e SSTY) plle. £
(ilis ol lgilaloais /s Lua oliSil Ludigh o sle 6 paaiio g S £d 50

ELECTRUN

4electron.com vg uSJVI pllc auSo o aﬁﬁl =

a3 g AT QIS 13 15)

Lhda | jlma alal) zual g ccilaglaall g sl g Gla ¥l may alle B (huad Uagal S
dadi a5 rna) By (g g A e GaAEY) 5 Classall g Jsall g ?.A;ﬂ Jualdil
OF dad (lady) dauay (Jola oo daadi Apll 3 gkl g Ban allal) JSLia JiSY aag
s3] g dBlall g (U Jola (o diad Gluddd Lpalul dala JSa3 AN 3) gally Jsla
Ga Gl old Lt Jatadl aag ¢ Jalang 0¥ Lggay B alad) iy cilpaad Lgases slally

Tla ga (i g € alad) 12

Jaa s IS sl Om s oY www.delectron.com O AN alle abga B s
Cra ol 138 A saelud <l gl (e pokaiad La cibpaadil) oglal (a3 e Alile o
dsalall S8Y) g o) Y1 JaLtl clalug gl laal daaaly Aol gl sy dgale auil ga
Bliad) cililal aa JAIAT AN cealad) Cliaa adY 7 g g cApigl) Libag ddagi jall g
Ol g Coalhaigall g oal) (0 of gl Sad 8 oot Uil g eLant) 5 ApapalsYl
adluy aadae (B 1sas (168 O alagy caaadl Baildlly adil) Gadl Ul e @
¢ Ay alad Jg8 ¢ 3N 5 Sletayly ol sall Luad Aoy (s,

ol gall sda) (B gt y Baildy ¢ ealad) & Syl od (e A g B SEy abbed () J gl
JS (b Baildl) uatlin @il asls Lﬁu-u.\.\b @,@Auuuhm;umum salal)
o Gra Wl AGE G 305 (L ghdli 5 ghad

(gl alad) Udle B i€ il dadhe USH 1 0S5 of sa8 (g AN (A
1Al 4l §d gial) cililay) JS; ww.delectron.com ¢S alle aSad ga ¢y oo g
Audigh agle B calla i Caly JS Ade daay o3 281 gl g Adnd) (glay oY Al gl o
25 s Sl s I8 5I A s

Ales (315 a8 gall 513 cilial aa

@ www.4electron.com

www.4electron.com s S alle a8 5

CSLA .NET Version 2.1 Handbook

ROCKFORD LHOTKA

www.4electron.com

CSLA .NET Version 2.1 Handbook
Copyright © 2007 by Rockford Lhotka
Revision 2

All rights reserved. No part of thiswork may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the
copyright owner.

Trademarked names may appear in this book. Rather than use atrademark symbol with
every occurrence of a trademarked name, we use the names only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

Editor: Teresa Lhotka

Technical reviewer: Brant Estes

The information in this book is distributed on an “asis’ basis, without warranty.
Although every precaution has been taken in the preparation of this work, the author shall
not have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book (CSLA .NET 2.1.3) isavailable at
http://www.lhotka.net/cslanet.

www.4electron.com

http://www.lhotka.net/cslanet

Acknowledgements

Neither this book, nor CSLA .NET version 2.1,
would have been possible without support from
Magenic Technologies. Magenic is the premier
.NET development company inthe US, and isa

Magen'c ? Microsoft Gold Certified Partner.

Y ou can reach Magenic at
http://www.magenic.com.

CSLA .NET has attracted a community of very
thoughtful, intelligent and dedicated people.

Y ou can find many of them at
http://forums.|hotka.net.

The bug fixes and feature enhancements
described in this book come, in no small part,
through the encouragement and feedback
provided by this stellar community.

Thank you all!

Specia thanksto Andrés Villanueva (Xal), who
provided a great deal of feedback and help with
testing.

And thank you to Chris Russi, who created the
new CSLA .NET logo graphics such as the one
on this page.

www.4electron.com

http://www.magenic.com/
http://forums.lhotka.net/

About the Author

Rockford L hotka is the author of numerous books, including Expert VB 2005 Business
Objects and Expert C# 2005 Business Objects. He is a Microsoft regional director, a
Microsoft MV P, and an INETA speaker. Rockford speaks at many conferences and user
groups around the world and is a columnist for MSDN Online. Rockford is the principal
technology evangelist for Magenic Technologies, one of the nation’s premiere Microsoft gold
certified partners dedicated to solving today’ s most challenging business problems using 100-
percent Microsoft tools and technology.

www.4electron.com

Contents

CSLA .NET Version 2.1 HandbooKc.cccceeevveecieeecisiee e 1
1000 L1 ToX 1 o o 1SS SR 8
Before Reading thiSBOOK...........cccooveiiiiii e 8
Organization of the BOOK...........cccccveeiiieiiiiee e 8
Breaking Changes from CSLA .NET version 2.0..........ccccceeeuneee.e. 9
Known [SSUues With VErsion 2.1........cccccoveeieeviieesee e 10
Summary of Changes and Enhancements............ccccoceeveeecieennnen, 11
Validation RUIES.........cooviic s 12
Framework Changes.........cco v 14
Implementing Per-Type Vaidation RUIES ..o 14
Changes to BUSINESSBASE..........ccueiieiieieseerie et ste e st ste e neeaesneesreese e 15
ValidationRulesManager Class.........ccooeiieiiiieiie i 15
RUIESLISE ClaSS......uiiciieiiie ettt st ee b e s e e sae e st e e saeeenreenneeas 17
SharedVaidationRUIES MOAUIE...........oceriiiiieeee s 19
Changesto ValidatioNRUIES............cccceeiiiiiie et 20
Implementing Dependant Propertiescocoieeierieieeie e 25
ValidationRulesManager Class.........coeeiririerenerese e 26
RUIESLISE ClaSS.......eiiiiiiieiieciie ettt sttt st be b sne s 26
Changesto ValidatioNRUIES...........cooiiiiiiieeee e e 27
IMplementing RUIE SEVETTY ... 29
RUIESEVENTY TYPE ..ottt a e e reenaeeneenns 29
ChangeSto RUIEATTSooiee ettt ettt enreenreeennas 29
Changesto BroKENRUIE ..o s 30
Changes to BrokenRUIESCOIECHIONcceevereeiieiceseese e 31
Changesto ValidatioNRUIES...........c.cociiiieiiie e 33
Changes to BUSINESSBASE..........couiiiiiieiesieeie sttt re e 34

Pagei

www.4electron.com

Implementing RUIE PriOLYccue ittt s 34

Changesto ValidatiONRUIES............ooiiiiiiieeeee s 34
Changesto ValidationRUIESMBNAJEScovreerierieeeesiesesee e e 36
Changesto RUIEMELNOU...........c.ooiiiiic e 36
ChangeSto RUIESLISEcoiiiiiiierieee et 37
Implementing SNOrt-CirCUITINGcooiiriririneeeee e 37
Changesto ValidatioNRUIES............ccoiiiiiiee et e 38
ChangeSto RUIEATTScc.eoiuieiieie ettt sttt s sre e 39
Implementing Strongly-typed Rule Methods ..., 40
Generic RuleHandler DEleQateccveecieie e 40
IRUIEM EthOd INEEITACE ..o 40
Changesto RUIEMELNOQ ..o 41
GeneriC RUIEMEINOU TYPE....cveceeeiieeieceesieese ettt ee st et ae e s re e 41
Changesto ValidatioNRUIES...........c.cociiiiiiiie e e 42
Implementing RUIE RELHEVALcocuoiiieeeee e 42
Changesto ValidatioNRUIES............ooiiiriiieeecee s 43
Changesto RUIEMEINOU..............ooiieiececece e 43
Implementing BrokenRuleSCOoIleCtioN. TOAITAYcoieeiereereeiesiesee e 44
Using the Enhancements...........ocovvvvicinninisie e 45
Using Per-Type Validation RUIES ..o 45
Associating Rule Methods With Properties...........ccceeveieeveece e 45
Implementing Per-Type Rule Methods...........ccooiiiiiiniinieseee e 46
Using Dependant PrOPErtiesoooieriririeiesiesee st 47
USING RUIE SEVENTTY ..ottt st esnaene e nns 48
USING RUIE PIIOMTIES.ee ettt st et e e ne e nnee s 49
USING SNOIt-CIrCUITING ...ttt 50
Short-CirCuiting DY Priorityciceeieeieiiere e see e e 50
EXplicit SNOM-CIrCUITINGcceiuieiecee ettt 51
Using Strongly-typed Rule MethodS ... 52
Defining Strongly-typed Rule Methods...........cooeiiiniiinireceeee e 52
Adding Strongly-typed Rule Methods to your Objects.........cccccceveeveiecieccieceee, 53
Retrieving RUIE INfOIMELTONc.eiiiiiiiiieieeeee et 53
Page ii

www.4electron.com

Retrieving Broken RUIESTN @N AITAYcooueiiiiieiie ettt 54

AULhOrization RUIES..........c.ooiiiiie e 56
Framework Changes.........cco v 57
Implementing Per-Type Authorization RUIES...........ccooiiiiiienineeeeee e 57
Changesto BUSINESSBASE.........cccueiieieciesteeie ettt ee sttt e et snee e ne e 57
Changes to REadONIYBESE.coiiiiiereeeee e 59
Changes to AUthOrZatiONRUIEScoiiiiieieeee s 59
AuthorizatioNRUIESMaNagEr ClaSscccueieieeriiiesiere e seese et nnees 61
SharedAuthori zatiONRUIES CIESSoceiiiiiiieeeee e 62
Implementing IAUthoriZEREAAWIITE ..o 63
IAuthorizeReadWIite INEITACE ..o 63
Changes to BusinessBase and ReadOnlyBase...........c.ccocvveveniinienenenescseseseeenes 64
Changes to the ReadWriteAuthorization Controlccceeeveeienieneese e 64
Using the ENhanCements..........coocevvverieenie e 65
Using Per-Type Authorization RUIES............cooiiiiiineeeeee e 65
Associating Rule Methods With Properties...........ccocvevveeveece e 65
Using TAUtNONZEREAAWIITEceeeeeeeeeee e s 66
FilteredBindiNgLiSt........ooceviiiiie e 67
Framework Changes..........ccccicniniin s 67
Implementing FilteredBindiNgLiStccooiiiriririeieese e 67
FilterProvider DEl@QALE........cccciuieie ettt ene 67
DEFAUITFIITEL ...t nns 68
FilteredBindiNgLISt ClIaSsScccoviirieiiniirenieiee st 68
Using the Enhancements..........ccccuv v 74
Using FIteredBindiNgLIStcoeiieviecieseeceee et 74
Creating & CUSIOM FTEN ..o s 75
Combining FilteredBindingList with SortedBindingListcccceviiinenenencncnenes 76
EditableROOtLISIBASE........c.ccviveeecee e 78
Framework Changes.........cccvv e 79
Implementing Editabl eROOLLISIBESE........ccoceeiiieiiceecece e 79
Editabl eROOLLISIBASE ClaSS.......ccviieeiieeiesieesieeie e s 79

Page iii

www.4electron.com

Using the ENhancements............ooceeveicciee e, 86

EditableRootListBase Class TEMPIELE........cooeereeierieiieee e 86
Altering the EditableROOt TEMPIALEeecveieeeeeeeeee e 87
Using Editabl EROOILISIBESE........cceiirieriirierieie et 88
Creating an Editabl@ ROOLooiiiiiieee e e 88
Creating aDynamicC COlECLION........cceiiireeeee e 90
Interacting with the Dynamic CollECHIONccoceviriii i 91
Cdla.CoreInterfaces and TYPES.......covevvveeviieerer e 93
Framework Changes.........coocveeiieee ettt 93
Implementing ExtendedBindingLiSt........cccoooiiiiriie i 94
RemovingIteMEVENTATGS ClaSS.......c.ooiiiiiieeeeeee s 9
ExtendedBindingLiSt ClasS.........ccovieiieiiiiesieie et 95
Implementing [SAVEADIE..........c.oo i 97
[SAVADIE INEEITACE ... e 97
SAVEAEVENTATGS ClaSS ..ot 97
Changes to BusinessBase and BusinessListBase..........ccccccvveeveeveceececvie e 98
IMPIEMENtiNG TPAreNtooe i 100
[IPAreNt INTEITACEciieececeee ettt ene e re e e e 100
Changes to | EditableBUSINESSODJECTcceiiiiiiiiiierierereee e 100
Changes to BUSINESSBASE..........cocuiiierieeiisee sttt st 101
Changes to BUSINESSLISIBASE.coiieiieienieeie ettt 101
Implementing IREPOMTOtAROWCOUNLoouirieriiriirieriirieeeeee e 102
IReportTotal ROWCOUNt INLEITACEceoveeiieieeereee e 102
Using the ENhanCements............ccoeceevieeiee e 102
Using EXtendedBindiNgLiSt.........cocooiiiririeieieese e 102
USING [SAVADIE......ceeeieee ettt sre e e sneenne s 103
LOCAICONEXT......ccccieeectee et 105
Framework Changes.........cooveeeciee et 105
Implementing LOCACONLEXLcccuveiieiieecie et 105
Changes to ApPliCatiONCONTEXLcoererereeieierie e 106
Using the ENhanCements..........ocovvceeveisie e, 107
Pageiv

www.4electron.com

USING LOCAICONIEXLccuveeiie ittt sttt st ae e nne e enne e 108

Using TransactionSCope TranSaCtioNSceveverieriereresieseeeenee e 108
Using Manual TranSaCtioNScccereierieririenienie st 109
DataPortalcoooveeeieicee e e 111
Framework Changes.........cooveeeceee ettt 112
Implementing the Data Portal Changes..........ccocoveeiiiinenieeee e 112
Changesto MethodCaller ..o 113
Changes to Client\DataPortalccoeveeeiieie e 117
Changesto Server\DataPortalcccooeeeiieiiiciec e e 119
Changes to Server\SimpleDataPortal ... 119
Using the ENhanCements...........ooovvceeiienien s 121
SMAMDELE. ..o e 123
Framework Changes.........ccevvieerieeree e 123
Implementing the ChanQeS ..o 123
EMPLYVAIUE TYPE ..ottt et 123
Changes to SMArtDELE.cooeeieiiereee e ens 124
Using the ENhanCements...........ccovvceeieeenen e 126
Using the SmartDate ENhanCements...........ccvccveereenesie s e 126
USING the NeW CONSLIUCLOIScc.coiieiiiiiesieeie et 127
Using the Default FOrmat StrNg.......coocoeeereeienieseee e 127
Using the TOSING() OVETOadcocoviririiiiieeree e 128
CHaDaAASOUICE.........uee et eree s 129
Framework Changes.........cooveeeciee et 129
Implementing Dynamic Schema Refresh ..., 130
Changes to CdlaDesignerDataSOUrCEVIEWccevererierereeieiesie e 130
Changes to ObjeCtVIEWSCNEMA.cceeceiieriee e 130
TYPELOAEN ClESSeiiuieeiie et ae e e neennee s 131
IMPlEMENEING PagINGcoviiiieiiiiie e 137
Changes tO SElECIODJECLATTS.coviiterierierieeiei et 137
Changes to CHaDaaSOUICEcceeieeieiiesteeie e stee e eee st te e reense e s e e nreeneesns 139
Changes to CHaDalaSOUICEV IBWcecueieerieeieriesieeiesee st ee e sns 139

Page v

www.4electron.com

Changesto CdaDesignerDataSOUrCEVIOWcceeveeiiieeiieeiee et sree e 140

IMPIEMENEING SOMINGveeeeieee et sre e 141
Providing Sort Information to the SelectObject Event Handler ..o 141
Implementing the CanSort ProPEItYccooeerereererienee e 142

Using the ENhanCements............cccoecvevee e e, 142

USING PAGING ...ttt bt r e bbb 142
Implementing a Paged CollECtioN...........cccveieieesece e 143
UsiNg Paging iN @GIHAVIBWc.coiuieiiiieciece ettt e 145

(8IS aTe o (1 o SRR 145
SOMING INTNE UL .. 146
SOrting iNthe DalabaSeccveviiieceee et 147

Miscellaneous Changes..........ccoocvvieevee e 149
Framework Changes..........cocev e 149

Implementing ICancel AddNew in SortedBindingListccocoveeieneneeneneeseeene 149
Changes to SortedBindiNGLISEcveiirerieieere e 150

Changing BusiNeSSLIStBaSE.ISDITLYcccccceeiieieiiecieeie e 151
Changes to BUSINESSLISIBASE.coiiriiiierieeie ettt s 151

Changing BUSINESSBASE.DEIELEccccoveririeieeee e 151
Changesto BUSINESSBASE...........ooiiiiiiceee e 152

Implementing the Initialize Methods............coooiiiiiii e 152
Changesto Base ClassesS.......cccveiiiiieeiinieseee e 153

Using the ENhanCements...........cccvvceevieenen e 154

Overriding BuSINeSSBase.DEIELEcccveveeieeiee et 155

Using the Initialize Methods............cooiiiiiieiiecc e 155
Defining a PropertyChangingEventArgs Class..........covveererieienene e, 155
Generated Business Class EXamPle........coecveeiieneere e 155
User Code Business Class EXamPIe.........ccoveeieeieeie st 156

T [R 158
Pagevi

www.4electron.com

List of Tables

Table 1. Breaking changesin version 2.1

Table 2. Known issue with version 2.1

Table 3. Functional enhancementsin version 2.1

Table 4. New validation conceptsin version 2.1

Table 5. Possible results of RulesToCheck method

Table 6. Rule severity definitions

Table 7. Parts of the rule// URI format

Table 8. Changes to Cda.Core.

Table 9. Information available through ApplicationContext
Table 10. Data portal method calling semanticsin version 2.0
Table 11. Data portal method calling semanticsin version 2.1
Table 12. Data portal method calling cross-reference

Table 13. Using the new SmartDate constructors

Table 14. New paging properties of SelectObjectArgs

Table 15. New sorting properties of SelectObjectArg

Table 16. List of miscellaneous changesin CSLA .NET 2.1

List of Figures

Figure 1. Enabling paging in the GridView control

10
11
13
21
48

93
105
111
112
122
127
138
141
149

145

Page vii

www.4electron.com

Introduction

Welcome to the CSLA .NET Version 2.1 Handbook. This book covers the features,
enhancements and changes made to the CSLA .NET framework during the creation of
version 2.1.

Note: In the process of writing this book some changes were made to the
framework. The exact version of the framework that corresponds to this book
isversion 2.1.3, which you can download from

http://ww. | hot ka. net/ csl anet/ downl oad. aspx.

Before Reading this Book

CSLA .NET version 2.0 is part of the Expert VB 2005 Business Objects and Expert C# 2005
Business Objects books, published by Apress (http://www.apress.com). These books are
ISBN 1590596315 and ISBN 1590596323 respectively.

This Handbook assumes that you have read and are familiar with the content from the
Expert VB 2005 Business Objects or Expert C# 2005 Business Objects book.

| Note: CSLA stands for Component-based, Scalable, Logical Architecture

The CSLA .NET framework is licensed according to the license at
http://www.lhotka.net/cd anet/license.aspx.

CSLA .NET version 2.1 isan evolutionary step forward from version 2.0. It includes
some bug fixes and minor enhancements made in versions 2.0.1 through 2.0.3, plus a set of
more substantial changes to the framework.

Organization of the Book

The enhancements made in version 2.1 are fairly wide-ranging, and so they affect many parts
of the framework itself, and enable a number of new capabilities for developers building
applications based on business objects. Some enhancements affect a single class, others affect
many classes. Some framework classes have been changed due to multiple enhancements.

To provide some level of order, this book is organized around feature enhancements. Each
enhancement or change will first be discussed in terms of itsimpact on CSLA .NET, and then
in terms of how it can be used when building applications.

In each section, you can choose whether to read the detail s behind the change, or skip
through to the discussion on how to use the enhancement in your application development.

Page8

www.4electron.com

http://www.lhotka.net/cslanet/download.aspx
http://www.apress.com/
http://www.lhotka.net/cslanet/license.aspx

Breaking Changes from CSLA .NET version 2.0

Where possible, | have attempted to avoid breaking existing code based on version 2.0, but
there are some cases where breaking changes were required. Table 1 lists the breaking
changes and their likely severity.

Summary Severit
The calling semanticsfor pat aPort al . Cr eat e<T>() and *—

Dat aPort al . Fet ch<T>() (with no criteriaat all) are different.
They now invokeDat aPortal _Create() and
Dat aPor t al _Fet ch() (with no criteria parameter)

respectively.

Theoverri dabl e/vi rtual DataPortal _Create() methods affectsvirtually everyone
declared inBusi nessBase and Busi nessLi st Base have

changed their signature

Per-type validation rules requires code changes when affectsvirtually everyone

moving from 2.0to 2.1.

Per-type authorization rules may require code changes when may affect your code
moving from 2.0 to 2.1.

Csl a. Dat aPor t al Except i on NOW includes the original unlikely to break your code
exception message text in its message text to assist in

debugging.

Theparent property in Busi nessBase iSnow of type unlikely to break your code
| Par ent.

TherunLocal attribute is no longer inherited from base class unlikely to break your code
methods when the methods are overridden by a subclass.

The order in which onpeseri al i zed() iscalled has changed. unlikely to break your code

Tablel. Breaking changesin version 2.1

Each of these breaking changes flows from a specific enhancement or change made to the
framework for version 2.1. | will discuss the nature of the breaking change along with the
enhancement later in the book.

Page9

www.4electron.com

Known Issues with version 2.1

There is one known issuewhere version 2.1does not function as expected Table 2 identifies
the known issue with version 2.1.

Class Summary

Csl abataSource You can not add a cs! abat aSour ce t0 a page by choosing to “add a
new data source” from within the Gri dvi ew Or Det ai | sVi ew controls.
Attempting to do thiswill result in an exception that prevents the
control from displaying properly. | have been unable to resolve this
issue, but there is a viable workaround.

Y ou must manually add a cs! abat aSour ce control to your page, either
using drag-and-drop from the Toolbox, or by typing the tag into the
page. At this point you can configure the assembly/type information
in the data source control. Y ou can then choose this data source
control as the data source for your Gri dvi ew Or Det ai | sVi ewcontrol.

Table2. Known issuewith version 2.1

| am continuing to research thisissue. As| learn more, | hope to resolve thisissue to
provide full integration of the control into the Visual Studio environment.

Page 10

www.4electron.com

Summary of Changes and Enhancements

While CSLA .NET version 2.1 is an evolutionary update from version 2.0, it does include
some substantial changes, which involve parts of the CSLA .NET framework code, and
enable some powerful capabilities for your business development efforts.

At ahigh level, the changes can be grouped into a set of functional enhancements as listed

inTable 3
Enhancement Summary
Validation rules Enhancements for performance, reduction of memory usage

and new features and capabilities

Authorization rules

Enhancements for performance and reduction of memory
usage

Fi | t er edBi ndi ngLi st

A new classthat allows you to create afiltered view of any
list or collection

Edi t abl eRoot Li st Base

A new base class that allows you to create a collection of
editable root objects (objects derived from Busi nessBase)

Changestocsl a. Core

Various changes and additions to the sl a. Cor e namespace to
support the other enhancements listed here, and to enable new
scenarios for business and Ul developers

Local Cont ext

A new property on Appl i cati onCont ext to allow you to more
easily pass global values to all data access code on a server

Data portal Address consistency issues with the data portal that were
introduced in version 2.0.2, and minor enhancements to the
Remoting channel

Smar t Dat e

Provide simpler and more explicit syntax for creating
smar t Dat e Objects, and enable more flexible formatting of date
values

Csl aDat aSour ce

Add support for collections that provide paging and sorting
functionality

Miscellaneous

Many minor enhancements and bug fixes to various pre-
existing features

Table 3. Functional enhancementsin version 2.1

The rest of this book will address the changes in each of these functional areas.

Page 1l

www.4electron.com

Validation Rules

Perhaps the single biggest set of changesin version 2.1 involve validation rules processing.
These changes improve performance, reduce memory consumption and add new capabilities

in terms of how broken validation rules can be expressed.

CSLA .NET 2.0 includes a validation rules processing mechanism where each validation
rule isimplemented as a method. The method signature of each of therule methods is defined
by the Csl a. val i dat i on. Rul eHandl er delegate. The following is an example of asimple rule
method:

Private Function MyRul eMet hod(_
ByVal target As nject, ByVal e As Rul eArgs) As Bool ean

Dimresult As Bool ean

If <condition is nmet> Then
result = True

El se
e. Description = "Human readabl e description”
result = Fal se

End |f

Return result

End Function

When a business object is created, an AddBusi nessRul es() method is called, alowing the
object to associate rule methods with properties. For instance:

Protected Overrides Sub AddBusi nessRul es()

Val i dati onRul es. AddRul e(_
AddressOf MyRul eMet hod, " MyProperty")

End Sub

Rulesfor a property are automatically checked when the pr oper t yHasChanged() method
is called within a property set block. Y ou can also explicitly check the rules for a property by

calling val i dat i onRul es. CheckRul es(propertyNane), or for all properties by calling
Val i dat i onRul es. CheckRul es().

While this mechanism works very well, it has some drawbacks and limitations which
version 2.1 seeks to address. Table 4 lists the new concepts introduced in version 2.1.

Page12

www.4electron.com

Concept

Description

Per-typerules

Rather than maintaining alist of rules methods for each property
in each object instance, you can now maintain alist of rulesfor
each property at aclass, or type, level. Thisincreases
performance and reduces memory usage, because the associations
between rules and properties are stored just once for al object
instances. The concept of per-instance rule methods remainsin
the framework, but is no longer the default (or recommended)
approach.

Dependant
properties

In your AddBusi nessRul es() method, you can now call

val i dati onRul es. AddDependant Property() to indicate that one
property depends on another. In practical terms, this means that
when validation rules are checked for one property, the rules for
the dependant property are also checked.

Rule severity

Within arule method, you can now specify the severity of arule
if it is broken. The severity can be one of Error, War ni ng or
I nformation.

Rule priority

When associating a rule method with a property, you can now
specify apriority for the rule. When the rules for a property are
checked, they are checked in priority order (starting with priority
0 and counting up).

Short-circuiting

Short-circuiting allows you to stop the processing of rulesfor a
property under certain conditions. The most direct techniqueisfor
the rule method to set e. St opPr ocessi ng to Tr ue. Also, when
using priority-based rules, you can set athreshold so rules below
acertain priority will only be processed if no previous rule has
been broken.

Strongly-typed rule
methods

Using generics, you can now define a rule method that accepts
strongly typed parametersfor t ar get and arguments (e).

Retrieverulesfor an
object

Y ou can now retrieve alist of the rules associated with the
properties of an object. Thisis exposed as a pr ot ect ed method in
Busi nessBase, and it returns an array of string valueswith this
format:

rul e://rul eMet hod/ propert yName?ar gl=x&ar g2=y

Retrieve array of
broken rules

The Br okenRul esCol | ect i on class now has aToArray() method
that returns an array of st ri ng values containing the human
readabl e descriptions of al broken rulesin the object.

Table4. New validation conceptsin version 2.1

Page 13

www.4electron.com

Implementing these changes required the addition of some new classesto the CSLA .NET
framework, and changes to a number of existing classes. As much as possible, | preserved
backward compatibility with existing, version 2.0, code, but there are some breaking changes
asaresult of these enhancements.

Before discussing how to use these enhancements, let’s walk through the changes to the
CSLA .NET framework itself.

Framework Changes

Enhancing the validation rule processing in CSLA .NET involved changing and adding a
number of classes. Hereisalist of changed classes or types:

e Busi nessBase (from Csl a. Core)
® BrokenRul e

® BrokenRul esCol | ection

e ComonRul es

® Rul eArgs

® Rul eHandl er

® Rul eMet hod

® \ValidationRules

And hereisalist of new classes or types.

® Rul eSeverity

® Rul eslLi st

® SharedVal i dati onRul es
® \ValidationRul esManager

Asyou can see, virtually every classin the Csl a. val i dat i on namespace was affected by
these changes. Let’ swalk through each functional enhancement and examine the changes
required to implement each. Keep in mind that some of these changes are interrelated, so you
may see some unfamiliar code in some earlier sections. This code will be more fully
explained | ater.

Implementing Per-Type Validation Rules

Version 2.1 adds the concept of per-type rule methods, while retaining per-instance rule
methods. However, the default behavior is now to use per-type validation rules, which means
that Csl a. Cor e. Busi nessBase. AddBusi nessRul es() iSnow used to add per-type rules.
Similarly, the val i dat i onRul es. AddRul e() method now adds per-type rules, rather than per-
instance rules.

Page 14

www.4electron.com

Changes to BusinessBase

To retain the per-instance rule support, a new method has been added to
Csl a. Cor e. Busi nessBase:

Prot ect ed Overridabl e Sub Addl nst anceBusi nessRul es()

End Sub

The constructor has been enhanced to aways call the new Addi nst anceBusi nessRul es()
method, but to only call AddBusi nessRul es() if per-type rules haven't already been
established:

Protected Sub New()

Initialize()
Addl nst anceBusi nessRul es()
If Not Validation. SharedVal i dati onRul es. Rul esExi st For (Me. Get Type) Then
SyncLock Me. Get Type
If Not Validation. SharedValidati onRul es. Rul esExi st For (Me. Get Type) Then
AddBusi nessRul es()
End | f
End SynclLock
End | f
Addl nst anceAut hori zati onRul es()
If Not GCsla.Security. SharedAut horizati onRul es. Rul esExi st For (Me. Get Type) Then
SyncLock Me. Get Type
If Not Csla.Security. SharedAut hori zati onRul es. Rul esExi st For (Me. Get Type) Then
AddAut hori zati onRul es()
End | f
End SynclLock
End | f

End Sub

What this means, in practice, isthat AddBusi nessRul es() iscalled just one time during the
life of an AppDomai n. Once the per-type rules are set up, they are retained by the
Shar edVal i dat i onRul es object for the lifetime of the application.

The syncLock statement ensures that two threads can't try to invoke AddBusi nessRul es()
simultaneously. The odds of this occurring would be very small regardless, but this code
structure ensures that it won't happen.

ValidationRulesManager Class

Before getting into the details of shar edval i dat i onRul es, we need to discuss the new
Val i dat i onRul esManager class. Since business objects may now have two lists of rule
methods (one per-type, the other per-instance), a new type of object was required to manage
these individual lists of rules. Thisisthe purpose behind the val i dati onRul esManager class.

val i dati onRul esManager iSacontainer for alist of rule methods associated with each of
the business object’ s properties. Thisisimplemented using abi cti onary object:

Friend O ass Validati onRul esManager

Private nmRul esList As _
Generic.Dictionary(Of String, RulesList)

End d ass

Page 15

www.4electron.com

EachitemintheDi cti onary iSaRul esLi st object, which isalist of the rule methods
associated with the specified property. The key value for theDi ct i onary iSthe property
name.

ThisDi cti onary object is created on-demand to minimize memory consumption and
overhead. TheRul esDi cti onary property implements this behavior:

Friend ReadOnly Property Rul esDictionary() As _
Generic.Dictionary(OF String, RuleslList)
Cet
If mRul esList |Is Nothing Then
nRul esLi st = New Generic.Dictionary(Of String, Rul esList)
End |f
Ret urn nRul eslLi st
End Get
End Property

More interesting and complex, isthe Get Rul esFor Property() method. This method is
responsible for finding and returning the Rul esLi st object containing the rules for a specified
property. However, there are two different scenarios under which this method might be
called: adding rules to the property, or retrieving the rules for the property.

When the first rule is added for a property, anew Rul esLi st object must be created to
maintain the list of rules. On the other hand, when retrieving rules for a property; if there are
no rules then Not hi ng isreturned, and no Rul esLi st object should be created. This behavior
iscontrolled by thecr eat eLi st parameter:

Friend Function Get Rul esForProperty(_
ByVal propertyName As String, _
ByVal createlList As Bool ean) As Rul esLi st

' get the list (if any) fromthe dictionary

Dimlist As Rul esList = Nothing

I f Rul esDi ctionary. Cont ai nsKey(propertyNane) Then
list = RulesDictionary.|ten(propertyNane)

End | f

If createList AndAlso list Is Nothing Then
' there is no list for this nane - create one
list = New Rul esLi st
Rul esDi cti onary. Add(propertyNane, |ist)

End | f

Return |ist

End Function

In either case, an attempt to retrieve any existing Rul esLi st object is made by checking to
seeif theDi cti onary contains a key corresponding to the property name. If such alist exists,
itisreturned. If no such list exists, and if creat eLi st iSTrue, then anew Rul esLi st objectis
created and added to theDi cti onary.

The goal isto avoid creating Rul esLi st objectsor Di cti onary entrieswhere possible. If
there are no rules for a property, then that property should incur no overhead in terms of
memory consumption or object creation.

Obvioudly, there must be a way to add rules for a property. While this could be handled by
any code calling val i dat i onRul esManager , | chose to implement AddRul e() methods directly

inval i dati onRul esManager to centrally implement the behavior. Thefirst Addrul e() method
adds simple rule methods:

Page 16

www.4electron.com

Publ ic Sub AddRul e(_
ByVal handl er As Rul eHandl er, ByVal args As Rul eArgs, ByVal priority As I|nteger)

get the list of rules for the property
Dmlist As List(O |RuleMethod) = _
Get Rul esFor Property(args. PropertyName, True). GetLi st (Fal se)

we have the list, add our new rul e
|'i st. Add(New Rul eMet hod(handl er, args, priority))

End Sub

Notice how Get Rul esFor Property() iscalled, passing True for thecr eat eLi st parameter.
There’' salso an overload of Addrul e() to handle strongly-typed rule methods:

Public Sub AddRule(OF T, R As Rul eArgs)(_
ByVal handler As RuleHandler(Of T, R), ByVal args As R, ByVal priority As |nteger)

get the list of rules for the property
Dmlist As List(Of |RuleMethod) = _
Get Rul esFor Property(args. PropertyNanme, True). GetLi st (Fal se)

we have the list, add our new rule
l'ist. Add(New Rul eMet hod(OF T, R)(handler, args, priority))

End Sub

It al'so turns out that the Rul esLi st object is responsible for maintaining the list of other
properties that are dependant on the current property. There'saRul esLi st object for each
property with rules, and that Rul esLi st maintains the names of any other properties whose
rules should be checked any time this property’ s rules are checked.

Again, | chose to encapsulate the behavior of associating a dependant property using a
method in the val i dat i onRul esManager class:

Publ i c Sub AddDependant Property(_
ByVal propertyName As String, ByVal dependant PropertyNane As String)

get the list of rules for the property
Dmlist As List(Of String) = _
Get Rul esFor Property(propertyNane, True). Get Dependancyli st (True)

we have the |list, add the dependency
|'i st. Add(dependant PropertyNane)

End Sub

Though these AddRul e() and AddDependant Property() methods are scoped as Publ i c,
remember that val i dat i onRul esManager itself isscoped as Fri end. All of thisfunctionality
existsfor internal use by CSLA .NET, not directly by business or Ul code.

RulesList Class

Each Rul esLi st object exists to manage the list of rule methods and dependant properties for
agiven property. To maintain this data, each Rul esLi st object keepsalLi st of rule methods
and aLi st of dependant property names. It also maintains a flag indicating whether the list of
rules have yet been sorted by priority:

Page 17

www.4electron.com

Friend O ass Rul eslLi st
Private nList As New List (O | Rul eMet hod)
Private nSorted As Bool ean
Privat e nDependant Properties As List(Of String)

End d ass

You've already seen how Vval i dat i onRul esManager callsan Add() method on Rul esLi st
to add a new rule method to the list of rules for a property. The Add() method not only adds
the item, but also setsnsor t ed to Fal se, because adding a new item to the list potentially
upsets any pre-existing sort:

Public Sub Add(ByVal item As | Rul eMet hod)

nmLi st. Add(item)
nSorted = Fal se

End Sub

Val i dat i onRul esManager also includes code that callsaGet Li st () method to get the list
of rules contained within the Rul esLi st object. Thiscet Li st () method is called in two
different scenarios: one iswhen rules are being added to the list, the other is when the rules
are being invoked by theval i dat i onRul es. CheckRul es() method. In thislatter case, in order
to implement rule priorities, the rules must be sorted by priority within the list. The
functionality to support sorting will be discussed later in this book. To control whether the
list should be sorted before being returned, the appl ySort parameter is used:

Publ i c Function CetList(ByVal applySort As Bool ean) As List(O | Rul eMet hod)

I f applySort AndAl so Not nBorted Then
mLi st. Sort ()
nSorted = True

End | f

Return niLi st

End Functi on

The nsor t ed field is used to avoid re-sorting the list in the case that it has aready been
sorted. In normal usage, all rules are added when an object isfirst created, and then the
CheckRul es() method is called numerous times after that point. The nsort ed field isan
optimization to ensure that the contents of the list are only sorted when needed.

Val i dat i onRul esManager callsaGet DependancylLi st () method, which returnstheLi st of
property names that are dependant on this property. ThisLi st object is created on-demand by
the Get DependancyLi st () method:

Publi ¢ Function Get DependancyLi st (ByVal create As Bool ean) As List(Of String)

| f nDependant Properties I's Nothing AndAl so create Then
nmDependant Properties = New List(OF String)

End | f

Ret ur n nDependant Properti es

End Functi on

Val i dat i onRul esManager , combined with Rul esLi st , provide a powerful storage
mechanism for the rule methods and dependant properties associated with each property in a

Page 18

www.4electron.com

business object. A normal business object will have a per-typeval i dat i onRul esManager
object, and some objects may have a per-instance val i dat i onRul esManager object instead of,
or in addition to, the per-type object.

SharedValidationRules Module

Theshar edval i dati onRul es type exists to maintain the per-typeval i dat i onRul esManager
objects for all business objects in the application. The word “shared” is used in the type
name, because per-type rules are shared across all instances of a given type of business
object.

The val i dati onRul esManager Objectsare maintained in abi cti onary, keyed by the type
of each business object in the application:

Friend Mbdul e SharedVali dati onRul es
Private mvanagers As New Dictionary(Of Type, Validati onRul esManager)

End Modul e

The Busi nessBase Class uses shar edVval i dat i onRul es to retrieve and manage the list of
rule methods and dependant properties for each type of business object. The
Shar edval i dat i onRul es module implements a Get Manager () method to allow retrieval of the
appropriate val i dat i onRul esManager object for a specific business object type:

Friend Function Get Manager(_
ByVal object Type As Type, ByVal create As Bool ean) As Vali dati onRul esManager

Dimresult As ValidationRul esManager = Not hi ng
I f Not mMvanagers. Tr yGet Val ue(obj ect Type, result) AndAl so create Then
SyncLock mVanager s
result = New Val i dati onRul esManager
mvanager s. Add(obj ect Type, result)
End SynclLock
End | f
Return result

End Functi on

As with the previous classes, you can see that the val i dat i onRul esManager for a business
object typeisonly created on-demand. The cr eat e parameter is used by Busi nessBase t0
differentiate between callsto Get Manager () for the purpose of adding new rules (in which
casecreat e iSTrue); and retrieving rules for the checkRul es() implementation (in which
casecreat e iSFal se).

Busi nessBase also callsaRul esExi st For () method to determine whether per-type rules
do exist for the business object type. This method smply callsthe Cont ai nskey() method of
the Di cti onary object to determineif a val i dati onRul esManager exists for the specified
type.

Notice the use of the syncLock statement in the Get Manager () method. Because this
method is shar ed (due to being in amdul e), it should be made threadsafe. In the case that
multiple threads call Get Manager () at the sametime, SyncLock will ensure that only one
thread at atime will execute thecritical code in the method.

Page 19

www.4electron.com

Changes to ValidationRules

The val i dati onRul esManager and Rul esLi st classes provide the basis for managing both
per-type and per-instance rules. The shar edval i dat i onRul es module uses

Val i dat i onRul esManager t0 maintain the per-type rules. The per-instance rules, however, are
still managed directly by theval i dat i onRul es class, and so it has been changed to support
the new per-instance model, as well as the per-type model.

To begin with, the declaration of the field to hold the per-instance rulesis changed:

' reference to per-instance rul es manager for this object
<NonSeri al i zed()> _

Private m nstanceRul es As Vali dati onRul esManager

' reference to per-type rul es nmanager for this object
<NonSeri al i zed()> _

Private nTypeRul es As Vali dati onRul esManager

' reference to the active set of rules for this object
<NonSeri al i zed()> _

Private mRul esToCheck As Val i dati onRul esivanager

The nRul esLi st field isredefined asm nst anceRul es, which isnow of type
Val i dati onRul esManager.

Additionally, the mrypeRul es field isused to maintain a direct reference to the per-type
val i dat i onRul esManager for thisbusiness object. Technically thisisn't necessary, because
you can always call shar edval i dat i onRul es. Get Manager () t0 get the rules for atype, but
there' s some overhead to that call. Storing the reference in an instance field isaminor
optimization of the process.

Finally, the nRul esToCheck field maintains a reference to the active set of rules used by
the checkRul es() method. Thisisrequired because | chose to keep the per-instance rules
concept while adding the per-type support. A business developer might choose to only use
per-type rules, or only per-instance rules. Or they might choose to use some of each, within
the same object.

Notice that these fields are marked with the NonSer i al i zed attribute. This ensures that
their contents won't be serialized if the business object is converted to a byte stream; to be
moved across the network, for instance.

It isless expensive to recreate the property-rule associations for per-instance rules than it
isto serialize and deserialize al thisinformation.

Because the rule associations for per-type rules exsist at the AppDomain level, it makes
Nno sense to serialize those associations as part of the object’s state.

RulesToCheck M ethod

To optimize retrieval of the correct set of validation rules, the Rul esToCheck() method
evaluates the environment and returns the appropriate val i dat i onRul esManager, depending
on what types of rules have been defined for the business object:

Private ReadOnly Property Rul esToCheck() As Validati onRul esManager
Get
I f nmRul esToCheck |s Not hi ng Then
Di minstanceRul es As Validati onRul esManager = GCet | nst anceRul es(Fal se)
Di mtypeRul es As Validati onRul esManager = Get TypeRul es(Fal se)
If instanceRules I's Nothing Then
If typeRules I's Nothing Then

Page20

www.4electron.com

nRul esToCheck = Not hi ng

El se
nmRul esToCheck = typeRul es
End |f

El sel f typeRules I's Nothing Then
mRul esToCheck = instanceRul es

El se
' both have values - consolidate into instance rules
mRul esToCheck = instanceRul es
For Each de As Ceneric. KeyVal uePair(Of String, RulesList) In _
typeRul es. Rul esDi cti onary
Di minstanceList As List(Of | RuleMethod) = _
mRul esToCheck. Get Rul esFor Property(de. Key, True). GetLi st (Fal se)
i nst ancelLi st. AddRange(de. Val ue. Get Li st (Fal se))
Next
End | f
End | f
Ret urn nRul esToCheck
End Cet
End Property

The nRul esToCheck field is used as a cache to avoid the overhead of performing this
evaluation more than once. If nRul esToCheck iS Not hi ng, then the evaluation occurs.
Otherwise, the pre-existing value is returned.

To determine which rules need checking, the method first retrieves the
Val i dat i onRul esManager Objects for both per-type and per-instance rules. Notice that in both
cases the parameter value is Fal se, indicating that no val i dat i onRul esManager object should
be created due to this operation. In other words, if no rules exist for this object, theresult is
Not hi ng.

Then the resulting values are evaluated. Table 5lists the possible outcomes.

Per-type Rules Per -instance Rules Result

Not hi ng Not hi ng Not hi ng

Contains rules Not hi ng Per-type rules

Not hi ng Contains rules Per-instance rules
Containsrules Containsrules Consolidated list of per-

type and per-instance rules

Tableb. Possibleresults of RulesToCheck method

The only complex part of the process occurs when both per-type and per-instance rules
exist. In this case, the two lists must be merged into one, primarily to support the concepts of
rule priority and short-circuiting, which I’ll discusslater. Asyou can imagine, to get priority-
sorted rules, all the rulesfor a property must be in a consolidated list; regardless of whether
the association is per-type or per-instance.

Note: Due to the overhead involved in merging per-type and per-instance
rulesinto a consolidated list, | recommend you avoid using both per-type and
per-instance rulesif at al possible.

Page21

www.4electron.com

To avoid creating extra objects, the existing per-instance val i dat i onRul esManager Object
becomes the repository for all the object’s validation rules. The rule methods from the per-
typeval i dat i onRul esManager are merged into the per-instance object:

bot h have values - consolidate into instance rules
nRul esToCheck = instanceRul es
For Each de As Ceneric. KeyVal uePair(Of String, RulesList) In _
typeRul es. Rul esDi cti onary
Di minstanceList As List(Of | RuleMethod) = _
nmRul esToCheck. Get Rul esFor Property(de. Key, True). GetLi st (Fal se)
i nst anceli st . AddRange(de. Val ue. Get Li st (Fal se))
Next

To do this, the code loops through each entry in the per-type object’ s bi ct i onary, copying
the rule method objects from the per-type object into the corresponding per-instance object.
The end result is that the per-instance val i dat i onRul esManager contains al the rulesfor the
object.

Getting I nstance and Type Rules

TheRul esToCheck() method makes use of a couple helper methods implemented in
Val i dat i onRul es: Get | nst anceRul es() and Get TypeRul es() :

Private Function GetlnstanceRul es(_
ByVal createCbject As Bool ean) As Vali dati onRul esManager

If mnstanceRul es |'s Nothing Then
I f createObject Then
m nst anceRul es = New Val i dat i onRul esManager
End | f
End | f
Ret urn m nst anceRul es

End Functi on

Private Function Get TypeRul es(_
ByVal createCbject As Bool ean) As Vali dati onRul esManager

I f nmlypeRul es |I's Nothing Then

nlrypeRul es = Shar edVal i dat i onRul es. Get Manager (nirar get . Get Type, creat e(bj ect)
End | f
Ret urn nTypeRul es

End Functi on

Again, the creation of the val i dat i onRul esManager Objects are controlled by a parameter,
and the objectsare only created on-demand.

Adding Per-Instance Validation Rules

Per-type rules are now the default, and so val i dat i onRul es. AddRul e() now adds a per-type
rule. This means that the pre-existing Addrul e() methods had to be renamed. They are now
named Addl nst anceRul e() .

The behavior of AddI nst anceRul e() isthe same asthe AddRul e() methods from version
2.0. Theresult isthat a business developer who wants to use per-instance rules must override
the AddI nst anceBusi nessRul es() method.

Page22

www.4electron.com

Note: | recommend avoiding per-instance rulesif possible. Per-type rules
provide performance and memory consumption benefits, and should be the
preferred solution.

INn AddI nst anceBusi nessRul es() , they must call AddI nst anceRul e() methodsto associate
rule methods with properties:

Protected Overrides Sub Addl nstanceBusi nessRul es()

Val i dati onRul es. Addl nst anceRul e(_
AddressOf MyRul eMet hod, " MyPropertyNanme")

End Sub

Thisisthe exact same behavior asin version 2.0, but the methods have been renamed.

Adding Per-Type Validation Rules

TheAddBusi nessRul es() method isnow used to add per-type rules. This method is not
called on each object creation, but istypically only called on thefirst object created.
Remember that all rules associated with propertiesin this method are shared across all
instances of the business object type.

Within AddBusi nessRul es() , the business developer callsthe Addrul e() method to
associate rule methods with individual properties:

Protected Overrides Sub AddBusi nessRul es()

Val i dati onRul es. AddRul e(_
Addr essOf MyRul eMet hod, " MyPropertyNanme")

End Sub

There are some extra restrictions on per-type rule methods. Remember that they are
shared across all instances of the business object type, and so they can not be instance
methods of your business object. They can be shar ed methods in any class, methodsin a
Modul e Or even instance methods of some other object.

Though you can’t verify the rule methods at compile time, it is possible to verify them at
runtime. Theval i dat eHandl er () method performs a check to ensure that the rule method is
not an instance method of the business object type:

Private Function ValidateHandl er(_
ByVal nethod As System Refl ection. Met hodl nfo) As Bool ean

If Not nethod.lsStatic AndAl so net hod. Decl ari ngType. Equal s(mrar get . Get Type) Then
Throw New | nval i dOper ati onExcepti on(_
String. Format ("{0}: {1}", _
M. Resour ces. | nval i dRul eMet hodExcepti on, net hod. Nane))
End | f
Return True

End Functi on

Other overloads of val i dat eHandl er () exist, though they all delegate to this one. For
instance, here’s a smple overload:

Page23

www.4electron.com

Private Function ValidateHandl er (ByVal handl er As Rul eHandl er) As Bool ean
Ret urn Val i dat eHandl er (handl er. Met hod)

End Function

Using this method, the Addrul e() methods can then ensure that only valid rule methods
are associated with the object’ s properties. There are several Addrul e() overloads; the
following is the most frequently used implementation:

Public Sub AddRul e(_
ByVal handl er As Rul eHandl er, ByVal propertyName As String)

Val i dat eHandl| er (handl er)
Get TypeRul es(True) . AddRul e(handl er, New Rul eArgs(propertyNane), 0)

End Sub

Once the rule method has been validated, the val i dat i onRul esManager Object containing
the per-type rules for this business object type is retrieved (and created if necessary). Therule
method is then added to that val i dat i onRul esManager to establish the association between
the rule method and the business object’ s property.

Checking Validation Rules

The trigger for running the validation rule methods is the same in version 2.1 asit wasin
version 2.0: the business object calls val i dat i onRul es. CheckRul es() , Or

Proper t yHasChanged() . Within the framework, however, the process of invoking the rule
methods is changed to accommodate per-type rules, aswell asrule priority and short-
circuiting. As | discuss the changes to the checkRul es() methodsin this section, changes due
to the other featureswill be discussed later.

The checkRul es() method hastwo Publ i ¢ overloads:

® CheckRul es(String)
checksrulesfor a single property

® CheckRul es()
checksrulesfor all properties

Either way, thereisalLi st of validation rule method del egates that must be invoked on a
per-property basis. At the most basic level, apri vat e overload of checkRul es() implements
this behavior. Since that method’ s code is primarily concerned with rule priorities and short-
circuiting, | will discussthe details|ater.

There are also two pri vat e overloads of CheckRul es() , which are used to organize the
code in areusable manner. These overloads are:

® CheckRul es(ValidationRul esManager, String)
used to implement dependant properties

® CheckRul es(List(Of | Rul eMethod))
used to implement rule priorities and short-circuiting

The publ i ¢ overload of checkRul es() that executes rules for a single property contains
code that is primarily focused on implementing property dependant properties. It isimportant

Page24

www.4electron.com

to note, however, that it calls the Rul esToCheck() method | discussed earlier in order to get
the correct val i dat i onRul esManager for the object:

' get the rules dictionary
Dimrul es As ValidationRul esManager = Rul esToCheck

If this object is not Not hi ng, then the list of rule methods for the specific property is
retrieved:

' get the rules list for this property
Dimrul esList As Rul esList = rul es. Get Rul esFor Property(propertyNanme, Fal se)

The rule methods contained in thisRul esLi st object correspond to the specified property,
and it isthe rules from thislist that are passed to the non-publ i ¢ overload of checkRul es() to
be executed.

The publ i ¢ overload of checkRul es() that runsthe rulesfor al propertiesis
comparatively ssimple, since it can delegate the hard work:

Publ i ¢ Sub CheckRul es()

Dimrul es As ValidationRul esManager = Rul esToCheck
If rules IsNot Nothing Then
For Each de As Generic. KeyVal uePair (O String, RulesList) In _
rul es. Rul esDictionary
CheckRul es(de. Val ue. Get Li st (True))
Next
End | f

End Sub

Again, the Rul esToCheck() method is used to retrieve the appropriate
val i dat i onRul esManager Object that contains the rules for this business object. If theresult is
not Not hi ng, the code loops through the itemsin the Di ct i onary contained by the
Val i dat i onRul esManager Object. Each entry isa Rul esLi st object that contains the rules for
aproperty. A privat e overload of checkRul es() iscalled on each Rul esLi st object to
invoke those rules, using rule priorities and short-circuiting.

At this point, you have seen the changes to Busi nessBase and Val i dat i onRul es necessary
to implement per-type validation rules. These two classes make use of the new
Shar edVal i dat i onRul es, Val i dat i onRul esManager and Rul esLi st classes to provide support
for both the new per-type and the older per-instance behaviors.

Implementing Dependant Properties

Support for dependant properties is a new feature of version 2.1. Many business objects have
business rules that span multiple properties of the object, where a change to one property’s
value can cause another property’ s business rulesto be invalid. Obviously, detecting that
some other property’ s rules have become invalid requires running the rule methods of that
other property. The dependant property support in version 2.1 addresses this need.

A business developer can add code to the AddBusi nessRul es() method to define
dependant properties. A list of dependant propertiesis maintained for each property on the
object, and when checkRul es() iscalled for a specific property, the rules for any dependant

Page25

www.4electron.com

properties related to that property are invoked after that specific property’ s rules have been
executed.

ValidationRulesManager Class

Y ou've aready seen most of the codein the new val i dat i onRul esManager class. Thisclass
implements a method to encapsulate the process of associating a dependant property with a
business object property:

Publ i c Sub AddDependant Property(_
ByVal propertyName As String, ByVal dependant PropertyNane As String)

' get the list of rules for the property
Dmlist As List(OF String) = _
Get Rul esFor Property(propertyNane, True). Get Dependancyli st (True)

' we have the list, add the dependency
l'i st. Add(dependant Pr opert yNane)

End Sub

This method first getstheRul esLi st object corresponding to the specified property. It
then getsthe list of dependant properties contained within that Rul esLi st object, and adds
the new property name to the list.

As with adding a new rule method, when adding a dependant property, the code creates an
instance of aRul esLi st object if it doesn’t already exist.

While the val i dat i onRul es class could include the code to get the right Rul esLi st object,
retrieve the dependency list and add the item, this method simplifies and encapsul ates that
process, keeping the code inval i dat i onRul es SSmpler and easier to maintain.

RulesList Class

Each property that has rules or dependencies will have a corresponding Rul esLi st object. It
isthe job of thisRul esLi st object to maintain the list of rule methods, and the list of
dependant properties. You' ve already seen the declaration for the nDependant Properti es
field, whichisasimpleList (Of String).

The Get DepedencyLi st () method isused by val i dat i onRul esManager to retrieve thislist.
Aswith most of the other objectsin Csl a. val i dat i on, thislist object is only created on-
demand:

Publ i ¢ Function Get Dependancyli st (ByVal create As Bool ean) As List(OfF String)

I f nDependant Properties |Is Nothing AndAl so create Then
nDependant Properties = New List(Of String)

End | f

Ret urn nDependant Properti es

End Function

The create parameter is used to control whether an instance of the Li st (O Stri ng)
should be created. The object is only created when a new dependency is being added, and not
in the case that dependencies are being used by the val i dat i onRul es. CheckRul es()
implementation.

Page 26

www.4electron.com

Changes to ValidationRules

The bulk of the changes to support dependant propertiesarein val i dat i onRul es. Thisclass
now contains a Publ i ¢ method used by the business devel oper to add dependant properties,
aswell assubstantial changesto the checkRul es() method to invoke the rule methods for any
dependant properties.

Adding Dependant Properties

The AddDependant Propert y() method is called from within the business object’s
AddBusi nessRul es() method to add a dependant property. For example:

Protected Overrides Sub AddBusi nessRul es()

Val i dati onRul es. AddDependant Property(_
" PropertyName", "Dependant PropertyNane")

End Sub

This indicates that when the validation rules for Pr oper t yNane are checked, the validation
rules for bependant Pr oper t yNare should also be checked. A property can have any number
of dependant properties. Additionally, two properties may be dependant on each other.

Here' s the AddDependant Propert y() method itself:

Publ i c Sub AddDependant Property(_
ByVal propertyName As String, ByVal dependant PropertyNane As String)

Get TypeRul es(True) . AddDependant Property(propertyNane, dependant PropertyNane)

End Sub

It first gets the per-type val i dat i onRul esManager object for the current business object
type, creating it if it doesn’t exist. Then the AddDependant Property() method is called to add
the property name to the appropriate Rul esLi st object.

Note: Dependant properties are stored at a per-type level only. Thereisno
provision for setting up dependencies at a per-instance level.

Checking Validation Rules

When checkRul es() iscalled to check the rulesfor all properties of the object, there’'sno
need to worry about dependant properties. They are all getting checked anyway. But when
CheckRul es() iscalled to check the rules of a specific property, any dependant property’s
rules must also be checked.

The per-property checkRul es() implementation looks like this (with the dependency-
related lines highlighted):

Public Sub CheckRul es(ByVal propertyName As String)

' get the rules dictionary

Dimrules As ValidationRul esManager = Rul esToCheck

If rules IsNot Nothing Then
' get the rules list for this property
Di mrul esList As Rul esList = rul es. Get Rul esFor Property(propertyName, Fal se)
If rulesList IsNot Nothing Then

Page27

www.4electron.com

' get the actual |ist of rules (sorted by priority)
Dimlist As List(O |Rul eMethod) = rul esList. GetList(True)
If list IsNot Nothing Then
CheckRul es(i st)
End | f
Di m dependanci es As List(Of String) = rul esLi st. Get Dependancyli st (Fal se)
| f dependanci es | sNot Nothi ng Then
For i As Integer = 0 To dependanci es. Count - 1
Di m dependant Property As String = dependanci es(i)
CheckRul es(rul es, dependant Property)
Next
End | f
End I f
End | f

End Sub

The Get Li st () method of Rul esLi st iscalled to retrieve the list of rule methods for the
specified property. If that list is not Not hi ng, the rules areinvoked by calling apri vate
overload of checkRul es() . That Pri vat e overload contains code to implement rule priorities
and short-circuiting, and I’ [l discussit later. For now it is enough to know that the rules in the
list are invoked.

Then the list of dependant property namesisretrieved from the Rul esLi st object. Notice
that the parameter valueFal se is passed to Get DependancyLi st () , SO NO Objects are created.
If they don’t exist, Not hi ng will be returned.

A For . .. Each loop is then used to go through the list of dependant property names,
calling apri vat e overload of checkRul es() to execute each property’ s rules. On the surface
it seemsthat you could just do arecursive call to CheckRul es(String), but it isimportant to
remember that properties can be dependant on each other. Such arecursive call could result
in aninfinite loop and, eventually, a stack overflow exception.

The pri vat e overload of checkRul es() executes the rules for the dependant property. The
previous code has aready gone through the work of retrieving the val i dat i onRul esManager
for the current business object, so that is passed in as a parameter to optimize the process:

Private Sub CheckRul es(_
ByVal rul es As ValidationRul esManager, ByVal propertyName As String)

' get the rules list for this property
Di mrul esLi st As Rul esList = rul es. Get Rul esFor Property(propertyNane, False)
If rul esList IsNot Nothing Then

' get the actual list of rules (sorted by priority)

Dimlist As List(Of | Rul eMethod) = rul esList. GetList(True)

If list IsNot Nothing Then

CheckRul es(Ii st)

End | f

End | f

End Sub

Using the provided val i dat i onRul esManager Object, this method retrieves the Rul esLi st
object for the dependant property, and then getsthe list of rule methods from that Rul esLi st
object. Assuming these objects are not Not hi ng, the Pri vat e overload of CheckRul es() IS
called to execute this property’ s rules using rule priorities and short-circuiting.

Notice that this method is not recursive. Property dependency goesjust one level deep, so
aproperty that is dependant on another property that isin turn dependant on another property

Page28

www.4electron.com

will not trigger the rules to be invoked for all three properties. Only the original property and
itsimmediate dependant property’ s validation rules will be checked.

At this point, you can see how a business devel oper uses
Val i dat i onRul es. AddDependant Property() t0O Set up property dependencies. Those
dependencies are stored in aRul esLi st object, and are used by

Val i dati onRul es. CheckRul es() when the rules are checked for a specific property.

Implementing Rule Severity

The next enhancement to validation rules processing is the addition of rule severities. In
version 2.0, all rules had the same severity, but many applications have the need for different
levels of severity. For instance, some rules may require user notification, but shouldn’t stop
an object from being saved (I nf or mat i on Or War ni ng severities), while other rules should
stop the object from being saved (Er r or severity).

RuleSeverity Type

The severity levels supported by CSLA .NET version 2.1 are defined by the Rul eSeverity
type:

Publ i ¢ Enum Rul eSeverity
[Error]
WWar ni ng
I nf ormati on

End Enum

Thistypeisused in the implementation of rule severities.

Changes to RuleArgs

Each rule method can set the severity of the rule as part of its processing. Thisisimportant,
because some rules might have different levels of “being invalid” based on different
conditions. By allowing the rule method itself to indicate the severity of the result, you have a
lot of flexibility in how severities are used.

A rule method is always passed a parameter derived from the Rul eAr gs type. In version
2.1, Rul eArgs now includes a severi ty property, and corresponding instance field:

Public O ass Rul eArgs

Private nBeverity As Rul eSeverity = Rul eSeverity. Error

Public Property Severity() As Rul eSeverity
Cet
Return nfeverity
End Get
Set (ByVal value As Rul eSeverity)
nSeverity = val ue
End Set
End Property

End d ass

Page29

www.4electron.com

The default severity isError, to match the behavior of version 2.0. Within a rule method,
the business developer can set the severi ty property if another severity isrequired. For
instance:

Private Function MyRul eMet hod(_
ByVal target As Object, ByVal e As Rul eArgs) As Bool ean

If <condition is nmet> Then
Return True

El se
e. Description = "Human readabl e descri ption"
e. Severity = Rul eSeverity.Wrning
Return Fal se
End |f
End Function

Thisseverity property value is used by the val i dat i onRul es, Br okenRul e and
Br okenRul esCol | ect i on classesto record, store and retrieve broken rules by severity.

Changes to BrokenRule

If aruleisbroken, val i dati onRul es. CheckRul es() addsit to the Br okenRul esCol | ecti on,
with the rule' s details contained in aBr okenRul e object. Thisistrue regardless of therule’'s
severity, but the severity is maintained as part of the information about the broken rule.

The Br okenRul e class hasafield to store the severity value, and a property so other code
can examine the value:

<Serializable()> _

Public O ass BrokenRul e
Private nRul eNane As String
Private nDescription As String
Private nProperty As String
Private nBeverity As Rul eSeverity

Public ReadOnly Property Severity() As Rul eSeverity
Get
Return nBSeverity
End Cet
End Property

End d ass

The constructor also includes code to deal with the value:

Friend Sub New(ByVal rule As |Rul eMet hod)
mRul eName = rul e. Rul eNare
nDescription = rul e. Rul eArgs. Descri ption
nProperty = rul e. Rul eArgs. PropertyNane
nSeverity rul e. Rul eArgs. Severity

End Sub

With Br okenRul e storing the severity value, Br okenRul esCol | ecti on can provide some
useful behaviorsto filter out various types of broken rule.

Page 30

www.4electron.com

Changes to BrokenRulesCollection

TheBr okenRul esCol | ecti on containsalist of Br okenRul e objects, each one corresponding to
arule method that has returned Fal se, along with a human readable description and a severity
value. This class has been enhanced to provide some filtering capabilities, so it is possible to
retrieve al broken rules, or only those of a specific severity.

Perhaps the biggest change, however, isin how Br okenRul esCol | ect i on interacts with the
I sVal i d property from Val i dati onRul es. The new | nf or mat i on and War ni ng severities don’'t
cause an object to be invalid. That isreserved for Error severity only. So where
Val i dati onRul es. I sVal i d used to just check to seeif any rules were broken, it now must

check to seeif any Err or severity rules are broken.

Severity Counters
To efficiently support this concept, Br okenRul esCol | ect i on maintains a counter of the
number of broken rulesin each severity:

<Serializable()> _
Public O ass BrokenRul esCol | ecti on
Inherits Core.ReadOnl yBi ndi ngLi st (Of Br okenRul e)

Private nErrorCount As |nteger
Privat e mAarni ngCount As | nteger
Private m nfoCount As |nteger

Public ReadOnly Property ErrorCount() As Integer
Cet
Ret urn nError Count
End Get
End Property

Public ReadOnly Property Warni ngCount () As |nteger
Get
Ret ur n mAar ni ngCount
End Get
End Property

Public ReadOnly Property InfornmationCount() As Integer
Cet
Ret urn m nf oCount
End Get
End Property

End d ass

Asrules are added and removed from the collection, the values are incremented and
decremented accordingly. In the Add() method the value is incremented:

Page31

www.4electron.com

Friend Overl oads Sub Add(ByVal rule As I Rul eMethod)
Renove(rul e)

| sReadOnly = Fal se

Dimitem As New BrokenRul e(rul e)
I ncr enent Count (i tem

Add(item

| sReadOnly = True

End Sub

The I ncrenent Count () helper method takes care of the details:

Private Sub I ncrement Count (ByVal item As BrokenRul e)

Sel ect Case item Severity
Case Rul eSeverity. Error
nError Count += 1
Case Rul eSeverity. Warning
mAar ni ngCount += 1
Case El se
m nf oCount += 1
End Sel ect

End Sub

Similarly, the Rermove() method calls abecr enent Count () helper method:

Private Sub Decrement Count (ByVal item As BrokenRul e)

Sel ect Case item Severity
Case Rul eSeverity. Error
nErrorCount -= 1
Case Rul eSeverity.Warning
mAar ni ngCount -= 1
Case El se
m nf oCount -= 1
End Sel ect

End Sub

The end result is that the three counts are kept up to date as broken rules are added and
removed from the collection. This allows the count values to bereturned quickly. The values
are totaled, without the need to scan through the collection each time the count is required.

Retrieving Rules

The collection implements aGet Fi r st Br okenRul e() method, which isintended to return the
first broken rule for a specfied property. In version 2.1, this method is altered to only ook at
Er ror Severity rulesto preserve backward compatibility with version 2.0:

Publ i ¢ Function GetFirstBrokenRul e(ByVal [property] As String) As BrokenRul e
Return Get First Message([property], Rul eSeverity.Error)

End Function

Page 32

www.4electron.com

Notice that this method makes use of a new method: Get Fi r st Message() . Thisnew
method is Publ i ¢, and allows any calling code to retrieve the human-readabl e description for

the first broken rule of any severity:

Publ i ¢ Function CetFirst Message(ByVal [property] As String) As BrokenRul e

For Each item As BrokenRule In Me
If item Property = [property] Then
Return item
End | f
Next
Ret urn Not hi ng

End Functi on

Publ i c Function GetFirst Message(_
ByVal [property] As String, ByVal severity As Rul eSeverity) As BrokenRul e

For Each item As BrokenRule In M
If itemProperty = [property] AndAl so item Severity = severity Then
Return item
End | f
Next
Ret urn Not hi ng

End Functi on

There are two overloads of this method; one allowsthe caller to retrieve the first message
regardless of severity, the other filters the result to match a specific severity.

Thereisalso a new overload of theTost ri ng() method, which filters the results based on
severity:

Publ i c Overl oads Function ToString(ByVal severity As Rul eSeverity) As String

Dimresult As New System Text. Stri ngBuil der ()
Dimitem As BrokenRul e
Dimfirst As Bool ean = True

For Each itemlIn M
If item Severity = severity Then
If first Then
first = Fal se
El se
resul t. Append(Envi ronnment . NewLi ne)
End | f
resul t. Append(item Description)
End | f
Next
Return result. ToString

End Functi on

The pre-existing TosSt ri ng() method is unchanged, returning all rule descriptions
regardless of severity.

Changes to ValidationRules
Theval i dati onRul es classimplements an I sval i d property. As | discussed earlier, the way

Br okenRul esCol | ect i on expresses validity has changed, and the | sval i d implementation
was changed accordingly:

Page33

www.4electron.com

Friend ReadOnly Property IsValid() As Bool ean
Cet
Ret urn BrokenRul esLi st. Error Count = 0
End Get
End Property

Rather than relying on the count property aswas donein version 2.0, | sval i d now checks
the Err or Count property, thusignoring any | nf or mat i on OF War ni ng Severity rules.

Changes to BusinessBase

Finally, Busi nessBase implements the Syst em Conponent Model . | Dat aEr r or | nf o interface,
which defines an Error property. This property has been modified to call the

BrokenRul esCol | ecti on. ToSt ri ng() overload so only Error severity broken rules are
returned:

Private ReadOnly Property [Error]() As String _
I npl enents Syst em Conponent Model . | Dat aError I nfo. Error
Cet
If Not IsValid Then
Return Val i dati onRul es. Get Br okenRul es. ToStri ng(Val i dati on. Rul eSeverity. Error)

El se
Return ""
End If
End Get
End Property

Y ou should now understand how a rule method can set the severity of a broken rule, and
how that severity is recorded in the corresponding Br okenRul e object. Y ou’ ve seen how the
Br okenRul esCol | ect i on exposes filtered views of the broken rules, and how the1 sval i d
functionality has been enhanced so only Er r or severity rules make an object invalid.

Implementing Rule Priority

In version 2.1, rules may be assigned a priority, which is O or greater. Rule methods are
invoked in priority order, starting with 0 and climbing to successively higher values. In other
words, the higher the number, the later the rule will be executed. Within a priority, the order
in which rules are invoked is non-deterministic. What this means, is that you can’t control the
order in which priority O rules are invoked, but if you set arule to priority 1 you know it will
be invoked after all priority O rules are complete.

The rule priority feature is designed primarily to support the concept of short-circuiting,
which isdiscussed later. By invoking rulesin priority order, the framework provides business
developers with the ability to ensure that some rules are invoked before others.

Changes to ValidationRules

The priority of aruleis set when the rule is associated with a property through the
AddI nst anceRul e() Or AddRul e() methods. To support this concept, these methods have
overloads that accept the priority value. For example:

Page 34

www.4electron.com

Publ i c Sub Addl nst anceRul e(_
ByVal handl er As Rul eHandl er, ByVal propertyNane As String, _
ByVal priority As Integer)
Get | nst anceRul es(True) . AddRul e(handl er, New Rul eArgs(propertyNane), priority)

End Sub

And

Public Sub AddRul e(_
ByVal handl er As Rul eHandl er, ByVal propertyNanme As String, _
ByVal priority As I|nteger)

Val i dat eHandl| er (handl er)
Get TypeRul es(True) . AddRul e(handl er, New Rul eArgs(propertyNane), priority)

End Sub

There are numerous overloads of each method, and I’ m not going to list them all here. The
important thing to recognize is that each of these overloads calls the Addrul e() method in the
appropriate val i dat i onRul esManager object. That priority value is stored along with each
rule method in the val i dat i onRul esManager object.

Later, in the checkRul es() method, this priority value is used to ensure that the rule
methods are returned in a sorted order. Thisistriggered by the highlighted line of code
shown here:

Publ i c Sub CheckRul es(ByVal propertyNane As String)

get the rules dictionary
Dimrules As ValidationRul esManager = Rul esToCheck
If rules IsNot Nothing Then
get the rules list for this property
Di mrul esLi st As Rul esList = rul es. Get Rul esFor Property(propertyNanme, Fal se)
If rul esList IsNot Nothing Then
get the actual list of rules (sorted by priority)
Dimlist As List(Of |RuleMethod) = rul esList. GetList(True)
If list IsNot Nothing Then
CheckRul es(i st)
End | f
Di m dependanci es As List(O String) = rul esList. Get Dependancyli st (Fal se)
| f dependanci es |sNot Not hing Then
For i As Integer = 0 To dependancies. Count - 1
Di m dependant Property As String = dependanci es(i)
CheckRul es(rul es, dependant Property)
Next
End I f
End | f
End I f

End Sub

Asyou can seg, it isthe Get Li st () method from the Rul esLi st classthat actually
performs the sort operation.

Page35

www.4electron.com

Changes to ValidationRulesManager

Theval i dati onRul esManager classimplements AddRul e() methodsthat are called from
val i dat i onRul es. There are two overloads for this method, and both accept apriority
parameter:

Public Sub AddRul e(ByVal handl er As Rul eHandl er, ByVal args As Rul eArgs, _
ByVal priority As I|nteger)

get the list of rules for the property
Dmlist As List(O |RuleMethod) = _
Get Rul esFor Property(args. PropertyName, True). GetLi st (Fal se)

we have the list, add our new rul e
|'i st. Add(New Rul eMet hod(handl er, args, priority))

End Sub

Public Sub AddRule(OF T, R As Rul eArgs)(_
ByVal handl er As Rul eHandler(OFf T, R), ByVal args As R, ByVal priority As Integer)

get the list of rules for the property
Dmlist As List(O |RuleMethod) = _
Cet Rul esFor Property(args. PropertyNanme, True). GetLi st (Fal se)

we have the list, add our new rule
l'ist. Add(New Rul eMet hod(OF T, R)(handler, args, priority))

End Sub

Thepriority parameter value is used during the construction of the Rul emet hod object
that contains details about the rule. The Rul esLi st class contains the code to sort the rules
based on this value.

Changes to RuleMethod

In the Rul eMet hod class, the priority value is maintained in afield, and exposed through a
property.

Private nPriority As Integer

Public ReadOnly Property Priority() As Integer Inplenents |RuleMethod. Priority
Get
Return nPriority
End Get
End Property

Rul eMet hod aso implements the | Conpar abl e interface, and the priority value isused in
the implementation of the Conpar eTo() methods:

Private Function ConpareTo(ByVal obj As Cbject) As Integer _
| npl enent s Syst em | Conpar abl e. Conpar eTo

Return Priority. ConmpareTo(CType(obj, |RuleMethod).Priority)
End Function

Private Function ConpareTol(ByVal other As |Rul eMethod) As Integer _
I npl ement s Syst em | Conpar abl e(Of | Rul eMet hod) . Conpar eTo

Return Priority. ConpareTo(other.Priority)

End Functi on

Page 36

www.4electron.com

By implementing Conpar eTo() based on the priority value, the built-in capability of .NET
to sort alist can be used by Rul esLi st to sort the objects by priority.

The same implementation existsin Rul eMet hod(Of T, R).

Changes to RulesList

TheRul esLi st object contains the list of rulesto be evaluated by the

Val i dat i onRul es. CheckRul es() method. Earlier you saw how the checkRul es() method
callsacet Li st () method to get the sorted list of rulesto invoke. The Get Li st () method
implements the sorting:

Public Function GetList(ByVal applySort As Bool ean) As List(OfF | Rul eMethod)

I f applySort AndAl so Not nBorted Then
SyncLock nLi st
I f applySort AndAl so Not nBorted Then
mLi st. Sort ()
nSorted = True
End | f
End SynclLock
End | f
Return nLi st

End Function

The et Li st () method is called not only by checkRul es() , but also when new rules are
being added to the list. Since sorting is an expensive operation, a parameter is used to control
whether sorting should occur when Get Li st () iscalled. Asrules are added, no sorting is
requested, but when checkRul es() callsthis method, it indicates that it wants a sorted result.

Notice that nLi st, whichisaLi st (O | Rul eMet hod) , isdirectly sorted by calling the
Sort () method. Thisis possible because the Rul eMet hod classes implement | Conpar abl e, and
use the priority value to implement the Conpar eTo() methods.

As an optimization, the code keeps track of whether the list has been sorted by using a
Boolean field. Any time items are added to the list, thisfield is set to Fal se, and after the sort
iscomplete it isset toTrue. The result is that, with normal usage, the list of rulesis only
sorted one time.The pre-sorted result is returned on all subsequent calls.

At this point, you should understand that a business devel oper can choose to specify a
priority for each rule when calling AddRul e() Or Addl nst anceRul e() . Thispriority valueis
maintained by the Rul eMet hod objects, and is used by Rul esLi st to perform the sort. The
CheckRul es() method then invokes the methodsin order, starting with priority O and
climbing from there.

Implementing Short-Circuiting

Short-circuiting is a feature that stops the processing of rules part-way through. The result is
that not al rules for a property are invoked. There are two ways to short-circuit rule
processing for a property: a rule method can explicitly stop the processing, or CSLA .NET
can betold to stop processing rulesif any previous (higher priority) rule has already returned
Fal se.

Thisfeature is useful, because it allows the business devel oper to check al the
inexpensive, easily checked, rules first, and only invoke expensive rules (such as those that

Page37

www.4electron.com

might hit the database) if all previous rules were satisfied (returned Tr ue). The rule priority
feature discussed earlier isakey part of this capability, because it allows the business
developer to control the order in which rules are invoked.

Changes to ValidationRules

Theval i dati onRul es object isresponsible for invoking the rule methods. If a rule method
returnsral se, then the rule is considered broken and is added to the business object’s

Br okenRul esCol | ecti on. Thisis handled in the parameterless pri vat e overload of
CheckRul es(). While this method is primarily concerned with implementing rule priorities
and short-circuiting, it does have the ultimate responsibility for recording whether aruleis
broken or not.

It also turns out that there’ s an intersection between the short-circuiting behavior and rule
severity. It isimportant to realize that only Er r or severity rules can trigger short-circuiting.
I nf or mat i on and War ni ng severities don’t stop the processing of subsequent rule methods.

Thelines of code highlighted here are used to implement priority-based short-circuiting:

Private Sub CheckRul es(ByVal list As List(O |Rul eMethod))

Di m previ ousRul eBroken As Bool ean
Di mshortCircuited As Bool ean

For index As Integer = 0 To list.Count - 1
Dimrule As | Rul eMethod = |ist(index)
see if short-circuiting should kick in
If Not shortCircuited AndAl so _
(previ ousRul eBroken AndAl so _
rule.Priority > nProcessThroughPriority) Then
shortCircuited = True
End |f

If shortGircuited Then
we're short-circuited, so just renove
all remaining broken rule entries
Br okenRul esLi st . Remmove(rul e)

El se
we' re not short-circuited, so check rule
I'f rule.lnvoke(nTarget) Then
the rule is not broken
Br okenRul esLi st. Renove(rul e)

El se
the rule is broken
Br okenRul esLi st. Add(rul e)
Dimargs As Rul eArgs = rul e. Rul eArgs
If args. Severity = Rul eSeverity. Error Then
previ ousRul eBr oken = True
End | f
End | f
I f args. StopProcessi ng Then
shortCircuited = True
End | f
End I f
Next

End Sub

Dueto this, the checkRul es() method must examine the severity contained in the
Rul eAr gs parameter as it comes back from the rule method:

Page38

www.4electron.com

If rule.Rul eArgs. Severity = Rul eSeverity.Error Then
previ ousRul eBroken = True
End | f

The previ ousRul eBr oken field is used to keep track of whether any rule evaluated thus far
has returned Fal se. Thisvalueisthen used to trigger the short-circuiting process itself, by
setting the short Gi rcui t ed field to Tr ue:

see if short-circuiting should kick in
If Not shortCircuited AndAl so _
(previ ousRul eBroken AndAl so _
rule.Priority > nProcessThroughPriority) Then
shortCrcuited = True

End I f

If short Gi rcui ted iSTrue, then normal processing of rule methods is suspended, and
instead, all subsequent rule entries are smply removed from the list of broken rules:

If shortCircuited Then
' we're short-circuited, so just renove
all remaining broken rule entries
Br okenRul esLi st . Remove(rul e)

The entries are removed because there is no way to know if the rules are broken or not.
Remember, onceshort G r cui t ed iSSet to Tr ue no further rule methods are invoked. Rather
than assume all the unchecked rules are broken (which could be very misleading for the end
user), the code assumes that all unchecked rules are not broken, so their descriptions do not
appear to the end user asissues to be resolved.

It isalso possible for arule method to directly cause short-circuiting to occur. To do this, a
rule method setSe. St opProcessi ng to True. Thisvalueis used by the checkRul es() method
to set theshort G rcui t ed field to Tr ue, causing the same short-circuiting behavior as with
the priority-based scheme:

If rul e. Rul eArgs. St opProcessi ng Then
shortCircuited = True
End |f

Notice that this check occurs regardless of whether the rule method returns Tr ue or Fal se.
Even an unbroken rule can stop the processing of subsequent rules by setting
St opPr ocessi ng tO Tr ue.

Changes to RuleArgs

TheRul eAr gs class now includes a st opPr ocessi ng property for use by arule method that
wants to immediately trigger short-circuiting:

Privat e nft opProcessi ng As Bool ean

Public Property StopProcessing() As Bool ean
Cet
Ret urn nBt opPr ocessi ng
End Cet
Set (ByVal val ue As Bool ean)
nSt opProcessi ng = val ue
End Set
End Property

Page 39

www.4electron.com

At this point, you should understand how the checkRul es() method has been enhanced to
stop the processing of rules once short-circuiting has been triggered. Short-circuiting can be
triggered through a priority-based threshold scheme, or explicitly by a rule method setting the
St opPr ocessi ng property of aRul eAr gs Object to True.

Implementing Strongly-typed Rule Methods
In CSLA .NET 2.0, rule methods conform to the Rul eHand! er delegate signature:

Publ i c Del egate Function Rul eHandl er(_
ByVal target As Cbject, ByVal e As Rul eArgs) As Bool ean

This signature accepts parameters of type aj ect and Rul eAr gs, allowing the use of any
type of object as atarget, and any subclass of Rul eAr gs as a parameter. The drawback to this
approach isthat it is often necessary to cast thet ar get or e parameters before using them,
which requires extra code and can lead to runtime type mismatch exceptions.

CSLA .NET 2.1 enhances the way rule methods are implemented to allow for strongly
typed parameters to the methods. Thisis done by defining a second delegate signature using
generics, and by adding a new generic Rul eMet hod class to store these strongly typed method
references. Thisalso requires altering the Rul esLi st classto maintain alist of 1 Rul emet hod,
rather than Rul eMet hod.

Generic RuleHandler Delegate

TheRul eHandl er delegatein CSLA .NET 2.0 uses basic polymorphic types as parameters.
That definition isretained in version 2.1, but a new delegate definition is required to support
strongly typed parameters.

Public Del egate Function Rul eHandler(Of T, R As Rul eArgs)(_
ByVal target As T, ByVal e As R} As Bool ean

Using this new delegate, it is possible to specify the types for both the t ar get ande
parameters during devel opment, so the compiler can check those types during compilation.

IRuleMethod Interface

TheRul eMet hod Object isused to store areference, along with metadata, for a rule method
defined by the Rul eHand! er delegate. In version 2.1, a new generic Rul eMet hod class must be

added to maintain areference to the new generic Rul eHandl er delegate. In order to provide
polymorphic use of both Rul eMet hod types, an | Rul eMet hod interface is required:

Friend Interface | Rul eMet hod

ReadOnly Property Priority() As I|nteger

ReadOnly Property Rul eName() As String

ReadOnly Property Rul eArgs() As Rul eArgs

Function | nvoke(ByVal target As Cbject) As Bool ean
End | nterface

Thisinterface is required because generic types are not polymorphic. The only ways to
make a generic type be polymorphic are for it to inherit from a non-generic base class or
implement a non-generic interface. This non-generic interface can be implemented by both
the original Rul eMet hod and new generic Rul eMet hod classes so they can be used

Page40

www.4electron.com

interchangeably (polymorphically) through thisinterface. The interface will be used by
Rul esLi st SO it can store either type of rule reference.

Changes to RuleMethod

The existing version 2.0 Rul eMet hod class must be enhanced to implement the new

I Rul eMet hod interface. Since the interface defines the same methods that were already
implemented by Rul emet hod, thisisasimple process. The npl enent s keyword is used to
indicate that the class implements the interface:

Friend O ass Rul eMet hod

I mpl enent s | Rul eMet hod

And the 1 npl enent s clause is used on the existing methods to link them to the interface.
For example:

Public ReadOnly Property Priority() As Integer Inplenments |RuleMethod.Priority
Cet
Return nPriority
End Get

End Property

The other methods are altered in a similar manner.

Generic RuleMethod Type

CSLA .NET 2.1 includes a new Rul eMet hod class. Thisclassisvirtualy identical to the
existing Rul eMet hod class, except that this one accepts generic type parameters and uses them
to define the nHand! er field that references the rule method delegate. The class definition and
field declarations are:

Friend G ass Rul eMethod(Of T, R As Rul eArgs)

I mpl enent s | Rul eMet hod
| npl enent s | Conpar abl e
I mpl enent s | Conpar abl e(Of | Rul eMet hod)

Private nmHandl er As Rul eHandler(OF T, R
Private nmRul eName As String = ""
Private mArgs As R

Private nPriority As Integer

Notice the generic type parameters and how they are used to declare the nHandl er field.
The generic type parameters are also used in the implementation of various methods within
the class. For instance, the Rul eAr gs property returns a value of typeR:

Public ReadOnly Property Rul eArgs() As R
Get
Return mArgs
End Get
End Property

Of course the | Rul eMet hod interface requires a return type of Rul eAr gs, SO the interface
implementation is separate:

Page4l

www.4electron.com

Private ReadOnly Property | Rul eMet hod Rul eArgs() As Rul eArgs _
I npl ement s | Rul eMet hod. Rul eAr gs
Cet
Ret urn Rul eAr gs
End Get
End Property

A similar technique is used to provide a generic overload of the | nvoke() method. The
result isaRul eMet hod object that can maintain a reference to a rule method with strongly
typed parameters.

Changes to ValidationRules

Theval i dati onRul es class now includes generic overloads for Addrul es() (and

AddI nst anceRul es()) SO it is possible to specify the types of thet ar get and Rul eAr gs
parameters. A number of overloads have been added, and | won’t list them all here. An
example of an overload is:

Publ i c Sub Addl nstanceRul e(OF T)(_
ByVal handl er As Rul eHandl er (O T, Rul eArgs), ByVal propertyNane As String)

Get I nst anceRul es(True) . AddRul e(OF T, Rul eArgs) _
(handl er, New Rul eArgs(propertyNanme), 0)

End Sub

This overload only specifies the type of the t ar get parameter. Another example illustrates
how both thet ar get and Rul eAr gs parameter are typed:

Public Sub AddRule(OF T, R As Rul eArgs)(_
ByVal handl er As RuleHandler(Of T, R), ByVal args As R

Val i dat eHandl er (handl er)
Get TypeRul es(True) . AddRul e(handl er, args, 0)

End Sub

Using these overloads, a business developer can get strong typing on one or both of their
rule method parameters.

Y ou should now understand that a business developer can associate either loosely typed or
strongly typed rule methods with the properties of a business object. Strongly typed rule
methods avoid the need for casting thet ar get and e parameter values within the rule method,
and provide for compile-time type checking.

Implementing Rule Retrieval

CSLA .NET 2.1 implements a new feature that allows a business devel oper to retrieve the list
of rule methods that have been added to an object. Thislist includes all the per-type and per-
instance rule methods associated with all the properties of the object.

Keep in mind that it is possible for arule method to be associated with a property more
than one time. In such acase, it islikely that the arguments passed through the Rul eAr gs
parameter are different, and must be used to distinguish between the two different rule
method instances. This means that the list of rule methods returned for an object must include
not only the name of the rule method, and the associated property name, but also must
include the parameter values passed to the method.

Page42

www.4electron.com

| chose to represent the rule methods using the URI format. For instance, arule will
appear as:

rul e:// met hodName/ pr opert yNane?ar gl=val ue&ar g2=val ue

| had two reasons for choosing the URI format. First, this format can clearly express all
the information about a rule method, including the method name, the property associated
with the rule and all the arguments passed to the rule method. Second, by conforming to the
URI format, the system uri classin the NET framework can be used to easily parse these
values. Thismakesit relatively easy for abusiness or Ul developer to retrieve any given part
of the URI without having to manually parsethe string.

Changes to ValidationRules

Theval i dat i onRul es class now includes a Get Rul eDescri pti ons() method, which returns
an array of st ri ng values, with each string representing a rule method. This code isrelatively
simple, since each Rul eMet hod Object is responsible for generating its own text
representation:

Publ i ¢ Function GetRul eDescriptions() As String()

Dimresult As New List(Of String)

Dimrul es As ValidationRul esManager = Rul esToCheck

For Each de As Generic. KeyVal uePair (O String, RulesList) In rules.RulesDictionary
Dimlist As List(Of | Rul eMethod) = de. Val ue. Get Li st (Fal se)
For i As Integer = 0 To list.Count - 1

Dmrule As | RuleMethod = list(i)
result. Add(CObj (rul e). ToStri ng)
Next

Next
Return resul t. ToArray

End Function

This code loops through all the properties in the object that have rules, and then loops
through the rules associated with each property. Notice the use of the Rul esToCheck() helper
method, which returns the consolidated list of per-type and per-instance rulesfor this

particular business object. This method was discussed earlier in the book.

The real work occurs in the Rul eMet hod and Rul eAr gs classes, which are responsible for
generating the URI text representation.

Changes to RuleMethod

Both the generic and non-generic Rul eMet hod classes maintain a mRul eNare field, which
stores the text representation of the rule. The value of thisfield is returned from the
ToStri ng() method in the Rul eMet hod class.

Page43

www.4electron.com

The nrul eNane field valueis set in the constructor:

Public Sub New(ByVal handler As Rul eHandler, _
ByVal args As Rul eArgs)

nmHandl er = handl er
mArgs = args
mRul eNanme = _
String. Format ("rule://{0}/{1}", nHandl er. Met hod. Nane, nArgs. ToStri ng)

End Sub

Notice how the name of the rule method itself is combined with the ToSt ri ng() value
from the Rul eAr gs Object to create the URI text result. Thisisimportant, because it places a
constraint on the implementation of any Rul eAr gs. ToSt ri ng() method implementation. In
the standard Rul eAr gs class, only the property name is returned. However, any subclass of
Rul eAr gs must return atext fragment in the following format:

propertyNane?ar gl=val ue&ar g2=val ue

If thisis not done, then the resulting text value will not be a properly formatted URI value.

It should now be clear how a business object can call the Get Rul eDescri pti ons() method
to retrieve an array of URI-formatted text values, each entry representing arule that has been
associated with a property of the business object.

Implementing BrokenRulesCollection.ToArray

TheBr okenRul esCol | ection includesaTost ri ng() override, which returns the human-
readabl e descriptions of the broken rules for the object as a single text value. Sometimesit is
more valuable to have the broken rule descriptions returned as an individual text value for
each rule. The ToArray() methods provide this capability:

Publ i c Function ToArray() As String()

Dimresult As New List(COf String)
For Each item As BrokenRule In M
resul t. Add(item Descri pti on)

Next
Return resul t. ToArray

End Functi on
Publ i c Function ToArray(ByVal severity As Rul eSeverity) As String()

Dimresult As New List(Of String)
For Each item As BrokenRule In Me
If item Severity = severity Then
result. Add(item Descri ption)
End | f
Next
Return resul t. ToArray

End Function

There are two overloads, one that returns all rule descriptions, and one where thelist is
filtered by severity. In either case, the human-readable text descriptions are placed into an
array of st ri ng values, with one entry per broken rule.

Page 44

www.4electron.com

Using the Enhancements

CSLA .NET version 2.1 includes substantial enhancements to the way validation rules are
associated with a business object, how they are processed, and how the results can be
retrieved. In many cases only minor code changes are required to move from version 2.0 to
2.1, though there are exceptions. Some of the featuresin verson 2.1 are entirely new, and
you'll need to change your code to exploit them.

Using Per-Type Validation Rules

In CSLA .NET 2.1, business rules may be associated with a business object at the type or
instance level. Per-type rules are associated with all business objects of a given type, while
per-instance rules are associated with one specific instance of a business object.

Per-type rules are far more efficient in their use of memory, and offer performance
benefits because the association of rules to properties only occurs once per AppDomain
rather than as each object is created. Typically, this means the association occurs once during
the lifetime of the application.

Per-instance rules provide more flexibility, because these rules are associated with the
object’s properties as each object is created. Y ou can write code to change the way the rules
are associated with the object based on the specific object being created. This resultsin more
memory consumption and slower performance, because the list of rulesis maintained and
created as each business object is instantiated.

When creating a business object, you can now override AddBusi nessRul es() and
AddI nst anceBusi nessRul es() .

Associating Rule Methods with Properties

TheAddBusi nessRul es() method is called only once per AppDomain for each type of
business object. In this method, you can call val i dati onRul es. AddRul e() to associate rule
methods with properties of your business object. These rule methods will then be associated
with the properties of all business objects of that type.

A typical AddBusi nessRul e() method might look like this:

Protected Overrides Sub AddBusi nessRul es()

Val i dati onRul es. AddRul e(_
AddressOF Csl a. Val i dati on. CoomonRul es. Stri ngRequi red, "Nane")

End Sub

This associates the st ri ngRequi r ed rule method from conmonRul es with the object’ s Nane
property. While this code |looks the same asit did in version 2.0, the results are quite
different. ThisAddBusi nessRul es() method will typically only be called once during the
lifetime of the application, and the rule association that’s set up here is applied to all
instances of the business object.

If you want to associate a rule method with a property only for a specific object instance,
you should override Addl nst anceBusi nessRul es() . Such an override might look like this:

Page 45

www.4electron.com

Protected Overrides Sub Addl nstanceBusi nessRul es()

Val i dati onRul es. Addl nst anceRul e(_
AddressOF Csl a. Val i dati on. CoomonRul es. StringRequired, "CGity")

End Sub

This associates the st ri ngRequi r ed rule method with the object’s Gty property. Notice
the use of the AddI nst anceRul e() method, rather than Addrul e() . Thisindicates that the
association should be added only for this particular object instance, rather than all objects of
thistype.

Make sureto only call Addrul e() within AddBusi nessRul es(), and
Addl nst anceRul e() Within Addl nst anceBusi nessRul es() .

Implementing Per-Type Rule Methods

There are some restrictions on per-type rule methods. Remember that these rule methods are
shared across all instances of a given business object type. This means that some rule method
implementations from version 2.0 will not work as per-type rule methodsin 2.1, while others
will work fine.

Per-type rule methods may be one of:
1. A shared method in any class (including the business class itself)
2. Any method in a mdul e (asthese are effectively shar ed methods)
3. Aninstance method from another object (not the business object itself)

In fact, the only methods that can’t be used as a per-type rule method are instance
methods of your business object itself.

If you are converting from version 2.0 to 2.1 and you have rule methods
implemented as instance methods of your business object you can either
change them to shar ed methods or you can use

AddI nst anceBusi nessRul es() to associate them with your properties.

For instance, the methodsin Csl a. val i dati on. ConmonRul es are all shar ed methods, so
they can be used as per-type rule methods. Similarly, any shar ed methods in your business
class can be used, because they are automatically available across all instances of the type.

It isimportant to remember that these rule methods will be invoked for all instances of
your business object. Due to this, these methods must use the t ar get parameter to retrieve the
datavalues to be validated.

If you are implementing widely-used rules that are common to many types of object you
should follow the pattern used in Csl a. Val i dat i onRul es. CommonRul es. You can find an
explanation of that code in Expert VB 2005 Business Objects (ISBN 1590596315).

If you are implementing rules specific to your business object type, you can implement the
method like this:

Page 46

www.4electron.com

<Serializable()> _
Public C ass Attendee
I nherits Busi nessBase(OF Attendee)

Private mAge As | nteger
Private nDrinki ngBadge As Bool ean

ot her code goes here
Protected Overrides Sub AddBusi nessRul es()

Val i dati onRul es. AddRul e(_
AddressOf Al |l owedToDri nk(Of Attendee), "Drinki ngBadge")

End Sub

Private Shared Function Al owedToDrink(Of T)(_
ByVal target As T, ByVal e As Validation. Rul eArgs) As Bool ean

If target.mAge < 21 AndAl so target. nDrinki ngBadge Then
e.Description = "Can not drink if under 21"
Return Fal se

El se
Return True

End | f

End Function
ot her code goes here

End d ass

This code works because .NET allows shar ed methods in a classto accessthe pri vat e
fields of an instance of that type. Sincet ar get isaninstance of At t endee, and the
Al l owedToDri nk() method isimplemented in the At t endee class, its codeis allowed to
accessthepri vat e fields of the At t endee object.

Using Dependant Properties

Many business objects have properties that are interdependent, where changing one property
should trigger re-validation of other properties on the object, along with validating the
property that was changed. If your object has properties whose rules should be checked
because a different property was changed, then you should use dependant properties.

Y ou set up property dependenciesin the AddBusi nessRul es() method as you implement
your business object. For instance:

Protected Overrides Sub AddBusi nessRul es()
call ValidationRul es. AddRul es() here
Val i dat i onRul es. AddDependant Property("StartDate", "EndDate")

End Sub

In this example any time the rules for st ar t Dat e are checked, the rules for EndDat e will
also be checked. The Endbat e property is dependant on st ar t Dat e. The processing of rules

for both properties will be triggered by a call to proper t yHasChanged() for Start Dat e, Or an
explicit call toval i dati onRul es. CheckRul es("StartDate") .

Page 47

www.4electron.com

The relationship is not automatically bi-directional. In other words, checking the rules for
EndDat e Will not cause the rulesfor st ar t Dat e to be checked. If you want that to happen, you
can use an overload of AddDependant Property() toindicatethat St art Dat e iS also dependant
ON EndDat e:

Protected Overrides Sub AddBusi nessRul es()

' call ValidationRul es. AddRul es() here
Val i dati onRul es. AddDependant Property("Start Date", "EndDate", True)

End Sub

With this change, both properties are now dependant on the other property, so checking
the rules for either property will cause both sets of rules to be checked.

Y ou can aso make multiple properties dependant on a single property. For example:

Protected Overrides Sub AddBusi nessRul es()
' call ValidationRul es. AddRul es() here

Val i dat i onRul es. AddDependant Property("StartDate", "EndDate", True)
Val i dati onRul es. AddDependant Property("EndDate", "Cl oseDate")

End Sub

In this case, both st ar t Dat e and d oseDat e are dependant on EndDat e. S0 when the rules
are checked for Endbat e, they will also be checked for both st ar t Dat e and d oseDat e.

It isimportant to realize that dependant properties are established only in
AddBusi nessRul es(), and so are per-type. All instances of your business object will have the
same property dependencies. Even if you are using per-instance rules, you must establish the
dependencies in AddBusi nessRul es() . However, you should also know that dependant
properties affect both per-type and per-instance rules.

Using Rule Severity

CSLA .NET 2.1 introduces the concept of rule severity, where a broken rule method can
indicate the severity of itsresult. Table 6lists the possible severities.

Severity Description

Error The broken rule means the object is not valid, and
the result should appear in the Ul asavalidation
error.

Viér ni ng The broken rule means the object isvalid, but this

property has an issue that should be addressed.

I nformation The broken rule means the object is valid, but
there is something the user should know about
this property.

Table 6. Rule severity definitions

Page48

www.4electron.com

The severity of aruleis set within the rule method itself. This allows your code in the rule
method to determine the appropriate severity for the rule failure, alowing for a great deal of
flexibility. For example, arule method could look like this:

Private Shared Function CreditLinmitCheck(Of T As SalesOrder)(_
ByVal target As T, ByVal e As Validation.Rul eArgs) As Bool ean

Di m cust As Custoner = target. Get Custoner

If target. Total Anbunt > cust.CreditLinit Then
e.Description = "Credit limt exceeded"
e. Severity = Validation. Rul eSeverity. Error
Return Fal se

El sel f target. Total Anbunt > cust.CreditLimt * .9 Then
e.Description = "Nearing credit limt"
e.Severity = Validation. Rul eSeverity. Warni ng
Return Fal se

El sel f target. Total Anbunt > cust.CreditLinmt * .5 Then
e. Description = "Exceeding 50% of credit limt"
e. Severity = Validation. Rul eSeverity.|nformation
Return Fal se

El se
Return True
End | f

End Function

In this example, the rule’ slogic checks a credit limit value. If the limit is exceeded the
result isan error, whileif it isjust under the limit awarning isissued. If the amount exceeds
50% of the limit then an informational message is returned.

Remember, only the Error result causes the object to be considered invalid. war ni ng and
I nf or mat i on results do not cause sval i d to return Fal se, and will not prevent the save()
method from saving the object. Y ou may choose to override save() to alter this default
behavior, if desired.

Using Rule Priorities

Sometimes it isimportant to control which rule methods are executed first, and which are
executed later in the process. CSLA .NET 2.1 alows you to control the order of execution
through the use of rule priorities. As you associate rule methods to properties, you can choose
to provide a priority for that rule. Thisis supported through overloads of Addrul e() and

AddI nst anceRul e(), and so it affects your code in the AddBusi nessRul es() and

Addl nst anceBusi nessRul es() methods.

Priorities start at O (zero), which isthe highest priority. A priority of 1 isthe next lowest,
followed by priority 2, priority 3 and so on. All rules of priority O are invoked before any
priority 1 ruleswill be invoked. Within agiven priority the order of therulesis
nondeterministic, meaning that you can not count on the order in which they will be invoked.
The default priority for rulesis priority O.

The most common use for rule prioritiesis to enable short-circuiting, which I'll discuss
next. Theideaisthat you can run low-cost rulesfirst, and only invoke expensive rulesif none
of the inexpensive rulesfail. For example, there’ s no sense going to the database to validate
some value, if that valueis required, but is currently blank. The following code ensures that
the required-field check runs before the database ookup:

Page49

www.4electron.com

Protected Overrides Sub AddBusi nessRul es()

Val i dati onRul es. AddRul e(_

AddressOf Csl a. Val i dati on. CormonRul es. Stri ngRequi red, "CreditCode")
Val i dati onRul es. AddRul e(_

AddressOF Veri fyCreditCode, "CreditCode", 1)

End Sub

The bolded call to Addrul e() is specifying that thisrule should run at priority 1, after all
priority O rules have run. Since 0 is the default, the St ri ngRequi r ed rule will run first,
followed by the Veri f yCr edi t Code rule.

It isimportant to realize that the per-type and per-instance rule lists are merged before
sorting by priority. This meansthat all priority O rules (per-type and per-instance) are run
before any per-type or per-instance priority 1 rules will be invoked.

Again, the primary purpose behind rule prioritiesisto support short-circuiting, so let’s
talk about that feature.

Using Short-Circuiting

The short-circuiting feature allows you to stop the processing of rule methods for a property
in the middle of the process. Some of the rule methods will have been invoked, and any
remaining rule methods are not invoked once short-circuiting occurs. The goal of short-
circuiting isto allow you to invoke less expensive rule methods first, and only invoke more
expensive rule methods if all previous rules were satisfied.

Thisfeature is strongly linked to the concept of rule priorities as discussed earlier. For
short-circuiting to work, you must be able to control the order in which the rule methods are
invoked.

Short-circuiting stops the processing of rules for the current property only. If the property
has dependant properties, their rules will be processed even if short-circuiting has occurred.
Similarly, if val i dati onRul es. CheckRul es() isused to check all rulesfor all properties,
short-circuiting won't stop the overall process; it will only stop the processing of subsequent
rules for each individual property.

Short-circuiting can be used in two ways. The most common scenario isto run all rulesup
to a certain priority, and then only run lower-priority rulesif no previous rule methods have
returned Fal se with a severity of Er r or . Another option isthat a rule method can explicitly
cause short-circuiting through code, based on the logic in that method. Let’s look at each
approach.

Short-Circuiting by Priority

When short-circuiting by priority, you must use the overloads of Addrul e() and
Add! nst anceRul e() to set the priority of your rule methods. Remember that priority O isthe
default, and that larger priorities are executed after lower priorities.

Val i dat i onRul es €Xposes a property, ProcessThroughPri ori ty, that controls when short-
circuitingwill have an effect. All rule methods at ProcessThroughPriority or smaler will be
invoked. Rule methods with priorities greater than Pr ocessThr oughPri ori ty will only be
invoked if no previous rule method has returned Fal se with a severity of Error.

Page50

www.4electron.com

Notice that rule methods returning Fal se with severity of war ni ng or I nf or mat i on do not
trigger short-circuiting.

S0 using the previous example from the rule priority discussion, the AddBusi nessRul es()
method setsrule priorities:

Protected Overrides Sub AddBusi nessRul es()
Val i dati onRul es. AddRul e(_
AddressOF Csl a. Val i dati on. CoomonRul es. Stri ngRequired, "CreditCode")
Val i dati onRul es. AddRul e(_
AddressOF VerifyCreditCode, "CreditCode", 1)
Val i dati onRul es. ProcessThroughPriority = 0

End Sub

In this case, | have explicitly set the ProcessThroughPri ori ty to 0, which isthe default.
This meansthat al priority O rule methods will be invoked, regardless of success or failure.
But rules at priority 1 or higher will only be invoked if no prior rule has returned Fal se with
aseverity if Error.

For this example the veri f yCr edi t Code rule method will not be invoked if the
St ri ngRequi r ed rule returns Fal se. This meets the goal of running less expensive rules first
and only running more expensive rulesif the inexpensive ones are satisfied.

Explicit Short-Circuiting

Another approach to short-circuiting is to have a rule method explicitly indicate that no
subsequent rules should be invoked for this property. Typically, you'll use rule prioritiesto
control the order in which rule methods are invoked, so you can predict which ruleswon’t be

executed when short-circuiting occurs.

Within arule method, you can choose to stop the processing of all subsequent rule
methods for the current property. To do this, the rule method should set e. St opPr ocessi ng t0
Tr ue. For example:

Private Shared Function IdExists(OF T As Custoner)(_
ByVal target As T, ByVal e As Rul eArgs) As Bool ean

Dimresult As Bool ean = | dExi stslnTabl e(target.nld)
If result Then
e.Description = "Id already exists in database"
e. St opProcessing = True
Return Fal se

El se
Return True
End I f
End Function

This rule method checks to see if the id value already exists in the database. If it does, the
method returns Fal se, along with adescription. But it also setsst opProcessi ng to Tr ue,
ensuring that no subsequent rule methods will be invoked for this property.

Short-circuiting, either using the priority threshold or explicitly stopping the processing,
can be used to gain substantial performance benefits for properties that have both expensive
and inexpensive rule methods.

Page51

www.4electron.com

Using Strongly-typed Rule Methods

If you’ ve been reading through the previous sections on using the new validation features,
you' ve seen examples of strongly typed rule methods, but | haven’t walked through their use
from end to end.

Strongly-typed rule methods allow you to use the compiler to help you debug your code,
rather than waiting for casting exceptions at runtime. They also allow you to avoid having to
manually cast thet ar get and Rul eAr gs parameter values in your rule methods.

Using strongly-typed rule methodsis atwo part process. First, you should use the generic
syntax when defining your rule method itself. Second, you must use the generic overloads of
AddRul e() and AddI nst anceRul e() When associating your rule methods with the properties

of your business object.

Defining Strongly-typed Rule Methods

Y ou can choose to define only the type of thet ar get parameter, or aso the type of the
Rul eAr gs parameter. The following rule method defines only the type of thet ar get
parameter:

Private Shared Function MaxCredit(Of T As Customer)(_
ByVal target As T, ByVal e As Rul eArgs) As Bool ean

If target.nCreditLimt > 10000 Then
e.Description = "Maximumcredit limt exceeded"
Return Fal se

El se
Return True
End If
End Function

This syntax may appear a bit odd at first, because the method isn’'t directly defining the
generic type. Instead, a generic constraint is used to require that T be of type cust oner. This
constraint alows the code inside the method to treat T as though it were of type cust oner ,
and requires any code invoking this method to provide a parameter of type cust oner (or a
subclass of cust oner).

This next example defines the types of both parameters:

Private Shared Function MaxCredit(OF T As Custoner, R As MaxCreditRul eArgs) (_
ByVal target As T, ByVal e As R) As Bool ean

If target.nCreditLinit > e. MaxCredit Then
e.Description = "Maximumcredit limt exceeded"
Return Fal se

El se
Return True
End I f

End Function

The same technique is used, so both the T and R type parameters are constrained to
specific types, and thet ar get ande parameters are defined by those type parameters. Within
the method, the target and e values are strongly typed, so any properties or methods defined
on cust omer and MaxCr edi t Rul eAr gs are available for use.

Page52

www.4electron.com

In either case, notice that you don’t need to write any code in the method to cast the
parameter values. The need to cast is avoided through the use of generics.

Adding Strongly-typed Rule Methods to your Objects

When you have rule methods defined using the generic syntax shown above you need to use
generic overloads of Addrul e() and AddI nst anceRul e() When associating those methods
with your business object’s properties.

The following example is used for arule method that only defines the type of the t ar get
parameter:

Protected Overrides Sub AddBusi nessRul es()

Val i dati onRul es. AddRul e(Of Custoner)(_
AddressOfF MaxCredit, "RequestedCredit")

End Sub

If both the t ar get and e parameter types are specified by the rule method, then you need
to use code like the following:

Protected Overrides Sub AddBusi nessRul es()
Val i dati onRul es. AddRul e(OF Cust onmer, MaxCreditRul eArgs)(_
AddressOf MaxCredit, _
New MaxCredi t Rul eArgs("RequestedCredit”, 10000))

End Sub

The primary reason for using strongly-typed rule methods is that the compiler can help
you find parameter typing issues at compiletime. Thisis simpler and more reliable than
trying to find type conversion exceptions at runtime during testing.

Retrieving Rule Information

Theval i dati onRul es class now implements a Get Rul eDescri pti ons() method that returns
an array of st ri ng. Each item in the array represents a rule method that has been associated

with a property of your business object. Both per-type and per-instance rules are returned in
this array.

The returned information can be useful for generating documentation about the rules used
in each object, or by a Ul developer to help automate the creation of the Ul. In particular, you
could use thisinformation in a Web Forms Ul framework to help automate the association of
validation controls to other Ul controls to mirror some of the validation rulesin your business
objects.

Theval i dati onRul es classisaPpr ot ect ed member of Busi nessBase, and so the
Get Rul eDescri pti ons() method can only be called from code within your business objects
themselves. If you want to expose thisinformation publicly, to the Ul for example, you'll
need to implement your own pPubl i ¢ method for that purpose.

Eachiteminthearray isastring in URI format, with the foll owing structure:

rul e: // met hodNane/ pr opert yNane?ar gl=val ue&ar g2=val ue

Page53

www.4electron.com

Table 7 lists the parts of the structure.

URI Part Example Description

Scheme rule:// Prefix indicating thisis abusiness rule.
Host met hodNanme The name of the rule method.

Local Path propertyName The name of the business object

property associated with the rule.

Query argl=val ue&ar g2=val ue A list of extraarguments and their
values as provided to the rule method
when AddRul e() Or Addl nst anceRul e()
was called with a custom Rul eAr gs
subclass.

Table7. Parts of therule:// URI format

One primary reason theitems arein a URI format is so you can use the built-in
functionality of system uri to parse the values. The following example code shows how to
extract each part of the URI aslisted in Table 7:

Dimrules() As String = ValidationRul es. Get Rul eDescri ptions
Dimuri As New System Uri (rul es(0))

Dim scheme As String = uri.GetLeftPart(UriPartial.Schene)
Di m net hodNane As String = uri.Host

Di m propertyName As String = uri.Local Pat h. Substring(1)
Dimquery As String = uri.Query

Using the Get Rul eDescri pti ons() method, along with system uri for parsing, allows
you to gain relatively detailed information about the rules associated with the properties of
your business object.

Retrieving Broken Rules in an Array

TheBusi nessBase classin CSLA .NET exposes a Br okenRul esCol | ect i on property, which
means that all of your editable business objects automatically expose this property. The
purpose of this property isto allow the Ul developer to get alist of the human-readable
descriptions of all broken rulesin your business object.

In CSLA .NET 2.1, aToArray() method has been added to the Br okenRul esCol | ecti on
class. That way, the Ul developer can easily retrieve an array of all the broken rule
descriptions for a business object. This means the Ul can contain code like the following:

Di m cust As Customer = Customer. CGet Custoner (42)
Di m brokenRul es() As String = cust.BrokenRul esCol | ecti on. TOArray
For Each rule As String In brokenRul es

' do sonething with the text description

Next

Page 54

www.4electron.com

This examplereturnsalist of all broken rule descriptions, of all severities. The ToArray()
method has one overload, which allows you to restrict the results to a specific severity:
Error,War ni ng Or | nf or mat i on. For example:

Di m brokenRul es() As String = _
Me. BrokenRul esCol | ecti on. ToArray(Val i dati on. Rul eSeverity.|nformation)

In this case, only the I nf or mat i on Severity broken rule descriptions are returned.

At this point, you should understand both the implementation and usage of the new
validation rules featuresin CSLA .NET 2.1. Next let’ s discuss the changes to authorization
rules.

Page 55

www.4electron.com

Authorization Rules

The authorization rules support in CSLA .NET has been enhanced in version 2.1 to support
the concept of per-type rules, much like you' ve already seen with validation rules. The
version 2.0 concept of per-instance rulesis still available. So if your objects need to have
different sets of roles, on an object-by-object basis, that is possible.

CSLA .NET 2.1 dso addsanew interface, | Aut hori zeReadW i t e, to standardize how
authorization is exposed to the Ul developer. This interface provides a clear mechanism by
which the Ul can ask a business object whether the current user is authorized to read or write
each property on the object.

For most objects you'll typically use the new per-type authorization support, because it
requires less memory and increases performance. The reason for thisisthat the list of roles
authorized to read and write each property are loaded just once per AppDomain, rather than
once per object instance. In most cases, this means that the roles are loaded once and are
cached for the lifetime of the application.

CSLA .NET 2.0 maintainsthe list of roles that are allowed or denied read and write access
to each property on a per-object basis. The AddAut hori zat i onRul es() method in your
business object was called as each object instance was created.

In CSLA .NET 2.1, this behavior has changed. The AddAut hori zat i onRul es() method is
now called once per AppDomain, so each of your business objects only loads thisrole
information a single time. In most cases, you will not need to change your existing code,
because any existing AddAut hori zat i onRul es() method will continue to work asit did. It
just won't be called as often.

Loading per-type authorization ruleslooks like this:

Protected Overrides Sub AddAut horizati onRul es()

Aut hori zati onRul es. DenyRead("Nane", " GQuest")

Aut hori zati onRul es. Al | owRead(" Narme", "User", "Supervisor")
Aut hori zati onRul es. DenyWite(" Name", "User")

Aut hori zati onRul es. Al |l owW i te("Name", "Supervisor")

End Sub

If you do have conditional code to load different sets of roles for different objects of the
same type, then you'll need to move that code to a new Addi nst anceAut hori zat i onRul es()
method, and make use of the new instance methods on the aut hor i zat i onRul es object. For
instance, loading per-instance roles lookslike this:

Protected Overrides Sub Addl nstanceAut hori zati onRul es()

Aut hori zat i onRul es. | nst anceDenyRead(" Nane", "Cuest")

Aut hori zati onRul es. | nst anceAl | owRead("Nane", "User", "Supervisor")
Aut hori zati onRul es. | nst anceDenyWite("Name", "User")
Aut hori zati onRul es. I nstanceAl | owWite("Nanme", "Supervisor")

End Sub

Page56

www.4electron.com

The changesto the CSLA .NET framework to support this per-type and per-instance
concept are not unlike the changes to validation rules. Fortunately, authorization rules are a
simpler concept and so the code changes aren’t as complex.

Framework Changes

Enhancing the authorization rules processing in CSLA .NET involved changing and adding a
number of classes. Hereisalist of changed classes or types:

e BusinessBase (from Csl a. Core)

e ReadOnl yBase (from Csl a)

® AuthorizationRul es

e ReadWiteAuthorization (from Csl a. W ndows)
And hereisalist of new classes or types.

e Aut hori zati onRul esManager

e | AuthorizeReadWite

® SharedAut hori zati onRul es

Asyou can see, most of the classesin Csl a. Securi ty were affected by these changes.
Let’swalk through the changes to the framework code, and then I’ll discuss how to use these
changes in your business classes.

Implementing Per-Type Authorization Rules

Version 2.1 adds the concept of per-type authorization rules, while retaining support for per-
instance rules. The default behavior is now to use per-type authorization rules, which means
that the AddAut hor i zat i onRul es() methodsinthe CSLA .NET base classes are now used to
add per-type authorization rules. Similarly, the methods on Aut hori zat i onRul es to allow or
deny read and write access to properties are now used to define per-type roles.

Changes to BusinessBase

Busi nessBase has been enhanced to not only implement AddAut hori zat i onRul es() , but a'so
AddI nst anceAut hori zati onRul es() :

Prot ect ed Overridabl e Sub Addl nst anceAut hori zati onRul es()

End Sub

This method isinvoked at appropriate points during the business object’ s lifecycle, when
the roles need to be associated with the object’ s properties. This occurs when the object is
created. The per-type rules are also established through the constructor, if they haven’t been
previously loaded into the current AppDomain:

Protected Sub New()
Initialize()
Addl nst anceBusi nessRul es()

If Not Validation. SharedValidati onRul es. Rul esExi st For (Me. Get Type) Then
SyncLock Me. Get Type

Page 57

www.4electron.com

If Not Validation. SharedValidationRul es. Rul esExi st For (Me. Get Type) Then
AddBusi nessRul es()
End | f
End SynclLock
End | f
AddI nst anceAut hori zati onRul es()
If Not Csla.Security. SharedAut hori zati onRul es. Rul esExi st For (Me. Get Type) Then
SyncLock Me. Get Type
If Not Csla.Security. SharedAut hori zati onRul es. Rul esExi st For (Me. Get Type) Then
AddAut hori zat i onRul es()
End | f
End SynclLock
End | f

End Sub

Notice that AddI nst anceAut hori zat i onRul es() iscalled any time an object is created, but
AddAut hori zat i onRul es() isonly called if the per-type rules haven't already been
initialized. The shar edAut hori zat i onRul es classisresponsible for maintaining all the per-
type rulesfor all business object types that have been loaded in the AppDomain.

In CSLA .NET 2.0, the authorization rules were maintained in an instance field within the
object. In version 2.1, the per-type rules are maintained in shar edAut hori zat i onRul es, but
the per-instance rules are still maintained in a Pri vat e field within each business object.
However, thedeclaration of this maut hori zat i onRul es field has been changed to include the
NonSeri al i zed attribute:

<Not Undoabl e() > _
<NonSeri al i zed()> _
Private mAut hori zati onRul es As Security. Aut hori zati onRul es

Busi nessBase NOW reloads the per-instance authorization roles when an object is
deserialized, rather than including that role information in the serialized byte stream. This
decreases the size of the byte stream, making use of a remote data portal more efficient.

As aside-effect of this change, the object needs to re-load the per-instance authorization
rules any time the object is deserialized. Thisis handled by the onDeseri al i zedHandl er ()
method in Busi nessBase:

<OnDeserialized()> _
Private Sub OnDeserial i zedHandl er (ByVal context As Strean ngContext)

OnDeseri al i zed(cont ext)
Val i dati onRul es. Set Tar get (M)
Addl nst anceBusi nessRul es()
If Not Validation. SharedVal i dati onRul es. Rul esExi st For (Me. Get Type) Then
SyncLock Me. Get Type
If Not Validation.SharedValidati onRul es. Rul esExi st For (Me. Get Type) Then
AddBusi nessRul es()
End | f
End SynclLock
End | f
Addl nst anceAut hori zat i onRul es()
If Not Csla.Security. SharedAut hori zati onRul es. Rul esExi st For (Me. Get Type) Then
SyncLock Me. Get Type
If Not Csla.Security. SharedAut hori zati onRul es. Rul esExi st For (Me. Get Type) Then
AddAut hori zat i onRul es()
End | f
End SynclLock
End | f

End Sub

Page58

www.4electron.com

The code also checks to make sure the per-type rules exist, and it loads them if they are
needed. Thisisimportant because the first object retrieved from a remote data portal call
could be the object that initializes the per-type rules on a client workstation, and that
initialization would occur due to deserialization of the object from the data portal.

Changes to ReadOnlyBase

Read-only objects also have authorization rules, and the changes to Readnl yBase are very
similar to those in Busi nessBase. Again, an AddI nst anceAut hori zat i onRul es() method is
defined, and the methods to add authorization rules are invoked in the constructor and on
deserialization.

Since the code changes to ReadOnl yBase are so similar to those in Busi nessBase, | won't
repeat them here.

Changes to AuthorizationRules

TheAaut hori zat i onRul es class has extensive changes to handle per-type and per-instance
rules. Thisisthe class that is used by business devel opers as they write code in their business
classes to set up and use authorization rules, and so it is the primary point of entry to the
authorization rules functionality.

Caching the AuthorizationRuleM anager Objects

Because Busi nessBase and ReadOnl yBase No longer allow serialization of the
Aut hori zat i onRul es object, this object is no longer marked with the Seri al i zabl e attribute.

Additionally, Aut hori zat i onRul es now maintains areference to both the per-type and per-
instance role lists for the business object:

Publ ic O ass AuthorizationRul es

Privat e nBusi nessbj ect Type As Type
Private nifypeRul es As Aut hori zati onRul esianager
Private m nstanceRul es As Authorizati onRul esManager

Though shar edAut hori zat i onRul es iSsresponsible for maintaining the list of per-type
rules for all business objects, it is more efficient to retrieve that list once and cache the
reference directly in each business object. Thisis the purpose behind the nirypeRul es field.
Them nst anceRul es field maintains areference to the list of per-instance rulesfor the
current business object.

The class includes a couple helper properties to initialize these fields. This means that no
code in the rest of the class uses these fields directly, but rather all accessis through the
helper properties:

Private ReadOnly Property InstanceRul es() _
As Aut hori zati onRul esManager
Get
I f m nstanceRul es |I's Not hing Then
m nst anceRul es = New Aut hori zat i onRul esManager
End | f
Ret urn m nst anceRul es
End Get
End Property

Private ReadOnly Property TypeRules() _

Page59

www.4electron.com

As Aut hori zati onRul esManager

Cet
I f nTypeRul es Is Nothing Then

nlTypeRul es = Shar edAut hori zat i onRul es. Get Manager (nBusi nessCbj ect Type, True)

End | f
Ret urn nifypeRul es

End GCet

End Property

Notice how both properties handle the creation or initialization of the field, caching the
result after the first load. In the case of | nst anceRul es thisis merely a convenience, but in
the case of TypeRul es thisis done as an optimization to avoid abi cti onary lookup every
time the per-type rules are needed.

Adding Authorization Rules

To see how these helper properties are used, let’slook at the Al | owRead() method. This
method is used to add a per-type authorization rule to the object:

Public Sub All owRead(_
ByVal propertyName As String, ByVal ParamArray roles() As String)

Di m current Rol es As Rol esFor Property = TypeRul es. Get Rol esFor Pr operty(propertyNane)
For Each itemAs String In roles

current Rol es. ReadAl | owed. Add(i tem)
Next

End Sub

Notice how the TypeRul es property isused to retrieve the list of roles for the specified
property, so the new role can be added to that list. TheRol esFor Property objectis
unchanged from version 2.0, and you can get details about that class from Expert VB 2005
Business Objects (ISBN 1590596315).

The Al l owwite(),DenyRead() and Denywite() methods follow this same pattern.

Per-instance rules are added using a parallel set of methods. For example, here’ sthe
I nst anceAl | owRead() method:

Publ i c Sub InstanceAl | owRead(_
ByVal propertyName As String, ByVal ParamArray roles() As String)

Di m current Rol es As Rol esFor Property = _

I nst anceRul es. Get Rol esFor Propert y(propertyNane)
For Each item As String In roles

current Rol es. ReadAl | owed. Add(i ten)
Next

End Sub

In this case, thel nst anceRul es helper property is used to retrieve the list of per-instance
rules, so the role can be added to the specified property. The | nst anceAl | owwi te(),
I nst anceDenyRead() and | nst anceDenyW i t e() methods follow this same pattern.

Checking Authorization Rules

Finally, Aut hori zat i onRul es implements a set of methods that check the authorization rules,
such asHasReadAl | owedRol es() and I sReadAl | owed() . These methods now check both the
per-type and per-instance role lists. For example, here’ s the HasReadAl | owedRol es() method:

Page 60

www.4electron.com

Publ i ¢ Functi on HasReadAl | onedRol es(_
ByVal propertyName As String) As Bool ean

Dimresult As Bool ean
I f I nstanceRul es. Get Rol esFor Property(propertyNane). ReadAl | oned. Count > 0 Then
result = True
El se
result = TypeRul es. Get Rol esFor Property(propertyNane). ReadAl | owed. Count > 0
End |f
Return result

End Functi on

Notice that both the per-type and per-instance lists are checked. Similarly,
I sReadAl | owed() checks both lists:

Publ i c Function |sReadAl | owed(ByVal propertyName As String) As Bool ean

Dimresult As Bool ean

Di m user As System Security.Principal.|Principal = ApplicationContext.User

I f I nstanceRul es. Get Rol esFor Property(propertyNane).|sReadAl | oned(user) Then
result = True

El se

result = TypeRul es. Get Rol esFor Property(propertyNane).|sReadAl | owed(user)
End | f
Return result

End Functi on

There are comparable methods to check for denied read, allowed write and denied write.
These methods are used by Busi nessBase and ReadOnl y base to implement their
CanReadPr operty() and Canwi t eProperty() methods, but dl the changes from version 2.0
to 2.1 are encapsulated here in Aut hori zat i onRul es.

AuthorizationRulesManager Class

The per-type and per-instance authorization rules are now stored in an instance of
Aut hor i zat i onRul esManager . This object is responsible for organizing the lists of roles
associated with each property of the business object.

To do this, Aut hori zat i onRul esManager maintainsabi cti onary, where the key isthe
name of the property, and the value is aRol esFor Proper t y Object that maintains the list of
allowed and denied roles for reading and writing to that property.

Private nRules As Dictionary(Of String, Rol esForProperty)

Friend ReadOnly Property RulesList() _
As Dictionary(Of String, RolesForProperty)
Cet
If mRules |'s Nothing Then
mRul es = New Dictionary(Of String, Rol esForProperty)
End | f
Ret urn nRul es
End Cet
End Property

Page61

www.4electron.com

The Aut hori zat i onRul esManager then implements a method to allow retrieval of the role
data. This method simply returns the Rol esFor Pr oper t y object associated with the specified
property name:

Friend Function Cet Rol esFor Property(_
ByVal propertyNane As String) As Rol esForProperty

Di m current Rol es As Rol esForProperty = Not hi ng
If Not Rul esList. Contai nsKey(propertyNane) Then
current Rol es = New Rol esFor Property
Rul esLi st. Add(propertyName, current Rol es)

El se

current Rol es = Rul esList.|ten(propertyNane)
End |f
Return current Rol es

End Functi on

Y ou've aready seen how this method is used by Aut hori zat i onRul es asit implements
the methods like HasReadAl | owedRol es() and | sReadAl | owed() .

SharedAuthorizationRules Class

The final class needed to implement per-type authorization rulesis the

Shar edAut hori zat i onRul es class. AS you' ve seen in the previous code, thistype is
responsible for maintaining all the per-type authorization rules for all business object typesin
the AppDomain.

This object maintainsabi cti onary, keyed by business object type, that contains the
Aut hor i zat i onRul esManager 0Object with each business object’s per-type rules. This
Di ctionaryisashared field, meaning it is global to the AppDomain:

Fri end Modul e SharedAut hori zati onRul es

Private mvanagers As New Dictionary(Of Type, AuthorizationRul esManager)

Remember that all fields and methods in ambdul e are automatically shar ed.

The Get Manager () method is used to retrieve the Aut hor i zat i onRul esManager for a
specific business object type:

Friend Function Get Manager (ByVal object Type As Type, ByVal create As Bool ean) _
As Aut hori zati onRul esManager

Dimresult As Authorizati onRul esManager = Not hi ng
If Not mVanagers. TryGCet Val ue(obj ect Type, result) AndAl so create Then
SyncLock mVanager s
result = New Aut hori zati onRul esivanager
mvanager s. Add(obj ect Type, result)
End SynclLock
End | f
Return result

End Functi on

This method isimplemented in much the same manner asthe Get Manager () method in the
Csl a. Val i dat i on. Shar edVal i dat i onRul es class. The Aut hori zat i onRul es object usesthis

Page 62

www.4electron.com

method to retrieve the appropriate Aut hor i zat i onRul esManager for the business object when
it needs access to the per-type rules.

Notice the use of the syncLock statement in the Get Manager () method. Because this
method is shar ed (due to being in amdul e), it should be made threadsafe. In the case that
multiple threads call Get Manager () at the sametime, SyncLock will ensure that only one
thread at atime will execute thecritical code in the method.

There’ salso aRul esExi st For () method that is used by Busi nessBase and ReadOnl yBase
to determine whether per-type rules have been initialized for a specified business type:

Publ i ¢ Function Rul esExi st For (ByVal object Type As Type) As Bool ean
Ret urn mvanager s. Cont ai nsKey(obj ect Type)

End Function

At this point, you should understand how the per-type and per-instance authorization rules
are implemented. The Busi nessBase and ReadOnl yBase classes allow the business devel oper
to define both per-type and per-instance rules. The Aut hori zat i onRul es class manages both
sets of rules for each business object, relying on Aut hori zat i onRul esManager Objectsto
maintain the detailed information on a per-property basis. And the
Shar edAut hori zat i onRul es Object manages all the per-type rules for all objects, caching
them and making them available to al code in the AppDomain.

Implementing IAuthorizeReadWrite

The Microsoft .NET framework defines syst em Conponent Mbdel . | Dat aEr r or | nf o t0 provide
a standardized way for Ul code to ask objects whether any validation rules are currently
broken. Thisinterface is used by Windows Forms data binding to power the Er r or Pr ovi der
control for example.

Unfortunately, there is no equivalent interface for standardizing per-property
authorization. In version 2.1, CSLA .NET introduces its own interface for this purpose,
making it easier to develop Ul components and frameworks that can interact with business
objectsin a standardized manner.

IAuthorizeReadWrite Interface

Thecsl a. Security. | Authori zeReadWi t e interface provides a standard way for Ul code to
ask abusiness object if the current user is authorized to read or write to each property of the

object:

Public Interface | AuthorizeReadWite
Function CanWiteProperty(ByVal propertyName As String) As Bool ean
Functi on CanReadProperty(ByVal propertyName As String) As Bool ean
End I nterface

The Ul can use the information provided by this interface to provide visual cuesto the
user asto what they can expect to do with each data element.

For thisto work, your business objects must implement thisinterface. Y ou don’t need to
worry about this detail in your business classes, asthe interface isimplemented on your
behalf in Busi nessBase and Readnl yBase.

Page63

www.4electron.com

Changes to BusinessBase and ReadOnlyBase

Both Busi nessBase and ReadOnl yBase implement | Aut hori zeReadW i t e, relying in the pre-
existing authorization rules implementation to do the hard work. In fact, BusinessBase
already implemented CanReadPr operty() and Canwi t eProperty() methodsin CSLA .NET
2.0, so those methods now simply implement the interface:

Publ i c Overridabl e Functi on CanReadProperty(_
ByVal propertyNane As String) As Bool ean
I npl enents Csl a. Security.|AuthorizeReadWite. CanReadProperty

And

Public Overridable Function CanWiteProperty(_
ByVal propertyName As String) As Bool ean _
Impl ements Csl a. Security. | Aut hori zeReadWite. CanWiteProperty

The sameistrue for canReadProperty() in ReadOnl yBase, but in version 2.0,
ReadOnl yBase didn’t implement Canw i t eProperty() at al. Now it must provide an
implementation, though it smply returns Fal se at all times:

Private Function CanWiteProperty(ByVal propertyNane As String) As Bool ean _
I mpl enents Security. | AuthorizeReadWite.CanWiteProperty

Return Fal se

End Function

Since read-only objects should only have read-only properties, there shouldn’t be a case
where the user is authorized to write to a read-only property.

With these changes, all CSLA .NET objects support this new interface and can be
accessed in a standardized manner from Ul code. The CSLA .NET framework does include
one Ul helper that isimpacted by this change: Csl a. W ndows. ReadW i t eAut hor i zat i on.

Changes to the ReadWriteAuthorization Control

TheReadW i t eAut hori zat i on control isaWindows Forms extender control that helps
simplify authorization logic in a Windows Forms detail form. It automatically sets the
ReadOnl y property on controls like Text Box based on the authorization information provided
by the business object property to which that control is bound through data binding. For
complete details about this control please refer to Expert VB 2005 Business Objects (ISBN
1590596315).

In CSLA .NET 2.1, the ReadW i t eAut hori zat i on control has been enhanced to use the
new I Aut hor i zeReadW i t e interface when querying the business object to get authorization
information. Thisimpacts the implementation of the Appl yAut hori zat i onRul es() method:

Private Sub Appl yAut hori zati onRul es(ByVal control As Control)

For Each binding As Binding In control. DataBindings
' get the BindingSource if appropriate
I f TypeO' binding. Dat aSource |s Bi ndi ngSource Then
Di m bs As Bi ndi ngSource = CType(bi ndi ng. Dat aSour ce, Bi ndi ngSour ce)
' get the BusinessObhject if appropriate
Dimds As Csla.Security.|AuthorizeReadWite = _
TryCast (bs. Dat aSour ce, Csl a. Security. | Authori zeReadWi te)

Page 64

www.4electron.com

If ds IsNot Nothing Then
' get the object property nane
Di m propertyNane As String = _
bi ndi ng. Bi ndi ngMenber | nf 0. Bi ndi ngFi el d

Appl yReadRul es(control, binding, _
ds. CanReadPr opert y(propertyNang))
Appl yWiteRul es(control, binding, _
ds. CanW i t eProperty(propertyNang))
End | f
End I f
Next

End Sub

The lines of code using the new interface are highlighted for clarity.

If you compare this code to the original version 2.0 code, you' |l see that this
implementation is much simpler, and avoids the need to check for and cast the type to either
Busi nessBase Or ReadOnl yBase. This change not only makes the code easier to read, but it
means that the ReadW i t eAut hori zat i on control will automatically support any future object
types that implement | Aut hori zeReadW i te.

Using the Enhancements

The per-type enhancements to the authorization rules support in CSLA .NET are often
transparent to existing code. In most cases, you can follow the same coding approach you
used in version 2.0. However, you' |l get better performance and less consumption of
memory.

The I Aut hori zeReadW i t e interface has no impact on your business code at all. It exists
entirely to help support the creation of Ul frameworks and components.

Using Per-Type Authorization Rules

In CSLA .NET 2.1, authorization rules may be associated with a business object at the type
or instance level. Per-type rules are associated with all business objects of a given type, while
per-instance rules are associated with one specific instance of a business object.

Per-type rules are far more efficient in their use of memory, and offer performance
benefits because the association of rulesto properties only occurs once per AppDomain
rather than as each object is created. Typically, this means the association occurs once during
the lifetime of the application.

Per-instance rules provide more flexibility, because these rules are associated with the
object’ s properties as each object is created. Y ou can write code to change the way the rules
are associated with the object based on the specific object being created. This resultsin more
memory consumption and slower performance, because the list of rules is maintained and
created as each business object is instantiated.

When creating a business object, you can now override either AddAut hori zat i onRul es()
Or Addl nst anceAut hori zati onRul es().

Associating Rule Methods with Properties

TheAddAut hori zat i onRul es() method is called only once per AppDomain for each type of
business object. In this method, you can call the Al | owRead(), Al | owW it e() , DenyRead()

Page 65

www.4electron.com

and DenyW i t e() methodson Aut hori zat i onRul es t0 associate roles with the properties of
your business object. These roles are then used by CSLA .NET to provide authorization for
the properties of all business objects of that type.

A typical AddAut hori zat i onRul es() method might look like this:

Protected Overrides Sub AddAut hori zati onRul es()

Aut hori zat i onRul es. DenyRead("Nanme", " CGuest")

Aut hori zati onRul es. Al | owRead(" Nanme", "User", "Supervisor")
Aut hori zati onRul es. DenyWite(" Nanme", "User")

Aut hori zati onRul es. Al | owW it e(" Name", " Supervisor")

End Sub

It isalso possibleto load different authorization rules for each object instance. These are
called per-instance rules and are configured in an Addl nst anceAut hori zat i onRul es()
method. Such a method might look like this:

Protected Overrides Sub Addl nstanceAut hori zati onRul es()

Aut hori zati onRul es. | nst anceDenyRead(" Nane", "CQuest")

Aut hori zati onRul es. | nst anceAl | owRead("Nanme", "User", "Supervisor")
Aut hori zati onRul es. | nst anceDenyWite("Name", "User")
Aut hori zati onRul es. | nstanceAl | owWite("Nane", "Supervisor")

End Sub

In general terms, you should avoid using per-instance rulesin favor of the more efficient
per-type rules.

Using IAuthorizeReadWrite

Thel Aut hori zeReadW i t e interfaceis designed to support Ul framework and component
authors. If you are building a Ul framework or component, you can use this interface to
gandardize how you interact with any CSLA .NET business object.

Given areference to a business object, you can simply cast the object to
I Aut hori zeReadW i t e t0 use the standard methods on that interface:

Di m cust As Customer = Customer. CGet Custoner (42)
Dimauth As | AuthorizeReadWite = CType(cust, |AuthorizeReadWite)

Di m canRead As Bool ean = aut h. CanReadPr operty(" Nanme")
Dim canWite As Bool ean = auth. CanWi t eProperty("Nane")

Y ou can use this technique as appropriate when creating your Ul frameworks and
components.

Y ou should have a good understanding of the new per-type and | Aut hori zeReadWi t e
features of authorization within CSLA .NET 2.1, including both their implementation and
usage in your business objects.

Page 66

www.4electron.com

FilteredBindingList

CSLA .NET 2.0 includes the sor t edBi ndi ngLi st class, which provides an editable, sorted,
view of any I Li st (O T) collection type. Since arrays and most list and collection types

implement I Li st (O T), Sort edBi ndi ngLi st allowsyou to get alive sorted view of almost
any listin .NET.

The new Fi | t er edBi ndi ngLi st class provides the same kind of live view against any
IList(of T),and providesthe ability to filter the contents of that list. Aswith
Sor t edBi ndi ngLi st , applying afilter doesn’t alter the original list at all, it merely altersthe
view. However, adding or removing items from the filtered list immediately adds or removes
the item from the original list.

BecauseFi | t er edBi ndi ngLi st and Sor t edBi ndi ngLi st both implement | Li st (of T),
they are composable. This means you can take an array or list, useFi | t er edBi ndi ngLi st t0o
get afiltered view, and then use Sor t edBi ndi ngLi st to get a sorted view of thefiltered view.

The default filter isa simple wildcard match, but Fi | t er edBi ndi ngLi st isextensible and
you can provide your own filter algorithm. A filter is merely a method that matches a
delegate method signature, and you pass a reference to that delegate into
Fi | t eredBi ndi ngLi st.

Framework Changes

Three types have been added to CSLA .NET to support theFi | t er edBi ndi nglLi st :
e FilteredBindingList
e FilterProvider
e DefaultFilter

Obviously, most of the work occursin Fi | t er edBi ndi ngLi st itself. Fi | t er Provi der
defines the delegate signature for any filter provider, and Def aul t Fi | t er implements the
default matching filter provided by CSLA .NET.

Implementing FilteredBindingList

Fi | t er edBi ndi ngLi st dependsontheFi I terProvi der delegate to do itswork. I'll cover that,
along with the default filter, first. Then I’ll discussFi | t er edBi ndi nglLi st itself.

FilterProvider Delegate

When filtering alist, each item in the list must be checked to seeif it meets the filter
condition. To do this, Fi | t er edBi ndi ngLi st loops through all theitemsin the original list,
calling aBool ean method to evaluate each item. If the item matches the filter condition this
method should return Tr ue, and Fi | t er edBi ndi ngLi st will include that item in the filtered
view.

Thisfilter method must conform to a specific method signature, defined by the
Fi |l terProvi der delegate:

Page67

www.4electron.com

Publ i c Del egate Function FilterProvider(_
ByVal item As Object, ByVal filter As Cbject) As Bool ean

Thei t emparameter istheitem to be evaluated, and it comes from the original list. The
filter parameter could be any criteriarequired by the filter provider method. In the case of
Defaul tFil ter, thisisasimpletext value that is compared to the item with awildcard match.

The filter provider method must evaluate theitem to determine if it meets the filter
criteria, and return Tr ue if the item should be included in the filtered view.

DefaultFilter

CSLA .NET includes a default filter provider method that does a simple text-based wildcard
match against each item in theoriginal list. The Def aul t Fi I ter classimplementsasingle
method, Fi | t er, that conformsto the Fi | t er Provi der delegate signature:

Friend Class DefaultFilter

Publ i c Shared Function Filter(_
ByVal item As Object, ByVal filterValue As Object) As Bool ean

Dimresult As Bool ean = Fal se

If Not itemIs Nothing AndAl so Not filterValue I's Nothing Then
result = CStr(itemn).Contains(CStr(filterValue))

End | f

Return result

End Function

End C ass

This method simply converts both theitemandfi | t er Val ue parametersto String values

and uses the cont ai ns() method to find out if the item’ s text representation contains the filter
value.

The important thing is that the method returns Tr ue for items that meet the filter criteria,
and Fal se for items that don’t meet the criteria. Y ou can use this method as atemplate for
creating other, more specialized, filters to meet your needs.

FilteredBindingList Class

TheFi | t er edBi ndi ngLi st classcontains areferenceto the original 1 Li st (Of T) object, and
provides afiltered view of theitemsin that original list. To do this, it maintainsalist of the
index values for the itemsin the original list that meet the filter criteria based on the filter
provider method.

Page 68

www.4electron.com

Fi | t er edBi ndi ngLi st isalong and somewhat complex class, primarily because it directly
implements a number of collection interfaces. These include:

e IList(Cf T)

® | Bi ndi nglLi st
e | Enunerable(OF T)

® | Cancel AddNew

These are the same interfaces implemented by Sor t edBi ndi ngLi st , and so | am not going
to cover al the code in great detail. Y ou can refer to Expert VB 2005 Business Objects (ISBN
1590596315) for a more lengthy discussion on how these interfaces are implemented as a
wrapper aound the original list object.

| al'so recommend referring to the book for details regarding the event interactions
between the original list and the filtered view. Asitems are added, removed or changed in
either the original list or the view; events are raised and handled by both lists. This
interaction isrelatively complex, but is required to provide the ability to directly manipulate
the datain the filtered list as though it were a normal list object, even though itisreally just a
wrapper around another list object.

Basic Implementation

There are some important differences between Sor t edBi ndi ngLi st and

Fi | t er edBi ndi ngLi st that need to be discussed. One of the most important is somewhat
subtle: Sor t edBi ndi ngLi st aways has the same number of items asthe original list, while

Fi | t er edBi ndi ngLi st often has a different number of items. This simple fact complicates the
implementation of the wrapper class in various ways, starting with the count property:

Public ReadOnly Property Count() As Integer _
I npl enents IList(Of T).Count, I|BindingList.Count
Cet
If nFiltered Then
Return nfFilterlndex. Count
El se
Ret urn nili st. Count
End | f
End Get
End Property

Where Sor t edBi ndi ngLi st always delegates this call to the origina list,
Fi | ter edBi ndi ngLi st must return only the number of itemsin itsfiltered list. Looking at this
code, you can infer much about how Fi | t er edBi ndi ngLi st doesitswork. Thenti st field
contains areference to the original list, whilenfi | t er | ndex isthe list of original index values
for al items meeting the filter criteria.

There are two important helper methods that are used throughout the implementation:
Origi nal I ndex() and Fi | t er edl ndex() . These helper methods trand ate index values to and
from the original index and the filtered index. In other words, the original list could have 10
items, and the filtered view may only show the last 5. This means that an original index of O
doesn’t exist in thefiltered view at al. A filtered index of O translates to an original index of
5, while an original index of 9 trandates to afiltered index of 4.

Page69

www.4electron.com

Private Function Original Il ndex(ByVal filteredl ndex As Integer) As I|nteger
Return nFilterlndex(filteredl ndex). Basel ndex
End Function

Private Function Filteredl ndex(ByVal originallndex As Integer) As I|nteger

Dimresult As Integer = -1
If nFiltered Then
Dimindex As Integer = 0
Do Wil e index < nFilterlndex. Count
If nFilterlndex(index).Baselndex = ori gi nal | ndex Then

result = index
Exit Do
End | f
i ndex += 1
Loop
El se
result = original |l ndex
End | f

Return resul t

End Function

The i gi nal I ndex() method isrelatively straightforward, because the nfi | t er | ndex
field maintains a cross-reference table that maps filtered index values back to the original
indexes. All that’ s required hereisto find the entry in the filtered index and retrieve the
original (base) index stored at that location in the index.

TheFi | teredl ndex() method isahbit more complex because there' s no index to directly
trandate original index valuesto their filtered counterparts. Instead, the code |oops through
nFi | t er I ndex looking for a match between the requested index and the original index stored
in the filtered index. Notice that if amatch isn’t found, then avalue of - 1 isreturned from the
method to indicate that the original item isn’t included in the filtered view.

Applying the Filter

The most interesting part of Fi | t eredBi ndi ngLi st iSapplying thefilter itself. This processis
initiated through the Appl yFi I ter () method:

Public Sub ApplyFilter(ByVal propertyNane As String, ByVal filter As (bject)
nFilterBy = Not hi ng

If (Not String.|sNull O Enpty(propertyNane)) Then
DimitenType As Type = Get Type(T)
For Each prop As PropertyDescriptor In TypeDescriptor.GetProperties(itenilype)
I f prop. Name = propertyName Then
nFilterBy = prop
Exit For
End |f
Next prop
End | f

ApplyFilter(nFilterBy, filter)
End Sub
Public Sub ApplyFilter(ByVal [property] As PropertyDescriptor, ByVal filter As (bject)
nFilterBy = I[property]
t

nFilter = filter
DoFil ter ()

Page70

www.4electron.com

End Sub

This method has two overloads for parity with the Appl ySort () methodin
Sor t edBi ndi ngLi st. Thefirst takesa st ri ng value to identify the property on which to sort,
while the second takes apr oper t yDescri pt or . Notice that these methods merely ensure that
the PropertyDescri pt or and filter criteria are stored in the appropriate fields before
DoFi I ter () isinvoked. The DoFi | t er () method does the actual work:

Private Sub DoFilter()

Dimindex As Integer = 0
nFil terl ndex. C ear ()

If mProvider Is Nothing Then
nProvi der = AddressOf DefaultFilter.Filter
End | f

If nFilterBy Is Nothing Then
For Each obj As T In nlist
I f nProvider.I|nvoke(obj, nFilter) Then
nFilterlndex. Add(New Listltenm(obj, index))
End | f
index += 1
Next obj
El se
For Each obj As T In nmlist
Dmtnp As Object = nFilterBy. CGetVal ue(obj)
I f nProvider.|nvoke(tnp, nFilter) Then
nFil terl ndex. Add(New Listlten(tnp, index))
End | f
i ndex += 1
Next obj
End | f

nFiltered = True
OnLi st Changed(New Li st ChangedEvent Ar gs(Li st ChangedType. Reset, 0))

End Sub

This method ensures that nPr ovi der isset to avalid filter provider delegate. The business
developer may have set this value when creating an instance of Fi | t er edBi ndi ngLi st , Or by
setting theFi | t er Provi der property. However, if they did neither then the value would be
Not hi ng, and so hereit is set to use the default filter method | discussed earlier.

When Appl yFi I ter () iscalled, the filter property could be passed as Not hi ng. In that
case the object itself is passed to the filter provider method along with the filter criteria

For Each obj As T In nlist
I f nProvider.Invoke(obj, nFilter) Then
nFi | terlndex. Add(New Listltemn(obj, index))
End | f
index += 1
Next obj

This processis repeated for each itemin the origina list, resulting in nFi | t er | ndex
containing an entry for each item that meets the filter criteria.

On the other hand, if the filter should run against a specified property, then that property
valueisretrieved from the object and the value is then passed to the filter provider method:

Page 71

www.4electron.com

For Each obj As T In niist
Dmtnp As (bject = nFilterBy. GetVal ue(obj)
I f nProvider.Invoke(tnmp, nFilter) Then
nFilterlndex. Add(New Listltenm(tnp, index))
End | f
index += 1
Next obj

The basic process is the same, as the code |oops through all itemsin the original list,
adding an entry to nFi | t er I ndex for each matching element.

Either way, the end result isthat nFi | t er | ndex contains alist of items that match the
filtered criteria. Thislist is used by the rest of the implementation to provide the filtered
view. For instance, theFor . . . Each statement uses an enumerator to loop through the itemsin
the list. When the list isfiltered, a special enumerator isreturned to the For . . . Each code
generated by the compiler:

Publ i c Function GetEnunerator() As |Enunerator(COF T) _
I npl enent s | Enunerabl e(Of T). Get Enuner at or

If nFiltered Then

Return New Fi |l t eredEnunerat or (nLi st, nFilterlndex)
El se

Ret urn niLi st. Get Enuner at or ()
End | f

End Function

ThisFi I t eredEnuner at or returns the itemsin the filtered index, rather than all the items
inthe origina list. Similarly, thei t em property gets or sets the item corresponding to the
filtered index location:

Default Public Property Iten(ByVal index As Integer) As T _
Inplements IList(OF T).ltem
Get
If nFiltered Then
Dimsrc As Integer = Oigi nal | ndex(i ndex)
Return nlLi st(src)
El se
Return nli st (i ndex)
End | f
End Cet
Set (ByVal value As T)
If nFiltered Then
mLi st (Ori gi nal | ndex(i ndex)) = val ue
El se
nmLi st (i ndex) = val ue
End | f
End Set
End Property

Notice the use of the &ri gi nal | ndex() helper method to trandate the filtered index
location back to the original list location, so the item can be retrieved from the original list.
Thisreinforces the ideathat the Fi | t er edBi ndi ngLi st doesn’t directly contain the items, but
rather, it delegates al that work to the original list.

Removing the Filter
Along with the Appl yFi I ter () methods, there’' salso a RenoveFi | t er () method to remove
any filter:

Page72

www.4electron.com

Public Sub RenoveFilter()
UnDoFi l ter()

End Sub

The undoFi | ter () method isthe counterpart to DoFi | t er () , removing the filter and
resetting all the fields to default values:

Private Sub UnDoFilter()
nFilterlndex. d ear()
nFilterBy = Nothing
nFilter = Nothing
nFiltered = Fal se
OnLi st Changed(New Li st ChangedEvent Args(Li st ChangedType. Reset, 0))

End Sub

It also raisestheLi st changed event to tell data binding that the list has changed, so any
Ul controls can refresh their display accordingly.

Adding ItemstoaFiltered List

Fi | t er edBi ndi ngLi st allowsitemsto be added or removed from the filtered view, and those
items are directly added or removed from the origind list. Removing itemsis simple enough,
asthey are removed from the origind list and the filtered view. Adding itemsis a bit more
complex, because the item being added might not meet the filter criteria. While the item must
be added to the original list, it isn’'t so clear whether it should also be added to the filtered
view.

| opted to leave all added itemsin the filtered view, even if they don't meet thefilter
criteria. The reason is the user experience for in-place editing within a grid control. If the user
adds aniteminto agrid control that is bound to afiltered list, the user probably expects that
itemto remainin the grid. If Fi | t er edBi ndi ngLi st immediately removes the new item from
the view, the user would see the row disappear, even though it was added to the original list,
and that could lead to serious confusion.

Thisisimplemented in the Sour ceChanged() method, which iswhere
Fi | t er edBi ndi ngLi st isnotified that the original list has changed. Remember that any item
added to the list is actually added to the original list, and the filtered view finds out about this
through aLi st Cchanged event, which is handled by the Sour ceChanged() method. This
method contains several sections to handle different events, including the case that a new
item was added to the original list:

Case Li st ChangedType. | t emAdded
listlndex = e. Newl ndex
' add new val ue to index
newl tem = nLi st (listlndex)
If Not nFilterBy Is Nothing Then
newKey = nFilterBy. Get Val ue(new t em
El se
newkKey = newitem
End | f
nFil terl ndex. Add(New Listltem newkey, |istlndex))
filteredl ndexVal ue = nFilterlndex. Count - 1
' raise event
OnLi st Changed(_

Page73

www.4electron.com

New Li st ChangedEvent Ar gs(e. Li st ChangedType, filteredl ndexVal ue))

This code contains many of the elements of the DoFi I t er () method | discussed earlier. It
determines whether the filter is applied to a specific property or not, and sets anewkey value
to the key value for the newly added item. It then adds a new entry to the filtered index
corresponding to this new item in the original list.

Notice that it does not invoke the filter provider method. The newly added item is added at
the end of the filtered view regardless of whether it matches the filter criteria, so there’sno
reason to invoke the filter provider method at al. This approach provides a user doing in-
place editing in a data bound grid control with a predictable and expected experience.

At this point, you should understand that the Fi | t er edBi ndi ngLi st merely maintains a
filtered cross-reference index so it can provide afiltered view of the original list. Where
possible, it delegates al work to the origina list, though it often must translate index values
between the filtered position and the original position of each item. The class also directly
implements some properties and methods, like count, to provide the illusion of being an
actual collection rather than just awrapper over another collection.

Using the Enhancements

While the implementation of Fi | t er edBi ndi ngLi st iSquite complex, using afiltered list is
quite straightforward. Remember that Fi | t er edBi ndi ngLi st 10oks and works like any

Bi ndi ngLi st (Of T) collection object, and so it can be used anywhere you would have
otherwise used aBi ndi ngLi st (Of T).

However, if you call the Appl yFi | ter () method, you can get afiltered view of thelist,
and that’ s the value of this object. In some cases you may need to build your own filter
provider method, because a ssmple cont ai ns() check may be insufficient for your needs.

I’ll walk through the basic use of the object first, and then discuss how you can create and
use your own filter provider method. Then I'll discuss how you can use
Fi | t er edBi ndi ngLi st and Sort edBi ndi ngLi st together to create a filtered and sorted view of
alist.

Using FilteredBindingList

TheFi | t er edBi ndi ngLi st classitself isvery similar in concept to the Sor t edBi ndi ngLi st
already in CSLA .NET. It merely contains a reference to the original list object, and provides
afiltered view of the itemsin that original list.

Creating an instance of Fi | t er edBi ndi ngLi st requiresthat you already have an original
list that contains the items you want to filter. Thislist can be as simple as an array, or as
complex asaBi ndi ngLi st (O T) or abusiness collection derived from
Busi nessLi st Base(Of T, C) OF ReadOnl yLi st Base(Of T, C) . Here’sasimple example using
an array of stri ng values:

DimoriginalList() As String = {"Rocky", "John", "Fred"}
DimfilteredLi st As New FilteredBindingLi st(Of String)(originallList)

filteredList.ApplyFilter("", "J")

Page 74

www.4electron.com

Theresult of thiscodeisthat fi |l teredLi st will have acount of 1, and it will contain only
the item John, because that’ s the only element containing the letter J.

Here' s another example, using a collection of cust omer objects:

Di m custonmers As CustonerList = CustomerlList. GetCustoners()
DimfilteredLi st As New FilteredBindi ngList(Of Customer) (custoners)

filteredList.Appl yFilter("Nane", "J")

The result of this code will be only cust oner objects with Narre properties that contain the
letter 3. Notice that theFi | t er edBi ndi ngLi st iSOf type Cust oner, NOt Cust oner Li st . This
follows the same pattern as Bi ndi ngLi st (Of T), where the type parameter specifies the type
of theitemsin thelist.

These examples show two ways of calling Appl yFi | ter (), with and without a property
name on which to filter. If Not hi ng or an empty St ri ng is passed as the property name, then
the filter runs against the entire object. When a property name is passed to the method, then
only that property value is used by thefilter.

There’' s also an overload of Appl yFi | ter() that acceptsaPropertyDescri ptor instead of
the property name. This overload exists for parity with Sort edBi ndi ngLi st , and isn't used in
most scenarios.

Creating a Custom Filter

The previous examples use the default filter provider method, which does asimple
Cont ai ns() check to seeif the specified text value isin the target object or property. You
may have more sophisticated requirements for your filter criteria.

In that case, you'll need to create your own filter provider method. Typically, thiswill be
a shar ed method, or amethod in a mbdul e, though it can be any method you can use with the
Addr essOf operator. The primary requirement is that the method signature conform to the
Fi | ter Provi der delegate discussed earlier. The method must return Tr ue for items that
should be included in the filtered view, and Fal se for those that should not. Here' s the basic
structure of afilter provider method:

Publ i ¢ Modul e MyCustonFilter
Public Function Filter(ByVal item As (bject, ByVal filterValue As Object) As Bool ean

If <condition is nmet> Then
Ret urn True

El se
Return Fal se
End | f
End Function

End Modul e

The<condi tion is met> part of the codeis where you comein. You need to implement
code here to check the value of thei t em parameter based on your rules, along with any
criteria provided through thefi | t er Val ue parameter.

Page 75

www.4electron.com

Remember that thei t emparameter could be the value of a specific property, or it could be
areference to the actual business object. And keep in mind that thefi | t er Val ue parameter is
of type oj ect, and so it could be any value you'd like, even a complex object.

Y ou can use this custom filter method by passing it into the Fi | t er edBi ndi ngLi st in
various ways. For example, when you create an instance of the list you can provide a
reference to your method:

Dimlist As New List(OF String)

DimfilteredLi st As New FilteredBi ndingList(Of String)(_
list, AddressO MyCustonFilter.Filter)

filteredList. ApplyFilter(...)

Another approach isto set the Fi | t er Provi der property:

Dimlist As New List(OF String)

DimfilteredLi st As New FilteredBi ndi ngList(Of String)(list)
filteredList.FilterProvider = AddressOf M/CustonFilter.Filter

filteredList. ApplyFilter(...)

Or you can pass the custom filter method as a parameter to the Appl yFi I ter () method:

Dimlist As New List(Of String)
DimfilteredList As New FilteredBindingLi st(OF String)(list)

filteredList. ApplyFilter("", AddressOf MyCustonFilter.Filter)

In each case the Fi | t er edBi ndi ngLi st Will use your custom filter method to filter the
contents of the list.

Combining FilteredBindingList with SortedBindingList

One of the most exciting features of Fi | t er edBi ndi ngLi st isthat it can be applied against
any I List (O T). Thesameistrue of Sort edBi ndi ngLi st . And both of these objects
implement I Li st (Of T) themselves, which means they can be applied to each other. The
result isthat you can take an original list, apply afilter to it, and then apply a sort to that
filtered result:

DimoriginalList() As String = {"Rocky", "John", "Fred", "Joe"}
DimfilteredList As New FilteredBindingList(O String)(originallList)
filteredList.ApplyFilter("", "J")

Di m sortedLi st As New SortedBi ndi ngList(OF String)(filteredList)

sortedLi st. ApplySort("", ConponentModel . ListSortDirection.Ascendi ng)

Theresult of thiscodeisthat sort edLi st hasacount of 2, containing John and Joe, but
sorted in ascending order. Keepinmindthat fil t eredLi st also hasa count of 2, and it
contains John and Joe, but not in sorted order, and or i gi nal Li st containsall four original
items.

Page 76

www.4electron.com

Of course neither sortedLi st NOr fil teredLi st realy containany itemsat all, they
merely contain sorted and filtered indexes back to the items contained inori gi nal Li st .

Y ou should now understand how to useFi | t er edBi ndi ngLi st , including how to create
your own filter provider methods and how you can combine it with Sor t edBi ndi ngLi st to
create filtered and sorted views of an original list object.

Page 77

www.4electron.com

EditableRootListBase

CSLA .NET 2.0 supportsthree types of collection; through the Busi nessLi st Base,
ReadOnl yLi st Base and NaneVal ueLi st Base classes. Only Busi nessLi st Base iSdesigned to
support adding, removing and editing of the itemsin the collection, and it requires that the

objectsit contains be editable child objects. That means objects that inherit from
Busi nessBase, Where those objects call Mar kAschi 1 d() intheir constructor.

The process of using aBusi nessLi st Base-derived object is that you retrieve the
collection, you interact with the collection and the items it contains, and then you save the
collection:

' get the the collection
Di m codes As Codeli st = Codeli st. GetLi st

' edit the data in the collection

codes(0). Nanme "New val ue"
codes(1). Nane " Anot her val ue"

' save all the changes
codes = codes. Save

Thislast step, saving the collection, is when any changes to the collection and its child
objects are committed to your database. All changes are typically saved as a transactional
unit.

In some cases more dynamic behavior is desired, so the changes to each item in the
collection can be saved immediately, rather than waiting to save all the changesin asingle
save() call at the end. Thisisthe purpose behind the Edi t abl eRoot Li st Base class: to
support this more granular editing process:

' get the collection
Di m codes As CodelLi st = Codeli st. Get Li st

‘" edit the first item
codes(0). Name = "New val ue"
codes. Savel t en(0)

' edit the second item
codes(1). Name = "Anot her val ue"
codes. Savel ten(1)

While this code accomplishes the same result as the prior example, the way it worksis
very different. In this case, each itemisindividually saved to the database right after the
value has been edited. Rather than all changes being saved within the context of asingle call
to the data portal, and within a single transaction, this new approach uses separate calls to the
data portal and separate transactions for each save operation.

Behind the scenes the implementation of the “child” objectsis different as well.
Edi t abl eRoot Li st Base iS designed to contain editable root objects, rather than editable child
objects. Inother words, it contains objects that inherit from Busi nessBase that do not call
Mar kAsChi | d() in their constructor.

It isalso the case that Edi t abl eRoot Li st base tightly interacts with Windows Forms data
binding for in-place editing within a grid control. The result is that editsto an itemin the
collection are automatically saved as the user moves out of arow in the grid control. This

Page78

www.4electron.com

includes both adding and editing of items. Also, if the user deletes an item in the grid control,
that item is automatically deleted from the database, as soon asit is removed from the grid
control.

Framework Changes

Implementing Edi t abl eRoot Li st Base requires the addition of an interface, and some
alterations to Busi nessBase t0 support some of the automatic interaction with data binding
through the new collection type. The following classes are changed:

® Busi nessBase
And the following are new types:
e Editabl eRoot Li st Base

e |Parent (from Csl a. Core)

Implementing EditableRootListBase

In this chapter I’ll discuss only the Edi t abl eRoot Li st Base class itself. Thel Parent interface,
and the changes it requiresin Busi nessBase are discussed in the Cda.Core chapter later in
the book.

EditableRootListBase Class

This new colledion type inherits from the Ext endedsi ndi ngLi st class, which I'll discussin
the Csl a. Cor e chapter later in the book. For now it is enough to understand that

Ext endedBi ndi ngLi st inheritsfrom Bi ndi ngLi st (& T), which means that

Edi t abl eRoot Li st Base essentialy inherits from Bi ndi ngLi st (& T) aswell:

<Serializable()> _
Public Miustlnherit C ass Editabl eRootLi st Base(_
O T As {Core. | Editabl eBusi nessCbj ect, Core. | Savabl e})
I nherits Core. Ext endedBi ndi ngLi st (CF T)

I npl ement s Core. | Par ent

Likeall CSLA .NET base classes, the seri al i zabl e attribute is used to indicate that this
isamobile object.

Also notice the constraints on the type parameter, T. Edi t abl eRoot Li st Base Will only
contain objects that implement both the1 Edi t abl eBusi nessObj ect and | Savabl e interfaces
asdefined incsl a. Core. The result isthat the collection can only contain editable root
objects.

Finally, the classimplementsthe | Par ent interface. Thisinterface will be covered in
detail in the Csl a. Cor e chapter later in the book, but for now you should know that this
interface enables interaction between an object and its container, or parent.

Page79

www.4electron.com

Edi t abl eRoot Li st Base iS organized into a set of code regions:
e Saveltem Methods
e Insert, Remove, Clear
e [Parent Members
e Cascade Child Events
e Seriaization Notification
e DataAccess

Each region implements a key part of the functionality in the object. Several of these
regions should seem familiar, asthey are the same asyou'd find in other CSLA .NET base
classes. Others are unique to this particular class.

Let’swalk through the code in each region.

Savel tem M ethods Region

This region contains the code to save individual itemsin the collection. There are two
overloads of the savel t en() method, and they are both public so a Ul developer can call
them if needed. Asyou'll see, it isalso the case that savel t en() isautomatically called due
to the tight integration with Windows Forms data binding.

Thefirst overload is a convenience, allowing the saving of an item by reference:

Public Sub Savelten{ByVal item As T)
Savel t en(| ndexOf (item))

End Sub

The real work happens in the other overload:

Public Overridable Sub Savelten(ByVal index As Integer)

Di mrai seEvents As Bool ean = Me. Rai selLi st ChangedEvent s
Me. Rai selLi st ChangedEvents = Fal se

mActi vel ySavi ng = True
DmitemAs T = Me.|ten(index)
DimeditlLevel As Integer = item EditLevel
' commit all changes
For tnp As Integer = 1 To editLevel
i t em Accept Changes()
Next
Try
' do the save
Me. I ten(i ndex) = DirectCast(item Save, T)

Final ly
' restore edit level to previous |evel
For tnp As Integer = 1 To editLevel
i tem CopySt at e()
Next

mAct i vel ySavi ng = Fal se

Me. Rai seLi st ChangedEvents = rai seEvents

End Try
Me. OnLi st Changed(New Li st ChangedEvent Ar gs(Li st ChangedType. | t emChanged, i ndex))

Page 80

www.4electron.com

End Sub

The primary responsibility of this method isto call the save() method on the item to be
saved. It does this through the | savabl e interface, and so can work with any editable root
object:

Try
' do the save
Me. lten(index) = DirectCast(item Save, T)

Remember that the type parameter, T, is constrained by the | Savabl e interface, so any
field of type T is guaranteed to have asave() method.

Notice that the result of the save() call isused to replace the item in the list. This means
that the collection automatically ends up containing a reference to the result of save() , and
the old reference is discarded.

Before trying to do the save, Rai seLi st ChangedEvent s IS Set to Fal se to prevent any
events raised by the child object during the save process from triggering Li st Changed events
back to the Ul. Without this step the Ul could receive numerous changed events during the
save operation, causing Ul flicker and possibly resulting in bugs that could be hard to find.

The mact i vel ySavi ng field is used to indicate that the child item isin the process of being
saved. Asyou'll see, thisisimportant because it is used to suppress the handling of some
events that are raised during the process. If those events aren’t suppressed, an infinite loop
and stack overflow could result.

The most complex issue addressed in this code deals with the edit level of the child object.

Remember that CSLA .NET business objects support n-level undo capabilities. Windows
Forms data binding often automatically triggers this behavior, especialy if you bind the
collection to agrid control. The result isthat a child object, as the user edits that object, will
be at edit level 1 or higher.

Thisisdesirable, because it supports the idea that the user might press Esc to cancel
changesto that row of data, and n-level undo can roll the object back to its previous state.

However, an object can only be saved if it is at edit level 0. This means that the edit level
must be brought down to 0 before save() can be called:

Di meditLevel As Integer = item EditLevel
' commt all changes
For tnp As Integer = 1 To editLevel
i tem Accept Changes()
Next

However, once the save() method has been called, the edit level must be restored to its
original value, or data binding will fail to work properly:

" restore edit level to previous |evel
For tnp As Integer = 1 To editLevel

i tem CopySt at e()
Next

Page81

www.4electron.com

The issue would be that data binding would expect the object to be in an editable state,
and if we don’t restore the edit level there’ d be a mismatch between data binding’'s
expectation and the object’ s actual state.

Thefinal stepistoraise aLi st Changed event to indicate that the item has changed:

Me. OnLi st Changed(New Li st ChangedEvent Ar gs(Li st ChangedType. | t enChanged, i ndex))

Remember that the save() call replaced the original item with a new object reference, so
it isimportant that any consumers of the collection, such as data binding, know to refresh
their references and update the display of any information.

Insert, Remove, Clear Region

Asitems are added to the collection, they must be made aware of their new parent. Thisis
done by calling the set Par ent () method on the newly added object. The i nsertiten()
method is automatically called when an item isinserted or added to the collection, soitisa
natural place to take care of this detail:

Protected Overrides Sub Insertlten(ByVal index As Integer, ByVal itemAs T)

i tem Set Par ent (Me)
M/Base. I nsertlten(i ndex, itemn)

End Sub

Removing an item from the collection is a bit more complex, because removing an item
from the collection means deleting it from the database as well. Thisis done by marking the
object for deletion and then saving the object; using the deferred deletion support aready in
CSLA .NET.

The Rerovel t en{) method is automatically called when an item is being removed from
the collection:

Protected Overrides Sub Renpvelten(ByVal index As I|nteger)

' delete itemfrom dat abase
DmitemAs T = M. |ten(index)

' only delete/save the itemif it is not new
If Not itemI|sNew Then

item Del ete()

Savel t en(i ndex)
End | f

' di sconnect event handler if necessary
Dimc As System Conponent Model . | Noti f yPropertyChanged = _
TryCast (i tem System Conponent Model . | Noti fyPropertyChanged)
If ¢ IsNot Nothing Then
RenoveHandl er c. PropertyChanged, AddressOf Chil d_PropertyChanged
End | f

My/Base. Renpvel t en(i ndex)

End Sub

If the item being removed from the collection is a new object, then | sNew will return Tr ue.
In that case, the object’ s data doesn’t yet exist in the database, so there’ s no need to try and

Page82

www.4electron.com

deleteit. However, if | sNewisFal se then the data exists in the database so the object needs to
be deleted:

If Not item|sNew Then
item Del ete()
Savel t em(i ndex)

End |f

The next bit of code removes any event handler hooked up to the item’s Pr oper t yChanged
event. Normally Bi ndi ngLi st (Of T) automatically handles this event hookup, but if the
collection is serialized and deserialized, then the automatic hookup doesn’t occur and an
event handler must be set up explicitly as discussed in the Serialization Notification Region
discussion later in this chapter.

If you manualy set up an event handler, it isimportant to remove that event handler when
you are done with the object, and that’ s what happens here:

' disconnect event handler if necessary
Dimc As System Conponent Model . | Noti f yPropertyChanged =
TryCast (item System Conponent Model . | Noti fyPropertyChanged)
If ¢ IsNot Nothing Then
RenmoveHand! er c. PropertyChanged, AddressOF Chil d_PropertyChanged
End |f

If theitem can becast to | Not i f yPr oper t yChanged, the event handler is removed. If no
event handler was established the removal does no work, and doesn’t fail.

| Parent Members Region

Thel Par ent interface defined in sl a. cor e formalizes the responsibilities of any object that
contains other objects. It requires that the parent object in this case Edi t abl eRoot Li st Base,
handles the case where the child object’ sAppl yEdi t () method has been called, and when the
child wishes to be removed from its parent.

The Appl yEdi t Chi | d() method iscalled by a child object when its Appl yEdi t () method
has been called, so the parent knows that the child’ s edit level has been reduced by one. This
isimportant for Edi t abl eRoot Li st Base, because when oneiif itsitems’ edit level reaches 0,
that item should be automatically saved:

Private Sub Appl yEditChild(_
ByVal child As Core.|Editabl eBusi nessCbj ect) _
| mpl enents Core. | Parent. Appl yEdi t Chi | d

If Not mActivel ySavi ng AndAl so chil d. EditLevel = 0 Then
Savel t en{ CType(child, T))
End |f

End Sub

Notice the use of the mact i vel ySavi ng field, aswell as the check for the edit level. The
reason for thisisthat the savel t en{) method | discussed earlier may try to lower the edit

level to 0. In that case, this Appl yEdi t Chi | d() method should not also try to trigger a save of
the item or the result would be two save attempts on the same child object.

The complexity comes because there are two ways to trigger the saving of an item:
manually, by calling savel t en{) , or automatically through data binding when the edit level

Page83

www.4electron.com

of achild item hits 0. To make things even more interesting, you could manually trigger this
edit level processin your code as well. For instance:

' get the collection
Di m codes As CodelLi st = Codeli st. GetLi st

' edit the first item
codes(0) . Begi nEdi t
codes(0). Name = "New val ue"
codes(0). Appl yEdi t

That last line of code calls Appl yEdi t (), lowering the edit level from 1 to 0. Asaresult
the child item calls the Appl yEdi t Chi | d() method in the collection, triggering a save
operation. Thisis exactly what data binding does on your behalf when editing the collection
in a Windows Forms grid control.

It isalso possible, when using in-place editing in agrid control, for data binding to trigger
the removal of a new child object. However, we' ve aready overridden the Renovel t en()
method in the collection, so the removal of child itemsis handled. Dueto this, the
RempveChi | d() method does no work:

Private Sub RenpveChild(_
ByVal child As Core.|Editabl eBusi nessCbj ect) Inplenments Core.|Parent.RenmoveChil d

' do nothing, renmoval of a child is handl ed by
' the Renoveltem override

End Sub

Of course some implementation of this method isrequired by the par ent interface, even
if it isan empty implementation.

Cascade Child Events Region

As| mentioned earlier, Bi ndi ngLi st (O T) normally handlesthe pr opert yChanged events
from any child objects in the collection. However, if the collection is serialized and
deserialized then those event handlers don’t get automatically reestablished. To overcome
this, | manually handle the event using the following handler:

Private Sub Chil d_PropertyChanged(ByVal sender As Cbject, _
ByVal e As System Conponent Mbdel . Propert yChangedEvent Ar gs)

For index As Integer = 0 To Count - 1
| f ReferenceEqual s(Me(i ndex), sender) Then
OnLi st Changed(New Syst em Conponent Model . Li st ChangedEvent Args(_
Conponent Model . Li st ChangedType. | t enChanged, i ndex))
Exit For
End | f
Next

End Sub

This coderaises a Li st Changed event to indicate that the specified item in the collection
has changed. This handler is hooked up to the child object in the Serialization Notification
region.

Page 84

www.4electron.com

Serialization Notification Region

Like all the other CSLA .NET base classes, Edi t abl eRoot Li st Base implements a method so
itisnotified by theBi nar yFor mat t er when the object has been deseriaized. When this
happens, an over ri dabl e method named onDeseri al i zed() iscalled, allowing business
classesto also be notified that the object has been deserialized.

In the case of Edi t abl eRoot Li st Base, alittle extrawork is required to manually hook up a
handler for any Pr oper t yChanged events raised by the child objects in the collection:

<OnDeserial i zed()> _
Private Sub OnDeseri al i zedHandl er (ByVal context As Stream ngContext)

OnDeseri al i zed(cont ext)
For Each child As Core. | Editabl eBusi nessObj ect In Me
chi | d. Set Par ent (Me)
Dimc As System Conmponent Model . | Noti fyPropertyChanged = _
TryCast (child, System Conmponent Model . | Noti fyPropertyChanged)
If ¢ IsNot Nothing Then
AddHandl er c. PropertyChanged, AddressOf Chil d_PropertyChanged
End | f
Next

End Sub

The code simply loops through all the itemsin the collection, and adds an event handler
for Pr oper t yChanged if the child item implementsthe Not i f yPr oper t yChanged interface.

Data Access Region

All the CSLA .NET base classes implement the data access methods required by the data
portal. Some of these methods are pri vat e and merely throw exceptions when called,
because those specific data access operations are not supported. For instance, aread-only

object only supports the bat aPor t al . Fet ch() operation, and all other operations result in an
exception.

While Edi t abl eRoot Li st Base iStechnically not aread-only object, the collection itself
can not be saved or deleted. Remember that each individual child object in the collection
must be an editable root object, and thusis responsible for implementing its own insert,
update and del ete operations.

This means that the only data portal the method Edi t abl eRoot Li st Base alowsto be
overridden in a business subclassis Dat aPort al _Fet ch() :

Protected Overridable Sub DataPortal Fetch(ByVal criteria As Object)
Thr ow New Not Support edExcepti on(My. Resour ces. Fet chNot Support edExcept i on)
End Sub

The default behavior isto throw an exception, with the goal of forcing the business
devel oper to override this method to implement their specific data access code. A business
class must override this method with an implementation that loads all the editable root child
objectsinto the collection based on the supplied criteria.

This completes the Edi t abl eRoot Li st Base class. It should now be clear that a business
developer can create a new type of collection that immediately inserts, updates and deletes its
child objects rather than deferring all those changes until the collection itself is saved.

Page85

www.4electron.com

Using the Enhancements

ThekEdi t abl eRoot Li st Base class offers an alternative to Busi nessLi st Base When building
collections. In many ways this new type of collection is similar to the Dynaset concept from
Visual Basic 3.0 and DAOQ, in that changes to items in the collection are immediately
committed to the underlying database.

EditableRootListBase Class Template

All Edi t abl eRoot Li st Base-derived business collections follow a basic structure. The class
includes a standard set of regions:

e Authorization Rules
e Factory Methods
e DataAccess

Because Edi t abl eRoot Li st Base already does the majority of the work, not alot of codeis
required in the business subclass. Here' s the code template:

I mports System Data. Sgl i ent

<Serializable()> _
Publ i c d ass Dynami cRoot Li st
I nherits Editabl eRoot Li st Base(Of Edit abl eRoot)

#Regi on " Authorization Rules "

Publ i ¢ Shared Function CanGet bj ect() As Bool ean
' TODO custom ze to check user role
Ret urn Appl i cati onCont ext. User.|slnRol e("")
End Functi on

Publ i ¢ Shared Function CanEditQoject() As Bool ean
' TODO custom ze to check user role
Ret urn Appli cati onCont ext. User.|slnRol e("")
End Functi on
#End Regi on
#Regi on " Factory Methods "
Protected Overrides Function AddNewCore() As Object
Dimitem As Editabl eRoot = Editabl eRoot. NewEdi t abl eRoot
Add(item
Return item
End Function
Publ i ¢ Shared Function NewDynam cRoot Li st() As Dynam cRoot Li st
Ret urn New Dynami cRoot Li st ()
End Function
Publ i ¢ Shared Function Get Dynam cRoot Li st () As Dynami cRoot Li st

Ret urn Dat aPortal . Fet ch(Of Dynami cRoot Li st) ()
End Function

Private Sub New()

Me. Al | owEdit = True
Me. Al | omNew = True
Me. Al | owRenove = True

Page 86

www.4electron.com

End Sub
#End Regi on
#Region " Data Access "
Private Overl oads Sub DataPortal _Fetch()

' TODO |oad val ues
Rai seLi st ChangedEvents = Fal se
Usi ng dr As Sqgl Dat aReader = Not hi ng
Wi | e dr. Read
Add(Edi t abl eRoot . Get Edi t abl eRoot (dr))
End Wil e
End Usi ng
Rai seLi st ChangedEvents = True

End Sub
#End Regi on

End C ass

Thistemplate illustrates how to create a collection that contains a type called
Edi t abl eRoot , Which would derive from Busi nessBase(OF T).

Altering the EditableRoot Template

ThisEdi t abl eRoot classis astandard editable root business object, with one exception: the
Get Edi t abl eRoot () factory method is not atypical factory. The Get Edi t abl eRoot () factory
method in the Edi t abl eRoot classlooks like this:

Friend Shared Function CetEditabl eRoot (ByVal dr As Sql Dat aReader) As Editabl eRoot
Ret urn New Edi t abl eRoot (dr)

End Function

The constructor called in this code looks like this:

Private Sub New(ByVal dr As Sqgl Dat aReader)
Fet ch(dr)

End Sub

And the Fet ch() method called by the constructor, located in the Data Access region,
looks like this:

Private Sub Fetch(ByVal dr As Sql Dat aReader)
' load object fields fromdata reader
' mNanme = dr. GetString("Name")
Mar kd d

End Sub

This code should seem familiar, because it is the same pattern used in the editable child
object template. What I’ m doing here is changing only the retrieval code for the editable root
object so it acts like a child object. All the rest of the editable root code remains the same;
including the validation, authorization and data access code.

Page87

www.4electron.com

Using EditableRootListBase

Using the Edi t abl eRoot Li st Base class requires that you create two business classes:. the
editable root to be contained in the collection, and the collection itself. To illustrate how to
use thisbase class, I'll create a simple editable root, followed by the collection.

Creating an Editable Root

For illustration purposes, the following is the skeleton of a very simple editable root object,
modified dightly so it has a child-style factory method as discussed earlier.

<Serializable()> _
Public O ass Person
I nherits Busi nessBase(Of Person)

#Regi on " Busi ness Met hods "

Private md As |nteger
Public Property Id() As Integer
<System Runti me. Conpi | er Servi ces. Met hodl npl (_
Runt i me. Conpi | er Servi ces. Met hodl npl Opti ons. Nol nli ni ng)> _
Cet
CanReadPr operty(True)
Return md
End Get
<System Runti me. Conpi | er Servi ces. Met hodl npl (_
Runt i ne. Conpi | er Servi ces. Met hodl npl Opti ons. Nol nl i ni ng) > _
Set (ByVal val ue As |nteger)
CanWiteProperty(True)
If Not md.Equal s(val ue) Then
md = val ue
Pr oper t yHasChanged()
End |f
End Set
End Property

Private mNanme As String = ""
Public Property Nane() As String
<System Runti me. Conpi | er Servi ces. Met hodl npl (_
Runt i me. Conpi | er Ser vi ces. Met hodl npl Opti ons. Nol nli ni ng)> _
Cet
CanReadPr operty(True)
Ret urn mNane
End Cet
<System Runti me. Conpi | er Servi ces. Met hodl npl (_
Runti me. Conpi | er Ser vi ces. Met hodl npl Opti ons. Nol nli ni ng) > _
Set (ByVal value As String)
CanWi t eProperty(True)
I f Not nNane. Equal s(val ue) Then
mNane = val ue
Pr opert yHasChanged()
End I f
End Set
End Property

Protected Overrides Function GetldValue() As Object
Return mld
End Function
#End Regi on
#Region " Validation Rules "
#End Regi on

#Regi on " Authorization Rules "

Page 88

www.4electron.com

#End Regi on
#Region " Factory Methods "
Publ i ¢ Shared Function NewPerson() As Person
Return DataPortal . Create(Of Person) ()
End Function
Friend Shared Function GetPerson(ByVal dr As Saf eDat aReader) As Person
Ret urn New Person(dr)
End Function
Private Sub New()
require use of factory nethods
End Sub
Private Sub New(ByVal dr As Saf eDat aReader)
Fet ch(dr)
End Sub
#End Regi on
#Regi on " Data Access "
Private Shared lastld As Integer

<RunLocal ()> _
Protected Overrides Sub DataPortal _Create()

set a tenporary id val ue
lastld -= 1
md = lastld
End Sub
Private Sub Fetch(ByVal dr As Saf eDat aReader)
md = dr.Getlnt32("1d")
mNane = dr. Get String("Nane")
Mar kQ d()
End Sub
Protected Overrides Sub DataPortal _Insert()

insert data here
Debug. WiteLine(String. Fornmat ("I nsert object {0}", nmid))

End Sub
Protected Overrides Sub DataPortal _Update()

updat e data here
Debug. Wi teLine(String. Fornat ("Update object {0}", md))

End Sub
Protected Overrides Sub DataPortal _Del eteSel f ()

del ete data here
Debug. WiteLine(String. Fornat ("Del ete object {0}", md))

End Sub
#End Regi on

End d ass

Though I’m not showing the implementation of the Dat aPor t al _XYz methods, you can see
that all of them are implemented except for Dat aPor t al _Fet ch() . Notice too, that the

Page 89

www.4electron.com

Get Person() factory method is scoped asFri end, and that it ultimately callsthe Fet ch()
method.

It isaso important to note that the class does not call Mar kAschi | d() . The object should
be an editable root, not a child. Additionally, the Fet ch() method explicitly callsvarka d() ,
which is required because the data portal is not being used to load this object with data.

Creating a Dynamic Collection

With theper son class complete, it is possible to create a dynamic list of Per son objects by
using the Edi t abl eRoot Li st Base Class:

<Serializable()> _
Public d ass PersonLi st
I nherits Editabl eRootListBase(O Person)
#Regi on " Authorization Rules "
#End Regi on
#Regi on " Factory Methods "

Protected Overrides Function AddNewCore() As Object
Dimitem As Person = Person. NewPer son
Add(item
Return item

End Function

Publ i c Shared Function GetlList() As PersonLi st
Ret urn Dat aPortal . Fetch(Of PersonList) ()

End Function

Private Sub New()

Me. Al | owEdit = True
Me. Al | owNew = True
Me. Al | owRenpve = True
End Sub
#End Regi on
#Regi on " Data Access "

Private Overl oads Sub DataPortal _Fetch()
Me. Rai selLi st ChangedEvents = Fal se
Di m dr As Saf eDat aReader = Not hi ng
' load data reader from database
Whi | e dr. Read

Add(Person. Get Person(dr))
End Wil e
Me. Rai seLi st ChangedEvents = True
End Sub
#End Regi on

End d ass

Page90

www.4electron.com

This codeis primarily focused on loading the collection with the appropriate editable root
objects. While I’'m using a parameterless Dat aPor t al . Fet ch() call, you could pass a criteria
object as a parameter through to Dat aPor t al _Fet ch() if you need to filter the datathat is
loaded. The options for using the data portal here are the same as with any other CSLA .NET
object.

Notice that the Dat aPor t al _Fet ch() method isresponsible for retrieving the data from the
database and passing the data reader object to the Get Per son() factory method, thus creating
aPer son object for each row of data from the database.

All the inserting, updating and deleting is automatically handled by
Edi t abl eRoot Li st Base, and by the Per son object itself, so your collection code remains very
simple.

| am also overriding the AddNewCor e() method to enable in-place adding of new items by
data binding in agrid control. Thisis a standard implementation of AddNewCor () ; Wwhere a
new item is created, added to the list and returned as a result of the method.

Interacting with the Dynamic Collection

Once you have a dynamic collection of editable root objects, you can interact with it through
code or using data binding. While this collection style is designed primarily to support
Windows Forms data binding with in-place editing in agrid control, you may find other
scenarios where itis useful to you aswell.

Using Data Binding

Using the collection with data binding is similar to using any other collection type, other than
that you don’'t need to write any code to save the changes to the data. If you have a Windows
Form with a grid control and associated Bi ndi ngSour ce control, you'd set up the data binding
likethis:

Private Sub Forml_Load(ByVal sender As System Object, _
ByVal e As System Event Args) Handl es MyBase. Load

Me. Per sonLi st Bi ndi ngSour ce. Dat aSour ce = Per sonLi st. Get Li st

End Sub

No other codeis required in the form, because the collection directly commits any inserts,
updates or deletes to the database as they occur in the grid control itself.

Using Manual Codewith N-level Undo

Y ou can aso interact with the collection through code. If you choose to use nHevel undo on
the itemsin the collection then the same automatic behaviors used by data binding will be
invoked on your behalf. For example, the following code edits an item, saving the results to
the database:

Dimlist As PersonList = PersonList. GetList

I'ist(0).BeginEdit
list(0).Name = "John"
I'i st(0). Appl yEdit

Page91

www.4electron.com

The following code inserts a new item:

Dimlist As PersonList = PersonList. GetList
Di m newPerson As Person = |ist. AddNew

newPer son. Begi nEdi t ()
newPerson. |l d = 42
newPer son. Nane = "Alice"

newPer son. Appl yEdi t ()

And the following code deletes an item:

Dimlist As PersonList = PersonList. GetList

l'i st. RemoveAt (0)

In each case the changes to the item are immediately committed to the database. Thisis
automatically handled by the Edi t abl eRoot Li st Base class itself.

Using Manual Code with Explicit Saveltem

If you don’t want to use n-level undo, you can make explicit callsto the savel t en() method
on the collection, forcing individual items to be saved to the database. The following codeis
an example of editing an item:

Dimlist As PersonList = PersonList. GetList

l'ist(0).Nane = "John"
|'ist.Savelten(0)

The following inserts a new item:

Dimlist As PersonList = PersonList. GetList
Di m newPerson As Person = |ist.AddNew

newPerson. ld = 42
newPer son. Nane = "Alice"
I'i st. Savel t en{ newPer son)

Notice the use of the savel t en() overload that accepts an object reference as a parameter.
Thisis simpler than trying to determine the index position of the newly added item,
especially when the code already has a reference to that new item.

Finaly, the following removes an existing item:

Dimlist As PersonList = PersonList. GetList

i st. RemoveAt (0)

Regardless of which technique you use to interact with your collection, you can see that
Edi t abl eRoot Li st Base Simplifies the process of creating a dynamic collection that performs
immediate updates of the database as the collection and itsitems are changed in your
application.

Page 92

www.4electron.com

Csla.Core Interfaces and Types

A number of changes have been made in Cs! a. Cor e, including the addition of some new base
classes and interfaces, along with some restructuring of some existing interfaces. Most of

these changes have been made in support of other changesin the framework. Other changes

were made to support either Ul or business developer scenarios, such asthel savabl e
interface which makesiit easier to build a Ul framework.

Table 8lists the changesto the Csl a. Cor e NamMespace.

Change Description

Ext endedBi ndi nglLi st Extends Bi ndi ngLi st (O T) to add aRenovi ngl t em
event to lists.

| Ext endedBi ndi ngLi st Interface used in the implementation of

Ext endedBi ndi nglLi st .

Rerovi ngl t enEvent Ar gs Event Ar gs Subclass used in the implementation of
Ext endedBi ndi nglLi st .

| Savabl e Provides a standard mechanism by which any
editable root object can be saved.

SavedEvent Ar gs Event Args Subclass used in the implementation of
| Savabl e.
| Par ent Formalizes the concept of a parent object that

contains child objects.

| Edi t abl eBusi nessQbj ect Enhanced to interact properly with the new
interfaces added in version 2.1.

| Repor t Tot al RowCount Defines a property used to implement paged
collections. Used by cs| abat aSour ce.

Table8. Changesto Cda.Core.

Framework Changes
These changes can be grouped together into some broader themes:
e Raising aRenovi ngl t emevent from collections
e Standardizing the save process for editable objects
e Standardizing the parent-child relationship between objects
e Enabling paged collections
I’ll walk through each of these in turn.

Page93

www.4electron.com

Implementing ExtendedBindingList

TheExt endedBi ndi ngLi st classinherits from Bi ndi ngLi st (& T) and adds a Renovi ngl t em
event. All the CSLA .NET collection base classes now inherit from Ext endedBi ndi ngLi st
rather than Bi ndi ngLi st (Of T), and so gain this event as part of their interface. This
includes:

® Busi nesslLi st Base
® ReadOnl yLi st Base

e Editabl eRoot Li st Base

CSLA .NET collections dready raise aLi st Changed event because they inherit from
Bi ndi ngLi st (OF T). Unfortunately, the Li st Changed event is raised after an item has been
removed. Thismakesit impossible to do anything with the removed item.

The purpose behind the Renovi ngl t emevent isto notify listenersthat an itemisin the
process of being removed from the collection, such that the event handler can get areference
to the item being removed.

Declaring eventsin serializable objects is challenging, because the event might be handled
by a method on a non-serializable object, such as a Windows Form or Web Page. In that case,
when attempting to serialize the object you’ll get an exception indicating that you are trying
to serialize a non-serializable object.

The reason for thisis that an event handler, behind the scenes, causes your object to
maintain a reference to the object handling the event. During serialization, the
Bi nar yFor mat t er traces all your object references, including these event references, so it can
serialize those objects as well.

To overcome thisissue, you must use a block structure to declare your events in a manner
that is safe for serialization, and thisiswhat Ext endedBi ndi ngLi st does with the
Renovi ngl t emevent. The object reference is provided through the Renovi ngl t enEvent Ar gs
parameter object that is provided with the event.

RemovingltemEventArgs Class

TheRenpvi ngl t enEvent Ar gs classisasubclass of Event Ar gs and follows the standard
pattern for anEvent Ar gs parameter object. This object will be passed to any method handling
the Renovi ngl t emevent, and it provides that method with a reference to the item being
removed from the collection:

Publ i c C ass Renovi nglt enEvent Ar gs
I nherits EventArgs

Private nmRenovi ngltem As Cbj ect

Public ReadOnly Property Renovinglten() As Object
Cet
Ret urn nRenovi ngl t em
End Cet
End Property

Publ i c Sub New(ByVal renovingltem As bj ect)
mRenovi ngl tem = renovi ngltem
End Sub

Page 94

www.4electron.com

End d ass

The item referenceis set in the constructor, and is provided to the event handler through a
reac-only property.

ExtendedBindingList Class

TheExt endedBi ndi ngLi st classinherits from Bi ndi ngLi st (O T) inthe
Syst em Conponent Model namespace, and extends that base class by adding the Renovi ngl t em
event

<Serializable()> _
Publ i c O ass Ext endedBi ndi ngLi st (OF T)
I nherits BindingList(OF T)

| npl enent s | Ext endedBi ndi ngLi st
#Regi on " Renovi ngltem event

<NonSeri al i zed()> _
Private mNonSeri al i zabl eHandl ers As Event Handl er (O Renovi nglt enEvent Ar gs)
Private nferial i zabl eHandl ers As Event Handl er (O Renovi ngl t enEvent Ar gs)

Publ i c Cust om Event Renovi ngltem As Event Handl er (O Renovi ngl t enEvent Args) _
I npl enent s | Ext endedBi ndi ngLi st. Renovi ngl t em
AddHandl er (ByVal val ue As Event Handl er (O Renovi ngl t enEvent Args))
I f val ue. Met hod. | sPubl i c AndAl so _

(val ue. Met hod. Decl ari ngType. I sSeri alizabl e O El se val ue. Method. | sStatic) Then

nBeri al i zabl eHandl ers = _
CType(Syst em Del egat e. Conbi ne(_

nSeri al i zabl eHandl ers, val ue), EventHandl er (O Renovi ngltenEvent Args))

El se
mNonSeri al i zabl eHandl ers = _
CType(Syst em Del egat e. Conbi ne(_
mNonSeri al i zabl eHandl ers, val ue), EventHandl er(Of Renovi ngl t enEvent Ar gs))
End | f
End AddHandl er

RenmoveHand! er (ByVal val ue As Event Handl er (O Renovi ngl t enEvent Ar gs))
I f val ue. Met hod. | sPubl i c AndAl so _
(val ue. Met hod. Decl ari ngType. | sSeri al i zabl e O El se val ue. Met hod. | sStati c) Then
nBerial i zabl eHandl ers =
CType(Syst em Del egat e. Renove(_
nSeri al i zabl eHandl ers, val ue), EventHandl er (O Renovi ngltenEvent Args))
El se
mNonSeri al i zabl eHandl ers = _
CType(Syst em Del egat e. Renove(_
mNonSeri al i zabl eHandl ers, val ue), EventHandl er (O Renovi ngl t enEvent Ar gs))
End | f

End RenoveHandl er

Rai seEvent (ByVal sender As System Obj ect, ByVal e As Renovi ngltenEvent Args)
I f mNonSeri al i zabl eHandl ers | sNot Not hi ng Then
mNonSeri al i zabl eHandl ers. | nvoke(sender, e)
End | f
If nBerializabl eHandl ers | sNot Not hing Then
nBeri al i zabl eHandl er s. | nvoke(sender, e)
End | f
End Rai seEvent
End Event

<Edi t or Br owsabl e(Edi t or Br owsabl eSt at e. Advanced) > _
Prot ect ed Sub OnRenovi nglten(ByVal renovedltem As T)

Rai seEvent Renovi ngltenm(Me, New Renovi ngltenEvent Args(renmovedlten))

Page 95

www.4electron.com

End Sub
#End Regi on
Protected Overrides Sub Renovelten{ByVal index As I|nteger)
OnRenovi ngl t en(Me(i ndex))
My/Base. Renovel t en{ i ndex)
End Sub

End d ass

The event is declared using a block structure, meaning that the code directly implements
the adding and removing of event handlers. To store the references to the event handlers,
delegate fields are used. Notice how they are declared:

<NonSeri al i zed()> _
Private mNonSeri al i zabl eHandl ers As Event Handl er (O Renovi nglt emEvent Ar gs)
Private nSerial i zabl eHandl ers As Event Handl er (O Renovi ngl t enEvent Ar gs)

Thefirst is declared with the NonSeri al i zed attribute, indicating that the
Bi nar yFor mat t er should not attempt to serialize the objects referenced by this delegate. The
second isanormal delegate declaration, similar to the one the compiler would have created
for anormal event.

The code to add and remove handlers then checks to see if the handler of the event isan
instance method of a non-serializable object. If that isthe case then the NonSeri al i zed
delegate is used to store the handler reference, otherwise the normal delegate is used. For
instance, here’ s the check used when adding a handler:

I f val ue. Met hod. I sPublic AndAl so _
(val ue. Met hod. Decl ari ngType. | sSeri al i zabl e O El se val ue. Met hod. I sStatic) Then

The event is raised when an item is being removed from the collection. The Renovel t en()
method is automatically invoked during the remove process. By overloading that method |
can raise the Renovi ngl t emevent while the item being removed is still available:

Protected Overrides Sub Renovelten(ByVal index As |nteger)
OnRenovi ngl t em(Me(i ndex))
MyBase. Renovel t en(i ndex)

End Sub

Notice that the reference to the object being removed is passed as a parameter to the
OnRenovi ngl t em() method. The onRenovi ngl t em() method follows the standard .NET
pattern for raising events:

<Edi t or Br owsabl e(Edi t or Br owsabl eSt at e. Advanced) > _
Prot ected Sub OnRenovi nglten(ByVal renovedltem As T)

Rai seEvent Renovi ngltenm(Me, New Renovi ngltenEvent Args(renovedltem)

End Sub

This method creates an instance of the Rermovi ngl t enEvent Ar gs Object, passing in the
reference to the item being removed, so that reference will be available to al event handlers
listening for this event.

Page 96

www.4electron.com

While Bi ndi ngLi st (O T) isvery powerful, the Renovi ngl t emevent is a useful extension
to the base functionality it provides.

Implementing ISavable

Editable root objectsin CSLA .NET implement asave() method. Thisincludes objects that
inherit from both Busi nessBase and Busi nessLi st Base. In version 2.0 there was no common
interface between both types of savable object, which made it very difficult to implement
consistent Ul frameworks that could save any editable root object.

The 1 savabl e interface has been added to formalize the concept of a savable object, which
really means an editable root object. Not only does | savabl e define a common Save()
method, but it defines a new event: Saved.

The saved eventisraised after an object has successfully saved itself by calling the data
portal. This event follows the standard Event Handl er pattern, passing two parametersto the
event handler: areference to the sender and a SavedEvent Ar gs parameter. This
SavedEvent Ar gs parameter contains a reference to the new object that will be returned asa
result of thesave() method call.

This event isintended to address the complexity that occurs when your business object is
referenced in numerous |locations throughout your application; by multiple formsin the Ul,
for instance. If you call save() on the object in one location, al the other places where that
object is referenced must be updated to use the new object returned as aresult of save() . In
the past, you needed to implement some notification mechanism so your code could know to
update those references.

The saved event provides a solution because it is a standard, centralized, event that
provides this notification. Any code holding a reference to a business object can handle the
Saved event. That code will be notified when that object has been saved. The code can then
update its reference to use the new object returned as aresult of the save() call.

ISavable Interface
Thel savabl e interface itself is straightforward:

Public Interface | Savable

Function Save() As Object

Event Saved As Event Handl er (Of SavedEvent Ar gs)
End I nterface

Any classimplementing this interface can be clearly saved, and will notify listeners once
it has been saved.
SavedEventArgs Class

ThesavedEvent Args classisastandard Event Ar gs subclass that provides a reference to the
new object returned as aresult of the save() method:

Publ i c C ass SavedEvent Args
I nherits Event Args

Private mNewCbj ect As Obj ect

Public ReadOnly Property NewObj ect() As bj ect

Page97

www.4electron.com

Cet
Ret ur n mNewObj ect
End GCet
End Property

Public Sub New(ByVal newCbject As Object)
m\ewObj ect = newObj ect
End Sub

End d ass

The new object reference is passed in a parameter to the constructor, and is provided to
event handlers as aread-only property.
Changes to BusinessBase and BusinessListBase
Thel savabl e interface isimplemented by both Busi nessBase and Busi nessLi st Base. Both
are base classes designed to support the creation of editable root objects.
| mplementing the Save M ethod

Thesave() method iseasily implemented, because both classes already have save()
methods to which the interface implementation can del egate the work:

Private Function | Savabl e_Save() As oject |nplements Core. | Savabl e. Save
Ret urn Save()

End Function

Remember that the previous save() methods return type T, which is the type of the
business object itself. The interface must return type oj ect , which poses no problem
because any type can cast to tvj ect .

I mplementing the Saved Event

Thesaved event implementation is somewhat complex. The issue is the same as with the
Renovi ngl t emevent discussed earlier in the section on Ext endedBi ndi ngLi st : eventsrequire
specia declaration in a serializable object. I’'m not going to repeat the details here, asthe
basic solution isthe same asin Bi ndabl eBase and Ext endedBi ndi ngLi st. The Saved event is
declared using a block structure, and the delegate fields holding the references to event
handlers are separate for serializable and non-serializable objects.

However, there’ s one key difference due to the way n-level undo works. Both
Bi ndabl eBase and Ext endedBi ndi ngLi st Sit in the inheritance hierarchy above the point at
which the | Undoabl enj ect interface isimplemented; and that is the point at which n-level
undo stop processing fieldsin your objects.

Busi nessBase and Busi nessLi st Base are lower in the inheritance hierarchy than the class
that implementsi Undoabl ej ect . Due to this, n-level undo will attempt to take a snapshot
of any fieldsin these two classes, and that includes the delegate fiel ds that reference the event
handlers. If n-level undo were to try and take snapshots of these fields, a serialization
exception would be the resullt.

To avoid that issue, the fields must have the Not Undoabl e attribute:

Page 98

www.4electron.com

<NonSeri al i zed()> _

<Not Undoabl e() > _

Private mNonSeri al i zabl eSavedHandl ers As Event Handl er (OF Csl a. Cor e. SavedEvent Ar gs)
<Not Undoabl e() > _

Private nferi al i zabl eSavedHandl ers As Event Handl er (Of Csl a. Cor e. SavedEvent Ar gs)

Notice that only the first delegate is marked as NonSeri al i zed, but both are marked as

Not Undoabl e. The result isthat they are totally ignored by n-level undo, and they behave
properly when the object is serialized.

With the saved event properly declared in both Busi nessBase and Busi nessLi st Base, al
that remainsis to raise the event at the appropriate point during the save process. The
highlighted line of code shows where the event israised in the save() method:

Public Overridable Function Save() As T

If Me.lsChild Then
Thr ow New Not Support edException(_
M. Resour ces. NoSaveChi | dExcepti on)
End | f

If EditLevel > 0 Then
Throw New Val i dati on. Val i dati onException(_
M. Resour ces. NoSaveEdi t i ngExcept i on)
End If

If Not IsValid Then
Throw New Val i dati on. Val i dati onException(_
M. Resour ces. NoSavel nval i dExcepti on)
End | f

Dmresult As T
If IsDirty Then
result = DirectCast(DataPortal.Update(Me), T)
El se
result = DirectCast(Me, T)
End If

OnSaved(result)
Return result

End Function

The onsaved() method raises the event:

<Edi t or Br owsabl e(Edi t or Br owsabl eSt at e. Advanced) > _
Protected Sub OnSaved(ByVal newChject As T)

Rai seEvent Saved(Me, New Csl a. Cor e. SavedEvent Ar gs(newChj ect))
End Sub

It creates an instance of SavedEvent Ar gs to provide areference to the result of the save()
method to all event handlers. Notice that the sender parameter isthe original object that was
saved, so an event handler has access to both the old and new object references.

| Savabl e provides a standard and powerful way to save objects and be notified when
they’ ve been saved. This combination can be very useful in the creation of Ul frameworks or
reusable base classes for forms or pages.

Page99

www.4electron.com

Implementing IParent

In CSLA .NET 2.0, the only parent for an editable child object was an object implementing
the 1 Edi t abl eCol | ect i on interface; which really meant Busi nessLi st Base. Thisturned out
to be too limiting, because other objects could contain child objects as well, including the
new Edi t abl eRoot Li st Base collection type. | chose to generalize the concept of being a
parent object through the | Par ent interface.

A number of classes had to change due to the introduction of the | Par ent interface:
® | Editabl eBusi nessObj ect
® Busi nessBase
® Busi nesslLi st Base
And as you’ ve already seen, the new Edi t abl eRoot Li st Base class makes use of the
I Par ent interface.
IParent Interface
Thei Par ent interface defines only the methods a child requires of its parent:

Public Interface | Parent

Sub RenoveChi | d(ByVal child As Core. | Editabl eBusi nessObj ect)
Sub Appl yEdi t Chi | d(ByVal child As Core. | Editabl eBusi nessObj ect)

End Interface

The Rermovechi | d() method is called when a child wants to be removed from its parent.
This method is required by data binding; specifically the
Syst em Conponent Model . | Edi t abl ebj ect interface defined by Microsoft. The way
| Edi t abl e(bj ect WOrks, it ispossible for data binding to notify a child object that it should
remove itself from its collection. That child object then needs a way to ask the collection to
remove the child object, and thisis the purpose behind the Renovechi | d() method.

The Appl yEdi t chi | d() method iscalled each time a child’ s Appl yEdi t () method has
completed. A parent object can use this method to be notified asits child objects have their
changes applied. This method was added specifically to support the functionality of
Edi t abl eRoot Li st Base as discussed earlier in this book, but you may find it useful in other
scenarios as well.

Changes to IEditableBusinessObject

Throughout CSLA .NET, all parent reference fields and methods have been changed to use
the 1 Par ent interface type. This starts with the Set Par ent () method defined in the
| Edi t abl eBusi nessObj ect interface:

Sub Set Par ent (ByVal parent As | Parent)

Sincethe Busi nessLi st Base classnow implements| par ent , there are no existing code
breaks due to this change. However, with this change, there is now much more flexibility in
terms of what objects can be used as parents of other objects.

Page 100

www.4electron.com

Changes to BusinessBase

TheBusi nessBase class has had areference to its parent object for some time. That parent
reference isnow of type Parent:

<Not Undoabl e() > _
<NonSeri alized()> _
Private nParent As Core. | Parent

<Edi t or Br owsabl e(Edi t or Br owsabl eSt at e. Advanced) > _
Protected ReadOnly Property Parent () As Core. | Parent
Cet
Return nPar ent
End Get
End Property

And of course, due to the changein| Edi t abl eBusi nessbj ect , the Set Par ent () method
now accepts a parameter of type| Parent :

Friend Sub Set Parent(ByVal parent As Core.|Parent) _
I mpl ement s | Edi t abl eBusi nessObj ect . Set Par ent

nmParent = parent

End Sub

For the most part, the changes to Busi nessBase are not significant. However, if you have
pre-existing code that relies on the type of the Par ent property you may have to change some
of your code in response to this update.

Changes to BusinessListBase

Busi nessLi st Base NOW implementsthe| Par ent interface, meaning that it implements both
the App! yEdi t Chi 1 d() and Renpvechi | d() methods. The Appl yEdi t Chi | d() method isn’t
needed for Busi nessLi st Base to do itswork, so the method is an empty implementation:

Protected Overridabl e Sub Edit Chil dConplete(_
ByVal child As Core.|Editabl eBusi nesstoject) _
| mpl enent's Core. | Par ent . Appl yEdi t Chi | d

do nothing, we don't really care
' when a child has its edits applied
End Sub

In version 2.0, the Renovechi | d() method was already implemented as part of
| Edi t abl eCol | ect i on, and so it is merely changed to implement the | Par ent method:

Private Sub RenoveChil d(ByVal child As Core. | Editabl eBusi nessObject) _
I npl enents Core. | Edi t abl eCol | ecti on. RenoveChi | d, | Parent. RenmoveChild

Renove(Direct Cast (child, Q)

End Sub

My primary motivation behind creating the | Par ent interface was to enable the new
Edi t abl eRoot Li st Base class. There' s no doubt however, that this new interface provides
more clarity around the parent-child relationship, and makesit easier to create new types of
parent object going forward.

Page 101

www.4electron.com

Implementing IReportTotalRowCount

In web applications, it isa common requirement to page the data being returned to the
browser. Ideally, however, you' d also page the data coming from the database, so only the
specific data displayed on the page is actually retrieved from the database itself.

There are also some cases where paged datais required in Windows Forms applications,
though that isless common. The basic structure of the problem and solution isthe samein
Windows as in the web: only the data displayed to the user should be retrieved from the
database.

The only real trick to doing thisisthat you also need to know the total number of rows of
data available. Even if you are returning a paged view of 10 items, you still need to know that
there are 10,000 itemsin total. The reason thisis required isthat the Ul needs to give the user
appropriate visual cues so the user has an idea how much data thereisin total, and where the
current page of dataisin relation to the start and end of the available data.

Web Forms data binding is designed to support the concept of paging, but there was no
practical way to tap into this capability in CSLA .NET 2.0. The introduction of the
I Repor t Tot al RowCount interface allows you to create paged collection objects (based on
Busi nessLi st Base OF ReadOnl yLi st Base) that can work with Web Forms data binding.

Some changes to the Csl abat aSour ce control were required as well, and they are
discussed later in the book, along with more details on how you can implement
| Repor t Tot al RowCount to build collections that support paging.
IReportTotalRowCount Interface
The new interface merely defines aTot al RowCount property:

Public Interface | Report Total RowCount
ReadOnly Property Total RowCount () As | nteger
End I nterface

When you want to build a paged collection, you should implement this interface and
return the total number of rows of data available through this property. The collection might
only contain afraction of the total number of rows available, but this property allows the Ul
to determine the total possible number of rows.

Using the Enhancements

The majority of the enhancementsto Csl a. Cor e are designed to support other, more public,
enhancementsin CSLA .NET itself. Only Ext endedBi ndi ngLi st and| Savabl e are designed
for direct use by a Ul or business developer, and so I'll discuss how to use them here.

The 1 Repor t Tot al RowCount interfaceis also designed for use by a business devel oper, but
I'll discussits use later in the book in the chapter on the CsI aDat aSour ce control.

Using ExtendedBindingList

TheExt endedBi ndi ngLi st classinherits from Bi ndi ngLi st (& T) and adds a Removi ngl t em
event to the pre-existing collection functionality provided by Bi ndi ngLi st. You can use
Ext endedBi ndi ngLi st anywhere you’ d have used Bi ndi ngLi st in the past. For instance:

Page 102

www.4electron.com

Private WthEvents |ist As New Ext endedBi ndi ngLi st(Of String)

Then you can handle the Renovi ngl t emevent, aswell asthe Li st Changed and Addi ngNew
events provided by Bi ndi ngLi st itself:

Private Sub |ist_Addi ngNew(_
ByVal sender As (bject, ByVal e As System Conponent Model . Addi ngNewEvent Args) _
Handl es |i st. Addi ngNew

End Sub
Private Sub |ist_ListChanged(_
ByVal sender As Cbject, ByVal e As System Conponent Model . Li st ChangedEvent Args) _
Handl es |ist. Li st Changed
End Sub
Private Sub |ist_Renovinglten(_
ByVal sender As Object, ByVal e As Csla. Core. Renovi ngltenEvent Args) _
Handl es |ist. Renovi ngltem

End Sub

Within your Renovi ngl t emevent handler method, you can use e. Renovi ngl t emto get a
reference to the item being removed from the collection. Y ou may use this capability to
remove references to the item, or manipulate the item itself asit is being removed from the
list.

Remember that Busi nessLi st Base, ReadOnl yLi st Base and Edi t abl eRoot Li st Base all
inherit from Ext endedBi ndi ngLi st, and so already raise the Renovi ngl t emevent
automatically.

Using ISavable

Thel savabl e interface isdesigned primarily to support the creation of Ul frameworks or
similar components. Using this interface, you can create reusable code that can save any
editable root object. If you have areference to an editable root object, you can also be
notified when that object has been saved. That way, you can update your reference to use the
result of thesave() operation.

Since there are many approaches to building Ul frameworks and components, Il
illustrate the basic use of | savabl e here, and you can determine how to apply the concept
into your Ul as you choose. Given areference to an editable root object, you can write a
reusable method to save the object like this:

Private mbject As Csla. Core. | Savabl e
Publ i c Sub Savenj ect ()

Try
nObj ect = Direct Cast (nDbj ect. Save, Csl a. Core. | Savabl e)

Catch ex As Csl a. Dat aPort al Excepti on
process nornal data exceptions here

Catch ex As Exception
process unexpected exceptions here

End Try

Page 103

www.4electron.com

End Sub

It isaso the case that any object implementing | Savabl e will raise the saved event. You
can handle that event to be notified when an object has been saved. Using this technique, you
could replace the previous code with the following:

Private WthEvents nbject As Csl a. Core. | Savabl e
Publ i c Sub Savenj ect ()

Try
nmbj ect . Save()

Catch ex As Csl a. Dat aPort al Exception
' process normal data exceptions here

Catch ex As Exception
' process unexpected exceptions here

End Try
End Sub
Private Sub nbj ect Saved(_
ByVal sender As Object, ByVal e As Csla. Core. SavedEvent Args) _
Handl es nbj ect . Saved
nbj ect = Direct Cast (e. NewObj ect, Csl a. Core. | Savabl e)

End Sub

Using this second approach, the savej ect () method no longer updates mvj ect to use
the result of thesave() method call. Instead, the saved event handler updates the nbj ect
reference. Since saved isonly raised if the save() operation succeeds, the referenceisonly
updated in the case that a new object is returned as aresult of the operation.

Remember that when using the local data portal you should still clone the business object
before attempting the save. In that case, the savej ect () method should call the save()
method like this:

Di rect Cast (Di rect Cast (nbj ect, |d oneabl e). C one, Csla.Core. | Savabl e). Save()

The business object is cloned, and then save() iscalled on the clone. Thisway, if there's
an exception thrown during the save operation the original mbj ect reference will still point
to the original, unchanged, business object. If you don’t do this, it is possible that the
business object will have been changed in memory during the update process, and it would
then be left in an indeterminate state, resulting in unpredictable results for the user.

This cloning step isonly required if you are using aloca data portal. If you are using a
remote data portal the object is automatically cloned across the network to the application
server, and so you don’t need to worry about this detail.

The | savabl e interface enables the creation of Ul frameworks and components, and
simplifies the process of updating references to objects after they’ ve been saved. It is
designed for use by both Ul and business developers.

At this point, you should have a good understanding of the changes made to the
Csl a. Cor e Namespace to both support the other enhancementsto CSLA .NET and to provide
new capabilities for Ul and business devel opers.

Page 104

www.4electron.com

LocalContext

CSLA .NET 2.0 introduced the Appl i cat i onCont ext object, which provides a centralized
location to store and access various application context data. Table 9 lists the types of

information available through Appl i cati onCont ext in CSLA .NET 2.1.
| nfor mation Description

User A reference to the current user principal that can
be safely used in both ASP.NET and non-
ASP.NET environments.

ExecutionLocation A value indicating whether your code is currently
executing on the client or an application server.

@ obal Cont ext A Di ctionary Of values available on both client
and server. This datais automatically moved to
and from the application server by the data portal .

d i ent Cont ext A Di ctionary of values available on both client
and server. This datais automatically moved from
the client to the server by the data portal; but not
from the server back to the client.

Local Cont ext A Di ctionary of values available to your code.
Thisdatais not moved between client and server
by the data portal. The client and server have their
own separate bi ct i onary Objects.

Table9. Information available through ApplicationContext

Of these, the only new feature in CSLA .NET version 2.1 iSLocal Cont ext .

Local Cont ext iSSimilar to G obal Cont ext and d i ent Cont ext , in that it provides a
Di ctionary that isglobally availableto al your code, in both your business objects and Ul.
However, the Local Cont ext object is not moved across the network by the data portal . This
means that the client and application server both have their own separate Local Cont ext
objects.

Framework Changes

Implementing Local Cont ext requires changes only to the Appl i cat i onCont ext class, which
isinthecsl a\ Dat aPortal folder.

Implementing LocalContext

Liked obal Cont ext and d i ent Cont ext , the Local Cont ext object is designed to be available
to all code for the current user on the client or server, whether the code is executing in
ASP.NET or not. Remember that most server environments are shared by many concurrent
user requests, and so the context objects can not be stored at the AppDonzi n level. All values

Page 105

www.4electron.com

stored at the AppDori n level are shared by all users of the AppDorai n, which would be a
problem on any application server.

Thisrules out the use of shar ed fields or using the AppDomai n object itself. The only safe
way to share global datafor a user is by putting it on the current Thr ead object. Thereis some
complexity introduced by ASP.NET, because the data stored on the Thr ead object isn’'t
guaranteed to be consistently available in that environment. When running in ASP.NET, this
type of data should be stored in the current Ht t pCont ext Object.

Changes to ApplicationContext

When implementing Local Cont ext, | followed the same basic technique used with
d obal Context and d i ent Cont ext as discussed in Expert VB 2005 Business Objects (ISBN
1590596315). The following code was added to Appl i cat i onCont ext :

Private Const nlLocal Context Name As String = "Csl a. Local Cont ext"

Public ReadOnly Property Local Context() As HybridDi ctionary
Get
Dimctx As HybridDi ctionary = GetLocal Cont ext ()
If ctx Is Nothing Then
ctx = New HybridDictionary
Set Local Cont ext (ct x)
End | f
Return ctx
End Cet
End Property

Private Function CetlLocal Context() As HybridDictionary

If HttpContext.Current |'s Nothing Then
Di m sl ot As System Local DataStoreSl ot = _
Thr ead. Get NanedDat aS| ot (mLocal Cont ext Nane)
Ret urn CType(Thread. Get Dat a(sl ot), Hybri dDictionary)

El se
Return CType(Htt pCont ext. Current.|tens(nlocal Cont ext Nane), Hybri dDi cti onary)
End |f

End Function
Private Sub SetLocal Cont ext (ByVal | ocal Context As Hybri dDi cti onary)
If HtpContext.Current |'s Nothing Then
Dimslot As System Local DataStoreSl ot = _
Thr ead. Get NamedDat aS| ot (mLocal Cont ext Nare)
Thr eadi ng. Thr ead. Set Dat a(sl ot, | ocal Cont ext)
El se
Htt pCont ext. Current. | tens(nlocal Cont ext Nane) = | ocal Cont ext
End | f

End Sub

Asyou can see, the code detects whether it isrunning in ASP.NET or not based on
whether Ht t pCont ext . Current IS Not hi ng. When running in ASP.NET, theDi ctionary is
stored in theHt ppCont ext . Otherwise, it is stored using thread local storage on the Thr ead
object.

The result is transparent to anyone using Local Cont ext : the Di cti onary is safely available
to all code on the current thread regardless of whether the code is running in ASP.NET or
not.

Page 106

www.4electron.com

Because Local Cont ext doesn’t get moved to or from the server by the data portal there's
no need to worry about writing code to move the object across the network. However, if the
data portal isrunning on an application server, it always callsAppl i cati onCont ext . O ear ()
asthe data portal request completes, ensuring that one user’ s context dataisn’t accidentally
made available to the next user on that server thread. This appliesto Local Cont ext as well,
and so thed ear () method must also clear the Local Cont ext value:

Public Sub d ear()

Set Cont ext (Not hi ng, Not hi ng)
Set Local Cont ext (Not hi ng)

End Sub

By setting the value to Not hi ng, the code ensures that the next user on this thread will not
have access to the previous user’s context data.

Using the Enhancements

TheLocal Cont ext object isaDi cti onary that can contain any values you wish to make
globally available to your code. These values are not shared between the client and the
application server (if you are using a remote data portal), they are local to the specific
environment.

On the application server, Local Cont ext existsonly for the duration of the current data
portal call. When the current data portal call completes, the Local Cont ext object on the
server is discarded.

InaWindows Forms client, the Local Cont ext existsaslong asthe client processis
running. This means that the context datais available for the lifetime of the application. In a
Web Forms client, the Local Cont ext exists for the duration of the current page request,
typically afraction of a second. If you need longer-lived context datain a Web Forms
application you should use the ASP.NET Sessi on object instead.

The primary motivation for adding Local Cont ext to CSLA .NET isto provide an easy
way to share database connection or transaction objects across all your data access code.

While syst em Transact i ons offers some important benefits over Enterprise Servicesin
terms of performance, it still invokes the Distributed Transaction Coordinator (DTC) as soon
as you open more than one database connection. This includes opening a second database
connection to the same database, even with the same connection string. As soon asthe DTC
isinvoked, you incur a substantial performance penalty of at least 15%; just like you do when
using Enterprise Services transactions.

To avoid thisissue, you must open one database connection and share it between all your
objects as they interact with the database. Typically, you'll open this connection in your
editable root object, and then pass the connection to al the child collections and objects of
that root object.

While you can pass this connection object as a parameter to all your Fri end Updat e(),
Insert () andDel et e() methods, it issometimes simpler to just make the connection global,
and thisisthe purpose behind Local Cont ext .

Page 107

www.4electron.com

Using LocalContext

While you may find other usesfor Local Cont ext , my motivation for adding it to CSLA .NET
isto provide global accessto a database connection object from an editable root object down
through its child objects. That’swhat I'll demonstrate here.

In your editable root object you implement the standard Dat aPor t al _XYz methods. When
implementing Dat aPort al _I nsert () and Dat aPortal _Updat e(), you'll typically also call
your child collections or objects and ask them to insert or update their own data. When using
either vanual oOr Transacti onScope transactions, you' |l often want to pass your database
connection object or transaction object from the parent object down to its child objects.

Using TransactionScope Transactions

When using Local Cont ext along with Tr ansact i onScope Style transactions, your editable
root data portal methods would look like this:

<Transactional (Transacti onal Types. Tr ansact i onScope) > _
Protected Overrides Sub DataPortal _I nsert()

Using cn As Sgl Connection = New Sql Connecti on
cn. Open()
Appl i cati onCont ext . Local Context("cn") = cn
' insert root object data here
nChi | dr en. Updat e()
Appl i cati onCont ext . Local Cont ext . Renove("cn")
End Usi ng

End Sub

<Transactional (Transacti onal Types. Transacti onScope) > _
Protected Overrides Sub DataPortal _Update()

Using cn As Sgl Connection = New Sgl Connecti on
cn. Open()
Appl i cati onCont ext . Local Context ("cn") = cn
' update root object data here
mChi | dr en. Updat e()
Appl i cati onCont ext . Local Cont ext. Renove("cn")
End Usi ng

End Sub

The highlighted lines of code show the use of Local Cont ext to make the connection

objed globally available. Notice that before leaving the usi ng block, | remove the connection
object from Local Cont ext SO it doesn’t accidentally get used after it has been disposed, as
that would result in an exception.

Following this pattern, the child objects updated by the call to nchi | dr en. Updat e()
method call can ssimply reuse the existing connection object. For example, thel nsert () and
Updat e() methodsin achild object would look like this:

Friend Sub Insert()
Dimcn As Sgl Connection = _
Direct Cast (Appl i cati onCont ext . Local Cont ext ("cn"), Sqgl Connecti on)
' insert the child data using the connection

End Sub

Friend Sub Update()

Page 108

www.4electron.com

Dimcn As Sgl Connection = _
Di rect Cast (Appl i cati onCont ext . Local Cont ext ("cn"), Sgl Connecti on)
update the child data using the connection

End Sub

The highlighted lines of code show how the existing connection object isretrieved from
Local Cont ext SO it can be used by your code in the methods.

By reusing the same connection object to insert and update all child objects, you avoid
opening more than one connection. Using this technique, Syst em Transact i ons won't invoke
the DTC and so you’ll get much better performance, without much increase in complexity.

Using Manual Transactions

If you are using Manual transactions you' |l typically be creating and using your own database
transaction object. In that case, your editable root methods would look like this:

<Transactional (Transacti onal Types. Tr ansact i onScope) > _
Protected Overrides Sub DataPortal _Insert()

Using cn As Sgl Connection = New Sql Connecti on
cn. Open()
Using tr As Sqgl Transacti on = cn. Begi nTransacti on
Appl i cati onCont ext. Local Context ("tr") = tr
insert root object data here
nChi | dr en. Updat e()
Appl i cati onCont ext . Local Cont ext. Renove("tr")
tr.Commit()
End Usi ng
End Usi ng

End Sub

<Transactional (Transacti onal Types. Transacti onScope) >
Protected Overrides Sub DataPortal _Update()

Using cn As Sql Connection = New Sql Connecti on
cn. Open()
Using tr As Sgl Transaction = cn. Begi nTransacti on
Appl i cati onCont ext . Local Context ("tr") = tr
updat e root object data here
nChi | dr en. Updat e()
Appl i cati onCont ext . Local Cont ext. Renove("tr")
tr.Commt ()
End Usi ng
End Usi ng

End Sub

Noticethat it isthe sql Transact i on object which is made global, not the connection
object. The reason for thisis that the connection object is a property of the transaction object,

and so making the transaction object globally available also makes the connection globally
available.

Y ou can implement the I nsert () and Updat e() methodsin your child objectslikethis:

Friend Sub Insert ()
Dimtr As Sql Transaction = _
Di rect Cast (Appl i cati onCont ext. Local Context (“tr"), Sqgl Transacti on)

Dimcn As Sql Connection = tr.Connection
insert the child data using the connection and transaction

Page 109

www.4electron.com

End Sub

Friend Sub Update()

Dimtr As Sgl Transaction = _

Di rect Cast (Appl i cati onCont ext . Local Context("tr"), Sqgl Transacti on)
Dimcn As Sqgl Connection = tr. Connection

update the child data using the connection and transaction

End Sub

Notice how the sql Transacti on object is retrieved from Local Cont ext , and then the
Sql Connect i on object is retrieved from the transaction object. The result is that you have
easy access to both objects and can use them to set up your Sql Conmand object to implement
the insert or update operation.

Whether using Tr ansact i onScope Of Manual transactions, Local Cont ext provides an easy
way to share the connection or transaction objects between the root object and its child
objects.

Page110

www.4electron.com

Data Portal

The data portal is one of the most complex parts of the CSLA .NET framework. It enables
the concept of mobile objects, and acts as a channel adapter, hiding the underlying network

technologies (if any) used to communicate with the “ server-side” data access code.

One of the more interesting features of the data portal isthat it allows client-side code to
make acal likethis:

Return DataPortal . Fetch(Of Person)(New Criteria(id))

And that line of code results in the creation of an empty Per son object on the server, and
the following method on that object isinvoked by the data portal :

Private Overloads Sub DataPortal _Fetch(ByVal criteria As Criteria)

End Sub

Essentially, the bat aPort al . Fet ch() call isacall to Dat aPortal _Fet ch(). Eventhe
parameter value is passed through from the client to server code. Notice the use of strongly
typed parameters through the process. This was a key addition to the data portal in CSLA
.NET 2.0.

Unfortunately, when | implemented CSLA .NET 2.0, I didn’t completely emulate normal
calling semantics. Specifically, those for the passing of no parameter value at all. Worse, |
allowed the use of no parameter for Dat aPort al . Creat e() , but not for Dat aPort al _Fet ch() .
This caused some confusion due to the inconsistency. Table 10 shows the calling patterns
used in version 2.0.

Client-side Server-side

Dat aPortal . Create(OF Person) () Dat aPortal Create(_
ByVal criteria As Object)

Dat aPortal . Create(Of Person)(Nothing) DataPortal_Create(_
ByVal criteria As Object)

Dat aPortal . Create(OF Person) _ Dat aPortal Create(_
(New Criteria()) ByVal criteria As Criteria)

Dat aPort al . Fet ch(OfF Per son) (Not hi ng) Dat aPortal _Fetch(_
ByVal criteria As Object)

Dat aPortal . Fetch(Of Person) _ Dat aPortal _Fetch(_
(New Criteria()) ByVal criteria As Criteria)

Table10. Data portal method calling semanticsin version 2.0

Notice that the cr eat e() method allows no parameter, while the Fet ch() method does
not. Worse, Creat e() with no parameter calls the same method as cr eat e() with a parameter
of Not hi ng. In versions 2.0.1 and higher | tried various solutions, but ultimately realized that
the only correct answer was to properly emulate normal .NET calling conventions.

In CSLA .NET version 2.1, the calling patterns follow normal conventions as shown in
Table 11.

Page111

www.4electron.com

Client-side Server-side

Dat aPortal . Create(OF Person) () Dat aPortal _Create()

Dat aPortal . Create(Of Person)(Nothing) DataPortal _Create(_
ByVal criteria As Object)

Dat aPortal . Create(Of Person) _ Dat aPortal _Create(_
(New Criteria()) ByVal criteria As Criteria)
Dat aPortal . Fetch(OF Person) () Dat aPortal _Fetch()

Dat aPort al . Fet ch(OF Person) (Not hi ng) Dat aPortal _Fetch(_
ByVal criteria As Object)

Dat aPortal . Fetch(Of Person) _ Dat aPortal _Fetch(_
(New Criteria()) ByVal criteria As Criteria)

Table1l. Data portal method calling semanticsin version 2.1

Notice that there's now parity between creat e() and Fet ch() .Also notice that when the
client-side code passes no parameter, the server-side Dat aPor t al _xyz method accepts no
parameter. This follows the normal method calling semantics you' d expect and makes the
implementation of these methods more intuitive.

Framework Changes

Changing the data portal is always challenging, because one of my primary goals whenever
changing CSLA .NET isto preserve backward compatibility as much as possible. In the case
of the data portal, this not only means trying to not break business object implementations of
factory methods and bat aPor t al _XYZ methods, but also | don’t want to break any custom
daa portal channels people are using to communicate with their application servers.

Obviously, changing the calling semantics of the Dat aPor t al _XYz methods must have
some impact on business object implementations, and that’s unavoidable. After consulting
with the participants of the CSLA .NET discussion forum at http://forums.|hotka.net, |
decided to make the breaking change at thistime, so as to avoid continued confusion going
into the future.

However, | was able to avoid making changes to the | Dat aPor t al Proxy and
| Dat aPor t al Server interfaces. This should mean that existing data portal channels are
unaffected by these changes. The drawback to this approach is that my implementation is not
as elegant as | would prefer, and so I’'m choosing to lose some elegance to gain some
backward compatibility.

It isimportant to recognize that | Dat aPor t al Server did change in version 2.0.2.
Specificaly, the method signature for Fet ch() was changed to include a parameter explicitly
indicating the type of the business object to be retrieved. This change made Fet ch() more
closely mirror creat e() inthisregard, and alowsthe Fet ch() method to be called with no
criteria parameter.

Implementing the Data Portal Changes

A number of classes needed to be changed to support the new data portal functionality,
including:

Page 112

www.4electron.com

http://forums.lhotka.net/

e et hodCal | er

e (dient\DataPortal

e Server)\ Dat aPort al

e Server\ Si npl eDat aPort al

The Met hodcal | er class contains the utility methods that find and invoke the appropriate
methods, and so the bulk of the changes occurred to the code in that class. The other three
classes have less significant changes, adapting to the new methods implemented in
Met hodCal | er.

Changes to MethodCaller

TheMet hodcal | er class now has four methods to support the calling semantics of the data
portal methods:

e Fi ndMet hod()

e Get Met hod()

® (Get CreateMethod()

® CGet Fet chMet hod()
Let’slook at each method.

FindM ethod

There are two overloads of the Fi ndvet hod() method, each responsible for finding a method
matching a set of criteria. One looks for a method with a specific name and a specific set of
parameter types. The other islessrestrictive, looking for a specific name and the right
number of parameters. These two methods are used by the Get Met hod() methodsin

Met hodCal | er asthey locate the method requested by Get Cr eat eMet hod() and

Get Fet chMet hod() .

FindMethod with Matching Parameters

The first Fi ndMvet hod() method is responsible for finding a method matching the supplied
method name that also accepts parameters of the correct types. The reflection support in
.NET aready does most of the work in this regard, but inheritance makes things slightly
more complex.

Thereason is, that the same method can be implemented by multiple classesin an
inheritance hierarchy. When making the Get Met hod() reflection call in such a case, you can
get an exception indicating there’ s an ambiguous result. This can be avoided by restricting
the reflection call to only look at a specific type. Then you can loop up through the
inheritance hierarchy, examining each type in turn until you reach the top of the hierarchy:

Publ i ¢ Function Fi ndMethod(_
ByVal obj Type As Type, _
ByVal nethod As String, _
ByVal types As Type()) As Met hodl nfo

Diminfo As Methodl nfo = Not hi ng
Do

Page 113

www.4electron.com

find for a strongly typed match
info = obj Type. Get Met hod(net hod, onelLevel Fl ags, Not hi ng, types, Not hi ng)
If info IsNot Nothing Then

Exit Do ' match found
End |f

obj Type = obj Type. BaseType
Loop Wil e obj Type IsNot Not hi ng

Return info

End Functi on

The oneLevel FI ags field used in the Get Met hod() call lookslike this:

Private Const onelLevel Fl ags As Bi ndi ngFl ags = _
Bi ndi ngFl ags. Decl aredOnly O _
Bi ndi ngFl ags. | nstance O
Bi ndi ngFl ags. Public O _
Bi ndi ngFl ags. NonPubl i c

This set of flags restricts the reflection call so it returns only instance methods declared
directly by the specified type. If amatching method islocated, it is returned. If not, the result
iSNot hi ng; to indicate that no match was found.

FindMethod with Matching Parameter Count

The second Fi ndmvet hod() method is responsible for finding a method matching the supplied
method name and number of parameters. It does not |ook at the parameter types, just the
number of parameters, and it returns the first match it finds:

Publ i c Function Fi ndMet hod(_
ByVal obj Type As Type, _
ByVal nethod As String, _
ByVal paraneterCount As |Integer) As Methodl nfo

wal k up the inheritance hierarchy | ooking
for a method with the right nunber of
par aneters
Dimresult As Methodl nfo = Nothing
Di m current Type As Type = obj Type
Do
Diminfo As Methodlnfo = _
current Type. Get Met hod(et hod, onelLevel Fl ags)
If info IsNot Nothing Then
I f info.GetParaneters. Length = paramnet er Count Then
got a match so use it
result = info
Exit Do
End |f
End | f
current Type = current Type. BaseType
Loop Until current Type |s Nothing

Return resul t

End Function

Remember that the same method could be implemented in multiple classesin an
inheritance hierarchy. Dueto this, Fi ndMet hod() starts at the end of the hierarchy and works
its way back toward the top looking for a match. Thisway, it will return any overridden
versions of a method first, which is the behavior you’ d expect when using inheritance.

Page 114

www.4electron.com

In the end, this method will return the first matching method it finds, or Not hi ng if no
matching method can be found.

GetM ethod

TheGet Met hod() method was part of CSLA .NET 2.0. It has been altered in version 2.1 to
get methods that have no parameters, as well as those that have parameters. It also doesa
better job of falling back to find matching methods in the case that the parameter types can't
be matched:

Publ i c Function Get Method(ByVal objectType As Type, _
ByVal nethod As String, ByVal ParamArray paraneters() As Object) _
As Met hodl nfo

Dimresult As Methodl nfo = Nothing

' put all paramtypes into an array of Type
Dimtypes As New List(OF Type)
For Each item As (bject In paraneters
If itemls Nothing Then
types. Add(Get Type(Obj ect))

El se
types. Add(i tem Get Type)
End |f
Next

first see if there's a matchi ng net hod
' where all parans match types
result = Fi ndMet hod(obj ect Type, mnethod, types. ToArray)

If result I's Nothing Then
' no match found - so | ook for any nethod
with the right nunmber of paraneters
result = Fi ndMet hod(obj ect Type, nethod, paraneters. Length)
End | f

no strongly typed match found, get default
If result |'s Nothing Then
Try
result = object Type. Get Met hod(net hod, all Level Fl ags)

Catch ex As Anbi guousMat chExcepti on
Di m met hods() As Met hodl nfo = obj ect Type. Get Met hods
For Each m As Met hodl nfo I n nethods
If m Nane = nethod AndAl so _

m Get Par aneters. Length = paraneters. Length Then
result = m

Exit For
End | f
Next
If result Is Nothing Then
Thr ow
End I f
End Try

End I f

Return result

End Function

Notice the use of both Fi ndvet hod() overloads. First, an attempt is made to find a
matching method that has the exact right parameter types.

result = Fi ndMet hod(obj ect Type, nethod, types. ToArray)

Page 115

www.4electron.com

If that fails, an attempt is made to find a method with the right number of parameters, even
if the types don’t exactly match:

result = Fi ndMet hod(obj ect Type, nethod, paraneters. Length)

This second attempt will catch cases where a parameter’ stype is a subclass of the
method’ stype, or where the parameter is Not hi ng or of type obj ect and the method expects a
strongly typed parameter. It will also find route a strongly typed parameter value to a method
expecting parameters of type avj ect, such asthe default Dat aPor t al _xYz methods
implemented by the CSLA .NET base classes.

Thislast point isimportant for backward compatibility. Though it is preferable to
implement the Dat aPor t al _XYz methods to accept a strongly typed parameter, older code
may still be overriding the default methods from the base classes, and accepting a parameter
of type obj ect. Thissecond call to Fi ndMvet hod() handlesthat common case, and ensures that
existing business object code will continue to function as expected.

If both those attempts fail then a direct reflection call is made to try and find any matching
method by name. This part of the code is unchanged from version 2.0.

GetCreateM ethod

Thecet Cr eat eMet hod() method is responsible for locating and returning the appropriate
Dat aPor t al _Cr eat () method, based on any parameters passed to Dat aPort al . Create(). It
isastraightforward method, because it is able to leverage the work done by the two

Fi ndMet hod() overloads.

The only bit of complexity comesinto play because | opted not to change the
| Dat aPor t al Proxy and | Dat aPort al Server interfaces. Both of these interfaces require that
some parameter be passed to the create method. Since Not hi ng isavalid option, | needed
some other value that could act as a placeholder for “no parameter”.

The valid parameter options for the create call are Not hi ng or acriteria object. A criteria
object can be either a nested class within a business class, or a class that inherits from
Criteri aBase. Either way, the criteria object must be a reference type. This means that any
value type, such asan| nt eger , can't be passed to theDat aPort al . Create() call.

Sincel nteger can't be passed asavalid parameter, | can use it as a placeholder to
represent the “no parameter” option:

Publ i ¢ Function GetCreateMethod(_
ByVal object Type As Type, ByVal criteria As Object) As Methodlnfo

Di m net hod As Met hodl nf o
If TypeOF criteria |Is Integer Then
' an "Integer" criteria is a special flag indicating
' that criteria is enpty and should not be used
met hod = Met hodCal | er. Get Met hod(obj ect Type, "DataPortal Create")

El se

met hod = Met hodCal | er. Get Met hod(obj ect Type, "DataPortal Create", criteria)
End | f
Ret urn net hod

End Function

Page 116

www.4electron.com

This code first checksto seeif an I nt eger was passed as a parameter, which would
indicate that no parameter was actually passed to thebat aPort al . Create() call. Inthat case,

Get Met hod() iscalled with no parameter array, indicating that there are no parameters for the
Dat aPort al _Creat e() method.

Otherwise Get Met hod() is called, passing the supplied criteria object (or Not hi ng) asa
parameter for Dat aPortal _Creat e().

GetFetchM ethod

TheGet Fet chMet hod() method follows the same scheme as Get Cr eat eMet hod() :

Publ i c Function Get Fet chMet hod(_
ByVal object Type As Type, ByVal criteria As Object) As Methodlnfo

Di m net hod As Met hodl nf o
If TypeOX criteria Is Integer Then
an "Integer" criteria is a special flag indicating
that criteria is enpty and shoul d not be used
met hod = Met hodCal | er. Get Met hod(obj ect Type, "DataPortal Fetch")

El se

met hod = Met hodCal | er. Get Met hod(obj ect Type, "DataPortal _Fetch", criteria)
End | f
Ret urn net hod

End Functi on

Again, the appropriate parameters, if any, are passed to the Get Met hod() call based on the
type of the criteria parameter. The | nt eger type isaspecia placeholder indicating the “no
parameter” case.

Changes to Client\DataPortal

The client-side bat aPor t al class has been altered to make use of the new Get O eat eMet hod()
and Get Fet chiMet hod() functionality in the met hodCal | er class. A constant value is used to
indicate the special “no parameter” placeholder passed as afaux criteriavalue to the

Dat aPort al . Cr eat e() and Dat aPort al . Fet ch() methods:

Private Const EnptyCriteria As Integer =1

The overload of oreat e() that accepts no parameters now uses this constant:

Public Function Create(Of T)() As T
Return Direct Cast (Create(Cet Type(T), EnptyCriteria), T)
End Function

Of course this method just delegates to another cr eat e() method, which has been altered
to use the new Get Cr eat eMet hod() functionality:

Private Function Create(_
ByVal objectType As Type, ByVal criteria As (bject) As Object

Dimresult As Server.DataPortal Resul t
Di m met hod As Met hodl nfo = Met hodCal | er. Get Cr eat eMet hod(obj ect Type, criteria)

Di m proxy As DataPortal Cient.|DataPortal Proxy
proxy = Get Dat aPort al Proxy(RunLocal (net hod))

Page 117

www.4electron.com

Di m dpCont ext As New Server. Dat aPortal Context(_
Get Princi pal, proxy.|sServerRenote)

OnDat aPort al | nvoke(New Dat aPort al Event Ar gs(dpCont ext))

Try
result = proxy. Create(objectType, criteria, dpContext)

Catch ex As Server. DataPortal Exception
result = ex.Result
If proxy.lsServerRenpte Then
Appl i cati onCont ext. Set G obal Cont ext (resul t. @ obal Cont ext)
End | f
Thr ow New Dat aPort al Excepti on(_
String. Format ("DataPortal . Create {0} ({1})", _
M. Resour ces. Fai | ed, ex.|nner Excepti on. | nner Exception), _
ex. | nner Exception, result.ReturnQbject)
End Try

I f proxy.|sServerRenote Then

Appl i cati onCont ext . Set A obal Cont ext (resul t. d obal Cont ext)
End | f
OnDat aPort al | nvokeConpl et e(New Dat aPort al Event Ar gs(dpCont ext))
Return resul t. ReturnObj ect

End Function

I’ ve a so highlighted a change to the exception handling. In case of an exception, this code
throws a Dat aPor t al Except i on, which now includes the message text of the original
exception as part of the Dat aPor t al Except i on object’s message. This simplifies the typical
debugging scenario, because the original exception message isimmediately visible to the
developer.

The same basic changes have been applied to the Fet ch() methods aswell. There's anew
Fet ch() method overload that accepts no parameter:

Public Function Fetch(Of T)() As T
Return Direct Cast (Fetch(Get Type(T), EmptyCriteria), T)

End Function

It usestheEnptyCri teria constant value, just like the creat e() equivalent, and delegates
the call to another Fet ch() overload:

Private Function Fetch(_
ByVal objectType As Type, ByVal criteria As (bject) As Object

Dimresult As Server. DataPortal Resul t
Di m met hod As Met hodl nfo = Met hodCal | er. Get Fet chMet hod(obj ect Type, criteria)

Di m proxy As DataPortal Cient.|DataPortal Proxy
proxy = Get Dat aPort al Proxy(RunLocal (nmet hod))

Di m dpCont ext As New Server. Dat aPortal Context(_
Get Princi pal, proxy.|sServerRenpte)

OnDat aPort al | nvoke(New Dat aPort al Event Ar gs(dpCont ext))

Try
result = proxy. Fetch(objectType, criteria, dpContext)

Page 118

www.4electron.com

Catch ex As Server. Dat aPortal Exception
result = ex.Result
If proxy.lsServerRenpte Then
Appl i cati onCont ext. Set G obal Cont ext (resul t. G obal Cont ext)
End | f
Thr ow New Dat aPort al Exception(_
String. Format ("DataPortal . Fetch {0} ({1})", _
M/. Resour ces. Fai | ed, ex.|nner Excepti on. | nner Exception), _
ex. | nner Exception, result.ReturnQbject)
End Try

I f proxy.|sServer Renote Then

Appl i cati onCont ext . Set A obal Cont ext (resul t. d obal Cont ext)
End I f
OnDat aPort al | nvokeConpl et e(New Dat aPort al Event Ar gs(dpCont ext))
Return resul t. ReturnObj ect

End Function

ThisFet ch() method has been changed to use the new Get Fet chimet hod() functionality,
and to throw a more detailed Dat aPor t al Except i on Object.
Changes to Server\DataPortal

The server-side Dat aPor t al class has also been changed to use the new Get Cr eat eMet hod()
and Get Fet chMet hod() functionality. Inthe creat e() method the call looks like this:

Di m net hod As Met hodl nfo = Met hodCal | er. Get Cr eat eMet hod(obj ect Type, criteria)

And in the Fet ch() method the call lookslike this:

Di m net hod As Met hodl nfo = Met hodCal | er. Get Fet chMet hod(obj ect Type, criteria)

The server-side bat aPor t al class doesn’t invoke the bat aPor t al _ XYz methods, but it does
need access to the Met hodl nf o object so it can determine whether to route the method call
through Enterprise Services or a Tr ansact i onScope based on the Transacti onal attribute
applied to the method.

Ultimately the method call isrelayed to Si npl eDat aPor t al , which doesinvoke the
business object method.

Changes to Server\SimpleDataPortal

Thesi npl ebat aPor t al class contains the code that directly interacts with the business object.
Inthe case of Creat e() and Fet ch() operations, Si npl eDat aPort al Creates an instance of the
business object before calling the appropriate Dat aPor t al _XYz method on the object. This

means both the creat e() and Fet ch() methods require updates. Here' s the Cr eat e() method:

Public Function Create(_
ByVal object Type As System Type, _
ByVal criteria As hject, _
ByVal context As Server.DataPortal Context) As Server.DataPortal Result _
I npl enents Server.|DataPortal Server. Create
Di m obj As Object = Nothing

Try
Page 119

www.4electron.com

create an instance of the business object
obj = Activator. Createl nstance(object Type, True)

tell the business object we're about to make a DataPortal _xyz call
Met hodCal | er. Cal | Met hodl f I npl enented(_

obj, "DataPortal _OnDataPortallnvoke",

New Dat aPort al Event Args(cont ext))

' tell the business object to fetch its data

Di m met hod As Met hodl nfo = Met hodCal | er. Get Cr eat eMet hod(obj ect Type, criteri a)
If TypeOF criteria Is Integer Then

an "Integer" criteria is a special flag indicating

that criteria is enpty and shoul d not be used

Met hodCal | er. Cal | Met hod(obj, met hod)

El se
Met hodCal | er. Cal | Met hod(obj, nethod, criteria)
End | f

mark the object as new
Met hodCal | er. Cal | Met hodl f | npl enent ed(obj, " Mar kNew")

' tell the business object the DataPortal xyz call is conplete
Met hodCal | er. Cal | Met hodl f I npl ement ed(_

obj, "DataPortal _OnDataPortal | nvokeConpl ete",

New Dat aPort al Event Args(cont ext))

return the popul ated busi ness object as a result
Ret urn New Dat aPort al Resul t (obj)

Catch ex As Exception
Try
' tell the business object there was an exception
Met hodCal | er. Cal | Met hodl f | npl ement ed(_
obj, "DataPortal _OnDataPortal Exception",
New Dat aPort al Event Args(context), ex)
Cat ch
i gnore exceptions fromthe exception handl er
End Try
Throw New Dat aPort al Excepti on("DataPortal . Create " & _
M/. Resour ces. Fai | edOnServer, ex, New DataPortal Resul t (obj))
End Try

End Function

Notice that not only is Get Cr eat eMet hod() used to get the appropriate method to invoke,
but the code also checksto seeif the criteria parameter is of typei nt eger . If itisan i nt eger,
that indicates that no actual parameter was passed to the creat e() call, and so Cal | Met hod()
isinvoked without passing any parameters:

Met hodCal | er. Cal | Met hod(obj, met hod)

On the other hand, if thecri teri a parameter is of any other type, then it is either Not hi ng
or avalid criteriaobject, and so the value is passed as a parameter to Cal | Met hod() :

Met hodCal | er. Cal | Met hod(obj, nethod, criteria)

The end result is that the method calling semantics for creat e() and Fet ch() are the
same, and they also conform to the list shown earlier in Table 11.

Page 120

www.4electron.com

Using the Enhancements

The data portal enhancements bring the calling semantics of the bat aPort al . Creat e() and
Dat aPor t al . Fet ch() methodsinto line with common .NET usage. Table 12 isa complete list
illustrating what Dat aPor t al _Xyz method is called based on how each Dat aPort al method is

called in your factory methods.
Client-side

Server-side

Dat aPortal . Create(OF Person) ()

Dat aPortal _Create()

Dat aPortal . Create(OF Person) (Not hi ng)

Dat aPortal _Create(_
ByVal criteria As Object)

Dat aPortal . Create(OF Person) _
(New Criteria())

Or

Dat aPortal . Create(New Criteria())

Dat aPortal _Create(_
ByVal criteria As Criteria)

Falls back to

Dat aPortal _Create(_
ByVal criteria As (Object)

Dat aPortal . Fetch(OF Person) ()

Dat aPort al _Fet ch()

Dat aPort al . Fet ch(OF Per son) (Not hi ng)

Dat aPortal _Fetch(_
ByVal criteria As Object)

Dat aPortal . Fetch(Of Person) _
(New Criteria())

Or

Dat aPortal . Create(New Criteria())

Dat aPortal _Fetch(_
ByVal criteria As Criteria)

Fals back to

Dat aPortal _Fetch(_
ByVal criteria As Object)

Dat aPort al . Updat e(Of Person) ()

Or

Dat aPort al . Updat e()

Dat aPortal _I nsert()

Or

Dat aPort al _Updat e()

Or

Dat aPort al _Del et eSel f ()

Page 121

www.4electron.com

Client-side Server-side

Dat aPortal . Del et e(OF Person) () Dat aPortal _Del ete(_
ByVal criteria As Criteria)

Or
Fallsback to
Dat aPort al . Del et e()
Dat aPortal _Delete(_
ByVal criteria As Object)

Dat aPort al . Execut e(Of Person) () Sub Dat aPortal _Execute()

Or

Dat aPort al . Execut e()

Table 12. Data portal method calling crossreference

The basic usage of the data portal doesn’t change, and there is little on most business
object implementations due to the changes made in version 2.1. However, if you were calling
Dat aPort al . Cr eat e() With no parameters, then your code will be impacted by these changes.

More importantly, you should now feel comfortable calling either Dat aPort al . Creat e()
or Dat aPor t al . Fet ch() with various parameter types based on the information in Table 12.

Page 122

www.4electron.com

SmartDate

Thesnart Dat e class has anumber of enhancements designed to provide better ease of use for
the type These enhancements include:

e A shared method allowing you to set the default format string for all new
Smar t Dat e values

e Anenumerated value to more clearly indicate whether an empty Snart Dat e iSthe
largest or smallest possible date

e A new overload of ToString() to better match the functionality of the Dat eTi ne
type
While none of these enhancements are major changes, they increase the usability of the
Snar t Dat e type and bring it more in line with the functionality provided by the Dat eTi ne

type.
Framework Changes
The enhancements to Snar t Dat e involve adding a new typeto CSLA .NET:
e EnptyVal ue
And they involve changes to one class:

® SnmartDate

Implementing the Changes

I’ll explain the new Enpt yVval ue enumerated type first, and then walk through the changesto
Smar t Dat e itself.

EmptyValue Type

TheEnpt yval ue enumerated type is nested within the Smar t Dat e classitself. The reason for
thisisthat Enpt yval ue isdesigned only for use by snar t Dat e, and making it a nested type
helps keep the main csl a namespace organi zed.

The enumerated type itself is not complex:

Publ i ¢ Enum Enpt yVal ue
M nDat e
MaxDat e

End Enum

When a smar t Dat e Value is created, it can treat an empty value as either the largest or
smallest possible date (for comparison purposes). In CSLA .NET 2.0, this wasindicated
using a Boolean value. This resulted in code that was difficult to read. These enumerated
values offer a more readable aternative. For example:

Di m sm As New Snar t Dat e(Enpt yVal ue. M nDat e)

Page 123

www.4electron.com

This clearly creates anew snar t Dat e Value, where an empty value is the smallest possible
date. The older approach is still supported for backward compatibility:

Di m sm As New Smart Dat e(Tr ue)

Obviously, the intent of this codeisfar less clear, though the result is the same.

Changes to SmartDate

Thesnart Dat e classitself is changed to make use of the new Enpt yVal ue type, and for the
addition of the new shar ed property to control the default format string and new ToSt ri ng()
overload.

Supporting EmptyValue

Thesnar t Dat e type used to use aBool ean value to determine whether an empty value was
the smallest or largest possible date. For clarity within snar t Dat e itself, the code now uses
the Enpt yVal ue type instead, so the instance field is now of this type:

Private nEnptyVal ue As EnptyVal ue

There are also new constructors that accept thistype. For example:

Public Sub New(ByVal enptyVal ue As EnptyVal ue)
nEnmpt yVal ue = enpt yVal ue
Set Enpt yDat e(nEnpt yVal ue)

End Sub

Perhaps more importantly, the existing constructors that accept Bool ean values have been
altered to trandate those values into an Enpt yVal ue type. Thisis done using a helper method:

Private Shared Function Get EnptyVal ue(ByVal enptylsMn As Bool ean) As EnptyVal ue
If enptylsM n Then
Ret urn Enpt yVal ue. M nDat e
El se
Ret urn Enpt yVal ue. MaxDat e
End | f
End Function

The older constructors are retained for backward compatibility, allowing existing CSLA
.NET business object code to upgrade seamlessly to version 2.1 in this regard. However,
those constructors now use the Get Enpt yVal ue() helper method to translate their parameter
value. For example:

Public Sub New(ByVal value As Date, ByVal enptylsMn As Bool ean)
nEnpt yVal ue = Get Enpt yVal ue(enptyl sM n)
Me. Date = val ue

End Sub

Throughout the code, anywhere the old Bool ean field was used, the new Enpt yType field

isused in its place. There are several places where the behavior of a method is controlled by
thisfield, for instance:

Public ReadOnly Property |sEnpty() As Bool ean
Cet
| f nEnptyVal ue = EnptyVal ue. M nDate Then

Page 124

www.4electron.com

Return Me. Dat e. Equal s(Dat e. M nVal ue)
El se
Ret urn Me. Dat e. Equal s(Dat e. MaxVal ue)
End | f
End Cet
End Property

While the functionality remains the same, this code is more clear and easier to read thanin
version 2.0. These changes are mechanical, and so I'm not going to go through each case.
Y ou can look at the snar t Dat e code to see how the Enpt yVal ue type has been used
consistently to replace the previous Bool ean field.

Default Format String

In version 2.0, smar t Dat e had a hard-coded default format string of d, which is the short date
format. While you could change this value for each snar t Dat e you created, there was no way
to globally change the default. In version 2.1, you can now change the default format string
using ashar ed method: Set Def aul t For mat String() .

The default format string value is stored in a shar ed field:

Private Shared nDefaul t Format As String

In the shar ed constructor its value is set to d, the same default value aswas used in CSLA
.NET version 2.0:

Shared Sub New()
nDef aul t Format = "d"
End Sub

This preserves backward compatibility with previous version of CSLA .NET. However,
there’ s now away for a developer to globally change the default format string that will be
used by snar t Dat e values:

Publ i c Shared Sub Set Def aul t Fornat String(ByVal fornmatString As String)
nDef aul t Format = format String
End Sub

Finally, the existing For mat St ri ng() property has been enhanced to use the default value:

Public Property Format String() As String
Get
If nFormat |'s Not hing Then
nFor mat = nDef aul t For mat
End | f
Ret urn nfor mat
End Get
Set (ByVal value As String)
nFormat = val ue
End Set
End Property

Any request for the format string first checksto see if the value for this particular
Snar t Dat e has been set. If not, then nFor mat Will be Not hi ng and the default value is used.
Otherwise, the existing value of nFor mat is used.

Page 125

www.4electron.com

This approach means that you can still change the format string for individual Snart Dat e
values. Otherwise you'll get the default of d, or whatever you' ve set using the
Set Def aul t For mat St ri ng() method.

Overload of ToString()

Smar t Dat e has been enhanced with a new overload of ToSt ri ng() to provide more
consistency with the bat e and Dat eTi ne types. The new overload allows you to specify a
format string to use in converting the value to text:

Publ i c Overloads Function ToString(ByVal format As String) As String
Return DateToString(Me. Date, format, nEnptyVal ue)

End Function

This overload ignores the For mat St ri ng property value and uses the value provided as a
parameter instead.

While the enhancements to smar t Dat e are relatively minor in terms of changesto CSLA
.NET, they provide substantial benefits to developers using the type.

Using the Enhancements

The enhancementsto Snar t Dat e provide more clarity to your code, and offer more control
over how Smar t Dat e values are trand ated into text.

Using the SmartDate Enhancements
I'll walk through each new feature in turn.

Page 126

www.4electron.com

Using the New Constructors

Y ou can now create Snar t Dat e Values using the Enpt yVal ue type. Table 13 showsthe
possible constructors and their results.

Constructor Result

sm = New Smart Dat e() Creates an empty Smar t Dat e Value
where an empty value is the smallest
possible date.

sm= New SmartDate(_ Creates an empty Smar t Dat e Value

Smar t Dat e. Enpt yVal ue. M nDat e) where an empty valueisthe smallest

possible date.

sm = New Smar t Dat e(Today) Creates a snar t Dat e Vaue with

today’ s date, where an empty valueis
the smallest possible date.

sm = New Smart Date(_ Creates a smar t Dat e value with
oday, - today’s date, wh ty valuei
Snar t Dat e. Enpt yVal ue. M nDat e) Oday’s date, where an empty value s
the smallest possible date.

sm = New Smar t Dat e(" 1/ 1/ 2007") Creates asnar t Dat e Value for January
1, 2007, where an empty valueisthe
smallest possible date.

sm = New Smart Date(_ Creates asnart Dat e value for January
L1200 - 1, 2007, wh ty valueisth
Smart Dat e. Enpt yVal ue. M nDat e) ! » W er.eanempyv ueistne

smallest possible date.

Table 13. Using the new SmartDate constructors
The older Bool ean constructors continue to function, but the new constructors provide
better clarity for your code.

Using the Default Format String

The default format string for a smar t Dat e isd, which isthe short date format. Y ou can
change the forma string for individual smart Dat e values using the For mat St ri ng property:

Dimsm As Snart Date
sm Format String = "D"

What isnew in version 2.1, isthat you can now specify a different default format string so
you don’'t need to change the value on all individual srart Dat e fields. To do this, you use the
NEew Set Def aul t For mat St ri ng() method:

Smart Dat e. Set Def aul t Fornmat Stri ng("D")

Any snar t Dat e Values created after this point will use this new format string value.

Page 127

www.4electron.com

Note: The default format string is stored as a shar ed field, which meansit
exists at the AppDomain level. In an ASP.NET environment, this means that
the default format string is shared by all users of your virtual root.

Typicaly, you'll set the default format string as your application starts up, so all
Smar t Dat e Values have the same default.

Using the ToString() Overload

The final new feature of the snart Dat e typeisanew TosSt ri ng() overload that allows you to
control the format string used by that particular method call. To use this, pass aformat string
totheToStri ng() method:

Di m sm As New Smart Dat e(Today)

Dimoutput As String = sm ToString("D")

The value of the snar t Dat e value' s For mat St ri ng property isignored in this case, and the
format string you pass as a parameter is used instead.

Page 128

www.4electron.com

CslaDataSource

Thecs! abat aSour ce Web data control has been changed in a couple different ways since
CSLA .NET version 2.0. Firgt, it has been enhanced in an effort to allow the control to reload

your business assemblies as they change during development, so you can refresh the schema

information without having to exit and reload Visual Studio. Second, the control can now
indicate that you are supporting the paging and sorting features of a collection through your

code, so ASP.NET data binding acts properly.

In version 2.0, the Csl abat aSour ce control used simple reflection to get schema
information about the shape of your business objects. This schema information is returned to
ASP.NET data binding so the Visual Studio designers can properly display rich content in
grid and list controls.

Unfortunately, once an assembly has been loaded into memory, it can’t be unloaded from
that AppDomain. Visual Studio only has one AppDomain for the web page designers, so
after your business assembly was loaded the first time to get the schema data, it couldn’t be
reloaded as your assembly changed.

To address this, Csl abat aSour ce now loads your assembly into atemporary AppDomain,
gets the schema information, then discards that temporary AppDomain entirely. Using this
technique it is possible to refresh the schema information about your objects as your business
assembly changes; without having to reload Visual Studio itself.

CSLA .NET now includesthe | Repor t Tot al RowCount interface, as discussed earlier in
this book, so your collection classes can be implemented to support the concept of paging.
While your collection may only load a subset of the total data available, you can report the

total possible number of rows of datathrough | Repor t Tot al RowCount .

The s abat aSour ce control has been enhanced to understand and use the
| Repor t Tot al RowCount interface, and to expose a property so you can indicate whether your
underlying collection class will be implementing this interface. This property value is then
returned to the Web Forms designer to indicate whether your data source supports paging.

Similarly, a property has been added to Csl aDat aSour ce SO you can indicate to the Web
Forms designer whether your underlying collection will support sorting. Remember that
ASP.NET data binding doesn’t fully automate the sorting process, so by setting this property
to Tr ue you also agree to write some extra code to trigger the sorting itself. More importantly,
however, you are agreeing that your underlying collection supports sorting; either because it
isof type Sor t edBi ndi ngLi st , Or because you can re-fetch the collection using different sort
criteriaas required.

Framework Changes

The changesto Csl abat aSour ce can be grouped into three functional areas:
e Supporting dynamic schema refresh
e Supporting paging
e Supporting sorting

Let’s discuss each functional area.

Page 129

www.4electron.com

Implementing Dynamic Schema Refresh

Dynamically refreshing the schema, or shape, of the data sources is particularly difficult
when those data sources are business objects from a business assembly. Thereasonis
twofold: the business assembly must be loaded into a temporary AppDomain so it can be
later unloaded, and there’s no publicly available API in .NET you can use to find the business
assembly that you should |oad.

Implementing dynamic schema refresh required changing the following files:
® Csl aDesi gner Dat aSour ceVi ew
® (bj ect Vi ewSchenma

And adding one class:
e TypelLoader

Asyou |l see, the TypeLoader class doesthe majority of the work. It isarelatively
complex class, because it includes shar ed methods that execute in the main Visual Studio
AppDomain, and instance methods that execute in the temporary AppDomain created to |oad
the business assembly.

The important thing to remember in al this, isthat the only code that can safely interact
with your business assembly is contained in the instance methods of TypeLoader . Absolutely
no code in the rest of Csl abat aSour ce or itsrelated classes can directly interact with your
business assembly without loading that assembly into the Visual Studio AppDomain and thus
always running against an old version of your assembly.

Changes to CslaDesignerDataSourceView

Thecs! abDesi gner Dat aSour ceVi ew class has been altered to make use of the TypeLoader
classto get schema information from the business assembly and type. For example, the
canbel et e() method needs to determine whether your business object supports deletion,
which requires reflecting against your business type. That reflection can only be donein
TypeLoader in the temporary AppDomain, so TypeLoader isused to find thisinformation:

Public Overrides ReadOnly Property CanDel ete() As Bool ean
Cet
Ret urn TypeLoader. CanDel ete(_
mOwner . Dat aSour ceCont r ol . TypeAssenbl yNane, mOaner. Dat aSour ceCont rol . TypeNane)
End Cet
End Property

Asyou can see, TypeLoader NOW has a shar ed method called canbel ete() . The
CanDel et e() method safely abstracts the process of finding the temporary shadow directory,
by creating atemporary AppDomain, doing the reflection and returning the result.

The same change is applied to the Canl nsert () and CanUpdat e() methodsin
Csl aDesi gner Dat aSour ceVi ew.
Changes to ObjectViewSchema

The changes to the j ect Vi ewschena class are similar, but more drastic, than those in

Cs| aDesi gner Dat aSour ceVi ew. The bj ect Vi ewSchena class must implement a Get Fi el ds()

method that returns the schemainformation about the data source, or business object. That
Page 130

www.4electron.com

method must now delegate all its work to TypeLoader S0 the process can occur safely in a
temporary AppDomain:

Public Function GetFields() As _
System Web. Ul . Desi gn. | Dat aSour ceFi el dSchena() _
I npl ements System Web. Ul . Desi gn. | Dat aSour ceVi ewSchema. CGet Fi el ds
Ret urn TypeLoader. Cet Fi el ds(nTypeAssenbl yNanme, nTypeNane)

End Function

Theresult isthat oj ect Vi ewschema now does virtually no work at al. Instead, all the
work is handled by TypeLoader .

TypeLoader Class

TheTypeLoader classis somewhat complex. It isresponsible for abstracting the process of
safely retrieving schema information from a business type in a business assembly.

To do this, it indudes code to perform the following functions:

e Locate the shadow directory containing the current version of the business
assembly

e Create atemporary AppDomain

e Return the results from that AppDomain back to the main Visua Studio
AppDomain where the Csl abat aSour ce control is running

What makes this complex, isthat the TypeLoader class contains some code designed to
run in the Visua Studio AppDomain, and some designed to run in the temporary
AppDomain. The following are shar ed methods designed to run in the Visual Studio
AppDomain:

® CetFields()
® CanDel ete()
® Canlnsert ()

® (CanUpdate()

These methods are invoked by Csl aDesi gner Dat aSour ceVi ew and Obj ect Vi ewSchera tO
retrieve schema data as required. These Shared methods create a temporary AppDomain and
delegate the work to instance methods that are running in that other AppDomain. Those
instance methods are:

® CetFields()
® CanDel ete()
® Canlnsert()

® CanUpdate()

Page 131

www.4electron.com

Additionally, TypeLoader includes a set of helper methods used to find the shadow
directory and create the temporary AppDomain:

® Get TypelLoader ()
® Get Tenpor ar yAppDonai n()
® GetOriginal Path()
® CetType()
® (Get CodeBase()
In general, the sequence of any call to get schema information follows the same sequence:
1. Get theoriginal path to the business assembly (old shadow directory)
2. Create atemporary AppDomain that contains a TypeLoader instance
3. Delegate the call to the TypeLoader instance
Then, in the temporary AppDomain:
1. Get the current shadow directory path
2. Load the business assembly from the current shadow directory
3. Reflect against the business assembly to get the metadata
4. Returnthe results

The shar ed methods called to initiate this process al follow a similar structure to trigger
this process in each case.

| mplementing the Shared M ethods

Theshar ed methods called by Csi aDesi gner Dat aSour ceVi ewand Obj ect Vi ewSchera follow
the same structure. For example, here' sthe Get Fi el ds() method:

Publ i c Shared Function GetFields(_
ByVal assenbl yNane As String, ByVal typeName As String) _
As | Dat aSour ceFi el dSchema()

Dimresult As List(Of CbjectFieldlnfo) = New List(Of ObjectFieldlnfo)()
Dimoriginal Path As String = CGet Ori gi nal Pat h(assenbl yNanme, typeNane)

Di m t enpDonmai n As AppDorai n = Get Tenpor ar yAppDonai n()
Try

result = _

Get TypelLoader (t enpDonai n) . Get Fi el ds(ori gi nal Pat h, assenbl yNane, typeNane)

Finally

AppDomai n. Unl oad(t enpDonai n)
End Try
Return resul t. ToArray()

End Functi on

Y ou can see how the Get Ori gi nal Pat h() method is called to get the path to the old,
original shadow directory used by Visual Studio for this project. The result from that method
islater passed into the Get Fi el ds() instance method running in the temporary AppDomain.

Page 132

www.4electron.com

The Get Tenpor ar yAppDonai n() method is called to create the temporary AppDomain
itself, while the Get TypeLoader () method creates an instance of TypeLoader in that
temporary AppDomain.

In the end, the temporary AppDomain is unloaded and the result returned to the calling
code.

The other three shar ed methods follow this exact structure, delegating to the appropriate
instance methods of the TypeLoader object in the temporary AppDomain.

Finding the Current Shadow Directory

The hardest issue to resolve is finding the directory path to the business assembly. Though
you and | see the business assembly in the web project’ s\ bi n directory, the assembly can’t
be loaded from that location. Thisis because Windows itself won't release afile lock on any
DLL it loadsinto memory. To avoid this, both ASP.NET and Visua Studio use a technology
called shadow copies, where they copy the DLL to atemporary directory and load it from
there.

When building web projectsin Visual Studio, every time you build your solution a new
temporary shadow directory is created, containing shadow copiesof al the assemblies
referenced by your web project. Visual Studio, and any controls, load the assemblies from
that directory, until the next time the solution is built, at which point another temporary
directory is used.

Unfortunately, there’sno API in .NET that allows you to determine the path to the current
shadow directory being used by Visual Studio. Without knowing that directory path, there's
no way to safely load the business assembly into a temporary AppDomain.

To find the current shadow directory path, | make some assumptions about how these
shadow directories are named and used by Visual Studio. It is possible to get the path to
Csl a. dl I, and any other referenced assembly, in one of the shadow directories, because
Visual Studio loads Csl a. dI | when it sitesthe CsI aDat aSour ce control on the web forms
designer surface. Using that shadow directory path, | can find all the shadow directories for
the current project.

Thetrick behind thisisthat Visual Studio can’t unload csi a. di' 1 once it has loaded the
first instance of Csl aDat aSour ce onto aweb form designer. This means that my
Csl aDat aSour ce code, running in Visual Studio’s designer environment, always comes from
that first shadow directory, even if subsequent shadow directories have been created when the
solution was rebuilt. Any attempt to directly load other assemblies always causes those
assembliesto load from this same shadow directory from where Csi a. di I wasoriginally
loaded.

The shadow directory path for csl a. di | follows this structure:

file:///c:/dirl/dir2/dir3/Csla.dll

It turns out that part of this path is consistent for all shadow directories created for the
project:

file:///lc:/dirl/dir2/

Page 133

www.4electron.com

Only that last directory name changes each time the project isbuilt, and | use thisto
resolve the issue. The TypeLoader classwas added in version 2.0.1, and it includes a method
to locate the most recently created shadow directory for a project, given the path to an
assembly in any one of the shadow directories as a parameter:

Private Shared Function Get CodeBase(ByVal cslaPath As String) As String

If cslaPath. StartsWth("file:///") Then
csl aPat h csl aPat h. Subst ri ng(8)

csl aPat h csl aPat h. Repl ace("/", "\")
End | f
Dimcount As Integer = 0
Dim[end] As Integer = 1

For pos As Integer = cslaPath.Length - 1 To 1 Step -1
I f cslaPath. Substring(pos, 1) = "\" Then
count += 1
If count = 2 Then
[end] = pos
Exit For
End | f
End | f
Next pos
Di m codeBase As String = cslaPath. Substring(0, [end])

Di m baseDir As Directorylnfo = New Directoryl nf o(codeBase)
Dimresult As Directorylnfo = Nothing
Di m maxDat e As Dat eTi me = DateTi ne. M nVal ue
For Each dir As Directorylnfo In baseDir.GetDi rectories()
If dir.LastWiteTi me > maxDate Then
maxDate = dir.LastWiteTi me
result =dir
End | f
Next dir

If Not result Is Nothing Then
Return resul t. Ful | Nane & "\"
El se
Ret urn Not hi ng
End | f

End Function

This method parses the path to pull out the consistent part of the shadow directory path. It
then usesanbi rectoryl nfo() oObject to get alist of all the shadow directories for the project
and it scans that list to find the one that was most recently altered or created. That path points
to the most recent, and thus current, shadow directory for the project.

Of course the key piece of information that makes this all work is a path to one of the
shadow directories for the project. That is determined in the Visual Studio AppDomain using
the Get Ori gi nal Pat h() method:

Private Shared Function GetOrigi nal Path(_
ByVal assenbl yName As String, ByVal typeNane As String) As String

Di m asm As System Refl ection. Assenbly = _
System Ref | ecti on. Assenbl y. Load(assenbl yNane)
Ret urn asm CodeBase

End Function

All this method does is|oad the business assembly into the Visual Studio AppDomain and
then ask for the path (CodeBase) to the assembly. Though thisislikely an old instance of the
business assembly, from an older shadow directory, it doesn’t matter because this instance of

Page 134

www.4electron.com

the assembly isn’t used to get the schema information. The only metadata retrieved from this
instance is the path to the old shadow directory so it can be used to find the latest shadow
directory when Get CodeBase() iscalled.

Creating the Temporary AppDomain

Creating an AppDomain is not complex, and the work is handled by the
Get Tenpor ar yAppDorai n() method:

Private Shared Functi on Get Tenporar yAppDomai n() As AppDonai n

Dimfulltrust As System Security. NamedPer m ssi onSet =
New Syst em Security. NanedPer m ssi onSet ("Ful | Trust")

Di m t enpDonmai n As AppDomai n =
AppDonai n. Cr eat eDomai n("__Csl aDat aSour ce__tenp", _
AppDomai n. Cur r ent Domai n. Evi dence, _
AppDomnai n. Curr ent Domai n. Set upl nf ormati on, fulltrust, _
New System Security. Policy. StrongName() {})

Ret urn t enpDonai n

End Functi on

Since this temporary AppDomain will be making use of dynamic assembly loading and
reflection, it requires Ful | Trust from code access security (CAS). Theful | Trust field
contains the NanedPer ni ssi onSet corresponding to Ful | Trust security, and that field is
passed to the ¢r eat eDomai n() Method to indicate that the new AppDomain should get
Ful | Trust.

The Cr eat eDormai n() method accepts other parameters, including a unigue name for the
temporary AppDomain, security evidence (copied from the current AppDomain) and setup
information (copied from the current AppDomain). The result is an empty AppDomain that
contains nothing more than the basic .NET system types.

The Get TypeLoader () method isthen used to load an instance of TypeLoader into this new
AppDomain:

Private Shared Function Get TypeLoader (ByVal tenpDomain As AppDomai n) As Typeloader

' load the TypelLoader object in the tenp AppDomain
Di m t hi sAssenbly As System Refl ecti on. Assenbly = _
Syst em Ref | ecti on. Assenbl y. Get Execut i ngAssenbl y()
Di m | oader As TypelLoader = _
CType(t enpDomai n. Cr eat el nst anceFr omAndUnwr ap(_
t hi sAssenbl y. CodeBase, Get Type(TypeLoader). Ful | Nane), TypelLoader)
Ret urn | oader

End Function

The AppDomai n oObject is passed as a parameter to the method so its
Cr eat el nst anceFr omAndUnwr ap() method can be called to create an instance of TypeLoader
in the temporary AppDomain. The “Andunwr ap” part of this processis required because the
object is created in another AppDomain, and what isreturned is a generic proxy object. The
“Andunwr ap” unwraps that proxy object to get a specific proxy object for the TypeLoader
object itself.

Page 135

www.4electron.com

| mplementing the I nstance M ethods

The instance methods implemented in TypeLoader take care of reflecting against the business
assembly to get the required metadata. First though, they need to load the business assembly
from the most recent shadow directory. All the instance methods follow the same basic
structure. Here’ sGet Fi el ds() for example:

Publ i c Function GetFields(_
ByVal originalPath As String, _
ByVal assenbl yName As String, _
ByVal typeNane As String) As List(OF ojectFieldlnfo)

Dimresult As List(Of ObjectFieldlnfo) = New List(OF bjectFieldl nfo)()

Dimt As Type = TypelLoader. Get Type(ori gi nal Path, assenbl yNane, typeNane)
I f Get Type(l Enumer abl e) . | sAssi gnabl eFronm(t) Then

' thisis alist so get the itemtype

t = UWilities.GetChildltemlype(t)
End | f
Di m props As PropertyDescriptorCollection = TypeDescri ptor. Get Properties(t)
For Each item As PropertyDescriptor |In props

If item|sBrowsabl e Then

resul t. Add(New bj ectFi el dlnfo(item)

End | f

Next item

Return result

End Function

Remember that this codeis all running in the temporary AppDomain, so any assemblies or
types loaded by this code will be unloaded when the temporary AppDomain is discarded.

This method usesthe shared Get Type() method to get a Type object for your business
assembly, using the or i gi nal Pat h parameter to locate the latest shadow directory as |
discussed earlier. The Get Type() method itself looks like this:

Private Overl oads Shared Function [Get Type](_
ByVal original Path As String, _
ByVal assenbl yNane As String, ByVal typeName As String) As Type

Di m assenbl yPath As String = Get CodeBase(ori gi nal Pat h)
Dimasm As System Refl ection. Assenbly = _
System Ref | ecti on. Assenbl y. LoadFr on(assenbl yPath & assenbl yNanme & ".dl ")
Dimresult As Type = asm Cet Type(typeNane, True, True)
Return result

End Function

The Get CodeBase() method | discussed earlier is used to get the latest shadow directory
path. That path isthen used to build a path to the business assembly and the
Assenbl y. LoadFr on() method is used to dynamically load the assembly from that |ocation
into the temporary AppDomain. ThisType object isthen returned to the calling method.

Back inthe Get Fi el ds() method, the Type object isinterrogated using reflection to
retrieve the requested metadata. This processis no different from what was donein CSLA
.NET 2.0, except now the code is running in atemporary AppDomain.

Page 136

www.4electron.com

Implementing Paging

Web Forms data binding, and specifically the Gri dvi ew control, supports the concept of
paging. If the total number of rows of datais very large, you may choose to only retrieve a
subset of the data at any given time: a single page of data. However, when you do thisyou
must still provide data binding with the number of total rows of data available.

Earlier in the book | discussed the | Repor t Tot al RowCount interface and how you can
implement this in your business collections to support paging. The Csl abat aSour ce control
has been adapted to use thisinterface as well, providing you with the tools you need to
implement paged datain your web pages.

These changes impacted the following classes:
® Sel ect ObjectArgs
® Csl| aDat aSour ce
® Csl aDat aSour ceVi ew

® Csl aDesi gner Dat aSour ceVi ew
There are three aspects to the paging support:

1. Csl abat aSour ce USeSthe I Repor t Tot al RowCount interface to return the total
number of rows of datato data binding on request

2. The sel ect bj ect Ar gs parameter passed to the Sel ect bj ect event now includes
information about the start index and number of rows of datato retrieve

3. A TypeSuppor t sPagi ng property has been added to the Cs! aDat aSour ce control so
you can control whether data binding thinks you support paging or not

These changes combine to allow the web page and business collection developers to
support the concept of paging.

Changes to SelectObjectArgs

The Sel ect vj ect Args object is created by CsI aDat aSour ceVi ew and is provided to the Ul
developer as an argument to the Sel ect oj ect event raised by any Csl aDat aSour ce control .
Thesel ect vj ect Args parameter allows the Ul developer to return the requested business
object through the Busi nessj ect property, and with these changes it now also provides the
Ul developer with extrainformation about the data to be retrieved.

Page 137

www.4electron.com

The new information is provided through the propertieslisted in Table 14.

Property Description

Star t Row ndex The 0-based index of the first row of to beretrieved in
this request.

Maxi munRows The maximum number of rows of datato be retrieved as

part of thisrequest. This value corresponds to the page
size requested by the Ul control (such asaai dvi ew).

Retri eveTot al RowCount A Boolean vaue indicating whether data binding
requires that the total row count be returned through the
| Repor t Tot al RowCount interface.

Table14. New paging properties of SelectObjectArgs

These are all smple read-only properties provided to the Ul developer. For example,
here’ sthe st art Rowl ndex property implementation:

Private nStart Row ndex As I|nteger

Public ReadOnly Property StartRowi ndex() As |nteger
Get
Ret urn ntt art Row ndex
End Cet
End Property

These values are set in the constructor, which now accepts an ASP.NET
Dat aSour ceSel ect Ar gunent s Object as a parameter:

Public Sub New(ByVal args As System Web. Ul . Dat aSour ceSel ect Ar gunent s)

nSt art Rowm ndex = args. St art Row ndex
mvaxi munmRows = ar gs. Maxi mnunRows
mRetri eveTot al RowCount = args. Retri eveTot al RowCount

nmSor t Expr essi on = args. Sort Expressi on
If Not String.|sNull O Enpty(nBortExpression) Then
I f Len(mBortExpression) >= 5 AndAl so Ri ght (nfSortExpression, 5) = " DESC' Then
nSort Property = Left(nfSortExpression, nfortExpression.Length - 5)
mSort Di rection = ListSortDirection. Descendi ng

El se
nSort Property = args. Sort Expression
nmSort Di rection = ListSortDirection. Ascendi ng
End | f
End | f

End Sub

I’ ve highlighted the lines of code pertaining to paging. The other lines of code relate to
sorting, and I’ll discuss them later in this book.

The Sel ect Obj ect Ar gs classis also now marked as Seri al i zabl e:

<Serializable()> _
Public O ass Sel ect Obj ect Args
Inherits Event Args

Page 138

www.4electron.com

Asyou Il see, this simplifies the use of paging and sorting by allowing a business
developer to ssimply include the sel ect (bj ect Ar gs object as part of the collection’scriteria
object, making the valuesit contains available to Dat aPort al _Fet ch() .

Changes to CslaDataSource

Thecs| abat aSour ce control itself doesn’t do much work. It isprimarily a“traffic cop” that
routes calls to sub-objects like CsI aDat aSour ceVi ew to do the work. Following thisidea, the
TypeSuppor t sPagi ng property simply delegates the call:

Public Property TypeSupportsPagi ng() As Bool ean
Get
Return CType(Me. Get Vi em("Default"), Csl aDataSourceVi ew). TypeSupport sPagi ng
End Get
Set (ByVal val ue As Bool ean)
CType(Me. Get View"Defaul t"), Csl aDat aSourceVi ew). TypeSupportsPagi ng = val ue
End Set
End Property

The Cs| aDat aSour ceVi ew classis responsible for maintaining the actual value in this case.

Changes to CslaDataSourceView

Most of the changes occur in the CsI aDat aSour ceVi ew Class, asit isthis object that does the
bulk of the work for data binding. This class declares afield and property for the
TypeSuppor t sPagi ng property:

Pri vat e nmlypeSupportsPagi ng As Bool ean

Public Property TypeSupportsPagi ng() As Bool ean
Cet
Ret urn nilypeSuppor t sPagi ng
End Get
Set (ByVal val ue As Bool ean)
mTypeSuppor t sPagi ng = val ue
End Set
End Property

More importantly, Csl aDat aSour ceVi ew implements the Execut eSel ect () method, where
retrieval of datais handled. The actual retrieval of datais delegated to the Ul developer’s
code in the page through the Sel ect Gbj ect event. However, the results of that event are
handled by Execut eSel ect (), and it is here that the | Repor t Tot al RowCount interface
becomes important.

Remember that in the Sel ect bj ect event handler, the Ul developer is responsible for
creating an appropriate business object for data binding to use. If you are implementing
paging, this business object will be a special collection object that inherits from
Busi nessLi st Base Or ReadOnl yLi st base and which implements| Repor t Tot al RowCount .

Here' s the compl ete code for Execut eSel ect (), with the lines dealing with
| Repor t Tot al RowCount highlighted:

Protected Overrides Function ExecuteSelect(_
ByVal argunents As System Web. Ul . Dat aSour ceSel ect Argunments) As _
System Col | ecti ons. | Enuner abl e

' get the object fromthe page
Di margs As New Sel ect Obj ect Args(ar gunents)

Page 139

www.4electron.com

mOnner . OnSel ect bj ect (ar gs)
Dimresult As Object = args. Busi ness(bj ect

I f argunents. RetrieveTot al RowCount Then
Di m rowCount As | nteger
If result Is Nothing Then
rowCount = 0

El sel f TypeOf result Is Csla.Core. | Report Total RowCount Then
rowCount = CType(result, Csla.Core.|Report Total RowCount) . Tot al RowCount

El self TypeOf result Is IList Then
rowCount = CType(result, |List).Count

El sel f TypeOf result |s |Enunerable Then
Dimtenp As | Enunerable = CType(result, | Enunerable)
Dimcount As Integer = 0
For Each item As Cbject In temp
count += 1
Next
rowCount = count

El se
rowCount =1
End | f
ar gunent s. Tot al RowCount = r owCount
End | f

if the result isn't |Enumerable then
wap it in a collection

If Not TypeOf result Is |Enunerable Then
Dimlist As New Arrayli st
If result IsNot Nothing Then

list.Add(result)

End | f
result = list

End | f

now return the object as a result
Return CType(result, |Enunerable)

End Function

Notice how the Sel ect Obj ect Ar gs Object is now created by passing the
Dat aSour ceSel ect Ar gunent s parameter into the constructor. This
Dat aSour ceSel ect Ar gunent s parameter contains a variety of data collected by data binding
and provided to a data source control. With the changesto Sel ect (bj ect Ags, some of this
information is now provided to the Ul developer aswell, so they can act onit in the
Sel ect Obj ect event handler.

The total page count codeis only triggered if the select request from data binding included
arequest for the total row count. Such areguest is common, and typically occurs when the Ul
control isany sort of grid or list control. In that case, the code checks to seeif the business
object returned from the Sel ect Obj ect event implementsthe | Repor t Tot al RowCount
interface, and if it does then the total row count isretrieved viathat interface.

If the business object doesn’t implement the interface; then the normal approach is taken,
where the collection’ s count property is returned.

Changes to CslaDesignerDataSourceView

TheTypeSuppor t sPagi ng property in Csl abat aSour ce exists specifically to allow the Ul
developer to control whether the canPage() method returns Tr ue or Fal se in the

Page 140

www.4electron.com

Cs| aDesi gner Dat aSour ceVi ew 0Object. This CanPage() method is used by the Web Forms
page designer so the designer knows how to render the control and its options pages at design
time.

The canPage() method lookslike this:

Public Overrides ReadOnly Property CanPage() As Bool ean
Cet
Ret ur n nDaner . Dat aSour ceCont r ol . TypeSuppor t sPagi ng
End Get
End Property

Notice how the call delegates to the Csl abat aSour ce control’s TypeSuppor t sPagi ng
property value.

Implementing Sorting

Thecs! abat aSour ce control itself doesn’'t support sorting of data. However, you might
choose to support sorting in your Ul code or your collection class. Y ou can do this by using
Sor t edBi ndi ngLi st, or by reloading the collection from the database, alowing your database
to do the sorting for you.

Either way, if you do support sorting in your Ul or collection, you need some way to tell
the Web Forms designer that you are supporting the concept so the designer can render the
control and its options pages properly at design time. Additionally, you'll need to know the
name of the column on which to sort, and whether the sort should be ascending or
descending.

Providing Sort Information to the SelectObject Event Handler

Thesel ect vj ect event handler receives a Sel ect vj ect Ar gs parameter, which contains
details about the data requested by data binding. This information can be used by the Ul or

business collection devel oper to sort the data as requested. Table 15 lists the new properties
of Sel ect Obj ect Ar gs that provide information about sorting:

Property Description

Sort Expr essi on The sor t Expr essi on property provided by data binding.
In many cases, thisisjust a property name, but it can be a
comma separated list of property namesiif the Ul
developer handlesthe sor t i ng property of a Ul control.

SortProperty The name of the property on which to sort. Thisvalueis
only valid if asingle property is used for sorting (which
Is the default behavior).

SortDirection A vaueindicating whether to sort in ascending or

descending order. Thisvalueisonly valid if asingle
property is used for sorting (which is the default
behavior).

Table15. New sorting properties of SelectObjectArg

Page 141

www.4electron.com

Y ou can either use the raw value in Sor t Expr essi on directly, or use the smpler pre-
processed Sor t Property and Sort Di rect i on properties.

Sort Property andSort Directi on are only valid for the default behavior of sorting by a
single column or property. If the Ul developer handles the Sor t i ng property of a Ul control,
they can manually set Sor t Expr essi on to more complex values such alist of column names.
In that case, the Sort Property and Sort Di rect i on may not return useful values.

Implementing the CanSort property

Data binding determines whether a data source supports paging through the cansort ()
method of Cs| aDesi gner Dat aSour ceVi ew. Like the TypeSuppor t sPagi ng property on

Cs| aDat aSour ce and Csl aDat aSour ceVi ew, thereis also a TypeSuppor t sSor ti ng property.
The implementations are identical, so | won't review that code. Here' sthe cansor t () method
implementation:

Public Overrides ReadOnly Property CanSort() As Bool ean
Get
Ret ur n mDaner . Dat aSour ceCont r ol . TypeSupportsSorti ng
End Cet
End Property

Like the canPage() method, notice how this method del egates the call to the
Cs| aDat aSour ce control itself. This alowsthe Ul developer to set TypeSupportsSorting to
control the canSort () result.

Using the Enhancements

The enhancements to Csl abat aSour ce can be grouped into three functional areas:
e Supporting dynamic schema refresh

e Supporting paging
e Supporting sorting

The dynamic schema refresh enhancements exist to support theRefresh link you can
usein the Visual Studio designer to refresh the schema on a data control, grid control or
list control. Assuch, | won't discuss their use in this book — you can just click those links
to see the results.

The paging and sorting support however, do require some discussion, because in each case
you must take extra steps as you code your collections and pagesin order to utilize this
functionality.

Using Paging

The paging support provided by the Csl abat aSour ce control merely opens the door so you
can implement the paging yourself. Implementing paging requires that you design your
business collection to support paging, and then you can use Cs| abat aSour ce t0 tell data
binding that your collection supports the concept.

Page 142

www.4electron.com

Thefollowing isalist of the high level steps required to implement paging:

1. Implement | Report Tot al RowCount in your collection

2. Accept the Sel ect vj ect Args parameter inyour shar ed factory method
3. Includethe sel ect vj ect Args valueas afield inyour Crit eri a object
4

Use the starting row index and page size values from Sel ect Gbj ect Ar gs in your
Dat aPor t al _Fet ch() method to load the collection with only the specified page of
data

5. Inyour Dat aPort al _Fet ch() method, load the total number of rows of data
available

6. Set theTypeSupportsPagi ng property of your Csl aDat aSour ce control to Tr ue
7. Enable paginginthe &i dvi ew (or other paging-enabled Ul) control

I’ll walk through the basic structure of a paged collection and using a G-i dvi ew control to
support paging.

Implementing a Paged Collection

A paged collection is much like anormal business collection in many ways, but it is certainly
unique in other ways. A paged collection can inherit from either Busi nessLi st Base Or
ReadOnl yLi st Base, but it must also implement the | Repor t Tot al RowCount interface. And of
course it will only load pages (subsets) of the total data rather than loading all the data
available, soitscriteri a classand Dat aPort al _Fet ch() implementations will need to take
care of those details.

The basic structure of a paged collectionisthis:

<Serializable()> _
Public d ass PersonLi st
I nherits ReadOnl yLi st Base(Of PersonLi st, Person)
| npl enents Core. | Report Tot al RowCount
#Regi on " Busi ness Methods "
Privat e nifot al RowCount As | nteger
Private ReadOnly Property Total RowCount () As Integer _
| npl enents Csl a. Core. | Repor t Tot al RowCount . Tot al RowCount
Cet
Ret ur n nTot al RowCount
End Get
End Property
#End Regi on
#Regi on " Factory Methods "

Publ i ¢ Shared Function Cet Page(_
ByVal sel ect Args As Csl a.\Wb. Sel ect Obj ect Args) As PersonlLi st

Return DataPortal . Fetch(Of PersonList)(New Criteria(sel ectArgs))
End Function
Private Sub New()
require use of factory methods

End Sub

Page 143

www.4electron.com

#End Regi on

#Regi on " Data Access "

<Serializable()> _
Private Class Criteria

Private _args As Csl a. Wb. Sel ect Obj ect Args

Public ReadOnly Property Sel ect Args() As Csl a.\Wb. Sel ect Obj ect Ar gs
Get
Return _args
End Cet
End Property

Public Sub New(ByVal args As Csl a. Wb. Sel ect Obj ect Ar gs)
_args = args
End Sub

End d ass

Private Overloads Sub DataPortal _Fetch(ByVal criteria As Criteria)

' load total row count

If criteria.Sel ect Args. Retri eveTot al RowCount Then
mTot al RowCount = 42

End | f

| oad page of data
| sReadOnly = Fal se
Dim startValue As Integer = criteria. Sel ect Args. St art Rowl ndex
Di m endVal ue As | nteger = _
criteria.SelectArgs. StartRow ndex + 1 + criteria. Sel ect Args. Maxi mumRows
I f endVal ue > 42 Then
endVal ue = 42
End | f
For index As Integer = criteria.SelectArgs. Start Rowm ndex + 1 To endVal ue
Add(Per son. Get Per son(i ndex))
Next

| sReadOnly = True
End Sub
#End Regi on

End d ass

The Dat aPor t al _Fet ch() method in thisexampleisobvioudly artificial, but illustrates the
idea that this method must both set the count for the total number of available rows, and load
the collection with the requested page of data based on the starting row index and page size
information passed in through the cri t eri a object.

The shar ed factory method accepts the Sel ect edvj ect Args value

Publ i c Shared Function CetPage(_
ByVal sel ect Args As Csl a.\Wb. Sel ect Obj ect Args) As PersonlLi st

Return DataPortal . Fetch(Of PersonList)(New Criteria(sel ectArgs))

End Function

This object isthen used to populate the cri t eri a Object so the valuesit contains are
availableto Dat aPort al _Fet ch().

Page 144

www.4electron.com

Using Paging in a GridView

Thesel ect bj ect Args parameter provided to the Ul developer by Csl aDat aSour ce contains
properties indicating the starting row index and page size. These values come from the Ul
control, such asGr i dvi ew. Data binding automatically gets the values from the control and
provides them to Cs| abat aSour ce, SO No specia work is required by the Ul developer to

make paging work.

In the sel ect bj ect event handler, the Ul code merely takes the Sel ect Obj ect Ar gs
parameter value and providesit to the shar ed factory method:

Protected Sub Csl aDat aSourcel_Sel ect Obj ect (_
ByVal sender As (bject, ByVal e As Csla.\Wb. Sel ect Obj ect Args) _
Handl es Csl aDat aSour cel. Sel ect Obj ect

e. Busi nessObj ect = _
Csl aDSTest Li brary. Per sonLi st . Cet Page(e)

End Sub

Y ou can control the initial page index and the page size by setting the pPagel ndex and
PageSi ze properties of the Gri dvi ew control at design time or runtime.

Y ou must also specify that the G-i dvi ew control should use paging as shown in Figure 1.

: atasSource - CslaDakaSourcel
Grid¥iew Tasks
atz
Auto Format. .,
Choose Data Source: | CslaDataSourcel w
Refresh Schema
Edit Columns...
Add Mew Calumn,..
Enable Paging
[] Enable Deletinn

Enable paging on the Grid\u'iewl
[] Enable Seleckam

Edit Templates

R

._.
(%]

Figurel. Enabling paging in the GridView control

For this option to work properly, remember that you need to set the CsI aDat aSour ce
control’s TypeSuppor t sPagi ng property to True aswell.

Y ou should now understand how to create a collection that implements
| Repor t Tot al RowCount t0 support paging, and how to use aGri dvi ew control’ s properties to
determine the page number and page size of the data to be retrieved on each request.

Using Sorting

The sorting support provided by the CsI abat aSour ce control allows you to implement sorting
of acollection for data binding. The sorting support provided by Cs| abat aSour ce iSvery
flexible and open-ended, which means there are several ways you can choose to implement
sorting, including the following options:

Page 145

www.4electron.com

e Sortinthe Ul using Sor t edBi ndi ngLi st
e Sort the datain the object’ s factory method
e Sort the datain the database, then load the collection with pre-sorted data
The first two options can not be easily combined with paging, while the third option can
be combined with paging relatively easily (assuming your data lendsitself to paging in the
first place).
Sorting in the Ul

Sorting in the Ul can only be done in the case that your collection is not paged. The
assumption isthat the sel ect vj ect event handler in the Ul is able to retrieve the full
collection of data, and it can then apply a sort before returning the list to data binding.

The implementation is not complex, and is entirely contained within the Sel ect bj ect
event handler in your web page. The process follows these steps:

1. Retrievethefull list of data
2. Seeif sort Expressi on is specified, and if not return the unsorted list
3. If Sort Expressi on isspecified, sort the list and return the sorted result

For example:

Protected Sub Csl aDat aSourcel_Sel ect Obj ect (_
ByVal sender As (bject, ByVal e As Csla.\Wb. Sel ect Oj ect Args) _
Handl es Csl aDat aSour cel. Sel ect Obj ect

' get unsorted list
Dimlist As PersonList = PersonList. GetList

' do sort

If String.|sNull O Enpty(e. Sort Expression) Then
" return unsorted result
e. Busi nessObj ect = |ist

El se
Di m sorted As New SortedBi ndi ngLi st (Of Person) (list)
sorted. Appl ySort (e. SortProperty, e.SortDirection)

' return sorted result
e. Busi nessObj ect = sorted
End | f

End Sub

The unsorted datais retrieved by calling anormal shar ed factory method.

Once the data has been retrieved, e. Sor t Expr essi on 1S used to determine whether a sort
was requested. If this value isNot hi ng or an empty St ri ng then no sort was requested so the
unsorted list is returned to data binding.

On the other hand, if a sort was specified then a Sor t edBi ndi ngLi st s created to provide
asorted view of the original collection. Notice that the e. Sort Property and
e. Sort Di recti on are then used to apply the sort to the Sor t edBi ndi ngLi st oObject.

Page 146

www.4electron.com

Note: If the Ul developer handles the sort i ng event of their Ul control and
altersthe Sor t Expr essi on to be a more complex comma separated list of
column names, the Sor t Property and Sort Di rect i on properties will not
contain valid information. In that case, the Sor t Expr essi on value must be
parsed and used directly.

Because the Appl ySor t () method already accepts property name and sort direction
parameters, the values from the sel ect Obj ect Ar gs parameter can be passed directly to

Appl ySort ().

Sorting in the Database

In some cases it may be more efficient to sort the data in the database as the collection is
loaded in Dat aPor t al _Fet ch() rather than sorting the data on the web server in the

Sel ect vj ect event handler. Additionally, sorting in the database can allow you to
implement both sorting and paging of the data.

To implement sorting in the database, the valuesin the Sel ect oj ect Ar gs parameter must
be passed through to the Dat aPor t al _Fet ch() method. The technique used to do thisisthe
same as | discussed ealier for implementing paging:

1. The shared factory method accepts a Sel ect Qbj ect Ar gs parameter
2. Thecriteria objectincludesasel ect bj ect Ar gs field

3. Thecodein bat aPortal _Fet ch() usesthevaluesin the Sel ect Obj ect Ar gs Object
to determineif, and how sorting should occur

The basic structure of a collection classis similar to that for paging, as| discussed earlier.
Rather than repeat the complete code, I' [l highlight the key parts. I'll start with the shar ed
factory method:

Publ i c Shared Function GetList(_
ByVal sel ect Args As Csl a.\Wb. Sel ect Obj ect Args) As PersonlLi st

Return DataPortal . Fetch(Of PersonList)(New Criteria(sel ectArgs))

End Functi on

The sel ect bj ect Ar gs value provided to the Ul developer in the Sel ect bj ect event
handler is accepted as a parameter in this factory method, and is then passed to the
collection’scri teri a object, which looks like this:

<Serializable()> _
Private Class Criteria

Private mArgs As Csl a. Web. Sel ect Obj ect Args

Public ReadOnly Property Sel ect Args() As Csla.\Wb. Sel ect Obj ect Ar gs
Get
Return mArgs
End Get
End Property

Public Sub New(ByVal args As Csl a. Wb. Sel ect Obj ect Ar gs)
mArgs = args
End Sub

Page 147

www.4electron.com

End d ass

This object is passed through the data portal to the collection’s Dat aPor t al _Fet ch()
method, where the values from the Sel ect Obj ect Ar gs Object can be used to control the
appropriate sorting behavior:

Private Overl oads Sub DataPortal Fetch(ByVal criteria As Criteria)

Using cn As New Sgl Connecti on
cn. Open()
Usi ng cm As Sgl Command = cn. Cr eat eCommand
If String.IsNull O Enpty(criteria.Sel ect Args. Sort Expressi on) Then
cm ConmandText = _
"SELECT data FROM Person"

El se
cm ConmandText = _
"SELECT data FROM Person ORDER BY " & criteria. Sel ect Args. Sort Expressi on
End | f
cm CommandType = ConmandType. Text

' execute command and
' load collection with data

End Usi ng
End Usi ng

End Sub

To keep things simple, I’ ve cut out the code that 10ads the collection with data, because
the important part of the code is the use of the Sor t Expr essi on property to control the sorting
process. Notice that if Sort Expr essi on iSNot hi ng Or an empty String, that no sort is applied
to the SELECT query. Otherwise, the text of Sor t Expr essi on isused to build the ORDER BY
clause

Obviously, you might use other SQL techniques or stored procedures to do the sorting.
I’m keeping the code here intentionally simple to illustrate the concept.

In this case, the Ul code doesn’t have to create a Sor t edBi ndi ngLi st, because the
collection will be sorted as it comes from the database. The Sel ect vj ect event handler
becomes smpler:

Protected Sub Csl aDat aSourcel_Sel ect Obj ect (_
ByVal sender As (oject, ByVal e As Csla.\Wb. Sel ect Ovj ect Args) _
Handl es Csl aDat aSour cel. Sel ect Obj ect

' get sorted |ist
Dimlist As PersonList = PersonList. GetList(e)

End Sub

All that isrequired of the Ul code isto passthe Sel ect Obj ect Args parameter value to the
factory method. The collection and database take care of the rest of the work.

The paging implementation | discussed earlier, and this sorting implementation, can be
merged together. The database will first sort the data, and then only return the appropriate
rows of data to populate a specific page. The exact technique used to do thisin the database
isdifferent for each database vendor and version, but the changes to CsI abDat aSour ce how
make it possible for you to implement these paging and sorting features.

Page 148

www.4electron.com

Miscellaneous Changes

CSLA .NET version 2.1 includes a number of other enhancements and bug fixes that don't fit
within the broader thematic areas discussed earlier in this book. Table 16 lists the

miscellaneous changes to the framework.
Change Description

Sor t edBi ndi ngLi st This change provides better parity with
implements | Cancel AddNew g i nglist(Cf T).

Busi nessListBase.IsDirty |spirty now only considersitemsin Del et edLi st
if they are not new. New objectsin Del et edLi st
do not cause the collection to be dirty.

Busi nessBase. Del et e() Del et e() iSNOW Overri dabl e, SO you can override
the method to prevent the accidental use of
deferred deletion.

Initialize() method The CSLA .NET base classes now invoke an

Intialize() method asthey are being created or
deserialized. This method is designed to alow C#
code generators to re-hook event delegates, and is
typically unnecessary for VB thanksto the

W t hEvent s/Handl es feature of the language.

Table16. List of miscellaneous changesin CSLA .NET 2.1

I’ll walk through each of these changes to the framework, and then discuss how you can
use each of them.

Framework Changes

As CSLA .NET continues to evolve, some changes are narrowly focused on solving or
addressing a very specific need. As such, each change islargely independent of any other
changes to the framework, so let’s discuss each in turn.

Implementing ICancelAddNew in SortedBindingList

Microsoft .NET 2.0 introduced the new | cancel AddNew interface. Thisinterface is designed
to make the undo operation simpler for the case that the add operation for an itemin a
collection is cancelled through data binding. In that scenario, the newly added item must be
removed from the collection.

Thisremoval was complex in Microsoft .NET 1.x, because it was the child objectin the
collection that was notified of the cancel operation. That child object then had to contact the
collection in which it was contained and request that the collection remove the child. This
was handled through the Edi t abl enj ect interface. CSLA .NET implements thisinterface
intheBusi nessBase Class.

Page 149

www.4electron.com

The 1 cancel AddNew interface simplifies this process by allowing data binding to
communicate directly to the collection, so the collection itself can ssmply remove the now-
cancelled new child object.

Because Sor t edBi ndi ngLi st doesn’t inherit from Bi ndi ngLi st (Of T), it must directly
implement this new interface.

Changes to SortedBindingList

Implementing the | cancel AddNew interface means implementing two new methods that data
binding can use to indicate that a newly added item should be kept or removed from the
collection: cancel New() and EndNew().

The cancel New() method is called when the new child object should be discarded and
removed from the collection. The EndNew() method is called if the user doesn’t cancel the
new item, and the new child should be permanently kept in the collection.

Implementing the | cancel AddNew interface requires that these methods be added to
Sort edBi ndi ngLi st:

#Regi on " | Cancel AddNew "

Public Sub Cancel New(ByVal item ndex As Integer) _
I npl enent s Syst em Conponent Model . | Cancel AddNew. Cancel New

Di m can As | Cancel AddNew = TryCast (i st, | Cancel AddNew)
If can IsNot Not hing Then
can. Cancel New(i t em ndex)

El se
nmLi st . RenoveAt (it em ndex)
End | f
End Sub

Public Sub EndNew(ByVal item ndex As Integer) _
I mpl enent s Syst em Conponent Model . | Cancel AddNew. EndNew

Di m can As | Cancel AddNew = TryCast (nli st, | Cancel AddNew)
If can IsNot Nothing Then
can. EndNew(i t em ndex)
End | f
End Sub

#End Regi on

Like much of the code in Sor t edBi ndi ngLi st , these methods simply delegate the work to
the original list. Remember that Sor t edBi ndi ngLi st iSsmerely a sorted view over an existing
list object, and if that list object implementsi Cancel AddNew then the processis simply
delegated.

However, if the original list does not implement | Cancel AddNew, then Sor t edBi ndi nglLi st
must do the work itself. Thisonly impacts the cancel New() method, where the child object is
removed directly if the original list doesn’t implement | Cancel AddNew:

El se
nmLi st. RenoveAt (it em ndex)
End |f

Page 150

www.4electron.com

This change brings Sor t edBi ndi ngLi st more in linewith Bi ndi ngLi st (of T), making the
collection more consistent and easier to use with data binding.

Changing BusinessListBase.lsDirty

Thel sbi rty property in the Busi nessLi st Base classreturns Tr ue if any of the child objects
contained in the collection have been changed. In version 2.0, it returned Tr ue if any items
had been removed from the list, but that turns out not to be entirely accurate.

The problem isthat a newly added item can be removed from the list, which effectively
could return thelist toits original state; in which case the list shouldn’t be considered to be
changed and 1 sDi rty should return Fal se.

Changes to BusinessListBase

Inversion 2.1, the 1 sDi rty property has been changed to only count removed child objectsiif
they are not new:

Public ReadOnly Property IsDirty() As Bool ean
Cet
' any non-new del eti ons make us dirty
For Each item As C In Del et edLi st
If Not item|sNew Then
Return True
End | f
Next

" run through all the child objects
'"‘and if any are dirty then the
" collectionis dirty
For Each Child As CIn M
If Child.IsDirty Then Return True

Next
Return Fal se

End Get

End Property

This change firms up the rules around when alist is marked as having been changed.

Changing BusinessBase.Delete
Editable root objects can support two mechanisms for deletion: immediate and deferred.

To implement immediate deletion, the business object developer must create a shar ed
factory method that calls Dat aPort al . Del et e() . They must also implement the
corresponding Dat aPor tal _Del et e() method to remove the object’ s data from the database.

Deferred deletion is enabled by default, though the business object developer does need to
implement the Dat aPor t al _Del et eSel f () method to remove the object’ s datafrom the
database. However, the Busi nessBase class in thecsl a. Cor e Nnamespace implements a
Publ i ¢ method called Del et e() that allows any other code to mark your editable root object
for deletion. When that object’ ssave() method iscalled, the object’s
Dat aPort al _Del et eSel f () method is called to delete the object’ s data.

But what if you don’t want to support deferred deletion? While you could throw an
exception fromDat aPor t al _Del et eSel f () , O just not implement that method and allow
CSLA .NET to throw an exception on your behalf, that could mean a round-trip to the
application server for no reason.

Page 151

www.4electron.com

Changes to BusinessBase

Inversion 2.1, the Del et e() method is now marked as Over ri dabl e, SO you can override the
method and throw an exception immediately to indicate that deferred deletion isn’t supported
by your object:

Public Overridable Sub Del ete() Inplenents I|Editabl eBusi nessject.Del ete
If Me.IsChild Then
Thr ow New Not Support edExcepti on(My. Resour ces. Chi | dDel et eExcepti on)
End | f
Mar kDel et ed()

End Sub

This change provides a more elegant way for you to disable the deferred deletion behavior
in your objects.

Implementing the Initialize Methods

Code generation is a powerful tool in any developer’stoolkit. Many people have created code
generators, or templates for existing code generators, to build their CSLA .NET business
objects.

The most common way to build such templatesis to use an inheritance-based scheme
where the code generator creates a base class with most of the object’ s code, and the human
developer creates a subclass that customizes the generated code if needed.

For example, if you have a cust oner business object, the code generator would create a
class named cust oner Base, and the developer would subclass that class to create a Cust orrer
class. Thiscust oner class only contains overrides of existing propeties and methods, and
then only if the generated code is somehow inadequate for this specific object.

Microsoft .NET 2.0 includes the new concept of partial classes, which provides an
alternative to this inheritance based approach. With partial classes, the code generator creates
acust oner class, and the developer also manually creates acust oner class. The compiler
merges these two classes into one as the project is compiled.

The challenge with partial classesis that there’s no way to override any method or
property implemented in the code generated part of the class. The user-created code can only
add to the class, it can’t alter anything.

The partial class concept was invented to simplify the creation of formsin Windows
Forms, and in that environment the user-created code can ssmply respond to a wealth of
events raised by the For m base class. The same is true for Web Forms with the Page base class
and Dat aTabl e objects with the Dat aTabl e class.

But the CSLA .NET base classes, such asBusi nessBase, raise very few events. And
normal business objects don’'t raise all that many events either. So it isrelatively difficult to
use partial classes with code generation.

Nonetheless, partial class code generation templates have been created for CSLA .NET
objects. In most cases, the generated code raises many Pri vat e events that can be handled by
the user-created code, thus solving the problem. And with VB thisis pretty smooth, because

Page 152

www.4electron.com

VB has the concept of w t hEvent s and the Handl es clause so no explicit hookup of the
eventsisrequired.

But with C# the event solution is more complex. Thisis because events require explicit
hookup, connecting the event to the method that will handle the event. The C# compiler
doesn’'t help in this regard.

The result isthat the events need to be explicitly hooked up when the object isfirst
created. Thisissueisnot unique to CSLA .NET objects. Windows Forms follows a standard
pattern of calling an initialization method when any form object is created, to allow the
hookup of events among other tasks.

| followed this same pattern in version 2.1 of CSLA .NET, by addingan i ni tial i ze()
method to all of the CSLA .NET base classes, including:

® Busi nessBase

® Busi nessLi st Base

® ReadOnl yBase

® ReadOnl yLi st Base

® NanmeVal ueli st Base
e CommundBase

In each class, the I ni ti al i ze() method isinvoked as the object is created. Develoeprs
who need to hook events can put that codeinthe nitial i ze() method, knowing that this
method will run when the object is created.

The result isthat the following sequence of methods are invoked asa CSLA .NET object
is created:

e Initialize()
® New()
e Methods to initialize validation/authorization rules

This sequence seems odd. How caninitial i ze() run before the constructor? Remember
that constructors are run in order, from the deepest class in your inheritance hierarchy out to
your actua class. What happens hereisthat the 1 niti al i ze() method is called from the
constructor in the base class, and so it is called before your constructor gets to run.

The constructor is normally part of the generated code, but the 1 ni ti ali ze() method can
be implemented in the user-created part of the class, allowing the devel oper to explicitly
hook events to methods as they are implemented.

Changes to Base Classes

The changesto the CSLA .NET base classes are ssimple and consistent. In each base class an
Intialize() methodisdeclared:

Protected Overridable Sub Initialize()
' allows a generated class to set up events to be
' handl ed by a partial class containing user code
End Sub

Page 153

www.4electron.com

The method is over ri dabl e, SO a business developer can override it, but it doesn’t require
overriding. Thisway a business developer canignore the I ni al i ze() method entirely, or
override it to hookup events as needed.

Then, in the base class constructor, the 1 ni ti al i ze() method isinvoked. Here' s the code
from Busi nessBase, for example:

Prot ect ed Sub New()

Initialize()
Addl nst anceBusi nessRul es()
If Not Validation.SharedValidationRul es. Rul esExi st For (Me. Get Type) Then
SyncLock Me. Get Type
If Not Validation. SharedValidationRul es. Rul esExi st For (Me. Get Type) Then
AddBusi nessRul es()
End | f
End SynclLock
End | f
Addl nst anceAut hori zat i onRul es()
If Not Csla.Security. SharedAut hori zati onRul es. Rul esExi st For (Me. Get Type) Then
SyncLock Me. Get Type
If Not Csla.Security. SharedAut hori zati onRul es. Rul esExi st For (Me. Get Type) Then
AddAut hori zat i onRul es()
End | f
End SynclLock
End | f

End Sub

Thisensuresthat the I niti al i ze() method isinvoked immediately before the constructor
in the business subclass.

Note: Technicaly, I nitialize() isinvoked during the call to the
constructor, but it is always invoked before the constructor code in a subclass
getsto run, so you can consider that I ni ti al i ze() runs before the constructor
in any meaningful sense.

This pattern isrepeated in al the CSLA .NET base classes. The result isthat it is now
easier to implement code generators or templates that use the partial class conceptsin
Microsoft .NET 2.0.

Using the Enhancements

Two of the enhancements | just discussed are so low-level that they aren’t intended for direct
use. The implementation of | Cancel AddNew in the Sor t edBi ndi ngLi st class isused by data
binding and the benefit is automatic to anyone using data binding against a

Sor t edBi ndi ngLi st. Similarly, the refinement of the | sDi rt y method in Busi nessLi st Base iS
automatic for anyone using the Busi nessLi st Base class.

However, the changes to theDel et e() method in Busi nessBase and the new
Initialize() method in all base classes are intended for use by business devel opers and
code generation authors.

Page 154

www.4electron.com

Overriding BusinessBase.Delete

If you are creating an editable root object, you'll be inheritng from Busi nessBase(O T) to
create your object. If you don’'t want to support deferred deletion of your object, you should
consider overriding the Del et e() method like this:

Public Overrides Sub Del ete()
Thr ow New Not Support edExcepti on("Deferred del eti on not supported")

End Sub

Thiswill give any developer calling the pel et e() method immediate and clear feedback
that the feature they are trying to use isn’'t supported.

Using the Initialize Methods

Theinitialize() methodisdesigned for use with code generation, where the partial class
technology is used. In that case, the code generator will typically generate much of the code
for your business class, and the business devel oper will write any user-created code in
another file, using the same class name.

Defining a PropertyChangingEventArgs Class

The most common case for using eventsin partial classes isto alow the user code to respond
as aproperty is changed. To make this work smoothly, you'll typically want a custom
Event Ar gs Class that contains the proposed property value:

Publ i c O ass PropertyChangi ngEvent Args(CF T)
I nherits Event Args

Private nProposedVal ue As T
Public Property ProposedValue() As T
Get
Ret urn nProposedVal ue
End Cet
Set (ByVal value As T)
nPr oposedVal ue = val ue
End Set
End Property

Public Sub New(ByVal proposedVal ue As T)

nPr oposedVal ue = proposedVal ue
End Sub

End d ass

This can be used to declare an event for each property, indicating that the property is
changing. That event can be raised by the generated code, allowing the user code to respond

to the event.
Generated Business Class Example

When using partial classes, the code generator will create a partial class with the majority of
the code in the business class. Thisincludes the properties for the object, along with the
constructor and data access code. For example, the code generator might create the
following:

Page 155

www.4electron.com

<Serializable()> _
Partial Public dass Custoner
I nherits Busi nessBase(Of Custoner)

Private Event |dChanging As EventHandl er (O PropertyChangi ngEvent Args(COf | nteger))
Private md As |nteger

Public Property 1d() As Integer
<System Runti me. Conpi | er Servi ces. Met hodl mpl (_
Runt i ne. Conpi | er Servi ces. Met hodl npl Opti ons. Nol nli ni ng) > _
Cet
CanReadPr operty(True)
Return md
End Get
<System Runti me. Conpi | er Servi ces. Met hodl npl (_
Runt i ne. Conpi | er Servi ces. Met hodl npl Opti ons. Nol nli ni ng) > _
Set (ByVal val ue As |nteger)
CanWiteProperty(True)
If Not md. Equal s(val ue) Then
Dimtnp As New PropertyChangi ngEvent Args(Of | nteger) (val ue)
Rai seEvent | dChangi ng(Me, tnp)
m d = tnp. ProposedVal ue
Pr opert yHasChanged()
End | f
End Set
End Property

Protected Overrides Function GetldValue() As Object
Return mld
End Function

Private Sub New()
' require use of factory nethods
End Sub

' factory nethods and data access nethods go here

End d ass

The highlighted lines of code indicate the parts of the generated code that matter to the
current discussion.

Notice that the constructor is declared in the generated code. Thisisrequired, because a
good code generator will call Mar kAsNew() for child objects, and may take other stepsin the
constructor as well.

Near the top of the class, aprivate | dchangi ng event is declared. Becausethisisapri vat e
event, there aren’t any issues with serialization. This means the simple event declaration
syntax can be used, rather than the more complex block structure that must be used for non-
Pri vat e events.

The | dchangi ng event israised before the property value is actualy changed, providing
the user code with the knowledge that the property is changing, and access to the proposed
value. It isimportant to realize that the pr oposedval ue property is read-write, so the user
code can change the value. This valueis then used to set the property.

User Code Business Class Example

While the code generator creates the majority of the business code, the devel oper can extend
that generated code by creating another partial class containing user code. If the generated
code raises a set of pri vat e events, the user code can handle those events to respond

Page 156

www.4electron.com

appropriately. In the case that a property is changing, the user code might alter the proposed
value:

Publi ¢ C ass Custoner

Private Sub Customer_| dChangi ng(_
ByVal sender As Cbject, ByVal e As PropertyChangi ngEvent Args(Of Integer)) _
Handl es Me. | dChangi ng

' make sure the id value doesn't exceed 1000
| f e.ProposedVal ue > 1000 Then
e. ProposedVal ue = e. ProposedVal ue - 1000
End | f
End Sub

End d ass

Here the Pr oposedVval ue property is checked to ensure it doesn’'t exceed the value 1000.
Remember that this code is part of the same class as the generated code, so you have full
access to the i d field, and any other fields, properties and methods defined in the generated
code. The Proper t yChangi ngEvent Ar gs Object gives you access to the proposed value for the
property, which means your event handler has access to al the information you should need

to work with the property asit is changing.

If you prefer not to use the Handl es clause, you can usethe i nitial i ze() method to
accomplish the same resullt:

Public d ass Custoner
Protected Overrides Sub Initialize()
AddHandl er Me. | dChangi ng, AddressO Customner_| dChangi ng
End Sub

Private Sub Custoner | dChangi ng(_
ByVal sender As (bject, ByVal e As PropertyChangi ngEvent Args(Of | nteger))

' make sure the id value doesn't exceed 1000
| f e.ProposedVal ue > 1000 Then
e. ProposedVal ue = e. ProposedVal ue - 1000
End | f
End Sub

End d ass

In this case, the event is explicitly hooked up to the method that handles the event. This
technique isrequired in C#, but theHand! es clause isasimpler solution in VB.

At this point, you should understand how the I ni ti al i ze() method can be used to
perform any object initialization, most commonly event hookups, as the object is created
when using partial classesand code generation.

CSLA .NET version 2.1 isan evolutionary step forward from version 2.0. The primary
focusis on performance and memory consumption around validation and authorization rules.
However, anumber of other enhancements have been made that support some important
scenarios that many people encounter when using CSLA .NET to build applications.

Page 157

www.4electron.com

Index

A

ApplicationContext class - 105
ApplyEditChild method - 83, 84, 100, 101
ApplySort method - 71, 147
Authorization
| AuthorizeReadWrite interface - 63, 64, 65, 66
per-instance rules - 58, 61, 63
per-typerules - 56, 57, 62, 65

B

BusinessBase class - 19, 54, 101, 149, 151
BusinessListBase class - 100, 151, 154

F

Fetch method - 87, 90, 91, 111, 112, 117, 118, 119,
121, 143, 144, 147, 148

FilteredBindingL.ist class - 67, 68, 74

FilterProvider delegate - 67, 68, 75

FindMethod method - 113, 114

Format string (SmartDate, default) - 123, 124, 125,
127,128

C

CanPage method - 140, 141, 142

CanSort method - 142

Channel adapter design pattern - 111

Count property - 34, 69, 140

Create method - 9, 111, 116, 117, 119

CreateDomain method - 135

Createl nstanceFromAndUnwrap method - 135

CslaDataSource control - 10, 102, 129, 131, 133, 137,
139, 141, 142, 143, 145

CdaDataSourceView class - 139

CslaDesignerDataSourceView class - 130

G

GetCodeBase method - 136

GetCreateM ethod method - 116

GetFetchM ethod method - 117

GetFields method - 130, 132, 136

GetMethod method - 113, 115

GetOrigina Path method - 132, 134
GetTemporaryAppDomain method - 133, 135
GetType method - 136

GetTypel oader method - 133, 135

GridView control - 137, 143, 145

H

Handles clause - 153, 157
HttpContext - 106

D

DataPortal class (client-side) - 117
DataPortal class(server-side) - 119
DataSourceSel ectArguments parameter - 140
Delete method - 107, 151, 152, 154, 155

E

Edit level (nlevel undo) - 80, 81, 82, 83, 84
EditableRootListBase class - 78, 79, 85, 86, 88, 90, 92,
100, 101
code template - 86
EmptyCriteria constant - 118
EmptyVaue enumeration - 123, 124, 125, 127
ExecuteSelect method - 139
ExtendedBindingList class - 79, 94, 95, 102

|Cancel AddNew interface - 149, 150

|EditableCollection interface - 100

Initialize method - 149, 153, 154, 155, 157

|Parent interface - 79, 83, 84, 100, 101

IReportTotal RowCount interface - 102, 129, 137, 138,
139, 140, 143

|Savable interface - 79, 81, 93, 97, 98, 103, 104

IsDirty property - 151

L

LocalContext object - 105, 107

M

Method calling semantics (data portal) - 9, 111, 112,
113, 120, 121
MethodCaller class - 113, 117

Page 158

www.4electron.com

O

ObjectViewSchema class - 130
OnSaved method - 99
ORDER BY clause (SQL) - 148

P

Parent property - 9, 101

Partial classes - 152, 153, 154, 155, 156, 157
PropertyChangingEventArgs class - 155
ProposedV aue property - 156, 157

Shadow directory - 133
SimpleDataPortal class - 119
SmartDate class - 123, 124
SortedBindingL.ist class - 67, 154
SortExpression property - 141, 148
Sorting property - 141, 142
SglCommand object - 110
SqlConnection object - 110

Sql Transaction object - 109, 110

R

RemoveChild method - 84, 100, 101
Removingltem event - 93, 94, 95, 96, 97, 98, 102, 103
RemovingltemEventArgs class - 94

T

Thread local storage - 106
Transactions
Manual - 109, 110
TransactionScope - 108, 109, 110, 119
TypelL oader class - 130, 131, 134
TypeSupportsPaging property - 137, 139, 140, 141,
142, 143, 145
TypeSupportsSorting property - 142

S

Save method - 49, 81, 97, 98, 99, 104, 151

Saved event - 97, 98, 99, 104

SavedEventArgs class - 97

Saveltem method - 80, 83, 92

SelectObject event - 137, 139, 140, 141, 145, 146,
147, 148

SelectObjectArgs parameter - 137, 141, 143, 145, 147,
148

SetParent method - 82, 100, 101

\Y

Validation

dependant property - 13, 17, 18, 19, 24, 25, 26, 27,
28, 29, 47, 48, 50

per-typerules - 14, 25

rule priority - 13, 21, 24, 34, 38, 51

rule severity - 13, 38, 48

rule short-circuiting - 13, 21, 24, 25, 28, 34, 37, 38,
39, 40, 49, 50, 51

strongly-typed rule methods - 13, 17, 52, 53

Page 159

www.4electron.com

	CSLA .NET Version 2.1 Handbook, VB Edition
	Contents
	Introduction
	Validation Rules
	Authorization Rules
	FilteredBindingList
	EditableRootListBase
	Csla.Core Interfaces and Types
	LocalContext
	Data Portal
	SmartDate
	CslaDataSource
	Miscellaneous Changes
	Index

