1999) examined the use of neural networksto predict the WIP levelsand
throughput for operation stages of awaf er-fabrication process. The goal wasto develop
anetwork which could predict the WIP level and throughput of an operation stagein the
next time period, given information on the current situation, so that managers could
proactively implement corrective actions. They determined through testing that using
the current WIP levels and throughput at an operation stage, as well as the same levels
from the two upstream operation stages, as inputs to a feed-forward neural network
trained with backpropagation provided the best prediction results. They recommended
atwo-stage procedure for theimplementation of the network. The predicted WIPlevels
and throughput from the network were compared to the standard performance measures
andrepresentedas“high,” “normal,” or “low.” Predictionsother than“normal” indicated
that managers needed to implement corrective actions.

The ability of feed-forward neural networksto approximate the functional relationship
between input and output variables, even with incomplete data, is very useful in this
application. One perhaps obvious caution isthat atrained network isonly valid for the
process data on which it was trained. The examples presented earlier are static, in that
it is assumed that the system itself does not change. If the process is changed, the
network should beretrained. Since processesmay changeover time, periodic testing and/
or retraining should al so be implemented.

Operational System Control Using
Neural Networks

Control problems are distinguished from decision support in that the consequences of
acontrol decision are both an immediate cost or benefit and the fact that the system is
now in anew state from which another control decision needsto be taken. The view of
manufacturing systems as a manufacturing-control problem has been current for some
timenow (Gershwin, Hildebrant, Suri, & Mitter, 1986). Typically, thesecontrol systems
are challenging to optimize.

Although the focus of this chapter ison feed-forward networks used as approximators,
it is worth noting that recurrent neural networks have been developed (Rovithakis,
Gaganis, Perrakis, & Christodoulou, 1999) to provide controllers for quite complex
manufacturing systems. Theaim of the controller isto maintainthe system at prescribed
buffer levels(WIPlevels) inastablemanner. In Rovithakis, Perrakis, and Christodoulou
(2001), an application of thisneural network control isreported to performwell onareal
manufacturing system aimed at controlling WIPlevelsfor 18 product typesin ajob-shop
environment.
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A more general approach to manufacturing control will not seek to maintain fixed WIP
level sbutinstead seek to optimize an objectivefunction of somesort. A natural approach
tothemanufacturing control problem hasbeen dynamic programming, but typically most
real manufacturing systems have such large state spaces that render this approach
infeasible. However, ideas developed in neurodynamic programming (Bertsekas &
Tsitsiklis, 1996), also known as reinforcement learning (Sutton & Barto, 1998), have
begun to have important applications in manufacturing and we anticipate considerable
growthinthesetypesof applications. It will thusbe useful to sketch out how theseideas
work inorder to seetheimportant rolethat feed-forward neural networksplay. Bertsekas
(2001) givesanice summary article on neurodynamic programming that isthe basisfor
much of the discussion that follows.

Thebasic finitehorizon dynamic programming model can be summarized asfollows. We
have adynamic system that evolvesaccordingto x ,, =f(x, u, w,), where x isthe system
state, u,isacontrol action, and w,isarandom disturbance. For aninfinite horizon control

problem with discrete time periods, the task facing usisto compute the state cost-to-go

function J(x), whichsolvesBellman’ sEquation. Thegoal isto maximize E[ 270X U W, )}

t=1T
by taking allowable control actionsu, e A(x). Theg(x, u, w,) isareward earned on the
th stage of this process.

The dynamic programming approach consists of attempting to solve the recursive
equation ‘]t(Xt):u':/lA%i(){E[gt(Xtvut!Wt)—i—‘]t+1(xt+1)]} . Taking thisto a control model, with

stationary reward functions g(), and stationary probability functions, the Bellman’'s
Equationis:

J(X) = M%{E[g(x’ u, W) +a(x,u, W) I (X)X = f(x,u,w)} 1)

Theproblemasportrayed hereisthe minimization of discounted rewardswith adiscount
factor a(x, u, w). Thedependency onthex, u, and wismeant toindicatethat thisprocedure
can deal with both standard markov processes but also semi-markov processes where
the transition time depends on the state, the decision, and the random variable. The use
of discounting to deal with the infinite horizon is simple for exposition. However, an
objective that maximizes average rewards per unit time is equally possible. Both
Bertsekas and Tsitsiklis (1996) and Sutton and Barto (1998) provide the detailsthat are
lacking above. Das, Gosavi, Mahadevan, and Marchellack (1999) develop a generic
algorithm for the use of reinforcement | earning techniquesto minimize average costsin
asemi-markov decision setting.

There are two basic approaches to solving the DP model: value iteration and policy
iteration. There are several types of approximation that form the basis of NDP/RL
approaches. The simplest isapproximation to the cost-to-go function. Bellman equations
can bethought of asarecursive approach to learning the val ue of the cost-to go function
J(). Algorithmsbased onthisareknown asvalueiteration. The problemisthat the number
of possible state variablesisvery large (often continuous). Thismeansit isimpossible
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toevaluatethe J(x) for all possiblex. A natural approachistouseaneural network J(x,r)
wherer aretheweightsof afeed-forward neural network tofit thecurrent estimates J'(x ),
i =1, N. This neural network can be used to update the estimates J' again using:

J(X) = MA%{E[Q(X'U’W) +a(xuw) I NEX = f(xuw} )

and anew neural network fit to the current J'. The estimates of J' can be updated either
synchronously (all of the states x) or asynchronously (selected states).

A second approach is that of Q-learning. The Q factor isthe function Q(x,u) given by:
Q(x,u) = E[g(x,u,w) + ar(x,u,wW)I(X) [ X = f (x,u,w) ®3)

Thereare several approachesto estimating the Q-factors. Oneisto useaneural network
to approximate J and then to estimate the expected value by simulation. Another isto
estimate J itself by simulation of a heuristic policy and use this simulation to estimate
Q(x,u). There are abroad variety of waysto build up approximations of Q(x,u) using a
variety of learning algorithms. However, in most practical cases, the dimension of the
stateand action spaceisagain solargethat the Q-factors can be evaluated at only asmall
number of potential states. A feed-forward neural network can then be used to approxi-
mate Q as Q(x,u;r) wherer are again the weights of some appropriately chosen neural
network architecture. (Note we are using r throughout this section to denote weights/
parametersof thefitting architectureand are obviously not the same quantitiesfrom one
type of approximation to the next. The meaning should be clear from the context). This
gives J(x) = UI\E/IE}XX){Q(X, u;r’)} and the optimal control policy as u(x) = aruggrggx{Q(x, ur)}.
Thethird opportunity invol vestheapproximation of thepolicy functionitself. If wehave
agood estimate of the cost-to-go function J() or agood estimate of the Q-factors, then
an approximate policy is:

u(x) = argmax{E[g(x,u,w) + ar(x,u,W) I (X, 1) } X' = f (x,u,w)}

ue A(X)

or
u(x) = argmax{Q(x,u;s)}
ue A(x)

Againitisoftenthe casethat there are such alarge number of statesthat it isunrealistic
to evaluate u(x) at every state x. A possible solution is the development of a policy
network u(x;r) that approximatesthose stateswhere the eval uation has been carried out.
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In the quite common situation where only a reasonably small finite number of policy
actions are availabl e, this network becomes a classification network.

The SMART algorithm developedin Das, Gosavi, Mahadevan, and Marchellack (1999)
applies reinforcement-learning theory in a case of semi-markov decisions and with an
objective of average costs, not discounted. The technique is effectively building up an
approximation of the Q factors through simulation and learning updates. Then, afeed-
forward neural network isused to extend the estimates at the simul ated statesand actions
totheentirestateand action space. InDas, et al. (1999), the SMART algorithmisapplied
tolarge preventivemaintenance problem (approximately 107 states). Paternina-Arboleda
and Das (2001) give an application of SMART to develop control policies for serial
production linesthat are an improvement on conventional kanban, CONWIP, and other
control policies.

Shervais, Shannon, and L endaris (2003) use aneurodynami c-programming approach to
aproblem of physical distribution in the supply chain. They modeled the supply chain
process with asimulation and then fit a neural network to the simulation results. From
that point on, the neural network acted as the model of the system dynamics. Their
approach isessentially apolicy iteration algorithm. Any policy isdeveloped at afinite
set of state points and then extended to the entire space using a policy network.

Gershwin (1989) haspointed out the generality of the dynamic programming framework
for the optimal control of manufacturing systems. This suggests that as the ideas of
neurodynamic programming become better knowninthe manufacturing community, we
will seeincreased use of thisapproach and acorresponding increasein the use of neural
networksto approximatethe cost-to-go function, the Q factors, and the policy functions.

Conclusion

The preceding sections provided some examples of how neural networks are being
applied in manufacturing operations. Neural networksarewell suited to manufacturing
applications, which tend to be very complex with interrel ated outputs. While the use of
neural networks continues to grow, there are still some outstanding research issuesin
this area, aswell as practical issuesin their application.

Theattraction of using neural networkshasto dowith theability to map many inputsonto
multiple outputs without knowing the underlying function. One practical issue in
manufacturing isdetermining which inputsdoin fact affect the outputs. For example, in
decision-support systems, which of the environmental factors (e.g., plant temperature,
type of tooling used, etc.) have asignificant impact on the perf ormance measurement of
interest?Includinginput variables, which, inreality, do not affect the process outcomes,
will over-complicatethe network design and perhapslead to difficultiesduring training.
Whileexpert opinion may besolicited prior tothe construction of the network, sometimes
the applicators will be looking to the network to determine whether or not there is any
relationship. Unfortunately, trained feed-forward neural networksarelikea" black box”
and do not provide insight or general rules for the relationship between the input and
the output of the network.
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Whenthereareavery large number of combinations of possibleinputs, determiningthe
correct composition of thetraining dataset isachallengeinitself. Inorder to ensuregood
generalization within the sampl e space, abroad range of sampl e pointsshoul d be chosen.
In the case of decision-support systems for manufacturing processes, where actual
production datais used for training, it may be necessary to conduct experimentsto capture
observationsfor certainrarely seen or extreme combinationsof processvariables, asthey
may not exist in the historical production data. Otherwise, in future, one may becalling
upon the network to extrapolate, which may lead to highly inaccurate results.

Thearchitecture design of the networksremainsachallenge. The principle of Occam’s
Razor would arguethat simpler functions(fewer hidden nodes/layers) aremoredesirable,
yet theresulting network may not fit theunderlying function closely enough. Overfitting
must also be addressed to ensure the network has good generalization properties. This
isusually addressed by splitting the datainto atraining set and atesting set and stopping
the training of the network when the error between the network output and the testing
set beginsto rise. While there are rules of thumb for determining the number of hidden
nodes, often the approach is to test various architectures and choose the one that
provides the best compromise between generalization and error minimization.

The use of metamodel s does not guarantee an easy meansto optimization. Even with an
analytical function, optimization isnot an easy problem and heuristic methods may be
necessary to generate a good, but not necessarily optimal, solution.

Neural network approaches can bring designers and operators closer to theright design
or decision faster than traditional approaches. Although careful design and testing can
improve the accuracy of the network’s approximations, the output is still in fact an
approximation. Further testing and validation may be necessary before systemimplemen-
tation.
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Abstract

This chapter presents the application of a neural network to the industrial process
modeling of high-pressure die casting (HPDC). The large number of inter- and
intradependent process parameters makes it difficult to obtain an accurate physical
model of the HPDC process that is paramount to under standing the effects of process
parameter son casting defects such as porosity. Thefirst stage of thework wasto obtain
anaccuratemodel of thedie-casting processusing afeed-forward multilayer perceptron
(MLP) from the process condition monitoring data. The second stage of the work was
to find out the effect of different process parameterson the level of porosity in castings
by performing sensitivity analysis. The results obtained are in agreement with the
current knowledge of the effects of different process parameters on porosity defects,
demonstrating the ability of the MLP to model the die-casting process accurately.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



High-Pressure Die-Casting Process Modeling Using Neural Networks 183

| ntroduction

HPDC is a process used to produce various structural elements for the automotive
industry, such as transmission cases, engine sump, rocker covers, and so on. The
processbeginswith pouring melted aluminuminthe shot sleevecylinder through aladle.
After thedieisclosed, themetal ispushedinsidethediecavity by movingaplunger. The
plunger startsinitially with alow velocity, thenthevel ocity increasesduring thepiston’s
motion, and thevelocity isdecreased at theend when nearly all theliquid metal isinjected
into thedie. The metal isinjected through gate and runner system at ahigh velocity and
pressure. The dieisthen opened and arobotic arm extracts the solidified part. The die
islubricatedtofacilitatethe extraction of casting andto avoid sol dering of themetal with
thedie surface. The extracted casting with abiscuit isthen cooled down with water and
isplaced onaconveyer belt for further treatment or otherwisestored onarack for quality-
control tests.

TheHPDC processisacomplex process, consisting of over 150inter- andintradependent
process parameters. For example, there is a dependency between the gate vel ocity, the
fill time, and the die temperature (Davis, 1978). If thefill timeand the gate vel ocity are
optimized, thedietemperaturebecomeslesscritical. Theinteraction betweenthefill time
and the metal pressure is also well-known (Walkington, 1990). The complexity of the
process resultsin many problemslike blistering and porosity. While the complexity of
HPDC makesit difficult to obtain an accurate physical model of the process, having an
accurate model of thedie-casting processisparamount in order to understand the effects
of process parameters on casting defects such as porosity.

Porosity is adefect in which the HPDC machine produces castings with poresin them
asaresult of either gas entrapment or vacuum due to poor metal flow at the location of
poreoccurrence. Porosity isby far themost highly occurring defect in automotiveengine
castings, resulting in the largest percentage of scrap of engine-component castings
(Andresen& Guthrie, 1989). Atthesametime, porosity isone of themost difficult defects
toeliminateindiecasting. Itisinthebest interest of theindustry (e.g., car manufacturers)
and theconsumer of diecastingsthat porosity iseliminated completely fromthe castings,
but thisisnot alwayspossibleto dowiththe current level of processunderstanding. The
industry generally has to settle to move porosity to different noncritical locationsin a
casting rather than to remove it completely. In addition, attemptsto eliminate porosity
defects can affect other process settings and result in other casting defects.

Understanding of how HPDC process parameters influence casting defects such as
porosity can eventually |ead to determining the optimal processparametersto reducethe
chance of defects occurring in the castings. The variety and often conflicting nature of
the statesof processparametersmakesit hardin practiceto achieveaglobally optimized
process with no defects in castings. Thus, the industry is generally opting for defect
reduction on the basis of intended use of the casting; for example, a casting that hasto
be attached to other parts using bolts should not have weakness close to the bolt hole.
Itiscrucial that thereiseither low or no porosity intheareaclosetothehole, whiledefects
that lie in other parts of the same casting that does not affect structural integrity of the
casting can be tolerated.
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Backgr ound

The porosity defect can be divided into three major types, which are gas porosity,
shrinkage porosity, and flow porosity. InHPDC, thefirst two typesof porosity are mostly
encountered. The gas porosity isthe porosity in casting dueto the presence of gas. This
type can arise from gas produced during process, entrapped air, and melt composition.
The shrinkage porosity is due to shrinkage of metal, so that the metal |oses volume and
hence more metal is required to fill the voids produced. In HPDC, it is hoped that this
problem can be minimized with theapplication of high pressuretofill thevoi dswhen metal
isinthesolidification state. Formation of porosity inaluminium castingsisacombination
of die-casting process parameters, such as melt composition and solidification proper-
ties, under high pressure. Main process-related porosity formation mechanismsinclude
solidification and entrapped-gas-related formation. Melt rel ated porosity formationisof
minor importance, primarily because hydrogen entrapment in HPDC isnot abig problem
(Walkington, 1997). Hydrogen entrapment can be a serious problem if there is a
significant amount of scrap being remelted. The specific reasonsfor porosity formation
are undesirable states of shot sleeve, cavity, runners, vent and gates, solidification
pressure, lubricant quantity, and steam formation from water during the process.

Porosity formation is a subject of active research that can be divided into discussions
of porosity types, whether gasor shrinkage (Garber & Draper, 1979) or the specificissues
regarding porosity formation like entrapped air in shot sleeve or cavity (Garber, 1981,
1982; Thome & Brevick, 1995), gate and runner systems (Andresen & Guthrie, 1989),
pressure (Kay, Wollenburg, Brevick, & Wronowicz, 1987; Murray, Chadwick &
Ghomashchi, 1990), and melt composition (Kaghatil, 1987; LaVelle, 1962).

Shot-Related Porosity Formation

Shot-sleeve-related parameters are perhaps the most sensitive ones when it comes to
entrapped-air porosity. The parameters like accel eration, stage vel ocities, diameter, or
even deceleration are all shot-related parameters determining the formation of metal-
wave patterns, which can be crucial factorsin deciding whether air becomes entrapped.
Other important parametersare shot-del ay timeand the percentagefill of the shot sleeve.

Assoon asthemetal isladled, thegoal of HPDC isto begin injection assoon aspossible
but still at theright timeinthe case of acol d-chamber die-casting machine. Metal injection
should begin soon because the metal starts to solidify in the shot sleeve; and, if metal
with solid particlesisinjectedintothedie, the high vel ocities can cause diewear and may
contribute to die erosion and towards a deterioration of the quality of the castings. Itis
not recommended to inject immediately becauseit can destroy the wave pattern and can
entrap air in different forms. Hence, shot-command delay isthefirst process parameter
to be selected carefully. Then it isthefirst stage velocity. If it istoo low and too high,
it can contributetowrongwaveformation. Thewaveisformedif shot vel ocity (first-stage
velocity) istooslow. Thewavegetsontop of theair, and theair isinjected intothe cavity
(Thompson, 1996; Garber, 1982).
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The other sleeve-related process parameters are accel eration to attain different stages
of velocity andfill percentage. Theaccel eration can al so be adeciding factor in porosity
formation. Shot-sleeve percentage fill can also affect the wave formation. If the sleeve
isfull of metal, theair quantity islesswhen compared to alesser extent of fill, and hence
higher vel ocitiescan beapplied safely tofill the cavity without forming deteriorated wave
patterns. Plauchniak and Millage (1993) hasdescribed afour-stage shot system that adds
a decel eration phase between stages in the hope to minimize impact pressure.

The process parameters affecting the entrapped air in the shot sleeve are the velocities
of the plunger, shot-sleeve fill percentage and the acceleration to reach the first stage
of desired velocity (Thompson, 1996). A too low first-stagevel ocity canformaninward
waveof air entrapmentinthesleeve (Figure1). A toohighvelocity canformdifferent flow
inthemetal towardsthedie cavity within shot sleevethat can result in entrapment of the
air in aforward direction (Figure 2). It helpsif the shot sleeve isfilled more than 50%
(Thompson, 1996; Walkington, 1997). It is possible to instantaneously accelerate the
plunger from zero to first-stage velocity without producing porosity in 50% fill. The
pressurerequirements, fill time, and gatevel ocity very often makethe50%fill impossible
(Walkington, 1997).

Garber (1982) has developed a mathematical model of the effects of plunger-related
process parameters. It is noticeable that his model does not include the shot-sleeve
parameter—the acceleration of plunger. In fact, in his previous work, Garber (1981)

Figure 1. Air isentrapped when shot velocity it too low in the backward refl ected wave

Reflected wave  Air entrapment

Figure 2. Air is entrapped if the shot velocity if too high; the three small arrowheads
show the problematic flow responsible for entrapment

Bouncing wave Air entrapment
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vehemently denies the importance of acceleration at all. The view that a smooth
accel eration canminimizeair entrapment in castingsfrom shot sleeve, whiledoubtful for
Garber, is considered very important by other authors (Thome and Brevick, 1995;
Thompson, 1996). Thome and Brevick (1995), similar to Thompson (1996), discuss
optimal accelerationtoreach different stagesof vel ocities. Theauthorsadvocate control
of accelerationtoreduceturbulencein shot sleeveandtominimizeair entrapment for less
than 50%fills. Backer and Sant (1997) found adirect effect of accel eration during aslow
shot of velocity. The authors have found that high accel erations break the waves at the
ends of the plunger that has the potential to entrap air while the metal is being injected
inthediecavity. Slow accelerations, on the other hand, were found to be optimal inthe
sense that they do not break the wave and there is alow probability of air entrapment
inthiscase. A study conducted by Brevick, Duran, and Karni (1991) addressestheissue
of accelerationwithrespect to Garber’ soptimal velocities(Garber, 1982) to minimizeair
entrapment. It was found that an acceleration of 2 in/sec/int further minimizes air
entrapment at Garber’s critical velocity. If acceleration is considered important, the
concept of critical velocity can beappliedto further low percentagesof shot sleevefills.
Brevick, Duran, and Karni (1991) report achievement of nonbreaking wavesuptoaslow
apercentinitial fill as20%.

A series of work dealing with the application of control engineering to die casting
emphasizes acceleration and provides the mechanism to measure and control the
acceleration of the plunger for successful die casting with minimum scrap (Hadenhag,
1989; Shu & Kazuki, 1997; Vann, 1993). Vann and Shen (1989) claimed that controlled
accel eration during thewhol e shot press(shot cycle) minimizesair entrapment and hence
porosity. Hadenhag (1989) made similar claims that using controlled acceleration and
deceleration getsrapid paybackswith fewer rejects, metal savings, and higher machine
utilization. Similar resultsand conclusions have been drawn about accel erationin older
die-casting literature (Kruger and Bosch, 1966; Pomplas, 1972). It seemsthat only Garber
(1982) has disagreed with the importance of acceleration.

The velocities of first and second stages of plunger movement are other process
parameters that effect the formation of porosity for pretty much the same reasons as
acceleration. Both are related to the formation of “wrong” motion of liquid aluminum
(waves) inside the plunger. Figures 1 and 2 show the cases with too high and atoo low
initial (first-stage) shot velocity (Thompson, 1996). The change over position naturally
becomes important when the velocity has to be changed from first to second stage.
According to Garber (1981, 1982), Thome and Brevick (1995), and Thompson (1996),
porosity arisesout of the suboptimal settings of parameters— namely settling timeafter
pouring; first-stage velocity; inappropriate changeover position; and, to some extent,
second-stage velocity.

Garber’s pioneering paper (1982), supported with a mathematical model of porosity
formation, remained the center of discussion for adecade and a half. Garber identified
further two shot-sleeve-related parametersthat affect air entrapment in acold-chamber
machine. They areinitial fill percentage and diameter of the plunger itself.

Hairy, Hemon, and Marmier (1991) designed an expert system to diagnose and suggest
solutionsto the die-casting problems. According to theauthors, most defectsresult from
poor settingsof machine parameterslikefirst- and second-stagevelocitiesand overpres-
sure.
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Asquith (1997) studiestheeffect of first- and second-stage plunger vel ocities, changeover
position, intensification pressure, and biscuit length. The author observes an increase
in porosity with increasing first-stage velocity with no significant effect on surface or
X-ray quality test results. Second-stage velocity should be low to achieve low porosity
but ahigher second-stagevel ocity isrequired to minimize surfacedefects. Itissuggested
to have a 3.5 m/s second-stage velocity considering other factors like die wear and
flashing that can occur with higher velocities.

Asquith (1997) and others (Andresen & Guthrie, 1989; Backer & Sant, 1997; Brevick,
Duran, & Karni, 1991; Garber, 1982; Garber & Draper, 1979a, 1979b; Hadenhag, 1989;
Kruger and Bosch, 1966; Plauchniak & Millage, 1993; Shu& Kazuki, 1997; Vann & Shen,
1989) have unanimous agreement that shot vel ocitiesarecrucial tothe quality including
occurrence of porosity in high-pressure die casting. Aforementioned authors describe
all their systems under two stages of velocities in sharp contrast to Plauchniak and
Millage, who argue that third-, even fourth-stage velocity systems are better. The first
two stages are essentially the samefor elimination of gasesthrough forming awavethat
eliminatesthem before entering gateand runner systems. Second stageistofill thecavity
by matching the resistance offered to the flow-by runner. The third stage is to enhance
solidification (intensification) pressure. The fourth-stage system described by the
authors actually adds a deceleration stage between the first two stages. The authors
arguethat thisstage breaksany spikein pressure devel oped whenthe cavity isfilled and
canincreasedielife.

The effect of the changeover position is very interesting. The porosity decreases with
an increase in the changeover position. Increasing it to 600 mm produced the least
porosity, and all castings passed the visual tests. Asquith (1997) does not point out the
effect of a high second-stage velocity and a high changeover position. It is worth
studying if it is possible to have a high second-stage velocity with a high changeover
position to minimize porosity, aswell as surface defects. The effects of combination of
this configuration on die wear and die flashing can also be investigated.

Vents, Pressure, and Gas-Related Porosity

Theair in a cavity can be entrapped due to the problemsin runners or ventilation. The
vents should be big enough to let the air escape and be located near the last spot to
solidify. The runner should not have sharp cornersin general. If the vents are working
properly, the air entrapped can escape to a sufficient extent (Walkington, 1997).

The purpose of the application of high pressurein die casting isto minimize shrinkage
apart from rapid production, low costs, and to achieve alower cycletime. InHPDC, no
extrametal isgenerally provided to reduce shrinkage porosity that isaresult of volumetric
contraction. Many die casters still find shrinkage-related porosity despite applying
enough pressure, because the applied pressure can be different than the actual pressure
developed inside cavity. This happens because of insufficient biscuit size or too big a
sizeand unexpected solidification. If thebiscuitistoo small, it can solidify first or even
metal in the shot sleeve can solidify which can take pressure off the cavity.

Asquith (1997) observed doubl e porosity when he applied “ no intensification pressure”
(which means that a base pressure of 25.8M Pawas applied). Here, the author was able
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to test the plunger movement with high pressure and concluded that high intensification
pressure has a more significant effect on porosity than the plunger-speed configuration.
Itisworthwhile here to point out that the porosities that result from velocity profiles and
intensification aretwo entirely different kinds of porosities: gasand shrinkage porosities.

The quantity or type of lubricants used to greasethe die and plunger can be asignificant
contributor to porosity if they get burnt and result in the formation of gas. The purpose
of dielubricant iseasy extraction of the part after solidification, whileplunger lubricant
is used to facilitate motion of the heavy plunger through the cylinder.

Dueto the extreme temperatures in the die-casting environment, some of the lubricant
gets burnt and produces gases. An optimal amount of lubricant that is dispersed evenly
isused toreducelubricant porosity. Water isanintegral part of dielubricants, andit can
occur as steam porosity due to high temperatures. Water can accumulate on adie from
asprayer and leaking water-cooling lines.

Porosity Models

Gordon, Meszaros, Naizer, and Mobley (1993) have developed a model to calculate
porosity intermslikethe volume of liquid in the casting cavity, which does not require
extrametal supply to compensatefor shrinkage, volume of cavity, temperature of thegas
inthecasting cavity, pressureappliedtothegasduring solidification, liquid all oy density
at themeltingtemperature, solid alloy density at the melting temperature, quantity of gas
contained in the casting at standard temperature and pressure (STP), solubility limit of
gasinthesolid at the melting point, or solidus temperature at STP. It is noticeabl e that
some of these are not die-casting machine parameters. The authors correlate the results
of other researchers in terms of die-casting process parameters like volume of die
lubricant per casting, plunger lubricant (amount), state of shot sleeve, cavity fill time,
fast-shot velocity, die-temperature gradient, metal temperature in the furnace, and die
opentime.

This work is of particular interest to the authors of this chapter because the model
proposed by Gordon et al. (1993) ishelpful in calculating porosity but does not provide
any direct recommendations on how to reduceit, asit does not address the formation of
porosity intermsof die-casting processparameters. Thiswarrantsfurther work to verify
the model given by Gordon et al. (1993). The authors do not have aframework tofitin
the die-casting process parameters in their mathematical model; however, die-casting
process is essentially controlled by its process parameters. One of the observations
going against themodel of Gordon et al. 1993), asreported by Garber and Draper (1979a),
isthe decrease in porosity with the decrease in holding temperature. It is assumed that
the decrease in temperature may affect the volume of liquid in the casting cavity that is
not supplied with extra liquid metal (because it is not required to) to compensate for
solidification shrinkageand the gasthat isentrapped inthe casting cavity. Thisisfurther
needed to beinvestigated and can result inachangeinthemodel of Gordon et al. (1993).

Significant work has been done in Australia recently with novel approaches and
applicationstotheporosity-modeling problem (Rogers, Y ang, Gershenzon, & Vandertouw,
2003). The authors put emphasis on the data-acquisition (shot-monitoring) kit. They
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have developed revolutionary technology that hastheability to“look into acasting” and
signal thered/green light to indicate rejects. Our work (Khan, Frayman, & Nahavandi,
2003) usesan artificial neural network (ANN) to predict porosity reliably inaluminium
HPDC. Thework by Huang, Callau, and Conley (1998) isasimilar attempt, but it isnot
related to HPDC. Y arlagadda and Chiang (1999) have used neural networksto find out
the intradependence of process parameters in the die-casting process. Our work is
different from the work noted previously sinceit isan attempt to model HPDC process
defectsgiventheprocess parameters, which represent the state of the machineat agiven
instant of time.

Biscuit Size

Very low and very high biscuit sizes generally result in higher porosities. An increase
from 13 mm to 15 mm lengths dramatically decreased porosity (Asquith, 1997). It is
recommended to use aminimum 25 mm biscuit length with maximumintensificationfor
sake of passing the X-ray test for the casting, with ladle consistency being taken into
account to maintain the size. It is noticeable that in Gordon et al. (1993) the authors do
not attempt to relate the size of the biscuit to their equations. Further research can be
conducted torelate biscuit size to equations or anew term added to the equationsto take
the biscuit size into account. The exploitation of a neural network can be agood idea,
because it offers the utility of adding the biscuit size to the inputs of the network.

M ethodology

Computational intelligencetechniquesthat include ANNS, genetic algorithms, simulated
annealing, and fuzzy logic have shown promise in many areas including industrial
engineering wheretheuse of neural networks, genetic algorithms, andfuzzy logicisquite
prominent. The capability of ANNsto learn complex relationships well has made them
apopular methodology for modeling the behavior of complex systems. Computationally,
ANNSs in their most common form of a multilayer perceptron (MLP) are distributed
parallel-processing systems capable of a fault tolerant and efficient learning and are
resistant to noise and disturbances. They are connectionist structures composed of
nodes called neurons and arcs connecting the neurons with weights associated with the
arcs. Weights are adaptable and are the main learning parameters of the network. The
network learns typically by using a backpropagation learning algorithm (Rumelhart,
Hinton, & Williams, 1986) that updates the weights. The network has generally three
types of layers called input, output, and hidden layers. Theinformation is presented in
apreprocessed or raw format into theinput layer of the network and the predictionsare
obtained at the output layer of the network.

MLPs are quite useful in developing an inductive model of the problem at hand with a
fair accuracy whenthereisno mathematical/physical model availableand havebeen used
inthedie-castingindustry (Huang, Callau, & Conley, 1998; Y arlagadda& Chiang, 1999;
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Khan, Frayman, & Nahavandi, 2003).
A MLP can berepresented symbolically as:

n

y=Ln=Nu j=m
an = z zq’(_z)ﬂ%)
v=1 n=1 i=1

=1

Here:

yP, isanoisy output especially in the case of real-world data,

p is a pattern number,

r represents noise (random distribution),

n is the number of output components (neurons),

0ij isthe adjustable parameter of the model (weight),
@ is the transfer function, and

i and j are the neuron numbers.

An MLP was selected for thiswork, and the aim of the work is the understanding and
modeling of the casting defectsin terms of machine parameters.

Experimental Setup

AnMLPwithonehiddenlayer hasbeen used inthiswork to model |ocation and quantity
of porosity in a casting. The data used to train the network consisted of process
parameters related to porosity and location and quantity measures of porosity in the
castings. Theprocess parameters(theinputstothe ANN) to usewerechosen onthebasis
of existing knowledge of the porosity-related parameters from the die-casting domain.
These parameters are: first-stage velocity, second-stage vel ocity, changeover position,
intensity of tip pressure, cavity pressure, squeeze-tip pressure, squeeze-cavity pressure,
and biscuit thickness. A dataset consisting of 306 data points and obtained from data
logging the operation of a multicavity HPDC machine in a die-casting manufacturing
environment has been used. Thefirst 204 data pointsin adataset were used for training,
and the remaining 102 points were used for testing.

Thelevel of porosity wasquantified using X-ray gradesat two different | ocationslabeled
as A and E. These X-ray grades are quality measures ranging from 1 to 4, with 1
representing minimum level of porosity at thedesignated location and 4 representing the
worst porosity level. Occurrence of porosity level of 4 in any of the locations on the
casting results in the casting being rejected. The outputs of MLP are the levels of
porosity (quality) measures at location A and E in the casting.
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We obtained the neural network model of porosity by training the network using a
backpropagationlearning algorithm (Rumel hart, Hinton & Williams, 1986) withadifferent
number of hidden neurons and sel ected the one that provided the best generalization on
unseentest data. Thebest-generalized neural network obtained hasfour hidden neurons
consisting of a sigmoid transfer function.

After modeling the die-casting process with an ML P to a sufficient degree of accuracy,
we conducted conventional die-casting tests by varying one of the process parameters
and keeping the others constant. Thiswas done with asimulated process rather than on
an actual die-casting machine, asexperimentation on an actual die-casting machinecould
result in aconsiderablewaste of resourcesin termsof metal, manpower, and energy and
incur a significant cost. There are several types of sensitivity analyses that can be
performed including the weight-based sensitivity analysis based on the change in
outputs (Baba, Enbutu, & Yoda, 1990) and the sensitivity analysis based on energy
functions (Wang, Jones & Partridge, 2000). We have selected the sensitivity analysis
based on the changes in output with respect to a change in one of the input variables
as it gives us a clear indication of which input (process parameter) is having what
guantitative effect on the output (the porosity).

The sensitivity analysis is generally performed around the average values of the
elements of an input vector with one element going through a change between two
extremesin an operating window.

For input set X of column vectors:
X=X, X0 Xgy oy X ]
Each column vector consists of further scalars:

Xp=[x D SR

11 721 73

Wedefinedtheaveragefor all elementsof theset X, except theelement X that wasbeing
considered for analysisto find out the effect AO on the output O of the MLP model.

m

X =35

= m

Herefj istheaverageof thej" column vector XT ininput domain set X, mistotal number
of scalars of which XT iscomprised of, and | is summation index.
The X, varied between the two extremes, while all other elements were kept constant at

xf . Theinterval of thevariation of X wasset as[a, b]. Thevariation started from a and
terminated on b by anincrement A. ThedataD to analyze Xswere generated initially by
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D=a+ A
and then for the rest of iteration by
D=D+A

Theiteration was stopped when D had reached b. During the variation of X, the output
islogged and plotted to visualizethe changein AO. The general equationthrough which
this is generated and averaged data is passed was:

O = net,,, f (D, X], net;,)

Here net, | are the weights associated with hidden and output layers and net, are the

weights between hidden and input layers. XT isthe average of all inputs other than X,
since D isthe representative of X, and f is the function performed by the hidden layer
of the ML P model.

Results and Discussion

The criterion that was used to judge the model quality was the agreement of the MLP
model with the existing work in porosity modeling. We have found that in most cases,
the MLP model of porosity formationwasableto represent the underlying processwell.
Figure 3 shows that the obtained MLP model was able to predict accurately that the
increase in first-stage velocity has a decreasing effect on the level of porosity in
agreement with Garber (1981, 1982) and Thomeand Brevick (1995).

Figure 4 shows that the obtained MLP model was able to predict accurately that an
increase in second-stage velocity (high-speed velocity) decreases the amount of
porosity inaccordancewith the concept of critical velocity (Garber, 1982). The porosity
decreases sharply with initial increases in the high-speed velocity and then tends to
stabilize asit reachesthe critical velocity when it matches the resistance offered by the
gate and runner system in order to inject the metal immediately asit reaches the end of
the shot sleeve.

Figure 5 shows that the obtained MLP model predicts that an increase in changeover
position decreasestheamount of porosity. Thisresultisinconflict with the existingwork
on porosity (Asquith, 1997). Further investigation is needed to determinewhy the ML P
model has determined it in such away.

Figure 6 showsthat theincreasein tip-intensification pressureisincreasing the amount
of porosity contrary to what should happen. Part of the problem isthe pressure that is
transferredinsidethe cavity. Thisresult hasto be seenintandem withthe next result and
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Figure 3. Relationship between the level of porosity and the slow-stage velocity (also
known asfir st-stage vel ocity) measuredin metersper second (nvs); the Y-axisrepresents
thequantity of por osity between levels1to 4, with one as minimumand four asmaxi mum
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Figure 4. Relationship between the level of porosity and the high-stage velocity (also
known as second-stage velocity) measured in meters per second (m/s)
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Figure5. Relationship between thelevel of porosity and the changeover position (mm)
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Figure 6. Relationship between the level of porosity and the intensification of tip
pressure (MPa)
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Figure 7. Relationship between the level of porosity and the maximum cavity-
intensification pressure (MPa)
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has shown the capability of the MLP to model the HPDC process well. Figure 7 shows
that theincreasein cavity-intensification pressurelowersthe porosity. It isthe pressure
that develops inside the cavity and is a result of atip-intensification pressure.

Theporosity issupposed to decrease with increasing pressure (Kay et al., 1987; Murray
et al., 1990). Figure 6 shows an increase in porosity with increasing tip pressure while
Figure 7 shows a decrease with increasing cavity pressure in accordance to Kay et al.
(1987) and Murray et al. (1990). That meansthat the M L P hasbeen ableto learn that the
cavity pressure has a real decreasing effect on porosity. Applying more pressure
normally reduces gas porosity. The pressure hel ps the gas to escape out of the casting.
Itisthe pressurethat reachesthe casting rather then the applied pressure that makesthe
difference and the MLP has been able to predict this accurately.
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Figure 8. Relationship between the level of porosity and the biscuit size (mm)
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The dataset that we used had larger biscuit sizes (greater than 25 mm). The porosity is
increasing with anincreasein biscuit size— in accordance with theliterature (Asquith,
1997). Accordingto Asquith, avery low biscuit size(i.e., lower than 13 mm) and abiscuit
sizehigher than 25 mm further increasesporosity. Inour dataset, the biscuit sizeshappen
to be higher than 25 mm.

Future Work

Wehaverecently devel oped anovel typeof MLP—aMixed Transfer Function Artificial
Neural Network (MTFANN), customized to obtain insights into data domain from the
developed MLP model (Khan, Frayman & Nahavandi, 2004). The novel MLP contains
more than one type of transfer function that simplifies the process of knowledge
extraction from an MLP model. The application of the MTFANN to HPDC process-
monitoring data is on our future agenda to provide further insights into the HPDC
process.

Inthischapter, we havefollowed the classical approach used by the die-casting industry
to vary a process parameter in order to discover its effect on the quality of output
(casting). The industry has a limitation of resources that prevents it from further
increasing the combinatorial complexity of experiments. We can however change more
than one process parameter at the sametime using ANNSsto study combinatorial effects
of the inputs (process parameters) on the output.

Conclusion

Thedevel oped neural network model of the presented work isableto model the complex
realitiesof HPDC. Several previousattemptsinthefieldto model porosity using simpler
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methods produce contradictory results. We believe that the usage of simpler methods
is the main reason that there has not been much consensus in the work on HPDC
modeling. If advanced computational intelligence techniques, such as neural networks,
are further used and receive favorable response from material scientists, then it is a
possibility that some sort of consensus can be obtained.
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Endnote

! TheaccelerationismeasuredinL/T/L dimensionsrather than L/T/T indiecasting.
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Chapter Xl |

Neur al Networ k M odédls
for theEstimation of

Product Costs:.

An Application in the
Automotive Industry

Sergio Cavalieri, Universita degli Studi di Bergamo, Italy
Paolo Maccarrone, Politecnico di Milano, Italy

Roberto Pinto, Universita degli Studi di Bergamo, Italy

Abstract

The estimation of the production cost per unit of a product during its design phase can
be extremely difficult, especially if information about previous similar products is
missing. On the other hand, most of the costs that will be sustained during the
production activity are implicitly determined mainly in the design phase, depending
onthe choice of characteristicsand performance of the new product. Hence, the earlier
the information about costs becomes available, the better the trade-off between costs
and product performances can be managed. These considerations have led to the
development of different design rules and techniques, such as Design to Cost, which
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aims at helping designers and engineers understand the impact of their alternative
decisions on the final cost of the developing product. Other approaches, which are
based on information about already designed and industrialised products, aim at
correlating the product cost with the product’s specific characteristics. The real
challenging task is to determine such a correlation function that is generally quite
difficult. The previous observation led the authors to believe that an artificial neural
network (ANN) could be the best tool to deter mine the correlation between a product’s
cost and its characteristics. Several authors hold that an ANN can be seen as a
universal regressor, ableto approximate any kind of function within a desirable range,
without the necessity to impose any kind of hypothesis a priori on the characteristics
of thecorrelation function. Indeed, test results seemto confirmthevalidity of the neural
network approach in this application field.

| ntroduction

The ever-growing competitive pressures that characterise most industry sectors force
firmsto devel op business strategies based on alarge number of differentiation factors:
higher quality and service levels, aswell as customisation and continuous innovation.

The research of organisational, technological, and managerial solutions and tools that
can shift the trade-off line between costsand differentiation isextremely importantina
competitive environment. In this perspective, the “ process view” has been given great
attention in all managerial and organisational disciplines, and the development of the
theory of “management by processes’ has led to the gradual elimination of functional
barriers. Inadditiontobeing responsiblefor theresultsof hisor her unit, each functional
manager is usually in charge of the overall effectiveness of the processesin which his
or her unitisinvolved, followingtoatypical input-output logic (Berliner & Brimson, 1988;
Hammer & Stanton, 1999; Zeleny, 1988).

Obviously, this process reorientation requires the implementation of aradical cultural
change supported by atailor-made re-engineering of the organisational structure and of
the management-control systems, with particular regard to performance-measurement
systems.

In particular, the R&D department is one of the areas most involved in the process of
organisational change. Sincethe R&D unit is mainly made up of technical or scientific
experts, during the new product development (NPD) processthisunit traditionally puts
much more emphasis on the technologically innovative contents and on the absolute
performance of the product, rather than on the impact of the adopted solutions on
convenience and results (like the manufacturing costs or the contribution margin
generated by the new product).

The estimation of future product costs is a key factor in determining the overall
performance of an NPD process; the earlier the information is known, the better the
relationship between costs and product performances will be managed. Typically, the
cost per unit of agiven finished product isthe sum of different kinds of resources— raw
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materials, components, energy, machinery, plants, and so on — and the quantification
of theusage of eachresourceisextremely difficultinthefirst stagesof thelifecycle(and
particularly inthe early phases of the product-devel opment process), given the reduced
amount of information and the low level of definition of the project.

All these considerations justify the effort made in the development of techniques and
approaches to cope with the problem of estimation of manufacturing costs in highly
uncertain contexts. Thischapter illustratestheresults of astudy aimed at comparing the
resultsof theapplication of two techniques: the parametric approach (perhapsone of the
most diffused in practice) and a predictive model based on the neural network theory.

Six sectionsfollow theintroductory section. Thefollowing one dealswith the strategic
relevance of cost management in modern competitive scenarios. Then, authors provide
abrief review of themain cost-estimation approachesfoundinscientificliterature, while
thefourth sectionillustratesthebasictheoretical elementsof ANNs. Thefollowingthree
sectionsillustrate a case study first describing the application context (the characteris-
ticsof thefirm, of the product, and of production technologies), and thenillustrating the
design, devel opment, and refinement phases of thetwo model s, aswell asthe comparison
of results. The last section is devoted to the conclusions.

The Strategic Relevance of
the Cost Variable in the
New-Product-Development Process

The process view of the firm can be of great help in making designers and product
engineers more aware of the critical role played in determining the overall economic
performance of afirm, as proved by the “life-cycle-costing” theory (Blanchard, 1979;
Fabrycky, 1991; Shields& Y oung, 1991).

The life-cycle-costing theory states that, although the great majority of costs of a
finished good are generated in the manufacturing/distribution stage (given also the
repetitive nature of these activitiesfor almost all kinds of products), most of these costs
are implicitly determined in the early phases of development. Figure 1 shows the
difference between the “ actual costs” and the “committed costs” curves. Thelatter one
isbuilt by “translating” the costsincurred in the various stages of thelife cycle back to
the instant in which the different decisional processes that implicitly fixed those costs
took place.

These considerations have led to the development of a group of techniques, whose
objectiveisto help engineersand designersintheir decisional processesand makethem
aware of the implications of the alternative design solutions on the future costs of the
product (Ulrich & Eppinger, 1995).

Theapproachesare named after their specific application context and their emphasison
economic figures (Huang, 1996), but two main types can beidentified:

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



202 Cavalieri, Maccarrone, and Pinto

i Design for “X” family (which, in turn, includes Design for Manufacturing/
Assembly, Design for Inspection and Testing, Design for Maintenance, etc.):
designrulesfinalised mainly to the reduction of coststhrough the standardisation
of components and simplification of subsequent manufacturing and product-
maintenance processes;

i Design to Cost: if compared to the“ Designfor X” approaches, amore structured
and analytical approach, whose aim is the quantification of the economic impact
of the different design solutions adopted.!

Thestrategic relevance of future production costs has|ead to the devel opment of anew,
rather revolutionary, approach to the management of the new product-development
process: Target Costing (Ansari, Bell, & the CAM-I Target Cost Core Group, 1997,
Cooper, 1997; Hiromoto, 1988; Sakurai, 1989).

Whileinthe“traditional” processthe economic/financial justification (the investment
appraisal) is conducted only in the last phases of the NPD process (after the design or
even during the engineering phase), according to the Target Costing philosophy
(particularly diffused in the Japanese automotive industry) the starting point is the
determination of the estimated market price of the new product, given the estimated
rel easetimeand thetarget market segment. Such information, coupled with the expected
(desired) profitability margin, leads to the identification of the sustainable production
cost per unit. All the subsequent design and development phases must then be “cost”
driven (i.e., all decisions must be made according to the final objective of meeting the
target production cost). Theoverall production cost isthen divided into two main parts:
external andinternal costs. Thesearethensplitinto“thirdlevel” costs(respectively, one
for each purchased part or acquired service, and one for each main internal process/

Figure 1. Committed costs and actual costs along the life cycle of a product
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activity). Consequently, these costs become the fundamental reference elementsin all
the subsequent steps of the NPD process; all decisional processes must take into
consideration the effectson these figures. Indeed, the overall estimated production cost
must not be higher than the initial target cost.

All the af orementioned managerial approaches highlight the strategic relevance of the
information regarding the future manufacturing cost of the product (or of its compo-
nents). Indeed, inthelife-cycletheory, the overall objectiveresidesontheminimisation
of the (expected) cumulated life-cyclecost. Hence, thefirst step istheestimation of costs
in each phase of thelife cycle. Manufacturing costs usually represent the most relevant
component.

Similarly, in afirm which adopts the target-cost approach, the accurate estimation of
future manufacturing costsisfundamental to understand whether the overall target cost
canreally bereached or not. Moreover, if anassembler firm can makereliablepredictions
about the production costs of its suppliers (for purchased components), its bargaining
power will be higher dueto thereduction of information asymmetry (Porter, 1980). This
appears particularly critical in the target-cost approach, due to the “pressure” that is
made on suppliers to meet the objective.

The next section is devoted to the illustration of the state-of-the-art on the cost-
estimation issue, with particular regard to the latest developments.

The Cost-Estimating Techniques

In literature, three main quantitative cost-estimation approaches can be identified:

i Analogy-based techniques: These techniques belong to the category of qualita-
tive estimation methods. They are based on the definition and analysis of the
degree of similarity between the new product and another one already produced
by the firm. The underlying concept is to derive the estimation from actual
information regarding real products. However, many problemsexistintheapplica-
tion of this approach, due to:

o Thedifficultiesfaced in the operationalisation of the concept of “degree of
similarity” (how to measureit?); and

o The difficulty of incorporating the effect of technological progress and
context factorsin the parameter.

i This kind of technique is mainly adopted in the first phase of the development
process of aproduct becauseit allows obtaining arough but reliabl e estimation of
the future costs involved.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



204 Cavalieri, Maccarrone, and Pinto

i Parametric models: According to these quantitative techniques, the cost is
expressed as an analytical function of a set of variables. These variables usually
consist in some features of the product (product performances, morphological
characteristics, type of materialsused), which are assumed to have amajor impact
on the final cost of the product (for this reason, they are generally named “ cost
drivers’). Theseanalytical functionsareusually named Cost Estimation Rel ation-
ships (CER), and are built through the application of statistical methodologies,
such asregression techniques(e.g., seeNASA, 1996). They can beadopted during
the development of new products and as a control during the implementation,
providing atarget for thefinal cost of the product. Although they are mainly used
for the estimation of the cost of large projects (such asin the aeronautical field),
they could be effective also for the estimation of the cost of those products, where
the cost drivers could be easily identified.

i Engineering approaches: Following this approach, the estimation is based on
the detailed analysis of the features of the product and of its manufacturing
process. The estimated cost of the product is calculated in adetailed analytical
way, as the sum of its elementary components, constituted by the value of the
resources used in each step of the production process (e.g., raw materials,
components, labour, equipment, etc.). Theresultisthe so-called “ standard cost”
of the product.

Moving from the first to the last, the average precision of the methodology increases
(obviously along with its cost). However, the choice between the three methodol ogies
is not completely free. Each one of them suits to different stages of the NPD process,
giventheir different degree of analyticity and thedifferent amount of input dataneeded.
While the anal ogy-based model s can be implemented already in the early stages of the
process, the engineering approach can be used only when all the characteristics of the
production processand of theproduct arewell defined (i.e., at theend of theengineering
phase).

Within these methods, the parametric model represents a good trade-off between
precision and effort required in the model definition, especially when regression tech-
niquesare used in order toidentify the CER (i.e., to correlateinput factors— character-
istics of the products — to output factors — the product’ s performances). Indeed, the
regression technique has well-known mathematical basis and has proven to be arobust
model in many situations.

For thisreason, intheremainder of the chapter, aparametric model isassumed asabasis
for the comparison of the performances of the ANN.
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Artificial Neural Networks
for Cost Estimation

Literature Review of Manufacturing Applications of
ANNSs

Although the neural network theory has been applied in most disparate sectors, this
approach was first used in the manufacturing sector for planning, emulation, and
management of production processes and plants For example, Cavalieri and Taisch
(1996), Cavalieri, Garetti, and Taisch (1995), and Cavalieri, Rabe, and Taisch (1997) have
developed ANNSs for the design of hybrid intelligent systems and of process plants.

Many other worksaredevoted to the application of ANNsto forecasting problems, such
asthoseof Hill, O’ Connor, and Remus (1996) — inwhich ANNsare compared with other
statistical forecasting methods, showing better performances— and O’ Rourke (1998),
which deal swith neural networksfor the estimation of the market value of equity stocks,
and concludesthat theresultsachieved are better than those of alinear predictive model.

In the field of cost estimation, the work of Shtub and Zimerman (1993) should be
mentioned, which presentstheresults of the application of ANNsvs. regression models
for the determination of product costs in assembly industries.

In the specific case reported in the present chapter, the use of ANNSs for product-cost
estimation represents arelatively new approach grown in popularity in the last years,
although a little amount of research seemsto exist in thisfield at present.

Oneof themost significant worksisthat of Zhang, Fuh, and Chan (1996), whichillustrates
the use of aneural-network-based model for the estimation of the packaging cost, based
onthe geometrical characteristics of the packaged product (the so-called feature-based
cost). The paper states that the elements impacting the final cost of the product can be
classified into two subsets: (1) explicit cost drivers (such as material cost) obtained
directly; and (2) implicit cost drivers (such as the relationship between explicit cost
drivers) inferred by historical data. |nother words, whileexplicit cost driversarethebasic
elements of cost, theimplicit driversrepresent the function that links those elementsin
order to obtain the final cost of the product.

The ANNSs, inthiscontext, aresuitablefor theidentification of suchimplicit cost drivers

Based on the analysis of the literature and the research conducted, the main benefits of
the ANNSs for the cost estimation can be summarised as follows:

i Nonlinearity: Neurons are nonlinear processors, thus, the output provided is a
nonlinear function of theinput. Asaconsequence, the network itself isanonlinear
architecture. Due to this characteristic, the ANN could cope with nonlinear data
and environment.
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i Autofittingtransfer function: Oneof themostimportant applicationsof ANNSsis
themodelling of asystem with an unknown input-output rel ationship; through the
learning process, ANNs can infer such a relationship without any a priori
hypothesis. In this sense, ANNs are often referred to as universal regression
systems (Hornik, Stinchcombe, & White 1989).

i Adaptivity: ANNs have the ability to adapt their response to the changesin the
surrounding environment. Indeed, an ANN can be retrained if the environment
changes substantially.

i Fault tolerancewith respect tothedata: ANNscan provide good response even
if the input data are not completely correct.

Withregardtothearchitectureof ANNSs, inliteraturethereisamultitude of architectures
and several classification frameworks. Asan example, Chester (1993) classifiesANNs
according to the learning method or to the organisation of the neurons.

Inthepresent work, the ANN usedisaM ultilayer Perceptron (ML P) with backpropagation
learning algorithm, in which neurons are organised in different layers. Each neuron has
aspecific function: thefirst oneistheinput layer (fed by input data), while the last one
isthe output layer (which providestheanswer of the network). Between input and output
layersthere could be several other hidden layers (see Figure 2). The number of hidden
layershasanimportant rolein determining thegeneralisation ability of theMLP(e.g., see
Lawrence, Giles, and Tsoi [1996]).

As shown in Figure 2, the general structure of a neuron is composed of two main
components: the first component is the summation operator () which sums up the
weighted impul sescoming from the neuronsbel onging to the previouslayer. The second
component is the propagation operator, which applies the transfer function f to the
results of the summation operator and propagates the outcome to the following layer.

The reason behind the choice of the MLP resides on its main nature of “universal
regressiontools” (Hornik et al., 1989; Mason & Smith, 1997). Such toolsallow for the

Figure 2. Structure of a multilayer neural network
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identification of relationships between different data sets, even if the form of these
relationshipsisnot defined ex ante. In particular, the work by Mason and Smith (1997)
compares the performance of regression and neural network approaches for cost
estimation purposes. The results show that the ANN-based models are more precise,
especially when the analytical expression that links input and output variables is
unknown, or when it cannot be expressed in a polynomial form.

Case Study

In order to provide an example of the application of the neural network tools in cost
estimation, thefollowing section describesanindustrial casestudy. The objective of the
research was to compare the results achieved with the application of atraditional cost-
estimation technique — with particular emphasis on multiple linear regression — with
those obtai ned through the design and i mplementation of an ad hoc MLP. The compara-
tive analysisis especially interesting because of the lack of literature on the topic.

The analysis was conducted through a real case study provided by an industrial
company operating in the automotive sector, whose main mission is the design,
production, and sale of braking components and integrated systems for civil and
industrial vehicles.

The customers are mainly very large industrial contractors (the major automotive
multinational companies) that faced thegeneral crisisof thesectorinthelast decade. The
competitiveness of the automotive component sector forcesfirmsto search for differen-
tiation elements. At the same time, due to the relatively poor bargaining power (with
respect to large customers) great attention is paid to price levels. Hence, one of the
strategic objectives that has been identified by the company’s top management is the
analysis and reduction of product costs (both the purchasing costs of components and
the internal production and assembly costs).

In this context, the adoption of formal methodologies for the accurate estimation of
manufacturing costs of new products has been considered very important in order to
pursue the claimed strategic objective of the company.

The case study focuses on the estimation of the production costs of cast-iron disk
brakes, which are then assembled with other components to produce braking systems,
or can be also sold directly in the spare parts market.

Theoverall production system of thistypology of disk brakesis sketched out in Figure
3; three main production phases can be identified:

1  Foundry, which produces raw disks starting from cast iron;

2. Mechanical manufacturing, which produces the finished disks with the dimen-
sional and surface features as specified in the project specifications; and

3. Assembly, whichrealisesthefinal braking system assembling the disk with other
components.
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Figure 3. Main phases of disk-brake production process
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Each phasehascharacteristicsand peculiaritiesthat contributeto the creation of avaluable
product for the customers. In this context, the cost-estimation modelling techniques can
be used to quantify areference cost value for the raw disk and the finished disk as well.

In the following, for the purpose of this chapter, we focused our attention on the first
phase of the production process (foundry).

The Design of the Parametric
and Neural Models

As stated previously, given the objectives and specific application context of the cost-
estimation methodology in the analysed firm, the performance of an ANN has been
compared to the performance of another cost-estimation technique. Among the“ classi-
cal” methodologies, the parametric model has been chosen.

As stated in the section “Cost-Estimation Techniques’, the cost of a product in a
parametric model can be expressed as an analytical function of a set of variables that
representsthefeaturesof the product (e.g., performance, morphological characteristics,
type of materials used, etc.). Thisanalytical function, also called CER, isbuilt through
theapplication of statistical methodol ogiesand thelinear form of suchafunctionisused
most of thetimeduetoitssimplicity. Thus, givenaset of Nvariables(or features) v,...v,,
the total cost TC of the product could be expressed as:

TC=a+ B v, + B,v,+ ...+ BV, @

N °N

where «, 3 are the parameters of the function and are derived through the application of
the multiple-regression technique.

This approach has a well-known mathematical basis and is easily applicable, once a
consistent set of numerical dataisavailable. On the other hand, thelimit of the method
isthat it always considers the relationship that connects the variables linear, which is
not always arealistic hypothesis.

Theprocessfollowed in the devel opment of the two modelsfor cost estimation could be
schematised asfollow: (1) problem definition and data collection, (2) dataanalysisand
model definitions, (3) model testing, (4) model comparison.

Each phase is described hereafter.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Neural Network Models for the Estimation of Product Costs 209

Problem Definition and Data Collection

Although this first phase could appear trivial, it is critical for the success of the
subsequent activities. The aim of this phaseisthe definition of the project’ s objectives
and constraintsin order to clearly identify the elementsthat are supposed to be kept into
consideration in the following analysis phase.

Moreover, the first phase is quite important in acomplex company, where all the main
actors of the product design and production processes must accept and share all
objectives, strategies, and activities to be implemented.

Once the problem constraints and the methodol ogy to be used have been defined, it is
necessary to proceed to the collection of product dataused to performtheanalysis. Data
collection alsoincludestheidentification of information sources and the corresponding
business functions responsible for their maintenance and update.

With regard to the foundry phase of the production process, the main types of dataare:

i Technological data, related to the production processes (i.e., type of operations
performed on the product)

i Design data, related to the morphological features of the product (i.e., physical
dimension and material's used)

i Cost data, such aslabour costs, raw-material costs, final-product costs, and so on

Collected data represent the basis of the estimation models.

Data Analysis and Models Definition

Once the data-collection phase is terminated, the analysis of the data allows for the
identification of the most meaningful cost driversthat areto be kept into account inthe
model’ sdefinition. Oneof the main characteristicsof thesedriversisthat their cal culation
should berelatively simple even in the preliminary phases of the product-development
process, when only first raw design specifications are assessed.

The selection of these driversis based on the analysis of the production processes and
on the identification of all the elements that play arole in such a process.

For example, inthecase of acast-ironraw product, itisclear that thewei ght of the product
is relevant in order to define the final cost — the heavier the product, the more the
necessary raw material.

Ontheother hand, other driversare not so obvious. For exampl e, thediameter of theraw
disk could appear to beirrelevant if weconsider only the product. But if we consider also
the process, the diameter becomesrelevant, sinceit affectsthe number of raw disksthat
could be cast in asingle pouring — the larger the diameter of the disk and the fewer the
number of meltable disks, the longer the process and the higher the costs.
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Table 1. List of the identified cost drivers

COST DRIVER

Raw-disk weight

Type of raw material

Number and type of foundry cores
Type of disk

External diameter

Once the product cost drivers have been defined, it is necessary to evaluate the
consistency of theavailabledataintermsof measurability, reliability, and completeness
(i.e., real information content). In particul ar, with regard to thelast point, datacould result
unsuitable or insufficient leading to recycles on the previous phases or they could be
redundant causing inefficiencies. Theidentified drivers arereported in Table 1.

Oncethe statistical consistency of the sample set of data has been tested, statistical and
linear regression model sare used tofind out the rel ati onshi p between each of the sel ected
cost drivers and the dependent variable (i.e., the product cost).

Design of the Parametric Model

A parametric model expresses the relationship within the output variable (i.e., the cost
of theraw disk) andthecost drivers(reportedin Table 1 through an algebraic expression.
If theexpressionisintheform of Equation 1, themodel islinear and the parameter a and
b, could be easily derived using the method of least squares.

Hence, using the well-assessed theory of multiple linear regression, it is possible to
model the relationship between two or more explanatory variables and a response
variable by fitting alinear equation to the observed data.

The major drawback of this method isthat often the real relationship between different
variablesisnot linear, so the linear regression could provide only an approximation of
thereal relation.

For example, Figure4illustratestherel ation between the design weight of theraw disks
(onthe X axis) and their final cost (ontheY axis).

Equation 2 expresses theregression linein Figure 4:
Cost = o+ 3 -Weight 2

where a and b have been obtained through the method of least squares.

Both the graph and the analysis of the coefficient R2 makesit evident that such amodel
isnot really meaningful (coefficient R?isexpected to be closer to 1 for agood model);
thus, it is possible to conclude that the weight has a certain relation with the final cost
but it is not enough to explain the overall cost.
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Figure 4. Approximated linear relationship between the weight and the cost of theraw
disks
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Hence, the simpleregression model so far illustrated must be complemented with other
parametersto improveits performance.

In order to reduce the error of the model, more cost drivers from Table 1 are added to
Equation 2, and Equation 3 is obtained:

Cost = + B, -Weight + 8, - NumCores+ 3, - Diameter + > f3; - Castlron, + Y. ; - DiskType,

ieC jeT

3

where:

. Castlron, isabinary variableindicating thetype of raw material used for the disk;
thereare six typesof raw material that composethe set C; obviously, for each disk
only one of these variables could be set to 1.

. DiskTpr isabinary variableindicating thetwotypesof disks, normal and special,
that compose the set T; also in this case, for each disk only one of these variables
could be set to 1.

Equation 3 states that the cost of the raw disk depends on:

. Factor j3, related to the weight of the disk,
. Factor j3, related to the number of foundry cores requested, and
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i Factor 3, related to the external diameter.
In addition, there are three further elements that contribute to the total cost:

i The type of the disk (by afactor Bj),
i Thetype of raw material (by afactor ), and

° A residual factor c.

After its validation, the model is applied to the sample used for the estimation of the
parameters, and amean absol ute percentage error (M APE, Equation (4)) of about 9-10%
is obtained. The result is arelatively good response.

Due to the fact that the parametric model assumed so far is linear, it is reasonable to
supposethat the application of anonlinear model, likean ANN, could provideeven better
results.

MAPE =

1 & |EstimatedCost; — Actual Cost;|
N

-100
Actual Cost, “)

Design and Training of the
Artificial Neural Network

Inthediscussed case, an ANN representsavalidtool for theidentification of thetransfer
function of the analysed process, through an implicit link between the input value (the
morphological and technological characteristics of the disk) and the output value (the
cost).

Table 2. Input of the neural-network model

INPUT DATA TYPE RANGE
NUMBER

1 Disk weight Real (3+6)

2 Number of cores Integer (0+2)

3 External diameter Red (240 + 255)
4 Cast Iron type A Binary {0, 1}

5 Cast Iron type B Binary {0, 1}

6 Cast Iron type C Binary {0, 1}

7 Cast Iron type D Binary {0, 1}

8 Cast Irontype E Binary {0, 1}

9 Cast Iron type F Binary {0, 1}
10 Disk type normal Binary {0, 1}
11 Disk type special Binary {0, 1}
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Table 3. Results of the neural-network models

Neurons in Neurons in

Network hidden layer 1 hidden layer 2

1 5 0
2 6 0
3 7 0
4 8 0
5 9 0
6 10 0
7 5 3
8 6 3
9 7 3
10 5 5
11 6 5
12 7 5

With regard to the specific neural architecture used, it could be noted that the analysed
problem could be traced back to a nonlinear regression problem, as explained in the
previous section. Due to this consideration, the multilayer perceptron (MLP) with
backpropagation has been preferred, since it usually leads to the most satisfactory
results.

Regarding the structure of the network, the input layer is composed of 11 neurons, as
explained in Table 2. The output layer iscomposed of only one neuron, which provides
the response of the network (i.e., the cost).

The input neurons from the 4" to the 11'" represent the on-off characteristics, that is, a
disk could be madeof only onetypeof castiron and could be, of course, special or normal.

Thedefinition of theinternal structureof the ANN (i.e., number of hiddenlayers, number
of neurons per layer, type of activation function) is generally atrial-and-error process,
since no analytical procedure existsfor determining the correct number of neurons and
layers. After having tested more ANN configurationswith different numbers of hidden
layers, different numbers of neurons for each level, and different activation functions
(mainly linear and sigmoid functions), the proper structure has been selected. Table 3
illustrates the ANN structures that have been tested.

Morelearning algorithms, such asthe L evenberg-Marquardt algorithm — suitableinthe
case of few samplesin the training set and moderate-sized ANNs — and the Resilient
backpropagation algorithm, have been also experimented.

M odels Testing

For the testing of both models, the set of samples has been divided into three subsets:
(1) thefirst one, composed of 40 sampl es, hasbeen used asatraining set (in order to adjust
theweight of the connectionsandto storetheknowledge); (2) the second one, composed
of 10 samples, hasbeen used asavalidation set, in order to avoid the network overfitting
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Figure 5. Estimation error on the training set
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Figure 6. Estimation error on the test set
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problem (that occurswhenthe network fitsvery accurately thetraining datawhileresults
in apoor generalisation on out-of -sample data) during the learning phase, applying the
early stopping procedure; (3) the third one, composed of 10 samples, has been used as
atest set to evaluate the responses of the net on unseen data (in order to evaluate the
degree of generalisation).

The parametric and ANN models have been tested by comparing the model results and
the actual costs of the training set used for the definition of the parameters and for the
training of the ANN. Theresultsrefer totheL evenberg-Marquardt (LM) andto aResilient
Backpropagation (RP) learning algorithm.

InFigure5and 6, the performancesof themodel s, measured through the M APE indi cator,
are reported.

It is evident that the one- and two-layer configurations show almost the same perfor-
mance, especially using the LM learning algorithm.
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Figure 7. Neural network and parametric model results comparison
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Comparison of Results

After the validation of the two models, the out-coming results have been compared
considering the MAPE and the Generalisation factor (Gf), defined as:

Gf =—-100
¥ ©)

where M isthe number of patternsthat compose the test set and kisthe number of such
patternsestimated with an error lessthen 10% (thisvalue having been fixed asathreshold
level).

The statistical analysis showsthe superiority of the ANN model compared to the linear
regressiontechnique; theaverage M APE onthetraining set fallsfrom about 10% to about
2%. Figure7 highlightsthe ANN model’ soutperformance of the parametric model onthe
major part of the training set. The ANN model shows a better behaviour on the test set
aswell.
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Figure 8. Actual cost vs. estimated cost
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Theexcellent resultson all thetest samples (about 7.5%) of the experimental trial sshow
the robustness of the ANN.

The analysis of the Gf shows that the performance of the ANN is better than that of the
linear-regression model even on an unknown sample. The better performance indicates
a better ability to generalise.

Finally, Figure 8 shows the actual cost versus the estimated cost with the two models;
the closer the points to the dotted line, the better the estimation.

Conclusion

The adoption of cost-estimation predictive models in the first stages of the product
development process is extremely important in order to provide a comprehensive
technical and economical view of a new product concept according to afirm’s overall
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competitive strategy and key successfactors. Knowing in advance the cause-and-effect
relationship between design solutions and production costsis extremely useful both for
internal manufacturing activities and for purchased parts.

The choice of the predictive model isgenerally based on the classical cost/benefit ratio;
in this sense, regression models usually provide better results. However, more recently
developed ANNsseemtorepresent avalid alternative, especially whenthe CERformis
unknown and cannot be logically argued.

In the case study illustrated in this chapter, the ANN has shown better resultsin all the
validation samplesthan aparametric model, without any significant variance problems
(i.e., the dependence of the model on the data set used to construct it).

Itisalsointeresting to extend the analysis beyond the quantitative datato include some
qualitative considerations.

Themost relevant point concernstheinherent logic of thetwo approaches. Whereasthe
use of a parametric model requires the specification of the analytical expression of the
relationship that linksinput and output, the specification is not necessary with aneural
network. In fact, ANNs are abl e to determine autonomously the most appropriate form
of the relationship.

Summing up:

i The ex ante analysis of the problem is much leaner and faster and the outcome of
very complex or innovative problemsisindependent fromtheability of theanalysts
to find the key independent variables and the most appropriate kind of analytical
expression.

i Atthesametime, alimit of the neural network approachistheimpossibility to know
thekind of relationship, sinceitisnot clear how theresults are achieved. In other
words, in the neural network approach the object of analysis is treated as a
“blackbox”; hence, it is impossible to give a theoretical interpretation of the
obtained results, especially if there are unpredicted or (at least intuitively) unjus-
tified values. This fact has often led to some scepticism about this methodol ogy
in several application contexts. The treatment isalso dueto the difficulty that the
users of the methodology face when they are asked to prove the quality of the
outcome in case of counterintuitive or questionable results.

Moreover, it could be objected that if theknowledge of theform of therelationshipisnot
necessary to implement a neural network approach, it is nevertheless necessary to
predetermine the structure of the network. The possible answersto thiscritical consid-
eration arethefollowing:

i The application contexts of the network structures that have been devel oped so
far (e.g., multilayer, Adaptive Resonance Theory or ART, self-organising, etc.) are
quite well-known, and the identification of the most appropriate structure is
relatively simple.
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i Software packages for the design of neural networks are generally coupled with
toolsaimed at evaluating the“ learning attitude” of the network, and, at implement-
ing the appropriate modifications if the obtained response is unsatisfactory.

Theusersof parametric models often citethe excellent (or at | east satisfactory) quality/
cost ratio. However, theimplementation cost of aneural network isgenerally quitesimilar
tothat of aparametric model. Indeed, thelower cost of preliminary analysisisbalanced
by the higher costs of devel oping and testing the ANN. However, the higher robustness
of the ANN methodol ogy and the consequent higher propensity to deal with redundant
or wrong information enables the elimination or consistent reduction of very time
consuming and quite expensive data analysis.

Another strength of neural networksistheir flexibility to changes madein the structure
of the analysed system after the completion of the model’ s development. For example,
if the production process of a firm is modified through the implementation of new
technologies, the parametric model must be completely revised and retested; but, by
using aneural network, it will be sufficient to conduct anew trai ning program with anew
set of data (the structure of the network may not even be modified).

Finally, neural networksarecompletely data-driven and requirethedefinition of aproper
data set. Although data are also required in the CER-devel oping process (for example,
for the estimation of the parameters of the model), the ANN application hasto face the
problem of overfitting, which could dramatically reducethegeneralisation ability of the
ANN. Using proper techniques, such as early stopping and validation data set, could
smooth such an effect.
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Endnote

! It must be noticed that sometimestheterm “redesign to cost” isused with atotally
different meaning: it isreferred to the redesign of business processes, and not of
products, and includes all the organisational tools and rulesaimed at the redesign
of businessprocessesin acost-reduction perspective (someway similar totheBPR
theory).
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Chapter Xl 11

A Neur al-Networ k-
Assisted Optimization
Framewor k and
|tsUsefor
Optimum-Par ameter
| dentification

Tapabrata Ray, University of New South Wales, Australia

Abstract

Surrogate-assisted optimization frameworks are of great use in solving practical
computationally expensive process-design-optimization problems. In this chapter, a
framework for design optimization is introduced that makes use of neural-network-
based surrogates in lieu of actual analysis to arrive at optimum process parameters.
Theperformanceof thealgorithmisstudied usinganumber of mathematical benchmarks
to instill confidence on its performance before reporting the results of a springback
minimization problem. Theresults clearly indicate that the framework isableto report
optimum designs with a substantially low computational cost while maintaining an
acceptable level of accuracy.
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| ntroduction

There are numerous problemsin the area of process designinwhich adesigner isfaced
with the challenge to identify optimum process parameters that maximize one or more
performance measures while satisfying constraints posed by statutory requirements,
physical laws, and resource limitations. Currently, avast majority of such applications
are guided by trial and error and user experience. Such problemsare nontrivial to solve
astherearealarge number of parametersthat could be varied; the performancefunction
is highly nonlinear and computationally expensive as it often involves calculations
based onfiniteelement methods (FEM), computational fluid dynamics(CFD), and soon.

Popul ation-based, stochasti c optimization methodslike Genetic Algorithm (GA), Evol u-
tionary Algorithm (EA), Differential Evolution (DE), and Particle Swarm Optimization
(PSO) methods have been quite successful in solving highly nonlinear, mixed-variable
optimization problems. However, all the aforementioned methods are known to be
computationally expensive, asthey need to sample numerous candidate solutions and
hence cannot be used outright to deal with optimum process-parameter-identification
problems involving computationally expensive simulations. In order to contain the
computational time within affordable limits, two schemes are usually adopted within a
popul ation based stochastic algorithm, namely (a) use of multiple processorsto evaluate
different candidate solutionsand (b) use of approximations(surrogate models) inlieu of
actual expensive simulations.

In order to use approximationsand surrogate model swithin an optimizationframework,
oneneedsto decideonthefollowing: (a) representation accuracy of the surrogate model
and (b) choice of a particular surrogate model. Surrogate models often have large
approximation errors and can introduce fal se optima (Jin, Olhofer, & Sendhoff, 2002).
Introduction of these false optima is a particularly serious problem when used in
conjunction with stochastic optimization methods like GAs and EAs as they could
convergeincorrectly, referred to asill-validation (Jin, Olhofer, & Sendhoff, 2000). The
problem of ill-validation is seldom addressed in the literature, and most reported
applications using approximate functions tend to use a once-for-all approximation
function throughout the course of optimization without even a check on the validity of
approximation at different stagesof optimization (Jinetal., 2000). A naiveapplication of
the approximate model repeatedly without retraining may thus lead to incongruity
between the original and surrogate search spaces. Ratle (1998) suggested a heuristic
convergence criterion used to determine the retraining frequency based on the conver-
gence stability and the correlation between the actual and approximate function spaces.

Thesecondissuerelatesto the choiceof asurrogatemodel. The choice could rangefrom
Quadratic Response Surfaces, artificial-neural-network- (ANN-) based approximators
like Multilayer Perceptrons (MLPs), Radial Basis Function Networks (RBFs), or
geostatistical methods like Kriging and Cokriging. ANN-based approximators, that is
MLPsand RBFs are particularly well suited for the present purpose as they are able to
capture nonlinear relationships and known to be universal function approximators
(Hornik, Stinchcombe, & White, 1989; Poggio & Girosi, 1989). An extensivediscussion
of these two networks can be found in Haykin (1999).
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The following section presents the details of the neural-network-assisted framework.
The optimization algorithm isapopul ation-based, stochastic, zero-order, elite-preserv-
ing algorithm that makes use of approximate function evaluations in lieu of actual
function evaluations. Two surrogate modelsareavailable for adesigner to choose from:
(8) RBFand (b) MLP. Thesurrogatemodel isperiodically retrained after afew generations
and a scheme based on controlled elitism isincorporated to ensure convergence in the
actual function space. The performance of the surrogate assi sted optimi zation framework
isvalidated using mathematical test functions prior to its use in solving the springback
mi nimization problem.

Numerical simulation of asheet-metal-forming-processisimportant, asactual experimen-
tation is expensive. Analytical solutions are limited due to the nonlinearity of the
deformation processand the complexity of the shape of thedies. Inasheet-metal-forming
operation, theblank material isclosely formed to correspond to the die shape. However,
whentheloadisreleased and the part istaken out of the press, thereisoften an unwanted
change in shape. This phenomenon is known as springback, and it is a major quality
concern in stamping operations. If the shape deviation due to springback exceeds the
given tolerance, it could create serious problems for subsequent assembly operations.
Therefore, the springback problemisof crucial practical importance. To compensatethe
shape deviation caused by springback, acommon method isto modify the dietopology.
Thisisachallengingtask andislargely madeby the experienced designersusing thetrial -
and-error method. Research onfactorsinfluencing springback hasfocused mainly onthe
geometric and material parameters, which arerelated to thetoolsand the blank sheet. In
dealing with the springback problem, three approaches have been commonly used:
analytical methods, experimental methods, and numerical methods. The pioneeringwork
on the optimal process design for metal forming is led by Richmond and Devenpeck
(1962), who applied the slip-line method to optimize forming energy. Roy, Ghosh, and
Shivpuri (1996) employed the genetic algorithm for the design optimization of drawing
and forging processes. I nthisstudy, aspringback-minimization problemissolved using
the surrogate assisted optimization framework and optimum process parameters are
identified. It is clear that the framework is able to identify solutions with far less
computational cost without significant deteriorationinthesolutionquality. Thefollow-
ing sectionspresent the detail s of the pringback minimization problem and list themajor
observations of this study.

M athematical M odel

A constrained, single-objective optimization problemin the context of minimizationis
presented next.
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Minimize;

f(x) (N

wherex=[x,, X, ..., X ] isthevector of n processparameters, f(x) isthe objectivethat needs
tobeminimized.

Subject to:

g(x)=za ,i=12,...,q9 2

where q is the number of inequality constraints.

For a set of M candidate solutionsin a population, the objective can be represented as
follows:

OBJECTIVE z
: ©)

For each candidate sol ution, the constraint satisfaction vector c=[c,, C,, ..., cq] isgiven
by:

B 0 . if constraint is satisfied
1= @)

a —g,(x) :if constraint is violated

For theabovec, ‘s, ¢, = Oindicatesthe i constraint is satisfied, whereas ¢, >Oindicates
the violation of the constraint. The constraint matrix for a population of M candidate
solutions assumes the form:

Cu Cp Cyq
CONSTRAINT = |+ ™2 ™ ©)
Cvi Cwm2 Cng
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Given a set of M candidate solutions, the feasible and the infeasible solutions are
separated into two sets F and | F respectively. L et us assume that there are M1 solutions
in Set Fand M2 solutionsin Set IF. The set of feasible solutions (F) are assigned ranks
based on nondominance using (Nondominated Sorting) such that the best solution has
arank =1 and theworst solution hasarank of R. Therank of theinfeasible solutionsis
derived using nondominated sorting based on the constraint matrix. The rank of each
infeasible solution is then incremented by a constant value (in thiscase it isR) that is
equal to the rank of the worst feasible solution. The rank of every solution in the
population is then converted to fitness as follows:

Fitnesy(i) = Max.Rank —1— Rank(i ) (6)

where Max.Rank isthe Maximum Rank of an individual inthe population. Ray, Tai, and
Seow (2001) introduced the concept of handling constraints via nondominace.

Thepseudocodeof thealgorithmispresented next and all other detail sof themechanisms
are described in subsequent sections.

START
InitializeaPopulation, gen = 0and Specify A, Y

Evaluate Individuals to compute f,(X) and constraints c(x)=[c, ¢, ... ¢,]
Create a Surrogate Model to Approximate f, (X)and c(x)=[c, ¢, ... ¢,]
While gen< ) Do

gen=gen+1

Rank Solutions

PreserveElites
To Fill the remaining members of the Population
Do Select Parents for Mating via Roul ette Wheel based on fitness
Generate aChild viaRecombination
Call Surrogate M odel to compute Performance of the Child.
End

If (gen mod v = 0) Retrain the Surrogate M odel

End While
END.

Where A denotes the maximum number of generationsallowed for the evol ution process
and vy denotes the periodic retraining frequency of the surrogate model.
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Initialization

The solutions are created using Equation 7:

X = Xiow T 6( Xupp ~ Xiow ) (7)

where X denotestheinitializedvariable, x , andx o pdenotesthelower and upper bounds
of the variable and § is a uniform random number lying between 0 and 1. For practical
problems, one could use sampling based on Design of Experiments (DOE) instead of

random sampling.

Recombination

The recombination operator used in this study creates a child as follows:

1  Scaleevery variable between 0 and 1 using the maximum and minimum val ue of
variables in the population.

2 D=Z?":1(ILj ~11¥:j=1, .., Mvariables; || denotes the j* variable of the leader
(P)and 1/ denotesthej™ variable of the follower (F).

3 C(i)=P(i) *N(1 =0, 6).D; wheres=1.0isthevariance of thenormal distribution,
i=1,.. Mvariables.

4. Transform C(i)sback to original scaleto get the new location of theindividual F.

The user is free to choose or use any other recombination schemes like Parent Centric
Crossover PCX) or Simulated Binary Crossover (SBX).

K-Means Clustering Algorithm

The k-means clustering algorithm is used to identify k data sets that are used to create
the surrogate model. Consider m data sets {x,, X, ..., X_} in n-dimensional space. We
would like to obtain k centers, that is, C={c, ..., ¢,} using the k-means algorithm. The
steps involved can be summarized as follows:

1 Assignfirst k datasets ask centers, i.e., C={x,, ..., X} ={C,, ..., C.}.
2 For each data point x;, compute its membership function, y and weight, w:
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_L ifI:argmin-Hxi—c.H2
C X, )= ] )
v {O; otherwise ' ®
wix,)=1 Vi=1..,m. ©)

It can be seen from the definition of the membership function that k-meansusesa
hard membership and a constant weight function that gives all data points equal
importance.

3. Foreachcenter ¢, recompute itslocation from all data points x; according to their
memberships and weights:

c = 221"’“1 ‘Xi )W(Xi )Xi ) (10)
J 221"’((31 ‘Xi w(x; )

4.  Repeat steps 2 and 3 until convergence is achieved. Usually this is done by
ensuring the membership function is unchanged for all data points between
iteration. Thek-meansclusteringisapopular choiceasitiseasy to understand and
implement.

Radial Basis Function Network

Radial basisfunctionsbelongto the classof artificial neural networksand are apopular
choice for approximating nonlinear functions. In this section, the necessary details of
implementing aradial basis function network are included for completeness. A radial
basis function (RBF) ¢ is one, whose output is symmetric around an associated center,

K. Thatis: o(x)= ¢Q\x —1|), wheretheargument of ¢ isavector norm. A Gaussian function

has been used for the RBF by selectingq,(r): e i*/o’ , Where ¢ is the width or scale

parameter. A set of RBFs can serve asabasisfor representing awide class of functions
that are expressible as linear combinations of the chosen RBFs:

y(x)= gw,w\x—xj ). (12)

However Equation 11 isusually very expensive to implement if the number of data set
islarge. Thusageneralized RBF network isusually adopted of the following form:
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y(x)= Zﬂwj ox—n,|) (12

Herekistypically smaller than mand w, which are the unknown parametersthat areto
be “learned.” The k number of dataset is determined from the k-means clustering
mentioned previously. The training is usually achieved viathe least square solution:

w=A"d- 13

Here A+ isthe pseudoinverse and d the target output vector. The pseudoinverseisused
astypically A isarectangular matrix and thus no inverse exists. However, the compu-
tation of the pseudoinverserequiresamatrix inversion that iscomputational ly expensive
for large problems and thus the recursive | east-squares estimation has been often used.

Multilayer Perceptron

Multilayer perceptronsareal so quite popularly used asgeneric function approximators.
The number of input nodes of aMLP isequal to the number of independent variables,
while the number of outputsisequal to the number of functions being approximated by
the network. The layerslying between theinput and the output layers are referred to as
hidden layersand the complexity of anetwork dependson the number of such layersand
thenumber of nodesin each of them. The predictive capability of thenetwork iscaptured
by the nodal interconnections (weights) and the transfer functions. The process of
neural network training refers to identifying the best set of weights such that the error
in prediction is minimum. Ray, Gokarn, and Sha (1996) proposed the use of Modified
Marquardt Levenberg algorithm for afaster training of neural networks. The capability
of the network for prediction at the end of its learning process is tested on atest data
set that is exclusive from the training data set.

Table 1. List of test functions

Test Function Expression
Spherical f(x)=Y%
i=1
Ellipsoidal f(x):Zix‘2
n I71! 3
Schwefel f(x)=2[le]
i=1| j=1
n-1
- _1\2 2 _ 2
Rosenbrock ()= 20X D) #1000 - x;,)

- N 2,
Rastrigin f(x)—10n+§f(>g 10cos( 27, ))
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Numerical Examples

In the following section, the behavior of the surrogate assisted optimization model is
studied using five 20-dimensional mathematical test functions and subsequently the
springback-minimization problemissolved to demonstrate the efficacy of the proposed
method.

A detailed study on the performance of the surrogate assisted optimization framework
appearsin Won, Ray, and Kang (2003).

M athematical Test Functions

Thetest functionsare Spherical, Rosenbrock, Rastrigin, Schwefel, and Ellipsoidal, and
their forms are listed in Table 1. All numerical simulations are carried out using the
optimization framework withthefollowing assumptions:

i The population size of 10n was used for all the simulation.
i s, where n isthe number of variablesfor the problem.

i For all the test cases, 10 independent runs were conducted with the number of
generationsbeing 1,000.

i Thesearch spacewasbetween[-5.12,5.12] for the Spherical, Ellipsoidal, Schwefel,
and Rastrigin functionswhileasearch spaceof [-2.048, 2.048] was selected for the
Rosenbrock function in accordance to the convention in the literature.

i A radial-basis function (RBF) network was used with 5n centers and two nearest
neighbor in accordance with Haykin (1999).

i The parent-centric crossover (PCX) operator wasused to create achild fromthree
parents.

i Retraining the RBF network was done after every 10 generations.

i The entire simulation process was executed using a Pentium® 4, 2.4GHz CPU
processor.

Resultspresentedin Table 2 indicatethe performance of the optimization algorithm (OA)
when actual evaluations have been used throughout the course of optimization. The
number of actual function eval uationsused by the OA model islistedin Column 3of Table
3. Toachievethesamemeanlevel of convergenceascomparedtothe OA model, theRBF-
OA model typically uses around 50% less actual function evaluations as shown in
Column4 of Table 3. The number of approximationsused by the RBF-OA model islisted
in Column5 of Table 3. Thecomputational timerequired by the OA model andthe RBF-
OA model is presented in Table 4 and Table 5. The results of the surrogate-assisted
optimization framework on these 20-dimensional highly nonlinear problemsclearly show
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Table 2. Statistics for 20-D results using Optimization Algorithm (OA)

Test Best Worst Mean Median Fitness Standard
Function Fitness Fitness Fitness Deviation
Spherical 3.3851x 10% 1.0224 x 107 2.9952 x 10% 1.9470x 102 27881 x 10
Ilipsoidal 1.5937 x 10° 3.7958 x 107 47247 x 10°® 9.3724x 10° 1.1121 x 107
Schwefel 1.3206 x 10°® 5.9133x 10° 2.0129x 10° 1.0319 x 10° 1.987 x 10°
osenbrock 14.9216 19.5135 17.6649 17.5303 1.2013
Rastrigin 10.0065 39.2395 22.0698 23.3051 7.8031

Table 3. Function evaluations required for same tolerance (20-D)

Test OAp:' n;:iztitﬁn Surrogate Assisted Surrogate Assisted
' Tolerance 9 - (Actual function (Approx. function
Function (Actua fl_Jnctlon evaluations) evaluations)
evaluations)

Spherical 2.9952x102% 199200 110467 1091640
Ellipsoidal 4.7247x10° 199200 81534 805200
Schwefel 2.0129x10° 199200 144267 1426260
Rosenbrock 17.6649 70447 21201 207900
Rastrigin 22.0698 101650 28020 213040

Table 4. Summary of 20-D computational efforts using Actual Evaluations (OA)

Number of actual function evauations 199200
Total time for Actual Evaluations 37.311s
Total elapsed time (Wall clock time) 420.315s

Table 5. Summary of 20-D computational efforts using approximations (RBF-OA)

Number of actual function eva uations 20201
Number of approximate function evaluations 198000
Total timefor training with RBF 77.363s
Total timefor RBF approximations 416.851s
Total timefor actual function evaluations 3.643s
Total elapsed time (Wall clock time) 887.537s

Table 6. Material properties of the sheets

Aluminum  AK Stedl  HT Sted (3)

(@) (2

Y oung's Modulus (GPa) 69 206 206
Poisson’s Ratio 0.330 0.300 0.300
Strength coefficient (M Pa) 570 567 671
Hardening exponent for yield strength 0.347 0.264 0.219
Flow potential exponent in Barlat’s model 8 6 6
Anisotropy Coefficient 0.710 1.770 1.730
Sheet Thickness (mm) 1.00 1.00 1.00
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that asaving of nearly 50% of actual function evaluationsis possible while maintaining
an acceptable accuracy. Thisis of great significance as it could mean cutting down
expensive CFD or FEM computations while maintaining an acceptabl e accuracy.

Springback Minimization

In this section, the springback-minimization problem is modeled and solved using an
ML P-assisted optimization algorithm although one could use an RBF-assisted model,
too. This problem has been modeled as a seven-variable, unconstrained discrete
optimization problemwherethefirst variableisthe material type, whiletheother six are
process parameters. LS-DYNA3D has been used to model springback and a simple
axisymmetric stamping problem was sel ected for numerical study. Inthisstudy, ablank
sheetwithdimension 177.8" 177.8mm, punch speed of 25.4mm/min; and arange of punch
penetrationsbetween 1.27to 21.6 mmwasused. Springback iscal culated withanimplicit
analysis, which can simulate the unloading of the blank, dueto theremoval of thetools.
The accuracy of the prediction of springback by numerical simulation depends strictly
on the accuracy of the stress distribution computed by deep drawing simulation, which
isvery sensitive to the accuracy with which the process is modeled. The methodol ogy
employed for the validation of the simulation codes is based on the definition of the
numerical parameters suited to reduce CPU time, without affecting the accuracy of the
simulation results. In this approach, the dome height was adopted as the metric for
evaluation of springback.

Theproblem of springback minimizationissolved using thefollowing methods: Random
Search (RS), Optimization Algorithm (OA) with all actual computations, and Surrogate
Assisted Optimization Algorithm (MLP-OA). Thematerial variablesand process param-
eterswith their possible statesarelisted in Tables 6 and 7, respectively. For thissingle-

Table 7. Set of process parameters

P1 P2 P3 P4 P5 P&

1 0.10 0.15 0.15 0.20 0.10 0.20
2 0.04 0.10 0.0 0.10 0.15 0.15
3 0.02 0.10 0.15 0.20 0.02 0.12
4 0.11 0.12 0.15 0.15 0.05 0.10
5 0.12 0.15 0.13 0.10 0.15 0.20
6 0.10 0.11 0.20 0.17 0.20 0.20
7 0.15 0.14 0.20 0.18 0.14 0.11
8 0.16 0.10 0.15 0.14 0.14 0.15
9 0.15 0.20 0.12 0.11 0.10 0.10
10 0.10 0.18 0.11 0.10 0.12 0.15
11 0.15 0.10 0.09 0.14 0.16 0.11
12 0.13 0.16 0.10 0.12 0.15 0.13
13 0.14 0.12 0.18 0.15 0.10 0.11
14 0.15 0.15 0.20 0.20 0.15 0.15
15 0.08 0.10 0.10 0.11 0.16 0.15

P1: Dynamic Friction on Punch/Sheet P4. Static Friction on Die/Sheet

P2: Static Friction on Punch/Sheet P5: Dynamic Friction on Holder/Sheet

P3: Dynamic Friction on Die/Sheet P6: Static Friction on Holder/Sheet
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objective, unconstrained, discrete springback-minimization problemthereare 571,536
solutions. Table 8 presents the results obtained using various approaches.

Random Search: With a random search at 10 points, the minimum and maximum
springback valuesare 0.3890mm and 0.9390mm. With arandom search at 70 points, the
best springback is0.3830mm whiletheworst is0.9440.

Optimization Algorithm: Figure 1 presentsthe springback valuesof the solutionsinthe
initial population. It can be observed from Figure 1 that there are three distinct bands of

Table 8. Comparison of results

Method Function Function Value
Evaluations (Springback)
(mm)
Random Search 10 Min.: 0.3890
Max.: 0.9390
Random Search 25 Min.: 0.3870
Max.: 0.9390
Random Search 70 Min.: 0.3830
Max.: 0.9440
Optimization 25 Min.: 0.3840
Algorithm Max.: 0.3970
Optimization 169 Min.: 0.3830
Algorithm Max.: 0.3880
Table 9. Top three solutions from OA and MLP-OA
Methods Springback
(mm)
OA 1 0.3830 (Actual)
OA 2 0.3840 (Actual)
OA 3 0.3850 (Actual)
MLP-OA 1 0.3817/0.3870 (Predicted/Actual)
MLP-OA 2 0.3818/0.3850 (Predicted/Actual)
MLP-OA 3 0.3823/0.3880 (Predicted/Actual)

Figure 1. Springback (initial population)
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Figure 2. Springback (final population)

springback values varying between 0.38mm and 1.0mm. With a mere 25 function
evaluations, OA reportsasolutionwith springback of 0.3840 mm, whichis0.26% worse
than the best val ue of 0.3830mm. The maximum springback val ue of the solutionsinthe
final populationis0.3970mm, whichindicatesagood convergence of thesolutionstothe
lowermost band. On increasing the number of function evaluations to 169, the best
solution has a springback of 0.3830mm while the maximum springback in the final
population is 0.3880mm. The top three solutions are listed in Table 9. The average
springback computationtakesaround 12 minutesof CPU time. The springback val ues of
the solutions of the final population are presented in Figure 2. It can be noted that the
springback values of the solutionsof thefinal population lie between 0.3830 and 0.3970,
clearly indicating that the solutions improved over the generations and reached the
lowermost band of springback.

Multilayer Per ceptron Embedded Optimization Algorithm: TheMLPof theMLP-OA
model has been trained using 70 data sets, whileits prediction capabilities are tested on
25 data sets that are exclusive of the training set. Two architectures are tested—one
having five hidden-layer neurons, while the other had four hidden-layer neurons. The
prediction capabilities of the network areillustrated in Figures 3 and 5 on training sets
and Figures 4 and 6 on test-data sets for the above architectures. The CPU time for
training the 7x4x1 and the 7 x5x1 neural network architectures are 61.193 seconds and
118.616 secondsrespectively on SGI Origin 2000. It can be observed from Figures4 and
6 that the neural networks are capable of predicting reasonable accurate springback
values(within+/- 2%) that can be used by the optimization al gorithm asan approximation.
Inorder to study the behavior of the M L P-OA model, the springback-eval uation process
isremoved and the springback-estimation processisintroduced using the 7x5x1-network
architecture. Using apopulation of 25individualsand with 67 callsto the approximator,
thealgorithm convergedtothefinal population. Theplot of theinitial andfinal population
using the ML P-OA model is shown in Figures 10 and 11. It can be observed that ML P-
OA iscapable of minimizing the springback and convergeto afinal population just like
the optimization algorithm (OA) alone. The introduction of the neural-network-based
approximator within the optimization algorithm resulted in the reduction of actual
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springback computationsfrom 169to 70 (asthe network wastrained on 70 data sets) that
translates to about 1,200 minutes of CPU time saving. Table 4 presents the top three
alternatives as obtained by the optimization algorithm (OA) and the MLP-OA.

Discussion and Conclusion

Optimum product and process-design problems are known to involve computational ly
expensive analysis and exhibit a highly nonlinear functional behavior. In order to
effectively and efficiently solve such problems, surrogate assi stance plays animportant
role. Itisclearly visiblefrom the studied examplesthat the surrogate-assisted optimiza-
tion framework could arrive at competitive solutions with far less number of actual
function calls. It is also interesting to observe that both the neural-network-based
approximators(RBF and M L P) coul d approximate nonlinear functionsreasonably well for
both the mathematical test functions and the springback-minimization problem. The
process of periodic retraining of the MLPs and RBFs within the framework ensures
adequate generalization of the network at different stages of the optimization processand
isthekey to avoid ill-validation problems.

Althoughasingleobjective, unconstrained, discrete problem of springback minimization
was solved, constrained optimization problems and problems with multiple objectives
could be solved using the same framework. It can be seen that with the introduction of
the neural-network-based approximator, thereisasignificant reductioninthe number of
actual springback computations and thus the CPU time needed to optimize the design.
Although the algorithm can be easily ported to run on multiple processors, the speedup
islimited by thenumber of commercial licensesof theanalysiscodesthat an organization
might have. Wearecurrently working on the optimization framework viaapproximations
to deal with shape optimization problems for aerospace applications.
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Abstract

In this chapter, a neuroadaptive scheduling methodology, approaching machine
scheduling asa control-regulation problem, is presented and eval uated by comparing
its performance with conventional schedulers. Initially, after a brief reference to the
context of existing sol utions, the evaluated controller isthoroughly described. Namely,
the employed dynamic neural network model, the subsequently derived continuous
time neural network controller and the control input discretization that yield the
actual dispatching times are presented. Next, the algorithm guaranteeing system
stability and controller-signal boundedness and robustness are evaluated on an
existing industrial test casethat constitutesa highly nonacyclic deter ministic job shop
with extremely heterogeneous part-processing times. The major simulation study,
employing the idealistic deterministic job-shop abstraction, provides extensive
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comparison with conventional schedulers, over a broad range of raw-material arrival
rates, and through the extraction of several performance indices verifies its superb
performancein termsof manufacturing-systemstability and low makespan, lowaverage
lead times, WIP, inventory, and backlogging costs. Eventually, these extensive
experiments highlight the practical value and the potential of the mathematical
properties of the proposed neur oadaptive controller algorithm and its suitability for
the control of nontrivial manufacturing cells.

| ntroduction

Production scheduling deal swith theallocati on of the availableresources over timefor
themanufacture of goods. It involvesthe decision-making mechanism whose objective
isfinding a way to assign and use the sequence of shared resources (labor, material,
equipment), such that production constraints are satisfied and production costs are
minimized.

In this chapter we address a machine-scheduling problem that, while constituting a
simplified formalism of the production scheduling, still capturesitsfundamental com-
plexity. More precisely, we focus on the deterministic job-shop scheduling, whereas a
set of n jobsis processed on a finite set of m machines, with precedence constraints
imposed on the sequence of individual operations.

The examined scheduling problem, deterministic job-shop scheduling, is the most
general classical scheduling problem and duetoitsfactorial explosionisclassifiedinto
thelargeclassof i ntractablenumerical problems(NP) known asNP-hard, thatis, problems
that cannot be solved in time polynomial to the dimension of the problem under
consideration. Job-shop scheduling dueto itsimportanceto the efficient management
of manufacturing processes has been addressed by a plethora of approaches.

Next, a reference to industrial practice and to the existing approaches to job-shop
scheduling is made, and the essence of our proposed scheduler along with theintended
eval uation methodology is outlined.

Background

Current industrial practice has been mainly based on assisting experienced human
schedulers with major software packagesthat implement distinct scheduling philoso-
phies like manufacturing resource planning (MRP), just-in-time (JIT) production
(Schonberger, 1983), and optimi zed production timetables (OPT), whilemorerecently
enterprise-resource planning systems (ERPs) are utilized in processindustries (James,
1996).

Although production scheduling has been traditionally addressed by management
science, operationsresearch, and industrial engineering, itscomplexity and importance
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haverecently concentrated theeffortsof different research communitiesconcerned with
artificial intelligence(Kusiak, 1987), dynamic programming, queui ng-network theory
(Jackson, 1963), systems simulation, large-scale systems, control theory, and other
branchesof engineering and computer science(Gupta, Evans, & Gupta, 1991; Rodammer,
1988).

In thiswork, we specifically focus on the deterministic job-shop scheduling. Job-shop
scheduling duetoitsimportance has been addressed by a plethoraof approaches. Some
of theelder techniques have been enumerative al gorithms that provide exact solutions
either by meansof elaborateand sophisticated mathematical constructs— suchaslinear
programming (Lawler, Lenstra, Rinnooy, & Shmoys, 1993), decomposition techniques,
and Lagrangian rel axati on—or by meansof thebranch and bound enumerativestrategy,
which involves search of a dynamically constructed tree that represents the solution
space (Brandimarte & Villa, 1995). Limitations of the aforementioned enumeration
techniques hasled to suboptimal approximation methods, such aspriority dispatch rules,
that involve assignment of priority to each job primarily via heuristics (Panwal kar &
Iskander, 1977), while recently, approaches employing fuzzy-logic techniques have
emerged (Grabot & Geneste, 1994). Scheduling hasbeen dominated by a set of innovative
heuristic-approximation al gorithmsincluding the shifting-bottleneck procedure (Adams,
Balas, & Zawack, 1988), tabusearch (Glover, 1989), simulated annealing (Van Laarhoven,
1988), and geneticalgorithms(Chenget al ., 1999). Furthermore, artificial intelligence
methodshavebeen applied ranging fromneural networks(NNs) (Kim, Lee, & Agnihotri
1995; Sabuncuoglou & Gurgun, 1996) to constraint sati sfacti on techniquesand expert
systems. Recently, hybrid techniques that involve searching strategies that navigate
heuristic algorithmsin aproblem domain away fromlocal optimahavebeen applied. Such
techniquesaregeneticlocal search (Y amada & Nakano, 1996), and |l arge-step optimiza-
tion (Lourenco, 1995).

In thischapter, we present and systematically eval uate a novel neuroadapti ve schedul -
ing methodol ogy (Rovithakis, Gaganis, Perrakis, & Christodoulou, 1999) by considering
its application on a challenging existing industrial test case (Rovithakis, Perrakis, &
Christodoulou, 2001). Theexamined neural network schedul er approachesthe produc-
tion-scheduling problemfromacontrol -theory viewpoint (Gershwin, Hildebrant, Suri, &
Mitter, 1986), in which scheduling is considered a dynamic activity. Thus, by defining
release and dispatching times, setup timesand maintenanceascontrol input, and levels
of inventory and machine status as system states, scheduling can be considered either
asaregulation or tracking problem, wheretherequirementsareto drivethestate vector
to somedesired val ue (production requirement) or to follow somedistributed over-time
trgjectory (loannou & Sun, 1995), respectively.

By taking advantageof current experiencein theneuroadapti vecontrol field (Rovithakis
& Christodoulou, 1994, 1995, 1997) based on dynamic neural networks (NN), the
deterministic job-shop scheduling problem has been considered a control-regulation
problem, where system states (buffer levels) haveto reach some prespecified values by
meansof control input commands. Based on adynamicneural network model of thebuffer
states, derivedin Rovithakis, Perrakis, and Christodoul ou (1996, 1997, 1999), an adaptive
continuous-timeneural network controller hasbeen developed. Dispatching commands
areissued by means of adiscretization process of the continuous-control input, which
isdefined astheoperating frequency with which each distinct manufacturing operation
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must occur while the controller guarantees the uniform ultimate boundedness of the
control error as well as the boundedness of all other signalsin the closed loop.

Further eval uati on of the neural network schedul er i s pursued by applyingit onreal data
derived fromachallenging manufacturing system (Rovithakisetal ., 2001). Theselected
test case— the mechanical workshop of aGerman company — constitutesacomplex job
shop with extremely heterogeneous part-processing times, with 18 product types that
may visit 18 different machines having to be produced, thus demanding sequencing of
atotal of 273 jobs, that is the production of atotal of 273 parts. The performanceof the
algorithm is compared with modified versions of the well-established conventional
scheduling policiesFirst In First Out (FIFO), Clear aFraction (CAF), and Clear Largest
Buffer (CLB). All schedul ersarecompared over arangeof raw-material-arrival ratesand
their performance is evaluated by means of the observed makespan, work in process
(WIP), inventory, backlogging costs, and average | ead times.

Thus, the derived simulation results, revealing superb performancein issuesof manu-
facturing-system stability, low WIP, average lead times, backlogging and inventory
costs for the NN scheduler, establish the proposed scheduler’s applicability on the
control of nontrivial manufacturing cells.

Thestructureof thechapter proceedsasfollows: In*“Problem Formulationandthe DNN
Architecture,” adescription of the proposed NN scheduler is presented. In “ Test Case:
SHW Mechanical Workshop,” the scheduling problem for the selected test case is
defined and the conventional schedulers employed to facilitate comparisons in this
study aredescribed. In“Results,” critical presentation of thederived resultsisprovided,
and we concludein thefinal section.

Problem Formulation and the
DNN Architecture

This section is devoted to a brief presentation of the evaluated approach on the
scheduling problem in manufacturing cells. Theseresults, regarding theapplication of
dynamic NNs to adaptively control FM S have been recently introduced in Rovithakis,
Perrakis, and Christodoul ou (1996, 1997, 1999).

Problem Formulation

The considered manufacturing systems resemblejob shopsin their layout, consist of M
machines, and produce a multiple of P part types. Each part typerequires a number of
operations to be performed in a given sequence, defined by itsroute. Multiple routing
ispossibleand partsmay visit somemachi nesseveral times. Each machine misassumed
to consist of anumber N(m) of submachinesequal to the number of different part types
it isabletoprocess. Each submachineactual l y represents an operating mode of machine
m. Let O(m) beaset suchthat si O(m) impliesthat submachine sisasubmachineof the
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actual machinem. Thecardinality of O(m)isequal toN(m).LetalsoN,, = éi“ilN(mi) .Only

one submachine is allowed to be working at a time, processing parts of a single type.
Machine operation times are supposed to be constant, that is deterministic, where
different operationtimesfor every submachineareal lowed. Set-uptimesareassumed to
beinsignificant. A machinewill becalled“idlewithrespecttoapart type”, if itisidling
or is processing some part type different from the specified one.

The objective is to steer, through appropriate scheduling (sequences of dispatching
commands), themanufacturing-system output buffersto reach asmall neighborhood of
predefined finished products, while keeping all intermediate bufferswithintheir accept-
able values.

Continuous Control Input Definition

Itisassumed that an equival ent machine-operation frequency isused asacontrol input
tothesystem, defined astheinverseof thetime between two successivemachine-starts.
Usingthisdefinition, frequenciesrange between zeroand afixedfiniteval ue. Thelower
bound equal to zero, corresponds to an infinite idling time. The upper bound u__,
correspondstoaminimum (zero) idling time-thusamaximumworkingrate, and equalsto
thereciprocal of machine operation time. It should be observed that thisdefinitionisa
crucial pointin our work, sinceit enablesthetransition from adiscrete-event systemto
a continuous time one.

The Manufacturing Cell Dynamic M odel

Recallingfrom (Rovithakis, Perrakis, & Christodoul ou, 1996, 1997, 1999), thedynamic
model from the evolution of thelevel x of a buffer, is assumed to be given by:

X = fo, (X, w)u; + £,(0) (1)

where X; isthevector containing thelevelsof all directly connected preceding buffers,
0, isthe vector containing the frequenciesof all submachinescollecting productsfrom

X, u,isthefrequency of the submachine feeding buffer i, and f, (3 f; (3 are unknown

functions of their arguments, specifically f, (3 istheincreasing rate of buffer i, and
f; (3 isitsdecreasing rate.

Sinceboth f, (3 f; (3 areunknown functionsof their arguments, neural networksof the

form described in the next subsection are empl oyed to obtain an accurate model for the
manufacturing cell.
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The Dynamic Neural Network Architecture

The dynamic neural networks that are used, called Recurrent High-Order Neural
Networks (RHONN), are fully interconnected nets, containing dynamical elementsin
their neurons. Therefore, these neural networks are described by the following set of
differential equations:

4=WOSO(X, u)u+, u) (2

where 41 A®, theinputs ul A®, W, and W, areB x L and B x L, matricesrespectively
of adjustablesynapticweights. S(x,u) isaL x Bmatrix withelementsS (2),i=1,2,...,.L,
m=1,2,...,B, of theform:

Slm(z): O[S(Zj )]dl(ixm) (3)

i lim

where |, i=1,2,...,L and m=1,2,...,B are collections of LxB not ordered subsets of
{1.2,...,B}, d(i,m) arenon-negativeintegersand z=[x,u]. Similarly, S(u) isaL,-dimen-
sional vector with elements S (u) of theform:

SK(U): C‘) [S(Uj )]d,(k) (4)

it ik

Forall k=1, 2, ....Bwherel, arecollectionsof L not-ordered subsetsof { 1, 2, ..., B} and
dj(k) are nonnegative integers. In both (2.3) and (2.4) s(zJ) iS a monotone increasing,
smooth, function, which isusually represented by sigmoidal s of the form:

m
T1+e

2) +| (5)

For all j=1, 2, ...,2B, with the parameters, | ,, to represent the bound and sl ope of the
sigmoid’s curvature and 1 a bias constant. Equation (2.2) can also be written in the
equivalent form:

Qi :WOiTSOi (X, u)u, W, TSJJ @) ©
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For all i=1, 2, B. For theneural network model, thereexiststhefoll owing approximation
theorem (K osmatopoul os, Polycarpou, & Christodoul ou, 1995):

Theorem 1: Supposethat the system (1) andthemodel (6) areinitially at the same state
x(0)= ﬁi (0),"i=1,2,....B. Thenforanye>0,i=1,2,...,.Band anyfinite T>0, thereexists
integersL, L, and matrices W , W, such that the state % (t) of the dynamic neural
network model (6) with L x B +L_ higher order connectionsandweight valuesW =W,
W =W, satisfies:

sup [ % (0 - X (O I

OEtET

Theorem 1 prerequisitesthat theunknown vector fields f, (%, u;), f;(@),i=1,2,...,.Bare
continuous and satisfy alocal Lipschitz condition such that (1) has a unique solution
in the sense of Caratheodory (Hale, 1969) Moreover, the previoustheorem provesthat
if sufficiently large number of higher order connectionsareall owedin thedynamic neural
network model, thenit ispossibletoapproximateavery largeclassof dynamical systems
of theform (1), to any degree of accuracy.

Duetothe approximation capabiliti es of the dynamicneural networks, it can beassumed,
with noloss of generality, that the unknown system (1) can becompl etely described by

adynamic neural network plusamodeling error term e, (X;,T, ,u;) . In other words, there

exist weight values W, ,andW, such that the system (1) can be written as:

K=Wy S (%, U)u, +W, ' S, (T) +e (%,0,u,) (7)

where X; isthevector containing thelevelsof all directly connected preceding buffers,

U, isthevector containing thefrequencies of all submachinescollecting productsfrom

X, uisthefrequency of thesubmachinefeeding buffer i, and e (.)isamodeling error term
assumed bounded, i.e. || e(.) £le withe arbitrarily small. FinallyW ,andW | represent the
optimal weight val ues (as optimal we define these weight valuesthat lead to minimum

modeling error e) of theNN and S, S; arevectorsthat contain sigmoid functions.
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Continuous Time Control Law

Letbyx,i=1.2,....,Bwith Bthetotal number of buffers, denotethetarget valuefor each

D
buffer. Definethe control error e, as e, =x - X, . To derive stable control and update

lawsLyapunov stability theory isempl oyed following theanal ysis presentedin Rovithakis,
Perrakis, & Christodoulou (1997, 1999), thecontrol and weight updatelawslisted later
arederived:

= - g son (Wy S (%, u,)) san (&) ®
e W EYCHERIEY) ©

11 i WIS,(%.u,)° 0

|
n(W. S, (X U)N=q ]
g ( oi SO|( i1 )) ’:\_ 1 otherwise (10)
i-1if e <0
son( eq)z_:'_o if e =0
%l if e >0 (12)
where y, w"_ _design constants.
18,5, (%.)u, it w1 W,
::: or W, T Tw, ande, Sy (%, U JuW,, 3 0
Wm = :’ _ _ a_‘_ " Woi " 62
T eC. SD' (XI ’ul )ul - ec, SD| (X1 vul )U|Wo| gi I Woi
I Wo @ (12)
i
T

if Vvoii W andec, SDiT(Z U UW, <0
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iD, it W, T W,
Vi, :_{ or W,1 W, andC, 3 0
ip,+D, if W,T YW, andC, <0 (13)

whereD,=e S;(T;) ,D,=- D/W, (@+|W; )/w;)*W, ,andC =g S} (U)W, .

These control and updatelawsguaranteethe uniformultimate boundednesswith respect
tothearbitrary small set:

e

i €, U
e (t):|le, |[E—,g>0y
G G g Og

I

=1
C -
|

The previous results practically state that if we start from inside the set e, then e, are

uniformly bounded by e /g. Otherwisethereexistsafinitetimein which €. reachesthe

boundary of e; and remains there in for all time thereafter. It is obvious that the
performance of the continuoustimecontrol law is controlled by e and g. Thefirst term
¢ isstrongly related to the continuoustime model accuracy, whilegisadesign constant
which can bechosen arbitrary. Thispractically meansthat no matter what theinitial error,
the proposed direct adaptive control scheme guarantees that all buffer states will
approach their target valuesin finitetime, always staying in close proximity to them.

Hence, thisdirect adaptive control scheme, ensuresthat all buffer statescaninfinitetime
approach their target val ues, and always stay in close proximity tothem, and by further
controller fine-tuning they can get arbitrarily close to their target. Obviously, when
considering the output buffersof themanufacturing cedl, itisclear that it hasbeen proven
that thisapproach can lead arbitrarily closeto the production goal in finitetime.

Real Time Scheduling

The control input signal obtained by the control law (Equations (8) through (13)) isa
continuousfrequency signal. Therefore, somedispatching policy hasto be employedto
determinethe actual partsdispatching times.

For the single product case where only one submachine isallowed, the algorithm isas
follows. Thecontroller output issampledat acertain timeinstant, and the corresponding
operatingfrequencyistransformedtoatimeinterval bytakingitsreciprocal. Atthe same
timeinstant anew commandis sent to thespecific submachine. Control and update laws
areallowedtoevolveintimewhilethe submachineisleft untouched until the precal culated
timeinterval iscompleted. Thisinterval isgreater or equal tothe machineoperation time,
sincethecontrol input frequency islessthan or equal tou__ . Afterwards, anew sample

Copyright © 2006, ldea Group Inc. Copying or distributing in print or electronic forms without written
permisson of Idea Group Inc. is prohibited.



Artificial Neural Networks in Manufacturing: Scheduling 245

of the control input is taken and the process is repeated. Clearly, this control input
discretization introduces some modeling error, to bediscussed in thefoll owing subsec-
tion.

For the case of FM S systems containing multiproduct machines, in order to determine
which buffer is to be served, the use of some criterion representing a measure of the
priority tobegivenisproposed. For acertain machine mcontaining N (m) submachines,
the criterion is calculated on each route which employs any submachinesl O (m). The
derivation of thecriterion vaueisbased onthe semifinished product availability, (work-
in-process, WIP), aswell asonthecontrol error of theroute’ soutput buffer. According
tothe proposed policy, therouteto beserved istheonewith thelargest criterion value.
The proposed criterion value for each submachine sis given by:

NB‘S) - é - - - - - - + + + + + eZ C
‘]s = O f()ﬁ )él 1f(X1)+| 2f(xz)+----+| NB(s)f(XNB(s))+| 19()(1)"'I 29(X2)+----+| N?u
=1 é €

(14)

where X ,i=1,2, ..., N, (s) are submachinespreceding buffer levelsand x*i=1,2,...,N
arethelevels of the buffersthat follow on the same route, while N denotes the number
of submachinesthat follow submachine s along itsroute including the output buffer.

Thecontrol error for thelater is denoted by e. Theparameters|; and | | areweighting
factors to be determined. The dependence of each argument on s has been omitted for
the sake of simplicity.

Continuous Control |Input Discretization

Inthepreviousdefinition, f(.) isapositivemonotonically increasing non-linear function,
withf(0) =0and f(c) =1, wherecstandsfor the corresponding buffer capacity. Obvioudy
this function outputs the largest val ue for the case of a large product accumul ation on
thefeeding buffer. Similarly, g(.)isamirrored versionof f (.), with g (0) =1andg(c) =0.
Thisfunction outputs the maximum valueif thefoll owing buffers are almost empty. In
thisway conditionslikethefeeding buffer isal most empty and/or the foll owing buffers
areinthevicinity of their maximum capacity, lead tosmall J whichinturn meansthat the
corresponding route will not beserved. Functionsf (.) and g (.) can be closely approxi-
mated by shifted sigmoids, asin Rovithakis, Perrakis, and Christodoulou (1997, 1999) to
summarize the discrete dispatching decision algorithm in the multi product caseis as
follows:
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Algorithm 11.1 (Discrete Dispatching Decision-Multi Product Case)
Input ul A® xTA® eTA®
If machine is not FMS then

1.1 Controller output is sanpled at a certain tine instant.
A time interval equal to the reciprocal of the sanple
is conmputed

.2 At the sanme time instant a new command is sent to the
speci fi ¢ subnachi ne.

1.3 As soon as the tine interval is conpleted, go to Step |.1

Else if the machine is FMS then

Il. for all submachines that are not idling and conflict.
1.1 calculates Js as in (14).

1.2 sel ects the submachine with the |argest Js.

I1'l. Apply the appropriate command for the sel ected
submachine i.e., execute steps 1.1, 1.2 of the non-FMS
machi ne case

I'V. When the currently working submachi ne finishes processing and

starts idling goto Step |1

Discretization Effects

Thecontinuoustime controller devel oped previously, containstheactual scheduling as
follows:

gi:udl + W,
where u, is the continuous time control law, u, isthe actual scheduling applied and
w, (X, U, u;) is the bounded difference between the aforementioned signals.

It can beshown (Rovithakis, Perrakis, & Christodoul ou, 1999) that in thiscasethe control
error €, possessesa uniform ultimate boundedness property with respect tothearbitrary
small set:

1, Wy (W (%, T, u) |+ g
!

[ U
—jie (t):]e. |E , g >0y
eCiTc'()lc'l g g()g

Theterm (w;, |w, (X, T, u,) | + €,)/g servesasaperformanceindex that can beimproved
mostly by allowing the design constant y to admit larger values. Moreover, better
approximation of the continuous control law by theactual schedulingwill leadtosmaller

valuesof w, (X, U;, u,) whichin turnwill improvefurther theoverall performance.

Hence the convergence and robustness properties of the controller is still retained,
whatever definition of J_.

Copyright © 2006, ldea Group Inc. Copying or distributing in print or electronic forms without written
permisson of Idea Group Inc. is prohibited.



Artificial Neural Networks in Manufacturing: Scheduling 247

Test Case: SHW M echanical Wor kshop

To investigate, assess and establish the applicability and value of the proposed
approach to the scheduling problem, it has been considered necessary to examine data
taken from existing manufacturing systems, with all the constraints, and complexity
inherent inreal-world cases. Thusan existing German industry, producing machinetoals,
has been chosen in order to evaluate the algorithm’s performance on production
processes crucial for the company’s prosperity.

The test case is derived from one of the oldest industrial enterprises in Germany,
Schwaebi sche Huettenwer ke (SHW), and specifical ly from the mechanical workshop of
itsMachine Tool Division. Department products aretool sranging from simplemilling
machinestouniversal milling, boring, andturning centers, andintheir vast majority are
produced on demand. Since on demand production characterizes the machine tool
division operation, productionisorganized accordingto ordersarriving onthedivision.
Hencethescheduling problem has been formulated by a representative, bulky subset of
theentireset of ordersprocessed over several monthsof workshop operation. Therefore,
theSHW scheduling problem hasbeen posed astheproblem of production of 18 different
order types demanding an equal number of product types. The different product type
routes are shown in Table 1.

Manufacturing Cell Topology

All numbersunder thelabel “Processing Routes” areidentificati on numbersof mechani-
cal workshop machinesandtheexternal totheworkshop assembly pointsvisited. Inthe

Table 1. Manufacturing-cell topology

Order Processing Routes

1331 737 753 773 704 737 704

1414 753 773 704

1623 753 773 704

2409 753 999 773 704

2420 753 999 999 736 704

1953 731 704 999 773 739 737 704 775

2422 773 783 704

2685 783 704

2766 708 731 774 739 783 783 774 704

3057 999 753 999 773 775 999 737 999 999 704
3061 753 966 773 736 704

2694 728 732 722 783 704 783

2783 732 752 731 77 999 777 731 722 783 783 704
2900 773 704

2904 966 966 704

1312 704 775 732 783 704

2916 753 773 704

3207 999 999 753 773 999 999 999 704
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Table 2. Processing steps duration

Order Processing Routes
1331 31.0 252  30.6 20.0 9.4 20.0
1414 234 156  20.0
1623 21.0 156  20.0
2409 43.2 3.0 27.0 20.0

2420 342 0.5 3.6 342 20.0

2422 16.8 12 20.0

2685 24 20.0

2766 7.7 1179 2442 348.0 46.8 25.2 111.6 20.0

3057 20.0 37.2 20.0 46.0 20.0 20.0 144 61.2 90.0 20.0
1953 162 20.0 20.0 119.0 72.0 65.0 20.0 20.0

3061 22.8 153 18.2 450 20.0

2694 876 434 990.0 36.0 20.0 18

2783 14.2 351 444.0 84 20.0 8.4 1260 1539 108 12.6 204
2900 24.0 20.0

2904 12 6.2 20.0

1312 20.0 20.0 110 12 20.0

2916 22.8 25.8 20.0
3207 20.0 20.0 22.8 19.8 3.6 48 24.6 20.0

tabul ated set of part type routes, 18 different types of products are producedin thiscell
of 18 processing locations, foll owing routesin which apart typemay visit amachinemore
than once, whilenoassembly operationsareinvolved. Each entry of thetablerepresents
aprocessingstep of aspecificduration. In Table 1, the(i,j) entry being equal to m, means
that thei-th product initsj-th processing step, visitsmachinewith label mand fromthe
non-linear adaptive controller viewpoint each such distinct operation correspondsto a
unique submachine.

Table 2 showstheduration of the processing steps. The respective submachinewill be
referred ass | and controlsthestate of a buffer attached to itsoutput which will benoted
asx . Furthermore aneural adaptivecontroller isassigned toevery submachineandthe
output signal of the controller which regulates the state of the x . buffer (i.e., the
frequency signal controlling the operation of submachine s, ) will be denoted as u,

Also, thefirst submachine of every product route, s ,,i = 1.... 18 ispreceded byabuffer
thattemporarrIystoresrawmaterralsoftherespectrve i- th product whichwill bereferred
asx . L(i),i=1...18will denotethenumber of processing stepsinroutei, thusx . will
betheoutput buffer collecting thefinished products of routei. Also, x . . will standfor

t(i, m

thetarget state of buffer x , thusx . . will denotethe demand for product typei. Any
further information nec&saryfor thecompletedefinition of thescheduling problemwil |

be presented with direct reference to the cell topology, as provided in Table 1.

Theduration in minutes of all processing steps underlying the presented cell topology
isgivenin Table 2, wherethevalueT(i, j) of its (i, j) element standsfor the duration of
the (i, j) processing step.

The scheduling problem will be completely defined, by specifying the desired target
states, the capacity and the initial state values, for all buffersin the system, aswell as
the rates under which raw materials for the different part types arrive in the system.
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Specifically, all intermediate buffers’ target states have been set equal to oneandtheir
capacity bufferswith the exception of buffersx where three parts capacity
areallowed.

All buffers are considered to be initially empty. Raw material buffers have atwo-part
capacity; and when this capacity isreached, arrival of raw materialsisceased until the
raw material buffer level is decreased.

Thus, consideringitspotential aspectsof difficulty, theformulated problem constitutes
a reasonably complicated one, mainly due to the diversities and variability of part
processing timesin thevari ous submachines, theinequalitiesin machine’ sworkload and
itsdimension. Itisaproblemof challengingdimensionality sinceitinvolves18 different
final product types, visiting 18 machinesand atotal of 95 different operationstakeplace,
thus implying the existence of 95 submachines, for the neural network scheduling
algorithm.

Themost extremedifferencesexist for the13th product type2783, wherethe processing
timesin the 11 submachines visited range from 8.4 to 1539.0 minutes. Obviously, the
equivalent problem, in the sense of our proposed scheduler, of efficiently regulatingin
real timethestate of 95 buffers, will beatask far from trivial, justifying the sel ection of
the SHW test case, as a means of ultimate neural scheduler verification.

In order to gain further understanding of the underlying neural network controller
structure, a subset of the interconnections of the inherent submachine topology is
described next. Following the notation introduced in (Rovithakis, Perrakis, &
Christodoulou, 1996, 1997, 1999) let O(m) denote theset of submachiness, ; of machine
mand N(m) itscardinality. Let B, (s) betheset of input bufferstosubmachmes B (s) be
theset of output buffersof submachlnes and M (b) the set of submachinesfed by buffer
b. For thespecifictest caseweobtain: B, (s ,)={x;, }" 1,j,B(s)={x }" i.]

For example, closeexamination of thecell definitionyieldstheset of submachinesrelated
tomachine773:

8,1’ 121' 131

O(773)={s

1,3’ 22' S

32’S

4,3’ 64' s71' 10,4’

S. .S }, thusN(773)=11.

11,3' T141° 172' 184

Moreover, the sets that completely define the route of the 11th product type are given
next.

Sets of input buffers:

B+(311,1) ={ X11,o}' B+(311,2) ={ X11,1}' B+(311,3) ={ X11,2}' B+(511,4) = {X11,3}' B+(511,5)
={ X11,4}
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Sets of output buffers:

B-(Sll,l) = { Xll,l} ! B-(Sll,Z) = { X11,2} ! B-(Sll,3) = { X11,3} ! B-(Sll,4) = { X11,4} !
B-(Sll, 5) = {Xll, 5}

Finally, the sets of submachinesfed by each buffer in route 11 are listed:

M-(Xn,o) ={ S11,1} ' M-(Xll,l) ={ S11,2} ' M-(Xn,z) ={ S11,3}
M-(Xn,s) ={ S11,4} ' M-(X11,4) ={ S11,5} ' M-(Xn,s) ={2}

Taking up tofourth-order termsfor each argument, thedynamic equationsemployed for
the buffers of the 11th product route are;

%1, =Wosos [S06a)" s S T Uy +Weyy " S(Uyy,) + €(Ku, Uy, Uy )

Ky =Wor [S(%s)Ts S(Upro) 1 Uprp +Wor, S(Us) + €(Xerpr Uy o0 Uy s)
K115 =Won1a [S(41s) s SUa) T Unns +Woirs S(Uirs) +€(Xey a0 Uprsr Uyt )
K10 =Wosrs [S(%a)" S(Ua) T Upys + Wiy, S(Uiys) + €000 Uy, Uys)
S5 =Wonrs [S(%s)"s S(Us) T Uys + (X5, Uys)

with S(Xi,j) :[S(Xi,j) SZ(Xi,j) SB(Xi,j) 54()9,1)]T
S(ui,j) :[S(ui,j) Sz(ui,j) Ss(ui,j) SA(ui,j)]T

Sl(ui,j) :[S(ui,j) Sz(ui,j) Ss(ui,j) S4(ui,j)]T
wherew, ‘T R*" jT {12..8 andw, ‘T R*" jT {1.2....4}

The NN model isfurther used in the development through Equations (8) to (13) of the
continuoustime control lawu,, j=1,...,5

Conventional Scheduling Policies Used M odifications

A set of conventional scheduling methodologies has been selected for comparison
purposes. The employed methods, real-time priority dispatch rules, distributed and of
local scope, arethefollowing:
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Figure 1. Production makespan
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First In, First Out (FIFO): Select submachine s, ;, whose input bufferx; . ,, contains
the part which arrived earlier than all parts contained in the input buffer of any other
submachine in O(m).

Clear Largest Buffer (CLB): Select Si,j* such thatx*ivj_l(t) >X.

ij-1

(t)VsiJe O(m).

Clear a fraction (CAF): Select s, ;" such that X", | ,(t) 252?1") X4 Vs €0(m).

Clearing methods, CAF & CLB, process all parts of the selected buffer until it becomes
empty, while FIFO processes a single part at a time.

It should be noted that the actually employed policies are variations of the previous
definitions, which incorporate the following modifications, for stability reasons:

()
2

All dispatching commands for submachines whose output buffers have reached
their capacity are ignored.

Selection isrestricted to the set of submachines that participate in part type routes
for which production has not been fulfilled.

The first modification concerns cancelling the application of the currently issued
dispatching command for a specific submachine, whenever the corresponding buffer
reaches its capacity limit. The second modification has been employed to overcome
problems such as overall production paralysis or continuous processing of specific
routes, by restricting production scheduling only to those product types for which
production has not been fulfilled. Precisely, this modification adds a global perspective
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tothecriteria, sincetheir original local scopeandrelianceoninformation only about jobs
in the examined machine’ s queue becomesinsufficient for the current problem.

For amoredetail ed justificati on of the use of thesetwo modificationstothe conventional
scheduler theinterested reader isreferred to Rovithakiset al . (2001).

Results

Extensive simul ation experimentsthat pursuethe systematic extracti on of the properties
of the proposed schedul er, theinvestigation of itsoverall performanceand validity and
accuracy of the derived solutions' qualities, is the theme addressed in this section.

Inwhat follows, weshall discusstheresultsobtai ned when demanding 15, 25, 20, 20, 25,
20, 20, 3, 10, 8, 15, 5, 2, 20, 20, 15, 10, 20 partsfor the 18 product types respectively,
beginning from clear intermediate and output buffers.

Theeval uation study, adoptsthe commonly occurringin literature (Angsana& Passino,
1994) computati on of anumber of performanceindices, which aremostly related with the
timeajob spendsin the shop. Besidestheyielded makespan that il lustratestherapidity
in producti on goal achievement, indicesof WIP, inventory, and backlogging cost have
been selected, due to their popularity and the accuracy in investigating some of most
primitiveand important costsinherent in any manufacturing process. M easures of sum
of maximum intermediate and output buffers states are included since they highlight
schedulers’ ability of maintaining stability with respect to capacity limitationswhilelead
timesarecomputed asaverage estimationsof thedelay for the production of asinglepart
in a cell, which is invaluable information for higher leves of production planning
decisions.

Figure 2. Sum of maximumintermediate buffer states
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M akespan

More precisely, in Figurel the makespan, (i.e., the time period elapsing until the
production goal is achieved for all product types), is plotted for various raw-material-
arrival rates.

Examination of thisset of curvesreveal sthat for all raw material arrival ratesgreater than
0.0018 partsper minute, the proposed neural network scheduling methodol ogy, results
in significant speedup of the achievement of production demand. Considering the
modified conventional schedulers, the achievement of production goal requireslonger
timeintervals. Duetothepotential instability of theselected palicies, theinability of CLB
toterminateisobserved for ratesgreater than or equal to 0.002 partsper minute. Thus,
inthisand in all subsequent figures, CLB valuesare plotted only for therange of rates
for which production goal isachieved (i.e., for rateslessthan 0.002). In the subsequent
analysisthesomewhat arbitrary definition that rateslower than 0.0027 arelow is used,
whileratesgreater than 0.0027 will bereferred to ashigh. Hence, for low raw-material -
arrival rates similar or even identical performancefor all compared schedulersis ob-
served. Thisoriginatesfrom thefact that for lower raw-material-arrival rates, makespan
isdominated by thetimerequired for theentrancein thecell of all raw materialsfor the
product typeswith the highest demand. It hasbeen assumed thatinitialy, all raw material
bufferscontain asinglepart. Sinceamaximum demand of 25 partshasbeen defined, and
onepart arrivesevery Lrate minutes, it iseasily derived that 24 x 1/rate minutes must
el apse before all necessary raw materials have entered the system.

For the case of high rates, it is necessary, for comparison purposes, to extract alower
bound for the corresponding makespan. An obvious one should bethe maximum over
all machinesof thesum of theduration of the minimum work that should be done by all
submachinesof each machine, plusthe minimumtimerequiredfor asingle parttoreach

Figure 3. Sum of maximum output buffer states; both FIFO and NN-based scheduling
algorithms coincide for all raw-material-arrival rates
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Figure 4. Average WIP cost
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machineinput. Thederivation of thislower bound relieson the assumption that except
for thefirst part to beprocessed in amachine, therearepartsalwaysavailablein theinput
buffersof itssubmachines, whichisobviously optimistic for themajority of submachines
in thiscomplex cell. Thus, theprevious maximumiscal culated under theassumption that
nomachineisidling. Theminimum work that any submachineinthecell should doisequal
tothecorresponding product demand. Thus, thetimerequired for the minimum work of
machinemis

o T -
T.=aA iom i Xaay -

m

In the specific test case the lower bound has been found equal to 8947.3 min.

The neural network methodology achieves the production goal in 9778 minutes thus
obtaining adeviation fromthelower bound equal t09.29% for raw-material-arrival rates
greater than or equal to 0.0027. Meanwhile, optimal performancefor the conventional
schedulersFIFO, CAFand CLB occur at muchlower rates, specifically for 0.0018, 0.0009
and 0.0009 parts per minute, wherethelower bounds are provided by theformula 24 x
1/ratewith corresponding deviations0.867%, 1.865%, 1.87%and makespan 13449, 27164
and 27165 minutesrespectively.

Simulationswith higher raw-material-arrival rates, which providehigher raw-material
availability, resultedin no changeof themakespan for both theneural network and FIFO
schedulers, while anal ogous performanceisyielded by CAF.
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Figure 5. Average inventory cost
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Sum of Maximum Intermediate and Output Buffer States

An overview of the peak buffer states experienced by the intermediate buffers is
presented in Figure 2, using thesum of themaximum stateof al l intermediatebuffers. For
the case of neural network scheduler this sum is equal to the number of intermediate
buffersin the cell (i.e., 77), since the algorithm assigns a target value of one for all
intermediate buffers, which cannot be exceeded as the control law forces its output to
become zero whenever a buffer state reachesits target value.

When the conventional policiesare used, this sum becomes considerably larger and as
can beseen from Figure 2, it can bemore than fivetimes higher asin the case of CAF.
Specifically, whilefor very low rates, this sum slightly exceedsthelimit of 77, aslight
increasein therateresultsin aconsiderableincreasein the sum of the maximum states
for intermediate buffers with most extreme casethat of CAF at 0.001 parts per minute.

The NN scheduler controls robustly the maximum possible states of the buffers with
respect to raw-material-arrival rates. Thisisobviously not thecasefor all conventional
schedulers studied that, at higher rates, even force the buffers to reach their capacity
limits. Therefore, the proposed schedul er ensures stable manufacturing system opera-
tion and minimum capacity requirementsfor buffers.

Figure 3 presents the sum of maximum output buffers states. The achieved results for
both FIFOand NN areidentical and equal to thetotal demand of 273 partsfor all product
types. This sum for the case of the rest of the schedul ers, acquires larger values, thus
denoting the production of a surplus of parts. This excess of parts originatesin the
clearingnatureof theemployedpolicies(i.e., CAF, sinceCLB isnot functioningfor rates
greater than 0.002).
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Figure 6. Average backlogging cost
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Atlowrates, all schedulersresult in precise achievement of the production goal, dueto
the fact that all operations, even the clearing ones, empty buffers containing very few
parts, causing submachines that output finished products, to process buffers which
contain asinglepartonly. Both FIFO & NN emergeas schedul ersguaranteeing accurate
achievement of production.

WIP and Inventory Costs

The next two figuresrepresent cost measuresfor storing partsin buffers, intermediate
and output respectively. Let the cost for holding x;; partsat a buffer for T timeunitsbe
considered equal tok ; X ; T, wherek ; isthe cost for storing asingle part in the output
i
buffer of submachmesJ per timeunit. Integrating the previousquantity over theentire
makespanyieldsthecost for storing partsin asinglebuffer. Thus, assuming for smplicity
that for all buffersin the systemk =1, the cost measureevolvesintoaplainintegral of
the respective buffer states. Specifically measures for the Work In Process (WIP) and
Inventory costs, are provided by means of the average integral of theintermediate and

o 18 o L(i)-1 J

output buffer states respectively, (i.e. WIP equalsto (UN)a ., a ., Qx,dt, while

Inventory costis(1/N ) & Nlé % .o dt whereN =77, N =18 arethe number of intermediate

and output buffers in the cell and T is the production makespan yielded by each
scheduling methodology). Dueto the low intermediate buffer states guaranteed by the
neural network algorithm, a lower WIP is observed, while the rest of the schedulers
introduce considerably larger costs.
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Figure 7. Average lead time

o FIFO

. ;B
2500 + - -x CAF
£ 2000
E
el
[
[
)
(5]
j=2)
© 1500
[
>
<
1000
&)
{‘/
500§ 4
B
0 0006 0.01 0015  0.02 005 0.3 0035

Raw material arrival rate

Thus, the neural network algorithm achieves the most efficient WIP cost control, by
keeping intermedi atebuffer stateas small asdesired, whileguaranteeing system stability.
Inventory costs areal so considerably small er than those occurring when employing the
conventional scheduling policies dueto the overall faster fulfilment of the production
demand.

For lower rates, when all schedulers achieve total production almost simultaneously,
deviations between theinventory costsyielded by the considered policies, and the one
introduced by the NN are not really significant with the exception of the far worst
performance of CLB. However, the increase in rates is causing the occurrence of a
considerably larger peak in intermediate and output buffer statesaswell as significant
differencesin makespan, which sufficientlyjustify, the observed extremely greater WIP
& inventory cost for the case of the conventional schedulers, shown in Figures4 and
5. For higher ratesthe NN scheduler presents afar more robust-stable behavior when
compared to FIFO and CAF. Thus, NN superiority with respect to these popular cost
measures is obvious.

Backlogging Cost and Lead Time

Considering backlogging costs, (i.e., the cost resulting from the delay in achieving
production targets), the NN scheduler reaches production goal with the minimum cost
when compared totherest of theexamined policies. Specifically, theemployed backl og-

ging cost has been defined as follows: (1/ No)é’lpy o () =(1/No)é’1pébp(t )dt  where

B,1=1 (1)-O,(t) with 1 (t), O(t) thenumber of partsof typepthat haveentered and exit the
cdl until timet.
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AsFigure6 demonstrates, backl ogging costsremainsmall for relatively lowrates, since
buffersinthesystem contain few parts, lessconflicts among submachinesoccur and thus
finished productsare outputtedwith reduced delays. Onthe other hand, increasein raw-
material-arrival rates, leadstooverall increased buffer levelsand conflicts, thusmaking
the output of finished productsto occur with aconsiderably larger delay. For any rate,
the NN constitutes a considerably less expensive methodology (with respect to back-
logging cost) than all examined policies.

Finally, Figure7 givestheaveragelead time, (i.e., theaverageof thetimeel aps ng between
theinput of araw material in thecell and theoutput of therespectivefinished product),
for all product typesand all parts producedinthecell. Practically, lead timeisequivalent
to the widely used cost index of average flowtime (Silver, Pyke, & Peterson, 1998).
Comparingthisplot with backlogging cost curves, animpressivesimilarity in slopeand
shapeisimmediately observed. Actually all reasoning about the causes of backlogging
cost, also apply for the case of product lead times, where the superiority of the NN
algorithmisonceagain justified by the smaller producti on makespan.

Considering implementation issues, these simulations justify the claim that the NN
scheduler constitutesareal timealgorithm. Simulation of almost 10.000 minutesof cell
operation | asted about 20 minuteson a Solarisworkstation, featuring aPentium 11/266
MHz processor. Computation of the control vector u(t) given the current buffer states,
demanded 0.1616 seconds of CPU time. Moreover, a hardwareimplementation of the
algorithmis expected to be characterized by negligible computational delays, yielding
adistributed real-time nonmyopic robust controller structure.

Conclusion

Inthischapter our scheduling methodol ogy previously proposedin Rovithakis, Perrakis,
and Christodoul ou (1996, 1997, 1999, 2001) hasbeen thoroughly presented. A challeng-
ing real world manufacturing cell has been considered and for a wide range of raw-
material-arrival rates presented superb performance when compared with a set of
conventional schedulers. With theexception of extremely lowrates, whereall schedulers
convergetoan almost i dentical performancein theremaining rangeof higher rates, the
proposed al gorithm features super b stability and robustness aswell as efficient control
of critical costssuch asWIP, inventory and backloggi ng, outperforming all the conven-
tional schedulers discussed.

Thus, the previous analysis establishes the proposed neuroadaptive architecture’s
featuresof robustnessanditspotential of efficiently solvinggeneral, moderatesized and
of arbitrary complexity dynamic, deterministicjob shop problems. Theappealing prop-
ertiesof thealgorithm should be considered in conjunctionwith itsreal timeproperty that
enablesimmediate derivation of scheduling decisionsand their applicationintheactive
manufacturing processes. Themeritsof thealgorithmincludethefollowingfeatures: (a)
the capability of immediately incorporating demand alterations and thus instantly
redefining targetsfor theappropriate buffersand itsdimensionality, and (b) itssizethat
growslinearlywith thesize of theexamined scheduling problem, asoneadditional DNN
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controller isdemanded for every new distinct operation type, that is, every new spot of
manufacturing activity in the production cell.

Thepresented methodol ogy possible applicationsfor thetask of production scheduling
rangefrom employment asasimulation tool determining dispatch listsfor shopfloor on
regular timeintervals, to hardwareimplementation, wherethelatter woul d be obviously
characterized by the capability of efficiently handling scheduling problems considerably
larger in dimension and complexity than the current test case.

Enhancing our devel oped methodol ogy may involveinvestigation of alternative model
developmentsand thusappropriate control and update laws should bederived. Extend-
ing current framework in order to handlefurther manufacturing systems categoriesmay
result in several interesting issues. Thus, extending the methodology to include disas-
sembly operationsis a modest goal of future work, while enhancing current theory to
allow for operation dependent setup timepresent in al ternation in submachineoperation
may al so be an interesting aspect. Moreover, theory enhancement such that bounded
variabilities are allowed for machine operation times, without affecting the current
robustness properties of the algorithm emerges as a challenging subject.

Furthermore, sincetheexistingmodel isbased on continuoustimemode, it could readily
facilitate continuousflow systems wherethe buffer contents are continuously modified
by fractional continuous flow of material at each individual time instant that the
respective submachine is operating. The encouraging success of the present results,
propose as a major research challenge, the investigation of ways of coupling discrete
event dynamic systems (DEDS) with adaptive control techniques and adoption of
RHONN structuresas plant modeling mechanisms. It ishoped that such an approach if
feasible, mayfacilitateinherently moreaccurate model swhiletheyielded control system
may be characterized by theattractive propertiesof real timeadaptability, stability, and
robustness.

In conclusion, the eval uated methodol ogy constitutes a novel one, featuring real time
operation together with the guarantees of stable and robust operation in the presence
of any source of disturbances where the qualities of the resulting schedul es establish
it as a promising alternative to job shop scheduling in particular and in production
schedulingin general.
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Abstract

Thischapter describesthe application of neural networksto recognition of lubrication
defectstypical toindustrial coldforging process. Theaccuraterecognition of lubrication
errors is very important to the quality of the final product in fastener manufacture.
Lubrication errors lead to increased forging loads and premature tool failure.
Lubrication coating provides a barrier between the work material and the die during
the drawing operation. Several types of lubrication errors, typical to production of
fasteners, wereintroduced to sample rods, which wer e subsequently drawn under both
laboratory and normal production conditions. The drawing force was measured, from
which a limited set of statistical features was extracted. The neural-network-based
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model learned from these features is able to recognize all types of lubrication errors
to a high accuracy. The overall accuracy of the neural-network model is around 95%
with almost uniform distribution of errors between all lubrication errors and the
normal condition.

| ntroduction

Cold forging includes many processes such as bending, cold drawing, cold heading,
coining, extrusion, punching, and thread rolling to produce a diverse range of part
shapes. These include various shaft-like components, cup-shaped geometry parts,
hollow partswith stems and shafts, all kinds of upset (headed) and bent configurations,
aswell ascombinationsof these geometries. Thetemperature of metalsbeing coldforged
may range from room temperature to several hundred degrees.

Often chosen for integral design features, such as built-in flanges and bosses, cold
forgingisfrequently usedinautomotive steering and suspension parts, antil ock-braking
systems, hardware, defence components, and other applications where high strength,
close tolerances and volume production makesit an economical choice.

Inthecoldforging process, achemically lubricated slugisforced into aclosed die under
extreme pressure. The unheated metal thus flows into the desired shape.

Upsetting, or heading, a common technique for making fasteners, gathers steel in the
head and other sectionsal ong thelength of the part. In upsetting, the metal flowsat right
anglesto the ram force, increasing the diameter and reducing the length.

A typical fastener manufacturing process uses batch production material transfer. The
plant isdivided into three main areas:

i Preprocessing that involvesdescaling and application of lubrication consisting of
the zinc phosphate carrier and a soap stearate lubricant coating;

i Primary processing that involves wire drawing and extrusion (cold forging);

i Postprocessing that involves cleaning, heat treatment, and the application of a
protective coating.

Thelubrication used during preprocessing has amajor impact on the productivity of the
primary processing area. For example, if preprocessing fails to produce high-quality
coated rod or the coating is damaged during the material handling then the output
efficiency of the primary processing is decreased. Thisisaresult of increased forging
loadsand prematuretool failure, aswell asincreased defect sorting and the reprocessing
of the coated rod. The lubrication coating must provide a barrier between the work
material and die during the drawing operation, while still being sufficiently robust to
remain on the wire during the transfer to the extrusion operation, where the wire
undergoes multistage deformation without the application of additional lubrication.
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This chapter describes the application of neural networksto the recognition of lubrica-
tion defectstypical toanindustrial cold-forging processemployed by fastener manufac-
turers. The accurate recognition of lubrication errors, such as coating not being applied
properly or damaged during material handling, isvery important tothequality of thefinal
product in fastener manufacture.

Backgr ound

The evaluation of the coating performance isdonein industry usually through produc-
tion-based methods. The main measuresfor coating performancearetooling changeover
rates, and the detection of score marks appearing on drawn and forged surfaces. These
production-eval uation techniques, while being val uablelong-termindicatorsof coating
performance, arereactive methodsand are unabl e to assessthe coating condition before
it enters the primary processing area. This leads to tooling and product damage.

The evaluation technique developed at the School of Engineering and Technology,
Deakin University (Savage, Kershaw, & Hodgson, 1999) uses aprocess-simulation test
rig and aselection of analysistoolsto evaluate the coating performance (Figure 1). This
technique allows lubrication evaluation to be performed in isolation to production,
enabling analysis to be done without interfering with day-to-day running of the
production line.

Themain performancerequirementsfor thelubrication coating in fastenersmanufactur-
ing are from the preforge wire-drawing operation and the extrusion stages in the cold
forging process. In the devel oped process-simulation test-rig, multi-reduction drawing
simulates these stages in the fastener manufacturing process. The first reduction
simul atesthe predrawing processwhile asecond reduction simulatesthe extrusion stage
of the cold forging process (Savage et al., 1999). The test rig was constructed from a
variable-speed, continuous-drawing machine where quick-change multireduction die

Figure 1. The multidraw test rig
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hostings, a quick-change rod-clamping mechanism, and a constrained flatbed were
designed and installed. Strain gauges were mounted on the rod-clamping mechanism to
detect drawing force at both the first and second reductions. Force signals are collected
and conditioned by National Instruments hardware and L abview software. Inthiswork,
we deal with preforge wire drawing operation only.

Experimental Set-Up

L aboratory Testing

A two-layer solid lubricant system was used on the rods. This was applied in a plant
environment with conditions kept as close as possible to those used for standard
production. Fifty samples were produced with atwo-layer coating applied: zinc phos-
phate carrier and cal cium stearate lubricant coating. The rods are pickled to clean them
and a zinc-phosphate layer is deposited followed by a calcium-stearate layer. Another
20 sampleswere produced asbeforebut with an additional coating of soaplubricant. This
final coat of powdered lubricant was added to minimize the damage of the sensor’s
drawing die on the production wire the same way asit is donein plant.

Four different kinds of defects common in production of fastenerswereintroduced into
the coatings (Figure 2):

1  No coating, where heat shrink-wrap was applied to rods prior to all stepsin the
coating process. This corresponds to missing coatings from a preprocessing
stage;

2 Zincphosphateonly, where heat shrink-wrap wasapplied after the zinc-phosphate
application. This corresponds to the missing cal cium-stearate layer coating from
a preprocessing stage;

3. Hammer peening of the surface of the bar. This type of error simulates defects
introduced during material handling from preprocessing area to the primary
processing;

Figure 2. Sample rod for the laboratory trial
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4. Scratchingof thecoating byitsremoval parallel tothebar. Thiswasintroduced by
filing the coating off. Thistype of error simulates coils being dragged acrossthe
shop floor during transfer from preprocessing areato the primary processing.

All defectswere approximately 50mm in length and applied to the circumference of the
rod with defects being separated by variable fully-coated lengths of rod.

The experimental test rig was used to produce the rod samples drawn with a0.35 mm
reduction from the starting diameter of 0.50 mm. The sampl eswere drawn with an area
reduction of approximately 7%, andtheloadson thedrawing dieweremonitored by strain
gaugesontherod-clamping mechanism. All defectsresultedin increased drawing loads.
Inthe case of the hammer peening, thisislikely tobeduetotheresultingirregul arity of

Figure 3. Typical nonlubricated rod sample for the laboratory trial
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Figure 4. Typical lubricated rod sample for the laboratory trial
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the rod diameter. In the other three cases, reduced efficiency of the coatingsis due to
missing lubrication components. The defect with only zinc phosphate layer resulted in
the highest friction. The zinc phosphate is a soft coating and thusiis likely to produce
agalling or sticking effect as the rod passes through the die.

The typical force signatures for the rods with two layers of lubricants (labelled as
nonlubricated samples) and for the rods with an extra layer of soap lubricant applied
(labelled as the lubricated samples) are shown in Figures 3 and 4.

Ascan beseen, Error 4 (scratching of the coating) isvisually indistinguishablefrom the
normal condition (the one without any errors) on nonlubricated data, and only Error 3
(peening of the surface of the bar) isreadily distinguished from the normal conditionon
the lubricated data.

Theforce signaturesfrom these 70 trialswere collated to create two time series, onefor
nonlubricated samples, and another for lubricated sampleswithall five possiblelubricant
conditions (normal condition and the four defects) appropriately prelabelled with a
corresponding condition label being manually applied to each time step of the drawing
forcesignal.

Production Testing

A two-layer solid lubricant system was used on therods same aswith laboratory testing.
Thiswas applied in a plant environment to a continuous wire as part of the standard
production. The rod samples were drawn with a 0.008 mm reduction from a starting
diameter of 1.400 mm.

Two plant trials were made with two-layer coating applied: zinc-phosphate carrier and
calcium-stearate |lubricant coating (Figure 5). Another two plant trials were done as
before but with an additional coating of soap lubricant (Figure 6). This final coat of
powdered lubricant wasadded to minimizethedamage of the sensor’ sdrawing dieonthe
productionwire.

Figure 5. Nonlubricated wire used in production trials
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Figure 6. Lubricated wire used in production trials
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Threedifferent kinds of defectscommonin production of fastenerswereintroducedinto

the coatings (Figure 7):

1  Zincphosphateonly, whereheat shrink-wrap was applied after the zinc-phosphate

application
2 Hammer peening of the surface of the bar
3. Scratching of the coating by itsremoval parallel to the bar

No coating defect that was introduced in the laboratory testing was not evaluated in the

production trials due to a potential tooling and sensor damage.

The defects were varied in length and in the order of appearance in contrast to the
laboratory trial and applied to the circumference of therod with defects being separated

by variable fully-coated lengths of rod.

The sampleswere drawn with an areareduction of approximately 0.54% and aload cell
monitored theloadson the drawing die. All defectsresulted in increased drawing loads
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Figure 8. Typical nonlubricated wire sample in production trials
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Figure 9. Typical lubricated wire sample in production trials
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similar to laboratory trial. The defect with only a zinc-phosphate layer resulted in the
highest friction similar to laboratory trial.

The typical force signatures for the rods with two layers of lubricants (labeled as
nonlubricated samples) and for therodswith an extralayer of lubricant applied (labeled
as the lubricated samples) are shown in Figures 8 and 9.

Ascan beseen, Error 3 (peening of the surface of thewire) isvisually indistinguishable
from the normal condition (the one without any errors) on nonlubricated data, and only
Error 4 (scratching of the coating) isreadily distinguished from thenormal condition on
the lubricated data.
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Theforce signatures from these four plant trials were again collated to create two time
series, one for nonlubricated samples, and another for lubricated samples with all four
possible lubricant conditions (normal condition and the three defects) appropriately
prelabel ed with a corresponding condition label to each time step of the drawing-force
signal based on recording from amanual-error flagging (Figure 7). The datalogging of
lubrication defects was activated manually at the start and the end of each error
condition. Thisresulted inthejust approximate recordingsof the start and the end of the
error sequencein contrast to laboratory datawhere thisinformation was more accurate.

M ethodology

The main aim of thiswork isto develop an inductive model to identify accurately the
lubrication errorsin cold-forging by analyzing aforcesignature. Thatis, forcevariations
from the nominal values are to be linked to various lubrication defects. This type of
problem is generally called condition monitoring and uses advanced technologies in
order to determine equipment condition and potentially predict failure. It includes, but
is not limited to, technologies such as:

i Vibration measurement and analysis (e.g., Zheng & McFadden, 1999)
i Infrared thermography (e.g., Mattsson, Hellman, & Ljungberg, 2001)
i Oil analysisand tribology (e.g., De A Leao, Jones, & Roylance, 1996)
i Ultrasonics (e.g., Oh, Shin, & Furgason, 1994)

i Motor Current Analysis (e.g., Péyhonen, Negrea, Arkkio, Hydtyniemi, & Koivo,
2002)

There are several possible approaches to the task of accurately identifying lubrication
errors by analyzing the force signature. The most common approach isto formulate the
problem asaclassification (pattern recognition) problem (Breiman, Friedman, Olshen, &
Stone, 1984).

We are interested in separating accurately the normal condition from all types of
lubricationdefects. However, asingledrawing forcevaluerevealsvery littleinformation
about what sort of condition the processisin. Extracting some useful statistical features
from a set of contiguous force values can alleviate this limitation.

fi = PJ (XI 1erey Xi+n )1
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wheref isthefeature, P isthe " feature extractor function, x isthe first force value of
the set, x,,is the last force value of the set, and nisthe size of the set.

The set of force values is defined as a sliding window. Associated with each sliding
window is the lubrication condition or the output class:

h(f,,..., f,)e (normal,errd,..., err4),

Therefore, we can associate each sliding window and its features with a corresponding
lubrication condition. The true lubrication condition was chosen to be the output class
associated with each sample point, x, of the sliding window. In this case, the sliding
window always extracts features from the past drawing force data. The size of asliding
window was 300 time steps and sel ected based on the minimal root-mean-square error

between the predicted condition by the model and the actual condition of the [ubricant.

The usefulness of the features extracted from the drawing force signal was analyzed by
sensitivity analysisto evaluate their impact on the recognition rate for each lubrication
condition and only the most important ones were retained.

Thefollowing statistical features were sel ected:

i Maximum force valuewithin asliding window;
i Minimum forcevaluewithin asliding window;
i Arithmetic mean (average) force value within asliding window;
i Geometrical mean (median) forcevaluewithinasliding window;

i Standard deviation of the force valueswithin asliding window. Thisisameasure
of how widely force valuesare dispersed from the averageforce value (the mean);

i Average deviation of the force valueswithin asliding window. Thisisameasure
of the variability in adataset. It isthe average of the absolute deviations of force
data points from their mean;

i Skewnessof theforcevalueswithinaslidingwindow. Thischaracterizesthedegree
of asymmetry of aforce data distribution around its mean;

i Kurtosisof theforcevalueswithinaslidingwindow. Thischaracterizestherelative
peakedness or flathess of a force data distribution compared with the normal
distribution;

i Correlation between the force values within the current and the previous sliding
windows;

i Covariance between the force values within the current and the previous sliding
windows. Thisistheaverage of the productsof deviationsfor each forcedata-point
pair.
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Inaddition to extracted features, we al so used the current force signal and the past force
signals with different time delays ranging from 25 time steps to 400 time steps also
selected based on the minimal root-mean-square error between the predicted condition
by themodel and the actual condition of thelubricant. Thisresultedin 21 variablesbeing
available as inputs to the model: 10 statistical features as above, the measured force
signal and 9 past force signal with different time delays as above.

Alternative methodsfor feature extraction usedin condition monitoring include spectral
analysisusing Fast Fourier Transforms (FFT) (Kumar, Ravindra, & Srinivasa, 1997) and
Wavelet Analysis(Luo, Osypiw, & Irle, 2003). However, our experimentshaveindicated
that statistical features extracted from the force signal provided more information to
distinguish between the normal condition of alubricant and lubrication errors.

Theoutputsof themodel wereinnormal condition (nolubrication defects), and all types
of lubrication defects that were for laboratory data: no coating, zinc-phosphate layer
only, peening and scratching, and for production data: zinc-phosphate layer only and
peening and scratching. No defect representing no coating was introduced in the plant
environment, due to possible damage to tooling and sensors in the plant.

As an inductive model within a patter recognition framework we used a feed-forward
multilayer perceptron (ML P) with backpropagation learning al gorithmwithamomentum
term.

Anattractivefeatureof an ML P network isthat, given the appropriate network topol ogy
and the rigorous training procedures, they are capable of reliably characterizing a
nonlinear functional relationship (Ripley, 1996). We used a hyperbolic tangent as the
activationfunctionof theMLPmodel. A pattern (online) learning and early stopping was
employed. All input variableswere normalized with zero-mean-unit averagenormaliza-
tion.

The dataused for modeling was obtained by datalogging at the rate of 250 samples per
second-strain gauges ontherod-clamping mechanism. Asmentionedinthe Experimental
Set-up section, for thelaboratory datatheseforce signatureswere collated to createtwo
timeseries, onefor nonlubricated samplesand another for lubricated sampleswithall five
possible lubricant conditions (normal condition and the four defects) appropriately
prel abelled with acorresponding condition label being manually appliedto eachtimestep
of thedrawing force signal. For the production data, theforce signaturesresulted intwo
time series (as continuous rods were used), one for nonlubricated samples and another
for lubricated sampleswith all four possible lubricant conditions (normal condition and
thethree defects) appropriately prelabel ed with acorresponding condition label to each
time step of the drawing force signal based on activating data logging of lubrication
defectsmanually at the start and the end of each error condition. Thisresultedinthejust
approximate recordings of the start and the end of the error sequence in contrast to
laboratory datawhere thisinformation was more accurate.

As a result, four time series were obtained with 64,260 samples for nonlubricated
laboratory trials, 51,140for lubricated laboratory trials, 60,143 for lubricated production
trials, and 64,736 for lubricated productiontrials. Thesefour timeseriesweresplitintwo
parts: first 70% of thedatatupleswere used for training and validation, and theremaining
30% wereusedtotest themodel generalization ability. An oversampling of thelubrication
defect datapointsfor training datawasutilized to create an equal distribution of training-
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Table 1. Model-prediction results for each of the lubrication conditions for the
laboratory trial

Lab Trial Nonlubricated samples Lubricated samples

L ub condition NC Errl Err2 Err3 Err4 NC Errl | Err2 ]| En3 Err4

Recognition rate | 93.6 99.5 99.5% | 98.0% | 99.7% | 94.4 99.3 99.6 97.8 99.1
% % % % % % %
13,407 8 4 21 3 11,090 6 3 11 7

Confusion 109 1497 0 0 0 253 878 1 0 0

matrices 68 0 1,362 0 0 131 0 895 3 0
226 0 3 1,076 O 69 0 0 977 0
510 0 0 1 983 209 0 0 8 801

Table 2. Model prediction results for each of the lubrication conditions for the plant
trial

Plant Trial Nonlubricated samples Lubricated samples
Lub condition NC Err2 Err3 Err4 NC Err2 Err3 Err4
Recognition 97.4 98.4 97.2 98.1 94.6 98.8 99.6 99.8
rate % % % % % % % %
10,277 31 69 21 11,110 33 11 5
Confusion 74 2,338 0 29 128 2770 0 0
matrices 169 6 2,416 0 360 0 2,680 0
36 1 0 2,576 145 0 0 2,179

data tuples for each lubrication condition to avoid the problem of small disjunct
(Frayman, Ting, & Wang, 1999; Weiss& Hirsh, 2000) asthedatafor thenormal condition
of lubrication (the one without any defects) dominates the available data tuples (being
around 75% of all availabledata). However, thetesting of themodel generalization ability
was performed on unmodified data samples.

Theoptimal parametersof the M L Pwere sel ected based on preliminary experiments. The
parametersthat resulted in the smallest root-mean-squared-error between the predicted
lubrication conditions and the actual lubrication conditions were used. The selected
MLP model consisted of 21 inputs and 5 outputs for the laboratory data (4 outputs for
the production data) with two hidden layers; thefirst hidden layer has 50 nodes, and the
second hidden layer has 45 nodes. The learning rate selected was 0.05; the momentum
termwas0.99.

Results and Discussion

The overall prediction results of the MLP model and the corresponding confusion
matricesfor both laboratory and plant trialsarein Tables1 and 2. From Tables 1 and 2,
itisclear that the performance of the ML P model isextremely accurate. The ML P model
is able to distinguish almost perfectly the boundaries between all the errors for both
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laboratory and production trials and only has some difficulty with recognition of the
boundaries between the normal condition and the errors. Even these boundaries are
recognized with avery high accuracy between 93% and 97%.

InTablel, NCrepresentsnormal condition, Errl representsno coating, Err2 represents
zinc phosphate layer only, Err3 represents peening, and Err4 represents scratching.
Confusion matrices hereare 5 by 5 matrices showing how many samplesbelongingto a
particular conditionwereclassified accuratel y and how many sampleswere misclassified
asother conditions, for example 13,407 nonlubricated sampleswereclassified accurately
asNC, 109 asErrl, 68 asErr2, 226 asErr3, and 510 asErr4.

Mostimportantly, whilethe extralayer of cal cium-stearate coating appliedtolubricated
samples makesthe defects visually indistinguishable from the normal condition except
for Error 3 (peening) inthelaboratory trial and Error 4 (scratching) in productiontrials,
anMLPmodel isabletorecognizethemalmost asaccurately asfor nonlubricated samples
where only the Error 4 (scratching) for the laboratory trial and Error 3 (peening) in
production trials are visually indistinguishable from the normal condition.

InTable 2, NC represents normal condition, Err2 represents zinc-phosphate layer only,
Err3representspeening, and Err4 representsscratching; no Errl representing no coating
was introduced, due to possible damage to tooling and sensors in the plant. Confusion
matrices here are 4 by 4 matrices, showing how many samples belonging to aparticular
condition wereclassified accurately and how many sampleswere misclassified asother
conditions. For example, 10,277 nonlubricated sampleswereclassified accurately asNC,
74 asErr2,169 asErr3, and 36 asErr4.

Conclusion

This chapter investigates the application of neural networks to the recognition of
lubrication defects typical to an industrial cold-forging process employed by fastener
manufacturers. Several types of lubrication errors, typical to production of fasteners,
were introduced to a set of sample rods drawn both in the laboratory environment and
aspart of astandard production. The drawing forcewas measured, fromwhich alimited
set of features were extracted. The neural-network-based model learned from these
featuresisabletorecognizeall typesof lubrication errorstoahighaccuracy. Theoverall
accuracy of the neural-network model isaround 95% in both laboratory and production
environmentswith almost uniform distribution of errorsbetween all four errorsand the
normal condition.
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