

 www.4electron.com موقع عالم الإلكترون

....موقع عالم الإلكترون
واختصاصاتھا المختلفة لتكنلوجيةموقع إلكتروني متخصص في علوم الھندسة ا

 4electron.comمكتبة عالم الإلكترون

 ...إلى قارئ ھذا الكتاب ، تحية طيبة وبعد

حقيقياً في عالم يعج بالأبحاث والكتب والمعلومات، وأصبح العلم معياراً نعيش لقد أصبحنا
حلاً شبه بدورهوقد أمسى لتفاضل الأمم والدول والمؤسسات والأشخاص على حدٍّ سواء،

، فالبيئة تبحث عن حلول، وصحة الإنسان تبحث عن دة وخطورةاكل العالم حوحيدٍ لأكثر مش
الطاقة والغذاء حلول، والموارد التي تشكل حاجة أساسية للإنسان تبحث عن حلول كذلك، و

فأين نحن من . ويحاول أن يجد الحلول لھاالآن والماء جميعھا تحديات يقف العلم في وجھھا
 ھذا العلم ؟ وأين ھو منا؟

ن نوفر بين أيدي كل من حمل لأ www.4electron.comسعى في موقع عالم الإلكترون ن
من أدوات تساعده في ھذا الدرب، من ما نستطيعالتحديات لى عاتقه مسيرة درب تملؤه ع

ء والأفكار العلمية مواضيع علمية، ومراجع أجنبية بأحدث إصداراتھا، وساحات لتبادل الآرا
والمرتبطة بحياتنا الھندسية، وشروحٍ لأھم برمجيات الحاسب التي تتداخل مع تطبيقات الحياة
الأكاديمية والعملية، ولكننا نتوقع في نفس الوقت أن نجد بين الطلاب والمھندسين والباحثين

مجتمعٍ يساھم من يسعى مثلنا لتحقيق النفع والفائدة للجميع، ويحلم أن يكون عضواً في
 بتحقيق بيئة خصبة للمواھب والإبداعات والتألق، فھل تحلم بذلك ؟

رأيتھا في إحدى المواضيع حاول أن تساھم بفكرة، بومضة من خواطر تفكيرك العلمي، بفائدة
تأكد بأنك ستلتمس الفائدة في كل . جانب مضيء لمحته خلف ثنايا مفھوم ھندسي ماالعلمية، ب

 ...رى غيرك يخطوھا معك خطوة تخطوھا، وت

، أخي القارئ، نرجو أن يكون ھذا الكتاب مقدمة لمشاركتك في عالمنا العلمي التعاوني
بكل الإمكانيات المتوفرة لديه جاھزاً ww.4electron.com سيكون موقعكم عالم الإلكترونو

، أو طالب في علوم الھندسة قع الذي يبحث عنه كل باحثالبيئة والوا على الدوام لأن يحقق
 . ويسعى فيه للإفادة كل ساعٍ ، فأھلاً وسھلاً بكم

 مع تحيات إدارة الموقع وفريق عمله

www.4electron.com

CSLA .NET Version 2.1 Handbook

ROCKFORD LHOTKA

www.4electron.com

CSLA .NET Version 2.1 Handbook

Copyright © 2007 by Rockford Lhotka

Revision 2

All rights reserved. No part of this work may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the
copyright owner.

Trademarked names may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, we use the names only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

Editor: Teresa Lhotka

Technical reviewer: Brant Estes

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, the author shall
not have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book (CSLA .NET 2.1.3) is available at
http://www.lhotka.net/cslanet.

www.4electron.com

http://www.lhotka.net/cslanet

Acknowledgements
Neither this book, nor CSLA .NET version 2.1,
would have been possible without support from
Magenic Technologies. Magenic is the premier
.NET development company in the US, and is a
Microsoft Gold Certified Partner.

You can reach Magenic at
http://www.magenic.com.

CSLA .NET has attracted a community of very
thoughtful, intelligent and dedicated people.
You can find many of them at
http://forums.lhotka.net.

The bug fixes and feature enhancements
described in this book come, in no small part,
through the encouragement and feedback
provided by this stellar community.
Thank you all!

Special thanks to Andrés Villanueva (Xal), who
provided a great deal of feedback and help with
testing.

And thank you to Chris Russi, who created the
new CSLA .NET logo graphics such as the one
on this page.

www.4electron.com

http://www.magenic.com/
http://forums.lhotka.net/

About the Author
Rockford Lhotka is the author of numerous books, including Expert VB 2005 Business
Objects and Expert C# 2005 Business Objects. He is a Microsoft regional director, a
Microsoft MVP, and an INETA speaker. Rockford speaks at many conferences and user
groups around the world and is a columnist for MSDN Online. Rockford is the principal
technology evangelist for Magenic Technologies, one of the nation’s premiere Microsoft gold
certified partners dedicated to solving today’s most challenging business problems using 100-
percent Microsoft tools and technology.

www.4electron.com

Page i

Contents

CSLA .NET Version 2.1 Handbook.. 1
Introduction.. 8

Before Reading this Book.. 8
Organization of the Book... 8
Breaking Changes from CSLA .NET version 2.0........................... 9

Known Issues with version 2.1.. 10
Summary of Changes and Enhancements 11

Validation Rules... 12
Framework Changes .. 14

Implementing Per-Type Validation Rules .. 14

Changes to BusinessBase .. 15

ValidationRulesManager Class... 15

RulesList Class.. 17

SharedValidationRules Module .. 19

Changes to ValidationRules .. 20

Implementing Dependant Properties .. 25

ValidationRulesManager Class ... 26

RulesList Class.. 26

Changes to ValidationRules .. 27

Implementing Rule Severity ... 29

RuleSeverity Type .. 29

Changes to RuleArgs .. 29

Changes to BrokenRule .. 30

Changes to BrokenRulesCollection .. 31

Changes to ValidationRules .. 33

Changes to BusinessBase .. 34

www.4electron.com

Page ii

Implementing Rule Priority .. 34

Changes to ValidationRules .. 34

Changes to ValidationRulesManager.. 36

Changes to RuleMethod .. 36

Changes to RulesList .. 37

Implementing Short-Circuiting... 37

Changes to ValidationRules .. 38

Changes to RuleArgs .. 39

Implementing Strongly-typed Rule Methods ... 40

Generic RuleHandler Delegate ... 40

IRuleMethod Interface .. 40

Changes to RuleMethod .. 41

Generic RuleMethod Type.. 41

Changes to ValidationRules .. 42

Implementing Rule Retrieval .. 42

Changes to ValidationRules .. 43

Changes to RuleMethod .. 43

Implementing BrokenRulesCollection.ToArray... 44

Using the Enhancements.. 45
Using Per-Type Validation Rules ... 45

Associating Rule Methods with Properties ... 45

Implementing Per-Type Rule Methods... 46

Using Dependant Properties ... 47

Using Rule Severity .. 48

Using Rule Priorities... 49

Using Short-Circuiting.. 50

Short-Circuiting by Priority .. 50

Explicit Short-Circuiting ... 51

Using Strongly-typed Rule Methods .. 52

Defining Strongly-typed Rule Methods .. 52

Adding Strongly-typed Rule Methods to your Objects .. 53

Retrieving Rule Information ... 53

www.4electron.com

Page iii

Retrieving Broken Rules in an Array ... 54

Authorization Rules ... 56
Framework Changes .. 57

Implementing Per-Type Authorization Rules ... 57

Changes to BusinessBase .. 57

Changes to ReadOnlyBase .. 59

Changes to AuthorizationRules .. 59

AuthorizationRulesManager Class ... 61

SharedAuthorizationRules Class .. 62

Implementing IAuthorizeReadWrite .. 63

IAuthorizeReadWrite Interface ... 63

Changes to BusinessBase and ReadOnlyBase .. 64

Changes to the ReadWriteAuthorization Control ... 64

Using the Enhancements.. 65
Using Per-Type Authorization Rules .. 65

Associating Rule Methods with Properties ... 65

Using IAuthorizeReadWrite ... 66

FilteredBindingList.. 67

Framework Changes .. 67
Implementing FilteredBindingList ... 67

FilterProvider Delegate ... 67

DefaultFilter .. 68

FilteredBindingList Class ... 68

Using the Enhancements.. 74
Using FilteredBindingList .. 74

Creating a Custom Filter... 75

Combining FilteredBindingList with SortedBindingList ... 76

EditableRootListBase .. 78

Framework Changes .. 79
Implementing EditableRootListBase .. 79

EditableRootListBase Class .. 79

www.4electron.com

Page iv

Using the Enhancements.. 86
EditableRootListBase Class Template.. 86

Altering the EditableRoot Template ... 87

Using EditableRootListBase... 88

Creating an Editable Root ... 88

Creating a Dynamic Collection ... 90

Interacting with the Dynamic Collection .. 91

Csla.Core Interfaces and Types ... 93

Framework Changes .. 93
Implementing ExtendedBindingList ... 94

RemovingItemEventArgs Class .. 94

ExtendedBindingList Class ... 95

Implementing ISavable ... 97

ISavable Interface ... 97

SavedEventArgs Class .. 97

Changes to BusinessBase and BusinessListBase .. 98

Implementing IParent ... 100

IParent Interface .. 100

Changes to IEditableBusinessObject .. 100

Changes to BusinessBase .. 101

Changes to BusinessListBase.. 101

Implementing IReportTotalRowCount ... 102

IReportTotalRowCount Interface ... 102

Using the Enhancements.. 102
Using ExtendedBindingList.. 102

Using ISavable .. 103

LocalContext.. 105

Framework Changes .. 105
Implementing LocalContext ... 105

Changes to ApplicationContext .. 106

Using the Enhancements.. 107

www.4electron.com

Page v

Using LocalContext .. 108

Using TransactionScope Transactions .. 108

Using Manual Transactions .. 109

Data Portal ... 111

Framework Changes .. 112
Implementing the Data Portal Changes .. 112

Changes to MethodCaller.. 113

Changes to Client\DataPortal.. 117

Changes to Server\DataPortal ... 119

Changes to Server\SimpleDataPortal .. 119

Using the Enhancements.. 121

SmartDate... 123
Framework Changes .. 123

Implementing the Changes ... 123

EmptyValue Type ... 123

Changes to SmartDate... 124

Using the Enhancements.. 126
Using the SmartDate Enhancements... 126

Using the New Constructors ... 127

Using the Default Format String ... 127

Using the ToString() Overload ... 128

CslaDataSource .. 129

Framework Changes .. 129
Implementing Dynamic Schema Refresh ... 130

Changes to CslaDesignerDataSourceView ... 130

Changes to ObjectViewSchema .. 130

TypeLoader Class ... 131

Implementing Paging .. 137

Changes to SelectObjectArgs.. 137

Changes to CslaDataSource .. 139

Changes to CslaDataSourceView ... 139

www.4electron.com

Page vi

Changes to CslaDesignerDataSourceView ... 140

Implementing Sorting ... 141

Providing Sort Information to the SelectObject Event Handler 141

Implementing the CanSort property.. 142

Using the Enhancements.. 142
Using Paging... 142

Implementing a Paged Collection ... 143

Using Paging in a GridView ... 145

Using Sorting .. 145

Sorting in the UI.. 146

Sorting in the Database ... 147

Miscellaneous Changes.. 149

Framework Changes .. 149
Implementing ICancelAddNew in SortedBindingList ... 149

Changes to SortedBindingList .. 150

Changing BusinessListBase.IsDirty ... 151

Changes to BusinessListBase.. 151

Changing BusinessBase.Delete .. 151

Changes to BusinessBase .. 152

Implementing the Initialize Methods .. 152

Changes to Base Classes ... 153

Using the Enhancements.. 154
Overriding BusinessBase.Delete .. 155

Using the Initialize Methods... 155

Defining a PropertyChangingEventArgs Class... 155

Generated Business Class Example .. 155

User Code Business Class Example.. 156

Index... 158

www.4electron.com

Page vii

List of Tables
Table 1. Breaking changes in version 2.1 9
Table 2. Known issue with version 2.1 10
Table 3. Functional enhancements in version 2.1 11
Table 4. New validation concepts in version 2.1 13
Table 5. Possible results of RulesToCheck method 21
Table 6. Rule severity definitions 48
Table 7. Parts of the rule:// URI format 54
Table 8. Changes to Csla.Core. 93
Table 9. Information available through ApplicationContext 105
Table 10. Data portal method calling semantics in version 2.0 111
Table 11. Data portal method calling semantics in version 2.1 112
Table 12. Data portal method calling cross-reference 122
Table 13. Using the new SmartDate constructors 127
Table 14. New paging properties of SelectObjectArgs 138
Table 15. New sorting properties of SelectObjectArg 141
Table 16. List of miscellaneous changes in CSLA .NET 2.1 149

List of Figures

Figure 1. Enabling paging in the GridView control 145

www.4electron.com

Page 8

Introduction

Welcome to the CSLA .NET Version 2.1 Handbook. This book covers the features,
enhancements and changes made to the CSLA .NET framework during the creation of
version 2.1.

Note: In the process of writing this book some changes were made to the
framework. The exact version of the framework that corresponds to this book
is version 2.1.3, which you can download from
http://www.lhotka.net/cslanet/download.aspx.

Before Reading this Book
CSLA .NET version 2.0 is part of the Expert VB 2005 Business Objects and Expert C# 2005
Business Objects books, published by Apress (http://www.apress.com). These books are
ISBN 1590596315 and ISBN 1590596323 respectively.

This Handbook assumes that you have read and are familiar with the content from the
Expert VB 2005 Business Objects or Expert C# 2005 Business Objects book.

Note: CSLA stands for Component-based, Scalable, Logical Architecture

The CSLA .NET framework is licensed according to the license at
http://www.lhotka.net/cslanet/license.aspx.

CSLA .NET version 2.1 is an evolutionary step forward from version 2.0. It includes
some bug fixes and minor enhancements made in versions 2.0.1 through 2.0.3, plus a set of
more substantial changes to the framework.

Organization of the Book
The enhancements made in version 2.1 are fairly wide-ranging, and so they affect many parts
of the framework itself, and enable a number of new capabilities for developers building
applications based on business objects. Some enhancements affect a single class, others affect
many classes. Some framework classes have been changed due to multiple enhancements.

To provide some level of order, this book is organized around feature enhancements. Each
enhancement or change will first be discussed in terms of its impact on CSLA .NET, and then
in terms of how it can be used when building applications.

In each section, you can choose whether to read the details behind the change, or skip
through to the discussion on how to use the enhancement in your application development.

www.4electron.com

http://www.lhotka.net/cslanet/download.aspx
http://www.apress.com/
http://www.lhotka.net/cslanet/license.aspx

Page 9

Breaking Changes from CSLA .NET version 2.0
Where possible, I have attempted to avoid breaking existing code based on version 2.0, but
there are some cases where breaking changes were required. Table 1 lists the breaking
changes and their likely severity.

Summary Severity
The calling semantics for DataPortal.Create<T>() and
DataPortal.Fetch<T>() (with no criteria at all) are different.
They now invoke DataPortal_Create() and
DataPortal_Fetch() (with no criteria parameter)
respectively.

affects everyone

The Overridable/virtual DataPortal_Create() methods
declared in BusinessBase and BusinessListBase have
changed their signature.

affects virtually everyone

Per-type validation rules requires code changes when
moving from 2.0 to 2.1.

affects virtually everyone

Per-type authorization rules may require code changes when
moving from 2.0 to 2.1.

may affect your code

Csla.DataPortalException now includes the original
exception message text in its message text to assist in
debugging.

unlikely to break your code

The Parent property in BusinessBase is now of type
IParent.

unlikely to break your code

The RunLocal attribute is no longer inherited from base class
methods when the methods are overridden by a subclass.

unlikely to break your code

The order in which OnDeserialized() is called has changed. unlikely to break your code

Table 1. Breaking changes in version 2.1

Each of these breaking changes flows from a specific enhancement or change made to the
framework for version 2.1. I will discuss the nature of the breaking change along with the
enhancement later in the book.

www.4electron.com

Page 10

Known Issues with version 2.1
There is one known issue where version 2.1does not function as expected Table 2 identifies
the known issue with version 2.1.

Class Summary
CslaDataSource You can not add a CslaDataSource to a page by choosing to “add a

new data source” from within the GridView or DetailsView controls.
Attempting to do this will result in an exception that prevents the
control from displaying properly. I have been unable to resolve this
issue, but there is a viable workaround.

You must manually add a CslaDataSource control to your page, either
using drag-and-drop from the Toolbox, or by typing the tag into the
page. At this point you can configure the assembly/type information
in the data source control. You can then choose this data source
control as the data source for your GridView or DetailsView control.

Table 2. Known issue with version 2.1

I am continuing to research this issue. As I learn more, I hope to resolve this issue to
provide full integration of the control into the Visual Studio environment.

www.4electron.com

Page 11

Summary of Changes and Enhancements
While CSLA .NET version 2.1 is an evolutionary update from version 2.0, it does include
some substantial changes, which involve parts of the CSLA .NET framework code, and
enable some powerful capabilities for your business development efforts.

At a high level, the changes can be grouped into a set of functional enhancements as listed
in Table 3.

Enhancement Summary
Validation rules Enhancements for performance, reduction of memory usage

and new features and capabilities

Authorization rules Enhancements for performance and reduction of memory
usage

FilteredBindingList A new class that allows you to create a filtered view of any
list or collection

EditableRootListBase A new base class that allows you to create a collection of
editable root objects (objects derived from BusinessBase)

Changes to Csla.Core Various changes and additions to the Csla.Core namespace to
support the other enhancements listed here, and to enable new
scenarios for business and UI developers

LocalContext A new property on ApplicationContext to allow you to more
easily pass global values to all data access code on a server

Data portal Address consistency issues with the data portal that were
introduced in version 2.0.2, and minor enhancements to the
Remoting channel

SmartDate Provide simpler and more explicit syntax for creating
SmartDate objects, and enable more flexible formatting of date
values

CslaDataSource Add support for collections that provide paging and sorting
functionality

Miscellaneous Many minor enhancements and bug fixes to various pre-
existing features

Table 3. Functional enhancements in version 2.1

The rest of this book will address the changes in each of these functional areas.

www.4electron.com

Page 12

Validation Rules
Perhaps the single biggest set of changes in version 2.1 involve validation rules processing.
These changes improve performance, reduce memory consumption and add new capabilities
in terms of how broken validation rules can be expressed.

CSLA .NET 2.0 includes a validation rules processing mechanism where each validation
rule is implemented as a method. The method signature of each of the rule methods is defined
by the Csla.Validation.RuleHandler delegate. The following is an example of a simple rule
method:

Private Function MyRuleMethod(_
ByVal target As Object, ByVal e As RuleArgs) As Boolean

Dim result As Boolean

If <condition is met> Then
result = True

Else
e.Description = "Human readable description"
result = False

End If

Return result

End Function

When a business object is created, an AddBusinessRules() method is called, allowing the
object to associate rule methods with properties. For instance:

Protected Overrides Sub AddBusinessRules()

ValidationRules.AddRule(_
AddressOf MyRuleMethod, "MyProperty")

End Sub

Rules for a property are automatically checked when the PropertyHasChanged() method
is called within a property Set block. You can also explicitly check the rules for a property by
calling ValidationRules.CheckRules(propertyName), or for all properties by calling
ValidationRules.CheckRules().

While this mechanism works very well, it has some drawbacks and limitations which
version 2.1 seeks to address. Table 4 lists the new concepts introduced in version 2.1.

www.4electron.com

Page 13

Concept Description
Per-type rules Rather than maintaining a list of rules methods for each property

in each object instance, you can now maintain a list of rules for
each property at a class, or type, level. This increases
performance and reduces memory usage, because the associations
between rules and properties are stored just once for all object
instances. The concept of per-instance rule methods remains in
the framework, but is no longer the default (or recommended)
approach.

Dependant
properties

In your AddBusinessRules() method, you can now call
ValidationRules.AddDependantProperty() to indicate that one
property depends on another. In practical terms, this means that
when validation rules are checked for one property, the rules for
the dependant property are also checked.

Rule severity Within a rule method, you can now specify the severity of a rule
if it is broken. The severity can be one of Error, Warning or
Information.

Rule priority When associating a rule method with a property, you can now
specify a priority for the rule. When the rules for a property are
checked, they are checked in priority order (starting with priority
0 and counting up).

Short-circuiting Short-circuiting allows you to stop the processing of rules for a
property under certain conditions. The most direct technique is for
the rule method to set e.StopProcessing to True. Also, when
using priority-based rules, you can set a threshold so rules below
a certain priority will only be processed if no previous rule has
been broken.

Strongly-typed rule
methods

Using generics, you can now define a rule method that accepts
strongly typed parameters for target and arguments (e).

Retrieve rules for an
object

You can now retrieve a list of the rules associated with the
properties of an object. This is exposed as a Protected method in
BusinessBase, and it returns an array of String values with this
format:

rule://ruleMethod/propertyName?arg1=x&arg2=y

Retrieve array of
broken rules

The BrokenRulesCollection class now has a ToArray() method
that returns an array of String values containing the human
readable descriptions of all broken rules in the object.

Table 4. New validation concepts in version 2.1

www.4electron.com

Page 14

Implementing these changes required the addition of some new classes to the CSLA .NET
framework, and changes to a number of existing classes. As much as possible, I preserved
backward compatibility with existing, version 2.0, code, but there are some breaking changes
as a result of these enhancements.

Before discussing how to use these enhancements, let’s walk through the changes to the
CSLA .NET framework itself.

Framework Changes
Enhancing the validation rule processing in CSLA .NET involved changing and adding a
number of classes. Here is a list of changed classes or types:

 BusinessBase (from Csla.Core)
 BrokenRule

 BrokenRulesCollection

 CommonRules
 RuleArgs

 RuleHandler

 RuleMethod

 ValidationRules

And here is a list of new classes or types:

 RuleSeverity

 RulesList

 SharedValidationRules
 ValidationRulesManager

As you can see, virtually every class in the Csla.Validation namespace was affected by
these changes. Let’s walk through each functional enhancement and examine the changes
required to implement each. Keep in mind that some of these changes are interrelated, so you
may see some unfamiliar code in some earlier sections. This code will be more fully
explained later.

Implementing Per-Type Validation Rules
Version 2.1 adds the concept of per-type rule methods, while retaining per-instance rule
methods. However, the default behavior is now to use per-type validation rules, which means
that Csla.Core.BusinessBase.AddBusinessRules() is now used to add per-type rules.
Similarly, the ValidationRules.AddRule() method now adds per-type rules, rather than per-
instance rules.

www.4electron.com

Page 15

Changes to BusinessBase

To retain the per-instance rule support, a new method has been added to
Csla.Core.BusinessBase:

Protected Overridable Sub AddInstanceBusinessRules()

End Sub

The constructor has been enhanced to always call the new AddInstanceBusinessRules()
method, but to only call AddBusinessRules() if per-type rules haven’t already been
established:

Protected Sub New()

Initialize()
AddInstanceBusinessRules()
If Not Validation.SharedValidationRules.RulesExistFor(Me.GetType) Then
SyncLock Me.GetType

If Not Validation.SharedValidationRules.RulesExistFor(Me.GetType) Then
AddBusinessRules()

End If
End SyncLock

End If
AddInstanceAuthorizationRules()
If Not Csla.Security.SharedAuthorizationRules.RulesExistFor(Me.GetType) Then
SyncLock Me.GetType

If Not Csla.Security.SharedAuthorizationRules.RulesExistFor(Me.GetType) Then
AddAuthorizationRules()

End If
End SyncLock

End If

End Sub

What this means, in practice, is that AddBusinessRules() is called just one time during the
life of an AppDomain. Once the per-type rules are set up, they are retained by the
SharedValidationRules object for the lifetime of the application.

The SyncLock statement ensures that two threads can’t try to invoke AddBusinessRules()
simultaneously. The odds of this occurring would be very small regardless, but this code
structure ensures that it won’t happen.

ValidationRulesManager Class

Before getting into the details of SharedValidationRules, we need to discuss the new
ValidationRulesManager class. Since business objects may now have two lists of rule
methods (one per-type, the other per-instance), a new type of object was required to manage
these individual lists of rules. This is the purpose behind the ValidationRulesManager class.

ValidationRulesManager is a container for a list of rule methods associated with each of
the business object’s properties. This is implemented using a Dictionary object:

Friend Class ValidationRulesManager

Private mRulesList As _
Generic.Dictionary(Of String, RulesList)

End Class

www.4electron.com

Page 16

Each item in the Dictionary is a RulesList object, which is a list of the rule methods
associated with the specified property. The key value for the Dictionary is the property
name.

This Dictionary object is created on-demand to minimize memory consumption and
overhead. The RulesDictionary property implements this behavior:

Friend ReadOnly Property RulesDictionary() As _
Generic.Dictionary(Of String, RulesList)

Get
If mRulesList Is Nothing Then

mRulesList = New Generic.Dictionary(Of String, RulesList)
End If
Return mRulesList

End Get
End Property

More interesting and complex, is the GetRulesForProperty() method. This method is
responsible for finding and returning the RulesList object containing the rules for a specified
property. However, there are two different scenarios under which this method might be
called: adding rules to the property, or retrieving the rules for the property.

When the first rule is added for a property, a new RulesList object must be created to
maintain the list of rules. On the other hand, when retrieving rules for a property; if there are
no rules then Nothing is returned, and no RulesList object should be created. This behavior
is controlled by the createList parameter:

Friend Function GetRulesForProperty(_
ByVal propertyName As String, _
ByVal createList As Boolean) As RulesList

' get the list (if any) from the dictionary
Dim list As RulesList = Nothing
If RulesDictionary.ContainsKey(propertyName) Then
list = RulesDictionary.Item(propertyName)

End If

If createList AndAlso list Is Nothing Then
' there is no list for this name - create one
list = New RulesList
RulesDictionary.Add(propertyName, list)

End If
Return list

End Function

In either case, an attempt to retrieve any existing RulesList object is made by checking to
see if the Dictionary contains a key corresponding to the property name. If such a list exists,
it is returned. If no such list exists, and if createList is True, then a new RulesList object is
created and added to the Dictionary.

The goal is to avoid creating RulesList objects or Dictionary entries where possible. If
there are no rules for a property, then that property should incur no overhead in terms of
memory consumption or object creation.

Obviously, there must be a way to add rules for a property. While this could be handled by
any code calling ValidationRulesManager, I chose to implement AddRule() methods directly
in ValidationRulesManager to centrally implement the behavior. The first AddRule() method
adds simple rule methods:

www.4electron.com

Page 17

Public Sub AddRule(_
ByVal handler As RuleHandler, ByVal args As RuleArgs, ByVal priority As Integer)

' get the list of rules for the property
Dim list As List(Of IRuleMethod) = _
GetRulesForProperty(args.PropertyName, True).GetList(False)

' we have the list, add our new rule
list.Add(New RuleMethod(handler, args, priority))

End Sub

Notice how GetRulesForProperty() is called, passing True for the createList parameter.

There’s also an overload of AddRule() to handle strongly-typed rule methods:

Public Sub AddRule(Of T, R As RuleArgs)(_
ByVal handler As RuleHandler(Of T, R), ByVal args As R, ByVal priority As Integer)

' get the list of rules for the property
Dim list As List(Of IRuleMethod) = _
GetRulesForProperty(args.PropertyName, True).GetList(False)

' we have the list, add our new rule
list.Add(New RuleMethod(Of T, R)(handler, args, priority))

End Sub

It also turns out that the RulesList object is responsible for maintaining the list of other
properties that are dependant on the current property. There’s a RulesList object for each
property with rules, and that RulesList maintains the names of any other properties whose
rules should be checked any time this property’s rules are checked.

Again, I chose to encapsulate the behavior of associating a dependant property using a
method in the ValidationRulesManager class:

Public Sub AddDependantProperty(_
ByVal propertyName As String, ByVal dependantPropertyName As String)

' get the list of rules for the property
Dim list As List(Of String) = _
GetRulesForProperty(propertyName, True).GetDependancyList(True)

' we have the list, add the dependency
list.Add(dependantPropertyName)

End Sub

Though these AddRule() and AddDependantProperty() methods are scoped as Public,
remember that ValidationRulesManager itself is scoped as Friend. All of this functionality
exists for internal use by CSLA .NET, not directly by business or UI code.

RulesList Class
Each RulesList object exists to manage the list of rule methods and dependant properties for
a given property. To maintain this data, each RulesList object keeps a List of rule methods
and a List of dependant property names. It also maintains a flag indicating whether the list of
rules have yet been sorted by priority:

www.4electron.com

Page 18

Friend Class RulesList

Private mList As New List(Of IRuleMethod)
Private mSorted As Boolean
Private mDependantProperties As List(Of String)

End Class

You’ve already seen how ValidationRulesManager calls an Add()method on RulesList
to add a new rule method to the list of rules for a property. The Add() method not only adds
the item, but also sets mSorted to False, because adding a new item to the list potentially
upsets any pre-existing sort:

Public Sub Add(ByVal item As IRuleMethod)

mList.Add(item)
mSorted = False

End Sub

ValidationRulesManager also includes code that calls a GetList() method to get the list
of rules contained within the RulesList object. This GetList() method is called in two
different scenarios: one is when rules are being added to the list, the other is when the rules
are being invoked by the ValidationRules.CheckRules() method. In this latter case, in order
to implement rule priorities, the rules must be sorted by priority within the list. The
functionality to support sorting will be discussed later in this book. To control whether the
list should be sorted before being returned, the applySort parameter is used:

Public Function GetList(ByVal applySort As Boolean) As List(Of IRuleMethod)

If applySort AndAlso Not mSorted Then
mList.Sort()
mSorted = True

End If
Return mList

End Function

The mSorted field is used to avoid re-sorting the list in the case that it has already been
sorted. In normal usage, all rules are added when an object is first created, and then the
CheckRules() method is called numerous times after that point. The mSorted field is an
optimization to ensure that the contents of the list are only sorted when needed.

ValidationRulesManager calls a GetDependancyList() method, which returns the List of
property names that are dependant on this property. This List object is created on-demand by
the GetDependancyList() method:

Public Function GetDependancyList(ByVal create As Boolean) As List(Of String)

If mDependantProperties Is Nothing AndAlso create Then
mDependantProperties = New List(Of String)

End If
Return mDependantProperties

End Function

ValidationRulesManager, combined with RulesList, provide a powerful storage
mechanism for the rule methods and dependant properties associated with each property in a

www.4electron.com

Page 19

business object. A normal business object will have a per-type ValidationRulesManager
object, and some objects may have a per-instance ValidationRulesManager object instead of,
or in addition to, the per-type object.

SharedValidationRules Module
The SharedValidationRules type exists to maintain the per-type ValidationRulesManager
objects for all business objects in the application. The word “shared” is used in the type
name, because per-type rules are shared across all instances of a given type of business
object.

The ValidationRulesManager objects are maintained in a Dictionary, keyed by the type
of each business object in the application:

Friend Module SharedValidationRules

Private mManagers As New Dictionary(Of Type, ValidationRulesManager)

End Module

The BusinessBase class uses SharedValidationRules to retrieve and manage the list of
rule methods and dependant properties for each type of business object. The
SharedValidationRules module implements a GetManager() method to allow retrieval of the
appropriate ValidationRulesManager object for a specific business object type:

Friend Function GetManager(_
ByVal objectType As Type, ByVal create As Boolean) As ValidationRulesManager

Dim result As ValidationRulesManager = Nothing
If Not mManagers.TryGetValue(objectType, result) AndAlso create Then
SyncLock mManagers

result = New ValidationRulesManager
mManagers.Add(objectType, result)

End SyncLock
End If
Return result

End Function

As with the previous classes, you can see that the ValidationRulesManager for a business
object type is only created on-demand. The create parameter is used by BusinessBase to
differentiate between calls to GetManager() for the purpose of adding new rules (in which
case create is True); and retrieving rules for the CheckRules() implementation (in which
case create is False).

BusinessBase also calls a RulesExistFor() method to determine whether per-type rules
do exist for the business object type. This method simply calls the ContainsKey() method of
the Dictionary object to determine if a ValidationRulesManager exists for the specified
type.

Notice the use of the SyncLock statement in the GetManager() method. Because this
method is Shared (due to being in a Module), it should be made threadsafe. In the case that
multiple threads call GetManager() at the same time, SyncLock will ensure that only one
thread at a time will execute the critical code in the method.

www.4electron.com

Page 20

Changes to ValidationRules

The ValidationRulesManager and RulesList classes provide the basis for managing both
per-type and per-instance rules. The SharedValidationRules module uses
ValidationRulesManager to maintain the per-type rules. The per-instance rules, however, are
still managed directly by the ValidationRules class, and so it has been changed to support
the new per-instance model, as well as the per-type model.

To begin with, the declaration of the field to hold the per-instance rules is changed:

' reference to per-instance rules manager for this object
<NonSerialized()> _
Private mInstanceRules As ValidationRulesManager
' reference to per-type rules manager for this object
<NonSerialized()> _
Private mTypeRules As ValidationRulesManager
' reference to the active set of rules for this object
<NonSerialized()> _
Private mRulesToCheck As ValidationRulesManager

The mRulesList field is redefined as mInstanceRules, which is now of type
ValidationRulesManager.

Additionally, the mTypeRules field is used to maintain a direct reference to the per-type
ValidationRulesManager for this business object. Technically this isn’t necessary, because
you can always call SharedValidationRules.GetManager() to get the rules for a type, but
there’s some overhead to that call. Storing the reference in an instance field is a minor
optimization of the process.

Finally, the mRulesToCheck field maintains a reference to the active set of rules used by
the CheckRules() method. This is required because I chose to keep the per-instance rules
concept while adding the per-type support. A business developer might choose to only use
per-type rules, or only per-instance rules. Or they might choose to use some of each, within
the same object.

Notice that these fields are marked with the NonSerialized attribute. This ensures that
their contents won’t be serialized if the business object is converted to a byte stream; to be
moved across the network, for instance.

It is less expensive to recreate the property-rule associations for per-instance rules than it
is to serialize and deserialize all this information.

Because the rule associations for per-type rules exsist at the AppDomain level, it makes
no sense to serialize those associations as part of the object’s state.

RulesToCheck Method
To optimize retrieval of the correct set of validation rules, the RulesToCheck() method
evaluates the environment and returns the appropriate ValidationRulesManager, depending
on what types of rules have been defined for the business object:

Private ReadOnly Property RulesToCheck() As ValidationRulesManager
Get
If mRulesToCheck Is Nothing Then

Dim instanceRules As ValidationRulesManager = GetInstanceRules(False)
Dim typeRules As ValidationRulesManager = GetTypeRules(False)
If instanceRules Is Nothing Then
If typeRules Is Nothing Then

www.4electron.com

Page 21

mRulesToCheck = Nothing

Else
mRulesToCheck = typeRules

End If

ElseIf typeRules Is Nothing Then
mRulesToCheck = instanceRules

Else
' both have values - consolidate into instance rules
mRulesToCheck = instanceRules
For Each de As Generic.KeyValuePair(Of String, RulesList) In _

typeRules.RulesDictionary
Dim instanceList As List(Of IRuleMethod) = _

mRulesToCheck.GetRulesForProperty(de.Key, True).GetList(False)
instanceList.AddRange(de.Value.GetList(False))

Next
End If

End If
Return mRulesToCheck

End Get
End Property

The mRulesToCheck field is used as a cache to avoid the overhead of performing this
evaluation more than once. If mRulesToCheck is Nothing, then the evaluation occurs.
Otherwise, the pre-existing value is returned.

To determine which rules need checking, the method first retrieves the
ValidationRulesManager objects for both per-type and per-instance rules. Notice that in both
cases the parameter value is False, indicating that no ValidationRulesManager object should
be created due to this operation. In other words, if no rules exist for this object, the result is
Nothing.

Then the resulting values are evaluated. Table 5 lists the possible outcomes.

Per-type Rules Per-instance Rules Result
Nothing Nothing Nothing

Contains rules Nothing Per-type rules

Nothing Contains rules Per-instance rules

Contains rules Contains rules Consolidated list of per-
type and per-instance rules

Table 5. Possible results of RulesToCheck method

The only complex part of the process occurs when both per-type and per-instance rules
exist. In this case, the two lists must be merged into one, primarily to support the concepts of
rule priority and short-circuiting, which I’ll discuss later. As you can imagine, to get priority-
sorted rules, all the rules for a property must be in a consolidated list; regardless of whether
the association is per-type or per-instance.

Note: Due to the overhead involved in merging per-type and per-instance
rules into a consolidated list, I recommend you avoid using both per-type and
per-instance rules if at all possible.

www.4electron.com

Page 22

To avoid creating extra objects, the existing per-instance ValidationRulesManager object
becomes the repository for all the object’s validation rules. The rule methods from the per-
type ValidationRulesManager are merged into the per-instance object:

' both have values - consolidate into instance rules
mRulesToCheck = instanceRules
For Each de As Generic.KeyValuePair(Of String, RulesList) In _

typeRules.RulesDictionary
Dim instanceList As List(Of IRuleMethod) = _

mRulesToCheck.GetRulesForProperty(de.Key, True).GetList(False)
instanceList.AddRange(de.Value.GetList(False))

Next

To do this, the code loops through each entry in the per-type object’s Dictionary, copying
the rule method objects from the per-type object into the corresponding per-instance object.
The end result is that the per-instance ValidationRulesManager contains all the rules for the
object.

Getting Instance and Type Rules
The RulesToCheck() method makes use of a couple helper methods implemented in
ValidationRules: GetInstanceRules() and GetTypeRules():

Private Function GetInstanceRules(_
ByVal createObject As Boolean) As ValidationRulesManager

If mInstanceRules Is Nothing Then
If createObject Then

mInstanceRules = New ValidationRulesManager
End If

End If
Return mInstanceRules

End Function

Private Function GetTypeRules(_
ByVal createObject As Boolean) As ValidationRulesManager

If mTypeRules Is Nothing Then
mTypeRules = SharedValidationRules.GetManager(mTarget.GetType, createObject)

End If
Return mTypeRules

End Function

Again, the creation of the ValidationRulesManager objects are controlled by a parameter,
and the objects are only created on-demand.

Adding Per-Instance Validation Rules
Per-type rules are now the default, and so ValidationRules.AddRule() now adds a per-type
rule. This means that the pre-existing AddRule() methods had to be renamed. They are now
named AddInstanceRule().

The behavior of AddInstanceRule() is the same as the AddRule() methods from version
2.0. The result is that a business developer who wants to use per-instance rules must override
the AddInstanceBusinessRules() method.

www.4electron.com

Page 23

Note: I recommend avoiding per-instance rules if possible. Per-type rules
provide performance and memory consumption benefits, and should be the
preferred solution.

In AddInstanceBusinessRules(), they must call AddInstanceRule() methods to associate
rule methods with properties:

Protected Overrides Sub AddInstanceBusinessRules()

ValidationRules.AddInstanceRule(_
AddressOf MyRuleMethod, "MyPropertyName")

End Sub

This is the exact same behavior as in version 2.0, but the methods have been renamed.

Adding Per-Type Validation Rules
The AddBusinessRules() method is now used to add per-type rules. This method is not
called on each object creation, but is typically only called on the first object created.
Remember that all rules associated with properties in this method are shared across all
instances of the business object type.

Within AddBusinessRules(), the business developer calls the AddRule() method to
associate rule methods with individual properties:

Protected Overrides Sub AddBusinessRules()

ValidationRules.AddRule(_
AddressOf MyRuleMethod, "MyPropertyName")

End Sub

There are some extra restrictions on per-type rule methods. Remember that they are
shared across all instances of the business object type, and so they can not be instance
methods of your business object. They can be Shared methods in any class, methods in a
Module or even instance methods of some other object.

Though you can’t verify the rule methods at compile time, it is possible to verify them at
runtime. The ValidateHandler() method performs a check to ensure that the rule method is
not an instance method of the business object type:

Private Function ValidateHandler(_
ByVal method As System.Reflection.MethodInfo) As Boolean

If Not method.IsStatic AndAlso method.DeclaringType.Equals(mTarget.GetType) Then
Throw New InvalidOperationException(_

String.Format("{0}: {1}", _
My.Resources.InvalidRuleMethodException, method.Name))

End If
Return True

End Function

Other overloads of ValidateHandler() exist, though they all delegate to this one. For
instance, here’s a simple overload:

www.4electron.com

Page 24

Private Function ValidateHandler(ByVal handler As RuleHandler) As Boolean

Return ValidateHandler(handler.Method)

End Function

Using this method, the AddRule() methods can then ensure that only valid rule methods
are associated with the object’s properties. There are several AddRule() overloads; the
following is the most frequently used implementation:

Public Sub AddRule(_
ByVal handler As RuleHandler, ByVal propertyName As String)

ValidateHandler(handler)
GetTypeRules(True).AddRule(handler, New RuleArgs(propertyName), 0)

End Sub

Once the rule method has been validated, the ValidationRulesManager object containing
the per-type rules for this business object type is retrieved (and created if necessary). The rule
method is then added to that ValidationRulesManager to establish the association between
the rule method and the business object’s property.

Checking Validation Rules
The trigger for running the validation rule methods is the same in version 2.1 as it was in
version 2.0: the business object calls ValidationRules.CheckRules(), or
PropertyHasChanged(). Within the framework, however, the process of invoking the rule
methods is changed to accommodate per-type rules, as well as rule priority and short-
circuiting. As I discuss the changes to the CheckRules() methods in this section, changes due
to the other features will be discussed later.

The CheckRules() method has two Public overloads:

 CheckRules(String)
checks rules for a single property

 CheckRules()
checks rules for all properties

Either way, there is a List of validation rule method delegates that must be invoked on a
per-property basis. At the most basic level, a Private overload of CheckRules() implements
this behavior. Since that method’s code is primarily concerned with rule priorities and short-
circuiting, I will discuss the details later.

There are also two Private overloads of CheckRules(), which are used to organize the
code in a reusable manner. These overloads are:

 CheckRules(ValidationRulesManager, String)
used to implement dependant properties

 CheckRules(List(Of IRuleMethod))
used to implement rule priorities and short-circuiting

The Public overload of CheckRules() that executes rules for a single property contains
code that is primarily focused on implementing property dependant properties. It is important

www.4electron.com

Page 25

to note, however, that it calls the RulesToCheck() method I discussed earlier in order to get
the correct ValidationRulesManager for the object:

' get the rules dictionary
Dim rules As ValidationRulesManager = RulesToCheck

If this object is not Nothing, then the list of rule methods for the specific property is
retrieved:

' get the rules list for this property
Dim rulesList As RulesList = rules.GetRulesForProperty(propertyName, False)

The rule methods contained in this RulesList object correspond to the specified property,
and it is the rules from this list that are passed to the non-Public overload of CheckRules() to
be executed.

The Public overload of CheckRules() that runs the rules for all properties is
comparatively simple, since it can delegate the hard work:

Public Sub CheckRules()

Dim rules As ValidationRulesManager = RulesToCheck
If rules IsNot Nothing Then
For Each de As Generic.KeyValuePair(Of String, RulesList) In _

rules.RulesDictionary
CheckRules(de.Value.GetList(True))

Next
End If

End Sub

Again, the RulesToCheck() method is used to retrieve the appropriate
ValidationRulesManager object that contains the rules for this business object. If the result is
not Nothing, the code loops through the items in the Dictionary contained by the
ValidationRulesManager object. Each entry is a RulesList object that contains the rules for
a property. A Private overload of CheckRules() is called on each RulesList object to
invoke those rules, using rule priorities and short-circuiting.

At this point, you have seen the changes to BusinessBase and ValidationRules necessary
to implement per-type validation rules. These two classes make use of the new
SharedValidationRules, ValidationRulesManager and RulesList classes to provide support
for both the new per-type and the older per-instance behaviors.

Implementing Dependant Properties
Support for dependant properties is a new feature of version 2.1. Many business objects have
business rules that span multiple properties of the object, where a change to one property’s
value can cause another property’s business rules to be invalid. Obviously, detecting that
some other property’s rules have become invalid requires running the rule methods of that
other property. The dependant property support in version 2.1 addresses this need.

A business developer can add code to the AddBusinessRules() method to define
dependant properties. A list of dependant properties is maintained for each property on the
object, and when CheckRules() is called for a specific property, the rules for any dependant

www.4electron.com

Page 26

properties related to that property are invoked after that specific property’s rules have been
executed.

ValidationRulesManager Class
You’ve already seen most of the code in the new ValidationRulesManager class. This class
implements a method to encapsulate the process of associating a dependant property with a
business object property:

Public Sub AddDependantProperty(_
ByVal propertyName As String, ByVal dependantPropertyName As String)

' get the list of rules for the property
Dim list As List(Of String) = _
GetRulesForProperty(propertyName, True).GetDependancyList(True)

' we have the list, add the dependency
list.Add(dependantPropertyName)

End Sub

This method first gets the RulesList object corresponding to the specified property. It
then gets the list of dependant properties contained within that RulesList object, and adds
the new property name to the list.

As with adding a new rule method, when adding a dependant property, the code creates an
instance of a RulesList object if it doesn’t already exist.

While the ValidationRules class could include the code to get the right RulesList object,
retrieve the dependency list and add the item, this method simplifies and encapsulates that
process, keeping the code in ValidationRules simpler and easier to maintain.

RulesList Class

Each property that has rules or dependencies will have a corresponding RulesList object. It
is the job of this RulesList object to maintain the list of rule methods, and the list of
dependant properties. You’ve already seen the declaration for the mDependantProperties
field, which is a simple List(Of String).

The GetDepedencyList() method is used by ValidationRulesManager to retrieve this list.
As with most of the other objects in Csla.Validation, this list object is only created on-
demand:

Public Function GetDependancyList(ByVal create As Boolean) As List(Of String)

If mDependantProperties Is Nothing AndAlso create Then
mDependantProperties = New List(Of String)

End If
Return mDependantProperties

End Function

The create parameter is used to control whether an instance of the List(Of String)
should be created. The object is only created when a new dependency is being added, and not
in the case that dependencies are being used by the ValidationRules.CheckRules()
implementation.

www.4electron.com

Page 27

Changes to ValidationRules

The bulk of the changes to support dependant properties are in ValidationRules. This class
now contains a Public method used by the business developer to add dependant properties,
as well as substantial changes to the CheckRules() method to invoke the rule methods for any
dependant properties.

Adding Dependant Properties
The AddDependantProperty() method is called from within the business object’s

AddBusinessRules() method to add a dependant property. For example:

Protected Overrides Sub AddBusinessRules()

ValidationRules.AddDependantProperty(_
"PropertyName", "DependantPropertyName")

End Sub

This indicates that when the validation rules for PropertyName are checked, the validation
rules for DependantPropertyName should also be checked. A property can have any number
of dependant properties. Additionally, two properties may be dependant on each other.

Here’s the AddDependantProperty() method itself:

Public Sub AddDependantProperty(_
ByVal propertyName As String, ByVal dependantPropertyName As String)

GetTypeRules(True).AddDependantProperty(propertyName, dependantPropertyName)

End Sub

It first gets the per-type ValidationRulesManager object for the current business object
type, creating it if it doesn’t exist. Then the AddDependantProperty() method is called to add
the property name to the appropriate RulesList object.

Note: Dependant properties are stored at a per-type level only. There is no
provision for setting up dependencies at a per-instance level.

Checking Validation Rules
When CheckRules() is called to check the rules for all properties of the object, there’s no
need to worry about dependant properties. They are all getting checked anyway. But when
CheckRules() is called to check the rules of a specific property, any dependant property’s
rules must also be checked.

The per-property CheckRules() implementation looks like this (with the dependency-
related lines highlighted):

Public Sub CheckRules(ByVal propertyName As String)

' get the rules dictionary
Dim rules As ValidationRulesManager = RulesToCheck
If rules IsNot Nothing Then
' get the rules list for this property
Dim rulesList As RulesList = rules.GetRulesForProperty(propertyName, False)
If rulesList IsNot Nothing Then

www.4electron.com

Page 28

' get the actual list of rules (sorted by priority)
Dim list As List(Of IRuleMethod) = rulesList.GetList(True)
If list IsNot Nothing Then
CheckRules(list)

End If
Dim dependancies As List(Of String) = rulesList.GetDependancyList(False)
If dependancies IsNot Nothing Then
For i As Integer = 0 To dependancies.Count - 1

Dim dependantProperty As String = dependancies(i)
CheckRules(rules, dependantProperty)

Next
End If

End If
End If

End Sub

The GetList() method of RulesList is called to retrieve the list of rule methods for the
specified property. If that list is not Nothing, the rules are invoked by calling a Private
overload of CheckRules(). That Private overload contains code to implement rule priorities
and short-circuiting, and I’ll discuss it later. For now it is enough to know that the rules in the
list are invoked.

Then the list of dependant property names is retrieved from the RulesList object. Notice
that the parameter value False is passed to GetDependancyList(), so no objects are created.
If they don’t exist, Nothing will be returned.

A For...Each loop is then used to go through the list of dependant property names,
calling a Private overload of CheckRules() to execute each property’s rules. On the surface
it seems that you could just do a recursive call to CheckRules(String), but it is important to
remember that properties can be dependant on each other. Such a recursive call could result
in an infinite loop and, eventually, a stack overflow exception.

The Private overload of CheckRules() executes the rules for the dependant property. The
previous code has already gone through the work of retrieving the ValidationRulesManager
for the current business object, so that is passed in as a parameter to optimize the process:

Private Sub CheckRules(_
ByVal rules As ValidationRulesManager, ByVal propertyName As String)

' get the rules list for this property
Dim rulesList As RulesList = rules.GetRulesForProperty(propertyName, False)
If rulesList IsNot Nothing Then
' get the actual list of rules (sorted by priority)
Dim list As List(Of IRuleMethod) = rulesList.GetList(True)
If list IsNot Nothing Then

CheckRules(list)
End If

End If

End Sub

Using the provided ValidationRulesManager object, this method retrieves the RulesList
object for the dependant property, and then gets the list of rule methods from that RulesList
object. Assuming these objects are not Nothing, the Private overload of CheckRules() is
called to execute this property’s rules using rule priorities and short-circuiting.

Notice that this method is not recursive. Property dependency goes just one level deep, so
a property that is dependant on another property that is in turn dependant on another property

www.4electron.com

Page 29

will not trigger the rules to be invoked for all three properties. Only the original property and
its immediate dependant property’s validation rules will be checked.

At this point, you can see how a business developer uses
ValidationRules.AddDependantProperty() to set up property dependencies. Those
dependencies are stored in a RulesList object, and are used by
ValidationRules.CheckRules() when the rules are checked for a specific property.

Implementing Rule Severity
The next enhancement to validation rules processing is the addition of rule severities. In
version 2.0, all rules had the same severity, but many applications have the need for different
levels of severity. For instance, some rules may require user notification, but shouldn’t stop
an object from being saved (Information or Warning severities), while other rules should
stop the object from being saved (Error severity).

RuleSeverity Type
The severity levels supported by CSLA .NET version 2.1 are defined by the RuleSeverity
type:

Public Enum RuleSeverity
[Error]
Warning
Information

End Enum

This type is used in the implementation of rule severities.

Changes to RuleArgs
Each rule method can set the severity of the rule as part of its processing. This is important,
because some rules might have different levels of “being invalid” based on different
conditions. By allowing the rule method itself to indicate the severity of the result, you have a
lot of flexibility in how severities are used.

A rule method is always passed a parameter derived from the RuleArgs type. In version
2.1, RuleArgs now includes a Severity property, and corresponding instance field:

Public Class RuleArgs

' ...

Private mSeverity As RuleSeverity = RuleSeverity.Error

' ...

Public Property Severity() As RuleSeverity
Get
Return mSeverity

End Get
Set(ByVal value As RuleSeverity)
mSeverity = value

End Set
End Property

' ...

End Class

www.4electron.com

Page 30

The default severity is Error, to match the behavior of version 2.0. Within a rule method,
the business developer can set the Severity property if another severity is required. For
instance:

Private Function MyRuleMethod(_
ByVal target As Object, ByVal e As RuleArgs) As Boolean

If <condition is met> Then
Return True

Else
e.Description = "Human readable description"
e.Severity = RuleSeverity.Warning
Return False

End If
End Function

This Severity property value is used by the ValidationRules, BrokenRule and
BrokenRulesCollection classes to record, store and retrieve broken rules by severity.

Changes to BrokenRule

If a rule is broken, ValidationRules.CheckRules() adds it to the BrokenRulesCollection,
with the rule’s details contained in a BrokenRule object. This is true regardless of the rule’s
severity, but the severity is maintained as part of the information about the broken rule.

The BrokenRule class has a field to store the severity value, and a property so other code
can examine the value:

<Serializable()> _
Public Class BrokenRule

Private mRuleName As String
Private mDescription As String
Private mProperty As String
Private mSeverity As RuleSeverity

' ...

Public ReadOnly Property Severity() As RuleSeverity
Get
Return mSeverity

End Get
End Property

End Class

The constructor also includes code to deal with the value:

Friend Sub New(ByVal rule As IRuleMethod)
mRuleName = rule.RuleName
mDescription = rule.RuleArgs.Description
mProperty = rule.RuleArgs.PropertyName
mSeverity = rule.RuleArgs.Severity

End Sub

With BrokenRule storing the severity value, BrokenRulesCollection can provide some
useful behaviors to filter out various types of broken rule.

www.4electron.com

Page 31

Changes to BrokenRulesCollection

The BrokenRulesCollection contains a list of BrokenRule objects, each one corresponding to
a rule method that has returned False, along with a human readable description and a severity
value. This class has been enhanced to provide some filtering capabilities, so it is possible to
retrieve all broken rules, or only those of a specific severity.

Perhaps the biggest change, however, is in how BrokenRulesCollection interacts with the
IsValid property from ValidationRules. The new Information and Warning severities don’t
cause an object to be invalid. That is reserved for Error severity only. So where
ValidationRules.IsValid used to just check to see if any rules were broken, it now must
check to see if any Error severity rules are broken.

Severity Counters
To efficiently support this concept, BrokenRulesCollection maintains a counter of the

number of broken rules in each severity:

<Serializable()> _
Public Class BrokenRulesCollection

Inherits Core.ReadOnlyBindingList(Of BrokenRule)

Private mErrorCount As Integer
Private mWarningCount As Integer
Private mInfoCount As Integer

' ...

Public ReadOnly Property ErrorCount() As Integer
Get
Return mErrorCount

End Get
End Property

Public ReadOnly Property WarningCount() As Integer
Get
Return mWarningCount

End Get
End Property

Public ReadOnly Property InformationCount() As Integer
Get
Return mInfoCount

End Get
End Property

' ...

End Class

As rules are added and removed from the collection, the values are incremented and
decremented accordingly. In the Add()method the value is incremented:

www.4electron.com

Page 32

Friend Overloads Sub Add(ByVal rule As IRuleMethod)

Remove(rule)

IsReadOnly = False
Dim item As New BrokenRule(rule)
IncrementCount(item)
Add(item)
IsReadOnly = True

End Sub

The IncrementCount() helper method takes care of the details:

Private Sub IncrementCount(ByVal item As BrokenRule)

Select Case item.Severity
Case RuleSeverity.Error

mErrorCount += 1
Case RuleSeverity.Warning

mWarningCount += 1
Case Else

mInfoCount += 1
End Select

End Sub

Similarly, the Remove() method calls a DecrementCount() helper method:

Private Sub DecrementCount(ByVal item As BrokenRule)

Select Case item.Severity
Case RuleSeverity.Error

mErrorCount -= 1
Case RuleSeverity.Warning

mWarningCount -= 1
Case Else

mInfoCount -= 1
End Select

End Sub

The end result is that the three counts are kept up to date as broken rules are added and
removed from the collection. This allows the count values to be returned quickly. The values
are totaled, without the need to scan through the collection each time the count is required.

Retrieving Rules
The collection implements a GetFirstBrokenRule() method, which is intended to return the
first broken rule for a specified property. In version 2.1, this method is altered to only look at
Error severity rules to preserve backward compatibility with version 2.0:

Public Function GetFirstBrokenRule(ByVal [property] As String) As BrokenRule

Return GetFirstMessage([property], RuleSeverity.Error)

End Function

www.4electron.com

Page 33

Notice that this method makes use of a new method: GetFirstMessage(). This new
method is Public, and allows any calling code to retrieve the human-readable description for
the first broken rule of any severity:

Public Function GetFirstMessage(ByVal [property] As String) As BrokenRule

For Each item As BrokenRule In Me
If item.Property = [property] Then

Return item
End If

Next
Return Nothing

End Function

Public Function GetFirstMessage(_
ByVal [property] As String, ByVal severity As RuleSeverity) As BrokenRule

For Each item As BrokenRule In Me
If item.Property = [property] AndAlso item.Severity = severity Then

Return item
End If

Next
Return Nothing

End Function

There are two overloads of this method; one allows the caller to retrieve the first message
regardless of severity, the other filters the result to match a specific severity.

There is also a new overload of the ToString() method, which filters the results based on
severity:

Public Overloads Function ToString(ByVal severity As RuleSeverity) As String

Dim result As New System.Text.StringBuilder()
Dim item As BrokenRule
Dim first As Boolean = True

For Each item In Me
If item.Severity = severity Then

If first Then
first = False

Else
result.Append(Environment.NewLine)

End If
result.Append(item.Description)

End If
Next
Return result.ToString

End Function

The pre-existing ToString()method is unchanged, returning all rule descriptions
regardless of severity.

Changes to ValidationRules
The ValidationRules class implements an IsValid property. As I discussed earlier, the way
BrokenRulesCollection expresses validity has changed, and the IsValid implementation
was changed accordingly:

www.4electron.com

Page 34

Friend ReadOnly Property IsValid() As Boolean
Get
Return BrokenRulesList.ErrorCount = 0

End Get
End Property

Rather than relying on the Count property as was done in version 2.0, IsValid now checks
the ErrorCount property, thus ignoring any Information or Warning severity rules.

Changes to BusinessBase
Finally, BusinessBase implements the System.ComponentModel.IDataErrorInfo interface,
which defines an Error property. This property has been modified to call the
BrokenRulesCollection.ToString() overload so only Error severity broken rules are
returned:

Private ReadOnly Property [Error]() As String _
Implements System.ComponentModel.IDataErrorInfo.Error
Get
If Not IsValid Then

Return ValidationRules.GetBrokenRules.ToString(Validation.RuleSeverity.Error)

Else
Return ""

End If
End Get

End Property

You should now understand how a rule method can set the severity of a broken rule, and
how that severity is recorded in the corresponding BrokenRule object. You’ve seen how the
BrokenRulesCollection exposes filtered views of the broken rules, and how the IsValid
functionality has been enhanced so only Error severity rules make an object invalid.

Implementing Rule Priority
In version 2.1, rules may be assigned a priority, which is 0 or greater. Rule methods are
invoked in priority order, starting with 0 and climbing to successively higher values. In other
words, the higher the number, the later the rule will be executed. Within a priority, the order
in which rules are invoked is non-deterministic. What this means, is that you can’t control the
order in which priority 0 rules are invoked, but if you set a rule to priority 1 you know it will
be invoked after all priority 0 rules are complete.

The rule priority feature is designed primarily to support the concept of short-circuiting,
which is discussed later. By invoking rules in priority order, the framework provides business
developers with the ability to ensure that some rules are invoked before others.

Changes to ValidationRules
The priority of a rule is set when the rule is associated with a property through the
AddInstanceRule() or AddRule() methods. To support this concept, these methods have
overloads that accept the priority value. For example:

www.4electron.com

Page 35

Public Sub AddInstanceRule(_
ByVal handler As RuleHandler, ByVal propertyName As String, _
ByVal priority As Integer)

GetInstanceRules(True).AddRule(handler, New RuleArgs(propertyName), priority)

End Sub

And

Public Sub AddRule(_
ByVal handler As RuleHandler, ByVal propertyName As String, _
ByVal priority As Integer)

ValidateHandler(handler)
GetTypeRules(True).AddRule(handler, New RuleArgs(propertyName), priority)

End Sub

There are numerous overloads of each method, and I’m not going to list them all here. The
important thing to recognize is that each of these overloads calls the AddRule() method in the
appropriate ValidationRulesManager object. That priority value is stored along with each
rule method in the ValidationRulesManager object.

Later, in the CheckRules() method, this priority value is used to ensure that the rule
methods are returned in a sorted order. This is triggered by the highlighted line of code
shown here:

Public Sub CheckRules(ByVal propertyName As String)

' get the rules dictionary
Dim rules As ValidationRulesManager = RulesToCheck
If rules IsNot Nothing Then
' get the rules list for this property
Dim rulesList As RulesList = rules.GetRulesForProperty(propertyName, False)
If rulesList IsNot Nothing Then

' get the actual list of rules (sorted by priority)
Dim list As List(Of IRuleMethod) = rulesList.GetList(True)
If list IsNot Nothing Then
CheckRules(list)

End If
Dim dependancies As List(Of String) = rulesList.GetDependancyList(False)
If dependancies IsNot Nothing Then
For i As Integer = 0 To dependancies.Count - 1

Dim dependantProperty As String = dependancies(i)
CheckRules(rules, dependantProperty)

Next
End If

End If
End If

End Sub

As you can see, it is the GetList() method from the RulesList class that actually
performs the sort operation.

www.4electron.com

Page 36

Changes to ValidationRulesManager

The ValidationRulesManager class implements AddRule() methods that are called from
ValidationRules. There are two overloads for this method, and both accept a priority
parameter:

Public Sub AddRule(ByVal handler As RuleHandler, ByVal args As RuleArgs, _
ByVal priority As Integer)

' get the list of rules for the property
Dim list As List(Of IRuleMethod) = _
GetRulesForProperty(args.PropertyName, True).GetList(False)

' we have the list, add our new rule
list.Add(New RuleMethod(handler, args, priority))

End Sub

Public Sub AddRule(Of T, R As RuleArgs)(_
ByVal handler As RuleHandler(Of T, R), ByVal args As R, ByVal priority As Integer)

' get the list of rules for the property
Dim list As List(Of IRuleMethod) = _
GetRulesForProperty(args.PropertyName, True).GetList(False)

' we have the list, add our new rule
list.Add(New RuleMethod(Of T, R)(handler, args, priority))

End Sub

The priority parameter value is used during the construction of the RuleMethod object
that contains details about the rule. The RulesList class contains the code to sort the rules
based on this value.

Changes to RuleMethod
In the RuleMethod class, the priority value is maintained in a field, and exposed through a
property.

Private mPriority As Integer

Public ReadOnly Property Priority() As Integer Implements IRuleMethod.Priority
Get
Return mPriority

End Get
End Property

RuleMethod also implements the IComparable interface, and the priority value is used in
the implementation of the CompareTo() methods:

Private Function CompareTo(ByVal obj As Object) As Integer _
Implements System.IComparable.CompareTo

Return Priority.CompareTo(CType(obj, IRuleMethod).Priority)

End Function

Private Function CompareTo1(ByVal other As IRuleMethod) As Integer _
Implements System.IComparable(Of IRuleMethod).CompareTo

Return Priority.CompareTo(other.Priority)

End Function

www.4electron.com

Page 37

By implementing CompareTo() based on the priority value, the built-in capability of .NET
to sort a list can be used by RulesList to sort the objects by priority.

The same implementation exists in RuleMethod(Of T, R).

Changes to RulesList
The RulesList object contains the list of rules to be evaluated by the
ValidationRules.CheckRules() method. Earlier you saw how the CheckRules() method
calls a GetList() method to get the sorted list of rules to invoke. The GetList() method
implements the sorting:

Public Function GetList(ByVal applySort As Boolean) As List(Of IRuleMethod)

If applySort AndAlso Not mSorted Then
SyncLock mList

If applySort AndAlso Not mSorted Then
mList.Sort()
mSorted = True

End If
End SyncLock

End If
Return mList

End Function

The GetList() method is called not only by CheckRules(), but also when new rules are
being added to the list. Since sorting is an expensive operation, a parameter is used to control
whether sorting should occur when GetList() is called. As rules are added, no sorting is
requested, but when CheckRules() calls this method, it indicates that it wants a sorted result.

Notice that mList, which is a List(Of IRuleMethod), is directly sorted by calling the
Sort() method. This is possible because the RuleMethod classes implement IComparable, and
use the priority value to implement the CompareTo() methods.

As an optimization, the code keeps track of whether the list has been sorted by using a
Boolean field. Any time items are added to the list, this field is set to False, and after the sort
is complete it is set to True. The result is that, with normal usage, the list of rules is only
sorted one time.The pre-sorted result is returned on all subsequent calls.

At this point, you should understand that a business developer can choose to specify a
priority for each rule when calling AddRule() or AddInstanceRule(). This priority value is
maintained by the RuleMethod objects, and is used by RulesList to perform the sort. The
CheckRules() method then invokes the methods in order, starting with priority 0 and
climbing from there.

Implementing Short-Circuiting
Short-circuiting is a feature that stops the processing of rules part-way through. The result is
that not all rules for a property are invoked. There are two ways to short-circuit rule
processing for a property: a rule method can explicitly stop the processing, or CSLA .NET
can be told to stop processing rules if any previous (higher priority) rule has already returned
False.

This feature is useful, because it allows the business developer to check all the
inexpensive, easily checked, rules first, and only invoke expensive rules (such as those that

www.4electron.com

Page 38

might hit the database) if all previous rules were satisfied (returned True). The rule priority
feature discussed earlier is a key part of this capability, because it allows the business
developer to control the order in which rules are invoked.

Changes to ValidationRules

The ValidationRules object is responsible for invoking the rule methods. If a rule method
returns False, then the rule is considered broken and is added to the business object’s
BrokenRulesCollection. This is handled in the parameterless Private overload of
CheckRules(). While this method is primarily concerned with implementing rule priorities
and short-circuiting, it does have the ultimate responsibility for recording whether a rule is
broken or not.

It also turns out that there’s an intersection between the short-circuiting behavior and rule
severity. It is important to realize that only Error severity rules can trigger short-circuiting.
Information and Warning severities don’t stop the processing of subsequent rule methods.

The lines of code highlighted here are used to implement priority-based short-circuiting:

Private Sub CheckRules(ByVal list As List(Of IRuleMethod))

Dim previousRuleBroken As Boolean
Dim shortCircuited As Boolean

For index As Integer = 0 To list.Count - 1
Dim rule As IRuleMethod = list(index)
' see if short-circuiting should kick in
If Not shortCircuited AndAlso _

(previousRuleBroken AndAlso _
rule.Priority > mProcessThroughPriority) Then

shortCircuited = True
End If

If shortCircuited Then
' we're short-circuited, so just remove
' all remaining broken rule entries
BrokenRulesList.Remove(rule)

Else
' we're not short-circuited, so check rule
If rule.Invoke(mTarget) Then
' the rule is not broken
BrokenRulesList.Remove(rule)

Else
' the rule is broken
BrokenRulesList.Add(rule)
Dim args As RuleArgs = rule.RuleArgs
If args.Severity = RuleSeverity.Error Then

previousRuleBroken = True
End If

End If
If args.StopProcessing Then
shortCircuited = True

End If
End If

Next

End Sub

Due to this, the CheckRules() method must examine the severity contained in the
RuleArgs parameter as it comes back from the rule method:

www.4electron.com

Page 39

If rule.RuleArgs.Severity = RuleSeverity.Error Then
previousRuleBroken = True

End If

The previousRuleBroken field is used to keep track of whether any rule evaluated thus far
has returned False. This value is then used to trigger the short-circuiting process itself, by
setting the shortCircuited field to True:

' see if short-circuiting should kick in
If Not shortCircuited AndAlso _

(previousRuleBroken AndAlso _
rule.Priority > mProcessThroughPriority) Then

shortCircuited = True
End If

If shortCircuited is True, then normal processing of rule methods is suspended, and
instead, all subsequent rule entries are simply removed from the list of broken rules:

If shortCircuited Then
' we're short-circuited, so just remove
' all remaining broken rule entries
BrokenRulesList.Remove(rule)

The entries are removed because there is no way to know if the rules are broken or not.
Remember, once shortCircuited is set to True no further rule methods are invoked. Rather
than assume all the unchecked rules are broken (which could be very misleading for the end
user), the code assumes that all unchecked rules are not broken, so their descriptions do not
appear to the end user as issues to be resolved.

It is also possible for a rule method to directly cause short-circuiting to occur. To do this, a
rule method sets e.StopProcessing to True. This value is used by the CheckRules() method
to set the shortCircuited field to True, causing the same short-circuiting behavior as with
the priority-based scheme:

If rule.RuleArgs.StopProcessing Then
shortCircuited = True

End If

Notice that this check occurs regardless of whether the rule method returns True or False.
Even an unbroken rule can stop the processing of subsequent rules by setting
StopProcessing to True.

Changes to RuleArgs

The RuleArgs class now includes a StopProcessing property for use by a rule method that
wants to immediately trigger short-circuiting:

Private mStopProcessing As Boolean

Public Property StopProcessing() As Boolean
Get
Return mStopProcessing

End Get
Set(ByVal value As Boolean)
mStopProcessing = value

End Set
End Property

www.4electron.com

Page 40

At this point, you should understand how the CheckRules() method has been enhanced to
stop the processing of rules once short-circuiting has been triggered. Short-circuiting can be
triggered through a priority-based threshold scheme, or explicitly by a rule method setting the
StopProcessing property of a RuleArgs object to True.

Implementing Strongly-typed Rule Methods
In CSLA .NET 2.0, rule methods conform to the RuleHandler delegate signature:

Public Delegate Function RuleHandler(_
ByVal target As Object, ByVal e As RuleArgs) As Boolean

This signature accepts parameters of type Object and RuleArgs, allowing the use of any
type of object as a target, and any subclass of RuleArgs as a parameter. The drawback to this
approach is that it is often necessary to cast the target or e parameters before using them,
which requires extra code and can lead to runtime type mismatch exceptions.

CSLA .NET 2.1 enhances the way rule methods are implemented to allow for strongly
typed parameters to the methods. This is done by defining a second delegate signature using
generics, and by adding a new generic RuleMethod class to store these strongly typed method
references. This also requires altering the RulesList class to maintain a list of IRuleMethod,
rather than RuleMethod.

Generic RuleHandler Delegate

The RuleHandler delegate in CSLA .NET 2.0 uses basic polymorphic types as parameters.
That definition is retained in version 2.1, but a new delegate definition is required to support
strongly typed parameters:

Public Delegate Function RuleHandler(Of T, R As RuleArgs)(_
ByVal target As T, ByVal e As R) As Boolean

Using this new delegate, it is possible to specify the types for both the target and e
parameters during development, so the compiler can check those types during compilation.

IRuleMethod Interface
The RuleMethod object is used to store a reference, along with metadata, for a rule method
defined by the RuleHandler delegate. In version 2.1, a new generic RuleMethod class must be
added to maintain a reference to the new generic RuleHandler delegate. In order to provide
polymorphic use of both RuleMethod types, an IRuleMethod interface is required:

Friend Interface IRuleMethod
ReadOnly Property Priority() As Integer
ReadOnly Property RuleName() As String
ReadOnly Property RuleArgs() As RuleArgs
Function Invoke(ByVal target As Object) As Boolean

End Interface

This interface is required because generic types are not polymorphic. The only ways to
make a generic type be polymorphic are for it to inherit from a non-generic base class or
implement a non-generic interface. This non-generic interface can be implemented by both
the original RuleMethod and new generic RuleMethod classes so they can be used

www.4electron.com

Page 41

interchangeably (polymorphically) through this interface. The interface will be used by
RulesList so it can store either type of rule reference.

Changes to RuleMethod

The existing version 2.0 RuleMethod class must be enhanced to implement the new
IRuleMethod interface. Since the interface defines the same methods that were already
implemented by RuleMethod, this is a simple process. The Implements keyword is used to
indicate that the class implements the interface:

Friend Class RuleMethod

Implements IRuleMethod

And the Implements clause is used on the existing methods to link them to the interface.
For example:

Public ReadOnly Property Priority() As Integer Implements IRuleMethod.Priority
Get
Return mPriority

End Get
End Property

The other methods are altered in a similar manner.

Generic RuleMethod Type
CSLA .NET 2.1 includes a new RuleMethod class. This class is virtually identical to the
existing RuleMethod class, except that this one accepts generic type parameters and uses them
to define the mHandler field that references the rule method delegate. The class definition and
field declarations are:

Friend Class RuleMethod(Of T, R As RuleArgs)

Implements IRuleMethod
Implements IComparable
Implements IComparable(Of IRuleMethod)

Private mHandler As RuleHandler(Of T, R)
Private mRuleName As String = ""
Private mArgs As R
Private mPriority As Integer

Notice the generic type parameters and how they are used to declare the mHandler field.
The generic type parameters are also used in the implementation of various methods within
the class. For instance, the RuleArgs property returns a value of type R:

Public ReadOnly Property RuleArgs() As R
Get
Return mArgs

End Get
End Property

Of course the IRuleMethod interface requires a return type of RuleArgs, so the interface
implementation is separate:

www.4electron.com

Page 42

Private ReadOnly Property IRuleMethod_RuleArgs() As RuleArgs _
Implements IRuleMethod.RuleArgs
Get
Return RuleArgs

End Get
End Property

A similar technique is used to provide a generic overload of the Invoke() method. The
result is a RuleMethod object that can maintain a reference to a rule method with strongly
typed parameters.

Changes to ValidationRules
The ValidationRules class now includes generic overloads for AddRules() (and
AddInstanceRules()) so it is possible to specify the types of the target and RuleArgs
parameters. A number of overloads have been added, and I won’t list them all here. An
example of an overload is:

Public Sub AddInstanceRule(Of T)(_
ByVal handler As RuleHandler(Of T, RuleArgs), ByVal propertyName As String)

GetInstanceRules(True).AddRule(Of T, RuleArgs) _
(handler, New RuleArgs(propertyName), 0)

End Sub

This overload only specifies the type of the target parameter. Another example illustrates
how both the target and RuleArgs parameter are typed:

Public Sub AddRule(Of T, R As RuleArgs)(_
ByVal handler As RuleHandler(Of T, R), ByVal args As R)

ValidateHandler(handler)
GetTypeRules(True).AddRule(handler, args, 0)

End Sub

Using these overloads, a business developer can get strong typing on one or both of their
rule method parameters.

You should now understand that a business developer can associate either loosely typed or
strongly typed rule methods with the properties of a business object. Strongly typed rule
methods avoid the need for casting the target and e parameter values within the rule method,
and provide for compile-time type checking.

Implementing Rule Retrieval
CSLA .NET 2.1 implements a new feature that allows a business developer to retrieve the list
of rule methods that have been added to an object. This list includes all the per-type and per-
instance rule methods associated with all the properties of the object.

Keep in mind that it is possible for a rule method to be associated with a property more
than one time. In such a case, it is likely that the arguments passed through the RuleArgs
parameter are different, and must be used to distinguish between the two different rule
method instances. This means that the list of rule methods returned for an object must include
not only the name of the rule method, and the associated property name, but also must
include the parameter values passed to the method.

www.4electron.com

Page 43

I chose to represent the rule methods using the URI format. For instance, a rule will
appear as:

rule://methodName/propertyName?arg1=value&arg2=value

I had two reasons for choosing the URI format. First, this format can clearly express all
the information about a rule method, including the method name, the property associated
with the rule and all the arguments passed to the rule method. Second, by conforming to the
URI format, the System.Uri class in the .NET framework can be used to easily parse these
values. This makes it relatively easy for a business or UI developer to retrieve any given part
of the URI without having to manually parse the string.

Changes to ValidationRules
The ValidationRules class now includes a GetRuleDescriptions() method, which returns
an array of String values, with each string representing a rule method. This code is relatively
simple, since each RuleMethod object is responsible for generating its own text
representation:

Public Function GetRuleDescriptions() As String()

Dim result As New List(Of String)
Dim rules As ValidationRulesManager = RulesToCheck
For Each de As Generic.KeyValuePair(Of String, RulesList) In rules.RulesDictionary
Dim list As List(Of IRuleMethod) = de.Value.GetList(False)
For i As Integer = 0 To list.Count - 1

Dim rule As IRuleMethod = list(i)
result.Add(CObj(rule).ToString)

Next
Next
Return result.ToArray

End Function

This code loops through all the properties in the object that have rules, and then loops
through the rules associated with each property. Notice the use of the RulesToCheck() helper
method, which returns the consolidated list of per-type and per-instance rules for this
particular business object. This method was discussed earlier in the book.

The real work occurs in the RuleMethod and RuleArgs classes, which are responsible for
generating the URI text representation.

Changes to RuleMethod
Both the generic and non-generic RuleMethod classes maintain a mRuleName field, which
stores the text representation of the rule. The value of this field is returned from the
ToString()method in the RuleMethod class.

www.4electron.com

Page 44

The mRuleName field value is set in the constructor:

Public Sub New(ByVal handler As RuleHandler, _
ByVal args As RuleArgs)

mHandler = handler
mArgs = args
mRuleName = _
String.Format("rule://{0}/{1}", mHandler.Method.Name, mArgs.ToString)

End Sub

Notice how the name of the rule method itself is combined with the ToString() value
from the RuleArgs object to create the URI text result. This is important, because it places a
constraint on the implementation of any RuleArgs.ToString() method implementation. In
the standard RuleArgs class, only the property name is returned. However, any subclass of
RuleArgs must return a text fragment in the following format:

propertyName?arg1=value&arg2=value

If this is not done, then the resulting text value will not be a properly formatted URI value.

It should now be clear how a business object can call the GetRuleDescriptions() method
to retrieve an array of URI-formatted text values, each entry representing a rule that has been
associated with a property of the business object.

Implementing BrokenRulesCollection.ToArray
The BrokenRulesCollection includes a ToString() override, which returns the human-
readable descriptions of the broken rules for the object as a single text value. Sometimes it is
more valuable to have the broken rule descriptions returned as an individual text value for
each rule. The ToArray() methods provide this capability:

Public Function ToArray() As String()

Dim result As New List(Of String)
For Each item As BrokenRule In Me
result.Add(item.Description)

Next
Return result.ToArray

End Function

Public Function ToArray(ByVal severity As RuleSeverity) As String()

Dim result As New List(Of String)
For Each item As BrokenRule In Me
If item.Severity = severity Then

result.Add(item.Description)
End If

Next
Return result.ToArray

End Function

There are two overloads, one that returns all rule descriptions, and one where the list is
filtered by severity. In either case, the human-readable text descriptions are placed into an
array of String values, with one entry per broken rule.

www.4electron.com

Page 45

Using the Enhancements
CSLA .NET version 2.1 includes substantial enhancements to the way validation rules are
associated with a business object, how they are processed, and how the results can be
retrieved. In many cases only minor code changes are required to move from version 2.0 to
2.1, though there are exceptions. Some of the features in version 2.1 are entirely new, and
you’ll need to change your code to exploit them.

Using Per-Type Validation Rules
In CSLA .NET 2.1, business rules may be associated with a business object at the type or
instance level. Per-type rules are associated with all business objects of a given type, while
per-instance rules are associated with one specific instance of a business object.

Per-type rules are far more efficient in their use of memory, and offer performance
benefits because the association of rules to properties only occurs once per AppDomain
rather than as each object is created. Typically, this means the association occurs once during
the lifetime of the application.

Per-instance rules provide more flexibility, because these rules are associated with the
object’s properties as each object is created. You can write code to change the way the rules
are associated with the object based on the specific object being created. This results in more
memory consumption and slower performance, because the list of rules is maintained and
created as each business object is instantiated.

When creating a business object, you can now override AddBusinessRules() and
AddInstanceBusinessRules().

Associating Rule Methods with Properties
The AddBusinessRules() method is called only once per AppDomain for each type of
business object. In this method, you can call ValidationRules.AddRule() to associate rule
methods with properties of your business object. These rule methods will then be associated
with the properties of all business objects of that type.

A typical AddBusinessRule() method might look like this:

Protected Overrides Sub AddBusinessRules()

ValidationRules.AddRule(_
AddressOf Csla.Validation.CommonRules.StringRequired, "Name")

End Sub

This associates the StringRequired rule method from CommonRules with the object’s Name
property. While this code looks the same as it did in version 2.0, the results are quite
different. This AddBusinessRules() method will typically only be called once during the
lifetime of the application, and the rule association that’s set up here is applied to all
instances of the business object.

If you want to associate a rule method with a property only for a specific object instance,
you should override AddInstanceBusinessRules(). Such an override might look like this:

www.4electron.com

Page 46

Protected Overrides Sub AddInstanceBusinessRules()

ValidationRules.AddInstanceRule(_
AddressOf Csla.Validation.CommonRules.StringRequired, "City")

End Sub

This associates the StringRequired rule method with the object’s City property. Notice
the use of the AddInstanceRule() method, rather than AddRule(). This indicates that the
association should be added only for this particular object instance, rather than all objects of
this type.

Make sure to only call AddRule() within AddBusinessRules(), and
AddInstanceRule() within AddInstanceBusinessRules().

Implementing Per-Type Rule Methods
There are some restrictions on per-type rule methods. Remember that these rule methods are
shared across all instances of a given business object type. This means that some rule method
implementations from version 2.0 will not work as per-type rule methods in 2.1, while others
will work fine.

Per-type rule methods may be one of:

1. A Shared method in any class (including the business class itself)

2. Any method in a Module (as these are effectively Shared methods)

3. An instance method from another object (not the business object itself)

In fact, the only methods that can’t be used as a per-type rule method are instance
methods of your business object itself.

If you are converting from version 2.0 to 2.1 and you have rule methods
implemented as instance methods of your business object you can either
change them to Shared methods or you can use
AddInstanceBusinessRules()to associate them with your properties.

For instance, the methods in Csla.Validation.CommonRules are all Shared methods, so
they can be used as per-type rule methods. Similarly, any Shared methods in your business
class can be used, because they are automatically available across all instances of the type.

It is important to remember that these rule methods will be invoked for all instances of
your business object. Due to this, these methods must use the target parameter to retrieve the
data values to be validated.

If you are implementing widely-used rules that are common to many types of object you
should follow the pattern used in Csla.ValidationRules.CommonRules. You can find an
explanation of that code in Expert VB 2005 Business Objects (ISBN 1590596315).

If you are implementing rules specific to your business object type, you can implement the
method like this:

www.4electron.com

Page 47

<Serializable()> _
Public Class Attendee
Inherits BusinessBase(Of Attendee)

Private mAge As Integer
Private mDrinkingBadge As Boolean

' other code goes here

Protected Overrides Sub AddBusinessRules()

ValidationRules.AddRule(_
AddressOf AllowedToDrink(Of Attendee), "DrinkingBadge")

End Sub

Private Shared Function AllowedToDrink(Of T)(_
ByVal target As T, ByVal e As Validation.RuleArgs) As Boolean

If target.mAge < 21 AndAlso target.mDrinkingBadge Then
e.Description = "Can not drink if under 21"
Return False

Else
Return True

End If

End Function

' other code goes here

End Class

This code works because .NET allows Shared methods in a class to access the Private
fields of an instance of that type. Since target is an instance of Attendee, and the
AllowedToDrink() method is implemented in the Attendee class, its code is allowed to
access the Private fields of the Attendee object.

Using Dependant Properties
Many business objects have properties that are interdependent, where changing one property
should trigger re-validation of other properties on the object, along with validating the
property that was changed. If your object has properties whose rules should be checked
because a different property was changed, then you should use dependant properties.

You set up property dependencies in the AddBusinessRules() method as you implement
your business object. For instance:

Protected Overrides Sub AddBusinessRules()

' call ValidationRules.AddRules() here

ValidationRules.AddDependantProperty("StartDate", "EndDate")

End Sub

In this example any time the rules for StartDate are checked, the rules for EndDate will
also be checked. The EndDate property is dependant on StartDate. The processing of rules
for both properties will be triggered by a call to PropertyHasChanged() for StartDate, or an
explicit call to ValidationRules.CheckRules("StartDate").

www.4electron.com

Page 48

The relationship is not automatically bi-directional. In other words, checking the rules for
EndDate will not cause the rules for StartDate to be checked. If you want that to happen, you
can use an overload of AddDependantProperty() to indicate that StartDate is also dependant
on EndDate:

Protected Overrides Sub AddBusinessRules()

' call ValidationRules.AddRules() here

ValidationRules.AddDependantProperty("StartDate", "EndDate", True)

End Sub

With this change, both properties are now dependant on the other property, so checking
the rules for either property will cause both sets of rules to be checked.

You can also make multiple properties dependant on a single property. For example:

Protected Overrides Sub AddBusinessRules()

' call ValidationRules.AddRules() here

ValidationRules.AddDependantProperty("StartDate", "EndDate", True)
ValidationRules.AddDependantProperty("EndDate", "CloseDate")

End Sub

In this case, both StartDate and CloseDate are dependant on EndDate. So when the rules
are checked for EndDate, they will also be checked for both StartDate and CloseDate.

It is important to realize that dependant properties are established only in
AddBusinessRules(), and so are per-type. All instances of your business object will have the
same property dependencies. Even if you are using per-instance rules, you must establish the
dependencies in AddBusinessRules(). However, you should also know that dependant
properties affect both per-type and per-instance rules.

Using Rule Severity
CSLA .NET 2.1 introduces the concept of rule severity, where a broken rule method can
indicate the severity of its result. Table 6 lists the possible severities.

Severity Description
Error The broken rule means the object is not valid, and

the result should appear in the UI as a validation
error.

Warning The broken rule means the object is valid, but this
property has an issue that should be addressed.

Information The broken rule means the object is valid, but
there is something the user should know about
this property.

Table 6. Rule severity definitions

www.4electron.com

Page 49

The severity of a rule is set within the rule method itself. This allows your code in the rule
method to determine the appropriate severity for the rule failure, allowing for a great deal of
flexibility. For example, a rule method could look like this:

Private Shared Function CreditLimitCheck(Of T As SalesOrder)(_
ByVal target As T, ByVal e As Validation.RuleArgs) As Boolean

Dim cust As Customer = target.GetCustomer
If target.TotalAmount > cust.CreditLimit Then

e.Description = "Credit limit exceeded"
e.Severity = Validation.RuleSeverity.Error
Return False

ElseIf target.TotalAmount > cust.CreditLimit * .9 Then
e.Description = "Nearing credit limit"
e.Severity = Validation.RuleSeverity.Warning
Return False

ElseIf target.TotalAmount > cust.CreditLimit * .5 Then
e.Description = "Exceeding 50% of credit limit"
e.Severity = Validation.RuleSeverity.Information
Return False

Else
Return True

End If

End Function

In this example, the rule’s logic checks a credit limit value. If the limit is exceeded the
result is an error, while if it is just under the limit a warning is issued. If the amount exceeds
50% of the limit then an informational message is returned.

Remember, only the Error result causes the object to be considered invalid. Warning and
Information results do not cause IsValid to return False, and will not prevent the Save()
method from saving the object. You may choose to override Save() to alter this default
behavior, if desired.

Using Rule Priorities
Sometimes it is important to control which rule methods are executed first, and which are
executed later in the process. CSLA .NET 2.1 allows you to control the order of execution
through the use of rule priorities. As you associate rule methods to properties, you can choose
to provide a priority for that rule. This is supported through overloads of AddRule() and
AddInstanceRule(), and so it affects your code in the AddBusinessRules() and
AddInstanceBusinessRules() methods.

Priorities start at 0 (zero), which is the highest priority. A priority of 1 is the next lowest,
followed by priority 2, priority 3 and so on. All rules of priority 0 are invoked before any
priority 1 rules will be invoked. Within a given priority the order of the rules is
nondeterministic, meaning that you can not count on the order in which they will be invoked.
The default priority for rules is priority 0.

The most common use for rule priorities is to enable short-circuiting, which I’ll discuss
next. The idea is that you can run low-cost rules first, and only invoke expensive rules if none
of the inexpensive rules fail. For example, there’s no sense going to the database to validate
some value, if that value is required, but is currently blank. The following code ensures that
the required-field check runs before the database lookup:

www.4electron.com

Page 50

Protected Overrides Sub AddBusinessRules()

ValidationRules.AddRule(_
AddressOf Csla.Validation.CommonRules.StringRequired, "CreditCode")

ValidationRules.AddRule(_
AddressOf VerifyCreditCode, "CreditCode", 1)

End Sub

The bolded call to AddRule() is specifying that this rule should run at priority 1, after all
priority 0 rules have run. Since 0 is the default, the StringRequired rule will run first,
followed by the VerifyCreditCode rule.

It is important to realize that the per-type and per-instance rule lists are merged before
sorting by priority. This means that all priority 0 rules (per-type and per-instance) are run
before any per-type or per-instance priority 1 rules will be invoked.

Again, the primary purpose behind rule priorities is to support short-circuiting, so let’s
talk about that feature.

Using Short-Circuiting
The short-circuiting feature allows you to stop the processing of rule methods for a property
in the middle of the process. Some of the rule methods will have been invoked, and any
remaining rule methods are not invoked once short-circuiting occurs. The goal of short-
circuiting is to allow you to invoke less expensive rule methods first, and only invoke more
expensive rule methods if all previous rules were satisfied.

This feature is strongly linked to the concept of rule priorities as discussed earlier. For
short-circuiting to work, you must be able to control the order in which the rule methods are
invoked.

Short-circuiting stops the processing of rules for the current property only. If the property
has dependant properties, their rules will be processed even if short-circuiting has occurred.
Similarly, if ValidationRules.CheckRules() is used to check all rules for all properties,
short-circuiting won’t stop the overall process; it will only stop the processing of subsequent
rules for each individual property.

Short-circuiting can be used in two ways. The most common scenario is to run all rules up
to a certain priority, and then only run lower-priority rules if no previous rule methods have
returned False with a severity of Error. Another option is that a rule method can explicitly
cause short-circuiting through code, based on the logic in that method. Let’s look at each
approach.

Short-Circuiting by Priority
When short-circuiting by priority, you must use the overloads of AddRule() and
AddInstanceRule() to set the priority of your rule methods. Remember that priority 0 is the
default, and that larger priorities are executed after lower priorities.

ValidationRules exposes a property, ProcessThroughPriority, that controls when short-
circuiting will have an effect. All rule methods at ProcessThroughPriority or smaller will be
invoked. Rule methods with priorities greater than ProcessThroughPriority will only be
invoked if no previous rule method has returned False with a severity of Error.

www.4electron.com

Page 51

Notice that rule methods returning False with severity of Warning or Information do not
trigger short-circuiting.

So using the previous example from the rule priority discussion, the AddBusinessRules()
method sets rule priorities:

Protected Overrides Sub AddBusinessRules()

ValidationRules.AddRule(_
AddressOf Csla.Validation.CommonRules.StringRequired, "CreditCode")

ValidationRules.AddRule(_
AddressOf VerifyCreditCode, "CreditCode", 1)

ValidationRules.ProcessThroughPriority = 0

End Sub

In this case, I have explicitly set the ProcessThroughPriority to 0, which is the default.
This means that all priority 0 rule methods will be invoked, regardless of success or failure.
But rules at priority 1 or higher will only be invoked if no prior rule has returned Falsewith
a severity if Error.

For this example the VerifyCreditCode rule method will not be invoked if the
StringRequired rule returns False. This meets the goal of running less expensive rules first
and only running more expensive rules if the inexpensive ones are satisfied.

Explicit Short-Circuiting

Another approach to short-circuiting is to have a rule method explicitly indicate that no
subsequent rules should be invoked for this property. Typically, you’ll use rule priorities to
control the order in which rule methods are invoked, so you can predict which rules won’t be
executed when short-circuiting occurs.

Within a rule method, you can choose to stop the processing of all subsequent rule
methods for the current property. To do this, the rule method should set e.StopProcessing to
True. For example:

Private Shared Function IdExists(Of T As Customer)(_
ByVal target As T, ByVal e As RuleArgs) As Boolean

Dim result As Boolean = IdExistsInTable(target.mId)
If result Then

e.Description = "Id already exists in database"
e.StopProcessing = True
Return False

Else
Return True

End If
End Function

This rule method checks to see if the id value already exists in the database. If it does, the
method returns False, along with a description. But it also sets StopProcessing to True,
ensuring that no subsequent rule methods will be invoked for this property.

Short-circuiting, either using the priority threshold or explicitly stopping the processing,
can be used to gain substantial performance benefits for properties that have both expensive
and inexpensive rule methods.

www.4electron.com

Page 52

Using Strongly-typed Rule Methods
If you’ve been reading through the previous sections on using the new validation features,
you’ve seen examples of strongly typed rule methods, but I haven’t walked through their use
from end to end.

Strongly-typed rule methods allow you to use the compiler to help you debug your code,
rather than waiting for casting exceptions at runtime. They also allow you to avoid having to
manually cast the target and RuleArgs parameter values in your rule methods.

Using strongly-typed rule methods is a two part process. First, you should use the generic
syntax when defining your rule method itself. Second, you must use the generic overloads of
AddRule() and AddInstanceRule() when associating your rule methods with the properties
of your business object.

Defining Strongly-typed Rule Methods
You can choose to define only the type of the target parameter, or also the type of the
RuleArgs parameter. The following rule method defines only the type of the target
parameter:

Private Shared Function MaxCredit(Of T As Customer)(_
ByVal target As T, ByVal e As RuleArgs) As Boolean

If target.mCreditLimit > 10000 Then
e.Description = "Maximum credit limit exceeded"
Return False

Else
Return True

End If
End Function

This syntax may appear a bit odd at first, because the method isn’t directly defining the
generic type. Instead, a generic constraint is used to require that T be of type Customer. This
constraint allows the code inside the method to treat T as though it were of type Customer,
and requires any code invoking this method to provide a parameter of type Customer (or a
subclass of Customer).

This next example defines the types of both parameters:

Private Shared Function MaxCredit(Of T As Customer, R As MaxCreditRuleArgs)(_
ByVal target As T, ByVal e As R) As Boolean

If target.mCreditLimit > e.MaxCredit Then
e.Description = "Maximum credit limit exceeded"
Return False

Else
Return True

End If
End Function

The same technique is used, so both the T and R type parameters are constrained to
specific types, and the target and e parameters are defined by those type parameters. Within
the method, the target and e values are strongly typed, so any properties or methods defined
on Customer and MaxCreditRuleArgs are available for use.

www.4electron.com

Page 53

In either case, notice that you don’t need to write any code in the method to cast the
parameter values. The need to cast is avoided through the use of generics.

Adding Strongly-typed Rule Methods to your Objects
When you have rule methods defined using the generic syntax shown above you need to use
generic overloads of AddRule() and AddInstanceRule() when associating those methods
with your business object’s properties.

The following example is used for a rule method that only defines the type of the target
parameter:

Protected Overrides Sub AddBusinessRules()

ValidationRules.AddRule(Of Customer)(_
AddressOf MaxCredit, "RequestedCredit")

End Sub

If both the target and e parameter types are specified by the rule method, then you need
to use code like the following:

Protected Overrides Sub AddBusinessRules()

ValidationRules.AddRule(Of Customer, MaxCreditRuleArgs)(_
AddressOf MaxCredit, _
New MaxCreditRuleArgs("RequestedCredit", 10000))

End Sub

The primary reason for using strongly-typed rule methods is that the compiler can help
you find parameter typing issues at compile time. This is simpler and more reliable than
trying to find type conversion exceptions at runtime during testing.

Retrieving Rule Information
The ValidationRules class now implements a GetRuleDescriptions() method that returns
an array of String. Each item in the array represents a rule method that has been associated
with a property of your business object. Both per-type and per-instance rules are returned in
this array.

The returned information can be useful for generating documentation about the rules used
in each object, or by a UI developer to help automate the creation of the UI. In particular, you
could use this information in a Web Forms UI framework to help automate the association of
validation controls to other UI controls to mirror some of the validation rules in your business
objects.

The ValidationRules class is a Protected member of BusinessBase, and so the
GetRuleDescriptions() method can only be called from code within your business objects
themselves. If you want to expose this information publicly, to the UI for example, you’ll
need to implement your own Public method for that purpose.

Each item in the array is a String in URI format, with the following structure:

rule://methodName/propertyName?arg1=value&arg2=value

www.4electron.com

Page 54

Table 7 lists the parts of the structure.

URI Part Example Description
Scheme rule:// Prefix indicating this is a business rule.

Host methodName The name of the rule method.

LocalPath propertyName The name of the business object
property associated with the rule.

Query arg1=value&arg2=value A list of extra arguments and their
values as provided to the rule method
when AddRule() or AddInstanceRule()
was called with a custom RuleArgs
subclass.

Table 7. Parts of the rule:// URI format

One primary reason the items are in a URI format is so you can use the built-in
functionality of System.Uri to parse the values. The following example code shows how to
extract each part of the URI as listed in Table 7:

Dim rules() As String = ValidationRules.GetRuleDescriptions

Dim uri As New System.Uri(rules(0))

Dim scheme As String = uri.GetLeftPart(UriPartial.Scheme)
Dim methodName As String = uri.Host
Dim propertyName As String = uri.LocalPath.Substring(1)
Dim query As String = uri.Query

Using the GetRuleDescriptions() method, along with System.Uri for parsing, allows
you to gain relatively detailed information about the rules associated with the properties of
your business object.

Retrieving Broken Rules in an Array
The BusinessBase class in CSLA .NET exposes a BrokenRulesCollection property, which
means that all of your editable business objects automatically expose this property. The
purpose of this property is to allow the UI developer to get a list of the human-readable
descriptions of all broken rules in your business object.

In CSLA .NET 2.1, a ToArray() method has been added to the BrokenRulesCollection
class. That way, the UI developer can easily retrieve an array of all the broken rule
descriptions for a business object. This means the UI can contain code like the following:

Dim cust As Customer = Customer.GetCustomer(42)
Dim brokenRules() As String = cust.BrokenRulesCollection.ToArray
For Each rule As String In brokenRules

' do something with the text description
Next

www.4electron.com

Page 55

This example returns a list of all broken rule descriptions, of all severities. The ToArray()
method has one overload, which allows you to restrict the results to a specific severity:
Error, Warning or Information. For example:

Dim brokenRules() As String = _
Me.BrokenRulesCollection.ToArray(Validation.RuleSeverity.Information)

In this case, only the Information severity broken rule descriptions are returned.

At this point, you should understand both the implementation and usage of the new
validation rules features in CSLA .NET 2.1. Next let’s discuss the changes to authorization
rules.

www.4electron.com

Page 56

Authorization Rules
The authorization rules support in CSLA .NET has been enhanced in version 2.1 to support
the concept of per-type rules, much like you’ve already seen with validation rules. The
version 2.0 concept of per-instance rules is still available. So if your objects need to have
different sets of roles, on an object-by-object basis, that is possible.

CSLA .NET 2.1 also adds a new interface, IAuthorizeReadWrite, to standardize how
authorization is exposed to the UI developer. This interface provides a clear mechanism by
which the UI can ask a business object whether the current user is authorized to read or write
each property on the object.

For most objects you’ll typically use the new per-type authorization support, because it
requires less memory and increases performance. The reason for this is that the list of roles
authorized to read and write each property are loaded just once per AppDomain, rather than
once per object instance. In most cases, this means that the roles are loaded once and are
cached for the lifetime of the application.

CSLA .NET 2.0 maintains the list of roles that are allowed or denied read and write access
to each property on a per-object basis. The AddAuthorizationRules() method in your
business object was called as each object instance was created.

In CSLA .NET 2.1, this behavior has changed. The AddAuthorizationRules() method is
now called once per AppDomain, so each of your business objects only loads this role
information a single time. In most cases, you will not need to change your existing code,
because any existing AddAuthorizationRules() method will continue to work as it did. It
just won’t be called as often.

Loading per-type authorization rules looks like this:

Protected Overrides Sub AddAuthorizationRules()

AuthorizationRules.DenyRead("Name", "Guest")
AuthorizationRules.AllowRead("Name", "User", "Supervisor")
AuthorizationRules.DenyWrite("Name", "User")
AuthorizationRules.AllowWrite("Name", "Supervisor")

End Sub

If you do have conditional code to load different sets of roles for different objects of the
same type, then you’ll need to move that code to a new AddInstanceAuthorizationRules()
method, and make use of the new instance methods on the AuthorizationRules object. For
instance, loading per-instance roles looks like this:

Protected Overrides Sub AddInstanceAuthorizationRules()

AuthorizationRules.InstanceDenyRead("Name", "Guest")
AuthorizationRules.InstanceAllowRead("Name", "User", "Supervisor")
AuthorizationRules.InstanceDenyWrite("Name", "User")
AuthorizationRules.InstanceAllowWrite("Name", "Supervisor")

End Sub

www.4electron.com

Page 57

The changes to the CSLA .NET framework to support this per-type and per-instance
concept are not unlike the changes to validation rules. Fortunately, authorization rules are a
simpler concept and so the code changes aren’t as complex.

Framework Changes
Enhancing the authorization rules processing in CSLA .NET involved changing and adding a
number of classes. Here is a list of changed classes or types:

 BusinessBase (from Csla.Core)

 ReadOnlyBase (from Csla)

 AuthorizationRules

 ReadWriteAuthorization (from Csla.Windows)

And here is a list of new classes or types:

 AuthorizationRulesManager

 IAuthorizeReadWrite

 SharedAuthorizationRules

As you can see, most of the classes in Csla.Security were affected by these changes.
Let’s walk through the changes to the framework code, and then I’ll discuss how to use these
changes in your business classes.

Implementing Per-Type Authorization Rules
Version 2.1 adds the concept of per-type authorization rules, while retaining support for per-
instance rules. The default behavior is now to use per-type authorization rules, which means
that the AddAuthorizationRules() methods in the CSLA .NET base classes are now used to
add per-type authorization rules. Similarly, the methods on AuthorizationRules to allow or
deny read and write access to properties are now used to define per-type roles.

Changes to BusinessBase
BusinessBase has been enhanced to not only implement AddAuthorizationRules(), but also
AddInstanceAuthorizationRules():

Protected Overridable Sub AddInstanceAuthorizationRules()

End Sub

This method is invoked at appropriate points during the business object’s lifecycle, when
the roles need to be associated with the object’s properties. This occurs when the object is
created. The per-type rules are also established through the constructor, if they haven’t been
previously loaded into the current AppDomain:

Protected Sub New()

Initialize()
AddInstanceBusinessRules()
If Not Validation.SharedValidationRules.RulesExistFor(Me.GetType) Then
SyncLock Me.GetType

www.4electron.com

Page 58

If Not Validation.SharedValidationRules.RulesExistFor(Me.GetType) Then
AddBusinessRules()

End If
End SyncLock

End If
AddInstanceAuthorizationRules()
If Not Csla.Security.SharedAuthorizationRules.RulesExistFor(Me.GetType) Then
SyncLock Me.GetType

If Not Csla.Security.SharedAuthorizationRules.RulesExistFor(Me.GetType) Then
AddAuthorizationRules()

End If
End SyncLock

End If

End Sub

Notice that AddInstanceAuthorizationRules() is called any time an object is created, but
AddAuthorizationRules() is only called if the per-type rules haven’t already been
initialized. The SharedAuthorizationRules class is responsible for maintaining all the per-
type rules for all business object types that have been loaded in the AppDomain.

In CSLA .NET 2.0, the authorization rules were maintained in an instance field within the
object. In version 2.1, the per-type rules are maintained in SharedAuthorizationRules, but
the per-instance rules are still maintained in a Private field within each business object.
However, the declaration of this mAuthorizationRules field has been changed to include the
NonSerialized attribute:

<NotUndoable()> _
<NonSerialized()> _
Private mAuthorizationRules As Security.AuthorizationRules

BusinessBase now reloads the per-instance authorization roles when an object is
deserialized, rather than including that role information in the serialized byte stream. This
decreases the size of the byte stream, making use of a remote data portal more efficient.

As a side-effect of this change, the object needs to re-load the per-instance authorization
rules any time the object is deserialized. This is handled by the OnDeserializedHandler()
method in BusinessBase:

<OnDeserialized()> _
Private Sub OnDeserializedHandler(ByVal context As StreamingContext)

OnDeserialized(context)
ValidationRules.SetTarget(Me)
AddInstanceBusinessRules()
If Not Validation.SharedValidationRules.RulesExistFor(Me.GetType) Then
SyncLock Me.GetType

If Not Validation.SharedValidationRules.RulesExistFor(Me.GetType) Then
AddBusinessRules()

End If
End SyncLock

End If
AddInstanceAuthorizationRules()
If Not Csla.Security.SharedAuthorizationRules.RulesExistFor(Me.GetType) Then
SyncLock Me.GetType

If Not Csla.Security.SharedAuthorizationRules.RulesExistFor(Me.GetType) Then
AddAuthorizationRules()

End If
End SyncLock

End If

End Sub

www.4electron.com

Page 59

The code also checks to make sure the per-type rules exist, and it loads them if they are
needed. This is important because the first object retrieved from a remote data portal call
could be the object that initializes the per-type rules on a client workstation, and that
initialization would occur due to deserialization of the object from the data portal.

Changes to ReadOnlyBase

Read-only objects also have authorization rules, and the changes to ReadOnlyBase are very
similar to those in BusinessBase. Again, an AddInstanceAuthorizationRules() method is
defined, and the methods to add authorization rules are invoked in the constructor and on
deserialization.

Since the code changes to ReadOnlyBase are so similar to those in BusinessBase, I won’t
repeat them here.

Changes to AuthorizationRules
The AuthorizationRules class has extensive changes to handle per-type and per-instance
rules. This is the class that is used by business developers as they write code in their business
classes to set up and use authorization rules, and so it is the primary point of entry to the
authorization rules functionality.

Caching the AuthorizationRuleManager Objects
Because BusinessBase and ReadOnlyBase no longer allow serialization of the
AuthorizationRules object, this object is no longer marked with the Serializable attribute.
Additionally, AuthorizationRules now maintains a reference to both the per-type and per-
instance role lists for the business object:

Public Class AuthorizationRules

Private mBusinessObjectType As Type
Private mTypeRules As AuthorizationRulesManager
Private mInstanceRules As AuthorizationRulesManager

Though SharedAuthorizationRules is responsible for maintaining the list of per-type
rules for all business objects, it is more efficient to retrieve that list once and cache the
reference directly in each business object. This is the purpose behind the mTypeRules field.
The mInstanceRules field maintains a reference to the list of per-instance rules for the
current business object.

The class includes a couple helper properties to initialize these fields. This means that no
code in the rest of the class uses these fields directly, but rather all access is through the
helper properties:

Private ReadOnly Property InstanceRules() _
As AuthorizationRulesManager
Get
If mInstanceRules Is Nothing Then

mInstanceRules = New AuthorizationRulesManager
End If
Return mInstanceRules

End Get
End Property

Private ReadOnly Property TypeRules() _

www.4electron.com

Page 60

As AuthorizationRulesManager
Get
If mTypeRules Is Nothing Then

mTypeRules = SharedAuthorizationRules.GetManager(mBusinessObjectType, True)
End If
Return mTypeRules

End Get
End Property

Notice how both properties handle the creation or initialization of the field, caching the
result after the first load. In the case of InstanceRules this is merely a convenience, but in
the case of TypeRules this is done as an optimization to avoid a Dictionary lookup every
time the per-type rules are needed.

Adding Authorization Rules
To see how these helper properties are used, let’s look at the AllowRead() method. This
method is used to add a per-type authorization rule to the object:

Public Sub AllowRead(_
ByVal propertyName As String, ByVal ParamArray roles() As String)

Dim currentRoles As RolesForProperty = TypeRules.GetRolesForProperty(propertyName)
For Each item As String In roles
currentRoles.ReadAllowed.Add(item)

Next

End Sub

Notice how the TypeRules property is used to retrieve the list of roles for the specified
property, so the new role can be added to that list. The RolesForProperty object is
unchanged from version 2.0, and you can get details about that class from Expert VB 2005
Business Objects (ISBN 1590596315).

The AllowWrite(), DenyRead() and DenyWrite() methods follow this same pattern.

Per-instance rules are added using a parallel set of methods. For example, here’s the
InstanceAllowRead() method:

Public Sub InstanceAllowRead(_
ByVal propertyName As String, ByVal ParamArray roles() As String)

Dim currentRoles As RolesForProperty = _
InstanceRules.GetRolesForProperty(propertyName)

For Each item As String In roles
currentRoles.ReadAllowed.Add(item)

Next

End Sub

In this case, the InstanceRules helper property is used to retrieve the list of per-instance
rules, so the role can be added to the specified property. The InstanceAllowWrite(),
InstanceDenyRead() and InstanceDenyWrite()methods follow this same pattern.

Checking Authorization Rules
Finally, AuthorizationRules implements a set of methods that check the authorization rules,
such as HasReadAllowedRoles() and IsReadAllowed(). These methods now check both the
per-type and per-instance role lists. For example, here’s the HasReadAllowedRoles() method:

www.4electron.com

Page 61

Public Function HasReadAllowedRoles(_
ByVal propertyName As String) As Boolean

Dim result As Boolean
If InstanceRules.GetRolesForProperty(propertyName).ReadAllowed.Count > 0 Then
result = True

Else
result = TypeRules.GetRolesForProperty(propertyName).ReadAllowed.Count > 0

End If

Return result

End Function

Notice that both the per-type and per-instance lists are checked. Similarly,
IsReadAllowed() checks both lists:

Public Function IsReadAllowed(ByVal propertyName As String) As Boolean

Dim result As Boolean
Dim user As System.Security.Principal.IPrincipal = ApplicationContext.User
If InstanceRules.GetRolesForProperty(propertyName).IsReadAllowed(user) Then
result = True

Else
result = TypeRules.GetRolesForProperty(propertyName).IsReadAllowed(user)

End If
Return result

End Function

There are comparable methods to check for denied read, allowed write and denied write.
These methods are used by BusinessBase and ReadOnly base to implement their
CanReadProperty() and CanWriteProperty() methods, but all the changes from version 2.0
to 2.1 are encapsulated here in AuthorizationRules.

AuthorizationRulesManager Class

The per-type and per-instance authorization rules are now stored in an instance of
AuthorizationRulesManager. This object is responsible for organizing the lists of roles
associated with each property of the business object.

To do this, AuthorizationRulesManager maintains a Dictionary, where the key is the
name of the property, and the value is a RolesForProperty object that maintains the list of
allowed and denied roles for reading and writing to that property.

Private mRules As Dictionary(Of String, RolesForProperty)

Friend ReadOnly Property RulesList() _
As Dictionary(Of String, RolesForProperty)
Get
If mRules Is Nothing Then

mRules = New Dictionary(Of String, RolesForProperty)
End If
Return mRules

End Get
End Property

www.4electron.com

Page 62

The AuthorizationRulesManager then implements a method to allow retrieval of the role
data. This method simply returns the RolesForProperty object associated with the specified
property name:

Friend Function GetRolesForProperty(_
ByVal propertyName As String) As RolesForProperty

Dim currentRoles As RolesForProperty = Nothing
If Not RulesList.ContainsKey(propertyName) Then
currentRoles = New RolesForProperty
RulesList.Add(propertyName, currentRoles)

Else
currentRoles = RulesList.Item(propertyName)

End If
Return currentRoles

End Function

You’ve already seen how this method is used by AuthorizationRules as it implements
the methods like HasReadAllowedRoles() and IsReadAllowed().

SharedAuthorizationRules Class

The final class needed to implement per-type authorization rules is the
SharedAuthorizationRules class. As you’ve seen in the previous code, this type is
responsible for maintaining all the per-type authorization rules for all business object types in
the AppDomain.

This object maintains a Dictionary, keyed by business object type, that contains the
AuthorizationRulesManager object with each business object’s per-type rules. This
Dictionary is a Shared field, meaning it is global to the AppDomain:

Friend Module SharedAuthorizationRules

Private mManagers As New Dictionary(Of Type, AuthorizationRulesManager)

Remember that all fields and methods in a Module are automatically Shared.

The GetManager() method is used to retrieve the AuthorizationRulesManager for a
specific business object type:

Friend Function GetManager(ByVal objectType As Type, ByVal create As Boolean) _
As AuthorizationRulesManager

Dim result As AuthorizationRulesManager = Nothing
If Not mManagers.TryGetValue(objectType, result) AndAlso create Then
SyncLock mManagers

result = New AuthorizationRulesManager
mManagers.Add(objectType, result)

End SyncLock
End If
Return result

End Function

This method is implemented in much the same manner as the GetManager() method in the
Csla.Validation.SharedValidationRules class. The AuthorizationRules object uses this

www.4electron.com

Page 63

method to retrieve the appropriate AuthorizationRulesManager for the business object when
it needs access to the per-type rules.

Notice the use of the SyncLock statement in the GetManager() method. Because this
method is Shared (due to being in a Module), it should be made threadsafe. In the case that
multiple threads call GetManager() at the same time, SyncLock will ensure that only one
thread at a time will execute the critical code in the method.

There’s also a RulesExistFor() method that is used by BusinessBase and ReadOnlyBase
to determine whether per-type rules have been initialized for a specified business type:

Public Function RulesExistFor(ByVal objectType As Type) As Boolean

Return mManagers.ContainsKey(objectType)

End Function

At this point, you should understand how the per-type and per-instance authorization rules
are implemented. The BusinessBase and ReadOnlyBase classes allow the business developer
to define both per-type and per-instance rules. The AuthorizationRules class manages both
sets of rules for each business object, relying on AuthorizationRulesManager objects to
maintain the detailed information on a per-property basis. And the
SharedAuthorizationRules object manages all the per-type rules for all objects, caching
them and making them available to all code in the AppDomain.

Implementing IAuthorizeReadWrite
The Microsoft .NET framework defines System.ComponentModel.IDataErrorInfo to provide
a standardized way for UI code to ask objects whether any validation rules are currently
broken. This interface is used by Windows Forms data binding to power the ErrorProvider
control for example.

Unfortunately, there is no equivalent interface for standardizing per-property
authorization. In version 2.1, CSLA .NET introduces its own interface for this purpose,
making it easier to develop UI components and frameworks that can interact with business
objects in a standardized manner.

IAuthorizeReadWrite Interface

The Csla.Security.IAuthorizeReadWrite interface provides a standard way for UI code to
ask a business object if the current user is authorized to read or write to each property of the
object:

Public Interface IAuthorizeReadWrite
Function CanWriteProperty(ByVal propertyName As String) As Boolean
Function CanReadProperty(ByVal propertyName As String) As Boolean

End Interface

The UI can use the information provided by this interface to provide visual cues to the
user as to what they can expect to do with each data element.

For this to work, your business objects must implement this interface. You don’t need to
worry about this detail in your business classes, as the interface is implemented on your
behalf in BusinessBase and ReadOnlyBase.

www.4electron.com

Page 64

Changes to BusinessBase and ReadOnlyBase

Both BusinessBase and ReadOnlyBase implement IAuthorizeReadWrite, relying in the pre-
existing authorization rules implementation to do the hard work. In fact, BusinessBase
already implemented CanReadProperty() and CanWriteProperty() methods in CSLA .NET
2.0, so those methods now simply implement the interface:

Public Overridable Function CanReadProperty(_
ByVal propertyName As String) As Boolean _
Implements Csla.Security.IAuthorizeReadWrite.CanReadProperty

And

Public Overridable Function CanWriteProperty(_
ByVal propertyName As String) As Boolean _
Implements Csla.Security.IAuthorizeReadWrite.CanWriteProperty

The same is true for CanReadProperty() in ReadOnlyBase, but in version 2.0,
ReadOnlyBase didn’t implement CanWriteProperty() at all. Now it must provide an
implementation, though it simply returns False at all times:

Private Function CanWriteProperty(ByVal propertyName As String) As Boolean _
Implements Security.IAuthorizeReadWrite.CanWriteProperty

Return False

End Function

Since read-only objects should only have read-only properties, there shouldn’t be a case
where the user is authorized to write to a read-only property.

With these changes, all CSLA .NET objects support this new interface and can be
accessed in a standardized manner from UI code. The CSLA .NET framework does include
one UI helper that is impacted by this change: Csla.Windows.ReadWriteAuthorization.

Changes to the ReadWriteAuthorization Control
The ReadWriteAuthorization control is a Windows Forms extender control that helps
simplify authorization logic in a Windows Forms detail form. It automatically sets the
ReadOnly property on controls like TextBox based on the authorization information provided
by the business object property to which that control is bound through data binding. For
complete details about this control please refer to Expert VB 2005 Business Objects (ISBN
1590596315).

In CSLA .NET 2.1, the ReadWriteAuthorization control has been enhanced to use the
new IAuthorizeReadWrite interface when querying the business object to get authorization
information. This impacts the implementation of the ApplyAuthorizationRules() method:

Private Sub ApplyAuthorizationRules(ByVal control As Control)

For Each binding As Binding In control.DataBindings
' get the BindingSource if appropriate
If TypeOf binding.DataSource Is BindingSource Then

Dim bs As BindingSource = CType(binding.DataSource, BindingSource)
' get the BusinessObject if appropriate
Dim ds As Csla.Security.IAuthorizeReadWrite = _
TryCast(bs.DataSource, Csla.Security.IAuthorizeReadWrite)

www.4electron.com

Page 65

If ds IsNot Nothing Then
' get the object property name
Dim propertyName As String = _

binding.BindingMemberInfo.BindingField

ApplyReadRules(control, binding, _
ds.CanReadProperty(propertyName))

ApplyWriteRules(control, binding, _
ds.CanWriteProperty(propertyName))

End If
End If

Next

End Sub

The lines of code using the new interface are highlighted for clarity.

If you compare this code to the original version 2.0 code, you’ll see that this
implementation is much simpler, and avoids the need to check for and cast the type to either
BusinessBase or ReadOnlyBase. This change not only makes the code easier to read, but it
means that the ReadWriteAuthorization control will automatically support any future object
types that implement IAuthorizeReadWrite.

Using the Enhancements
The per-type enhancements to the authorization rules support in CSLA .NET are often
transparent to existing code. In most cases, you can follow the same coding approach you
used in version 2.0. However, you’ll get better performance and less consumption of
memory.

The IAuthorizeReadWrite interface has no impact on your business code at all. It exists
entirely to help support the creation of UI frameworks and components.

Using Per-Type Authorization Rules
In CSLA .NET 2.1, authorization rules may be associated with a business object at the type
or instance level. Per-type rules are associated with all business objects of a given type, while
per-instance rules are associated with one specific instance of a business object.

Per-type rules are far more efficient in their use of memory, and offer performance
benefits because the association of rules to properties only occurs once per AppDomain
rather than as each object is created. Typically, this means the association occurs once during
the lifetime of the application.

Per-instance rules provide more flexibility, because these rules are associated with the
object’s properties as each object is created. You can write code to change the way the rules
are associated with the object based on the specific object being created. This results in more
memory consumption and slower performance, because the list of rules is maintained and
created as each business object is instantiated.

When creating a business object, you can now override either AddAuthorizationRules()
or AddInstanceAuthorizationRules().

Associating Rule Methods with Properties
The AddAuthorizationRules() method is called only once per AppDomain for each type of
business object. In this method, you can call the AllowRead(), AllowWrite(), DenyRead()

www.4electron.com

Page 66

and DenyWrite() methods on AuthorizationRules to associate roles with the properties of
your business object. These roles are then used by CSLA .NET to provide authorization for
the properties of all business objects of that type.

A typical AddAuthorizationRules() method might look like this:

Protected Overrides Sub AddAuthorizationRules()

AuthorizationRules.DenyRead("Name", "Guest")
AuthorizationRules.AllowRead("Name", "User", "Supervisor")
AuthorizationRules.DenyWrite("Name", "User")
AuthorizationRules.AllowWrite("Name", "Supervisor")

End Sub

It is also possible to load different authorization rules for each object instance. These are
called per-instance rules and are configured in an AddInstanceAuthorizationRules()
method. Such a method might look like this:

Protected Overrides Sub AddInstanceAuthorizationRules()

AuthorizationRules.InstanceDenyRead("Name", "Guest")
AuthorizationRules.InstanceAllowRead("Name", "User", "Supervisor")
AuthorizationRules.InstanceDenyWrite("Name", "User")
AuthorizationRules.InstanceAllowWrite("Name", "Supervisor")

End Sub

In general terms, you should avoid using per-instance rules in favor of the more efficient
per-type rules.

Using IAuthorizeReadWrite
The IAuthorizeReadWrite interface is designed to support UI framework and component
authors. If you are building a UI framework or component, you can use this interface to
standardize how you interact with any CSLA .NET business object.

Given a reference to a business object, you can simply cast the object to
IAuthorizeReadWrite to use the standard methods on that interface:

Dim cust As Customer = Customer.GetCustomer(42)

Dim auth As IAuthorizeReadWrite = CType(cust, IAuthorizeReadWrite)

Dim canRead As Boolean = auth.CanReadProperty("Name")
Dim canWrite As Boolean = auth.CanWriteProperty("Name")

You can use this technique as appropriate when creating your UI frameworks and
components.

You should have a good understanding of the new per-type and IAuthorizeReadWrite
features of authorization within CSLA .NET 2.1, including both their implementation and
usage in your business objects.

www.4electron.com

Page 67

FilteredBindingList
CSLA .NET 2.0 includes the SortedBindingList class, which provides an editable, sorted,
view of any IList(Of T) collection type. Since arrays and most list and collection types
implement IList(Of T), SortedBindingList allows you to get a live sorted view of almost
any list in .NET.

The new FilteredBindingList class provides the same kind of live view against any
IList(Of T), and provides the ability to filter the contents of that list. As with
SortedBindingList, applying a filter doesn’t alter the original list at all, it merely alters the
view. However, adding or removing items from the filtered list immediately adds or removes
the item from the original list.

Because FilteredBindingList and SortedBindingList both implement IList(Of T),
they are composable. This means you can take an array or list, use FilteredBindingList to
get a filtered view, and then use SortedBindingList to get a sorted view of the filtered view.

The default filter is a simple wildcard match, but FilteredBindingList is extensible and
you can provide your own filter algorithm. A filter is merely a method that matches a
delegate method signature, and you pass a reference to that delegate into
FilteredBindingList.

Framework Changes
Three types have been added to CSLA .NET to support the FilteredBindingList:

 FilteredBindingList

 FilterProvider

 DefaultFilter

Obviously, most of the work occurs in FilteredBindingList itself. FilterProvider
defines the delegate signature for any filter provider, and DefaultFilter implements the
default matching filter provided by CSLA .NET.

Implementing FilteredBindingList
FilteredBindingList depends on the FilterProvider delegate to do its work. I’ll cover that,
along with the default filter, first. Then I’ll discuss FilteredBindingList itself.

FilterProvider Delegate
When filtering a list, each item in the list must be checked to see if it meets the filter
condition. To do this, FilteredBindingList loops through all the items in the original list,
calling a Boolean method to evaluate each item. If the item matches the filter condition this
method should return True, and FilteredBindingList will include that item in the filtered
view.

This filter method must conform to a specific method signature, defined by the
FilterProvider delegate:

www.4electron.com

Page 68

Public Delegate Function FilterProvider(_
ByVal item As Object, ByVal filter As Object) As Boolean

The item parameter is the item to be evaluated, and it comes from the original list. The
filter parameter could be any criteria required by the filter provider method. In the case of
DefaultFilter, this is a simple text value that is compared to the item with a wildcard match.

The filter provider method must evaluate the item to determine if it meets the filter
criteria, and return True if the item should be included in the filtered view.

DefaultFilter
CSLA .NET includes a default filter provider method that does a simple text-based wildcard
match against each item in the original list. The DefaultFilter class implements a single
method, Filter, that conforms to the FilterProvider delegate signature:

Friend Class DefaultFilter

Public Shared Function Filter(_
ByVal item As Object, ByVal filterValue As Object) As Boolean

Dim result As Boolean = False

If Not item Is Nothing AndAlso Not filterValue Is Nothing Then
result = CStr(item).Contains(CStr(filterValue))

End If

Return result

End Function

End Class

This method simply converts both the item and filterValue parameters to String values
and uses the Contains()method to find out if the item’s text representation contains the filter
value.

The important thing is that the method returns True for items that meet the filter criteria,
and False for items that don’t meet the criteria. You can use this method as a template for
creating other, more specialized, filters to meet your needs.

FilteredBindingList Class
The FilteredBindingList class contains a reference to the original IList(Of T) object, and
provides a filtered view of the items in that original list. To do this, it maintains a list of the
index values for the items in the original list that meet the filter criteria based on the filter
provider method.

www.4electron.com

Page 69

FilteredBindingList is a long and somewhat complex class, primarily because it directly
implements a number of collection interfaces. These include:

 IList(Of T)

 IBindingList

 IEnumerable(Of T)

 ICancelAddNew

These are the same interfaces implemented by SortedBindingList, and so I am not going
to cover all the code in great detail. You can refer to Expert VB 2005 Business Objects (ISBN
1590596315) for a more lengthy discussion on how these interfaces are implemented as a
wrapper around the original list object.

I also recommend referring to the book for details regarding the event interactions
between the original list and the filtered view. As items are added, removed or changed in
either the original list or the view; events are raised and handled by both lists. This
interaction is relatively complex, but is required to provide the ability to directly manipulate
the data in the filtered list as though it were a normal list object, even though it is really just a
wrapper around another list object.

Basic Implementation
There are some important differences between SortedBindingList and
FilteredBindingList that need to be discussed. One of the most important is somewhat
subtle: SortedBindingList always has the same number of items as the original list, while
FilteredBindingList often has a different number of items. This simple fact complicates the
implementation of the wrapper class in various ways, starting with the Count property:

Public ReadOnly Property Count() As Integer _
Implements IList(Of T).Count, IBindingList.Count

Get
If mFiltered Then
Return mFilterIndex.Count

Else
Return mList.Count

End If
End Get

End Property

Where SortedBindingList always delegates this call to the original list,
FilteredBindingList must return only the number of items in its filtered list. Looking at this
code, you can infer much about how FilteredBindingList does its work. The mList field
contains a reference to the original list, while mFilterIndex is the list of original index values
for all items meeting the filter criteria.

There are two important helper methods that are used throughout the implementation:
OriginalIndex() and FilteredIndex(). These helper methods translate index values to and
from the original index and the filtered index. In other words, the original list could have 10
items, and the filtered view may only show the last 5. This means that an original index of 0
doesn’t exist in the filtered view at all. A filtered index of 0 translates to an original index of
5, while an original index of 9 translates to a filtered index of 4.

www.4electron.com

Page 70

Private Function OriginalIndex(ByVal filteredIndex As Integer) As Integer
Return mFilterIndex(filteredIndex).BaseIndex

End Function

Private Function FilteredIndex(ByVal originalIndex As Integer) As Integer

Dim result As Integer = -1
If mFiltered Then

Dim index As Integer = 0
Do While index < mFilterIndex.Count
If mFilterIndex(index).BaseIndex = originalIndex Then

result = index
Exit Do

End If
index += 1

Loop

Else
result = originalIndex

End If
Return result

End Function

The OriginalIndex() method is relatively straightforward, because the mFilterIndex
field maintains a cross-reference table that maps filtered index values back to the original
indexes. All that’s required here is to find the entry in the filtered index and retrieve the
original (base) index stored at that location in the index.

The FilteredIndex() method is a bit more complex because there’s no index to directly
translate original index values to their filtered counterparts. Instead, the code loops through
mFilterIndex looking for a match between the requested index and the original index stored
in the filtered index. Notice that if a match isn’t found, then a value of -1 is returned from the
method to indicate that the original item isn’t included in the filtered view.

Applying the Filter
The most interesting part of FilteredBindingList is applying the filter itself. This process is
initiated through the ApplyFilter() method:

Public Sub ApplyFilter(ByVal propertyName As String, ByVal filter As Object)

mFilterBy = Nothing

If (Not String.IsNullOrEmpty(propertyName)) Then
Dim itemType As Type = GetType(T)
For Each prop As PropertyDescriptor In TypeDescriptor.GetProperties(itemType)
If prop.Name = propertyName Then

mFilterBy = prop
Exit For

End If
Next prop

End If

ApplyFilter(mFilterBy, filter)

End Sub

Public Sub ApplyFilter(ByVal [property] As PropertyDescriptor, ByVal filter As Object)

mFilterBy = [property]
mFilter = filter
DoFilter()

www.4electron.com

Page 71

End Sub

This method has two overloads for parity with the ApplySort() method in
SortedBindingList. The first takes a String value to identify the property on which to sort,
while the second takes a PropertyDescriptor. Notice that these methods merely ensure that
the PropertyDescriptor and filter criteria are stored in the appropriate fields before
DoFilter() is invoked. The DoFilter()method does the actual work:

Private Sub DoFilter()

Dim index As Integer = 0
mFilterIndex.Clear()

If mProvider Is Nothing Then
mProvider = AddressOf DefaultFilter.Filter

End If

If mFilterBy Is Nothing Then
For Each obj As T In mList
If mProvider.Invoke(obj, mFilter) Then

mFilterIndex.Add(New ListItem(obj, index))
End If
index += 1

Next obj
Else

For Each obj As T In mList
Dim tmp As Object = mFilterBy.GetValue(obj)
If mProvider.Invoke(tmp, mFilter) Then

mFilterIndex.Add(New ListItem(tmp, index))
End If
index += 1

Next obj
End If

mFiltered = True

OnListChanged(New ListChangedEventArgs(ListChangedType.Reset, 0))

End Sub

This method ensures that mProvider is set to a valid filter provider delegate. The business
developer may have set this value when creating an instance of FilteredBindingList, or by
setting the FilterProvider property. However, if they did neither then the value would be
Nothing, and so here it is set to use the default filter method I discussed earlier.

When ApplyFilter() is called, the filter property could be passed as Nothing. In that
case, the object itself is passed to the filter provider method along with the filter criteria:

For Each obj As T In mList
If mProvider.Invoke(obj, mFilter) Then

mFilterIndex.Add(New ListItem(obj, index))
End If
index += 1

Next obj

This process is repeated for each item in the original list, resulting in mFilterIndex
containing an entry for each item that meets the filter criteria.

On the other hand, if the filter should run against a specified property, then that property
value is retrieved from the object and the value is then passed to the filter provider method:

www.4electron.com

Page 72

For Each obj As T In mList
Dim tmp As Object = mFilterBy.GetValue(obj)
If mProvider.Invoke(tmp, mFilter) Then

mFilterIndex.Add(New ListItem(tmp, index))
End If
index += 1

Next obj

The basic process is the same, as the code loops through all items in the original list,
adding an entry to mFilterIndex for each matching element.

Either way, the end result is that mFilterIndex contains a list of items that match the
filtered criteria. This list is used by the rest of the implementation to provide the filtered
view. For instance, the For...Each statement uses an enumerator to loop through the items in
the list. When the list is filtered, a special enumerator is returned to the For...Each code
generated by the compiler:

Public Function GetEnumerator() As IEnumerator(Of T) _
Implements IEnumerable(Of T).GetEnumerator

If mFiltered Then
Return New FilteredEnumerator(mList, mFilterIndex)

Else
Return mList.GetEnumerator()

End If

End Function

This FilteredEnumerator returns the items in the filtered index, rather than all the items
in the original list. Similarly, the Item property gets or sets the item corresponding to the
filtered index location:

Default Public Property Item(ByVal index As Integer) As T _
Implements IList(Of T).Item

Get
If mFiltered Then
Dim src As Integer = OriginalIndex(index)
Return mList(src)

Else
Return mList(index)

End If
End Get
Set(ByVal value As T)

If mFiltered Then
mList(OriginalIndex(index)) = value

Else
mList(index) = value

End If
End Set

End Property

Notice the use of the OriginalIndex() helper method to translate the filtered index
location back to the original list location, so the item can be retrieved from the original list.
This reinforces the idea that the FilteredBindingList doesn’t directly contain the items, but
rather, it delegates all that work to the original list.

Removing the Filter
Along with the ApplyFilter()methods, there’s also a RemoveFilter() method to remove
any filter:

www.4electron.com

Page 73

Public Sub RemoveFilter()

UnDoFilter()

End Sub

The UndoFilter() method is the counterpart to DoFilter(), removing the filter and
resetting all the fields to default values:

Private Sub UnDoFilter()

mFilterIndex.Clear()
mFilterBy = Nothing
mFilter = Nothing
mFiltered = False

OnListChanged(New ListChangedEventArgs(ListChangedType.Reset, 0))

End Sub

It also raises the ListChanged event to tell data binding that the list has changed, so any
UI controls can refresh their display accordingly.

Adding Items to a Filtered List
FilteredBindingList allows items to be added or removed from the filtered view, and those
items are directly added or removed from the original list. Removing items is simple enough,
as they are removed from the original list and the filtered view. Adding items is a bit more
complex, because the item being added might not meet the filter criteria. While the item must
be added to the original list, it isn’t so clear whether it should also be added to the filtered
view.

I opted to leave all added items in the filtered view, even if they don’t meet the filter
criteria. The reason is the user experience for in-place editing within a grid control. If the user
adds an item into a grid control that is bound to a filtered list, the user probably expects that
item to remain in the grid. If FilteredBindingList immediately removes the new item from
the view, the user would see the row disappear, even though it was added to the original list,
and that could lead to serious confusion.

This is implemented in the SourceChanged() method, which is where
FilteredBindingList is notified that the original list has changed. Remember that any item
added to the list is actually added to the original list, and the filtered view finds out about this
through a ListChanged event, which is handled by the SourceChanged() method. This
method contains several sections to handle different events, including the case that a new
item was added to the original list:

Case ListChangedType.ItemAdded
listIndex = e.NewIndex
' add new value to index
newItem = mList(listIndex)
If Not mFilterBy Is Nothing Then
newKey = mFilterBy.GetValue(newItem)

Else
newKey = newItem

End If
mFilterIndex.Add(New ListItem(newKey, listIndex))
filteredIndexValue = mFilterIndex.Count - 1
' raise event
OnListChanged(_

www.4electron.com

Page 74

New ListChangedEventArgs(e.ListChangedType, filteredIndexValue))

This code contains many of the elements of the DoFilter() method I discussed earlier. It
determines whether the filter is applied to a specific property or not, and sets a newKey value
to the key value for the newly added item. It then adds a new entry to the filtered index
corresponding to this new item in the original list.

Notice that it does not invoke the filter provider method. The newly added item is added at
the end of the filtered view regardless of whether it matches the filter criteria, so there’s no
reason to invoke the filter provider method at all. This approach provides a user doing in-
place editing in a data bound grid control with a predictable and expected experience.

At this point, you should understand that the FilteredBindingList merely maintains a
filtered cross-reference index so it can provide a filtered view of the original list. Where
possible, it delegates all work to the original list, though it often must translate index values
between the filtered position and the original position of each item. The class also directly
implements some properties and methods, like Count, to provide the illusion of being an
actual collection rather than just a wrapper over another collection.

Using the Enhancements
While the implementation of FilteredBindingList is quite complex, using a filtered list is
quite straightforward. Remember that FilteredBindingList looks and works like any
BindingList(Of T) collection object, and so it can be used anywhere you would have
otherwise used a BindingList(Of T).

However, if you call the ApplyFilter() method, you can get a filtered view of the list,
and that’s the value of this object. In some cases you may need to build your own filter
provider method, because a simple Contains() check may be insufficient for your needs.

I’ll walk through the basic use of the object first, and then discuss how you can create and
use your own filter provider method. Then I’ll discuss how you can use
FilteredBindingList and SortedBindingList together to create a filtered and sorted view of
a list.

Using FilteredBindingList
The FilteredBindingList class itself is very similar in concept to the SortedBindingList
already in CSLA .NET. It merely contains a reference to the original list object, and provides
a filtered view of the items in that original list.

Creating an instance of FilteredBindingList requires that you already have an original
list that contains the items you want to filter. This list can be as simple as an array, or as
complex as a BindingList(Of T) or a business collection derived from
BusinessListBase(Of T,C) or ReadOnlyListBase(Of T,C). Here’s a simple example using
an array of String values:

Dim originalList() As String = {"Rocky", "John", "Fred"}

Dim filteredList As New FilteredBindingList(Of String)(originalList)

filteredList.ApplyFilter("", "J")

www.4electron.com

Page 75

The result of this code is that filteredList will have a Count of 1, and it will contain only
the item John, because that’s the only element containing the letter J.

Here’s another example, using a collection of Customer objects:

Dim customers As CustomerList = CustomerList.GetCustomers()

Dim filteredList As New FilteredBindingList(Of Customer)(customers)

filteredList.ApplyFilter("Name", "J")

The result of this code will be only Customer objects with Name properties that contain the
letter J. Notice that the FilteredBindingList is of type Customer, not CustomerList. This
follows the same pattern as BindingList(Of T), where the type parameter specifies the type
of the items in the list.

These examples show two ways of calling ApplyFilter(), with and without a property
name on which to filter. If Nothing or an empty String is passed as the property name, then
the filter runs against the entire object. When a property name is passed to the method, then
only that property value is used by the filter.

There’s also an overload of ApplyFilter() that accepts a PropertyDescriptor instead of
the property name. This overload exists for parity with SortedBindingList, and isn’t used in
most scenarios.

Creating a Custom Filter
The previous examples use the default filter provider method, which does a simple
Contains() check to see if the specified text value is in the target object or property. You
may have more sophisticated requirements for your filter criteria.

In that case, you’ll need to create your own filter provider method. Typically, this will be
a Shared method, or a method in a Module, though it can be any method you can use with the
AddressOf operator. The primary requirement is that the method signature conform to the
FilterProvider delegate discussed earlier. The method must return True for items that
should be included in the filtered view, and False for those that should not. Here’s the basic
structure of a filter provider method:

Public Module MyCustomFilter

Public Function Filter(ByVal item As Object, ByVal filterValue As Object) As Boolean

If <condition is met> Then
Return True

Else
Return False

End If

End Function

End Module

The <condition is met> part of the code is where you come in. You need to implement
code here to check the value of the item parameter based on your rules, along with any
criteria provided through the filterValue parameter.

www.4electron.com

Page 76

Remember that the item parameter could be the value of a specific property, or it could be
a reference to the actual business object. And keep in mind that the filterValue parameter is
of type Object, and so it could be any value you’d like, even a complex object.

You can use this custom filter method by passing it into the FilteredBindingList in
various ways. For example, when you create an instance of the list you can provide a
reference to your method:

Dim list As New List(Of String)

Dim filteredList As New FilteredBindingList(Of String)(_
list, AddressOf MyCustomFilter.Filter)

filteredList.ApplyFilter(...)

Another approach is to set the FilterProvider property:

Dim list As New List(Of String)

Dim filteredList As New FilteredBindingList(Of String)(list)
filteredList.FilterProvider = AddressOf MyCustomFilter.Filter

filteredList.ApplyFilter(...)

Or you can pass the custom filter method as a parameter to the ApplyFilter() method:

Dim list As New List(Of String)

Dim filteredList As New FilteredBindingList(Of String)(list)

filteredList.ApplyFilter("", AddressOf MyCustomFilter.Filter)

In each case the FilteredBindingList will use your custom filter method to filter the
contents of the list.

Combining FilteredBindingList with SortedBindingList
One of the most exciting features of FilteredBindingList is that it can be applied against
any IList(Of T). The same is true of SortedBindingList. And both of these objects
implement IList(Of T) themselves, which means they can be applied to each other. The
result is that you can take an original list, apply a filter to it, and then apply a sort to that
filtered result:

Dim originalList() As String = {"Rocky", "John", "Fred", "Joe"}

Dim filteredList As New FilteredBindingList(Of String)(originalList)

filteredList.ApplyFilter("", "J")

Dim sortedList As New SortedBindingList(Of String)(filteredList)

sortedList.ApplySort("", ComponentModel.ListSortDirection.Ascending)

The result of this code is that sortedList has a Count of 2, containing John and Joe, but
sorted in ascending order. Keep in mind that filteredList also has a Count of 2, and it
contains John and Joe, but not in sorted order, and originalList contains all four original
items.

www.4electron.com

Page 77

Of course neither sortedList nor filteredList really contain any items at all, they
merely contain sorted and filtered indexes back to the items contained in originalList.

You should now understand how to use FilteredBindingList, including how to create
your own filter provider methods and how you can combine it with SortedBindingList to
create filtered and sorted views of an original list object.

www.4electron.com

Page 78

EditableRootListBase
CSLA .NET 2.0 supports three types of collection; through the BusinessListBase,
ReadOnlyListBase and NameValueListBase classes. Only BusinessListBase is designed to
support adding, removing and editing of the items in the collection, and it requires that the
objects it contains be editable child objects. That means objects that inherit from
BusinessBase, where those objects call MarkAsChild() in their constructor.

The process of using a BusinessListBase-derived object is that you retrieve the
collection, you interact with the collection and the items it contains, and then you save the
collection:

' get the the collection
Dim codes As CodeList = CodeList.GetList

' edit the data in the collection
codes(0).Name = "New value"
codes(1).Name = "Another value"

' save all the changes
codes = codes.Save

This last step, saving the collection, is when any changes to the collection and its child
objects are committed to your database. All changes are typically saved as a transactional
unit.

In some cases more dynamic behavior is desired, so the changes to each item in the
collection can be saved immediately, rather than waiting to save all the changes in a single
Save() call at the end. This is the purpose behind the EditableRootListBase class: to
support this more granular editing process:

' get the collection
Dim codes As CodeList = CodeList.GetList

' edit the first item
codes(0).Name = "New value"
codes.SaveItem(0)

' edit the second item
codes(1).Name = "Another value"
codes.SaveItem(1)

While this code accomplishes the same result as the prior example, the way it works is
very different. In this case, each item is individually saved to the database right after the
value has been edited. Rather than all changes being saved within the context of a single call
to the data portal, and within a single transaction, this new approach uses separate calls to the
data portal and separate transactions for each save operation.

Behind the scenes the implementation of the “child” objects is different as well.
EditableRootListBase is designed to contain editable root objects, rather than editable child
objects. In other words, it contains objects that inherit from BusinessBase that do not call
MarkAsChild() in their constructor.

It is also the case that EditableRootList base tightly interacts with Windows Forms data
binding for in-place editing within a grid control. The result is that edits to an item in the
collection are automatically saved as the user moves out of a row in the grid control. This

www.4electron.com

Page 79

includes both adding and editing of items. Also, if the user deletes an item in the grid control,
that item is automatically deleted from the database, as soon as it is removed from the grid
control.

Framework Changes
Implementing EditableRootListBase requires the addition of an interface, and some
alterations to BusinessBase to support some of the automatic interaction with data binding
through the new collection type. The following classes are changed:

 BusinessBase

And the following are new types:

 EditableRootListBase

 IParent (from Csla.Core)

Implementing EditableRootListBase
In this chapter I’ll discuss only the EditableRootListBase class itself. The IParent interface,
and the changes it requires in BusinessBase are discussed in the Csla.Core chapter later in
the book.

EditableRootListBase Class
This new collection type inherits from the ExtendedBindingList class, which I’ll discuss in
the Csla.Core chapter later in the book. For now it is enough to understand that
ExtendedBindingList inherits from BindingList(Of T), which means that
EditableRootListBase essentially inherits from BindingList(Of T) as well:

<Serializable()> _
Public MustInherit Class EditableRootListBase(_

Of T As {Core.IEditableBusinessObject, Core.ISavable})
Inherits Core.ExtendedBindingList(Of T)

Implements Core.IParent

Like all CSLA .NET base classes, the Serializable attribute is used to indicate that this
is a mobile object.

Also notice the constraints on the type parameter, T. EditableRootListBase will only
contain objects that implement both the IEditableBusinessObject and ISavable interfaces
as defined in Csla.Core. The result is that the collection can only contain editable root
objects.

Finally, the class implements the IParent interface. This interface will be covered in
detail in the Csla.Core chapter later in the book, but for now you should know that this
interface enables interaction between an object and its container, or parent.

www.4electron.com

Page 80

EditableRootListBase is organized into a set of code regions:

 SaveItem Methods

 Insert, Remove, Clear

 IParent Members

 Cascade Child Events

 Serialization Notification

 Data Access

Each region implements a key part of the functionality in the object. Several of these
regions should seem familiar, as they are the same as you’d find in other CSLA .NET base
classes. Others are unique to this particular class.

Let’s walk through the code in each region.

SaveItem Methods Region
This region contains the code to save individual items in the collection. There are two
overloads of the SaveItem() method, and they are both public so a UI developer can call
them if needed. As you’ll see, it is also the case that SaveItem() is automatically called due
to the tight integration with Windows Forms data binding.

The first overload is a convenience, allowing the saving of an item by reference:

Public Sub SaveItem(ByVal item As T)

SaveItem(IndexOf(item))

End Sub

The real work happens in the other overload:

Public Overridable Sub SaveItem(ByVal index As Integer)

Dim raiseEvents As Boolean = Me.RaiseListChangedEvents
Me.RaiseListChangedEvents = False

mActivelySaving = True
Dim item As T = Me.Item(index)
Dim editLevel As Integer = item.EditLevel
' commit all changes
For tmp As Integer = 1 To editLevel

item.AcceptChanges()
Next
Try

' do the save
Me.Item(index) = DirectCast(item.Save, T)

Finally
' restore edit level to previous level
For tmp As Integer = 1 To editLevel
item.CopyState()

Next

mActivelySaving = False
Me.RaiseListChangedEvents = raiseEvents

End Try
Me.OnListChanged(New ListChangedEventArgs(ListChangedType.ItemChanged, index))

www.4electron.com

Page 81

End Sub

The primary responsibility of this method is to call the Save() method on the item to be
saved. It does this through the ISavable interface, and so can work with any editable root
object:

Try
' do the save
Me.Item(index) = DirectCast(item.Save, T)

Remember that the type parameter, T, is constrained by the ISavable interface, so any
field of type T is guaranteed to have a Save() method.

Notice that the result of the Save() call is used to replace the item in the list. This means
that the collection automatically ends up containing a reference to the result of Save(), and
the old reference is discarded.

Before trying to do the save, RaiseListChangedEvents is set to False to prevent any
events raised by the child object during the save process from triggering ListChanged events
back to the UI. Without this step the UI could receive numerous changed events during the
save operation, causing UI flicker and possibly resulting in bugs that could be hard to find.

The mActivelySaving field is used to indicate that the child item is in the process of being
saved. As you’ll see, this is important because it is used to suppress the handling of some
events that are raised during the process. If those events aren’t suppressed, an infinite loop
and stack overflow could result.

The most complex issue addressed in this code deals with the edit level of the child object.

Remember that CSLA .NET business objects support n-level undo capabilities. Windows
Forms data binding often automatically triggers this behavior, especially if you bind the
collection to a grid control. The result is that a child object, as the user edits that object, will
be at edit level 1 or higher.

This is desirable, because it supports the idea that the user might press Esc to cancel
changes to that row of data, and n-level undo can roll the object back to its previous state.

However, an object can only be saved if it is at edit level 0. This means that the edit level
must be brought down to 0 before Save() can be called:

Dim editLevel As Integer = item.EditLevel
' commit all changes
For tmp As Integer = 1 To editLevel

item.AcceptChanges()
Next

However, once the Save() method has been called, the edit level must be restored to its
original value, or data binding will fail to work properly:

' restore edit level to previous level
For tmp As Integer = 1 To editLevel
item.CopyState()

Next

www.4electron.com

Page 82

The issue would be that data binding would expect the object to be in an editable state,
and if we don’t restore the edit level there’d be a mismatch between data binding’s
expectation and the object’s actual state.

The final step is to raise a ListChanged event to indicate that the item has changed:

Me.OnListChanged(New ListChangedEventArgs(ListChangedType.ItemChanged, index))

Remember that the Save() call replaced the original item with a new object reference, so
it is important that any consumers of the collection, such as data binding, know to refresh
their references and update the display of any information.

Insert, Remove, Clear Region
As items are added to the collection, they must be made aware of their new parent. This is
done by calling the SetParent() method on the newly added object. The InsertItem()
method is automatically called when an item is inserted or added to the collection, so it is a
natural place to take care of this detail:

Protected Overrides Sub InsertItem(ByVal index As Integer, ByVal item As T)

item.SetParent(Me)
MyBase.InsertItem(index, item)

End Sub

Removing an item from the collection is a bit more complex, because removing an item
from the collection means deleting it from the database as well. This is done by marking the
object for deletion and then saving the object; using the deferred deletion support already in
CSLA .NET.

The RemoveItem() method is automatically called when an item is being removed from
the collection:

Protected Overrides Sub RemoveItem(ByVal index As Integer)

' delete item from database
Dim item As T = Me.Item(index)

' only delete/save the item if it is not new
If Not item.IsNew Then

item.Delete()
SaveItem(index)

End If

' disconnect event handler if necessary
Dim c As System.ComponentModel.INotifyPropertyChanged = _

TryCast(item, System.ComponentModel.INotifyPropertyChanged)
If c IsNot Nothing Then

RemoveHandler c.PropertyChanged, AddressOf Child_PropertyChanged
End If

MyBase.RemoveItem(index)

End Sub

If the item being removed from the collection is a new object, then IsNew will return True.
In that case, the object’s data doesn’t yet exist in the database, so there’s no need to try and

www.4electron.com

Page 83

delete it. However, if IsNew is False then the data exists in the database so the object needs to
be deleted:

If Not item.IsNew Then
item.Delete()
SaveItem(index)

End If

The next bit of code removes any event handler hooked up to the item’s PropertyChanged
event. Normally BindingList(Of T) automatically handles this event hookup, but if the
collection is serialized and deserialized, then the automatic hookup doesn’t occur and an
event handler must be set up explicitly as discussed in the Serialization Notification Region
discussion later in this chapter.

If you manually set up an event handler, it is important to remove that event handler when
you are done with the object, and that’s what happens here:

' disconnect event handler if necessary
Dim c As System.ComponentModel.INotifyPropertyChanged = _

TryCast(item, System.ComponentModel.INotifyPropertyChanged)
If c IsNot Nothing Then

RemoveHandler c.PropertyChanged, AddressOf Child_PropertyChanged
End If

If the item can be cast to INotifyPropertyChanged, the event handler is removed. If no
event handler was established the removal does no work, and doesn’t fail.

IParent Members Region
The IParent interface defined in Csla.Core formalizes the responsibilities of any object that
contains other objects. It requires that the parent object in this case EditableRootListBase,
handles the case where the child object’s ApplyEdit() method has been called, and when the
child wishes to be removed from its parent.

The ApplyEditChild() method is called by a child object when its ApplyEdit() method
has been called, so the parent knows that the child’s edit level has been reduced by one. This
is important for EditableRootListBase, because when one if its items’ edit level reaches 0,
that item should be automatically saved:

Private Sub ApplyEditChild(_
ByVal child As Core.IEditableBusinessObject) _
Implements Core.IParent.ApplyEditChild

If Not mActivelySaving AndAlso child.EditLevel = 0 Then
SaveItem(CType(child, T))

End If

End Sub

Notice the use of the mActivelySaving field, as well as the check for the edit level. The
reason for this is that the SaveItem() method I discussed earlier may try to lower the edit
level to 0. In that case, this ApplyEditChild() method should not also try to trigger a save of
the item or the result would be two save attempts on the same child object.

The complexity comes because there are two ways to trigger the saving of an item:
manually, by calling SaveItem(), or automatically through data binding when the edit level

www.4electron.com

Page 84

of a child item hits 0. To make things even more interesting, you could manually trigger this
edit level process in your code as well. For instance:

' get the collection
Dim codes As CodeList = CodeList.GetList

' edit the first item
codes(0).BeginEdit
codes(0).Name = "New value"
codes(0).ApplyEdit

That last line of code calls ApplyEdit(), lowering the edit level from 1 to 0. As a result
the child item calls the ApplyEditChild() method in the collection, triggering a save
operation. This is exactly what data binding does on your behalf when editing the collection
in a Windows Forms grid control.

It is also possible, when using in-place editing in a grid control, for data binding to trigger
the removal of a new child object. However, we’ve already overridden the RemoveItem()
method in the collection, so the removal of child items is handled. Due to this, the
RemoveChild() method does no work:

Private Sub RemoveChild(_
ByVal child As Core.IEditableBusinessObject) Implements Core.IParent.RemoveChild

' do nothing, removal of a child is handled by
' the RemoveItem override

End Sub

Of course some implementation of this method is required by the IParent interface, even
if it is an empty implementation.

Cascade Child Events Region
As I mentioned earlier, BindingList(Of T) normally handles the PropertyChanged events
from any child objects in the collection. However, if the collection is serialized and
deserialized then those event handlers don’t get automatically reestablished. To overcome
this, I manually handle the event using the following handler:

Private Sub Child_PropertyChanged(ByVal sender As Object, _
ByVal e As System.ComponentModel.PropertyChangedEventArgs)

For index As Integer = 0 To Count - 1
If ReferenceEquals(Me(index), sender) Then
OnListChanged(New System.ComponentModel.ListChangedEventArgs(_

ComponentModel.ListChangedType.ItemChanged, index))
Exit For

End If
Next

End Sub

This code raises a ListChanged event to indicate that the specified item in the collection
has changed. This handler is hooked up to the child object in the Serialization Notification
region.

www.4electron.com

Page 85

Serialization Notification Region
Like all the other CSLA .NET base classes, EditableRootListBase implements a method so
it is notified by the BinaryFormatter when the object has been deserialized. When this
happens, an Overridable method named OnDeserialized() is called, allowing business
classes to also be notified that the object has been deserialized.

In the case of EditableRootListBase, a little extra work is required to manually hook up a
handler for any PropertyChanged events raised by the child objects in the collection:

<OnDeserialized()> _
Private Sub OnDeserializedHandler(ByVal context As StreamingContext)

OnDeserialized(context)
For Each child As Core.IEditableBusinessObject In Me

child.SetParent(Me)
Dim c As System.ComponentModel.INotifyPropertyChanged = _
TryCast(child, System.ComponentModel.INotifyPropertyChanged)

If c IsNot Nothing Then
AddHandler c.PropertyChanged, AddressOf Child_PropertyChanged

End If
Next

End Sub

The code simply loops through all the items in the collection, and adds an event handler
for PropertyChanged if the child item implements the INotifyPropertyChanged interface.

Data Access Region
All the CSLA .NET base classes implement the data access methods required by the data
portal. Some of these methods are Private and merely throw exceptions when called,
because those specific data access operations are not supported. For instance, a read-only
object only supports the DataPortal.Fetch() operation, and all other operations result in an
exception.

While EditableRootListBase is technically not a read-only object, the collection itself
can not be saved or deleted. Remember that each individual child object in the collection
must be an editable root object, and thus is responsible for implementing its own insert,
update and delete operations.

This means that the only data portal the method EditableRootListBase allows to be
overridden in a business subclass is DataPortal_Fetch():

Protected Overridable Sub DataPortal_Fetch(ByVal criteria As Object)
Throw New NotSupportedException(My.Resources.FetchNotSupportedException)

End Sub

The default behavior is to throw an exception, with the goal of forcing the business
developer to override this method to implement their specific data access code. A business
class must override this method with an implementation that loads all the editable root child
objects into the collection based on the supplied criteria.

This completes the EditableRootListBase class. It should now be clear that a business
developer can create a new type of collection that immediately inserts, updates and deletes its
child objects rather than deferring all those changes until the collection itself is saved.

www.4electron.com

Page 86

Using the Enhancements
The EditableRootListBase class offers an alternative to BusinessListBase when building
collections. In many ways this new type of collection is similar to the Dynaset concept from
Visual Basic 3.0 and DAO, in that changes to items in the collection are immediately
committed to the underlying database.

EditableRootListBase Class Template
All EditableRootListBase-derived business collections follow a basic structure. The class
includes a standard set of regions:

 Authorization Rules

 Factory Methods

 Data Access

Because EditableRootListBase already does the majority of the work, not a lot of code is
required in the business subclass. Here’s the code template:

Imports System.Data.SqlClient

<Serializable()> _
Public Class DynamicRootList
Inherits EditableRootListBase(Of EditableRoot)

#Region " Authorization Rules "

Public Shared Function CanGetObject() As Boolean
' TODO: customize to check user role
Return ApplicationContext.User.IsInRole("")

End Function

Public Shared Function CanEditObject() As Boolean
' TODO: customize to check user role
Return ApplicationContext.User.IsInRole("")

End Function

#End Region

#Region " Factory Methods "

Protected Overrides Function AddNewCore() As Object

Dim item As EditableRoot = EditableRoot.NewEditableRoot
Add(item)
Return item

End Function

Public Shared Function NewDynamicRootList() As DynamicRootList
Return New DynamicRootList()

End Function

Public Shared Function GetDynamicRootList() As DynamicRootList
Return DataPortal.Fetch(Of DynamicRootList)()

End Function

Private Sub New()

Me.AllowEdit = True
Me.AllowNew = True
Me.AllowRemove = True

www.4electron.com

Page 87

End Sub

#End Region

#Region " Data Access "

Private Overloads Sub DataPortal_Fetch()

' TODO: load values
RaiseListChangedEvents = False
Using dr As SqlDataReader = Nothing

While dr.Read
Add(EditableRoot.GetEditableRoot(dr))

End While
End Using
RaiseListChangedEvents = True

End Sub

#End Region

End Class

This template illustrates how to create a collection that contains a type called
EditableRoot, which would derive from BusinessBase(Of T).

Altering the EditableRoot Template
This EditableRoot class is a standard editable root business object, with one exception: the
GetEditableRoot() factory method is not a typical factory. The GetEditableRoot() factory
method in the EditableRoot class looks like this:

Friend Shared Function GetEditableRoot(ByVal dr As SqlDataReader) As EditableRoot

Return New EditableRoot(dr)

End Function

The constructor called in this code looks like this:

Private Sub New(ByVal dr As SqlDataReader)

Fetch(dr)

End Sub

And the Fetch() method called by the constructor, located in the Data Access region,
looks like this:

Private Sub Fetch(ByVal dr As SqlDataReader)

' load object fields from data reader
' mName = dr.GetString("Name")
MarkOld

End Sub

This code should seem familiar, because it is the same pattern used in the editable child
object template. What I’m doing here is changing only the retrieval code for the editable root
object so it acts like a child object. All the rest of the editable root code remains the same;
including the validation, authorization and data access code.

www.4electron.com

Page 88

Using EditableRootListBase
Using the EditableRootListBase class requires that you create two business classes: the
editable root to be contained in the collection, and the collection itself. To illustrate how to
use this base class, I’ll create a simple editable root, followed by the collection.

Creating an Editable Root
For illustration purposes, the following is the skeleton of a very simple editable root object,
modified slightly so it has a child-style factory method as discussed earlier.

<Serializable()> _
Public Class Person
Inherits BusinessBase(Of Person)

#Region " Business Methods "

Private mId As Integer
Public Property Id() As Integer

<System.Runtime.CompilerServices.MethodImpl(_
Runtime.CompilerServices.MethodImplOptions.NoInlining)> _

Get
CanReadProperty(True)
Return mId

End Get
<System.Runtime.CompilerServices.MethodImpl(_

Runtime.CompilerServices.MethodImplOptions.NoInlining)> _
Set(ByVal value As Integer)

CanWriteProperty(True)
If Not mId.Equals(value) Then
mId = value
PropertyHasChanged()

End If
End Set

End Property

Private mName As String = ""
Public Property Name() As String

<System.Runtime.CompilerServices.MethodImpl(_
Runtime.CompilerServices.MethodImplOptions.NoInlining)> _

Get
CanReadProperty(True)
Return mName

End Get
<System.Runtime.CompilerServices.MethodImpl(_

Runtime.CompilerServices.MethodImplOptions.NoInlining)> _
Set(ByVal value As String)

CanWriteProperty(True)
If Not mName.Equals(value) Then
mName = value
PropertyHasChanged()

End If
End Set

End Property

Protected Overrides Function GetIdValue() As Object
Return mId

End Function

#End Region

#Region " Validation Rules "

#End Region

#Region " Authorization Rules "

www.4electron.com

Page 89

#End Region

#Region " Factory Methods "

Public Shared Function NewPerson() As Person
Return DataPortal.Create(Of Person)()

End Function

Friend Shared Function GetPerson(ByVal dr As SafeDataReader) As Person
Return New Person(dr)

End Function

Private Sub New()
' require use of factory methods

End Sub

Private Sub New(ByVal dr As SafeDataReader)
Fetch(dr)

End Sub

#End Region

#Region " Data Access "

Private Shared lastId As Integer

<RunLocal()> _
Protected Overrides Sub DataPortal_Create()

' set a temporary id value
lastId -= 1
mId = lastId

End Sub

Private Sub Fetch(ByVal dr As SafeDataReader)

mId = dr.GetInt32("Id")
mName = dr.GetString("Name")
MarkOld()

End Sub

Protected Overrides Sub DataPortal_Insert()

' insert data here
Debug.WriteLine(String.Format("Insert object {0}", mId))

End Sub

Protected Overrides Sub DataPortal_Update()

' update data here
Debug.WriteLine(String.Format("Update object {0}", mId))

End Sub

Protected Overrides Sub DataPortal_DeleteSelf()

' delete data here
Debug.WriteLine(String.Format("Delete object {0}", mId))

End Sub

#End Region

End Class

Though I’m not showing the implementation of the DataPortal_XYZ methods, you can see
that all of them are implemented except for DataPortal_Fetch(). Notice too, that the

www.4electron.com

Page 90

GetPerson() factory method is scoped as Friend, and that it ultimately calls the Fetch()
method.

It is also important to note that the class does not call MarkAsChild(). The object should
be an editable root, not a child. Additionally, the Fetch() method explicitly calls MarkOld(),
which is required because the data portal is not being used to load this object with data.

Creating a Dynamic Collection

With the Person class complete, it is possible to create a dynamic list of Person objects by
using the EditableRootListBase class:

<Serializable()> _
Public Class PersonList
Inherits EditableRootListBase(Of Person)

#Region " Authorization Rules "

#End Region

#Region " Factory Methods "

Protected Overrides Function AddNewCore() As Object

Dim item As Person = Person.NewPerson
Add(item)
Return item

End Function

Public Shared Function GetList() As PersonList

Return DataPortal.Fetch(Of PersonList)()

End Function

Private Sub New()

Me.AllowEdit = True
Me.AllowNew = True
Me.AllowRemove = True

End Sub

#End Region

#Region " Data Access "

Private Overloads Sub DataPortal_Fetch()

Me.RaiseListChangedEvents = False

Dim dr As SafeDataReader = Nothing
' load data reader from database
While dr.Read

Add(Person.GetPerson(dr))
End While

Me.RaiseListChangedEvents = True

End Sub

#End Region

End Class

www.4electron.com

Page 91

This code is primarily focused on loading the collection with the appropriate editable root
objects. While I’m using a parameterless DataPortal.Fetch() call, you could pass a criteria
object as a parameter through to DataPortal_Fetch() if you need to filter the data that is
loaded. The options for using the data portal here are the same as with any other CSLA .NET
object.

Notice that the DataPortal_Fetch() method is responsible for retrieving the data from the
database and passing the data reader object to the GetPerson() factory method, thus creating
a Person object for each row of data from the database.

All the inserting, updating and deleting is automatically handled by
EditableRootListBase, and by the Person object itself, so your collection code remains very
simple.

I am also overriding the AddNewCore() method to enable in-place adding of new items by
data binding in a grid control. This is a standard implementation of AddNewCore(); where a
new item is created, added to the list and returned as a result of the method.

Interacting with the Dynamic Collection

Once you have a dynamic collection of editable root objects, you can interact with it through
code or using data binding. While this collection style is designed primarily to support
Windows Forms data binding with in-place editing in a grid control, you may find other
scenarios where it is useful to you as well.

Using Data Binding
Using the collection with data binding is similar to using any other collection type, other than
that you don’t need to write any code to save the changes to the data. If you have a Windows
Form with a grid control and associated BindingSource control, you’d set up the data binding
like this:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Me.PersonListBindingSource.DataSource = PersonList.GetList

End Sub

No other code is required in the form, because the collection directly commits any inserts,
updates or deletes to the database as they occur in the grid control itself.

Using Manual Code with N-level Undo
You can also interact with the collection through code. If you choose to use n-level undo on
the items in the collection then the same automatic behaviors used by data binding will be
invoked on your behalf. For example, the following code edits an item, saving the results to
the database:

Dim list As PersonList = PersonList.GetList

list(0).BeginEdit
list(0).Name = "John"
list(0).ApplyEdit

www.4electron.com

Page 92

The following code inserts a new item:

Dim list As PersonList = PersonList.GetList

Dim newPerson As Person = list.AddNew

newPerson.BeginEdit()
newPerson.Id = 42
newPerson.Name = "Alice"
newPerson.ApplyEdit()

And the following code deletes an item:

Dim list As PersonList = PersonList.GetList

list.RemoveAt(0)

In each case the changes to the item are immediately committed to the database. This is
automatically handled by the EditableRootListBase class itself.

Using Manual Code with Explicit SaveItem
If you don’t want to use n-level undo, you can make explicit calls to the SaveItem() method
on the collection, forcing individual items to be saved to the database. The following code is
an example of editing an item:

Dim list As PersonList = PersonList.GetList

list(0).Name = "John"
list.SaveItem(0)

The following inserts a new item:

Dim list As PersonList = PersonList.GetList

Dim newPerson As Person = list.AddNew

newPerson.Id = 42
newPerson.Name = "Alice"
list.SaveItem(newPerson)

Notice the use of the SaveItem() overload that accepts an object reference as a parameter.
This is simpler than trying to determine the index position of the newly added item,
especially when the code already has a reference to that new item.

Finally, the following removes an existing item:

Dim list As PersonList = PersonList.GetList

list.RemoveAt(0)

Regardless of which technique you use to interact with your collection, you can see that
EditableRootListBase simplifies the process of creating a dynamic collection that performs
immediate updates of the database as the collection and its items are changed in your
application.

www.4electron.com

Page 93

Csla.Core Interfaces and Types
A number of changes have been made in Csla.Core, including the addition of some new base
classes and interfaces, along with some restructuring of some existing interfaces. Most of
these changes have been made in support of other changes in the framework. Other changes
were made to support either UI or business developer scenarios, such as the ISavable
interface which makes it easier to build a UI framework.

Table 8 lists the changes to the Csla.Core namespace.

Change Description
ExtendedBindingList Extends BindingList(Of T) to add a RemovingItem

event to lists.

IExtendedBindingList Interface used in the implementation of
ExtendedBindingList.

RemovingItemEventArgs EventArgs subclass used in the implementation of
ExtendedBindingList.

ISavable Provides a standard mechanism by which any
editable root object can be saved.

SavedEventArgs EventArgs subclass used in the implementation of
ISavable.

IParent Formalizes the concept of a parent object that
contains child objects.

IEditableBusinessObject Enhanced to interact properly with the new
interfaces added in version 2.1.

IReportTotalRowCount Defines a property used to implement paged
collections. Used by CslaDataSource.

Table 8. Changes to Csla.Core.

Framework Changes
These changes can be grouped together into some broader themes:

 Raising a RemovingItem event from collections

 Standardizing the save process for editable objects

 Standardizing the parent-child relationship between objects

 Enabling paged collections

I’ll walk through each of these in turn.

www.4electron.com

Page 94

Implementing ExtendedBindingList
The ExtendedBindingList class inherits from BindingList(Of T) and adds a RemovingItem
event. All the CSLA .NET collection base classes now inherit from ExtendedBindingList
rather than BindingList(Of T), and so gain this event as part of their interface. This
includes:

 BusinessListBase

 ReadOnlyListBase

 EditableRootListBase

CSLA .NET collections already raise a ListChanged event because they inherit from
BindingList(Of T). Unfortunately, the ListChanged event is raised after an item has been
removed. This makes it impossible to do anything with the removed item.

The purpose behind the RemovingItem event is to notify listeners that an item is in the
process of being removed from the collection, such that the event handler can get a reference
to the item being removed.

Declaring events in serializable objects is challenging, because the event might be handled
by a method on a non-serializable object, such as a Windows Form or Web Page. In that case,
when attempting to serialize the object you’ll get an exception indicating that you are trying
to serialize a non-serializable object.

The reason for this is that an event handler, behind the scenes, causes your object to
maintain a reference to the object handling the event. During serialization, the
BinaryFormatter traces all your object references, including these event references, so it can
serialize those objects as well.

To overcome this issue, you must use a block structure to declare your events in a manner
that is safe for serialization, and this is what ExtendedBindingList does with the
RemovingItem event. The object reference is provided through the RemovingItemEventArgs
parameter object that is provided with the event.

RemovingItemEventArgs Class
The RemovingItemEventArgs class is a subclass of EventArgs and follows the standard
pattern for an EventArgs parameter object. This object will be passed to any method handling
the RemovingItem event, and it provides that method with a reference to the item being
removed from the collection:

Public Class RemovingItemEventArgs
Inherits EventArgs

Private mRemovingItem As Object

Public ReadOnly Property RemovingItem() As Object
Get
Return mRemovingItem

End Get
End Property

Public Sub New(ByVal removingItem As Object)
mRemovingItem = removingItem

End Sub

www.4electron.com

Page 95

End Class

The item reference is set in the constructor, and is provided to the event handler through a
read-only property.

ExtendedBindingList Class

The ExtendedBindingList class inherits from BindingList(Of T) in the
System.ComponentModel namespace, and extends that base class by adding the RemovingItem
event:

<Serializable()> _
Public Class ExtendedBindingList(Of T)

Inherits BindingList(Of T)

Implements IExtendedBindingList

#Region " RemovingItem event "

<NonSerialized()> _
Private mNonSerializableHandlers As EventHandler(Of RemovingItemEventArgs)
Private mSerializableHandlers As EventHandler(Of RemovingItemEventArgs)

Public Custom Event RemovingItem As EventHandler(Of RemovingItemEventArgs) _
Implements IExtendedBindingList.RemovingItem

AddHandler(ByVal value As EventHandler(Of RemovingItemEventArgs))
If value.Method.IsPublic AndAlso _

(value.Method.DeclaringType.IsSerializable OrElse value.Method.IsStatic) Then
mSerializableHandlers = _
CType(System.Delegate.Combine(_

mSerializableHandlers, value), EventHandler(Of RemovingItemEventArgs))

Else
mNonSerializableHandlers = _
CType(System.Delegate.Combine(_

mNonSerializableHandlers, value), EventHandler(Of RemovingItemEventArgs))
End If

End AddHandler

RemoveHandler(ByVal value As EventHandler(Of RemovingItemEventArgs))
If value.Method.IsPublic AndAlso _

(value.Method.DeclaringType.IsSerializable OrElse value.Method.IsStatic) Then
mSerializableHandlers = _
CType(System.Delegate.Remove(_

mSerializableHandlers, value), EventHandler(Of RemovingItemEventArgs))
Else

mNonSerializableHandlers = _
CType(System.Delegate.Remove(_

mNonSerializableHandlers, value), EventHandler(Of RemovingItemEventArgs))
End If

End RemoveHandler

RaiseEvent(ByVal sender As System.Object, ByVal e As RemovingItemEventArgs)
If mNonSerializableHandlers IsNot Nothing Then

mNonSerializableHandlers.Invoke(sender, e)
End If
If mSerializableHandlers IsNot Nothing Then

mSerializableHandlers.Invoke(sender, e)
End If

End RaiseEvent
End Event

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Sub OnRemovingItem(ByVal removedItem As T)

RaiseEvent RemovingItem(Me, New RemovingItemEventArgs(removedItem))

www.4electron.com

Page 96

End Sub

#End Region

Protected Overrides Sub RemoveItem(ByVal index As Integer)
OnRemovingItem(Me(index))
MyBase.RemoveItem(index)

End Sub

End Class

The event is declared using a block structure, meaning that the code directly implements
the adding and removing of event handlers. To store the references to the event handlers,
delegate fields are used. Notice how they are declared:

<NonSerialized()> _
Private mNonSerializableHandlers As EventHandler(Of RemovingItemEventArgs)
Private mSerializableHandlers As EventHandler(Of RemovingItemEventArgs)

The first is declared with the NonSerialized attribute, indicating that the
BinaryFormatter should not attempt to serialize the objects referenced by this delegate. The
second is a normal delegate declaration, similar to the one the compiler would have created
for a normal event.

The code to add and remove handlers then checks to see if the handler of the event is an
instance method of a non-serializable object. If that is the case then the NonSerialized
delegate is used to store the handler reference, otherwise the normal delegate is used. For
instance, here’s the check used when adding a handler:

If value.Method.IsPublic AndAlso _
(value.Method.DeclaringType.IsSerializable OrElse value.Method.IsStatic) Then

The event is raised when an item is being removed from the collection. The RemoveItem()
method is automatically invoked during the remove process. By overloading that method I
can raise the RemovingItem event while the item being removed is still available:

Protected Overrides Sub RemoveItem(ByVal index As Integer)
OnRemovingItem(Me(index))
MyBase.RemoveItem(index)

End Sub

Notice that the reference to the object being removed is passed as a parameter to the
OnRemovingItem() method. The OnRemovingItem() method follows the standard .NET
pattern for raising events:

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Sub OnRemovingItem(ByVal removedItem As T)

RaiseEvent RemovingItem(Me, New RemovingItemEventArgs(removedItem))

End Sub

This method creates an instance of the RemovingItemEventArgs object, passing in the
reference to the item being removed, so that reference will be available to all event handlers
listening for this event.

www.4electron.com

Page 97

While BindingList(Of T) is very powerful, the RemovingItem event is a useful extension
to the base functionality it provides.

Implementing ISavable
Editable root objects in CSLA .NET implement a Save() method. This includes objects that
inherit from both BusinessBase and BusinessListBase. In version 2.0 there was no common
interface between both types of savable object, which made it very difficult to implement
consistent UI frameworks that could save any editable root object.

The ISavable interface has been added to formalize the concept of a savable object, which
really means an editable root object. Not only does ISavable define a common Save()
method, but it defines a new event: Saved.

The Saved event is raised after an object has successfully saved itself by calling the data
portal. This event follows the standard EventHandler pattern, passing two parameters to the
event handler: a reference to the sender and a SavedEventArgs parameter. This
SavedEventArgs parameter contains a reference to the new object that will be returned as a
result of the Save() method call.

This event is intended to address the complexity that occurs when your business object is
referenced in numerous locations throughout your application; by multiple forms in the UI,
for instance. If you call Save() on the object in one location, all the other places where that
object is referenced must be updated to use the new object returned as a result of Save(). In
the past, you needed to implement some notification mechanism so your code could know to
update those references.

The Saved event provides a solution because it is a standard, centralized, event that
provides this notification. Any code holding a reference to a business object can handle the
Saved event. That code will be notified when that object has been saved. The code can then
update its reference to use the new object returned as a result of the Save() call.

ISavable Interface
The ISavable interface itself is straightforward:

Public Interface ISavable
Function Save() As Object
Event Saved As EventHandler(Of SavedEventArgs)

End Interface

Any class implementing this interface can be clearly saved, and will notify listeners once
it has been saved.

SavedEventArgs Class
The SavedEventArgs class is a standard EventArgs subclass that provides a reference to the
new object returned as a result of the Save() method:

Public Class SavedEventArgs
Inherits EventArgs

Private mNewObject As Object

Public ReadOnly Property NewObject() As Object

www.4electron.com

Page 98

Get
Return mNewObject

End Get
End Property

Public Sub New(ByVal newObject As Object)
mNewObject = newObject

End Sub

End Class

The new object reference is passed in a parameter to the constructor, and is provided to
event handlers as a read-only property.

Changes to BusinessBase and BusinessListBase
The ISavable interface is implemented by both BusinessBase and BusinessListBase. Both
are base classes designed to support the creation of editable root objects.

Implementing the Save Method
The Save() method is easily implemented, because both classes already have Save()
methods to which the interface implementation can delegate the work:

Private Function ISavable_Save() As Object Implements Core.ISavable.Save

Return Save()

End Function

Remember that the previous Save() methods return type T, which is the type of the
business object itself. The interface must return type Object, which poses no problem
because any type can cast to Object.

Implementing the Saved Event
The Saved event implementation is somewhat complex. The issue is the same as with the
RemovingItem event discussed earlier in the section on ExtendedBindingList: events require
special declaration in a serializable object. I’m not going to repeat the details here, as the
basic solution is the same as in BindableBase and ExtendedBindingList. The Saved event is
declared using a block structure, and the delegate fields holding the references to event
handlers are separate for serializable and non-serializable objects.

However, there’s one key difference due to the way n-level undo works. Both
BindableBase and ExtendedBindingList sit in the inheritance hierarchy above the point at
which the IUndoableObject interface is implemented; and that is the point at which n-level
undo stop processing fields in your objects.

BusinessBase and BusinessListBase are lower in the inheritance hierarchy than the class
that implements IUndoableObject. Due to this, n-level undo will attempt to take a snapshot
of any fields in these two classes, and that includes the delegate fields that reference the event
handlers. If n-level undo were to try and take snapshots of these fields, a serialization
exception would be the result.

To avoid that issue, the fields must have the NotUndoable attribute:

www.4electron.com

Page 99

<NonSerialized()> _
<NotUndoable()> _
Private mNonSerializableSavedHandlers As EventHandler(Of Csla.Core.SavedEventArgs)
<NotUndoable()> _
Private mSerializableSavedHandlers As EventHandler(Of Csla.Core.SavedEventArgs)

Notice that only the first delegate is marked as NonSerialized, but both are marked as
NotUndoable. The result is that they are totally ignored by n-level undo, and they behave
properly when the object is serialized.

With the Saved event properly declared in both BusinessBase and BusinessListBase, all
that remains is to raise the event at the appropriate point during the save process. The
highlighted line of code shows where the event is raised in the Save() method:

Public Overridable Function Save() As T

If Me.IsChild Then
Throw New NotSupportedException(_
My.Resources.NoSaveChildException)

End If

If EditLevel > 0 Then
Throw New Validation.ValidationException(_
My.Resources.NoSaveEditingException)

End If

If Not IsValid Then
Throw New Validation.ValidationException(_
My.Resources.NoSaveInvalidException)

End If

Dim result As T
If IsDirty Then

result = DirectCast(DataPortal.Update(Me), T)
Else

result = DirectCast(Me, T)
End If

OnSaved(result)
Return result

End Function

The OnSaved() method raises the event:

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Sub OnSaved(ByVal newObject As T)

RaiseEvent Saved(Me, New Csla.Core.SavedEventArgs(newObject))

End Sub

It creates an instance of SavedEventArgs to provide a reference to the result of the Save()
method to all event handlers. Notice that the sender parameter is the original object that was
saved, so an event handler has access to both the old and new object references.

ISavable provides a standard and powerful way to save objects and be notified when
they’ve been saved. This combination can be very useful in the creation of UI frameworks or
reusable base classes for forms or pages.

www.4electron.com

Page 100

Implementing IParent
In CSLA .NET 2.0, the only parent for an editable child object was an object implementing
the IEditableCollection interface; which really meant BusinessListBase. This turned out
to be too limiting, because other objects could contain child objects as well, including the
new EditableRootListBase collection type. I chose to generalize the concept of being a
parent object through the IParent interface.

A number of classes had to change due to the introduction of the IParent interface:

 IEditableBusinessObject

 BusinessBase

 BusinessListBase

And as you’ve already seen, the new EditableRootListBase class makes use of the
IParent interface.

IParent Interface
The IParent interface defines only the methods a child requires of its parent:

Public Interface IParent

Sub RemoveChild(ByVal child As Core.IEditableBusinessObject)
Sub ApplyEditChild(ByVal child As Core.IEditableBusinessObject)

End Interface

The RemoveChild() method is called when a child wants to be removed from its parent.
This method is required by data binding; specifically the
System.ComponentModel.IEditableObject interface defined by Microsoft. The way
IEditableObjectworks, it is possible for data binding to notify a child object that it should
remove itself from its collection. That child object then needs a way to ask the collection to
remove the child object, and this is the purpose behind the RemoveChild() method.

The ApplyEditChild() method is called each time a child’s ApplyEdit() method has
completed. A parent object can use this method to be notified as its child objects have their
changes applied. This method was added specifically to support the functionality of
EditableRootListBase as discussed earlier in this book, but you may find it useful in other
scenarios as well.

Changes to IEditableBusinessObject
Throughout CSLA .NET, all parent reference fields and methods have been changed to use
the IParent interface type. This starts with the SetParent() method defined in the
IEditableBusinessObject interface:

Sub SetParent(ByVal parent As IParent)

Since the BusinessListBase class now implements IParent, there are no existing code
breaks due to this change. However, with this change, there is now much more flexibility in
terms of what objects can be used as parents of other objects.

www.4electron.com

Page 101

Changes to BusinessBase

The BusinessBase class has had a reference to its parent object for some time. That parent
reference is now of type IParent:

<NotUndoable()> _
<NonSerialized()> _
Private mParent As Core.IParent

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected ReadOnly Property Parent() As Core.IParent

Get
Return mParent

End Get
End Property

And of course, due to the change in IEditableBusinessObject , the SetParent() method
now accepts a parameter of type IParent:

Friend Sub SetParent(ByVal parent As Core.IParent) _
Implements IEditableBusinessObject.SetParent

mParent = parent

End Sub

For the most part, the changes to BusinessBase are not significant. However, if you have
pre-existing code that relies on the type of the Parent property you may have to change some
of your code in response to this update.

Changes to BusinessListBase

BusinessListBase now implements the IParent interface, meaning that it implements both
the ApplyEditChild() and RemoveChild() methods. The ApplyEditChild() method isn’t
needed for BusinessListBase to do its work, so the method is an empty implementation:

Protected Overridable Sub EditChildComplete(_
ByVal child As Core.IEditableBusinessObject) _
Implements Core.IParent.ApplyEditChild

' do nothing, we don't really care
' when a child has its edits applied

End Sub

In version 2.0, the RemoveChild() method was already implemented as part of
IEditableCollection, and so it is merely changed to implement the IParent method:

Private Sub RemoveChild(ByVal child As Core.IEditableBusinessObject) _
Implements Core.IEditableCollection.RemoveChild, IParent.RemoveChild

Remove(DirectCast(child, C))

End Sub

My primary motivation behind creating the IParent interface was to enable the new
EditableRootListBase class. There’s no doubt however, that this new interface provides
more clarity around the parent-child relationship, and makes it easier to create new types of
parent object going forward.

www.4electron.com

Page 102

Implementing IReportTotalRowCount
In web applications, it is a common requirement to page the data being returned to the
browser. Ideally, however, you’d also page the data coming from the database, so only the
specific data displayed on the page is actually retrieved from the database itself.

There are also some cases where paged data is required in Windows Forms applications,
though that is less common. The basic structure of the problem and solution is the same in
Windows as in the web: only the data displayed to the user should be retrieved from the
database.

The only real trick to doing this is that you also need to know the total number of rows of
data available. Even if you are returning a paged view of 10 items, you still need to know that
there are 10,000 items in total. The reason this is required is that the UI needs to give the user
appropriate visual cues so the user has an idea how much data there is in total, and where the
current page of data is in relation to the start and end of the available data.

Web Forms data binding is designed to support the concept of paging, but there was no
practical way to tap into this capability in CSLA .NET 2.0. The introduction of the
IReportTotalRowCount interface allows you to create paged collection objects (based on
BusinessListBase or ReadOnlyListBase) that can work with Web Forms data binding.

Some changes to the CslaDataSource control were required as well, and they are
discussed later in the book, along with more details on how you can implement
IReportTotalRowCount to build collections that support paging.

IReportTotalRowCount Interface
The new interface merely defines a TotalRowCount property:

Public Interface IReportTotalRowCount
ReadOnly Property TotalRowCount() As Integer

End Interface

When you want to build a paged collection, you should implement this interface and
return the total number of rows of data available through this property. The collection might
only contain a fraction of the total number of rows available, but this property allows the UI
to determine the total possible number of rows.

Using the Enhancements
The majority of the enhancements to Csla.Core are designed to support other, more public,
enhancements in CSLA .NET itself. Only ExtendedBindingList and ISavable are designed
for direct use by a UI or business developer, and so I’ll discuss how to use them here.

The IReportTotalRowCount interface is also designed for use by a business developer, but
I’ll discuss its use later in the book in the chapter on the CslaDataSource control.

Using ExtendedBindingList
The ExtendedBindingList class inherits from BindingList(Of T) and adds a RemovingItem
event to the pre-existing collection functionality provided by BindingList. You can use
ExtendedBindingList anywhere you’d have used BindingList in the past. For instance:

www.4electron.com

Page 103

Private WithEvents list As New ExtendedBindingList(Of String)

Then you can handle the RemovingItem event, as well as the ListChanged and AddingNew
events provided by BindingList itself:

Private Sub list_AddingNew(_
ByVal sender As Object, ByVal e As System.ComponentModel.AddingNewEventArgs) _
Handles list.AddingNew

End Sub

Private Sub list_ListChanged(_
ByVal sender As Object, ByVal e As System.ComponentModel.ListChangedEventArgs) _
Handles list.ListChanged

End Sub

Private Sub list_RemovingItem(_
ByVal sender As Object, ByVal e As Csla.Core.RemovingItemEventArgs) _
Handles list.RemovingItem

End Sub

Within your RemovingItem event handler method, you can use e.RemovingItem to get a
reference to the item being removed from the collection. You may use this capability to
remove references to the item, or manipulate the item itself as it is being removed from the
list.

Remember that BusinessListBase, ReadOnlyListBase and EditableRootListBase all
inherit from ExtendedBindingList, and so already raise the RemovingItem event
automatically.

Using ISavable
The ISavable interface is designed primarily to support the creation of UI frameworks or
similar components. Using this interface, you can create reusable code that can save any
editable root object. If you have a reference to an editable root object, you can also be
notified when that object has been saved. That way, you can update your reference to use the
result of the Save() operation.

Since there are many approaches to building UI frameworks and components, I’ll
illustrate the basic use of ISavable here, and you can determine how to apply the concept
into your UI as you choose. Given a reference to an editable root object, you can write a
reusable method to save the object like this:

Private mObject As Csla.Core.ISavable

Public Sub SaveObject()

Try
mObject = DirectCast(mObject.Save, Csla.Core.ISavable)

Catch ex As Csla.DataPortalException
' process normal data exceptions here

Catch ex As Exception
' process unexpected exceptions here

End Try

www.4electron.com

Page 104

End Sub

It is also the case that any object implementing ISavable will raise the Saved event. You
can handle that event to be notified when an object has been saved. Using this technique, you
could replace the previous code with the following:

Private WithEvents mObject As Csla.Core.ISavable

Public Sub SaveObject()

Try
mObject.Save()

Catch ex As Csla.DataPortalException
' process normal data exceptions here

Catch ex As Exception
' process unexpected exceptions here

End Try

End Sub

Private Sub mObject_Saved(_
ByVal sender As Object, ByVal e As Csla.Core.SavedEventArgs) _
Handles mObject.Saved

mObject = DirectCast(e.NewObject, Csla.Core.ISavable)

End Sub

Using this second approach, the SaveObject() method no longer updates mObject to use
the result of the Save() method call. Instead, the Saved event handler updates the mObject
reference. Since Saved is only raised if the Save() operation succeeds, the reference is only
updated in the case that a new object is returned as a result of the operation.

Remember that when using the local data portal you should still clone the business object
before attempting the save. In that case, the SaveObject() method should call the Save()
method like this:

DirectCast(DirectCast(mObject, ICloneable).Clone, Csla.Core.ISavable).Save()

The business object is cloned, and then Save() is called on the clone. This way, if there’s
an exception thrown during the save operation the original mObject reference will still point
to the original, unchanged, business object. If you don’t do this, it is possible that the
business object will have been changed in memory during the update process, and it would
then be left in an indeterminate state, resulting in unpredictable results for the user.

This cloning step is only required if you are using a local data portal. If you are using a
remote data portal the object is automatically cloned across the network to the application
server, and so you don’t need to worry about this detail.

The ISavable interface enables the creation of UI frameworks and components, and
simplifies the process of updating references to objects after they’ve been saved. It is
designed for use by both UI and business developers.

At this point, you should have a good understanding of the changes made to the
Csla.Core namespace to both support the other enhancements to CSLA .NET and to provide
new capabilities for UI and business developers.

www.4electron.com

Page 105

LocalContext
CSLA .NET 2.0 introduced the ApplicationContext object, which provides a centralized
location to store and access various application context data. Table 9 lists the types of
information available through ApplicationContext in CSLA .NET 2.1.

Information Description
User A reference to the current user principal that can

be safely used in both ASP.NET and non-
ASP.NET environments.

ExecutionLocation A value indicating whether your code is currently
executing on the client or an application server.

GlobalContext A Dictionary of values available on both client
and server. This data is automatically moved to
and from the application server by the data portal.

ClientContext A Dictionary of values available on both client
and server. This data is automatically moved from
the client to the server by the data portal; but not
from the server back to the client.

LocalContext A Dictionary of values available to your code.
This data is not moved between client and server
by the data portal. The client and server have their
own separate Dictionary objects.

Table 9. Information available through ApplicationContext

Of these, the only new feature in CSLA .NET version 2.1 is LocalContext.

LocalContext is similar to GlobalContext and ClientContext , in that it provides a
Dictionary that is globally available to all your code, in both your business objects and UI.
However, the LocalContext object is not moved across the network by the data portal. This
means that the client and application server both have their own separate LocalContext
objects.

Framework Changes
Implementing LocalContext requires changes only to the ApplicationContext class, which
is in the Csla\DataPortal folder.

Implementing LocalContext
Like GlobalContext and ClientContext, the LocalContext object is designed to be available
to all code for the current user on the client or server, whether the code is executing in
ASP.NET or not. Remember that most server environments are shared by many concurrent
user requests, and so the context objects can not be stored at the AppDomain level. All values

www.4electron.com

Page 106

stored at the AppDomain level are shared by all users of the AppDomain, which would be a
problem on any application server.

This rules out the use of Shared fields or using the AppDomain object itself. The only safe
way to share global data for a user is by putting it on the current Thread object. There is some
complexity introduced by ASP.NET, because the data stored on the Thread object isn’t
guaranteed to be consistently available in that environment. When running in ASP.NET, this
type of data should be stored in the current HttpContext object.

Changes to ApplicationContext

When implementing LocalContext, I followed the same basic technique used with
GlobalContext and ClientContext as discussed in Expert VB 2005 Business Objects (ISBN
1590596315). The following code was added to ApplicationContext:

Private Const mLocalContextName As String = "Csla.LocalContext"

Public ReadOnly Property LocalContext() As HybridDictionary
Get

Dim ctx As HybridDictionary = GetLocalContext()
If ctx Is Nothing Then
ctx = New HybridDictionary
SetLocalContext(ctx)

End If
Return ctx

End Get
End Property

Private Function GetLocalContext() As HybridDictionary

If HttpContext.Current Is Nothing Then
Dim slot As System.LocalDataStoreSlot = _
Thread.GetNamedDataSlot(mLocalContextName)

Return CType(Thread.GetData(slot), HybridDictionary)

Else
Return CType(HttpContext.Current.Items(mLocalContextName), HybridDictionary)

End If

End Function

Private Sub SetLocalContext(ByVal localContext As HybridDictionary)

If HttpContext.Current Is Nothing Then
Dim slot As System.LocalDataStoreSlot = _
Thread.GetNamedDataSlot(mLocalContextName)

Threading.Thread.SetData(slot, localContext)

Else
HttpContext.Current.Items(mLocalContextName) = localContext

End If

End Sub

As you can see, the code detects whether it is running in ASP.NET or not based on
whether HttpContext.Current is Nothing. When running in ASP.NET, the Dictionary is
stored in the HtppContext. Otherwise, it is stored using thread local storage on the Thread
object.

The result is transparent to anyone using LocalContext: the Dictionary is safely available
to all code on the current thread regardless of whether the code is running in ASP.NET or
not.

www.4electron.com

Page 107

Because LocalContext doesn’t get moved to or from the server by the data portal there’s
no need to worry about writing code to move the object across the network. However, if the
data portal is running on an application server, it always calls ApplicationContext.Clear()
as the data portal request completes, ensuring that one user’s context data isn’t accidentally
made available to the next user on that server thread. This applies to LocalContext as well,
and so the Clear() method must also clear the LocalContext value:

Public Sub Clear()

SetContext(Nothing, Nothing)
SetLocalContext(Nothing)

End Sub

By setting the value to Nothing, the code ensures that the next user on this thread will not
have access to the previous user’s context data.

Using the Enhancements
The LocalContext object is a Dictionary that can contain any values you wish to make
globally available to your code. These values are not shared between the client and the
application server (if you are using a remote data portal), they are local to the specific
environment.

On the application server, LocalContext exists only for the duration of the current data
portal call. When the current data portal call completes, the LocalContext object on the
server is discarded.

In a Windows Forms client, the LocalContext exists as long as the client process is
running. This means that the context data is available for the lifetime of the application. In a
Web Forms client, the LocalContext exists for the duration of the current page request,
typically a fraction of a second. If you need longer-lived context data in a Web Forms
application you should use the ASP.NET Session object instead.

The primary motivation for adding LocalContext to CSLA .NET is to provide an easy
way to share database connection or transaction objects across all your data access code.

While System.Transactions offers some important benefits over Enterprise Services in
terms of performance, it still invokes the Distributed Transaction Coordinator (DTC) as soon
as you open more than one database connection. This includes opening a second database
connection to the same database, even with the same connection string. As soon as the DTC
is invoked, you incur a substantial performance penalty of at least 15%; just like you do when
using Enterprise Services transactions.

To avoid this issue, you must open one database connection and share it between all your
objects as they interact with the database. Typically, you’ll open this connection in your
editable root object, and then pass the connection to all the child collections and objects of
that root object.

While you can pass this connection object as a parameter to all your Friend Update(),
Insert() and Delete() methods, it is sometimes simpler to just make the connection global,
and this is the purpose behind LocalContext.

www.4electron.com

Page 108

Using LocalContext
While you may find other uses for LocalContext, my motivation for adding it to CSLA .NET
is to provide global access to a database connection object from an editable root object down
through its child objects. That’s what I’ll demonstrate here.

In your editable root object you implement the standard DataPortal_XYZ methods. When
implementing DataPortal_Insert() and DataPortal_Update(), you’ll typically also call
your child collections or objects and ask them to insert or update their own data. When using
either Manual or TransactionScope transactions, you’ll often want to pass your database
connection object or transaction object from the parent object down to its child objects.

Using TransactionScope Transactions

When using LocalContext along with TransactionScope style transactions, your editable
root data portal methods would look like this:

<Transactional(TransactionalTypes.TransactionScope)> _
Protected Overrides Sub DataPortal_Insert()

Using cn As SqlConnection = New SqlConnection
cn.Open()
ApplicationContext.LocalContext("cn") = cn
' insert root object data here
mChildren.Update()
ApplicationContext.LocalContext.Remove("cn")

End Using

End Sub

<Transactional(TransactionalTypes.TransactionScope)> _
Protected Overrides Sub DataPortal_Update()

Using cn As SqlConnection = New SqlConnection
cn.Open()
ApplicationContext.LocalContext("cn") = cn
' update root object data here
mChildren.Update()
ApplicationContext.LocalContext.Remove("cn")

End Using

End Sub

The highlighted lines of code show the use of LocalContext to make the connection
object globally available. Notice that before leaving the Using block, I remove the connection
object from LocalContext so it doesn’t accidentally get used after it has been disposed, as
that would result in an exception.

Following this pattern, the child objects updated by the call to mChildren.Update()
method call can simply reuse the existing connection object. For example, the Insert() and
Update() methods in a child object would look like this:

Friend Sub Insert()

Dim cn As SqlConnection = _
DirectCast(ApplicationContext.LocalContext("cn"), SqlConnection)

' insert the child data using the connection

End Sub

Friend Sub Update()

www.4electron.com

Page 109

Dim cn As SqlConnection = _
DirectCast(ApplicationContext.LocalContext("cn"), SqlConnection)

' update the child data using the connection

End Sub

The highlighted lines of code show how the existing connection object is retrieved from
LocalContext so it can be used by your code in the methods.

By reusing the same connection object to insert and update all child objects, you avoid
opening more than one connection. Using this technique, System.Transactions won’t invoke
the DTC and so you’ll get much better performance, without much increase in complexity.

Using Manual Transactions
If you are using Manual transactions you’ll typically be creating and using your own database
transaction object. In that case, your editable root methods would look like this:

<Transactional(TransactionalTypes.TransactionScope)> _
Protected Overrides Sub DataPortal_Insert()

Using cn As SqlConnection = New SqlConnection
cn.Open()
Using tr As SqlTransaction = cn.BeginTransaction
ApplicationContext.LocalContext("tr") = tr
' insert root object data here
mChildren.Update()
ApplicationContext.LocalContext.Remove("tr")
tr.Commit()

End Using
End Using

End Sub

<Transactional(TransactionalTypes.TransactionScope)> _
Protected Overrides Sub DataPortal_Update()

Using cn As SqlConnection = New SqlConnection
cn.Open()
Using tr As SqlTransaction = cn.BeginTransaction
ApplicationContext.LocalContext("tr") = tr
' update root object data here
mChildren.Update()
ApplicationContext.LocalContext.Remove("tr")
tr.Commit()

End Using
End Using

End Sub

Notice that it is the SqlTransaction object which is made global, not the connection
object. The reason for this is that the connection object is a property of the transaction object,
and so making the transaction object globally available also makes the connection globally
available.

You can implement the Insert() and Update() methods in your child objects like this:

Friend Sub Insert()

Dim tr As SqlTransaction = _
DirectCast(ApplicationContext.LocalContext("tr"), SqlTransaction)

Dim cn As SqlConnection = tr.Connection
' insert the child data using the connection and transaction

www.4electron.com

Page 110

End Sub

Friend Sub Update()

Dim tr As SqlTransaction = _
DirectCast(ApplicationContext.LocalContext("tr"), SqlTransaction)

Dim cn As SqlConnection = tr.Connection
' update the child data using the connection and transaction

End Sub

Notice how the SqlTransaction object is retrieved from LocalContext, and then the
SqlConnection object is retrieved from the transaction object. The result is that you have
easy access to both objects and can use them to set up your SqlCommand object to implement
the insert or update operation.

Whether using TransactionScope or Manual transactions, LocalContext provides an easy
way to share the connection or transaction objects between the root object and its child
objects.

www.4electron.com

Page 111

Data Portal
The data portal is one of the most complex parts of the CSLA .NET framework. It enables
the concept of mobile objects, and acts as a channel adapter, hiding the underlying network
technologies (if any) used to communicate with the “server-side” data access code.

One of the more interesting features of the data portal is that it allows client-side code to
make a call like this:

Return DataPortal.Fetch(Of Person)(New Criteria(id))

And that line of code results in the creation of an empty Person object on the server, and
the following method on that object is invoked by the data portal:

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)

End Sub

Essentially, the DataPortal.Fetch() call is a call to DataPortal_Fetch(). Even the
parameter value is passed through from the client to server code. Notice the use of strongly
typed parameters through the process. This was a key addition to the data portal in CSLA
.NET 2.0.

Unfortunately, when I implemented CSLA .NET 2.0, I didn’t completely emulate normal
calling semantics. Specifically, those for the passing of no parameter value at all. Worse, I
allowed the use of no parameter for DataPortal.Create(), but not for DataPortal_Fetch().
This caused some confusion due to the inconsistency. Table 10 shows the calling patterns
used in version 2.0.

Client-side Server-side
DataPortal.Create(Of Person)() DataPortal_Create(_

ByVal criteria As Object)

DataPortal.Create(Of Person)(Nothing) DataPortal_Create(_
ByVal criteria As Object)

DataPortal.Create(Of Person) _
(New Criteria())

DataPortal_Create(_
ByVal criteria As Criteria)

DataPortal.Fetch(Of Person)(Nothing) DataPortal_Fetch(_
ByVal criteria As Object)

DataPortal.Fetch(Of Person) _
(New Criteria())

DataPortal_Fetch(_
ByVal criteria As Criteria)

Table 10. Data portal method calling semantics in version 2.0

Notice that the Create() method allows no parameter, while the Fetch() method does
not. Worse, Create() with no parameter calls the same method as Create() with a parameter
of Nothing. In versions 2.0.1 and higher I tried various solutions, but ultimately realized that
the only correct answer was to properly emulate normal .NET calling conventions.

In CSLA .NET version 2.1, the calling patterns follow normal conventions as shown in
Table 11.

www.4electron.com

Page 112

Client-side Server-side
DataPortal.Create(Of Person)() DataPortal_Create()

DataPortal.Create(Of Person)(Nothing) DataPortal_Create(_
ByVal criteria As Object)

DataPortal.Create(Of Person) _
(New Criteria())

DataPortal_Create(_
ByVal criteria As Criteria)

DataPortal.Fetch(Of Person)() DataPortal_Fetch()

DataPortal.Fetch(Of Person)(Nothing) DataPortal_Fetch(_
ByVal criteria As Object)

DataPortal.Fetch(Of Person) _
(New Criteria())

DataPortal_Fetch(_
ByVal criteria As Criteria)

Table 11. Data portal method calling semantics in version 2.1

Notice that there’s now parity between Create() and Fetch().Also notice that when the
client-side code passes no parameter, the server-side DataPortal_XYZ method accepts no
parameter. This follows the normal method calling semantics you’d expect and makes the
implementation of these methods more intuitive.

Framework Changes
Changing the data portal is always challenging, because one of my primary goals whenever
changing CSLA .NET is to preserve backward compatibility as much as possible. In the case
of the data portal, this not only means trying to not break business object implementations of
factory methods and DataPortal_XYZ methods, but also I don’t want to break any custom
data portal channels people are using to communicate with their application servers.

Obviously, changing the calling semantics of the DataPortal_XYZ methods must have
some impact on business object implementations, and that’s unavoidable. After consulting
with the participants of the CSLA .NET discussion forum at http://forums.lhotka.net, I
decided to make the breaking change at this time, so as to avoid continued confusion going
into the future.

However, I was able to avoid making changes to the IDataPortalProxy and
IDataPortalServer interfaces. This should mean that existing data portal channels are
unaffected by these changes. The drawback to this approach is that my implementation is not
as elegant as I would prefer, and so I’m choosing to lose some elegance to gain some
backward compatibility.

It is important to recognize that IDataPortalServer did change in version 2.0.2.
Specifically, the method signature for Fetch() was changed to include a parameter explicitly
indicating the type of the business object to be retrieved. This change made Fetch() more
closely mirror Create() in this regard, and allows the Fetch() method to be called with no
criteria parameter.

Implementing the Data Portal Changes
A number of classes needed to be changed to support the new data portal functionality,
including:

www.4electron.com

http://forums.lhotka.net/

Page 113

 MethodCaller

 Client\DataPortal

 Server\DataPortal

 Server\SimpleDataPortal

The MethodCaller class contains the utility methods that find and invoke the appropriate
methods, and so the bulk of the changes occurred to the code in that class. The other three
classes have less significant changes, adapting to the new methods implemented in
MethodCaller.

Changes to MethodCaller
The MethodCaller class now has four methods to support the calling semantics of the data
portal methods:

 FindMethod()

 GetMethod()

 GetCreateMethod()

 GetFetchMethod()

Let’s look at each method.

FindMethod
There are two overloads of the FindMethod() method, each responsible for finding a method
matching a set of criteria. One looks for a method with a specific name and a specific set of
parameter types. The other is less restrictive, looking for a specific name and the right
number of parameters. These two methods are used by the GetMethod() methods in
MethodCaller as they locate the method requested by GetCreateMethod() and
GetFetchMethod().

FindMethod with Matching Parameters

The first FindMethod() method is responsible for finding a method matching the supplied
method name that also accepts parameters of the correct types. The reflection support in
.NET already does most of the work in this regard, but inheritance makes things slightly
more complex.

The reason is, that the same method can be implemented by multiple classes in an
inheritance hierarchy. When making the GetMethod() reflection call in such a case, you can
get an exception indicating there’s an ambiguous result. This can be avoided by restricting
the reflection call to only look at a specific type. Then you can loop up through the
inheritance hierarchy, examining each type in turn until you reach the top of the hierarchy:

Public Function FindMethod(_
ByVal objType As Type, _
ByVal method As String, _
ByVal types As Type()) As MethodInfo

Dim info As MethodInfo = Nothing
Do

www.4electron.com

Page 114

' find for a strongly typed match
info = objType.GetMethod(method, oneLevelFlags, Nothing, types, Nothing)
If info IsNot Nothing Then
Exit Do ' match found

End If

objType = objType.BaseType
Loop While objType IsNot Nothing

Return info

End Function

The oneLevelFlags field used in the GetMethod() call looks like this:

Private Const oneLevelFlags As BindingFlags = _
BindingFlags.DeclaredOnly Or _
BindingFlags.Instance Or _
BindingFlags.Public Or _
BindingFlags.NonPublic

This set of flags restricts the reflection call so it returns only instance methods declared
directly by the specified type. If a matching method is located, it is returned. If not, the result
is Nothing; to indicate that no match was found.

FindMethod with Matching Parameter Count
The second FindMethod() method is responsible for finding a method matching the supplied
method name and number of parameters. It does not look at the parameter types, just the
number of parameters, and it returns the first match it finds:

Public Function FindMethod(_
ByVal objType As Type, _
ByVal method As String, _
ByVal parameterCount As Integer) As MethodInfo

' walk up the inheritance hierarchy looking
' for a method with the right number of
' parameters
Dim result As MethodInfo = Nothing
Dim currentType As Type = objType
Do

Dim info As MethodInfo = _
currentType.GetMethod(method, oneLevelFlags)

If info IsNot Nothing Then
If info.GetParameters.Length = parameterCount Then

' got a match so use it
result = info
Exit Do

End If
End If
currentType = currentType.BaseType

Loop Until currentType Is Nothing

Return result

End Function

Remember that the same method could be implemented in multiple classes in an
inheritance hierarchy. Due to this, FindMethod() starts at the end of the hierarchy and works
its way back toward the top looking for a match. This way, it will return any overridden
versions of a method first, which is the behavior you’d expect when using inheritance.

www.4electron.com

Page 115

In the end, this method will return the first matching method it finds, or Nothing if no
matching method can be found.

GetMethod
The GetMethod() method was part of CSLA .NET 2.0. It has been altered in version 2.1 to
get methods that have no parameters, as well as those that have parameters. It also does a
better job of falling back to find matching methods in the case that the parameter types can’t
be matched:

Public Function GetMethod(ByVal objectType As Type, _
ByVal method As String, ByVal ParamArray parameters() As Object) _
As MethodInfo

Dim result As MethodInfo = Nothing

' put all param types into an array of Type
Dim types As New List(Of Type)
For Each item As Object In parameters

If item Is Nothing Then
types.Add(GetType(Object))

Else
types.Add(item.GetType)

End If
Next

' first see if there's a matching method
' where all params match types
result = FindMethod(objectType, method, types.ToArray)

If result Is Nothing Then
' no match found - so look for any method
' with the right number of parameters
result = FindMethod(objectType, method, parameters.Length)

End If

' no strongly typed match found, get default
If result Is Nothing Then

Try
result = objectType.GetMethod(method, allLevelFlags)

Catch ex As AmbiguousMatchException
Dim methods() As MethodInfo = objectType.GetMethods
For Each m As MethodInfo In methods

If m.Name = method AndAlso _
m.GetParameters.Length = parameters.Length Then
result = m
Exit For

End If
Next
If result Is Nothing Then

Throw
End If

End Try
End If

Return result

End Function

Notice the use of both FindMethod() overloads. First, an attempt is made to find a
matching method that has the exact right parameter types:

result = FindMethod(objectType, method, types.ToArray)

www.4electron.com

Page 116

If that fails, an attempt is made to find a method with the right number of parameters, even
if the types don’t exactly match:

result = FindMethod(objectType, method, parameters.Length)

This second attempt will catch cases where a parameter’s type is a subclass of the
method’s type, or where the parameter is Nothing or of type Object and the method expects a
strongly typed parameter. It will also find route a strongly typed parameter value to a method
expecting parameters of type Object, such as the default DataPortal_XYZ methods
implemented by the CSLA .NET base classes.

This last point is important for backward compatibility. Though it is preferable to
implement the DataPortal_XYZ methods to accept a strongly typed parameter, older code
may still be overriding the default methods from the base classes, and accepting a parameter
of type Object. This second call to FindMethod() handles that common case, and ensures that
existing business object code will continue to function as expected.

If both those attempts fail then a direct reflection call is made to try and find any matching
method by name. This part of the code is unchanged from version 2.0.

GetCreateMethod
The GetCreateMethod() method is responsible for locating and returning the appropriate
DataPortal_Create() method, based on any parameters passed to DataPortal.Create(). It
is a straightforward method, because it is able to leverage the work done by the two
FindMethod() overloads.

The only bit of complexity comes into play because I opted not to change the
IDataPortalProxy and IDataPortalServer interfaces. Both of these interfaces require that
some parameter be passed to the create method. Since Nothing is a valid option, I needed
some other value that could act as a placeholder for “no parameter”.

The valid parameter options for the create call are Nothing or a criteria object. A criteria
object can be either a nested class within a business class, or a class that inherits from
CriteriaBase. Either way, the criteria object must be a reference type. This means that any
value type, such as an Integer, can’t be passed to the DataPortal.Create() call.

Since Integer can’t be passed as a valid parameter, I can use it as a placeholder to
represent the “no parameter” option:

Public Function GetCreateMethod(_
ByVal objectType As Type, ByVal criteria As Object) As MethodInfo

Dim method As MethodInfo
If TypeOf criteria Is Integer Then

' an "Integer" criteria is a special flag indicating
' that criteria is empty and should not be used
method = MethodCaller.GetMethod(objectType, "DataPortal_Create")

Else
method = MethodCaller.GetMethod(objectType, "DataPortal_Create", criteria)

End If
Return method

End Function

www.4electron.com

Page 117

This code first checks to see if an Integer was passed as a parameter, which would
indicate that no parameter was actually passed to the DataPortal.Create() call. In that case,
GetMethod() is called with no parameter array, indicating that there are no parameters for the
DataPortal_Create() method.

Otherwise GetMethod() is called, passing the supplied criteria object (or Nothing) as a
parameter for DataPortal_Create().

GetFetchMethod
The GetFetchMethod() method follows the same scheme as GetCreateMethod():

Public Function GetFetchMethod(_
ByVal objectType As Type, ByVal criteria As Object) As MethodInfo

Dim method As MethodInfo
If TypeOf criteria Is Integer Then

' an "Integer" criteria is a special flag indicating
' that criteria is empty and should not be used
method = MethodCaller.GetMethod(objectType, "DataPortal_Fetch")

Else
method = MethodCaller.GetMethod(objectType, "DataPortal_Fetch", criteria)

End If
Return method

End Function

Again, the appropriate parameters, if any, are passed to the GetMethod() call based on the
type of the criteria parameter. The Integer type is a special placeholder indicating the “no
parameter” case.

Changes to Client\DataPortal

The client-side DataPortal class has been altered to make use of the new GetCreateMethod()
and GetFetchMethod() functionality in the MethodCaller class. A constant value is used to
indicate the special “no parameter” placeholder passed as a faux criteria value to the
DataPortal.Create() and DataPortal.Fetch() methods:

Private Const EmptyCriteria As Integer = 1

The overload of Create() that accepts no parameters now uses this constant:

Public Function Create(Of T)() As T
Return DirectCast(Create(GetType(T), EmptyCriteria), T)

End Function

Of course this method just delegates to another Create() method, which has been altered
to use the new GetCreateMethod() functionality:

Private Function Create(_
ByVal objectType As Type, ByVal criteria As Object) As Object

Dim result As Server.DataPortalResult

Dim method As MethodInfo = MethodCaller.GetCreateMethod(objectType, criteria)

Dim proxy As DataPortalClient.IDataPortalProxy
proxy = GetDataPortalProxy(RunLocal(method))

www.4electron.com

Page 118

Dim dpContext As New Server.DataPortalContext(_
GetPrincipal, proxy.IsServerRemote)

OnDataPortalInvoke(New DataPortalEventArgs(dpContext))

Try
result = proxy.Create(objectType, criteria, dpContext)

Catch ex As Server.DataPortalException
result = ex.Result
If proxy.IsServerRemote Then
ApplicationContext.SetGlobalContext(result.GlobalContext)

End If
Throw New DataPortalException(_
String.Format("DataPortal.Create {0} ({1})", _

My.Resources.Failed, ex.InnerException.InnerException), _
ex.InnerException, result.ReturnObject)

End Try

If proxy.IsServerRemote Then
ApplicationContext.SetGlobalContext(result.GlobalContext)

End If

OnDataPortalInvokeComplete(New DataPortalEventArgs(dpContext))

Return result.ReturnObject

End Function

I’ve also highlighted a change to the exception handling. In case of an exception, this code
throws a DataPortalException, which now includes the message text of the original
exception as part of the DataPortalException object’s message. This simplifies the typical
debugging scenario, because the original exception message is immediately visible to the
developer.

The same basic changes have been applied to the Fetch() methods as well. There’s a new
Fetch() method overload that accepts no parameter:

Public Function Fetch(Of T)() As T

Return DirectCast(Fetch(GetType(T), EmptyCriteria), T)

End Function

It uses the EmptyCriteria constant value, just like the Create() equivalent, and delegates
the call to another Fetch() overload:

Private Function Fetch(_
ByVal objectType As Type, ByVal criteria As Object) As Object

Dim result As Server.DataPortalResult

Dim method As MethodInfo = MethodCaller.GetFetchMethod(objectType, criteria)

Dim proxy As DataPortalClient.IDataPortalProxy
proxy = GetDataPortalProxy(RunLocal(method))

Dim dpContext As New Server.DataPortalContext(_
GetPrincipal, proxy.IsServerRemote)

OnDataPortalInvoke(New DataPortalEventArgs(dpContext))

Try
result = proxy.Fetch(objectType, criteria, dpContext)

www.4electron.com

Page 119

Catch ex As Server.DataPortalException
result = ex.Result
If proxy.IsServerRemote Then
ApplicationContext.SetGlobalContext(result.GlobalContext)

End If
Throw New DataPortalException(_
String.Format("DataPortal.Fetch {0} ({1})", _

My.Resources.Failed, ex.InnerException.InnerException), _
ex.InnerException, result.ReturnObject)

End Try

If proxy.IsServerRemote Then
ApplicationContext.SetGlobalContext(result.GlobalContext)

End If

OnDataPortalInvokeComplete(New DataPortalEventArgs(dpContext))

Return result.ReturnObject

End Function

This Fetch() method has been changed to use the new GetFetchMethod() functionality,
and to throw a more detailed DataPortalException object.

Changes to Server\DataPortal

The server-side DataPortal class has also been changed to use the new GetCreateMethod()
and GetFetchMethod() functionality. In the Create() method the call looks like this:

Dim method As MethodInfo = MethodCaller.GetCreateMethod(objectType, criteria)

And in the Fetch() method the call looks like this:

Dim method As MethodInfo = MethodCaller.GetFetchMethod(objectType, criteria)

The server-side DataPortal class doesn’t invoke the DataPortal_XYZ methods, but it does
need access to the MethodInfo object so it can determine whether to route the method call
through Enterprise Services or a TransactionScope based on the Transactional attribute
applied to the method.

Ultimately the method call is relayed to SimpleDataPortal, which does invoke the
business object method.

Changes to Server\SimpleDataPortal
The SimpleDataPortal class contains the code that directly interacts with the business object.
In the case of Create() and Fetch() operations, SimpleDataPortal creates an instance of the
business object before calling the appropriate DataPortal_XYZ method on the object. This
means both the Create() and Fetch() methods require updates. Here’s the Create() method:

Public Function Create(_
ByVal objectType As System.Type, _
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Create

Dim obj As Object = Nothing

Try

www.4electron.com

Page 120

' create an instance of the business object
obj = Activator.CreateInstance(objectType, True)

' tell the business object we're about to make a DataPortal_xyz call
MethodCaller.CallMethodIfImplemented(_

obj, "DataPortal_OnDataPortalInvoke", _
New DataPortalEventArgs(context))

' tell the business object to fetch its data
Dim method As MethodInfo = MethodCaller.GetCreateMethod(objectType, criteria)
If TypeOf criteria Is Integer Then

' an "Integer" criteria is a special flag indicating
' that criteria is empty and should not be used
MethodCaller.CallMethod(obj, method)

Else
MethodCaller.CallMethod(obj, method, criteria)

End If

' mark the object as new
MethodCaller.CallMethodIfImplemented(obj, "MarkNew")

' tell the business object the DataPortal_xyz call is complete
MethodCaller.CallMethodIfImplemented(_

obj, "DataPortal_OnDataPortalInvokeComplete", _
New DataPortalEventArgs(context))

' return the populated business object as a result
Return New DataPortalResult(obj)

Catch ex As Exception
Try

' tell the business object there was an exception
MethodCaller.CallMethodIfImplemented(_
obj, "DataPortal_OnDataPortalException", _
New DataPortalEventArgs(context), ex)

Catch
' ignore exceptions from the exception handler

End Try
Throw New DataPortalException("DataPortal.Create " & _

My.Resources.FailedOnServer, ex, New DataPortalResult(obj))
End Try

End Function

Notice that not only is GetCreateMethod() used to get the appropriate method to invoke,
but the code also checks to see if the criteria parameter is of type Integer. If it is an Integer,
that indicates that no actual parameter was passed to the Create() call, and so CallMethod()
is invoked without passing any parameters:

MethodCaller.CallMethod(obj, method)

On the other hand, if the criteria parameter is of any other type, then it is either Nothing
or a valid criteria object, and so the value is passed as a parameter to CallMethod():

MethodCaller.CallMethod(obj, method, criteria)

The end result is that the method calling semantics for Create() and Fetch() are the
same, and they also conform to the list shown earlier in Table 11.

www.4electron.com

Page 121

Using the Enhancements
The data portal enhancements bring the calling semantics of the DataPortal.Create() and
DataPortal.Fetch() methods into line with common .NET usage. Table 12 is a complete list
illustrating what DataPortal_XYZ method is called based on how each DataPortal method is
called in your factory methods.

Client-side Server-side
DataPortal.Create(Of Person)() DataPortal_Create()

DataPortal.Create(Of Person)(Nothing) DataPortal_Create(_
ByVal criteria As Object)

DataPortal.Create(Of Person) _
(New Criteria())

Or

DataPortal.Create(New Criteria())

DataPortal_Create(_
ByVal criteria As Criteria)

Falls back to

DataPortal_Create(_
ByVal criteria As Object)

DataPortal.Fetch(Of Person)() DataPortal_Fetch()

DataPortal.Fetch(Of Person)(Nothing) DataPortal_Fetch(_
ByVal criteria As Object)

DataPortal.Fetch(Of Person) _
(New Criteria())

Or

DataPortal.Create(New Criteria())

DataPortal_Fetch(_
ByVal criteria As Criteria)

Falls back to

DataPortal_Fetch(_
ByVal criteria As Object)

DataPortal.Update(Of Person)()

Or

DataPortal.Update()

DataPortal_Insert()

Or

DataPortal_Update()

Or

DataPortal_DeleteSelf()

www.4electron.com

Page 122

Client-side Server-side
DataPortal.Delete(Of Person)()

Or

DataPortal.Delete()

DataPortal_Delete(_
ByVal criteria As Criteria)

Falls back to

DataPortal_Delete(_
ByVal criteria As Object)

DataPortal.Execute(Of Person)()

Or

DataPortal.Execute()

Sub DataPortal_Execute()

Table 12. Data portal method calling cross-reference

The basic usage of the data portal doesn’t change, and there is little on most business
object implementations due to the changes made in version 2.1. However, if you were calling
DataPortal.Create() with no parameters, then your code will be impacted by these changes.

More importantly, you should now feel comfortable calling either DataPortal.Create()
or DataPortal.Fetch() with various parameter types based on the information in Table 12.

www.4electron.com

Page 123

SmartDate
The SmartDate class has a number of enhancements designed to provide better ease of use for
the type. These enhancements include:

 A Shared method allowing you to set the default format string for all new
SmartDate values

 An enumerated value to more clearly indicate whether an empty SmartDate is the
largest or smallest possible date

 A new overload of ToString() to better match the functionality of the DateTime
type

While none of these enhancements are major changes, they increase the usability of the
SmartDate type and bring it more in line with the functionality provided by the DateTime
type.

Framework Changes
The enhancements to SmartDate involve adding a new type to CSLA .NET:

 EmptyValue

And they involve changes to one class:

 SmartDate

Implementing the Changes
I’ll explain the new EmptyValue enumerated type first, and then walk through the changes to
SmartDate itself.

EmptyValue Type
The EmptyValue enumerated type is nested within the SmartDate class itself. The reason for
this is that EmptyValue is designed only for use by SmartDate, and making it a nested type
helps keep the main Csla namespace organized.

The enumerated type itself is not complex:

Public Enum EmptyValue
MinDate
MaxDate

End Enum

When a SmartDate value is created, it can treat an empty value as either the largest or
smallest possible date (for comparison purposes). In CSLA .NET 2.0, this was indicated
using a Boolean value. This resulted in code that was difficult to read. These enumerated
values offer a more readable alternative. For example:

Dim sm As New SmartDate(EmptyValue.MinDate)

www.4electron.com

Page 124

This clearly creates a new SmartDate value, where an empty value is the smallest possible
date. The older approach is still supported for backward compatibility:

Dim sm As New SmartDate(True)

Obviously, the intent of this code is far less clear, though the result is the same.

Changes to SmartDate

The SmartDate class itself is changed to make use of the new EmptyValue type, and for the
addition of the new Shared property to control the default format string and new ToString()
overload.

Supporting EmptyValue
The SmartDate type used to use a Boolean value to determine whether an empty value was
the smallest or largest possible date. For clarity within SmartDate itself, the code now uses
the EmptyValue type instead, so the instance field is now of this type:

Private mEmptyValue As EmptyValue

There are also new constructors that accept this type. For example:

Public Sub New(ByVal emptyValue As EmptyValue)
mEmptyValue = emptyValue
SetEmptyDate(mEmptyValue)

End Sub

Perhaps more importantly, the existing constructors that accept Boolean values have been
altered to translate those values into an EmptyValue type. This is done using a helper method:

Private Shared Function GetEmptyValue(ByVal emptyIsMin As Boolean) As EmptyValue
If emptyIsMin Then

Return EmptyValue.MinDate
Else

Return EmptyValue.MaxDate
End If

End Function

The older constructors are retained for backward compatibility, allowing existing CSLA
.NET business object code to upgrade seamlessly to version 2.1 in this regard. However,
those constructors now use the GetEmptyValue() helper method to translate their parameter
value. For example:

Public Sub New(ByVal value As Date, ByVal emptyIsMin As Boolean)
mEmptyValue = GetEmptyValue(emptyIsMin)
Me.Date = value

End Sub

Throughout the code, anywhere the old Boolean field was used, the new EmptyType field
is used in its place. There are several places where the behavior of a method is controlled by
this field, for instance:

Public ReadOnly Property IsEmpty() As Boolean
Get

If mEmptyValue = EmptyValue.MinDate Then

www.4electron.com

Page 125

Return Me.Date.Equals(Date.MinValue)
Else
Return Me.Date.Equals(Date.MaxValue)

End If
End Get

End Property

While the functionality remains the same, this code is more clear and easier to read than in
version 2.0. These changes are mechanical, and so I’m not going to go through each case.
You can look at the SmartDate code to see how the EmptyValue type has been used
consistently to replace the previous Boolean field.

Default Format String
In version 2.0, SmartDate had a hard-coded default format string of d, which is the short date
format. While you could change this value for each SmartDate you created, there was no way
to globally change the default. In version 2.1, you can now change the default format string
using a Shared method: SetDefaultFormatString().

The default format string value is stored in a Shared field:

Private Shared mDefaultFormat As String

In the Shared constructor its value is set to d, the same default value as was used in CSLA
.NET version 2.0:

Shared Sub New()
mDefaultFormat = "d"

End Sub

This preserves backward compatibility with previous version of CSLA .NET. However,
there’s now a way for a developer to globally change the default format string that will be
used by SmartDate values:

Public Shared Sub SetDefaultFormatString(ByVal formatString As String)
mDefaultFormat = formatString

End Sub

Finally, the existing FormatString() property has been enhanced to use the default value:

Public Property FormatString() As String
Get

If mFormat Is Nothing Then
mFormat = mDefaultFormat

End If
Return mFormat

End Get
Set(ByVal value As String)

mFormat = value
End Set

End Property

Any request for the format string first checks to see if the value for this particular
SmartDate has been set. If not, then mFormat will be Nothing and the default value is used.
Otherwise, the existing value of mFormat is used.

www.4electron.com

Page 126

This approach means that you can still change the format string for individual SmartDate
values. Otherwise you’ll get the default of d, or whatever you’ve set using the
SetDefaultFormatString() method.

Overload of ToString()
SmartDate has been enhanced with a new overload of ToString() to provide more
consistency with the Date and DateTime types. The new overload allows you to specify a
format string to use in converting the value to text:

Public Overloads Function ToString(ByVal format As String) As String

Return DateToString(Me.Date, format, mEmptyValue)

End Function

This overload ignores the FormatString property value and uses the value provided as a
parameter instead.

While the enhancements to SmartDate are relatively minor in terms of changes to CSLA
.NET, they provide substantial benefits to developers using the type.

Using the Enhancements
The enhancements to SmartDate provide more clarity to your code, and offer more control
over how SmartDate values are translated into text.

Using the SmartDate Enhancements
I’ll walk through each new feature in turn.

www.4electron.com

Page 127

Using the New Constructors

You can now create SmartDate values using the EmptyValue type. Table 13 shows the
possible constructors and their results.

Constructor Result
sm = New SmartDate() Creates an empty SmartDate value

where an empty value is the smallest
possible date.

sm = New SmartDate(_
SmartDate.EmptyValue.MinDate)

Creates an empty SmartDate value
where an empty value is the smallest
possible date.

sm = New SmartDate(Today) Creates a SmartDate value with
today’s date, where an empty value is
the smallest possible date.

sm = New SmartDate(_
Today, _
SmartDate.EmptyValue.MinDate)

Creates a SmartDate value with
today’s date, where an empty value is
the smallest possible date.

sm = New SmartDate("1/1/2007") Creates a SmartDate value for January
1, 2007, where an empty value is the
smallest possible date.

sm = New SmartDate(_
"1/1/2007", _
SmartDate.EmptyValue.MinDate)

Creates a SmartDate value for January
1, 2007, where an empty value is the
smallest possible date.

Table 13. Using the new SmartDate constructors

The older Boolean constructors continue to function, but the new constructors provide
better clarity for your code.

Using the Default Format String
The default format string for a SmartDate is d, which is the short date format. You can
change the format string for individual SmartDate values using the FormatString property:

Dim sm As SmartDate
sm.FormatString = "D"

What is new in version 2.1, is that you can now specify a different default format string so
you don’t need to change the value on all individual SmartDate fields. To do this, you use the
new SetDefaultFormatString() method:

SmartDate.SetDefaultFormatString("D")

Any SmartDate values created after this point will use this new format string value.

www.4electron.com

Page 128

Note: The default format string is stored as a Shared field, which means it
exists at the AppDomain level. In an ASP.NET environment, this means that
the default format string is shared by all users of your virtual root.

Typically, you’ll set the default format string as your application starts up, so all
SmartDate values have the same default.

Using the ToString() Overload
The final new feature of the SmartDate type is a new ToString() overload that allows you to
control the format string used by that particular method call. To use this, pass a format string
to the ToString() method:

Dim sm As New SmartDate(Today)

Dim output As String = sm.ToString("D")

The value of the SmartDate value’s FormatString property is ignored in this case, and the
format string you pass as a parameter is used instead.

www.4electron.com

Page 129

CslaDataSource
The CslaDataSource web data control has been changed in a couple different ways since
CSLA .NET version 2.0. First, it has been enhanced in an effort to allow the control to reload
your business assemblies as they change during development, so you can refresh the schema
information without having to exit and reload Visual Studio. Second, the control can now
indicate that you are supporting the paging and sorting features of a collection through your
code, so ASP.NET data binding acts properly.

In version 2.0, the CslaDataSource control used simple reflection to get schema
information about the shape of your business objects. This schema information is returned to
ASP.NET data binding so the Visual Studio designers can properly display rich content in
grid and list controls.

Unfortunately, once an assembly has been loaded into memory, it can’t be unloaded from
that AppDomain. Visual Studio only has one AppDomain for the web page designers, so
after your business assembly was loaded the first time to get the schema data, it couldn’t be
reloaded as your assembly changed.

To address this, CslaDataSource now loads your assembly into a temporary AppDomain,
gets the schema information, then discards that temporary AppDomain entirely. Using this
technique it is possible to refresh the schema information about your objects as your business
assembly changes; without having to reload Visual Studio itself.

CSLA .NET now includes the IReportTotalRowCount interface, as discussed earlier in
this book, so your collection classes can be implemented to support the concept of paging.
While your collection may only load a subset of the total data available, you can report the
total possible number of rows of data through IReportTotalRowCount.

The CslaDataSource control has been enhanced to understand and use the
IReportTotalRowCount interface, and to expose a property so you can indicate whether your
underlying collection class will be implementing this interface. This property value is then
returned to the Web Forms designer to indicate whether your data source supports paging.

Similarly, a property has been added to CslaDataSource so you can indicate to the Web
Forms designer whether your underlying collection will support sorting. Remember that
ASP.NET data binding doesn’t fully automate the sorting process, so by setting this property
to True you also agree to write some extra code to trigger the sorting itself. More importantly,
however, you are agreeing that your underlying collection supports sorting; either because it
is of type SortedBindingList, or because you can re-fetch the collection using different sort
criteria as required.

Framework Changes
The changes to CslaDataSource can be grouped into three functional areas:

 Supporting dynamic schema refresh

 Supporting paging

 Supporting sorting

Let’s discuss each functional area.

www.4electron.com

Page 130

Implementing Dynamic Schema Refresh
Dynamically refreshing the schema, or shape, of the data sources is particularly difficult
when those data sources are business objects from a business assembly. The reason is
twofold: the business assembly must be loaded into a temporary AppDomain so it can be
later unloaded, and there’s no publicly available API in .NET you can use to find the business
assembly that you should load.

Implementing dynamic schema refresh required changing the following files:

 CslaDesignerDataSourceView

 ObjectViewSchema

And adding one class:

 TypeLoader

As you’ll see, the TypeLoader class does the majority of the work. It is a relatively
complex class, because it includes Shared methods that execute in the main Visual Studio
AppDomain, and instance methods that execute in the temporary AppDomain created to load
the business assembly.

The important thing to remember in all this, is that the only code that can safely interact
with your business assembly is contained in the instance methods of TypeLoader. Absolutely
no code in the rest of CslaDataSource or its related classes can directly interact with your
business assembly without loading that assembly into the Visual Studio AppDomain and thus
always running against an old version of your assembly.

Changes to CslaDesignerDataSourceView
The CslaDesignerDataSourceView class has been altered to make use of the TypeLoader
class to get schema information from the business assembly and type. For example, the
CanDelete() method needs to determine whether your business object supports deletion,
which requires reflecting against your business type. That reflection can only be done in
TypeLoader in the temporary AppDomain, so TypeLoader is used to find this information:

Public Overrides ReadOnly Property CanDelete() As Boolean
Get
Return TypeLoader.CanDelete(_

mOwner.DataSourceControl.TypeAssemblyName, mOwner.DataSourceControl.TypeName)
End Get

End Property

As you can see, TypeLoader now has a Shared method called CanDelete(). The
CanDelete() method safely abstracts the process of finding the temporary shadow directory,
by creating a temporary AppDomain, doing the reflection and returning the result.

The same change is applied to the CanInsert() and CanUpdate() methods in
CslaDesignerDataSourceView.

Changes to ObjectViewSchema
The changes to the ObjectViewSchema class are similar, but more drastic, than those in
CslaDesignerDataSourceView. The ObjectViewSchema class must implement a GetFields()
method that returns the schema information about the data source, or business object. That

www.4electron.com

Page 131

method must now delegate all its work to TypeLoader so the process can occur safely in a
temporary AppDomain:

Public Function GetFields() As _
System.Web.UI.Design.IDataSourceFieldSchema() _
Implements System.Web.UI.Design.IDataSourceViewSchema.GetFields

Return TypeLoader.GetFields(mTypeAssemblyName, mTypeName)

End Function

The result is that ObjectViewSchema now does virtually no work at all. Instead, all the
work is handled by TypeLoader.

TypeLoader Class
The TypeLoader class is somewhat complex. It is responsible for abstracting the process of
safely retrieving schema information from a business type in a business assembly.

To do this, it includes code to perform the following functions:

 Locate the shadow directory containing the current version of the business
assembly

 Create a temporary AppDomain

 Return the results from that AppDomain back to the main Visual Studio
AppDomain where the CslaDataSource control is running

What makes this complex, is that the TypeLoader class contains some code designed to
run in the Visual Studio AppDomain, and some designed to run in the temporary
AppDomain. The following are Shared methods designed to run in the Visual Studio
AppDomain:

 GetFields()

 CanDelete()

 CanInsert()

 CanUpdate()

These methods are invoked by CslaDesignerDataSourceView and ObjectViewSchema to
retrieve schema data as required. These Shared methods create a temporary AppDomain and
delegate the work to instance methods that are running in that other AppDomain. Those
instance methods are:

 GetFields()

 CanDelete()

 CanInsert()

 CanUpdate()

www.4electron.com

Page 132

Additionally, TypeLoader includes a set of helper methods used to find the shadow
directory and create the temporary AppDomain:

 GetTypeLoader()

 GetTemporaryAppDomain()

 GetOriginalPath()

 GetType()

 GetCodeBase()

In general, the sequence of any call to get schema information follows the same sequence:

1. Get the original path to the business assembly (old shadow directory)

2. Create a temporary AppDomain that contains a TypeLoader instance

3. Delegate the call to the TypeLoader instance

Then, in the temporary AppDomain:

1. Get the current shadow directory path

2. Load the business assembly from the current shadow directory

3. Reflect against the business assembly to get the metadata

4. Return the results

The Shared methods called to initiate this process all follow a similar structure to trigger
this process in each case.

Implementing the Shared Methods
The Shared methods called by CslaDesignerDataSourceView and ObjectViewSchema follow
the same structure. For example, here’s the GetFields() method:

Public Shared Function GetFields(_
ByVal assemblyName As String, ByVal typeName As String) _
As IDataSourceFieldSchema()

Dim result As List(Of ObjectFieldInfo) = New List(Of ObjectFieldInfo)()

Dim originalPath As String = GetOriginalPath(assemblyName, typeName)

Dim tempDomain As AppDomain = GetTemporaryAppDomain()
Try
result = _

GetTypeLoader(tempDomain).GetFields(originalPath, assemblyName, typeName)
Finally
AppDomain.Unload(tempDomain)

End Try
Return result.ToArray()

End Function

You can see how the GetOriginalPath() method is called to get the path to the old,
original shadow directory used by Visual Studio for this project. The result from that method
is later passed into the GetFields() instance method running in the temporary AppDomain.

www.4electron.com

Page 133

The GetTemporaryAppDomain() method is called to create the temporary AppDomain
itself, while the GetTypeLoader() method creates an instance of TypeLoader in that
temporary AppDomain.

In the end, the temporary AppDomain is unloaded and the result returned to the calling
code.

The other three Shared methods follow this exact structure, delegating to the appropriate
instance methods of the TypeLoader object in the temporary AppDomain.

Finding the Current Shadow Directory
The hardest issue to resolve is finding the directory path to the business assembly. Though
you and I see the business assembly in the web project’s \bin directory, the assembly can’t
be loaded from that location. This is because Windows itself won’t release a file lock on any
DLL it loads into memory. To avoid this, both ASP.NET and Visual Studio use a technology
called shadow copies, where they copy the DLL to a temporary directory and load it from
there.

When building web projects in Visual Studio, every time you build your solution a new
temporary shadow directory is created, containing shadow copies of all the assemblies
referenced by your web project. Visual Studio, and any controls, load the assemblies from
that directory, until the next time the solution is built, at which point another temporary
directory is used.

Unfortunately, there’s no API in .NET that allows you to determine the path to the current
shadow directory being used by Visual Studio. Without knowing that directory path, there’s
no way to safely load the business assembly into a temporary AppDomain.

To find the current shadow directory path, I make some assumptions about how these
shadow directories are named and used by Visual Studio. It is possible to get the path to
Csla.dll, and any other referenced assembly, in one of the shadow directories, because
Visual Studio loads Csla.dll when it sites the CslaDataSource control on the web forms
designer surface. Using that shadow directory path, I can find all the shadow directories for
the current project.

The trick behind this is that Visual Studio can’t unload Csla.dll once it has loaded the
first instance of CslaDataSource onto a web form designer. This means that my
CslaDataSource code, running in Visual Studio’s designer environment, always comes from
that first shadow directory, even if subsequent shadow directories have been created when the
solution was rebuilt. Any attempt to directly load other assemblies always causes those
assemblies to load from this same shadow directory from where Csla.dll was originally
loaded.

The shadow directory path for Csla.dll follows this structure:

file:///c:/dir1/dir2/dir3/Csla.dll

It turns out that part of this path is consistent for all shadow directories created for the
project:

file:///c:/dir1/dir2/

www.4electron.com

Page 134

Only that last directory name changes each time the project is built, and I use this to
resolve the issue. The TypeLoader class was added in version 2.0.1, and it includes a method
to locate the most recently created shadow directory for a project, given the path to an
assembly in any one of the shadow directories as a parameter:

Private Shared Function GetCodeBase(ByVal cslaPath As String) As String

If cslaPath.StartsWith("file:///") Then
cslaPath = cslaPath.Substring(8)
cslaPath = cslaPath.Replace("/", "\")

End If
Dim count As Integer = 0
Dim [end] As Integer = 1
For pos As Integer = cslaPath.Length - 1 To 1 Step -1
If cslaPath.Substring(pos, 1) = "\" Then

count += 1
If count = 2 Then
[end] = pos
Exit For

End If
End If

Next pos
Dim codeBase As String = cslaPath.Substring(0, [end])

Dim baseDir As DirectoryInfo = New DirectoryInfo(codeBase)
Dim result As DirectoryInfo = Nothing
Dim maxDate As DateTime = DateTime.MinValue
For Each dir As DirectoryInfo In baseDir.GetDirectories()
If dir.LastWriteTime > maxDate Then

maxDate = dir.LastWriteTime
result = dir

End If
Next dir

If Not result Is Nothing Then
Return result.FullName & "\"

Else
Return Nothing

End If

End Function

This method parses the path to pull out the consistent part of the shadow directory path. It
then uses a DirectoryInfo() object to get a list of all the shadow directories for the project
and it scans that list to find the one that was most recently altered or created. That path points
to the most recent, and thus current, shadow directory for the project.

Of course the key piece of information that makes this all work is a path to one of the
shadow directories for the project. That is determined in the Visual Studio AppDomain using
the GetOriginalPath() method:

Private Shared Function GetOriginalPath(_
ByVal assemblyName As String, ByVal typeName As String) As String

Dim asm As System.Reflection.Assembly = _
System.Reflection.Assembly.Load(assemblyName)

Return asm.CodeBase

End Function

All this method does is load the business assembly into the Visual Studio AppDomain and
then ask for the path (CodeBase) to the assembly. Though this is likely an old instance of the
business assembly, from an older shadow directory, it doesn’t matter because this instance of

www.4electron.com

Page 135

the assembly isn’t used to get the schema information. The only metadata retrieved from this
instance is the path to the old shadow directory so it can be used to find the latest shadow
directory when GetCodeBase() is called.

Creating the Temporary AppDomain
Creating an AppDomain is not complex, and the work is handled by the
GetTemporaryAppDomain() method:

Private Shared Function GetTemporaryAppDomain() As AppDomain

Dim fulltrust As System.Security.NamedPermissionSet = _
New System.Security.NamedPermissionSet("FullTrust")

Dim tempDomain As AppDomain = _
AppDomain.CreateDomain("__CslaDataSource__temp", _
AppDomain.CurrentDomain.Evidence, _
AppDomain.CurrentDomain.SetupInformation, fulltrust, _
New System.Security.Policy.StrongName() {})

Return tempDomain

End Function

Since this temporary AppDomain will be making use of dynamic assembly loading and
reflection, it requires FullTrust from code access security (CAS). The fullTrust field
contains the NamedPermissionSet corresponding to FullTrust security, and that field is
passed to the CreateDomain() method to indicate that the new AppDomain should get
FullTrust.

The CreateDomain() method accepts other parameters, including a unique name for the
temporary AppDomain, security evidence (copied from the current AppDomain) and setup
information (copied from the current AppDomain). The result is an empty AppDomain that
contains nothing more than the basic .NET system types.

The GetTypeLoader() method is then used to load an instance of TypeLoader into this new
AppDomain:

Private Shared Function GetTypeLoader(ByVal tempDomain As AppDomain) As TypeLoader

' load the TypeLoader object in the temp AppDomain
Dim thisAssembly As System.Reflection.Assembly = _
System.Reflection.Assembly.GetExecutingAssembly()

Dim loader As TypeLoader = _
CType(tempDomain.CreateInstanceFromAndUnwrap(_

thisAssembly.CodeBase, GetType(TypeLoader).FullName), TypeLoader)
Return loader

End Function

The AppDomain object is passed as a parameter to the method so its
CreateInstanceFromAndUnwrap() method can be called to create an instance of TypeLoader
in the temporary AppDomain. The “AndUnwrap” part of this process is required because the
object is created in another AppDomain, and what is returned is a generic proxy object. The
“AndUnwrap” unwraps that proxy object to get a specific proxy object for the TypeLoader
object itself.

www.4electron.com

Page 136

Implementing the Instance Methods
The instance methods implemented in TypeLoader take care of reflecting against the business
assembly to get the required metadata. First though, they need to load the business assembly
from the most recent shadow directory. All the instance methods follow the same basic
structure. Here’s GetFields() for example:

Public Function GetFields(_
ByVal originalPath As String, _
ByVal assemblyName As String, _
ByVal typeName As String) As List(Of ObjectFieldInfo)

Dim result As List(Of ObjectFieldInfo) = New List(Of ObjectFieldInfo)()

Dim t As Type = TypeLoader.GetType(originalPath, assemblyName, typeName)
If GetType(IEnumerable).IsAssignableFrom(t) Then
' this is a list so get the item type
t = Utilities.GetChildItemType(t)

End If
Dim props As PropertyDescriptorCollection = TypeDescriptor.GetProperties(t)
For Each item As PropertyDescriptor In props
If item.IsBrowsable Then

result.Add(New ObjectFieldInfo(item))
End If

Next item

Return result

End Function

Remember that this code is all running in the temporary AppDomain, so any assemblies or
types loaded by this code will be unloaded when the temporary AppDomain is discarded.

This method uses the Shared GetType() method to get a Type object for your business
assembly, using the originalPath parameter to locate the latest shadow directory as I
discussed earlier. The GetType() method itself looks like this:

Private Overloads Shared Function [GetType](_
ByVal originalPath As String, _
ByVal assemblyName As String, ByVal typeName As String) As Type

Dim assemblyPath As String = GetCodeBase(originalPath)

Dim asm As System.Reflection.Assembly = _
System.Reflection.Assembly.LoadFrom(assemblyPath & assemblyName & ".dll")

Dim result As Type = asm.GetType(typeName, True, True)
Return result

End Function

The GetCodeBase() method I discussed earlier is used to get the latest shadow directory
path. That path is then used to build a path to the business assembly and the
Assembly.LoadFrom() method is used to dynamically load the assembly from that location
into the temporary AppDomain. This Type object is then returned to the calling method.

Back in the GetFields() method, the Type object is interrogated using reflection to
retrieve the requested metadata. This process is no different from what was done in CSLA
.NET 2.0, except now the code is running in a temporary AppDomain.

www.4electron.com

Page 137

Implementing Paging
Web Forms data binding, and specifically the GridView control, supports the concept of
paging. If the total number of rows of data is very large, you may choose to only retrieve a
subset of the data at any given time: a single page of data. However, when you do this you
must still provide data binding with the number of total rows of data available.

Earlier in the book I discussed the IReportTotalRowCount interface and how you can
implement this in your business collections to support paging. The CslaDataSource control
has been adapted to use this interface as well, providing you with the tools you need to
implement paged data in your web pages.

These changes impacted the following classes:

 SelectObjectArgs

 CslaDataSource

 CslaDataSourceView

 CslaDesignerDataSourceView

There are three aspects to the paging support:

1. CslaDataSource uses the IReportTotalRowCount interface to return the total
number of rows of data to data binding on request

2. The SelectObjectArgs parameter passed to the SelectObject event now includes
information about the start index and number of rows of data to retrieve

3. A TypeSupportsPaging property has been added to the CslaDataSource control so
you can control whether data binding thinks you support paging or not

These changes combine to allow the web page and business collection developers to
support the concept of paging.

Changes to SelectObjectArgs
The SelectObjectArgs object is created by CslaDataSourceView and is provided to the UI
developer as an argument to the SelectObject event raised by any CslaDataSource control.
The SelectObjectArgs parameter allows the UI developer to return the requested business
object through the BusinessObject property, and with these changes it now also provides the
UI developer with extra information about the data to be retrieved.

www.4electron.com

Page 138

The new information is provided through the properties listed in Table 14.

Property Description
StartRowIndex The 0-based index of the first row of to be retrieved in

this request.

MaximumRows The maximum number of rows of data to be retrieved as
part of this request. This value corresponds to the page
size requested by the UI control (such as a GridView).

RetrieveTotalRowCount A Boolean value indicating whether data binding
requires that the total row count be returned through the
IReportTotalRowCount interface.

Table 14. New paging properties of SelectObjectArgs

These are all simple read-only properties provided to the UI developer. For example,
here’s the StartRowIndex property implementation:

Private mStartRowIndex As Integer

Public ReadOnly Property StartRowIndex() As Integer
Get
Return mStartRowIndex

End Get
End Property

These values are set in the constructor, which now accepts an ASP.NET
DataSourceSelectArguments object as a parameter:

Public Sub New(ByVal args As System.Web.UI.DataSourceSelectArguments)

mStartRowIndex = args.StartRowIndex
mMaximumRows = args.MaximumRows
mRetrieveTotalRowCount = args.RetrieveTotalRowCount

mSortExpression = args.SortExpression
If Not String.IsNullOrEmpty(mSortExpression) Then
If Len(mSortExpression) >= 5 AndAlso Right(mSortExpression, 5) = " DESC" Then

mSortProperty = Left(mSortExpression, mSortExpression.Length - 5)
mSortDirection = ListSortDirection.Descending

Else
mSortProperty = args.SortExpression
mSortDirection = ListSortDirection.Ascending

End If
End If

End Sub

I’ve highlighted the lines of code pertaining to paging. The other lines of code relate to
sorting, and I’ll discuss them later in this book.

The SelectObjectArgs class is also now marked as Serializable:

<Serializable()> _
Public Class SelectObjectArgs

Inherits EventArgs

www.4electron.com

Page 139

As you’ll see, this simplifies the use of paging and sorting by allowing a business
developer to simply include the SelectObjectArgs object as part of the collection’s Criteria
object, making the values it contains available to DataPortal_Fetch().

Changes to CslaDataSource
The CslaDataSource control itself doesn’t do much work. It is primarily a “traffic cop” that
routes calls to sub-objects like CslaDataSourceView to do the work. Following this idea, the
TypeSupportsPaging property simply delegates the call:

Public Property TypeSupportsPaging() As Boolean
Get
Return CType(Me.GetView("Default"), CslaDataSourceView).TypeSupportsPaging

End Get
Set(ByVal value As Boolean)
CType(Me.GetView("Default"), CslaDataSourceView).TypeSupportsPaging = value

End Set
End Property

The CslaDataSourceView class is responsible for maintaining the actual value in this case.

Changes to CslaDataSourceView

Most of the changes occur in the CslaDataSourceView class, as it is this object that does the
bulk of the work for data binding. This class declares a field and property for the
TypeSupportsPaging property:

Private mTypeSupportsPaging As Boolean

Public Property TypeSupportsPaging() As Boolean
Get
Return mTypeSupportsPaging

End Get
Set(ByVal value As Boolean)
mTypeSupportsPaging = value

End Set
End Property

More importantly, CslaDataSourceView implements the ExecuteSelect() method, where
retrieval of data is handled. The actual retrieval of data is delegated to the UI developer’s
code in the page through the SelectObject event. However, the results of that event are
handled by ExecuteSelect(), and it is here that the IReportTotalRowCount interface
becomes important.

Remember that in the SelectObject event handler, the UI developer is responsible for
creating an appropriate business object for data binding to use. If you are implementing
paging, this business object will be a special collection object that inherits from
BusinessListBase or ReadOnlyList base and which implements IReportTotalRowCount.

Here’s the complete code for ExecuteSelect(), with the lines dealing with
IReportTotalRowCount highlighted:

Protected Overrides Function ExecuteSelect(_
ByVal arguments As System.Web.UI.DataSourceSelectArguments) As _
System.Collections.IEnumerable

' get the object from the page
Dim args As New SelectObjectArgs(arguments)

www.4electron.com

Page 140

mOwner.OnSelectObject(args)
Dim result As Object = args.BusinessObject

If arguments.RetrieveTotalRowCount Then
Dim rowCount As Integer
If result Is Nothing Then

rowCount = 0

ElseIf TypeOf result Is Csla.Core.IReportTotalRowCount Then
rowCount = CType(result, Csla.Core.IReportTotalRowCount).TotalRowCount

ElseIf TypeOf result Is IList Then
rowCount = CType(result, IList).Count

ElseIf TypeOf result Is IEnumerable Then
Dim temp As IEnumerable = CType(result, IEnumerable)
Dim count As Integer = 0
For Each item As Object In temp
count += 1

Next
rowCount = count

Else
rowCount = 1

End If
arguments.TotalRowCount = rowCount

End If

' if the result isn't IEnumerable then
' wrap it in a collection
If Not TypeOf result Is IEnumerable Then
Dim list As New ArrayList
If result IsNot Nothing Then

list.Add(result)
End If
result = list

End If

' now return the object as a result
Return CType(result, IEnumerable)

End Function

Notice how the SelectObjectArgs object is now created by passing the
DataSourceSelectArguments parameter into the constructor. This
DataSourceSelectArguments parameter contains a variety of data collected by data binding
and provided to a data source control. With the changes to SelectObjectAgs, some of this
information is now provided to the UI developer as well, so they can act on it in the
SelectObject event handler.

The total page count code is only triggered if the select request from data binding included
a request for the total row count. Such a request is common, and typically occurs when the UI
control is any sort of grid or list control. In that case, the code checks to see if the business
object returned from the SelectObject event implements the IReportTotalRowCount
interface, and if it does then the total row count is retrieved via that interface.

If the business object doesn’t implement the interface; then the normal approach is taken,
where the collection’s Count property is returned.

Changes to CslaDesignerDataSourceView
The TypeSupportsPaging property in CslaDataSource exists specifically to allow the UI
developer to control whether the CanPage() method returns True or False in the

www.4electron.com

Page 141

CslaDesignerDataSourceView object. This CanPage() method is used by the Web Forms
page designer so the designer knows how to render the control and its options pages at design
time.

The CanPage() method looks like this:

Public Overrides ReadOnly Property CanPage() As Boolean
Get
Return mOwner.DataSourceControl.TypeSupportsPaging

End Get
End Property

Notice how the call delegates to the CslaDataSource control’s TypeSupportsPaging
property value.

Implementing Sorting
The CslaDataSource control itself doesn’t support sorting of data. However, you might
choose to support sorting in your UI code or your collection class. You can do this by using
SortedBindingList, or by reloading the collection from the database, allowing your database
to do the sorting for you.

Either way, if you do support sorting in your UI or collection, you need some way to tell
the Web Forms designer that you are supporting the concept so the designer can render the
control and its options pages properly at design time. Additionally, you’ll need to know the
name of the column on which to sort, and whether the sort should be ascending or
descending.

Providing Sort Information to the SelectObject Event Handler

The SelectObject event handler receives a SelectObjectArgs parameter, which contains
details about the data requested by data binding. This information can be used by the UI or
business collection developer to sort the data as requested. Table 15 lists the new properties
of SelectObjectArgs that provide information about sorting:

Property Description
SortExpression The SortExpression property provided by data binding.

In many cases, this is just a property name, but it can be a
comma separated list of property names if the UI
developer handles the Sorting property of a UI control.

SortProperty The name of the property on which to sort. This value is
only valid if a single property is used for sorting (which
is the default behavior).

SortDirection A value indicating whether to sort in ascending or
descending order. This value is only valid if a single
property is used for sorting (which is the default
behavior).

Table 15. New sorting properties of SelectObjectArg

www.4electron.com

Page 142

You can either use the raw value in SortExpression directly, or use the simpler pre-
processed SortProperty and SortDirection properties.

SortProperty and SortDirection are only valid for the default behavior of sorting by a
single column or property. If the UI developer handles the Sorting property of a UI control,
they can manually set SortExpression to more complex values such a list of column names.
In that case, the SortProperty and SortDirection may not return useful values.

Implementing the CanSort property

Data binding determines whether a data source supports paging through the CanSort()
method of CslaDesignerDataSourceView. Like the TypeSupportsPaging property on
CslaDataSource and CslaDataSourceView, there is also a TypeSupportsSorting property.
The implementations are identical, so I won’t review that code. Here’s the CanSort() method
implementation:

Public Overrides ReadOnly Property CanSort() As Boolean
Get
Return mOwner.DataSourceControl.TypeSupportsSorting

End Get
End Property

Like the CanPage() method, notice how this method delegates the call to the
CslaDataSource control itself. This allows the UI developer to set TypeSupportsSorting to
control the CanSort() result.

Using the Enhancements
The enhancements to CslaDataSource can be grouped into three functional areas:

 Supporting dynamic schema refresh

 Supporting paging

 Supporting sorting

The dynamic schema refresh enhancements exist to support the Refresh link you can
use in the Visual Studio designer to refresh the schema on a data control, grid control or
list control. As such, I won’t discuss their use in this book – you can just click those links
to see the results.

The paging and sorting support however, do require some discussion, because in each case
you must take extra steps as you code your collections and pages in order to utilize this
functionality.

Using Paging
The paging support provided by the CslaDataSource control merely opens the door so you
can implement the paging yourself. Implementing paging requires that you design your
business collection to support paging, and then you can use CslaDataSource to tell data
binding that your collection supports the concept.

www.4electron.com

Page 143

The following is a list of the high level steps required to implement paging:

1. Implement IReportTotalRowCount in your collection

2. Accept the SelectObjectArgs parameter in your Shared factory method

3. Include the SelectObjectArgs value as a field in your Criteria object

4. Use the starting row index and page size values from SelectObjectArgs in your
DataPortal_Fetch() method to load the collection with only the specified page of
data

5. In your DataPortal_Fetch() method, load the total number of rows of data
available

6. Set the TypeSupportsPaging property of your CslaDataSource control to True

7. Enable paging in the GridView (or other paging-enabled UI) control

I’ll walk through the basic structure of a paged collection and using a GridView control to
support paging.

Implementing a Paged Collection

A paged collection is much like a normal business collection in many ways, but it is certainly
unique in other ways. A paged collection can inherit from either BusinessListBase or
ReadOnlyListBase, but it must also implement the IReportTotalRowCount interface. And of
course it will only load pages (subsets) of the total data rather than loading all the data
available, so its Criteria class and DataPortal_Fetch() implementations will need to take
care of those details.

The basic structure of a paged collection is this:

<Serializable()> _
Public Class PersonList
Inherits ReadOnlyListBase(Of PersonList, Person)

Implements Core.IReportTotalRowCount

#Region " Business Methods "

Private mTotalRowCount As Integer

Private ReadOnly Property TotalRowCount() As Integer _
Implements Csla.Core.IReportTotalRowCount.TotalRowCount

Get
Return mTotalRowCount

End Get
End Property

#End Region

#Region " Factory Methods "

Public Shared Function GetPage(_
ByVal selectArgs As Csla.Web.SelectObjectArgs) As PersonList

Return DataPortal.Fetch(Of PersonList)(New Criteria(selectArgs))

End Function

Private Sub New()
' require use of factory methods

End Sub

www.4electron.com

Page 144

#End Region

#Region " Data Access "

<Serializable()> _
Private Class Criteria

Private _args As Csla.Web.SelectObjectArgs

Public ReadOnly Property SelectArgs() As Csla.Web.SelectObjectArgs
Get
Return _args

End Get
End Property

Public Sub New(ByVal args As Csla.Web.SelectObjectArgs)
_args = args

End Sub

End Class

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)

' load total row count
If criteria.SelectArgs.RetrieveTotalRowCount Then

mTotalRowCount = 42
End If

' load page of data
IsReadOnly = False
Dim startValue As Integer = criteria.SelectArgs.StartRowIndex
Dim endValue As Integer = _

criteria.SelectArgs.StartRowIndex + 1 + criteria.SelectArgs.MaximumRows
If endValue > 42 Then

endValue = 42
End If
For index As Integer = criteria.SelectArgs.StartRowIndex + 1 To endValue

Add(Person.GetPerson(index))
Next
IsReadOnly = True

End Sub

#End Region

End Class

The DataPortal_Fetch() method in this example is obviously artificial, but illustrates the
idea that this method must both set the count for the total number of available rows, and load
the collection with the requested page of data based on the starting row index and page size
information passed in through the Criteria object.

The Shared factory method accepts the SelectedObjectArgs value:

Public Shared Function GetPage(_
ByVal selectArgs As Csla.Web.SelectObjectArgs) As PersonList

Return DataPortal.Fetch(Of PersonList)(New Criteria(selectArgs))

End Function

This object is then used to populate the Criteria object so the values it contains are
available to DataPortal_Fetch().

www.4electron.com

Page 145

Using Paging in a GridView

The SelectObjectArgs parameter provided to the UI developer by CslaDataSource contains
properties indicating the starting row index and page size. These values come from the UI
control, such as GridView. Data binding automatically gets the values from the control and
provides them to CslaDataSource, so no special work is required by the UI developer to
make paging work.

In the SelectObject event handler, the UI code merely takes the SelectObjectArgs
parameter value and provides it to the Shared factory method:

Protected Sub CslaDataSource1_SelectObject(_
ByVal sender As Object, ByVal e As Csla.Web.SelectObjectArgs) _
Handles CslaDataSource1.SelectObject

e.BusinessObject = _
CslaDSTestLibrary.PersonList.GetPage(e)

End Sub

You can control the initial page index and the page size by setting the PageIndex and
PageSize properties of the GridView control at design time or runtime.

You must also specify that the GridView control should use paging as shown in Figure 1.

Figure 1. Enabling paging in the GridView control

For this option to work properly, remember that you need to set the CslaDataSource
control’s TypeSupportsPaging property to True as well.

You should now understand how to create a collection that implements
IReportTotalRowCount to support paging, and how to use a GridView control’s properties to
determine the page number and page size of the data to be retrieved on each request.

Using Sorting
The sorting support provided by the CslaDataSource control allows you to implement sorting
of a collection for data binding. The sorting support provided by CslaDataSource is very
flexible and open-ended, which means there are several ways you can choose to implement
sorting, including the following options:

www.4electron.com

Page 146

 Sort in the UI using SortedBindingList

 Sort the data in the object’s factory method

 Sort the data in the database, then load the collection with pre-sorted data

The first two options can not be easily combined with paging, while the third option can
be combined with paging relatively easily (assuming your data lends itself to paging in the
first place).

Sorting in the UI
Sorting in the UI can only be done in the case that your collection is not paged. The
assumption is that the SelectObject event handler in the UI is able to retrieve the full
collection of data, and it can then apply a sort before returning the list to data binding.

The implementation is not complex, and is entirely contained within the SelectObject
event handler in your web page. The process follows these steps:

1. Retrieve the full list of data

2. See if SortExpression is specified, and if not return the unsorted list

3. If SortExpression is specified, sort the list and return the sorted result

For example:

Protected Sub CslaDataSource1_SelectObject(_
ByVal sender As Object, ByVal e As Csla.Web.SelectObjectArgs) _
Handles CslaDataSource1.SelectObject

' get unsorted list
Dim list As PersonList = PersonList.GetList

' do sort
If String.IsNullOrEmpty(e.SortExpression) Then

' return unsorted result
e.BusinessObject = list

Else
Dim sorted As New SortedBindingList(Of Person)(list)
sorted.ApplySort(e.SortProperty, e.SortDirection)

' return sorted result
e.BusinessObject = sorted

End If

End Sub

The unsorted data is retrieved by calling a normal Shared factory method.

Once the data has been retrieved, e.SortExpression is used to determine whether a sort
was requested. If this value is Nothing or an empty String then no sort was requested so the
unsorted list is returned to data binding.

On the other hand, if a sort was specified then a SortedBindingList is created to provide
a sorted view of the original collection. Notice that the e.SortProperty and
e.SortDirection are then used to apply the sort to the SortedBindingList object.

www.4electron.com

Page 147

Note: If the UI developer handles the Sorting event of their UI control and
alters the SortExpression to be a more complex comma separated list of
column names, the SortProperty and SortDirection properties will not
contain valid information. In that case, the SortExpression value must be
parsed and used directly.

Because the ApplySort() method already accepts property name and sort direction
parameters, the values from the SelectObjectArgs parameter can be passed directly to
ApplySort().

Sorting in the Database
In some cases, it may be more efficient to sort the data in the database as the collection is
loaded in DataPortal_Fetch() rather than sorting the data on the web server in the
SelectObject event handler. Additionally, sorting in the database can allow you to
implement both sorting and paging of the data.

To implement sorting in the database, the values in the SelectObjectArgs parameter must
be passed through to the DataPortal_Fetch() method. The technique used to do this is the
same as I discussed earlier for implementing paging:

1. The Shared factory method accepts a SelectObjectArgs parameter

2. The Criteria object includes a SelectObjectArgs field

3. The code in DataPortal_Fetch() uses the values in the SelectObjectArgs object
to determine if, and how sorting should occur

The basic structure of a collection class is similar to that for paging, as I discussed earlier.
Rather than repeat the complete code, I’ll highlight the key parts. I’ll start with the Shared
factory method:

Public Shared Function GetList(_
ByVal selectArgs As Csla.Web.SelectObjectArgs) As PersonList

Return DataPortal.Fetch(Of PersonList)(New Criteria(selectArgs))

End Function

The SelectObjectArgs value provided to the UI developer in the SelectObject event
handler is accepted as a parameter in this factory method, and is then passed to the
collection’s Criteria object, which looks like this:

<Serializable()> _
Private Class Criteria

Private mArgs As Csla.Web.SelectObjectArgs

Public ReadOnly Property SelectArgs() As Csla.Web.SelectObjectArgs
Get
Return mArgs

End Get
End Property

Public Sub New(ByVal args As Csla.Web.SelectObjectArgs)
mArgs = args

End Sub

www.4electron.com

Page 148

End Class

This object is passed through the data portal to the collection’s DataPortal_Fetch()
method, where the values from the SelectObjectArgs object can be used to control the
appropriate sorting behavior:

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)

Using cn As New SqlConnection
cn.Open()
Using cm As SqlCommand = cn.CreateCommand
If String.IsNullOrEmpty(criteria.SelectArgs.SortExpression) Then

cm.CommandText = _
"SELECT data FROM Person"

Else
cm.CommandText = _
"SELECT data FROM Person ORDER BY " & criteria.SelectArgs.SortExpression

End If
cm.CommandType = CommandType.Text

' execute command and
' load collection with data

End Using
End Using

End Sub

To keep things simple, I’ve cut out the code that loads the collection with data, because
the important part of the code is the use of the SortExpression property to control the sorting
process. Notice that if SortExpression is Nothing or an empty String, that no sort is applied
to the SELECT query. Otherwise, the text of SortExpression is used to build the ORDER BY
clause.

Obviously, you might use other SQL techniques or stored procedures to do the sorting.
I’m keeping the code here intentionally simple to illustrate the concept.

In this case, the UI code doesn’t have to create a SortedBindingList, because the
collection will be sorted as it comes from the database. The SelectObject event handler
becomes simpler:

Protected Sub CslaDataSource1_SelectObject(_
ByVal sender As Object, ByVal e As Csla.Web.SelectObjectArgs) _
Handles CslaDataSource1.SelectObject

' get sorted list
Dim list As PersonList = PersonList.GetList(e)

End Sub

All that is required of the UI code is to pass the SelectObjectArgs parameter value to the
factory method. The collection and database take care of the rest of the work.

The paging implementation I discussed earlier, and this sorting implementation, can be
merged together. The database will first sort the data, and then only return the appropriate
rows of data to populate a specific page. The exact technique used to do this in the database
is different for each database vendor and version, but the changes to CslaDataSource now
make it possible for you to implement these paging and sorting features.

www.4electron.com

Page 149

Miscellaneous Changes
CSLA .NET version 2.1 includes a number of other enhancements and bug fixes that don’t fit
within the broader thematic areas discussed earlier in this book. Table 16 lists the
miscellaneous changes to the framework.

Change Description
SortedBindingList
implements ICancelAddNew

This change provides better parity with
BindingList(Of T).

BusinessListBase.IsDirty IsDirty now only considers items in DeletedList
if they are not new. New objects in DeletedList
do not cause the collection to be dirty.

BusinessBase.Delete() Delete() is now Overridable, so you can override
the method to prevent the accidental use of
deferred deletion.

Initialize() method The CSLA .NET base classes now invoke an
Intialize() method as they are being created or
deserialized. This method is designed to allow C#
code generators to re-hook event delegates, and is
typically unnecessary for VB thanks to the
WithEvents/Handles feature of the language.

Table 16. List of miscellaneous changes in CSLA .NET 2.1

I’ll walk through each of these changes to the framework, and then discuss how you can
use each of them.

Framework Changes
As CSLA .NET continues to evolve, some changes are narrowly focused on solving or
addressing a very specific need. As such, each change is largely independent of any other
changes to the framework, so let’s discuss each in turn.

Implementing ICancelAddNew in SortedBindingList
Microsoft .NET 2.0 introduced the new ICancelAddNew interface. This interface is designed
to make the undo operation simpler for the case that the add operation for an item in a
collection is cancelled through data binding. In that scenario, the newly added item must be
removed from the collection.

This removal was complex in Microsoft .NET 1.x, because it was the child object in the
collection that was notified of the cancel operation. That child object then had to contact the
collection in which it was contained and request that the collection remove the child. This
was handled through the IEditableObject interface. CSLA .NET implements this interface
in the BusinessBase class.

www.4electron.com

Page 150

The ICancelAddNew interface simplifies this process by allowing data binding to
communicate directly to the collection, so the collection itself can simply remove the now-
cancelled new child object.

Because SortedBindingList doesn’t inherit from BindingList(Of T), it must directly
implement this new interface.

Changes to SortedBindingList
Implementing the ICancelAddNew interface means implementing two new methods that data
binding can use to indicate that a newly added item should be kept or removed from the
collection: CancelNew() and EndNew().

The CancelNew() method is called when the new child object should be discarded and
removed from the collection. The EndNew() method is called if the user doesn’t cancel the
new item, and the new child should be permanently kept in the collection.

Implementing the ICancelAddNew interface requires that these methods be added to
SortedBindingList:

#Region " ICancelAddNew "

Public Sub CancelNew(ByVal itemIndex As Integer) _
Implements System.ComponentModel.ICancelAddNew.CancelNew

Dim can As ICancelAddNew = TryCast(mList, ICancelAddNew)
If can IsNot Nothing Then

can.CancelNew(itemIndex)

Else
mList.RemoveAt(itemIndex)

End If

End Sub

Public Sub EndNew(ByVal itemIndex As Integer) _
Implements System.ComponentModel.ICancelAddNew.EndNew

Dim can As ICancelAddNew = TryCast(mList, ICancelAddNew)
If can IsNot Nothing Then

can.EndNew(itemIndex)
End If

End Sub

#End Region

Like much of the code in SortedBindingList, these methods simply delegate the work to
the original list. Remember that SortedBindingList is merely a sorted view over an existing
list object, and if that list object implements ICancelAddNew then the process is simply
delegated.

However, if the original list does not implement ICancelAddNew, then SortedBindingList
must do the work itself. This only impacts the CancelNew() method, where the child object is
removed directly if the original list doesn’t implement ICancelAddNew:

Else
mList.RemoveAt(itemIndex)

End If

www.4electron.com

Page 151

This change brings SortedBindingList more in line with BindingList(Of T), making the
collection more consistent and easier to use with data binding.

Changing BusinessListBase.IsDirty
The IsDirty property in the BusinessListBase class returns True if any of the child objects
contained in the collection have been changed. In version 2.0, it returned True if any items
had been removed from the list, but that turns out not to be entirely accurate.

The problem is that a newly added item can be removed from the list, which effectively
could return the list to its original state; in which case the list shouldn’t be considered to be
changed and IsDirty should return False.

Changes to BusinessListBase
In version 2.1, the IsDirty property has been changed to only count removed child objects if
they are not new:

Public ReadOnly Property IsDirty() As Boolean
Get

' any non-new deletions make us dirty
For Each item As C In DeletedList
If Not item.IsNew Then

Return True
End If

Next

' run through all the child objects
' and if any are dirty then the
' collection is dirty
For Each Child As C In Me
If Child.IsDirty Then Return True

Next
Return False

End Get
End Property

This change firms up the rules around when a list is marked as having been changed.

Changing BusinessBase.Delete
Editable root objects can support two mechanisms for deletion: immediate and deferred.

To implement immediate deletion, the business object developer must create a Shared
factory method that calls DataPortal.Delete(). They must also implement the
corresponding DataPortal_Delete() method to remove the object’s data from the database.

Deferred deletion is enabled by default, though the business object developer does need to
implement the DataPortal_DeleteSelf() method to remove the object’s data from the
database. However, the BusinessBase class in the Csla.Core namespace implements a
Public method called Delete() that allows any other code to mark your editable root object
for deletion. When that object’s Save() method is called, the object’s
DataPortal_DeleteSelf() method is called to delete the object’s data.

But what if you don’t want to support deferred deletion? While you could throw an
exception from DataPortal_DeleteSelf() , or just not implement that method and allow
CSLA .NET to throw an exception on your behalf, that could mean a round-trip to the
application server for no reason.

www.4electron.com

Page 152

Changes to BusinessBase

In version 2.1, the Delete() method is now marked as Overridable, so you can override the
method and throw an exception immediately to indicate that deferred deletion isn’t supported
by your object:

Public Overridable Sub Delete() Implements IEditableBusinessObject.Delete

If Me.IsChild Then
Throw New NotSupportedException(My.Resources.ChildDeleteException)

End If

MarkDeleted()

End Sub

This change provides a more elegant way for you to disable the deferred deletion behavior
in your objects.

Implementing the Initialize Methods
Code generation is a powerful tool in any developer’s toolkit. Many people have created code
generators, or templates for existing code generators, to build their CSLA .NET business
objects.

The most common way to build such templates is to use an inheritance-based scheme
where the code generator creates a base class with most of the object’s code, and the human
developer creates a subclass that customizes the generated code if needed.

For example, if you have a Customer business object, the code generator would create a
class named CustomerBase, and the developer would subclass that class to create a Customer
class. This Customer class only contains overrides of existing propeties and methods, and
then only if the generated code is somehow inadequate for this specific object.

Microsoft .NET 2.0 includes the new concept of partial classes, which provides an
alternative to this inheritance-based approach. With partial classes, the code generator creates
a Customer class, and the developer also manually creates a Customer class. The compiler
merges these two classes into one as the project is compiled.

The challenge with partial classes is that there’s no way to override any method or
property implemented in the code generated part of the class. The user-created code can only
add to the class, it can’t alter anything.

The partial class concept was invented to simplify the creation of forms in Windows
Forms, and in that environment the user-created code can simply respond to a wealth of
events raised by the Form base class. The same is true for Web Forms with the Page base class
and DataTable objects with the DataTable class.

But the CSLA .NET base classes, such as BusinessBase, raise very few events. And
normal business objects don’t raise all that many events either. So it is relatively difficult to
use partial classes with code generation.

Nonetheless, partial class code generation templates have been created for CSLA .NET
objects. In most cases, the generated code raises many Private events that can be handled by
the user-created code, thus solving the problem. And with VB this is pretty smooth, because

www.4electron.com

Page 153

VB has the concept of WithEvents and the Handles clause, so no explicit hookup of the
events is required.

But with C# the event solution is more complex. This is because events require explicit
hookup, connecting the event to the method that will handle the event. The C# compiler
doesn’t help in this regard.

The result is that the events need to be explicitly hooked up when the object is first
created. This issue is not unique to CSLA .NET objects. Windows Forms follows a standard
pattern of calling an initialization method when any form object is created, to allow the
hookup of events among other tasks.

I followed this same pattern in version 2.1 of CSLA .NET, by adding an Initialize()
method to all of the CSLA .NET base classes, including:

 BusinessBase

 BusinessListBase

 ReadOnlyBase

 ReadOnlyListBase

 NameValueListBase

 CommandBase

In each class, the Initialize() method is invoked as the object is created. Develoeprs
who need to hook events can put that code in the Initialize() method, knowing that this
method will run when the object is created.

The result is that the following sequence of methods are invoked as a CSLA .NET object
is created:

 Initialize()

 New()

 Methods to initialize validation/authorization rules

This sequence seems odd. How can Initialize() run before the constructor? Remember
that constructors are run in order, from the deepest class in your inheritance hierarchy out to
your actual class. What happens here is that the Initialize() method is called from the
constructor in the base class, and so it is called before your constructor gets to run.

The constructor is normally part of the generated code, but the Initialize() method can
be implemented in the user-created part of the class, allowing the developer to explicitly
hook events to methods as they are implemented.

Changes to Base Classes

The changes to the CSLA .NET base classes are simple and consistent. In each base class an
Intialize() method is declared:

Protected Overridable Sub Initialize()
' allows a generated class to set up events to be
' handled by a partial class containing user code

End Sub

www.4electron.com

Page 154

The method is Overridable, so a business developer can override it, but it doesn’t require
overriding. This way a business developer can ignore the Inialize()method entirely, or
override it to hookup events as needed.

Then, in the base class constructor, the Initialize() method is invoked. Here’s the code
from BusinessBase, for example:

Protected Sub New()

Initialize()
AddInstanceBusinessRules()
If Not Validation.SharedValidationRules.RulesExistFor(Me.GetType) Then
SyncLock Me.GetType

If Not Validation.SharedValidationRules.RulesExistFor(Me.GetType) Then
AddBusinessRules()

End If
End SyncLock

End If
AddInstanceAuthorizationRules()
If Not Csla.Security.SharedAuthorizationRules.RulesExistFor(Me.GetType) Then
SyncLock Me.GetType

If Not Csla.Security.SharedAuthorizationRules.RulesExistFor(Me.GetType) Then
AddAuthorizationRules()

End If
End SyncLock

End If

End Sub

This ensures that the Initialize() method is invoked immediately before the constructor
in the business subclass.

Note: Technically, Initialize() is invoked during the call to the
constructor, but it is always invoked before the constructor code in a subclass
gets to run, so you can consider that Initialize() runs before the constructor
in any meaningful sense.

This pattern is repeated in all the CSLA .NET base classes. The result is that it is now
easier to implement code generators or templates that use the partial class concepts in
Microsoft .NET 2.0.

Using the Enhancements
Two of the enhancements I just discussed are so low-level that they aren’t intended for direct
use. The implementation of ICancelAddNew in the SortedBindingList class is used by data
binding and the benefit is automatic to anyone using data binding against a
SortedBindingList. Similarly, the refinement of the IsDirty method in BusinessListBase is
automatic for anyone using the BusinessListBase class.

However, the changes to the Delete() method in BusinessBase and the new
Initialize() method in all base classes are intended for use by business developers and
code generation authors.

www.4electron.com

Page 155

Overriding BusinessBase.Delete
If you are creating an editable root object, you’ll be inheritng from BusinessBase(Of T) to
create your object. If you don’t want to support deferred deletion of your object, you should
consider overriding the Delete() method like this:

Public Overrides Sub Delete()

Throw New NotSupportedException("Deferred deletion not supported")

End Sub

This will give any developer calling the Delete() method immediate and clear feedback
that the feature they are trying to use isn’t supported.

Using the Initialize Methods
The Initialize() method is designed for use with code generation, where the partial class
technology is used. In that case, the code generator will typically generate much of the code
for your business class, and the business developer will write any user-created code in
another file, using the same class name.

Defining a PropertyChangingEventArgs Class
The most common case for using events in partial classes is to allow the user code to respond
as a property is changed. To make this work smoothly, you’ll typically want a custom
EventArgs class that contains the proposed property value:

Public Class PropertyChangingEventArgs(Of T)
Inherits EventArgs

Private mProposedValue As T
Public Property ProposedValue() As T

Get
Return mProposedValue

End Get
Set(ByVal value As T)
mProposedValue = value

End Set
End Property

Public Sub New(ByVal proposedValue As T)
mProposedValue = proposedValue

End Sub

End Class

This can be used to declare an event for each property, indicating that the property is
changing. That event can be raised by the generated code, allowing the user code to respond
to the event.

Generated Business Class Example

When using partial classes, the code generator will create a partial class with the majority of
the code in the business class. This includes the properties for the object, along with the
constructor and data access code. For example, the code generator might create the
following:

www.4electron.com

Page 156

<Serializable()> _
Partial Public Class Customer
Inherits BusinessBase(Of Customer)

Private Event IdChanging As EventHandler(Of PropertyChangingEventArgs(Of Integer))

Private mId As Integer

Public Property Id() As Integer
<System.Runtime.CompilerServices.MethodImpl(_

Runtime.CompilerServices.MethodImplOptions.NoInlining)> _
Get

CanReadProperty(True)
Return mId

End Get
<System.Runtime.CompilerServices.MethodImpl(_

Runtime.CompilerServices.MethodImplOptions.NoInlining)> _
Set(ByVal value As Integer)

CanWriteProperty(True)
If Not mId.Equals(value) Then
Dim tmp As New PropertyChangingEventArgs(Of Integer)(value)
RaiseEvent IdChanging(Me, tmp)
mId = tmp.ProposedValue
PropertyHasChanged()

End If
End Set

End Property

Protected Overrides Function GetIdValue() As Object
Return mId

End Function

Private Sub New()
' require use of factory methods

End Sub

' factory methods and data access methods go here

End Class

The highlighted lines of code indicate the parts of the generated code that matter to the
current discussion.

Notice that the constructor is declared in the generated code. This is required, because a
good code generator will call MarkAsNew() for child objects, and may take other steps in the
constructor as well.

Near the top of the class, a private IdChanging event is declared. Because this is a Private
event, there aren’t any issues with serialization. This means the simple event declaration
syntax can be used, rather than the more complex block structure that must be used for non-
Private events.

The IdChanging event is raised before the property value is actually changed, providing
the user code with the knowledge that the property is changing, and access to the proposed
value. It is important to realize that the ProposedValue property is read-write, so the user
code can change the value. This value is then used to set the property.

User Code Business Class Example
While the code generator creates the majority of the business code, the developer can extend
that generated code by creating another partial class containing user code. If the generated
code raises a set of Private events, the user code can handle those events to respond

www.4electron.com

Page 157

appropriately. In the case that a property is changing, the user code might alter the proposed
value:

Public Class Customer

Private Sub Customer_IdChanging(_
ByVal sender As Object, ByVal e As PropertyChangingEventArgs(Of Integer)) _
Handles Me.IdChanging

' make sure the id value doesn't exceed 1000
If e.ProposedValue > 1000 Then

e.ProposedValue = e.ProposedValue - 1000
End If

End Sub

End Class

Here the ProposedValue property is checked to ensure it doesn’t exceed the value 1000.
Remember that this code is part of the same class as the generated code, so you have full
access to the mId field, and any other fields, properties and methods defined in the generated
code. The PropertyChangingEventArgs object gives you access to the proposed value for the
property, which means your event handler has access to all the information you should need
to work with the property as it is changing.

If you prefer not to use the Handles clause, you can use the Initialize() method to
accomplish the same result:

Public Class Customer

Protected Overrides Sub Initialize()

AddHandler Me.IdChanging, AddressOf Customer_IdChanging

End Sub

Private Sub Customer_IdChanging(_
ByVal sender As Object, ByVal e As PropertyChangingEventArgs(Of Integer))

' make sure the id value doesn't exceed 1000
If e.ProposedValue > 1000 Then

e.ProposedValue = e.ProposedValue - 1000
End If

End Sub

End Class

In this case, the event is explicitly hooked up to the method that handles the event. This
technique is required in C#, but the Handles clause is a simpler solution in VB.

At this point, you should understand how the Initialize() method can be used to
perform any object initialization, most commonly event hookups, as the object is created
when using partial classes and code generation.

CSLA .NET version 2.1 is an evolutionary step forward from version 2.0. The primary
focus is on performance and memory consumption around validation and authorization rules.
However, a number of other enhancements have been made that support some important
scenarios that many people encounter when using CSLA .NET to build applications.

www.4electron.com

Page 158

Index

A

ApplicationContext class · 105
ApplyEditChild method · 83, 84, 100, 101
ApplySort method · 71, 147
Authorization

IAuthorizeReadWrite interface · 63, 64, 65, 66
per-instance rules · 58, 61, 63
per-type rules · 56, 57, 62, 65

B

BusinessBase class · 19, 54, 101, 149, 151
BusinessListBase class · 100, 151, 154

C

CanPage method · 140, 141, 142
CanSort method · 142
Channel adapter design pattern · 111
Count property · 34, 69, 140
Create method · 9, 111, 116, 117, 119
CreateDomain method · 135
CreateInstanceFromAndUnwrap method · 135
CslaDataSource control · 10, 102, 129, 131, 133, 137,

139, 141, 142, 143, 145
CslaDataSourceView class · 139
CslaDesignerDataSourceView class · 130

D

DataPortal class (client-side) · 117
DataPortal class (server-side) · 119
DataSourceSelectArguments parameter · 140
Delete method · 107, 151, 152, 154, 155

E

Edit level (n-level undo) · 80, 81, 82, 83, 84
EditableRootListBase class · 78, 79, 85, 86, 88, 90, 92,

100, 101
code template · 86

EmptyCriteria constant · 118
EmptyValue enumeration · 123, 124, 125, 127
ExecuteSelect method · 139
ExtendedBindingList class · 79, 94, 95, 102

F

Fetch method · 87, 90, 91, 111, 112, 117, 118, 119,
121, 143, 144, 147, 148

FilteredBindingList class · 67, 68, 74
FilterProvider delegate · 67, 68, 75
FindMethod method · 113, 114
Format string (SmartDate, default) · 123, 124, 125,

127, 128

G

GetCodeBase method · 136
GetCreateMethod method · 116
GetFetchMethod method · 117
GetFields method · 130, 132, 136
GetMethod method · 113, 115
GetOriginalPath method · 132, 134
GetTemporaryAppDomain method · 133, 135
GetType method · 136
GetTypeLoader method · 133, 135
GridView control · 137, 143, 145

H

Handles clause · 153, 157
HttpContext · 106

I

ICancelAddNew interface · 149, 150
IEditableCollection interface · 100
Initialize method · 149, 153, 154, 155, 157
IParent interface · 79, 83, 84, 100, 101
IReportTotalRowCount interface · 102, 129, 137, 138,

139, 140, 143
ISavable interface · 79, 81, 93, 97, 98, 103, 104
IsDirty property · 151

L

LocalContext object · 105, 107

M

Method calling semantics (data portal) · 9, 111, 112,
113, 120, 121

MethodCaller class · 113, 117

www.4electron.com

Page 159

O

ObjectViewSchema class · 130
OnSaved method · 99
ORDER BY clause (SQL) · 148

P

Parent property · 9, 101
Partial classes · 152, 153, 154, 155, 156, 157
PropertyChangingEventArgs class · 155
ProposedValue property · 156, 157

R

RemoveChild method · 84, 100, 101
RemovingItem event · 93, 94, 95, 96, 97, 98, 102, 103
RemovingItemEventArgs class · 94

S

Save method · 49, 81, 97, 98, 99, 104, 151
Saved event · 97, 98, 99, 104
SavedEventArgs class · 97
SaveItem method · 80, 83, 92
SelectObject event · 137, 139, 140, 141, 145, 146,

147, 148
SelectObjectArgs parameter · 137, 141, 143, 145, 147,

148
SetParent method · 82, 100, 101

Shadow directory · 133
SimpleDataPortal class · 119
SmartDate class · 123, 124
SortedBindingList class · 67, 154
SortExpression property · 141, 148
Sorting property · 141, 142
SqlCommand object · 110
SqlConnection object · 110
SqlTransaction object · 109, 110

T

Thread local storage · 106
Transactions

Manual · 109, 110
TransactionScope · 108, 109, 110, 119

TypeLoader class · 130, 131, 134
TypeSupportsPaging property · 137, 139, 140, 141,

142, 143, 145
TypeSupportsSorting property · 142

V

Validation
dependant property · 13, 17, 18, 19, 24, 25, 26, 27,

28, 29, 47, 48, 50
per-type rules · 14, 25
rule priority · 13, 21, 24, 34, 38, 51
rule severity · 13, 38, 48
rule short-circuiting · 13, 21, 24, 25, 28, 34, 37, 38,

39, 40, 49, 50, 51
strongly-typed rule methods · 13, 17, 52, 53

www.4electron.com

	CSLA .NET Version 2.1 Handbook, VB Edition
	Contents
	Introduction
	Validation Rules
	Authorization Rules
	FilteredBindingList
	EditableRootListBase
	Csla.Core Interfaces and Types
	LocalContext
	Data Portal
	SmartDate
	CslaDataSource
	Miscellaneous Changes
	Index

