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CHAPTER 1

THE EVOLUTION OF NETWORK
TECHNOLOGY: DISTRIBUTED
COMPUTING AND THE
CONVERGENCE OF NETWORKS

In this introductory chapter, we will review the unprecedented changes that have occurred in com-
puting and telecommunications-related technologies over the last 30 years. We will also examine the
chain of events that caused this extraordinary cascade of technical breakthroughs on multiple fronts.
These breakthroughs ultimately helped generate the new high-speed broadband network requirements
for which network processors will be indispensable.

The various subjects discussed in this book are documented extensively within the corresponding
notes and references provided in this chapter. This chapter is more of an historical overview that
intends to provide a context and background against which readers (especially recent college gradu-
ates) will be able to properly understand the macroscopic picture of how and why we arrived where
we are. This background will enable readers to better view these complementary technologies in rela-
tion to each other and to appreciate and understand the main network-processing technologies dis-
cussed in this book.

IN THE BEGINNING

An explosion of information technology (IT) occurred predominantly in the last quarter of the twen-
tieth century. Computers, which were exotic devices to previous generations, have by now become
indispensable tools for our everyday work and leisure. Today all branches of industry, processes of
workflow, channels and methods of education, manufacturing techniques, financial management
tools, audio and video entertainment systems, transportation systems, electronics and engine control
systems, and even humble video games have taken advantage of this unbelievable progress.

In the 1960s and early 1970s, when many of us were in college, working with a computer meant
standing in line to use card punchers to write programs in primitive languages. A student program-
mer would have to wait until the following day to receive the printout results because the data-center
staff had to feed numerous programs on a batch base daily into the university mainframe. The spooler
was invented to manage the output for so many different people at different times of the day. This pro-
duced one single output point that would convey the results to the users who were expecting to see
the fruit of their work. This all sounds unreal, yet it was still happening just 25 years ago.

Large mainframe computers were the solution for that era’s IT problems. IBM was the leading par-
adigm for these computers. Companies that more or less emulated its business model, such as Amdahl,
Burroughs, Control Data, and so on, also dominated the stage. Only universities, major organizations,
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and large (usually multinational) corporations could afford these machines. Some “enlightened”
industry executives have even gone down in history affirming that there could not be any potential for
more than two to three computers in the market!

Soon the card punchers disappeared and were replaced by alphanumeric terminals. People could
sit in front of a computer screen and type in their code using a typewriter-like keyboard. The progress
of compiling technology and operating systems facilitated interactive work sessions. Programmers no
longer had to wait one day to get results. Once the programs were executed, the programmer could
sit down and examine the results or reexamine the code and debug the program. Interactivity between
man and machine started increasing.

The site topology and IT architectures of these machines were mostly based on an inverted tree
structure. The mainframe, also affectionately known as the big iron, was at the top of the hierarchy
(the root of the inverted tree). The structure contained a series of layers of controllers of variable per-
formance. It had a capacity that would individually cluster several nearby or remote downstream
devices. This would eventually create an array of terminals that enabled interactive users to use the
mainframe’s computing power on a time-shared basis.

IBM led the industry and the world by creating the first comprehensive and extremely powerful
intercomputer communications architecture called the Systems Network Architecture (SNA).1 This
architecture was quite advanced for its time. SNA enabled mainframes to communicate with each
other at different sites. Little by little, tasks that were previously tedious or impossible could be done
in a complex but well-tested, documented, and straightforward way. Users could easily perform file
transfers and log into other computers remotely. It would still take a few more years until SNA was
developed enough to enable programs running on different systems to almost seamlessly communi-
cate with each other, synchronize themselves, and exchange data in real time. This became possible
in the late 1980s.

In the midst of all this change in the late twentieth century, semiconductor technology underwent
a revolution. Because more powerful capabilities could be integrated into a silicon microchip, users
could envision the ever-increasing possibilities in terms of the complexity, the integration of func-
tions, the speed, and the accuracy. The commensurate progress that was made in software engineer-
ing, which was essentially driven forward by the ever-increasing requirements of new and more
sophisticated IT applications, continued to try to use the available hardware capabilities. This formed
an endless loop: Faster hardware was needed to run the more sophisticated software. The more sophis-
ticated the software became, the more powerful the underlying hardware had to become. Central pro-
cessing units (CPUs) became faster and more complex by first packing hundreds of thousands and
then millions of transistors and even millions of logical gates on a chip (with typically four, six, or
even eight transistors per logical gate).

It was only a matter of time before the centralized IT fabric changed. Computing power was essen-
tially going to break up and would be physically distributed around corporate and organizational sites.

DEPARTMENTAL MACHINES ERODE THE
MAINFRAME’S FOLLOWING

The organizational and political reasons why a corporate department, such as manufacturing or R&D,
did not like to be connected to and controlled by a corporate IT center go beyond the subject of this
book; however, they remain a fact of life. The founders of companies such as Digital Equipment
Corporation (DEC), Hewlett-Packard, Prime, and Data General, which pioneered the so-called
midrange systems or departmental machines, understood this problem.

With the advent of sleek interactive operating systems such as Digital’s VAX/VMS and with the
university world open-heartedly accepting the UNIX effort from Bell Labs, a new generation of com-
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puter systems was developed. These systems were much more affordable than mainframes and were
easy to run and manage with small teams of people. A plethora of these machines eventually appeared
on academic and industrial campuses. People who used them were almost as enthusiastic about these
machines as neophytes devoted to a cult.

THE FIRST LOCAL AREA NETWORK (LAN)

Around the early 1980s, local area networks (LANs) slowly moved out of the research community
into the industrial world. Digital, Intel, and Xerox created the Ethernet based on research that was
done at Xerox’s Palo Alto Research Center (PARC). Technology suddenly became extremely inter-
esting. For example, a user could be running a program on one VAX and interact with another system
on the network to develop software code while choosing his or her own printer that was going to be
shared among several users on the LAN. These users would quickly become indignant of the older
and rigid mainframe technologies. In many cases, they would even look down on traditional data-cen-
ter IT staff and qualify them as “nonenlightened.” Two parallel popular cultures were created. At the
risk of stereotyping, it seemed that one culture was dressed in a coat and tie, and the other was dressed
in jeans and a T-shirt.

IBM followed suit with the introduction of the token ring, which was based on research that was
mostly carried out at the IBM Research Lab in Rueschlikon, which is located outside of Zurich. The
early introduction however of an open standard, coupled with the availability of off-the-shelf semi-
conductor chips that implemented the basic Media Access Control (MAC) and physical layer (PHY)
interface functions, helped Ethernet keep its market lead. Several other manufacturers tried to come
up with their own LAN approaches until the Institute of Electrical and Electronics Engineers (IEEE)
stepped in and started standardizing the landscape. IEEE 802.3 covers the original Ethernet approach
(carrier sense multiple access with collision detection [CSMA/CD])2 and IEEE 802.5 covers the
token ring. Vendors could now design adapters, also known as printed circuit boards (PCBs), that
could be plugged into systems (for example, a departmental VAX computer) to connect devices on
a LAN.

As IT managers realized that the proliferation of connected users was depleting the available
network segment addresses, a wider structure was created. Gateways between LAN segments and
bridges started appearing between token rings and/or Ethernets. By using a straightforward lookup
table mechanism, they would remain two or more address spaces apart and steer traffic to and from
the appropriate destinations and sources. If users were connected inside a building, it was only a mat-
ter of time before they would also require the appropriate levels of connectivity with the external
world.

In the late 1970s and early 1980s, visionaries of the engineering community realized that the
increasing complexity of design work in the mechanical as well as the electronic and civil engineer-
ing fields would require more sophisticated computer-based tools. Thus, the era of computer-aided
design/computer-aided manufacturing (CAD/CAM) was born.

Very complex pieces of software were developed in the electronics arena to enable users to design
sophisticated integrated circuits and multilayer PCBs. Similarly, in the mechanical area, advanced
tools appeared in the market that would enable users to create two-dimensional and three-dimensional
mechanical designs for car frames, ship hulls, airplane fuselages and wings, and even offshore drilling
platforms. These tools were extremely computation oriented, especially when they combined mathe-
matical techniques such as finite-element simulation modules. Special computing platforms were
needed.

In addition to being too expensive for the average research and development lab, traditional IBM
mainframes were not equipped with number-crunching capabilities. The IBM mainframe S/360 and
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S/370 architectures made their reputation as fast data-center machines due to the special IBM chan-
nel processor architecture, which could efficiently handle several input/output (I/O) requests from the
CPU to and from the hard disks.

However, when an executed program was lean on I/O and heavy on computations, the IBM CPUs
were weak. This gave rise to several new companies such as ComputerVision, Intergraph, and
Applicon, which pioneered the field of CAD/CAM workstations and eventually Electronic Design
Automation (EDA) for the electronics industry.

One of the reasons DEC was extremely successful at the time was because its VAX architecture
was able to handle computationally heavy software better than the traditional IBM machines. As a
result, DEC could capitalize on users with specific computing needs as opposed to the traditional IBM
approach of “one architecture fits all.” By the time IBM realized the pitfalls of their approach, DEC
was an established global powerhouse. IBM responded by using channel-attached array processors,
which were arranged by original equipment manufacturers (OEM), and by creating the 3090 main-
frame, which had its own vector facility (VF). However, this was too little and too late. It would take
one more IBM iteration, with offerings of really powerful reduced instruction set computer (RISC)
workstations and departmental machines, before it would be able to compete in the new realm.

In the early 1980s, IBM sensed that the growth in the mainframe community would not be sus-
tainable. It had to react to the emergence of departmental computing both as a defense against the ero-
sion of its traditional IT dominance and as a new source of potential growth. If it could replace some
of these departmental computer systems, it would increase its own market share. The question was
how to go about doing this. IBM chose a three-pronged approach that enabled and ratified the client-
server computing model:

• The creation of the personal computer (PC).

• The development of IBM’s own midrange systems for scientific and engineering users.

• A wholehearted embrace of UNIX.

MOVING MAINFRAMES ONTO DESKS: PC AND WORKSTATIONS

While all of this was happening, other companies such as Apollo and Sun Microsystems appeared and
introduced a new breed of machines: engineering workstations. These were powerful, beautifully
packaged, sleek computers geared toward a single user. These workstations possessed a superb high-
definition graphics display, a powerful computationally capable CPU with floating-point processing
capabilities, lots of memory for heavy-duty computing, a big hard disk drive, and standard LAN inter-
faces. Most of these machines initially had a proprietary operating system (for example, Apollo had
its own Aegis system); however, UNIX soon became the standard offering, although it was originally
available in a palette of quasi-incompatible platforms. For example, UNIX versions were released-
from AT&T Bell Labs, Ultrix from DEC, UNIX BSD from the University of California at Berkeley,
Xenix, and other less prominent industrial players. Less commercially successful versions were also
released by various academia. These scientific and engineering workstations were not inexpensive
devices for the average user, but they were absolutely essential in engineering organizations, where
speed, performance, ergonomics, and the highest quality of comprehensive tools were imperative.

This new trend stalled the progress of traditional departmental machines, as epitomized by DEC’s
VAX. Manufacturers such as Prime Computer and Data General started feeling the pressure and sev-
eral of them soon went out of business.

Around the same time, IBM introduced the PC. Several books and articles have been written about
the success of the PC, the idea itself, the strategy, the pros and cons, and so on, so we will not dwell
on this subject for long. However, it is important to understand that the arrival and phenomenal suc-
cess of the PC sparked the explosion of decentralizing software applications even for ordinary data-
center corporate computer users. People discovered it was more efficient to work at their desks rather
than to go to a centrally located IT department and use the mainframe.
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The PC was originally an underpowered piece of hardware that engineering workstation suppliers
mocked. The atmosphere was bound to change, though. The more sophisticated the software appli-
cations became, the more powerful the hardware had to become. Once IBM opened up the architec-
ture of the PC to cloning, a whole new industry was created. This not only drove the prices lower and
made computing surprisingly affordable for ordinary consumers and startup companies, but it also
enabled a humble PC to do unbelievable things. Intel developed and provided generations upon gen-
erations of microprocessor technologies on that same platform, whereas Microsoft and other software
companies followed by developing more sophisticated operating systems and applications. An entire
software industry was created, changing the method of computing.

THE CLIENT-SERVER MODEL

Huge armies of PCs in large corporations and organizations were soon connected to LANs, access-
ing information on larger machines. These included departmental machines and more traditional
mainframes.

The idea had originated at IBM in the early 1980s and was dubbed cooperative computing. IBM
wanted to put a network of industrial PCs in charge of programmable logic controllers (PLCs) on
small manufacturing area LANs. The PC would control and feed the controllers with production data
running on older Series/1 systems. These systems would in turn receive production planning and con-
trol information from mainframes mostly through traditional synchronous links such as SDLC/BSC
protocols over coax connections supporting 3270 terminal emulation software and so on.

Connectivity between different computer systems became critical. For example, bridges allowed
the interface between Unibus™ systems from DEC and IBM channels or between IEEE 802.4
Manufacturing Automation Protocol (MAP) industrial buses. At the time, MAP industrial buses were
favored on the shop floor by the automotive manufacturing world, and Ethernet LANs were favored
in the engineering realm, where VAXs and Apollo workstations lived and worked together.

The idea was simple: The individual PC (the client) would run applications locally, but whenever
data was needed, it would have to be fetched from a server computer transparently to the user. The
server would usually be a much more powerful machine that was situated upstream on the network
hierarchy where databases were being kept around the clock. This model would ultimately require a
radical rethinking of the programming methodology. New tools had to be developed, from program-
ming languages all the way to the application structure and its development process. This was precisely
the moment when the wave of object-oriented-language-based programming became widely embraced.
Previously, this software approach flourished mostly in avant-garde academic research communities
who knew about Smalltalk and Common Lisp Object System (CLOS). This was also one of the driving
reasons C�� was subsequently created and then became well established. The Java paradigm was
invented by Sun Microsystems, which like so many other UNIX vendors had been plagued by the
UNIX flavors that bred incompatibilities. Sun Microsystems had the noble objective of achieving com-
plete code portability over new architectures and operating systems. However, from a programmer’s
point of view, it was largely built on technology that C�� had already introduced to the world.

The IT architectural hierarchy by that time had been transformed into a community environment,
where the mainframe was running central applications, such as payroll, while departmental machines
were running their own applications. The lower one descended on this IT hierarchy tree, the more one
was likely to run into client-server arrangements. Client-server arrangements fed data into PCs and
engineering workstations on individual desks running a plethora of applications from accounting
spreadsheets and general ledgers to CAD/CAM modeling and mathematical simulations.

As mentioned earlier, in addition to revolutionizing the world with the introduction of the PC, IBM
responded to the IT decentralization trend by introducing its own series of midrange systems. These
were powerful engineering workstations with RISC CPUs that soon gave birth to powerful decen-
tralized servers such as the IBM RS/6000 supercomputer (better known worldwide by its prowess that
eventually allowed it to beat the famous world champion Gary Kasparov in a game of chess).
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IBM not only embraced UNIX, but it also created its own powerful version of it, which was dubbed
Advanced Interactive Executive (AIX). That work was further compounded by the establishment of
and support for the Open Software Foundation (OSF), an industry consortium that IBM helped set up
together with other major vendors. Along with UNIX, programming legitimacy was now given to the
C language, which was embedded inside the original UNIX offering. This became another deciding
factor for the promotion and ultimate adoption of C��, which as we saw, strongly influenced the
appearance of Java. With its sockets and inherent support of the Transmission Control Protocol (TCP),
UNIX offered a very straightforward means to communicate with other computer systems, log in
remotely, and activate file transfers. It was only natural to expect that because these UNIX machines
could be connected on LANs and bridged networks, a different global connectivity paradigm was
needed.

PACKET-SWITCHED VERSUS CIRCUIT-SWITCHED NETWORKS

In the 1970s, data communication was no longer just an item of curiosity and started becoming real-
ity on a large scale. Modems were developed that enabled the transmission of digital information over
analog telephone lines. For the first time, digital data could be superimposed onto an analog carrier
wave that was transmitted on ordinary lines. At the time, it sounded like rocket science to the average
person, even though we smile when we hear about it now. Organizations could transmit information
from one site to another. Companies started realizing that they would need a certain level of guaran-
teed bandwidth per month for their data transfer operations between systems. The economics of buy-
ing or leasing a line (or a set of lines) became a typical business case study.

Carriers would block specific lines physically for customer A or B, while the capacity of other
lines would be used on a time-shared basis among customers D, E, and F. Time multiplexing tech-
nologies and pulse code modulation (PCM) transmission techniques enabled such an arrangement.
Time multiplexing was the first major carrier technology that enabled such an economic model. Time
slots were created per units of time and a certain number of them were allocated to a specific cus-
tomer. Traffic to and from this customer would be transmitted only inside the allocated slots and the
carrier would charge the customer at the end of the month appropriately.

At the same time, two significant steps occurred almost simultaneously in the evolution of com-
munications. One was the introduction and eventual global acceptance of the seven-layer Open System
Interface (OSI) model, which profoundly shook the structure of systems development (although lay-
ering was not a new concept since IBM had established it with its SNA years before). The other was
the invention of packetized transmission, a radical departure from the previously accepted model of
sequential transmission and permanent connection.

This invention was going to become the beginning of all subsequent packet-based technologies,
and it was originally epitomized in the introduction of the X.25 network. A permanent circuit would
no longer need to be connected between two endpoints while a communication session was active.
Routes (circuits) were switched at exchange locations, originally by giant racks of mechanical relays
and then by solid-state electronics switches. With X.25, no precious switched resources would have
to be reserved for a communications circuit that was only used part of the time.

The transmitted information would be broken up into structured chunks (also known as packets,
frames, and messages). Then some meaningful tags would be generated and prefixed or suffixed to
each packet—for example, the sender’s address, destination address, cyclic redundancy check (CRC),
the number of packets being sent, and the order of a specific packet in the transmitted sequence. As a
result, the intermittent network gear would know where a packet was coming from and where it was
going. The packet sequence could be transmitted through switched virtual circuits or permanent con-
nections. If a switch ran into problems and went out of operation, for example, another link would be
set up around the affected link to reestablish connectivity. This would enable the carrier to deliver the
packets to their destinations reliably. X.25 was designed with reliability in mind.
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The OSI model has been analyzed in depth in several publications (see, for example, Radia
Perlman’s book Interconnections: Bridges, Routers, Switches, and Internetworking Protocols),3 so we
will not elaborate on it here. However, we will use the numbering system of its layers in numerous
places in this book, so the reader should be familiar with its fundamental premises.

X.25 was a success worldwide, but its performance limit of 64 Kbps quickly became a huge imped-
iment for the improved transmission of data. As a result of the ongoing semiconductor technology
evolution, computers, bridges, and switches became increasingly faster. It was impossible to accept
that the global network infrastructure would keep things strapped down to low speeds. This was the
impetus for the next step in the evolution of networks—frame relay (FR).

The reliability mechanisms of X.25 were stripped down and replaced by newer and less noisy trans-
mission media (such as fiber optics). Clever bit-setting mechanisms in frames (a new formal name for
the evolution of packets) were also introduced to signal advance congestion notification. These changes
led to the creation of the newer technology of frame-relay networks.4,5 This turned out to be a faster
and higher-quality transmission technology. It continues to have many followers even today.

Both X.25 and frame-relay technologies correspond to the second layer of the OSI model (the data
link layer), which means that essentially any layer 3 protocol could be transmitted over either one of
them. IBM’s SNA, Transmission Control Protocol/Internet Protocol (TCP/IP) (favored by the UNIX
community), DECtalk, AppleTalk, and Novell’s Internet Packet Exchange (IPX) were all options in
a disparate layer 3 world at that time. It was only a matter of time until IP was going to rule the day
and become the de facto standard. It became by far the greatest common denominator even among
incompatible networks.

THE INTERNET, ROUTING, AND ASSOCIATED WEB TECHNOLOGIES

The introduction of the Internet in the late 1970s is the next spectacular stop in our fast-forward trip
through the technology landscape of the last 30 years. The Internet is a one-of-a-kind phenomenon in
history. The history of how the U.S. government through its Defense Advanced Research Projects
Agency (DARPA) took the initiative to help connect initially specific university campuses and then
some of its contractors and sister agencies has been well documented in multiple sources. Much has
been written on how this originally small network of researchers grew exponentially to become the
Internet. The interested reader can consult Prakash Ambegaonkar’s book Intranet Resource Kit with
CD-ROM,6 Christian Huitema’s book Routing in the Internet,7 and Uyless Black’s books Internet
Telephony: Call Processing Protocols,8 and IP Routing Protocols: RIP, OSPF, BGP, PNNI, and Cisco
Routing Protocols9 for more information.
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The three most important points about this rapid and spectacular evolution are

• The fact that IP became the uncontested link technology between computer sites all over the world.

• New sets of protocols were developed that reside and function on top of the IP layer. These proto-
cols provide several services to communicating devices, from reliable end-to-end transmission to
the reservation of network resources and the quantification of quality of service (QoS). These pro-
tocols include some very well-known tools, such as the Hypertext Transfer Protocol (HTTP) or File
Transfer Protocol (FTP) and the Hypertext Markup Language (HTML) family of languages, upon
which the World Wide Web (WWW) has been based.

• The fact that numerous alternative routes could be calculated on-the-fly between points A and B on
this globally deployed network thanks to advancements in routing technology.

We saw earlier how IP evolved to become the de facto communication link technology at layer 2.
Now let us look at other WWW technologies that at first sight might appear unrelated to this evolu-
tion of computer communications and networking.

The idea of using a markup language to encode web pages was truly brilliant. It would be unac-
ceptable to eat up the available transmission bandwidth trying to transfer back and forth between com-
puter systems large bit streams and bitmaps of graphics and pictures in order to create content that
made sense in the current multimedia world. It would make much more sense to encode the structure
of web pages in a new language (HTML) and send the encoding instead to the client computer that
asked for a specific web page. As a result, web page text could be combined with graphics, pictures,
sound, and even video. The web page would reside on a server that is connected to the Internet. A
name server would know its address and broadcast it to anyone interested in communicating with it.
When a computer user accessed this web page, a whole set of actions would take place transparently
to the user whereby the HTML text of the page and its constituent components would be downloaded
to the requesting computer. A special piece of software called a browser, residing on the requesting
computer, would then interpret the incoming data on-the-fly and compose the content of the web page
locally on the user screen. This turned out to be the basic mechanism for network users for the gen-
eration of an insatiable demand for more bandwidth.

Routing was the third major factor of this tremendous explosion in operation efficiency. IBM had
tried to contain this revolution by trying to squeeze SNA into every platform. This obviously had not
worked at the departmental computing level (where IBM was not as powerful) as well as with the
mainframes and originally even the PC. IBM was forced to accept the presence of IP as the common
interconnectivity thread. In fact, it was forced to embrace it with its own departmental platform based
on AIX running on RS/6000 offerings. The outbreak of an IP culture effectively isolated SNA into the
IBM legacy world. While IBM was in a new painful state of denial (shocked at its loss of control to
the clones of the PC market it single-handedly created), several small startups, among which was an
unknown little entity at that time called Cisco Systems, started delivering small network machines
called routers. They were simple microcomputers based on a bus architecture. I/O adapters for dif-
ferent layer 1 and layer 2 protocols, such as RS-232, IEEE-488, SDLC/BSC, X.25, frame relay, and
Ethernet, would be plugged into the fast backplane of the router chassis. A master CPU along with
plenty of memory would route the traffic from any port to any port based on some forwarding poli-
cies. These policies would associate addresses with end systems, and a lookup table would show from
which port each address could be accessed and under what conditions or circumstances. The router
was eventually sold with user-friendly configuration software, which would allow a network admin-
istrator to easily configure the lookup tables and to install the router inside a network in a straight-
forward way. A huge new multibillion-dollar industry was created.

The success of the router manufacturers enabled them to invest heavily in R&D. Carrying the
torch of standardization bodies such as the Internet Engineering Task Force (IETF), a plethora of
routing protocols were developed. They would enable adjacent routers to communicate automatically
with each other. They would also notify their peers about the status of the network at every neigh-
borhood, communicate route links toward specific target addresses, and so on. The Routing
Information Protocol (RIP), Open Shortest Path First (OSPF), Interior Gateway Protocol (IGP),
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Exterior Gateway Protocol (EGP), and Border Gateway Protocol (BGP) are now commonplace tech-
nologies for a networking professional, but less than a few years ago, they were truly breakthrough
concepts.10,11,12 A giant web of routers deployed on a worldwide scale and armed with the appropriate
routing protocols and interface adapters could handle the ever-increasing massive traffic of the Internet
around the clock.

If a certain link was inaccessible, the routers would reroute a link around other less congested
areas. The whole world would end up being a connected place. This new connectivity fabric would
enable the realization of the original dream: From a circuit-switched world, which used old telephony
network relay switches, traffic could now be completely packet switched. Even more striking is the
observation that everything is digital in this transmission realm; therefore, the nature of the informa-
tion semantics is irrelevant. All digital bits following the modulation stage of the transmission process
are transformed into electromagnetic energy pulses. Regardless of whether the pulses are traveling
down a fiber-optic cable as a bunch of light photons or down a coax cable as a collection of electrons,
or whether they are transmitted over the airwaves as microwave photons, they will always be repre-
senting digitized and compressed voice, streaming audio/video, or alphanumeric data with the same
likelihood. Voice and data were no longer distinguished from one another as they were in the past. It
would not take a rocket scientist to realize that the Internet or IP telephony was now the logical out-
come of such enabling technologies. Competition would be severe for the traditional voice commu-
nications providers.

Packetized transmissions would be generated by breaking up the information that was going to be
sent into packets. The network would route these packets automatically and in an unsupervised man-
ner through the optimal route that it calculated. Such an approach brought forth a new generation of
problems. For example, some packets might arrive at their destination out of order, whereas others
might get lost on their way for many reasons, such as looping around folded branches or timing out.
They could also end up being misforwarded by an incorrectly configured router.

We will soon see how the industry started looking after these legitimate QoS concerns. However,
first we will take a look at how the industry came to the (then) unbelievable point of being able to
fully and reliably manage complex network gear from a distance.

NETWORK MANAGEMENT

The proliferation of interconnected devices would have created a nightmare of unprecedented pro-
portions had the techniques that enable the remote management of network devices not been invented.
One of the major breakthroughs that enhanced network management was the protocol analyzer, which
allowed network engineers to tap onto problematic network segments and analyze the frames until the
cause of the problem was identified and fixed.

The undisputable revolution in network management, however, has to be ascribed to the Simple
Network Management Protocol (SNMP) protocol.13,14 SNMP was developed by the IETF. It is a soft-
ware system that is predominantly based inside a PC or a UNIX system in the network management
station. This station is able to communicate automatically with the various devices deployed across a
network to collect information and therefore detect problems or issues that may require attention.
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When the network is running normally, SNMP collects and logs detailed statistics about numerous
variables and returns them in easy-to-interpret displays and reports. All network-connected devices
supporting SNMP contain and maintain a set of management information bases (MIBs) with network
statistics.

In order to provide the network manager with meaningful information, the SNMP management
station queries the MIBs of the network-attached devices. Based on the answers it obtains, it compiles
a well-rounded more or less real-time picture of how the network behaves. SNMP is structured in a
client-server model. The client model (also known as the network manager) establishes a virtual con-
nection with a server program (also known as the SNMP agent), which runs on a remote network
device. The local database maintained by the SNMP agent is known as the SNMP MIB. It contains a
standardized set of statistics and values of specific control variables. Commands from the network
manager (client) consist of identifiers of SNMP variables (also known as MIB object identifiers or
MIB variables) along with instructions to either get the value of the corresponding identifier or set the
identifier value to a new value. The network manager obtains the relevant information through queries
issued to the agent’s MIB. This is the traditional technique of polling. An alternative technique is used
when unsolicited responses from the network-attached devices are sent to the SNMP management sta-
tion. We are referring to “traps” that the agent is throwing at the manager to signal that something
unusual has happened.

Beyond the standardized MIBs, network equipment vendors have also created private MIBs, which
allow the remote management of several disparate devices.

SNMP turned out to be a large and heavy protocol; therefore, it was often implemented only on a
limited scale by vendors who tried to minimize the computation and memory load that was allocated
purely for SNMP processing inside a network device. In conjunction with private MIBs, this often
created undesirable results with SNMP compatibility between devices from different vendors. SNMP
also suffered from a lack of scalability. Polling generates significant network management traffic,
which only exacerbates network congestion problems by eating away useful bandwidth.

To address this capacity concern, the IETF defined Remote MONitoring (RMON) as an addition to
SNMP. RMON was intended to go beyond just using intelligent agents (something SNMP pioneered)
and use these same agents (called probes in RMON jargon) to collect filtered data and information
about a whole network segment for subsequent proactive transmission to the network manager when
needed. RMON would reconstruct the data and the environment at the network management station,
thereby enabling human operators to play back an incident to understand exactly what happened.

The introduction of RMON drastically reduced the problems associated with polling and extended
the range of information it sent back to the SNMP manager. The interested reader can find more
information in William Stallings’s book SNMP, SNMPv2, SNMPv3, and RMON 1 and 215 and David
Perkins and Evan McGinnis’s book Understanding SNMP MIBs.16

SWITCHED LANS, FAST ETHERNET, AND FIBER-DISTRIBUTED
DATA INTERFACE (FDDI)

As a result of the increase in desktop computing capabilities, the proliferation of the client-server com-
puting model sparked a phenomenon. LAN bandwidth was being rapidly eaten away, and local
congestion became a common problem. The frustration this caused among users put pressure on ven-
dors to come up with a faster LAN. The most notable of the achievements that addressed this concern
was the development of 100 Mbps Ethernet, which eventually became known as Fast Ethernet.
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Driving the cost down of Ethernet LANs was a process that had to go through at least a couple of
evolutionary stages, from the original coax cable to the twisted pair (Cheapernet) to ultimately
unshielded twisted pair (UTP). At the heart of the 10Base-T standard and in conjunction with the
advent of switched LAN technology, UTP caused the explosive proliferation of LANs during the
1990s. The various segments of an Ethernet LAN were connected in a hub-and-spoke architecture that
enabled easy deployment and scalability. The wide availability of hubs (more accurately called LAN
repeaters) turned out to be an easy way for network management to allocate bandwidth and ensure
easier physical connectivity, overall site management, and ultimately QoS to users. Small startups
offering hubs such as 3Com, Cabletron, and Wellfleet/Bay Networks, soon became multibillion-dol-
lar companies. The presence of repeaters on local networks, working in combination with routers
when these networks were getting connected with large-scale metropolitan area networks (MANs) or
wide area networks (WANs), made network management even more of an urgent and critical issue.
This fact exacerbated the industry’s efforts toward advancing and developing network management
technology even further.

In campus networks, where periphery LANs often served many users with Fast Ethernet capabil-
ities, the backbone that was feeding these periphery LANs started to show very serious problems of
congestion. This is because fast LANs serving the desktop produced so much traffic that the campus
backbone linking these LANs would choke. It was only a matter of time before some serious help was
needed. The effort to control this problem led to the introduction and wide-scale acceptance of the
Fiber Distributed Data Interface (FDDI) and the Gigabit Ethernet technologies along with the advent
of Asynchronous Transfer Mode (ATM).

FDDI was based on a logical and physical ring structure that offered speed (like the original IBM
token ring principle), high reliability (because the ring would logically fold back on itself in case of
rupture or accident), and the avoidance of traffic congestion.17 Due to their significance in this his-
torical overview, we will discuss ATM and Gigabit Ethernet later in this chapter in separate sections.

IP NETWORKS: INTRANETS AND EXTRANETS

The arrival of the Internet signaled the beginning of the era of web technologies. Client-server mod-
els were being applied on a grand scale beyond campus- or site-wide deployed systems. Companies
forced by deregulation better manage their resources started restructuring (a term that came in vogue
during the late 1980s and early 1990s). This involved looking among other things at better stream-
lining their operations while cutting costs. In many cases, they radically changed the way they did
business (processes) and ran their internal operations.

All of a sudden new words entered into everyday vocabulary, such as e-business, e-commerce,
and so on. Companies started realizing that the use of these technologies could be applied toward
improving their day-to-day operations. For example, corporate users could now dial into specific web
sites and access their daily resources from anywhere on the planet. They could check with divisional
associates and databases, and carry out their work efficiently from anywhere and at any time. These
special internal networks that were deployed on top of the same physical Internet were called
intranets.

It was only a matter of time until companies realized that some external users could also have legit-
imate access to parts of a corporate network. For instance, key suppliers could be granted access to
their OEM customer’s inventory status databases and help adapt the shipment dates to support a just-
in-time (JIT) philosophy. Customers might need to log into specific customer support systems and
probe for frequently asked questions or report problems. Companies called these networks extranets.
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Information flowing back and forth suddenly made for a more efficient economy in a way that would
have been absolutely unthinkable only 5 to 10 years ago.

IP TELEPHONY

In the case of telephony, the deregulation of the carriers first in North America and soon thereafter in
other parts of the world enabled newcomers to enter the market. These were mostly startups that mas-
tered all technological aspects of the new network fabric. They were poised to offer very competitive
services. This placed a tremendous financial pressure on the traditional transmission technologies, as
companies that had always deployed them in their business model could not be economically sus-
tained without some sort of government intervention. If a new-generation carrier using IP technolo-
gies could offer connectivity for a fraction of the cost of the older guard carriers, why would someone
continue doing business with the traditional telephony carriers?

In addition to the privileged capability of efficiently handling data transfers, the new network was
also able to tackle the (then) lucrative voice transfer market. Of course, IP telephony was not going
to materialize overnight.18,19,20 Telephony, as dictated by the ergonomics and the sensitivities of the
human ear, is a very demanding application in terms of the acceptable latency and quality required to
satisfy a user. Even the term satisfaction is rather generic as voice applications have different levels
of acceptable quality for different levels of cost; hence, terms such as toll quality are not always appli-
cable (Bellamy).21

Besides the issue of audible quality, which could arguably be addressed with the advancements in
low-bit-rate vocoders, users had to come to grips with the different statistics of the new traffic that
mixes everything in the same digital bucket—voice, audio, video, and data. Traditional telephony sta-
tistics are extremely well understood and predictable. That fact was at the heart of the study and
deployment of the public telephony network many decades ago. With the arrival of the Internet on the
global communications market, however, everyone realized that this was a very unpredictable medium
in terms of traffic load. Consequently, to be able to offer reliable telephony over an IP network, the
new-generation carriers found out that they either had to have their own intranet, where they could
more or less manage the allocation of bandwidth, or they had to have access to specific pieces of pow-
erful transmission/routing equipment on the Internet with the appropriate resource reservation proto-
cols, such as the Resource Reservation Protocol (RSVP) and Real-Time Protocol (RTP).22,23 Whether
this meant that alliances were needed with companies serving the backbone of the Internet or that only
well-heeled players would have a chance to compete in this new business, only time would tell. (In
many cases, these new carriers included some older guard carriers such as AT&T or Verizon, who shed
their old skin and adapted themselves by reacting appropriately to the evolution of the industry.)

It could be argued that no matter what, the equipment or bandwidth investment would have to ulti-
mately be passed onto the carriers’ customers somehow. Therefore, the following reasoning should
be considered: When communicating over the Internet, the connection cost itself has been shown to
be negligible, even coming very close to zero (barring the nominal cost of an Internet service provider
[ISP] connection and a modem). However, the QoS one receives for that link is sometimes equally
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close to zero. As the quality requirements increase, some infrastructure cost will be required, which
will ultimately reflect itself in increased costs for the customer.

Nevertheless, it should be clear that the advent of IP telephony and the deregulation of the tele-
com industry during the last 10 years have been deciding factors that contributed to the sharp decline
of voice communication costs. The traditional local or long-distance carrier is now in serious danger
of extinction if it does not adapt quickly to the realities of the new network.

ATM, LAN EMULATION (LANE), MULTIPROTOCOL OVER
ASYNCHRONOUS TRANSFER MODE (MPOA), AND IP OVER ATM

The emergence of ATM in the 1990s as the promising successor of frame relay for reasons that have
been widely documented is another factor that had to be taken under consideration.24,25,26

ATM was created as a versatile way for carriers and service providers to more flexibly allocate
bandwidth and to provide different levels of QoS. The basic idea was to mesh together ATM switches
on point-to-point ATM links or interfaces. These would usually be interfaces to the Synchronous
Optical Network/Synchronous Digital Hierarchy [SONET/SDH] hierarchy. The transmission units of
ATM are small fixed-length bit packets (53 bytes), which are called cells. ATM switches can indeed
transmit traffic cells from one interface to another very fast (up to several gigabits per second), and
traffic can be transmitted with a very small and predictable delay. This fundamental characteristic of
ATM is the key enabling factor for the delivery of voice and data services with a certain QoS in terms
of available bandwidth, delay, and jitter.

ATM was expected to become the solution to the backbone congestion problem we described ear-
lier. With projections of sharply increasing sales, vendors of ATM products hoped that the costs of
ATM products and more specifically adapters would drop significantly, thereby opening up the huge
markets of desktops.

To facilitate acceptance of the technology, several standardization efforts were put forth by the
ATM Forum, an industry consortium devoted to the promotion and advancement of ATM. These
efforts led to the creation of protocols that allowed LAN Emulation (LANE) over ATM or the trans-
mission of several network and transport protocols over ATM, Multiprotocol Over Asynchronous
Transfer Mode (MPOA).

In retrospect, it is rather easy to state that ATM has failed to become the astounding success it had
originally promised for a couple of reasons. The most important reasons are as follows:

• The establishment of IP running over ATM as the predominant realm, within which routing deci-
sions were being taken by network equipment operating at a higher layer than where ATM was, left
no room or need for an intelligent ATM switch under it.

• The bandwidth and QoS services that ATM was designed to offer in the WAN were going to be
offered by the newer layer 3 switching techniques (such as Multiprotocol Label Switching [MPLS],
which we will discuss in another section).

• At the campus level, other technologies appeared such as Gigabit Ethernet, which was not only
faster than ATM’s 622 Mbps transfer rate, but it was also completely compatible with legacy
Ethernet applications and software written for 10Base-T era networks. ATM was left in a perpetu-
ally hopeful mood, only now without any real prospects.
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Today ATM is mostly confined in the backbone of some long-distance or metro carriers. As a
result, it must be utilized for the efficient and billable transfer of pertinent layer 3 protocols such as
IP. The IETF quickly established how IP should be transferred over an ATM network. It is one of the
current techniques used for the transport of voice or video or data over such a fast layer 2 network
arrangement. Of course, ATM itself was supposed to run over an appropriately supportive layer 1 such
as SONET/SDH,27 but this is beyond the scope of our discussion. There are ample references for the
interested reader to pursue the subject.

In the evolution of the newly convergent networks, the concept of optical networking starts appear-
ing often, and ATM does not seem to be part of the new backbone technology landscape that is tak-
ing shape for the longer run. Some industry insiders already envision the demise and elimination
altogether of the ATM layer (for instance, running under IP and over SONET/SDH, which would run
over optical wavelength division multiplexing [WDM]) in the effort to ultimately have IP run directly
over the newer technologies of optical WDM.28 One of the reasons for such a bleak outlook is ATM’s
inefficient transmission layer. This problem includes ATM Adaptation Layer level 5 (AAL5) and ATM
cell overhead, which when combined approaches 30 percent. As a result, it overrides the advantages
of multiservice integration and QoS functionality that ATM purports to offer.29

WIRELESS NETWORKS AND MOBILITY

In the 1980s, the first analog cellular networks appeared timidly in the United States and Europe. They
were an instant success with business people and the public at large. As the PC liberated the tormented
corporate user from the need to be attached to the mainframe when he or she had some data-related
work (IT) to accomplish, the arrival of the mobile telephone liberated users from the telephone jack
on the wall. It enabled users to roam around while doing their business and leading their lives more
productively and efficiently. Europeans embraced the wireless technologies much faster and to a larger
extent than Americans so they moved quickly to the second generation of wireless networking—the
digital Global System for Mobile communication (GSM) standard (helped by an intergovernment-
guided standardization process). The United States kept its market unregulated for political, economic,
and competitive reasons.

Digital wireless technologies brought a higher quality of voice to roaming users. The result was
that several competing second-generation technologies appeared in the United States, such as Time
Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), and even GSM, along
with the older analog Advanced Mobile Phone System (AMPS) networks. This is why U.S. mobile
carriers never attained the same deployment economies of scale of GSM as European carriers and as
carriers on other continents where European manufacturers exported it.

CDMA in its wideband varieties soon became accepted as the third-generation standard. It will be
deployed in a couple of different standards in North America, Europe, and elsewhere, with the hope
that some sort of compatibility of third-generation networks can be expected. Third-generation tech-
nologies promise to further enrich the lives of users by enabling high-speed interconnectivity, among
other things, that can transmit images, compressed video, high-quality audio, and data onto multi-
media-enabled handsets. Microbrowsers are already available in handsets equipped with a liquid crys-
tal display (LCD) screen. This screen enables the mobile browsing of Internet web pages through
technologies such as the Wireless Application Protocol (WAP). The m-commerce area that is enabled
by such an infrastructure looks extremely promising.
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To facilitate the gigantic investment needed to uproot older infrastructure and the massive deploy-
ment of new technologies for carriers, which is what the transition from second-generation technol-
ogy to third generation implies, some intermediate solutions have been proposed by infrastructure
equipment vendors and explored by carriers. Two popular and quite promising examples of this wave
of technology include General Packet Radio Service (GPRS) and Enhanced Data Rates for GSM
Evolution (EDGE). Cellular Digital Packet Data (CDPD) is commercially less successful. These
2.5-generation technologies provide enhanced transmission speeds, and they can be deployed for the
most part on the current second-generation wireless infrastructures. This enables carriers to proceed
with the delivery of third-generation-like services without having to foot the bill for the huge imme-
diate investment that is required for the establishment of a full-fledged third-generation network.
However, the sudden and explosive growth of wireless LANs (WLAN) and access technologies like
IEEE 802.11, 802.16 etc. create an environment where the prospects of 3G cellular telephony may be
endangered.

At the same time, the development of Mobile IP is leading to the possibility of having a unique
IP address that will allow users’ devices to be accessible no matter where they are. Clearly, we are
moving toward a realm where the traditional phone number and the IP address of a computer are
merged into the same sequence of digits. This trend is further supported by the fact that the traditional
wireless handset has started embedding functionality that until recently was only available inside a
personal digital assistant (PDA), an entertainment box such as an MP3 music player, or a portable
video player most likely to be working along the MPEG4 lines. Today’s wireless telephones make the
handling of electronic transactions, such as purchases charged to one’s credit card, instructions to
one’s stockbroker, and so on, relatively easy and secure.

The need for global and secure connectivity, coupled with ubiquitous computing capabilities, dic-
tates that the flow of unprecedented communications traffic will need to be reliably and systemati-
cally managed between wired and wireless networks all over the planet, around the clock, and based
on demand. The new global network is expected to be able to handle this type of demanding envi-
ronment. This can largely be done with the advances in powerful microchips (network processors)
that populate the motherboards of network switching equipment. These network processors are dis-
cussed in more detail in the following chapters.

1 GIGABIT AND 10 GIGABIT ETHERNET

One of the key technologies in the performance network arena is Gigabit Ethernet, which was devel-
oped as the result of the natural evolution of Fast Ethernet.30 It preserves a very good compatibility
with legacy software applications developed for and running on 10Base-T and Fast Ethernet networks
(something that is always a good financial advantage). Above all, it offers a staggering bandwidth
increase for campus networks. The ability to properly service heavy traffic and to interface Gigabit
Ethernet networks with the rest of the world through switched equipment and routers is another
dimension in the demand for fast network processing chips.31 We will see this later in the book as a
recurring phenomenon.

Although it sounded impossible a couple of years ago, the effort to further extend the Ethernet phi-
losophy to a 10 Gbps network has already become a reality. The technology has become an IEEE stan-
dard (IEEE 802.3ae-2002). Several vendors have proposed components, subsystems, and systems that
can function in this realm that promise to revolutionize the industry both on the LAN and MAN/WAN.
This revolution will not only increase its speed, but it will also improve the software compatibility
that it allows. As companies don’t have to upgrade or change fundamental parts of their IT infra-
structure, the business case becomes easier to justify. The effort in the 10 Gbps Ethernet dimension is
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further compounded by the work done by the Metro Ethernet Forum (MEF) and the 10 Gigabit
Ethernet Alliance. More information about these groups can be found in the Appendix III,
“Standardization Efforts in Network Processing.”

STORAGE NETWORKS

With the establishment of the client-server computing model, IT managers realized that in order to
cope with application growth and the demand for functionality on behalf of users, they would need to
be able to attach storage space and devices onto an existing IT hierarchy. These devices include hard
disks, tape drives, and so on. This storage attachment should enable several computer systems to gain
access to the storage reliably and in a modular fashion. In order to do that, they had to adopt either
the direct attachment model or the network-attached storage (NAS) model.

The direct attachment model meant that storage devices would hang from a server using the stan-
dard Small Computer System Interface (SCSI), which is currently at its Ultra3 level of iteration and
is able to sustain a throughput of 160 Mbytes/sec. The NAS model required that the disk arrays and
storage devices connect directly onto a traditional LAN using network adapters, such as Ethernet or
Fast Ethernet cards or even hub connections.

NAS makes storage resources more readily available and helps alleviate bottlenecks associated
with access to storage devices. It has proven more useful in areas where a relatively low volume of
data traverses the links. In general, NAS has been shown to suffer from a couple of major drawbacks:

• As most NAS devices are coupled to the LAN through 10 Mbps Ethernet or 100 Mbps Fast Ethernet
cards, a certain bandwidth shortage occurs when storage is accessed. This situation will continue to
occur until Gigabit Ethernet and even 10 Gigabit Ethernet interfaces become commonplace in this
area.

• A clear lack of cohesion exists among storage devices. If disk arrays and tape drives are on the LAN,
managing the devices can be challenging because they are seen as separate entities and are not tied
together logically.

As large enterprises want the ability to store and manage large amounts of information in a high-
performance environment, a new technology has appeared in the landscape: storage area networks
(SANs).

In a SAN environment, storage devices, such as redundant array of inexpensive disk (RAID)
arrays, are connected to several kinds of servers through a high-speed interconnection, typically a
Fibre Channel.32 This provides fast access to storage from all types of servers. It also provides the con-
venience of alternative paths to storage through an alternative server, should the server of choice turn
out to be unavailable or slow. Using a SAN, data can be easily mirrored and disaster recovery sites
can be created, while storage access bandwidth can be added without burdening the main LAN. Online
backups can take place on a SAN without causing any inconvenience to LAN users. When more stor-
age is needed, it is directly attached to the SAN rather than being hooked up to one of the LAN servers.
The greatest benefit this technology provides is that it is managed centrally as a single entity; each
device is not managed individually. This makes it easier to manage very large “farms” of storage
devices, which could potentially consist of dozens or even hundreds of servers and devices.

The Fibre Channel was developed by the American National Standards Institute (ANSI) in the
early 1990s as a means to transfer very large amounts of data quickly. Fibre Channel is compatible
with other legacy technologies such as SCSI, IP, IEEE 802.2, AAL, and Link Encapsulation. It can
also be used over copper cabling or fiber-optic cable. Fibre Channel links usually offer a performance
from 266 Mbps to over 4 Gbps. Devices can be distanced up to about 10 kilometers (6 miles), which
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offers the possibility of convenient off-site connectivity for network managers. Fibre Channel sup-
ports several configurations, including point-to-point and switched topologies. A Fibre Channel
Arbitrated Loop (FCAL) is usually used to create a reliable and high-speed environment where any-
to-any connectivity is easily supported and where even simpler SCSI devices can be easily bridged
onto and interfaced with a Fibre Channel.

The special functionality of the underlying sophisticated hardware, which must be able to iden-
tify, process, switch, and forward all transmitted packets quickly, is not found in ordinary CPUs; there-
fore, special architecture semiconductor chips are required that are classified among the greater family
of network processors. We will examine these microchips in greater detail later in this book.

THE CONVERGENCE OF NETWORKS

Because of deregulation in the telecommunications industry combined with the technology revolu-
tion, conventional voice-based switching technology is being pushed out of commission. The infra-
structure is being replaced by packet-based architectures using new hardware and software
technologies. The deployment of these new technologies not only costs as little as 10 to 20 percent of
the previous generation of systems, but it also enables the consolidation of multiservice voice and data
transmission with much greater efficiency. Since 2000, data communication has overtaken traditional
voice traffic (tomsu).33 The explosive proliferation of Internet connectivity and corporate and organi-
zational intranets and extranets is a new reality. Carriers have no other choice than to evolve their net-
work to the new technologies.

This new type of consolidated network is invariably called the new network or the converged net-
work. The gigantic process of uprooting the older network infrastructure and adding the newer trans-
mission and switching systems has been dubbed as the convergence of networks. We will use this
phrase throughout in our discussion.

OPTICAL NETWORKING BREAKTHROUGHS

The wide-scale deployment of fiber optics as the successor of the old and tried copper cable was one
of the fundamental factors leading to the proliferation of high-speed networks.34,35 Signals could be
optically transmitted and the new technique produced a sharp decrease in transmission losses. It also
provided higher security against passive eavesdroppers than copper cables, which usually generate
radiation in their vicinity and can be easily tapped. Optical fibers allow the transmission of signals for
many tens of miles without requiring traditional signal recovery, filtering, and reamplification.

The development of many generations of suitable integrated lasers and advanced doped-fiber opti-
cal amplifiers in the two major spectral windows of transmission in conjunction with WDM increased
the capacity of the cable dramatically.36 This meant that the sheer number of simultaneous transmis-
sion channels and the awesome speed of the transmission of digital data over these fiber-optic links
would enable the extraordinary new capabilities that we have come to see in the infrastructure net-
works. These new broadband networks require equipment with remarkable computing power and
intelligence in order to be able to process transmitted and received data at both ends of an optical link
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and at line speeds.37 Therefore, from another point of view, we see the need for powerful network
processors inside communications equipment. Until this processing is handled completely with optical
technologies, fast microelectronics will play a key role; therefore, network processors enable this type
of functionality at very high speeds of transmission.

PROCESSORS: RISC, DIGITAL SIGNAL PROCESSOR (DSP),
AND INTEGRATION TOWARD SYSTEM-ON-A-CHIP (SOC)

Microprocessors were available in the 1970s, but they were simple 4- and 8-bit processors of small
to medium levels of silicon integration. Given the very limited levels of integration of silicon that
semiconductor technology allowed at that time, high-performance computers were based on complete
CPU modules. These modules contained multiple specialized chips that handled all instruction fetch-
ing, decoding, and scheduling, as well as all arithmetic and logic processing functions and the neces-
sary memory support and I/O interface logic.

However, the market for powerful microprocessors started taking off in the early 1980s with the
arrival of the PC. The establishment of the IBM-compatible architecture as the de facto standard using
the Intel platform (and later Advanced Micro Devices) dealt a severe blow to Motorola’s then com-
peting 68000 architecture. Motorola never really recovered in the PC market. Astronomical Intel sales
funneled profits toward more R&D and plant/equipment investment. These sales were also profitable
since PCs had not yet become a sales commodity item with razor-thin profit margins. New semicon-
ductor fab lines were being built and existing ones expanded to meet demand. This economic cycle
would further affect the improvement of the design and manufacture of more sophisticated, more com-
plex, and less expensive semiconductor chips, due to the ever-increasing profits from larger, profitable,
and enhanced operations. Microprocessors, dynamic and static memory, and I/O interface chips all
profited from this progress. The computing landscape started changing dramatically.

Soon microprocessors were deemed so complex that new computing architecture paradigms had
to be found. Research from academia (University of California Berkeley and Stanford) as well as from
the industry (IBM) pioneered the concept of reduced instruction set computers (RISCs) as a means
of shedding the unnecessary capabilities of the traditional microprocessors, which had come to be
known as complex instruction set computers (CISCs).38,39 The RISC CPUs used more optimized
approaches that were heavily based on pipelines of multiple stages for fetching, decoding, and sched-
uling code instructions ahead of their time in a program. RISC CPUs would certainly offer simpler
and faster hardware. However, software that was written for these new CPUs would run much faster
if the novel RISC architectural schemes that the designers had developed were used.

A typical example would be loop and branching look-ahead in iterative code. Unfortunately, tak-
ing full advantage of the capabilities of a RISC CPU involved a deeper architectural understanding
on behalf of the programmer, which he or she rarely had. Writing code in assembly was no longer an
option (except for some minor optimization parts of an application) as the underlying CPU was
designed to decode extremely simple operations. The programmer would prefer the opposite—that is,
to compact as many different logical operations within the boundaries of one single instruction (a phi-
losophy created in the minds of most computer science graduates largely by the CISC industry
legacy). Therefore, the burden had to be shifted onto the compiler tool developers, who had to create
new types of sophisticated development tools for these new processors, if these CPUs were to ever
stand any chance of commercial success against the established market presence of CISC CPUs.
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Around the early to mid 1980s, the speed of electronics enabled the faster digitization of analog
signals (voice, video, telemetry, speed, temperature, pressure, and so on). At the same time, the devel-
opment of sophisticated digital-processing methods, algorithms, and mathematical formulation tech-
niques that could take advantage of this progress had already made their way to the classrooms and
laboratories in engineering colleges in the late 1970s. This resulted in a new army of signal-process-
ing engineers in the industry and academia. These engineers would rather use digital-processing tech-
niques to solve a problem than tinker with older analog, essentially nonrepetitive, complicated, and
sometimes half-baked solutions, which may or may not provide reliable and consistent results.

Texas Instruments (TI), Motorola, and Analog Devices (and a plethora of less successful vendors)
introduced multiple families and architectures for digital signal processors (DSPs).40,41 These were
sophisticated CPU-like chips that contained integrated circuitry to optimally and efficiently handle
mathematical operations used in digital-processing algorithms in one single clock cycle—for exam-
ple, the execution of Multiply-And-aCcumulate (MAC) operations like the ones used in digital filter-
ing. DSPs and memory chips would now be integrated onto adapters and PCBs. A complete
sophisticated DSP system could easily be developed, opening up horizons and possibilities for numer-
ous new applications where classical CPUs could not have been envisioned.

Although Intel adopted RISC techniques relatively early in some of its embedded processor prod-
ucts (for example, i960), its bread-and-butter business involving CPUs (80286, 80386, Pentium, and
so on) for the PC platform continued to evolve in the CISC dimension. The RISC flag, however,
among several less well-known names, remained on the masts of IBM, Sun Microsystems, MIPS,
ARM, and Motorola. IBM took the principle further to the supercomputer arena with the design of
the famous RS/6000 family. Some of the CPUs developed for that realm, in variations on a theme,
have also ended up powering IBM’s networking equipment. IBM even proposed them as embedded
CPUs in some network processing functions. However, ARM ended up becoming extremely suc-
cessful in the 1990s as it was instrumental in establishing the RISC technology as the globally undis-
puted leading architecture for the implementation of main CPU components inside the upcoming
system-on-a-chip (SOC) revolution.42 We will talk more about this later in this book.

In embedded devices, where the volume of a projected solution allowed this approach, companies
found out that by designing appropriately and by reusing available chunks of logic (sometimes very
large and complicated ones), either by themselves or through third parties who were willing to license
and support the developed intellectual property cores, one could patch together a whole integrated
system inside a silicon die in a comparatively short amount of time. As a result, a new level of inte-
gration was created. Of course, it sounds much easier than it actually is. However, with the appropri-
ate methodologies and a disciplined approach, it is now an undeniable fact that this new method of
designing super chips is the only economically viable solution when striving for cost containment (the
need to reuse components) and decreased the time to market. Until then, a certain system imple-
menting a specific functionality would require an entire multilayer PCB with multiple CPUs, the
memory of different types, and an I/O interface. Besides off-the-shelf components, it would also mean
that one or more full- or semi-custom-designed chips would need to be designed. Now it finally
became possible to combine the following:

• Large logic blocks called megacells, perhaps coming from unrelated in-house development teams.

• IP cores that were to be licensed from a third-party vendor, thereby keeping the proverbial lid over
the erupting costs and gaining speed to market.

The main CPU in such a configuration is usually a RISC processor (very often but obviously not
always from ARM). Other integrated modules are available that implement specific functions. One of
these modules might be a powerful embedded DSP core (as offered now by several companies such
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as TI, Infineon, and DSP Group) on which specialized DSP code runs along with the main SOC man-
agement/supervision software that runs on the main embedded CPU. The SOC die is completed with
embedded read-only memory (ROM) for storing executable code, programmable ROM (PROM) for
prototyping, flash memory for retaining something beyond the power constraints, and random access
memory (RAM) for storing data during operation. RAM comes in various types and flavors.

The computing paradigm would then become as follows: The intended application would be
partitioned into parts that would be implemented in hardware and parts whose behavior and func-
tionality would be written in software. Special logic blocks or megacells would cover the hardware
aspects. Some of them already existed in the company’s logic block (cores) arsenal or would have to
be developed. Some might have to be found outside the company among numerous third-party
providers of IP cores. The rest of the application would be implemented in software, which would
have to be running on the main embedded CPU or one of its adjacent peer CPUs or DSP inside the
die. software engineers would then develop the code using high-level languages and computer-
assisted software engineering (CASE) tools for higher productivity on traditional development sta-
tions (PCs or workstations). Cross-compilation, debugging, and linking with appropriate vendor
libraries would eventually create the executable code that would be burned into ROM form. At mask
preparation time, the semiconductor fab would personalize the ROM cell of the SOC with the binary
executable ROMable code and the system would work (if it was properly debugged).

New methodologies and toolsets were developed for the joint co-development of hardware and
software to minimize the risks of failure at silicon time (a very expensive problem).43,44,45,46

For the most part, anything one desires is currently essentially available in the IP core market. With
rather modest integrated systems design capabilities and with some handholding from a semi-
conductor manufacturer or a credible fabless design house, an SOC can be put together in a straight-
forward manner.

The word fabless has come about because these companies do not possess their own semicon-
ductor manufacturing plant, which is known as a fab. Numerous fabless companies have appeared on
the SOC horizon. This is changing the landscape and the industry forever since no one organization
possesses the resources, skills, or specialization to come up with the optimal circuitry that implements
a function.

The traditional make-or-buy debate has taken an altogether new dimension of importance in light
of the shrinking product life spans, cut-throat competition, and an ever-changing market landscape
where a new product becomes obsolete barely a few months after it is launched.

THE QUEST FOR BANDWIDTH AND QOS

The rapid evolution of technology for the desktop and mobile computing (PDAs and wireless hand-
sets) has created a huge array of applications that until recently were unimaginable. These applica-
tions were developed for corporate and organizational users, as well as for casual consumers in their
homes. The performance expectations are getting higher and higher, whether it is for the sales forces
of companies who are able to consult and update secure corporate databases of inventories and orders
in real time in front of their customers or for the excited Generation-Xer who engages in a multiuser
video-game session with heavy animation involving three-dimensional graphics over the Internet.
These new applications that provide exceptional local computing capabilities require additional
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transmission bandwidth compared to the past. This bandwidth was not previously available simply
because the demand for it was not there. Applications drive the need.

In most of these new applications, the functional specification requirements for hardware and soft-
ware designers are staggering for the underlying equipment. The communications landscape is no
longer what it used to be: The multimedia transmission requirements in such a realm are combined
with streaming audio and video, bringing in their own ergonomic levels of acceptability. In many
cases, packets now cannot be lost or discarded, as it may not be possible to recover the traffic in case
something inadvertent affects the transmitted bit stream.

Reconstructed voice from digitized and compressed data used to be an area where sophisticated
vocoding would more than make up for the deficiencies of the transmission channel. The other party’s
voice might be distorted at times, but as long as it was intelligible, no one complained. In the worst case,
if one party did not understand what the other party had said, the other party would just repeat what was
just said. However, data is a different story. Transmitted data must arrive intact. The transmitter can
resend the packet if it arrives corrupt. However, this affects the net throughput as it can be compared to
the problem of taking three steps forward and then two steps backwards. So far, it had been the intelli-
gence of the underlying protocol stacks and forward error correction (FEC) codes that would try to
make it up for the users in case of trouble. If a user has to resort excessively to retransmitting corrupt
frames or packets in order to achieve a reliable link, sooner or later the network capacity will be ham-
pered down by redundant traffic chunks. As a result, the response time and latency as perceived by the
user will be qualified at least as inadequate for several applications. This elevated the importance of also
considering the QoS requirements. This time it had to be done in a thorough manner.

It goes without saying that in order to discriminate between what needs to be done on a bit stream,
standard methods have had to be decided and agreed upon—namely, how to read, filter, inspect, parse,
modify, store, and forward the frames and packets. The requirements for such local processing intelli-
gence clearly point toward the need for specialized high-performance microchips for advanced and
optimized architectures—the network processors, about which we will be talking in length in this book.

SWITCHING EVOLUTION: FROM LAYER 2 SWITCHES 
TO ROUTERS TO LAYER 3 SWITCHES

By cleverly replacing access to the shared media (for example, of the original coax cable for Ethernet)
with dedicated bandwidth, switched LAN technology has greatly increased network performance.
Users still have direct access to the network, but bottlenecks of shared Ethernet disappear as point-to-
point switching is deployed.

Switched networks are generally flat domains that must be subnetted to alleviate broadcast over-
head, spanning-tree loops, and inefficient addressing, and to provide some rudimentary security.47,48

Standard IP network textbooks explain the concept and trade-offs of subnetting,49—54 so we will not
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expand on it here. The important point to remember is that without subnetting, switched networks and
LANs do not scale well. This issue was the fundamental reason routers were brought in during the
1980s to the switched networks to take connectivity beyond bridges and switches. Routing is an
important function, but it remains a fact that typical routers installed in a LAN setting (for example,
on a campus backbone) can handle around half a million packets per second. The high-performance
LAN switches (serving the desktops) can produce millions of packets per second feeding the back-
bone, which can find itself incapable of handling the aggregate throughput. Routers are also expen-
sive and relatively tedious to manage and configure compared to switches. Therefore, it has turned
out that deploying a mix of switches and routers for local connectivity is not a wise solution. This is
exactly where layer 3 switching came into play.

As documented in Radia Perlman’s book Interconnections: Bridges, Routers, Switches, and
Internetworking Protocols55 and Kadambi, Crawford, and Kalkunte’s book Gigabit Ethernet:
Migrating to High-Bandwidth LANs,56 switching is an inherently cheaper process than routing. It also
removes the scalability and throughput restrictions that limit a network’s growth. In March 1996,
Ipsilon (which later became part of Nokia) introduced a technique for switching at the third layer
called IP switching. The technique enabled the high-speed forwarding of IP packets onto underlying
ATM networks. It claimed to be much less complicated than MPOA, which had been introduced by
the ATM Forum.

About six months after that, Cisco introduced its tag switching approach, while IBM announced
its aggregate-route-based IP switching (ARIS) technology and Toshiba launched its cell-switched
router (CSR). The debate among these major vendors soon led to the formation of the MPLS work-
ing group at the IETF, which consolidated discussions and guided the industry into several new stan-
dards. These standards are referred to generically as MPLS.

These layer 3 switching techniques enable the introduction of many new interesting services.
Virtual LANs (VLANs) and full-fledged virtual private networks (VPNs) became feasible.57 Traffic
engineering (TE), QoS, and the level of priorities are some of the issues that network equipment man-
ufacturers can address while tailoring their offerings to their customers at easily justifiable costs.

MPLS, LAMBDA SWITCHING, AND WAVELENGTH ROUTERS

Traditional mesh-connected routing networks require any-to-any connectivity between all routers.
This leads to the need for n�(n�1)/2 virtual connections, for example, on an ATM network with n
nodes. This obviously means that if a new router must be added, a virtual connection will be man-
dated with all the other routers. That is a problem.

Beyond this shortcoming, a network failure or topology change will provoke a massive amount of
traffic that was generated by a routing protocol. Each router will have to communicate routing updates
across each virtual connection to which it is connected in order to inform its neighbors about the new
IP network reachability situation.

As if these problems were not enough, let us, for a moment, think about the following situation.
A typical ISP network contains multiple routers at the edge of the ISP’s network that have peer rela-
tionships with other ISP routers with which they exchange routing table information to provide global
IP connectivity. In order to find the optimal path to any destination outside an ISP’s network, the
routers at the core of the ISP network must be made aware of all the network reachability informa-
tion. Routers at the edge of the network can acquire this knowledge from the adjacent routers (which
are outside the ISP network) that they are peering with. The result of this uncomfortable situation is
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that all the core routers of the ISP network must possess and maintain the entire Internet routing table,
which requires an enormous amount of memory and leads to a very high degree of CPU utilization.

The MPLS standard introduced a fundamentally new approach in the deployment of IP networks.
The control mechanism was supposed to be separate from the forwarding mechanism and the concept
of label was supposed to be introduced for packet forwarding. MPLS can be deployed on router-only
networks or in ATM environments that integrate the layer 2 and layer 3 infrastructures into one sin-
gle consolidated IP�ATM network.58,59,60

An MPLS network has label-switched routers (LSRs) in the core of the provider’s network and
edge label-switched routers (Edge-LSRs) at the periphery of the provider’s network. Within the MPLS
network, traffic is forwarded using labels. The Edge-LSRs at the ingress side of the MPLS cloud (the
MPLS network point from where an incoming packet is entering) assign the appropriate label to each
packet and forward the packets onto their next-hop LSR along the path that the traffic has to follow
in order to go through the MPLS cloud. The label’s value is actually a pointer used by all LSRs on a
table that points to the next hop and a new label. At each LSR, the old label is exchanged with a new
one and the packet is forwarded onto the next hop. At the egress side of the MPLS cloud (the MPLS
network point from where the forwarded packet must exit the MPLS network), the last LSR on the
path will remove the label altogether and traffic will be forwarded using traditional IP-routing proto-
col mechanisms.

MPLS networks also use the concept of Forwarding Equivalency Class (FEC), which is a group
of packets sharing the same attributes while traveling through the MPLS cloud. For example, these
attributes can be the same destination address, some indication of QoS, or the identification of a spe-
cific VPN. All packets belonging to the same FEC receive the same label from the LSR. Different pro-
tocols such as the Label Distribution Protocol (LDP) exist that enable the LSRs to exchange the
information that associates FECs with labels. The MPLS architecture enables carriers and service
providers to offer new services, such as VPNs and service-level agreements (SLAs) with their cus-
tomers, based on the sophisticated TE functions.

The TE-related MPLS-TE capabilities are important in order to understand the concept of the
Multiprotocol Lambda Switching (MPLmS) architecture, which is being developed to provide
dynamic wavelength provisioning in the optical transport network that starts to take shape as part of
the converged network. In addition, when the new optical networks are implemented, wavelength
routers are used. These routers are made up of wavelength switching cross-connect matrix fabric pro-
viding optical interfaces. Depending on the technology used for the switching backplane, the routers
can be electrical wavelength routers, hybrid wavelength routers, and optical wavelength routers.61,62

Electrical wavelength routers are usually deployed; however, hybrid wavelength routers are now
appearing as a transition technology. All-optical wavelength routing seems to be the trend of the future
technology, but many features and characteristics must still be researched and improved before this
technology gains market acceptance.

VPNS

Even before intranets were invented, many corporations and organizations had already pushed the
state-of-the-art connectivity toward VPNs. The need stemmed originally from a traditional precaution
and demand for solid business privacy. However, it has evolved since the 1990s with the arrival of
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sophisticated hacking techniques and well-publicized cyberattacks employed by malicious intruders
or eavesdroppers. Today intranets refer to closed-access private networks or networks designed to be
inaccessible to unauthorized outsiders. In the 1980s, when corporations would lease X.25 lines from
carriers, it was widely believed that these lines ensured that no other traffic could run on those lines
simultaneously. Numerous cases (not in the United States, but almost invariably overseas) proved the
contrary. Other people’s traffic could run on the same physical lines and bandwidth slots that some-
one else was paying for.

In the mid-1990s, secure communications companies designed layer 2 frame encryptors, which
ensured that secure tunnels were created between equivalently equipped sites, regardless of the type
or ownership of the public network between the sites (for example, X.25 or frame relay). Soon the
effort was expanded to layer 3 devices, which would offer the same functionality on IP and/or IPX
networks. These were the first true VPNs in the sense that communications were secure from eaves-
droppers with access to the public network. The presence of these virtual tunnels ensured that traffic
encrypted on-the-fly at the transmitting site was only going to be decrypted (again on-the-fly) by a
similar piece of equipment upon arriving at the destination site. This intention for a sense of privacy,
despite the fact that traffic was transmitted over the public and insecure network, was the basis for the
name VPN.

In the second half of the 1990s, with the IETF’s help, the IP Security (IPsec) consortium estab-
lished similar types of VPN communications security at the network layer (layer 3) using strong
encryption, tunneling, and potential encapsulation and authentication. IPsec became a standard set of
techniques that had the noble goal of allowing secure intercommunication between pieces of equip-
ment of different vendors.63,64,65,66 IPsec intercompatibility, of course, did not happen overnight, but it
was gaining momentum and making progress. IPsec is a computationally very demanding environ-
ment, especially if longer encryption key sizes are used. If it is executed on a main CPU of available
systems, it can also tax the system’s performance significantly or possibly bring the system to a com-
plete halt, depending on the communication applications and their frequency of use. IPsec was orig-
inally implemented in software for low-speed applications or where it made business sense, such as
in a first-generation firewall. It was also implemented in hardware on acceleration systems that took
the forms of plug-in adapter boards. Currently, it is becoming available in special security co-proces-
sor chips, as we will see in the next section and in more detail later in this book. IPsec-compliant
routers, IPsec-compliant firewalls, and IPsec-compliant switches are now available.

Although VPNs still have the same underlying principle of a certain degree of communications
security, they acquired a different dimension altogether with the arrival of the layer 3 switching tech-
niques. It especially changed after the concerted consolidation of major rival approaches from
Ipsilon/Nokia (IP switching), Cisco (tag switching), IBM (ARIS), and Toshiba (CSR) into MPLS.
MPLS-enabled carriers, as a direct result of the technology they possess, are able to offer VPNs as
one of several value-added services they can provide to their customers.

SECURITY CO-PROCESSORS

In the mid-1990s, router and switch manufacturers realized that security was important. The competi-
tion provided by traditional security companies with previous experience serving the military and intel-
ligence markets was too intense. Network equipment manufacturers understood that they had to offer
security inside their products or the solidity of their base would erode. The trend started as security
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software (encryption, authentication, firewall services, and so on) running on the main CPU of the
router/switch. Given the performance penalty that such a piece of equipment would pay in a commen-
surate loss of switching capacity, they soon realized that hardware acceleration engines were required.

Alliances were formed between some security companies and some network gear vendors to ini-
tiate designs. In some cases, the network equipment manufacturers set up new specialized engineer-
ing teams to design their own in-house-developed add-on acceleration boards or application-specific
integrated circuits (ASICs) in order to handle the heavy-duty mathematical processing required for
encryption and authentication, which was to be the mandate of the security co-processors.

These are chips and/or sometimes whole subsystems that can handle predominantly cryptographic
functionality quickly, something that ordinary CPUs were never designed to handle efficiently. With
the arrival of the IPsec specifications and publications from the IETF, vendors started implementing
IPsec first in software and then in hardware. The faster the network equipment became, the more pro-
grammers had to consider how to generate cryptographic keys and digital signatures as well as how
to encapsulate traffic into new types of packets that provided at least the sense, if not the impression,
of a secure tunnel.

Security co-processors are another relative in the family tree of network processors. We will dis-
cuss these in detail later in the book in Chapter 17.

TRAFFIC ENGINEERING (TE)

Another direct result of the introduction and acceptance of MPLS is the set of capabilities that it offers
for TE. TE is geared toward decreasing the cost of network operations for carriers and service
providers by enabling them to more efficiently allocate and manage the use of bandwidth resources.
This prevents undesirable situations where some parts of the network are congested while other parts
remain underutilized. Special intelligence and adequate processing speed are required to ensure the
dynamic adaptation of the network to changing traffic patterns and loads. For instance, under these
premises, the following would be required:

• The capability of fast rerouting.

• The possibility of calculating alternative routes.

• The facility of presignaling these new backup-plan routes, so that they can transparently pick up the
workload from operating tunnels that are suddenly less efficient.

These capabilities directly increase the resilience and survivability of the network, while they indi-
rectly improve its scalability. Currently, MPLS networks provide very powerful TE capabilities. This
adds to the functionality and performance requirements of the router circuitry.

QoS

Customers are no longer interested in signing up with carriers or service providers for a number of
communications channels at some aggregate data bit rate. Several applications that are tightly related
with the customer’s organizational needs require different levels of service, response time, bandwidth,
delay, jitter, cost, and so on. Customers are not willing to pay the same rate for all their needs. New
business models have been developed that bill the customers based on what they actually use and what
the content is.

Service providers must now be able to treat different services that they provide with different cri-
teria, which must be made to apply optimally to the customer’s diverse requirements. In other words,
not all bits are to be treated in the same way. Several new protocols appear from various standardiza-
tion bodies, such as Differentiated Services (DiffServ), Integrated Services (IntServ), and RSVP.
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Previously, frame relay and ATM treated issues of QoS at layer 2, whereas protocols such as IntServ
and DiffServ now treat QoS concerns at layer 3.67 As QoS ultimately becomes an end-to-end issue,
the attention to it must eventually encompass all providers in a transparent way for the users.

Early generations of switching and routing equipment used simple first-in first-out (FIFO) queues
for all traffic indiscriminately. When the forwarding rate exceeded the capabilities of these first routers
and switches due to heavy traffic, packets would be dropped and the link reliability challenge was
unloaded onto the shoulders of protocols that operated higher on the stack and that were more or less
able to provide some recovery (for example, TCP). However, not all applications can afford this type
of tinkering anymore. Services are now being differentiated according to their content.

Therefore, packets must be inspected in real time with special bits flagging higher- to lower-pri-
ority traffic. Lookup tables must be consulted to match services with forwarding policies as dictated
in a service level agreement (SLA). This also requires fast and intelligent processing that goes beyond
what a typical fast CPU can do. This is yet another angle from which we can look at the area of net-
work processors.

PERFORMANCE CONSTRAINTS IMPOSED ON 
COMMUNICATIONS NETWORK EQUIPMENT

Figure 1.1 provides the historical overview of the last 30 years as it pertains to the evolution of com-
puting and communications networks. From the top moving clockwise, the figure shows the evolving
loop of applications requiring sophisticated software. This feeds a more complex hardware evolution
that could justify more advanced software and so on. The two downward-pointing arrows show the
effect that the progress of semiconductor technology in conjunction with networking and software
technology advances has had. It is rather striking that both arrows converge on the need for higher
capability in network equipment—thus creating the need for sophisticated network processors.

It must have become clear by now (at least qualitatively) why network processors are needed. In
this introduction, we have seen how and why the sheer quantity of network-related data processing
has rapidly evolved to unprecedented levels of sophistication and complexity from many angles.
Today’s network equipment must be able to parse packets, search lookup tables that document poli-
cies, resolve conflicting operations that seem necessary, potentially modify the packet’s content by
adding or removing bits, possibly encrypt payload and authenticate the other party, generate digital
signatures and verify other parties’ signatures, create secure tunnels (for example, IPsec stipulates
building the so-called Authentication Header [AH] and Encapsulating Security Payload [ESP] head-
ers), encapsulate traffic into tunnels, and engage to modular arithmetic (indispensable for encryption
operations) and, more specifically, to modular multiplication and exponentiation.

The list of tasks for the hardware inside network equipment can go on and on. Ordinary CPUs sim-
ply cannot handle these tasks for many reasons, including software complexity, system throughput,
and operations latency. Special hardware based on optimized architectures is needed together with the
availability of cutting-edge development tools, which will help shrink the time-to-market nightmare
that companies confront. In short, new types of advanced microchips are required for the timely and
efficient handling of these requirements. These are called network processors, which are the subject
of our study in the rest of this book.

SUMMARY

In this chapter, we provided a very short historical and qualitative overview of the evolution of com-
puting and networking communications technologies over the last 30 years. This evolution has largely
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been made possible thanks to the spectacular progress that we have witnessed over the same period
of time in semiconductor engineering and the commensurate advancement in operating systems and
software technologies. The insatiable demand for communications bandwidth and fast response time
in a real-time setting that many new applications require are at the heart of the unprecedented network
growth of the last several years. The convergence of these growing networks for the very high-speed
transmission of voice, multimedia, and data, coupled with the deregulation of telecommunications in
many parts of the world and the global de facto acceptance of packet-based technologies, requires a
new breed of extremely fast and efficient semiconductor devices. These devices, which are the basis
of network switching/routing equipment, will process the expected fast and at times very heavy traf-
fic without compromising on the QoS expectations of network users. This new generation of advanced
microchips is now known under the generic name of network processors.

In the next chapters, we will look under the hood of network processors. We will learn what they
are doing well, how they go about doing it, and why their performance is so superior to other archi-
tectural paradigms. We will also look at what differentiates each different approach taken by major
design houses and semiconductor manufacturers, and we will look at the trade-offs and position of
various predominant architectures.
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FIGURE 1.1 An overview of the historic evolution process in the comput-
ing and networking industries over the last 30 years. One can easily see the
major external and internal factors that converge to create the need for sophis-
ticated and powerful network processors in the future.

Semiconductor
technology

advances

Need for
powerful

chips

SW,
operating systems,

applications

Computer
proliferation

for PC &
embedded

More
complex, faster &

less expensive
chips

Demanding
applications

&
multimedia

Client-
server model

Need for LAN & WAN
connectivity

Internet &
WWW

technologies
Telecom

deregulation

Converged
broadband

network

Complex
fast network

equipment

Need for
powerful
network
ppocessors

Packetized
telephony

& multimedia

THE EVOLUTION OF NETWORK TECHNOLOGY: DISTRIBUTED COMPUTING AND THE CONVERGENCE OF NETWORKS

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.



THE EVOLUTION OF NETWORK TECHNOLOGY: DISTRIBUTED COMPUTING AND THE CONVERGENCE OF NETWORKS

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.



CHAPTER 2

NETWORK PROCESSORS:
JUSTIFICATION

In the previous chapter, we learned how the evolving landscapes in the computer, communications,
and semiconductor industries have created a revolution that is built around the insatiable demand by
users for global connectivity, applications portability, and user mobility. Users want technology that
can be accessible anytime and anywhere. We also saw how these new demands translate into a con-
vergence of the telephony and data networks with the Internet. Ever-increasing requirements for
decreased costs, enhanced network performance and availability, and a new market framework where
notions such as broadband speed, quality of service (QoS), and pay per use are now more important.

This remarkably rapid evolution has caused the arrival of network processors. We will elaborate
on this evolution and explain why it occurred. First we will define and categorize network processors.
Based on their classification, we will describe what functions they are able to perform, in which con-
text, and why. Most importantly, we will explain the unique advantage that network processors bring
to both the user and the developer communities. We will elaborate on their privileged cost/perform-
ance/flexibility positioning with respect to alternative design approaches—for example, architectures
that rely heavily on the more traditional use of application-specific integrated circuits (ASICs) or
reduced instruction set computer/complex instruction set computer (RISC/CISC) computing plat-
forms to accomplish the same functions. By understanding the context in which network processors
are revolutionizing the networking and communications industries, the reader will be properly
equipped to tackle the fundamental technologies and internal technical intricacies that make up the
heart and brain of the network processor microchips and the systems they enable.

WHAT ARE NETWORK PROCESSORS?

Network processors, also known in the industry and product literature of several vendors as network
processor units (NPUs), are highly programmable specialized integrated circuits (processors). These
circuits are used in the high-speed communications industry. They are used to optimize the perform-
ance of packet processing in the evolving functional framework of broadband network equipment.

Because of the unmistakable convergence of networks that we briefly discussed in the previous
chapter, packet processing becomes the overriding function that is expected to be properly imple-
mented in high-speed networking equipment such as routers, switches, and so on. Obtaining the
appropriate performance and functionality in network devices is one of the key factors for determin-
ing the usefulness, desirability, and business potential of these devices within the corporate or serv-
ice provider markets.

Throughout this book, we use the term packet in a general sense to describe a datagram unit, mean-
ing either a cell, packet, or frame. If we are discussing something very network specific, such as the
Asynchronous Transfer Mode (ATM) environment, we will call the datagram unit a cell.
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FUNCTIONAL BLOCKS IN NETWORKING EQUIPMENT

Before we can examine alternative ways of implementing different packet-processing functions, let
us take a look at the conceptual partitioning inside networking devices, as shown in Figure 2.1.

Functionality can be divided by the following four major blocks:

• The physical layer (PHY) interface.

• Switch fabric.

• Packet processing.

• Host processing.

The PHY Interface

The PHY interface is the first conceptual layer of functionality. It is currently compacted into one inte-
grated component, such as a PHY chip. It is responsible for transmitting and receiving information.
The bitstream, which must be transmitted by a networking device as part of being on a network, needs
to be modified from its digital binary form into an analog form that can be efficiently transmitted over
the communications channel medium. This must be done whether the medium is modulated light
injected onto an optical fiber, an electrical current traversing a coax cable, or an electromagnetic wave
radiated over the air. Similarly, in order to be received, the arriving light, electric current, or electro-
magnetic wave must have its content transformed from its analog transmission form (even when it
carries digital information) back into a binary digital form that the rest of the receiver’s logic can han-
dle properly.
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FIGURE 2.1 The conceptual functional partitioning of a network device.
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The PHY interface chip is the component at the edge of the networking device closest to the phys-
ical medium and the bidirectional handling of traffic. PHY chips are designed for different transmis-
sion media. For example, 100Base-T networks, Gigabit Ethernet, and Asymmetric Digital Subscriber
Line (ADSL) are some types of media that use PHY chips. Companies that offer PHY chips include
Agere, Alcatel, AMCC, Broadcom, Conexant, Fujitsu, and IBM.

Switch Fabric

The networking device is physically structured in several ways. The most straightforward and mod-
ular way is to use either a bus or a backplane into which adapter modules or line cards are inserted.
The switch fabric is a functional module that reads packets at an input (also known as the ingress
point) and routes them to an appropriate output (also known as the egress point). The current switch
fabric function is usually offered in a highly integrated standard off-the-shelf chip set, as proposed by
several vendors, such as Agere, IBM, Vitesse, and Zetacom. Its speed is the most critical factor for
defining the switching capacity of a network device. As an alternative, the designer/manufacturer of
the network device sometimes proposes an in-house custom-designed very large scale integration
(VLSI) chip that implements a tailor-made switch fabric implementation.

Packet Processing

The overall packet-processing set of operations is positioned between the PHY interface and the
switch fabric. The industry usually categorizes these operations into two operation groups or two pro-
cessing paths: a fast packet-processing path and a slow packet-processing path. A fast path refers to
a data path that handles all operations that are executed in real time directly on a packet. These include,
but are not limited to, the five fundamental operations of framing/parsing, classification, modifica-
tion, compression/encryption, and queuing. A slow path refers to the required operations that are exe-
cuted independently of the actual flow of packets. Some examples of slow-path operations are
unknown address resolutions, new route calculations, updates of routing and forwarding tables.

Figure 2.1 serves more to clarify the structural context of the network-processing-based computing
than to be a precise and rigid template of the sequence of events. For example, an external security
co-processor is sometimes used to encrypt and authenticate packets. In that case, it may be advanta-
geous in some applications to reverse the order of some operations and perform the modification func-
tion after the queuing function in the foreseen pipeline of events. This would allow some packets to
be marked differently based on the congestion level that they encountered during queuing. It also facil-
itates a higher-performance multicast implementation where multicast packets/cells only need to be
buffered once while being able to be read out multiple times, modifying each copy after it is retrieved
from the packet buffer. This example reiterates why Figure 2.1 should be seen more as a generic rep-
resentation of network computing and less as a necessarily fixed topology.

Host Processing

The term host processing refers to a number of generic processing tasks that do not reside on the flow
path of the network packets. As a result, they are usually allocated to some central processing unit
(CPU) that does not handle packets directly. Host-processing chores include implementing network
management routines, configuring devices, running diagnostics, and managing internal communica-
tions between functional modules or subsystems of the network device. Host processing is usually
implemented in software that runs on standard off-the-shelf RISC CPU processor chips such as IBM’s
PowerPC and various MIPS CPUs. In a few cases, network equipment manufacturers have chosen to
implement their products’ host processing on more common CISC processors, such as an Intel
Pentium processor.

NETWORK PROCESSORS: JUSTIFICATION 33

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

NETWORK PROCESSORS: JUSTIFICATION



A CLOSER LOOK AT PACKET PROCESSING

Until network processors appeared, system architects had to choose between two ways of tackling the
overall design of the packet-processing module in order to implement network devices.

One approach would entail using a standard off-the-shelf CPU, which would usually be a RISC
processor. This choice is similar to choosing the CPU for the host-processing part of the design par-
tition that we just discussed. However, in some cases, especially in network devices intended for low-
end devices such as a small wide area network (WAN) router for the small office/home office (SOHO)
market, it could also be a CISC processor. In fact, in some of these low-end cases, the packet-pro-
cessing function and the host-processing function end up using the computational power of the same
CPU chip on a time-sharing basis with the help of a real-time operating system kernel.

The other approach would be to design a specialized high-performance ASIC that would handle
packet processing. Because most network device design houses are fabless companies, the designer
would have to hand off the custom design of the ASIC to a semiconductor house (fab) to have it built.
Of course, some major semiconductor powerhouses such as IBM and Intel happen to be both design-
ers of networking chips and manufacturers of integrated circuits. Therefore, these vendors obviously
enjoy a vertical integration that offers them a more robust market advantage.

However, this advantage is economically significant and sustainable only when the vertically inte-
grated vendor has already been enjoying high levels of semiconductor manufacturing business that
would allow the corresponding complementary metal oxide semiconductor (CMOS) processes at hand
to achieve parity or overtake the economics of large silicon foundries such as TSMC. The availabil-
ity of an in-house foundry is therefore not enough. The foundry must be already almost fully exploited
from a capacity usage standpoint in order for this to be a real economic advantage.

TRADE-OFFS WHEN DESIGNING WITH 
STANDARD OFF-THE-SHELF CPUS

Packet processing would usually be implemented in software that runs on a standard off-the-shelf
CPU because of the ease and flexibility with which such a CPU can be programmed. To obtain new
functionality, a new software version with the appropriate additions or modifications is needed.
Software can be easily downloaded into a system with the corresponding memory architecture (read-
only memory [ROM], erasable programmable read-only memory [EPROM], flash, and so on). Bugs
can also be easily fixed. When an entirely new functionality is required, implementing it is straight-
forward. The time needed to accomplish this kind of change is usually short, and this flexibility trans-
lates into a significant business advantage for the device vendor. This is also advantageous for the user,
as the user does not need to invest in new hardware to obtain some enhanced or corrected functional-
ity. From the user’s perspective, an existing network device can be upgraded easily (many times
directly on site) by updating its software, which costs much less than new hardware.

The downside to this approach is a decrease in performance, as off-the-shelf CPUs are designed
for a general computing environment. Generally speaking, they will spend many clock cycles on tasks
that are not directly related to packet processing; therefore, the percentage of their processing capac-
ity that is used directly for packet processing is only going to be a small fraction of the network’s
requirements. For instance, the fastest off-the-shelf CPUs can currently only handle a throughput of
around a couple of hundred megabits per second. This is far less than today’s backbone networks,
whose minimum requirement is easily tens of gigabits per second.

Figure 2.2 compares the growth of bandwidth requirements as dictated by Internet backbone con-
nections (in megabits per second) and of the typical computational performance of off-the-shelf CPUs
(in MIPS).

The demand for bandwidth is a combination of two unrelated events. On one side, web-based con-
nectivity, e-commerce, Internet telephony, and multimedia on demand are combining with the dereg-
ulation of the traditional telecom access network and the arrival of many new players in the market.
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On the other side, a plethora of technological breakthroughs (such as Digital Subscriber Line [DSL],
dense wavelength division multiplexing [DWDM], and broadband wireless local loop) enable the
spread of faster connectivity to the converged network backbone. The ability to offer these types of
services over large geographies and markets is becoming a matter of competitive edge and even sur-
vival for many service providers. The widening gap between the two curves in Figure 2.2 as time pro-
gresses is absolutely astounding. It shows that the functional requirements of evolving networking
devices will simply not be able to be serviced by the expected evolution of CPU processors, where
the progress of semiconductor capabilities has been more or less accurately predicted and charted for
the last 20 years.

Another unrelated factor that contributes dramatically to the exhaustion of the computational capa-
bilities of off-the-shelf standard CPUs in a networking environment is that we are witnessing a rapid
move of the processing function upwards in the protocol stacks. Barely six to seven years ago, net-
working still used layer 2 processing. With the evolution of Internet Protocol (IP) and Multiprotocol
Label Switching (MPLS), network computing started to involve layer 3 calculations. The recent trend
has now climbed even higher by seeking, capturing, and exploiting information from the transport to
the application layers (layers 4 through 7). In order to accomplish such a feat, network devices must
be able to look deep inside packets to scan, parse, recognize, and extract features that reveal infor-
mation from each packet about specific levels of QoS, service levels the user contractually has bought,
or load balancing based on uniform resource locators (URLs). This type of intensive and intelligent
packet processing implies that more bits per packet need to be examined and handled than before. It
is estimated that a single standard CPU processor chip is incapable of performing deep-packet pro-
cessing all the way to the application layer in real time faster than a couple of hundred megabits per
second.

Beyond the shortcoming of off-the-shelf CPUs when it comes to network processing, one should
also not underestimate the fact that processors that perform packet processing usually suffer from a
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FIGURE 2.2 The historical and projected growth in bandwidth demand (as witnessed at the backbone of the 
Internet) and in computational power of typical off-the-shelf RISC CPU processors. (Sources: Telstra and InStat/MDR,
respectively)
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serious memory bottleneck as well as from a suboptimal instruction set. The following bullets explain
these factors:

• First, current off-the-shelf processors are clocked at rates of a few gigahertz. Due to their typically
pipelined architecture, they are able to perform billions of instructions per second, thereby almost
achieving the rate of executing one instruction per clock cycle. However, data must be fetched con-
tinuously from memory so that the processor can work at any moment on the instruction at hand. It
also produces data from operations. This data needs to be stored back in memory before new instruc-
tions are tackled. However, memory read and write operations are unable to sustain activity at these
gigahertz rates. Therefore, elaborate memory subsystem designs must be devised using a multilevel
hierarchy of different memory technologies, interleaving multiple memory banks, and synchroniz-
ing memory pages and bus access—techniques that usually lead to a prohibitive cost and levels of
power consumption.

The lack of performance that results from this structural deficiency is an architectural paradox. On
one hand, the typical processor pipeline stages end up being in high-speed networking applications
often empty (a phenomenon called pipeline bubble) and consequently underutilized. On the other
hand, the system remains squarely incapable of dealing with the expected workload.

• Network traffic obeying completely different statistics models than local traffic on a computer bus
does not have the same spatial and temporal locality properties as regular desktop or client-server
IT application workloads. The result is that the typical processor’s cache systems are not effective
in a network-processing environment. Without the benefits of their caches, conventional CPUs sim-
ply slow down to a proverbial crawl.

• The instructions that are needed to handle and modify live packets in a network-processing envi-
ronment require specific bit-level operations that must be carried out at wire speed and they are not
available as standard instructions in off-the-shelf processors. As ordinary off-the-shelf CPUs will
need more than one of their standard instructions assembled into a microprogram that performs the
intended functionality, these microprograms are executed over multiple clock cycles, stalling the
pipeline and taking up time. This further negates the off-the-shelf CPU’s capability to cope with the
computational load associated with very high-speed traffic arriving and leaving in real time. This
example illustrates the inadequacy of the instruction set associated with off-the-shelf CPUs. We will
discuss this problem and its ramifications as well as ways to address it from a system designer’s
point of view in much depth in this book.

Some vendors have looked to allocate the necessary work to more than just one such CPU proces-
sor. However, in addition to the astronomical and direct increased cost of hardware with such an
approach, the sheer complexity and cost (in time and money) of developing the intercommunicating
multiprocessor real-time software that is needed to manage such a system efficiently, should not be
underestimated.

It becomes clear that the use of off-the-shelf CPUs is not the solution to the problem and that some-
thing radically different is needed.

TRADE-OFFS WHEN DESIGNING WITH ASICS

Designers opt for the ASIC approach when the application requires the maximum performance.
Typically, an ASIC in this environment delivers better performance than a typical off-the-shelf CPU
with the same capacity properly programmed to handle the same packet-processing application. This
performance edge has been instrumental in the wide-scale adoption of the ASIC approach in the high-
speed network equipment design community. ASICs implementing efficient architectures can also be
designed to operate extremely fast. As a result, they can certainly provide one path of evolution toward
the ongoing satisfaction of the ever-evolving needs in the networking industry.
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However, two negative factors of the design of ASICs in network gear should be considered:

• ASICs suffer from limited, if any, programmability, which causes them to be a rigid solution deliv-
ery platform. When new functionality is required, or when new protocols must be supported, the
vendor does not have many other options than to drop the evolution of the product or to redesign
the ASIC—a costly proposition for both the vendor and user. It is costly for the vendor because of
the design and time. It is costly for the user because in order to benefit from the new functionality,
the equipment must be upgraded. In the worst case, a user would have to buy a new system alto-
gether. In the best case, a user would have to buy a new adapter (for example, a line card) with the
new ASIC in order to replace the older one. This type of continuous quasi-forced upgrade is highly
undesirable to the user community. In the long run, it hurts the relationship between the customer
and the vendor.

Seen from a different angle, the same lack of programmability is a serious impediment for ASICs.
Consider the amount of protocols and data formats that are encountered at the different layers of a
typical protocol stack. The higher a user goes on the stack, the more protocols a user is bound to
run into. The device all of a sudden loses flexibility, despite the fact that it has improved in per-
formance with the inclusion of specially designed ASICs.

• Designing a sophisticated ASIC requires more time than can be afforded. This is probably the most
important downside of this approach, because the type of ASICs needed in high-speed networking
devices usually requires a design cycle of somewhere between 12 and 18 months. Although the
ASIC design process is now extremely well understood by many engineering organizations, it
remains a fact of life that the process is not sensitive to ongoing changes. An organization starts by
deciding on and fully specifying the ASIC functionality, and the engineers proceed with its imple-
mentation. Roughly 18 months down the road, a working product will come out of the production
line and will hopefully operate as specified.

What about the case where something must be either added to or modified in the originally speci-
fied ASIC functionality? In this case, the answer is easy because the vendor has to stop the design
work and restart the development work to avoid wasting precious time and money. The exact point
of retreat obviously depends on the individual case. A user may have to go back to the hardware
coding language source level (VHDL or Verilog), carry out the needed modifications, and resyn-
thesize the hardware encoding against the underlying technology library. A user may also have to
go back and recode the whole design.

Sometimes the extent of the work is so significant that it is easier to recode from scratch than it is
to revamp obsolete or incorrect code. The specification disruption can be so significant that the
design has to start again from the beginning, incurring extra cost and time to market. For example,
say marketing did not fully understand what the market was looking for. In that case, all the interim
work of scripting, synthesizing, verifying, simulating, documenting, and so on has probably vapor-
ized. The precious time to market has been lost and the money needed for that work has essentially
been thrown away, straining budgets and strangling metrics of profitability or return on investment
(ROI). This is an unfortunate but all too real side effect of the ASIC design process, and its impor-
tance should not be underestimated.

Many product line managers have lost their jobs because they had to go to their boss one day to
announce the following:

• There will be an extra n-month delay until the product actually hits the market due to new design
requirements. This means that competitor A or B will be the first to acquire and build market
share.

• There will be a significant (often unbudgeted) extra cost that must be incurred due to all the wasted
development work so far.

• The reason for all this is that the product’s content and functionality were not properly specified
in the first place. For the boss, this usually means the market research work was not done thor-
oughly, and it is, of course, the product manager’s fault.
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Product lifetimes have shrunk dramatically. Launches of new products with enhanced features
every six months make other recently launched products obsolete. The industry has become extremely
competitive. This year’s star is next year’s casualty. These factors have created a cutthroat environ-
ment where the time to market is extremely important. ASICs do not fare well in this regard.

THE NETWORK PROCESSORS’ BREAKTHROUGH

The reader must have realized that the argument so far between the two schools of thoughts, namely,
the one favoring designs around programmable off-the-shelf CPUs and the one favoring high-
performance ASICs inside network devices, is a classic engineering discussion about the trade-off
between flexibility and performance. Engineers are trained to recognize these dilemmas early on.
They manipulate the conceptual plane of variables by making appropriate design choices and com-
promises between conflicting requirements until they find the optimal combination of technologies
that enable them to design and deliver products that meet performance and cost expectations.

Network processors have now entered the stage as the proposed solution to this debate. Network
processors are state-of-the-art semiconductor chips that offer a powerful programmability similar to
traditional off-the-shelf CPUs but with a performance level that approaches that of ASICs for packet-
processing applications. By adopting network processors in their designs, network equipment manu-
facturers can obtain the sought-after high performance, while retaining their system flexibility and
decreasing their development cycle.

So how do network processors do this? As we will find out when we examine various representa-
tive architectures later in the book, network processors provide specialized circuitry and appropriate
architectural structures coupled with fine-tuned low-level instruction sets that coordinate a highly opti-
mized performance for packet-processing functions compared to that expected from off-the-shelf
CPUs. Network processors contain microengines that are wired to perform all the generic packet-
processing functions exceedingly well at wire speed. In addition, they also usually embed a major pro-
grammable module, usually a tailor-made RISC CPUs (and sometimes more than just one) that allows
the execution of real-time operating systems, handshake communications with other parts of a larger
network device, and so on.

THE VALUE PROPOSITION OF NETWORK PROCESSORS

Based on what we have said, the benefits of adopting network processors in the new designs are as
follows:

• Shorter time to market Instead of the 18 months it takes to design an ASIC, a vendor using a
network processor platform can realistically expect to complete the development cycle of the
packet-processing part of a major network device product within 6 months. Of course, a whole sys-
tem development project will need more than 6 months to be developed. The actual length of time
depends on the nature of the system and the engineering resources invested in tackling it. The net-
work-processor-based product’s performance will most likely be almost as fast as that of an ASIC-
based one, while the programmability of the network processor will allow the flexibility of offering
new features in the field without penalizing the customer.

• Longer time in market New functionality and enhanced features can be embedded into an net-
work-processor-based product while it is deployed in the field without requiring the customer to
buy a new product that uses a new ASIC design. This extends the product’s time in market. Because
it decreases the cost of product ownership over the life of the product, it creates more sales oppor-
tunities for the equipment vendor. The fact that the customer probably does not have to replace the
product soon improves the quality of the relationship with the vendor. This is something that can
also lead to repetitive and longer-term business prospects.
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• Just-in-time (JIT) delivery of new features As mentioned earlier, the rapidly changing reality of
the market requires network gear vendors to provide new features and functional characteristics
inside their products, such as the support of new protocols. Vendors who adopt the network-proces-
sor development path are able to embed this new functionality into their products without having to
withdraw them from the market in order to replace them with something more recent or more
updated.

• Greater focus on other issues of business management The majority of the packet-processing
functions in an network-processor-based environment are coded in a standard way, either by the net-
work equipment vendors or third-party suppliers; therefore, the main core of software development
is essentially available off the shelf. This decreases the overall time needed for software develop-
ment. It also liberates resources so that vendors can concentrate their efforts on other aspects of the
project that are equally important. They can focus on providing other necessary functionality such
as network management, diagnostics, configuration, or different interfaces, as well as spend more
time and money on the business management side of the equation, pursuing alliances and customer
relations. Network processors are bound to revolutionize the industry by commoditizing the design
of network devices, creating a phenomenon that is almost reminiscent of the PC industry in the
1980s.

NETWORK PROCESSORS: CATEGORIES

During the last few years, since its emergence, the network processors market has appeared to be a
very “fizzy” environment. New startups are entering at a relentless pace, and major semiconductor
houses as well as network device manufacturers are realizing that unless they participate in this
process, they will miss the train of opportunity. Several startups have already left the field as the first
casualties of a coming major shakeout. However, the consolidation process that has been taking place
has started to show some underlying characteristics in this industry. Two major underlying classes of
network processor chips can be identified within which essentially all network processor products can
be categorized: platform network processors and peripheral network processors.

Platform network processors are usually complete chipsets that major vendors have designed to
do the following:

• Handle all functions related to packet processing.

• Minimize the number of components needed and therefore the direct hardware cost in the final
design.

• Optimize the trade-offs between performance and flexibility.

• Facilitate an accelerated and integrated software development cycle.

• Capture the largest possible number of design-wins by positioning themselves as the ideal source
for one-stop shopping for the network gear designers.

• Attract third-party hardware and software players that will allow the build-up of an intertwined com-
munity that facilitates the easy and timely development of several modular products that share the
common characteristic of being based on the vendor’s network processor architecture (platform).

These chipsets are distinct with every vendor, but the overall partitioning of the platform archi-
tectures is quite similar among most of them. Their chipsets include PHY layer interface chips, NPUs,
switch fabrics, traffic managers, and so on.

Peripheral network processors are microchips that have been designed to optimize a very specific
function among the many that need to be handled in a packet-processing environment. Examples of
a peripheral network processor include a compressor chip (such as the ones that HiFn offers) or an IP
Security (IPsec) acceleration chip (such as the ones proposed by Broadcom, Cavium, or Corrent).
These are highly specialized functions that require specific circuitry capabilities to handle the exceed-
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ingly heavy computational load efficiently in real time; therefore, it makes sense to offload them onto
specialized co-processors. Specialized peripheral processor chips also conduct lookup/classification.
In some cases, however, a full-fledged network processor conducts these operations instead. This
processor operates in a sort of a slave-like mode adjacent to a master network processor that handles
the live traffic flow. Other peripheral network processors are also available in the market to parse and
frame specific layer 2 protocols, such as ATM cells, Gigabit Ethernet, and so on.

Yet another way of categorizing network-processing chips is based on whether they are imple-
mented on configurable or unconfigurable hardware. Field-programmable gate array (FPGA) man-
ufacturers have come up with very fast, highly integrated, and programmable chips over the last year
or so. Network device vendors have also tried this alternative approach. We will not elaborate on this
point, as it is unrelated to the topic of network processors.

To give the reader a full dose of reality from both sides, we should mention the other side of the
argument about the network processors. More specifically, we should clarify that to a certain extent
network processors did not succeed immediately or live up to the expectations that they had raised in
the industry.

First, most network processor vendors needed to go through multiple generations of their designs
just to get it right. To a large extent, this is an ongoing quest. NPU-chipset vendors have generally been
characterized by a propensity toward responding impulsively in an affirmative fashion when cus-
tomers, industry analysts, or even representatives from the trade press confront them with questions
as to whether their chipset can accomplish specific tasks at wire speed. Customers, however, did not
think about it and vendors conveniently never bothered to address what happens if other tasks must be
performed at wire speed at the same time. Some of the major challenges confronting the industry
include deciding the content of testing and agreeing upon how realistically performance-testing and
benchmarking suites depict a traffic load, which can then be used as a satisfactory and truthful metric
of anticipated or expected performance. The Network Processing Forum, an industry consortium, is
actively working on these challenges; however, a lot of work still needs to be done before globally
accepted and respected models and benchmarks are produced that emulate real-life network applica-
tions in realistic quantities and mixes of different types of traffic. The combination of these types of
traffic can be used to obtain consistent, realistic, and meaningful ratings of performance.

The second challenge is that because many network processor chipsets turned out to be notori-
ously complex to program and fine-tune to achieve balanced wire-speed performance, customers
found out that they do not have an easy metric to judge and compare the actual software-engineering
development cost needed to develop upon a certain platform. We will see later in Chapter 16 how sev-
eral unrelated factors, such as the sheer number of program lines needed for an application or the cost
of licensing of application software from an NPU-chipset vendor, directly affect the choice of plat-
form, the evolution of a product over multiple releases, and even the viability of a startup networking
company that bets its future on a specific platform to deliver its product roadmap.

SUMMARY

In this chapter, we defined network processors and briefly discussed how they are structured and what
they do. We reviewed macroscopically the two traditional methods of designing packet-processing
network devices and communications equipment: using either software-based solutions that are based
on off-the-shelf CPU processors or handling packet-processing operations in specialized hardware
implemented as optimized high-performance ASICs. We identified the underlying trade-offs in flex-
ibility and performance between the two approaches and introduced the idea of using network proces-
sors as a means for breaking free from the dilemmas of the two traditional schools of thought. We saw
how network processors are optimized to handle packet processing with the flexibility of traditional
CPUs and at the performance levels of networking ASICs.

In the next chapter, we will look inside the typical high-speed switching equipment and descend
top-down into modules of functionality. This will enable us to see what types of operations typically
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occur in a network device and how they interact with each other. A solid understanding of such a func-
tional breakdown and the corresponding modes of various operations is important because we will
eventually look at network processor architectures and discuss the appropriate design choices by ven-
dors. The arguments will only make sense if the reader can put them in the context of their applica-
bility in a bottom-up approach, knowing what feature is useful in which context and what would
actually be desirable (if something is missing) from a specific architecture.
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CHAPTER 3

PACKET PROCESSING

In the previous chapter, we provided a general overview of the various switching technologies that
possess evolving applicability, flexibility, and sophistication. The evolution of the concept and the
technology were explained in relation to both time and complexity. We discussed how switching meth-
ods perform specific tasks. We also identified the engineering trade-offs and caveats that designers
most often confront when using these approaches.

Most of these technologies are currently implemented in some of the most representative cutting-
edge routing and switching gear in the world. However, these switching engines are not just suspended
in thin air. They are invariably an integral part of an overall routing/switching system architecture.
Within the architecture, a mind-boggling amount of complex operations takes place in real time in an
orchestrated fashion. These operations usually become targets for network processing units (NPUs)
in the most recent designs. We need to step back and examine several factors that must occur on the
actual switching/routing system engine, so that the reader can understand the full scope of this dis-
cussion and appreciate the following challenges:

• The nature of the operations involved with fast packet processing.

• The way routers/switches are currently built.

• The types of physical modules one typically expects to find inside a router/switch chassis.

• How it all fits together with the latest trends in component integration—namely, chipsets of NPUs,
search engines, classification and forwarding processors, switch fabrics, traffic managers, and secu-
rity coprocessors. These trends address these combined requirements in the new design era, which
we described in Chapter 2, “Network Processors: Justification.”

NETWORK CONTEXTS: CLIENT, ACCESS, EDGE, AND CORE

Before we look more closely at the inner structures of systems and operations, we must clarify some
common terms that will be used in this discussion. A reader who has had exposure to carrier-based
services and products should be very familiar with this nomenclature. However, experience shows that
many technical and business managers in the telecommunications industry either ignore many of the
subtle, but nevertheless important, distinctions between these terms, or even worse hear them and use
them without knowing exactly what they mean. The nuances become more important when the equip-
ment requirements for the various realms are examined. A router designed for an enterprise network
or a college campus where only moderate quantities of Internet Protocol (IP) traffic must be handled
is quite different from a multiservice router (MSR) that is capable of multiple layer 2 and 3 protocols
operating in the long-distance core of a wide area network (WAN) backbone between Internet serv-
ice providers (ISPs) and legacy voice-based traffic carriers. However, most people refer to them with
the same generic name of router.
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We discussed earlier in Chapter 1 how the original switch and router concepts have slowly merged
with each other to form a functionality that spans the multiple layers of protocol stacks. This is the
main reason why we usually use these terms interchangeably throughout this book. In the specific
cases where the two concepts must be distinguished from one another, however, we clarify which term
will be used. In the industry, the switching/routing equipment is usually referred to by the physical
place where it is installed, not by the corresponding stack layer at which it operates. Figure 3.1 shows
the conceptual layering of multiple interconnected networks in the converged network that we are
discussing.

The bottom of the hierarchy contains the enterprise network, which is also known as the customer
network or customer premises. The term customer premises equipment (CPE) was created from this
concept, although it was not originally coined in a packetized-data network concept. The enterprise
network corresponds to the typical day-to-day user’s Ethernet and Fast Ethernet networks that are
located in companies, universities, and so on. The enterprise network contains one or more local area
networks (LANs) on one side connecting ordinary user stations, such as PCs, with shared access to
common resources, such as printers, faxes, and so on. In addition, this network contains faster local
networks that enable an organization to connect its servers, its storage subsystems, and so on. Some
of these faster enterprise LANs are Gigabit Ethernet networks.

A new type of switch has recently evolved that serves the latter community of servers. This switch
may handle intelligent load balancing by switching traffic to and from specific servers, or it may
merely manage a storage server farm or arrays of disk storage racks connected through a dedicated
storage area network (SAN). The latter context shows the advantages associated with offloading the
traditional LAN. A trend is formed toward creating newer IP-based techniques such as Fibre Channel
over IP or Small Computer System Interface (SCSI) over IP. This trend may ultimately replace the
reigning Fibre Channel.
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FIGURE 3.1 The conceptual hierarchy of networks.
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Highly specialized and dedicated gateways are also usually provided on the landscape to bridge
the locally connected systems to the rest of the world, depending on the applications and policies. For
instance, telephony gateways translate the evolving voice over IP (VoIP) or video over IP realm back
and forth and to and from Public Switched Telephone Network (PSTN) signaling and traffic. Firewalls
and routers handle the normal traffic that enters and exits a site. At some point, some of the LAN-
based systems require legitimate access to the rest of the world. This could require connectivity with
other companies, sites of the same enterprise, suppliers, customers, partners, or classical web access
for an organization’s members.

Routers usually handle this access. Because these routers are situated at the periphery of the enter-
prise network, they are called edge routers (probably inappropriately as we will explain later). Edge
routers are different from the other routers that operate in the heart of the enterprise network, which
have different requirements for protocol support, port speeds, and so on. These routers are often called
core routers. Edge and core routers should not be confused with one another and should be used
appropriately in different contexts.

The next layer in the global network hierarchy is the access network, which is also known among
many industry players as the provider network. An ISP’s network is a typical example of an access
network where the boundaries among a local telephone company, a long-distance company, and an
ISP become more blurred. Everyone is stepping on everyone else’s toes in a competitive stampede
that is bound to reshape the industry landscape while optimizing the communications services and
cost. Access networks consolidate (aggregate) customer traffic from the humble home-based PC
modem users to the more sophisticated broadband cable clients. These networks prepare to feed the
traffic through a larger pipe into the WAN. This could be done over the Plain Old Telephone Service
(POTS), the Internet, or something else. Cable-based broadband access clients are multiplexed
through the local cable-TV company’s head-end equipment. The client might also use some sort of
Digital Subscriber Line (DSL) modem or the latest wireless broadband last-mile access technology.

It does not take a rocket scientist to realize that the provider networks also comprise two types of
routers: provider network core routers and provider network edge routers. These routers are illustrated
in Figure 3.1, which provides a macroscopic view of reality. Once again, the terms edge and core are
used loosely here so we will not follow this example. The typical speeds encountered inside an access
network currently range between OC-3 and OC-48.

The top layer in this hierarchy is the WAN, which interconnects provider or carrier networks and
is often referred to as the backbone (for example, of the Internet). The WAN also contains edge and
core routers. The transmission technologies most often used at the WAN level are optical. The typi-
cal speeds achieved on a WAN currently range between OC-48 and OC-192. In some metropolitan
areas, a trend is evolving to adopt the new emerging 10 Gigabit Ethernet as well.

Historically, the metropolitan network was largely used as a transport-layer medium (such as
Synchronous Optical Network/Synchronous Digital Hierarchy [SONET/SDH] and Plesiochronous
Digital Hierarchy [PDH]). The major innovation was that equipment designed for metro networks
needed to be able to handle data traffic. As such, the core of the WAN still contains several
Asynchronous Transfer Mode (ATM) switches. Although a move is being made toward handling fast-
switched IP traffic on the WAN, the core and edge switches must be able to handle multiple protocols
at wire speed, often including time division multiplexing (TDM) traffic and frame relay. IP traffic is
still being transmitted as IP over ATM during this transitional era, while backbone service providers
are adopting newer technologies to use on the more modern optical networks, such as terabit routers
offered by companies such as Avici, Cisco, and Juniper.

To better depict the market situation of several companies competing from completely different
angles of new data-driven business while supporting lucrative legacy business, it is more customary
to use the four-layer approach shown in Figure 3.2. In this example, the WAN has been broken into
the edge and core network, and the term metropolitan network denotes the combination of the access
and edge networks. The terms edge and core are used correctly in Figure 3.2.
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When examining the requirements of the switching equipment at these various levels of function-
ality, one should first look at the interesting variations on what a switch/router should be able to do in
each situation.

LAN traffic is now mostly a mixed landscape of switched 10 and 100 Mbps Ethernet, while legacy
token rings are also used in some cases and more and more Gigabit Ethernet is showing up on the
LANs inside the enterprise network level. Traffic is generally switched at layers 2 and 3. Workgroup
switches are network units that consolidate all the disparate users generating this traffic demand. This
is done in a cost-effective way.

Web switches (load balancers) on top of traditional layer 3 switching must also be able to switch
traffic at layer 4 (for example, at the Transmission Control Protocol [TCP] layer) all the way up to
layer 7 (for example, for cookie detectors). In this case, traffic would need to be switched according
to each application and based on the Uniform Resource Locator (URL).

LAN backbone switches aggregate all the enterprise workgroup switches and provide connectiv-
ity to the access network. Gigabit Ethernet is used in this situation, as switching multiple protocols at
layer 3 has replaced the need for the cumbersome and expensive routers that originally handled this
type of traffic.

Because each individual access line for routers at the edge of the access network has a speed of
less than 10 Mbps, the switching requirements are well below the high-speed processing capabilities
of the network-processing chip architectures that we discuss in this book.
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FIGURE 3.2 Four-layer model of network reality.
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We should mention some overall contextual differences between enterprise and service provider
equipment:

• At times, multiple end customers who are typically indifferent toward each other’s needs must be
served.

• In many cases, the importance of managing bandwidth intelligently cannot be overemphasized.
Bandwidth is typically not a scarce resource in the enterprise, but it may be scarce with a service
provider.

• The differences between performance expectation and quality of service (QoS) treatment require-
ments must be considered.

• The operating environment requirements are very different in the two realms. For example, the
requirements for a central office differ from those for a street cabinet/pole top where there is no
forced air cooling and ambient temperatures can vary between great extremes.

• The two realms have different requirements in terms of reliability/availability and how easily the
equipment can be upgraded in the field.

• The requirements for accommodating varying operations, administration, maintenance and provi-
sioning requirements in both cases.

In the current WAN realm, both fast IP switching techniques and Multiprotocol Label Switching
(MPLS) must be supported. This means that wire-speed IP routing at OC-192 is required. As men-
tioned previously, in addition to increased routing speed, MPLS offers carriers some unique capabil-
ities for virtual private networks (VPNs) and other revenue-generating services based on its
traffic-engineering (TE) advantages. Network processors are becoming useful for the timely design
of advanced, but affordable, equipment that provides the manufacturer’s clients with the possibility
for such differentiation and potentially lucrative services.

The WAN edge routers must be able to consolidate multiple access network interfaces. A typical
example of this environment is a Cisco Edge Service Router that can provide the equivalent sustained
throughput of 43 T3 lines. A modular design allows multiple combinations of throughput—for
instance, in multiples of T1 or even fractional T1. The uplinks from the access network can be found
in Gigabit Ethernet or more often in OC-12 links. These WAN edge routers must be extremely reli-
able to ensure around-the-clock functionality. This implies that they must be designed to be field serv-
iceable. In other words, critical components must be fault tolerant (or even redundant in some cases)
and line cards must be hot pluggable, meaning that they can be replaced without bringing down all of
the network equipment. These are very different requirements from a customer premise router.

Another type of WAN edge router is the MSR out of which the Multiservice Providing Platform
(MSPP) has evolved. MSPPs are essentially SONET add/drop multiplexer (ADM) equipment that
combines IP routing and ATM switching. Due to their versatility and performance, network proces-
sors are expected to be especially useful in the implementation and delivery of MSPP products.

Some companies use the term metropolitan area network (MAN) as another context. Although the
technical environment of the MAN is essentially similar to the one encountered in the WAN, the cost
of deployment and the economics of justifying product investment are different. This enables less
expensive technologies to be adopted for the implementation of similar solutions. MAN equipment
is an interesting business context, but for our technical purposes, we will consider it just as another
example of a WAN technology that consists of the traditional access and edge networks, as shown in
Figure 3.2. We will no longer single it out specifically. This is because the design requirements of net-
work equipment for MAN applicability (especially pertaining to network processors, switch fabrics,
and traffic managers) are easily deduced by the edge and access network equipment requirements.

In the midst of all these combinations of functionality, protocols, line interfaces, and wire speeds,
one should not forget the ever-present need to consolidate along all the more recent techniques the
legacy voice traffic, although at some point this need is bound to become more or less obsolete. This
traffic is the most lucrative service a carrier could offer at this point. It is usually delivered on
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TDM-multiplexed voice channels. This only exacerbates the need for flexibility and upgradeability
in network switching equipment, something the network processors are ideally suited to handle.

It is assumed that the reader has a basic background on traditional PSTN-type telephony-inspired
link platforms known as T1 and T3 (in North America) and E1 and E3 in Europe. These platforms
allow transmission based on several protocols such as voice over TDM, frame relay, IP, and ATM.
Table 3.1 summarizes the bandwidths of the more recent SONET-based links in the WAN.

THE TIMING OF THE NETWORK-PROCESSING EVOLUTION

As of the late spring of 2003, the accepted state-of-the-art speed in deployed network processing is
OC-192 although there are devices that are able to function in OC-768 links; therefore, much of our
attention will be focused on chips and architectures functioning at that speed. However, network
equipment designers are already extremely anxious about the scalability of their architectures and
designs in relation to the next logical performance step of OC-768. This step requires processors capa-
ble of processing traffic at 40 Gbps wire speed. We will discuss some of the issues and trade-offs that
architects will sooner or later have to confront. The economic downturn following the stock market
collapse in 2001 and the general slowdown that resulted following the tragic events on September 11,
2001, have also significantly delayed numerous investment plans and deployment schedules for 10
and 40 Gbps projects. The naturally induced financial conservatism has consequently affected the rate
of market adoption for many of these new technologies. For the next couple of years, the main empha-
sis of the network-processor market will most likely be in the OC-48 and multiple Gigabit Ethernet
realms.

The result has been mixed. On one hand, it has been negative for some vendors of cutting-edge
network-processing technology (component or system) who were hoping to launch new platforms.
On the other hand, it has been positive for others who needed some more breathing space to conclude
their race against the clock designing sophisticated chips and putting the final touches on their devel-
opment work. The vendors hoped that by doing their work more thoroughly, they would be able to
weather the financial storm and be ready with real and stable products when the market would finally
be ready to talk to them.

The same context seen from the market’s viewpoint has also had a double effect. Carriers realized
that they were not under the gun to deploy products such as VoIP in lieu of traditional legacy voice
technologies. The pressure therefore was sent back to the network equipment manufacturers to accom-
modate TDM traffic along with their more targeted packetized future network. The purported demise
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TABLE 3.1 Bandwidth of Typical WAN Links

Physical Layer Bandwidth

T1 1.5 Mbps

E1 2.0 bps

T3 45.0 Mbps

E3 34.0 Mbps

OC-3 155.0 Mbps

OC-12 622.0 Mbps

OC-48 2.5 Gbps

OC-192 10.0 Gbps

OC-768 40.0 Gbps
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of ATM was also delayed. Interesting new concepts appeared to take advantage of this window of
opportunity, such as technology from Litchfield Communications, whose chips packetize TDM traf-
fic and feed it into network-processing systems and switch fabrics that have been designed to handle
packetized flows.

Of course, the decelerating economy of 2001 and 2002, the corresponding market repercussions,
and the ensuing delay that affected the deployment of faster technologies had adverse effects on the
financing and development pace of startups. This created a domino effect that few companies could
avoid. We will discuss these issues in later chapters when we identify the trends of attrition, consoli-
dation, and inevitable evolution in this rapid market.

THE OVERRIDING REQUIREMENTS FOR NETWORK EQUIPMENT

The four different network realms illustrated in Figure 3.2 are characterized by various requirements,
which are summarized in this section. We intend to highlight the following two points:1

• How the systems designer has to cope with some very specific constraints imposed on him or her
by the context within which the equipment will be called to operate.

• How to trigger the imagination of the reader as to how the network-processing platforms are called
to deliver solutions for the different problems that are encountered at each level in this conceptual
hierarchy.

For CPE equipment, which will require more packet-based services in the future as new services
are introduced into this market space, the systems designer wants to ensure that the equipment has the
following characteristics:

• Is interoperable with the access network’s behavior at layers 1 and 2 and potentially with the edge
equipment’s expectations at layer 3 and above in the service provider’s network (for example, appli-
cations like e-mail protocols such as Simple Mail Transfer Protocol [SMTP] and Post Office
Protocol [POP] or widely used layer 4 protocols such as TCP).

• Can handle the WAN wire speed.
• Is designed and proposed economically.
• Does not require large physical space for its deployment so that it can be offered to multiple envi-

ronments without undue customer resistance.
• Is easy to manage and configure remotely.
• Is highly integrated so multiple services can be offered through it.
• Allows room for modular future expansion.

Access network equipment, which is the first layer of consolidation and the last layer of distribu-
tion by the service provider of traffic to and from multiple users, has a different set of essential require-
ments. The systems designer focuses primarily on the following:

• A large-scale and (as much as possible) low-cost aggregation of multiple physical connections to
subscribers. This is usually accomplished with rack-mounted devices and modem banks.

• A small footprint of these rack-mounted and chassis devices.
• Low power consumption as racks at carrier premises have tight constraints that must be respected.
• The ability to communicate in multiple physical interfaces and layer 2 protocols.
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For edge network equipment designers, the problem is not how to collect low-speed traffic from
users or how to distribute it to them. It is how to aggregate multiple traffic streams (flows) into traf-
fic classes that reflect specific characteristics of differentiated services.

Therefore, the designer of edge equipment is interested in ensuring that

• Services can be easily provisioned when and where they are needed.
• Both the performance and functionality of the equipment are scalable.
• The density of the design must be maximized.
• The reliability and availability of the design must be optimized for this context.
• The network equipment can be serviced, maintained, and upgraded easily.
• The design is modular so that it can be expanded and upgraded with new protocols, standards, and

required functionality such as customized billing.

The core network is comprised of optical fibers connecting hundreds, if not thousands, of edge
routers and switches, each requiring the ability to handle hundreds of gigabits-per-second traffic and
often having a terabits-per-second switching capacity. The designer of core equipment is preoccupied
with the following characteristics:

• Scalable performance when switching or routing.

• High reliability.

• High availability.

• Fault tolerance and, in most cases, sheer redundancy.

• Field serviceability, which means modular design and hot-pluggable cards or modules.

• An industry-standard design that is Network Equipment Building Standards (NEBS) compliant in
terms of cards and chassis size, power consumption (maximum and typical), MTTF, etc.

Of course, NEBS-type requirements apply to many types of service provider equipment, not just
core boxes. In fact, the environmental requirements on access systems that sit in street cabinets are
arguably even more stringent.

The combination of these fundamental requirements and some obvious market dynamics create a
new set of challenges for the market and an ensuing set of opportunities for network-processor man-
ufacturers. For example, new packet classification requirements will appear with the widespread adop-
tion of MPLS. Like windows capabilities originally reserved for fancy and expensive engineering
workstations slowly but surely arrived on the humble PC when it became equipped with a powerful
microprocessor and input/output (I/O) bus, functionality that was previously only available or ex-
pected inside edge and/or core equipment will continue to expand its presence toward the access
points, as the CPE devices increase their sophistication (due to application-driven demand) and speed.
This increase will enable these devices to take advantage of 10 Gigabit Ethernet networks and to be
deployed in the metropolitan areas.

At the same time, a noticeable trend is that sophistication and service granularity migrate from
lower-speed equipment to higher-speed equipment. This is possible because technology enables more
work to be done in a given power/cost/space envelope and more work enables higher-value services
to be delivered.

DATA AND CONTROL PLANE PROCESSING

We learned in Chapter 2 how a typical switching/routing system is structured architecturally in func-
tional units that combine to compose two parallel processing paths. These are called the slow and fast
processing paths, respectively. We also learned how these paths received their names. The former
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deals with processing operations about packets, such as network management, routing protocol han-
dling and routing table updating, and traffic regulation. The latter deals with operations that are
directly performed on packets, such as header modification, filtering based on content, classification,
and the encryption of fields.

The slow processing path takes place on a parallel data path implemented by slower central pro-
cessing units (CPUs) without the tremendous pressure of having to keep up with many packets that
require special and different attention arriving in real time at wire speed. This is the responsibility of
the fast processing path. In order for the switch/router to be able to cope with the high-speed packet-
processing requirements during packet parsing, classification, forwarding, field processing, potential
encapsulation, scheduling, and switching, blazing-fast circuitry and a smart and efficient architecture
are required. This is why we say that on the fast processing path, the system operations are exercised
directly on packets.

Two other mainstream terms that are equally used by the network equipment community to
describe this processing reality are control plane processing, which is another way of referring to the
slow processing path, and data plane processing, which is a synonym for what occurs along the fast
processing path. Some people even extend these terms further and adapt them to the actual hardware
choices for the implementation of the two processing data paths. For example, a control processor
could refer to a CPU or an application-specific integrated circuit (ASIC) that is used to handle the
slow processing path functions, whereas a data plane processor could refer to either an NPU or a fast
specialized network ASIC. Data plane processor could also even refer to a reduced instruction set
computer (RISC) or a complex instruction set computer (CISC) CPU, but this is less common.

It is worth mentioning that some vendors logically split the control plane into two adjacent and
complementary computational slices, which they dub the control and management plane, respectively.
This is more of a cosmetic implementation-dependent characterization, which simply delineates the
host CPU (usually a processor based on the PCI bus) that oversees the macroscopic management of
the line card or system from another control plane processor, which may be handling much narrower
day-to-day control responsibilities.

We will not make this hypergranular distinction in this book and will continue using the predom-
inant model of thinking in terms of two planes.

It is also worth mentioning that NPUs may integrate in Ethernet MACs, but they rarely integrate
in Ethernet PHYs. In addition to the complications of the mixed signal design (containing analog and
digital inside the same silicon die) and the additional power dissipation, the pins used for SMII and
GMII interfaces are electrically compatible with SPI-3/Universal Test and Operations PHY Interface
for ATM Level 3 (UTOPIA 3). Therefore, no additional package pins are required when only MACs
are integrated in. I/O pins are often a scarce resource for massively packaged NPU chips.

PACKET-PROCESSING OPERATIONS

So far we have used several generic terms to describe handling operations applied by the high-speed
router/switch onto packets. We will now take a closer look at these operations:

Packet Framing

In the Ethernet environment, the MAC and PHY layers implemented in the transceiver are sometimes
implemented in different chips. In high-speed links, however, such as SONET where either ATM or
Packet over SONET (POS) is being transmitted, a separate framing unit is used to map the ATM cells
or Point-to-Point Protocol (PPP) packets into the SONET frames for transmission. These frames are
then passed through a serialization and deserialization (serdes) module before they are handed over
to the transceiver. The inverse occurs at the reception point. Network processors can obviously han-
dle the framing function in the high-speed links of the future.
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Pattern Search and Packet Classification

The generic classification task (as the term itself implies) means that some rules and conditions must
be applied in real time to every incoming packet and, more specifically, to its headers or to parts of
its overall content in order for the switch/router to assign the packet to one among several logical out-
come options. This is usually associated with specific QoS or forwarding decisions. Typically, a table
of addresses and, more recently, the whole database of rules and policies must be searched in real time
so a context-sensitive decision can be made, according to which packet will be classified and for-
warded.

As a result of classification, the incoming stream of packets gets partitioned into multiple logically
separated output streams, which will then need to be handled appropriately. For instance, one stream
of packets may need to be forwarded to its destination port with a higher priority, whereas another
stream may have to be relegated to a lower priority because of other more urgent tasks. One of these
output streams might also be the subject of a special billing procedure, whereas another may not.
Traditionally, especially in older routers where the line speed was quite low compared to the more
recent generations of very fast switching/routing gear where the high wire speed requires hardware
implementations of the classification work, packet classification algorithms were implemented in soft-
ware that was running on a standard off-the-shelf CPU. The more recent hardware implementations
of packet content search and classification are completely focused toward supporting designs realized
with network processors.

The classification algorithms themselves depend on the application at hand. Generally, when one
looks for match, several criteria actually constitute the required degree of matching. To give an anal-
ogy, if one needs to assert whether a specific phone number is from the Boston area, one does not need
to exhaustively list all the numbers in Boston among telephone users in the United States and then
check where each number is located in a more elaborate way. One just has to check the area code and
ensure it is the number 617 in this example. On the other hand, if one wants to sort out the numbers
that are in Boston and belong to the same local exchange, say, 754, one simply has to match all num-
bers against the area code 617 and the prefix 754 using wildcard characters for the rest.

The same principle works with IP addresses. Depending on the application itself, one may require
an exact match for a specific address search or may just need a prefix match. Mask bits can be applied
to select whatever bit positions one decides based on the appropriate criteria. The system will then
find the most suitable entry by looking it up in a content-addressable memory (CAM), which will
yield the necessary address.

In the most rudimentary setting, today’s routers use the Classless InterDomain Routing (CIDR)
routing protocol to calculate the address to which a packet must be forwarded. For example, CIDR
uses the longest-prefix match (LPM) algorithm for the calculation of the next-hop address. We will
discuss the internals of this algorithm in more detail later in Chapters 12 and 13. For the moment, we
will just mention that in order to implement this type of classification environment, until very recently,
switching/routing systems designers in conjunction with an ASIC or a RISC/CISC CPU would involve
a CAM module, which allows a fast and efficient implementation of the classification scheme in sev-
eral configurations.

Some instances of classification occur at layer 7—for example, looking up specific URL strings
associated with the Hypertext Transfer Protocol (HTTP) protocol. However, classification usually
occurs at layers 3 and 4.

A typical example of a need for such a sophisticated classification would be in a Differentiated
Services (DiffServ) environment. In this environment, the lookup must be executed based on multi-
ple fields from the TCP and IP headers. This is where the classifier must apply the five-tuple lookup
in order to extract the appropriate forwarding information based on data provided from a joint TCP/IP
set of headers and, more specifically, from the following five distinct fields of data therein:

• The IP source address (32 bits).

• The IP destination address (32 bits).
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• The specific IP protocol used (8 bits).

• The TCP source port (16 bits).

• The TCP destination port (16 bits).

We will revisit this case in more depth in Chapter 12, “Search Engines,” and Chapter 13, “Classi-
fication Processors.”

Returning to our DiffServ example, in this five-tuple lookup operation, the classifier will need to
locate and extract 104 very specific bits from the combination of the IP and TCP header. It will then
look into a CAM using these 104 bits as index in order to find a new bit field from the CAM, which
will then be used as index to an associated data memory bank from where the exact result will be
extracted. Based on that final result, the switch/router will decide which DiffServ flow it must allo-
cate to the packet. To make a long story short, this is accomplished by the generation of the DiffServ
Code Point (DSCP) bit pattern that is written by the switch into the type of service (TOS) field of the
IP header. The DSCP code will notify all routers/switches in the DiffServ domain as to what type of
treatment should be reserved for this specific packet at each hop of its trip.

A similar operation occurs at the ingress points of MPLS networks when label tags must be
swapped or stripped on-the-fly based on specific rules.

As another example, in the case of a simple address filtering, pick a bit mask among the several
stored that reflects the desired filtering and then use modulo-2 to add it to the search destination (that
is, use exclusive OR [XOR] on it, ignoring the last carry) and throw it to the CAM as the so-called
key. The output of the CAM should then provide the bit sequence that should be used as an index to
an external memory bank that determines which yields the intended and desired destination.

CAM (Content-Addressable Memory)

For the unfamiliar reader, CAM is a specialized memory bank used in switching/routing environments
in what has come to be known as search engines. These search engines have nothing to do with web-
browser-based Internet search engines that look for web pages. Traditional memory lookups ask the
following question: What content is stored in address X? However, in CAM, the question is inverted:
In which address is content Y stored? CAM memory is arranged in such a way that when a specific
entry is looked up, the memory bank will rapidly compare the specific request with all its contents. If
a match is found, the corresponding address (where it is stored) will be returned. When a table is stored
inside a CAM, the CAM is said to be initialized. When we want to look up something in that table,
we write a search key to the CAM. In reality, no one is writing anything to anyone in this case. A bit
pattern is simply presented (also known as the key) to the CAM. The CAM will try to match it with
one or more of the entries it contains. If it succeeds, it returns the address where the match was found.

For example, in switching/routing systems where the next-hop address must be found, the specific
address obtained as a result of the CAM lookup operation is used as a pointer to a specific address
located inside some external static random access memory (SRAM) bank that is known as user data
memory or, more appropriately, associated data memory. That is exactly where an IP address or a
MAC address (depending on the application) will be found that satisfies the packet’s destination
requirements that the system was seeking when it initiated the lookup.

The lookup operation described so far is based on a binary CAM because the bit positions either
match the key content or fail (0 or 1 in every bit position). Most CAM products used in current search
engines offer the possibility of ternary CAM (TCAM) operations, which enable the creation of masks
for every entry word using 0, 1, or don’t-care values. This is required for several of the currently used
search algorithms, including the LPM algorithm. If more than one match is found, the lower address
is usually returned, although TCAM chips are present, which are structured with an embedded prior-
ity-encoding mechanism that returns multiple matches in a certain priority. This is obviously a mech-
anism that taxes the real-time performance of the search engine severely, so it is only used when it
absolutely and undoubtedly makes sense.
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Although we will be discussing CAMs in length later in Chapters 12 and 13, it is worth mention-
ing here that the brute-force hardware lookup capabilities that CAMs provide are expensive and often
require a lot of power. CAMs are attractive for the following reasons:

• They recognize large bit patterns (they do a lot of work per trip across the I/O pins where approaches
using conventional memory typically need to make many trips as the bit pattern to be classified gets
bigger).

• They are useful where table sizes are small (storing large lookup tables in CAMs is prohibitively
expensive in terms of cost and power).

• They are helpful where lookup latency is critical (although latency can often be hidden with a suit-
able use of pipelining and threads with memory-based approaches).

Search Engines

When wire speed becomes so high that an external SRAM is not the best approach (OC-48 and above),
an integrated search engine must be considered. This is either a TCAM implementation or part of a
dedicated classification processor with the appropriate system speed design. The newer
switching/routing systems are based on network processors; therefore, the interface between NPUs
and search engines poses a real challenge. Some current designs are implemented around cumber-
some field-programmable gate arrays (FPGAs) that are meant to replace a sea of glue logic. Several
standardization efforts are currently under way to address this problem, as we will see later in
Appendix III in the discussion about standardization. Some search engine vendors interface their
engines to the NPU through a memory interface so that the NPU is essentially fooled to believe that
it communicates with an ordinary memory bank. The leading providers of search engines include IDT,
NetLogic Microsystems, SiberCore, and Kawasaki LSI (KLSI).

Typical search engines offer the possibility of about 100 millions of searches per second (Msps),
but this number is rapidly increasing. If a certain piece of switching/routing gear requires bandwidth
that is higher than 100 Msps, multiple search engines may be used. They can either be centrally
located in the switch/router (a demanding proposition for high-speed links), or the designers can
include a search engine on each line card, reducing the performance constraints on the search engine,
which is most often the case. The key size is nowadays usually 72 bits; however, with the appropri-
ate soft configuration at half the clock speed, search engines will usually also work with a search key
of 36 bits.

Therefore, capacity and speed are the two most important rating parameters for the specification
of a search engine’s performance. Because the word size is 36 bits (and not 32 bits as in normal mem-
ory) when using the convention of calling a search engine with 1Mb or 2Mb capacity, we obviously
mean they contain 1.125Mb or 2.25Mb, respectively. One can cascade search engines and increase
the capacity, although this may adversely affect the latency of the overall system, as more cycles may
be needed from the moment that a key is presented to the search engine until the moment when a result
has been produced at the output port of the engine. The reader is referred to Chapters 12 and 13 for
more details.

We also expand on other interesting topics associated with this subject in Chapter 15, “Traffic
Managers.”

Packet Parsing

Unlike the traditional ATM environment, where all cells are of equal length, deep packet inspection
is not a trivial operation when incoming packets are of variable length. Special architectural capabil-
ities must be designed in order to ensure a flexible handling of the field alignment for subsequent pro-
cessing. Network processors are very well suited for this type of function. Some contain embedded
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functionality that can do this, whereas others must be augmented by ancillary chips (preferably from
the same chipset family and vendor) to implement the desired scheme.

Packet Classification and Fast Forwarding

The two terms packet forwarding and packet routing may confuse some readers at this point. On one
hand, forwarding refers to the selection of an output port by a switch/router based on the destination
address of the packet and in conjunction with a routing table that stipulates what goes where. On the
other hand, routing, microscopically speaking, in many contexts refers to the process of actually build-
ing the table itself, although macroscopically it is associated in people’s minds mostly as implying
the forwarding function.

This is the right time to clarify two common terms that may already be familiar to many readers
and are used quite frequently in the industry in order to characterize specific design philosophies that
lead to specific architectures.

A store-and-forward architecture, as the term implies, stores the incoming packet temporarily and
then decides what to do with it. On one hand, it gives the architect more flexibility and wider appli-
cability for the final outcome of the packet handling process. On the other hand, it also implies a
higher implementation cost, as buffering facilities must be provided and as an overall longer end-to-
end delay is incurred due to increased latency from the ingress point to the egress point. This is obvi-
ously the case even if the storage time is shrunk down to minimum acceptable levels for a specific
application. For example, this is certainly applicable in a typical low-end router and/or Ethernet hub.
An incoming packet is first written into memory and then the switching device’s CPU decides on
which port to output it.

A cut-through design eliminates both the cost of the extra buffering and the longer latency asso-
ciated with store-and-forward architectures by making the forwarding decision on-the-fly, based on
specific bit fields that it parses in real-time on the incoming packet headers. In many cases, given the
high wire speed, this decision must be made even before the incoming serialized packet has com-
pletely entered the switch/router. A typical example would be the latest MPLS switches on the WAN
backbone, where the small label tag that has been prefixed to the arriving packet already signals to
the switch the switch output port from which the packet must egress. It is clear that this approach only
lends itself to some very fast implementations.

A certain risk exists that the fate of a packet may already have been decided upon and that the
packet may already have been forwarded onto a certain egress port before some other functionality of
the switch had the time to step in and decide about some other overriding alternative that precludes
the forwarding decision that was previously made. To further illustrate the point, cut-through archi-
tectures are also well suited for low-end Ethernet switches since for instance they cannot manage traf-
fic congestion with a QoS framework, they cannot check cyclic redundancy check (CRC) before
actually forwarding, and so on.

For example, say that an incoming packet associated with a VPN enters the switch from one of its
ingress points and with the appropriate prefixed label tag in an MPLS backbone network. The switch
proudly decides on-the-fly that based on this label tag and the internal forwarding-associations table,
the egress point for this specific packet is going to be its output port called X. The packet is now
switched by the switch fabric onto the port X and bits start to exit the switch from that port while bits
are still coming in at the ingress point. A traffic manager in conjunction with specific QoS require-
ments that the switch must satisfy may then intercept a specific bit field of the incoming packet at the
ingress point, which may for all practical purposes be located deep inside the parading packet. The
switch/router all of a sudden may realize that this specific application class requires priority handling
over a separate link. It may also require some exceptional treatment that is guaranteed through
reserved bandwidth resources (as a result of Resource Reservation Protocol [RSVP] and DiffServ
actions) associated with another egress port called Y. It will flag the event as an exception. The switch
may then realize that the packet should not have been forwarded through egress point X in the first
place. It will try to block the output, but it may already be too late for the next hop station, as some
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bits and maybe whole packet headers most likely have already exited the switch and continued their
trip downstream. The reader should be able now to see the trade-offs involved with the two design
approaches.

All incoming packets must undergo a deep examination by the switch that goes beyond the tradi-
tional header inspection. Based on the results of such an inspection, the packet will be immediately
classified to some class or category for subsequent processing. Therefore, the correct classification of
packets may be implied by various needs.

For example, a user may have to deal with making a specific routing decision (layer 3) for some
packet based on some specific routing protocol, which may use the LPM algorithm based on a handy
data structure called a trie. We will discuss this in more detail in Chapters 12 and 13. In the imple-
mentation of address-prefix matching algorithms, the forwarding database that must be consulted gen-
erally contains a dictionary of address prefixes. The algorithm is used to find the longest initial
substring of the destination address that is included in the forwarding database. During a classifica-
tion operation, the network processor (or ASIC, or other CPU for that matter, chartered to take care
of the task) will traverse the trie looking for the LPM. We look at several approaches to improving
this technique in Chapters 12 and 13.

As we briefly discussed in Chapter 1, “The Evolution of Network Technology: Distributed
Computing and the Convergence of Networks,” with the arrival of MPLS, data flows are tagged by
each router with a small route-specific label that is extremely reminiscent of ATM headers on top of
IP traffic. It might be tempting to conceptualize about MPLS traffic as merely network load that must
be routed/switched at wire speed as ATM but on real IP packets. These are notorious about their vary-
ing lengths; hence, switching has to occur at layer 3 without the nuisance (in this case) of the fixed-
cell length that ATM is imposing. In fact, some researchers2 openly admit that MPLS has borrowed
the good design attributes of ATM without the need to set up calls and without the need for a fixed-
length cell. These factors were once perceived as the two major drawbacks of ATM. The classifica-
tion issue we just discussed becomes absolutely critical for the performance of the MPLS networks,
as switching must occur in extremely high speeds at the backbone of the Internet (where wire speed
attains at least several tens of gigabits per second) based on the content of a small prefix (MPLS label
tag) attached to the IP packet. Similar concerns are found when implementing other applications such
as load balancers for server networks. We also discussed relevant issues in the section “Packet
Classification and Fast Forwarding” earlier in this chapter.

Modification

Modification is a generic term that can be applied to several contexts. In a typical modification, a
packet must be encapsulated. This means that new headers must be calculated. In some instances, new
trailers and CRC checksums must also be calculated. This is done for example when IP over ATM is
running, where an extra overhead of 8 bytes is created and added to an IP packet. ATM Adaptation
Layer level 5 (AAL5) is subsequently used to carry the encapsulated packet, which now carries the
original content along with the appropriate ATM headers, the required AAL5 padding, and the nec-
essary trailers. Another example that we will see in the security coprocessor Chapter 17 is the encap-
sulation of encrypted and authenticated packets in an IP Security (IPsec) environment. This involves
the creation or removal of the Authentication Header (AH) and Encapsulating Security Payload (ESP)
headers, and especially the dressing (or undressing for that matter) of packets depending on whether
the link operates in the tunneled or encapsulated mode. Network processors are more than up to the
task.
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2. Radia Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking Protocols, 2nd ed. (Reading, Massachusetts:
Addison-Wesley, 1999).
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Switching

Once a decision has been made on what should happen to an incoming packet and once any relevant
processing on it has been concluded, the packet will go through the switch fabric. Inside an MSR, for
instance, a handful of critical architectural contexts are available. These include the backplane that
connects everything inside the chassis, the actual switch fabric, and, of course, the various line cards
where the network-processing chips are situated. Sometimes packets are broken transparently to the
user inside the switch fabric into smaller manageable chunks called cells (which have nothing to do
with ATM cells). These cells facilitate their transition from the input to the output of the fabric and
are reassembled as packets at the output of the switch fabric. We will look at the context of these fun-
damental categories of hardware later and will also dive deep into the heart of the actual
switching/routing device—the switch fabric itself, which we discuss in Chapter 14.

Traffic Management and Other Operations

When the packet is ready to be transmitted to the subsequent stage in the chain of processing, sched-
uling needs to be applied to it. Two types of scheduling must be performed: scheduling before the
packet is handed over to the switch fabric and scheduling when the switched fabric is launched on the
output port. This falls more generically under the category of traffic management, which takes care
of handling queues and flows based on the various classes of service (CoSs), generating the appro-
priate billing information and ensuring that traffic abides by the applicable service level agreements
(SLAs) and levels of QoS.

Traffic management is the major category of functionality where the problem of traffic congestion
is handled along with traffic shaping in environments such as the one that the latest trend for DiffServ
requires. Traffic management includes queuing, buffer management (including the application of
sophisticated algorithms such as Weighted Random Early Detection [WRED], RIO, Early Packet
Discard [EPD]/PPD, which we discuss later, and ideally with multiple buffer pools for better traffic
isolation), and scheduling/shaping. Shaping is this context refers to effective non-work-conserving
scheduling. Interestingly, bandwidth can be guaranteed even with a simple first-in first-out (FIFO)
scheduling by carefully managing the buffer space that each flow is allowed to occupy (although it is
certainly preferable to also use a differential scheduling treatment as part of the overall QoS toolkit).
We discuss these issues in greater length in Chapter 14, “Switch Fabrics,” and Chapter 15.

Such a system is usually integrated inside one shelf. For larger router/switch designs where mul-
tiple shelves are involved, the intersystem communication is handled by optical fiber interconnect. In
terms of implementation, we will present snapshots of reality through various vendor case studies in
several chapters in which we cover representative products for each category.

SUMMARY

In this chapter, we continued looking at fundamental concepts. We first defined the multiple contexts
of network realms from CPE to the WAN core. We clarified the different design requirements that
drive the network equipment manufacturers’ thought processes in each network context. We briefly
discussed the most important operations that need to happen in real time and at wire speed inside
switching/routing gear that is designed to handle packets. We also introduced many of the fundamental
concepts, which we will review in depth in the subsequent chapters that discuss the techniques and
typical products that implement them.
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CHAPTER 4

IBM POWERNP™

We will now take a closer look at some of the most advanced network processing unit (NPU) archi-
tectures that have been proposed by several vendors. Some of these vendors are solidly established
and some are promising startups. Our coverage will not be exhaustive in detail for two reasons. First,
this book does not take a cookbook approach. Second, the subject is massive and only so much can
be packed in one single book. Detailed information can be found in each vendor’s product datasheets
and chipset documentation. We relied on these items as the main sources for compiling these overview
chapters.

Our approach is to explain the fundamentals of each architecture by not only showing the break-
throughs, but also by highlighting the techniques, modules, analogies, and paradigms that we may
have already reviewed in earlier chapters. We will look at how a complete network gear solution can
be implemented for tackling design problems through the various NPU architectures and will pinpoint
the strong and weak points of each approach.

In this chapter, we look at IBM’s PowerNP™ family of network processors. More specifically, we
look at the architectural structure of the NP4GS3 network processor, the capabilities, and the com-
plementary peripheral chips (queue managers, switch fabrics, interface converters, and so on) that are
required to produce a working system based on the IBM platform. This requires an overview of the
systems model that IBM NPUs favor. Finally, we will examine the tools that enable and support devel-
opment of this IBM NPU and will discuss the design trade-offs that these network processors impose
on the designer of switching/routing equipment.

IBM POWERNP: THE BIG PICTURE

IBM is one of the uncontested leading vendors in the global information industry. It combines
advanced networking expertise with unparalleled microelectronics technology, deep submicron
design, and semiconductor manufacturing process capabilities. Through its IBM Microelectronics
unit, a very large engineering group has been put together to design and bring to market the various
IBM families of network processors. In addition to being the leading captive semiconductor producer
on the planet, IBM has been one of the leading network equipment manufacturers for many years, as
evidenced by their NPUs. IBM tangibly implements pertinent sophisticated know-how, which con-
tinues to pour out of its world-famous research teams and, more specifically, teams that are engaged
in fast networking development in Yorktown Heights, New York, in Rueschlikon, Switzerland, and in
Haifa, Israel.

If we step back and look macroscopically at the PowerNP family, we find IBM’s NPU flagship—
NP4GS3—at the top of the line. NP4GS3 is also known in the industry as Rainier.

The two variants of the NPe405 are available at the low end of the spectrum of IBM’s NPU offer-
ing. The NPe405 (dubbed H and L, respectively) network processors have embedded support for
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various interfaces, such as Fast Ethernet, High-level Data Link Control (HDLC), and so on. They are
focused primarily on the access equipment market and are not capable of handling very-high-speed
routing/switching in a multiservice routing/switching environment like their more powerful sibling.
Because the underlying architectures are different, the executable code for the NPe405 and the code
for the NP4GS3 are incompatible. IBM customers using the e405 family will have a certain migra-
tion path inside the e405 family as equipment performance requirements increase. This, of course,
helps preserve the customer’s software investment. However, we will not be expanding on this low-
end product here. Interested readers can find more information about it directly from the IBM
Microelectronics web site at www.chips.ibm.com.

Below the NP4GS3 and above the NPe405, IBM introduced the NP2G in 2002. This network
processor is based on the same powerful architecture, but has fewer resources than the NP4GS3. More
specifically, it offers 12 picoprocessors. Interested readers can find more information once again from
the IBM Microelectronics web site.

The NP4GS3 is one of the most powerful NPUs currently in the market. It contains 16 so-called
picoprocessors that handle packet manipulation operation. It also contains a powerful PowerPC 405
central processing unit (CPU) core that handles control functions. Each picoprocessor is a full-fledged
32-bit reduced instruction set computer (RISC) CPU running at 133 MHz with a 1-cycle arithmetic
logic unit (ALU) and with arithmetic, logical, compare, shift/rotate, and bit test/set/clear instructions.
It also contains a scalar read-only register bank that provides interrupt vector management, a time-
stamp, pseudorandom number generation (PRNG), processor status, and work queue status, namely
whether the information at hand refers to an ingress or egress queue. Each picoprocessor supports 2
threads in hardware (for a total of 32 threads per NPU) and includes 9 hardwired function units for
common tasks such as copying string, checking bandwidth policy, and generating and verifying
checksums.

Besides a switching engine, each NP4GS3 also contains tree-search engines (TSEs), one of which
is shared with each pair of coprocessors. A TSE is based on 3 different algorithms. There are also
frame processors, Ethernet Media Access Control (MAC) controllers, four 1 Gbps media access ports
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FIGURE 4.1 Scalability of configuration with IBM’s NP4GS3 network processors. (Source: IBM.)
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(given the fact that the aggregate bandwidth of the NP4GS3 is 4 Gbps), 2 full-duplex switch fabric
interfaces, and separate interfaces to 10 external memory banks. These interfaces can support up to
eight double data rate (DDR) synchronous dynamic random access memory (SDRAM) ports and two
zero bus turnaround (ZBT) static random access memory (SRAM) ports. The NP4GS3 offers sophis-
ticated capabilities in terms of hardware-based scheduling, policing, and flow control, including the
Shock-Absorber Random Early Detection (S-RED) algorithm. IBM claims that S-RED is more ele-
gant, dynamic, and efficient in its ability to self-adjust to different traffic rates as well as handle peak
traffic flows than the traditional weighted random early detection (WRED) algorithm. Therefore, IBM
has been pushing for the industry-wide acceptance of this algorithm through the Institute of Electrical
and Electronics Engineers (IEEE) standardization process.

The NP4GS3 can easily cope with a single OC-48 channel or up to 40 Fast Ethernet 100 Mbps
ports. Alternatively, it can be configured to handle a fat pipe in an OC-48c configuration. In each
NP4GS3 NPU, the 16 parallel coprocessors (picocode processors) and the 9 available hardware-
assisted coprocessors (one for each of the 16 parallel picocode processors) provide in total a stagger-
ing 2,128 millions of instructions per second (MIPS) of processing power with 32K words of internal
instruction memory. Its flexibility is driven by picocode and application software rather than any
application-specific integrated circuit (ASIC) components.

Scalability was one of the highest priorities for the IBM designers. As a result, the NP4GS3 proces-
sor can be connected in series with another NP4GS3 chip as shown in Figure 4.1 using the switch fab-
ric interfaces under the control of the PowerPC 405 core in one of the two NPUs. This scheme
effectively doubles the bandwidth of the system. This brings the NP4GS3 extremely close to 10 Gbps,
which is the next expected equipment performance milestone. IBM is working on new single-chip
products that will be able to comfortably handle that speed.

To further emphasize the scalability of the architecture, we must mention that up to 64 NP4GS3
NPU chips can communicate with each other through an external switch fabric under the control of
an external CPU in order to provide massive scalability to higher bandwidths. In such an arrangement,
each NPU will only handle a portion of packet-processing operations. Figure 4.2 depicts this scheme.

IBM sees the NP4GS3 as a candidate for customer premises network equipment, edge network
devices, or even core network gear. Due to its performance and scalability, it is targeted to local/met-
ropolitan/wide area network (LAN/MAN/WAN) routers, Multiprotocol Label Switching (MPLS)
routers, Internet Protocol (IP) over Synchronous Optical Network (SONET), SONET Transport, dig-
ital subscriber line access multiplexer (DSLAM), Internet service provider (ISP) access boxes (qual-
ity of service [QoS]), firewalls, server adapters, storage area network (SAN) and LAN adapters, and
so on.
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FIGURE 4.2 Up to 64 NP4GS3 network processors can be connected via an external
switch fabric. (Source: IBM)
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In order to help consolidate a data plane network-processing idea into a complete product design,
IBM also provides a wide selection of other necessary components. The components include the lead-
ing switch fabric chips, SONET/Synchronous Digital Hierarchy (SDH) framers, optical transceivers,
backplanes, and interface converters. Almost all types of dynamic and static memory needed for
packet buffering and lookup tables can be added to this impressive list. Traditional PowerPC CPUs,
which are used on the control plane to complete a systems design, should also not be forgotten.

Architecture

The NP4GS3 architecture combines an array of eight so-called dyadic processor units (DPPUs) next
to the embedded PowerPC 405 CPU core. These offer a combined total of 16 active threads and 16
inactive threads. This means that a single NPU can process up to 32 frames at the same time with zero
context-switching overhead when switching between threads. In other words, absolutely no cycles are
lost when switching from one thread to another. All incoming packet data reside in system memory
on the NPU and do not need to be copied to and from some working, register, or user area for pro-
cessing, which is usually the case in a computing environment. The data are processed right where
they are stored, which definitely improves the performance of the architecture. Support for large
lookup tables for layers 2, 3, 4, and other higher-layer functions are performed by hardware-assisted
programmable picocode processors using specialized coprocessors for tree searching and updating.

The packet-processing prowess of the NPU is distributed among its picoprocessors, coprocessors,
and hardware-assisted units. The NPU system design minimizes contention for access to the coproces-
sor engines. Forwarding and filtering is done without retaining any data copy by hardware-imple-
mented mechanisms, which ensures the wire-speed performance of the chip. Common layer 2, 3, 4,
and higher functions can be implemented in extremely fast schemes. For example, support is avail-
able for the on-the-fly alteration of frames on well-known protocol elements, such as the Time to Live
(TTL) field in the IP header. Tag deletion for virtual LANs (VLANs) and MPLS label manipulation
(such as delete or swap) can be implemented efficiently and quickly in IBM’s picocode.

As mentioned earlier, in order to ensure scalability with high performance, the NP4GS3 enables
different connectivity schemes that distribute the necessary functionality in steady state and nonsteady
state processing. By executing NPU picocode, the NPU itself performs all steady state operations.
These operations include filtering, frame forwarding, frame alterations, protocol layer 2, 3, and 4 pro-
cessing, classification, QoS, traffic management, and accounting. At the same time, the so-called con-
trol point (CP) processor performs nonsteady state functions. These include route discovery, updates
to the tree, updates to the Open Shortest Path First (OSPF) database, Simple Network Management
Protocol (SNMP) agent processing, debug/diagnostics, configuration management, and deep frame
processing, as well as executing applications that the network equipment vendor (NEV) develops.

The CP is an external processor that supervises and serves a system comprised of several NPUs.
The NP4GS3 is designed to accommodate many vendor designs with various CP-NP configurations.
Refer to Figure 4.1 for an example of two NPUs and one CP. Either of the internal PowerPC CPUs or
an external one can be used as the configuration CP. When traffic requires nonsteady state operations
in such an arrangement, the NPU communicates with the CP by special frames of a special EtherType.
IBM calls these frames guided frames, and they can contain data and one or more commands. The CP
uses them to update forwarding tables in the NPUs (that is, trees).

This two-NPU configuration can support 80 Fast Ethernet (10/100 Mbps) ports or 8 Gigabit
Ethernet ports. It can also support eight OC-3/OC-12 Packet over SONET (POS) ports or even two
OC-48 POS ports. In contrast, a single-NPU configuration where no switch fabric is required can sup-
port half as many of the same ports in an NP-CP scheme. Up to 16 NPUs can be controlled by 1 CP.
When the design requires more than two NP4GS3 network processors, as shown in Figure 4.2, a
switch fabric is required for the data movement. In the configuration shown in Figure 4.2, the NPUs
split the set of chores of layer 2 forwarding and filtering (frame repository and queuing), layer 3 for-
warding and filtering (flow control and frame alteration), and layer 4 flow classification based on
priority and multicast handling. They also maintain network management counters. The CP in
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Figure 4.2 handles layer 2 support (spanning tree), layer 3 support (OSPF, the Routing Information
Protocol [RIP], and the Border Gateway Protocol [BGP]), networking management (the Remote
Network Monitoring [RMON] agent), configuration, diagnostics, and other box-related functions. Up
to 64 NPUs can be connected with a switch fabric in one system. This scheme supports up to 1,024
Fast Ethernet ports or multiple POS configuration possibilities.

The NP4GS3 is built using a 0.18� copper-interconnect process. It is housed in a 1,088-pin pack-
age (with 815 signal input/output [I/O] lines) using a 24-pin debug bus. Its core is powered by a
1.8 voltage supply, whereas the DDR and ZBT RAMs are powered by 2.5V and the so-called data
mover units (DMUs) as well as the PCI interfaces are supplied by a 3.3V supply. Power dissipation
is estimated at 14 watts.

MAJOR FUNCTIONAL BLOCKS IN THE NP4GS3

Figure 4.3 shows an architectural view of the NP4GS3 system. This illustration shows its major func-
tional components with the abbreviations that IBM uses to describe them in its technical literature.
These blocks are as follows:

• Physical MAC Multiplexer (PMM).

• Ingress Enqueue/Dequeue Scheduler (I-EDS).

• Switch Interface (SWI).

• Switch Data Mover (SDM).

• Switch Cell Interface (SCI).

• Data-Aligned Serial Links (DASLs).

• Egress Enqueue/Dequeue Scheduler (E-EDS).

• Traffic Shaper.

• Embedded Processor Complex (EPC).

• Embedded PowerPC Complex (ePPC).

Various storage areas are also deployed throughout the system.
Imagine that the data flow on the ingress side proceeds from the bottom of the drawing (the net-

work) upward, toward the left-hand side of the drawing (where the I-EDS block is), and then upward
toward the top center to the output (switch fabric). In an egress flow, data enters the chip from the top
of the drawing and proceeds toward the right-hand side of the drawing (where the E-EDS block is)
and then downward toward the network interface. The center of the drawing contains the processor
complex that acts on the frames while on ingress or egress flows. The various types of storage are also
shown macroscopically. We will now look at each of these blocks.

The PMM provides interfaces from POS framers and Ethernet physical layer (PHY) chips to the
NPU’s four flexible external ports. It contains two banks of five DMUs each for the ingress and the
egress ports. One pair of DMUs is reserved for internal wraparound communications from egress to
ingress inside the NPU. The rest can be configured to support either 10 Fast Ethernet 10/100 Mbps
ports per DMU, a 1 Gigabit Ethernet per DMU, 4 OC-3 POS per DMU, 1 OC-12 POS per DMU, or
1 OC-48 per 4 DMUs. Each port contains an Ethernet MAC, which can support 1 full-duplex Gigabit
Ethernet link or, with time division multiplexing (TDM), 10 full-duplex Fast Ethernet connections. All
RMON groups are supported by special hardware counters in each MAC for remote monitoring in
network management. The MAC controllers support 802.3ad link aggregation, 802.1q VLAN detec-
tion, flow control, and even jumbo frames. The NP4GS3 through its standard Gigabit Media-
Independent Interface (GMII) interface supports Gigabit Ethernet PHY chips that are directly
attached. Alternatively, the available SMII interface can be used to support any mix of 10 Fast Ethernet
ports running in combinations of 10 and 100 Mbps.

IBN POWERNP™ 65

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

IBM POWERNP™



The I-EDS stores frames from the DMUs into the data store. It performs some filtering decisions
and frame alterations, such as VLAN tags. It then dequeues the frames from the data store and sched-
ules them to be forwarded or discarded. This happens when the target NPU or the switch fabric indi-
cates to this NPU that they are running low on resources.

The SWI provides a data cell-based interface between NPUs either via switching fabric (for three
or more NPUs) or direct wire connections (for one or two NPUs). The SDM and the SCI for both the
ingress and the egress path convert the output of the EDS logically into a cell flow, and vice versa.
They also provide/receive cells to/from the PHY.

The DASL is IBM’s fast method for implementing the physical interface between the NPU and
the switch fabric, between the ingress and egress sides of one NPU, or between the ingress and egress
sides of two NPUs.

The E-EDS receives frames through the switch interface. It reassembles them because they arrive
in a cell flow. It then enqueues the resulting frames into its data store where extensive frame processing
is provided. It finally dequeues the frames from the data store and schedules them to be forwarded.

The Traffic Shaper manages bandwidth on a per-frame basis for all egress DMU ports. It is an
optional NPU component and can be configured by software. It implements weighted fair queuing
(WFQ) regulation for up to 2K queues, which sustains a good performance in a Differentiated Services
(DiffServ) environment. The Shaper discards traffic depending on its configuration and based on sev-
eral algorithms such as RED and WRED.
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FIGURE 4.3 The internal block structure of the IBM NP4GS3 network processor. (Source: IBM)
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The heart and brains of the NP4GS3 are formed with the combination of the EPC and the ePPC.
Figure 4.4 shows the EPC in more detail. It contains eight DPPUs and nine Hardware-Assist
coprocessors. It determines what must be done with the frames received in the data store on either the
ingress or the egress side of the NPU. It provides the overall steady state control and programmabil-
ity of the NPU—in other words, the code that makes the NPU equivalent to a programmable ASIC.
The ePPC is a specialized PowerPC CPU core with 16KB of instruction cache and 16KB of data
cache, which can be used to provide CP functionality—in other words, the nonsteady state process-
ing for packets.

As mentioned earlier, each NP4GS3 has 8 DPPUs (16 programmable protocol processors) and
each DPPU has 9 Hardware-Assist coprocessors. These packet processors share 128K of the local
control store memory; for more space, external memory is needed. Incoming packets/frames are allo-
cated and assigned to specific threads. When processing is completed, they are de-allocated and
passed over to the corresponding scheduler.

NEVs can modify the code that runs in the NPU or develop their own software that runs on the CP
processor. IBM provides both high-level (C application programming interfaces [APIs]) and low-
level APIs to facilitate the interface with the network-processor system for software developers.
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FIGURE 4.4 The internal structure of the NP4GS3 chip’s EPC. (Source: IBM)
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SPECIAL COPROCESSOR AND ASSIST HARDWARE

Figure 4.5 shows the block structure of a DPPU where the picocode is executed. The figure also
includes the nine Hardware-Assist coprocessors. These coprocessors are associated with each DPPU
and function in parallel with the data movement by accessing and maintaining internal registers per
thread.

The suite of the nine Hardware-Assist coprocessors comprises the following units:

• Data Store Coprocessor This handles all data transfers (read/write) between ingress and egress
data stores and the shared memory data pool. It is structured to handle 128 bits per transfer.

• CAB Interface Coprocessor This provides all DPPUs with access to internal registers, counters,
and memory for debug or statistics gathering.

• Enqueue Coprocessor This interfaces with the Completion Unit (discussed later in this section)
from the special hardware units to enqueue frames to the switch and to the target port queues.

• Checksum Coprocessor This deals with half-word data in order to generate half-word header
checksums based on RFC 1071 for the computation of Internet checksums. It works based on two
instructions: generate checksum and verify checksum. All checksum calculation results are stored in
a special accumulation scalar register.

• String Copy Coprocessor This moves multibyte data within the shared memory pool. The com-
mands it understands pass the source address, the destination address, and the number of bytes
needed to encode the string.

• Policy Coprocessor This examines the flow control and information, and checks to make sure
everything conforms to preallocated bandwidth.

• Counter Coprocessor This interfaces threads with the Counter Manager. It updates counts and
manages an eight-level command queue.
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FIGURE 4.5 Nine Hardware-Assist coprocessors per DPPU. (Source: IBM)
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• Semaphore Coprocessor This controls access to shared resources such as tables. It grants access
based on a handshake mode that issues Request Order and Dispatch Order pairs of signals.

• TSE Coprocessor This handles all table searches and updates. Almost every frame that is
processed by the system uses this coprocessor. The search engine retrieves forwarding decisions
from the local routing tables in each NPU. If these local tables need to be updated, the CP proces-
sor will do it through the use of guided frames. The TSE Coprocessor provides tree search and mod-
ification functions for requests issued by picocode threads. As two coprocessor locations are used,
every thread can execute two searches simultaneously. The NP4GS3 relies heavily on searching tree
structures for issues such as layer 3 IP address routing tables, layer 3 and higher frame filtering,
layer 2 MAC address port mapping, flow control, and so on. It supports three types of tree search
algorithms: full match (FM), longest prefix match (LPM), and software-managed trees (SMTs),
which is an IBM algorithm invention that allows multiple leaves that can be chained in a linked list.
The TSEs can perform 8.5 million searches per second for layer 3 routing (using the LPM algo-
rithm) and 12 million searches per second for layer 4 classification (using the five-tuple approach).
These numbers can be improved with the external use of a content-addressable memory (CAM).

Beyond the coprocessors, the NP4GS3 contains special hardware units that are also shown inside
the EPC block, as depicted in Figure 4.4. These units offer the following functionality:

• A Dispatcher tracks the use of threads. It is engaged right at the beginning of processing as it is the
unit that fetches the initial frame data before thread assignment occurs.

• A Completion Unit is responsible for maintaining the order of frames, which are enqueued, so that
both ingress/egress flow control and the overall scheduler can function properly.

• A Policy Manager performs policy management based on four management algorithms as specified
in Internet Engineering Task Force (IETF) RFCs 2697 and 2698. They are the single-rate three-
color marker (srTCM) (in color-blind or color-aware modes) and the two-rate three-color marker
(trTCM) (also in color-blind or color-aware modes) algorithms.

• A Hardware Classifier is engaged in the classification of frames from various realms, such as
Ethernet (802.3 and DIX), layer 3 (IP), VLAN header detection, and guided traffic.

• A Counter Manager is used by the EPC to control several counts used by the picocode for various
purposes, such as statistics, policy management, and flow control.

IBM considers the last two of these units particularly critical for the robustness of network equip-
ment designs built around the NP4GS3 and for the predictable delivery of desired functionality.

The NP4GS3 supports different types of memory that are connected to the chip in different loca-
tions and used for different purposes. Memory for the NP4GS3 can be internal (on-chip) and SRAM,
or it can be external (off-chip). In the latter case, it is either ZBT SRAM or DDR SDRAM. Internally,
the NP4GS3 contains 384KB of memory that is used for internal NPU control information or for stor-
ing frame data. The large amount of supported memory enables a large size of forwarding tables to
be used in the local NPU. The NP4GS3 can easily sustain 500,000 table updates per second.

Figure 4.6 shows what types of external memory are used and for what type of storage. The abbre-
viation Z stands for ZBT SRAM memory. The pattern search control blocks (PSCBs) are structures
that define trees. They are used by the TSEs to locate or update tree data. Since trees are used exten-
sively in the NP4GS3, the PSCBs are set up deliberately in ZBT SRAM memory where very fast tree
searches can occur. The abbreviation S stands for SRAM, and the abbreviation D denotes DDR
SDRAM.

The two high-speed 7 Gbps switch fabric interfaces can be used to connect the NP4GS3 to two
different switch fabrics (such as IBM PowerPRS™ chips) to provide redundancy and fault tolerance.
The use of an IBM-provided DASL-to-CSIX converter chip in conjunction with a fabric interface chip
enables the use of other non-IBM switch fabrics. If both interfaces are used, these two extra chips
must be doubled.
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An external PCI bus operating at either standard 33 MHz or 66 MHz is provided for the interface
of the NP4GS3 with a host CPU or an external CP processor.

SOFTWARE ARCHITECTURE

Picocode is designed for the NPU’s EPC part called General-Purpose Processors (GPPs). These
processors contain array registers, scalar registers, and general-purpose registers. The picocode
threads execute in the EPC’s DPPUs, which contain what IBM calls Core Language Processor (CLP)
engines. The CLP in general is a nonpreemptive, event-driven processor accessible in IBM NPU
Assembler. Each CLP can execute up to two threads. IBM NPU Assembler language predictably con-
tains integer operators, built-in functions, string operators, and string expressions. IBM has also devel-
oped a native C compiler. Before that, the implication of the lack of high-level language support was
that the architectural incompatibility between the NP4GS3 and the lower members of IBM’s NP fam-
ily—the e405—meant that assembly code for one cannot be used for the other. This could be a prob-
lem for some users. It has been resolved with the arrival of IBM’s NPU C compiler.

To briefly address the computing model, NP4GS3 consists of four types of what IBM calls data
handlers. Picocode executes when threads are dispatched using the appropriate handlers inside the
CLP engine. Thirty-two handlers are available (the same as the number of threads):

• General Table Handler (GTH) A GTH handles control frames, which require access to tree mem-
ory. There is only one GTH per NPU chip, and it operates only on the egress side of the network
processor.

• Guided Frame Handler (GFH) The GFH handles control frames that are coming from or going
to the CP or other NPU chips. A GFH can forward frames to the GTH by re-enqueueing frames to
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FIGURE 4.6 Types of external memory used in systems built with the IBM NP4GS3 .
(Source: IBM)
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the internal GTH queue. There is only one GFH per NPU, and it operates on either the ingress or
the egress side of the network processor.

• General PowerPC Handler (GPH) The GPH handles control and data frames transmitted to or
received from the CP processor. One thread receives flows and the other one transmits them. Each
NP4GS3 network processor has two GPH.

• General Data Handler (GDH) The GDH handles data frames that enter from the network through
the PHY ports. Each NP4GS3 network processor has 28 GDHs.

SOFTWARE AND SYSTEMS DEVELOPMENT AROUND THE NP4GS3

Figure 4.7 shows how the various software components are combined in a system that comprises mul-
tiple NPUs to produce a modular and flexible solution. The customer’s applications can communicate
through special facilities. The NPU runs control picocode, management picocode, and forwarding pic-
ocode. Through special low-level APIs, the CP interfaces its NPAS environment with the network-
processor realm. NPAS with high-level APIs interfaces for instance a local SNMP agent or exception
forwarding code with other vendor applications, such as routing table management, an OSPF routing
protocol, and so on.

Customers’ applications, which must execute on the CP processor, can communicate through the
Network Processor Application Services (NPAS) (application services) high-level C-language API.
IBM supports Linux and WindRiver’s VxWorks. Customers can develop and test their application
code under various versions of Windows, Sun Solaris and Red Hat Linux. IBM offers a developer’s
toolkit, which provides a series of development tools that start from a Core Simulation Model, a net-
work-processor-specialized assembler (NPASM), a C compiler, an interpreter of the picocode binary
image file, a debugger, a network simulator, a performance profiler, a test-case generator, and scripts
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FIGURE 4.7 Software structure for a system based on multiple NP4GS3 chips. (Source: IBM)
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that can be extended by engineers via the use of Tool Control Language/Toolkit (TCL/Tk). Network-
processor code can be developed and tested without even having access to hardware prototypes of a
new system.

The C compiler, which was lacking from the initial product launches in this family, is a valuable
addition that can dramatically simplify PowerNP application code development. It is especially use-
ful for creating prototypes of an application quickly. This optimizing C compiler implements a sub-
set of ANSI C and provides a set of APIs to access onboard coprocessors. It also supports inline
assembly to allow hand optimization of critical sections of the code during the fine-tuning process of
a finished product.

An important factor from a business standpoint is that IBM actually delivers code that the cus-
tomers can do two things with. They can keep it as is, concentrating their efforts on developing their
application or supervising software (which is the most typical case) in cases where their software will
be meant to run on the CP while leaving the internals of the NPU software intact. On the other hand,
in more elaborate cases where fine-tuning is required, they can modify the picocode to produce the
desired and intended behavior and performance. IBM provides handholding from authoring device
drivers all the way to full-fledged hardware/software design validation and consultation.With NPAS,
IBM’s customers can license production-quality infrastructure, control, protocol, or forwarding soft-
ware. NPAS contains numerous components that vary from MPLS to IPv4 over SONET, from 802.1D
bridging and 802.1Q VLANs all the way to File Transfer Protocol (FTP), Transmission Control
Protocol (TCP), and Point-to-Point Protocol (PPP) implementations, from full-fledged DiffServ to
simply handling jumbo frames on Gigabit Ethernet, from management information base (MIB) sup-
port to unicast/multicast filtering/forwarding of IPv4 on Ethernet, etc.

Besides the data plane processing, IBM’s basic and advanced software offerings provide strong
support for control plane development for both internal PowerPC and external choices of a CP proces-
sor. Code is readily available for boot, system management, diagnostic services, interface manage-
ment, protocol services, memory management, GxH (with x as a wild character here) frame handler
formatting, traffic-engineering (TE) management, physical transport services, exceptions, and so on.

After simulations, code can be executed and debugged on physical hardware by using IBM’s
Reference Platform. This is a 5U rack-mountable chassis with integrated power, cooling, and back-
plane assemblies. It contains a Packet Routing Switch Fabric blade (target) option. Up to four blades
can be stacked with external DASL cabling. A PCI card implements a CP processor with a PowerPC
750. An optional 4GS3 carrier card provides an NP4GS3 with its own embedded PowerPC 405. It
offers 22 sockets with the choice of a 2-port GBIC Gigabit card, a 20-port 10/100 TX card, or a 1-
port OC-48c POS card.

Performance

It is important to mention that the IBM PowerNP NP4GS3 was the first network processor to pass all
the required tests in the OC-48c configuration for the new LinleyBench 2002 benchmark.1 In addi-
tion, the NP4GS3 was the first chip in the industry objectively verified to operate at 10 Gbps while
running the new IPv4 forwarding industry standard benchmark2 established by the Network
Processing Forum (NPF) and certified by The Tolly Group.
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1. The details about this benchmark can be found at the Linley Group’s web site at http://www.linleygroup.com/benchmark/
linleybench.html.

2. More specifically, regarding the OC-48c configuration of the LinleyBench 2002, the NP4GS3 passed all required IPv4,
DiffServ-with-30K-routes and DiffServ-with-100K-routes tests. The NP4GS3 passed all the IPv4 forwarding tests by forwarding
all the frames at all the frame sizes with zero frame loss in an environment that included the generation of Internet-like traffic,
which was sent to the NP4GS3-based system and then successfully routed the entire data stream to its next destination without any
errors. A full disclosure of the results can be found at http://www.ibm.com/chips/techlib/techlib.nsf/pages/linleybench.
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IBM is an active member of the NPF. We discuss this organization in more detail in Appendix III,
“Standardization Efforts in Network Processing.” Among other things, the NPF has created an indus-
try standard IPv4 forwarding benchmark. IBM’s results, along with interfaces, configuration param-
eters, and test setup, have been independently certified by The Tolly Group3 and released by the NPF.4

IBM has been reported to achieve greater than 10 Gbps of throughput by employing three PowerNP
NP4GS3 network processors in the data path.

THE NP4GX: IBM’S SECOND-GENERATION 
OC-48 NETWORK PROCESSOR

At the Network Processors Conference West in October 2002, IBM Microelectronics announced the
arrival of the NP4GX, its second-generation OC-48 processor. The impressive characteristic of the
new NPU is that it enhances the performance of the NP4GS3 by offering almost an instant tripling of
computational “lung” capacity while preserving full compatibility with the NP4GS3 processor’s soft-
ware environment.

The NP4GX is built using the IBM 0.13� Cu-metal complementary metal oxide semiconductor
(CMOS) process technology, and it has been targeted to operate with a 500 MHz clock. The die con-
tains 16 packet processors and several coprocessors like the NP4GS3, but the instruction memory has
now been doubled to contain 64K instructions. Given the fact that its predecessor was more than capa-
ble of handling sophisticated DiffServ types of applications, this should now enable more applica-
tions that can utilize the significant computational headroom that the new processor offers. The
PowerPC 405 core previously used in the NP4GS3 network processors has been replaced in the
NP4GX by a PowerPC 440 core, which is a dual-issue superscalar RISC processor offering 1,000
MIPS capabilities that runs at 333 MHz or 500 MHz.

In terms of interfaces, the previously integrated DASL ports of the NP4GS3 are now replaced by
a CSIX-L1 for the interface with a switch fabric, whereas a couple of look-aside interfaces imple-
mented according to the NPF LA-1 specification allow the support of either external coprocessors or
quad data rate (QDR) SRAM memory. Cleverly, the memory controllers of the multiple DRAM chan-
nels of the NP4GX have been designed to also support fast cycle RAM (FCRAM), in addition to the
native DDR SDRAM.

The NP4GX network processor’s package will be a HyperBGA replacing the ceramic package of
the NP4GS3. It is estimated that it will consume around 10 watts. IBM released the first samples of
this network processor in early 2003.

TRADE-OFFS WHEN DESIGNING WITH NP4GS3

Designing high-speed network equipment with the IBM NP4GS3 network processor brings some
clearly discernible advantages to the designer, but he or she must face some trade-offs as well.

On the positive side, the performance afforded by the NPU architecture is flexible, fast, and scal-
able. The behavior choices implemented in picocode are endless. Customers can easily implement
differentiating features into their products by simply developing the appropriate picocode in the
NPU(s) they use. Beyond that, however, IBM’s fine-tuning of the robust internal systems design
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makes the need for the customers to design their own optimized networking ASICs a problem of the
past. The NP4GS3 is so integrated with ancillary functionality, such as traffic management, MAC lay-
ers, and switch fabric interfaces, that a whole Gigabit Ethernet line card can be produced simply by
adding PHY chips and memory. IBM’s software is not only tested, but it is also fully validated. This
means that customers can simply plug it into their own system (if they don’t require any modifica-
tions of the picocode) and it will work, thus saving themselves precious time to market. All future
specification changes of network equipment designed around the NP4GS3 can be done in software
offering flexibility and further preservation of the customer’s software development investment.

The throughput speed, which results from the wide-range of optimized hardware-assisted func-
tionality in conjunction with the distributed-computing platform of the NP4GS3, is undisputed. Since
scalability is a major concern for NEVs, IBM offers multiple ways of drastically and easily expand-
ing the bandwidth of a system built around its NPUs while preserving software compatibility and
investment. One cannot ignore the fact that the NP4GS3 is coming from a globally successful giant
with highly diversified and deep technology know-how. IBM backs a product with ancillary product
offerings, tremendous technical support on numerous fronts, presence around the clock worldwide,
and a unique commitment to the industry.

On the less positive side, this NPU performs traffic management only on the egress side; there-
fore, if traffic management for some customers must be done on the ingress side, then an external traf-
fic manager must be used. This will significantly complicate the overall system design. It is easier to
integrate the NP4GS3 with IBM PowerPRS switch fabrics. The extra flexibility gained comes at the
price of extra hardware if a non-IBM switch fabric is used. This is an extremely complex product.
Programming it in picocode represents significant challenges. Developing picocode in assembler,
fine-tuning the overall system, and deciding what lies in which memory bank and which of the numer-
ous coprocessors needs to be invoked at what time in order for the application to achieve optimum
performance is a rather complicated task. No one should underestimate it.

We will conclude this chapter by saying that in order to appreciate the full impact of the IBM tech-
nology and the trade-offs involved in designing a fast network-processing system using IBM network-
processing components, it is obvious that using an IBM switch fabric is a less tedious and more
straightforward approach. The leading IBM switch fabrics, as well as the corresponding IBM chips
that handle the sophisticated interface of the switch fabric and backplane with a network processor
inside a complete fast-switching/routing system, are extensively discussed as one of the leading-ven-
dor-technology case studies in Chapter 14, “Switch Fabrics.” Interested readers may want to consult
that chapter in order to obtain a more rounded view of the IBM approach. This chapter may also be
of interest to readers who want to take a closer look at the intensity and breadth of network technol-
ogy research that IBM has been conducting at its world-famous lab in Rueschlikon, Switzerland.5

SUMMARY

In this chapter, we reviewed the architecture of IBM’s PowerNP by taking a close look at NP4GS3,
IBM’s flagship network processor. We reviewed its structure as well as its many advantages and pin-
pointed a couple of potential shortcomings. We identified design issues with which a systems archi-
tect must be familiar, reviewed software development tools and approaches for the IBM NPU
platform, and pointed out several trade-offs that should be considered when deciding whether this is
the right platform to use for a new design. For a complete view of the IBM network-processing prod-
uct-line landscape, however, interested readers are referred to Chapter 14. Chapter 14 is dedicated to
switch fabric technologies and provides extensive coverage of IBM’s leading switch fabrics and fab-
ric-NPU interface chips that accompany what has been described in this chapter.
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CHAPTER 5

INTEL IXA™ NETWORK
PROCESSORS

In this chapter, we will look at Intel’s approach to network processing. At the time of this writing,
Intel had announced three new network processing unit (NPU) chips as part of its second generation
of network processors. These are all part of its evolving Internet Exchange Architecture (IXA) archi-
tecture family.

Compared to IBM’s approach, which as we learned in the previous chapter is characterized by the
ability to offer very high performance and to offer systems designers a complete one-stop shopping
solution, Intel has taken a different route to tackle the network-processing challenge. It originally
started with NPUs that performed modestly (namely, the IXP1200 family). These NPUs solidified the
company’s grip on the local area network (LAN) market, consisting of mostly customer premises
equipment (CPE) and access equipment. So far, these have proven to be the most commercially suc-
cessful network processors based on the number of market designs, according to Intel’s claims in the
trade press. Intel has capitalized on the ease of systems hardware and software design around its
NPUs, especially given its outstanding software development environments and support (also from
third parties). As it continues to improve in performance with its second-generation processors, Intel
is clearly setting its sights on the faster, more lucrative edge and core equipment markets.

INTEL IXA: THE BIG PICTURE

Intel IXA is an end-to-end family of high-performance, flexible, and scalable hardware and software
development building blocks that have been designed to satisfy the growing performance require-
ments in today’s networks. The architecture is based on programmable silicon and software building
blocks.

At the low end of its offering, Intel has positioned its IXP220, 225, and 425 NPUs as integrated
solutions that are suited for small office/home office (SOHO) and small medium enterprise (SME)
equipment in a CPE premise. However, the cornerstone of Intel’s IXA family is the IXP1200 network
processor and its variants IXP1240, 1250, and so on. These NPUs run at different clock frequencies
and with or without added features such as embedded cyclic redundancy check (CRC) and error cor-
rection code (ECC) memory access. On top of the 1200 family, Intel has recently brought a couple of
powerful additions into the market. For the OC-12 to OC-48 (2.5 Gbps) realms, Intel introduced the
IXP2400 in 2002. For the OC-48 to OC-192 (10 Gbps) realms, Intel’s flagship NPU is the IXP2800
network processor.

Unlike IBM, Intel does not yet offer switch fabrics; therefore, standard interfaces must be provided
to connect to fabrics provided by other vendors. Intel’s first-generation NPUs were already designed
to enable the high-speed manipulation of packets across several media types and forward packets effi-
ciently with the appropriate modification of packet headers while reserving sufficient compute cycles
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(headroom) for network management and other analytical tasks. In the latest entries, performance can
be scaled from OC-3 (155 Mbps) links all the way to OC-192 (10 Gbps).

Intel IXA is a systems architecture that is used for network-processing purposes. It can be char-
acterized by three predominant traits:

• Intel’s Microengine technology A subsystem of programmable, multithreaded 32-bit reduced
instruction set computer (RISC) microengines that have hardware multithread support. When these
traits are combined, they provide over 1 giga-operations per second (more than 1,000 mega-opera-
tions per second). This combination enables high-performance packet processing in the data plane
through Intel’s Hyper Task Chaining, a high-speed multiprocessing data plane technology that fea-
tures software pipelining and low-latency sequence management hardware. Hyper Task Chaining
is discussed in further detail later in this section.

• Intel’s XScale™ technology As of this writing, this provides the highest performance-to-power
ratio in the industry. It can perform up to 1,000 millions of instructions per second (MIPS), and its
power consumption can be as low as 10mW for the low-power, high-density processing of control
plane applications.

• The Intel IXA Portability Framework An easy-to-use modular programming framework pro-
viding several advantages. It provides software investment protection through code portability and
reuse across hardware and software development or operating system platforms between network-
processor-based projects. It also enables a faster time to market and compatibility with future gen-
erations of Intel IXA network processors.

Microengines are essentially packet processors that are characterized by flexibility and customiz-
ability that is similar to application-specific integrated circuits (ASICs). New functions or modifica-
tions of older ones can be easily implemented with little cost and engineering effort. Costly equipment
upgrades are eliminated, and new service capabilities can be added to network equipment merely
through software. Microengine technology capabilities span a wide range of speed and functionality
requirements from layer 2 through layer 7. They can deliver deep packet inspection (as required by
the latest intelligent applications) at wire speeds up to OC-192 and beyond.

XScale is a new Intel microarchitecture that provides a high-performance, ultra-low power envi-
ronment that is compliant with the ARM™ Version 5TE ISA instruction set (excluding the floating-
point instruction set). The microarchitecture surrounds the ARM-compliant execution core with
instruction and data memory management units, and instruction, data and mini-data caches. It also
has other features such as write, fill, pend, and branch target buffers; power management, perform-
ance monitoring, debug, and Joint Test Action Group (JTAG) units; a coprocessor interface; a Media
Access Control (MAC) coprocessor; and a core memory bus. Although it is obviously targeted to con-
trol plane applications, this microarchitecture can take care of communicating with a backplane, man-
aging and updating data structures that are shared with microengines (such as routing tables), and
setting up and controlling media and switch fabrics. It can also handle exception packets that require
complex additional processing.

At OC-192 speeds, if carriers and network service providers are to provide new services and bill
their customers accordingly, Intel estimates that deep packet inspection must occur within a short time
window of around 35 nanoseconds. Within this interval, the network processor must execute all the
pertinent and relevant layer 3 through layer 7 applications on these packets and then transmit them in
the correct sequence (not to mention at the correct speed rate) and without bit losses to their destina-
tion. Intel uses a store-and-forward architecture that lends itself well to this model.

The speed of the second-generation NPUs is more than enough to handle the 10 Gbps wire speed.
The highly parallel processing afforded by the multiple microengines allows the segmentation and
partitioning of a single-stream packet analysis, such as routing into a set of multiple, sequential tasks
including packet receive, route table lookup, and packet classification.

The microengine design of Intel’s second-generation network processors constitutes the first
implementation of Intel’s Hyper Task Chaining, as shown in Figure 5.3. This approach provides hard-
ware support for managing data-dependent operations among multiple parallel processing stages with
low latency.
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Intel has also introduced a series of patented techniques of register technologies that enable data
and event signals to be shared among threads and microengines with virtually zero latency while
maintaining coherency. We discuss several of them in the following section.

ARCHITECTURE

Figure 5.1 shows the internal block diagram of the Intel IXP1200 network processor. The architec-
ture combines an embedded Intel StrongARM™ processor, which is targeted for control plane appli-
cations and is supported by a 8KB data cache and a 16KB instruction cache with a set of 6
microengines that are used for packet processing.

Other important features in the IXP1200 architecture include the IX bus unit (which we discuss
later in this section) along with the hash unit that expedites address table lookup by performing poly-
nomial hash on several values simultaneously. It also contains scratch pad memory (used to exchange
data back and forth between microengines), a Peripheral Computer Interface (PCI) unit (used to inter-
face with an external host central processing unit [CPU] or other PCI-compatible peripherals), and
separate static random access memory (SRAM) and synchronous dynamic random access memory
(SDRAM) controllers. Each microengine supports multithreading by maintaining four copies of the
program counter. Zero overhead occurs when switching contexts between threads. Each thread uses
32 general-purpose registers as well as 32 transfer registers. The 128 transfer registers are used for
the temporary retention of data that happens to be in transition to or from memory. An internal direct
memory access (DMA) engine, which automatically steps in after software has loaded the registers,
accomplishes the actual data transfer.
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FIGURE 5.1 Internal block structure of the Intel IXP1200 network processor. (Source: Intel)
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Whereas the StrongARM processor core and the microengines are clocked at 166 MHz, 200 MHz,
or 232 MHz (depending on exactly which member of the 12x0 network processor family is used), the
IX bus and the PCI bus have their own clock domains. PCI runs at 33 or 66 MHz point to point. The
IX bus on the IXP1200 has a typical operating frequency of 33 to 85 MHz. In many designs, if the
Intel IXF440 Ethernet MAC chip is used, the clock speed will usually be 66 MHz.

The memory interfaces run at half the speed of the core, thus 100 MHz SDRAM and 100 MHz
SRAM are required on a system based on the 200 MHz core. SRAM is typically used for lookup
tables, whereas SDRAM is typically used for temporary packet payload storage. The SRAM inter-
face actually has three signals with independently programmable timings: SRAM, flash, and the mem-
ory-mapped input/output (I/O) device interface. It provides the common interface with different types
of memory besides SRAM (flash) and even other memory-mapped peripherals. This feature may be
convenient in some applications.

A typical boot sequence begins with the IXP1200 network processor booting a real-time operat-
ing system (RTOS) off its flash memory (or read-only memory [ROM]) that is connected through the
SRAM port. The NPU resets its main functional blocks and then transfers from the flash or ROM
memory bank the programs that will be run inside the microengines. The SRAM port handles up to
8MB of program storage next to 8MB of SRAM data storage. Each microengine has a 2K�32 RAM-
based code control store. All four threads in the microengine can use the same program. A separate
program for each thread can also be loaded.

In addition, it is not necessary to utilize every thread in a microengine. One or more microengines
can be set up in which only one thread could be run or no threads at all. Threads in a microengine
share control registers, a context enable register, and other context arbitration functions. Each thread
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FIGURE 5.2 Internal architecture of the Intel IXP2800 network processor. (Source: Intel)
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in a microengine has its own program counter, signal events registers, wake-up events register, and
segmented storage among the 256 transfer and general-purpose registers within the microengine.

The microengines are programmable using a symbolic microcode instruction set optimized for bit
stream manipulation. It offers bit, byte, word, and double-word instructions, as well as a variety of
optimization tokens. A key feature of the IXP1200 is its ability to swap contexts from one thread to
another without affecting performance. The key benefit of multithreading is that each microengine
can do useful work even while other threads are waiting for memory transactions to complete. This
feature makes the IXP1200 rare, if not outright unique. Software engineers working on the embed-
ded code will have a vested interest in taking advantage of this ability to tune code for maximum par-
allelism and performance. The architecture of the IXP is clearly based on symmetric multiprocessing
(SMP). As a result, it is very flexible. However, this flexibility comes at a price.

The IX bus is a 64-bit-wide bus with a bandwidth of 4.2 Gbps at 66 MHz, 5.1 Gbps at 80 MHz,
and 6.26 Gbps at 104 MHz. It works in a demultiplexed fashion (unlike PCI), so it allows easy exter-
nal device interfacing. In its split mode of operation, it can be configured as two separate 32-bit buses.

From the newer Intel NPUs, the 2400 offers 2 unidirectional 32-bit media interfaces (receive sig-
nal [Rx] and transmit signal [Tx]) programmable to be System Packet Interface version 3 (SPI-3),
Utopia 1/2/3, or CSIX-L1. Each path is configurable for 4�8-bit, 2�16-bit, 1�32-bit, or combina-
tions of 8- and 16-bit data paths. We do not intend to present an exhaustive inventory of the 2400 NPU
capabilities. Rather, we show what can be expected from its specifications. This flexibility provides
industry-standard cell and packet interfaces to media and fabric devices that deliver a performance
rate of 4 Gbps. Therefore, the 2400 can support OC-48 plus fabric encapsulation overhead or even
four channels of 1 GbE. The standard interface also simplifies the design and interface to custom ASIC
devices that a customer may decide to connect.
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FIGURE 5.3 The internal architecture of Intel’s 2nd generation microengines. (Source: Intel)
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TABLE 5.1 Comparison of the Major Characteristics between the Most Prominent Intel Network Processors

FEATURE IXP1200 IXP2400 IXP2800

Speed realm of applicability OC-3 to OC-12 OC-48 OC-192

Number of microengines 6 8 16

Instruction store for each microengine 2K 4K 4K

Giga-operations per second �1 �5.4 �25.2

Packet-processing performance in 14 million 60 million
numbers of enqueue/dequeue packet 
operations per second

Integrated memory controllers SRAM and DDR DRAM and 3 RDRAM and
SDRAM 2QDR SRAM 4 32-bit QDR SRAM

Processor core frequency 166 MHz with 400/600 MHz 700 MHz
other family chips
at 200 and 232 MHz

Microengine operating frequency 166 MHz 400/600 MHz 1.4/1.0 GHz

Peak bandwidth of I/O bus 6.26 Gbps

Package 1356 Ball FCBGA 1356 Ball FCBGA

Power consumption 3.8 watts at 166 MHz 10 watts at 600 MHz

Standard interfaces beyond PCI 104 MHz IX bus 2 unidirectional 32-bit 2 unidirectional 16-bit
media interfaces, which LVDS data interfaces
can become SPI-3, programmable as SPI-4 
Utopia 1/2/3, or CSIX-L1, Phase 2 or CSIX
all at 25 to 125 MHz

On the other hand, the 2800 offers SPI-4 Phase 2 operation based on a transfer clock of 311 to 500
MHz using 16-bit Low-Voltage Differential Signaling (LVDS) dual-edge signaling. Figure 5.2 shows
the internal architecture of the Intel IXP2800 network processor. The switch fabric can also be inter-
faced using a CSIX interface with the same clock rating and LVDS dual-edge signaling. In terms of
memory banks, the 4 channels of quad data rate (QDR) SRAM offer the IXP2800 a peak bandwidth
of 1.6 GBytes/sec per channel using 200 MHz SRAMs (800 MBytes/sec read and 800 MBytes/sec
write). The 3 channels of RDRAM offer a peak bandwidth of 1.6 GBps (12.8 Gbps) per channel, sup-
porting 800 to 1066 MHz RDRAM. Notice that bandwidth on memory interfaces is quoted in
megabytes per second (MBps) or in gigabytes per second (GBps) (corresponding to stored capacity
measurement units, file sizes, and so on), whereas transfer rates on serial links are rated in megabits
per second (Mbps) or gigabits per second (Gbps). The QDR SRAM interface is used for lookup
tables, access lists, content-addressable memory (CAM) or ternary CAM (TCAM) associative mem-
ories, the connection of Internet Protocol Security (IPsec) coprocessors, and other coprocessors stan-
dardized by the Network Processing Forum (NPF). The double data rate (DDR) DRAM memory
subsystem supports the nuts and bolts of the network processor’s store-and-forward processing model.

Table 5.1 provides a very raw comparison between the capabilities of the IXP1200 and the more
recent IXP2400 and IXP2800. For a more detailed description and comparison, see the Intel product
literature available from the company’s networking products web site at www.intel.com/design/
network/ixa.htm.

Intel incorporated several second-generation enhancements into the IXP2400 and IXP2800 net-
work processors in order to handle packet-processing operations flexibly and powerfully. One of these
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enhancements is local memory (refer to Figure 5.3). Local memory is now available in each micro-
engine to improve performance, built-in resources for tasks such as Asynchronous Transfer Mode
(ATM) segmentation and reassembly (SAR), pseudorandom number generation (PRNG) for table
lookups, timestamps for supporting flow metering, and a multiply function for performing complex
algorithm calculations such as those encountered in quality of service (QoS) environments. These lat-
est network processors also automatically align code and data bytes for better code streamlining, thus
enhancing the productivity of software engineering.

The following are other interesting and innovative features of this architecture:

• Next-neighbor registers, which enable the rapid transfer of data and state information from one
microengine to an adjacent one.

• Reflector mode pathways, which ensure that data and global event signals can be shared by multi-
ple microengines using 32-bit-wide unidirectional buses (called the D and S bus) that connect the
IXP2800 network processor’s internal processing and memory resources.

• Ring buffers, which establish producer-consumer relationships between microengines, thereby pro-
viding a very efficient mechanism for the flexible cascading of linked tasks among multiple soft-
ware pipelines.

This combination of flexible software pipelining and fast interprocess communication accounts
for a large part of the suitability of the IXA architecture NPUs in core, edge, and access applications.

FIGURE 5.4 A systems design based on the IXP1200 network processor for an enterprise IP router connecting fast
Ethernet with SONET over OC-12. (Source: Intel)
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SOFTWARE ARCHITECTURE

Optimized microengine libraries and tools provide continuity between changes in the microengine
instruction set and architecture. The libraries include a hardware abstraction library that provides
interoperability across multiple hardware configurations, a protocol library, and a utility library for
hardware-optimized operations on protocol-created packet headers and data structures in general.
Figure 5.6 shows the model. Microblock code can be easily developed using the high-level
Microengine C language environment. The Portability Framework is an integral part of the Intel IXA
Software Developer’s Kit (SDK).

A modular programming model, which is also part of the IXA Portability Framework, enables
optimal partitioning of an application across the microengines and threads. Therefore, it facilitates the
integration of customer-written code along with microblocks, which can be supplied by Intel or third
parties. These microblocks are independent building blocks of software that are specifically written
for the microengines. These blocks perform a clearly defined set of functions. This modular model
enables software reuse—that is, the flexible mixing and matching of software components. Intel’s
microblock library is also designed to support the pipelined architecture of the network processor
microengines by providing the flexible connection of these microblocks.

Intel’s XScale microarchitecture source code libraries enable modular core component develop-
ment. They also enhance portability between multiple operating environments. Third parties provide
several compilers, assemblers, linkers, and debuggers to support Intel’s XScale architecture. Of
course, programming the embedded StrongARM core can be done with an equally wide array of tools
and software development platforms that are provided from third parties that support work for ARM
CPUs.

FIGURE 5.5 Typical architecture of an OC-48 system showing two IXP2400 network processors that are
needed to handle the transmit and receive paths respectively. (Source: Intel)
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Intel also provides a core-control plane Platform Development Kit (PDK), which offers a com-
mon interface and interconnect protocol for control plane stacks that may be running on external
processors.

SOFTWARE AND SYSTEMS DEVELOPMENT 
AROUND IXA ARCHITECTURE NPUS

Intel IXA SDK offers an integrated environment with functionality that enables rapid code develop-
ment and simulation for both control and data plane applications, with a choice of embedded operat-
ing systems. It is supported by a comprehensive hardware platform. More specifically, the SDK
contains several interesting tools:

• The Integrated Microengine Development Environment provides an integrated environment for the
advanced graphical simulation, profiling, and debugging of a system working exclusively in soft-
ware. It enables development engineers to create prototypes quickly, and intuitively optimize and
support data for both data and control plane applications. The transactor from this tool resolves con-
currency issues by simulating packets going in and out of the network processor. It can be used to
gather statistics. It can also aid in creating and verifying the architectural design and by providing
a fine level of internal detail, including pipeline execution stages. In other words, it can pinpoint
things and situations that would not be visible otherwise.

FIGURE 5.6 Software Architecture based on the Intel IXA™ Portability Framework. (Source: Intel)
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• Intel’s Microengine C compiler facilitates code development for the microengines and improves
time to market.

• The SDK is provided with support for the Wind River™ VxWorks and MontaVista™ Linux oper-
ating systems, whereas the IXA environment also provides support for other third-party embedded
operating systems.

• The provided libraries shorten the development cycle as part of the IXA Portability Framework by
offering the systems designer some critical chunks of infrastructure software that is pretested and
validated. Intel’s customers can embed these blocks of quality code into their own software flow to
deliver their intended application more quickly and reliably.

• A comprehensive suite of completed building blocks and sample applications further improve the
customer’s software development through the use of common networking building blocks.

In order to complement the development environment, Intel also provides several hardware devel-
opment platforms for the parallel development of hardware simultaneously with the software. These
standard-form platforms enable processing performance among other realms at OC-48 (2.5 Gbps) and
OC-192 (10 Gbps) wire speeds.

SYSTEMS CONSIDERATIONS AND TRADE-OFFS 
WHEN DESIGNING WITH INTEL NPUS

Intel IXA network processors work together with several other Intel families of chipsets in various
complementary technologies to produce working systems that are straightforward to design because
they all essentially share common interfaces:

• Embedded Intel architecture control processors improve the scalability of the design while provid-
ing broad software support in communications environments.

• Intel media signal processors can be used in conjunction with NPUs for applications such as voice
over IP (VoIP), as shown in Figure 5.8 and discussed in this section.

• Intel I/O processors are extensively used for networked storage applications.
• Intel provides a very broad line of framers, media access controllers, and even physical (PHY) layer

devices. These features significantly facilitate the overall systems design process.

Designing systems with Intel’s network processors implies that in high-speed links, one NPU is
required for the ingress (receive) path and another is required for the egress (transmit) path. This is a
characteristic of the whole family and not just of one of the network processor chips that Intel pro-
poses. In certain applications, however, a single Intel network processor may be adequate for the avail-
able traffic load. For example, a single network processor is adequate for a VoIP gateway that works
up to an OC-3 (155 Mbps) capacity, as shown in Figure 5.8. This gateway system is connected on one
side on multiple Gigabit Ethernet (1000Base-T) and Fast Ethernet (10/100 Base-T) media and on the
other side on the Public Switched Telephone Network (PSTN) through a time division multiplexing
(TDM) backplane that transfers voice channels.

In this example, based on an Intel reference design, voice is carried over IP packets coming in from
Ethernet and Gigabit Ethernet links. After the respective PHY and MAC stages of their reception
(which is handled by other convenient Intel chips, as shown in the Figure 5.8, and require no other
glue logic around them), the packets are forwarded through the split IX bus to the IXP1200 network
processor for subsequent processing. Deep packet-processing applications are partitioned among the
NPU’s microengines. All supervisory systems control functions that will be exercised onto the NPU
are dispatched by a host CPU externally through the PCI bus. A field-programmable gate array
(FPGA) is required to handle the application-specific glue logic translating the IX bus cycles into VX
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bus cycles. This is required because on the time slot interchange (TSI) side the data are coming in and
going out serially in real time, whereas on the IX side the NPU prefers to handle data in burst mode.

The shown IXS1000 chip is the Intel media processor responsible for translating the VX bus traf-
fic to and from TSI slots for the TDM-multiplexed H.110 backplane used to interface with the teleph-
ony world. The IXS1000 media processor is a good choice for many reasons. It can handle 240 voice
channels split over 512 full-duplex TDM channels; mix and match call configurations with all clas-
sical vocoding schemes such as G.711, G.726, and so on; take care of G.168-compliant echo cancel-
lation; adopt fax modem or fax relay behavior based on V.17, V.29, and so on; and handle typical
A-law and/or �-law pulse code modulation (PCM) interfaces. In short, it can implement all the nec-
essary signaling context of a typical PSTN network interface with functions such as Dual Tone
Multiple Frequency (DTMF) detection and generation.

This hardware design along with the appropriate software can manage the TSI slots. It can easily
process all signaling messages for the call setup and teardown. It can also manage the combination of
Real-Time Protocol (RTP)/User Datagram Protocol (UDP)/IP for the handling of the voice traffic
itself and the combination of Real-Time Control Protocol (RTCP)/Transmission Control Protocol
(TCP)/IP for the associated control packet traffic. Although the design approach is clean-cut and
straightforward, in several cases, significant help will be offered to customers either from Intel or from
third parties in the form of Verilog code or even a complete FPGA design (at a price, of course).
However, in some cases, the need and the associated cost to design and include a special FPGA for
the implementation of glue logic or interfaces from one realm to another may discourage some poten-
tial users, who could choose to approach a network-processor vendor that offers a more integrated and
seamless solution.

Another example of a single IXP1200’s ability to handle a traditional enterprise/campus routing
system for modest performance proportions is shown in Figure 5.4. The router of this example con-
nects eight 10/100 Mbps Fast Ethernet RJ-45 ports on one side with a Synchronous Optical Network
(SONET) OC-12 optics backbone pipe to the wide area network (WAN) handling layer 3 IP switch-
ing and routing functions along with key routing protocol support. Simple Network Management
Protocol (SNMP) network management can be handled via a specially assigned Fast Ethernet port.

The Intel IXF6012 SONET Framer properly encapsulates IP packets coming into the router from
the Ethernet realm, as it is capable of both SONET and Synchronous Digital Hierarchy (SDH) encap-
sulation of ATM or High-level Data Link Control (HDLC) frames. It offers either a Packet over
SONET PHY Level 3 (POS-PL3) or a standard Utopia interface to higher-level protocols. It can oper-
ate in single OC-12c or quad OC-3c mode on the line side. A generic 16-bit processor interface is pro-
vided for configuration and network management.

To explain the other shown parts of the design, we will briefly say that the IXB8055 is a POS-to-
Utopia bridge—an implementation in Verilog that Intel can provide to its customers. Customers will
then have to implement it by themselves in an FPGA. The 104 MHz clock rate of the bridge opera-
tion in this Intel reference design example can only be realized with a specialized ASIC, as FPGA
implementations will have to function at a smaller clock rate. The LXT9763HX (Hex PHY) provides
six standard media independent interface (MII) ports for various Ethernet media. Only four of them
are used in this example to match the number of MAC units. The IXF440 is an octal MAC. It pro-
vides eight standard MII 10/100 Mbps Ethernet ports without requiring glue logic to connect with the
IXP1200 network processor. The 82599ER is an Ethernet controller that handles the interface with a
10/100 Mbps twisted-pair Fast Ethernet port, which is used here for network management and the
overall configuration.

In this design example, if it was implemented in real life, layer 3 routing across the optical net-
work would also require other more complex protocols implemented in software and running on the
IXP1200 itself. In addition, in such an environment, the IXP1200 can also run other gateway-type
software. As a result, this system can ultimately serve as the front-end network interface in a CPE
environment connecting to the WAN and LAN with substantial local traffic.

The combined ingress traffic in this example of 1.422 Gbps is within the measured performance
for the IXP1200. These network processors can drive 16 Fast Ethernet ports at wire speed while at the
same time perform layer 3 routing (with 1.6 Gbps unidirectional traffic as its theoretical maximum).
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The system buses used in the design shown in Figure 5.4 are summarized as follows:

• IX bus This consists of two separate 32-bit paths for transmit and receive flows operating at 66
MHz each. It offers 2.1 Gbps bandwidth, which is well above the 1.422 Gbps ingress requirement
mentioned previously. The total ingress and egress IX bus bandwidth in this example is 4.2 Gbps.

• Ready bus The ready bus is an 8-bit bus that runs parallel to the IX bus and provides sideband
messaging between IX bus devices. The IXP1200, as the IX bus master, manages the collection of
ready flags from IX bus peripherals/slaves through this ready bus. The ready bus can also perform
other functions, including flow control.

• Memory-mapped I/O interface Sharing the SRAM interface, this bus offers the possibility of
independently programmable timing. It can also serve as the third connection between the IXP1200
network processor and another peripheral processor sitting on the IX bus. This bus behaves like a
slow port. As a result, it can be used for configuring Ethernet MAC controllers, managing an
attached device, and even collecting statistics in the context of Remote Network Monitoring
(RMON) and/or SNMP.

• POS-PL3 This is a first in/first out (FIFO) interface that is 32 bits wide. It works at a rate of 104
MHz for each transmit and receive path. This amounts to a consolidated bandwidth of 3.3 Gbps
paths on this interface.

• MII bus This is a standard MII, and it forms the link between the Ethernet MAC ports in the Intel
IXF440 MAC and the Intel LXT9763 PHYs.

• PCI bus In Figure 5.4, the 32-bit 33 MHz PCI bus provides a point-to-point connection from the
IXP1200 network processor to the 82559ER Fast Ethernet management port.

In yet another case in a much higher-performance environment, Figure 5.5 shows a typical block
structure for an OC-48 line card that is built around the IXP2400 NPU. A strikingly similar approach
is taken with IXP2800 in a core network application, as shown in the LAN/WAN example of Fig-
ure 5.7. The scalability of the Intel architecture at this point should be quite obvious. On the ingress
path of this example, the first IXP2800 is responsible for issues like SAR, classification, metering,
pricing, and initial congestion management. On the egress path of the example, the second IXP2800
handles flexible traffic shaping, Differentiated Services (DiffServ) for IP traffic, traffic management
such as TM 4.1 for ATM networks, or custom traffic shaping.

Regarding systems design and connection with coprocessors from other vendors, such as IPsec
security coprocessor chips in a virtual private network (VPN) system, Intel recommends the use of
either the SRAM interface bus or the IX bus to attach an IPsec coprocessor that will offload the net-
work processor. In the case of the former, it can be done directly, if the IPsec coprocessor is compat-
ible with the bus signals. In the worst-case scenario, it can also be done through using glue logic that
must be implemented in an FPGA. In the case of the IX bus attachment, an IX bus bridge is required
to interface the security coprocessor bus signals with the IX bus itself. If two network processors are
available for the ingress and egress paths, the traffic load should be considered so important that poten-
tially two IPsec coprocessors must be used to support the computational load of calculating in real
time and creating or stripping IPsec-encapsulated packets while still providing headroom to the NPUs
for other fundamental networking packet processing. We will discuss these issues in more detail in
Chapter 17, “Security Coprocessors.”

Another issue to keep in mind is that the SMP-based architecture, which offers a potential paral-
lelism and software-based pipelining (as microengine threads can be cascaded essentially in any
desired chained-link configuration), is essentially an environment that is more difficult to program
than other NPUs that offer a single run time image environment. The high quality of the software
development tools and, more specifically, of application software profiling tools and application par-
titioning and fine-tuning tools, that Intel and its partners offer becomes a very critical consideration
in such a context. Intel’s vast relationships with third-party developers seem to affect this issue.
However, the major problem with this distributed approach is that in very-high-speed heavy-traffic-
load contexts, the performance of an application cannot be gauged before the application has actually
been developed.
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FIGURE 5.8 Design example of a Voice-over-IP gateway linking Fast and Gigabit Ethernet LANs with the
TDM-multiplexed PSTN telephony network. (Source: Intel)
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FIGURE 5.7 Configuration of a typical LAN/WAN interface using the IXP2800 network processor. (Source:
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In order to better understand the principle of allocating parts of the packet processing to different
microengines, we must also look at a real-life application and, more specifically, at how Intel recom-
mends the application be logically partitioned over the available microengines in order to optimize
performance. The example design is of a simple router that is implemented as a full-duplex ATM-to-
Fast-Ethernet conversion engine handling IP packets and working over a dual OC-3 (155 Mbps) link.
The router design example in real life obviously requires software to properly handle the following
tasks:

• SAR of ATM cells and IP packets

• IP over ATM encapsulation based on Subnetwork Access Protocol (SNAP)/Logical Link Control
(LLC)

• ATM Adaptation Layer (AAL-5) as unspecified bit rate (UBR) traffic

• CRC-32 for reliable transmission

As a reference design, the complete software can be licensed from Intel. It can be modified by Intel
clients who are eager to shorten their time to market and who want to create their own version of a
similar design but cannot afford to start from scratch.

Figure 5.10 shows macroscopically and conceptually the protocol conversion that needs to happen
in both directions—namely, from Ethernet to ATM and vice versa. In this generic approach, Ethernet
Institute of Electrical and Electronics Engineers (IEEE) 802.3 packets go through LLC/SNAP encap-
sulation and are then followed by segmentation into AAL-5 cells. The opposite process is applied onto
ATM cells, which are stripped from their ATM headers and finally reassembled into Ethernet packets.

Figure 5.9 gives an overview of the control flow and an idea of how to apportion the packet pro-
cessing needed over the available (in the case of an IXP1200 network processor) six microengines.
In this case, three of the available six microengines are tasked to handle the ATM-to-Ethernet data
flow, whereas the other three are assigned to the reverse direction from Ethernet to ATM. Multiple
queues are used by the microengines to send data from one stage to the next. Details as to how this

FIGURE 5.9 Apportioning of a packet processing application running on the IXP1200 network processor over the 6
available microengines. (Source: Intel)
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can be done are beyond the scope of this book. The corresponding code structure, interprocess sig-
naling, data structures, initialization and startup, and so on can be found in a detailed application note
that Intel provides called “IXP1200 network processor ATM OC-3/Ethernet IP Router Example
Design.” It is available from Intel’s web site at www.intel.com/design/network/ixa.htm.

Right before this chapter went to press, Intel announced a 1.4 GHz follow-on device to the 2800
—the IXP2850 network processor. This is a simplex 10 Gbps processor and is scheduled to be sam-
pled by mid-2003. The interesting feature of this NPU is that it embeds encryption capabilities. More
specifically, it contains two crypto engines as modules. Each crypto engine contains special hardware
(some of them in multiple instances) for the implementation of the Advanced Encryption Standard
(AES)/Rijndael, Triple DES, and SHA-1 cryptographic algorithms, which we discuss in length in
Chapter 17. The 2850 is also capable of calculating TCP checksums. Interested readers can learn more
details about this TCP termination-engine functionality in Chapter 11, “Storage Network Processors.”
Other hashing algorithms that are often needed such as MD5 or encryption algorithms such as RC4
are to be implemented in software on the microengines. However, the 2850 clearly positions Intel
NPUs to handle multigigabit-per-second IPsec types of VPNs in a powerful way. Again, unfamiliar
readers are referred to Chapter 17, where these concepts are discussed in more detail.

The important message with this announcement is that a major NPU vendor like Intel, with a truly
dominant position in market share, takes the proactive step of integrating critical security functional-
ity inside some of its network processors. This movement, which is bound to be copied by some of
Intel’s competitors such as Broadcom, is expected to have a major impact in many designs against the
perceived need for an external security coprocessor, which is attached either in band or in a look-aside
configuration. It will definitely tilt the market tendencies significantly away from the previous need
to incorporate an external stand-alone security coprocessor. The IXP2850 costs a couple of hundred
dollars more than the 2800 and consumes about 2 watts more.

FIGURE 5.10 Apportioning a packet-processing application running on the IXP1200 network processor over the six
available microengines. (Source: Intel)
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This means that in some designs requiring a security coprocessor, the chip count of the system
becomes smaller with the use of the 2850. The direct cost of purchase is also less, as a security
coprocessor costs much more than the difference we just mentioned, and it probably needs extra mem-
ory and interface logic. The power consumption is less than that of stand-alone coprocessors.

This concept will also probably add significant market pressure against stand-alone security
coprocessor vendors in the long run. Some of them may survive, but they will remain in a shaky
position.

SUMMARY

In this chapter, we reviewed Intel’s IXA architecture of network processors and looked more specif-
ically at its IXP1200, 2400, and 2800 models. We also provided some information on its more recent
2850 chip, which integrates sophisticated security functions. We identified their underlying charac-
teristics and looked at the advantages they offer as well as some of the few associated inconveniences
for a systems designer. We finally described a few typical applications using various configurations
implemented along a common architectural theme that is characteristic of this family of NPUs. Intel
has a powerful and wide family of network processors. Combining these processors with an excep-
tional array of software tools and third-party development platforms will most likely further consol-
idate Intel’s leading position in this market.

REFERENCES

Extensive literature with detailed product datasheets, technology white papers, and application notes,
along with links to other related Intel communications and networking sites, can be found at Intel’s
network processing web site at www.intel.com/design/network/ixa.htm.

Information a bout the building blocks needed in networking applications around Intel’s offerings can
be found at the web site http://developer.intel.com/design/network.

Intel’s technical literature center can be found at http://developer.intel.com/design/litcentr/.
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CHAPTER 6

AMCC nP™ FAMILY OF
NETWORK PROCESSORS

Applied Micro Circuits Corporation (AMCC) has become one of the leaders in the field of network
processing. Its acquisition of a few companies with state-of-the-art technology and products in the
network processing unit (NPU) and switch fabric fields, as well as the consequent breadth of its offer-
ings, has positioned AMCC as one of the leading contenders. AMCC is now able to offer the advan-
tage of one-stop shopping to its customers. It covers the entire spectrum of a network equipment
designer’s needs from scalable OC-192 switch fabrics and NPUs all the way to transceivers and framer
chips for Synchronous Optical Network (SONET) and Gigabit Ethernet realms.

In this chapter, we review AMCC’s nP network-processing architecture. We briefly look inside
some of the company’s most powerful network processors to form an impression of how AMCC’s
approach compares to that of other leading vendors. Finally, we discuss some of the company’s other
associated chips that facilitate the integration of a complete switching/routing system design by effi-
ciently handling major technical challenges such as traffic management, scheduling, and the actual
switching process.

nP™ ARCHITECTURE: THE BIG PICTURE

AMCC1 has been consistently expanding its NPU offerings by building on an underlying scalable
architecture called nP™. Although the company offers several network-processor products, we will
look at only a few of their most recent and powerful ones: the nP7250, which is a network processor
rated for the OC-48c realm, and the more recent nP7510, which is AMCC’s flagship OC-192c net-
work processor.

The network-optimized instruction set computing (NISC) architecture is at the heart of AMCC’s
network processors. This architecture is implemented in the company’s patented nPcore™, the fun-
damental engine replicating which dramatically scales the performance and bandwidth of a network
processor based on the nP architecture. The company’s NISC model was already developed at MMC
Networks (before the company was acquired by AMCC) in response to the performance shortcom-
ings of traditional reduced instruction set computer (RISC) processors in the late 1990s. These short-
comings were especially apparent as link speeds exponentially increased and traffic loads exploded
due to increased bandwidth demand. The company estimates that with the implementation of its NISC
instruction set in a multitasking environment and its inherent zero-cost task switching, the nPcore
engines achieve 4 to 12 times the network-processing capacity of typical RISC central processing
units (CPUs).

93

1. Data sheets, application notes, and white papers on AMCC products and technologies can be found at the company’s web site
at www.amcc.com.
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AMCC deduced the instruction set after studying the most typical routing and switching algo-
rithms and understanding the kind of operations involved. The result of the analysis was a highly spe-
cialized instruction set that optimizes the parsing, search, and modification of packets. An example
based on RFC 1812 routing shows it can be implemented in just 50 NISC instructions, where each
instruction takes 1 clock cycle. AMCC estimates that a typical RISC-based NPU implementation uses
200 to 800 instructions to accomplish the same task. If layer 2 and layer 4 classification were added
to the RFC 1812 routing, the nPcore engine implementation would only need 5 more instructions for
a total of 55 instructions. At the same time, a RISC-based NPU would need between 350 and 1,200
instructions (and clock cycles). By implementing this NISC model in the nPcores without imple-
menting unusable instructions (such as arithmetic operations), AMCC eliminated the waste of silicon.
The company further improved the efficiency of the design by adding features that allowed for future
expansion, performance scalability, and the attachment of specialized coprocessors either internally
or externally.

As shown in Figure 6.1, the architecture of the nP is straightforward. The NPU is positioned
between the switch fabric on one side and an array of multiple physical (PHY) interfaces on the other
side. Several nPcores are used depending on the link speeds that the device is expected to sustain. For
instance, the nP7250 designed for the OC-48c realm uses two nPcores inside the die, whereas the
nP7510 designed for OC-192c links uses just six nPcores and does not require any major architec-
tural changes. Figure 6.2 illustrates the block structure of the OC-192c-capable nP7510. They both
provide significant extra headroom for other features or additional computational loads beyond what
a typical application such as layer 3 switching or routing on multiple gigabit streams provides. In
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FIGURE 6.1 The block architecture of the AMCC nP family of network processors. (Source: AMCC)
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Figure 6.1, X denotes any generic coprocessors. These coprocessors could be internally integrated on
the same die as the network processor or externally coupled.

AMCC’s network processors include an innovative embedded on-chip engine called the policy
engine. This engine is an example of an on-chip coprocessor that supports a single-clock-cycle simul-
taneous lookup of layer 2, 3, and 4 packet header components. A software-configurable database sup-
ports configurations that have access to multiple logical tables using 32- to 512-bit-wide keys, support
Best Match searches, and even possess a patented feature called weight array that allows easier table
management and, more specifically, the handling of low-cost insertions. The policy engine can be
used to implement layer 4 switching, such as packet prioritization based on some layer 4 information.
It allows functionality as dynamic port assignment in applications such as voice over IP (VoIP). It can
also be used to expedite the mainline network-processor packet examination and classification code.
The coprocessor interconnection bus can be extended off-chip, thereby facilitating a broader spectrum
of products with potentially different search requirements such as web switching via Uniform
Resource Locator (URL) matching or Internet core routing.

The AMCC approach involves two other important characteristics: the single programming image
that the architecture provides to the designer and the company’s ability to offer ancillary chips such
as traffic managers, switch fabrics, and so on, which create an almost complete design of a whole sys-
tem with minimal hardware effort.

We discuss the single programming image in the section “Developing Software for the nP Family
of Network Processors.” We cover the topic of the company’s ability to offer ancillary chips in a sep-
arate section, “Systems Considerations When Designing with AMCC nP Family NPUs.”
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FIGURE 6.2 The block structure of the OC-192c-capable nP7510 network processor. (Source: AMCC)
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DEVELOPING SOFTWARE FOR THE NP 
FAMILY OF NETWORK PROCESSORS

Figure 6.3 shows the cleanly layered structure of nPsoft™ Services, which is essentially a software
services architecture. The company’s approach has the advantage of only requiring the addition of
parts necessary for the overall desired design functionality, without anything superfluous. This stream-
lined software architecture is comprised of the following:

• An open applications programming interface (API) with custom-written application-specific code
or other third-party software packages

• Transparent access to other coprocessors available from other vendors, such as search engines,
encryption acceleration chips, and so on

• Traffic management engine interactions and switch fabric configuration and management
• A library of common networking functions
• A modular interface for customer-developed NPU software

Customers write their application software, without loss of efficiency, as if it was intended to run
on one single CPU. The system will automatically repartition it over the available nPcores. From the
beginning of its development efforts, AMCC was extremely sensitive to the fact that embedded soft-
ware written for a high-speed switching system must be fine-tuned for true wire speed so that hard-
ware-computing resources would not remain idle even for small amounts of time. A typical situation
where this occurs is with the phenomenon of a pipeline bubble. In a pipeline bubble, inactivity at some
point in time propagates down the pipeline stages, further promulgating the effect of temporary idle-
ness and multiplying the effect of efficiency loss.

Supercomputer designers have found out the hard way that scheduling multiprocessor-based com-
puting tasks for the time-sensitive execution of software is a difficult task. The unpredictable nature
of network traffic, coupled with the extreme high speeds involved in today’s links, can cause interde-
pendency situations and force undesirable wait states on some processors. As a result, partial idleness
can be incurred pending the completion of an intermediate and necessary task that runs on another
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FIGURE 6.3 AMCC’s nPsoft, a layered software services architecture. (Source:
AMCC)
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processor inside the same network processor. Writing task distribution algorithms in such a comput-
ing model remains tedious. It also does not offer any guarantee of performance. In addition, even if a
designer experiments with a certain traffic load context and creates superbly crafted code that imple-
ments such a fine-tuned task distribution, the code will still need to be radically rewritten as soon as
some new feature or functionality is introduced into the overall application code. This can happen at
any time as part of mere upgrading or maintaining the code.

In AMCC’s single-image computing model, software engineers write software in one logical block
of code as if they were programming one single logical CPU. They do not worry about allocating tasks
or scheduling. As long as the clock cycle budget allows more tasks to be executed, the model, which
is based in zero-cycle task switching overhead, guarantees that the written code will be executed at
wire speed without any further tweaking and tinkering. Perpetual load balancing is no longer neces-
sary among multiple cores.

In addition to the fully functional preintegrated hardware development systems that enable the par-
allel development and testing of hardware and systems code in real-life networks, AMCC also offers
a C/C�� compiler, an assembler, and a debugger, which facilitate the software development cycle.
However, compared to the extent and quality of the development tools offered by some other vendors,
this set of tools may be considered insufficient for enabling the wider-scale adoption of the company’s
platform by many more network equipment vendors (NEVs).

TRAFFIC MANAGEMENT

To scale performance eventually above 40 Gbps, AMCC realized early on that traffic management (a
key foundation upon which a carrier can offer quality of service [QoS] and guarantees) cannot be fully
integrated into one and the same silicon die with the network processor. Therefore, it adopted a chipset
architecture, which is based on separate chips for the traffic manager as well as for the switch fabric.
This physical separation allowed the company to pursue the optimization of these functions. AMCC
realized early on that provisioning per-subscriber services requires many thousands of separate logi-
cal queues and the ability to schedule these queues on an individual basis in order to provide guaran-
teed access to network resources such as bandwidth. To illustrate the magnitude of the problem,
consider, for example, the number of the queues required to handle the number of Digital Subscriber
Line (DSL) connections that can be aggregated into an OC-192c trunk. For the sake of argument,
assume that an average connection load has a rating of 0.5 Mbps per subscriber:

In order to provide these bandwidth guarantees, the traffic management engine must implement
individual queues for each subscriber. AMCC has implemented a feature called per-flow queuing. This
feature ensures that each traffic flow is managed as a separate entity. In other words, it is queued and
scheduled independently from the other flows. It is impossible to integrate such a granular level of
traffic management inside a network processor in hardware or software. However, service providers
who must implement QoS contexts with different services and features as demanded by the market
require such a granular level of traffic management. Congestion experienced by one flow is prevented
from interfering with the traffic conditions of another flow. As a result, QoS is maintained. Traffic
scheduling enables the hardware scheduling of traffic on a per-flow basis through the support of cell-
and packet-based algorithms such as rate, strict priority, weighted fair queuing (WFQ), and weighted
round robin (WRR).

AMCC also refers to a feature called virtual SAR. This means that expensive external segmenta-
tion and reassembly (SAR) devices are not required when the nPX5700 is used. Instead, the SARing
function is inherent in the chipset and is a natural result of the way in which the nPX5700 accom-
plishes per-flow queuing and scheduling. This explains the term virtual SAR.

Another interesting feature is its ability to support point-to-point multicast connections. This indi-
cates that traffic that is received on one input flow can be sent to one or more output flows, either on
separate output ports (physical multicast) or on the same output port (logical multicast).

10.96 � 109 > 0.5 � 106 � 22,000 logical queues
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The nPX5700 can also operate in snooping mode. This means that it can send a duplicate flow
originally meant for another port to an output. This is useful if someone tracks items with an attached
network protocol analyzer, eliminating the need to move the analyzer from one switch port to another.

One of the useful capabilities of the 5700 chipset is that it enables packets entering on separate
ports to be merged to exit from a single port, as is required in Multiprotocol Label Switching (MPLS).

In addition to standard OC-3/OC-12 Asynchronous Transfer Mode (ATM) and 10/100 Ethernet
ports, the nPX5700 can handle multiple slower speed pipes, such as T1, fractional T1, and DS-0,
aggregated into a single physical port. Conversely, multiple ports can be aggregated into a single high-
speed pipe. For example, up to 16 OC-3 ATM ports can be combined into a single OC-48 ATM port.

In very high-speed applications, two separate traffic managers will be needed: one on the ingress
path of the switch/router and one on the egress path. AMCC traffic managers support thousands of
queues, and sort and queue traffic by flow.

The nP5700 traffic manager is one of AMCC’s promising products that enables the company to
develop an integrated solution. The nPX5700 is a chipset that consists of the nPX5710 control logic
chip (which is responsible for tasks such as admission control, scheduling, and queuing functions)
and the nPX5720 buffering chip (which is responsible for managing payload memory). The 5710 is
packaged in a 601-pin PBGA, whereas the 5720 is presented in a 1125-pin PBGA form. Figure 6.4
illustrates their block structures.
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FIGURE 6.4 Architecture of AMCC’s nPX5700 traffic management chipset. (Source: AMCC)
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Many of today’s intelligent carrier, service provider, and customer premises equipment (CPE) plat-
forms require a feature-rich 10 Gbps traffic management context for the provision of subscriber band-
width, the flexible scheduling of capabilities, and the exercise of rigorous admission control. The
nPX5700 per-flow queuing mechanism offers very high levels of granularity and supports tens of
thousands of subscribers and hundreds of thousands of queues. More specifically, the nPX5710 con-
trol logic chip can easily support up to OC-192 bandwidth scheduling in fine-grain 256 subports,
64,000 virtual pipes (aggregates), and 256,000 input flows. Similarly, the nPX5720 memory man-
agement device, which can support up to four OC-48 channels or one OC-192 channel, has its own
embedded dynamic random access memory (DRAM). Therefore, it can provide local storage for up
to 8 million cells of payload storage.

NEVs who are designing network equipment can use the chipset to implement a variety of sophis-
ticated admission control techniques. These techniques include dynamic marking and discard thresh-
old levels, Random Early Detection (RED), Weighted RED (WRED), Early Packet Discard (EPD),
and Partial Packet Timeout to manage and control potential congestion and enforce programmed serv-
ice levels. Maximum flexibility is also preserved in the sense that the systems designer is free to imple-
ment policy-based QoS features that support strict priority, WFQ, round robin (RR), WRR, constant
bit rate (CBR), variable bit rate (VBR), and minimum and maximum bandwidth control among sev-
eral intrinsically supported and available possibilities.

SWITCH FABRIC

The switch fabric function further augments the model based on which the designer must physically
separate the network-processor chip from the traffic managers and then both of these functions from
the switch fabric chipset. The switch fabric does this by maintaining local logical queues that are built
upon the concept of classes and are further sorted per output port. Figure 6.5 illustrates this concept.
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FIGURE 6.5 An example of switching and managing traffic with the nP family of products. 
(Source: AMCC)
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AMCC offers several products in this realm, but we will focus on the nPX5800 switch fabric tar-
geted for the area of OC-48 and OC-192 systems with a desired throughput of up to 160 Gbps.

The nPX5800 switch fabric is a high-speed, scalable switching element that along with the traffic
manager completes AMCC’s network-processing platform. The nPX5800 implements nonblocking
virtual output queuing technology to achieve 40 Gbps (20 Gbps full duplex) to 320 Gbps (160 Gbps
full duplex) switching capacity. It is scalable to support up to 16 full-duplex 10 Gbps OC-192c Packet
over SONET (POS), ATM, or 10-Gigabit Ethernet interfaces with a significantly lower chip count than
other existing solutions. AMCC’s nPX switching family offers additional future architectural scala-
bility over 1.2 Tbps.

For seamless platform implementations, AMCC uses its proprietary, nonblocking, QoS-enabled
ViX™ interconnect bus, which eliminates the need for a high-speed memory bus and replaces it with
much simpler, cheaper, point-to-point connections. This means that the switch’s cost increases lin-
early with the number of ports. This is unlike non-ViX architectures, where the cost increases expo-
nentially. Despite its use of a proprietary in-house-developed interconnect bus, AMCC is an active
participant in the Network Processing Forum (NPF) (formerly CSIX) and it is contributing toward the
definition and adoption of next-generation, standard 10 Gbps and QoS-enabled interfaces. The max-
imum allowed payload on the ViX bus is 64 bytes plus a 16-byte header that is full of special bit fields
used for specifying the destination port, parity, priority, credit, flow control, and so on. The 5700 traf-
fic manager chipset and the 5800 switch fabric communicate via serialization and deserialization
(serdes) devices over the ViX bus by sending special ViX-bus-formatted cells over multiple 16-bit
sub-buses. These sub-buses operate at 125 MHz. An aggregation of eight sub-buses can handle an
OC-192 link, leaving plenty of overspeed for other system functionality.

Internally, the nPX5800 is based on a shared-memory architecture with a centralized scheduler.
The chip is built with 16 input ports and 16 output ports, which are interconnected through 256 inter-
nal queues. Incoming traffic cells destined for one of the output ports are stored in the appropriate log-
ical output queue. They will be authorized to exit by the centralized scheduling logic based on the
highest priority among cells with the same output destination. When a conflict arises for access to the
same output port by cells that are rated at the same priority level, the scheduler simply cycles through
the same priority queues. Multicast cells are assigned to one of four traffic classes. They are queued
at the input port before they can be sent to the output for which they have been earmarked. Multiple
multicast requests are scheduled based on an RR fashion and multicast cells receive priority over uni-
cast cells of the same priority level.

In order to operate with performance in systems that require a higher throughput than 20 Gbps,
multiple nPX5800 chips must be connected in a master-slave configuration. In this configuration, an
incoming cell gets sliced into several pieces (slices), which are then switched in a distributed fashion
by the group of interconnected nPX5800 chips. This is done according to the master chip’s schedul-
ing decision instructions. It takes place over multiple serial links simultaneously and in perfect syn-
chronization among slices.

The attached switch fabric devices exchange control messages over a 4-bit ring bus that helps them
remain coordinated. The master chip manages an in-band back-pressure mechanism using Xon/Xoff
signals or credits. The credit system works in AMCC’s nP family in the following way: Every time a
cell in the fabric leaves its queue for an output port, the nPX5800 sends a credit, which the traffic man-
ager nPX5700 uses as a grant to send a new cell to the fabric. The traffic manager stops sending new
cells when the credit balance available becomes zero.

Another interesting AMCC switch fabric that we must mention is the nPX8005, which is a terabit-
class fabric that is based on a three-dimensional crossbar architecture with a large number of virtual
output queues and distributed scheduling. As this fabric is using fixed-cell switching, it can handle
time-division multiplexing (TDM) traffic on top of Internet Protocol (IP) and ATM flows. This is very
significant as the tight requirements that traditional TDM traffic places on delay jitter and latency can
be extremely hard to handle (if at all possible) for an average switch fabric chip that was designed
only for IP and ATM traffic switching.

The nPX8005, which is positioned by AMCC for metro access network, metro core network, and
storage area network (SAN) switching applications, is actually a chipset comprised of a memory sub-
system (S8905), a scheduling device (S8805 or S8505), and a crossbar with an integrated arbiter
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(S8605). It is designed to work seamlessly with AMCC’s 7510 and 7250 network processors as well
as with the company’s nPX5700 traffic manager chipset. It features an integrated 2.5 Gbps serdes,
high-speed terminations, and memory, so it is poised to provide strong QoS support, combined with
a low-power, and a high-capacity switch fabric all packaged in a small form factor.

The nPX8005 provides eight classes of service (CoSs), thereby enabling greater granularity when
handling traffic subject to service level agreements (SLAs) that require improved handling and relia-
bility for time-sensitive realms such as VoIP or other system-critical data transfers as opposed to some
types of data transfers, such as web page downloads. In general, these can be characterized as lower-
priority tasks. For additional flexibility, the nPX8005 offers several robust scheduling algorithms.
These include WRR, which is appropriate for fixed-length cell traffic; DRR, which is a wiser choice
for variable-length packet traffic such as IP-over-Ethernet; WFQ, which is suited for egress traffic
shaping and finer granularity scheduling; and maximal matching RR for connecting ingress to egress.

SYSTEMS CONSIDERATIONS WHEN DESIGNING 
WITHAMCC NP FAMILY NPUS

A systems designer should consider several factors when designing with AMCC nP family NPUs.
First, to partition the logic into logical parts of a chassis-based design, the traffic manager 5700 chipset
must be implemented on the line card, whereas the switch fabric 5800 must be integrated on the fab-
ric card. As no serdes controllers are integrated in either of these products, unless a very low-speed
single-board system is being designed (when the traffic manager and switch fabric can be connected
directly), the chassis-based systems designer must use separate serdes components. More specifically,
he or she must use four of them for each 5800 fabric chip. AMCC offers serdes devices (such as
S2512, which provides four full-duplex 2.5 Gbps serial links) that are seamlessly compatible for such
an application. Figure 6.6 shows a configuration of the scalability of the solution for OC-48 or
OC-192.

An OC-192 or 10 Gigabit Ethernet configuration based on the newer nP7510 network processor
uses two NPUs: one for ingress and one for egress connected with their respective nPX5720. Both
NPUs would share a search engine or have their own engine (a much more expensive proposition).
They would also be connected toward the line side through a ViX-to-SPI-4.1 bridge to an OC-192
framer or a 10 Gigabit Ethernet Media Access Control (MAC), which offer SPI-4.1 interfaces. As the
nPX5800 switch fabric is a single-chip product, if a designer wants to combine chips for a 16-port
fabric solution, then up to eight of them can be connected. Each of these fabric ports can support a
quad (4x) OC-48c line card; therefore, a system can be put together with up to 64 OC-48c ports.

Looking at compromises in chip count, in a quad OC-48 line card, one nP7250 would be required
per OC-48 link connected with the framer through a POS-PHY or Universal Test and Operations PHY
Interface for ATM (UTOPIA) interface. With 10 Gbps line rates, a pair of nP7510s will replace four
7250 chips.

The interface of the 7520 with the search engine is a request/response type of interface that can be
configured as dual 8-bit ports or as a single 16-bit wide port. A systems designer can connect AMCC’s
nPC2110 search engine or other devices without any further glue logic as recently announced by ven-
dors such as IDT and NetLogic. Typical search engine devices will require glue logic implementation
using a field-programmable gate array (FPGA).

The nP7520 has two symmetric ports that are used on the switch and on the line side, respectively.
These ports can be configured in any one of five modes: UTOPIA 3, POS PHY Level 3 (POS-PL3),
FlexBus 3, dual RGGI, and AMCC’s own ViX v.3. The line port where a framer is connected is usu-
ally configured as UTOPIA, POS-PHY, or FlexBus. The dual RGGI is used to connect Gigabit
Ethernet MAC controllers. The switch side is configured as AMCC’s ViX bus. If the switch port of
an nP7520 is connected to the line port of another similar NPU, the system bandwidth is effectively
doubled by processing the packets in a pipeline fashion. The synchronous static random access mem-
ory (SSRAM) interface is 64 bits wide and runs up to 104 MHz. It can be configured to support exter-
nally connected coprocessors such as classification chips from other vendors.
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AMCC documentation says that the nPX8005 family must be used to operate a switch fabric at a
combined throughput above 160 to 320 Gbps. If we look at an example in a 16�10 Gbps switch fab-
ric, then 5 chips need to be used for the switch fabric function, one in master, 4 chips need to be used
in slave mode, and 48 chips need to be used for the queue management function. In addition, 16 serdes
must be used for the switch interface and 16 FPGAs must be used for the line interface. Without count-
ing memory, such a system requires a minimum of 85 chips if it is implemented with current AMCC
technology. It will consume above 300 watts.

FIFTH-GENERATION TECHNOLOGY

We will conclude this chapter by adding a few comments on the company’s fifth-generation technol-
ogy, which AMCC introduced in late 2002 under the name nP5™.

In addition to pursuing highly integrated products that efficiently offer headroom and flexibility
to customers who need to come up with economic complete design solutions, AMCC is now offering
the possibility of designing products that can handle multiple protocols and services at a lower cost,
power, and size than before. The following added features accompany the main features of this new
technology generation:
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FIGURE 6.6 A typical systems configuration with the nPX5800 switch fabric and the nPX5700 traffic management
chipset. (Source: AMCC)
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• The company’s hardware-based functionality that was previously available in its nPX5700 fine-
grained traffic management coprocessor is now integrated into the new platform. This tight inte-
gration enables designers to take advantage of the flexibility that can be afforded by software
programmability. At the same time, the actual delivery of feature-rich subscriber services can be
completed at high wire speeds.

• A richer programming model and the associated process flow inside the company’s nPcore-based
network processors allow a more extensive range of application coding without the programming
complexity that is associated with another on-chip control plane CPU, which would obviously also
impose its own extra power consumption and silicon real-estate requirements.

• While differentiating applications and services, customers require equipment that is designed
around NPUs with significant “lung” capacity. AMCC’s fifth-generation technology offers a
respectable fivefold increase in performance over previous generations; therefore, it offers a signif-
icant amount of headroom to pursue sophisticated and differentiable applications.

• The previous on-chip coprocessors are now enhanced to allow simultaneous operations with the
embedded traffic manager. This enables layers 2 to 7 packet processing together with a wire-speed
OC-48 ATM SAR within one and the same device.

• The adoption of the latest NPF and Optical Internetworking Forum (OIF) interface standards allows
a flexible and low-cost integration of memory subsystems along standardized ways, thereby
enabling low-cost system solutions and creating a shorter time to market.

• Compatibility with the company’s existing 100 Mbps to 10 Gbps network processors including the
nPsoft Development Environment, in conjunction with support from the company’s partners,
enables customers to further leverage their existing investments in systems design and software pro-
gramming.

The company has announced that its first priority with this new technology will be a next-gener-
ation, services-oriented 5 Gbps integrated NPU-traffic-management MAC solution. The intention is
to enable designers to produce highly modular system designs that can support any service on any
port, multiple concurrent high-value services, multiple technology capabilities, high subscriber den-
sity, and revenue-generating, per-subscriber statistics. The result should be products that enable car-
riers and service providers (who are the customers of the company’s customers) to dramatically
decrease both capital expenditures and operational expenses.

SUMMARY

In this chapter, we briefly reviewed AMCC’s nP family of scalable network processors and discussed
the main characteristics of the architecture. We also looked at other associated AMCC chips that han-
dle traffic management and switch fabric issues in the framework of this complete family of inter-
connecting products. AMCC has a powerful combination of having the scalability of its architecture
and the extremely advantageous feature of being able to offer multiple chips to the designer of net-
working equipment enabling the development of a complete solution quickly. Its solid business per-
formance and robust financial health are important additional gauges of stability for customers who
consider employing the company’s network-processing technology into network equipment that they
design.
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CHAPTER 7

AGERE PAYLOADPLUS® FAMILY
OF NETWORK PROCESSORS

Agere Systems is a recent spin-off from Lucent Technologies. It was formed after Lucent’s acquisi-
tion a couple of years ago of a network-processing startup with the same name and the actual busi-
ness of the former Microelectronics Division of Lucent. Agere Systems is now one of the world
leaders in the sale of communications semiconductors. The company designs, develops, and manu-
factures integrated circuits for use in a broad range of communications and computer equipment. It
recently announced its exit from the industry of optoelectronic components for communications net-
works. Its full line of communications chips includes network processors, switch fabrics, framers,
Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), Plesiochronous
Digital Hierarchy (PDH), high-speed physical-layer-related products, and even digital signal proces-
sor (DSP) products.

In this chapter, we will only be looking at the most advanced members of the company’s
PayloadPlus family of network processors in both the OC-48c and OC-192 realms. This product fam-
ily is geared toward the implementation of intelligent communication equipment with processing
capabilities that span layers 2 through 7. These products focus on the wire-speed data stream. They
work in conjunction with physical interface devices, traditional lower-speed microprocessors, and
backplane fabric offerings to provide a complete solution for networking and communication appli-
cations. We will conclude our review of Agere’s approach after also taking a brief look at other asso-
ciated chips from Agere that provide the advantage of a complete systems solution.

PAYLOADPLUS® ARCHITECTURE: THE BIG PICTURE

Agere System’s PayloadPlus is a comprehensive network-processing solution used in the OC-48c
realm. It has been recently expanded to the OC-192 realm through the NP10/TM10 chipset (the two
were recently renamed APP750NP and APP750TM, respectively). Until recently, this was basically
a three-chip solution that handled all of the classification, policing, traffic management, quality of
service (QoS)/class of service (CoS), traffic shaping, and packet modification functions required for
a carrier-class network platform.

This network-processor family includes the Fast Pattern Processor (FPP), the Routing Switch
Processor (RSP), and the Agere System Interface (ASI). The FPP and RSP process the wire-speed
data stream. The ASI provides an industry-standard Peripheral Component Interconnect (PCI) inter-
face between a host processor and other high-speed processors from Agere that are responsible for
control and management functions, including routing table and virtual circuit updates, hardware con-
figuration, and exception handling. The ASI also helps the FPP police Asynchronous Transfer Mode
(ATM) and frame-relay traffic at rates up to OC-48c while maintaining state information on data flows
and even capturing statistics.
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In midsummer 2002, Agere announced a new integrated version of its 2.5 Gbps network-proces-
sor solution in the form of a new superchip called the APP550 (previously known as the INP5). The
APP550 integrates the FPP, RSP, and ASI; doubles the performance; and reduces the power, cost, and
space required for supporting external memory. The goal is to drastically cut down the chip count of
an integrated solution, improving the customer’s time to market and system cost, performance, and
density. In fact, a single APP550 can replace a six-chip configuration of the first-generation
PayloadPlus chipset. Agere Systems has announced two members of the APP550 family: a 266 MHz
version supporting 2 to 4 Gigabit Ethernet (GbE) or full-duplex 2.5 Gbps Packet over SONET
(POS)/ATM processing capacity and a 133 MHz version supporting 1 to 2 GbE or full-duplex 622
Mbps POS/ATM processing capacity.

The entire network-processing solution rotates around the capabilities of the FPP, which can be
called to action by programming the FPP chip through a high-level language that Agere has devel-
oped called Functional Programming Language (FPL). Through FPL code, the FPP can analyze and
classify patterns based on the bit content of every byte of the payload or the headers of packets and/or
frames. Agere’s patented search and pattern-matching technology enables the buildup of very large
lists. The search time is also deterministically limited. You can search for any length of data pattern,
and the search time is only limited by the pattern length, not by the number of entries in the search
table.

On top of these three fundamental chips, Agere has also introduced another member of the
PayloadPlus family known as the Voice Packet Processor (VPP). This coprocessor chip is capable of
ATM Adaptation Layer 2 (AAL2) segmentation and reassembly (SAR) and switching functions sup-
porting up to 32,767 conversations.

Figure 7.1 shows the block structure of the PayloadPlus architecture. It is based on a patented
search technology called Pattern-Matching Optimization. According to Agere, this architecture
enables the company’s network processor to achieve a performance more than five times greater than
network processors based on advanced reduced instruction set computer (RISC) cores. This per-
formance attains the level of fixed-function application-specific integrated circuits (ASICs) while pro-
viding the flexibility and programmability of RISC. The architecture achieves this by using less
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FIGURE 7.1 The block architecture and an overview of Agere PayloadPlus. (Source: Agere)
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overhead, fewer clock cycles, and more data processing per clock cycle than enhanced RISC-based
processors.

As shown in Figure 7.1, the FPP takes packets or frames from the PHY chip over an industry-
standard interface that can be either a POS PHY Level 3 (POS-PL3) or a UTOPIA 2 or 3 interface.
Then it performs protocol recognition and classification as well as reassembly. The FPP can classify
traffic based on information contained at layers 2 through 7. Once this is done, the FPP sends the pack-
ets and its classification results via a POS-PL3 interface over to the RSP. The RSP is responsible for
handling queuing, packet modification, traffic shaping, the application of QoS tagging, and segmen-
tation.

The FPP and RSP chips interface with the ASI chip. The ASI chip handles exceptions, maintains
state information, and is responsible for the interface with a host central processing unit (CPU) over
a PCI bus. The FPP and the RSP are configured and updated via the ASI chip over the Configuration
Bus Interface (CBI). A special 8-bit asynchronous bus called the Management-Path Interface (MPI)
enables the FPP to receive management frames from the local host CPU through the ASI. A third sys-
tem bus called the Functional Bus Interface (FBI) connects the FPP to an ASI and/or other applica-
tion-specific custom logic that is used to externally process function calls.

All memory interfaces are 64 bits wide either to standard PC-133 synchronous dynamic random
access memory (SDRAM) or 133 MHz pipelined zero bus turnaround (ZBT) synchronous static ran-
dom access memory (SSRAM). This is a significant advantage as the FPP stores all pattern-matching
data in standard memory rather than in expensive and power-hungry content-addressable memory
(CAM) devices.

If the arrows of the data flow shown in Figure 7.1 are inverted, the egress path can be determined;
therefore, it explains how the same chipset can operate in a full-duplex line card as in OC-48c. If pack-
ets on the egress side require further classification, a new FPP needs to be inserted into the egress path.
If packets need queuing at the egress path, another RSP chip will be needed. Finally, if separate sta-
tistics gathering is required at the egress path, a separate ASI chip is needed. In the worst case, the
configuration of Figure 7.1 should also be replicated on the egress path, as well.

For systems that are based on the use of the VPP, the VPP is inserted in the structure shown in
Figure 7.1 between the FPP and the RSP. It connects both upstream and downstream with 32-bit POS-
PL3 interfaces. It can be configured by the ASI over the CBI bus, and it supports a 64-bit SSRAM
interface for maintaining state and statistics. The VPP chip cannot handle speeds of above OC-40,
(broken down as a maximum of OC-12 of AAL cells and a maximum of OC-12 of CPS packets). As
a result, we do not intend to cover it in more detail here. Interested readers can refer to technical doc-
umentation from the Agere web site for more details on the VPP.1

In terms of physical presence and power consumption, both the FPP and RSP are available in ball
grid array (BGA) packages that have 655 pins each. The ASI comes in a 448-pin BGA. The maxi-
mum total consumption of the set of three chips is 9 watts when it operates at 13 MHz.

FPP

The FPP is a pipelined, multithreaded processor that can simultaneously analyze and classify up to
64 protocol data units (PDUs). Each incoming PDU is assigned its own processing thread, which is
called a context. The context is essentially a processing path that keeps track of all the blocks of a
PDU, the number of the input port through which the PDU arrived, the data offset for the PDU, the
last-block information, any potential program variables that are associated with the PDU, and, of
course, the classification information that is related to the PDU. The FPP does not suffer from the
speculative execution of instructions that cannot be followed up by the rest of the executable code—
a situation that all too often stalls pipelines in RISC processing environments. It also does not suffer
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from the undesirable switching-context overhead that is typical in most architectures that process data
sequentially.

Figure 7.2 shows the internal structure of the FPP. Some blocks have an identifiable function such
as the arithmetic logic unit (ALU) or the checksum/cyclic redundancy check (CRC) engine. The
purpose of the other major blocks is as follows: The input framer frames the incoming stream into
64-byte blocks. Then it writes these blocks into the data buffer and into the block buffers and context
memory. The latter temporarily stores blocks that are being processed as well as other associated con-
text data for the execution of the FPP operations on the incoming data. The output interface strips the
payload away from PDUs, such as packets or frames, according to block offsets, and forwards them
along with their classification conclusions to the next processing stage downstream, which is usually
the RSP chip.

The Pattern Processing Engine (PPE) of the FPP performs pattern matching to determine how the
incoming PDUs are classified. This will decide how they must eventually be processed. The Queue
Engine manages FPP replay contexts, provides addresses for block buffers, and maintains informa-
tion on blocks, PDUs, and connection queues.

The FPP processes bit-stream data in two passes: first it processes the PDUs as separate 64-byte
blocks and more specifically, the data offsets of the various blocks are stored and printer links are
established between the blocks out of which the PDU is composed.

In the replay phase (second pass) the PDU is processed as a whole entity. Pattern matching is exe-
cuted at the same time as integral transmission is handled of the PDU toward the output interface. The
latter will reassemble the PDU and if needed it will strip a certain amount of data away from the blocks
of the PDU, of course according to the data offsets, which were defined during the first pass.

Agere’s architecture distinguishes the allocation of computational resources into a fast processing
path and slow processing path. These paths were discussed in Chapter 2, “Network Processors:
Justification.” This logical partitioning is strongly reminiscent of the data versus control plane pro-
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FIGURE 7.2 The internal block structure of the FPP chip. (Source: Agere)
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cessing debate. With the PayloadPlus approach, the FPP, the RSP, the FBI bus, and part of the ASI are
considered the fast processing path elements because they have to perform their tasks at wire speed
directly on the traffic bitstream. The rest of the ASI, the MPI bus, and the PCI-based host, along with
the host CPU itself, are the elements of the slow processing path, which is computationally responsi-
ble for handling exceptions, configuration, management, system updates, and so on.

RSP

The RSP handles the classification and analysis results of the FPP’s work on the incoming PDUs. This
happens over 64 logical input ports. In addition to the PDU, it comes in the form of a transmit com-
mand from the FPP that essentially instructs the RSP as to how to handle the specific PDU. The lat-
ter proceeds by identifying the necessary processing for each PDU. The PDU is added to a queue and
stored into the PDU SDRAM. The transmit command determines the QoS, the CoS, and the required
PDU modifications for the RSP.

The RSP supports up to 65,535 (64K) programmable queues. Each queue is based on program-
mable QoS and CoS criteria for processing and routing. It can schedule independently up to 256 log-
ical output channels mapped onto 32 physical output ports. It can also connect to an external
overriding scheduler that can monitor and schedule all RSP queues. It interfaces downstream with a
potential fabric interface controller over a configurable industry-standard 32-bit POS-PL3 or UTOPIA
3 interface. This output can be configured to be one 32-bit interface, two 16-bit interfaces, or four
8-bit interfaces.

The RSP has fully programmable packet-discard policies (including Random Early Detection
[RED], Weighted RED [WRED], and Early Packet Discard [EPD] algorithms) and outgoing packet
data modification capabilities. It is also equipped with intrinsic support for multicast packets and vir-
tual paths and has the native ability to segment (which is handy for interfacing with cell-based fab-
rics or ATM/POS-PHYs) and cope with real-time traffic such as variable first-rate-real-time (VBR-rt).

The RSP has the following four major areas of functionality:

• Queuing.

• Traffic management.

• Traffic shaping.

• Packet modification.

Figure 7.3 shows the hierarchy of criteria applied for the scheduling the RSP. Up to 16 CoS queues
feed a single QoS queue to support PDU-based shaping policies. Each QoS queue is assigned to a sin-
gle scheduler that is configured by connection rate type, such as constant bit rate (CBR), variable bit
rate (VBR), or unspecified bit rate (UBR). A set of schedulers is defined for each logical port. Each
scheduler supports a single type of traffic (such as CBR, VBR, or UBR).

Figure 7.4 shows the extremely efficient data flow inside the RSP. As we mentioned earlier, the
systems designer has the extra flexibility to connect an external scheduler. This opens up the possi-
bility of custom-written algorithms beyond the ones that the RSP offers. This feature is useful when
processing priorities need to be changed based on live traffic conditions. In some cases, it is even
imperative. This may be the case in situations where a switch fabric is used that makes global deci-
sions about the overall scheduling of traffic.

Figure 7.5 shows the RSP chip’s internal block structure. Three powerful compute engines based
on very long instruction word (VLIW) architecture are cascaded in a pipelined fashion that allows
heavy-duty computing performance while maintaining wire speed compatibility. These three engines
are a Traffic Management Compute Engine, which enforces packet-discard policies and keeps queue
statistics; a Traffic Shaper Compute Engine, which ensures QoS and CoS for each queue; and a Stream
Editor Compute Engine, which performs all potentially necessary PDU modifications. In each queue
definition, the RSP includes a destination, scheduling information, and pointers to programs for each
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FIGURE 7.4 Queuing PDUs and block scheduling. (Source: Agere)
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of the three VLIW compute engines that we just mentioned. By selecting a queue definition that
performs the desired processing, the RSP can execute multiple protocols. The external host CPU can also
be used to dynamically add queue definitions, as needed, to set up ATM virtual circuits, for example.

To execute code, the compute engines must be properly configured. This means that a program,
along with the necessary parameters, must be loaded at configuration time or dynamically during
operation. The number of compute engines configured depends on the operation of the system, the
size of the engine code, and the available internal RAM. Channels and physical ports are configured
first. Then logical ports are configured and assigned to the physical ones. After these steps are
completed, the desired compute engine program is loaded. The next step is the creation of schedulers
for each logical port. The definition of each logical port includes the program selection that will handle
traffic management, policy, and shaping, as desired. The compute engine programs are loaded at con-
figuration time, but they can be selected for queues dynamically.

For the definition of queues, the queue must first be added to a data structure called the stream edi-
tor destination ID table. This table includes a pointer to the Stream Editor Compute Engine’s modi-
fication instructions for the queue. The compute engine program parameters must then be defined.
These are used to set thresholds for the discard policies or to define bytes to add or replace when mod-
ifying a PDU. Finally, the queue must be assigned to a scheduler. By doing that, the actual program-
ming of the Traffic Management Compute Engine and Traffic Shaper Compute Engine are chosen, as
well as both the physical and logical ports that will need to be used for the queue. Again, all these
steps can occur at configuration time or dynamically during operation.

In terms of memory interfacing, the RSP comes equipped with a 64-bit interface that can be
clocked up to 133 MHz for queuing PDUs in SDRAM and with four 32-bit-wide interfaces that offer
point-to-point memory access up to 133 MHz.

FIGURE 7.5 The internal block structure of the RSP chip. (Source: Agere)
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ASI

As mentioned earlier, the ASI chip’s role is to seamlessly interface the FPP and RSP to a supervising
host processor. More specifically, it makes it possible for the systems designer to do the following:

• Create a method for the centralized initialization and configuration of the network-processing sys-
tem and all its physical interfaces.

• Send routing and Virtual Path Identifier/Virtual Connection Identifier (VPI/VCI) table updates to
the RSP.

• Implement various routing and management protocols.

• Handle any occurring exceptions.

The ASI also enables other high-speed, flow-oriented state maintenance tasks for the FPP, which
include the following:

• Gathering Remote Network Monitoring (RMON) statistics needed for remote network management

• Timestamping packets.

• Checking packet sequence.

• Policing ATM and frame relay at up to OC-48c rates.

• An 8-bit POS-PHY interface over which the ASI sends packets to the FPP and receives packets from
the RSP.

The ASI is connected to the host CPU by a PCI interface, which is a 64-bit, 66 MHz bus designed
in a full master-slave implementation with full interrupt and direct memory access (DMA) support.
Its support for SSRAM is based on two industry-standard, 32-bit-wide memory interfaces.

The ASI’s 8-bit CBI bus enables the initialization and configuration not only of the FPP and
RSP, but also of six additional devices. It is interesting to note that it has been designed deliberately
to be compatible with both Intel and Motorola bus formats, so it enables the configuration of third-
party devices such as framers or PHY interfaces. The CBI also loads the FPP and RSP chips with their
corresponding programs and the dynamic updates to the FPP tables and RSP queues, respectively.

The FBI is a 32-bit bus that extends the capabilities of the FPP by enabling the FPP to make func-
tion calls that are executed by the ASI itself. These function calls can involve requiring the use of an
ALU for a calculation and looking for access to data that is stored in SRAM, or it can be as all encom-
passing as taking control of the FBI bus itself.

Through several configurations of the leaky bucket (LB) algorithm, the ASI performs high-speed
policing of ATM and frame-relay traffic. Its default configuration, for instance, uses the generic cell
rate algorithm (GCRA) as defined by the ATM Traffic Management Specification, version 4.0. This
works as follows: We saw earlier that the FPP is programmed in FPL. It is important that the FPL code
can invoke functions that are sometimes executed on external hardware, thereby extending the capa-
bilities of the FPP. At the same time, the ASI contains an ALU and an SSRAM interface state buffer,
which are used to implement functions invoked by the FPL code. This means that when the FPL code,
for example, invokes the policing function for a PDU, the ASI checks whether the PDU is compliant
and returns an appropriate flag. The FPL program then determines what exactly must happen. For
example, it can choose to just flag all noncompliant PDUs or it can discard them altogether, depend-
ing on the application.

Figure 7.6 shows the internal structure of the ASI chip. We have already discussed the role of most
of its blocks. It is interesting, however, to note a couple of points. Two ALUs are available for pro-
cessing FPP external function requests. One is for policing and the other is for maintaining state-
related information and calculating statistics. Likewise, the two SSRAM interfaces, which were
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intended to handle memory access without contention, are used to simultaneously access two banks
of SSRAM memory: one with policing information and one with state information.

Transfer of management frames and statistics to a host CPU application is supported over the ASI’s
PCI bus. More specifically, through its direct memory access (DMA) master capabilities, the ASI for-
wards this information to host memory. Likewise, if the host wants to generate specific PDUs, it will
do so and download them to the ASI over their PCI connection, and the ASI will then send them out
through its 8-bit POS-PL3 interface. In terms of management information, the ASI maintains a very
large database where it stores the state-related information and statistics it gathers. This information
can be updated by FPL function calls invoked by the FPP and sent over the FBI bus. The code can run
ALU operations to modify or compare values in the database and the ASI can return values to the FPL
code. The ASI also maintains a second database that contains information used to determine compli-
ance with the imposed traffic control constraints.

In its several variations, the dual leaky bucket (DLB) algorithm (whose one subset is the ATM-
standard specified GCRA) is implemented on a programmable compute engine. When the FPP makes
the appropriate function call to the ASI regarding a specific PDU, the ASI starts running the corre-
sponding policing algorithm. When the algorithm execution is finished, the ASI flags the PDU (frame
or cell) as compliant or not by returning a pass/fail value to the FPP. In the case of a DLB implemen-
tation, it will also stipulate from which bucket it identified the PDU’s nonconformance.

It is important to realize that when we say that the ASI performs its policing by checking the
conformance for up to 64K connections, flows, or aggregates at up to OC-48 rates, it does not mean
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FIGURE 7.6 The internal block structure of the ASI chip. (Source: Agere)
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that it schedules or shapes any traffic. It just identifies the cells or frames that do not comply. Also,
when the LB algorithm is applied, numerous options in the GCRA parameters are chosen for each
connection. The only constraint is that each PDU’s arrival time must be measured with the same
degree of granularity across the board. For instance, if ATM and frame-relay connections will be
policed at the same time, the timeout counter must be set up to measure the smaller between the ATM
cell rate and the byte time of the frame relay connection.

THE DLB ALGORITHM

In Chapter 14, “Switch Fabrics,” and Chapter 15, “Traffic Managers,” we cover issues related to
scheduling and flow control. Among these issues, we discuss the LB algorithm and how it applies to
a policy that decides how and when to discard packets. In the ASI chip, Agere has implemented a very
flexible model that serves the traffic constraints in ATM networks extremely well.

In a classical single LB implementation, the algorithm uses two parameters: the Limit (L) and the
Increment (I) value. The Limit value corresponds to the bucket depth, whereas the Increment value
corresponds to the leak rate of the bucket.

In a dual leaky bucket (DLB) implementation, two buckets are applied to each connection.
Depending on the application, each of the Limit and Increment parameters of the two buckets can be
assigned to several connection parameters. For instance, in the context of an ATM connection, one
bucket may be made to leak at the sustained cell rate (SCR), whereas the other may be made to leak
at the peak cell rate (PCR). In that case, the ATM cells that do not conform can be tagged appropri-
ately by setting their Cell Loss Priority (CLP) bit equal to one.

Several variations of the DLB, including how to use the CLP bit as a policing parameter, are stip-
ulated in the ATM Forum TM 4.0 specification. In Agere’s approach, both cells with CLP � 0 or CLP
� 1 are added to both buckets. All discarded cells are marked as either SCR or PCR discards. All
action that will be taken is determined ultimately by the FPP and RSP programming, thereby giving
tremendous flexibility to the systems designer. More specifically, it enables systems to be imple-
mented that can answer the following questions for each connection:

• Which algorithm will be used?

• What will the negotiated cell rates be, including the SCR and the PCR?

• What will the ATM tolerance parameters be, including the maximum burst size (MBS), the burst tol-
erance (BT), and the cell delay variation tolerance (CDVT)?

• What are the supported access line rates for frame-relay connections, such as the committed infor-
mation rate (CIR)?

AGERE’S APP750NP (EX-NP10) AND APP750TM (EX-TM10) CHIPSET

Agere had originally targeted the PayloadPlus family to the OC-48c (2.5 Gbps) market. It has recently
introduced a new chipset (originally called PP10G) that scales the architecture up for the OC-192 (10
Gbps) realm and offers carrier-class performance in edge and core networks. The NP10 network proces-
sor and the TM10 traffic manager chips (recently renamed APP750NP and APP750TM, respectively)
comprise the new chipset, which can handle complex multifield packet classification, policing, queu-
ing, statistics, scheduling, shaping, buffer management, and, of course, cell or packet modification.
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Figure 7.7 shows the block structure of a typical 10 Gbps system based on these new chips. The
three-chip configuration can easily handle full-duplex 10 Gbps, supporting wire-speed processing
based on access control lists (ACLs) with thousands of ACL rules; however, an additional APP750NP
network processing unit (NPU) may have to be used if the intended system design requires egress
classification.

One of the major advantages of the new chipset is that it works with inexpensive external DRAM.
It requires very little SRAM to provide high-performance functionality. As the classification rule data-
base is stored in fast cycle RAM (FCRAM), which is also referred to as network DRAM, no external
CAM is needed. For instance, 1 million Internet Protocol version 4 (IPv4) routes can be kept in
DRAM with separate information for each virtual private network (VPN) supported. Statistics and
policing databases are kept in quad data rate (QDR) SRAM.

In terms of traffic management, the APP750NP/APP750TM chipset is extremely powerful and
flexible at the OC-192 realm. For example, VPNs are supported with traffic isolation and service level
agreements (SLAs). Dynamic service provisioning is ensured through dynamic bandwidth and
QoS/CoS modifications in real time. Two million different packet-handling behaviors with three
buffer management profiles per behavior type are available to guarantee a fine granularity in service
differentiation. External packet buffer memory can be expanded to 256MB or more per direction.

As its predecessor, the APP750NP/APP750TM chipset is predominantly programmed using
Agere’s FPL. Complex classification policies such as IPv4/IPv6, Point-to-Point Protocol over
Ethernet (PPPoE), Layer 2 Tunneling Protocol (L2TP), and Multiprotocol Label Switching (MPLS)
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FIGURE 7.7 A block diagram of a typical OC-192 line card based on the APP750NP/
APP750TM chipset. (Source: Agere)
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can be implemented in FPL. Even when they are executed, they will still leave plenty of headroom
for other packet computing work.

Statistics, policing, and several other modification functions can be implemented in Agere’s C-like
scripting language called Agere’s Scripting Language (ASL). This preserves investment in software
engineering for the implementation of queuing, policing, statistics gathering, as well as packet clas-
sification and code modification.

Although the APP750NP/APP750TM chipset can be directly connected to Agere’s PI40 switch
fabric through redundant integrated serialization and deserialization (serdes), it also provides support
for both cell- and frame-based switch fabrics, given its programmable classification and SAR capa-
bilities. This means that minimal if any at all glue logic is needed to interface third-party fabrics, which
can be connected using an Network Processing Forum (NPF)-like streaming interface based on System
Packet Interface 4.2 (SPI-4.2). Agere also provides a system reference design with full software
support that can be extremely useful for network equipment vendors (NEVs) trying to minimize their
time to market. A connection with the framer is also made via an industry standard SPI-4 Phase 2
frame interface.

Port-based rate shaping is programmable for up to 256 media ports and various configurations are
supported, such as one OC-192c, four OC-48c, mixtures of 1 Gbps or one Gigabit Ethernet, 192 DS-3
links, and so on.

The chipset is accessible by a supervising host CPU over a PCI-2.2-compliant, 66 MHz, 32- or
64-bit bus.

THE APP550 (EX-INP5) NETWORK PROCESSOR

As mentioned in the beginning of this chapter, at the end of July 2002, Agere announced the APP550
(originally introduced in the market as INP5). APP550 is an integrated network processor that further
optimizes the position of the product family for the OC-48 realm. It has also been designed to mini-
mize the chip count (an issue that was perceived as the Achilles heel of the architecture previously
offered by the company) and offer significantly decreased power consumption and a reduced overall
systems cost.

A comparison of a typical OC-48 solution based on the company’s previous three chips and the
APP550 single-chip solution, along with associated memory as well as PHY and fabric interface chips
in both cases, shows some impressive results. More specifically, the APP550-based system costs less
than half the cost of the three-chip solution. It takes only about 60 percent of the printed-board space
needed for the three-chip solution and consumes 19 watts (including all of the associated memories)
as opposed to 43 watts for the three-chip implementation. The company introduced the first APP550
chip samples by the end of 2002.

Figure 7.8 shows how the APP550 fits between the PHY/framer and the switch fabric. A full-func-
tion classifier, a policing engine, and a traffic manager are integrated into the APP550, along with
Ethernet Media Access Control (MAC) controllers and 3MB of on-chip DRAM. The APP550 inter-
faces to the line and to the fabric side through standard GMII/SMII or POS-PHY/UTOPIA interfaces.
At the same time, it can be interfaced with a supervising host CPU through a PCI bus and with exter-
nal optional coprocessors through a standard POS-PHY interface. Figure 7.8 also shows the data path
through the APP550 and the internal architecture of this highly integrated network processor.

For fast table lookup, the APP550 uses FCRAM, which is a fast-cycle DRAM and which offers
SRAM-like performance at DRAM prices. This means that for memory clock rates of 200 to 400
MHz, the network DRAM can achieve data rates equivalent to 400 to 800 MHz. Agere already has
several large memory suppliers (such as Samsung, Fujitsu, and Toshiba) signed up and committed to
the FCRAM used by its APP550 and APP750NP/APP750TM chips. The use of DRAM for the table
lookup function saves significant cost and power and greatly increases the capacity compared to the
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use of CAM or SRAM. FCRAM is used to provide a system with storage capabilities for high-den-
sity interfaces, such as tree memory, packet buffering, and data modification parameters. It is charac-
terized by less power consumption than conventional DRAM. It is also optimized for small bursts of
activity and random access, such as that needed in graphics and network applications (web content).

In terms of memory input/output (I/O) paths, the APP550 supports multiple types of memory
usage:

• In double data rate (DDR) SRAM, it maintains a 32-bit-wide interface with linked-list memory,
a 32-bit-wide optional stream editor (SED) context memory, an optional 32-bit-wide interface
with memory that contains policing and statistics-related information, an optional 32-bit-wide inter-
face with queue memory, and another optional 32-bit-wide memory bank that stores scheduler
parameters.

• In FCRAM, APP550 maintains a 32-bit-wide interface with packet-buffer memory, an optional
32-bit-wide interface with memory that stores reassembly-related information, a 16-bit-wide inter-
face with SED parameter memory, a 1 or 2 16-bit-wide interface with FPP program memory, and
an optional 16-bit-wide interface with FPP control memory.

By its ability to perform 128K simultaneous reassembles, the APP550 can support a large number
of virtual circuits, while the chip’s integrated capacity of 256K queues enables the per-flow queuing
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FIGURE 7.8 The internal architecture and data path of the APP550 network processor. (Source: Agere)
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for a large number of queues. Programmable data segmentation and modification allow the support
for tunneled protocols and the use of different switch fabrics, whereas sophisticated buffer manage-
ment and traffic shaping over 1,024 shapeable ports enable a more efficient use of bandwidth and a
high-density system design.

The APP550 has been announced at two clock frequencies—133 MHz and 266 MHz. It is offered
in a 1,413-pin FCBGA package and is manufactured in a 0.13� complementary metal oxide semi-
conductor (CMOS) process by TSMC. The 266 MHz version has a throughput of 5 Gbps (or 2 to 4
bidirectional Gigabit Ethernets) and consumes 9 watts. The 133 MHz version (targeted by Agere
toward the realm of applications between OC-3 and 1 to 2 Gigabit Ethernets) has a throughput of 2.5
Gbps and consumes less than 6 watts.

DEVELOPING SYSTEMS AND SOFTWARE FOR 
THE PAYLOADPLUS FAMILY OF NPUS

The FPL is one of the key factors for the flexibility and versatility of the PayloadPlus family of Agere’s
network processors. It is a functional language, which is a computing model that is somewhat remi-
niscent of the approach that the Lisp language implemented. It has nothing in common with the pro-
gramming model of a procedural language, such as C. In a functional language, the programmer writes
code that tells the underlying computer resources what to do, but not how to do it. Getting the code
to do the latter is usually very tedious, excruciatingly detailed, and highly error prone. Worst of all,
the code must be rewritten every time a slight modification of a protocol or operational procedure has
to be implemented.

As an illustrative example, contemplate the difficulty of coding the task of sorting a list of long bit
patterns according to some criteria and reordering them accordingly. In the functional programming
approach, the task is specified as the sorting of the original list. In a procedural language realm, how-
ever, the programmer has to correctly code bit per bit all the manipulations that must occur in the
appropriate order by properly monitoring and managing buffer usage. If the list of bit patterns changes,
the procedural code must be rewritten. In the functional language, the same sorting code must be
rerun, but this time it is simply applied on a different list of bit patterns.

FPL provides an order of magnitude of reduction in the number of instructions needed to carry out
a task compared to C/C��; hence, it offers a significant improvement in productivity of software
engineering. It also eliminates the need to hand-optimize assembly or microcode in order to achieve
wire-speed performance. We revisit this context and the language’s advantages in Chapter 16 where
we discuss systems engineering considerations and trade-offs regarding the cost of development over
the entire lifetime of a project or product.

Communication protocols are described in FPL, and the processor ends up “learning” pattern-
matching processes. The software engineer does not have to write exhaustive code that explains how
to seek out specific bits and what to do with them.

In the case of Agere’s network-processing solution, code must be written in FPL to create a pro-
gram in order to handle the PDUs. The code is then compiled and an image (executable) is loaded into
the FPP. Every time a PDU arrives at the FPP input, a program must run. Typical examples of code
written in FPL would perform operations such as layer 2 and above protocol processing, SARing of
ATM cells, checking the size of programmable PDUs, performing timeout checks on ATM cells, han-
dling CRC and checksum processing, and determining the PDU output queue and the PDU’s corre-
sponding CoS.

Code written in FPL must start from one of two possible entry points (program statements) called
roots. These actually stipulate which FPL function should be invoked first. For example, the ROOT
function will receive a data stream either from the framer or from the internal queue inside the FPP.
We commonly say, “A PDU is being replayed from queue.” The principle of replaying a PDU mani-
fests itself in the FPL computing model. This requires a two-pass process when handling a PDU:
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1. An initial processing pass must be performed, while the PDU data stream is read into the queue
engine memory in blocks of 64 bytes at a time. For instance, this occurs when identifying the type
of PDU, reading specific packet values, and assembling cells (in the case of ATM).

2. A second processing pass is performed, while the PDU is replayed from the queue. For instance,
the program may decide to simply forward the PDU to its next-stop application engine destina-
tion, or some operations stipulated by a higher-level protocol may need to be performed on the
replayed PDU.

The FPP Queue Engine (programmed by parts of the FPL code) enables the programmer to process
a PDU that may be embedded in a higher-level protocol, and then send it back to the queue. It may
even process it again for another protocol.

It is also important to note that through the use of an application programming interface (API),
the software engineer can add or delete certain types of FPL statements to and from the image dynam-
ically. Two types of pattern-matching statements are available: single-rule pattern statements, where
a single pattern must be matched with one or more functions to perform, and multiple-rule pattern
statements, which allow the definition of tables (for example, IP routing tables) to process a pattern
with many variations. The former can only be changed slowly, whereas the latter can be updated very
rapidly. The latter multiple-rule statements are called trees by Agere.

FPL offers the capability of specially tagging a PDU, which provides the definition of special pro-
cessing paths for functions to handle the different types of data. All PDU processing ends with the
option of either aborting and halting processing (in which case perhaps the application at hand dic-
tates that an exception must be initiated and handled under the auspices of the host CPU) or sending
the PDU to the downstream application logic waiting for it.

In addition to FPL, Agere is offering its ASL, a C-like scripting language, which can be used to
program procedural tasks that can be associated with the workload typically executed by the RSP and
the ASI chip. It can be compiled by Agere’s VLIW compiler into VLIW engine code. In order to
ensure that freshly written code executes within the available number of clock cycles, the program-
mer also has access to the VLIW instruction simulator. The effort customers put forth to write their
own code from scratch to implement various common functions or protocols is further minimized by
Agere’s library of code blocks that provide reference implementations of protocols. These include
protocols such as IP over AAL5, IP over SONET, and POS/Point-to-Point Protocol (PPP) as well as
raw switch functionality such as the implementation of the WRED algorithm, aspects of ATM polic-
ing, or traffic shaping.

The array of available tools inside Agere’s Festino™ Software Development Environment (SDE)
in its latest version 3.0 includes a full-fledged performance and functional simulator of individual
chips from the product family and of systems with multiple-chip topologies and configurations. This
enables the offline analysis and simulation of switch designs that even include external custom logic.
The latter is depicted in the SDE environment by using an extended model based on eXtensible
Markup Language (XML). A source-level debugger for FPL completes the toolset along with a traf-
fic-generation module, a throughput-accurate software simulator, and one common environment that
offers support for both the OC-48c and the OC-192 realms. In addition to a convenient graphical user
interface (GUI) approach, the environment has the following:

• A tracer tool, which keeps track of an individual packet during its lifetime inside a system and logs
all functions and subsequent actions taking place on it.

• A profiler, which can help by throwing the proverbial spotlight on performance bottlenecks through
the identification of the number of clock cycles spent on a particular context or on a specific “tree”
(in Agere’s meaning of the word, as we have seen).

An available Software Development Kit (SDK) enables the designer to write C- or Java-code mod-
els to describe other systems hardware that interacts with Agere’s chipsets in a larger configuration.
As a result, their behavior is brought into a global simulation run. SDE runs under Sun Solaris, Linux,
or Windows NT.
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It is also important to note that Agere provides strong support for the development of routing and
switching applications that are meant to run on the PayloadPlus family of network processors. One
of the preintegrated supported software options is based on WindRiver’s TMS system that contains
the very well known Tornado environment.2 The latter is now the de facto development environment
for embedded software systems in the infrastructure network community. It is coupled with software
that addresses essentially all aspects of layers 2, 3, and above of communications protocols, manage-
ment, and so on in the Internet world. The TMS protocol stack runs under VxWorks and communi-
cates with Agere’s reference boards. Driver support is available from the company, along with
software support to interface with a PCI-based chassis system, which is called Switch Support Package
(SSP). Figure 7.9 shows the concept.

A chassis-based hardware development system built around a Pentium- or PowerPC-hosted sys-
tem that is operating under either the Linux or VxWorks operating system is also available for the
development of systems based on Agere’s network-processing solution.

We conclude the discussion of Agere’s network-processor technology by referring you to Chapter
14, “Switch Fabrics,” where we cover switch fabric technologies and where Agere’s 40 Gbps switch
fabric chipset is covered in more detail as a leading-vendor technology case study.
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FIGURE 7.9 The TMS architecture for the development of software on Agere’s network-processing
platform. (Source: Agere)
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2. More information about the TMS and Tornado development systems can be found at WindRiver’s web site at www.
windriver.com.
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SUMMARY

In this chapter, we reviewed Agere’s network-processor family known as PayloadPlus as well as the
company’s latest 10 Gbps chipset and the most recently announced APP550 network processor, which
is a highly integrated OC-48 realm solution and the latest entry into the family. We discussed the
unusual partition of packet processing and switching tasks that the original Agere approach dictated
and identified its interesting characteristics. We reviewed the programming model for the Agere NPU
platform, which is based mainly on the company’s FPL programming language. FPL allows tremen-
dously shorter and efficient code writing compared to traditional C language coding, thereby mini-
mizing development time. We will expand on these issues in Chapter 16 where we review systems
considerations and trade-offs. Agere’s 40 Gbps switch fabric chipset is discussed in Chapter 14 as a
case study.
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CHAPTER 8

MOTOROLA’S C-PORT™ FAMILY
OF NETWORK PROCESSORS

Motorola has followed a two-pronged approach into the network-processing arena. At the top of their
line, they offer the C-Port family of network processors and traffic managers, which we will review
in this chapter. At the lower end of the spectrum, Motorola offers the PowerQUICC™ architecture,
which is based on the company’s original and very successful product recipe of including a very com-
mon central processing unit (CPU) in the same chip die (such as a member of the 68000 or the
PowerPC families) with Ethernet or other networking and communications interfaces. The latter fam-
ily has earned a tremendous amount of business for the company in the local area network (LAN) and
access equipment industry, effectively propelling the company to an undisputed leadership position
for communications processors; however, this same family cannot technically approach the require-
ments of the high-speed, heavy-duty-performance network processing that we study in this book.
Therefore, we will not cover it here.

Of course, Motorola quickly realized the limitations that its PowerQUICC architecture would
experience when it dealt with edge and especially core networks. This is why they decided to acquire
a promising Massachusetts startup called C-Port a few years ago. Since then, the company has been
developing and introducing new products in the network-processing market. They have preserved the
same brand name.

C-PORT: THE BIG PICTURE

The C-Port family is composed of mainly three network-processor chips: the C-3e, the C-5, and the
C-5e. The C-3e is a fully programmable 3 Gbps throughput network processing unit (NPU) with pro-
grammable interfaces along with integrated Ethernet Media Access Control (MAC) controllers
(10/100/1000) and Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH)
framers (155/622 Mbps). Integrated coprocessors handle classification and traffic management, but
an externally connected Q-3 chip from Motorola can handle traffic management, offering multilevel
hierarchy scheduling and support for up to 64K queues.

Motorola is positioning the next-step-up product—C-5—for a wide range of network applications
around the OC-12 level. The latest product—C-5e—is geared for the OC-48 realm. The potential
applications include multiservice access platforms (MSAPs), edge routers, digital subscriber loop
access multiplexers (DSLAMs), wireless base stations, cable head ends, load balancers, web switches,
and so on. The company’s publicized product roadmap indicates that the C-10 and Q-10 chipsets will
be introduced in 2003 to handle 10 Gbps of sustained throughput. Motorola is not present in the
40 Gbps realm yet.

The family contains two additional chips: the Q-5 (a traffic manager) and the M-5 (an interface-
adapter chip that enables full-duplex and channelized OC-48 applications for the C-5e). The Q-5
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provides fine-grained traffic management by handling relevant issues such as traffic policing, shap-
ing, and scheduling.

The C-5 has a throughput of 5 Gbps and is available in the following clock frequencies: 166, 200,
and 233 MHz. The more recent C-5e is clocked at 266 MHz. The C-5 is offered in an 840-pin high
thermal coefficient of expansion ceramic ball grid array (HiTCE CBGA) package. Typically, it con-
sumes 15, 17.5, and 20 watts respectively with its three available clock frequencies. The HiTCE mate-
rial out of which the package is built has the unique characteristic of expanding thermally at the same
rate as a typical printed circuit board (PCB). This accounts for the exceptional reliability levels
attained by the Motorola C-5 and C-5e processor packages over a wide temperature range. The C-5e,
on which Motorola is pinning lots of hope, is offered in a slightly different 840-pin HiTCE CBGA
package, but it consumes only 9 watts as it operates from a 1.2V supply. The Q-5 and M-5 chips are
presented in a 600-pin EBGA and a 352-pin TBGA package. They typically consume 4.5 and 2 watts,
respectively.

NPU ARCHITECTURE

Figure 8.1 shows the basic architecture of the C-5e. The network processor combines 17 program-
mable reduced instruction set computer (RISC) cores for packet and cell forwarding, along with 32
very long instruction word (VLIW) engines called serial data processors (SDPs) for processing data
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FIGURE 8.1 The internal architecture of Motorola’s C-5e network processor. (Source: Motorola)
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streams. Several powerful embedded coprocessors that handle other functions are located next to
these. These include a buffer management unit (BMU), a table lookup unit (TLU), a queue manage-
ment unit (QMU), a fabric processor (FP), and a supervising CPU that Motorola affectionately calls
executive processor (XP).

In addition to this heavy artillery inside the NPU die, intrinsic provisions are available to interface
externally with an optional traffic management coprocessor (TMC). This role is ideally fulfilled by
the company’s powerful Q-5 chip. The CPU combination of what is available inside the C-5e leaves
more than 4,500 millions of instructions per second (MIPS) of computing power for a switching/rout-
ing systems designer who may be confronted with the task of adding services throughout the prover-
bial protocol stack.

Sixteen channel processors (CPs) are at the heart of the C-5e design. These are extremely flexible
computing engines that can be individually programmed. Their flexibility means that each engine can
be programmed to play different roles depending on the application at hand. Therefore, they can be
made to easily support Asynchronous Transfer Mode (ATM), Internet Protocol (IP) over Ethernet IP,
IP over Point-to-Point Protocol (PPP), SONET/SDH, frame relay, and even proprietary protocols.

Each CP consists of a dedicated RISC core and dual SDPs: one for ingress and one for egress com-
puting in each CP. The CPs can be assigned to physical interfaces that the network processor is called
to support. They can be combined into aggregates that support input/output (I/O) bitstreams of higher
bandwidth, or they can be assigned to other computational tasks internally as dedicated coprocessors.

The SDPs handle all data encoding/decoding, framing, formatting, parsing, cyclic redundancy
check (CRC)-based error checking, and data movement. As the SDPs can also control an external pro-
grammable pin logic block, they enable systems designers to implement almost any layer 1 interface.
This flexibility includes connecting with T/E carrier framers, Ethernet PHY (RMII), Gigabit Ethernet
PHY (GMII or TBI), OC-3/STM-1 PHY, and OC-12/STM-4 PHY through the M-5 Channel Adapter,
and a Universal Test and Operations PHY Interface for ATM Level 3 (UTOPIA 3)/Packet over
SONET/physical (POS-PHY) interface, which can support OC-48/OC-48c/STM-16 MPHY capabil-
ities. Also note that OC-3/STM-1, OC-12/STM-4, and OC-12c/STM-4 framers are built into the archi-
tecture of the SDPs.

Moving up one level to layer 2, the SDPs can be independently configured to support Ethernet,
High-level Data Link Control (HDLC) streams, POS, frame relay, ATM, and Fibre Channel, as well
as almost any other required format, including Multiprotocol Label Switching (MPLS) and other
encapsulations. The SDPs are highly programmable; therefore, they support a whole array of diverse
MAC interfaces and data-parsing requirements to the extent that each port can be made to implement
a different protocol. Programming the SDP must be done in microcode. Motorola provides the microc-
ode for a vast spectrum of applications (such as all flavors of Ethernet, IP and ATM over SONET, T/E
carrier serial data streams, and so on). Interestingly, no coding is required on behalf of the user for the
support of the diverse MAC interfaces.

The RISC core of each CP is clocked at the same frequency as the core clock rate of the C-5e. It
possesses its own instruction and data memory of 32KB and 48KB per cluster (that is, a group of four
CPs). The RISC core engine’s instruction set is a subset of the widely known and used MIPS instruc-
tion set, so Motorola judiciously capitalizes on using a de facto industry standard. The RISC core is
programmable in C or C��. This feature lends the computing power of the RISC core of each of the
CPs to tasks that can be best implemented in a high-level language. These tasks include the decision
making for forwarding, scheduling, statistics gathering, and so on. The natural result is that bit-level
operations can be offloaded to the specialized SDPs; therefore, RISC core capacity is preserved for
applications that require it.

In order to maximize the impact of any combination among the main parameters of processing
power, throughput, and bandwidth, the systems designer can easily combine the CPs of the C-5
network processor. For instance, to scale the bandwidth, multiple CPs can be clustered in parallel log-
ical aggregates for wider data streams while maintaining the same simple and straightforward soft-
ware model. Likewise, to increase the processing power for a particular application, the CPs can be
cascaded in a pipelined fashion to enable higher-performance processing on the same bitstream. This
is an interesting way of applying processing power to a set of tasks independently of the actual data
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rate. Sophisticated hardware mechanisms allow one or both of these techniques to be engaged with-
out placing a further burden on the overall software complexity.

The C-5e can be used as a stand-alone device with the possibility of supporting up to OC-48 line
rates or four OC-12 streams in full duplex. However, for higher-speed applications that may require
OC-48c full-duplex capabilities and channelized applications, the Motorola’s M-5 Channel Adapter
will be used. The M-5 Channel Adapter can seamlessly connect the external world onto the physical
interfaces or the fabric interface of the C-5e in various user-defined configurations. The M-5 Channel
Adapter accepts both Packet over SONET PHY Level 3 (POS-PL3) and UTOPIA 3 framer interfaces
into the C-5e network processor’s 16 clustered CPs, as well as its FP interface at up to OC-48c/STM-
16 wire speeds. Both SPHY and MPHY framers are supported on the C-5e CPs, and the FP also sup-
ports SPHY framers. Up to 48 logical interfaces can connect through the MPHY, thereby enabling
virtual channelization down to the Synchronous Transfer Signal, Level 1 (STS-1) level of granularity
within an OC-48/STM-16 bit stream.

We mentioned earlier that the C-5e contains a set of powerful and highly specialized coprocessors.
We will now take a closer look at them:

• TLU The TLU is a flexible and high-speed classification engine. It allows the implementation of
a broad spectrum of traffic classification functions and supports the execution of multiple and dif-
ferent search algorithms. These search algorithms are executed simultaneously with the lookup
operations. The performance afforded enables you to handle OC-48c/STM-16 class applications
while leaving plenty of extra headroom for other needed computing chores. The TLU speed is cer-
tified by Motorola to achieve more than 46 million IPv4 lookups per second and more than 133 mil-
lion index lookups per second. This impressive performance is a result of its highly pipelined
architecture.

Typical lookups that the TLU is called to perform include IPv4/IPv6 longest prefix match (LPM),
ATM Virtual Path Identifier/Virtual Connection Identifier (VPI/VCI), Ethernet MAC/virtual LANs
(VLANs), and MPLS. In addition to table lookups, the TLU can also be configured to perform inte-
grated real-time statistics counting. Among the multiple search algorithms that the TLU can exe-
cute, support is available for the indexed pointer, hash, LPM, trie, key, as well as data, chained index,
and chained hash tables. The TLU can be configured with up to 32 unique tables, which can each
contain up to 16 million entries. Each entry in these tables ranges from 8 to 1,024 bytes.

An interesting feature of the TLU architecture is that to prevent table updates from interfering with
ongoing lookups, the TLU can support shadow table capabilities through its interface to 64-bit-wide
133 MHz zero bus turnaround (ZBT) static random access memory (SRAM). On top of that, if even
further classification capabilities are required in a system application, the C-5e makes it possible to
attach an external classification coprocessor to the SRAM interface, in which case the TLU will
simply act as a proxy to the external coprocessor. The TLU can handle up to 64MB of external
memory (arranged as 128Mb�32 pins).

• QMU The integrated QMU (working in internal mode) can support up to 512 queues, which is
considered adequate to satisfy the requirements of most applications. However, this queue-man-
agement performance can be scaled by engaging the QMU in its external mode. By attaching the
Q-5 TMC (a task that does not require glue logic), which we discuss in the following section, a very
powerful quality of service (QoS) management platform can be achieved across the spectrum and
over both IP and ATM applications.

• FP Through its programmability, the highly configurable FP offers the possibility of implement-
ing a wide range of fabric parameters, such as cell size and self-routing headers, enabling control
to be applied on a per-flow basis. It can also handle segmentation and reassembly (SAR) and inte-
grated scheduling of up to 128 queues. The FP can run at 125 MHz with movement that is 64 bits
wide (32-bit transmit [Tx]/32-bit receive [Rx]). It can support a bandwidth of up to 3.2 Gbps full
duplex.
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It offers the flexibility of a broad spectrum of standard interfaces such as UTOPIA 2, UTOPIA 3,
and 32-bit 125 MHz CSIX-L1. Without any glue logic, it interfaces to the Power X TeraChannel®1

fabric architecture and the IBM PowerPRS™ switch fabric family, which we discussed in Chapter 4,
“IBM PowerNP™.” It can be further configured to support other proprietary fabrics. Interestingly,
multiple C-5e network processors can be connected through their fabric interfaces to a common
switch fabric. As a result, aggregate bandwidth performance can reach a rate of terabits per second.

• BMU The BMU is 139 bits wide based on 128 bits of data, 9 bits for error correction coding
(ECC), and 2 control bits. The size of buffer memory under its supervision can be up to 128MB.

• XP The XP handles supervisory tasks and is also a 32-bit RISC CPU core. It is equally program-
mable in C/C�� with the same instruction set as the RISC cores that are inside the 16 CPs.
Externally, it provides support for a 32-bit 33/66 MHz Peripheral Computer Interconnect (PCI) bus
and a serial programmable read-only memory (PROM) interface, along with a two-wire serial bus
interface that supports 400 Kbps links.

As shown in the architectural structure of Figure 8.1, several internal communications buses can
be found in the C-5e network-processor chip:

• The payload bus is 128 bits wide, transfers 64 bytes at a time, and can handle a throughput of up to
34.1 Gbps.

• The ring bus is 64 bits wide, transfers anything from 8 bytes to 32 bytes, and can handle a through-
put of up to 21.1 Gbps.

• The global bus is a 32-bit bus that can transfer 4 bytes at a time with a maximum bandwidth of
4.2 Gbps.

The M-5 Channel Adapter supports a 5 Gbps aggregate and can be configured in 1 to 48 ingress
channels. It essentially maps external links onto C-5e channels, and vice versa. For instance, an OC-
1 link maps as three M-5 ingress channels to one C-5e CP channel, whereas an OC-3c maps as one
M-5 ingress channel to one C-5e CP channel, an OC-12c link maps as one M-5 ingress channel to one
C-5e CP cluster (four CP channels), and an OC-48c link maps as one M-5 ingress channel to four C-
5e CP clusters (16 CP channels). An OC-48c can also map as one M-5 ingress channel to one C-5e
FP channel, if it is connected onto the FP instead. The M-5 handles packet data units (PDUs) that are
52 bytes long for ATM cells. For POS, the packet length can vary from 28 bytes to 9,216 bytes. Figure
8.2 shows a typical configuration of a router system based on the Motorola C-5e network processor
in conjunction with the company’s M-5 Channel Adapter chip.

THE Q-5 TMC

As discussed previously, the sheer variety of applications that service providers must deliver while
doing so under a diversified set of requirements and customer-imposed end-to-end QoS levels spans
the whole spectrum from voice over IP (VoIP) and streaming video all the way to web casting, with-
out forgetting, of course, mundane data transfers. These diverse services are characterized by differ-
ent traffic patterns and rates. As a result, building networking systems that implement these
next-generation services requires active and sophisticated traffic management. Motorola has intro-
duced the Q-5 TMC to address this need. The Q-5 performs its mission by being coupled without glue
logic to the company’s flagship network processor C-5e in order to provide QoS management into the
data-forwarding path (data plane).
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Due to the flexibility of the Q-5 TMC interfaces, the company targets it to different markets of net-
work equipment, such as Internet access routers, optical edge multiservice platforms, virtual private
network (VPN) access devices, packet/ATM internetworking devices, IP/ATM access/aggregation
devices, and even devices for wireless network infrastructure, base stations, and so on.

The Q-5 TMC offers the following interface possibilities with a network processor (or special
application-specific integrated circuit [ASIC]), a host processor, or memory:

• A PCI host interface that is 32 bits wide, is clocked at 66 MHz, and can be used for system config-
uration and statistics gathering.

• An external traffic management interface (TMI) that is 58 bits wide and works at 100 MHz between
the Q-5 TMC and a network processor or ASIC. The TMI is used to pass descriptors and control
information. The definition and role of the descriptors are described later in this section with a real-
life example of a high-performance edge router. For the moment, think of this as simply a data struc-
ture associated with the internal description of traffic payloads. In the Motorola C-5e network
processor, the TMI replaces the QMU’s external SRAM.

• A double data rate (DDR) synchronous dynamic random access memory (SDRAM) interface for
descriptor storage. This interface is 72 bits wide, is clocked at 133 MHz, and can address a maxi-
mum of 64MB of storage.
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FIGURE 8.2 A typical line-card architecture based on Motorola’s C-5e network processor and Q-5 TMC in a high-
function edge router. The backplane is implied on the right side of the drawing running vertically across all the cards.
(Source: Motorola)
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• Two ZBT SRAM interfaces—namely, one for parameter storage, which is 72 bits wide, is clocked
at 133 MHz, and can address a maximum of 8MB of storage, and one for queue-link storage, which
is 18 bits wide, is clocked at 133 MHz, and can address a maximum of 10MB of memory space.

Typical QoS configurations such as policy-based active queue management (AQM) with fair buffer
sharing, statistics collection parameters, and traffic-monitoring policing and shaping. Even policy-
based priority and fair bandwidth allocation to flows, along with the scheduling of flows, can be eas-
ily implemented by software engineers working on switching/routing systems through the use of QoS
application programming interfaces (APIs). These same APIs also enable the rapid modification of
the QoS configurations so the user can provide real-time service provisioning and reprovisioning.

With its 5 Gbps throughput, the Q-5 provides multiprotocol support for virtually any type of link,
enabling the implementation of QoS management up to OC-48c wire speeds in protocol environments,
which can be anything among IP, ATM, frame relay, Ethernet, and POS. With the Q-5 TMC, the user
can implement high-density per-flow and/or per-VCI queuing and very fine-grained traffic shaping
for a broad range of packet- and cell-based applications. A three-level scheduling hierarchy, which
provides support for up to 4,000 virtual channels (VCs), enables the implementation of a vast array
of services including deep channelization and even integrated multicasting.

The Q-5 TMC is designed as a look-aside traffic manager, which enables it to provide both ingress
and egress traffic management. Ideally, it should be combined with Motorola’s C-5e network proces-
sor, but it can function equally well in a system as a stand-alone TMC. Figure 8.3 shows the flexibil-
ity with which the Q-5 TMC and its enqueue processor, buffer manager, and scheduler can implement
advanced QoS.

In order to provide robust scheduling and ensure that service level agreement (SLA) stipulations
are met for priority, fairness, and data rate, the Q-5 TMC offers a three-level scheduling hierarchy
depending on the level of aggregation required. The schedulers at any of these three levels, as shown
in Figure 8.5, can be configured with an assortment of algorithms to perform integrated shaping/
scheduling on different traffic types depending on the exact traffic requirements. The base element in
the scheduling hierarchy of the Q-5 is the traffic queue, which represents an individual connection, a
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FIGURE 8.3 The logical flow of operations with the Q-5 TMC. (Source: Motorola)
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collection of connections, or a flow. Traffic queues can aggregate through up to three scheduling
levels. This scheduling hierarchy provides support for priority and multiprotocol (ATM, IP, frame
relay, MPLS, or a mixture) fair scheduling and shaping algorithms. The schedulers at level 3 can
aggregate up to 128K traffic queues into a class or multiple classes. Level 2 schedulers can consoli-
date up to 32 level 3 schedulers. Level 1 schedulers can cluster up to 32 level 2 schedulers.

Offering a wide selection of algorithms, Motorola’s Q-5 TMC enables customized implementa-
tions of QoS by allowing various combinations used by the schedulers. The following are among the
supported algorithms:

• Strict priority (SP) In this case, each input to a scheduler is statistically assigned one of 32 prior-
ity levels without any minimum guarantees. All of the nonempty inputs within each level of prior-
ity are served on a first-in first-out (FIFO) basis.

• Guaranteed bandwidth weighted fair queuing (GBWFQ) This is a non-work-conserving WFQ-
type of algorithm. It is used to provide guaranteed (constant bit rate [CBR]) bandwidth to inputs of
any scheduler by assigning them 22-bit weights. The concepts and distinction between work-con-
serving and non-work-conserving algorithms are thoroughly discussed in several good computer-
network theory books, such as An Engineering Approach to Computer Networking: ATM Networks
and the Telephone Network by Srinivasan Keshav.2

• Excess bandwidth weighted fair queuing (EB-WFQ) With this algorithm, each input to a sched-
uler is assigned one of 32 possible 22-bit weights. Bandwidth is served to the nonempty inputs rel-
ative to these weights. The WFQ algorithm distributes bandwidth proportionally to the weights, even
in the presence of variable-length packets.

• Frame-based deficit round robin (FBDRR) This algorithm, which is only available for use with
the level 3 schedulers, apportions the bandwidth according to the weights that have been assigned
to traffic queues. The FBDRR variant of the well-known deficit round robin (DRR) algorithm uses
a configurable service quantum to reduce the latency and jitter, which are intrinsic to the funda-
mental DRR approach.

The Motorola Q-5 TMC practices what one would call Active Queue Management (AQM). The
combination of a flexible buffer-sharing scheme at flow, class, and interface levels enables a wider
regime of operating conditions when confronted with traffic congestion without any significant degra-
dation of QoS levels associated with flows or connections. The traffic-payload descriptors are stored
once they are received. The Q-5 TMC forwards them to the appropriate destination only when it must
transmit them—something that it does as part of the scheduling operation. This information is stored
internally in a descriptor buffer. The Q-5 TMC supports up to 2 million descriptor buffers, and each
one is configurable from 8, 16, 24, to 32 bytes in size. This flexibility enables the dynamic allocation
of buffer space and the easy maximization of buffers, which are allocated to active traffic queues. This
is why the scheme is called active queue management.

To further complete the AQM picture of the traffic management capabilities within the Q-5 TMC,
it is worthwhile to note that Random Early Detection (RED) and Weighted RED (WRED) AQM
schemes are supported and are mapped onto the chip’s shared hierarchical buffer model. All
packet/cell-discard models are parameterized and configurable, and all PDUs are either tagged or
discarded based on the corresponding congestion schemes, which the user may have chosen to con-
figure in the Q-5 TMC.

For the sake of illustration, we will discuss an example of how the implementation of a typical
QoS solution flows through a system that is based on the Q-5 TMC. The example is illustrated in
Figure 8.2, which shows the implementation of a real-life high-performance routing system.

In this design example, as soon as packets/cells enter the system, which is composed of the C-5e
network processor and the Q-5 TMC, the ingress processor sends the actual data over the internal pay-

2. Srinivasan Keshav, An Engineering Approach to Computer Networking: ATM Networks and the Telephone Network (Reading,
Massachusetts: Addison-Wesley, 1997).
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load bus to the BMU for temporary storage and it does so after parsing and classifying the incoming
bitstream. The ingress processor can be one or more of the 16 CPs (depending on the application and
the point in time when the system functionality is looked at), the XP, or even the FP.

Simultaneously, the internal processors of the C-5e network processor (one of the CPs, the XP, or
even the FP) create an application-specific control packet called a descriptor, which is then enqueued
into the Q-5 TMC through the auspices of the C-5e network processor’s QMU. When packets or cells
must be routed to different embedded processors (one of the CPs, the XP, or the FP), this is effectively
done through the Q-5 TMC, which is always using the descriptors as proxies for the corresponding
individual packets. Descriptors are transferred as part of the enqueue operation (both unicast and mul-
ticast) and are returned as part of the dequeue operation.

As mentioned earlier, the Q-5 TMC stores the payload descriptors when they are received. It then
forwards these descriptors individually to the appropriate processor for subsequent payload-related
processing through the network processor’s QMU. This means that when a descriptor reaches its des-
tination processor (the CP, the XP, or the FP), the payload data that is associated with this descriptor
will be pulled from the temporary storage under the supervision of the BMU and forwarded to the
corresponding destination, which is now the processor that possesses the descriptor. The following
section discusses how to program QoS-related services with C-Ware APIs.

DEVELOPING SOFTWARE FOR THE C-PORT 
FAMILY OF NETWORK PROCESSORS

Motorola is offering a powerful toolset and development system for the overall development of soft-
ware in conjunction with new hardware engineering. The C-Ware Applications Library and the
C-Ware API enable the timely development of rich NPU source code that can be tested and analyzed
by the toolset, simulation, and performance analysis environments. The C-Ware Simulation En-
vironment enables the fast and performance-accurate simulation of all aspects of hardware in the
C-Port family of NPUs, traffic managers, and even adapters. The environment further provides open
interfaces for system simulation creation (including the host CPU, the control plane, the fabric, and
any potential coprocessors). The C-Ware iPerformance® Analyzer offers an advanced integrated
graphical user interface (GUI) with capabilities for monitoring per CP or per thread, and it enables
graphical C-language-level debugging. The compiler and debugger are solid and GNU based, offer-
ing both performance and code-size optimization capabilities. The big picture of the development
environment is completed with performance-analysis and traffic-scripting tools.

To interface the main network application with specialized network-processing code, which han-
dles data parsing, classification and table management, traffic management, data modification, con-
trol plane management, and buffer management, independent of whether the functions occur at the
forwarding or control planes, a series of APIs provide the peace of mind associated with code com-
patibility and the preservation of investment.

Figures 8.4 and 8.6 illustrate this point. These APIs, which act in a similar way as APIs found in
the traditional computing world, abstract the underlying hardware architecture of the C-5e network
processor and its associated Q-5 TMC. They offer support for the most common among network task-
building blocks, such as physical interface management, data forwarding, table lookups, buffer man-
agement, and queuing operations. Writing code that interfaces with these APIs is a good way to ensure
software compatibility and scalability from generation to generation of Motorola’s C-Port family of
network processors.

More specifically, in terms of QoS requirements, the combination of Motorola’s APIs and stan-
dard C language is more than enough to configure the Q-5 TMC to perform its QoS-related tasks along
with a main application, which runs on the C-5 or C-5e network processor itself. The APIs allow the
coding of software that implements the QoS service from as low as the physical-level functions all
the way to host-based supervisory and billing functions. If the Q-5 TMC is used independently of
Motorola’s network processors as a stand-alone traffic manager, the same APIs enable the correct con-
figuration of the chip.
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FIGURE 8.5 Organization of the data flow through the Q-5 Traffic Management Coprocessor. (Source: Motorola)

FIGURE 8.4 Conceptual use of APIs to engage all hardware functions of the C-5e.
(Source: Motorola)
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At the data plane, the AQM can be programmed as well as all aspects of traffic policing and shap-
ing, statistics collection parameters, and the scheduling of flows. This type of modular functionality
is needed to implement higher levels of QoS features that are required in network equipment so the
service providers can provision special services and exercise policy management. In addition to the
configuration capabilities of the Q-5 TMC that we have discussed so far, the following features are
supported:

• Multicast enqueue elaboration A predefined table of multicast groups is used in order to deter-
mine the number and destination of traffic queues for multicast traffic. When a multicast enqueue
is created, the corresponding descriptor references one of these multicast groups.

• Acceleration of ATM SARing For the support of ATM SAR and, more specifically, for AAL5
and AAL2 protocols, the Q-5 TMC has an interesting ability to enqueue a single descriptor on a per-
packet basis. It can then leak that descriptor out n times (n corresponds to the number of the smaller
segments of a large packet) at a rate that matches the required traffic specifications. It also obvi-
ously has the inverse ability to reassemble packets.

• Collection of statistics Not surprisingly, the Q-5 TMC can collect statistics on common objects
such as queue lengths, queue discards, and so on. However, it can also gather statistics on buffer
pools (enqueues, dequeues, and discards). Based on the relevant work that it compiles, the infor-
mation it produces can be conveyed either over the PCI bus to a supervising host CPU or through
the external TMI that exists between the C-5e network processor and the Q-5 TMC to other proces-
sors active in a system—that is, the CPs, the XP, or the FP.
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FIGURE 8.6 The use of APIs to address all functionality in both the data and control/
management planes. (Source: Motorola)

Policy Applications

Network Management

Signaling

Topology Management

Q-5 Configuration and
Reconfiguration

Statistics Collection

Shaping/Scheduling

Active Queue Management

Policing

Classification

Media Access Control

APIs

C-Ware

APIs

Fo
rw

ar
di

ng
 P

la
ne

C
on

tr
ol

/M
an

ag
em

en
t P

la
ne

Q-5
Traffic

Management
Coprocessor

Host
Processor

C-5e network 
processor

or ASIC

Physical Mapping

A
pp

lic
at

io
n 

so
ft

w
ar

e 
us

in
g 

th
e 

A
PI

’s
 to

 e
ng

ag
e 

th
e 

ha
rd

w
ar

e

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

MOTOROLA’S C-PORT™ FAMILY OF NETWORK PROCESSORS



The C-Ware Applications Library contains several implementations of protocols and interfaces
that facilitate an overall switching/routing systems design for Motorola’s customers. Among its imple-
mented protocols, it contains the following:

• POS layer 2/3 switch.

• ATM AAL-5 SAR.
• ATM aggregation.
• AAL2 for two OC-3c ports.
• 802.1p
• 802.1Q
• Differentiated Services (DiffServ).
• Frame relay to DS-3 clear channel interface.
• Fibre Channel MAC.
• MPLS label-switched router (LSR).
• IPv6

Among the interfaces it implements, we will mention the following:

• 10/100 Ethernet.
• Gigabit Ethernet.
• OC-3c
• OC-12c
• OC-48c

Motorola is also offering an integrated C-Ware Development System. This is a joint hardware-
software systems-engineering platform, which in conjunction with the availability of pre-existent
hardware reference designs can definitely accelerate the overall development cycle. It is based upon
a compact-PCI chassis into which you can plug one or multiple C-5e switching modules, a Q-5 TMC-
based daughter board, a supervising computer board such as Motorola’s MPC7400 Series Host
Application Module, various other physical interface modules (PIMs), and several hardware refer-
ence designs that can facilitate the time to market for Motorola’s customers. More detailed informa-
tion about this development system can be found at Motorola’s web sites.3

SYSTEMS CONSIDERATIONS WHEN 
DESIGNING WITH C-PORT NPUS

Unlike other NPU vendors, Motorola is not offering one-stop shopping. However, the company has
documented compatibility with several vendors of complementary hardware as well as with both soft-
ware and hardware development systems.

The security acceleration area, for instance, directly supports Corrent’s 7120 Hurricane™ IPsec
accelerator at above 2 Gbps throughput by interfacing with the C-5e to provide fast-path security solu-
tions such as VPNs. In terms of search engines, the Network Database Search Engines
(CYNSE70032) from Cypress as well as the Cypress coprocessor (CYNCP80192) can connect with
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3. High-quality technical documentation with tutorials, white papers, application notes, users guides, and data sheets is available
at the web site of Motorola’s network and communications processing group at http://e-www.motorola.com/webapp/sps/
site/overview.jsp?nodeId�03M0ylgx1KsM0yrfgP8S and at Motorola’s documentation library at http://e-www.motorola.com/
webapp/sps/library/docu_lib.jsp. The company’s design resources for their business can be found at www.motorola.com/
networkprocessors. The support web site for Motorola’s network-processor group is at http://motorola.cport.com/support.
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the C-Port C-5 NPU over the latter engine’s ZBT SRAM port. The combination delivers significantly
higher levels of search performance and throughput for mission-critical applications. To provide
OC-48 rate classification of content based on layers 2 through 7 processing, the C-5 NPU can be inter-
faced with the PM2329 ClassiPI™ high-performance content processor from PMC-Sierra, with a
specialized Software Development Kit (SDK) that is available from the latter engine as well. The
PAX.port™ 2500 classification processor from Solidum is another classification processor that
has been announced to be connectable to the C-5e in order to enable multigigabit processing (up to
2.5 Gbps).

One of the most important elements in this teaming or alliance approach is the switch fabric.
Motorola does not offer switch fabrics; It relies on relationships with other vendors. For example,
IBM’s PowerPRS fabric connects to the C-5 network processor through the IBM U-DASL interface,
whereas the more recent IBM PowerPRS fabrics can connect to the C-5e directly through the CSIX-
L1 interface.

Besides the popular Software Development Environment (SDE) Tornado for Managed Switches
(TMS 2.0), which is tightly integrated with the C-Port family development environment and is offered
by WindRiver as the C-5 Switch Support Package (SSP),4 Netplane’s MPLS routing stack is also sup-
ported.5 HCL6 and Tality7 are two examples of other companies that offer expert design services for
the C-Port network processor family, including hardware design and embedded networking and tele-
com software development. Tality specializes in extending the spectrum of C-5 NPU interfaces and
offers a POS-PHY/UTOPIA interface adapter among other things.

SUMMARY

In this chapter, we reviewed Motorola’s C-Port network processor family. We discussed in quite some
detail the architecture of the family and looked at the C-5e as well as the company’s Q-5 TMC and
M-5 Channel Adapter. Motorola is the current market-share leader in network-processing sales.
Regardless of what the rest of the market will do, it is a formidable player that combines world-class
semiconductor expertise in both design and manufacturing as well as deep networking and commu-
nications know-how, along with tremendous financial and engineering resources. Therefore, it is more
than safe to bet that the company and its products will remain key players in the network-processing
field for years to come.
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4. WindRiver’s web site offers information about their support of the SDE Tornado for Managed Switches (TMS) in a C-Port net-
work-processing context at www.windriver.com/products/html/maswitch.html.

5. Netplane (now a Conexant company since its recent acquisition) and its products are described at the company’s web site at
www.netplane.com.

6. HCL’s web site describes their offerings at www.hcltechnologies.com.

7. Tality’s web site can be found at www.tality.com.
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CHAPTER 9

OTHER NPU ARCHITECTURES

Up to this point, we have discussed some of the most established architectures in the network-
processing realm that have been developed by a few of the leading and most entrenched vendors.
However, the field of network processors is extremely fertile and involves more than a few highly
active participants. These participants range from global powerhouse corporations, which are mostly
captive semiconductor manufacturers and/or communications equipment providers, all the way to
small and fabless companies, which are mostly promising startups that often develop exciting tech-
nology. The network-processing field is extremely dynamic, but it must be put into the context of the
overall economic situation. Because we are discussing technology developed in startup companies, it
is prudent to consider the risk and reality of these products.

An extremely hostile environment is created when the economic rigors of a highly competitive
market where companies struggle for differentiation are coupled with the general sluggish economy
following the collapse of the amazing technology craze of the 1990s, which provided entrepreneurs
with easy access to venture capital funds. Startup companies in this field now vie for acceptance
through design wins and market share while confronting the day-to-day struggle to survive financially.
This overall context sketches the background of an extremely competitive industry where the stakes
are very high. The natural result will be the time-proven template of markets that sooner or later con-
solidate around a few major players. In other words, the market will ultimately only have room for no
more than a half dozen significant players.

As this chapter is being written, major players with deep pockets and powerful vertically integrated
market positions are acquiring some of the startups that we just discussed. Meanwhile, some promis-
ing startups, such as Clearwater Networks, simply vanish from the radar screen, having slowly laid
off their engineering staff and used up their last pennies of funding. In some of these cases, such as
Terago, the ailing companies have actually delivered a cutting-edge product to the market.
Nevertheless, some of them fail to secure funding and are forced to cease operations.

Nowadays, a network-processing startup must do more than just possess technology, have a prod-
uct and revenue, and execute a predetermined business plan. It must secure operational funds on time
and obtain actual design wins from customers who are established market players in their own mar-
kets. This is difficult to accomplish since customers want to see a working product with differentiable
characteristics that mean something for the customer along with a support structure, development
tools, and so on. Many customers justifiably worry whether their key suppliers will be around next
year or three years down the road; therefore, they require financial robustness from the network-pro-
cessing vendors in order to make a favorable business decision.

As many of these young companies have taken their last breath, some of the technical material that
was originally planned to be included in this chapter suddenly became nonapplicable and was omit-
ted. This book intends to leave the job of passing final judgment as to who is a viable player and who
is not to the rigors of the market. Consequently, we are taking the approach that we should cover as
much alternative material as the scope of a textbook allows. However, it has been our intention to keep
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abreast of the rapid evolution of this market in order to ensure that the material is kept up-to-date until
the book goes to press.

In this chapter, we take a look over the landscape of other network-processor vendors. Some ven-
dors offer interesting and innovative approaches, whereas others combine their products with other
ancillary chips they have designed, such as traffic managers, classification processors, and switch
fabrics, to propose a more or less integrated solution. Some vendors, such as EZchip or Silicon Access
Networks, are funded by major industry players (in this case, IBM and Intel, respectively). In addition
to being investors, these industry players have a brute interest in the startup’s success—for example,
IBM is EZchip’s silicon foundry. On the other hand, they seemingly compete for network-processing
business against the very startup they support.

We will try to cover these multidimensional relationships in the appropriate chapters of the book,
although we may have to mention some of these issues in this chapter. The material is organized this
way because some vendors have come up with nonspectacular or nondifferentiable network-processor
chips, whereas others have also come up with powerful traffic managers or switch fabrics. These chips
are so potent that they can be used as standalone traffic managers or as switch fabric solutions in sys-
tems that may end up being built with network processors from another competing vendor.

SILICON ACCESS NETWORKS’ iFLOW™ CHIPSET

The iFlow chipset from Silicon Access Networks (www.siliconaccess.com) has been designed to oper-
ate at speeds between 10 and 40 Gbps. The company advertises it as a 20 Gbps solution to indicate
that it can handle duplex OC-192 links, unlike several other products advertised as 10 Gbps network
processing units (NPUs). The iFlow chipset is made up of several products: a packet processor called
iPP, a traffic manager (to be formally announced) called iTM, an accountant chip that handles statis-
tics and policing called iAC, and two search engines known as the address processor (iAP), and the
classifier (iCL). The family does not contain Media Access Control (MAC) controllers, framers, or
switch fabrics, but industry-standard interfaces ensure the connectivity between these products from
other vendors and the heart of a network-processing system that is designed around the iFlow archi-
tecture.

Figure 9.1 shows how the chipset can be used to design a full-duplex OC-192 line card (or 2�10
Gigabit Ethernet card). The company specifies that the iFlow chipset is capable of handling layer 3
processing and forwarding at a rate of 50 million packets per second (MPPS). The figure shows the
two search engines on the ingress path; however, depending on the application, classification capa-
bilities may or may not be required on the egress path. The pair of iPPs and iTMs on the egress path
in Figure 9.1 can be completely skipped for lower-speed applications, thereby saving two chips from
the overall chip count.

Although the number of chips needed to develop an integrated solution may seem daunting, the
network-processing solution from Silicon Access Networks has an interesting advantage. The exten-
sive embedded memory eliminates the need for external static random access memory (SRAM) or
even content-addressable memory (CAM). It even reduces the need for external dynamic random
access memory (DRAM).

The iCL is used essentially for applications such as access control lists (ACLs), Differentiated
Services (DiffServ) flow classifications, and controlled flow management based on quality of service
(QoS) and class of service (CoS). It contains a 5Mb CAM that is rated for 100 millions of searches
per second (Msps) plus 4.5Mb of 128-bit-wide associated data memory. The iCL can handle multi-
ple 216-bit searches per minimum length packet at 10 Gbps wire speeds. It also supports large mul-
tiple-field classification tables with additional features such as range matching, per-entry masking,
and/or per-lookup masking.

Interestingly enough, in addition to the traditionally required discrete ternary CAM (TCAM) that
it displaces, the iCL also contains the associated data memory (we describe the use of this memory
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in the context of CAM in Chapters 12 and 13). Therefore, it actually saves the external SRAM that is
normally required when such an external CAM is used. The iCL can handle classification tasks for
layers 4 through 7 with 36K entries up to 144 bits each providing both per-entry and per-hop associ-
ated data in a single access.

Multiple iCL and iAP chip pairs can be combined to support larger tables. It is important to note
that both iCL and iAP provide error correction coding (ECC) on all their embedded memory. This
feature makes them especially useful in network gear destined for carriers that provision edge and
core networks where reliability is critical. Powered from a 1.2V supply, the iCL is offered in a 560-
pin EBGA package and consumes typically less than 2.5 watts.

The iAP is primarily used for address searching and, more specifically, for Ethernet MAC, n-tuple
flows, and virtual private networks (VPNs) with tag lookup, or traditional Internet Protocol version
4/6 (IPv4/v6) address lookups. It contains embedded memory, which can be filled with up to 256K
table entries (producing the equivalent content of a 9Mb CAM) for IPv4 or 82K table entries for IPv6
addresses. The iAP is rated at 65 million lookups per second with deterministic result latency. No
penalty is associated with the key size. It can perform more than two lookups per minimum-length
packet at OC-192 speeds, and associated data fields can be modified on-the-fly by the on-chip arith-
metic logic unit (ALU) simultaneously with any lookup operation.

In addition to the chip’s double cycle deselect (DCD) synchronous SRAM (SSRAM) interface, its
available zero bus turnaround (ZBT) SRAM interface enables it to connect without any glue logic to
typical NPU chips. However, surprisingly, it cannot connect to the company’s iPP. Therefore, Silicon
Access provides field-programmable gate array (FPGA) code, which the company calls IZB. This
allows the bridging between the iAP’s ZBT bus and the iPP’s high-speed coprocessor channel (HCC)
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FIGURE 9.1 An example of an OC-192 line card based on the Silicon Access iFlow NPU architecture. (Source:
Silicon Access.)
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interface. The latter is discussed in the next section. With the IZB code on an FPGA chip, a single
HCC can be shared by up to four iAP chips, thereby allowing table sizes of up to 1M entries.

The iPP is clocked at 300 MHz, can process 30 Mpps, and can offer up to 115 Gbps bandwidth
for connections with other look-aside or in-band coprocessors. The chip contains 4 clusters (called
iAtom™ cores) of 8 packet engines, making a total of 32 programmable 8-way multithreaded engines
that handle all the required packet modification as well as custom-written code. Therefore, these 32
packet engines provide a total of 256 concurrent threads of execution with a context switch of zero
latency and an overall computing power of 9.6 billion operations per second. Of course, classical bit
manipulation operations add flexibility to the tasks of adding, replacing, inserting, modifying, and
deleting fields anywhere in a packet.

Silicon Access has created several hardware-assisted coprocessors that can parse and insert bit
fields into packet headers or that can hash bit sequences, etc. A most interesting piece of assistance
hardware inside the iPP chip is called the Massively Parallel Branch Accelerator (MPBX). This block
of custom hardware increases the execution performance over traditional reduced instruction set com-
puter (RISC) execution more than 100 times when code for complex conditional statements is run.
The compiler simply detects the presence of these types of statements in the source code, and auto-
matically reserves and schedules the use of the hardware-based MPBX unit. All packet buffering for
the iPP is embedded on chip. Likewise, on-chip SRAM eliminates the need for external tables for pro-
tocol data and data-path state information. The iPP can contain up to 4K instructions. The company’s
own reference-design code is reported to only take up about half of this space, so plenty of room is
available for custom coding. In addition to the advantages the on-chip TCAM offers, it can be accessed
up to six times per packet.

The iPP has two transmit (Tx) and two receive (Rx) System Packet Interface, 4.2 (SPI-4.2) inter-
faces. These are capable of 12.6 Gbps on each interface. The host interface is ensured over a standard
32-bit 33/66 MHz Peripheral Computer Interconnect (PCI) 2.2 bus. It also contains proprietary HCCs
based on low-voltage differential signaling (LVDS), which are used to connect the iAC, iAP, and iCL
chips with the iPP. Clocked at 400 MHz double data rate (DDR), an 8-bit HCC provides 6.4 Gbps of
bandwidth for each direction. The iPP is available in a 1,170-pin HPBGA package and consumes
about 12 watts.

As of this writing, the company has not yet disclosed details about the chipset’s iTM. Con-
sequently, current users are obliged to use the other members of the iFlow chipset in conjunction with
a special application-specific integrated circuit (ASIC) that the customer must design to handle traf-
fic management issues. The company has only alluded to the connectivity between the iTM and the
switch fabric as being either SPI-4.2 or CSIX-L1. However, it seems that bandwidth throughput issues
will occur with the CSIX-L1 if a fabric throughput of 25 Gbps is required (although this is not the
case with the dual SPI-4.2 approach).

The iAC is a powerful platform that can handle up to 550 million operations per second. Its role
is to assist the iPP by taking care of traffic policing and statistics gathering. It can match header val-
ues against policing contexts, and easily reject noncompliant packets. It is equally capable of handling
color-blind and color-aware policing contexts. It contains 23.3Mb of memory that can be configured
as 1.1 million 21-bit counters or 528K 42-bit counters. This means that the iAC can keep count of
packets transmitted into a million parallel flows.

The ramifications are extremely important for service providers who bill their customers on a per-
use basis. Competitive network processors must access statistics counters that are stored in external
DRAM for the performance of billing operations. This usually implies the use of a read/modify/write
sequence involving transfers of 42 and sometimes even 128 inefficient bits (if the memory interface
is 64 bits wide) to update a 21-bit counter. The iAC handles this type of operation internally with a
single command. Its horsepower allows the equivalent of roughly 20 counter operations per packet at
a traffic throughput of 30 Mpps. The iAC comes in a 520-pin ball grid array (BGA) package and typ-
ically consumes 5 watts.

In a typical line-card application, such as the one shown in Figure 9.1, the packets arriving from
the line interface are handed over to the iPP to initiate the required processing. The iPP extracts the
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desired search keys from the packet header (and in some cases, from the packet payload too). It
engages the CAM of the iCL to look up the keys. Based on that, a route lookup is then executed on
the iAP chip, which can yield per-hop or per-entry data in a single pass. The classification results are
then handed over by the iPP to the iAC, which polices the packet and brings billing data structures
up-to-date with the compilation of needed statistics.

Following the classification and policing work, the iPP sometimes modifies specific fields on the
packet according to the application, such as creating encapsulations or updating bit fields in the
header. An internal bit tag (flow identification number) is generated and attached in front of the packet
for internal tracing by the traffic manager. The packet is then turned over to the iTM, which handles
queuing and other typical traffic management functions.

In terms of development tools, the company provides a C-language compiler and a source-level
debugger. Although the programming model keeps the individual packet engines away from the eyes
of the software engineer as if a single engine was being programmed, the debugger provides the visu-
alization of the status and progress of individual threads that are allocated over the multiple packet
engines. Therefore, the programmer can inspect the interaction between threads.

Silicon Access also offers under a nice graphical user interface (GUI) a cycle-accurate simulator
that covers all the chips of the set, including the IZB code, a packet generator, and a performance ana-
lyzer that monitors the packet engines and coprocessors that are embedded inside the iPP. During code
execution, these are controlled by the packet engines. A time-accurate, but not cycle-accurate, model
allows the emulation of the whole ingress and egress paths. This is obviously required to verify the
performance of the entire chipset. Customers who use ASICs along with the company’s chipset (as is
the case with traffic management functionality) can add their own ASIC models to the suite and ana-
lyze/simulate the entire board design. The development environment has a powerful command-line
capability that allows for scripting and the extension of the toolset. The company also offers several
evaluation boards for many of these chips.

Last but not least, Silicon Access, like other NPU vendors, provides their customers with
optimized-quality reference code for several networking applications and protocols. These include
routing IPv4 and IPv6 traffic, Multiprotocol Label Switching (MPLS), DiffServ, bridging (layer 2
switching), IP tunneling, virtual local area network (VLAN) tagging per IEEE P802.3ac, and Point-
to-Point Protocol (PPP) over Synchronous Optical Network/Synchronous Digital Hierarchy
(SONET/SDH) per RFC 2615.

BAY MICROSYSTEMS’ MONTEGO™ AND THE InP™ FAMILY

One of the most interesting architectural approaches in network processing is the Internetworking
Processing (InP) family from Bay Microsystems (www.baymicrosystems.com). The first product of
this family is the Montego network processor, which has been designed for the OC-192c realm. The
designers had the following critical requirements in mind when developing this product: ultrahigh per-
formance, scalability, service breadth and awareness, multiple-protocol intelligence, and ease of pro-
visioning for its customers.

To properly focus the product design, the company correctly capitalized on the business impor-
tance of supporting the incumbent carriers. These carriers have massively invested in legacy circuit-
switched technologies such as time-division multiplexing (TDM) voice, SONET, frame relay, and
Asynchronous Transfer Mode (ATM). However, they also want to provision newer IP-based services
such as IPv4/v6, MPLS-based VPNs, and DiffServ, as well as incorporate CoS- and QoS-based traf-
fic management and billing capabilities. The company was fully cognizant of the magnitude of this
task, unlike other vendors who simply embark on an IP-packet-centric product development spree. It
knew that the work would require a combination of a powerful network processor and a sophisticated
traffic manager in order to handle this new environment. It also understood that its architecture should
be able to offer computational capabilities that allow the real-time management of millions of
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microflow counts and hundreds of thousands of queue counts in addition to the associated classifica-
tion and billing requirements that these numbers entail.

Therefore, the designers took a fresh approach with the systems engineering and design of its first
product—the Montego. They ensured a tight integration between the network processor and the traffic
manager units within one and the same die. This resulted in a superchip that is impressively capable of
providing five overriding types of functionality in a tightly integrated environment, which minimizes
chip count. As a result, printed circuit board (PCB) real estate, power consumption, and cost are also
minimized while offering 32 Gbps of switching capacity and a packet-processing speed that is rated at
31.25 Mpps. Its programming model provides direct access to the computational resources of the chip
by enabling an application to be mapped onto the underlying engines that compose the architecture.
More specifically, the model contains a multiphase dynamic classifier, a flexible transformation editor,
a wire-speed capable segmentation and reassembly (SAR) unit (cells/packets), a robust queue manager,
and, last but not least, a sophisticated traffic manager.

The chip provides native support for ATM, IPv4, Packet over SONET (POS), PPP, Ethernet, frame
relay, MPLS, DiffServ, and IPv6. It can therefore easily be envisioned inside MPLS label edge router
(LER) and label-switched router (LSR) switch or router systems. In fact, its AnyMapping™ pro-
grammable function allows the flexible internetworking mapping of any protocol to any protocol. The
line-speed forwarding and bridging design arguably bridges the packet-processing gap between the
legacy circuit-switched paradigm and connectionless world of IP. For example, the company’s com-
prehensive MPLS support can simultaneously map multiple IPv4/6 microflows and ATM virtual chan-
nels (VCs) onto MPLS traffic streams at guaranteed data rates of 10 Gbps.

On top of all this, a whole series of programmable modification and editing functions is available,
which can be engaged by the user to handle both standard and proprietary protocols. For instance, the
Montego can seamlessly handle mapping, stripping, encapsulation, cyclic redundancy check (CRC),
Time to Live (TTL), and even checksum operations.

We mentioned Montego’s robust multiphase dynamic classifier. By directly interfacing to state-
of-the-art TCAM lookup memories and in-band deep packet preclassifiers, this classification engine,
which supports flexible packet parsing and key generation, has the impressive performance of 83
Msps. This can be expanded to 300 Msps.

On one hand, in terms of its channelization capability, the Montego chip provides support for the
seamless mixed multimode operation of 64K virtual channels and up to 4,096 media ports operating
across 16 physical channels. On the other hand, in terms of its traffic engineering, it allows hierar-
chical scheduling for QoS and CoS. This means that intrinsic support for class- and flow-based queu-
ing, VPN-aware traffic isolation with guarantees, a variety of dequeuing algorithms, and even voice
grade shaping are available. Policing with DiffServ occurs through the services of a dual leaky bucket
(DLB) algorithm implementation, and congestion avoidance is implemented based on Weighted
Random Early Detect (WRED), Partial Packet Discard (PPD), and Early Packet Discard (EPD). Both
in-band and out-of-band versions of flow control are available. The programmable SAR facilities
include ATM Adaptation Layer Level 5 (AAL5) for ATM.

Multicast is natively supported for fabric, logical, or spatial modes. In terms of interfacing with a
fabric and the rest of the word, Montego supports industry standard CSIX- and SPI-4-compliant inter-
faces. A 32-bit RISC central processing unit (CPU) running at 166 MHz assumes the executive super-
visory role inside the Montego system and is capable of handling statistics up to 1 million counts per
second.

With its native support for packets, cells, and frames and its seamless internetworking capabili-
ties, the InP family is ideally suited to scale from requirements imposed on equipment designed for
access networks all the way to carrier-class network gear designed and destined for deployment in
long-haul carrier networks. As a result, the company targets its products toward designers of network
equipment such as access concentrators for voice circuits, wireless base stations, xDSL gateways,
multiservice switches and routers, cable head ends, and intelligent optical transport equipment (dense
wavelength division multiplexing [DWDM] and SONET).
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In order to achieve very high levels of performance while maintaining the maximum flexibility,
Bay Microsystems has created a new technology that is optimized for the specific requirements of
high-performance packet processing. The company calls this technology Vertical Instruction
Processing™ (VIP) and Vertical Data Processing™ (VDP). The term vertical processing is used here
to denote its principles. The basic idea is that sets of deterministic, programmable, and pipelined
processor engines, which are optimized for specific packet-processing operations, are arranged in a
data flow-through structure. As one can infer from Chapter 14, “Switch Fabrics”, this flow-through
structure is quite reminiscent of a shared-buffer switch complete with an ingress processor, shared
output buffer memory, and an egress processor.

In addition to improving performance, the utilization of VIP and VDP technologies is in line with
the school of thought that has consistently advocated structured very large scale integration (VLSI)
design. Therefore, it allows for the undisputedly improved and structured integration of massive cir-
cuitry as opposed to other more traditional processor designs.

Unlike alternative architectures, the most distinguishing characteristic of the Montego architecture
is the deterministic performance that it affords. The vertical-processing environment accomplishes this.
Figure 9.2 shows how this principle is implemented. Imagine that data comes in from the lower-left
side of the picture. By deploying the data on a dimension that is perpendicular to the actual data flow
input/output (I/O), the Montego chip is applying a multiple instructions single data (MISD) model. A
stream of packets is then processed by multiple high-performance, fixed-cycle pipes. Each pipe is com-
posed of multiple engines (which are non-RISC-based in this case) that execute simultaneously,
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FIGURE 9.2 Vertical Instruction Processing (VIP) inside the Montego NPU. (Source: Bay Microsystems)
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thereby eliminating the nondeterministic characteristics of sequentially programmed RISC core
engines such as the ones found in other network processors. Each pipe executes a series of operations
on the data stream. It then passes the data stream onto the next pipe in line. Each engine within a pipe
is responsible for executing a particular network feature. By enabling (turning on) or disabling (turn-
ing off) the engine that is associated with a specific feature, that specific feature is applied on the
processed packet or it is simply skipped.

In Figure 9.2, inside the first stage of pipes (shown as an oval) where the classification and policy
instructions are executed, the data is subjected to engines that will parse and search, filter, and per-
form statistics. When the data is moved to the next stage of pipes, a traffic management set of instruc-
tions will take place. The data is then subjected to shaping and marking, and executing algorithms
such as WRED and weighted fair queuing (WFQ).

Farther down the horizontal path, the data is treated to the forwarding and multicast-related instruc-
tions. Engines that handle pushing and popping, TTL, and checksums operate on the data, which is
deverticalized at the end of the process and sent out to the next stop downstream in the switching sys-
tem. We must note that the instruction memory is consulted on a per-flow basis for the next code steps
to be executed. The Montego processor also preserves state-related information on a per-flow basis.

An interesting by-product of this architecture is that it can scale in both the horizontal and verti-
cal dimensions. This translates into an ability to add more engines into a pipe in order to increase a
pipe’s capabilities and to increase the number of pipes in order to obtain an overall higher perform-
ance.

With this vertical-processing architecture, because all the associated network features are execut-
ing simultaneously and in parallel, it is completely irrelevant (from a performance measurement stand-
point) whether an underlying packet requires and obtains the operations that correspond to features
X or Y. This means that the performance remains deterministic, and the architecture is one of the pil-
lars that help sustain this performance at the wire-speed levels. The other important pillar is the bal-
ance of performance from the memory subsystem design.

The Montego’s core clock runs at 166 MHz. The chip, which is designed in a 0.18� complemen-
tary metal oxide semiconductor (CMOS) process, is presented in a 1,600-pin BGA epoxy flip chip
package.

To facilitate the parallel development of hardware and software inside a customer’s network equip-
ment, Bay Microsystems has created an integrated development environment called Internetworking
Development System (IDS). IDS provides a cycle/pipeline-accurate C simulation and emulation
design environment as well as a complete original equipment manufacturer (OEM) application devel-
opment platform that the development engineer can replicate, modify, and/or scale to fit his or her
network gear application. IDS is more than a development system for emulation, simulation, and
debugging; it is a code-ready platform on which real-life applications can be made to run on real-life
networks.

Besides facilitating the rapid convergence of hardware and software development, IDS can also be
used to analyze performance and power, as shown in Figure 9.3. A series of traffic generators that can
be random, protocol dependent, or even user defined complements the picture of the tools that are
available inside this integrated tool suite. The base of the Software Development Environment (SDE)
consists of a Java GUI, the company’s NextWARE™ suite containing a comprehensive application
programming interface (API), and industry-standard VxWorks, along with a Transmission Control
Protocol/Internet Protocol (TCP/IP) stack, intermodule-communication software, systems adminis-
tration server software, and the appropriate drivers. The development engineers can quickly apply,
verify, and debug application examples on any desired traffic pattern or contemplated network service.

Bay Microsystems also offers several other protocol stacks as a series of options, such as IPv6,
MPLS, and ATM. The IDS environment can be organized in various chassis (with one or eight line
cards, respectively) of either 10 or 80 Gbps switch fabric. These chassis have different configurations
such as 1�OC192c, Quad OC48c, 1�10 Gigabit Ethernet, and 16�1 Gigabit Ethernet, and support
POS, ATM, and Ethernet interfaces. They also support a direct connection to third-party switch
fabrics.
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COGNIGINE

A pioneering effort in the quest for architectural preeminence in the field of network processing is the
Intelligent Network Processor™ by Cognigine (www.cognigine.com). The company calls its technol-
ogy Variable Instruction Set Communications Architecture™ and VISC Architecture™ for short. It
constitutes a scalable platform that is poised to handle traffic processing up to OC-768 levels of wire
speed and beyond. It has intrinsic support for multiprotocol services such as Ethernet, PPP, IP, ATM,
MPLS, TDM, and others; traffic management possibilities for up to 512K queues; and classification
lookup capabilities for up to 1 million table entries in its product. The company is naturally targeting
its products to metro, edge, core, and point of presence (POP) switches and routers, TCP termination
systems, multiservice aggregation nodes, load-balancing server switches, and even storage area net-
works (SANs).

Figure 9.4 depicts this powerful multiprocessor platform. It is based on the integrated combina-
tion of five-stage pipelined 16 four-way multithreaded processors called reconfigurable communica-
tions units (RCUs) and a highly intelligent embedded switch fabric called an RCU switch fabric
(RSF), which interconnects the RCUs. Figure 9.5 shows the five-stage pipeline that is located at the
heart of the VISC Architecture.

The result of these combinations inside Cognigine technology’s current implementation is a com-
putational powerhouse of 38 billion operations per second, which can be executed in a single clock
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FIGURE 9.3 The parallel development of hardware and software using the IDS environment leads quicker
to a converged design. (Source: Bay Microsystems)
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146 NETWORK PROCESSORS

FIGURE 9.4 The architecture of each RCU inside the Cognigine network processor. (Source: Cognigine)
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cycle. While other typical network processors will have a hard time even approaching that level of
raw-speed performance, the Cognigine network processor provides a single-chip solution. It consol-
idates all classification for layers 2 through 7 as well as traffic management functions within one chip
and can handle wire-speed fast-path packet processing at 10 Gbps. It has an internal overspeed of 40x,
finally yielding a useful packet-processing performance of about 25 Mpps. The implementation of a
full-duplex 10 Gbps data path requires only two Cognigine processors.

As each RCU is four-way multithreaded, it should not be surprising that each RCU has four 64-
bit reconfigurable data paths and four 20-bit address paths. In addition to the fact that the hardware
of each RCU provides support for operations such as timestamping and CRC, it also has the conven-
ience of a 4K packet buffer and 2K of scratchpad memory inside each RCU. The RSF handles all com-
munications from RCU to RCU or from RCU to peripheral units. Two programmable Optical
Internetworking Forum (OIF) SPI-4.2 network interfaces provide external connectivity toward lines
and/or external switch fabric serialization and deserialization (serdes), whereas the interface with a
supervisory host CPU is handled over an industry standard PCI 2.2 bus.

The heart of each RCU contains an interesting concept called a dictionary, which decodes a VISC
instruction (as soon as it is pulled out of an instruction cache) and decides which local computing
resources need to be dispatched to execute the instruction based on its “meaning.” This is a flexible
way of reconfiguring complex tasks such as 8 operations of 32 bits each or 32 operations of 8 bits
each, effectively using the maximum of locally available resources while minimizing the access to
slower off-chip memory.

Figure 9.6 shows the beauty of the scalability that is obtained with the structured and extremely
modular architecture that Cognigine has developed. Figure 9.6(a) shows the RSF—in other words,
the crosspoint switch module that interconnects four RCUs. In Figure 9.6(b), multiple RSF modules

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

OTHER NPU ARCHITECTURES



combine with a series of RCUs to show how a much more powerful engine can be created to handle
higher loads of traffic.

Designers of next-generation products usually have access to a series of options upon which they
can capitalize, such as moving the previous silicon design deeper into submicron realms and conse-
quently into smaller geometries, thereby taking advantage of the latest spectacular lithography
progress. The silicon die savings in such a move can be extraordinary. A company can decide whether
it wants to save costs and pass them to its customers with a smaller, faster, and less expensive prod-
uct, or whether it prefers to use this advantage as a cushion (both geometrically on the silicon die and
financially) that enables the designers to embed more (and previously unthinkable) functionality and
therefore improve the integration and value of the new product.

However, the mere knowledge that the underlying architecture can be easily expanded is a tremen-
dous advantage in the designer’s mind. The designer is now confronted with a certain peace of mind
that is rare in this industry. This is why Cognigine and industry analysts are so excited about the
prospects of this technology in the OC-768 environment and beyond.

The optimization of the memory bandwidth in terms of balancing the memory read/write load and
the cost and performance of memory access by intelligently managing that bandwidth in a hierarchi-
cal and distributed fashion is a very important task. Cognigine engineers have clearly done their home-
work in this regard. To start with, the NPU chip provides a first memory level of shared 2Mb of
internal SRAM.

Most importantly, however, several memory controllers are integrated inside the chip. More specif-
ically, four 64-bit DDR SDRAM controllers operate at 200 MHz for packet buffering. This means that
the capability of 512MB of space for packet buffers is supported. A configurable SSRAM controller
(2�64 bit and 4�16/2�32/1�64 bit) running under a 200 MHz clock provides access to classifica-
tion memory and coprocessor interfacing. The NPU chip’s memory-controller landscape includes a
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FIGURE 9.5 VISC Architecture pipeline in the Cognigine network processor. (Source: Cognigine)
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programmable flash-memory controller for system boot operations. It is interesting to note that the
SRAM peak bandwidth is 76 Gbps, whereas the peak DDR SDRAM bandwidth is 100 Gbps. The
Cognigine network processor is available in a 1,517-pin HFC-BGA package.

The picture is completed with a GUI-based integrated development environment that offers a sin-
gle-processor programmer’s model; therefore, the software engineer does not have to worry about
allocating tasks to specific engines. The development environment contains an application configu-
ration tool as plenty of software components function on-chip, such as framing, parsing, traffic man-
agement, accounting modules, and so on. There is also naturally a C/C�� compiler, assembler, and
debugger for code development; a clock-accurate software simulator; and a services library that facil-
itates the tackling of issues such as fabric access, parsing, traffic management, and so on.

EZchip TOPcore™

EZchip (www.EZchip.com) is an Israeli company that has very strong ties to IBM (EZchip’s silicon
foundry and strategic investor). It is poised to have a very significant impact on the evolution of the
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FIGURE 9.6 The scalability of the Cognigine NPU architecture that is composed of structured combinations of RCU-
RSF clusters. (Source: Cognigine)
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network-processing industry as it has developed extremely integrated products that eliminate multi-
ple chips for the realization of complete switching cards. The company’s current products include the
NP-1 (a 10 Gbps seven-layer network processor), the NP-1c (a second-generation 10 Gbps network
processor), and the QX-1 (a 10 Gbps traffic manager). It also provides the necessary software devel-
opment infrastructure around these chips.

The company’s NP-1 is a single-chip, full-duplex NPU with embedded search engines for
10 Gbps/OC-192 and 1 Gigabit Ethernet applications. The NP-1 chip provides fully programmable
packet classification, modification, forwarding, queuing, and policing at wire speed. By using exter-
nal DRAM only, the NP-1 requires no classification coprocessors, TCAMs, or even SRAMs. It pro-
vides full-fledged packet processing between layers 2 and 7 and classification.

The company has also integrated all search engines and eliminated the need for such external com-
ponents. A series of proprietary and patented search algorithms ensure that the NP-1 can perform
lookups in very large tables with over 1M entries at 10 Gbps throughput. The user does not have to
worry about data or entry caching. Flexible, user-definable lookup table formats are inherently sup-
ported. Tables with variable-length keys and results can be included or wildcards can even be used.

It is particularly important to notice that the NP-1 processor seems able to reduce to about one
fifth, the chip count, power dissipation, and cost of implementation of several networking solutions.
This is feasible through the network processor’s combination of embedded search engines and embed-
ded DRAM, full-duplex 10 Gbps throughput, and integrated 10 Gigabit Ethernet and 1 Gigabit
Ethernet MAC controllers. This all culminates to a situation that can have very serious ramifications
not only for the company, but also for the evolution of this industry.

The company has based the design of its NP-2 processor on its TOPcore architecture, thereby scal-
ing the original 10 Gbps NP-1 design to achieve 40 Gbps throughput. In fact, the NP-2 chip is imple-
mented around the same task optimized processing (TOP) cores that EZchip used in the NP-1 design.
As a result, software that has been developed for the NP-1 is portable and can be easily reused in
higher-speed designs that are centered on the NP-2 network processor, thereby offering the customer
a smooth migration path from 10 to 40 Gbps systems. Based on market input, EZchip is currently
focusing on next-generation products based on its TOPcore architecture for 10 Gigabit Ethernet and
multigigabit applications. The company has stated that development of its NP-2 product will take high
priority when the market demand for 40 Gbps applications picks up.

The EZchip NP-1 network processor includes a PCI bus with the host CPU and a DDR interface
with external SDRAM. On the fabric side, it includes a CSIX interface with the switch fabric itself
(or to cascade multiple NP-1 chips and increase system capacity), or an XGMII interface with an inte-
grated 10 Gigabit Ethernet MAC. On the line side, it includes an SPI-4.2 interface with an external
OC-192 POS framer, another XGMII interface connecting with yet another 10 Gigabit Ethernet MAC,
or a GMII/TBI interfacing with eight 1 Gigabit Ethernet MACs. This flexibility allows the NP-1 to
function as a standalone box connecting a 10 Gigabit Ethernet port to another 10 Gigabit Ethernet
port. It can also be configured as an aggregator of eight 1 Gigabit Ethernet ports onto one 10 Gigabit
Ethernet port in addition to working in a more traditional PHY-to-NPU-to-serdes-to-fabric chain.

Obviously, systems designed around the EZchip NP-1 network processor can be programmed to
deliver layer 2 functionality and MPLS switching, along with IPv4/IPv6 routing, packet tunneling,
flow classification, QoS, and policing. In general, they can manipulate packet payloads with a large
flexibility for numerous types of applications. As we mentioned in the beginning of this section, the
NP-1 can handle up to layer 7 processing.

You may wonder which layer 7 functionality is required for a 10 Gbps processor. This seems more
geared toward carrier-class applications. Parsing, classification, and modification capabilities are, of
course, highly desirable in systems such as server load balancers or URL-based web switches. In gen-
eral, the NP-1 enables advanced services that must rely on fine-grained flow classification, URL
matching, and per-flow state updating. The beauty of layer 7 processing is that it can all be done by
writing and executing software that runs on the network processor. The continuous content awareness
of the NP-1 enables the programmer to code layers 2 to 4 switching and routing applications with

OTHER NPU ARCHITECTURES 149

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

OTHER NPU ARCHITECTURES



granular flow classification. It also enables the programmer to handle layers 5 to 7 deep packet
processing to address needs such as content switching, TCP offloading, security, and even traffic
analysis.

The QX-1 is a single-chip traffic manager that can be used to extend the QoS features of the
NP-1 when networks must be built with stringent requirements for advanced services provisioning.
QX-1 can be used in either the ingress or egress path. It was designed to achieve optimal interoper-
ability and performance when interfaced with the NP-1, whose companion chip it was designed to
be all along.

A switching system that is built on a combination of the NP-1/QX-1 chips can provision QoS in
accordance with the DiffServ model. In fact, QX-1 enables groupings of flows and queues to offer
per-hop behavioral (PHB) QoS options. Features such as multiple queues that are flexibly mapped
per destination port as well as a hierarchical scheduler are used for the implementation of all DiffServ
services including Expedited Forwarding (EF), Assured Forwarding classes (AF1—AF4), and Class
Selector (CS).

In a typical system that combines the NP-1 and the QX-1 chips, the general partitioning of the
tasks between the two units is as follows. The NP-1 network processor executes classification over
the seven layers, handles forwarding decisions, learns new information that must be kept in tables and
updates all existing tables, handles policing (using single-rate three-color marker [srTCM]/two-rate
three-color marker [trTCM] token bucket), performs per-flow statistics, and modifies packets when
necessary. On the other side, the QX-1 handles all queuing, manages congestion, manages per-flow
queuing, and is responsible for hierarchical scheduling.

When used in the egress path, QX-1 is the last device prior to transmitting the traffic to the phys-
ical (PHY) interfaces and enables the precision shaping of traffic directly to the network link(s). The
QX-1 offers several types of interfaces that enable it to interconnect to the system switch fabric or line
links. QX-1 offers a CSIX or SPI-4.2-based streaming interface when connecting to the switch fab-
ric. It supports a 1�10 GbE, 1�OC-192, 4�OC-48, 16�OC-12, or 16�1 GbE channels when con-
necting to an external framer or Ethernet multiplexer through the integrated SPI-4.2 interface.

Instead of using the approach taken by some other network processors that integrate generic RISC
processors, EZchip’s TOPcore architecture consists of engines called task optimized processors
(TOPs), which are typically 10 times faster than alternative RISC cores and are customized to per-
form a specific networking function at an optimal speed. Multiple instances of these fast and efficient
processors are integrated inside the same die configured in a super-scalar architecture, which has been
designed to optimize packet-processing tasks.

The following describes the four types of TOP engines:

• The TOPparse processors handle packet parsing. These processors can parse any type or format of
frame or packet, regardless of whether it is encapsulated, and extract entire headers, tags, addresses,
port numbers, protocols, bit patterns, keywords, and so on.

• The TOPsearch processors handle lookup and search operations by using the parsing results as keys
for lookups in the tables maintained by the system for routing, policy, and classification.

• The TOPresolve processors take care of all forwarding and QoS decisions as well as updating state-
related information and the tables themselves.

• The TOPmodify engines perform all required packet modifications by overwriting bit fields inside
packets by inserting or adding bits, swapping bits, and/or rotating bit fields.

These four types of engines are cascaded in a four-stage parallel-pipelined fashion. As soon as one
stage is done with its computing tasks, it passes the processed data onto the following stage down-
stream in the pipeline. The term parallel pipeline means that at each stage of the parse-resolve-search-
modify pipeline, multiple TOPs engines perform identical functions. As a result, multiple packets are
processed simultaneously at each stage. The multiple TOP processors at each stage execute the same
code in principle, but they all have their own instruction memory. Therefore, they are able to preserve
their independence and high efficiency while executing a series of tasks. A hardware scheduler trans-
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parently allocates incoming packets to available hardware resources at each stage of the pipeline while
preserving synchronized frame pointers across the pipeline and ensuring that messages are passed on
between the engines to coordinate processing. As a result, the programmer does not have to worry
about addressing individual TOPs processors. It should be clear, however, that writing code for the
NP-1 entails actually writing code for the four types of engines.

In terms of facilitating the development of software for its network processors, EZchip is offering
several tools. To start with, EZdesign™ is a comprehensive suite of design and testing software tools
for developers, which enables the rapid delivery to production of new designs based on the company’s
NP-1 network processor. EZdesign enables designers to create, verify, and implement NP-1 applica-
tions that must meet specific functionality and performance targets. EZdesign has the following
components:

• A microcode development environment, which under a unified GUI allows the editing and debug-
ging of code, including setting breakpoints, single-stepping program execution, and obtaining
access to internal resources. Features of this environment include a code editor, a view of memory
and register contents, performance charting, macro recording, and script execution. The microcode
development environment can be used to develop and debug code that runs on both the NP-1 sim-
ulator and the actual NP-1 chip.

• A simulator that is able to provide cycle-accurate simulation of the NP-1 for code functionality test-
ing and performance optimization.

• An assembler and preprocessor that generates optimized code for execution on the NP-1 network
processor. The NPU assembly is interleaved with high-level macros. A C compiler is now available
as well, although to create the most optimized code, the assembler is usually preferable.

• A subroutine library that contains the source code of many common networking tasks that the com-
pany provides with the intention of helping customers simplify and accelerate their code development.

• An applications library that contains reference code, which customers can consult or use to imple-
ment high-level applications when designing new networking platforms and services. EZchip offers
reference code for applications such as layer 2 switching, MPLS, IP routing, Network Address
Translation (NAT), and URL-based load balancing.

• A frame generator, which is essentially a GUI-based tool that guides the software engineer through
the process of creating frames, layer by layer. It allows for the easy generation of frames of differ-
ent types, protocols, and user-defined fields.

• A structure generator, which is another GUI-based tool that enables the definition of data structures
used by EZchip’s NP-1 network processor for forwarding and policy table lookups (such as hash
and trees), their keys, and all associated result information.

Among the company’s development tools, we should also mention EZdriver™, which is essentially
a control processor API layer. This is a toolset designed to facilitate the development of software that
is meant to be executed on computational resources of the control path CPU of NP-1-based systems.
EZdriver contains a set of routines that execute on the control path CPU and provide an API for appli-
cations that run on the same control path CPU and need to interface with the NP-1. With EZdriver, soft-
ware engineers working on control path development tasks can easily handle tasks such as configuring
the NP-1 chip, loading the microcode, creating and maintaining NP-1 lookup structures, sending and
receiving frames to and from the NP-1, and configuring and accessing the NP-1 statistics block.

EZdriver, in conjunction with the company’s EZdesign tool, provides an extensive set of debug-
ging capabilities by offering software-driven debugging features (such as breakpoints, single step, reg-
ister, and memory access), which the code developer can activate on both the NP-1 simulator and the
actual NP-1 chip.

To help expedite the development of a complete system based on its NP-1 and QX-1 chips, EZchip
offers evaluation boards with a choice of 1 Gigabit Ethernet, 10 Gigabit Ethernet, or OC-192 POS
interfaces. Their design enables two boards to interconnect in order to obtain a complete ingress and
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egress line-card path. In addition to this, multiple boards may be connected over an external switch
fabric and backplane. In 2002, the company demonstrated interoperability with IBM’s latest
PowerPRS™ 64G switch fabric. All evaluation boards can be accessed through a standard PCI-bus
connector that plugs into a standard single board computer on which control plane software can be
developed. As a result, the interface is ensured with the network-processor chip (NP-1) on the evalu-
ation board.

The company will be expected to expand its development tools if it wants to address the needs of
customers of the NP-2 and encompass the 40 Gbps realm. Competition seems inevitable with the
development of other 40 Gbps network processor and traffic management products from companies
such as Xelerated. However, the slower economy of 2002 seems to have adversely affected the car-
rier investments for new equipment at the core level and has consequently kept the market emphasis
on 10 Gbps and below.

In late 2002, EZchip introduced its second-generation network processor dubbed NP-1c. The
intention was to better target a wide range of markets and, more specifically, systems that include
multi 1 Gigabit Ethernet, OC-192, 4�OC-48, and even 16�OC-12 with a single chip. The NP-1c,
which is manufactured by IBM Microelectronics, is pin compatible with the first-generation proces-
sor (NP-1); however, it has some striking differences. The NP-1c is built using IBM’s cutting-edge
Cu-11 semiconductor process, offering 0.11� line widths and therefore extremely compact density.
In addition to its other benefits, this process enabled NP-1c designers to double the processing power.
It extended the headroom by 80 percent while reducing the cost of ownership directly by lowering the
price by 30 percent for a full-duplex 10 Gbps processor and indirectly by lowering it by 80 percent
when it comes to considering a switching card’s chip count and power dissipation.

EZchip bases a lot of its arguments on the compelling case that IPv6 will be adopted more fre-
quently in order to deal with the lack of IPv4 addresses, especially in the Far East, and to accommo-
date the wireless IP networks where an IP address is needed per telephone. Since the IPv6 addresses
are 16 bytes as opposed to IPv4 addresses, which are 4 bytes long, it is clear that IPv6 routing and
session tables will be approximately 4 times larger than with IPv4 routers. A significant advantage of
NP-1/NP-1c-based routers is that no extra hardware is required to support such tables, whereas routers
based on alternative network-processor technologies will probably need a significant number of extra
chips.

To make the case more tangible financially, EZchip clarifies that a 10 Gigabit per second interface
of an IPv6 router will need a single NP-1c processor and four DRAM chips, which is identical to what
happens in an IPv4 router. The bit density of typical DRAM chips is approximately 30 times higher
than similar capacity CAMs, whereas the power dissipation of the DRAM chip is roughly 280 times
less than that of power-hungry CAMs. Even the cost per bit of a DRAM chip is almost 1,000 times
less than the corresponding cost per bit of a CAM.

The total cost of the NP-1c solution for this example is estimated at $820 with 17 watt power dis-
sipation. With other network processors, however, the same interface would have to be implemented
based on the use of two network-processor chips and somewhere between 20 (especially for small
routers) and 80 additional CAM and SRAM chips. These combinations total up to cost somewhere
between $3,000 and $12,000, with 75 to 300 watts power dissipation. The NP-1c was scheduled to be
sampled during the first quarter of 2003.

VITESSE IQ™ FAMILY OF NETWORK PROCESSORS

Vitesse (www.vitesse.com) has been a major player in the network-processing arena. It has gained even
more presence since it acquired a startup called Sitera for its line of high-performance networking
chips. The IQ2000 chip was its first important processor. The company now offers multiple NPUs and
traffic managers, and it is also uniquely positioned to offer one-stop shopping for its customers. It pro-
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vides essentially all the necessary components from optoelectronic transceivers, SONET and POS
framers, and PHY and MAC chips all the way to powerful and scalable switch fabrics, backplane
interconnects, and serdes chips.

The IQ2000 is positioned as an OC-48 processor capable of performing all the necessary opera-
tions for packet processing between layers 4 and 7. These operations include packet inspection, clas-
sification, filtering, encryption, modification, address translation, policy enforcement, traffic shaping,
and multicast management.

The chip features four full-duplex 1.6 Gbps interfaces which combine to give up to 12.8 Gbps of
aggregate bandwidth, properly designed to match the needs of four embedded 32-bit RISC processor
cores that run at 200 MHz. The cores are inspired by the MIPS-I architecture, but their instruction set
is not fully MIPS compatible. Vitesse provides all the required development tools. The IQ2000 can
be configured in multichip schemes, enabling the company’s customers to build and scale more pow-
erful systems as needed. The IQ2000 is unusual among NPUs in the sense that it uses Rambus™-
based RDRAM memory to store packet payloads. However, with only one RDRAM channel that
provides a peak data transfer rate of 1.6 GBps, the IQ2000 does not perform as well as other com-
petitive OC-48 network processors in memory bandwidth.

Vitesse is supporting development with a series of hardware evaluation/development boards/kits/
platforms and software development tools, including layer 2 and layer 3 application reference code,
software support libraries, compilers, and so on.

The latest member of the company’s network processor family is the IQ2200. The IQ2200 is not
only fully pin compatible with the IQ2000, but it also operates at twice the core frequency of the
IQ2000 and therefore provides twice the packet-processing performance. In addition to providing
OC-48 performance, another major characteristic of the IQ2200 is that it has an integrated Common
Switch Interface (CSIX) interface that enables it to natively connect on Vitesse’s GigaStream™ and
TeraStream™ families of intelligent switch fabrics.

The IQ2200 is positioned by Vitesse as a powerful platform for the delivery of flexible and scala-
ble applications in the areas of complex multiprotocol routing, address translation, classification, pol-
icy enforcement, filtering, traffic shaping and grooming, multicast, and so on.

Some of Vitesse components that allow a customized treatment of the QoS realm include RIO,
RED, WRED, weighted round robin (WRR), and WFQ. Its scalable multiprotocol capabilities allow
the easy deployment of added-value services such as MPLS, DiffServ, NAT, and IP Security (IPsec).

To address the needs of either high-density-port line cards or examples centered on small fabric
designs, Vitesse also offers a switch-interconnect chip called FOCUS Connect. This chip allows for
the easy connection of up to eight NPUs of the company’s IQ2x00 family, but ASICs, FPGAs, or other
FOCUS-enabled peripherals can be connected as well. Each FOCUS16 port is a point-to-point,
high-performance 1.6 Gbps full-duplex link that is structured as eight channels that are clocked at 100
MHz. This means that multiple packets can be transferred at the same time. The chip supports 1,024
separate multicast distribution trees, 4 priority levels for data packets, and flexible clock modes for
the easy integration of FPGAs. It is scalable to larger port densities by using multilevel stacking or
grouping.

A single FOCUS Connect device can connect up to eight Vitesse IQ2000 NPUs with over 1 Gbps
full-duplex bandwidth for each, or four IQ2000 NPUs with over 2 Gbps full-duplex bandwidth for
each. The combination of two FOCUS Connect devices allows the rapid, glueless, and straightfor-
ward connection between eight IQ2000 NPUs with over 2 Gbps bandwidth for each one. In the latest
IQ2200 network-processor chip, Vitesse has integrated the FOCUS interface. In fact, it supports either
FOCUS16 or FOCUS32 (32-bit-wide transfers) links for higher bandwidth.

The company offers a series of advanced development tools in conjunction with evaluation and
hardware development platforms from compilers all the way to models based on Hardware
Description Language (HDL) for the FOCUS interconnect in order to facilitate and accelerate the
overall system development.

OTHER NPU ARCHITECTURES 153

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

OTHER NPU ARCHITECTURES



WINTEGRA

Although we have not focused on the lower part of the performance spectrum where devices need
access to 622 Mbps links or where at the worst case they must provide connectivity to 1 Gbps links,
we will slightly deviate and mention a company that is setting some serious precedents in that arena.
No one should be surprised if we start seeing the same trend in network processors that address the
higher-speed links.

Wintegra (www.wintegra.com) is an interesting startup in this field. It is certainly not a coincidence
that several major players in the industry such as Motorola and Marvell have participated in its fund-
ing. The company has introduced WinPath™, a family of single-chip solutions in the access network
arena, based on a technology that is equally at ease with packetized traffic as well as with frames and
voice pulse code modulation (PCM)/TDM channels. Wintegra has already announced important
agreements and project breakthroughs in areas such as DSL, wireless base stations, or voice over net-
work with major partners such as Texas Instruments in the digital signal processing (DSP) arena with
whom they have created a full-fledged reference design. Rightfully so, it takes pride in multiple com-
munication protocols that are implemented on board its chips. The respinning of silicon is not required
by these protocols as they are implemented in RAM memory. The evolving list includes ATM AAL0,
AAL2, and AAL5 SARing; ATM cell switching and AAL2 CPS switching; ATM Circuit Emulation
Service (CES); Inverse Multiplexing for ATM (IMA); traffic management for ATM; IP and Ethernet
High-level Data Link Control (HDLC); IP over ATM; IP over Ethernet; IP over PPP; IPv4 longest pre-
fix matching (LPM) routing; IP classification; VLAN tagging and detagging; ATM to Ethernet inter-
working; and others. Every port can be immediately set up as an ATM, IP, or TDM port without any
overhead or any hardware change.

WinPath provides a direct interface with any one of these PHY level standards: T1/E1, T3/E3,
xDSL, OC-3 ATM, OC-12 POS, and 10/100  Ethernet. Gigabit Ethernet is supported through an exter-
nal and proprietary POS. The Universal Test and Operations PHY Interface for ATM Level 2
(UTOPIA 2) or POS interface is also meant to handle any external need of switch fabric interface.
Multiple devices (in a one-master-many-slaves configuration) can be connected on the other UTOPIA
interface, connecting up to 63 external DSPs for voice over IP (VoIP) applications (vocoding, com-
pression, echo cancellation, and so on) or up to 6 octal DSL PHYs for DSL applications. Any of
WinPath’s various interfaces can be programmed by applications so they interwork with any other
interface. For instance, one can have ML-PPP over the T1/E1 serial channels, interworking with POS
running over the POS OC-12 interface, IP over 10/100 Ethernet, and IP over ATM AAL5 over a multi-
PHY OC-3 configuration on the UTOPIA interface.

External memory is flash and synchronous dynamic random access memory (SDRAM). Both are
32/64 bits wide and three interfaces are available: one for host CPU interfacing needs and the other
two for packet processing. Larger applications may need two chips: one for the ingress path and one
for the egress path processing. As an added advantage, lower-end applications, where one WinPath
chip can handle both, have only one SDRAM memory bank needed where both processing parame-
ters and packet information can be stored, thereby further reducing the chip count and the cost of a
solution.

The company has announced two major products so far. The first is called the WIN777. Since it
embeds a 200 MHz 64-bit MIPS core CPU along with the rest of its packet-processing hardware, it
can handle both control and data path functionality. The second product is called the WIN707. By the
mere fact that it does not contain an embedded CPU core that could function as a control processor,
it is meant to operate only in the fast data path, leaving all control path processing work to an exter-
nal processor such as a PowerPC 750, which offers full bus compatibility.

One of the interesting abilities of the WinPath is the device’s ability to balance dynamically mul-
tiple 200 MHz embedded processors with 200 MHz memory subsystems, thereby creating a very pre-
dictable performance environment that could otherwise be matched only by custom ASIC designs.
This means that if an application requires more entries in the routing table than another, or if it needs
access to more virtual channels than another, no degradation of performance will occur.
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Last but not least, Wintegra takes pride in the fact that not one line of assembly code has been writ-
ten for its chip. It touts its C compiler and integrated SDE as a key factor in accelerating the customer’s
time to market.

XELERATED PACKET DEVICES

While most vendors were struggling to stabilize their network-processing platform at OC-48 levels,
to verify whether it is feasible to scale what they have at higher speeds, or to prove the actual scala-
bility of their architectures to full duplex OC-192, some vendors were entertaining ambitions for
higher-speed products. Others have presumably moved forward with the development of actual and
concrete product plans. One of the major surprises in this industry was the sudden announcement in
the summer of 2002 from a small Swedish startup called Xelerated Packet Devices (www.xelerated
.com). It announced that it has not only designed, but is actually sampling an integrated network-
processing chipset, which is the first one to be able to function at full wire speed in 40 Gbps1 (OC-
768) networks.

The chipset is based on an architecture that the company calls PISC™, which stands for Packet
Instruction Set Computing. It is composed of two chips—the Xelerator™ NPU and the Xelerator™
traffic manager. They can be used either as a combination or as standalone units.

One of the development tools that the company provides is a cycle-accurate simulator, which is
fed with files containing the executable code the programmer creates for forwarding plane applica-
tion. The Xelerator chipset offers a single-threaded programming model to the programmer, who
writes code as if he or she were faced with a single-image traditional sequential machine without the
slightest need to know how parallelism will be involved in the actual code execution. The executable
code is the result of the linking process, which occurs on the output of the assembler that generates
compiled code by processing the PISC instructions (source code) that the programmer has to write.
These PISC instructions perform the actual packet-processing operations (parsing, editing, encapsu-
lating, modifying, and so on) and call on hardware resources such as engines, meters, counters,
TCAM, and so on. The simulator is part of the GUI-based integrated development environment, which
also contains a debugger and an integration support library along with ready developed code exam-
ples for several real-life applications such as IPv4, IPv6, MPLS, layer 4 packet filtering, and traffic
conditioning.

The Xelerator network-processor units are available in three models, as shown in Table 9.1. Their
packet-processing performance is always at wire speed and the deterministic processing delay of the
chips offers very good jitter characteristics.

Conceptually, the internal structure of the Xelerator NPUs can be imagined as a large program-
mable pipeline fed from one side by one to four (depending on the model) Rx ports implementing the
SPI-4.2 interface and fed from the other side based on the NPU model between one to four Tx ports
implementing SPI-4.2. Four look-aside engines allow interfacing with external coprocessors, SRAM,
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TABLE 9.1 Xelerator Network Processor Models

Chip Model Number of 10 Gbps Ports Packet-Processing Performance

X10s 1 25 Mpps

X10d 2 50 Mpps

X10q 4 100 Mpps

1. An interesting discussion on the advantages of using data flow architecture to process 40 Gbps traffic can be found in Gary
Lidington's "Data Flow Architecture Must Match the Network to the Application," published by EE Times (May 9, 2003). The
article can be found online at www.commsdesign.com/story/OEG20030509S0035.
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and TCAM with the possibility of multiple accesses to each one of these resources per processed
packet. The programmable pipeline has internal access to other hardware resources such as hash
engines, classification hardware, counters, meters, and even an internal TCAM engine that manages
the search process.

The programmable pipeline is the implementation of the company’s PISC architecture. It is essen-
tially a packet-editing chain that performs operations on packets as they traverse the pipeline from the
Rx side to the Tx side. All memory access channels are equipped with integrated ECC for carrier-class
reliability. In order to be able to consult memory at full-duplex wire speed, the company’s traffic man-
ager needs reduced latency DRAM (RLDRAM) that behaves like Rambus-based DRAM but with sig-
nificantly lower latency.

The Xelerator traffic manager is available in two configurations—T10s and T10d. These are avail-
able with one or two 10 Gbps ports (either Rx or Tx), so they can work in simplex and duplex envi-
ronments. Like the NPU, the structure of the traffic managers is based on Rx ports (one or two
depending on the model) feeding the PISC programmable pipeline that takes care of classification and
statistics counting. It now feeds an SAR module that outputs its work into a queue manager before
the results go to the one or two Tx ports. The queue manager uses WRED and performs individual
queue scheduling and shaping up to three levels. An embedded memory manager controls the inter-
face to external quad data rate (QDR) SRAM and DRAM. A look-aside engine enables it to interface
with an external coprocessor, SRAM, or TCAM again with the possibility of multiple accesses per
processed packet. The queues are structured based on packets and different applications, and may
require that the queues be combined upon specific structures. Such applications could be guaranteed-
bandwidth VPNs or switch fabrics based on virtual output queuing.

In a full-duplex OC-768 environment on the ingress side of a line card, the OC-768 framer through
the SPI-4.2 interface connects to the NPUs (Rx port), which connects to the traffic manager (through
the Tx ports). The traffic manager then connects onto the switch fabric interface. The egress side is
the exact opposite. The fabric interface is connected on a traffic management chip, which is cascaded
with the egress path NPU, which connects via SPI-4.2 with the OC-768 framer. The originally imple-
mented SPI-4.2 interface (which the company has promised to replace with SPI-5 when it becomes
available) enables the convenient structuring of the I/O bandwidth as several OC-192. This allows a
better utilization of the chipset’s computational power.

OTHER APPROACHES

To describe the approach taken by large network equipment vendors (NEVs), we will use Cisco as an
example of a company that has been very active developing its own internal designs of network
processors. The Cisco PXF chip (better known in the industry as Toaster) has been reborn in three
successive generations. Each one comes with 16 packet engines arranged in 4 parallel pipelines. It has
been at the heart of several Cisco routers. A rough estimate of the computational power of a pair of
PXF chips makes it approximately equivalent to an IBM NP4GS3.

Another approach that companies like Cisco take toward the evolution of the market and the rap-
idly advancing network-processing technology is the acquisition of a startup. Cisco recently acquired
Navarro Networks, a secretive startup from Texas, which was led by industry-veteran management
and was largely funded by Cisco.

SUMMARY

In this chapter, we discussed several promising architectures in the network-processor arena, coming
predominantly but not exclusively from startup companies. We now have seen the trends toward inte-
grating critical components inside the same die and the tendency to raise the performance bar toward
higher wire speeds. A few players now offer unprecedented 40 Gbps processors and are probably a
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little ahead of the demand curve in the market. Stepping back for a moment, the field seems over-
populated in the 2.5 Gbps arena with multiple vendors competing for design wins and market share.
As this is by far the largest chunk of the market and as some of the players are true powerhouses,
sooner or later some players will have to bow out of the race. They will either fail or be acquired by
a larger vendor.

The jury is still out regarding the 10 Gbps market, which is definitely taking shape but in a very
slow fashion. This is mainly due to the overall slow economy after the boom of the 1990s, something
that is even further compounded by the significantly slower pace of investment from carriers who
would like to upgrade their infrastructure but cannot afford to at this point.
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CHAPTER 10

ALTERNATIVE APPROACHES
TO NETWORK PROCESSING:
NET ASICS AND DESIGNING
WITH IP CORES

We have seen that network processing is a computational area that requires several resources to ensure
good performance at wire speed while preserving flexibility of the network protocols and applications
supported. In previous chapters, we saw how some of the most promising network-processor archi-
tectures address this problem. In order to complete our overview of the network-processing architec-
tural landscape, we will turn our attention to a couple of different approaches toward achieving the
same goal. More specifically, we will look at a special breed of microchips called net application-spe-
cific integrated circuits (Net ASICs). We will also look at specialized integrated solutions that some
companies build around IP cores.

NET ASICS

Net ASIC is a generic name that has been adopted by the industry to denote a special type of network-
processing integrated circuit that contains specialized assist hardware (sometimes referred to as
embedded coprocessors) for most functions required in packet processing; however, there is one big
difference—unlike networking processing units (NPUs), a Net ASIC is not programmable.

It could be argued that this lack of programmability is a mark of inflexibility, as users cannot
change the behavior of the Net ASIC chip, depending on the application at hand. This is the price you
pay for having the privilege of combining fast and deterministic performance (like the performance
that these chips usually deliver) with most of the necessary packet-processing functions, which are
already integrated into the same Net ASIC die. This combination, along with the associated trade-off,
is somewhat appealing to many companies that are confronted with the dilemma of choosing between
a more traditional network processor and designing a specialized ASIC for their project.

In order to understand the rationale behind the Net ASIC phenomenon, we must examine this
dilemma. Looking at a contemplated ASIC, many companies that decide to use a Net ASIC lack the
necessary design and engineering skills, lack the financial resources, or cannot afford the longer time
to market that is associated with designing a complex fast-networking ASIC from scratch. This ven-
ture usually takes between 12 and 18 months.
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On the other hand, companies that favor a Net ASIC seem to shun the idea of using a program-
mable network processor because of the amount of time it takes to develop software for packet pro-
cessing over a vendor’s proprietary development system. This task often must be implemented based
on unusual instruction sets, unfamiliar languages, and the tools themselves. Application developers
actually have to learn the underlying NPU architecture and how to activate its various parts. All this
is deemed by such companies as time consuming. They would rather opt for a Net ASIC.

The word deterministic was used to describe the packet-processing performance of Net ASICs.
This is not a coincidence. As a Net ASIC is completely hardwired, as long as the available integrated
functions are exactly what a customer wants, the user has little to worry about regarding issues such
as jitter or packet-processing latency when working at wire speeds, especially with time-sensitive
applications such as slot-based time division multiplexing (TDM). Traditional NPU customers (such
as ASIC designers) often struggle to fine-tune and balance multiple aspects of an entire design in order
to maintain adequate levels of performance.

Implementing a complete solution around a design that is based on a Net ASIC requires some soft-
ware development, but that development must occur along more traditional software-engineering
directions. In fact, it entails writing control plane code that will run on a supervisory host central pro-
cessing unit (CPU) and not in the packet-processing piece of fast silicon. The host is programmed
with languages, tools, and methodologies that are familiar to anyone in the engineering field.
Therefore, these companies are not confronted with the need to suddenly have their engineers climb
up a new and steep learning curve. This further justifies the decision to use a Net ASIC instead of
using an NPU or having to design a complex networking ASIC.

Traditional network processors and Net ASICs are in fierce competition. Given the global com-
mercial and technological prowess of the main NPU vendors (IBM, Intel, and Motorola), it will not
be surprising that some of the Net ASIC vendors will soon disappear. In fact, as of this writing,
Entridia, a promising and well-funded startup from Southern California, which had actually been one
of the pioneers of the Net ASIC concept, was forced to lay off its staff, close its doors, and sell its
technology to Stratigos Networks. At the same time, Internet Machines (www.internetmachines.com)
announced that it was suspending its Net ASIC offering.

These are just a few examples of the major shake-up and consolidation that this new industry will
undergo before the fittest platforms, technologies, and vendors survive. These winners will then divide
up the market in a pragmatic way. This usually happens in new industries right after the initial phase
fades away and the associated excitement that attracts a shower of competing ideas, lots of entrepre-
neurial talent, and heavy investments usually in the form of venture capital disappears.

Table 10-1 compares two Net ASIC product families that are offered by two major vendors. The
choice between these families is a direct function of the user’s application at hand. One of these prod-
ucts has an edge in environments that combine Asynchronous Transfer Mode (ATM) and IP traffic,
whereas the other is much easier to interface with Ethernet and Gigabit Ethernet realms where it is
more likely that only IP traffic will be transmitted.

We will conclude our discussion about Net ASICs by highlighting a key industry fact: The tremen-
dous programmability and flexibility of ordinary network-processor chip-based platforms in con-
junction with free application code that network-processor chip vendors often offer to their customers
place some dark clouds over the commercial viability of Net ASICs. Since the Net ASIC approach is
questioned mostly for business reasons, it is not a surprise that as of this writing, major players in the
industry have announced that they will suspend their development efforts on Net ASICs and concen-
trate their future development efforts on programmable network processors instead.

DESIGNING WITH IP CORES

Although IP-core-based network processing is not intended for mainstream users who are in search
of solutions to the computational needs of their switching/routing project, we must discuss the
approach taken by several companies to create state-of-the-art network-processing systems based on
the use of intellectual property offered by third parties.
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The idea of using IP cores for the design of sophisticated integrated circuits is not a new phe-
nomenon. In fact, it has become a widely practiced principle over the 1990s. The fundamental idea is
as follows: Instead of designing a specific and usually very complex part of an integrated circuit, a
designer licenses the use of a core circuitry from a competent and qualified third party. This core
circuitry delivers the desired functionality, and has been designed, tested, and documented according
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TABLE 10.1 A Comparison between Major Net ASIC Solutions (Source: ZettaCom and Marvell)

Feature ZettaCom (www.zettacom.com) Marvell (www.marvell.com)

Net ASIC MSP-200 chip capable of Prestera-MX two-chip offering:
full-duplex 10 Gbps • 98MX20 for 1�10 Gigabit Ethernet

• 98MX30 for 10�1 Gigabit Ethernet

Traffic manager Yes, through the company’s • Congestion management (Weighted 
chip companion ZEN-QM two-chip Random Early Detect [WRED])

(QMD-QMC) • Traffic shaping and traffic scheduling 
only at egress

Integrated Ethernet No Yes (easy connection with the company’s 
Media Access Control physical [PHY] chips)
(MAC)

Packet over SONET Yes Not easily; glue logic is needed for OC-192 
(POS) and ATM suitability framers.

Classification Yes Yes, at ingress only

Policing Both on cells and packets Yes, only on packets and only at ingress

Packet modifications Yes, with support for ATM, IP, Yes, with support for IP and MPLS and only 
and Multiprotocol Label at ingress
Switching (MPLS)

Host interface Generic bus that is 16 bits wide Standard Peripheral Computer Interconnect
and works at 66 MHz (PCI)

Search engine External content-addressable No need for external engine
memory (CAM) up to 1 million 

Types of memory needed • Packets in double data rate • DDR-SDRAM is absolutely needed,
(DDR) synchronous dynamic offering a cost advantage to the memory
random access memory subsystem.
(SDRAM). • Other types of memory are optional.

• SRAM needed for the traffic
manager

• External CAM is needed for
search engine implementation.

Interface toward the System Packet Interface, 4.2 RGMII for Gigabit Ethernet and XGMII for 
line side (SPI-4.2) 10 Gigabit Ethernet

Interface toward the CSIX-L1 64 bits at 250 MHz • Proprietary 15 Gbps and HSTL uplink 
fabric side bus

• CSIX-L1 fabric adapter chip that also does
ingress scheduling

Package 1,036-pin HPBGA 901-pin ball grid array (BGA)

Power consumption �10 watts Not disclosed
(max)
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to specific methodologies and industry-accepted criteria, thereby offering the possibility of con-
nectivity and programmability as well as easy integration into a larger design, testability, documen-
tation, and even scalability of performance. These characteristics can be combined with the inevitable
accelerated time obtained by having to design less of the final product. The decision almost seems to
favor using IP cores.

One of the advantages companies see in using licensing IP cores (or even internally generating
their own cores) is that it promulgates a school of thought that believes in the merits of component
reuse. Following the same evolution path that was taken by systems implemented on printed circuit
boards (PCBs) in the late 1970s and early 1980s when large-scale integration (LSI) and medium-scale
integration (MSI) components started replacing the discrete use of multiple transistors in the imple-
mentation of more sophisticated systems, designs of complete systems-on-a-chip (SOC) are now
based on the structured use (and even reuse) of multiple cores that implement several functions.

Ample literature has been written on the subject of designing and verifying IP cores as well as on
the methodologies involved in the reuse of hardware and software IP components. Interested readers
should refer to several of the pertinent sources in the section “Suggested References” provided at the
end of the chapter.

In the context of network processing, the IP core principle is applied to computational resources
that facilitate, if not accelerate, the handling of specific tasks that are encountered in network pro-
cessing. To be more specific, several companies offer IP cores that seem to be suited for network pro-
cessing and/or for certain associated computational tasks. Again, the fundamental idea is that
companies that must or prefer to design their own fast-processing networking silicon should take a
close look at the cores offered and decide whether they should license one or more of these pieces of
intellectual property.

The detailed mechanics of a cost-based make-or-buy decision obviously go beyond the scope of
this book. However, based on their analysis, some companies may discover that it does not always
make sense to license a specific IP core for their network-processing design. In some other cases, it
might not make much sense either from a technological or economic standpoint. As these decisions
are largely subjective and often based on personal preferences, they reflect previous experience or bias
on behalf of members of the company’s senior technical management. Other companies may just as
likely make the exact opposite decision.

There are companies that offer for license IP cores for any function a person desires to license. IP
cores can span the whole functionality spectrum from main CPUs and full-fledged digital signal pro-
cessing (DSP) cores all the way to exotic cryptographic functions, and from simple communication-
protocol converters to highly specialized functions such as MPEG4 video-compression modules. We
do not intend to elaborate on those aspects. Our discussion is limited to IP core issues that are rele-
vant to network processing.

The field of network processing consists of a few important IP-core contenders among several
players. In this chapter, we will discuss the approach taken by MIPS Technologies Inc., ClearSpeed
Technology, Tensilica, ARC Cores, and Improv Systems. Other vendors in this arena include estab-
lished companies such as IBM Microelectronics (www.chips.ibm.com) and Motorola (www.motorola.
com), which license their respective families of PowerPC series of CPU cores, and companies such
as ARM (www.arm.com), which outsource their IP know-how through a large team of licensee
semiconductor vendors. We even look at companies such as Sun Microsystems (www.sun.com/
microelectronics), which offer a family of Scalable Processor Architecture (SPARC) CPUs and
embedded Java processors.

As of this writing, Lexra (www.lexra.com) was considered a leading contender of network-
processing IP, especially when compared with companies like Tensilica and ClearSpeed. A major law-
suit was brought against Lexra by MIPS for the alleged inappropriate use of MIPS’s instruction set.
This was finally settled, and Lexra had to formally license the MIPS instruction set. Part of the oner-
ous agreement was that Lexra could not engage in IP licensing anymore. Instead, the company will
have to design a full-fledged NPU chip that may be available later in 2003—that is, if the company
survives the financial turmoil. Lexra technology is therefore not included in this chapter.
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MIPS TECHNOLOGIES

MIPS (www.mips.com) is a startup that was originally set up to commercialize technology that was
based on pioneering research that Professor John L. Hennessy and his associates had done in the early
1980s at Stanford University. MIPS was later bought by Silicon Graphics and then spun off again as
an independent company. It is one of the few undisputed powerhouses in reduced instruction set com-
puter (RISC) technology. In the last 15 years or so, it has managed to propel itself to one of the pre-
eminent global positions in the embedded CPU market. Through the extremely wide acceptance of
its technology platform, the company has created an impressive list of licensees and varied applica-
tions ranging from workstations to network routers and from digital cameras to laser printers. It has
also helped create an entire industry of third-party software development tools, such as assemblers,
compilers, debuggers, and simulators, that facilitate programming and enable applications to be
smoothly ported from one system to another.

MIPS offers embedded, scalable 32- and 64-bit CPU platforms that are presented in the market as
a base architecture or as a CPU core. Historically, MIPS CPUs have always been designed to handle
general-purpose computing. As a result, they were never intended to become part of the unusual com-
putational environment that ultrafast packet processing has become. This pushed the adoption of MIPS
IP cores predominantly in control plane applications or in applications that were meant to be part of
a supervisory computer system. These are applications where the classical development tools,
methodologies, and programming models ensured that the MIPS approach would yield results. It is
not surprising that MIPS IP cores were deficient when it came down to manipulating gigantic quan-
tities of packets that needed sophisticated processing in real time and at wire speeds of several tens
of gigabits per second.

In addition to the lack of powerful input/output (I/O) bus and speed capabilities, the following are
the two most important reasons for this deficiency:

• The original MIPS CPU core instruction set did not offer provisions for such packet-processing
functionality such as one-cycle bit-field extraction, swapping, insertion, modification, rotation, and
so on. As a result, implementing them on a MIPS core meant that entire programs would have to be
written. This is a painful experience in RISC assembly when referring to having to fine-tune the
CPU’s multistage pipeline—something that C compilers cannot do that well. These programs would
have to be recalled numerous times from the main application as macros from an I/O or packet-
processing library just to implement the necessary packet-processing functions.
This proposition would entail many wasted cycles every time these programs were invoked. In fact,
even if the direct cost (in the RISC programmer’s time), the indirect cost (in the extra memory foot-
print of the embedded implementation), and the inconvenience of writing extra code for these
packet-processing functions were discarded, and if the overall problem is considered purely from a
performance standpoint, the idea is absolutely unacceptable when confronted with wire-speed pro-
cessing requirements.

• More importantly, however, the MIPS RISC cores are unable to handle multithreading. Every packet
being processed is associated with a computational context (thread) that is usually stored in tem-
porary locations, which are usually on-chip registers. These contain parameters, return values, and
lookup table pointers that associate packets with classification results, stack and heap pointers,
timers, counters, and so on. A certain level of register sets is available inside the network-process-
ing chip, but the main execution unit will often require that some overhead be spent before the hard-
ware switches context from one thread to another. This implies a waste of clock cycles while the
thread is being switched.
Some network processors require the programmer to manually insert special instructions to switch
the thread context at a specific point in time or under specific conditions. Others automatically
switch the thread in one clock cycle even when a thread is simply waiting for data to be fetched from
memory.
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However, the inability to support multithreading is not just a MIPS problem. It is a general RISC
and complex instruction set computer (CISC) problem. As a result, it plagues other IP core vendors
such as Tensilica and ARC.

Recently, in order to play a more important role in the network-processing realm, MIPS has re-
worked its fundamental instruction set to create some extensions that allow a satisfactory addressing
of the first one of these two problems. Although the company’s RISC cores have not suddenly become
specialized network-processor cores with the introduction of the extended MIPS instruction set, it offers
an improvement in programming network-processing applications. Nevertheless, MIPS IP cores still
cannot compete with any network-processor chip that we have discussed so far. NPUs have been
designed to excel in data plane applications; therefore, MIPS technology remains largely a candidate
for the embedded implementation of control plane processing.

MIPS was unprepared when it was confronted with the sudden arrival and the ringing market
endorsement of configurable architectures and methodologies within the last three years such as the
one Tensilica has evangelized. Many people who are not familiar with internals of computer archi-
tecture may be wondering what is so different between the two schools. For example, with the
Tensilica approach, a quick comparison will show that in the MIPS extensibility and configurability
scenario (at least as depicted in the MIPS presentation at the Embedded Processor Forum in 2002), a
person must hack into the processor’s pipeline by coding in Register Transfer Language (RTL) in
order to make a new instruction work. That requirement alone lies well outside the skills territory of
most experienced design engineers. Handling all issues pertaining to synchronization with the proces-
sor’s pipeline is the customer’s responsibility. As the customer must handle the new instruction decod-
ing, this is scary for most people. As if this is not enough of a worry for those who may be
contemplating the customization of a MIPS core to handle network-processing tasks, no discussion
has taken place about any type of software support from the core vendor.

Even the company’s latest M4K core, which has been touted as configurable and extensible, has
significant functional issues when it comes down to these two dimensions of usefulness. It also has
performance issues as it can only attain 200 to 250 MHz at best in a 0.13�m complementary metal
oxide semiconductor (CMOS) technology. This compares poorly with Tensilica’s numbers, which we
discuss later in the chapter. More specifically, it has the following extensibility and configurability
issues:

• The MIPS M4K core does not provide support for additional registers and additional register files.

• The configuration/extension capabilities are not automated but manual, requiring RTL coding and
tool modification, which is tedious and also error prone.

• It does not offer real-time operating system support for extensions.

As we mentioned earlier, IP cores are only licensed by companies that can financially afford them
and that will use them in their own design of integrated circuits. The licensing of a typical IP core
CPU is usually negotiable, but it usually implies a licensing fee of a half to 1 million U.S. dollars,
which must be paid in advance. It also entails a scaled structure of royalties usually based on a small
percentage of the chip sales, which the licensee will realize over several years with the use of the tech-
nology. There are several variations on the same theme. A company usually licenses an IP core either
for a single design use or for multiple design uses, but the fundamentals of the business model remain
unchanged—it involves a significant license fee up front and royalties.

In the embedded network-processing arena, however, MIPS is not confronted just with NPU chip
vendors. Some IP core companies compete squarely by the mere prowess of their IP technology,
which has been designed modularly for scalability and performance at wire speeds. On one hand, IP
from these companies seems to hold tremendous promise in the network-processing field, which
would be considered good. On the other hand, the network-processing IP from these specialized com-
panies has a very limited marketability as no other companies outside the small network-processing
realm are susceptible of using it. This is definitely not as good for the future prosperity of such com-
panies. This can be a major concern for large networking original equipment manufacturers (OEMs)
in search of a long-term partner.
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It should be obvious that small startups cannot often afford to use an IP core if they are not ade-
quately funded. Of course, the counterargument is that if a company does not license technology from
a third party, then it must develop it. Chances are that it will cost much more. Therefore, a company
that is not funded for such an internal-development endeavor is simply not adequately funded. It prob-
ably is severely undercapitalized and consequently facing extinction.

This implies that the vast majority of potential customers for specialized high-performance, net-
work-processing IP technology are large established network equipment vendors (NEVs) or extremely
well-funded and staffed startups (a rarity these days), who for various technical or business reasons,
are not satisfied with the available network-processor chip architectures and would rather contemplate
designing their own fast networking ASIC’s one way or the other. However, this is not a big market
for an IP company. This fact raises the issue of the mere survival and future prosperity of companies
that choose this avenue as their business model.

It is not a coincidence that once key NEVs are intrigued by a new technology, they often decide
to invest in it by taking a minority equity position in some of their key suppliers to ensure their ongo-
ing viability. In many cases, they simply decide to acquire them, thereby assuring themselves of the
in-house unrestricted availability and access to the key technology and even to the design team that
had created it in the first place.

CLEARSPEED TECHNOLOGY

On one side of the IP-licensing spectrum in network processing, we find a company with a unique and
very powerful technology—ClearSpeed Technology (www.clearspeed.com) (previously known as
PixelFusion). ClearSpeed is a leading vendor in the network-processing IP field. This young, but prom-
ising British company has introduced a modular and highly scalable architecture for realms well beyond
OC-768 and 40 Gbps. In this section, we will take a closer look at the company’s approach. The over-
all technology trade-offs should be compared to the context of alternative network-processing archi-
tectures we have seen so far.

The multithreaded array processing (MTAP) architecture rests at the heart of ClearSpeed’s syn-
thesizable platform. The MTAP architecture is available for licensing in either hard (synthesized
against the technology library of a specific semiconductor foundry process) or soft IP (delivered in
synthesizable RTL) form. It has been shown to scale to 40 Gbps and beyond. Figure 10.1 shows the
principle of this architecture. Assume that the flow of information travels from left to right. The flow-
through idea is immediately applicable in switching system designs, such as in line cards, as shown
in Figure 10.3.

The MTAP idea combines and blends some of the traditional characteristics of Single-Instruction
Multiple Data (SIMD), Multiple-Instruction Multiple Data (MIMD), RISC, and very long instruction
word (VLIW) approaches in a clever hybrid solution. The result is a highly scalable, high-performance,
low-power architecture that is very well suited for network processing.

An MTAP processor is able to contain an array of up to 2,048 processing elements (PEs). Each PE
can execute several simple tasks in parallel and can therefore be roughly seen as the equivalent of a
small VLIW engine. If the maximum number of PEs inside an MTAP sounds impressively large, it is.
However, some basic characteristics of the PE structure enable the deep levels of integration that the
company’s IP can achieve when it is synthesized against various foundry technology libraries. More
specifically, the data path of the PEs is 8 bits wide (as opposed to the typical case of 32- or 64-bit
RISC cores). They only contain a small and efficient arithmetic logic unit (ALU), a register file, and
local memory. If necessary, some of them can also offer special extension capabilities such as a hard-
ware-based multiplier-and-accumulator (MAC) module used in DSP algorithm implementations.
(This brings to mind the applicability of the technology in TDM-based voice applications such as
voice coding and echo cancellation.)

Another significant characteristic of the PE structure facilitating large-scale integration is that PEs
do not contain their own instruction fetch and decode units. Instead, the MTAP has a centralized
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FIGURE 10.1 The architecture of the ClearSpeed IP technology. (Source:
ClearSpeed)
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control logic that according to the fundamental principle of SIMD architecture, fetches, decodes, and
then issues one instruction, which is broadcast to all the PEs to execute on their own set of data. The
MTAP processor assigns packets to the individual PEs. All the PEs inside the MTAP have to execute
the same common instruction on their individual packets before the PEs are handed the following
common instruction.

This approach has some positives and some negatives. On the positive side, the overall code is sim-
pler as all PEs execute the same code. You do not have to worry about allocating code to the available
computing resources and fine-tuning applications.

On the negative side, more resources seem to be wasted than with a more traditional network
processor. This occurs especially when multiple protocols are executed at the same time. Some pack-
ets may require IPv4 processing, whereas others may require processing according to a different pro-
tocol, such as MPLS.

Code running sequentially on a classical network processor would first have to identify the type
of protocol involved. It would then invoke the appropriate subroutines by conditional branching to
handle it accordingly. However, in the approach taken by the ClearSpeed architecture, code is exe-
cuted in parallel inside all the PEs of an MTAP processor and completely independently of what pro-
tocol is to be applied on the individual packets inside the PE. In this specific example, this means that
both MPLS and IPv4 code will be executed in each PE, which wastes resources. However, you should
not rush to conclusions for the following reasons:

• First, we will mention that at their presentation during the Embedded Processor Forum in June 2001,
the company stated that their 400 MHz implementation, which was based on four MTAP cores that
each contained 64 PEs, achieved 102.4 GIPS (102,400 MIPS). When combined in a die with 40
Gbps interfaces, for example, the ClearSpeed solution will still enjoy the astounding privilege of
having 16 times as many MIPS per packet as the EZchip NP-1 network processor, even when
EZchip NP-1 is only allowed to work in a 20 Gbps environment. This means that a lot of computa-
tional power can be “wasted” without even coming close to worrying about performance penalties.

• The individual PEs can nullify instructions that do not apply to their data context. Even more than
that, they do not consume power while they are in that nullified state. This means for instance in the
example just mentioned that the central instruction fetch/decode unit issues code pertaining to both
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FIGURE 10.2 The very large scale integration (VLSI) layout of the basic
building block for the PE array within the MTAP processor. (Source: ClearSpeed)
Reprinted with permission.
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IPv4 and MPLS and broadcasts this code to all PEs. However, if a specific PE is only dealing with,
say, an MPLS packet, it will consistently nullify all instructions that it is handed that pertain to IPv4.

This approach seems extremely deterministic and efficient based on numerous simulations that the
company has performed. For example, ClearSpeed has simulated a chip with four such MTAP
processors performing simultaneous IPv4, IPv6, and MPLS protocol processing. It found that less
than 30 percent of its available cycles was used for the actual packet processing. This discovery
seems to justify the company’s approach to solving the network-processing problem despite the fact
that it obviously runs against the intuitive impression that this brute-force approach of throwing vast
amounts of MIPS on the computational task at hand causes a waste of computational bandwidth.

• ClearSpeed claims that their deterministic software approach has particular benefits for network-
processing software. If the worst-case performance guarantees are to be met, each path through
“branchy” code must be proven to take no more cycles than the number available. Also, systemwide
instruction fetch bandwidth must be guaranteed under all circumstances; otherwise, unnecessary
packet drops may occur. In systems that have many units that can fetch instructions and that have
branchy software following different paths on different cores, systemwide performance proof is next
to impossible. A program on ClearSpeed’s MTAP cores is essentially straightline, running the
worst-case code on each core. Since every PE will now run that same code, instruction fetch band-
width and instruction store are both massively reduced by more than an order of magnitude. This
results in significant savings in power and area. Also, straightline code has predictable, determinis-
tic performance, which provides obvious benefits to the user.

• Finally, ClearSpeed also claims that software can easily be written in a manner that minimizes the
cost of running multiple code paths through every PE. For example, if code to process IPv4 and IPv6
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FIGURE 10.3 Architecture of a line card and based on ClearSpeed IP Technology. (Source:
ClearSpeed)
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packets is written separately, each code path takes about the same number of cycles to execute.
Running them both on every PE would intuitively take twice as many cycles as running them on one
code path. However, because much of the processing of any protocol is common to the processing
of all protocols, a much more efficient code path can be written that performs both protocols simul-
taneously.

ClearSpeed claims that software that processes both protocols takes just 10 percent more cycles
than software that processes a single protocol. The optimizations involved are all simple, common-
sense transformations.

As mentioned previously, every PE must nullify specific instructions from the underlying com-
mon code that may not be applicable in its own context. This occurs through the following steps. Each
PE has its own predicate stack. Instructions can be executed, such as conditionals, which push their
result onto that stack. The current instruction will only affect this PE’s state if all the bits in the pred-
icate stack are true—in other words, all register and memory writes are gated by the OR-ing of the
entire enable stack. This produces code that looks something like the following example, which is a
parallel max function on 16-bit signed integers:

max:
if.gt    r_src1:p2s, r_src2:p2s  // 16-bit op, push results onto  enable

// stack. 2 cycles
mov    r_max:p2s, r_src2:p2s   // 16-bit op, only on those PEs where src2

// > src1. 2 cycles
otherwise                      // invert top bit of enable stack. 1 cycle
mov    r_max:p2s, r_src1:p2s   // 16-bit op, only on those PEs where src1

// >= src2. 2 cycles
endif                            // pop top bit from enable stack. 1 cycle

The :p2s suffix on the operands indicates they are poly (parallel) 2-byte signed. The code could
consist of :p1u for poly 1-byte unsigned, :p4s for poly 4-byte signed, or :m4u for mono, or scalar,
4-byte unsigned. Mono variables are operated on in the MTAP’s thread sequence controller (TSC),
which is responsible for fetching and decoding instructions. As a result, it can actually execute real
branches.

The sequence takes a total of eight cycles. Do not be misled by the if.gt instruction—it is not
really a branch! It is simply the start of a new, nested level of predication. A PE’s state will only be
changed by the instructions in that basic block if all the conditions up to and including the most recent
are true. Hence, by the time the endif is left, each PE has either written src1 or src2 to max, but
not both. So this is just a straightline piece of code. It will always take eight cycles regardless of the
conditions.

This technique is, of course, not new. It is quite common in several CPUs these days. Since
branches are one of the biggest performance bottlenecks in modern microprocessors, many include
predicated execution just like this for turning small branches into straightline code, which can then be
executed in their wide, fast, multi-issue pipelines much more efficiently. ARM has had this for some
time. It is also available in STMicro/Hitachi’s SH5. The small difference here is that they have a stack
of such enable bits and have multiple PEs using their different enable states to produce the effect of
control flow but without the branches.

Incidentally, this could easily be microcoded into just one instruction—for example, max, which
saves code space (4 bytes instead of 20). Also, some details of the architecture enable the other-
wise to be performed at the same time as the first mov and the endif to be performed at the same
time as the second mov. However, this can only occur when it is written in microcode. This means
the microcode max will only take six cycles instead of eight. However, not everyone can or wants to
code in microcode.

Compared to a small RISC core, a PE occupies on silicon about one-tenth of the area, offers about
one-third of the computational horsepower of a RISC CPU, and consumes less than one-tenth of the
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RISC’s power. To give an idea of the PE capabilities, the company clarifies that a combination of 256
PEs clocked at 400 MHz offers the equivalent of 102,400 MIPS, 4MB of embedded memory, and 400
GBps of memory bandwidth. For those who like to think in terms of DSP MAC operations, they pro-
vide the capabilities of 100 billions of MACs/per second.

Figure 10.2 shows an image of a four-PE subpanel in a low-dielectric k constant, 0.13�m tech-
nology library from UMC with eight layers of copper metalization. The various logic blocks in the
design use the lowest four metal layers, whereas the higher four blocks are used for overrouting—that
is, for interblock stitching between the individual cores at the chip level. It is part of a good SOC
design methodology. Its size is about 3 mm high by 0.5 mm wide. The outermost regular blocks are
the PE memories, which are 4KB each in this example. The company uses them in their EV1 evalu-
ation chip.

The next section down is the programmed I/O (PIO) logic. The PIO is a fairly complex, high-
bandwidth direct memory access (DMA) engine per PE—hence the significant size. Below that sec-
tion is another regular block. This represents the memory associated with the stream I/O (SIO), which
is 128 bytes per PE for the EV1 chip. A smaller slice of logic appears before reaching the register files
—one per PE, making up 64 1-byte registers. Each register file has five ports, so they end up being
quite big. Finally, the main block of logic appears below the register file. This includes the ALU, the
8�8 to 16�48 MAC, and the rest of the configuration.

It is extremely important to note that native hardware support exists for multithreading by the con-
trol unit, which is in charge of instruction fetching and decoding. The actual thread switching, which
remains accessible under software control, can be triggered upon the occurrence of specific events,
such as when an I/O operation has completed. I/O can be handled by two methods called SIO and
PIO. The former is used for very-high-speed packet entry and acceptance directly into memory for
subsequent processing. The latter is used when access is required to other coprocessors or memory.
The number and type of these I/O channels can be configured by the user of the company’s IP core
architecture.

To facilitate the design of complicated SOCs based on the IP core architecture, ClearSpeed has
developed an on-chip, high-speed, modular interconnect bus called ClearConnect™. It is a point-to-
point link based on distributed arbitration. It is structured in segments that connect different SOC com-
ponents to the bus. Each segment behaves like a local bus between the corresponding nodes. These
links can be scalably structured with up to four lanes of bidirectional traffic where each lane provides
up to 6.25 GBps of bandwidth for an aggregate bandwidth per link of 50 GBps between any attached
nodes. The segmentation of the ClearConnect bus means that multiple transfers can take place simul-
taneously between unrelated nodes on the bus. In addition, ClearConnect uses standard Virtual
Component Interfaces (VCIs) (as specified by the VSI Alliance) for the easy integration of third-party
cores and other coprocessor or components on the same SOC design. ClearConnect is delivered in
synthesizable RTL. It fits perfectly into any standard ASIC design flow and interfaces easily with place
and route tools.

In addition to the embedded MTAP processors that share access on the ClearConnect embedded
bus, the standard architecture that ClearSpeed proposes also provides for the potential presence of a
series of parallel coprocessors (also known as accelerators) that can be either among those designed
by the company or user or that can be licensed from a third party. ClearSpeed offers a series of IP
cores that may be interesting to customers for the integration of a complete design. It offers among
others accelerators for tree-search functions as well as for queue and state management.

However, the most prominent of these designs is a powerful Table Lookup Engine (TLE), which
was designed for situations where lookup capabilities are needed for more than 300 million lookups
per second. In a reference design, by embedding 24 lookup engines in the TLE and multiple banks of
compiled SRAMs from third parties, ClearSpeed managed to attain an impressive performance of 350
million lookups per second while clocking at 400 MHz.

The TLE (which is further discussed in Chapter 12, “Search Engines”) can be configured to work
with internal SRAM or DRAM depending on the capabilities of the targeted semiconductor process.
At the same time, support for external DDR SRAM or DRAM enables the creation of systems that
match performance, table size, and key length requirements with actual budgeted design costs. As the
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design has been largely optimized for tree walking, multiple parallel level compressed (LC) trie search
engines operating simultaneously provide results out of order because this increases the overall effi-
ciency of the TLE.

ClearSpeed clarifies that its MTAP architecture will restore the order of operations automatically
without any special buffering. The TLE can support tables with over 2 million entries at application
wire speeds requiring 350 million lookups per second, and can use variable size keys from 32 to over
128 bits. It also has significant advantages as opposed to the traditional use of external CAM.

A global semaphore unit, which is usually unique in one SOC design, coordinates synchroniza-
tion and communication between the multiple cores. Any major core has its own collection of private
semaphores to which only it has access. The MTAPs have these semaphores to coordinate chores such
as signaling when a memory transfer has finished.

The scalability of the technology stems from the fact that the architect-designer of a network-
processing superchip using ClearSpeed IP can configure his or her design by judiciously playing with
the following parameters in a five-dimensional space:

• The number of embedded MTAP processors in the chip.

• The number of PEs per MTAP.

• The amount of cache memory and instruction memory per MTAP.

• The number of lookup engines per TLE.

• The amount of table memory available per TLE.

In the implementation of a reference design of a classification engine, ClearSpeed has used 4
MTAP processors, which each have 64 packet processing engineers, a TLE embedding 24 lookup
engines, and 1MB of embedded memory for the TLE. Such a device is capable of classification and
forwarding in protocol environments such as IPv4/v6 and MPLS (label-switched router [LSR] and
label edge router [LER]) sustaining a performance of more than 100 Mpps. If the reader consults a
typical traffic-correspondence table such as the one shown in Appendix II, this translates to a simplex
OC-768 link with 40-byte packets. The idea is that by replicating this device, a unit can be created
that can condition the traffic by performing policing and metering, among other tasks.

Traffic management is a very important systems design issue, especially in realms of 40 Gbps and
beyond. ClearSpeed presented a preliminary design of a programmable chip for multiple traffic man-
agement tasks and algorithms at the Network Processor Conference in October 2001. This traffic man-
ager can work at either the ingress or the egress path. It can handle congestion avoidance and
scheduling as well as run statistics in the background. All these algorithms run in software on the
MTAP cores so simply altering the software may enable proprietary versions of the algorithms to
be run.

The company has already proven the concept of its architecture by building an actual piece of sil-
icon on which it integrated: a single MTAP core containing 1,536 PEs, 3MB of embedded DRAM,
structures that provide 600 GBps of on-chip bandwidth, and computational power that amounts to 1.5
Teraops of integer performance and 3 Gigaflops (floating-point performance). All this was coupled
with four Rambus™ channels that offered a bandwidth of 6.4 GBps in communications with off-chip
devices.

ClearSpeed manufactured this proof-of-concept chip using a standard but now quite obsolete
0.25�m CMOS process from UMC and packaged the chip with roughly 1,000 pins. This is an impres-
sive set of numbers, and it deserves the appropriate level of attention from the industry.

ClearSpeed is offering an elaborate Software Development Kit (SDK) for the development of com-
plete applications. The SDK, which runs on standard platforms like Linux, Solaris, and Windows
2000, is comprised of the following:

• An ANSI-compatible optimizing C compiler along with a few extensions that allow the program-
ming of the parallel features available in the MTAP architecture.

• An assembler.
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• A linker along with a set of source- and object-code libraries, including standard functions and
application programming interfaces (APIs).

• A debugger.

• A profiler.

• A microcode compiler.

• A full-fledged simulator and associated simulation tools for rapid prototyping, including models of
the associated hardware IP cores.

• An Applications Development Kit (ADK), which contains a traffic generator, optimized libraries of
key functions, reference implementations, and test code, thereby accelerating overall development
time.

• A Hardware Development Kit (HDK), including tools that allow silicon configuration and design
verification as well as operating system and drivers.

Helping promote the parallel development of hardware and software, ClearSpeed’s integrated
development environment enables users to first develop their code using the Virtual Instruction
Machine (VIM). An application is initially debugged in terms of functionality before it can be com-
piled on the final underlying machine language. The SDK profiler helps identify what types of instruc-
tions are used most often and which parts of the programs actually consume the most resources, so
that users can fine-tune their application by modifying the C-language source or by writing some in-
line assembly code, if necessary.

The Virtual Machine Simulator facilitates the improvement of application performance until the
actual underlying hardware design, which evolves in parallel with the development of the software,
arrives at a level of progress where the target instruction set has been finalized. ClearSpeed calls this
the Implementation-Specific Instruction Set (ISIS). Once both the final instruction set and the appli-
cation have been finalized, the application just needs to be recompiled against the target ISIS. The
linked code is then executed on simulation models of the actual hardware, where performance meas-
urements can be taken and instruction profiling can be performed. Finally, the application can be
refined and fine-tuned before it is executed on the actual target hardware.

An interesting characteristic of the company’s technology is that the user can create his or her own
custom instructions. During development, the code compiler at configuration time reads the encoded
instruction set from a special file, where the user has previously described the exact operations that
each instruction is expected to perform, how these operations are to be done, and which computational
resources from the system (ALU, registers, and so on) are involved. Through this straightforward
process, the user can describe altogether new custom instructions, which should be expected to pos-
itively impact the performance of the contemplated application code. The compiler then will naturally
choose the more appropriate instructions when generating code.

To further clarify the overall systems engineering context, we must point out that the generated
code is microcoded. Understanding why this is so, is straightforward. PEs are CPUs that are 8 bits
wide, but it may be that a new custom instruction revolves around a 16- or 32-bit operation. By
microcoding everything in terms of available 8-bit operations, ClearSpeed allows the implementation
of essentially anything. If you want to add two 32-bit numbers, depending on the exact addition algo-
rithm’s use of carry, you will need four 8-bit operations. As each native 8-bit operation is executed in
one clock cycle, the number of cycles required to execute a custom microcoded instruction will
depend on the actual operations involved. Our 32-bit addition example will take four cycles.

When an instruction is issued for execution, it is looked up in a special table that shows the steps
of how to implement it in 8-bit PE operations. In this context, the lookup table is the actual microc-
ode. For all practical purposes, one application may require different microcode than another.
Therefore, microcode is loaded at run time from external memory (ideally at boot time) along with
the actual application code to be run. In fact, the microcode space can be booted partially or com-
pletely, thereby affording an extra degree of flexibility around systems engineering.

We should briefly pause and compare ClearSpeed’s approach of customizing the MTAP instruc-
tion set to the ones taken by Tensilica’s configurable Xtensa™ CPU or even by ARC. The definition
of a new instruction usually entails the (automatic) creation of a significant number of extra logic gates
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(increasing the size of the underlying hardware core), but allowing the design to stay more predictably
close to the one-cycle execution rate objective of native instructions. These two latter examples are
not in the same MIPS league as ClearSpeed’s MTAP, which outperforms both of them by orders of
magnitude. However, we are referring to customizing instruction sets in order to optimize application
performance. We consider architecture/performance trade-offs involved in designing a system with
various approaches.

We conclude our discussion on ClearSpeed’s technology by saying that with all the computational
power of its technology, it is not a coincidence that the company has pushed the emphasis of original
applications on core networks that require 40 Gbps performance, but do not necessarily need intricate
deep packet processing. As the technology can be scaled down rather easily, users will most likely
come forward with designs that implement in-house-designed network-processing chips performing
more elaborate tasks outside the core and at the edge level. Indeed, much of ClearSpeed’s initial
customer interest has been at lower line rates, from 2.5 Gbps to 10 Gbps, but with high levels of func-
tionality—what the company affectionately calls the high touch. Other computationally heavy appli-
cations (from the network-processing arena) besides wire-speed classification/routing and quality of
service (QoS)-based traffic management will also most likely emerge soon. We will examine some of
these applications later in this book.

TENSILICA

The other side of the IP licensing spectrum, as applied to the network-processing realm, has a couple
of promising IP companies. Tensilica (www.tensilica.com) apparently has the most significant tech-
nology proposition. Because the company has created a new paradigm of the design flow, we will dis-
cuss the actual look and feel of designing a configurable processor CPU with this technological
approach.

Although other companies such as MIPS and ARM historically preceded Tensilica in the area of
licensing RISC CPU IP cores, Tensilica along with Improv Systems can be considered pioneers of the
idea of configurable processors. Although Improv Systems used the embedded VLIW approach with
a tightly controlled toolset, Tensilica’s current and prior products have worked on the RISC model
while enabling customers to automatically generate their own customized tools. The company, how-
ever, recently unveiled Flexible-Length Instruction Extension (FLIX)—its new VLIW architecture,
which was developed in partnership with a major semiconductor manufacturer. The new architecture
can be configured to provide an optimal match to the application workload, thus making efficient use
of all the processor’s resources.

Returning to the origins of its configurable processor approach, Tensilica realized that in many
designs users

• Actually need to be able to customize their CPU.

• Want to eliminate functionality that they do not need.

• Desire to change functionality (in many cases, altogether) to suit their own application needs.

• Want to add custom capabilities that would improve the performance of their CPU choice.

• Want to replace traditional hardware design functions (such as complex finite-state machines
[FSMs], packet-processing functions, and Transmission Control Protocol [TCP] offload engines)
with the flexibility of a software-programming model that only a programmable processor can pro-
vide. The company’s recently patented technology is based on Xtensa, an extremely flexible CPU
core, and a suite of associated tools that allow the generation of the configuration files that enable
the company to generate customized development tools for its users.1
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The basic Xtensa V (already in its fifth generation as of this writing) core is a fully configurable
32-bit RISC core that delivers above 420 MIPS, typically clocked at 350 MHz.2 In the worst-case
scenario, it is implemented in a 0.13�m line-width CMOS technology. It occupies only a small area
(�0.3mm2) in silicon real-estate—something extremely important when it is contemplated as part of
a larger design. It can be ideally suited for low-power designs (�0.1 mW/MHz) when synthesized on
typical 0.13�m CMOS technology libraries.

The Xtensa processor core is an implementation of a five-stage (or more) pipeline, as shown in
Figure 10.5, which shows the involvement of different pieces of CPU hardware at each stage. More
specifically, it shows the following:

• First, an instruction is fetched from the instruction cache.

• The instruction is then decoded and contents of needed registers are read.

• The ALU executes operations such as effective address generation and other operations as specified
by the instruction opcode.

• Memory is then accessed for reference or a branch is taken.

• Results are written back into the register file.

The company’s processor generator is an intuitive browser-like graphical user interface (GUI)
tool that enables the user to enter the configuration details of the processor that he or she designs. We
should clarify what we mean by “the generation of customized development tools” and show what an
impressive feat this is. When the user has defined custom instructions or extensions (such as special
multipliers, cyclic redundancy checks [CRCs], checksums, packet header checks, or DSP-needed
blocks such as single or dual MACs) to add on to the licensed core technology, he or she securely
submits to Tensilica through the company’s web site the configuration files that the processor gener-
ator produces. Within an hour or so, the company’s tools will generate a completed set of customized
development tools that the user can download.

With the arrival of the company’s fifth-generation technology in the fall of 2002, several impor-
tant enhancements were made:

• With the intention to maximize the usable I/O bandwidth and to improve the communications
between multiple embedded processors in an SOC, Tensilica enhanced the core processor’s Xtensa
Local Memory Interface (XLMI), which now allows multicycle devices to be attached with variable
latency.

• A convenient incoming request feature for the Xtensa Processor Interface (PIF) now enables an
Xtensa CPU to simultaneously execute instructions and handle read/writes to the processor’s local
data memory. This can be useful for some external functional modules in an SOC (such as DMA
engines) that need to get in touch with a specific processor or, most importantly, for other tightly
coupled processors. With configurable interface widths up to 128 bits, the Xtensa processor can
deliver a peak I/O bandwidth of 45 Gbps.

• The addition of a processor ID register to the instruction set architecture (ISA) can identify each
unique processor integrated on an SOC. This eases system software development when an overlay
application must be broken down to pieces that need to be allocated to specific processors. It can
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also impact the possibilities of large-scale SOC integration for natively parallel applications that are
based on multiple copies of the same configuration of the Xtensa processor, as each processor can
be now uniquely identified while it communicates with other fellow processors.

• The company has also implemented designer-defined conditional load and store instructions. This
has significant value in deep packet classification tasks, which are so often executed in network pro-
cessing. When carefully used, it can result in programming that contains far fewer branch instruc-
tions. As a result, the executable code will have better performance.

Figure 10.4 summarizes this approach. The figure resembles a typical integrated circuit design
flow except with two major differences: the underlying hardware and the instruction set of the embed-
ded code can be changed in order to optimize performance, and the actual software development tools
are automatically modified to reflect the latest changes, so they can match the development require-
ments and context perfectly.

The toolset is made up of the following:

• A standalone tailor-made GNU C/C�� compiler.

• An assembler/disassembler.

• A linker.
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• A debugger.

• A cycle-accurate instruction set simulator.

• An advanced code profiler as shown later in Figure 10.10 that allows the fine-comb scanning of the
application at hand looking for oversolicited resources, potential conflicts, bottlenecks of perform-
ance, and so on.

If the user’s initial software analysis shows some areas of poor performance, especially in con-
junction with the underlying architecture, some hardware resources (MAC, multipliers, registers,
ALUs, comparators, and so on) or more specialized instructions may need to be added. If optional
hardware additions must be made, the company allows the configuration of an instruction and/or data
cache, a memory interface, interrupt control mechanisms, timers, and the size and count of registers.
Most importantly, it allows the potential insertion of custom units that the company calls generically
designer-defined execution units.

These execution units can be blocks such as a floating-point unit or even a full-fledged, very pow-
erful, customized-width DSP engine that can even have multiple MACs for extremely fast DSP pro-
cessing. In the case of instruction extensions, the configuration of the data path must be reiterated
using the company’s processor generator tool. Instruction set extensions (a feature that network-
processing system designers using this platform seriously need to engage) are easily coded in what
Tensilica calls Tensilica Instruction Extension (TIE) language. This is a Verilog-like language that
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FIGURE 10.5 Five-stage Xtensa pipeline implementation. (Source: Tensilica)
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describes the desired instruction mnemonics, operands, encoding, and semantics into what the com-
pany calls TIE files. TIE files serve as inputs to the processor generator tool.

This takes a matter of minutes if the user knows architecturally what he or she wants to achieve
and not more than a few hours if the user must think through the architecture and experiment first.
Once this done, the user uploads the newly produced configuration tools to Tensilica, who will gen-
erate a new set of development tools for the user.

The flexibility afforded toward configuring a CPU data path is revolutionizing the industry. It is
no wonder that Xtensa cores have been chosen by several network-processing chip designers to be
part of larger in-house created designs. These designers include companies such as Bay Microsystems,
which uses the Xtensa core in the exception/control plane of the Montego™ Internetworking
Processor (InP), and others such as Transwitch for its T3BwP (bandwidth processor), Onex for its
Omni Service Processor, Trebia for its Storage Network Processor, Marvell for its NetGx coproces-
sor, and NEC3 for its Wideband Code Division Multiple Access (W-CDMA) network infrastructure
chip.

Depending on the exact function of the development tools, they not only produce executable code
for and work directly with the new customized instruction set, but they also reflect the underlying
design configuration resources, integration, and use that the user has stipulated. Tensilica’s patented
design database is an integrated repository for all pertinent information. It facilitates the parallel devel-
opment of hardware and software. At the same time, the company has developed patented technology
that allows the compression of code instructions in less than 32-bit words (decompressing them on-
the-fly during operations), thereby optimizing the memory footprint of embedded implementations.

Up to now, we have described what happens in the software development process. For the hard-
ware development process and depending on the actual hardware choices and performance constraints
that are imposed (regarding power, speed, and size) on the design during the interactive processor gen-
erator session, the company’s generator tool will also automatically generate the appropriate hard-
ware tree of the newly configured core in synthesizable hardware description language (RTL). It also
provides Electronic Design Automation (EDA) scripts for the subsequent synthesis step, the neces-
sary verification suite, and a bus-functional model (BFM) to interface with the instruction set simu-
lator (ISS) and other standard ASIC design tools for synthesis, functional, and timing verification.
The processor generator GUI also provides an impressive set of dynamically changing colored bars
that show in real time the impact and cross-influence between a user’s architectural decisions and the
underlying clock frequency (in MHz), the logic-gate count (number of gates), the silicon area (in
mm2), and the estimated core-power dissipation (in mW). If the architect knows what the power or
space budget is for the corresponding system design resources, he or she can easily readapt his or her
thoughts and ideas in a series of iterations that ultimately lead through balanced compromises and
trade-offs to the satisfaction of the design requirements at hand.

The toolset is completed with a real-time operating system overlay that works with a hardware-
abstraction layer on the custom-configured core processor data path. This layer also natively supports
ATI’s Nucleus PLUS™ or Tornado™ for VxWorks from WindRiver Systems. The company also
offers a prototyping development system based on a board that uses either Altera custom-program-
mable logic device (CPLD) technology or Virtex II platform field-programmable gate array (FPGA)
technology, which can be used for processor emulation and early software development for some types
of applications. Customers configure the processor and download from Tensilica’s servers generated
tools for the emulated testing of the design on the CPLD.

Last but not least, it is worth mentioning that Tensilica and CoWare (www.coware.com) have been
working very closely on a multiyear commitment, whereby the Xtensa V processors in configurations
using multiple cores and peripherals along with multiple memory blocks are integrated into CoWare’s
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3. NEC engineers not only configured the Xtensa core, but they also designed 20 new powerful bit-handling instructions for ATM
timer control and data queue manipulation in this ATM-centric communications chip by using the TIE language. ATM is used for
the communications among base station nodes, radio network controllers, mobile services switching centers, and gateways to the
Public Switched Telephone Network (PSTN).
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N2C™ (the abbreviation of napkin-to-chip™) platform. CoWare enables C-based design, simulation,
and analysis. Therefore, it facilitates parallel hardware and software design and coverification instead
of the traditional hardware and software partitioning of the problem. Interested readers can obtain
more information from each company.

Tensilica states in its product literature that in IP forwarding/routing, the addition of a few well-
thought-out instruction extensions on its base instruction set and about 6,000 gates of extra logic on
the fundamental core, which is usually a little more than about 100,000 gates, enables the achieve-
ment of around 12 times the performance of a typical 32-bit RISC equivalent. This is important, and
it argues in favor of the company’s technology as opposed the technology proposed by its few direct
competitors. However, it does not allow the multigigabit handling of real-time traffic, which requires
deep packet inspection, classification and modification in conjunction with traffic management, flow
control, scheduling, and so on. It only allows this if a large number of multiple similar RISC engines
are integrated.

We will discuss benchmarking network-processing applications later in the book. At this point, we
will only mention some rudimentary benchmarking efforts coming from the Embedded Multi-
processor Benchmarking Consortium (EEMBC) forum. This forum was originally created to objec-
tively measure and rate standard CPUs. However, standard computing applications such as word
processing, database querying, spreadsheet calculations, and graphics rendering have a completely
different temporal statistics and spatial structure where caching works miracles. As a result, the tra-
ditional computing architectures and platforms, which have become the bulwark of mainstream com-
puting, are simply not capable of handling the multiple facets of complex network-processing
applications running on live packetized networks at wire speed.

At the same time, however, do not discard the fact the industry has been struggling conscientiously
to address this need. Tests like the EEMBC benchmarks are a good first effort to solve the problem.
They can also be found useful for evaluating and comparing the control plane. However, more work
is needed to develop representative, universally accepted, and useful test suites.

The EEMBC Networking benchmark suite is based on applications that are drawn from the net-
working reality and that have significantly different characteristics than consumer or IT applications.
They usually involve less arithmetic computation, generally show less low-level data parallelism, and
frequently require rapid control flow decisions. The EEMBC Networking benchmark suite contains
representative code for routing and analyzing packets. Figures 10.6 to 10.9 show some interesting
results obtained by executing this code on multiple processors.

178 NETWORK PROCESSORS

FIGURE 10.6 A comparison of EEMBC NetMarks/MHz of out-of-box scores for Xtensa 350
and several other architectures. (Source: Tensilica)
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More specifically, we compare EEMBC NetMarks/MHz of out-of-box scores for Xtensa and sev-
eral other architectures, where the IDT 32334 (MIPS32) at 100 MHz has a performance reference of
1.0. Out-of-box means as shipped by the vendor and without any customer-performed architecture
optimization. The results shown in Figure 10.6 indicate that Xtensa, even without any networking-
specific extensions, consistently has twice the performance of some major alternative 64-bit RISC and
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FIGURE 10.7 The comparative results of Figure 10-6 are only further exacerbated if the impact
of the higher clock frequency now used in the Xtensa V pipeline is considered. The results shown
here are in absolute terms. (Source: Tensilica)
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FIGURE 10.8 The same EEMBC benchmark shown in Figures 10-6 and 10-7 but with optimization of
the Xtensa architecture for some networking applications. (Source: Tensilica)
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three times the performance of 32-bit RISC architectures.4 Out-of-the-box testing is good because it
gives a first good feeling about a basic architecture as well as the quality of the compiler. This per-
formance difference is further magnified by the clock frequency advantages of the Xtensa pipeline,
as shown in the absolute NetMark performance, which is shown in Figure 10.7.

Figure 10.8 shows the performance of the same networking applications, but this time it includes
Xtensa optimized for packet processing. Looking at results per MHz provides a better idea of the
architectural efficiency. These optimizations are small but highly effective, adding less than 14,000
additional gates (less than 0.2 mm2 in area) to the processor. The extended Xtensa processor achieves
about 7 times the cycle efficiency of a good 64-bit RISC processor core and more than 12 times the
efficiency of a 32-bit RISC processor core.

These processors achieve generally comparable clock frequencies, though the NEC4122 (MIPS32)
lags somewhat slightly behind, giving the overall optimized NetMark performance increase shown in
Figure 10.9. The net result of these modifications is a new processor, which by its proper configura-
tion attains a performance rating that is almost 10 times faster than other popular 64-bit RISC proces-
sors on high-throughput networking tasks.

More importantly than the exact quantification of any relevant performance improvement, the
EEMBC benchmark results have been presented more for their qualitative conclusion. In other words,
looking at these comparative numbers, one cannot help but notice the undeniable evidence that exten-
sible and configurable processors can achieve significant improvements in throughput across a wide
range of embedded applications, relative to good 32- and 64-bit RISC, DSP, and media processor cores.

Also keep in mind that results published about comparative performance between IP cores are
based upon a simulated chip. This is because it would otherwise be prohibitively expensive for IP
companies to design and build a custom chip just to compare their performance with an off-the-shelf
processor. Also make sure that the appropriate clock frequencies, semiconductor process technology
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FIGURE 10.9 The performance increase that is obtained from properly configuring the Xtensa
to suit the needs of the networking application at hand. (Source: Tensilica)

4. In addition to checking out the details at the EEMBC web site at www.eembc.org for all the results that we discuss in this chap-
ter and that have been independently certified by EEMBC Certification Laboratories (ECL), an interesting article was written by
Michael Santarini called “Tensilica Aces Benchmarks, Actel Shoots the Moon,” EE Times (September 16, 2002). It is also avail-
able online at www.eedesign.com/story/OEG20020916S0023.
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library, and even power consumption factors are judged fairly. If they are not, a very erroneous set of
conclusions can be reached. In other words, if core A implemented in 0.13�m CMOS library matches
the performance of core B when it is implemented in an 0.18�m library, you cannot just brush the
underlying silicon technology issue aside and state shamelessly that the two cores perform identically.

In a similar example with different parameters, if you compare a 1 GHz off-the-shelf processor X
with a 200 MHz IP core Y and state that the former wins by a factor 5 in throughput, it may not be a
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FIGURE 10.10 A performance analysis of custom-written code is done with Tensilica’s profiler, which allows the detec-
tion of bottlenecks and the generation of statistics as to which subroutines, function calls, and operations occur during
most of the time. This allows the definition of new instructions when and where needed, which will simply imply one
more iteration in the cycle. (Source: Tensilica)
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surprise. However, if Y does this at 17 times the power consumption of X, then the argument can be
made that the winner has not really . . . won.

Let us look at a real-life example that further corroborates the context and argument. IBM
Microelectronics is working with a nondisclosed (as of the writing of this chapter) NEV to integrate
the nontrivial quantity of 174 Xtensa RISC cores into one chip.5 In this case, IBM worked hard to trim
down the individual core’s gate count to around 92,000 per embedded processor in order to be able
to fit the complete design in a die of 18 mm�18 mm using IBM’s advanced thin-line lithography and
copper-metal Cu-11 process, and to accommodate the staggering number of gates.

Returning to the technical considerations of a systems architect coping with a network-processing
challenge, even with a configurable processor at hand, the list of real problems starts looking like the
following:

• Deciding upon the memory structure of the overall system and figuring out which processor has
access, when it has access, through which bus and mechanism, to which memory subsystem, and
under which circumstances.

• Deciding how the processors communicate with each other and how they share access to resources
using some scheme of arbitration and conflict resolution.

The list becomes elaborate. For now, we just want to give an idea of the task’s magnitude. It should
be rather obvious that this overall context creates an absolutely formidable computational “beast” that
not many organizations really know how to formally tame—either from the hardware design side, or
assuming they know how to logically partition the code for each processor (thereby allocating tasks
at hand), from the mere challenge of tackling multiprocessor scheduling, coordinating execution and
memory access, and even simply balancing the workload among the engines while respecting duplex
multi-gigabit-per-second wire-speed I/O. This is where serious trade-offs will need to be considered
by the systems architect and the true pros and cons of such a hyper-complex design become apparent. 

Tensilica has publicly shared its noble vision of the computational future of its trademarked con-
cept of Sea of Processors™. This concept portrays an SOC world to come where hyper-sophisticated
integrated design tools will automatically map a customer’s application code onto a large series of
optimally configured and embedded processor cores, which in unison with each other will be able to
perform the tasks as desired and thereby satisfy a system’s application requirements.6

Although spectacular progress has been accomplished in computer architectures as well as in soft-
ware and integrated-circuit design tools and methodologies during the last two decades, we are not
there yet. However, you should retain a clear sense of industry trend from this short overview.

FLIX: CONFIGURABLE VLIW

We will conclude our short discussion of Tensilica’s configurable processor technology as an inter-
esting means to develop a specialized high-performance, network-processing ASIC or SOC by men-
tioning Tensilica’s important recent introduction of the FLIX architecture, which embraces
configurable VLIW principles.7 For obvious reasons, we will examine the importance of this trend
from a network-processing standpoint.
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5. Anthony Cataldo, “Reconfigurable Processors Make Move into Big Time,” EE Times (May 24, 2001). This is accessible
www.eetimes.com/story/OEG20010324S0001. The same story is also mentioned in another article by the same author called
“Comms Warm a Bit to Reconfigurable Processor,” EE Times (March 23, 2001). This is accessible at
www.eetimes.com/story/OEG20010323S0071.

6. See www.tensilica.com/press/Tensilica_press_20011017_mprvision.html.

7. The introduction was made on October 16, 2002 at the Microprocessor Forum conference.
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Complex network-processing tasks, especially since they must be executed at wire speed, amount
to extremely heavy computational loads that ordinary architectures cannot handle. With more data
and applications to deal with per unit time, more work needs to be accomplished in the same short
amount of time. The following are two fundamental ways of going about doing this:

• Increase the frequency clock when possible and force the hardware to complete more operations per
second.

• Deploy a sense of parallelism into a design.

With dramatically shrinking lithography line widths and with IP core reuse methodologies prolif-
erating by the need to meet shorter times to market, integrated systems become more complex by the
massive piling up of multiple subsystems on one and the same SOC. This context makes the choice
of increasing the frequency of the fundamental clock unacceptable as it drastically increases the chip’s
power consumption, which creates package choice (and therefore cost) and system cooling issues that
may be difficult to confront given chassis-based power-consumption budgets and constraints. In order
to cope with the increasing computational load, the network-processing architect has to match the
need for parallel architectures. This has been corroborated by the creative approaches taken by the
designers of many commercial off-the-shelf NPU chips.

Now parallelism in computer architecture does not just stand for one approach. For instance, a
designer can deploy multiple cores inside an SOC and divide the work (when appropriate and feasi-
ble) to these resources. However, he or she will have to contend with managing access and resolving
conflicts by some sense of arbitration that instead of resolving complexity, he or she simply shifts the
design challenges from one hard issue to another equally difficult one.

Alternatively, a designer could consider engaging a wider data path on a CISC/RISC architecture
platform and expect to accomplish more work per time unit. A 64-bit processor is expected (at least
by some people) to perform more useful work than a 32-bit processor. However, this is not always
true. Not all applications can benefit from longer word arithmetic or data transfers. A designer can
also deploy superscalar architectures to tackle this design problem. However, if such an architecture
is based on an extensible and configurable architecture like the Xtensa processor’s, it will end up being
a nightmare for the designer to manage all possible interdependency issues that can arise between cus-
tom instruction set extensions and the basic architecture itself. Tensilica architects have decided to
follow a different path—the VLIW approach. Other companies such as Improv Systems whose
approach has been marked by a history of distinctly less aggressive marketing toward configurability
by customers are discussed in a later section in this chapter.

Tensilica’s FLIX approach offers straightforward and easy configurability to the wide instruction
community of custom ASIC designers who use embedded processors and who want to accomplish
more work in a given amount of time. A new 64-bit long instruction format provides parallel access
to multiple execution modules, which could be store-and-load units, ALUs, MACs, barrel shifters,
and so on. By keeping the lowest 4 bits of all instruction words as the indication of the instruction
length, FLIX allows the seamless mixing of 16-, or 24-, or 64-bit long instructions without a problem
and with the possibility of aligning them at byte boundaries. It also guarantees the compatibility of
preexistent Xtensa code with the new architecture. A designer can do the following tasks with such a
flexible approach:

• Simplify the decoding of instructions based on a more rational instruction field allocation.
• Optimize the memory footprint especially if multiple streams of instruction sequences (threads)

must be executed in parallel cycle by cycle in need of data from different areas of the addressable
memory space.

• Save silicon space on a custom design by using a consolidated instruction sequencer.
• Take advantage of the possible and deterministic coordination between various on-chip modules.
• Adjust localized power management by software executing in real time.

The most significant advantage for a network-processing designer, however, is that this new archi-
tecture can simultaneously handle several instruction sequences (also known as threads) in parallel.
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This has been one of the weakest spots as far as network processing is concerned in the original con-
figurable architecture approach with which Tensilica started. The company is now addressing this
issue.

A note of caution: It will be interesting to follow the arrival of the actual products and tools
enabling the wide-scale acceptance of the configurable VLIW (FLIX approach). It will be especially
interesting to see how code compatibility can be preserved between customer-extended Tensilica
legacy instruction sets and the new parallelized technology.

ARC CORES

ARC (www.arccores.com) is a British IP core technology company that offers a configurable,
extendable, and synthesizable 32-bit RISC architecture based on a CPU platform. called
ARCtangent™. The heart of the ARCtangent technology is the A-5 32-bit RISC processor, which is
based on a four-stage pipeline and implements the company’s ARCompact™ orthogonal instruction
set (meaning that all addressing modes and therefore all registers are accessible to all instructions).
ARCompact combines a mixture of 16- and 32-bit instructions and intends to minimize instruction in
the memory footprint. A core register file of thirty-two 32-bit registers can be doubled or extended
with extra registers if desired.

The company’s core technology is a little less configurable than Tensilica’s, and its development
tools do not exhibit the same possibility of customized generation based on the user-implemented
extensions.8 Nevertheless, the technology has been commercially accepted because of its simple and
clear-cut approach and what appears to be extremely reasonable licensing terms.

In order to take advantage of its technological configurability, ARC offers a GUI-based configu-
ration tool that enables a user to decide all the features and characteristics of the CPU. The user could
decide to do things such as creating and adding extra instructions for specialized repetitive operations,
customizing the cache configuration, or reconfiguring the interrupt-handling priorities and vectoring
mechanisms. The user could also decide to use a Harvard-bus configuration (separate and parallel-
running instruction and data buses accessing different memory banks for program code and data
respectively) as opposed to a von Neumann structure that has one common shared bus for instructions
and data. Once a processor is designed with customized extensions or options, the tool will generate
the appropriate RTL code files.

The company also provides a series of ready extensions such as customized MAC instructions as
well as an array of peripheral IP cores to help facilitate an SOC design. It also offers a complete series
of development tools, high-level language compilers, simulators, and debuggers that facilitate and
accelerate a systems design based on the company’s technology.

The technology is very flexible, but for fast network-processing applications it suffers from the
same generic weaknesses that simple RISC architectures exhibit across the board. In other words, a
designer must do the following:

• Deploy a large number of multiple cores to share the load.

• Decide how to schedule work on each core.

• Sort out how to coordinate the cores on tasks that make part of a larger piece of work the chip must
perform.

• Decide how to allow the multiple embedded cores to communicate among themselves and with a
supervising host CPU.
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8. See several pertinent articles published in the Microprocessor Report. A good example is Tom R. Halfhill, “Tensilica Xtensa V
Hits 350 MHz” (September 16, 2002). This is available online to paid subscribers at www.mdronline.com/mpr/h/2002/0916/
163701.html. This article discusses comparative results between Tensilica and ARC processor cores based on ECL-certified results
of the EEMBC benchmark suites.
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• Resolve a major resource-sharing problem that will be experienced by the cores, especially when
it comes down to embedded and off-chip memory access, with scalable, real-time, and fair arbi-
tration.

• Implement a convincing and (above all) functional scheme to address context-switching issues (mul-
tithreading with zero switch overhead) in an area where RISC has been traditionally incapable of
addressing the problem efficiently.

• Last but not least (in order to compete with network processors), come up with a flexible and mod-
ular programming model that allows the efficient use of such a massive computational artillery in a
transparent way, offering a single-image perception to software engineers, who do not need to worry
about allocating software work to individual engines. The model should also eventually allow “hot”
swaps or code upgrades in the field without requiring the chip to be redesigned every time just to
accommodate new functionality.

Therefore, the assessment is that this type of technology can be used either in low-speed 
forwarding-plane designs for packet processing (customer premises equipment [CPE] or enterprise
network equipment) or in multiprocessor designs where multiple embedded core processors are inte-
grated into the same SOC. That inevitably brings along a whole series of systems architecture issues.
However, in the network processing field, this type of configurable processor technology usually
seems ideally suited for supervisory and control plane applications, where neither wire-speed
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FIGURE 10.11 The example illustrated here is for a new instruction called here ACS, which adds some operands, com-
pares some other entity with the obtained sum, and based on the comparison result selects the content of one among sev-
eral registers. (Source: ARC Cores)
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performance nor complexity management of multiprocessor integration is required. Several interest-
ing articles9 and application notes about the engagement of configurable processor technology from
Tensilica and ARC in the network-processing field are available. Some of them can be found either
directly from the web sites of the individual companies involved or from the trade journals mentioned
in the list of references.

IMPROV SYSTEMS

A completely different architectural approach to the IP core-based SOC design problem has been
taken by Improv Systems (www.improvsys.com) and its Jazz™ VLIW CPU technology.10 The com-
pany originally pursued the network-processing market, but recently it seems to have steered more
heavily into applications that require extremely powerful scalable embedded DSP processing. This
does not preclude the use of its approach in fast communications processors, which is why we discuss
it here. Figure 10.12 illustrates parallel and scalable architecture based on the Jazz VLIW platform.
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FIGURE 10.12 Parallel and scalable architecture based on Improv’s powerful Jazz VLIW core platform. (Source:
Improv Systems)
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9. See, for instance, Loring Wirbel, “Onex Communications Corp.’s Omni Switching and Processor Architecture,” which is avail-
able online at www.eetimes.com/story/OEG20020721S0005, and “Bay Microsystems Uses Xtensa Processor Architecture To Reach
New Heights in 10G Integration and Packet Processing Performance,” which is available online at www.baymicrosystems.com/
news/press_release_tensilica_07_29_02.html.

10. A nice introduction to the Jazz architecture can be found in an article by Steve Leibson called “Jazz Joins VLIW Juggernaut,”
which appeared in the Microprocessor Report publication on March 27, 2000. It is available by subscription at www.
mdronline.com/mpr/h/2000/0327/141303.html.
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The Jazz platform enables the easy integration of multiple VLIW processors inside an SOC. Each
one capable of executing between 8 to 12 operations per instruction. Each processor communicates
with other processors through a proprietary on-chip fast Q-bus where control messages are exchanged.
Data is passed on between processors by using shared banks of embedded memory. The advantage of
this approach is that in a multiprocessor SOC, contention will never appear among processors for
access to memory or a shared bus. The technology can be easily scaled to extraordinary computational
capabilities. In addition to the hardware platform and architecture, the Improv approach deserves some
serious attention for its advanced development tools and overall design flow approach.

Designers first describe the architecture that they have chosen into the company’s interactive tool
suite, either based on one of the company’s several standard configurations or by embedding one or
more designer-defined computational units (DDCUs) next to one or more Jazz VLIW CPU cores. The
DDCUs can be essentially any piece of hardware logic that may be required to properly execute an
application. The designers then use ordinary Java language along with a few extensions in some handy
class libraries that the company has created as a notation tool to correctly describe behavior. The rea-
son for this choice is that Java competency is much easier to find as a commonly available skill among
software engineers than traditional hardware description languages, which are not so well mastered
by the software community. Improv strongly believes that it is becoming more important than ever to
control the complete SOC design cycle by software, as opposed to struggling with the integration of
multiple and often incompatible or unverifiable IP cores. The role that software engineers play
becomes more critical to the overall flow of work.

Solo, Improv’s development environment compiler, reads the Java notation along with the descrip-
tion of the underlying architecture and generates the application image. It then maps this image code
onto the configured multiprocessor hardware. As a result, a very complex application, which was
developed with a single programming engine in mind, is automatically and seamlessly partitioned
onto multiple processors, each working from its own private instruction memory. The SOC designer
can simulate the complete solution using a cycle-accurate simulator and identify bottlenecks or decide
on the necessary modifications in order to better balance loads or tasks or to change the architecture
by adding more standard or optional customized hardware resources, when necessary. The final
executable can also be emulated using standard FPGA-based boards. The results are both impressive
and fast.

Improv has designed several multicore SOCs for and with its licensees. However, for our dis-
cussion, we will only mention one case where five embedded Jazz VLIW cores with their memory
obtained sustained aggregate I/O throughputs close to 8 GBps on top of heavy-duty processing of
packet-processing applications. This was achieved without pushing semiconductor die fabrication to
boundaries of feasibility (meaning that more Jazz cores could be easily packed onto the same die if
necessary).

This makes the technology a more than viable candidate in the network-processing field for cus-
tom-designed SOCs based on third-party IP cores.

SUMMARY

In this chapter, we looked at the idea of designing customized network-processing chips using IP cores
obtained by multiple third-party sources. We discussed the cutting-edge performance offered by a
leading supplier of network-processing-optimized IP technology as well as other mainstream config-
urable IP CPU cores—namely, those that are based on either RISC or VLIW approaches. Many of
these approaches offer flexibility, but they may also decrease wire-speed performance. In other words,
this flexibility comes at a serious price.

In addition to having to design the entire network-processing ASIC by themselves, which implies
that an organization has the necessary design skills and money for in-house work based on this
approach, IP-based network-processing design seems a viable approach for fast packet-processing
ASICs if the design is based on the scalable and powerful ClearSpeed IP approach or on VLIW
processors that are easily configurable.
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If however, the configurable RISC or VLIW approach proposed by Tensilica and others who have
tried to emulate its model is used, then this technology should be considered in lower-speed applica-
tions when dealing with the data forwarding plane, or as is more often the case control plane compu-
tational tasks or tasks where the daunting challenge of integrating multiple processors inside the same
piece of silicon can be handled from the affordable silicon-die real estate and an architecture and sys-
tems engineering standpoint.

However, the latter case has a different result when dealing with programming and coordinating
multiple embedded processors, scheduling and arbitrating their access to internal, scarce, and some-
times conflicting resources, while working under a real-time operating system and faced with traffic
that is flying in and out of the chip at multiple-gigabits-per-second wire speeds. Classical RISC tech-
nology in that case, will be obliged to yield to more scalable and flexible architectures (off-the-shelf
network processors) that can usually be procured and programmed more easily, more efficiently, and
less expensively than custom ASICs.
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mation in the following sources:
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Exploring some old concepts (and once considered heretic approaches) that now seem to come
back to life with cutting-edge advantages that they offer, asynchronous interconnects inside an SOC
allow the integration of multiple IP cores in unusual new designs using methods that are the complete
opposite of today’s best-design practices that have been taught at electrical engineering departments
worldwide during the last 25 years and that have been systematically practiced in the industry so far.
The following sources provides good coverage of this new school of thought:

John Bainbridge, Asynchronous System-On-Chip Interconnect, CPHC/BCS Distinguished Dissertations (New
York: Springer-Verlag, 2002).

More information for this type of technology can be found from research done at Sun Microsystems
at the web site http://research.sun.com/features/tenyears/F3Async1JB.html.

The following is a nice book that is focused on the issues surrounding integration of ARM RISC
cores into larger designs, but it also discusses the general issues related with IP core integration:

Stephen B. Furber, ARM System-on-a-Chip Architecture, 2nd ed. (Reading, Massachusetts: Addison-Wesley,
2000).

The following are a couple of very good books on the fundamentals of ASIC design for readers
who are new to this field:

Farzad Nekoogar, Timing Verification of Application-Specific Integrated Circuits (Upper Saddle River, New Jersey:
Prentice-Hall, 1999).

Sung-Mo Kang and Yusuf Leblebici, CMOS Digital Integrated Circuits Analysis & Design, 2nd ed. (New York:
McGraw-Hill, 1998).

Michael J.S. Smith, Application-Specific Integrated Circuits (Reading, Massachusetts: Addison-Wesley, 1997).

Jan M. Rabaey, Digital Integrated Circuits: A Design Perspective (Upper Saddle River, New Jersey: Prentice-Hall,
1995).

Neil H.E. Weste and Kamran Eshraghian, Principles of CMOS VLSI Design, 2nd ed. (Reading, Massachusetts:
Addison-Wesley, 1994).

A nice source of study on the issues of parallel design (co-design) of hardware and software can
be found in the following book:

Jørgen Staunstrup and Wayne Wolf, Hardware/Software Co-Design: Principles and Practice (Boston: Kluwer
Academic Publishers, 1997).

An industry association that promotes open standards for the structured and disciplined use of
intellectual property inside SOC designs is VSI Alliance (www.vsi.org). Their site contains some inter-
esting links.

A good site with interesting information on IP components for reuse is www.design-reuse.com.
The following companies distribute trade publications that often discuss this technology in depth.

These publications also include tutorials in new approaches:

EE Times (www.eet.com)

EE Design (www.eedesign.com/isd/issue)

Embedded (www.embedded.com)

Communications Design (www.commsdesign.com/csd/issue)

Integrated Communications Design (http://icd.pennnet.com/home.cfm)

EDN Access (www.e-insite.net/ednmag/index.asp?layout�webzine)

Several market research groups are also analyzing this market and consistently provide research
material on multiple aspects of embedded processor technology.

The Microprocessor Report can be found at www.mdronline.com.
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The Linley Group can be found at www.linleygroup.com. The Linley Group has also been the
inventor and source of inception and industrywide launch of a more appropriate network-processing
benchmark called LinleyBench™. Information can be found at their web site.

The Embedded Microprocessor Benchmark Consortium at www.eembc.org is an interesting
association trying to standardize performance measurements between different embedded CPU
architectures. It has gained significant industry acceptance and has developed some specific test suites
to measure and analyze performance of a computing engine in multiple environments. As of this writ-
ing, the networking applications suite is probably extremely limited for historical reasons. Therefore,
the consortium’s work is more readily suitable for classical CPU rating. Meaningful network-
processing benchmarks must include a realistic load of traffic as well as the need for multiple class
of service (CoS)/QoS flows of processing to show performance that approximates real life. We can
safely say that that the EEMBC benchmarks constitute a good path for the evaluation of CPUs that
are intended for control plane applications.

A couple of important events in this industry include the Embedded Processor Forum (www.
mdronline.com/epf) and the Communications Design Conference (www.mdronline.com/mpr/h/
2000/0327/141303.html).
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CHAPTER 11

STORAGE NETWORK
PROCESSORS (SNPS)

In this chapter, we discuss the influence of the evolution of storage networks on network processing
and show how the storage network requirements create the demand for a breed of highly specialized
processors that go beyond mainstream network processors. These storage network processors (SNPs)
must be able to handle very high-speed data traffic while performing their tasks under much more
stringent jitter and latency performance requirements than ordinary network processors. We discuss
the various industry associations that are in the process of resolving the conflicts of interests among
multiple technologies and vendors. We also review the approaches taken by a couple of major play-
ers in this emerging and specialized network-processing industry branch.

STORAGE NETWORK PROCESSING: THE CONTEXT

Originally, and to a large extent today still, the vast majority of storage devices used by computer sys-
tems were attached physically and directly onto the computer system they were supposed to serve.
One would talk about directly attached storage (DAS) devices. Although this is a simple concept to
grasp, it is obviously a limiting factor as a user must have access to the specific server on which the
storage units are connected in order to access the stored data. DAS devices usually interface through
standard interconnects such as the Small Computer System Interface (SCSI) bus. Its high data trans-
fer rate, low latency, and reliability account for its wide-scale success in coupling computers with a
plethora of storage devices.

Magnetic disks are the primary online storage medium. Tapes are considered more of a backup
and archiving medium. Disk storage is usually found in one of two physical organizations: just a
bunch of disks (JBOD) and redundant array of independent (or inexpensive) disks (RAID). On one
hand, JBOD storage devices are usually individual, independent disks situated inside a cabinet and
accessible individually by a server. They do not provide cache memory (disk buffering) for higher
performance or an intelligent controller that allows operations such as data striping (replicating data
on different disks) or parity checking for reliability. RAID storage devices, on the other hand, are con-
trolled by such a controller (along with lots of memory) and provide functionality such as parity
checking, data striping across drives, and even mirroring of critical data across multiple arrays for
fault tolerance. Compared to JBOD, RAID provides larger storage capacity, enhanced availability, and
significantly improved performance.

SCSI emerged as an 8-bit parallel bus in 1979. The SCSI Architecture Model (SAM-2), which is
part of the National Committee for Information Technology Standards (NCITS) T10 standard, has cre-
ated a layered model for SCSI implementation. The SCSI-3 command set converts the logical layer
into a packet-based format, which can be transmitted over a network. As the protocol has evolved, we
now have a serial SCSI as a layered, well-structured architecture of protocols that enables services to
be requested from storage devices at a distance and over networks.
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If a smaller chunk of data needs to be retrieved, an entire block that contains the desired pieces
will still need to be read. Of course there are reasons as to why this is so, and along with the reasons
there are obvious penalties in efficiency and speed. We will not elaborate on this subject. The refer-
ences listed at the end of the chapter provide interested readers with more than ample documentation
on any aspect of the storage technology and industry. In this discussion, we will ignore the small-
capacity storage units that are found in small desktop computers such as PCs and workstations. For
all practical purposes, these devices are connected directly on the PC or workstation bus and qualify
as DAS devices.

An explosion in demand for storage capacity occurred as result of the exponential growth in online
transaction processing (OLTP) during the 1990s, the need for flexible and wide-scale information
access by employees and outside partners of a company or members of an organization, as well as the
ever-increasing need to service requests for audio, video, and text/graphics files out of servers in sev-
eral organizations. Organizations and enterprises must continue to revisit their approach to managing
stored data in order to support several strategic organizational goals. Storage media must be easily
accessible, reliably available around the clock, and scalable. With these characteristics, organizations
can function with continuity around the clock and continuously improve their staff’s efficiency and
productivity (by granting them easy access to data they need, when they need it, and wherever they
need it). Data must be so stored that it is straightforward to service, upgrade, and expand the organi-
zation’s data storage infrastructure without disruption.

Two major technologies have appeared in the market over the last few years to address these trends:

• Network attached storage (NAS) EMC Corp., a leading industry player, has already qualified
NAS as “suitable only for a small segment of the overall storage markets about 10 percent.” This
statement was made publicly by EMC Corp. at its annual stockholders meeting on May 9, 2001. In
a NAS, host computer systems use a file access protocol such as the Network File System (NFS).
They access directories and files on storage devices. NAS-attached devices require and/or provide
complete files or directories to interested and qualified parties. Unlike DAS, they do not just require
raw blocks of bit data. NAS is clearly more sophisticated and efficient than DAS.

• Storage area network (SAN) This technology is experiencing phenomenal growth, according to
multiple research analysts. For instance, in a July 2001 report called “Reweaving SAN Fabrics:
Worldwide Open Systems SAN Interconnect Fabric Forecast and Analysis, 2001—2005,” IDC pre-
dicted that the SAN market will achieve an 80 percent cumulative annual growth rate (CAGR) by
the end of 2004. SAN (which is reminiscent of a local area network [LAN]) is a generic name that
describes a fully dedicated, reliable, and high-performance network that provides a direct connec-
tion between servers and storage devices. Figure 11.1 illustrates this principle. Storage devices are
not coupled to specific servers.

Consequently, an entire organization can share resources since any computer system can be author-
ized to access any storage device directly over the SAN. This freedom of scalable configuration and
management, in addition to the technology’s flexibility and reliability, has attracted the industry’s
attention. It has been shown to ultimately lead to lower costs of ownership.

In this chapter, we will discuss a special breed of network processors intended to be used in SAN
equipment. These network processors are already known in the industry by various names, such as
storage coprocessors, storage processors, or SNPs. We will refer to them as SNPs to avoid confusion
and capture their dual nature. More specifically, an SNP is a network processor that undisputedly
spends time doing what all network processing units (NPUs) are supposed to do most of the time—
while it churns data at wire speed, it should also perform deep packet inspection and classification/for-
warding. At the same time, however, an SNP operates in the heart of a SAN instead of an ordinary
high-speed switch or router. As a result, the SNP must meet some peculiar and stringent functional
and performance requirements that are beyond the capability of a typical NPU.

The data storage area is extremely broad. It covers a very wide array of technologies from mag-
netic materials and laser optics all the way to fiber-optic transmissions and fast electronics, and from
unbelievable aerodynamic designs of read/write heads over fast rotating disks to sophisticated
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input/output (I/O) protocols and data management software. It is so technologically rich that we can-
not discuss it in this chapter.

We will start our discussion by briefly mentioning fundamental concepts and technologies, but we
will return quickly to the main thrust of the chapter—the SNP, why it is needed in the first place, and
how it is different from other network processors. We will also provide some representative examples
from industry leaders. Interested readers can obtain more information about these technologies in the
sources listed at the end of this chapter.

SAN-ENABLING TECHNOLOGIES

For many reasons, Fibre Channel has been the de facto standard in SANs. At the same time, however,
IT departments of large companies and organizations have undergone a revolution. The industry has
identified the use of SAN technology as a key factor for the advancement of storage technology, espe-
cially if it can be deployed over Ethernet (with its two standardized and available fast varieties—
1 Gigabit Ethernet and 10 Gigabit Ethernet). Unlike the current SAN technologies, an Ethernet-based
SAN operates under a well-known Transmission Control Protocol/Internet Protocol (TCP/IP) infra-
structure. This technology has several advantages:

• Leveraging of the vast current investment in network infrastructure.

• Consolidation of the same hardware and software tools, techniques, and methods in managing the
storage network as part of a global enterprise or organization network at a significantly lower cost
of ownership.

• Leveraging of established technical skills of an IT organization, such as TCP/IP.
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• New arrivals in the IP storage era will not be accompanied by long learning curves for the people
who must deploy the new technology within an organization as TCP/IP based tools and techniques
are widely known and easily acquired.

• Established standards and protocols minimize the current SAN interoperability problems.

• IP-based SANs not only increase the management and support capabilities of centralized IT organ-
izations, but they also enhance the usability of the storage resources within an organization.

• IP-based SANs can leverage the highly functional and widely accepted IP security technologies to
provide an efficient, robust, and secure method to secure the transfer of data over the SAN as well.

In order for this evolution to occur smoothly, several things must happen. Current products 
are mostly based on Fibre Channel. Organizations will not just rip apart multimillion-dollar invest-
ments in order to accommodate the new trend, no matter how enticing it sounds. Therefore, a 
transition must occur that will require device compatibility. The industry is aware of this requirement.
As a result, the first generation of IP storage products will have to function in a mode known as pro-
tocol mediation. Products that offer this capability will enable customers in a rather short term to con-
nect their legacy Fibre Channel storage products through IP networks. The following wave of endpoint 
storage device products will support IP storage in native mode directly on an Ethernet medium (1 GbE
or 10 GbE). We will discuss network-processing issues related to multiprotocol SANs later in this
chapter.

During this rapid industry evolution and consolidation, the Internet Engineering Task Force (IETF)
has been working on defining standards for IP storage to support the new storage network technology
trends. These efforts include the following standards:

• iSCSI, which is a complete transport service for SCSI traffic

• FCIP, which tunnels Fibre Channel traffic through an IP network

FIBRE CHANNEL

The Fibre Channel is a standard from the NCITS T11:I/O Interface (X3.230-1994) effort of the T11
committee of the NCITS, which works on I/O interfaces. Fibre Channel defines a highly reliable, giga-
bit-plus-per-second class transport technology that allows servers, mainframes, workstations,
switches, hubs, and storage devices to communicate using well-known SCSI and IP protocols based
on multiple possible topologies. This combination of capabilities can tackle an organization’s storage
resource-sharing problem while still providing high performance, flexibility, reliability, availability,
and scalability.

Fibre Channel is a network/channel standard that not only specifies the physical layer over cop-
per or optical fiber, but also the control and transport layers. The specified fabric is self-managed, and
different topologies such as point-to-point, arbitrated loops, and switched topologies are easily sup-
ported depending on the needs of a specific application. It offers connections over distances that can
be up to 10 km (�6 miles) with speeds ranging from 266 Mbps to more than 4 Gbps. It allows mul-
tiple existing interface command sets such as IP, SCSI, IPI, HIPPI-FP, and audio/video. For example,
SCSI is mapped onto a higher-layer protocol over the Fibre Channel stack. Fibre Channel topologies
are sustained by switching fabric devices that closely resemble the switches found in more widely
used packet networks.

Most current SANs are built around Fibre Channel infrastructures as they allow the efficient SCSI-
based transfer of data over large distances. This is something that SCSI cannot do, but Fibre Channel
does this very well.
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Incidentally, the University of New Hampshire Interoperability Lab (UNH IOL) offers services
for the certification of interoperability of Fibre Channel products from different equipment and SNP
vendors.

Fibre Channel eliminates all scalability and bandwidth problems previously associated with the
simple SCSI bus. It is important to note that current RAID storage devices ship with Fibre Channel
loops directly integrated in their backplane for native support of Fibre Channel and for the modular
capability of being hot swappable. Hot swappable means that one disk unit can be removed from the
RAID array for service or replacement without affecting the availability of the overall RAID system.

Before we discuss systems that allow interoperability between the Fibre Channel and the IP world,
we must mention some of the main technical characteristics of the Fibre Channel:

• It provides transmission reliability by offering the option of delivery confirmation. Alternatively, an
implementation can completely bypass the Fibre Channel protocol stack to increase performance.

• It fully supports widely known mechanisms of network self-discovery, including relevant protocols
such as Address Resolution Protocol (ARP) and Reverse Address Resolution Protocol (RARP).
From a topology standpoint, it can accommodate dedicated bandwidth point-to-point circuits,
shared bandwidth loop circuits, or scalable bandwidth switched circuits equally well.

• It offers extremely low-latency connections and connectionless service. The standard allows the
automatic self-discovery of the specific Fibre Channel topology.

• It offers the flexibility of choosing between true connection service or fractional bandwidth and con-
nection-oriented virtual circuits to guarantee the quality of service (QoS) for mission-critical oper-
ations such as backups.

• It can be instantaneously set up. This is done fast so the setup time is short enough to be measured
in microseconds when a system uses the hardware-enhanced Fibre Channel protocol.

• It supports time-synchronous applications such as video, using fractional bandwidth virtual circuits.
It provides efficient, high-bandwidth, and low-latency transfers using variable-length (0 to 2KB)
frames.

It is important to realize the following characteristics in a Fibre Channel environment that contains
a mix of both SCSI and IP:

• Native Fibre Channel storage devices as well as servers and workstations connect directly on the
Fibre Channel.

• SCSI storage devices are connected onto the Fibre Channel by Fibre-Channel-to-SCSI bridges.

• The IP protocol is only used for server-to-server and client-to-server connections.

• Enterprise-wide Fibre Channel switches consolidate the various workgroups and departmental com-
puting or storage environments in a hub-and-spoke approach to ultimately provide one scalable con-
solidated storage network that allows the sharing of storage across the whole organization.

According to the Fibre Channel Industry Association (FCIA), a Fibre Channel can routinely serv-
ice critical database environments delivering a sustained bandwidth of over 200 MBps for large files
while servicing thousands of simultaneous I/O requests. These numbers are important as they give us
an idea of the magnitude of bridge-traffic load that can be expected in protocol mediation devices.

It is also interesting to see how the FCIA compares the Fibre Channel with alternative technolo-
gies. Table 11.1 provides a comparison that was compiled by FCIA. This table shows how the Fibre
Channel technology stacks up against Gigabit Ethernet and Asynchronous Transfer Mode (ATM). We
have deliberately placed question marks next to some parameters in order to call attention to their
questionable importance. Part of the industry decided to pursue the investigation of establishing new
combinations of SCSI-like techniques with TCP/IP over Ethernet (1 GbE and 10 GbE) networks to
control the cost of ownership.
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A quick overview of the parameters shows that the arguments from the IP storage camp do have
merits: TCP adds reliability of delivery. 10 Gigabit Ethernet is already two to four times faster today
than what Fibre Channel will soon be. IP is a well-known protocol that people know how to config-
ure, route, switch, manage, and even secure on an end-to-end basis. In the following section, we will
turn our attention to this second major storage network technology—IP storage.

We do not advocate either one of these two technologies. This is a business decision every organ-
ization that envisions storage networks must make. It depends on how the potential deployment of
each one of these two technologies maps onto the enterprise case or onto the users’ organization case,
business model and operational processes, budget and timing constraints, technical skills, manpower,
expertise, the current computing and network infrastructure, the estimated position on the learning
curve, and the disaster recovery and survivability constraints of the organization. We discuss these
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TABLE 11.1 A Comparison between Fibre Channel and Alternative Technologies1 (Source: FCIA)

Fibre Channel Gigabit Ethernet ATM

Technology Storage, network, Network Network and video
application video, and clusters

Topologies Point-to-point, loop Point-to-point hub Switched
hub, and switched and switched

Baud rate 1.06 Gbps and 1.25 Gbps 622 Mbps
2.12 Gbps

Scalability to higher 4.24 Gbps Not defined (?) 1.24 Gbps
data rates

Guaranteed delivery Yes No (?) No

Congestion data loss None Yes (?) Yes

Frame size Variable and 0 to 2KB Variable and 0 to 1.5KB Fixed and 53 bytes

Flow control Credit based Rate based (?) Rate based

Physical media Copper and fiber Copper and fiber Copper and fiber

Protocols supported Network, SCSI, and video Network (?) Network and video

1. The question marks shown on some parameters of this table are deliberately introduced as food for thought in order to ques-
tion some of the arguments the FCIA has raised against the potential reliability and scalability of GbE networks carrying TCP/IP.
GbE scales nicely to 10 GbE. If TCP/IP runs over it, the reliability of the sequenced delivery issue is well addressed. Of course, if
TCP is not used over IP in order to improve performance, something like the User Datagram Protocol (UDP) would have to be
used, which would validate the FCIA’s reliability concern. However, when TCP is the transport protocol of choice, some storage
applications may run out of steam when executed on hardware of limited computational horsepower. Retransmission latencies
associated with TCP operations may also end up being prohibitively long in some cases, whereas the number of simultaneous TCP
sessions with satisfactory performance may be constrained for a given hardware configuration. This situation, as expected, will
improve decidedly if it takes place in a 10 GbE environment instead, but then the cost and complexity of the 10 Gbps adapter hard-
ware to connect storage devices to such a network become significantly higher. In other words, the proverbial jury is still out; how-
ever, the IP storage camp makes a legitimate business case. Special GbE server and storage network systems using TCP Offload
Engine (TOE) hardware (which is discussed later in this chapter) are enabled by high-performance iSCSI devices, but they will
also require the support of potential future changes to the standards, which translates to the need to reprogram some of the key
underlying component technologies. iSCSI enables native IP SANs to be built, thereby enabling SANs to be integrated into one
organization-wide IP-based network infrastructure. This has distinct advantages over the expensive and complex alternatives that
are encountered when creating and managing a Fibre Channel infrastructure. Large companies that have adopted the approach are
using iSCSI to deploy IP SANs in departmental systems, whereas a similar trend can be found in some small- and medium-size
organizations and businesses. iSCSI may end up coexisting in the data center with Fibre Channel, but it will most likely not dis-
place Fibre Channel in the near term.
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technologies in the context of SNPs that will be needed to service the rapidly growing network-pro-
cessing context.

IP STORAGE

IP storage is a generic term widely used today in the industry to encompass a network-computing
realm that is based on the combination of protocols, technologies, and products that enable the deploy-
ment of IP-based storage networks to execute and transport block I/O operations.

The last point is crucial for distinguishing the differences between IP storage and NAS-based stor-
age networks. NAS devices operate based on a file transfer protocol such as NFS or Common Internet
File System (CIFS). Consequently, all NAS I/O operations occur at the file level, not at the block level
as with SAN technologies. When an I/O request is issued to a NAS device for a piece of information
that lies inside some block of stored data, the NAS device in conjunction with the associated file sys-
tem will resolve the request and extract it from the retrieved file to present it to the requester.

Many ingenuous organizations these days have come to a point where they combine both SAN and
NAS technologies next to each other, thereby maximizing the value of their investment without ignor-
ing technology advances or missing out on the financial benefits of embracing new technologies. SAN
is used in performance-sensitive applications (such as transaction processing or data warehousing).
NAS is used in more generic environments where common access to stored resources is important
(such as engineering departments sharing access to design files).

IP storage technologies are divided into two categories: iSCSI and FCIP. IP storage is actively pro-
moted by the Storage Networking Industry Association (SNIA) and, more specifically, by its Storage
Forum. In the early fall of 2002, IP storage already managed to attract major attention from leading
companies in the three major areas of products involved in storage systems:

• Designers and manufacturers of storage systems.

• Network equipment.

• Host bus adapters (HBAs).

We must first clarify some concepts.

Network Interface Card (NIC)

On one hand, if a NIC is used to interface with a LAN, it may seem that a NIC is all it takes to con-
nect to a SAN. The industry has been using the term NIC as an equivalent to the term adapter; how-
ever, this can only be done inside an Ethernet realm. NIC cards are usually designed to transfer
packetized file-level data among client devices such as PCs, servers, or storage devices. It is impor-
tant to realize that NICs do not traditionally transfer block-level data. Such transfers are handled by
a storage HBA, which could be a Fibre Channel HBA or a parallel SCSI HBA. In order for a NIC to
process block-level data, the data needs to be encapsulated inside a TCP/IP packet before it can be
transmitted over an IP network. By using iSCSI drivers that must be made available on a host or server,
a NIC can be made to transmit packets of block-level data over an IP network. In that case, the server
will handle the packetization process of the block-level data. It will obviously be responsible for the
correct execution of all computational steps taken to process the TCP/IP protocol.

This entire computation-intensive scheme is extremely taxing on the server or host central pro-
cessing unit (CPU). It can almost bring it down to its knees. This problem has been one of the main
motivators behind the pursuit of powerful TCP termination engines. We discuss the functionality and
requirements of TCP termination engines in a separate section. A TCP termination or offloading
engine allows the completion of both TCP/IP processing and packetization on the HBA. Therefore,
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this SNP NIC, which is equipped with a TCP Offload Engine (TOE), operates like a storage network
HBA rather than a traditional Ethernet NIC.

Storage HBAs

Unlike Ethernet NICs, storage HBAs are designed to transmit block-level data to and from storage
applications. When an entire block is transferred from the software application to the adapter, the
server or host CPU does not need to spend time trying to fragment the block into smaller frames for
subsequent transmission. The HBA has the local intelligence to segment the block into frames. This
process is usually handled by specialized segmentation and reassembly (SAR) chips, which are sim-
ilar to the ones in ATM line cards. These chips are situated on the HBA.

iSCSI Adapters

A hybrid of the previous two categories is the class of iSCSI adapters. They combine the functional-
ity of both categories (that of a NIC with that of a storage HBA). iSCSI adapters work with block-
level data and perform the required segmentation and processing on the adapter card with the
assistance of TCP/IP processing engines. The produced IP packets are then transmitted across the IP
network. This allows the creation of full-fledged IP-based SANs without adversely affecting the host
or server CPU.

STORAGE VIRTUALIZATION

Before we discuss some of the lower-level details, we must briefly mention the concept of storage
virtualization, which is another state-of-the-art technology trend that is also contributing to the explo-
sive growth of storage networking and depends on high-performance network storage processors. If
we consult an industrial definition, such as the definition provided by Trebia Networks (www.
trebia.com), storage virtualization is the “separation of the logical view of data storage from the actual
underlying physical devices.” If a storage infrastructure can arrive at that level of sophistication, then
all physical storage is a shared pool of storage capabilities that can be used to service changing stor-
age needs in an enterprise or organization. This can include, but is not limited to, online capacity
expansion and reprovisioning. It is argued that the true potential of SAN can be maximized if IP stor-
age is embraced by organizations and if equipment that supports storage virtualization is deployed.

Virtualization software is first used to collect data that may be originating from different types of
storage devices. These devices can be SAN-attached devices, network-attached devices, or devices
that are attached on a server. The virtualization software then consolidates all of this gathered data
into a common pool that can be monitored, managed, supervised, and administered for broad use from
a single console.

The term storage virtualization is widely used by several vendors, but each vendor approaches the
issue differently: Some vendors implement virtualization on their own storage devices, whereas oth-
ers provide storage virtualization on a variety of devices. However, currently, no single vendor pro-
vides across-the-board virtualization for any indiscriminate choice of storage device.

Storage virtualization can be implemented in three different ways:

• On a host CPU or server.

• On a storage array.

• On an appliance.
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Another approach vendors take to attain the virtualization objective is to implement the following
within one of these two categories:

• Symmetric storage virtualization (also known as in-band storage virtualization).

• Asymmetric storage virtualization (also known as out-of-band storage virtualization).

These names are derived from the fact that in the in-band approach, a device lies in the actual path
of data that must be exchanged between a server and devices. It passes data and/or intelligence through
to arrays that are attached to it. Conversely, in the out-of-band approach, data is passed between a
server, switch, or router to the devices. The entire work is managed by the server or storage array.

If we take a closer look at the three fundamental platforms of implementing storage virtualization,
we will notice some interesting characteristics:

• Server- or array-based virtualization was the first way to implement this technology. In this scheme,
both the storage and the data-pooling intelligence reside on the server or array. Because this
approach does not put any other devices on the path that the data must traverse, it scales better than
network-based virtualization. When all virtualization work must be done on the server, no other
devices on the network, such as Fibre Channel switches or other arrays, are affected. The downside
of the approach is that this extra load on the server may cause server-based latency, which may be
troublesome for specific applications.

• In network-based virtualization, the storage virtualization implementation usually depends on an
in-band virtualization server (usually a Windows NT/2000 or Linux-based server) where all other
network servers have to look for information about where their data actually resides. This perform-
ance requirement can be very exacting on the virtualization server. Typically, these implementations
run on an Intel server, which some corporate IT people generically call an NT box. Despite caching
attempts by some original equipment manufacturer (OEM) vendors to minimize server latency, its
bus architectures are not designed for heavy loads like the ones handled by servers that are used by
very large organizations to either manage data or I/O needs. The I/O structure of Intel-based servers
is usually not optimized for system configurations that require the sophisticated capabilities of set
mirroring, capacity on demand, snapshot backups, or data replication. Therefore, large organiza-
tions are typically very reluctant about engaging NT-based solutions in the heart of their enterprise-
wide storage virtualization effort.

The virtualization server remains one of the potential bottlenecks of this approach. It is often con-
sidered the Achilles heel of such implementations. Some storage system companies have announced
their intention to come up with hybrid virtualization offerings that would sit out-of-band without
affecting the flow of data back and forth between servers and storage devices. This would seem to
scale nicely for large enterprises. However, it has one big downside—virtualization software must
be put on each host CPU on the network.

• In-band appliance-oriented virtualization is a promising approach to manage and maintain. No code
is needed on host servers, and all I/O requests and responses will have to first pass through the vir-
tualization engine, which essentially requires nothing else in order to function.

An interesting trend in the industry is the move toward the virtualization switch. This is fast-
switching network equipment that can provide storage virtualization at wire speeds without notice-
able latency. A couple of companies with interesting technology are already active in this field, such
as Maranti Networks, Pirus Networks, and so on.

Storage virtualization purports to offer organizations and enterprises an unprecedented value by
ensuring access to their vast data without worrying about which system, what location, which format,
or which operating system platform they are stored in. However, the very same abstraction layer that
it provides from the actual underlying hardware may end up hurting the driving business application.
This is because numerous commercially available data management applications take advantage of
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advanced hardware features to provide high value to their users by implementing sophisticated func-
tions linked to the actual hardware, such as autoconfigure or autodiscover. By its mere dependence
on this abstraction layer, storage virtualization may lose the capability to offer this type of sophisti-
cation unless the industry comes up with new ideas about how to handle this problem. However, for
the moment, we cannot have our cake and eat it too.

iSCSI

The extraordinary advantage of iSCSI is that it provides access to and from block-level storage
devices, such as disk arrays, single disks, tape drives, and libraries, directly over regular TCP/IP
networks. Before the arrival of iSCSI, all TCP/IP-based access to networked storage in the form of
NFS and CIFS servers occurred in the framework of NAS systems, which have always required
TCP/IP host-to-host data transfers. The ramifications of this shortcoming cannot be overemphasized.
Until the formulation and establishment of iSCSI, it was impossible for a TCP/IP computer to send
data directly to a standalone disk array or tape drive that was also directly connected to a TCP/IP
network.

iSCSI is a protocol that enables SCSI commands to be embedded inside TCP/IP session packets,
which must be embedded into Ethernet frames for subsequent transmissions. To explain how it works,
we will look at an example of configuration such as the one shown in Figure 11.2. The left side of the
figure depicts a corporate traditional data-processing IP-based LAN on which some server (poten-
tially among many) is connected. The same server is also connected on an IP-based SAN on which
IP storage devices are directly connected. The IP SAN is composed of more than just servers and stor-
age devices. Both these classes of systems (connected on the IP SAN) must have an embedded and
specialized technology called an iSCSI adapter. iSCSI adapters can assume the role of an iSCSI ini-
tiator or iSCSI target. They can also be implemented in the physical form of either a full-fledged board
or a sophisticated ASIC.

Now let us assume that one of the client devices (a workstation) (X) needs some specific file infor-
mation from the server (where it believes the information is stored). It initiates a request over the LAN
to the server for that piece of information. The server realizes through some indexing file directory
that the information must be retrieved from a specific storage device on the SAN. It then issues spe-
cific SCSI commands for that device and passes the task to the iSCSI initiator. The iSCSI initiator will
encapsulate these SCSI commands inside a TCP/IP packet(s) that will be embedded into Ethernet
frames and sent to the storage device over a switched or routed SAN storage network. The iSCSI tar-
get device receives the Ethernet frame, strips it apart and recovers the TCP/IP content, decapsulates
the packet, and obtains the SCSI commands needed to retrieve the required information. The process
is reversed and the information is reassembled and reencapsulated into TCP/IP packet form. This
information will be embedded into an Ethernet frame(s) and sent to the iSCSI initiator at the server,
where it will be decapsulated and reencapsulated onto the IP LAN for subsequent transmission to the
requesting client.

The iSCSI protocol stack is essentially an insertion of a few things right above the traditional layer
4, as shown in Figure 11.3. The main purpose of TCP, a layer 4 protocol that runs over IP, is to ensure
the reliable transmission. The iSCSI layer, which is now at layer 5, runs right over TCP and ensures
that the bit packaging of the underlying transmission becomes routable by serializing the inherently
parallel SCSI structure. The native SCSI command set and SCSI bus protocol run over iSCSI (now in
layer 6). The respective operating system layer and the final application software are located above
that layer.

A whole array of industry players has adopted the IP storage realm and supports iSCSI with prod-
ucts that behave in a complementary fashion when deployed in a SAN:
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FIGURE 11.2 The iSCSI SAN principle of operation.
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• iSCSI initiator manufacturers These include companies such as Adaptec, Alacritech, Emulex,
Intel, HP, and Qlogic, which offer iSCSI storage NICs (also known as S-NICs) or HBAs. HBAs are
used inside servers to enable the use of iSCSI for block-level access to storage systems.

• iSCSI switch manufacturers iSCSI has been designed predominantly to enable end-to-end IP-
based storage networking. This is done without requiring intermediate iSCSI-aware switches. As a
result, several companies such as Cisco, HP, and IBM are working on or already offer multiproto-
col storage networking switches, which enable bridging between iSCSI-based server devices and
Fibre-Channel-based legacy environments, and/or provide storage virtualization capabilities.

• iSCSI storage systems manufacturers These include companies such as Adaptec, IBM, and
3Ware, which offer native support for iSCSI in a new generation of storage devices.

• FCIP switch manufacturers These include industry heavyweights such as Lucent and Cisco
(working together with Brocade) as well as several startups such as Akara, LightSAND, Pirus, and
SAN Valley. These companies are working on or already offer FCIP-to-iSCSI bridging products.

• Network storage processor (NSP) manufacturers These include companies such as Platys (now
acquired by Adaptec), Emulex, Silverback, and Trebia. These companies offer components (stand-
alone as well as embedded and integrated) that enable low-latency TCP offload and IP storage pro-
tocol support for IP storage target and initiator products.

FCIP

FCIP is a tunneling protocol that allows Fibre Channel tunneling through the encapsulation of the
Fibre Channel transfers inside IP packets, which can then be transmitted over a TCP/IP network and
infrastructure. Through this method, users with Fibre Channel sites can connect them over the met-
ropolitan area network (MAN)/wide area network (WAN), effectively expanding the scope and reach
of their SAN.

FIBRE-CHANNEL-TO-iSCSI BRIDGING

The convergence of the Fibre Channel world with the IP network world requires a bridge so users can
maximize the impact of their investment. The concept of storage routers is no longer foreign.
Enterprises and organizations can use their TCP/IP infrastructure to make storage devices accessible
by any system from anywhere in the corporate network, thereby optimizing the use of this strategic
asset—the operational data of the enterprise or organization—to anyone who has the need to know.

TYPICAL APPLICATIONS FOR AN SNP

The following are some typical applications for an SNP:

• Multiprotocol SAN switches can use SNPs to handle protocol mediation. For example, consider a
group of servers sitting on a 1 Gigabit Ethernet or 10 Gigabit Ethernet network. These servers access
data transparently on an iSCSI RAID array situated on another 1 Gigabit Ethernet or 10 Gigabit
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Ethernet network while targeting a legacy Fibre-Channel-based RAID array on a Fibre Channel
network.

• Tunneling over the IP MAN/WAN Fibre Channel traffic between two or more geographically sep-
arated Fibre Channels is easily handled by an SNP, which sits on IP adapters of storage routers at
the edge of the different Fibre Channel sites (in this example). It would then encapsulate Fibre
Channel traffic and decapsulate it from TCP/IP packets that traverse the MAN/WAN.

• A logical variation of the previous example can be to use a gateway between a Fibre Channel net-
work and an IP storage network (1 Gigabit Ethernet or 10 Gigabit Ethernet for that matter), which
would definitely require the embedded services of an SNP.

• With the proliferation of IP-storage-based SANs, a plethora of SNPs will be required inside stor-
age network end systems. More specifically, SNPs will be needed on target iSCSI adapters embed-
ded in iSCSI-compatible RAID as well as in legacy Fibre Channel RAID arrays and more traditional
server HBAs.

REQUIREMENTS FOR AN SNP

An SNP must meet the following requirements:

• Storage-related packets traveling over the SAN or the corporate IP network, which are encapsulated,
and possibly multiple times, will often require decapsulation and reassembly at line speeds that can
be 10 Gbps.

• A received packet must at least be submitted to deep packet inspection by the storage network-
processing equipment.

• Correct, rapid, and deep packet inspection will lead to the appropriate decision regarding their
appropriate classification.

• Classification is followed by forwarding.

• Reliability in transmission and TCP offloading are major issues. Offloading the heavy-duty 
processing of terminating the TCP protocol for multiple (possibly thousands) simultaneous active
sessions is of paramount importance in order for the network equipment to function properly.

• Time-related performance must be optimized. Jitter and latency are exceptionally critical 
parameters.

• In some applications, the capability of running multiple storage protocols (iSCSI and Fibre Channel)
at the same time is imperative.

• Connectivity to multiple different network physical layers is also very important; therefore, the SNP
should be able to support 1 Gigabit Ethernet and 10 Gigabit Ethernet networks with embedded MAC
circuitry as well as Fibre Channel and other networks, such as InfiniBand and/or others.

• The level of solution integration must be addressed, as a chip is preferable to a board because of its
cost, power consumption, and reliability.

• Ease of integration into a final product should not be underestimated as this implies an advantage
for the customer in terms of time to market.

• Last but not least, the programmability of the SNP is indispensable, as the OEM user must be able
to program new functionality in order to upgrade or modify equipment to accommodate new
protocols.
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TCP TERMINATION ENGINES OR TCP-OFFLOAD ENGINES (TOES)

TCP/IP was developed 20� years ago, at a time when its designers thought layer 3 and 4 protocols
would only run on host CPUs with large computational resources and network bandwidth was at a
premium. Many things have changed. The unprecedented proliferation of IP-based networks, the per-
vasiveness of embedded computing, and the explosive growth in demand for bandwidth by so many
new generations of applications have completely reversed the computing landscape. TCP/IP is
required now inside standalone devices such as a RAID system or a backup drive. The computing
heart of such a system cannot be described as a host CPU in the traditional sense. Therefore, its com-
putational capabilities are not up to par with a server. If a very high-speed throughput must be sus-
tained and thousands of sessions with reliable transmission needs must be carried, the main processor
must be offloaded from the protocol chores.

To be more specific, Adaptec (in its ANA-7711 TCP/IP Offload Adapter Datasheet [see
www.adaptec.com]) estimates that a typical 1 GHz Pentium-type processor saturates about 70 percent
of its capacity with TCP processing, if it must support a 1 Gigabit Ethernet link at line speed.
Depending on the number of simultaneous TCP sessions, this performance constraint can degrade
even more. If a security protocol such as Secure Socket Layer (SSL) that runs at layer 5 above TCP
must also be supported, TCP must be terminated before actual SSL work can be performed.

Adaptec’s estimates are much more liberal than the estimates in a 2002 Gartner Research Brief.
The Gartner report describes the accepted rule of thumb as being that each bit per second of line ca-
pacity requires about 1 Hz of CPU horsepower to run TCP in software. In other words, a 1 Gbps link
will completely consume a 1 GHz CPU, leaving no cycles for doing actual application work besides
TCP. Even if we accept the Adaptec estimate, this obviously leaves very little headroom in the CPU
for other meaningful application processing. Therefore, storage devices equipped with classical
microprocessors cannot be expected to handle SNP chores sustained at multiple gigabits-per-second
speeds.

This problem can be resolved in two ways: by replacing TCP with a more modern efficient and
leaner-and-meaner protocol (an almost impossible prospect, which realistically should not be
expected any time soon given the complete domination of the global market by TCP/IP) or by offload-
ing TCP processing on an accelerator that will minimize the necessary intervention of the host CPU.
Figure 11.4 illustrates the principle of TCP termination or TOE.

TCP offloading requires specific functionality. First, consider the sophisticated flow control and
error recovery services that TCP offers. These require a significant amount of protocol stack, or pro-
tocol message processing, including the following:

• Copying TCP segments in and out of system buffers.

• Reassembling of IP datagrams that have been fragmented.

• Calculating TCP checksums across each data segment/packet.

• Processing acknowledgements on incoming and outgoing traffic.

• Detecting all packets that get lost or arrive out of order while trimming overlapping segments.

• Enabling/disabling retransmission timers and generating and processing retransmissions, if 
necessary.

• Updating congestion windows and slow start thresholds..

• Keeping all data transmission within the corresponding permissible windows.

TCP protocol-based sessions require access to memory where all the session-related data is stored.
TCP, for example, requires easy access to station IDs and port numbers for each session. This data
must be accessed every single time a session sends or transmits something. The reader must imagine
the same process in a context where hundreds, if not thousands, of simultaneous and independent ses-
sions are sustained. Implementing the TCP protocol traditionally meant that software engineers would
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create a lookup table where the session-related data for each active session is kept. However, this is
good for simple software implementations on low-bandwidth devices such as a PC where a user will
not have thousands of long-lived TCP sessions going on at the same time.

Compared to this realm, the SNP requirements are radically different. If the same traditional imple-
mentation approach is to be followed here, gigantic lookup tables will be required because multiple
lookup operations occur per second for each session. Therefore, the multiplicative effect of traffic
means that for thousands of sessions, hundreds, if not millions, of lookup operations per second must
be performed. As a result, the following items of a TOE solution will be significant:

• The physical size

• Cost

• Speed

• Power consumption

• Reliability (as multiple components will fail more frequently than a single highly integrated one for
different reasons, including heat emitted by other components)

If the TCP implementation does not radically change, an inefficient board-level product will have
to be used. Of course, this does not mean that all boards are inefficient. The distinction is made more
along the direction of traditional software-based protocol implementation versus integrated hardware-
assisted acceleration in a chip. When coupled with a few ancillary and specialized chips, this can help
provide cutting-edge performance at line rates.

The following are a few other important systems issues to consider when implementing an inte-
grated TOE solution:
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FIGURE 11.4 TCP termination engines assume the burden of running the TCP portion of
the protocol offloading a significant weight from the host CPU.
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• In a board implementation, when the TOE implementation has to go off-chip to retrieve that session
data, a severe time penalty occurs. This immediately translates into lower performance (latency and
throughput) from the SNP device. An ASIC approach of the TOE solution, on the other hand, can
combine embedded memory. This has a tremendously positive impact on the latency and through-
put performance, along with the other parameters from the previous list. More importantly, to avoid
making multiple visits to the memory bank to retrieve session-specific data, state-of-the-art TOE
implementations utilize embedded content-addressable memory (CAM). The use of CAM enables
a single memory lookup to retrieve all pertinent data that has been properly indexed. It is a key tech-
nology for the acceleration of TCP termination.

• A certain degree of parallelism is more than warranted in this application. Instead of having one
single CPU sequentially deal with different parts of TCP processing for different sessions (no mat-
ter how powerful it is), it is much more efficient for multiple parallel CPUs to tackle TCP process-
ing for different sessions. One CPU can handle checksum processing for one session, while another
CPU can reorder data for yet another session. A third CPU can handle TCP flow control or be
involved in the startup process for a new TCP session. This is an easy way to enhance performance
in the TCP termination process. If you read the first 10 chapters of this book, you will see the appli-
cability of several network-processor architectures in this field.

From a systems architect’s point of view, plenty of room is available for subjective choices. We
will now look at some implementations.

We will first provide an example from Adaptec, a leading provider of TOE technology. According
to their estimates, an ASIC implementation of TOE provides sustained transmission rates of 900 Mbps
to 1,000 Mbps with host CPU utilization of less than 20 percent, as opposed to board-based products
delivering TOE functionality. Although the host CPU utilization remains at the same level (� 20 per-
cent), these products can only sustain about 650 Mbps of traffic. In April 2002, Adaptec also
announced that one of its products (ANA-7711 TCP/IP Offload Adapter) sustains 226 MBps full
throughput of variable-packet-size traffic, including packets that are as small as 512 bits. This prod-
uct, whose block structure is shown in Figure 11.5, is a board that contains the company’s storage
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FIGURE 11.5 The block structure of Adaptec’s ANA-771 TCP/IP Offload Adapter. (Source:
Adaptec)
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protocol accelerator (SPA), a highly optimized TOE, and a 1 Gigabit Ethernet MAC. This level of
performance means that full-duplex (and almost saturated) Gigabit Ethernet traffic can be sustained
in storage network processing using this level of TOE technology.

Adaptec has used several of these techniques in its ANA-7711 TCP/IP Offload Adapter to 
provide a cutting-edge solution. As shown in Figure 11.5, the idea is to connect a 1 Gigabit Ethernet
SAN (or NAS) to the host Peripheral Computer Interconnect (PCI) bus. From an architectural stand-
point, the transmit and receive paths are mapped onto different processors. The processing core of the
adapter is a pipeline of network processors. Different processors work in parallel to 
handle different functions of the TCP/IP protocol stack. As a result, the technology scales easily to 
10 Gbps.

The company provides drivers and application programming interfaces (APIs) and supports Linux
and Windows environments so software can be upgraded to future platforms. Synchronous dynamic
random access memory (SDRAM) is used for data and header storage, whereas the electrically eras-
able programmable read-only memory (EEPROM) bank is used to store systems code such as the
serial bus interface and, more importantly, programmable MAC addresses. The Ethernet interface,
which supports both copper and fiber, offers configurable TBI/GMII interfaces with full IEEE 802.3x
flow control, IEEE 802.3z compliance, and Remote Monitoring (RMON)/management information
base (MIB) support so traditional data-processing network management can also be expanded to
encompass storage networks.

The TCP/IP engine in the Adaptec ANA-7711 can handle TCP segmentation and reassembly in the
hardware; provides slow start, congestion, and sliding window; supports 1,000 TCP sessions; offers
the capability of selective acknowledgements; and allows the choice of a configurable window size and
Maximum Transmission Unit (MTU) size. It can handle all TCP encapsulation and segmentation
requirements as well as TCP decapsulation and reassembly.

At the other side of the capability spectrum, a lower-speed approach is taken by Adescom
(www.adescom.com), which offers a TOE on its IPAC E100 core that integrates TCP offloading with
an Ethernet 10/100 Mbps MAC and supports up to 64K connections. This might seem like overkill as
64,000 TCP connections will rarely need to be supported on a Fast Ethernet link, but it is important
to try to gauge an estimate of the number of realistic sessions expected at each end of the hardware
offering spectrum.

In the case of offloading TCP or even the entire iSCSI work, such as Alacritech’s Session Layer
Interface Card (SLIC™) products (www.alacritech.com), performance constraints must be consid-
ered. Alacritech took an interesting approach: The whole protocol stack is collapsed and then state-
fully processed in an optimized fashion in order to decrease network latency and increase data
throughput. The word statefully means that the silicon-based engine on the adapter (or as a coproces-
sor) simultaneously inspects and processes data structures that are traditionally handled sequentially
and at different layers. Other TOE approaches offload TCP/IP, but process each layer of the protocol
stack sequentially.

In addition to this processing acceleration (hence the name accelerator for the company’s prod-
ucts), the SLIC approach does not keep multiple copies of data. It also distinguishes itself by two
important architectural factors: it uses hardware direct memory access (DMA) to access memory
buffers on the host system while transferring data to or from adapter memory, and it minimizes the
interrupt load on the host. Traditional NIC cards using interrupt aggregation techniques have to inter-
rupt the host CPU on which TCP/IP has traditionally been running with every packet or series of pack-
ets that require it. The SLIC approach is iSCSI sensitive so it interrupts the host CPU only at
boundaries of iSCSI commands, just like an HBA would do. Alacritech server and storage accelera-
tors based on the SLIC technology support the IEEE 802.3ad Link Aggregation protocol and Cisco
Systems’ Fast EtherChannel and Gigabit EtherChannel protocol for failover and link aggregation.

Contrary to the approach several network-processor vendors have been taking, efficient implemen-
tation of the solution to this problem is not just a question of taking the TCP protocol, breaking it arbi-
trarily or to one’s best guess into component pieces, and deciding which ones will be implemented on
the fast path (data path) and which ones on the slow path (control path). It is also a question of how to
cleverly reorganize the protocol stack to ensure optimal processing and interfacing with other compo-
nents and/or subsystems in the customer system’s hardware, software, and firmware (drivers).
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CASE STUDY 1: TREBIA NETWORKS’ SAN 
PROTOCOL PROCESSOR (SPP)

Trebia’s SNP architecture, which is shown macroscopically in Figure 11.6, enables the company’s
flexible approach to be applied in several SAN applications. The company’s SAN Protocol Processor
(SPP) is a high-performance and storage-network-specific network processor that offers the flexible
support of emerging IP storage technologies, which often must be seamlessly connected with legacy
Fibre-Channel-based storage network infrastructures. When we say that SNP protocols are supported,
we mean that IP storage protocols such as iSCSI and FCIP run natively on the SPP and at line rates,
for example.

An embedded, powerful, and feature-rich TOE completely removes the burden of handling the
proper termination of multigigabits-per-second TCP flows from the proverbial shoulders of the host
processor. As a result, plenty of processing horsepower is readily available for other critical storage
network-processing tasks such as classification and security. Such a robust TOE approach is required
for the efficient iSCSI termination in HBAs and endpoint devices.

The Trebia SPP architecture is optimized for storage I/O flows. More specifically, it can process
pipelined storage commands and provides low-latency IP and FCP flow termination. It is also
equipped with multiple reissue features (for both the IP and Fibre Channel realms) that are needed in
order to support fundamental SAN capabilities such as SCSI termination, FCP-to-iSCSI mediation,
and storage virtualization.

In terms of presentation, the SPP design is fully integrated in a system-on-a-chip (SOC). As shown
in Figure 11.6, it packs the following items inside the same piece of silicon:
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FIGURE 11.6 The architecture of Trebia’s SPP. (Source: Trebia Networks)
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• Multiple storage network interfaces.

• Two-tiered classification capabilities (below and above layer 4).

• The powerful TCP termination engine.

• The main SPP processor of the multiple storage network protocols.

• A module that handles security functionality.

In terms of scalability of performance, the Trebia SPP is capable of handling today’s Gigabit
Ethernet or Fibre Channel network infrastructure. However, more importantly, it is already capable
of dealing with requirements for the next improvement in SAN throughput—the 10� Gbps realm.

From a business standpoint, Trebia offers higher performance, higher integration, and lower cost
per port than current solutions, which rely on a group of chips. At a minimum, these will include the
following:

• An off-the-shelf TOE, which often performs nothing more than a checksum acceleration and auto-
matic issuance of ACKs.2

• A previous-generation network processor, which usually does not have the stamina for the sustained
classification workload at 10 Gbps full-duplex rates.

• The appropriate PHY/MAC and heavy-duty security coprocessing on a dedicated adapter board. A
board is obviously bulkier, consumes much more power, costs commensurately more than a single
chip, and is almost per definition less reliable than an integrated circuit.

The SPP approach from Trebia can be characterized as a next-generation design as it offers an
improvement both in price/performance and the level of integration while allowing the flexibility
through programmability to adapt the functionality to newer protocols and applications. This ensures
that products do not become easily obsolete or field service and uprgradability is not compromised.
These characteristics should allow the company’s customers to accelerate their time to market for new
affordable and high-performance SAN-related products. This technology should include the follow-
ing products:

• SAN switches/routers/gateways.

• Legacy LAN internetworking systems (bridges/gateways), which are in need of storage networking
interfaces in order to expand their marketability.

• Storage on LAN converged systems that offer both LAN and SAN solutions.

• Endpoint solutions such as servers/HBAs, storage systems, and even NAS devices.

CASE STUDY 2: SILVERBACK SYSTEMS iSNAP™ ARCHITECTURE

Silverback Systems (www.silverbacksystems.com) takes another relevant but distinct approach in the
design of their Storage Network Access Processor (iSNAP) chip. The company embarked on the
design of an SNP that has the following unique characteristics:

• Provides an integrated chip solution that minimizes component cost, solution cost by the mere
impact on the chip count, and power consumption while maximizing reliability (as there are less
components that can fail by heat radiation caused by other components, for example).
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2. It is assumed that the reader is familiar with the detailed operation of the TCP protocol over IP, where in order to guarantee the
reliability of the link, all received frames have to be systematically acknowledged by the transmission of ACK messages. Any good
textbook on TCP/IP internals explains this topic in depth. See, for example, Douglas Comer, Internetworking with TCP/IP Vol.1:
Principles, Protocols, and Architecture, 4th ed. (Upper Saddle River, New Jersey: Prentice-Hall, 2000), or Richard Stephens, The
Protocols (TCP/IP Illustrated Vol. 1) (Reading, Massachusetts: Addison-Wesley, 1994).
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• Fully terminates TCP in full-duplex Gigabit Ethernet, thereby offloading the host CPU.

• Natively supports multiple protocols such as iSCSI, NFS, and CIFS.

• Keeps upper-layer protocols (ULPs) fully aware of protocol data unit (PDU) content, placing
incoming data directly into application buffers such as Fibre Channel.

• Fully maps the protocol onto the hardware, thereby achieving high throughput and low latency,
which are two critical parameters that must be satisfied in order to be able to sustain wire-speed per-
formance with the smallest possible I/O block sizes, as is the case with OLTP environments.

The company has combined several technological advances to achieve the objectives. For instance,
a patent-pending technique of memory management eliminates the need to move the processed data
around, which can significantly waste time. The management of multiple queues and two-tier classi-
fication allow a class of service (CoS) approach to flow management for ordinary networking data
traffic and iSCSI traffic. Hardware-assist units execute fixed functions such as performing integrity
checks and running traffic statistics. Therefore, the iSNAP chip is designed to avoid things such as
interrupts, memory access bottlenecks, and context switching overhead. As a result, net performance
is maximized. Current iSNAP implementations can handle up to 50,000 TCP connections. In future
designs, this technology is poised to scale to 10 Gbps storage network performance.

Figure 11.7 illustrates the iSNAP hardware architecture. Incoming data are first placed in the
SDRAM. The classification engine performs integrity checking. Based on its results, it generates an
event in the appropriate queue. All TCP/IP and ULP events are dispatched by the Queue Manager to
the processor nodes, which act directly on a packet’s header data without having to move the packet
around which other architectures would do. When the bit content is properly built and structured, the
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FIGURE 11.7 The hardware architecture of the iSNAP processor. (Source: Silverback Systems)
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packet is transferred by DMA to the host. If the direction of the packet is outbound, the header infor-
mation and the data will be forwarded separately to the encapsulation engine. The splitting of data
from the header and the queuing of all TCP/IP and ULP events are key tasks in the elimination of
access conflicts and bottlenecks, which ultimately maximizes the iSNAP chip’s performance.

In a method that is reminiscent of Fibre Channel HBA designs characterized by optimal host CPU
offloading and low latency, the iSNAP host interface is built so that PDU awareness allows the direct
data placement (DDP) of host-bound incoming data into specific application buffers. This minimizes
the number of interrupts issued to the host and improves the overall performance. Hardware performs
the cyclic redundancy check (CRC) and checksum of all iSCSI PDU data. External memory is pro-
tected by error correction coding (ECC), whereas all internal memory is parity checked. Full-duplex
Gigabit Ethernet ports are standard GMII interfaced, whereas the System Packet Interface, 3 (SPI-3)
interface is 2.5 Gbps (OC-48) and aimed at switch/router applications.

The iSNAP software architecture is equally versatile, as shown in Figure 11.8. It is modular and
layered so that it provides the necessary flexibility that enables the future upgrading of equipment or
modification to accommodate new requirements in protocols and functionality. Driver and firmware
combinations enable services such as iSCSI and Link Layer. Link Layer’s interface provides standard
acceleration such as checksum offload or interrupt coalescing for TCP/IP stacks that may preexist in
some systems. The firmware offers extensive management features. These are important factors for
mission-critical data storage applications.

In addition, several services can be run simultaneously over the same port, such as iSCSI and NAS
acceleration. The flexible approach enables a user to start out with just iSCSI and a native TCP/IP
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FIGURE 11.8 The software architecture of the iSNAP processor. (Source: Silverback Systems)
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stack running over the Link Layer. Depending on the necessary functionality, the user can add other
services such as TOE.

We do not intend to give a full-fledged description of each product. Interested readers can obtain
this information directly from the companies. We introduced a couple of existing SNP solutions to show
the direction of the storage industry and depict an important application area for high-performance net-
work-processing technology. Without the appropriate SNPs, this evolution would be impossible.

SECURITY ISSUES IN STORAGE NETWORK PROCESSING

Security concerns are a high priority for SNP designers. Data that is in transit to and from a storage
device must be protected at different levels from unauthorized attempts by third parties who may try
to intercept parts of SNP traffic or from attacks that are likely to occur if a malicious insider such as
a disgruntled employee or an outsider such as an attacker who, acting from outside, manages to hack
his or her way inside the IP network. File-level security is influenced by how operating systems grant
access to individual files. Storage devices, however, work with block-level I/O operations, which are
a completely different story.

We discuss security processors and all the required functionality for confidentiality, authentica-
tion, integrity, nonrepudiation, and controlled access in Chapter 17, “Security Coprocessors.” Here
we only mention some critical issues that make the security-processing context relevant to storage
network processing.

A judiciously chosen mix of cryptographic functions is needed inside all SAN devices (and in
legacy NAS systems). A manageable and scalable security architecture is also critical. The phrase
“judiciously chosen” is important because performance can be penalized if the computation-heavy
cryptographic operations are not delegated to specialized hardware that can process data at line speeds.
In other words, if the SNP security is overburdened, storage access performance will inevitably suf-
fer. If the SNP is underprotected, the assumed risk may be quite significant.

The security function must be physically distributed at endpoints or in gateways. This implies that
a complete corporate information security policy must be in place. This topic goes way beyond our
discussion here, but session- and packet-level flexible authentication and access controls must also be
in place. This will help ensure that stored data or data in transit can only be accessed by authorized
parties. At the same time, it also prevents untrusted internal or external sources from launching attacks.
In addition, the security infrastructure must provide flexible and interoperable data integrity mecha-
nisms to safeguard against tampering or modifying data as it travels over the SNP.

Endpoints can be broken down to two constituents—the iSCSI initiators and the iSCSI targets:

• For the iSCSI initiator devices, network security capabilities within such products are an important
value differentiator as compared to the current Fibre Channel host bus adapters (FC HBAs) and
even Gigabit Ethernet NICs. In addition, built-in security capabilities within such devices also
enable an improved cost of ownership for IP storage deployment. However, the economics of the
proposition should not be underestimated. If the cost of security is distributed over a plethora of sys-
tems (both computers and storage devices) that are connected onto an infrastructure network, the
cost of security per port drops dramatically and becomes easier for an organization/enterprise to
budget and justify. Incidentally, embedded network security capabilities are mandatory in order for
iSCSI initiators to fully comply with the IETF iSCSI specification.

• For the iSCSI target devices, securing the network is not just a matter of satisfying a critical part of
the IETF iSCSI specification. Including embedded network security inside iSCSI target devices
makes even more sense because it also provides some very important functional benefits. Having
fine-grained embedded network security capabilities enables iSCSI switches, such as iSCSI/Fibre
Channel bridges and iSCSI virtualization engines, to provide optimized support for several IP stor-
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age deployment scenarios. This can only be accomplished if an all-encompassing but flexible net-
work security is in place. Last but not least, these network security capabilities enable the manu-
facturers of such products to compete effectively with the current Fibre Channel SAN infrastructure.

The IETF has decided that the security framework of iSCSI will be based on IPsec, a set of cryp-
tographic technologies and specifications. IPsec can not only allow encryption and authentication at
different levels of sophistication for all packets and participating endpoints, but it also brings along
years of proven solidity in mission-critical circumstances. IP-savvy organizations usually have exten-
sive skills in deploying IPsec schemes. Some leading storage system vendors, including the power-
house EMC, have also proposed a similar security specification for the Fibre Channel environment to
the IETF known as FCsec. In conjunction with IPsec, it shows which direction the industry is taking
on both of these storage realms.

SECURE SNP TRENDS AND CONCERNS MOVING FORWARD

However, several important differences exist between classical IPsec, such as the IPsec encountered
in firewalls, virtual private networks (VPNs), or typical modern routers, and IPsec as required and
envisioned by secure storage networks. To start with, the performance requirements for multigigabit
throughput and latency as well as the session traffic statistics of IP storage traffic require improved
efficiency for the implementation of wire-speed IPsec, when compared to classical data-processing
network traffic IPsec operations. The high percentage of large packets for IP storage networks as
opposed to the classical data networks case should also be considered. Sessions between IP storage
endpoints usually last longer than many traditional data-processing applications (for example, e-mail
or Hypertext Transfer Protocol [HTTP]-based file transfer involved in web browsing).

Looking to the future and thinking along the paths of integration and consolidation, the question
arises as to whether an SNP-optimized IPsec processor can be implemented next to a full-fledged TOE
inside the same piece of silicon. Although the answer is not a flat-out no, the objective remains largely
elusive if today’s state-of-the-art very large scale integration (VLSI) design tools and semiconductor
technologies are considered. This is because in addition to the massive cryptographic prowess that
such a chip must have, it must also be able to correctly terminate several thousands of TCP/IP-based
iSCSI and FCIP connections with low latency and at line speed. Each connection carries multigiga-
bit-per-second traffic. It must also be superbly intelligent and flexible so that it can manage all of these
sessions seamlessly and properly, ensuring compatibility with multiple systems and different software
systems.

This seems quite a few years away from today’s reality. Therefore, IPsec processing for IP stor-
age networks in the short to medium term will most likely have to be implemented as a small daugh-
ter-board carrying a couple of complementary-function chips. This daughter-board would work as an
adjunct coprocessor to the main SNP. With the evolution of semiconductor technology, the problem
may be addressed in a more integrated way, especially if cryptographic advances allow the more effi-
cient performance of several of the necessary operations in less time and using less silicon real estate.

The security industry is already taking some interesting initiatives to address these issues in a com-
prehensive manner. For instance, Hifn (a leading IPsec accelerator chip design house—see
www.hifn.com) has formally teamed up with Trebia to formulate a next-generation security frame-
work that addresses these concerns. NetOctave (another major IPsec-accelerator semiconductor com-
pany [see www.netoctave.com]) is pushing its flow-through architecture forward to efficiently tackle
IPsec processing at endpoints in need of storage network processing at line speeds, as opposed to the
traditional look-aside approach to IPsec computations. Tehuti Networks (www.tehutinetworks.com) is
yet another promising startup. It combines the offloading of TCP termination with IPsec in the same
silicon die, allowing gigabit-per-second-level performance and processing at wire speed. Chapter 17
discusses such approaches in more detail.

STORAGE NETWORK PROCESSORS (SNPS) 215

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

STORAGE NETWORK PROCESSORS (SNPS)



SUMMARY

In this chapter, we discussed the need for SNPs, which are used to ensure fast and adequate process-
ing of data traffic transmitted on a whole new generation of SANs using IP technologies. We discussed
the evolution of storage technology, which in its more recent forms, serves as the catalyst for the
appearance of several of these chips and board-level products. We reviewed the requirements they are
called to satisfy as well as the capabilities that they exhibit. We briefly reviewed a few cutting-edge
technological approaches by leading companies at various levels of integration. To set up the discus-
sion in Chapter 17, we provided an overview of communications and information security concerns
that these SNP chips are required to handle on top of their expected network-processing operations.

SUGGESTED REFERENCES

Refer to the companies’ web sites provided throughout the text to find more information about com-
panies that design specialized board products and/or network-processing chips. Aristos Logic (www.
aristoslogic.com) and Astute Networks (www.astutenetsworks.com) are two additional companies not
mentioned in the text.

Hifn (www.hifn.com) and NetOctave (www.netoctave.com) are two security coprocessor design
companies involved in SNP projects and plans.

References for more similar design houses, whose business emphasis might also eventually include
the secure SNP arena, are listed at the end of Chapter 17.

Several white papers have been written covering all aspects of IP storage networks. These can be
found on the web sites of companies such as Cisco (www.cisco.com) and Intel and (www.intel.com).

The FCIA (www.fibrechannel.org) maintains an extremely useful web site with tutorials, compar-
isons with alternative technological approaches, white papers, and numerous links to pertinent sources
of information, including global efforts of standardization.

The SNIA (www.snia.org) through its very comprehensive web site provides access to white
papers, tutorials, publications, market research reports, an education center with articles and a list of
numerous storage-related textbooks, links to multiple related industry-specific conferences and
events, a certification program, an impressive glossary for storage technologies, and links to multiple
industry resources, including their own recently launched Storage Management Initiative (SMI),
which intends to develop the Bluefin specification. This creates the advanced object-based manage-
ment technology that could lead to the manageable interoperability of multivendor SANs.

More information can also be found at the following web sites: UNH IOL (www.iol.unh.edu/) and
IETF iSCSI FCIP IP Storage Working Group (IPSWG) (www.ietf.org).

A major industry-related trade show is the Storage Networking World. Information can be found
at their web site at www.storagenetworkingworld.com.

Network World is a very interesting trade journal in this field and provides tutorials on new tech-
nologies and business case presentations.

In addition to companies embedding their own TOE and TCP termination engine designs inside
their SNP chips, several companies are working on a standalone TOE. Here are a few good examples.

Adaptec (www.adaptec.com), which acquired Platys (a major SNP startup) in 2001, maintains a
large and extremely useful web site with numerous tutorials on storage technologies and TCP offload-
ing, white papers, and links to other relevant sites of interest on the Internet.

Another company that provides helpful information is Emulex (www.emulex.com).
An excellent industry-specific report on SNPs that provides periodic updates of its content and

presents the various products and companies in depth is available from the Linley Group (www.
linleygroup.com).
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Last but not least, several good books have been written on the subject of TCP/IP internals. The
following are strongly recommended and contain a thorough review of the subject:

Douglas Comer, Internetworking with TCP/IP Vol.1: Principles, Protocols, and Architecture, 4th ed. (Upper Saddle
River, New Jersey: Prentice-Hall, 2000).

Richard Stephens, The Protocols (TCP/IP Illustrated Vol. 1), (Reading, Massachusetts: Addison-Wesley, 1994).

Both of these books have subsequent volumes in their series for those readers who want to see
complete implementations of the protocols.
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CHAPTER 12

SEARCH ENGINES

In this chapter, we discuss search engines. In the network-processing arena, they usually rely for their
functionality on associative memory technology, which is also known as content-addressable mem-
ory (CAM). We discuss how CAM works in the context of search engines and review systems engi-
neering issues as well as trade-offs. CAMs have pros and cons like any other technology. We then look
at alternative approaches to the search problem that can provide higher performance than CAM-based
search engines but are also more tuned for organizations that can afford them. This chapter provides
background to the classification engines, which we describe in the following chapter.

THE PACKET CLASSIFICATION CONTEXT OF A SEARCH ENGINE

We will start by providing a sneak preview of the classification context. We do not intend to spoil the
information provided in the next chapter, which discusses specialized classification engines, but we
must clarify some basic concepts within the packet classification context. In fact, newcomers to this
industry are often confused by the relationship between search engines and classification engines. The
two engines will inevitably overlap since chip vendors in pursuit of product differentiation have con-
fused matters. On the one hand, they have packed functionality that undisputedly adds value into their
chips. On the other hand, the boundary between the two is blurred as one can find “search engines,”
“classification engines” and “search and classification engines.”

A packet can be handed over to a network-processing system in two ways: either by its own host
central processing unit (CPU) or, in the case of a switch/router, it can arrive at the network process-
ing unit (NPU) as a member of a stream of unrelated or related packets. They may have been stream-
ing by one of the line-card interfaces (following the switch/router’s ingress path) or by the switch
fabric interface (following the egress path). The NPU will have to conduct several operations with
and/or on each one of these packets.

Classification is the very first task that needs to be performed on a packet arriving in a stream of
other packets. However, in order to put things into the right context, we must clarify that a classifi-
cation engine (also known sometimes in the industry as the classifier) receives as its input an aggre-
gate stream of packets, which the majority of the time are rushing in at wire speed (which can easily
reach 40 Gbps). By applying a set of application-specific sorting rules and policies continuously and
indiscriminately to all packets (hence the term classification), it ends up compiling a series of new
(parallel) packet streams (queues of packets) in its output. The packets of each individual output
stream or queue (although potentially belonging to completely unrelated sessions, hosts, and/or users)
will all share the same fate and short-term destiny. As a result of classification, the packet is forwarded
to the appropriate output queue of the classification engine.

219

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Source: NETWORK PROCESSORS



Given a specific application context, a few steps must be taken in order to correctly handle the
classification and forwarding tasks for each individual packet that the network-processing subsystem
of a high-speed switching/routing system receives. The NPU must consult a specialized memory bank,
some sort of a knowledge base, a lookup table, an information base, or even a database where the
appropriate rules are stored. These rules indicate how each arriving packet must be treated and
processed prior to its being forwarded to the corresponding queue for subsequent processing.

For example, a virtual private network (VPN) box will at least have to look at the destination 
address field of each arriving packet and decide for every packet whether it must be treated securely.
This decision is based on the policy tables that it was given at configuration time. If it must be treated
securely, it will be steered to queue A, where secure packets are lined up. If it does not need to be
treated securely, it will go to queue B. Once it arrives at queue B, it must decide whether it will be 
filtered and discarded or filtered and logged to a security management resource. Likewise, a
Multiprotocol Label Switching (MPLS) switch looks at tags on incoming packets and decides which
output port the packet should be steered to and whether some additional operations must be performed
on the tag (such as label stripping and replacement). If additional operations must be performed, it
also determines which operations are required based on forwarding policy tables.

This consultation of a lookup table or database based on rules and policies for the correct classi-
fication requires the use of a search engine. Search engines are mostly based on associative memory,
which is also known as CAM.

CONTENT-ADDRESSABLE MEMORY (CAM)

During a read operation, traditional memory technologies receive as input the address location in the
content of which one is interested. The memory produces the bit content of that address location as
its output.

The principle of associative memory is based on the inverse mechanism of establishing a rela-
tionship between the input and a specific piece of information stored in the memory array. Therefore,
it “associates” the input term with something already stored in its content in order to produce the out-
put. In other words, the data—a search string of characters called the search key—is presented to the
CAM. The CAM will produce an address if a match occurs with any of its content locations. The
search key can be created in many ways from the several bit fields that calculate it. In the simplest
form of looking up for instance the next-hop address from a routing table, the search key is the des-
tination address itself. Assuming the search result is a hit and not a miss, it will then be used in net-
work-processing designs as the index for access to yet another memory bank from where the system
will retrieve the necessary data. This bank is known as the associated memory, which is usually an
external static random access memory (SRAM).

The terms Binary CAM (BCAM) and ternary CAM (TCAM) are used in cases where the CAM
stores 0s and 1s only (BCAM) or 0s, 1s, and “don’t cares” (TCAM). Binary searches are still required
for many lower-layer applications such as Media Access Control (MAC) table consultation or layer 2
security-related VPNs segregation. The latter is by far the most frequently used category higher on
the protocol stack, as searches for quality of service (QoS)- and class of service (CoS)-inspired clas-
sification based on layers 3 and 4 must be performed with the use of wildcard characters. Therefore,
the use of TCAM is predominant now in the industry.

In terms of available sizes, TCAMs come in 1Mb, 2Mb, 4.7Mb, 9.4Mb, and 18.8Mb chips. Like
ordinary memory chips, they are measured in megabits. Unlike ordinary memory chips, the actual
capacity of CAM chips is slightly higher than the corresponding powers of 2 found in traditional mem-
ory. This is because CAM entries are structured as multiples of 36 bits instead of 32 bits or even 8-bit
bytes. Capacity figures are 4.5Mb instead of 4Mb, for example.

One advantage of CAMs is that they can deliver a lot of productive work per input/output (I/O)
pin, especially compared to regular memory. This is because CAMs produce a result with fewer mem-
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ory accesses compared to algorithmic approaches, which must use regular SRAM or dynamic random
access memory (DRAM). Pins are a scarce resource on an NPU because more pins translate into larger
NPU packages and the corresponding board size increases; therefore, the cost is rapidly escalating.

Newer NPU products from large and well-established companies such as Agere and even from a
few of the more recent startups such as EZchip do not require CAMs or SRAM for lookups even when
operating at 10 Gbps line rates. This means that after all has been said about them, CAMs do have
some competition.

Pros and Cons

CAMs have the following powerful capabilities:

• They associate the input (comparand) with their complete database content within a single clock
cycle. No other type of memory can accomplish this.

• They are configurable in multiple formats of width and depth of search that allows searches to be
conducted in parallel.

• They enable multiple CAMs to be cascaded to dramatically increase the size of the lookup tables
that they must store.

• They are able to learn what they don’t know yet by updating specific entries into their table.

• They seem to have no competition at wire speeds above 2.5 Gbps.

On the other hand, CAMs are reproached for having the following disadvantages:

• They cost several hundreds of dollars per CAM even in large quantities.

• They occupy a relatively large footprint on a card.

• They consume excessive power.

• They suffer from several more generic systems engineering problems when dealing with issues such
as painless interfacing with a network processor and updating table entries simultaneously while
looking up requests. We discuss these issues and whether these four reproaches against CAMs have
any objective merit later in the chapter.

CAM STRUCTURE

Detailed information for a specific CAM can be obviously found in a vendor’s product literature (data
sheets and application notes). In this section, we limit our discussion to the fundamental notions as
applied to the network-processing realm.

The majority of CAMs are implemented in a two-port structure, as shown in Figure 12.1. The com-
parand bus is parallel (usually 72 bits wide) and bidirectional, because it is used for writing the search
keys and for table updates (read/write). The results bus is obviously only an output. A command bus
enables instructions to be loaded to the CAM so that it can configure the search operations according
to the desired procedure.

CAMs are usually configurable in banks of various sizes, as shown in Figure 12.1. Some of these
logical partitions can be set up to be ternary, whereas others can be binary. Parallel searches can be
performed this way simultaneously at different parts of the table, thereby increasing the efficiency of
the CAM design (which usually is pipelined for that purpose). For example, the Kawasaki1 9.4Mb
CAM can be structured as 72 bits�128K, 144 bits�64K, 288 bit�32K, or even as 576 bit�16K.
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This specific CAM can be structured in eight banks. Any one of these banks can assume any of the
four configurations we just described in the mixed-table example.

In order to retrieve the most pertinent information for the task at hand, the network processor (or
custom-designed application-specific integrated circuit [ASIC]) issues commands to the CAM. The
CAM then performs a search looking for an exact match or uses wildcard characters to extract rele-
vant information. This is accomplished by two sets of mask registers inside the CAM. These mask
registers are loaded with the specific bit template patterns against which the table memory content
will be matched and the search and match operation will be executed accordingly. The two sets of reg-
isters are known as the global mask registers, which can remove specific bits from a comparison pat-
tern, and a mask register, which is present in each location in the memory (in the case of TCAM).
This combination together with the ternary encoding of data in the memory array allows prefixes of
complete ranges of partial bit matches to be extracted. These are obviously critical capabilities for
making classification and routing decisions involving functionality at layers 3 and 4.

The search result, depending on the CAM design, can be produced as a single output (for exam-
ple, the result of the highest priority). In the case of multiple hits, it can be produced as a burst of suc-
cessive results (for example, in order of priority) for subsequent processing by the system. The
example shown from the Kawasaki LSI 9.4Mb CAM has an output port that is 24 bits wide. Other
CAMs, especially smaller ones (1Mb/2Mb), have an output port that is a 32 bits wide.

Special flag and control signals available on a typical CAM usually show the status of the various
banks of the array and denote the type of the search result (single or multiple hit). These signals also
allow the cascading of multiple identical devices (at different levels of depth for different vendors) in
a chain as a handy way to increase the size of the lookup tables, in many cases without incurring a
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FIGURE 12.1 A typical block structure of a common CAM architecture — the 9.4Mb CAM (KE5BCCA9M) 
from Kawasaki LSI. (Source: Kawasaki LSI)
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performance penalty in search time. For instance, our example of the Kawasaki LSI 9.4Mb CAM can
be cascaded up to eight pieces with other CAMs without any glue logic and without any degradation
in performance. This enables the systems designer to deal with a table that is 72 bits�512K. It is also
cascadable (but with a degradation in performance) up to a maximum chain of 32 CAMs that together
handle a very large lookup table of 72 bits�2M size.

When a CAM is initialized, some design-specific procedures need to be followed. These proce-
dures depend on the vendor and the actual chip. One system may require that all bit positions in every
possible table entry be reset to 0, whereas all bit positions in the mask registers may have to be set to
1 before the table to be loaded is written into the CAM. We say that “we write the table to be searched
into the memory” by initializing the CAM. The term learning refers to updating specific table entries.
The common industry phrase denoting a usual search operation is “writing search keys to the CAM.”
We must accept it even though it is an unfortunate misnomer since loading a comparand to initiate a
search does not involve writing anything into memory.

Most CAMs use key (comparand) sizes that are 72 bits long. Some applications require wider keys
that are 144, 288, and lately even 576 bits. In fact, many CAM designs can easily handle several of
them in native hardware. It is also interesting to keep in mind that some applications still require
shorter keys—namely, 36-bit keys. This can pose a performance problem to CAM devices that are
designed to support 72-bit keys. However, these can be handled at the systems level in various ways.
We discuss some impacts of these variations on the overall systems design later in this chapter.

CAMs are designed to run at different speeds and are typically clocked anywhere within the 66 to
133 MHz range. However, although a search is issued within one clock cycle, these frequencies only
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FIGURE 12.2 The concept of tag bits to improve the use of CAM. (Source: NetLogic Microsystems)
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FIGURE 12.3 Partitioning a CAM array into multiple tables and the method of accessing them individually.

1 0 1 1 1 0 1 00101…. ……

0 0 0 0 0 1 1 11111…. ……

1 0 1 0 0 0 0 10101…. ……

1 0 1 1 1 0 1 01011…. ……

0 1 0 1 1 1 0 01010…. ……

0 1 1 0 0 0 1 10111…. ……

1 0 1 1 0 1 0 10010…. ……

1 1 0 1 1 0 0 01110…. ……

127                     97   96  95  94                           4     3    2    1    0

127                     97   96  95  94                           4     3    2    1    0

127                     97   96  95  94                           4     3    2    1    0
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Partition to be searched Partitions to be excluded from the search

Global
Mask
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denote the maximum search capability of the CAM. This is because the actual search performance
often depends on multiple additional factors, including the size of the key and the size of the lookup
table, which may be so large that it requires multiple CAM chips to be cascaded. The speed of a CAM
is denoted by millions of searches per second (Msps) or by millions of lookups per second (Mlps).

The latency in lookup table operations based on a CAM is another important measure of per-
formance as the systems designer must know how much time his or her design must wait every time
it issues a search and until the CAM yields an answer. In the case of CAM, latency is therefore used
to measure the time between the moment when the search key has been presented to the CAM’s input
and the moment when the result has been produced by the CAM’s output. This does not include the
time needed to access the associated data SRAM by using the CAM output as an address index to
retrieve the necessary data. Therefore, be careful about how the numbers are interpreted. One of the
great characteristics about CAMs (as opposed to other types of hashed-index memory with which 
one might be tempted to build a content-addressable memory) is that latency is deterministic.
However, this depends on the actual CAM design and clock frequency. Typically, latency can be 
two or three clock cycles long, but it can also be twice as much or more—namely, for cascaded CAM
configurations.

In terms of lookup latency performance, it is also possible that vendor-published numbers may not
necessarily be telling the truth. For example, a search engine’s lookup latency numbers can be hidden
in a system by cleverly adopting pipelining and multithreading functionality that is available inside
the network processor. Turning the argument the other way, the most astounding (and most expen-
sive) CAM component may not be necessarily needed in order to meet system search performance
requirements. If the NPU architecture and software development toolset allow the tinkering of func-
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tionalities such as the creative and efficient allocation of computational load on multiple engines,
stages on a pipeline, or threads running concurrently, then the systems designer suddenly has more
freedom.

To get an idea of the technology evolution and where the search engine industry is headed, refer
to Figure 12.4. In this figure, the interrelationship is shown between wire speeds, packet arrival rates,
typical application loads involving a spectrum of cases spanning from simple Internet Protocol (IP)
routing and access control lists (ACLs) all the way to consolidated environments with QoS provi-
sioning, per-use billing, even network management using Remote Monitoring (RMON), and the com-
mensurate number of searches needed per packet.

In order to meet carrier-class requirements for QoS and service level agreements (SLAs), the
expected classification performance for OC-768 (40 Gbps) layers 4 to 7 applications will usually
require a search performance of at least 125 Msps speeds and sophisticated classification-based for-
warding that will be decided on rules applied to a set of up to eight fields. With millions of users and
tens of millions of active sessions in a large metropolitan network, a router’s classifier must be able
to look up answers by searching through a database of two plus million rules.2,3

Given the current status of CAM technology, which is already pushing silicon to its limits (which
keeps the costs high through semiconductor production yield), Figure 12.4 proves that in order for the
trend to continue, CAM vendors will have to come up with new advanced techniques such as paral-
lel lookup engines that will allow the concurrent execution of even more searches per second.
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FIGURE 12.4 The interrelationship between typical applications, packet rate, wire speed, and the esti-
mated need for search capabilities. (Source: IDT)
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2. Jose Pereira, “Moving Classification and Forwarding to OC-768,” a NetLogic Microsystems white paper.
3. IDT white paper, “Taking Packet Processing to the Next Level.”
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In summary, CAMs assist the systems designer when the following tasks are performed:

• Recognizing large bit patterns (they do a lot of work per trip across the I/O pins), where approaches
using conventional memory typically need to make many trips as the bit pattern to be classified gets
bigger.

• Handling tables that are small (storing large lookup tables in CAMs is prohibitively expensive in
terms of both chip cost and power).

• An application environment where lookup latency is critical (although latency can often be hidden
with a suitable use of pipelining and threads with memory-based approaches).

MANAGEMENT OF TABLES INSIDE A CAM

The direct cost of a CAM in dollars and the indirect cost of its use, such as power consumption and
line-card board real estate, are probably the two main driving forces behind the creativity that design-
ers must exhibit to optimize the functionality of CAMs. It is important to enter tables and maintain
them properly while maximizing the usability of the CAM. We will look at some clever ways of man-
aging the available space so that as much information as possible can be squeezed into the CAM real
estate. As tables are periodically updated, we will also look at some issues resulting from relocating
either entire tables or simple entries inside the CAM array.

As discussed previously, a system designer can maximize the occupancy of the array of useful
entries by partitioning a CAM into segments. We will illustrate this point with an example from
NetLogic.4 More details on this approach and similar ideas can be found in product literature and
application notes.

Imagine storing data into four tables that are IP addresses and are therefore 32 bits wide. If the
CAM is 128 bits wide, unless the CAM array is partitioned into four tables, the storage capacity will
be poorly used, as each entry will only store 32 bits. As a result, the rest of the bit positions that the
CAM has available in each slot are wasted (128 available minus 32 used equals 96 wasted bits per
slot). In this example, however, the four 32-bit-wide tables can be arranged next to each other. Every
128-bit slot is first split into four slices of 32 bits. These are numbered 3rd, 2nd, 1st, and 0th going from
left to right. Each one of the four individual tables then occupies one of the four 32-bit slices of each
128-bit slot and runs the entire length of the CAM. If the CAM is, for example, a 1Mb array that was
originally arranged as 8K�128 tables, it can easily be structured as four 8K� 32 tables.

Figure 12.3 shows how to work with the global mask registers to access only one among these four
tables in order to perform a search. Bits set to zero in the global mask register guide the search to the
corresponding table. For the four tables (partitions), the global masks corresponding to the individual
partitions would look like the following (in hexadecimal):

Mask 3: 00000000 FFFFFFFF FFFFFFFF FFFFFFFF

Mask 2: FFFFFFFF 00000000 FFFFFFFF FFFFFFFF

Mask 1: FFFFFFFF FFFFFFFF 00000000 FFFFFFFF

Mask 0: FFFFFFFF FFFFFFFF FFFFFFFF 00000000

In this example, only the specific 32-bit part of the comparand that is allowed by the global mask
register is relevant. Consequently, searches can be conducted on any one of the four tightly packed
tables.

A CAM can be partitioned in numerous ways. The specific design of each CAM chip enables the
designer to use his or her imagination differently in each case. Judicious partitioning has been shown
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to enable the usability of almost close to 100 percent of an array, if the word sizes are chosen to be
smaller than the default organization of the CAM.

Partitioning the CAM is an interesting way of enhancing its usability. However, a systems designer
must determine whether entries are valid. This is accomplished by using a special bit at each word
location that indicates whether the corresponding entry is valid data. This is similar to the remarks we
made earlier about CAM initialization. When the system in turned on, the internal state of the CAM
is automatically initialized to unknown values; therefore, the valid-entry bits are crucial for making
some decisions.

We will examine a couple of interesting ideas as to how to further optimize the use of a CAM by
loading tables more judiciously. For instance, NetLogic Microsystems has proposed the concept of
tag bits. Tag bits enable searches to be performed on subsets of stored data. The idea is that a specific
bit at each entry word is arbitrarily chosen to denote that this specific entry belongs to a defined sub-
set (subtable) of the overall table. It is also tacitly assumed that the entry word is smaller than the
organization of the CAM. In other words, if the entries are 128 bits long, in order to let one specific
bit (say, the far-left one) among those be the tag bit, the table entry must obviously be shorter than
128 bits.

For instance, a systems designer may want to store two different tables that contain some common
subdata inside the same CAM for economy. This could occur if a systems designer wants to limit the
number of components on a specific line card and consequently wants to store two different tables
inside the same CAM.

Figure 12.2 provides a simple example of this situation. A classification table (with a 32-bit source
address, 32-bit destination address, 2-bit type of service [TOS], and 16-bit VPN number field in every
entry for 82 bits total in this example) and a forwarding table based on a 32-bit destination address on
every entry are stored in this example. Note that the destination address field appears in both tables.
Unless there is a physical way of ensuring that the search operation is performed only against entries
of the specific subtable that needs to be accessed, some unfortunate matches may be erroneously made
when a miss should actually occur.

Tag bits easily solve this problem. One specific bit of each entry (let us say the far-left bit for con-
venience) is tacitly assigned to denote the corresponding subtable. If the tag bit is 0, it could mean
that this entry belongs to the classification table. If the tag bit is 1, it could mean that the entry belongs
to the forwarding table instead. During a specific search operation, the network processor loads the
search key (comparand) into the CAM configuration register (or whatever this control register is
exactly called in a specific CAM product) and the tag bit is set to the correct value corresponding to
the subtable to be searched. This means, of course, that the software engineers in charge of develop-
ing that part of the NPU software must be careful to not set the corresponding bit of the global mask
register in the CAM (by issuing the incorrect formatted command). This would completely inhibit the
intended functionality of the tag bit.

Tag bits can also be used as the following:

• Validity bits, which are set to 1 for valid entry and to 0 for empty, which would allow the elimina-
tion of empty or inappropriate positions from participating in a search.

• Skip bits, which can be quite useful when multiple matches have been scored and they must be
sequentially read out from a subtable of a larger table. The process starts with the skip bits for all
entries cleared to 0. As soon as the highest priority match is read, the user sets the skip bit to 1 by
performing a read/modify/write sequence and reinitiates the search, which will yield the next lower
priority. The process can continue until all matches have been read.

SYSTEMS ENGINEERING ISSUES SURROUNDING 
THE USE OF CAMS

We will conclude our short overview of CAM-based search engines by discussing some issues that
systems designers must consider in order to make the best decisions.
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In many high-speed network-processing systems, several searches must occur simultaneously in
order for the equipment to guarantee deep packet inspection and processing at wire speeds. Traditional
classification applications need to look up a destination address to make a decision. With the current
flow management implied by the differentiated services that carriers want to offer, which are based
on stringent QoS and CoS requirements that are imposed onto the equipment designer, the packet clas-
sifier must be able to dive deep into the packet content and extract specific fields for subsequent pro-
cessing. This means that the search engine that supports the classifier must be able to produce results
within extremely short amounts of time. In many newer applications, several tables will need to be
consulted at the same time.

For example, say that a MAC table, an IP table, a rules table, and a flow-management table must
all be consulted in parallel, as shown in Figure 12.5. These tables will need to be loaded and main-
tained into four partitions of the same CAM, or four different CAMs (each with their own associated
SRAM memory) will need to be searched in parallel.

What are the corresponding implications of these two approaches?

• The first solution is usually unacceptable as some tables are gigantic and others are small. In this
case, some partitions may end up being too small to fit the larger tables, whereas the smaller table(s)
may end up occupying more partitions than they should. This approach wastes expensive partitions
that could be used more efficiently.

• The second solution is not negatively affected when larger tables are used, as they will each have
their own CAM. However, it does suffer when smaller tables are used, as they don’t easily justify
an entire CAM of their own. The overall cost also increases significantly, because in addition to
extra SRAM, some CAMs cost more than the network processor itself!

In Chapter 9, “Other NPU Architectures,” we described an interesting approach that was taken by
Silicon Access (with its integrated solution). With this approach, the associated SRAM is embedded
inside its search engine chip. This definitely minimizes component count and power consumption.
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FIGURE 12.5 A typical approach based on a multiple-CAM arrangement for next-generation multitable parallel
searches.
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Another area of interest is when search keys are 36 bits long. As most current CAMs are designed
with 72-bit search keys (comparands) in mind, some designs use two operations on 72-bit words to
accomplish a search operation based on a 36-bit key. This is done by soft implementation. Although
it gives the systems designer the convenience of both key sizes, it decreases performance for 36-bit
search keys. Soft solutions for 36-bit search keys provide less than half of the maximum-rated search
speed performance, precisely due to the problem just described. Some CAMs are hardwired to
natively support both 36- and 72-bit search keys. These are fast in both modes and are easier to use if
flexibility in the designs of various search keys must be maintained. However, because of the extra
complexity in hardware, it should not come as a surprise that they are a little more expensive.

We have already discussed the performance rating of CAMs. An interesting case appears when the
hardware limits the systems designer to a comparand bus that is 72 bits wide, but the actual applica-
tion’s search key is wider—for example, 144 bits. The systems architect has two choices:

• Use a double data rate (DDR) bus and load meaningful bits for the comparand at both the rising
and dropping edge of the clock.

• Double the clock frequency of the bus that loads the comparands.

Now let’s turn our attention to another important issue. We alluded to the fact that CAMs cannot
be updated in a location while searching at the same location. Therefore, the systems designer must
do some juggling. For example, all search requests can be steered to a backup CAM every time that
an update operation must be performed on the primary CAM.

Some systems don’t allow searches to go on while an update operation is being performed. 
It decreases the overall performance of the system. As a result, traffic will need to slow down and
packets will need to be buffered up until the update operation is concluded and safe search operations
can be allowed to resume. Some designs offer a third port that allows convenient table maintenance
without inhibiting search operations. SiberCore CAMs are an excellent example; they are based on a
nonintrusive interleaving technique and leave the search path unobstructed while external sources are
engaged with the introduction of new table entries. Of course, this flexibility causes a significant
increase in the CAM pin count, board real estate, and signals to route to the appropriate place. For
more budget-conscious designs, two-port designs must be used where table maintenance can usually
occur when a search is not occurring.

However, table maintenance is not just about introducing updates into the table. It may also involve
relocating entries or even entire tables to different parts of the CAM because too much empty space
may have been created between subtables following the continuous updating of entries. An example
where this problem arises is in Classless Interdomain Routing (CIDR) (RFC 1519) routing, which
was the longest-prefix match (LPM) algorithm, which is used in CIDR. The routes used in this scheme
are described as a prefix and a prefix length. When a search is conducted (if the table has been prop-
erly structured and maintained), the location of the entry will produce the LPM.

If the table must be reshuffled because one segment is full, extra operations are required that eat
up time. This is a critical factor when developing applications that must respect and sustain traffic
arriving at wire speed. A read and write operation is used for every entry word that must be relocated.
If the start addresses of entire blocks must be readjusted following such moves, the corresponding
mask word must be reloaded each time—this also involves a read/write sequence. The software
designer, who in this context is predominantly concerned about the search capabilities of his or her
implementation, must take all these issues under consideration to ensure that production code remains
robust under these circumstances. From a user’s point of view, searches cannot be affected simply
because tables must be reshuffled.

To further show the impact of efficient table lookups and good search-engine-based table man-
agement on the network behavior, consider the following scenario. In the previous paragraph, we men-
tioned that four operations are needed each time a table entry is moved to a new location. However,
in cases like CIDR routing, the segments are created according to the prefix length and some empty
slots are left in each segment to accommodate new entries. If a segment is suddenly filled up, the table
must be taken offline to reshuffle the entries. This is an annoying situation.
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The worst-case scenario is when all segments except one are full.5 From that point, any new entries
will require 31 move operations. Each move requires four commands (with one clock cycle per com-
mand) to the CAM—both reads and writes. This brings us to at least 4�31 � 124 clock cycles per
move operation. This is conservative, because occasionally supervisory code must be executed to cal-
culate the boundaries of entire segments. However, we will ignore this for now in order to make a point.

Approximately 3,000 route updates occur per second (if not 4,000 by the time this book is pub-
lished) in a typical core/edge router. This means that 3,000�124 � 372,000 cycles per second must
be spent on activities that update and maintain the table entries. If the packet-processing engine in the
router is clocked at 100 MHz, the corresponding cycle time is 10 nanoseconds (10�10-9 seconds).
This means that the 372,000 cycles spent on table updating and maintenance consume the following:

372,000 cycles � 10 nanoseconds per cycle � 3,720,000 nanoseconds � 
3.72 � 106 � 10�9 � 3.72 � 10�3 � 3.72 milliseconds

In the case of OC-192 links, which are typically characterized by aggregate flows of around 20 to
30 million packets per second (Mpps), this means that 3.72 thousandths of 20,000,000 or 30,000,000
will be affected because table entries in the search engine of this simple example must be reshuffled.
This is an increase from 74,400 packets per second to a staggering 111,600 packets per second.
Therefore, at least 74,400 packets per second will not be classified properly. The router, which must
struggle to sustain wire speed, will probably just discard them. This is a huge number of packets to
lose!

Of course, if the NPU used in the heart of a switching/routing system like this can buffer some of
the packets during a CAM update, they may not be entirely lost. However, this requires that the long-
term average rate at which lookups can be done is greater than the rate at which lookups must be
processed. This may not be possible for some applications and line speeds.

Now these same 74,400 discarded packets per second will cause their respective Transmission
Control Protocol (TCP) sessions (assuming that they belong to typical TCP sessions) to time out
because no acknowledgement response will be received at the source to confirm the safe arrival of
these packets to their intended destinations. The TCP congestion algorithm specifies that if a TCP time-
out occurs, the congestion window must be narrowed down to the size of a single packet.6,7 This slows
down the entire TCP session unbelievably. This is because as a consequence of the narrower conges-
tion window, the transmitter at the source must wait for an acknowledgement from the receiver for
every packet it sends before it transmits the following packet. This is a subtle, but rather spectacular,
indication of how much the management of the search engine tables in the router affects numerous
sessions.

REPROACHES AGAINST CAM-BASED SEARCH ENGINES

We mentioned earlier in this chapter that systems designers in general have a rather negative view of
CAMs.8,9 It is logical to ask how much this view is justified. To find the answer, we will go through
some of the major reproaches that the switch/router industry has voiced against CAM technology and
examine their merits.
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CAMs have been accused for having “gargantuan” power consumption needs. Several industry
players (both vendors and analysts) have played around with numbers like trial lawyers when com-
paring older generation CAMs with the more recent chips in order to show that the power consump-
tion of CAM increases. Most of these comparisons do not help systems designers because comparing
the power consumption between an older 2Mb CAM clocked at 66 MHz and capable of 66 Msps with
a more recent 9Mb CAM that is clocked at 150 MHz and capable of 125 Msps does not make any
sense in relative terms.

The issue is much more complicated as power consumption in a CAM is a combined result from
multiple and unrelated factors such as the specific semiconductor manufacturing process, the number
of searches per second the CAM is called to execute, and the storage density. All these factors come
into play in a not-so-obvious set of ways. For example, the smaller the process geometry, the larger
the storage capacity. This can cause a drop in the power supply and even an increase in the clock fre-
quency. No wonder CAM vendors have been moving continuously to smaller line widths. 0.25m
processes were replaced by 0.18m processes. Those were then replaced by 0.15m processes, which
are now being replaced by 0.13m. The 90 nm realm is on the horizon for CAMs as it is already in use
for other semiconductor products. Since power supplies are lower for each new smaller line-width
process, CAMs that are built with 0.18m processes exhibited almost 50 percent less power consump-
tion than their 0.25m predecessors for the same search rate and clock speed. A 30 percent further
improvement occurred with the subsequent movement to 0.15m.

Meanwhile, more megabits of stored information can be packed onto the same silicon die and more
searches per second can be initiated thanks to the higher clock rates. Older products cannot scale to
these higher expectations, making these comparisons inappropriate. In any event, the normalized
power consumption trend has consequently been pointing downward, if power consumption is to be
looked at as watts per megabit. This achievement must be credited to the CAM vendors who have
worked hard to make their products more efficient.

From a systems architect’s point of view, however, the real issue of power consumption is the
absolute value in watts, not the relative value of watts per megabit. Even if vendors with advanced
CAM technology can provide the welcome and spectacular performance of 0.95 watts per megabit in
their chips, the search engine system’s power consumption evil does not lie with the CAM. It lies with
the evolving applications themselves, which require that larger tables be stored for lookup and clas-
sification based on their consultation and that this continues to happen at wire speed. This is what
drives the quest for an increase in CAM size. Therefore, power consumption is a necessary by-product
of the issue, or as the cardinal technology law stipulates, this is the price to pay for the luxury of more
elaborate classification that continuously needs more powerful search capabilities of larger knowl-
edge bases. The systems designer then has to tackle the following power consumption problem. When
moving from one realm to another, and when such a move requires bigger CAMs such as using 18Mb
CAMs instead of 9Mb CAMs, he or she must find twice as many watts in a usually very limited power
budget.

Another dimension of the power consumption problem associated with CAMs is that consump-
tion numbers as quoted in CAM vendors’ web sites and white papers are not typically the worst-case
ones. Therefore, designers are strongly advised to ask their CAM vendor early on in the component
technology evaluation stage to confirm the worst-case numbers and what kind of offered load would
generate the worst-case behavior.

The power consumption problem in CAMs is much wider than what might appear at first glance.
In our view, tackling it involves much more than simply sticking the undesirable label on the CAMs.

Maintenance and table management is another area where the industry has been struggling with
the ramifications of optimizing the usability of CAMs and minimizing the time to market with soft-
ware, which can become extremely complicated and heavy at times. Some CAM products lack in this
area, but others excel. For instance, the third port (Synchronous Maintenance Interface [SMI]) for
SiberCore CAMs is an interesting way of having the control plane processor access the CAM out-of-
band and modify the table boundaries without affecting the ongoing search processes. We also briefly
mentioned the efforts of some vendors to provide sort-free CAMs, so the partial truth in this reproach
quickly evaporates. Some leading CAM vendors will end up being successful, whereas others who do
not innovate and keep up with the industry will lose ground and ultimately lose business.
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The density and footprint of CAMs have also been called a major issue by several quarters, but
this is an unfair statement. Only a few years ago, we had 1Mb CAMs. Now essentially all leading
CAM suppliers propose their 18Mb models. The need to store large tables inside CAMs has tradi-
tionally been seen as a problem that is easily addressed by cascading multiple CAMs. For instance, a
Border Gateway Protocol (BGP-4) routing table with 100,000 IPv4 routing entries takes two cascaded
2Mb CAMs from SiberCore or one 9Mb CAM instead. With 27 mm 296-pin and 27mm 336-pin
PBGA packages for each one of the two chips, respectively, the real-estate savings become apparent.
Likewise, a 1,000,000 entry IPv4 address table can be implemented in sixteen 2Mb CAMs or in four
9Mb CAMs from SiberCore.10 The footprint savings are obvious, if the parallel need for larger tables
is considered.

Inflexibility with table configurations is a very broad issue. Unfortunately, many current CAM
products suffer in one way or another from this generic weakness. Some CAMs offer more flexibil-
ity than others, and the systems designer should verify what features each product offers and how they
map to an application. Some systems need tables that are different sizes, but cannot afford the CAM
structures that support such a solution. Others need the flexibility at initialization time and less at run
time. The reproach has some validity; therefore, time will hopefully make it less pronounced. New
research and development will undoubtedly continue to improve CAM products in this regard.

Most current systems designs are based on proprietary ASIC designs for the packet-processing
engine, but it is expected that for flexibility and improved cost as well as time to market, this situa-
tion will be changing rapidly in the coming years with the engagement of more standard off-the-shelf
network processors. One of the highest priorities for the industry is to gluelessly interface the search
engine with the NPU that will handle the classification and forwarding. The first CAM designs have
not reflected that fact for historical reasons. The wider acceptance of network processors will force
the CAM vendors to optimize their interface mechanisms to accommodate at least the most widely
used NPUs from established leading companies, such as AMCC, IBM, Intel, and Motorola.

Of course, the NP industry is still very young. Many players are still alive and active (although a
couple have gone out of business as of this writing because of the financial rigors of the market). Until
some inevitable industry consolidation occurs, vendors are entitled to their view of the world. Because
some NPU vendors still claim that CAMs are not needed because they already provide embedded
SRAM in their NPUs to store the associated date, the NPU-CAM interface problem is not even being
discussed. However, the majority of established vendors do think differently. This is why announce-
ments are constantly being made between CAM and NPU vendors about how they propose to tackle
the problem.

One of the interesting efforts is the work that is being done at the Network Processor Forum (NPF)
and, more specifically, at the Look Aside Task Group (organized under the Hardware Working Group).
This organization strives to provide standardized mechanisms for interfacing between all types of
coprocessors and network processors. This effort can have very important ramifications of the ability
to natively connect CAMs (search engine coprocessors) on NPUs.

CAMs are accused of being expensive. In absolute terms, this is true, especially since some of the
latest CAMs are almost more expensive than an NPU or a regular DRAM chip. The truth of the mat-
ter, however, is that CAMs are very sophisticated devices that are absolutely indispensable in most
designs and cannot be considered as a commodity product. Their complexity and manufacturing entail
yield issues precisely because they push the silicon technology process envelope to its quality limits.
In our view, only time and consistently larger quantities (such as those experienced by other success-
ful semiconductor products) will improve the situation. Hopefully, we will see an improvement in that
front in the future.
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GOING FORWARD

The industry has been actively looking at ways of dramatically enhancing the performance of CAM
technology. As we mentioned earlier, CAM vendors have announced plans to create parallel architec-
tures that will enable multiple simultaneous lookups as a clever means of accelerating systems-level
throughput. Figure 12.4 shows the dire need for such techniques as we move to higher-value QoS func-
tionality (involving classification based on multiple fields from layers 4 to 7) and higher wire-speed
platforms.

One of the noteworthy new techniques that NetLogic has pioneered, which undoubtedly other ven-
dors will want to emulate, is to produce sort-free CAMs. This technology purports to automatically
manage the gaps between the table partitions so the user does not have to worry about reshuffling the
entries. This will lead to streamlined performance and easier table-management-related development
software.

Having the ability to restructure the various databases held inside the CAM as lookup tables that
can be searched with various key lengths is important; therefore, it is currently one of the major areas
of intensive academic and industrial research. For example, designers want to be able to partition the
CAM array in 16 databases that can be searched each with a different key that can be anywhere from
36 bits all the way to 576 bits long.

Power management is a real issue for CAMs, and the next generation of CAMs that are denser,
deeper, and faster will obviously have to have advanced power-management features in order to ensure
their market viability. One of the areas of continuing development is trying to devise an improved,
fast, and dependable means of powering down unused database tables. This way a highly structured
and partitioned CAM will only keep the portion that contains the currently used tables active. This is
expected to minimize power consumption.

Last but not least, CAM vendors are struggling to make their products easily usable by their cus-
tomers. Users come from various camps. Some of them are proponents of the highest possible per-
formance and are ASIC driven. Others are proponents of flexible network processors instead. CAM
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FIGURE 12.6 An example of an implementation of the ClearSpeed TLE using both embedded and
external RAM. (Source: ClearSpeed Technology, Ltd.)
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designers find themselves between a rock and a hard place as they try to please as many potential cus-
tomers as possible. The proprietary interfaces to each CAM are rapidly becoming a context of the
past. Consequently, more CAM vendors take pride in announcing that their latest designs allow glue-
less interface with most mainstream network processors such as AMCC and Intel.

ALTERNATIVE WAYS OF IMPLEMENTING A SEARCH ENGINE

A very elegant and highly scalable way of handling up to 1 billion searches per second without the
use of CAM is the approach taken by ClearSpeed Technology in the implementation of their Table
Lookup Engine (TLE) intellectual property (IP) core.

We have already discussed in Chapter 10, “Alternative Approaches to Network Processing: Net
ASICs and Designing with IP Cores,” ClearSpeed’s approach to the implementation of a powerful
network-processor platform that addresses the evolving wire speeds by deploying a massively paral-
lel computation solution to the problem. The ClearSpeed TLE is an optional part of that solution. It
can be used in application areas where more than 100 million searches are needed per second. Figure
12.6 shows the arrangement of the ClearSpeed TLE. It is based on a proprietary implementation of
the level compressed (LC) trie algorithm with some improvements including the number of memory
accesses needed per lookup.

Typically, each branch of the tree held in memory requires a memory access. Level compression
causes branches to vary in depth; therefore, the algorithm causes lookups with a varying number of
memory accesses. The table data is distributed over a series of memory banks, some of which may be
SRAM, DRAM, embedded, and external. ClearSpeed provides the software tool that will reformat
typical routing tables in a format that optimizes the use of the TLE. This software can run on the
ClearSpeed NPU or on a typical control plane CPU. It has many interesting and powerful search fea-
tures, such as programmable tree depth for table size versus performance trade-offs, LPM with and
without false hits, multiple tables, and configurable search key size and results index.

The company’s software also allocates the table entries to the various memory banks, so the most
necessary ones will be accessible from embedded RAM. The memory banks are also accessible to
any device that has access to the on-chip ClearConnect™ bus and can therefore be managed if nec-
essary from another processor such as the control plane CPU. One of the advantages of this solution
is that the table can be searched and managed simultaneously, minimizing the downtime for mainte-
nance. The company also claims it has developed a strategy that allows the incremental replacement
of a table by only requiring that 10 percent of the table be kept in memory as opposed to storing an
extra copy of the entire table.

The lookup elements (LEs) are highly optimized state machines that can completely traverse the
tree accessing any of the memory banks required for the search. Unlike other solutions that require
deterministic latency, the ClearSpeed TLE will produce results of searches as soon as they are avail-
able. They can therefore arrive out of order without affecting the order of packet processing, which is
designed to be in order for the engine to attain for maximum performance. Multiple tables are han-
dled simultaneously, and atomic table updates can be done on-the-fly. The table structure is dictated
by software and search keys can be larger than 32 bits. Both CIDR and structured wildcard searches
are supported.

A series of LEs has access to embedded on-chip RAM (either SRAM or DRAM, depending on
which one is available for the semiconductor process) where more critical entries should be stored
and potentially off-chip memory, in cases where lookup tables are large. Current implementation of
the architecture allows up to 64 LEs inside the TLE. The beauty of this approach is that each LE can
provide the answer to the searches it launches whenever it obtains a result, which means that searches
are fulfilled potentially out of order. This does not affect the macroscopic packet-processing order.

Typically, more LEs will be needed to perform more searches per second or depending on how
long each lookup takes. This means that the systems architect will always need to make a trade-off at
the system level depending on whether off-chip memory is used and whether this memory is expen-
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sive, small-capacity, and power-hungry SRAM or cheaper, high-capacity, and lower-power consum-
ing DRAM. The main disadvantage in the external DRAM case is the latency involved, as searches
will take more time to be performed by a specific LE. This situation can be resolved by increasing the
number of LEs so the memory subsystem remains saturated and always busy. According to the com-
pany, if off-chip SRAM is used, then 24 LEs are enough to sustain 350 Mlps.

In an example implementation of a 40 Gbps 100 Mpps solution in need of search capabilities to
support classification, the company has reported using a 260,000 entry table that has between 1.3MB
and 4.8MB of memory for search key sizes between 32 and 128 bits. A 400 MHz implementation of
the TLE shown in Figure 12.6 was used and there were 32 LEs. 2MB of embedded memory is enough
to hold 330,000 trie entries. For the reported example, this was divided to two banks, which each had
an access rate of 400 million accesses per second. External memory was structured in two banks that
were accessible 200 million times per second. The size of the overall memory depends on the size of
the search key. In a typical layer 3 classification application based on a source address, destination
address, and TOS that requires a 72-bit search key, this ClearSpeed TLE performed 251 Mlps. A five-
tuple lookup based on a 104-bit search key at layer 4 yielded a performance of 208 Mlps.

These numbers clearly command attention. The only downside to the approach is that it is only
available as intellectual property (IP core) and not as a ready off-the-shelf component. Therefore, it
can only be used by customers who intend to build their own integrated solution and who are conse-
quently advised to take a close look at this approach as well.

SUMMARY

In this chapter, we examined search engines and predominantly those that are based on CAM for the
support of critical classification and forwarding processors that we discuss in the next chapter. We
reviewed how CAMs operate as well as how they are organized. We discussed several important sys-
tems engineering issues that need to be handled when trying to use CAM in larger designs of ever-
increasing speed and functionality. We also looked at the trade-offs involved in using CAM technology
and reviewed some of the rather serious image problems from which they seem to suffer—some jus-
tified and some unjustified. We identified major areas of current development for the improvement of
CAM-based search engines and concluded the chapter by providing an overview of an alternative way
of creating a fully integrated search engine.

SUGGESTED REFERENCES

The following lists some companies that design and build CAMs and search engines:
Cypress Semiconductor (www.cypress.com)

IDT (www.idt.com)

ISSI (www.issi.com)

Kawasaki LSI (www.klsi.com)

Micron (www.micron.com)

Mosaid (www.mosaid.com/semiconductor)

NetLogic Microsystems (www.netlogicmicro.com)

SiberCore Technologies (www.sibercore.com)

SiberCore Technologies white paper, “Packet Management Lookups in Modern Networks.”

ClearSpeed Technology white paper, “The ClearSpeed™ Table Lookup Engine.”
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Data sheets and application notes are available directly from these companies. In most cases, how-
ever, this is an extremely competitive industry. As a result, the companies most probably will require
that a nondisclosure agreement be signed prior to their release of the product literature to the request-
ing party.

236 NETWORK PROCESSORS

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SEARCH ENGINES



CHAPTER 13

CLASSIFICATION PROCESSORS

In this chapter, we discuss the problem of packet classification in network processing. The funda-
mental notion of classifying the ever-changing dynamic outcome of various events into categories
implies that consecutive events of this outcome must be distinguished from one another, some con-
text-specific rules must be applied to these event outcomes, and some rational decisions must be taken
based on specific criteria. If the dynamic event is extremely unpredictable, as is the case when pack-
ets arrive at a network node where a switching/routing device is located, then the shape and form of
the outcome (in this case, the packet content) is hard to profile.

Consequently, several rules may be needed to cope with all the possible combinations of factors
and parameters that lead to a classification decision. These rules must be stored somewhere in a lookup
table or a rule database. They must be made available on an ongoing basis and be accessible at very
high speeds in order to facilitate the process. This rule database must then be searched every time an
event in need of classification arises. In network processing, the arrival of a new packet is an exam-
ple of a dynamic event in need of classification. When network gear receives a packet among billions
of other packets per second, it must decide within a very short time (a few nanoseconds) whether and
how to forward each individual packet, how to process it, and so on. This constitutes the underlying
realm of the classification problem. The combination of a rule database and decision engine has cre-
ated the concept of search and classification.

In the previous chapter, we discussed search engines as one of the two legs required to success-
fully tackle search and classification in the context of network processing. In this chapter, we look at
the second leg of the approach. We first define some terms and formulate the problem of classifica-
tion. We then discuss various approaches and provide configurations for tackling it. We conclude the
chapter with a case study of state-of-the-art classification processors to give a sense of the direction
that the industry has taken.

TWO TYPES OF PACKET CLASSIFICATION

So what exactly do we mean by classification? The trade press and industry use some of the terms
regarding classification in contradictory ways, causing some confusion. We must clarify that the terms
lookup and search refer to the same thing in this book. The implementation of lookup and search was
examined in the previous chapter.

For our purposes, it is assumed that a mechanism will always be provided that will perform one
of two tasks when the classification process is initiated: It will either sieve through a database of rules
or it will consult a lookup table (where the rules are stored) to provide a result that may be used for
indexing into some other data structure, which will ultimately provide the answer to the classification
problem. In network processing, a systems designer faces two general classification problems:
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• Let us first look at what is commonly known as lookup and classification. This all-encompassing
term, which is almost de facto used loosely to refer to one of three terms: layer 2, layer 3, or even
routing classification and forwarding. It is mainly used in simple packet routing/switching contexts.
The word classification has other connotations in network processing and is usually used as 
a synonym for forwarding. Classification consists of the identification of the correct output 
port/channel/interface of a piece of network gear (a switch/router) to which the packet must be for-
warded. This decision is made when the packet’s destination address matches the content 
of a lookup table, as shown in Figure 13.1. This lookup table is invariably known in this context 
as the routing or forwarding table. It summarizes routing information based on prefixes.

• The term classification or deep packet classification is used when a packet must be distinguished
among several others (usually for purposes other than just routing or switching). This should not be
done simply based on its destination address; it should also be based on several internal bit fields
of variable length or format.

Notice that some interesting words have been used in this definition. These words were used on
purpose so let’s individually define them for this context:

• Distinguished means that implicitly different processing awaits each packet after it is singled out
from a stream. These different types of processing correspond to flows.

• Several means that the deep packet classification process will usually occur based on the simulta-
neous application of more than one rule and criterion. This is unlike classification, which is only
based on rules surrounding layers 2 and 3.

• Internal means that the bit fields, which the classifier seeks to retrieve in order to apply some of its
classification rules and criteria on them, may be buried deeper inside the received packet than the
traditional source and destination addresses, which are conveniently located in well-known posi-
tions in front of the payload. The bit fields needed sometimes carry a substantial amount of unre-
lated material that is piled up on top of them. This unrelated material could also envelope the fields
of interest in tunneled or encapsulated applications such as some firewall or virtual private network
(VPN) products. They also cannot be easily seen by most network equipment, which so far has only
relied on using information from other previously easily accessible header fields.

• Variable length or format implies that the bit fields used in the rules applied to deep packet classi-
fication are not as straightforward as frozen 32-bit addresses, but they can represent ranges of val-
ues and can sometimes be of variable length (such as Uniform Resource Locators [URLs]).

Deep packet classification is required in cases where multiple rules must be applied to a combi-
nation of bit fields found directly inside a packet or calculated according to some quick procedure
from the bit content of specific positions inside the packet. These bit fields reflect parameters per-
taining to information that is specific to anywhere between layers 4 and 7. Therefore, it is not sur-
prising that we encounter deep packet classification in advanced networks that provide service level
agreements (SLAs) as well as quality of service (QoS) and class of service (CoS) guarantees. We will
discuss these topics later when we cover issues such as Integrated Services (IntServ) and Differen-
tiated Services (DiffServ). For example, deep packet classification could be based on the application
of specific rules that require the simultaneous use of six bit fields. Those bit fields could potentially
be the source and destination addresses (each 32 bits long), the source and destination port numbers
(each 16 bits long), the type of service (TOS) field (8 bits long), and the type of protocol field (also 8
bits long).

Deep packet classification sorts out the incoming unstructured packet stream in a series of flows.
The flow is an artificial concept that may bear no relationship with tangible reality. It is just a subset
of a packet stream that satisfies specific sorting criteria that we impose arbitrarily to reflect what we
expect the network service provider to manage. The flow assignment of packets distinguishes the
actual service that a packet will receive. At an age where we talk more about QoS, SLAs, and billing
per usage, it is imperative that equipment at the disposal of service providers be able to take a peek
inside all the packets in order to ensure that the appropriate session-related information is extracted
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and fed into the SLA rules to ensure correct billing or to the QoS rules to ensure that the client obtains
the service he or she expects.

The following are examples of different uses of packet classification:

• To manage access control lists (ACLs) for specific applications For example, in a firewall, the
systems manager may be required to block (filter) packets carrying e-mail from a certain Internet
service provider (ISP) to all enterprise users.

• To make forwarding and routing decisions based on policy For example, an enterprise with
multiple connections to the outside world may decide to route all voice over Internet Protocol (VoIP)
and IP telephony traffic over an Asynchronous Transfer Mode (ATM) network link of carrier A
instead of letting it go through the IP network of ISP B.

• To limit traffic based on rates A core network provider can stipulate to its equipment that no
more than 75 Mbps traffic from a specific ISP can be accepted. They can also state that no more
than 10 Mbps out of whatever comes in can be telnet sessions.

• To impose traffic shaping For example, an intercarrier network where specific agreements are
signed with regional carriers might apply a rule that stipulates that no more traffic above 75 Mbps
from carrier X will be allowed into the core pipeline.

• To provide accounting and billing per agreed levels of usage For example, some context could
stipulate that all streaming video traffic destined to host X must be forwarded through the output
interface Y, and accounting and billing must be performed on a per-packet basis according to some
contract agreed to by the customer.

Obviously, the possibilities are endless. Let us now go back and look at each one of these two
major categories of classification in a little more detail.
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FIGURE 13.1 Lookup and forwarding based on tables kept in local memory at each line card.
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LOOKUP AND FORWARDING

Figure 13.1 shows a typical example of a rudimentary classification system that implements a lookup
and forwarding procedure. Originally, the implementation was based on flat lookup table copies that
were kept in local memory on each line card. This scheme had obvious advantages since lookups did
not saturate the main bus and did not interrupt the main central processing unit (CPU). Each card was
responsible for the lookup operations it needed. This simple scheme is now a thing of the past. Routing
tables are so large that it is almost impossible and extremely expensive to have several copies in the
same router.

The most typical embodiment of a prefix-based address lookup algorithm, such as the longest-
prefix match (LPM), seeks to obtain the longest prefix that best matches the search key. In this case,
the search key is the packet destination address. The previous chapter offered some typical approaches
for tackling this problem in the discussion on ternary content-addressable memories (TCAMs) and
search engines. More information on the search part of this problem is available in the previous chap-
ter. Here we will limit ourselves to the actual classification part of the problem.

On one hand, IP routers and switches in need of evolving classification capabilities must look up
the output port identification in forwarding or routing tables to which they must forward an incoming
packet. To make the routing lookup and forwarding decision, the longest prefix that matches the
packet’s destination address must be obtained among the entries in the stored database (table) of
routes.

On the other hand, ATM and Multiprotocol Label Switching (MPLS) switches receive
routing/switching-related information at the input upon arrival of a cell or packet that immediately
correlates the port and the Virtual Connection Identifier (VCI) (or label). They directly proceed to the
next step of the switching process. For example, with an MPLS switch, a previous router has already
tagged every incoming packet the router receives. Therefore, the locally kept correspondence table
will simply need to match the content of the tagged label with the router’s output ports to find the cor-
rect one. If the label is 69451, for instance, it may indicate according to the label table that the packet
must be forwarded to the output port 34, no questions asked. In the strict sense of the term, classifi-
cation is therefore not a problem for this realm.

The original routing on the Internet was built on class-based addressing. For more details, consult
the book Routing in the Internet by Christian Huitema.1 Four major classes of 32-bit addresses were
devised in what we now call IP version 4 (IPv4). For convenience, the industry uses the dotted quad
notation—for example, 128.23.34.5. This notation represents addresses as integers (distinct points)
on the IP address line—in other words, a closed segment (including its two boundaries) between 0
and 232�1. Therefore, addresses assumed the form K.L.M.N, which corresponds to the number K �
224 � L � 216 � M � 28 � N. The first possible address is 0.0.0.0 on the left side of the fictitious IP
address axis segment, whereas the end address is 255.255.255.255 on the right side of the segment.

As shown in Figure 13.2, class A addresses occupy the space between 0.0.0.0 and 128.0.0.0,
whereas class B addresses occupy the space between 128.0.0.0 and 191.255.255.255. Class C
addresses are between 192.0.0.0 and 223.255.255.255, whereas class D addresses are between
224.0.0.0 and 239.255.255.255 for multicast. Class E addresses between 240.0.0.0 and
255.255.255.255 remain reserved.

The concept of the network ID (netid) was established to enable organizations to manage their own
internal addresses. In class A addresses, the netid was between bits 1 and 7, whereas in class B
addresses, the netid was between bits 2 and 15. In class C addresses, the netid was supposed to be sit-
uated between bits 3 through 23 in an address. However, the problem was that the address space avail-
able to IPv4 was quickly used up mainly because the netid boundaries were not flexible. Class A
addresses would only be offered to large organizations that could justify hundreds of thousands of
hosts. Class C was deemed extremely narrow, as many organizations needed addressing for more than
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1. Christian Huitema, Routing in the Internet, 2nd ed. (Upper Saddle River, New Jersey: Prentice-Hall, 2000).

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

CLASSIFICATION PROCESSORS



the 256 hosts that the 8 bits allocated for that effect could allow. Since Class B addresses were the
least evil of the remaining options for organizations seeking pools of addresses, the prospect that we
would run out of useful addresses soon was real. To further compound the problem, the simultaneous
explosive growth of the number of routes kept inside forwarding tables created an equally untenable
problem.

In order to address these parallel problems, the Internet Engineering Task Force (IETF) worked
on several issues. In addition to the appearance of more sophisticated routing protocols (such as the
Border Gateway Protocol [BGP]), the following interesting developments occurred:

• Classless Interdomain Routing (CIDR) appeared and boundaries were eliminated between classes
with the adoption of hierarchical addressing and routing.

• Network Address Translation (NAT) schemes were specified and implemented.

• Dynamically assigned addresses were proposed.

• IPv6 with addresses that were 128 bits long was invented.

As the industry has not yet fully moved over to IPv6, the status quo of modern networks forces us
to determine what is of immediate interest for this discussion on lookup and forwarding (classifica-
tion) among these four topics—that is certainly the CIDR approach. In order to cluster or aggregate
addresses, a hierarchical notation had to be introduced. In response to this demand, CIDR launched
the concept of a prefix. A prefix is a variable-length field that can be anywhere from 0 to 32 bits long.
Supernets are implied through which a common access is subsequently provided to unrelated subnets.
The principle seemed logical. From Boston, we first needed to go to Chicago and from then on we
could go to Minneapolis, Omaha, or Sioux City. The latter three destinations are irrelevant to each
other, but they all share something in common—we must first go to Chicago in order to reach any of
them. This principle was going to be based on address prefixes. Route aggregations would then need
to be implemented based on the use of the address prefix.
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FIGURE 13.2 The structure of the original address classes in IPv4.
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2. The BGP table status along with numerous pertinent statistics as well as papers, links, IETF reports, and even tutorials on
CIDR and routing can be found at http://bgp.potaroo.net or at Telstra’s web site www.telstra.net/ops/bgptable.html. The drawing
shown in Figure 13.3 is based on results produced by the BGP Analyzer, which is written and maintained by Telstra’s Geoff Huston.
Results before April 4, 1997 are interpreted from data provided by Erik-Jan Bos of SURFnet.
3. See “Internet Core Router Test,” March 6, 2001, www.lightreading.com/document.asp?doc_id54009. In that test suite, one of
the interesting issues was to test some routers in a problematic mode of operation called route flapping. This condition occurs in
real life when numerous routes are withdrawn from the BGP table (which consequently changes state often) and then are re-adver-
tised in a very rapid succession. This route-flapping test required the tested routers to learn and unlearn 200,000 routes over a
period of 60 seconds while measuring forwarding performance. The so-called drop-dead requirement to run this test is less than
8,000 per second; however, it goes without saying that higher learning rates will improve how a piece of routing equipment scores.
It could be argued that real-life routers usually enjoy a functionality called route dampening, which is a means of instructing the
router to ignore the frequent changes of the BGP table if they occur often within a certain time interval. The router, however, must
still be able to deal at least with one major change in BGP table state before the life belt of route dampening is activated.

First, addresses were no longer going to be represented as ordinary 4-byte or 32-bit numbers. In
the new decimal prefix-based notation, 11.0.0.0 becomes 11/8, 124.54.0.0 becomes 124.54/16,
193.19.3.0 becomes 193.19.3/24, and so on. Second, the routes needed to be represented in aggregate
form to save space in the exploding routing tables. Consider the last example—193.19.3/24. If this is
an aggregate route, it means that the first 24 bits are the prefix and the remaining 8 bits of any 32-bit
address under its hierarchy should be treated as wildcard characters.

In our city example, if Minneapolis is 157.9.0/23, Sioux City is 157.9.2/24, and Omaha is
157.9.3/24, we could aggregate them in our routing table as 157.9.0/22  with a new 22-bit prefix that
serves all of them. Another router away from us, say, in Chicago, would have to worry about the gran-
ularity of the network concerned with the eventual access to the three cities. From our perspective,
whatever must go to one of these cities must be channeled toward the route that goes to Chicago. Our
aggregation of the routes to one common city serves that purpose. The problem and the solution obvi-
ously scale up. We should also be able to aggregate our Chicago routes with routes that are destined
for other cities, such as Cleveland.

In the CIDR case, the incoming packet header, which carries the destination address, does not carry
any specific information that could help determine the length of the longest matching prefix. As a
result, the search must be conducted not only in the space of all prefix lengths, but also in the space
of all prefixes of a given length. From the mathematical algorithm standpoint, this makes it harder to
satisfy the LPM requirement than a best match.

Performance is becoming a bigger issue with the size of the routing tables and the ever-increasing
wire speeds. The BGP table contained 133,000 entries used by routers as of this writing. It was esti-
mated that the number of entries would hit the 140,000 mark by the end of 2002. From extensively
gathered statistics from Telstra,2 it appears that some pieces of network equipment must be able to
support between 5,000 to 10,000 route updates per second (based on new route advertisements from
other routers) by early 2003 before becoming a bottleneck on the network’s performance.
Lightreading provides an example of a test enjoying wide-scale acceptance from the industry. In
March 2001, Lightreading formulated a benchmark test for core router updates.3 Systems designers
usually want their designs to be rated as performing well in this benchmark, for instance at 8,000
updates per second. All this points to the same direction.

Actually, the industry estimates that limitations of the BGP will probably be the first reason why
a bottleneck will appear. The bottleneck will most likely occur before TCAMs run out of updating
steam. In any event, Figure 13.3 shows the tendency of explosion in the routing table content, which
roughly tells us that we have been adding about 50,000 new prefixes every year.

In addition to the size of a default-free BGP table, other significant factors that will influence the
need for classification performance include all IPv4 routing tables, the number of routing tables that
must be consulted in some cases, and the need for all network equipment that also relies on other
lookup entries to be able to support the following:

• Separate routing tables for each VPN.

• IPv6 routing tables, especially in the case of wireless networks as IPv6 may likely end up being
driven by the fact that each third-generation wireless phone could have its own IP address.
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• MPLS environments with multiple labels and tags.

• ATM networks.

• Classical Fast, 1 GbE, and 10 GbE Ethernet realms, which rely on extensive lookup information for
their operation.

Some conservative system builders already require that the network processing unit (NPU) they
choose must be able to economically support the equivalent of 2M lookup table entries in order to
handle the short- to medium-term evolution of these needs.

From this context, we can imagine where this trend will lead us within the next 5 to 10 years
when it comes down to compiling life-span requirements for network-processing and lookup circuitry
capabilities inside new carrier-grade equipment for which ongoing investment will ultimately be
contemplated.

This is why in the previous chapter we alluded to the importance of properly managing the con-
tent of TCAMs by reshuffling entries so that entries are arranged in the order of decreasing prefixes
and that no empty space exists between entries. This actually leads to the fortunate situation where if
properly ordered, the entries are structured in blocks, starting first with the 32-bit-long prefixes, then
the block with the 31-bit-long prefixes, then the block with the 30-bit-long prefixes, and so on. The
mere order of these blocks significantly accelerates the search time. By finding a match and knowing
which prefix block was obtained, the length of the prefix can be determined, so half of the problem
has already been tackled.
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FIGURE 13.3 The explosion of the BGP table entries as of late 2002.4

4. See http://bgp.potaroo.net.
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The continuous arrangement of entries (deleting old entries, inserting new entries, and moving
blocks of entries to accommodate dynamic updates) in such a way is a frequent problem and sub-
stantial research is being carried out.

ALGORITHMS FOR MANAGING LOOKUP TABLE UPDATES

It is foolish to think that every time a new entry must be suddenly inserted somewhere (at the right
prefix block) into the TCAM-based lookup and forwarding table, we just start rolling all prefix blocks
one by one (that is, shorter-prefix blocks that must be located in an orderly fashion below the new
entry) downwards one memory slot at a time in order to open up one slot space for our new entry. The
number of prefixes determines the amount of time it takes. Latency on an update operation becomes
prohibitive for the intended wire-speed performance of the design. For example, if we have a 100 MHz
TCAM-based device where the clock cycle is 10 nanoseconds, then this is the amount of time it takes
to conclude one lookup operation. Now if there are 64,000 prefixes, as is usually the case, and these
must all be relocated by one position to lower memory positions in order to allow a new clumsy entry,
then such an update of the table according to this method will consume the following time:

10 nanoseconds � 64,000 � 640,000 nanoseconds � 640 msec � 0.6 milliseconds

If this system is an application, for example, on an OC-192 link with small packets (40 bytes), then
to achieve an equivalent rate of 31.25 million packets per second (Mpps), there would be a need for:

These packets would need to be buffered temporarily (multiplied by the size of the typical packet we
chose, which yields 750K bytes of extremely fast and expensive buffer memory) while we wait for
the table update to conclude. 

If this process happens too often, then the buffer estimate is not even close to being enough, as
new packets will continue piling up while others are still lined up in the buffer awaiting treatment.
This will continue until we are forced to discard the new ones.

To avoid causing too much disruption, some designs intersperse a few empty positions between
prefix blocks in case new entries must be inserted. This approach has many variations, and several
interesting algorithms have been proposed to that effect. Their performance has been studied and ana-
lyzed in terms of the number of clock cycles they require for the insertion and deletion of an entry
into a table. One of the fundamental constraints in the formulation of the efficient insertion/deletion
problem is TCAM’s Prefix Length Ordering (PLO) constraint. The PLO constraint in a TCAM has
nothing to do with policies toward Middle East issues. It is just an easy-to-remember abbreviation.
PLO is a mathematical problem formulation of how to best structure the CAM in such a way that pre-
fix sorting remains invariant. The PLO concept is based on the observation that prefixes of the same
length can be stored in any order inside their correct block.

Among the many algorithms proposed to tackle the reorganization of the TCAM-based lookup and
forwarding table, the most preeminent are the PLO_OPT, CAO_OPT, and L-Solution algorithms. L
is the number of possible prefix lengths; for IPv4 addresses, it is equal to 32.

These algorithms are discussed in detail and analyzed in the article “Fast Update on Ternary-CAMs
for Packet Lookups and Classification” written by Devavrat Shah and Pankaj Gupta.5

31.25 �  106 �  0.6 �  10�3 �  18.75 �  103 �  18,750 packets
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5. Devavrat Shah and Pankaj Gupta, “Fast Updates on Ternary-CAMs for Packet Lookups and Classification,” IEEE Micro 21,
no. 1 (January—February 2001).
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In order to empty one space inside the memory bank, the L-Solution algorithm takes no more than
L memory shifts, whereas the PLO constraint applied to the same problem reduces that requirement
by half to almost L/2 memory shifts per table-entry update.

CAO stands for Chain Ancestor Ordering constraint. This is a means of relaxing the exact storage
constraints applied to some types of maximal-length chains. It has very important effects on the over-
all classification performance of the algorithm. We will just mention that the ratio of updating per-
formance between both the worst-case and the typical (mean) number of memory writes for
CAO_OPT, PLO_OPT, and L-Solution has been shown by Shah and Gupta to be roughly a propor-
tion of 1 to 4 to 7, respectively. Some people have conjectured that CAO_OPT is an optimal algo-
rithm, as it consistently allows updates to occur within one to two clock cycles. This is different from
the L-Solution, which according to extensive simulations of the authors of that paper, seems to require
seven clock cycles on average.

ALGORITHMS AND DATA STRUCTURES TO 
SUPPORT LOOKUP AND FORWARDING

We learned that routers parse the destination address of every incoming packet and then match it with
some entry into a routing table in order to determine to which port or next-hop address the packet
should be forwarded. This matching function is not trivial given the context of optimized real-time
behavior in the router. The router cannot just find any match; it must be the best match possible.

For example, if an incoming packet has the destination address 154.32.4.57 and the routing table
contains the following relevant entries—154.32.*, 154.32.4.*, and 154.32.4.57—only the last entry
should be matched. This problem can be better understood if we consider that the routing table may
contain hundreds of thousands of entries. One of the most favored algorithms for this kind of classi-
fication is the LPM algorithm, which is thoroughly discussed in The Art of Computer Programming
by Donald E. Knuth.6

For example, a specific routing decision (layer 3) may have to be made for some packet based on
a specific routing protocol. This protocol may use the LPM algorithm based on a trie, which we dis-
cuss in this section. With address prefix matching algorithms, the forwarding database (lookup table),
which must be consulted, generally contains a dictionary of address prefixes. The algorithm finds the
longest initial substring of the destination address that is included in the forwarding database. During
a classification (lookup and forwarding) operation, the network processor (or classification proces-
sor, custom application-specific integrated circuit [ASIC], or other CPU for that matter) will have to
traverse the trie looking for the LPM.

The radix trie, Patricia trie, and leaf-pushed binary trees are some common data tree structures
used to produce the best match. Any good data structure book explains them in detail. Without going
into details here, we will say that they are inverted trees. Each parent node represents a partial string
of the packet addresses and each child node represents one possible single-component extension. The
leaves represent the strings that are stored in the trie. Readers who have experience using tree-tra-
versal algorithms in pattern-matching programs from the artificial intelligence realm or those who
have experience with database tree parsing algorithms will immediately understand this principle.

In the example shown in Figure 13.4, where only some of the leaves are shown, an incoming packet
with the destination address 154.32.4.57 will be routed to the correct interface after only four match-
ing operations. 
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Radix tries are simple to implement but they suffer from a potential performance disadvantage—
namely, that a lookup may take O(m) (polynomial time depending on m, the number of bits in the pre-
fix, which in the case of IPv4 is 32). In an interesting variation on performance-fine-tuning this
trie-traversal algorithm documented by Radia Perlman, long nonbranching paths of the trie can be col-
lapsed if they do not contain a dictionary entry. This enables the entire substring to be found with only
one search in some cases.7

Another interesting approach, which is based on the idea that the search does not have to be initi-
ated by chasing only one bit a time,8 is to trade memory for search time.9 As an example of 2-bit
searches, the prefix 10 would have multiple child nodes instead of a 1 and a 0. It would therefore
potentially expand to 1000, 1001, 1010, or 1011. Any address that matches the prefix 10 would sim-
ply have to match one of the elements of the set {1000, 1001, 1010, 1011}. The search is completed
in two steps, as opposed to four. The principle can be expanded to 4, 8, 16, and higher bit-block
searches that correspondingly increase the speed but also geometrically multiply the memory needed.
Of course, such a trade-off between preprocessing time versus memory is not always feasible.
Therefore, a systems designer must always be alert of ramifications of design choices within a cer-
tain context.

A couple of other clever approaches are to compress the expanded prefixes in the so-called Luleå
scheme (from the Swedish city where the research team that invented it is based)10 and to perform a
binary search using special hashing functions on prefix lengths.11 If we imagine that prefixes are
expanded to lengths that are multiples of 16 bits, we will end up having 216 child nodes, causing a very
serious memory problem. If we suppose that only a small fraction of these 216 possibilities are real
prefixes, then most of the nodes will be the result of expanded smaller prefixes and lots of memory
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FIGURE 13.4 A trie is a data structure used in a router to efficiently produce the
best matching route for the forwarding of the packet to the correct destination.7

7. Radia Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking Protocols, 2nd ed. (Reading,
Massachusetts: Addison-Wesley, 2000).
8. V. Srinivasan and G. Varghese, “Faster IP Lookups using Controlled Prefix Expansion,” ACM Sigmetrics 1998, ACM

Transactions on Computer Systems, March 1999.
9. Radia Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking Protocols, 2nd ed. (Reading,

Massachusetts: Addison-Wesley, 2000).
10. A. Brodnik, S. Carlsson, M. Degermark, and S. Pink, “Small Forwarding Tables for Fast Routing Lookups,” Sigcomm (1997): 3—14.
11. M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable High-Speed IP Routing Lookups,” Sigcomm (1997): 25—36.
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will be wasted. The Luleå routing table scheme provides a handy method for compressing the data in
such a case by minimizing both the size of the data structure and the number of memory accesses dur-
ing operation.

This method is based on partitioning the data structure into three layers and a subsequent neat
encoding based on bit vectors and masks. Some interesting issues arise in the binary search of prefix
lengths—namely, what constitutes a good hash for every prefix length in storage and how to mini-
mize the number of probes (trials). However, if it is properly designed, spectacular performance results
can be attained. The Luleå algorithm data structure is a typical example of an algorithm that trades
table-building (preprocessing) time (which in typical implementations takes close to 100 millisec-
onds) for lookup time. Of course, this is not a reproach. Routes are not supposed to change very often
so this is a reasonable trade-off.

If the Luleå classification algorithm is implemented in software to run on a 1 GHz Pentium CPU,
it can be expected to run roughly at a level around 10 million lookups per second (Mlps). Worst-case
lookup has been seen to take about 100 clock cycles and, more typically, 50 clock cycles. To put things
into perspective, a 1 GHz CPU has a clock cycle of 1 nanosecond (10-9 seconds). Assuming that it can
force one instruction per cycle through its pipeline (something that is not always feasible in real-life
applications), one lookup can be accomplished in around 100 cycles (100 nanoseconds � 0.1 �sec).
Therefore, in one second, we can calculate that we can have 1/(0.1 �sec) � 10 Mlps. This implies
that the 1 GHz CPU is 100 percent dedicated to classification (an unrealistic proposition based on
what we have seen elsewhere in this book). Even then, its performance should be compared with num-
bers attained by current TCAM products as discussed in the previous chapter. The question, however,
seems to still remain as to whether this structure is desirable in IPv6 environments. A more detailed
discussion of these techniques would require us to describe the corresponding data structures and dis-
cuss the efficient implementation of the algorithms, especially if they involve some clever architec-
tural schemes like e.g. lookup tables, cache memory, etc. It is therefore beyond the scope of this book.
For more information, consult the references at the end of the chapter.

Perlman has invented a parallel hardware-based approach that seems to outperform any trie-based
approach.12 It requires a lookup engine that contains several parallel registers (called hash buckets)
that function in a multiple-stage operation. Each stage of the lookup operation compares a portion of
the destination address against the content of all hash buckets. The winner is the register that contains
the longest match. The winning register at the end of the operation points to a data structure, which
will hold the bit patterns that the registers will need to compare at the next stage. This parallel hard-
ware approach drastically expedites the search. It obviously costs more to implement in silicon, but
it allows the rapid acceleration of the lookup tasks.

From a systems architect’s point of view, algorithms used to implement lookup and forwarding
operations are not surprisingly judged according to a short list of criteria that includes speed, instruc-
tion memory footprint, the necessary data memory to run efficiently, and the scalable capability of
flexibly handling large tables that continuously evolve in size. In some cases, some algorithms trade
lookup performance for the time needed to build the table. If this is an appropriate trade-off, then the
systems designer is always looking for ways to decrease this preprocessing time.

DEEP PACKET CLASSIFICATION

We mentioned earlier that when classification must be performed based on the lookup on multiple
fields, as is the case with deep packet classification, we create flows. We then assign packets to indi-
vidual flows. The flow is a new concept that can be compared in granularity and conceptual impor-
tance with the datagram. As a result, routers (which from now on must become flow aware as opposed
to being exclusively packet aware) treat different flows differently. However, when unrelated packets
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are assigned to the same flow, they will all be treated in the same way. A flow is a virtual object that
is created to better manage the performance of the network gear. As a result, it may not even have a
concrete physical substance, yet it is important to monitor and process properly.

What does a flow look like? A flow can be a pair of source addresses and destination addresses,
or it can take the form of an ordered list, such as the destination address, the type of protocol and so
on. The list of possible flows is endless. So what do we mean by the phrase “process properly”? Every
flow in the modern network realm, where QoS and guarantees are required, must be processed in a
specific way to ensure compliance with an SLA. For example, all packets conforming to a specific
flow may be required to be delivered with a maximum delay stipulated in the agreement that the car-
rier has signed with the customer. Or packets arriving from a specific router may need to be accounted
for with comprehensive statistics for subsequent network management decisions. Or packets of a spe-
cific type with a specific destination host may need to be blocked for security reasons. And so forth.

The classification problem here is formulated as the process that a switch/router must perform in
order to distinguish to which flow it must assign every new packet for subsequent processing. In order
for this to happen, several fields inside the packet must usually be looked up and a decision based on
several criteria must be made. This is the origin of the name deep packet classification, which is also
known as classification based on multiple fields.

To better visualize the problem (in pursuit of a rigorous mathematical formulation), imagine two
axes with the values of two fields along them. Multiple regions can exist based on the policy rules.
For instance, Figure 13.5 shows a conceptual example of classification along two fields and the com-
binations of these fields may very well create three, four, five, or more regions. Each region is cov-
ered by one set of actions to be taken by the classifier. Every incoming packet in this case will have
its two specific fields inspected. Based on the policy rules, it will be assigned into one of these regions
for subsequent action.
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FIGURE 13.5 A geometrical visualization of a two-dimensional classification problem into multiple
regions: (i) three regions, (ii) four regions, (iii) five regions, and (iv) six regions. The principle can be eas-
ily understood in three-dimensional and higher spaces.
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The same principle can be applied in three or more dimensions, which ultimately leads to a set of
complex multidimensional regions that correspond to specific actions to be taken following unequiv-
ocal classification. By applying methods of computational geometry to parameterize these regions
and weighing the pros and cons of the computational load of the regions as the probabilities that a cer-
tain percentage of arriving packets are classified consistently into one or the other of these regions,
we hope to identify ways of balancing the classification workload and optimizing the performance.

CLASSIFICATION BASED ON MULTIPLE FIELDS

Classification based on multiple fields is an extension of our discussion so far. A packet header carries
multiple fields, such as layer 3 source and destination addresses, layer 4 port source and destinations,
layer 4 type of protocol, TOS, and so on, all or some of which are important in the newer generations
of network equipment. A classifier must apply elaborate and often numerous rules on these multiple
fields in order to produce (according to the encoded policy rules) the appropriate action to be taken
on each packet. This is a process that cannot be characterized as a best-efforts work. If a firewall is
set up, the firewall is expected to be able to decide whether to accept or whether to filter each indi-
vidual packet it encounters.

To rate algorithms in this area, we must look predominantly at the wire-speed performance of the
algorithm and subsequently at the cost of implementation, which in this case implies the memory
needed for the algorithm to work (the footprint for both instruction memory and working data mem-
ory). Other characteristics of interest are the setup time of the algorithm (also known as the prepro-
cessing time) and the incremental update time when table content must change. The two
characteristics are considered differently depending on whether the application is based on policy rule
tables that change often. The data structure on which the classifier works sometimes needs to be mod-
ified. These modifications entail either inserting new entries or deleting old ones. This can either hap-
pen incrementally or it may require a radical reconstruction of the data structure (whether it is a table
or a graph tree). The time needed for that process is called the setup or preprocessing time.

As these trade-offs can vary depending on the structure and the choice of algorithm, they must be
considered because they spill over on the application itself. For instance, the policy tables on a gate-
way are not changed as often. When it happens, the network manager will usually carry them out man-
ually. As this process is rarely done, it may be tolerable that a little more time is used than deemed
acceptable for an organization. An ISP network edge router may be required to change its classifica-
tion policies often based on dynamic conditions. This must be done with special tools without dis-
rupting the network for long, which implies that the preprocessing time must be as short as possible.

Some approaches justify a naive approach based on a linear search of the rule space. In the sim-
pler case of layer 3 lookups, this approach keeps a linked list of prefixes and its performance increases
if that linked list is sorted by the prefix length. The concept is straightforward and exhibits acceptable
memory requirements and update capabilities, but it can unfortunately sometimes yield a very long
(and therefore unacceptable) classification time.

Some other interesting ideas have also been proposed. For instance, the concept of cross-
producting introduced by V. Srinivasan exhibits powerful multidimensional classification time per-
formance, but consumes an inordinately large amount of memory.13 The idea of using a grid of tries,
also proposed in the same work, performs nicely in classification time and provides the necessary 
storage for handling up to two dimensions of classification; however, it cannot be easily extended to
problems in need of higher dimensions. Lakshman and Stiliadis discuss a bit-level parallelism that is
suitable for hardware implementation and that can classify quickly along multiple dimensions; 
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13. V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel, “Fast and Scalable Layer 4 Switching,” Proceedings of ACM Sigcomm
1998 (September 1998): 203—214.
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however, it suffers from large memory and bandwidth requirements.14 Gupta and McKeown from
Stanford University introduced the hierarchical intelligent cuttings approach, which is based on a
heuristics-based partitioning of the problem space and a clever rearrangement of the decision tree in
such a way that takes advantage of the classifier structure, thereby expediting classification perform-
ance while keeping the lid over the memory requirements.15 Other applicable efforts are the Area-
based Quad-Tree (AQT),16 the Fat-Inverted-Segment (FIS) tree,17 and the bitmap intersection
classifier.18 For more information, refer to the corresponding references as we will not be examining
the internals of these algorithms. P. Gupta and N. McKeown provide an excellent tutorial of the most
important classification algorithms in their paper “Algorithms for Packet Classification.”19 This paper
can be a helpful starting point.

One of the most important algorithms that deserves to be mentioned separately is the Recursive
Flow Classification (RFC), which has been proposed by Gupta and McKeown.20 It looks at the clas-
sification problem as a mapping of S bits (composed from the concatenated content of all fields of
interest) onto a series of T bits (the classification outcome). It is based on the observation that creat-
ing an ideal memory bank of 2S entries with the corresponding class number stored in each entry slot
and where only one memory access would be needed to produce the classification result is infeasible
economically.

It then essentially breaks down the mapping task into three stages where it trades the number of
memory accesses (therefore, the speed of execution) with the memory footprint. If we look at an
example where S � 128 and say T � 10, instead of trying to map 2128 possible items onto 210 ones,
the RFC algorithm breaks this task down to three hierarchical mappings traversing four phases:

2128 S 264 S 232 S 210

The basic idea is that the original sequence of S bits is partitioned into chunks, which are com-
bined in pairs. The result is used to index into a set of tables that are usually precomputed. Combining
results from previous stages and repeating the process, we advance down the sequence of mapping as
just described until a final answer is obtained at the final phase. Figure 13.6 illustrates this principle.
RFC has been shown to perform 31.25 Mpps classification using a three-stage pipeline with two 4Mb
of static random access memory (SRAM) and four banks of 64Mb synchronous dynamic random
acess memory (SDRAM) under a clock of 125 MHz. A fully dedicated 333 MHz Pentium running
RFC in software achieves a little more than 1 Mpps as classification performance. RFC is considered
based on simulations to be capable of handling classification based on a policy database of 15,000
rules in a 10 Gbps environment, if implemented in hardware. It is estimated that it can do the same
for a wire speed of 2.5 Gbps, if implemented in software.21
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IMPLEMENTATION

A classification engine is a state machine, and it is only natural that it can be implemented in hard-
ware, software, or a combination of both. The predominant choice of venue is dictated by the wire
speed it must sustain and by the size of the table of rules. Low-speed and small-number-of-rules
contexts are easily amenable to a software implementation on a reduced instruction set computer
(RISC) CPU. The more these two parameters start becoming sizable, the more one is confronted with
performance choking—hence, it becomes critical to engage more powerful implementations. Later in
this chapter, we look closer at the question of whether a TCAM or a classification processor is required.
If a classification processor is required, it must be determined whether it should be an integrated one
or a standalone coprocessor that offloads the classification task from the network processor.

Some products, especially search engines, require a search engine controller that supervises the
operation of the search engine. This is rarely the network processor. In such cases, a separate proces-
sor must be included in the board design.

In an effort to differentiate their products, some vendors, such as NetLogic Microsystems, conve-
niently call their products CFP processors, which is short for classification and forwarding proces-
sors. These products usually combine a TCAM-based search engine implementing the LPM algorithm
along with a programmable classification processor in one chip. The combination from a product-
profile standpoint is a variation on a theme that fuses together what we discussed about search engines
in the previous chapter with what we are discussing about classifiers here. To avoid sacrificing the
generality of our treatment, we will not elaborate specifically on CFP processors.

Other vendors, such as Raqia Networks, FastChip, and Solidum, propose standalone classification
coprocessors, whose applicability is much wider than just switching and routing table lookup, as
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FIGURE 13.6 Flow through the RFC algorithm after a packet is split into chunks.20
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shown in Figure 13.7. Their model and applicability is broad and interesting; therefore, it is worth-
while that we review some of these approaches later in this chapter in a series of case studies.

The paper “Fast IP Packet Classification with Configurable Processor,” by H. Michael Ji and
Michael Carchia,22 and the paper “Fast IP Routing Lookup with Configurable Processor and
Compressed Routing Table,” by H. Michael Ji and Ranga Srinivasan,23 are two interesting works
showing in great detail how to implement a classification engine on a configurable CPU by creating
custom instructions and the associated modification in the processor data path. This is applicable to
network processing contexts we discussed in Chapter 10.

CLASSIFICATION PROCESSORS OR CAMS?

The term classification is a broad concept that encompasses lookup tasks, which are handled by search
or lookup engines. Lookup engines can be implemented either algorithmically or as CAMs. Therefore,
a conceptual relationship exists between the two, as summarized in Figure 13.8.

A lookup engine, especially one that must operate at layer 7 where long and complex strings must
be searched and matched, will first need to parse the incoming packet to extract the bit fields, which
in the simplest case become the search key. In more complicated cases, the search key will need to be
calculated from the extracted bit fields. Based on the key, the lookup process is executed, which yields
the search result. A simple lookup or search engine, such as the ones used at layers 2, 3, and 4 for
route-related next-hop address lookups, is not capable of both parsing strings and looking up matches
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FIGURE 13.7 The complexity of applications requiring classification determines the imple-
mentation. (Source: Raqia Networks)
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for multiple-field-based rules. In such a case, a lookup or search engine requires the help of an extra
module that performs the parsing function. In order to build a full-fledged classification processor, a
lookup engine must be augmented by a parsing engine.

This can be accomplished by two types of technologies: a combination of modules for the parsing
and lookup functions, which would be performing these functions in two consecutive steps, or pro-
grammable state machine (PSM) techniques and methods to implement a classifier that can combine
both steps simultaneously. A classifier usually produces two things at its output: a digest and a tag.
The processor is programmed to parse the string of the packet and look for specific patterns. When a
match is found, a numerical identifier (the tag) is calculated and produced at the output for that spe-
cific packet. The digest, on the other hand, is a user-defined extraction of the content of specific bit
positions and/or bit fields, which are collectively put together in a new bit sequence called the digest
in this context. For example, in a DiffServ application, a digest of up to 128 bits is then concatenated
with a tag of up to 32 bits. As a result, 160 bits is produced at the output of the classifier.

Of course, the choice of algorithm depends on many factors. Various algorithms can be used, but
the algorithms that we have encountered in route address and next-hop searches are completely inad-
equate here. This is why at higher layers, especially for layer-7-based search and classification prob-
lems, character-string-based search and match algorithms are used.

Several algorithms have been proposed and are being used in such systems. It may be surprising
that much of the algorithm research in this field comes either from the multimedia areas of informa-
tion retrieval or from computational biology teams, and more specifically, from researchers who have
been mainly (but not exclusively) motivated by the need to match DNA sequences with large
sequences of characters that may be repeated and/or structured in specific patterns. The sheer size of
the DNA molecule, which has parts where pattern matching is needed for many aspects of genetic
sequencing as well as protein- and drug-related research, has been a critical factor inciting work
toward the improvement of the performance of such pattern search and match algorithms, if the
researchers were ever to be able to get answers from experiments within a person’s lifetime.
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FIGURE 13.8 The conceptual relationship between classification processors
and CAM-based lookup and search engines.
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A couple of helpful references on the subject of this type of algorithm from the two different
approaches we just mentioned include Modern Information Retrieval by Ricardo Baeza-Yates and
Berthier Ribeieo-Neto24 and Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology by Dan Gusfield.25 The latter is an especially good source of information from
a tutorial standpoint. Some of the most significant algorithms currently used for layer 7 search and
match classifiers such as the Boyer-Moore algorithm, its variation known as Horspool algorithm, the
Sunday algorithm, the Knuth-Morris-Pratt (KMP) algorithm, the Aho-Corasick algorithm (an evolu-
tion of the KMP approach), the Needleman-Winsch algorithm, the Smith-Waterman algorithm, and
others are discussed and analyzed in tremendous detail in this source. Modern Information Retrieval
offers quantified graphs with performance comparison curves for several of these algorithms. We will
not elaborate on the internal details of these algorithms here. Several research groups also maintain
web sites where these algorithms are explained online through tutorials.26,27 Their behavior can be
visualized with custom-made simulation applets or tools.

Some string classification systems are based on a brute-force approach that tries all possible posi-
tions for a pattern before it can make a decision. This idea may work well with simple patterns when
parsing a string, but it is not conducive to high performance for more complex tasks. Some other clas-
sification systems may be using much more complex and powerful algorithms such as the Boyer-
Moore or even the Aho-Corasick, which work better with multiple string patterns. Boyer-Moore, for
example, has the interesting, albeit bizarre, characteristic that it performs better when the pattern to
be searched becomes longer.28

In addition, an algorithm such as Aho-Corasick may have to preprocess many patterns in which
case it usually builds a state graph that can be used to simultaneously check multiple rules. This
approach lends itself easily to hardware implementations using PSMs with the policies stored in com-
modity-priced synchronous static random access memory (SSRAM). From a performance standpoint,
this definitely beats the CAM approach. The downside is the setup time of policy rules in the exter-
nal memory.

Other types of algorithms may be more suitable for other aspects of layer 7 classification, such as
suffix automaton or deterministic context-dependent parsers (as used in some advanced spam filters).
Other types such as probabilistic Hidden Markov-Model (HMM)-based algorithms may also be used
for something completely different such as making parsing decisions in a law-enforcement context
on a subset of a collection of text-based intercepted files based on other pertinent but ancillary infor-
mation, which may not necessarily be applicable to the entire collection of files under inspection. This
subject is very broad and extremely dynamic, but it lies mostly outside the scope of this book.

Returning to our subject, however, CAMs do not require any setup time except for a few cycles
needed to write the key. In cases with multiple matches, CAMs require the outputs to be prioritized,
but this is usually taken care of by CAM vendors who integrate a priority encoder inside their chips.
The reshuffling and reorganization of CAMs is a problem, but we have seen how state-of-the-art
CAMs address that problem with superior organizational capabilities. The bigger problem for CAM
is that when the search must occur based on a very long bit string—for example, thousands of bits
long (as it can easily be the case with URL strings)—the search key must be segmented into man-
ageable chunks. This drastically reduces the overall system performance as matches in different mem-
ory banks will not be attained within the same amount of time across the board. This dramatically
increases the complexity of programming as results must be reassembled and structured before they
can be delivered downstream in the processing chain. CAMs are more expensive and consume more
power as opposed to SSRAMs used with standalone classification processors.
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So does it make sense to combine a CAM with a PSM-based classifier? The answer is yes in cases
where the policy rules must be changed often and in a dynamic fashion. The CAM is then used to
store the lookup keys instead of SRAM. Misha Nossik presents a very elegant implementation of a
web load balancer based on intelligent switching decisions made based on real-time cookie detection
and URL resource management.29

Figure 13.9 illustrates the scheme. A packet comes in through the Media Access Control
(MAC)/framer and is immediately dispatched to the network processor. In the meantime, the classi-
fier snoops the packet data, parses the packet content, and finds matches on-the-fly. For example, if
the classifier in this application example detects the presence of a Hypertext Transfer Protocol (HTTP)
GET request that a client issues to a server (with or without a cookie), it will extract the IP addresses
and port numbers from the packet and produce the digest that serves as the search key when presented
to the CAM. Part of Tag 1 is used as a learn mechanism by the CAM. When confronted with another
subsequent packet from the same session, the CAM will be able to produce a match very fast if it sees
the same session that produced Tag 1. The combination of consecutive tags (Tag 1 and Tag 2) can be
used by the network processor to decide what to do with each individual packet. The drawing shows
some configurable logic (field-programmable gate array [FPGA] or programmable logic device
[PLD]) combining the two tags between the CAM and the bus. This is because depending on the
choice of NPU bus and the precise CAM interface requirements, it may not be as straightforward for
the systems designer to connect the two parts of the digest (the digest part and the command part) to
the bus without any glue logic.

Another interesting question would be why CAMs and PSM-based classification processors
are not integrated into one chip as a viable product. One answer is that as applications evolve in
complexity, in order to guarantee the classification scalability of a systems solution, a systems
designer must count on the physical independence of the two modules. Another answer is that because
CAMs are still very expensive memory components, but whose prices are rapidly falling, it is sen-
sible to allow the volume-based CAM price curve to evolve downwards as was the case with other
memory products. This way, users can benefit the most of the advances of this technology as well.30
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FIGURE 13.9 An interesting combination of a PSM-based classifier and a CAM for layer-
7-based cookie detection and load balancing. (Source: Solidum)
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INTEGRATED CLASSIFICATION OR STANDALONE?

The advantages of using a standalone coprocessor that is fully dedicated to classification, as opposed
to programming the classification function as one more major task that runs on a multi-RISC-engine-
based NPU, are forcefully and didactically explained and enumerated in Feliks Welfeld’s white paper
“The Case for a Standalone Classification Processor.”31 Welfeld argues that the advantages or disad-
vantages of the standalone classification processor must be measured in the speed and size of the code
(as the Network Processing Forum [NPF] argues in its definition of a network-processing element)
and uses an 8-RISC-core NPU running at 232 MHz on a 1 Gbps link with minimal (512 bits) 64-byte
packets as an example.

According to this paper, which describes a DiffServ (RFC 2475) implementation in detail (assum-
ing purely classification work with no packet modification or encapsulation), 20 percent of the NPU
computational capacity goes to classification. With other tasks on the packet, this could easily become
50 percent, especially if variable-size headers are involved. A dedicated classification processor would
immediately offload this function and therefore liberate these clock cycles from the network proces-
sor so that it can use them to do other useful work.

The same problem looked at from a code-size standpoint shows that a RISC implementation of the
application requires about 3,000 instructions, where 400 are classification related. A classification
processor produces the result as a 32-bit tag attached to the classified packet. Processing that tag by
the network processor usually involves about 30 instructions. Therefore, the code savings in this
heavy-duty-classification example is 400 � 30 � 370 instructions. In a detailed example with meta-
code showing the implementation for a simple content-inspection case such as the one needed for
layer 7 web-based URL string processing, Welfeld shows that a multi-RISC engine must run at 1 GHz
and be fully dedicated to classification just to produce the same results. A 100 MHz PSM-based clas-
sification processor can produce these results much more easily.

It is therefore safe to conclude based on what we have seen so far that depending on the complexity
of the application, the wire speeds required, and the available computational resources, the standalone
classification coprocessor is more than a viable solution that often cannot be brushed aside by net-
work processor vendors who purport that their chip can handle everything.

CASE STUDY: RAQIA’S REGULAR EXPRESSION
CLASSIFICATION COPROCESSOR

Raqia Networks (whose technology has now been acquired by SafeNet) has looked at the overall clas-
sification problem and realized that TCAM-based solutions can only handle applications where the
number of classification-related instructions that need to be executed per packet is small and conse-
quently the processing complexity of the classification needed is easily manageable. However, the
higher we go on the protocol stack, the more complicated the classification becomes. When we are
finally at layer 7 in load balancing for servers, where some complex tasks have to be performed at
wire speed, as for instance things become very different: Typical examples would be:

• URL and cookie detection.

• On-the-fly switching of servers because some connections may be deemed to be (at least from an
application standpoint) sticky and therefore unacceptable.

• Content that needs to be segregated from one server context to another (for example, streaming
video must be delivered from one server while ordinary web pages must be delivered from another).

• High-speed intrusion detection systems (IDS).
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• Virus scanning of packets.

• Firewall load balancing.

• QoS concerns (for example, some requests should be served by one server, whereas others should
be channeled for service to yet another server and so forth).

The common-thread operation needed in these environments is a string search. This involves tra-
versing both the header and the payload of packets (or strings) trying to achieve a match between reg-
ular expressions, including alternation, and based on ranges or wildcards, applying one or more policy
rules or patterns.

Therefore, because these classification requirements often come from edge network equipment or
equipment facilitating the correct behavior of powerful 10-GbE-based enterprise servers, a wire speed
of 10 Gbps must be attainable. The systems architect must also be given the choice of using the clas-
sification processor in a look-aside or flow-through configuration depending on his or her system
objectives. The classification system must be protocol aware, able to handle an entire header, and look
at the payload of a packet in real time. Of course, it must be able to scale in numbers of rules that can
be supported and the concurrency of rules needed at wire speed. In terms of programmability, it should
be easy for software engineers to master.

Combining these requirements into their design specification, Raqia has come up with its impres-
sive 10 Gbps deep packet classifier RQDPC10G (the name at first sounds a little kludgy and impos-
sible to memorize, but there is logic behind it). Figure 13.10 illustrates the processor. The figure shows
the internal structure of the chip and how it fits into an overall NPU-based system design.

The Raqia deep packet classification processor can sustain flow-through-mode classification at 10
Gbps. In the look-aside mode, it offers 4 Gbps performance. It is cascadable up to eight chips deep
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FIGURE 13.10 Raqia’s 10 Gbps deep packet classification processor (RQDPC10G). (a) The internal structure.
(b) How it fits into a network-processor-based system. (Source: Raqia)
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for the extension of the rule database at wire speeds, and it embeds Packet over SONET (POS)/
Ethernet framing for higher integration capabilities in a systems configuration. In fact, its MAC/framer
can be configured as 1�OC-192, 4�OC-48, 16�OC-12, or 64�OC-3 interfaces. It can also be con-
figured as 1�10 GbE, 10�1 GbE, or 96�10/100 Mbps Ethernets. In some applications, it can be used
as a shared classification coprocessor where multiple subsystems turn for their classification needs.
It can also operate as a standalone classification processor next to a high-speed network processor
offloading the heavy-duty classification chores, enabling the NPU to benefit from plenty of saved
capacity cycles that it can use for other types of work.

A 2MB on-chip rule memory can be accessed in a single- or dual-plane approach (for online and
standby setups). In order to further extend the rule database, the RQDPC10G can easily interface 
to up to 128MB of external SSRAM (either zero bus turnaround [ZBT] or sync burst) through a 
64-bit-wide bus. Such an approach, however, would degrade the performance by 50 percent to 5 Gbps
maximum classification throughput, but only when all the rules are stored in external memory. The
interfaces to the MAC/framer, network processor, and the one used for cascading multiple
RQDPC10G chips are standard System Packet Interface 4.2 (SPI-4.2). The results bus is 32 bits wide
and SSRAM compatible, which is handy if subsequent indexing is required or more often for the NPU
interface itself.

It had been announced that the company’s first-generation product was being designed in a
0.18 �m process technology. Therefore, ample room would be available for relatively straightforward
future improvement if the market requests it. It would be offered in a 550-pin ball grid array (BGA)
that should consume approximately 5 watts. In fact, the ReGXP2G regular expression coprocessor,
which is designed with a look-aside interface to the NPU, supports an aggregate data rate of 2.5 Gbps.
It was taped out to manufacturing toward the end of 2002 and is available in a 648-FBGA package.
It supports packets of up to 9KB and can handle up to 4 memory banks of 8MB of ZBT SSRAM,
using up to 8,000 regular expressions per bank and up to 8 rule sets per bank. The Regular Expression
Coprocessor supports rule matching across multiple packets. The user can be sure about its deter-
ministic performance at wire speed regardless of the packet size, the protocol used, the complexity of
the rules, or the actual number of rules.

Classification results are presented on the 32-bit-wide results bus. They can be optionally appended
to the classified packet for subsequent processing by a network processor or traffic manager. Results
can comprise the following:

• One packet offset for regular expressions (or many offsets if subexpressions are used)..

• The number of rule(s) matched (again one or many if subexpressions are used).

• A packet ID.

The classification results in a match that means one of the following:

• No rules were matched.

• Only one rule was matched.

• Multiple rules (or subexpressions) were matched.

• A rule was partially matched (cross-packet boundary assist). In this case, the current state is output
as a result. It can be fed back into the classification processor as the next packet in this session
through the look-aside interface, or it can be handed over through the cascade interface to another
classification processor down the chain.

Unlike other approaches by other classification processor vendors, no special description language
needs to be learned. Regular expressions and subexpressions are used to create the rules in ASCII files
using the company’s graphical user interface (GUI)-based tool or any usual text editor. No packet
offset is required and the processor can match an unanchored rule anywhere in the packet payload.
Raqia’s RegEx compiler parses the input, verifies the syntax, and identifies errors. It then compiles
the authored rules into special tables that will compose the classification processor database. Besides
parsing and compiling the rules input, the RegEx compiler also reports memory usage, which is
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extremely important when building a complete system. It must then be decided whether external rule
memory is needed, and, if so, how much of it. The compiler is written in C�� so it easily enables
independency of the development platform. Its output (the rule tables) is then loaded into the classi-
fication processor, which processes the entire packet header and payload byte per byte for full wire
rate classification at 10 Gbps. Interestingly, the RQDPC10G processor is fully protocol aware. As a
result, it can perform Transmission Control Protocol/IP (TCP/IP) header checks and modifications
on-the-fly.

Conscious of competition at the lower-end of the complexity spectrum (layers 2 to 4) with TCAM-
based classification solution vendors, Raqia is justifiably concentrating its marketing attention on
high-complexity applications such as the following:

• Virus scanning (for example, on incoming e-mail).

• Intrusion detection.

• Firewall-like filtering of packets (for example, in a gateway, some incoming packets—based on 
specific rules—will be accepted, whereas others will be denied entry to a corporate site).

In fact, the company’s first product, the ReGXP2G Regular Expression Coprocessor is well tar-
geted toward the IDS and web-switching realms, especially those that are based on HTTP 1.1. In the
IDS case, every incoming packet must be parsed and analyzed byte per byte looking for attack sig-
natures. This analysis must be performed in real time and is computationally intensive. Current IDS
are implemented in software and usually monitor incoming traffic passively. Due to the heavy com-
putation needed during their execution, they can only be selectively engaged periodically on some of
the incoming packets. This leaves many holes continuously wide open for intrusion attacks. In some
cases, they can only be engaged after an intrusion attack has been detected, which is essentially use-
less.

In the case of web switching involving HTTP 1.1, unlike HTTP 1.0, it not only supports multiple
HTTP requests per TCP session, but it also requires that the URL parsing function inspect every
incoming packet. At wire speed, this represents an unprecedented explosion of computational work-
load that current software-based implementations simply cannot handle. In the HTTP 1.0 case, the
URL-based web switch in what has come to be known as delayed binding must first terminate the
TCP session before it searches the HTTP request that contains the corresponding URL. This infor-
mation is usually inside the second or third packet received by the web switch after the TCP session
is established. Based on the URL thus found, the corresponding packets will be switched to the appro-
priate destination server. The technique is actually called delayed binding because the connection with
the correct server is not established until after the HTTP request has been received and parsed. This
can be easily handled in software without any significant performance degradation when only one
HTTP request is encountered per TCP session; however, it is impossible to contemplate in software
in a massively scaled-load case such as the ones allowed by HTTP 1.1.

SUMMARY

In this chapter, we discussed the problem of classification as a follow-up to the problem of search that
we covered in the previous chapter. We defined two broad categories of classification: one that
involves classical lookup and forwarding procedures, which are done based on search and match
according to bits found in a single field, and one that is focused on deep packet classification, which
implies that the search and match process has to occur based on lookup and match against bit patterns
appearing in multiple fields simultaneously. The former is key for classical routing/switching appli-
cations. The latter is key for the new network world, where QoS, CoS, SLAs, and provisioning of dif-
ferentiated services is the name of the game.

When comparing alternatives for lookups or many other functions, the following key measures of
merit deserve a close scrutiny:
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• Update rates (best, average, and worst case if they are not constant).

• Lookup performance on benchmarks of interest when doing updates at the advertised rate.

• Power consumption when running the previous benchmarks with background updates.

• Required board space and direct cost of purchase.

• Implications of interfacing with the NPU or other data path components on the previous measures
of merit.

We discussed algorithms and data structures used in the implementation of techniques that pro-
vide these types of highly complex classification at astounding wire speeds. We concluded the chap-
ter by discussing implementation issues and presenting a case study of a state-of-the-art classification
processor product from Raqia.

SUGGESTED REFERENCES

The following white papers provide useful information on classification and forwarding:

IDT white paper, “Taking Packet Processing to the Next Level.”
NetLogic Microsystems white paper, “High-Performance Layer-3 Forwarding in CIDR,” www.eetimes.com/story/

OEG20020603S0011.

Jose Pereira, “Moving Classification and Forwarding to OC-768,” a NetLogic Microsystems white paper.

SiberCore Technologies white paper, “Packet Management Lookups in Modern Networks,” www.sibercore.com/
pdf/scwp_00039_001.pdf.

SiberCore Technologies white paper, “Classification and Forwarding Co-Processors Come of Age,” www.
sibercore.com/pdf/wp_scwp002_1.pdf.

The following companies design and build specialized classification and forwarding processors:

Cypress Semiconductor (www.cypress.com)

FastChip (www.fast-chip.com)

IDT (www.idt.com)

Mosaid (www.mosaid.com/semiconductor)

NetLogic Microsystems (www.netlogicmicro.com)

Raqia Networks (www.raqia.com)

SiberCore Technologies (www.sibercore.com)

Solidum (www.solidum.com)

Of course, other more traditional NPU vendors offer their own solution to the classification prob-
lem either with specialized silicon as member of a network-processor family or chipset or as an imple-
mentation that runs inside a network processor. The most important examples are Agere, AMCC,
IBM, Intel, and Motorola. Refer to the corresponding chapters that cover each company’s approach.
Data sheets and application notes are available directly from all these companies. 

Besides numerous tutorials on networking technology, www.lightreading.com offers an impressive
array of documented testing of various types of network equipment. The associated discussion of both
the methodology used each time and the results of each individual benchmark test can provide insight
into what levels of performance are expected to typically qualify by the industry as acceptable.

The following are other important references on lookup and classification:

P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at Memory Access Speeds,” Infocom 3 (1998):
1241—1248.

P. Gupta, B. Prabhakar, and S. Boyd, “Near-Optimal Routing Lookups with Bounded Worst Case Performance,”
Infocom 3 (March 2000): 1184—1192.
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B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using Multiway and Multicolumn Search,” Infocom 3
(1998): 1248—1256.

S. Nilsson and G. Karlsson, “Fast Address Lookup for Internet Routers,” IFIP International Conference on
Broadband Communications, Stuttgart, Germany, April 1—3, 1998.

V. Srinivasan, S. Suri, and G. Varghese, “Packet Classification Using Tuple Space Search,” Proceedings of ACM
Sigcomm 1999 (September 1999): 135—146.

The Tandem Repeat Occurrence Locator (TROLL) algorithm is based on an Aho-Corasick variation. See
http://capb.dbi.udel.edu/main/slides/adalberto-4p/sld001.htm. Another interesting site on the same subject is
http://finder.sourceforge.net/main.html.

T. Woo, “A Modular Approach to Packet Classification: Algorithms and Results,” Infocom (2000).

An interesting article discussing the way of connecting a search and classification engine to an NPU through the
Look-Aside interface is “LA-1: Examining the Look-Aside Processor Interace,” by Harmeet Bhugra, IDT May
20, 2003, CommsDesign.com, available online at www.commsdesign.com/story/OEG20030520S008. Its refer-
ences include an interesting IDT paper comparing search-engine-based with algorithmic classifications.
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CHAPTER 14

SWITCH FABRICS

In the first three chapters of the book, we took a glimpse at the unprecedented technology evolution
that has occurred over the last 30 years. We discussed the reasons behind the development of network
processors and saw typical operations that must be performed on packets transmitted in modern net-
works. Several critical factors have enabled the trend toward new sets of ever-increasing requirements
for the performance and rapid deployment of sophisticated high-speed network equipment. These
include the extraordinary progress in semiconductor technology, the spectacular advances in the devel-
opment of distributed/embedded computing and applications and operating systems software, as well
as the proliferation and pervasiveness of computer networks that will handle voice, audio, video, and
data transparently, reliably, and at an optimal level of quality and cost (as perceived by the network
users).

In the era of converged global networks, where from a transmission standpoint, almost no differ-
ence exists between voice or data, audio, or video, vendors must produce new products in record time
while offering meaningful and different product features. These features not only provide a series of
unique benefits, but they are also justified in an extremely competitive industry. Network processors
promise to combine high performance with versatile functionality while providing ease of use, flex-
ibility, and rapid development. They are a predominant enabling factor for this new phenomenon. In
this book, we have been looking under the hood of these devices.

High-speed communications and network-processing equipment contain some clearly defined
units of functionality. Once these are combined into the appropriate modules and system configura-
tions by the manufacturer’s engineering departments, they enable the creation of the broadband or
high-speed switching/routing network gear.

In this chapter, we will look at some of the most successful and representative techniques for
implementing the switching function. We will distinguish the underlying common denominators of
the various technology modules and examine many trade-offs. We will then look at other functions
required inside fast network switching/routing equipment. The next two chapters should hopefully
provide a clear understanding of and better appreciation for the complexity and architectural trade-
offs involved in the design and implementation of advanced switch fabrics and traffic managers—two
of the most critical processing units with which network processors must be able to interface in order
to carry out their complex mission in life.

So far, we have seen the architecture and internal structure of many different network processors.
Hopefully, by discussing the internals of switch fabrics (and traffic managers in the following chap-
ter), we can better appreciate the challenges of systems design, follow the internal technical descrip-
tion and/or justification of new or existing switch fabric products, better appreciate the differences in
architectural decisions that the various vendor design teams have made as well as the reasons why the
respective decisions were made either at the systems or component level, and better gauge the influ-
ence at the systems level of component capabilities or characteristics.

263

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Source: NETWORK PROCESSORS



Hopefully, through this approach, the reader will not only acquire the basic knowledge of what the
state-of-the-art technology is in this field, but he or she will also be able to independently perform a
critical analysis and an objective evaluation of a platform or architecture comprising network process-
ing, switch fabric, and traffic management and its suitability for a certain application and/or project.

THE DEFINITION OF SWITCH FABRIC

A switch fabric is a chip or a chipset that connects one or more  among multiple inputs to one or more
among multiple outputs based on some fundamental switching techniques and principles. For exam-
ple, in a chassis-based switch/router, the switch fabric function is implemented on the switch fabric
card or switch card, which is connected through the backplane to the multiple line cards. Switch cards
serve as inputs and outputs to the rest of the network. Network processors and traffic managers usu-
ally are situated on the line cards. High-speed connection techniques such as serialization/deserial-
ization (serdes) components are needed on both sides of a link over the backplane to ensure the
efficient and fast connection between the line cards and switch fabric cards.

THE BASICS OF SWITCHING

Before we discuss the switch fabrics themselves, we must discuss some fundamental concepts and
notions about switching. These will be introduced as system concepts. The actual implementation of
switch fabrics is of secondary importance for our purposes as the switch fabric user needs to know its
macroscopic behavior in a system that he or she designs, but not necessarily the transistor-level con-
nectivity of such an extremely complex component. These system concepts can be applied in a switch
at multiple levels of abstraction depending on the architectural intentions, design goals, and overall
development context. For example, if we discuss concepts that we address later in this chapter, such
as the scheduling of switching, arbitration of the crossbar, or backpressure, as a means of notifying
upstream logic about congestion occurring downstream, it is instructive to note the similarities with
the case that we would encounter when dealing with the issues surrounding the action of decelerat-
ing a vehicle.

An individual can decelerate a vehicle in several ways, including the following:

• Taking his or her foot off the gas pedal.

• Hitting the brake pedal.

• Pulling the handbrake.

• Shifting the gear-box down.

• Driving temporarily uphill without applying more gas.

• Ramming into the rear of another vehicle in the front that moves slower or crashing altogether onto
a massive object, tree, or wall that does not move at all.

All these varied techniques undoubtedly achieve deceleration as a result, but from the vehicle
designer and driver’s points of view, they all tackle the problem in very different ways. Each approach
involves trade-offs in efficiency and sometimes undeniable or undesirable side effects. A typical stu-
dent driver does not need a degree in mechanical engineering to know how the depicted multiple sce-
narios function inside the decelerating vehicle. He or she only needs basic driver training (at the car’s
system level) and some common sense to decelerate the car.
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The same thing occurs with switch fabrics. A switch user should have systems-level knowledge in
order to understand the most important macro-issues. However, learning these basics does not need
to be boring or frightening for the switch user.

Switching is an extremely active research area. As a result, the scope of this book is not intended
to exhaustively cover the technology that has been invented in the field. However, we will discuss
some basic notions of some of the most acceptable and widespread techniques along with several
interesting and exotic methods in order to stimulate the imagination of readers who are new in this
field. Several references are provided at the end of the chapter for a deeper study of the subject.

For our discussion, a switch is a network module with many inputs and outputs. A switch can 
provide a physical connection at any time between inputs and outputs and can transfer data that are
available at any of its inputs to any of its outputs.

Network switches can be divided into two categories: circuit switches and packet switches. If we
want to be extremely purist in our pronouncements, the packet switch category can be further divided
into two subcategories: packet switches (also known as routers in everyday lingo, which connect the
various Internet segments together), which can handle variable-size packets, and ATM switches, which
are optimized for small, fixed-size packets (cells). A important variety of these switches is a hybrid
of these two siblings known as the multiservice router (MSR). The MSR can service multiple ports
with multiple protocols and technologies. In this study, we will mostly discuss packet switches and
multiservice switches. Circuit switches are part of the traditional telephony or ATM network. These
networks do not seem to be dominating the future networking landscape, although both will continue
influencing it and playing a role.

Originally, it was thought that the traditional telephony and ATM networks were quickly becom-
ing obsolete as we moved rapidly into the packet-switched networks. This has turned out not to be the
case since the bad economy of recent years has dramatically forced carriers to massively scale back
their investments for the introduction of new packet-switched technologies. This has injected more
life into network equipment that can simultaneously switch both Internet Protocol (IP) packets and
time-division multiplexing (TDM) and/or ATM traffic, where data traffic as well as digitized and com-
pressed voice are carried next to each other, the latter using traditional approaches.

In previous chapters where we discussed search and classification, we learned that if the network
is packet switched and therefore connectionless (something that is applicable for routers handling
datagrams), it must have some intrinsic means to find the intended route that best services a desired
destination. In these connectionless settings, the switch/router consults a table that maps destination
routes to output ports. This dictates which output interface should be used at any moment in time. The
information needed to conduct such a routing/switching decision process is based on destination infor-
mation that a packet actually carries inside its headers; therefore, this approach is self-contained.

Otherwise, if the network is circuit switched and therefore connection oriented (as is the case with
ATM switching systems), some switching-control mechanism must be available before switching can
take place. This occurs in two consecutive phases—first, setting up a connection path and associating
it with the data to be switched, and second, actually transferring the data.

Some types of switches/routers use routing tables to map inputs to outputs. One of the major tasks
of a switching/routing system is to actually create, maintain, and update these tables. In addition to
this function, however, switches/routers also perform several other generic functions. With the appro-
priate scheduling algorithms, for instance, switches/routers not only resolve contention at their out-
puts, but they also provide different levels of priority and therefore different levels of quality of service
(QoS) to specific users or classes of users.

Some switches are also required to decide whether they will accept an incoming call (especially
in the connection-oriented case). This is handled by the switch’s ability to block calls. A packet switch
usually does not experience this type of call blocking (also known as admission control). However,
in more recent environments, the packet switch has the equivalent of a circuit-switch’s admission con-
trol mechanism. It appears in the form of a service level agreement (SLA), which may be set up admin-
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istratively and is strictly policed and enforced by the hardware. However, buffers may overflow at the
input or output when more packets are stored than available buffers can preserve. Newly incoming
packets will simply be discarded or dropped as no more space is available to buffer them. Packet loss
is a highly undesirable situation that designers strive to minimize.

If we assume that all paths from inputs to outputs are simultaneously active, the switch has attained
its theoretical capacity (or bandwidth). In practice, this is rarely the case, as only some of the possible
paths are simultaneously active. Nevertheless, one of the switch designer’s objectives is to maximize
the available switching bandwidth for a specified budget and level of reliability.

A typical switching fabric can be visualized as a combination of input and output buffers, some
port-mapping mechanism for packetized switches and the core, which is also known as the crossbar.
When we dive into actual switch fabric chipsets later in this chapter, we will notice that these logical
subcomponents are in a hierarchy of system complexity even inside commercial off-the-shelf switch
fabric chipsets. Figure 14.1 shows a simple example of the basic concept. Depending on the crossbar
state (which in this case can be encoded by a control bit of 1 or 0, denoting either one of the two pos-
sible states), every input can be connected to every output.

Arriving packets or frames1 are stored into input buffers before the data are presented to the fab-
ric’s core. A mapping mechanism (a concept that is only applicable in packet switching) reads a
packet’s destination address or a VCI (in the case of ATM) from the packet’s header. Then based on
some lookup operation, it decides which is the appropriate output port. In many fabric cores, the term
packet does not refer to an IP packet; it is a generic expression about a series of segmented frames
that are created transparently by the switch fabric chipset. These frames have a different name with
each switch fabric vendor—some vendors call them frames, whereas others call them cells. This
process automatically segments an IP packet to optimize the internal switching over the crossbar. After
the switching process has concluded, the fabric automatically reassembles the packet prior to releas-
ing it downstream to the network processor or traffic manager. An individual time slot in TDM links
that use circuit-switched systems always specifies which path is to be associated with the switching
operation. Therefore, we can safely conclude that no port mapping is needed inside circuit switches.

The switch fabric core connects data from any ingress port to any egress port. It can be modeled
and conceptualized as a simple central processing unit (CPU) that reads from one address (ingress
port) and writes to another address (egress port). Recent switch fabrics are extremely sophisticated
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FIGURE 14.1 Rudimentary crossbar switch and its two possi-
ble states.

1. It is worth noting here that the Network Processing Forum (NPF) in the CSIX-L1 specification has defined the concept of the
CFrame, which is a standardized shape and structure for the segmented packets while they traverse the fabric core in a protocol-
independent format. It is characterized by a 6-byte header, a payload between 1 and 56 bytes (usually 64 bytes long), and a 2-byte
trailer. The CFrame is supported by most commercially available switch fabrics. It is an interesting concept as it supports in-band
flow control both per I/O port and per class per destination. On the other hand, the NPF Streaming Interface (NPF-SI) is not based
on the CFrame and its flow control is structured as an out-of-band scheme instead.
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multiprocessor units that can handle thousands of packet transfers simultaneously and over parallel
paths using different techniques for the actual transfer between inputs and outputs. Traffic from input
buffers is scheduled according to specific criteria and then transferred over the fabric core. Output
buffers temporarily store data after the switching operation occurs and until any potential congestion
at an egress port has been successfully resolved. At the egress ports, some sort of scheduler is often
needed again to supervise buffering and arbitrate access to the line-card resources. Except for some
fundamental definitions, we do not intend to expand on details over circuit switching, as network-pro-
cessing technology is predominantly tuned to the packet-switching realm. All these concepts are cov-
ered in fundamental textbooks on the subject (see, for example, footnote 12).

A time-slot interchanger (TSI) is the basis of time-division switching. It reads a sequence of sam-
ples, which usually arrive in parallel from multiple ports, serializes them, and then reorders them into
a new serialized sequence. If the input sequence is labeled 1, 2, 3, 4 or A-B-C-D as consecutive slots
in a TDM system, then a TSI could rearrange them into new sequences as B-D-A-C or 2, 4, 1, 3 among
multiple possible permutations of these labels. This essentially reorders the input sequence of sam-
ples that may be coming in from multiplexed lines. Therefore, it effectively behaves as a switch. 

In space-division multiplexing, input samples follow a physically different path inside the switch
core between input and output. The most rudimentary space-division switch is a crossbar such as the
one shown in Figure 14.1. The principle can be extended geometrically. Signals are understood to be
flowing horizontally into the switch from the ports shown on the left-hand side of the drawing,
whereas ports on the right-hand side of the switch represent outputs from where signals exit the
switch. At every moment and depending on which state the switch is in (among the two possible posi-
tions), we distinguish the bar state and the cross state.

Another basic concept is that of the crosspoint switch, which can be functionally visualized as hor-
izontal bars (corresponding to inputs) physically running over a set of vertical bars (corresponding to
outputs). Based on an implementation-specific scheduling mechanism, connections are established at
the junction points, thereby effectively connecting a horizontal bar to one or more vertical bars. Figures
14.2 and 14.3 show the core principle of each connection junction. It works very much like the cross-
bar switch, but it is characterized by a slightly different topology and it can be in either the bar state
or in the cross state. In the crosspoint switch, signals are propagated either in the vertical or horizon-
tal direction. Input signals flow into the switch along the horizontal lines, whereas outputs are read out
along the vertical bars. Active elements called crosspoints are placed between input and output lines.
When a crosspoint is active, the signal flows from the corresponding input to the corresponding output.
We can have the same or different number of inputs and outputs, which correspond to N�N or N�K
configurations, respectively. The possibility of activating a different output forms the wider basis of
space switching.

If the input lines to a crosspoint switch happen to be TDM multiplexed, then different signals
(meaning the content of different slots) may or may not need to be switched to the same output line.
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FIGURE 14.3 (a) The two possible states of a crosspoint switch and (b) a generalized crossbar switch with multiple
inputs and outputs.

A scheduler is therefore needed in the switching system. It will be responsible for switching on the
appropriate crosspoints at the appropriate time slots, so that the same input can be reliably connected
to different outputs at different moments. The architect must then decide where and how to imple-
ment such a scheduler.

Despite its simplicity and functional appeal, an N�N crosspoint switch has some obvious short-
comings. More specifically, it requires N2 elements, which can be prohibitively expensive for large
switches. In integrated form, however, inside modern switch fabrics, state-of-the-art microelectronic
design and semiconductor manufacturing processes allow the integration of hundreds of millions of
transistors, so this is not the obstacle per se. Ancillary circuitry must also be embedded inside the same
die to handle buffering, scheduling, and arbitration and often to provide serdes functionality to con-
nect with the rest of the world. The combination of all these integrated blocks shows why switch fab-
rics appear in the form of complete chipsets.

Most importantly, a potential failure at one crosspoint junction ensures that the specific output to
which it connects is effectively isolated from the corresponding input.

BLOCKING

Output blocking occurs in a switch when two packets are simultaneously destined for the same egress
port. Obviously, in this case, one of the conflicting packets must be buffered (or blocked) in order to
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allow the other to exit the switch. No switch can avoid the output-blocking problem. A technique that
can be used on TDM switches based on crosspoint architectures in order to avoid this undesirable
eventuality is to use flavors of time-space (TS) switching, which essentially means using a TSI on
each input and/or output line before and/or after the crosspoint module. One talks then about time-
space-time switching (TST).

We say that internal blocking occurs when two or more packets from different inputs that are des-
tined for different outputs run into an internal bottleneck and consequently one of them must be tem-
porarily buffered. For example, the simple crossbar is internally nonblocking in the sense that no
sample is blocked in the switch while waiting for an output line to become available. A nonblocking
switch is one, which is immune to situations of internal blocking.

In general, a switch is rearrangeably nonblocking (RNB) if any new connection from a free input
link to a free output link can be physically made, but it may require the switch to be reconfigured. A
switch is strictly nonblocking (SNB) if a new connection from a free input link to a free output link
can be made at any time without rearranging the internal configuration of the switch. A fully inter-
connected switch has N inputs going to N different switches, which each corresponds to one of the N
outputs. A fully interconnected switch is necessarily a nonblocking one.

We talk about head of line (HOL) blocking when in some designs at one of the input stages of a
switch a specific packet is denied transmission across the switch fabric core and it therefore blocks
all other packets following it at the same input. This causes a backup in the queue that is entering the
switch through that same port and stage.

BASIC SWITCHING ELEMENTS

We discussed how the two fundamental functions of a switch can be physically separated from each
other. We will now show how this functionality can be implemented for a 2�2 switching element,
which is often referred to in the industry as a b-element (pronounced “beta element”). In the case of
larger switches (which involve more inputs and outputs than shown in this example), synthesizing a
network that is composed of similar b-elements easily creates this functionality. Figure 14.4 shows
the structure of a b-element.
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The two input signals arrive at the element shown here from the top. Each must undergo a certain
delay stage in order to synchronize the packet/cell contents with the decision that will be made based
on the decision logic block. The decision logic block is operating on the packet header based on some
application-specific sets of procedures. The shown latch is required to temporarily hold the result of
that decision for the duration of the packet or, in the case of ATM, the duration of the cell, which is
defined as 53 bytes long. The first 5 bytes contain header information such as source and destination
addresses, whereas the remaining 48 bytes are the payload.

The crossconnect block is a dual multiplexer, which can be set in either a bar or a cross state. This
means that each input can be routed to either one of the outputs, while the remaining input is invari-
ably routed to the remaining output.

It should be clear that the complexity of the decision-making process will ultimately determine the
complexity of the decision-making circuits. This is the key component of the b-element design. In
some cases, the activity bit of an ATM cell will determine the crossconnect element’s state. In other
cases, the decision process on the destination of the cells is based on an elaborate inspection by a
finite-state machine (FSM) of virtual circuit numbers inside the cell headers.

This may or may not involve a lookup of appropriate tables, an action that further complicates the
design of the b-element. However, the design remains so simple and straightforward that it can be
easily integrated in large numbers in very regularly repetitive circuit structures inside a very large
scale integration (VLSI) chip. In the case of packets, the delay stages are simply buffers. The header
of an incoming packet is inspected and, according to some routing rule, the packet is directed to one
or both outputs. For example, if a specific 1-bit header is 0, then the routing rule states that the packet
will need to be forwarded to the upper output, whereas the packet will need to be routed to the lower
output of the switching element when the same 1-bit header of the packet is 1. If packets that arrive
from both inputs must compete for the same output, only one will be forwarded to the output whereas
the others will need to be temporarily latched (if storage space is still available). If this is not done,
packet loss may occur.

An interesting variance of the basic design shown in Figure 14.4 is that provisions of buffering
traffic may appear at the input, at the output, or at both of the switching element. In addition to buffer-
ing inside the switching cores, this more generic approach of buffering at the input or at the output of
a switch offers flexibility and various possibilities of configuration to the designer who strives to
achieve an overall design objective. Both approaches have pros and cons.

In previous chapters when we discussed the search and classification processes in relation to packet
routing, we discussed the mechanisms through which input packets will be ultimately routed to the
appropriate output ports by a switch/router. However, a packet switch must be able to perform an
equally important role. The resolution of any potential output-port contention must be carried out cor-
rectly, which involves some sort of buffering.

One design approach is to physically separate routing decisions from buffering management in
order to avoid contention at the output. In that case, a switch consists of an internal fabric (crossbar)
routing network that can connect any input to any output and a set of buffers either at the input or out-
put ports of this fabric or internal routing network.

Datagram has been used as a generic term for either an IP packet or ATM cell. The difference
between a datagram switch/router and an ATM switch in our discussion is that the former can switch
packets of variable length, whereas the latter’s load will always be of fixed length. In ATM switches,
the port-mapping function will decide what to do with a specific cell based on the VCI that it con-
tains. However, in packet switches/routers, the hardware must first parse the entire destination address
before it can decide what to do with the packet or datagram.

In addition, packet size also affects performance in a switching network to a certain extent. Chap-
ter 13 discusses this addressing, parsing, and routing decision context in more detail. Packets at the
input can now be broken by the fabric into smaller frames that are appropriately formatted and tagged
and then routed over the fabric core at the output of which they will be stripped of their tags and auto-
matically reassembled in orderly queues at the intended output ports.
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GENERIC TYPES OF SWITCHING PLATFORMS

Three generic types of switching/routing platforms are available in the market today:

• Multilayer Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) switches
are network devices that can support TDM-based voice traffic in addition to IP and ATM traffic. IP
and ATM switching are handled at a logical layer below the TDM switching unit (crossconnect).
Incoming traffic is dispatched to the fabric according to the type of switching needed. For example,
IP packets are switched and then the traffic is statistically multiplexed with the ordinary TDM load
before it is forwarded to the crossconnect unit. The big problem with the SONET/SDH switch is
that it must be designed for a certain mix of traffic. If the actual load mix varies from the designer’s
target values, the switching efficiency suffers dramatically. This is because the TDM channels must
be able to provide fixed bandwidth to the customer. Unless the load is available, this bandwidth is
not utilized well, even if many of the TDM slots are assigned statistically to IP or ATM traffic.

• The hybrid multiservice switch is a networking device that implements parallel processing paths for
different types of traffic. This implies that the entire structure expected in network switching/rout-
ing devices, such as switch fabrics, line cards, and so on, must be replicated and their design must
be adapted to the types of traffic the switch is built to support. It is obvious that the number of these
cards directly affects the load factor of each type of traffic that the switch can support. Therefore,
although the problem manifests itself with the same symptoms as with the SONET/SDH switches
(namely, the lack of switching efficiency under various load conditions), the cause is essentially the
same—the traffic mix can be varied and often unpredictable.

• Recently, some startup companies have emerged that are developing several types of advanced
routers. By replacing the multiple switch fabrics with one common underlying switching architec-
ture, these companies purport to offer native support for multiservice networks regardless of whether
the traffic is TDM voice, frame relay, IP packets, or ATM cells.

THE EVOLUTION OF THE MULTISERVICE ROUTER/SWITCH

The packet switch/router originally started as a simple bus-based computer with multiple input/out-
put (I/O) adapters (also known as line cards) providing the correct physical and data link interface to
the various networks that the packet switch connected. The main CPU either polled the input line cards
periodically for any input activity update or it was interrupted by a line card upon the arrival of a
packet, in which case the line card would buffer-deposit the incoming packet into the switch’s main
memory for subsequent processing by the main CPU of the switch. The switch/router CPU would read
the packet’s destination and would consult the routing table in order to determine to which output
buffer this packet should be forwarded. This was the same CPU that arbitrated any access to output
lines at all times.

Most low-end packet routers and even simple Ethernet bridges were implemented according to
this model. The shortcomings of this approach were the lung capacity of the main CPU, the extent
and performance of the main memory, and the performance of the I/O bus or the line cards themselves.
Different implementation technologies always suffer from bottlenecks that may be caused by differ-
ent architectural components. In other words, the designer can use a fast CPU to solve the perform-
ance problem, but if the I/O bus is not fast, a problem still arises.

Subsequent I/O bus designs brought faster transfer speeds than were previously available. This
allowed the faster CPU processors to be utilized more efficiently, but given the ever-increasing demand
for traffic, a designer then had to struggle with the performance limits of the line cards themselves, so
some sort of decentralized intelligence had to be adopted and implemented. Instead of sending packets
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back and forth between the routing CPU and the line cards, packets would now be temporarily stored at
the line card upon arrival and only some information from their header would need to be escalated for
study and action. A centrally located CPU would receive only that information (as opposed to all the
packets in their entirety) and decide upon the forwarding fate of each packet. The forwarding instructions
would then be communicated back to the requesting line card, which would possess the local intelligence
to forward the packet from its local buffers directly to the correct destination. Designers realized that
there was (i) work that needed to be performed on the packet content and (ii) work that needed to be done
regarding the packet and its destination. The principle of slow and fast path processing planes was born.

Line cards connect to the switch fabric over a backplane that carries data traffic to and from cards
as well as control and arbitration signaling. The control function can be implemented on the switch
fabric card, or it can be distributed on the line cards. In some cases, it can also be implemented on a
separate control card.

In order to improve this original packet switch/router architecture, designers started to come up
with evolutionary thinking. When the bus became the bottleneck despite the decreased bus traffic, the
concept of the switch fabric was developed. This component would switch traffic from input ports to
output ports much faster than could ever be imagined at that time.

However, when the I/O bus was not the problem anymore, the line cards became the problem. Line
cards soon evolved from their original limited status. Instead of being dumb I/O adapters, they found
themselves locally possessing some network-processing intelligence, which could enable each line
card to decide a packet’s destination and output port without the intervention of the main switch/router
CPU. In order for this to happen at wire speed, designers created fast application-specific integrated
circuits (ASICs), which would operate directly on arriving packets. Splitting the work into the slow
path and fast path processing (in other words, a slow path CPU had to be placed on the line cards)
enabled designers to minimize the routing dependency from a centralized CPU.

These tasks were soon to be expedited through the local caching of routing tables in fast memory
that designers made available on each line card. This meant that the macroscopic port-mapping func-
tion of the generic switch architecture was now effectively distributed among the line cards. Switching
and routing were no longer central CPU functions. The main CPU of a switch/router would now act
more as an overseeing controller to which exceptional tasks are handed over. For instance, when no
route could be found locally on a line card, the main CPU would handle a request for routing such an
exceptional packet and would also install a new route entry in the lookup table that line cards would
use where the problem originated.

In the case of ATM switching, the line-card network-processing intelligence made sure that it
would find a match between the cell’s VCI and an entry in the locally cached routing table. This match
was necessary because at call setup time, the supervising controller created that specific entry. In the
case of non-ATM packet switching, the route entry may or may not exist inside the cache. If it was
found, then the line card logic would switch it accordingly by sending the packet to the appropriate
line card that was associated with the intended output. If it was not found, then the task would be
handed over to the supervising CPU of the switch/router. The line cards in such a switch architecture
would share access to (and communicate with each other through) a common bus or logical ring. This
would be used to directly forward packets from line card to line card and could obviously be the poten-
tial source of a bottleneck in the performance of such an architecture.

In ATM switches, in order to decrease the cost of the line cards, which because of the local rout-
ing intelligence and cache memory would necessarily carry a significant cost, an interesting approach
was to create a special centralized port-mapping card, which would be shared by all line cards. On
this port-mapping card, the architect would provide the routing table, which would be updated by the
switch controller at call setup time. All incoming packets were to be forwarded by their ingress line
card to the port-mapping card. The port-mapping card would read the header and consult the routing
table. It would then forward the packet to the appropriate egress line card. The danger of local cache
misses was eliminated as all setup calls would have a table entry in this central location. However, in
this case, the probability of contention on the bus/ring doubled, as all packets would have to traverse
it twice—once when they went from the ingress card to the port-mapping card and once when they
went from the port-mapping card to the switch/router’s egress port. An interesting, but obsolete, vari-
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ation of this approach was to use two unidirectional buses in order to effectively minimize this prob-
ability; however, this also increased the complexity and cost.

The ever-increasing capacity requirements from the exploding demand due to new IT applications
and required Internet connectivity pushed the switch/router designers to confront the challenges of
further improving this generic design. The fundamental breakthrough was the decision to replace this
common internal bus or ring that was becoming the bottleneck with a switch fabric. The switch fab-
ric can be conceptually visualized as an intelligent network that provides multiple parallel connec-
tivity paths from any ingress port to any egress port. Figure 14.5 shows the concept of the evolved
multiservice switch.

To increase efficiency and maximize the available switching capacity or bandwidth, incoming
packets would be fractured into meaningful smaller pieces of information called frames or cells. A
shared control CPU in the switch fabric would tag these frames or cells performing the work of the
original port-mapping function with the correct destination port number. The frames/cells would then
be injected into the switch fabric. The switch fabric would be responsible for their automatic routing
to the appropriate egress port through a sequence of actions from the various switching elements
inside the fabric. At the egress port, the fabric would strip those frames/cells from their internally cre-
ated tags and headers/trailers needed to traverse the core. They would then be automatically reassem-
bled into their original parent form by combining their multiple segmented offspring frames/cells.
Different types of switch fabrics are available. Some can only handle fixed-size packets (such as ATM
cells), whereas others can handle variable-size packets.

In order to fine-tune and optimize the performance of the evolving switch fabric architectures, a
major issue was deciding where buffering would need to be introduced. Three obvious options are
buffers introduced at the input, the output, or both. Because controlling or avoiding the potential
blocking conditions altogether remains one of the primary objectives of switch fabric designers, many
techniques and combinations of methods have been used to address this problem and this is discussed
in-depth in a good fundamental switching texbook like S. Keshav’s book (see footnote 12).

A major technique is to use buffers inside the switch fabric core, for example, at junction points.
As a result, conflicting packets can be judiciously delayed where and when it makes sense. In the so-
called shared memory switch fabric approach, which is favored by IBM, packet memory appears
inside the switch fabric where incoming packets are written and from where outgoing packets are read.
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For some applications or, more specifically, in cases where congestion appears, this embedded mem-
ory may not turn out to be sufficient. The systems designer must then introduce buffering on the
ingress card as well. Whether this is feasible or desirable will largely be dictated by the answer to a
separate question — namely, whether in this case network processors that are used on the line card
have enough embedded static random access memory (SRAM) for such buffering.

IBM fabrics contain a 4K-packets buffer (as shared memory) for congestion. In addition, IBM pro-
vides a 2K virtual output queue (VOQ) per line card in the card interface chip of the fabric chipset.
Therefore, a 32-port system would have 4K 1 2K332 5 68K packets to handle congestion, since with-
out congestion, this memory is free. Fabric vendors such as IBM then expect some VOQ capabilities
from the network processing unit (NPU) on the line cards, handling things at the flow level (as the
fabric is completely unaware of flows). Their success in design wins and factory orders indicates that
they are doing the right thing as far as the market is concerned.

This is an unrelated issue for the specific topic we are covering here, but it is important one for the
overall architecture of a switching system. The intention is to highlight overall systems-related issues.
In some designs, the scheduler will not allow packets to enter the switch fabric core at all before it
ensures that a link to the desired output is actually available. This is not a magic solution, however,
as planning more internal activity than there is switching bandwidth (a sad situation known as over-
commitment of the switch fabric) will inevitably lead to packet loss. Therefore, the burden rests
squarely on the shoulders of the scheduler to ensure that incoming packets can be admitted.

Some systems use in-band or out-of-band backpressure (see for example [a] Katevenis, M., D.
Serpanos, and E. Spyridakis. “Switching Fabrics with Internal Backpressure Using the ATLAS I
Single-Chip ATM Switch.” Proceedings of the IEEE GLOBECOM’97 Conference Phoenix, AZ
[November 1997]: 242—246. It is available online at http://archvlsi.ics.forth.gr/atlasI/, in Postscript
[230 KB], or gzip’ed Postscript [53KB] and [b] Motorola text at http://e-www.motorola.com/
collatoral/SNDF2002_N302.pdf). This technique minimizes the amount of necessary buffers espe-
cially in multistage switches. This is because whenever an output is blocked, special in-band or out-
of-band backpressure signals communicate this condition to previous upstream stages and prohibit
them from forwarding more packets downstream. In-band backpressure removes useful bandwidth,
but it simplifies the silicon design. Out-of-band backpressure mechanisms make the design more com-
plex, but do not waste switching bandwidth when applied. Once it is activated, backpressure is not a
remedy against the abundance of incoming traffic. As a result, it will simply cause input buffers to be
filled up instead, which sometimes may lead to packet loss at the inputs. In order to put things into
perspective, notice that when transient congestion occurs and as a result transient backpressure is
being experienced, the concept of buffering comes to the rescue of the systems designer so the sys-
tem can ride out this undesirable state. The inter-relationship between these seemingly unrelated and
independent factors should be obvious.

An interesting approach is the use of credit table mechanisms extensively, for example, by IBM
(an interesting example is also discussed in Kung, H. T., T. Blackwell, and A. Chapman. “Credit-
Based Flow Control for ATM Networks: Credit Update Protocol, Adaptive Credit Allocation, and
Statistical Multiplexing.” Proceedings of the ACM SIGCOMM ‘94 Conference, London, UK [August—
September 1994]: 101—114). In this scheme, the fabric issues the input sources a number of credits,
which are accounted for by the system. The sources are allowed to access specific output port buffers
based on the number of credits they have accumulated. Each time contested resources are used, cred-
its are withdrawn from the requesting source’s account. Some radical action is taken in terms of
assigned priorities when a source runs out of credits before it starts collecting new credits again.

In order to accommodate the arbitration of conflicts and the scheduling of transfers, the switch
fabric core can be designed to be much faster than the I/O capabilities of the chipset. The fabric core
links that traverse the crossbar from inputs to outputs are much faster than the inputs themselves. For
example, if two internally competing packets are destined for the same egress port, they will both
manage to be transported fast enough through the switch fabric to their destination port where they
can be sequenced for output before a new incoming packet shows up at the ingress. Most current com-
mercially available fabrics offer an overspeed factor that lies between 60 and 100 percent (these are
also sometimes referred to in decimal form such as a factor of 1.6 or 2, respectively).
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Some designers partition parts of the overall fabric function, the scheduling, the arbitration, and
especially the necessary queuing buffers at ingress and/or at egress ports in a distributed fashion such
as on line cards. Alternatively, these functions can be kept centrally on the switch card. However,
trade-offs are involved, such as switching performance versus power dissipation versus cost (the com-
plexity of the switch fabric card and the backplane) versus the overall scalability. These trade-offs
affect the overall performance.

Some systems offer link redundancy through multiple fabrics (and we will discuss this later in this
chapter). The use of multiple switch fabrics (in a load-sharing mode) that operate in redundancy con-
necting inputs to outputs is another effective way of reducing collisions inside the switch fabric itself.
However, it is obvious that in this case an appropriate review of the output buffering requirements
becomes imperative, as several incoming packets now may have traversed the switch fabric and will
compete potentially for the same output interface.

Network equipment vendor (NEV) companies, when confronted with the maze of all these per-
formance issues, were forced to design their own in-house switch fabrics in ASIC form. In addition
to the effort, cost, and pressure on engineering teams, the economic reality of business life imposed
unusually harsh life expectancies for switch fabrics. Enterprises typically expect their equipment to
last anywhere between three and eight years. Carriers are a different market with exotic needs that
include an expected life span of 5 to 20 years in addition to their already tough reliability, availabil-
ity, and in-service upgradability requirements. The complexity of the task, the cost (if and when the
skilled design team and infrastructure was in place, otherwise the whole issue could not even be envi-
sioned as a project), and the risk of failing to deliver a working product that meets the customer
requirements within budget and on time carried a massive penalty when judged against the ever-
present need to excel in terms of time to market. Established and startup companies started coming
up with off-the-shelf switch fabric chips and chipsets that would offer high performance and elimi-
nate the risk of failure. As a result, a trend appeared and network equipment companies started mov-
ing from expensive, risky, and cumbersome do-it-yourself switch fabric ASIC designs to off-the-shelf
commercial chipsets.

With the arrival of these high-performance commercial off-the-shelf switch fabrics, the predomi-
nant remaining problems include deciding where buffers must be placed in the architecture, how to
schedule access to these buffers, and how to manage the switching bandwidth more efficiently. Unlike
the fabric architects, users of these fabrics may not have to worry about them as they can pretty much
choose the corresponding switch fabric architecture that matches their system requirements.

BACKPLANE DESCRIPTION

Figure 14.5 shows the typically modular structure of a modern MSR. Line cards for the various sup-
ported network types are connected to a switch fabric card (or cards) through a set of high-speed serial
(HSS) links. A supervising/monitoring control processor is also provided. This processor sometimes
appears on the switch fabric card or as a separate control processor card from where clock signals are
distributed, ensuring the synchronization of operations, multiple clock domains, and so on.

The typical line card can be conceived in three cascaded stages. First, regardless of what the
medium or physical (PHY) layer is (such as Ethernet, Gigabit Ethernet, SONET, and so on), the net-
work side contains the corresponding PHY chip(s) implementing the PHY interface layer, the Medium
Access Control (MAC) chip(s), and the framing functions. The network processor is right behind this
layer of logic and takes care of the packet/frame processing functions that we described earlier. The
NPU is then connected through a standard interconnection or through an original equipment manu-
facturer (OEM) proprietary scheme with a block of queuing logic that handles the interface with the
switch fabric. Typical interfaces between the NPU and the switch fabric interface logic include CSIX,
Universal Test and Operations PHY Interface for ATM (UTOPIA), System Packet Interface 4 (SPI-4),
Network Processing Forum Streaming Interface (NPF-SI), and so on.
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The switch fabric card obviously contains the switching unit (also known as the crossconnect,
which can be physically present in the form of a switch fabric chip or a set of complementary switch
fabric chips). It also contains a control unit, which handles all scheduling and arbitration tasks.
Sometimes the logical splitting of these two components places the scheduling control unit on the line
card communicating with the crossconnect over the backplane. Scheduling is important in order to
coordinate the traffic flow to and from the line cards as well as to and from the various stages of the
switch fabric.

A control CPU handles several tasks from error logging, activity monitoring, and configuration all
the way to keeping track of operation parameters such as power supply voltage variation, temperature,
and so on. The switching unit provides connection paths from all its inputs to all its outputs. Through
the switched backplane, every port on a line card can communicate with any port on the same card or
on any other line card. Serdes stages ensure the appropriate modification of how information is pre-
sented to and from specific submodules (serial or parallel). For instance, the backplane is always han-
dling information in serial form, whereas framers on the line cards need to be able to look at
information as deserialized and properly aligned words. The backplane is structurally and electrically
a key component of the overall switch fabric. As a result, it is usually of proprietary design and com-
pletely incompatible with other vendors’ switch fabric chips. Despite this fact, they all essentially share
a similar layout, which is physically limited to about 1,000 printed circuit board (PCB) traces given
the very high speeds it must meet without signal reflection and interference. They are also manufac-
tured most often out of the same so-called FR4 material that is used for advanced performance PCBs.

Backplane operation can be either synchronous, which means a central clock signal must be dis-
tributed along with data signals, or asynchronous, which requires very precise (typically to 100 parts-
per-million levels of precision) clock generation on all system cards. In asynchronous operations, to
make up for the potential data drifts that will inevitably occur due to the statistical lack of syn-
chronicity between the multiple clock domains, the switch fabric will periodically inject an idle cycle
in order to reset the local clock phase, which otherwise will disallow the decoding of the so-called
8b/10b-encoded data and inhibit operation. Buffering is typically foreseen in the backplane interface
design next to the serdes transceivers. This ensures that data undergo a series of well-calculated delay
stages whenever crossing into new clock domains. In fact, this first-in first-out (FIFO) path allows the
deskewing of bits and the consequent alignment of frames. The fabric control CPU keeps track of
many of these parameters and intervenes accordingly in the fine-tuning of the configuration at ini-
tialization time besides handling typical transmission-related issues such as error correction, cyclic
redundancy coding, and so on.

The majority of switch fabric manufacturers provide high-speed serial links from line cards to their
switch fabric chipset through their backplane. These links can be designed to be either synchronous
or asynchronous and the distribution of a global synchronizing clock signal from the control proces-
sor board can become a very serious issue for the system designer. The links typically perform at 2.5
Gbps, although manufacturers sometimes quote the speed at 3.125 Gbps. A trend to design 5 Gbps links
in the next-generation backplanes also seems to be appearing. Current backplane high-speed serial links
are implemented with fast switching bus drivers designed around various high-speed, low-impedance,
circuit technologies such as low-voltage differential signaling (LVDS),2 current mode logic (CML),3

and differential-mode positive emitter coupled logic (DM-PECL).4 We will not expand on these circuit
techniques here. See the references provided at the end of this chapter for more information.
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2. For instance, Agilent Inc. provides a nice series of white papers with a solid introduction to the theory and advantages of LVDS
in signal integrity contexts (serdes). See www.measurement.tm.agilent.com/insight/2000_v5_i2/insight_v5i2_article01.shtml and
www.measurement.tm.agilent.com/insight/2000_v5_i3/insight _v5i3_article05.shtml. Vitesse also offers several helpful white
papers and application notes explaining this technology in detail. See www.vitesse.com.
3. Any good advanced microelectronics textbook provides ample description of CML technologies. Some examples are provided

in Chapter 3, “Packet Processing.” An interesting presentation can be found at www.bol.ucla.edu/~ive/ee215b.htm.
4. Good textbook sources of analog integrated circuit design also cover this subject in detail. However, an application note from

Philips explains the basics of both PECL and LVDS. See www.philipslogic.com/support/appnotes/an253.pdf.
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We mentioned the presence of serdes modules that serialize data for transfer over the backplane and
deserialize it for the line cards. Many backplane products are currently encoding the high-speed serial
links using a coding scheme originally developed by IBM, which is known as 8b/10b coding. The
8b/10b coding technique is very robust for error resilience and link reliability. As a result, it is also used
in the basis of the Fibre Channel used in storage area networks (SANs) and other media such as the
ubiquitous switched Ethernet. However, it suffers from a significant degree of transmission inefficiency
since only 80 percent of the available bandwidth is utilized for actual data transfer. The rest is eaten up
by the redundancy of the code. This weakness has pushed many backplane manufacturers to design
their own proprietary coding methods to improve the use of their backplane’s bandwidth.

The design of high-speed backplanes remains a tricky engagement and consequently manufac-
turers usually go to extreme lengths to acquire, compile, and present to their customers simulation
runs that can confirm and prove signal integrity and actual data delivery results. They also provide
ample application engineering help in order to help their customers with the development of high-
performance products, which are necessarily dependent on precise PCB trace lengths, correct place-
ment and routing, and so on.

THE SCALABILITY OF SWITCH FABRICS

The concept of scalability in switch fabrics can affect multiple aspects of the design. The problem of
scaling is usually three dimensional based on the following:

• Varying the number of ports.

• Varying the speed of ports.

• Varying the type of ports (such as protocols).

Note that the different types of traffic impose different buffering and scheduling constraints on the
data traffic produced by line cards for the switch fabric. More specifically, the following is expected
in a multiservice switch/MSR:

• ATM traffic requires deep buffering and extensive scheduling capabilities from the switch fabric.

• TDM traffic needs tight jitter and delay control from the switch fabric, but not necessarily buffer-
ing or scheduling.

• Ethernet-type traffic is required to be able to count on the switch fabric’s ability to provide deep
buffering and some rudimentary levels of scheduling.

The available capacity (or bandwidth) of the switch fabric that is given by the technology and
architecture upon which it has been designed is of paramount importance as it decides the context
within which the switch fabric can operate and function properly and efficiently. It is unfortunately
not an infinite number, as this would make designing a complete multiservice switch/MSR a straight-
forward process.

As we have learned in a typical implementation by industry leaders in earlier chapters, in order to
enforce and monitor/manage the flow of traffic according to the industry trend toward SLAs that rely
on QoS and class of service (CoS) approaches and where users are billed based on usage, a traffic
manager must typically be positioned at the egress paths of the switch fabric to manage and shape the
traffic. The traffic manager, which we revisit as a generic concept in the next chapter, either by itself
or in conjunction with a network processor manages the outgoing traffic and hands it over judiciously
to the MAC/PHY stage of line cards to be injected into the actual network. However, this model of
using a traffic manager only at the egress path is not necessarily the only way.
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THE REDUNDANCY OF SWITCH FABRICS

Bordering the scalability problem and entering into the territory of reliability and/or availability, we
briefly discuss how to go about adding capacity and/or redundancy in a switch-fabric-based system.
Several approaches can be taken: At the switch fabric design level, more ports per chip could poten-
tially be added or the speed of the ports can be increased. However, at one level of hierarchy above,
the switch fabric must be replaced with a more powerful one of higher capacity or multiple fabrics
must be added in parallel.

Redundant switch fabrics are introduced by adding more switch fabric components in parallel on
the same or different switch fabric cards in order to increase the reliability and resilience of a switch-
ing system by increasing the availability of spare links onto which the system can fold back in case
of malfunction. Figure 14.6 illustrates this principle. Appropriate design techniques can ensure that
in case of malfunction, the system will automatically switch over to the backup switch fabric card
with little or no traffic loss. The context may ensure what carriers call a graceful degradation of serv-
ice and the cards may be hot swappable—that is, replaceable or serviceable while the switch is oper-
ating. This in-service serviceability is tremendously valuable to carriers who cannot afford to have the
entire chassis powered down in order to search for and solve a problem at a specific card.

Three types of redundancy are available for switch fabrics: passive, active, and load-sharing-based
redundancy.

Figure 14.7 illustrates the idea behind passive redundancy. For example, a configuration may have
N active switch fabrics (in the drawing N � 2) and one extra fabric that behaves as the backup fabric
(shown in gray). In such a configuration, the switching system architecture offers N:1 redundancy. If
N backup fabrics are operating besides N active fabrics, the configuration is said to be 1:1 redundant.
A 1:1 redundancy will for N�1 be more expensive than N:1 redundancy. Therefore, the issue of man-
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FIGURE 14.6 Multiple switch fabrics operating side by side increase the capacity and/or reliability/availability of a
switching system.
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aging resilience and availability becomes an application-specific issue that must be addressed in the
framework of customer expectations and projected budgets.

Figure 14.6 depicts a configuration of active redundancy. In this example, two parallel sets of
switch fabrics carry the same traffic in duplicate. If during operation any of these two sets of fabrics
runs into a problem or fault, the switching system will simply lean back on the redundant fabric and
no traffic or bandwidth performance loss will occur. This approach offers 1�1 redundancy.

Figure 14.8 illustrates load-sharing redundancy. This example contains multiple switch fabric
cards and they all carry traffic as in active redundancy. Enough fabrics are available to handle the nor-
mal traffic, but some fabrics in the combination also offer a resort in case of trouble. When a fault
occurs, the problem card is isolated and traffic switches over automatically to switch fabrics where
capacity is still available. Following a faulty condition, the new state of the switching system may
reflect a certainly lower aggregate switching capacity, but operation continues unimpeded.

This is the principle of graceful degradation, which is of paramount importance on critical links,
such as those owned and managed by carriers. If the total number of available switch fabrics in the
starting configuration is twice what is needed for the anticipated traffic, this is the ideal case of car-
rier-grade QoS because no performance degradation will be observed. If not, then some delays may
occur on some links and some traffic loss may occur, but the switch continues to function and
connectivity is not lost. Depending on the arrangement the systems architect has created, such an
approach has N�N, N�1, or N�1 redundancy.

ROUTING/SWITCHING SYSTEMS CONSIDERATIONS

Switch fabrics as systems modules are structured into two large conceptual subparts that need con-
tinuous access to the high-speed serial backplane: the queuing manager, or scheduling control unit,
and the crossconnect switching unit.

FIGURE 14.7 The principle of passive redundancy of switch fabrics configured as N:1 redundant. If there are as many
backup fabrics as active ones, it has 1:1 redundancy.
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In most current vendor architectures, this partitioning reflects a physical distinction between two
actual chips—one on the line card (the queuing manager) and the other on the switch fabric card (the
switch fabric chip). Serdes controllers for input and output can exist in both of these chips. They also
sometimes appear in the implementation as separate serdes chips inserted in the bidirectional data path
between the queuing manager and the switch fabric chips. In some rare cases, the queuing manager
chip is physically located on the central switch fabric card in which case high-speed transceivers on the
line cards will ensure communication with the serdes controllers on the switch fabric card.

The queuing manager implemented on each one of the line cards, as the front end of connection
to a network, disassembles and reassembles the incoming packets to and from cells, frames, or pack-
ets. However, this is done with the tacit understanding that these cells are just small units of internally
switchable traffic that the fabric can handle and manage properly and that these cells have absolutely
nothing to do with the well-known ATM cells, either in nature and structure or in size. The queues of
cells are then built up, which will need to be mapped onto and scheduled for delivery to the corre-
sponding output ports that may very well lie on the same or on another line card.

As instruments of advanced routing schemes that implement some sophisticated packet forward-
ing, switch fabrics can handle different classes of traffic simultaneously. Consequently, multiple class-
based queues (virtual queues, also known by various other names in the industry or in pieces of
product literature) are being set up for scheduling at the input ports on the line cards. Some traffic
classes will inevitably receive a higher priority than others based on the choice of one or more among
multiple algorithms. The switch fabric calculates the desirable route and order of events that must
occur on each packet. It then switches the corresponding cells to the correct output port. Virtual queues
issue requests to the scheduler notifying it that they have received fresh traffic (from the packet dis-
assembly unit) for switching. Based on its rotating priority decisions, the scheduling unit of the fab-
ric issues back grants to the queues, so everything is coordinated.
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FIGURE 14.8 Redundancy based on load sharing between two sets of parallel active switch fabrics.
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5. Balaji Prabhakar and Nick McKeown, “On the Speedup Required for Combined Input and Output Queued Switching,”
Computer Systems Technical Report CSL-TR-97-738 (November 1997).

Any potential congestion or contention will be managed in the following ways:

• In a different way depending on whether it is input congestion (contention for the switch fabric) or
whether it is output congestion (more than one packets competing for the same output port at the
same time).

• By an array of arbitration units that can be implemented by vendors on the line cards in a system-
distributed but coordinated fashion, or on the switch fabric card itself as a powerful and centralized
unit.

Special provisions enable the correct handling of multicast packets. Unicast packets are switched
from an input port to an output port and represent the bulk of the switch fabric’s typical workload.
Different architectures handle multicast packets in different ways. Some switch fabrics will switch
the original packet only once over the crossconnect. They will then replicate it to the corresponding
output port buffers without adversely affecting the crossconnect switching bandwidth. However, other
architectural approaches copy the input packet and then switch it over the crossconnect in multiple
instances in order to feed the appropriate output port buffers with the output of a single thread through
the crossconnect.

However, the switch architect has to deal with a series of trade-offs regarding the overall efficiency,
switching bandwidth usage, line-card logic complexity translating into development cost and time,
and so on. We will not be expanding on them here. For more information, consult the recommended
reading at the end of the chapter.

As some processing overhead needs to be expended in order for the fabric to create, affix, and
remove internal special tags (facilitating the internal routing inside the fabric) to and from these inter-
nally created cells (after disassembly of the incoming packet), to enable the assembly and disassem-
bly (internal to the switch fabric) of outgoing and incoming packets, and to properly handle and
manage multicast traffic packets over the crossconnect, some extra switching bandwidth is required.
A fabric’s overspeed is the ratio of the actual data throughput over the aggregate user-port bandwidth.
In this definition, the backplane encoding is not taken under consideration. For example, if a switch
fabric is using a backplane and crossconnect structure that switches data with a speed of 20 Gbps and
if traffic is received from a port that operates at a wire speed of 10 Gbps, then this switch fabric has
an overspeed of 100 percent or an overspeed factor of 2. Most switch fabrics offer an overspeed that
goes well above 60 percent. Some interesting theoretical modeling work has been done to show the
advantages of 100 percent overspeed toward approaching an ideal switch design.5

Regarding the performance of a switch fabric, the industry has not yet agreed upon standard traf-
fic patterns. Consequently, the measurements of throughput, delay, variations in delay (jitter), and the
probability of loss are not easy to define consistently and compare systematically and objectively
among different architectural approaches. Jitter is especially a concern in the voice-over-TDM realm
or in the case of voice over IP (VoIP) transmitted over an ATM backbone. This is because even a slight
misalignment of the jittered digitized bitstream chunks will likely compromise the integrity of time
slots created for it on a trunk connection, thereby leading to potential loss of end-to-end bits, which
implies poor link quality issues and consequently customer satisfaction problems. Last but not least,
it is important to note that the NPF is in the process of standardizing switch fabric benchmarks.

SWITCH FABRIC ARCHITECTURES

The term switch fabric has been used liberally so far. This term has no formal and universally accepted
definition; however, in this book, this term refers to a network composed of interconnected switching
elements that handles the reliable transfer of packets from its inputs to its outputs. Several helpful ref-
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erences on switch fabrics are available such as the book Broadband Packet Switching Technologies
by H. Jonathan Chao, Cheuk H. Lam, and Eiji Oki,6 the article “Fast Packet Technology for Future
Switches” by J. J. Deegan, G. W. R. Luderer, and A. K. Vaidya,7 the article “Survey of Switching
Technologies in High-Speed Networks and Their Performance” by Y. Oie et al.,8 and the article “Fast
Packet Switch Architectures for Broadband Integrated Services Networks” by F. A. Tobagi, T. Kwok,
and F. Chiussi.9 We will not cover the multiple possibilities here. However, we will look at the most
common architectures.

A straightforward switch fabric is the crossbar switch. We have mentioned that the crossbar switch
also requires a scheduling module, which at each moment in time will tell the fabric which inputs it
must connect to which outputs. If the connections are functioning at a constant bit rate, the schedule
can be computed in advance so the fabric simply executes the results and sequencing of operations as
dictated by the scheduling algorithm. If the connections are supporting variable bit rate links, how-
ever, the schedule will have to be calculated by the fabric on-the-fly. This already points at significant
intelligence that must be present in the fabric circuitry block.

If two incoming packets from different inputs compete for the same output at the same time,
output blocking will occur. The problem is addressed either by running the switch fabric much
faster than the inputs, which is usually hard and very expensive to accomplish, or by placing buffers
inside the crossbar switch fabric at each junction. The latter approach is also characterized by the pres-
ence of an arbitration module that must be incorporated at each egress port and that decides at each
moment which one among multiple buffers should be allowed to output a packet (or more) for rout-
ing to that specific egress line.

Despite its simple concept and structural elegance, the fundamental problem with the crossbar-
based switch fabric is that it unfortunately does not scale well with the number of inputs and outputs.
Other interesting approaches have been researched, such as the broadcast switches or multicast
switches, where the desired egress port number is tagged onto each packet and then it is sent simul-
taneously to all egress ports by the switch fabric. Egress ports will buffer in their own output queues
only those packets with a tag that matches their own port number. The advantage of such an approach
is that as scheduling is only needed at the outputs and not over the entire switch fabric realm, this is
an overall less complex system design despite the extra logic needed at each output to compare the
port identifier with packet tags.

Some other rather creative techniques are based on methods such as call splitting, where the traf-
fic load and the number of active input lines will influence the decision of whether one or more copies
of the same cell (frame/packet) will be switched in a specific time slot.10 The overall conclusion is that
these are generally complex approaches and some other more intelligent means must be devised in
order to create larger complex switch designs. One of these approaches is to use the Banyan switch-
ing network and the possibilities of augmenting it with other techniques.

In the following sections, we will look at buffered switch fabrics and, more specifically, at the two
main variants—namely, when the buffering occurs at the input or output. We will then look at some
of the most important architectural approaches—namely, those that are based on shared memory, the
buffered crossbar, and the arbitrated crossbar. The arbitrated crossbar is available based on a central-
ized or distributed arrangement.
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Input-Buffered and Output-Buffered Switches

We refer to input-buffered (or input-queued) switches when packets are buffered before the actual
switching occurs. In Figure 14.5, these buffers are assumed to be implemented on the line cards. This
type of switch fabric suffers from HOL blocking because if any internal- or output-blocking situation
arises, the single blocked packet at the head of the corresponding input queue will block all of the
packets that are following right behind it. In input-buffered switches, packets can only enter the fab-
ric core under conditions that depend on the actual design. An arbitration module must be used in
many cases to decide which one among the conflicting packets will be scheduled to traverse the fab-
ric core at each time and from which input buffer.

We say “in many cases” because self-routing fabrics do not need an arbitration scheme. Self-rout-
ing is a very important property that some switch fabrics possess in their architectural design, such as
the crossbar shown in Figure 14.3(b), where the switching element at each junction can switch to the
appropriate output state based on the content of the specific cell that it receives at its input. In such a
case, the routing of a specific cell to the output does not require any extra knowledge from the switch-
ing element about the destination or fate of other cells traversing the core. Therefore, the overall
switching decision function is conveniently distributed over the entire fabric core.

The most common algorithms used in the arbitration context are dual round robin matching
(DRRM), iterative round robin with matching (IRRM), iterative round robin with SLIP (iSLIP),
FIRM, Parallel Iterative Matching (PIM), and round robin greedy scheduling (RRGS). The arbitra-
tion context usually involves a handshake protocol starting with a request by the input queue for access
to the shared resource (a fabric path in this case) and a grant issued by the arbiter followed by an accept
acknowledgement from the input queue. Several sources discuss various arbitration algorithms in
depth.11—13 We will not discuss these algorithms. Although the arbiter must be able to scan all the inputs
periodically and make a decision fast without causing a bottleneck, the fabric does not need to run
faster than the input lines in such a configuration.

We talk about output-buffered (or output-queued) switches whenever the packets are queued at the
corresponding output stages after the packets have been actually switched over the fabric core. The
HOL blocking phenomenon is eliminated in this case because any potential output congestion has
already been transferred from the fabric core to the output buffers. In general, output buffering requires
more storage space per output line than input buffering. The speed with which the write operation of
switched packets can be accomplished on the output buffers is the critical factor. For these two rea-
sons, it must be implemented in a faster circuit design. On both situations, however, this means that
output buffering is a more expensive proposition. That is the price one pays for avoiding the HOL
problem.

An interesting and highly desirable side effect of output buffering is that per definition, it provides
the systems designer with the possibility of a very fine granularity of traffic management. Decisions
can be applied to the buffered packets that are available at the outputs, as the packets have already
been switched past the fabric core and therefore are ready for dispatching downstream essentially at
any time.

The HOL problem can be overcome by setting up queues at each input that are destined for each
output. This scheme is called Virtual Output Queues (VOQs). This means, in the case of N outputs,
that each input port maintains locally N queues where it buffers packets destined for each of the N dif-
ferent outputs. This can be translated from an implementation standpoint as saying that the input
buffers of a line card are divided into N logical queues corresponding to each one of the N outputs the
switch must be able to service. If more than one VOQ is available, some contention will occur for
simultaneous access to the shared medium (such as the fabric core’s bandwidth); therefore, arbitra-
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tion and scheduling capabilities need to be considered. At each time step, an arbiter will choose at
most one packet from each input port, so that all selected packets can ultimately make it through the
switch fabric to their intended outputs without any conflict (for the same output port).

This theme has many variations as switch fabric vendors strive to differentiate their products. For
example, IBM whose switch fabrics we discuss later in this chapter, are based on a shared memory
architecture with VOQs. This enables some low-priority traffic to actually make it from time to time
through the fabric, no matter what higher-priority traffic is being mostly switched.

In addition to the basic function of arbitration that we mentioned a little earlier, another important
function inside the switch fabric is the scheduler. Scheduling decides from which port data must leave
for the next step on their intended path. It is equally applicable to input queues for deciding which
ingress port’s data will be allowed to enter the fabric core and to output ports for deciding which egress
port’s data will be transferred to the traffic manager. Typical algorithms for scheduling are strict
priority (SP), round robin (RR), weighted round robin (WRR), and weighted fair queuing (WFQ).
Scheduling is also responsible for deciding (when necessary) whether one or more (and most impor-
tantly which) packets must be dropped altogether due to lack of capacity. An ongoing debate among
some switch fabric vendors exists regarding the problems that scheduling entails, especially if multi-
ple levels of hierarchy are involved in shared resources.14 This issue seems to be more of applicabil-
ity in the context of arbitrated crossbars.

We said a little earlier that the switching bandwidth of real-life switches is limited. This finite
capacity imposes constraints into what one can realistically expect to accomplish in an entire switch-
ing system design. Chances are that besides the implementation of VOQs at the inputs (which is irrel-
evant to the possibility of having or not having queues formed also in output buffers), a traffic manager
must also be placed at the ingress path next to the traditional NPU in addition to the traffic man-
ager/NPU pair we have already come to expect at the egress path of the switch fabric. The reason why
a traffic manager/NPU combination may be needed at the input of the switch fabric as well is that in
order to maximize the usability of the available switching capacity, egress ports must not be starved
by inefficient fabric core scheduling or by poor VOQ management while priority traffic does not get
delayed at the input. In such an arrangement, as shown in Figures 14.9(a) and 14.9(b), switch fabrics
appear commercially as a chipset of two components—one as the actual core of the switch fabric and
the other as the combination of input-based VOQs and the potentially existing output queues.
Provisions are available to handle the serialization and deserialization of traffic in both directions over
the backplane using serdes devices.

The QoS requirements of today’s switches are of paramount importance in the minds of the switch
fabric designers. More specifically, the logical segregation of traffic in classes, flows, and queues
occurs. Each port has multiple queues and multiple classes of traffic are treated at different levels of
priorities. Queues are usually structured on a per-flow basis, and flow control is handled by the switch
fabric, which works in conjunction with the traffic manager.
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14. The following is an interesting article summarizing the debate: Craig Matsumoto, “Startups Look to Supersize the Switch
Fabric,” EE Times (June 3, 2002). This article is available at www.eetimes.com/issue/fp/OEG20020603S0026. Make sure you read
it critically, however. This is not because the arbitration logic is distributed so that the arbitrated crossbars suffer, as implied in the
article. If the arbitration algorithm cannot keep up with the requests of all the input queuing managers, the result will be crossbar
throughput degradation, leading to poor output link utilization. If collisions occur in the core, the solution is the fabric-overspeed
idea (invented years ago by Clos). Furthermore, it does not sound intuitively correct that a centralized scheduler would be more
efficient than a distributed one. To our knowledge, PowerX was the only fabric vendor who had tried it, and it is now out of busi-
ness. Also although the statements in the article about iSLIP are correct, namely, that guaranteed bandwidth cannot be provided
by it in a large system, especially as it requires tedious synchronization with all cards, be extremely circumspect about the thought
of integrating the crossbar and queuing managers into one component, as this would completely negate the scalability approach
of the architecture. This is a classic case where the economic need to integrate contradicts the modular future extensibility of a
solution that is based on the arbitrated crossbar.
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Buffered Crossbar

In the buffered crossbar switch architecture, the same principle is followed as shown in Figure 14.6.
However, buffers will be placed on all three major stages, that is both input and output buffers as well
as fabric buffers, right on the switch fabric card itself. With this approach, which is favored for instance
by Vitesse switch fabrics, queues are naturally formed at each one of these 3 stages. At the output of
every stage, some serious and coordinated scheduling must occur using RR or WRR or other sched-
uling algorithms.

Arbitrated Crossbar

This approach is also based on the basic principle of Figure 14.6; however, as discussed earlier, an
arbitration scheme is implemented this time between the input queues and switch fabric on one side,
and between the switch fabric and the output queues on the other side, if the specific fabric architec-
ture requires output queues. VOQs are implemented in the arbitrated crossbar. They engage in a sim-
ilar request/grant/accept handshake scenario with the arbiter that supervises access to the fabric core.

The arbitrated crossbar has essentially three variations: one where the scheduling and arbitration
are based on a centralized arrangement, another one that revolves around a concept of distributed
switching, and a configuration like the one we showed in Figure 14.9, where a traffic manager is
needed not only on the egress paths, but also on the ingress paths.

By centralized arrangement, we mean a configuration where all switching decisions are handled
by logic that is integrated on the switch fabric card itself. All input and potentially output queues are
on the centralized switch card. Line cards are connected over the backplane through high-speed serdes

FIGURE 14.9(a) The typical structure of commercial switch fabric chipsets in two compo-
nents: one housing the fabric core and the other handling the input and output queues in con-
junction with serdes devices that ensure the high-speed interface with the traffic manager and
network processor.
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links. In a chassis-based system implementation, where typically two to four switch fabric cards are
to be expected, this approach is translated into a straightforward backplane where paths do not need
to cross. This type of switch fabric can be made redundant using the passive approach discussed earlier.
Agere, whose switch fabrics we discuss later in this chapter, is a good example of a company using
such an architecture.

By distributing the switching function, we obtain a configuration where the VOQs are imple-
mented on line cards and where the backplane will necessarily include more complicated crossed
paths. If each output port has its own VOQ allocated at the inputs by the queue manager (to avoid the
HOL problem) and on top of this each CoS is also allocated its own VOQ, then for i inputs and k
classes, a queue manager must be able to coordinate and manage ik queues. All of these sources will
need to have access to the fabric core. With backplane, traces are physically limited to around 1,000
and the physical complexity of the backplane becomes an issue, along with the power consumption
and cost that comes with the increased number of needed components to support the high-speed links.

In the distributed-switching case, redundancy can be implemented as either active or passive and
may or may not be based on the load-sharing principle. In fact, the in-service scalability of this
approach is enabled by the load-sharing redundancy principle, which enhances the advantages of this
concept beyond its impact on simple reliability and availability. The architecture can scale very well
because in a single stage the scheduling problem remains manageable. Scalability also looks good if
different schedulers can be allowed to handle independent crossbar data paths, thereby affording a
creative systems designer a wider dimension. From a performance standpoint, the configuration can
offer low latency (because no queuing occurs in the data path crossing the fabric core). However, it
may suffer from the need to reorder traffic because the presence of a shared medium (the fabric core)
necessitates a contention resolution that may affect the sequential ordering of internal transfers.
Multicast traffic is not natural for this approach so extra design creativity is required to adequately
handle this type of data with the arbitrated crossbar when it is implemented using the distributed
switching.
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FIGURE 14.9(b) A typical partitioning between the two switch fabric components.
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An arbitrated crossbar can be combined with traffic management and packet buffering also at the
ingress ports, whereas the egress ports may or may not be equipped with queuing capabilities. This
configuration allows better systems design and performance fine-tuning by enabling a close relation-
ship between the switch fabric and traffic management, which enables the QoS to be scaled in a very
fine granular and sophisticated way. This is also discussed in Chapter 15, “Traffic Managers.”

Shared Memory Switches

In a shared memory switch, as shown in Figure 14.10, the inputs feed a multiplexer, which sequen-
tially stores the (now serialized) incoming packets in a common memory bank that lies in the heart of
the switch fabric. This embedded memory is shared by both inputs and outputs for the storage of
frames/packets and for the management of queues. A control module is responsible for the extraction
of stored cells/frames from the shared memory. By their recombination, it reassembles the original
packets into an output stream, which is then subjected to the opposite operation from the one that
occurred at the input. In other words, it is demultiplexed and its parts are routed into the correspon-
ding intended output ports. The control module can often be easily reloaded to reflect new executable
code that manages different QoS requirements.

The size of the shared memory can be shown to directly influence the possibility and rate of cell
loss, so this is a rather convenient situation for the designer.15 Also the memory technology used for
the implementation of the actual shared memory is one of the fundamental constraints of the per-
formance of such a switch fabric by the mere fact that all operations of the fabric will invariably
revolve around writing to and reading from the shared memory. Consequently, memory access times
are important. This can be a problem if the chosen memory technology does not allow data to be writ-
ten into the shared memory N times faster than the rate at which data arrive at the N inputs.

In terms of scalability, as the Figure 14.10 shows, multiple switch fabric cards can be used, which
combined with the striping (IBM calls it byte slicing) of frames/cells (similar to the striping concept
discussed in the context of data storage in Chapter 11, “Storage Network Processors,” where we
reviewed storage network processors) across multiple fabric cards allows an easy performance scaling.
The advantages of this technology include the in-service scalability, cost efficiency (as no external
memory is required), and relatively easy implementation without a complex centralized scheduler like
those needed in the input- or output-buffered approaches.

Some vendors claim this approach has a serious drawback. This has caused many designers to
worry each time they are asked by a vendor to stripe data. If striping is implemented across multiple
serdes lanes, then a designer needs to worry about what happens when even one serdes in the set fails.
In some design implementations, this problem will prevent the other serdes lanes in the set from car-
rying any traffic. This will force the entire system to switch over to the backup fabric plane. This lat-
ter combination of possibilities is extremely worrisome for a carrier-grade-reliability systems architect
as the mere possibility exists that two serdes lanes on different fabric planes fail. This will inevitably
cause the system to go down.

The counterargument is that it all comes down to trade-offs. IBM, for instance, is an example of a
major vendor using shared memory architecture in its switch fabrics along with striping. As we will
see later in this chapter, their approach includes some interesting features such as native multicast and
unicast support and in-band flow control. More specifically, regarding the striping of traffic, IBM’s
philosophy has been that once a link fails, the entire port must switch over to the backup fabric. IBM
believes it is much more important to offer a graceful degradation of service. When talking about a
switching system with several ports at 10 Gbps, for example, degrading a single port to 7.5 Gbps can
cause congestion on the other ports and have an impact on some port performance that was not sup-
posed to be affected. IBM’s striping (byte slicing) enables its fabrics to operate in full multicast mode,

15. Refer to Note 6.
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whereas other implementations (such as sending a full packet per serial link) will cause a bandwidth
degradation by a factor of 2 (in the case of multicast packets).

MULTISTAGE SWITCHES

We discussed earlier that in the case of a crossbar network, a potential failure at one junction might
catastrophically affect the entire switch. One solution for that problem is to design a multistage switch,
where the architect configures a manageable matrix of interconnected crossbar switching modules,
potentially of different but compatible sizes, arranged into two dimensions. The idea is that with such
a matrix of switching modules, any input can be connected with any output through more than one
switching path.

From a different angle, this switching-module-matrix concept is simply carrying the fabric scala-
bility and redundancy principles that we discussed earlier into a link scalability and redundancy con-
text, which this time is inside the fabric itself. If one path fails due to a junction failure inside one of
the switching modules involved in the matrix, other alternative paths are possible and they will be tra-
versing a different module sequence. We will now discuss some typical multistage switches before
we take a look at a couple of state-of-the-art commercial switch fabric platforms.

Banyan-Based Switches

Let us now turn our attention to the highly significant Banyan switch and its augmented variants to
address some of its shortcomings. A Banyan class network can be produced by merging multiple
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FIGURE 14.10 Shared memory switch fabric.
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binary tree topologies, such as the one shown in Figure 14.11(a) where each stage routes traffic to one
of its outputs according to whether the incoming bit value at the input is 1 or 0, allowing access to one
of the two outputs each time a 1 goes to the top output while a 0 goes to the bottom output.

Based on this network, an entire class of configurations and multistage switches can be built.
Figure 14.11(b) shows an example. Banyan networks have the property that exactly one path exists
from any input to any output. By the mere structure of their binary-topology constituent trees, Banyan
networks are self-routing. This means that an incoming serial bit sequence at any input with content
that corresponds, for example, to a cell header, a frame header, or a packet header, will automatically
be routed to the corresponding output. The switch does this by reading and applying one bit at a time
extracting bits from the header and doing so for each stage.

For example, an arriving input sequence as the header of a frame containing the bits 010 in the
arrangement of Figure 14.11(b) will mean that in the first stage, the first 0 (read from the left) will be
used to route traffic to the bottom output lead. Then the second bit of the sequence, here a 1, will be
used to further route the path to the top output lead of the second stage (wherever this stage might be
in the web network). Finally, the 0 will be used in the last stage to route the connection to the bottom
lead of the last stage. The switching path has thus been produced between the input and output based
on the address header of the frame. These networks are discussed in more detail in the fundamental
switching literature listed at the end of the chapter.

Batcher-Banyan Switches

Banyan switches have earned the reputation of being efficient, but they can suffer from internal block-
ing, which requires buffering to avoid possible traffic loss by discarding packets. This situation can
be avoided if no idle input exists between any two active inputs and if the output addresses of
cells/frames are sorted in either ascending or descending order. Once a special network presorts the
frames/cells, they can safely enter the Banyan-based fabric core. Such a presorting-based topology is
called the Batcher-Banyan switch. The sorting network is based on the Batcher architecture, which
combines multiple simpler merge networks (all the way down to simple 2�2 modules) that sort their
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FIGURE 14.11 (a) Binary tree topology (b) Banyan class network.
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inputs according to a certain order, such as ascending or descending. More details of the Batcher
behavior are too specific for this discussion. For more information, refer to Batcher’s original paper.16

Several possibilities are available for innovative architectures and plenty of references have been
provided at the end of the chapter for more information on this topic. For example, multiple Banyan
networks can be used in a tandem configuration. Packets without collisions are routed by the first
Banyan to the output and are untagged as usual. Misrouted packets from the first Banyan are tagged
as such. They are then introduced into a second Banyan where they are given another chance to make
it to the desired output. This process continues (potentially with multiple Banyans in tandem) until
they are dropped altogether or they have made it safely to the intended output. This specific approach
is called Tandem Banyan Switching Fabric (TBSF) and the principle of deviating a misrouted packet
to a new Banyan network is known as deflection routing.17 It is reported that a 32�32 switch with uni-
form random traffic, based on a tandem configuration of 9 Banyan stages, decreases the probability
of packet loss down to a respectable 10-9.

OTHER EXAMPLES

The subject of switching is vast and this chapter cannot possibly cover the field. See the references
for many other examples of creative architectures and systems designs. We will conclude this discus-
sion by mentioning some representative cases.

The knockout switch originally proposed in “The Knockout Switch” by Y. S. Yeh, M. G. Hluchyj,
and A. S. Acampora18 and discussed in depth in Broadband Packet Switching Technologies by H.
Jonathan Chao, Cheuk H. Lam, and Eiji Oki19 is an interesting approach to the problem of reducing
the cost of output-buffered switches. The idea behind the knockout switch is that from N possible
inputs, the majority of the time, only a subset among the N (say, L of them) packets coming from dif-
ferent inputs need to arrive at the output simultaneously. Therefore, the output queue must run L times
faster than the inputs (where L�N) as opposed to N times faster, which is the case with regular out-
put-buffered switches. The key problem in the design of a knockout switch is to ensure that the packet
losses are fairly distributed among the incoming virtual circuits.

The abacus switch is a multicast scalable architecture with input and output buffering.20,21 It was
designed to avoid the packet loss problem associated with the lack of routing links in the switch fabric
of knockout switches. Although such a switch can be designed to achieve a satisfactory probability of
packet/cell loss of 10-10, for example, the fundamental assumptions for such calculations are that the
traffic from different ports is uncorrelated and that the traffic load is uniformly distributed to all out-
put ports. In many Internet-based web services, this is simply unrealistic. A popular web site may be
faced with heavy traffic destined toward it at the same time, creating what we know as a hot spot sit-
uation where packet/cell loss probability becomes dramatically higher.

The Sunshine switch provides multiple paths from its inputs to all its outputs.22 In order to accom-
plish this, it uses several parallel Banyan networks, which are fed by a Batcher sorting network. In a
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16. K. E. Batcher, “Sorting Networks and Their Application,” Proceedings of Spring Joint Computing Conference, AFIPS (1968):
307—314.
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19. Refer to Note 6.

20. H. J. Chao, B. S. Choe, J. S. Park, and N. Uzun, “Design and Implementation of Abacus Switch: A Scalable Multicast ATM
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Sunshine switch of an N�N configuration with k parallel Banyan networks, k parallel paths are avail-
able for each N output. The idea is that if more than k packets/cells need access to an output during a
time slot, then some of these excess cells (say, L) will be recirculated through a shared queue on a
feedback loop of L parallel recirculating paths. They will be resubmitted to the switch at L specially
dedicated input ports among the N input ports. In order to synchronize the recirculated packets with
the ones that freshly arrive into the switch, an appropriate delay block is inserted into the recircula-
tion feedback loop paths. In terms of its operation, a Batcher network sorts the arriving packets based
on their destination address and priority. Then a trap network resolves output port contention by select-
ing the k highest priority cells for each output port destination address. Finally, the k parallel Banyan
networks ensure that each output port can receive up to k cells in each time slot. If more than k cells
are competing for the output, the excessive ones will need to be recirculated.

Another interesting approach is the helix switch design.23 A hub-and-spoke topology is used in the
helix switch. This speeds up the switching time by minimizing the distances over which signals must
propagate. The helix switch works by sending packets forward by one segment of the ring with every
time step. When an input packet reaches the correct output port, it joins the end of the local output
queue, and a new input coming from this same card/port takes the slot, which was just vacated by the
exiting packet on the inner ring of the hub. The helix switch is very fast because it uses very short
interconnects between all I/O ports and because an open slot (such as the slot vacated by the packet
of our example) is immediately used again to move the packets.

A COUPLE OF COMMERCIAL EXAMPLES

We will now turn our attention to some world-class switch fabric platforms from a couple of solid
vendors to show the concrete form that the concepts we discussed take in a commercial product
setting.

IBM PowerPRS™ Switch Fabrics

So why do we include a section on IBM’s switch fabrics? The truth is that each one of the major ven-
dors on whose architectures we elaborate has taken a different approach to tackle the overall systems
issue. In the NPU design trade-offs, IBM’s architecture has a very unusual approach as compared to
vendors who propose their own traffic manager chip. Likewise, in the case of switch fabrics, IBM has
its own separate philosophy based on the use of a powerful, shared memory switch fabric architec-
ture. As IBM’s offerings deeply influence some choices for an NPU user, the IBM switch fabric realm
definitely requires some coverage at this point.

At the end of 2001, IBM started delivering its fourth-generation switch fabric chips called PRS-
Q64G (PRS stands for packet routing switch). The original form of the technology called PowerPRS
was used for internal work at IBM in the early 1990s. The second-generation switch fabric chip tech-
nology materialized into a commercial product that was dubbed the PRS-28.4 chipset. This continues
to be a very important revenue generator for IBM today as it supports up to 16 OC-48 ports. The third-
generation chipset was named PowerPRS-64G. It scaled the connectivity and performance to 32
OC-48 ports. The PRS-Q64G switch fabric provides support for 32 OC-192 or 128 OC-48 ports with
a scalable aggregate throughput up to 512 Gbps. This effectively quadruples the performance of the
third-generation product.
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IBM switch fabrics of the PowerPRS architecture implement several of the concepts we have
already studied such as VOQ and shared memory, flow control, priority levels, credit tables and sched-
uling, multicast, and redundancy. Refer to “PowerPRS™” by René Glaise24 and “A Combined Input
and Output-Queued Packet-Switched System Based on PRIZMA Switch-on-a-Chip Technology” by
Cyriel Minkenberg and Ton Engbersen25 for more information on the switch fabric internals. These
features offer multiterabit growth capability within a common architecture while supporting redun-
dant switch fabrics and enabling manufacturers to design scalable, compact, and nonblocking switches
ranging from 8 OC-48c/2.5 Gbps ports to 64 OC-192c/10 Gbps ports. The 64G and Q64G switch fab-
rics are available either as single, highly integrated silicon components or as board-level products.

The Q64G has been designed with a speed-up factor (overspeed) of 60 percent, sustaining a
throughput of 16 Gbps per port (on 10 Gbps connection links). The extra headroom is required in
order to take care of the overhead needed to disassemble, label, strip, and reassemble the cells that are
internally created following the fragmentation of incoming packets.26 The Q64G is a combination of
output queuing with a shared memory. The advantages of both these techniques were discussed ear-
lier in this chapter when we discussed switching internals. With output queuing, no internal blocking
occurs and the delay is minimal. With shared memory, the best overall buffering usage can be
achieved, and as it is shared between inputs and outputs, it is cost effective. Scheduling in the
PowerPRS family is completely distributed and it is one of the keys for attaining high performance
with IBM switch fabrics. Traditional crossbar, memoryless switches implement a centralized sophis-
ticated scheduler that supervises the input and output queues by applying an overloaded and usually
complicated algorithm. This type of scheduler needs to collect a lot of information from all input
adapters to reconfigure the crossbar during every single packet cycle. In addition, in multicast cases,
traditional crossbars will create multiple copies of the packet to forward to output queues.

With PowerPRS, the switch fabric output port queues keep pointers to the one and only copy of a
packet in memory (in fact as many pointers as needed especially in the case of multicast). Based on
their load, output queues decide on their own whether and when a packet residing in memory will be
sent out from their port. Obviously, a packet is not erased from memory until all the pertinent queues
have been served.

Conversely, all input queues can decide on their own without any higher-logic intervention whether
an incoming packet can be allowed to be read into the fabric’s memory, unless backpressure signals
from the switch fabric core have signaled to all input line cards that they must refrain from doing so.
The Q64G has room to internally store up to 4,000 packets entering the switch fabric through thirty-
two 16 Gbps input ports. That is a rate of 1 packet every 32 nanoseconds potentially on each port. As
packet fetching may be happening simultaneously at any (maybe all) of the 32 output ports, up to one
memory operation (read or write) must be able to be performed within half a nanosecond if a full traf-
fic load is to be sustained on every input and output port.

This has led to the implementation of a four-port spatial/time shared memory implementation, as
shown in Figure 14.12. Two independent read and two independent write ports are used so that two
writes and two reads can always occur simultaneously. The rest of the sharing is done on a time-shar-
ing basis by 16 over a packet cycle (which is 32 nanoseconds, with typical switch packets consisting
of 64 bytes, although the PRS can be configured to handle up to 80-byte packets equally as well).
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In order to ensure that the shared memory never overflows and that the core of the switch fabric
is lossless, rigorous flow control has been implemented. The fabric core itself does not handle flow
control, which is instead implemented with the help of the IBM C192 Common Switch Interface (CSI)
chip. This companion chip handles a pair of I/O ports known as the CSI. The C192 CSI chip is instru-
mental in avoiding HOL blocking at any of the input ports.

We discussed the HOL-blocking problem elsewhere in this chapter. The situation can be summa-
rized as follows. In order to prevent an overloaded output queue from overflowing when the shared
memory is already quite full, the switch fabric core decides that all input ports must be notified that
no packet (destined for that specific output queue) be allowed into the core memory anymore until
new instructions to the opposite effect are issued. The input card normally buffers incoming packets.
The first packet in this input queue that happens to be destined for that clogged output queue is now
blocked at the input and cannot enter the core memory. However, behind it on the same input port,
other inoffensive packets may be present that are destined for other potentially idle output queues.
Due to the HOL-blocking effect, these packets are not allowed into the switch and are thus unduly
penalized. The following section discusses how IBM has addressed the problem with the C192 in the
context of the PowerPRS architecture.

The CSI implements an input-queuing scheme based on VOQ. All incoming packets are sorted per
destination port at each input port (that is, at each CSI ingress point). This means that if an output line
card is experiencing excessive traffic load and potential congestion, input traffic destined for another
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FIGURE 14.12 (a) The block structure of IBM PRS Q64G fabric switch and (b) the internal architecture of each 16�6
switch element. (Source: IBM)
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output port destination can be chosen for forwarding instead with the appropriate feedback signal.
The result of such an arrangement is that no packet will be blocked at the input just because another
one in front of it is waiting to be admitted into the fabric’s shared memory.

In addition to sorting per destination port, the output queues are also sorted per priority levels
(tagged on the packet headers) and when an output queue is enabled for forwarding, the highest-
priority packets will always be admitted into the shared memory. Likewise, even after a packet’s
admission to memory, the priority-sorted pointers at the output queues will ensure that the highest-
priority packets will exit the shared memory first.

To ensure that the four available priority levels, which are always applied preemptively onto traf-
fic, do not abuse the weak position of low-priority packets, IBM has implemented an elaborate credit
table scheme. This allows the buildup of sufficient credit (in one step per packet cycle and up to 256
steps) that ultimately overrides the preemptive and strict priority-based scheduling.

This method ensures deterministically that less-fortunate links will at some point get a chance 
to transmit some of their traffic, despite the potentially simultaneous presence of consistently high-
priority traffic. For more information regarding the technique that enables a situation where no links
are starved because of other traffic priorities, along with a detailed description of the feedback mech-
anisms that communicate to the VOQs any output congestion through backpressure, refer to Glaise’s
article mentioned previously.27

The C192 has a throughput of 16 Gbps, which operates just like the fabric itself at 60 percent over-
speed. Therefore, it can be configured as one OC-192 port, one 10 Gigabit Ethernet, or four OC-48
subports. This means that one C192 Queue Manager chip can handle up to eight Q64G chips arranged
in each one of two different banks per OC-192 port. This configuration example, as shown in
Figure 14.13, can be multiplied up to 32 times depending on how many OC-192 links must be sup-
ported. One of these Q64G banks is usually the primary fabric, whereas the other one is used as redun-
dancy support for protection in case of failure or field service.

The CSIX-L1 interface at the other side of the C192 ensures an adaptable link operating with a
clock of 125 MHz or 250 MHz and a 32-, 64-, or 128-bit-wide interface (breakable in up to 4 sub-
ports). Communication with a network processor on top of the regular inbound flow-control modes
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FIGURE 14.13 Two redundant IBM PowerPRS Q64G switch fabric banks (with eight fab-
ric chips each) are used with one C192 Queue Manager per OC-192 port. (Source: IBM)
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defined by the CSIX-L1 specifications can also be handled via an Xon/Xoff out-of-band protocol and
support of CSIX CFrames. IBM therefore supports natively both of these techniques. More informa-
tion about CSIX is provided in the Appendix III.

The 64G fabric interfaces directly with the NP4GS3 network processor as we saw via the Data
Aligned Synchronous Links (DASLs). Other line cards that have been implemented around different
NPUs or protocol processors can be interfaced with the switch fabric through two options: Take the
approach of the standard UTOPIA-3 interface and link through an IBM PRS UTOPIA-to-DASL Serial
Interface Converter chip into the switch fabric’s DASL ports, or use the C192 Queue Manager with
its CSIX interface on one side toward the NPU. Figure 14.14 shows the inner structure of the C192.
This C192 will convert the traffic to and from an HSS link that supports the Switch Core Interface
Chip (SCIC) chip (discussed in the following paragraph) and which in turn interfaces with the switch
fabric. Figure 14.15 shows these configurations.

It is worthwhile to note that the standard CSIX-L1 interface of the C192 ensures that non-IBM
network processors can be used with the IBM switch fabric chips. The potential of this interoperability
is already apparent with EZchip’s NP-1 network processor.

IBM also provides as we said, a new chip called Switch Core Interface Chip (SCIC). This chip
allows the portability of line cards that were designed for the previous PRS product (the 64G), so that
they can now be upgraded to take advantage of IBM’s new 2.5 Gbps serdes used with the Q64G. As
shown in Figure 14.16, the SCIC interfaces via a DASL link on one side with the older 64G switch
fabric and on the other side with the C192 Queue Manager via an HSS link (in fact, a group of eight
2.5 Gbps links). The diagram in Figure 14.16 is straightforward. Data coming in on the ingress flow
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FIGURE 14.14 The inner structure of the IBM PowerPRS C192 Queue Manager. (Source: IBM)
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FIGURE 14.15 The connectivity options of network processors with 64G switch fabrics. (Source: IBM)
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from the C192 Queue Manager chip through the HSS links (each one of them being of 2.5 Gbps) is
received by the SCIC. It is decoded, and then the logical units (LUs) (an IBM term used for the cell
fragments of 16 to 20 bytes at a time from an initial packet, which was created for compatibility with
the 64G), are realigned to avoid the potential skew that may occur with packets of differing delays
while they traverse the backplane. After the appropriate formatting of the packets, the data are ejected
onto the DASL, which will now take the data bits into the switch fabric.

On the egress flow, the exact opposite occurs; data exiting the switch fabric through the DASL
links are received by the SCIC, deskewed, and prepared for the appropriate formatting. Then they are
8b/10b encoded (because both the C192 and the SCIC use Fibre Channel Standard 8b/10b codes) and
transmitted on one of the HSS links toward the C192 Queue Manager for onward transmission.

The SCIC upgrades the older 64G switch fabric system backplane from 500 Mbps DASL to the
2.5 Gbps HSS high-speed serdes (previously known as Unilink). This IBM-proprietary link is a serdes
serial link that IBM introduced for the latest and future announcements in the PowerPRS family. The
64G switch fabric can be directly connected to the NP4GS3 network processor through the latter’s
DASL interfaces over an IBM proprietary DASL backplane. The SCIC also allows an NEV to use a
queue manager from IBM. The C192 is the first chip that IBM has introduced in this function.

The aggregate full-duplex throughput of the Q64G, which supports direct HSS interfaces 
(ex-Unilink), is 64 Gbps. For higher bandwidth needs, multiple devices can be cascaded in master-
slave configurations. A cell is then sliced and distributed across multiple HSS interfaces to the 
different switch fabric chips. Each subfabric switch operates on a slice of the original cell. The mas-
ter is responsible for all scheduling, synchronization and sequencing of operations, and control of the
entire process. The slave switches just provide the rest of the necessary data path. Figure 14.17 pro-
vides a sample configuration for 256 Gbps aggregate throughput.
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FIGURE 14.17 An aggregate 256 Gbps throughput configuration using multiple PowerPRS-Q64G switch fabric chips
arranged in a master-slave scheme. (Source: IBM)
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The Q64G is housed in a 624-ball IBM ball grid array (HyperBGA™) package. Its maximum
power consumption is 19 watts (when configured as master in a multiple-chip configuration). The
slaves consume about 20 percent less. An older 64G fabric chip just like the NP4GS3 network proces-
sor is housed in a 1,088-pin ceramic column grid array (CCGA) and consumes 22 watts. For com-
parison, we will mention that the SCIC is housed in a 399-ball BGA package consuming 5.2 watts
and the C192 Queue Manager is housed in an 840-ball BGA with a consumption of 13 watts.

In September 2002, IBM introduced a new chipset comprising the PowerPRS 64Gu and the C48
CSI. The PowerPRS 64Gu has the same function as the PRS-64G, but IBM has now replaced the
DASL (low-speed serial link of 500 Mbps) with the IBM HSS link (2.5 Gbps). This change simpli-
fies the layout and wiring of boards significantly. The 64Gu offers up to 80 Gbps of switching
capability and port speeds of up to 10 Gbps/OC-192c. It supports both frame-based (through seg-
mentation and reassembly [SAR]) and cell-based traffic. In a protocol-agnostic nonblocking capac-
ity, it offers an aggregate throughput of 64 Gbps and 128 Gbps when configured in a 40 Gbps or
80 Gbps switching system, respectively. The afforded overspeed as compared to aggregate user band-
width is obvious.

A few comments regarding SARing are needed here. IBM considers the SAR function traffic 
manager related, not switch fabric related. Consequently, any SARing must be handled by the 
traffic manager regardless of whether this function is embedded inside the network-processor chip
itself or whether a separate standalone traffic manager chip is available. The 64Gu is a fixed packet
length fabric, whose packet length can be adjusted. This is why IBM calls its switch fabric protocol
agnostic.

The 64Gu can be configured as 16 input and 16 output ports with 40 Gbps of aggregate user band-
width if engaged as a single chip. It can also be organized in a set of two chips, thereby offering 80
Gbps of aggregate user bandwidth along with 32 input and 32 output ports. Each port can have up to
four GbE or one OC-48c, or each group of four ports can have one 10 GbE or one OC-192c.

The functionality of the C48 is similar to the C192, but used for a single OC48/2.5 Gbps CSIX-
L1 connection (single port). The C48 connects to the 64Gu by two HSS links. It is interesting to note
that the C192 can also be connected to the PowerPRS 64Gu, so IBM’s customers can have 10 Gbps
pipes (eliminating the need for the SCIC, as was the case with the PRS-64G). To support redundancy
over two switching planes and to enable either load sharing or packet-lossless switchover in case of
maintenance or trouble, the 64Gu offers native support for an alternative/redundant switching path,
which is implemented through the help of either the C48 or C192 chips.

As mentioned in the section about shared memory switches, the 64Gu implements data striping
(byte slicing) and opts for a graceful degradation instead of penalizing links in multicast traffic cases.
The 64Gu generally continues IBM’s powerful platform for multicasting combined with QoS, where
a packet is stored once in shared memory and then multiple copies will be transmitted to the corre-
sponding outputs, where the memory indexes (pointers) reside. In terms of QoS, it offers four levels
of traffic priority and programmable threshold levels for flow control.

The 64Gu is housed in a 624-ball CBGA package and consumes between 13 and 19 watts, the lat-
ter representing 100 percent of traffic capacity.

AGERE SWITCH FABRICS

Agere Systems is one of very few vendors that can provide a complete solution from fiber to fabric.
Therefore, it would be unfair not to briefly mention the latest technology that the company has to offer
in the area of switch fabrics. Agere Systems has a presence in the TDM fabric realm as well as in the
ATM and IP network areas. In the TDM realm, it offers crossconnect TDM switches for high-capac-
ity OC-3 and OC-12 systems, access concentrators handling OC-48 capacities, T1/E1 multiplexors,
digital loop carriers (DLCs), and cellular infrastructure. In the ATM and IP network areas, until
recently, it offered switching fabrics with throughputs of 5 Gbps expandable up to 25 Gbps for ATM,
TDM, and IP.
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More importantly, however, Agere has recently introduced a protocol-independent switching 
fabric—the PI40 family of chips, which can scale from a single-chip 40 Gbps fabric to a multichip
2.5 terabits per second (Tbps) system, as shown in Table 14.1. The PI40 supports fabric port rates
from OC-12c to OC-768c and connects without any glue logic to the company’s 10 Gbps network
processors. It consists of three types of devices:

• The PI40X, a full-duplex switch fabric that has up to 40 Gbps throughput and can handle issues
such as aggregation and concentration as well as queuing and scheduling

• The PI40C, a full-duplex 160 Gbps crossconnect device for crossbar arbitration and switching

• The PI40SAX series of 20/40 Gbps protocol independent stand-alone switching fabrics

The PI40X works in two modes: ingress and egress. In the ingress mode, the PI40X multiplexes
incoming traffic to the crossbar switching stage. Traffic is buffered and queued separately per egress
port taking a worst-case approach. The queuing structure is a good way to provide a sense of traffic
isolation and fairness. A QoS-capable schedule handles all the queues, and traffic cells are forwarded
to the crossbar planes over multiple 2.5 Gbps serdes links. For large systems, bandwidth can be
dynamically allocated by the formation of link groups. Embedded memory is also present and, more
specifically, 8K cells handle unicast traffic and 1K cells handle multicast traffic.

The crossbar itself is a 64�64 switching matrix with each link being 2.5 Gbps. Lossless self-
routing functionality is provided by the internal QoS-aware arbitration logic. The crossbar can be con-
figured as 1 off 64�64 matrix, 2 off 32�32 matrices, 4 off 16�16 matrices, 8 off 8�8 matrices, 16
off 4�4 matrices, or even 32 off 2�2 matrices.

In the egress mode, the PI40X demultiplexes the traffic that just arrived from the crossbar switch-
ing stage over multiple 2.5 Gbps links, keeping in mind that link groups provide a dynamic bandwidth
allocation. Traffic is then buffered and queued. As in the ingress mode, not only is traffic isolation and
fairness present, but a QoS-capable scheduler serves all the queues. The PI40X’s embedded memory
provides room and capabilities for unicast and multicast cells similar to those found at the ingress
mode.

The PI40 family offers a modular, scalable switch fabric design because it can be configured eas-
ily as a single-chip 40 Gbps switch or as a multistage system in a larger switch configuration up to
1,024 fabric ports. One of the nice characteristics of the family is that the ultimate chip count needed
for a multistage solution increases linearly with the desired capacity growth. Switching is protocol
independent and can be programmed to switch cell payloads of variable size (64, 72, or 80 octets).
All switching cell headers contain information that is exclusively used by the switch fabric. A user’s
protocol-related data are encapsulated deep inside the payload of the fabric cells.
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TABLE 14.1 Configuration Examples of Switch Babrics based on Agere’s PI40 Family

Number of Ports Number of Chips

Capacity OC-768c OC-192c OC-48c OC-12c PI40X PI40C Total

40 Gbps — 4 16 64 *1 — 1

80 Gbps 2 8 32 128 4 1 5

160 Gbps 4 16 64 256 8 2 10

320 Gbps 8 32 128 512 16 4 20

640 Gbps 16 64 256 1,024 32 8 40

1.25 Tbps 32 128 512 — 64 16 80

2.5 Tbps 64 256 1024 — 128 32 160

* Requires the single chips PI40SAX
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In the PI40 switch fabric family of chips, which implements an arbitrated crossbar design, a sophis-
ticated queuing structure ensures that no HOL blocking occurs and that native support is available for
multicast traffic. The availability of four different buffer management classes and two different sched-
ulers, in conjunction with end-to-end flow control and self-routing capabilities that decouple the arbi-
tration complexity from the system capacity issue, are considered among this fabric’s strong points.
In addition, advanced traffic management and traffic isolation capabilities enable the provisioning of
bandwidth through SLAs and the preservation of QoS in realms such as VoIP and virtual private net-
works (VPNs).

The PI40 family chips contain embedded high-speed serdes and clock-data recovery (CDR) cir-
cuits. This combination enables the tight integration of a systems design with high capacity and high
performance.

In systems where line cards support different wire speeds, the PI40X can be configured as an
ingress or egress switch in the fabric, with the PI40C providing the crossbar and arbitration functions.
Figure 14.18 shows a 160 Gbps system built from two PI40C devices and eight PI40X chips. The first
stage of PI40Xs aggregates the incoming user traffic and connects the traffic to all the second-stage
devices. The second stage is essentially the crossconnector, which handles the actual switching
function.

For example, the PI40SAX can be connected directly to line cards, as shown in Figure 14.19, in a
32�2.5 Gbps I/O system that can be configured as a 32�32 switch operating at 2.5 Gbps. This
enables the creation of a shared memory, nonblocking switch for up to 32 user ports. It can support 4
OC-192c ports, 16 OC-48c ports, 32 OC-12c/GbE ports, and other combinations. The afforded over-
speed (speed-up factor) is 2:1. This means that for user traffic with a throughput of 40 Gbps, the fab-
ric has an actual throughput capability of 80 Gbps. This leaves plenty of headroom for internal cell
segmentation and reassembly as applied to variable-length packet size even under the worst traffic
conditions.
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FIGURE 14.18 The structure of a 160 Gbps switch based on the PI40 fabric. It uses eight PI40X
and two PI40C chips. (Source: Agere)

PI-40X PI-40X

PI-40X

PI-40X

PI-40X

PI-40X

PI-40X

PI-40X

2x PI-40C
Ingress
ports

Egress
ports

1x OC-768c or
4x OC-192c or
16x OC-48c or
32x OC-12c

Ingress or 1st

stage

Central switch or
2nd stage

Egress or 3rd

stage

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SWITCH FABRICS



The PI40 switch fabric offers a flexible and programmable queuing structure based on multiple
routing queues that can be associated with a single fabric port in order to ensure significantly improved
QoS capabilities at that specific fabric port. Each routing queue has two scheduling subqueues—one
for the real-time traffic (such as voice over TDM traffic or streaming video) and one for the non-real-
time traffic. QoS scheduling is handled on an SP basis for delay-sensitive traffic with a bandwidth/
delay guarantee for real-time traffic that may not be as sensitive to delay, on a granularity basis of 478
cells per second, or even on the basis of scheduling any excess bandwidth for so-called best-efforts
traffic.

Fairness is provided by selective backpressure and the entire system can be configured as a cen-
tralized, distributed, stackable, or single-chip fabric. The distributed fabric configuration is done with
each PI40C crosspoint operating independently from each other. If one fails or is removed, the oper-
ations of any other PI40C in the system are not affected. In its maximum configuration, up to 64 first-
stage and 64 third-stage PI40X devices can be connected to 40 PI40C devices to create a 2.56 Tbps
switch fabric capacity. By replacing the PI40C devices with a higher-capacity crosspoint element, this
configuration can achieve a total throughput of 10 Tbps.

As part of the company’s Integrated Development Environment (IDE), a performance simulator is
available for the PI40 switch fabric. It is fully integrated with a powerful traffic generator (that can be
made to generate traffic according to specific characteristics) and allows a graphical user interface
(GUI)-based co-simulation with Agere’s network processors and traffic managers for a full-fledged
configuration evaluation and performance analysis. For instance, a designer can specify the number
of switch fabric devices in a configuration, the number of ports per device, and the number of serdes
links per device. Backpressure thresholds can be decided on a per-device, per-port, or per-queue basis.
This may require constraining the latency, especially in a bid/grant approach. The simulator will pro-
vide at the output the minimum, maximum, and average values for all per-traffic flow delays, all per-
queue occupancies and delays, all per-port and per-traffic class delays, and all per-device delays. It
also calculates the throughputs for all of these categories.
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FIGURE 14.19 A standalone switching system using the PI-40SAX fabric chip. (Source:
Agere)
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SUMMARY

The market research organization InStat/MDR reports that the switch fabric market will experience a
compound annual growth rate (CAGR) for shipments of 141 percent from 2002 through to 2006.
Although early opportunities are in router and switch markets, by 2006, significant opportunities will
be available in at least 13 different target markets, leading to the phenomenal growth, according to the
same firm. In this chapter, we provided an overview of the established techniques for fast switching
and, more importantly, how this is being accomplished through the use of switch fabrics. We reviewed
fundamental concepts and identified the underlying trade-offs involved in many of the approaches that
designers have taken. As two representative examples of different state-of-the-art switch fabric archi-
tectures, we discussed the IBM PowerPRS family of switch fabrics along with the associated IBM
chips that support the actual fabrics in building a powerful switch/router and Agere’s latest PI40 switch
fabric chipset that can connect seamlessly with the company’s network processors and that can scale
up to 2.54 Tbps throughputs. A very extensive list of technical literature references has also been
provided for subsequent study for those who may be more interested in different aspects of this
extremely wide subject.

SUGGESTED REFERENCES

Several interesting publications cover all aspects of the switching realm. Consult these publications
to delve deeper into any of the aspects of fast packet switching. The technology is rapidly evolving in
so many directions that are outside the scope of this book that we cannot address all these changes,
much less cover them in depth. To stay abreast of the fast packet switching technology evolution, the
main sources of information in the area must be continuously monitored. In our opinion, the follow-
ing publications are especially important for a full view of the areas that are most important in the
evolution of fast packet processing. For the full bibliographical information for each of these sources,
please refer to the reference section at the end of this chapter.

F.A. Tobagi provides a general overview of the field (including some good coverage of switch fab-
ric topologies) in his article “Fast Packet Switch Architectures for Broadband Integrated Services
Networks.” It serves as a helpful tutorial, albeit slightly outdated by now since it was published 13
years ago. A nice overview of pertinent network traffic characterization is the article “MPEG-4 and
H.263 Video Traces for Network Performance Evaluation” by F. Fitzek and M. Reisslein. The same
principles are discussed in the article “On End-to-End Architecture for Transporting MPEG-4 Video
Over the Internet” by D. Wu et al. In this article, the transport of compressed video traffic over the
Internet is analyzed within a context of low bit rate and varying network conditions.

Scheduling of access to a crossbar fabric can be done either online or offline. For offline schedul-
ing, consult T. Rodeheffer and J. Saxe’s “Smooth Scheduling in a Cell-Based Switching Network,”
where QoS guarantees are addressed. Other good sources on the same subject are M. Bonuccelli’s
“Incremental Time-Slot Assignment in SS/TDMA Satellite Systems,” I. Gopal’s “Minimizing Packet
Waiting Time in a Multibeam Satellite System,” and T. Inukai’s “An Efficient SS/TDMA Time Slot
Assignment Algorithm.” The latter reference is still very applicable although it is quite old. For online
scheduling, the article “Two-Dimensional Round-Robin Schedulers for Packet Switches with Multiple
Input Queues” by R. LaMaire and D. Serpanos discusses a two-dimensional round-robin approach,
whereas some of the work from Nick McKeown’s Stanford team on iSLIP and Tiny Tera can be found
in “Designing and Implementing a Fast Crossbar Scheduler,” “Tiny Tera: A Packet Switch Core,” and
“The iSLIP Scheduling Algorithm for Input-Queued Switches.”

D. Serpanos and P. Antoniadis’ article “FIRM” and Anthony Kam and Kai-Yeung Siu’s article
“Linear-Complexity Algorithms for QoS Support in Input Queued Switches with No Speedup” dis-
cuss scheduling when confronted with multiple input queues, the latter with QoS guarantees.

Regarding a sensitive speed-up requirement issue that pops up in implementations when emulat-
ing output queuing, the article “Analysis of a Packet Switch with Memories Running Slower Than the
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Line Rate” by S. Iyer provides the context background. Articles written by P. Krishna et al., Chuang
et al., and S. Iyer and N. McKeown elaborate on several approaches to tackle it.

For coverage of switch fabric topologies, take a look at the paper “The Theory of Connecting
Networks and Their Complexity” by M. Marcus. In the book Gigabit Networking, C. Partridge cov-
ers the Batcher-Banyan networks. In their book High Performance Communication Networks, J.
Walrand and P. Varaiya provide among other things an especially nice discussion of modular switches
and performance. V. Benes’ “Optimal Rearrangeable Multistage Connecting Networks” is also a
classic. Articles written by C. L. Wu and T. Y. Feng, and C. Leiserson cover several interesting
topologies.

The article “Nonblocking Copy Networks for Multicast Packet Switching” by T. Lee discusses a
nonblocking copy scheme for multicast switches. F. M. Chiussi and F. A. Tobagi, and D. Khotimsky
cover resequencing protocols and issues. B. Suter et al., M. Arpaci and J. Copeland, and S. Floyd and
V. Jacobson have written about buffer management issues when a switch must control the flow by
dropping packets. Backpressure is introduced in the article “New Directions in Communications (Or
Which Way to the Information Age?)” by J. Turner. This work has been expanded to discuss multi-
cast in J. Turner’s article “Design of a Broadcast Packet Switching Network.”

In their article “Deadlock-Free Message Routing in Multiprocessor Interconnection Networks,”
W. Dally and C. Seitz first talk about the so-called wormhole routing approach, where variable-length
packets are segmented into flits. W. Dally continues this discussion in his article “Virtual-Channel
Flow Control,” which examines virtual channel for backpressure as a means to reduce the HOL block-
ing. Li-Shiuan Peh joins W. Dally to expand on the idea in the article “Flit-Reservation Flow Control.”

An interesting combination of a buffered crossbar, WFQ scheduling, and backpressure is presented
in “Implementing Distributed Packet Fair Queueing in a Scalable Switch Architecture” by D. Stephens
and Hui Zhang. Atlas-I is an interesting single-chip ATM switch project where a credit-based multi-
lane backpressure protocol has been implemented as a significant improvement against classic virtual
channel wormhole backpressure. M. Katevenis and G. Kornaros et al. have written some reports
regarding the Atlas-I project. Credit-based flow control is discussed in the article “Reliable and
Efficient Hop-by-Hop Flow Control” by C. Ozveren, R. Simcoe, and G. Varghese. The articles “Fast
Switching and Fair Control of Congested Flow in Broad-Band Networks” by M. Katevenis and the
article “Credit-Based Flow Control for ATM Networks” by H. T. Kung, T. Blackwell, and A. Chapman
are also informative. Interesting information can also be found at the web site of the Quantum-Flow
Control Alliance at www.qfc.org.

Some interesting aspects of implementing WRR scheduling are discussed in the articles “Service
Disciplines for Guaranteed Performance Service in Packet-Switching Networks” by Hui Zhang,
“Implementing Scheduling Algorithms in High-Speed Networks” by D. Stephens, J. Bennett, and Hui
Zhang, and “Pipelined Heap (Priority Queue) Management for Advanced Scheduling in High Speed
Networks” by A. Ioannou and M. Katevenis. Issues regarding fast packet classification and route table
lookup are covered nicely in the articles “IP Address Lookup in Hardware for High-Speed Routing”
by Andreas Moestedt and Peter Sjodin, “Packet Classification on Multiple Fields” by P. Gupta and N.
McKeown, “Fast Updating Algorithms for Ternary CAMs” by D. Shah and P. Gupta, and “High-Speed
Policy-based Packet Forwarding Using Efficient Multi-Dimensional Range Matching” by T.
Lakshman and D. Stiliadis. The March—April 2001 issue of IEEE Micro also contains several articles
on the same subject. Finally, the articles “WDM Optical Communication Networks” by B. Mukherjee
and “Advances in Photonic Packet Switching” by S. Yao, B. Mukherjee, and S. Dixit are good updated
sources on optical switching applicable on the backbone of the wide area network (WAN).

An excellent (usually biannual) report on the switch fabric industry is published by the Linley
Group at www.linleygroup.com/npu/fabrics.html.

Companies offering commercial off-the-shelf switch fabric chipsets include the following:

Agere Systems (www.agere.com)

AMCC (www.amcc.com)

Dune Networks (www.dunenetworks.com)

Erlang Technology (www.erlangtech.com)
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IBM (www.chips.ibm.com)

Internet Machines (www.internetmachines.com)

MindSpeed (www.mindspeed.com)

PetaSwitch (www.peta-switch.com)

Sandburst (www.sandburst.com)

Tau Networks (www.taunetworks.com)

TeraChip (www.terachip.com)

TeraCross (www.teracross.com)

Vitesse (www.vitesse.com)

Zagros Networks (www.zagrosnetworks.com)

ZettaCom (www.zettacom.com)

White papers and application notes discussing each company’s technology approach are available
from these companies directly.

For readers who want to get a flavor of backplane technology, two introductory tutorials on back-
plane-related design issues and signal integrity on multigigabit per sec links can be found at the IEC
web site at www.iec.org/online/tutorials/design_backplane/ and www.iec.org/online/tutorials/
signal_integrity/.

A couple of interesting articles on issues related to serdes influencing the backplane performance
are: “Proper Serdes Selection Solves Serial Backplane Design Woes” by PMC-Sierra’s Rachelle Trent.
The article appeared in Communications Design magazine on November 21, 2002. It is also available
online at www.commsedesign.com/story/OEG20021121S0005.

“Design 5-Gbits/s serdes: Steering throug a Road Filled with Potholes”, by TriCN’s Ronald Nikel,
Communications Systems Design, March 2, 2003. Available on line at: http://www.commsdesign.
com/story/OEG20030327S0010.

Also an interesting article on issues involving 10Gbps interfacing of switch fabrics is: “10 Gbits/s
Switch Fabric Interface Shootout”, by Tau Networks’ Phil Brown, Communications Systems Design,
January 3, 2003, available on line at: http://commsdesign.com/story/OEG20030103S0058.

Another interesting article discussing how the maturing switch fabric technology has far-reaching
effects beyond the network-processing industry and how it is bound to affect main-street system-on-
a-chip (SOC) and bus-based ASIC designs is “Switch-based Interconnects Solve Comms Designer’s
Woes” by Warren Miller. The article appeared in Communications Design magazine on November 13,
2002. It is also available online at www.commsdesign.com/story/OEG20021113S0014.

The High Speed Backplane Initiative (HSBI) formed in late 2002 is an interesting industry effort
to advance serial link technology in this critical area of communications infrastructure to higher
speeds. A very informative article in two parts (and strongly recommended reading) has been written
by John D'Ambrosia from Tyco Electronics, Ryan Carlson from Velio Communications and Bill
Woodruff from BitBlitz. It is titled "Analyzing the Challenges Facing HSBI: Part1:", Communications
Design Magazine on May 29, 2003. The two parts are also available online respectively at:
www.commsdesign.com/design_corner/OEG20030528S0036 and www.commsdesign.com/design_
corner/OEG20030529S0004.
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CHAPTER 15

TRAFFIC MANAGERS

After having discussed several commercial platforms, systems architectures, and network processors,
we have examined most of the necessary components a systems designer requires in order to put
together a working switching/routing system. These include network processors, classification and
forwarding processors, search engines, and switch fabrics. In this chapter, we turn our attention to the
last important piece of this architectural jigsaw puzzle—traffic managers.

THE DEFINITION AND PURPOSE OF A TRAFFIC MANAGER

In some networking realms, not all transmitted packets can be treated in the same way for profitabil-
ity and efficiency reasons. As a result, different classes of service (CoS) must implement differenti-
ated levels of quality of service (QoS) as expected for each packet that traverses the network. This
QoS framework reflects the potential critical, important, urgent, lucrative, or undesirable nature of
specific packets. Traffic management is a wide conceptual area of network processing that deals with
how the underlying flow of real-time traffic, which can be composed of a continuous, massive, and
time-varying collection of disparate and largely unrelated session packets from a staggering multi-
tude of applications, must be treated in order to implement, monitor, and enforce specific QoS require-
ments of the network.

TRAFFIC MANAGERS AS STANDALONE CHIPS

As we have seen in the first 10 chapters of the book, most powerful network processors already con-
tain certain embedded capabilities that enable them to perform in some cases adequate and in other
cases rudimentary traffic management operations on the traffic stream that they monitor and process.
However, in order to perform high-speed, fine-granularity traffic management on information streams,
highly specialized standalone chips called traffic managers are required. Traffic managers have sev-
eral advantages:

• Traffic managers are off-the-shelf commercially available components. This means their cost is
tremendously lower than if a designer designs a traffic manager from scratch. On many occasions,
in principle, traffic managers can be mixed and matched with network processors or switch fabrics
from different vendors. The best of each breed can be chosen to suit the design requirements. In
reality, however, this practice may create all kinds of unexpected difficulties and suboptimal system
behavior. In addition, the wheel does not have to be reinvented in terms of devising, coding, simu-
lating, testing, validating, and optimizing algorithms that handle the various logical tasks associated
with traffic management.
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• Traffic managers interface with network processors in a more or less standardized way; therefore, the
time to market is accelerated for a systems architect since time is not wasted on unnecessary issues.

• By offloading the traffic management function from the network processor, finer traffic manage-
ment granularity is enabled through the use of a specialized traffic manager chip, whereas signifi-
cant amounts of silicon real estate remain available to the network-processor implementation 
for the materialization of an even higher-performance architecture for live packet classification and
forwarding.

Standalone chips are now required inside switching/routing equipment to enable service providers
and carriers to provide QoS based on service level agreements (SLAs) to their major customers who
insist on (and, more importantly, are ready to pay a premium for) having specific response times,
bandwidth guarantees, and assured levels of availability for their network applications.

In addition to the QoS-driven functionality that caters to the carrier customers’ needs, traffic man-
agers can also allow carriers to optimize their own operational finances by ensuring an optimal allo-
cation of the available bandwidth as well as a graceful degradation of network performance in case
of oversubscription (an undesirable situation, where more demand exists for bandwidth resources than
is actually provided).

Like security coprocessors, which we discuss in Chapter 17, “Security Coprocessors,” traffic man-
agers are proposed in either one of two major architectures: look aside and flow through. In the look-
aside approach, the traffic manager shares some functionality with the network processor. More
specifically, they can share the same packet buffer memory and even the same buffer management
function. In the flow-through approach, all the required modules out of which the traffic manager con-
sists are laid out in a pipeline-like fashion and treat the incoming information in a sequential way, like
in an old-fashioned assembly line. Each TM submodule receives packets from one side, processes
them accordingly, and outputs them on the other side to the following TM submodule.

The requirements for traffic managers depend on the nature of the network in which they are called
to function, as shown in Table 15.1. This means that not all traffic managers are able to offer the same
level of help in every single type of envisioned network. In fact, some may not even be able to func-
tion in all possible settings. Consequently, this is an area where vendors have tried to differentiate
themselves by capitalizing on the types of networks where they already have an advantage. This is
particularly true for vendors who also propose network processors and/or switch fabric chipsets, as
they try to promote one-stop shopping for their customers. Conversely, customers often find them-
selves confronted with the dilemma of choosing a superior traffic manager from another vendor or
making their systems life easier by simply opting for the traffic manager of the same chip family with
their choice of network processing unit (NPU) or switch fabric platform.

Before we look at how traffic managers work, however, we first need to introduce some basic
notions about their macroscopic functionality. We will then put things into context by stepping back
one moment and looking at the QoS realm within which the traffic manager is called to perform its
intensive, complex, and noble tasks.

FUNDAMENTAL CONCEPTS IN TRAFFIC MANAGEMENT

Modern multiservice networks where Internet Protocol (IP) has ended up the de facto network 
protocol create a situation that is only going to be exacerbated in the future. Numerous applications
that share the common network medium are sometimes radically different in nature and consequently
have completely different performance requirements (as dictated by the expectations of users).
Because fundamental network resources are finite, an optimal use of these resources is mandated, not
only for the sake of efficiency, but also (and more importantly) for the sake of profitability.
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Until recently and to a large extent still, networks have been treating transient traffic on a best-
efforts basis. Unfortunately, this is not good anymore. In addition to e-mail and file transfers, remote
login, or typical web browsing, numerous telephone conversations or videoconferencing may also be
occurring, or multicast multimedia material may be downloaded on a pay-per-use basis for entertain-
ment purposes.

All these unrelated applications must share the common network, and it would be unfair to treat
them all in the same way. In addition to fairness, the concept of profitability is important as service
providers and carriers must manage their single most important resource—bandwidth (or throughput,
which can be translated to used capacity and is a metric that will tell the carrier how much more rev-
enue could be generated if traffic were managed in a different way). Bandwidth must be allocated dif-
ferently among paying customers at different times of the day in order to maximize revenue and
customer satisfaction. From this fundamental premise, the concepts of QoS and guaranteed-level serv-
ice were born.

The idea is not new. For more than 20 years now, type of service (TOS) bits have been available
as part of the definition of the classic IP packet. The basic notion was already in place. This has only
facilitated the wide-scale adoption of the QoS vision. However, as we will see, many issues still need
to be agreed upon and implemented.
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TABLE 15.1 Different Traffic Manager Requirements for Different Applications 

Applications Capabilities Number of Queues Profiles Support Needed

Carrier-class metro Fast forwarding and 1,000—4,000 Small number of RED
and core routers simple behavior aggregated Random Early 

aggregate (BA)- flows Detection (RED)
based classification profiles

Multiservice Fast forwarding, and Large number Large number of Fine granularity with 
switching sophisticated RED profiles Weighted RED

classification and (WRED), Early Packet
policing/shaping Discard (EPD), and Partial

Packet Discard (PPD), both
per-class and per-flow
behaviors, embedded
Segmentation and
Reassembly (SAR) for an
Asynchronous Transfer Mode
(ATM) interface of packet-
based networks, and support
for frame-relay switching

Boundary routers Fast forwarding, and Large number Large number of Fine granularity with
at the network sophisticated RED profiles WRED, EPD, and PPD,
access point (NAP) classification and both per-class and per-

policing/shaping flow behavior, embedded
SARing for an ATM interface
of packet-based networks
and end capabilities for
frame-relay and ATM

Ethernet and access Less fast forwarding 1,000 Small number Usually WRED, two to
and limited three priority levels
classification
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In any discussion on QoS, keep in mind that QoS seeks to specify and control five fundamental
network variables:

• Bandwidth or throughput For example, a critical telemetry application may require a higher pri-
ority for the transmission of the data it carries than an Hypertext Transfer Protocol (HTTP) session
browsing the Internet.

• Latency This is another common way of referring to end-to-end delay as experienced by traffic
originating from point A in the network and destined to travel to point B. Voice communication is
a good example. Once voice latency goes beyond 150 ms from mouth to ear, it is perceptible by the
average human operator and becomes distracting. If the delay becomes longer than a certain value,
it may even negate a network application based on voice transmission. Videoconferencing is a noto-
rious example where sound may not be synchronized with the video images of a participant open-
ing and closing his or her mouth. This can become very irritating to customers and thereby prohibit
further business opportunities.

• Jitter This is essentially the variation in delay between two consecutive packets. A typical exam-
ple would be the interfacing of an IP realm with Synchronous Optical Network/Synchronous Digital
Hierarchy (SONET/SDH) or time-division multiplexing (TDM) networks, where the slightest jitter
may cause a loss of read or written slots in time and therefore cause application errors.

• Packet loss This is immaterial in some applications, whereas it is undesirable in others.
Sometimes it is simply not an option.

• Link availability.

Because link availability is an issue that transcends the network layer or data link protocol and
spans concerns as low as the physical layer itself, we will not spend much time on it. The network-
processing computational systems cannot do much to ensure it. It remains undoubtedly in the list of
obligations that a carrier may have when serving a corporate customer. However, this is not a prob-
lem that can be addressed by the mechanisms and techniques we will be discussing that purport to
deliver QoS along the other four dimensions of the puzzle.

Now that the fundamental idea is clear, how would we go about implementing a realm that enables
its realization? Several tools of the trade are available.

First, policies should be compiled about specific applications that are expected to run on a network
that tries to implement QoS. Based on the collection of such disparate applications, the specific vari-
ables that QoS seeks to specify and control are mapped onto each application. For example, jitter and
latency requirements for voice over IP (VoIP) telephony are not the same as File Transfer Protocol
(FTP) file transfers, and e-mail is not as high a priority as network management queries based on the
Simple Network Management Protocol (SNMP) from the management console.

Likewise, a long-distance carrier may have purchased a certain bandwidth of traffic on a backbone
provider’s network. This approach means that all traffic originating from the carrier must be moni-
tored so that a certain level of bandwidth can be guaranteed by the backbone. This implies the need
for continuous monitoring on behalf of the network of the quality it delivers. In the previous exam-
ple, if the intended performance drops below the preagreed levels, then bandwidth provisioning has
to be revisited and perhaps modified on-the-fly.

In addition to the vast amount of pertinent statistics of which modern network equipment keeps
track, robust QoS-oriented metering processes and techniques need to be implemented. Metering
helps detect specific situations and counts the instances and frequency of their occurrence. This way
network management can monitor in real time whether they fit the intended profile of traffic. If they
do not fit the profile, then special algorithms are used that will handle the shaping of traffic so it con-
forms to the desired profile. A special shaper module inside the traffic manager chips is responsible
for doing this. It usually has its own external or internal memory subsystem within which it keeps and
works with rate tables.
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In realms where thousands of different applications may be simultaneously sharing the network,
exhaustively compiling policies can be impossible. Two approaches can be taken:

• One approach is to not do anything, capitalize on cheaply available bandwidth and sharply drop-
ping prices of gigabit routers, and hope that the backbone throughput will always be more than
enough when spikes of demand appear. The problem with this approach is that no one can accu-
rately forecast traffic loads in packet networks and major customers insist on preferential treatment
for some of their key applications. This can only be achieved through SLAs, which can only be
implemented when traffic is segregated into classes. SLAs stipulate the number of classes possible
and the amount of traffic (bandwidth) allowed per class. SLAs can be static and therefore be nego-
tiated at some predetermined frequency (monthly, yearly, and so on), or they can be dynamic, which
requires a signaling protocol such as the Resource Reservation Protocol (RSVP) for the application
to request more resources from the network in quasi-real time.

• The diametrically opposite approach is to first define a limited number of specific classes of traffic
and then assign individual applications to a class. All applications in one class of traffic receive the
same treatment from the network.

As the classes benefit from different treatment standards we can also talk about differential QoS.
Carriers employ SLAs, which stipulate service level guarantees and consequently the levels of the net-
work performance that the customer requires, expects, and pays for. This way carriers can also actu-
ally guarantee the minimum assured level of performance. Traffic managers facilitate this process
through a judicious use of traffic policing. More specifically, flow tables are stored in a memory sub-
system with which the policer module of traffic managers works.

In terms of classes of service, how many classes are good? This is an open and ongoing debate,
but the widespread consensus in the industry is that four classes of traffic seem sufficient. Some net-
work equipment vendors (NEVs) offer the possibility of more, but this seems superfluous since the
industry still cannot agree on what levels of granularity make sense for two levels of markets that are
positioned downstream from NEVs—that is, the carriers and the carriers’ customers (enterprises and
end-user organizations).

Network applications may at some point require (and perhaps be formally entitled to) better treat-
ment for their packets. For example, consider the Transmission Control Protocol (TCP). TCP requires
the reliable delivery of its packets to their respective destination. It not only requests acknowledge-
ments of reception, but based on feedback that it obtains on congestion conditions from the network,
readapts the specifics of its parameters to optimize its behavior, and so on. In some cases, special sig-
naling techniques must be implemented that are ideally understood across the wider network and that
allow the dynamic reallocation of portions of shared resources. This is similar to what happens in
bandwidth provisioning.

Sometimes this may not be possible or even desirable. In these cases, an acceptable QoS archi-
tecture may require that individual packets be marked with specific bit fields set appropriately, such
as the Differentiated Services (DS) field of the IP header. This would enable packets to be immedi-
ately visible when they traverse the network and, more specifically, when they enter and exit its indi-
vidual systems at network nodes, such as routers, switches, and hubs. It would make it straightforward
in principle to ensure that each packet received the treatment to which it is entitled.

In a multiservice switching or routing system, the hardware can use such flagging bits to detect
the presence of specific types of packets either at an ingress port or at an egress port and act accord-
ingly. If packets are not handled with the appropriate level of attention or with the necessary sense of
urgency at an ingress port, input buffers may overflow due to traffic congestion. This could lead to
packet loss. If the same traffic congestion occurs at an egress port, then until the state of congestion
is resolved, the latency and jitter figures may suffer unduly.

This is somewhat similar to the revolution that Multiprotocol Label Switching (MPLS) has brought
onto some IP networks. To form this revolution, MPLS borrowed the basic tagging idea from ATM
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with its available bit rate (ABR), constant bit rate (CBR), and variable bit rate (VBR) classes of cells.
In this case, special labels are tagged onto packets. Based on that marking, the network knows exactly
how to treat these packets. The whole field of traffic engineering has almost acquired a new meaning
following this revolution. As a result, new lucrative services such as the virtual private network (VPN)
have become possible.

Series of techniques and algorithms have been proposed, analyzed, documented, and implemented
in order to materialize various methods that help create the framework of such traffic manipulation.
Among them, we will mention methods of queuing, which allow the dynamic change in priority that
some packets expect, as well as methods of deciding when, how, and which packets must be dropped
(discarded). The traffic manager chips handle this through a scheduler module. Like other traffic man-
ager modules, the scheduler module has its own memory subsystem where it keeps queues.

The following are a couple of other functional modules inside traffic manager chips:

• The active queue control module, which uses its own memory subsystem where it keeps the so-
called Random Early Detection (RED) tables.

• A statistics module, which often works in conjunction with a host or control plane processor, which
is connected with the traffic manager in the majority of the cases over a Peripheral Computer
Interconnect (PCI) bus.

• For the case of multicast traffic, the embedded SAR module, which works with its own multicast
tables, which are stored in its own memory subsystem.

As we have learned in previous chapters, the memory technologies for the various subsystems do
vary between chip vendors. Different memory technologies address different needs. We summarize
the choices of memory technologies and the rationale behind their respective use in Chapter 16,
“Systems Engineering Issues.” We will therefore not expand on this issue here.

Incoming packets arriving from a line interface (physical [PHY] or framer) are classified either by
embedded functionality offered by the network processor or by an external classification coproces-
sor. A special descriptor (or tag) is generated, which is attached to the packet which is then forwarded
for subsequent buffering or processing. In the case of look-aside architecture, the traffic manager will
receive the traffic descriptors and only then will packets be fetched from the buffering memory. In the
flow-through approach, the packets flow through the traffic manager. Deep packet analysis or further
classification may be required. Another specialized coprocessor usually accomplishes this. Security
coprocessors may also be used in some contexts. Packets may have to be buffered by the traffic man-
ager either at ingress or at egress (with respect to the switch fabric) and sometimes at both.

Not all traffic managers support all of these capabilities. Traffic managers may contain the inter-
face with the switch fabrics. Standards interfaces are usually chosen, such as System Packet Interface
4 (SPI-4) and Network Processing Forum (NPF) CSIX, to connect the traffic manager to the switch
fabric chipset component that lies on the line cards. This will then handle the interface with the cross-
bar component on the switch fabric card.

We will conclude this section on QoS by saying that the field remains largely in a desired state.
Although much progress has been made in understanding the technical problems associated with the
modules that compose it, this is just the tip of the iceberg. It will arguably take much more than just
mechanisms and tools of the trade such as algorithms and signaling protocols. A great deal of stan-
dardization work is still needed. This is obviously the mission of industry bodies such as the Internet
Engineering Task Force (IETF). However, several issues are still unresolved regarding how to inter-
pret the available bit fields of mechanisms consistently across the industry in order to create mean-
ingful differentiated services or determine how to deal with QoS when crossing the boundaries of
autonomous systems or network domains. This may sound mundane, but it is actually one of the
thorniest problems in this field.
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QoS-ORIENTED PROTOCOLS

One of the key notions in the subsequent discussions is the term flow. This is a loosely defined con-
cept, but for our purposes, we will clarify that any quantity of traffic consisting of a series of packets
that can be viewed or treated in some common way may be characterized as flow. More specifically,
this implies that traffic packets with the same source address, port number, protocol ID, destination
address, and destination port number should be treated as one flow. Consequently, we can use the term
to describe packets belonging to a specific session, originating from a specific network node, or fit-
ting a specific profile. The term is generic, but serves an important objective when it comes down to
finer-granularity traffic management.

Packets belonging to multiple and unrelated sessions are usually aggregated in multiple flows.
Each flow will then be further logically assigned a priority level (in conjunction with queuing struc-
tures) and then mapped onto classes. Each class is mapped onto one of many ports. Some architec-
tures even go so far as to make a point of splitting ports into a two-layer hierarchy of virtual ports and
physical ports. Each class maps into one of multiple virtual ports and each virtual port can then map
to one of multiple physical ports. The idea of hierarchical traffic-management granularity should now
be a bit clearer. This example can be summarized as follows:

Flows → Classes → Virtual ports → Physical ports

RSVP

The RSVP (RFC 2205) was one of the first protocols that attempted to provide some sense of rudi-
mentary QoS or guaranteed bandwidth. It is currently used on IP networks. It works by requesting
from downstream network equipment that network resources and capacity be reserved in advance—
in other words, before a specific flow of traffic is sent out into the network. Its mechanisms are sim-
ple compared to the requirements of the complex realm of QoS. It may or may not receive a positive
signal. The signaling works in the following way.

The originator of traffic (transmitter) A sends a PATH message to receiver B that describes the
characteristics and needs of the upcoming traffic. Every intermediate router will forward this PATH
message to its downstream peer on the next hop all the way to the receiver. If receiver B accepts the
PATH message, it will issue a RESV message back to the transmitter that is requesting network
resources for the flow. The RESV message now travels backwards on the same link hopping from one
router to the other and hopefully making it eventually back to transmitter A. If a router cannot honor
the request, then an error message is sent to the receiver and the signaling handshake is ended with-
out setting up a connection between A and B. If every stage has honored the request, the appropriate
buffering and bandwidth resources are set up at each router to accommodate the oncoming flow.

IntServ

The Integrated Services (IntServ) protocol (RFC 1633) is structured upon a framework that uses four
fundamental components:

• A signaling protocol, which requests that specific network resources be reserved downstream in
anticipation of transmission.

• An admission control scheme that will decide whether the requested resources will be reserved as
requested.
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• A multifield-based classifier.
• A scheduler that will handle a packet as needed in order for it to obtain the necessary QoS.

For signaling purposes, IntServ uses RSVP (RFC 2210) extensively, As mentioned previously, this
requires that flow-related state information also be kept in intermediate nodes, not just in end systems.
In conjunction with the following three classes of traffic that IntServ defines, it essentially behaves as
a connection-oriented protocol that is similar to ATM switching. Packet flows are assigned to one of
three classes defined in IntServ:

• Guaranteed service, which is used for applications that need assurances for no packet loss and 
controlled/specified latency bounds.

• Predictive service (also known as controlled-load service), which is used for applications that
require probabilistic delay bounds, a realm where the presence of either light or heavy traffic on the
network will not affect this class of traffic.

• Best-efforts service.

In order for this approach to function, specific resources need to be reserved from the network in
anticipation of the needs of individual packet streams or flows. Consequently, routers must retain
flow-related state information. The guaranteed service requires that all routers be capable of IntServ,
which did not materialize as a vision. The predictive service, however, could work in principle if it
was configured in conjunction with RSVP as its signaling protocol and if it was installed at all per-
ceived bottleneck nodes of the network. They could run the controlled-load level of service with RSVP
messages tunneled through other parts of the network, but this situation turns out to be difficult to
manage.

Running IntServ imposes large computational (in central processing unit [CPU] cycles) and
buffering loads (which are in proportion to the actual number of flows) to routers all over the network.
This is one of its weak points. Since it is preoccupied by the flow’s fate at the packet level, it neces-
sarily splits traffic logically into numerous flows. However, without aggregating them into classes
before launching the traffic into the network, the processing load is obviously commensurate with
IntServ sessions. Therefore, it does not scale well into large core networks. Its undeniable capability
to guarantee network performance and QoS levels by merely applying similar mechanisms to the ones
used by circuit-switching networks when they decide, for example, on call admission has earned it
friends for its abilities, and foes for delegating the advantages of packet switching to the proverbial
second seat.

DiffServ

A different approach is taken by RFC 2475, which defines the Differentiated Services (DiffServ) pro-
tocol. DiffServ is computationally a much more realistic approach than IntServ. Based on its wide-
scale acceptance by vendors, it seems to represent a promising and major attempt to implement an
acceptable base platform upon which elaborate QoS can run.

DiffServ uses the previously defined TOS bits. Upon them, it builds a series of aggregate flows.
We discussed multifield classification and the five-tuple lookup algorithm in previous chapters. The
result of the classification process is that each packet is assigned to one of many flows. This is done
by deriving a 6-bit value, which the DiffServ specification calls the DiffServ Code Point (DSCP). The
DSCP is written into the DS field of the packet header. More specifically, it is the TOS octet in the
IPv4 header. In the IPv6 header, it is the traffic class octet that composes the so-called Differentiated
Services (DS) field where traffic classes are encoded. At origination, a packet’s DS field can be marked
by a customer for whatever service is desired. It can also be left to the first DS-compliant router (a
leaf router in the routing tree) to decide how to modify the DS field based on the multifield classifi-
cation of the packet, which we covered in length in Chapter 12, “Search Engines,” and Chapter 13,
“Classification Coprocessors.” The scheme requires that all ordinary network-application flows will
be consolidated into one of these aggregate flows.
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The idea has merits from several angles. The number of bits in the DS field is very small—hence,
the number of classes is not astronomical. Therefore, the classification that happens in the core of the
network must occur based on behavior aggregates (BAs) and not based on individual flows as would
be expected on a campus or at the edge. Different levels of service will be assigned to these aggre-
gates before they enter the network. This is the scalability advantage that DiffServ offers. A packet
header also contains the DSCP field, which identifies the aggregates. The DSCP can also be passed
through a network junction (node) and be handed over to a subsequent router/switch. As a result, the
DiffServ protocol is quite flexible in the sense that it does not require that all possible nodes between
a source device and a destination device be DiffServ enabled.

This represents a serious advantage of DiffServ over IntServ. In order to run the protocol, all com-
putational requirements on packet flows are handled by the local network equipment before the traf-
fic is injected into the network. As a result, downstream routers will not be required to find out by
extensive real-time analysis on a per-packet basis what treatment should be applied to each packet.
Instead, routers use a series of per-hop behaviors (PHBs) to determine how to handle a specific flow.
The PHB is the externally observable behavior of a packet in a DS-compliant router. The IETF has
defined three major PHBs, which are in effect specific packet forwarding treatments:

• Assured Forwarding (AF) (RFC 2597) This PHB has four classes of traffic, which each have
three possible levels of drop-precedence.

• Expedited Forwarding (EF) (RFC 2598) Also known by some as virtual leased line service, it
provides capabilities of low latency, low jitter, no packet loss, and an assured level of guaranteed
bandwidth.

• Best Efforts Forwarding.

Note that DiffServ only defines the DS field and a series of PHBs. These do not represent multi-
ple levels of network services per se. The individual carrier or service provider is responsible for cre-
ating different levels of service and for deciding which combination of DS bits and PHBs reflect which
service and how they are mapped onto each other through tools that network equipment manufactur-
ers develop and put at the carriers’ disposal.

It should be emphasized that DiffServ, unlike IntServ, does not offer performance guarantees. Even
if packets are marked for preferential or priority treatment, it does not mean they will get it. For exam-
ple, a router downstream that may be experiencing local traffic congestion will not hesitate to drop
newly arriving packets no matter how they are marked. In addition, no QoS-related signaling provi-
sions are provided in the protocol and consequently applications, which might need to adapt their
behavior, depending on network status, do not have any means as to how go about implementing such
a solution. However, it remains a simpler protocol computationally and structurally, and it is becom-
ing a preferred method of working. Neither DiffServ nor IntServ can assign paths, though. The net-
work equipment that is responsible for the traffic origination must assume that flows will run on the
best-effort route that is assigned in the router regardless of priority.

Although the case of MPLS is a slight deviation from our subject, it is inside the same QoS realm.
We will obviously not discuss MPLS in detail here. For more information, refer to the respective lit-
erature at the end of the chapter. However, it is interesting that in MPLS, specific bits are marked onto
packets (or labeled), and explicit paths, which are called label-switched paths (LSPs), are assigned to
packet flows by the network routing or switching equipment. This assignment is accomplished by the
generation of corresponding packet labels. The appropriate label is contained in an MPLS header that
now becomes a prefix to each IP packet. Policies that span the range of possible network applications
must be established and then, based on these policies, labels are mapped/assigned to individual
applications.

We cannot help but notice the striking similarity with the process of assigning applications to
classes of traffic in a QoS realm as previously discussed. These labels will then be used by the label-
switched routers (LSRs) in the MPLS network. More specifically, it is based on the content of the
labels that the routers make on-the-fly and per-hop decisions as to how to appropriately forward each
packet to the next downstream router along the stipulated path that is associated with the specific label.
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Interestingly, MPLS can also work across network boundaries as long as network operators use the
same version of MPLS on their routers.

From a QoS standpoint, MPLS has the important advantage of directing packet flows along spe-
cific paths. It therefore allows the implementation of sophisticated traffic engineering and VPNs. This
consequently leads to the conclusion that the combination of MPLS with other protocols can poten-
tially provide a sophisticated QoS platform for the future. It is important to note that traffic engi-
neering, VPNs, and QoS are completely feasible without using MPLS, although MPLS is a convenient
platform upon which the implementation of such capabilities is greatly facilitated. However, be aware
of the potential impact that a VPN framework may have on the QoS mechanisms as there is no such
thing as a free lunch.

In fact, MPLS has recently started to play a major role in the evolving QoS debate. Although it has
been mostly regarded as a novel way for routing, the fundamental premise of MPLS is a good base
for the differentiated QoS treatment of traffic packets. For example, MPLS allows a single IP back-
bone to deliver legacy services such as ATM and frame relay by offering similar QoS features to the
ones previously offered by the other technologies. An example is IETF’s Martini draft1, which enables
MPLS to effectively behave like a layer 2 protocol as it allows IP, which is a layer 3 network proto-
col, to actually carry layer 2 protocol traffic such as frame relay, ATM Adaptation Layer 5 (AAL5),
or Ethernet while providing a SONET circuit emulation service across an MPLS network and yet to
preserve the same QoS guarantees usually associated with frame relay or other layer 2 
traffic protocols.

Several new approaches are available, including the following, but nothing has been officially 
standardized yet.

• RSVP can be used to ask MPLS routers downstream about available resources and, based on their
responses, an end-to-end MPLS tunnel can be configured.

• RSVP Traffic Engineering (RSVP-TE) can be used, which is a newer addition to the long list of 
possibilities.

• The Constraint-Based-Routing Label Distribution Protocol (CR-LDP) can be used, which is a 
variation/extension of LDP, which is currently widely used in MPLS networks.

• The experimental (EXP) bits in the MPLS shim header can be used. When taking such an approach,
which is based on EXP-inferred label-switched paths (E-LSPs), eight service classes can be sup-
ported based on the DiffServ standard.

QoS is a technologically wide and deep field involving several requirements, protocols, and pro-
posed solutions. Unfortunately, it has political and economical ramifications that are not immediately
apparent to the casual onlooker. When the prospect of implementing cross-border SLAs that require
monitoring, data collection, accounting, and policing even beyond country borders in some cases is
considered, the subject becomes sensitive. The differentiation of service providers based on the qual-
ity of their network also stands to lose from such a prospect, because in a realm with one global com-
mon QoS, one set of traffic classes would be applicable worldwide. It is natural that providers resist
embracing it.

On top of everything, the economics of network applications will dictate what is needed. Until
massive futuristic consumer applications such as multiuser online gaming (with tight latency or jitter
requirements), video on demand, or Internet support for wireless and mobile services become an
absolute necessity, this may actually take some time.

We will not divert our attention deeper into the QoS debate as it is a giant subject that is not pos-
sible to cover here. We will therefore now return to our main topic: traffic managers. Hopefully, this
discussion will explain how capable these chips must be in order to provide the network-processing
platform upon which NEVs should be able to implement and manage QoS.
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MAJOR TASKS AND ALGORITHMS

Based on this initial discussion, the significant tasks for traffic managers can be summarized as work
that continuously pertains to one of the following categories:

• Statistics gathering.

• Traffic policing.

• Traffic shaping.

• Scheduling.

• Queuing and buffer management.

• Congestion avoidance and packet dropping.

STATISTICS

Modern network equipment systematically gathers a wealth of statistics, which can be accumulated
at different levels of granularity from as fine as on a per-flow basis all the way to per-aggregates of
flow. Traffic statistics can be used for mundane tasks such as network diagnostics and management
and for more sophisticated goals such as billing purposes in a QoS realm. As mentioned in previous
chapters, statistics can be gathered in different ways. Most platforms are based on the idea of using
on-chip counters, which are incremented or decremented accordingly based on real-time traffic infor-
mation. If these counters overflow at some point, then a control plane CPU will usually have to be
interrupted for further assistance with appropriate code. Other systems offer different means for gath-
ering statistics with special interface ports for external support. Some platforms simply do not have
the traffic manager gather statistics by itself. In those cases, the network processor is designed to han-
dle this chore instead.

We should clarify that although the network processor can do most of the statistics keeping, only
the traffic manager will typically have visibility into congestion-related statistics and information.
Likewise, if packets need to be marked differently based on the congestion that they have encoun-
tered, then the traffic manager must be able to support this kind of functionality.

TRAFFIC MARKING, SHAPING, AND POLICING

In earlier chapters, we discussed the details of the classification realm, where packets are assigned to
specific flows. In the recent industry trend toward implementing SLAs, it is important that packet
flows be policed. More specifically, it is imperative to ensure that whatever is specified in the corre-
sponding SLA is what the flow is actually obtaining from the network. Packets are policed by being
appropriately marked. Policing can occur at the domain level (as with protocols such as DiffServ) or
they can be policed at the line-card level, usually at the ingress port.

This operation can be done by using several marking algorithms. The most common of these algo-
rithms is the three-color algorithm. For example, in the implementation of such an algorithm, a packet
that is within its flow’s SLA can be marked green and the traffic manager will forward it if and when
it is feasible. If the packet is out of the contract boundaries but it is still stipulated that the packet
should be forwarded if at all possible, then the traffic manager will mark it yellow. Unless traffic con-
gestion occurs, it will be forwarded when possible. Finally, a packet is marked red when it does not
conform to the contract that manages that specific flow and it will be discarded (dropped). As an exam-
ple, in the DiffServ AF PHB, a marking algorithm, such as the three-color approaches described by
either the two-rate three-color marker (trTCM) or single-rate three-color marker (srTCM), estab-
lishes the packet-discarding precedence.
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If policing is an ingress port task, then traffic shaping should be organized at the egress port. It is
capable of handling the potentially bursty nature of some traffic by ensuring that it is released into the
network in transmission rates that are commensurate with what is stipulated in the corresponding SLA.
Several algorithms are used in this realm based on whether the underlying network is packet based and
therefore connectionless (such as IP-based networks) or connection oriented (such as ATM). The token
bucket approach is usually taken on packet-based networks, whereas the leaky bucket (LB) approach
in its several variations is usually preferred on connection-oriented ATM-like networks.

The token bucket algorithm is based on the idea of a data structure called bucket where tokens are
stored. Tokens are produced and thrown into the bucket at a constant rate. Each packet that is for-
warded will consume one token. This means that the rate of consumption of the tokens is not constant
(but it is limited). If no more tokens are in the bucket, the next packet is delayed and therefore buffered,
and so will also be all subsequently arrived packets that await service/forwarding. This ensures that
the rate of packet forwarding is effectively controlled, as the token-generation rate imposes a limit.

However, if several tokens are inside the bucket, they can potentially be consumed very fast by
available packets. This means that through this approach, short bursts of traffic are possible and the
depth of the bucket determines the length of potential burstiness that can be envisioned in the under-
lying traffic. When the algorithm is conversely used to determine whether a packet will be buffered
or discarded, a straightforward scheme is used according to which if the accumulated tokens exceed
a certain threshold value, then the next packet will be dropped.

The LB algorithm is used in ATM-like networks especially when a constant rate agreement must
be enforced, as is the case with CBR traffic. For several reasons, ATM cells can arrive at a network
node at an uneven rate. Each arriving cell contributes a token into a leaky bucket. Therefore, tokens
are fed into the bucket at an uneven rate. Each departing cell will first need to consume a token from
the bucket. As tokens are produced in a constant rate of leakage by design, the transmitted traffic rate
is immediately pinned down to the desired level.

A creative variation of this algorithm is the dual leaky bucket (DLB) algorithm. With this algo-
rithm, one bucket decides the peak rate and the other one sets the mean rate. An example of its effi-
cient implementation is provided in Chapter 7, “Agere PayloadPlus™ Family of Network Processors.”

The principle of the dual bucket approach is also used in policing. Two good examples can be
found in RFC 2698 and RFC 2697, which define the trTCM and srTCM algorithms, respectively.

CONGESTION MANAGEMENT

We briefly mentioned the need to decide when to simply discard (drop) one or more packets. This rad-
ical decision is often the unfortunate result of a highly undesirable state called congestion. The rea-
sons for congestion can be numerous and unpredictable. Fundamental textbooks on network traffic
engineering discuss the problem in length. However, at a time when actual guarantees for specific lev-
els of QoS are required and paid for by the customer, it is important to have robust mechanisms that
ensure a fair approach toward making the decision of what gets dropped, when, and under what cir-
cumstances.

In fact, the traffic manager is responsible for action when it detects conditions of traffic conges-
tion. Two choices of systems engineering are available:

• Decelerate the traffic arriving from upstream (this is similar to backpressure signaling, which we
discussed in Chapter 14, “Switch Fabrics”).

• Start dropping some packets locally. Originally, the brute-force method was used and only the lat-
est arrivals were sacrificed. Because countless TCP sessions were by overwhelming proportions the
direct victim of such an approach, the industry soon moved to levels of choice that reflect some
choice based on a degree of fairness. The term fairness is not used here lightly or subjectively. Given
the limited resources of a network, what is fair for one party may be completely unfair for the oth-
ers. Therefore, some objectively defined criteria and agreed-upon techniques were required in order
for the industry to enable such a regime.
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One of the most sophisticated, but rarely used, techniques (similar to the approach taken by frame
relay in the early 1990s) is the Explicit Congestion Notification (ECN) technique. In ECN, the pack-
ets that suffer due to congestion are marked appropriately and forwarded to their destination. Upon
reception, the receiver notifies the sender of these packets, which slows down its transmission pace.
A similar method used in connection-oriented ATM networks is the Early Forward Congestion
Indication (EFCI).

The most common algorithms used to resolve traffic congestion are RED, WRED, and RED with
In and Out (RIO) in IP networks (which may or may not be connectionless if MPLS is involved), and
EPD and PPD in (connection-oriented) ATM and cell-based MPLS networks.

RED is a probabilistic method allowing the random discarding of packets as soon as the corre-
sponding queue is filled beyond a prespecified threshold. As shown in Figure 15.1, this probability
increases when packets fill the queue beyond the threshold level. The curve is composed of multiple
points that depend on the actual application realm and network requirements. With RED, the same
curve will be applicable if all the traffic has the same priority. If this is not the case and traffic has dif-
ferent priorities, then several RED curves will be applicable.

WRED curves do not have to be of the same geometric profile. For example, in Figure 15.2, we
show a completely different profile of more aggressive action in a WRED environment that could be
used between the profiles shown in Figures 15.1 and 15.2. If we follow a three-color marking exam-
ple like the one we described earlier in the chapter, green packets can be discarded based on the pro-
file shown in Figure 15.1 and yellow packets can be discarded based on the profile shown in Fig-
ure 15.2. Red packets can be simply dropped if no bandwidth is available. The ability to adapt thresh-
olds and drop rates to the various traffic classes makes WRED more interesting for today’s QoS needs
in advanced IP networks.
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FIGURE 15.1 The principle of a RED curve tying the probability of randomly discarding packets based on
how full a specific queue is
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FIGURE 15.2 In a WRED environment, multiple RED curves are created for traffic of different priorities. 
This aggressive curve could be combined with the RED curve shown in Figure 15.1 for packets that are marked
differently.
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If the two algorithms are compared, it is apparent that RED is designed to prevent the tail-drop,
which is caused by sudden bursts of traffic. Typical backbone routers can buffer up to around 100 ms
worth of traffic per port. If a more significant burst of traffic occurs, buffers will overfill and oncom-
ing packets will start to get dropped. For example, the phenomenon of tail-drop has affected TCP
flows by causing them to decrease their rates only for them to increase later. In many occasions, unde-
sirable oscillations can occur, which lead to instability in the application’s performance and the net-
work’s traffic utilization.

RIO is a variation of the RED technique, as shown in Figure 15.3. In this example, two traffic
classes are assumed. One is prioritized (also called In) and the other is nonprioritized (also called Out).
The packet-discarding probability for nonprioritized traffic lies between the buffered queue sizes Min
and Max, while the packet-discarding probability for prioritized traffic lies between the buffered
queue sizes Max and Total. If the queue size of Max is exceeded, all arriving nonprioritized traffic
packets will be dropped. The two shaded regions are called the Graduated Dropping Regions for the
two classes of traffic. If the buffer queue size of Total is exceeded, all traffic will be dropped simply
because buffers exhibit overflow.

The EPD and PPD algorithms are used in connection-oriented ATM networks, and their principle
of operation is similar to the RED algorithm. The main difference between the two is that PPD will
discard a complete frame from buffers. This frame may be composed of multiple cells, which will all
be dropped. EPD will only discard the cells that are buffered in excess of a crossed threshold level.
For example, when TCP/IP runs over ATM, with PPD, once a switch on the linking path between two
communicating parties drops an AAL5 cell, all subsequent AAL5 cells belonging on the same virtual
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circuit (VC) will also be dropped until the switch sees the end of the AAL packet. PPD helps the over-
all throughput. However, all cells that happened to be transmitted before the specific dropped cell
would definitely waste bandwidth.

With EPD, the idea is that the switch drops every cell belonging to the same IP datagram after its
port buffers exceed some predefined safe threshold, but before they actually overflow. In other words,
an IP datagram is dropped in its entirety, thereby preventing wasted bandwidth from the transmission
of dead cells as would be the case with PPD.2

Congestion avoidance and management involves a wide area of activities that monitor the avail-
able resources and match them to specific traffic profiles that are simply desirable or that must be
guaranteed by the network (in the case of SLAs). Based on multiple criteria, the network equipment
may have to drop some packets. This is one of the tasks the traffic manager is called to handle. For
example, the attainment of specific thresholds in some packet/flow queues may trigger the execution
of congestion avoidance routines. Also as mentioned earlier, if the policing module of the traffic man-
ager marks a packet with the appropriate color for demotion, then these packets stand a good chance
of being discarded given the appropriate conditions.
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FIGURE 15.3 The RIO curve approach as a discarding mechanism (an example with two classes of traffic)
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2. An interesting work on this subject is the paper by A. Romanow and S. Floyd, “Dynamics of TCP traffic over ATM 
Networks,” IEEE Journal on Selected Areas in Communications (May 1995). This is available on the Internet at
ftp://ftp.ee.lbl.gov/papers/tcp_atm.ps.
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SCHEDULING AND BUFFER MANAGEMENT

In several examples presented already in the book as well as in the four-level framework of hierar-
chical traffic management, as discussed earlier in this chapter, designers must manage queues that are
logically distinguishable and onto which usually flows are mapped. These streams of packets, cells,
or frames are stored (buffered) into some sort of memory and piled up in queuing structures that are
tapped in a systematic manner. This implies that these buffers must be properly managed in order to
ensure that the traffic shaping matches the overall context that we have described so far.

For example, consider a multiservice router (MSR) operating at an edge network that happens to
be connected upstream with an OC-192 link and downstream (through four different line cards) to
four OC-48 cards. Assume that each card contains 16 ports of Fast Ethernet (100 Mbps each) and that
each 100 Mbps Fast Ethernet carries 64 virtual ports with 10 active end-user systems per virtual port.
For now, forget about redundancy for reliability and availability. This router contains four OC-48
cards, one OC-192 card, a master control CPU card, and a switch fabric card, in addition to power
supply and extra backup features. Based on the figures shown here, there are 4�16�64�10 � 40,960
end users. If we assume 5 flows for each one of them, then we will have to manage 204,800 flows.
With one queue per flow, the buffer management issue starts becoming clear.

So how can we go about organizing the problem of managing these 204,800 active queues simul-
taneously? We can perform one of the following actions:

• Logically split the traffic management function and distribute it to meaningful functional modules
situated all over the MSR. More specifically, it can be distributed on the line cards as stand-
alone traffic managers or as traffic manager work to be performed by the corresponding network
processors.

• Concentrate it mostly on the central card (offering the OC-192 links in this case) that hierarchically
dominates the network, and use commensurate standalone traffic manager chips.

In order to combine the problem of traffic management with the switch fabric choice and config-
uration, we must decide in this example whether traffic management must occur only on the egress
(where traffic shaping usually occurs) or on both the ingress and egress sides of the switch fabric.
Some trade-offs must be considered before making this decision. Creating these queues on the ingress
side allows the implementation of virtual output queues (VOQs). Creating queues on the egress side
usually allows the mapping of queues to multiple ports or channels for physical interface. Traffic man-
agement implemented at the egress side takes care of shaping since packets are retained in buffers and
are only released to the network based on specific QoS and SLA criteria. These criteria are imple-
mented around two fundamental families of algorithms—algorithms that handle scheduling and buffer
management. The functions of queuing and scheduling are inter-related and are required for the
determination of transmission of packets as well as for ordering them based on some priority schemes.

First, we will mention that the various scheduling algorithms are classified into two broad cate-
gories: work-conserving schedulers and non-work-conserving schedulers (see for example, a nice
Motorola text at http://e-www.motorola.com/collatoral/SNDF2002_N302.pdf).

The distinction is straightforward, although the need for it may seem not obvious. A work-con-
serving scheduler is active when there are packets at hand, which are in need of its attention. The
corollary is that when there is no traffic present that requires service, the work-conserving scheduler
is not active. Conversely, a non-work-conserving scheduler may be inactive even if traffic is present
which requires its assistance. Although it is counterintuitive, this is a highly desired behavior as it
ultimately enables the deliberate instigation of some sense of predictability in the downstream traf-
fic. This is accomplished by a decrease in the size of needed output queue buffers as well as in the
delay jitter characterizing specific links. The reader may have noted that the function of the traffic
shaping shown earlier is an example of scheduling done by a non-work-conserving method.

Now we turn our attention to schedulers. A number of different scheduling algorithms are used in
network processing and it is not surprising that they are used in several areas, such as inside switch
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fabrics and in traffic managers. We will not discuss the internals or the merits of these algorithms,
which are thoroughly covered by other more specialized sources3 listed in the references.

Looking at data sheets of traffic manager chips requires a basic awareness of the most common
algorithms, at least by name. The priority queue (PQ) or strict priority (SP) scheduler is based on a
scheme of numerical priorities that are assigned to each queue. The highest-priority queue, which hap-
pens to contain packets, will always be serviced before others. This may sound good, but lower-pri-
ority queues may end up being starved as a side effect. The fair queuing (FQ) algorithm divides the
available bandwidth by the number of available flows. By making the fundamental assumption that
all flows occur in packets of the same size and by tackling one queue after the other in a sequential
fashion, a certain degree of perceived fairness can be attained. The round robin (RR) algorithm, as the
name implies, tackles one queue after the other by scheduling to transmit a certain amount of traffic
from each queue.

Some interesting variations of these schedulers include the weighted fair queuing (WFQ) algo-
rithm, which also takes into consideration the packet size that is associated with each flow. Based on
a weight factor associated with each queue, it reallocates bandwidth between flows, especially in cases
where significant differences in the packet size appear. A variant of WFQ is guaranteed bandwidth
WFQ (GB-WFQ), which provides guaranteed bandwidth (such as CBR traffic in ATM) for a series of
flows that are weighted differently. A similar approach is taken with a weighted variation of the RR
algorithm known as weighted round robin (WRR). Traffic is forwarded essentially in a sequential fash-
ion as in RR, but based on the weight assigned on each queue, some of these queues end up deliber-
ately and predictably being serviced more often.

To address the possible complaints of unfairness associated with weighted queues and to look after
the case of variable-length packet queues, two additional variations of the last two schedulers have
come to existence called deficit round robin (DRR) and deficit weighted round robin (DWRR). DRR
is aware of deficits accumulated in the frequency of visits of each queue at each round. It consistently
tries to make it up to deficient queues as time goes by revisiting the lower-weight ones slightly more
frequently for some periods of time. DWRR performs similar actions, but it also considers the size of
the packets, which can be of variable length for some queues (regardless of the queue’s weight).
Another variation of RR is frame-based deficit round robin (FB-DRR), which uses a configurable quan-
tum of service that ends up reducing the latency and jitter constraints associated with the DRR
algorithm.

In general, the RR approach and its variations, including WRR and DRR, suffer from some
unwanted side effects from traffic that is characterized by bursty or jittery time characteristics. As a
result, some network session may end up being served twice when others have not even been served
once.

However, some interesting proprietary variations are available, such as Agere’s patented smoothed-
deficit weighted round robin scheduling algorithm, which can reduce the service quantum to a single
minimum-sized packet and thereby interleave service to different sessions. This is an interesting way
to avoid this general RR drawback.

Another interesting, but less frequently used, approach is that of class-based queuing (CBQ),
where the principle is similar to the one found in WFQ. The difference is that weights are now
assigned to classes of traffic instead of being assigned to queues/flows. The effort of being fair is now
made in the mathematical space of traffic classes. For some applications (as in ATM networks), some
other algorithms are used. A good example is the Earliest Deadline First (EDF) scheduler, which
makes a decision based on the time when a packet must be injected into the network in order to be
able to meet stipulated latency specification requirements. Finally, as this is a very active domain of
research in the industry and academia, many other algorithms have been developed. These include
Delay Earliest Due Date (D-EDD), Jitter Earliest Due Date (J-EDD), Rate-Controlled Scheduling
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(RCS), and Generalized Processor Sharing (GPS). An exhaustive listing or description of these algo-
rithms is beyond the scope of our coverage. For more information, refer to literature on this topic.

As an example of real-life applicability, we will mention that although the DiffServ EF PHB does
not define the queuing algorithm, typical implementations are based on some combination of PQ and
WFQ. In the AF PHB, although RED is used as an example in the IETF’s RFC draft, WRED is pre-
ferred in practical systems. It is implemented in some combination with CBQ and WFQ scheduling.

In real-life designs, some system-design choices may require compensation through the engage-
ment of complementary techniques. For example, some systems implement PQ (SP scheduling), but
to avoid completely penalizing lower-priority traffic, they must do it in conjunction with some elab-
orate traffic policing that simultaneously controls the rate of the high-priority traffic coming in. These
numerous blends of complementary functionality and an algorithmic approach are usually character-
istics of product offerings through which network processing chip vendors or NEVs try to systemat-
ically differentiate their products.

We will now turn our attention to buffer management. The ultimate goal is to apply differentiated
treatment on packets as a scalable means of offering sophisticated and scalable QoS. As shown in
Figure 15.4, classified, policed, and shaped traffic is buffered (and therefore delayed in a controlled
manner) before it gets scheduled. The appropriate buffering levels are usually decided from the
corresponding SLA. Buffer management is a wide set of problems and techniques proposed as solu-
tions. More specifically, in buffer management, a designer should be concerned about three things:

• Delineating and sharing the available buffering memory among a potentially large number of
queues.

• A packet discard mechanism.

• A scheduling mechanism.
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FIGURE 15.4 Differentiated packet treatment for QoS based on buffer management.
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The last part is implemented upon the very same premises and techniques that we just discussed
in the section on schedulers. Buffer space is split up among the multiple flows/queues along many
approaches. The following three approaches are the most important:

• Complete partitioning This is one of the two extreme approaches. With it, each queue is simply
allocated a fixed amount of buffer space. This is easy to implement, but not very efficient as queues
that are starved for more space cannot access the potentially empty parts of the overall buffer mem-
ory space.

• Complete sharing This is the other extreme of the spectrum. Available buffer space is fully and
equally shared among the queues. No space is wasted as may be the case with complete partition-
ing, but the attained degree of fairness is a problem, as any queue essentially can eat up the buffer
space to the detriment of others.

• Sharing with minimum allocation Somewhere between the top two extreme approaches lies the
method of sharing with minimum allocation. This technique preallocates some fixed minimum
space to each and every queue. The rest is then fairly and equally shared among all the queues. It is
known for its simplicity, efficiency, and fairness.

Implementing QoS based on the differential treatment of packets is an interesting approach that
tries to juggle computational resources (processing cycles and memory) to make a slew of decisions
that allow a judicious compromise between the multiple and sometimes contradictory objectives of
throughput maximization, the isolation of flows, rate guarantees, and the allocation of excess net-
working resources with some commonly acceptable notion of fairness.

The use of a first-in first-out (FIFO) approach to manage buffers with some sense of fair discard-
ing of packets and of fair allocation of the excessive free headroom ends up being favorably compared
to a major per-flow scheduling method such as WFQ. Ideally, multiple buffer pools enable a better
traffic flow isolation. In terms of admissibility based on two criteria—namely, buffer availability and
transmission bandwidth availability—buffer management with FIFO matches WFQ in bandwidth
availability and outperforms WFQ in bandwidth availability. The technique is therefore more than
worthy of attention. Some interesting work has also been done where the two methods are combined
and concatenated. In other words, FIFO buffer management was followed by WFQ scheduling. Some
systems also take this idea of differentiated packet treatment and expand it to the entire QoS toolkit,
providing a more sophisticated approach to the problem.

TRAFFIC MANAGER CASE STUDIES

Multiple traffic manager chips have been discussed in the previous chapters at points where we pre-
sented the overall network-processing platform of each of the most prominent vendors in the indus-
try. Refer to the appropriate chapters for specific case studies.

SUMMARY

In this chapter, we discussed the fundamental workings of typical standalone traffic managers. We
reviewed fundamental concepts in QoS provisioning. We also discussed typical architectures of inter-
facing traffic managers with network processors and switch fabrics and, of course, algorithms used to
implement traffic policing, shaping, queuing, scheduling, buffer management, and congestion avoid-
ance. We also reviewed the major protocols involved in providing state-of-the-art QoS services in the
evolving high-speed networks. Case studies of traffic manager chips are provided in previous chap-
ters where specific vendor architectures have been discussed as network-processing platforms.
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The following are companies that provide technology documentation, white papers, and applica-
tion notes involving their own standalone traffic manager chips:

Agere (www.agere.com)

AMCC (www.amcc.com)

Azanda (www.azanda.com)

EZchip (www.ezchip.com)

Internet Machines (www.internetmachines.com)

Mindspeed (www.mindspeed.com)

Motorola (www.motorola.com)

Sandburst (www.sandburst.com)

Teradiant (www.teradiant.com)

Vitesse (www.vitesse.com)

Xelerated (www.xelerated.com)

ZettaCom (www.zettacom.com)

Bay Microsystems offers embedded traffic management right inside their network processor. See
www.baymicrosystems.com.

An excellent and biannually updated market and technology analysis report on traffic managers is
available from the Linley Group. See www.linleygroup.com/reports.html.
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CHAPTER 16

SYSTEMS ENGINEERING ISSUES

Throughout the book, we have not only discussed the most important components that comprise a net-
work-processing platform, but we have also looked at the specific offerings of most important ven-
dors in the field. We have examined network processors versus net application-specific integrated
circuits (Net ASICs) versus configurable, multiprocessor-based custom designed ASICs. We have also
discussed embedded or separate traffic managers, switch fabrics, search engines, content-addressable
memories (CAMs), classification processors, and storage network processors. Security coprocessors
are discussed in Chapter 17, “Security Coprocessors.”

However, some issues cannot be easily categorized into one single area of the field as they span
the entire problem space that designers of a multiservice router (MSR) confront. In this chapter, we
attempt to combine the most important of these issues to wrap up the information provided through-
out the book. We need to examine the soundness of the architectural choices made by the most impor-
tant vendors to get a clear idea of the result of using approach A as opposed to approach B.

However, architecture is not the only issue. Software must also be developed. This often involves
cost-related issues, which we will try to elucidate especially for newcomers into this field. Some expe-
rienced users may be surprised by our discussion as we will try to debunk some industry-wide myths.
When making decisions, a designer must consider both visible and hidden costs.

For the sake of convenience, we will also clarify various memory subsystem technologies that may
be encountered in this field. We will finish by taking a brief look at the feasibility and preliminary
design analysis of a real-life case of a complex product—an MSR/multiservice switch. We will exam-
ine the trade-offs, concerns, options, ramifications, and compromises of the design. This case study
also explains how to develop the conception of the architecture and subsequent systems design of such
a major project.

MEMORY SUBSYSTEMS

In our review of numerous platforms for network processing, we have encountered a very broad col-
lection of memory technologies that are involved in the overall picture. Different memory technologies
are engaged by switching/routing systems designers at different places in a system’s data paths and for
different purposes. The abbreviated trade names of the various technologies have rightfully been char-
acterized by one trade-journal editor as a “alphabet-soup of memory technologies.” The rationale for
the wide variety is that the system architect wants to maximize performance while minimizing cost. As
different needs require memories with different characteristics, functionality, and price/performance
ratios, an evolving palette of memory offerings must be assimilated continuously from multiple com-
peting vendors. They must be mapped properly to the exact system application in order for a wise deci-
sion to be made. This decision can significantly affect the ultimate product differentiation.
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We will provide a short overview of the most important memory technologies used in network-
processing systems. We do not intend to explain the basics of memory chip operations. More infor-
mation is available in the suggested references at the end of the chapter.

At a macroscopic level, the fundamental choices for data storage (whether it be packets, headers,
parameters, statistics, or traffic descriptors) are dynamic random access memory (DRAM) and static
RAM (SRAM), including all their variants. As junior engineering students learn early in school,
SRAM is fast and very expensive. DRAM is slower, but more difficult to design due to the periodic
need to refresh the retained data. It is also much less expensive to buy. Engineers have traditionally
thought about arranging these two families into a hierarchy of memories to maximize performance
while optimizing the cost budget. One result of such ingenuous approaches was the caching structure
of traditional computers.

A small pool of very expensive and very fast SRAM memory operates next to the central pro-
cessing unit (CPU) (often it is embedded right inside the CPU chip). This is where it retains a collec-
tion of the most recent and most frequently used blocks of data. Chances are the CPU will need one
of these memory blocks for its next operation. Therefore, it is convenient to have it in the cache as
opposed to initiating a memory input/output (I/O) cycle to go off-chip to the memory bank (usually
made with DRAM) to fetch it, which would stall the processor’s frantic pace of execution. This is
caused by the fact processors are much faster than memories. This principle has also been carried over
to multiple sophisticated levels of caching with the intention to maximize the performance while min-
imizing the cost.

We will not expand on these techniques here because traditional IT-computing environment mem-
ory hierarchies based on a cache approach do not work with network processors. Network processors
need to search unpredictable and deep trees because both the spatial and the temporal locality of net-
work traffic content data are radically different from traditional computer data. Therefore, designers
are forced to use other means to solve storage and buffering problems.

Memory measures of merit for the network-processing arena include the work done per pin, the
random cycle time, the capacity, the cost, the power, and the space.

DRAM Flavors

SDRAM stands for synchronous DRAM. Originally, DRAMs had been controlled asynchronously. A
processor would present an address to the DRAM, and it would activate the row and column strobe
signals. After waiting a certain amount of time called the access time, the DRAM either would pres-
ent the corresponding data at its output for the processor to read or would write new data provided
from the processor into that location, depending on the operation performed (read or write). However,
as processors became faster, memory caused a bottleneck and the processor was forced to wait for the
DRAM memory to deliver results. It was subjected to artificially inserted, idle, or wait states.
Meanwhile, the processor could do other useful things if it was free.

By making DRAM synchronous (and therefore activated by an external clock), latches were
inserted at the DRAM inputs and outputs so the information presented by a processor could be effec-
tively latched on until the DRAM core was able to handle it. In the meantime, the processor was free
to do something else. As soon as a read operation was finished, the results were latched on at the
DRAM output for the processor to return and read it at its convenience. Of course, other architectural
breakthroughs slowly appeared, such as the pipelining of addresses, the prefetching of data, and even
the use of multiple modes (such as page mode, burst mode, and so on). The judicious combination of
these breakthroughs has led to further improvements of DRAM performance in conjunction with the
ever-increasing performance of processors. Ample information on this evolution is provided in the
references at the end of this chapter.

Most network processors use DRAM in order to store packets. As packets must be written to and
then read from memory, the memory system bandwidth must be twice as fast as the intended wire-
speed performance. As a gauge of the cost and complexity involved, we will mention the obvious fact
that if a system must be able to buffer (for safety) the equivalent of one second of full-capacity wire-
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speed traffic, we can determine the amount of memory that should be available for a 2.5 Gbps link
(312.5MB), for a 10 Gbps link (1.25GB), and for a 40 Gbps link (5GB) system.

Using single data rate (SDR) SDRAM to transfer data at one edge of the clock signal is inexpen-
sive, but very few companies still use this approach. The industry has moved over to double data rate
(DDR) SDRAM memories. By transferring data on both edges of a clock signal (and therefore effec-
tively at twice the clock rate) and in a manner that is synchronous to a data source, DDR SDRAM
memories are more efficient for many applications.

For example, a DDR266 device with a clock frequency of 133 MHz has a peak data transfer 
rate of 266 Mbps or 2.1 GBps for a subsystem that is configured as a times-64 dual inline memory
module (DIMM). This feat is accomplished by utilizing a two-times-prefetch architecture where the
internal data bus is twice the width of the external data bus and data capture occurs twice per clock
cycle. To provide high-speed signal integrity, the DDR SDRAM utilizes a bidirectional data strobe
and interface with differential inputs and clocks.

DDR SDRAM has become the uncontested cost-per-bit capacity leader due to the vast PC market
that commands unprecedented volumes for these same components. DDR SDRAM is also better in
direct pin-count cost for the same I/O load than SDR SDRAM. Therefore, many companies use these
memories on their network-processing platform for packet storage.

Although in some applications, such as the OC-48 realm, SDRAM bandwidth is sufficient for
basic packet queuing at wire speed, some processors are characterized by small, embedded memory
banks and therefore architectural features are needed to give them an upper hand. An example of such
a processor is the IBM NP4GS3, which has less memory than AMCC, Agere, or even Motorola net-
work processors for the same segment. However, the difference is that IBM’s network processing unit
(NPU) can access seven different external memories and one internal memory for table storage. IBM’s
approach excels in cases where many table accesses are required despite its apparent memory-related
shortcomings.

In order to use DDR SDRAM and take advantage of the low cost of these memory components in
10 Gbps designs, the memory subsystem must be designed with a width of 128 bits for simplex 10
Gbps (OC-192) network processors and a width of 256 bits for full-duplex OC-192 network-pro-
cessing systems. This means that the pin count required on the network-processing chips (especially
if they are custom designed using cores, as shown in Chapter 10, “Alternative Approaches to Network
Processing: Net ASICs and Designing with IP Cores”) must be so high that the cost savings from mov-
ing to a commodity memory technology are completely wiped out by the spectacular increase in NPU
packaging costs. In other words, we must always keep things in perspective.

The alternative is Rambus™-conceived RDRAM. This technology provides a lot of work per pin
due to its significantly higher bandwidth. However, it requires its own signaling and coding and is
expensive (four to five times more than SDRAM). RDRAM was designed for a cache line of prod-
ucts. Therefore, when it comes down to network processing, it unfortunately suffers from poor ran-
dom cycle times, even when accessing the same bank of memory.

As the future of Rambus technology remains largely uncertain (since many companies are unhappy
about the level of licensing rates), this randomness of bank access creates a real concern for network-
processing designers. Some original equipment manufacturers (OEMs) are using it in their 2.5Gbps
solutions (such as Vitesse with IQ2000 and 2200), but others have not been as convinced. Intel has
also seemingly adopted it in their 10Gbps platform, although they have not yet adopted it in their
2.5Gbps solutions. This can be seen as a serious systems engineering shortcoming.

Rambus enables the use of many memory banks, but it is difficult to design a system around it
because of high-speed signals. It is neither trivial nor within everyone’s reach. Its shortcoming of the
bank-access randomness can be overcome if adequate time is spent developing and testing highly spe-
cialized system software to randomly store information in different banks every time. This would min-
imize the impact of the access randomness by spreading it on all Rambus I/O operations. The problem
with that approach is that a designer may be able to pick banks to write to cleverly, but he or she has
no control over which bank information must be read from.
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An interesting technology originally introduced by Toshiba and Fujitsu is fast cycle DRAM
(FCDRAM) (sometimes also called FCRAM). Samsung calls this technology network DRAM
(NDRAM). This technology is targeted for high-performance designs. Agere is using it heavily. It is
characterized by a 25-nanosecond random cycle time (depending on the generation of the chip) back
to back accessing the same bank. This means that FCDRAM is quite faster than DDR SDRAM and
offers lower random access times than RDRAM.

FCDRAM can be electrically compatible with DDR SDRAM provided the corresponding mem-
ory controller is embedded in the NPU. The two solutions have different bandwidths and prices, but
this can possibly lower the cost. Bay Microsystems and IBM are already doing it.

Another contender in the network-processing field is reduced latency DRAM (RLDRAM) from
Infineon and Micron. This technology is competing with FCDRAM in pin bandwidth and latency.

SRAM Flavors

The basic cost/performance context of SRAM was expressed in the beginning of this section. High-
speed contexts require SRAM, but designers do everything possible to minimize the use and the cost
of it. However, the expected wire-speed performance of specific platforms may dictate the use of
SRAM. For example, the Agere NPU 5 Gbps platform implies that the systems designer can get by
without using external SRAM. This is because of the embedded 2.5MB of on-chip SRAM. If the same
company’s technology is used for a 10Gbps system, external SRAM is definitely required. As a mem-
ory technology, SRAM is indispensable, especially in situations where a large number of queues or a
large number of linked lists must be traversed because of the multiple accesses needed to assemble
working lists. SRAM is also used to monitor performance.

A common player on the high-speed network-processing stage is the zero bus turnaround (ZBT)
synchronous SRAM (SSRAM). This high-speed SSRAM flavor is ideal for several current network-
ing applications. This is because ZBT SSRAM offers superb bus utilization as buses can be used with-
out any bus dead cycles, even when transitioning from read to write. In other words, ZBT SSRAMs
can read or write every clock cycle for 100 percent bus efficiency. Clocked up to 166 MHz, ZBT
SSRAM is available in chips of 2Mb to 18Mb. Micron, for example, seems to have a product roadmap
for up to 72Mb.

DDR SRAM and quadruple data rate (QDR) SRAM are also available. The DDR SRAM ap-
proach accommodates transfers through different ports, so if an application is balanced in read/write
operations, it turns out to be a superb choice. QDR SRAM was developed by Micron, Cypress, and
IDT, and is useful in 10Gbps designs. The data inputs and outputs are separate and operate simulta-
neously in QDR SRAM. Because each data bus operates on two words of data per clock cycle, each
bus effectively doubles its data rate. Since both of these buses operate in parallel, the QDR SRAM
component operates on four bus widths of data per clock cycle. Therefore, the minimum set on which
data can be operated on is two words—two times the component’s bus width. QDR is ideal for bal-
anced read/write workloads. Because of its common I/O, DDR is more pin efficient for workloads
where read operations dominate write operations.

Some competition to DDR SRAM appeared from a newcomer technology called Sigma SRAM in
early 2002. This technology was positioned mainly for the 5Gbps realm, but it does not seem to have
attracted significant market acceptance yet.

CAM

CAM is a peculiar, but very interesting, memory technology. We discussed CAM and its role exten-
sively in Chapter 12, “Search Engines,” and Chapter 13, “Classification Processors.” For more detailed
information on CAMs, refer to those two chapters. We will summarize some systems-related issues
and characteristics of this technology. The brute-force hardware lookups that CAMs provide require
incurring both a significant cost and performing a worst-case power consumption analysis. Many
CAM vendors do not happily provide their worst-case power needs. In a recent Communications
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Systems Design conference in 2002, one of the major CAM vendors privately disclosed that their 9Mb
CAM has a worst-case power consumption of 12 watts! Therefore, it is imperative that the correct
numbers are unearthed from CAM vendors.

For the systems designer, CAMs are attractive in the following situations:

• When large bit patterns must be recognized using classification based on multiple bit fields because
of the use of many pins. As we say in the industry, CAMs “do a lot of work per trip across the I/O
pins.” Approaches using conventional memory usually need to make many trips as the bit pattern
that will be classified gets bigger.

• When table sizes are small, as storing large lookup tables in CAMs is often prohibitive, as meas-
ured both in direct chip cost and power consumption needs.

• When lookup latency is critical. However, latency can often be easily hidden with the use of archi-
tectural features such as pipelining and threads, especially when threads are combined with mem-
ory-based approaches.

An important point must be made regarding the first one of these three premises. When search-
lookup-classification has to occur based on an algorithmic process such as a trie approach, then by
necessity fewer pins are going to be used for I/O. In addition, the number of cycles involved in the
execution of the algorithm significantly change the cost-performance comparison of a CAM versus
other memory technology approaches.

Other network processors such as EZchip’s, which enable the use of other memory technologies
instead of CAM, also offer an important cost incentive to the intended user.

NPU ARCHITECTURE ISSUES

Throughout this book, we have examined the different approaches taken by multiple vendors. We have
seen the scalar architectures offered by complex instruction set computer (CISC) and reduced instruc-
tion set computer (RISC) engines and where they fit. We discussed configurable computing, where
new instructions can be easily generated that are specific to the application. This can be a successful
means of dramatically enhancing the performance of such processors in the network-processing field.
Most network processors offer multiple engines that can process packets simultaneously.

Four different computing philosophies exist in this realm:

• One approach is the so-called run-to-completion processors. They essentially hand a packet over to
an engine among the multiple engines available in the chip. This engine will work on this specific
packet until its tasks are completed. The packet will then be forwarded to the next step in its intended
computation realm.

• Pipeline network processors with one or more packet engines per stage is another approach. Here
different engines work on different packets and run different code at the same time. The efficiency
of the pipeline is difficult to determine as bubbles are often created merely because some packets
will require a different amount of processing than others. As they are paraded down the pipeline
stages, they propagate these computational bubbles, which is a colloquial equivalent of unused or
idle resources temporarily and/or locally (in time and space).

• Large-scale multiprocessing using some sort of computational symmetry is a third approach. This
type of symmetric multiprocessor (SMP)-based parallel computing offers tremendous flexibility
because it allows the allocation of packets and tasks to individual computing resources as well as
determines the choice of software that will run on each of them. The downside of the SMP approach
is that it becomes extremely difficult to optimize the allocation of the tasks to resources in real time.
It also requires an elaborate fine-tuning of the runtime environment, which cannot be done every
single time the application changes or the software is upgraded. This defeats the purpose of using
network processors as a quicker way to the ever-evolving market for equipment vendors.
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• The simultaneous multithreading (SMT)1 approach is an interesting approach that seems to be a nat-
ural fit for the fast, heavy-load, and unpredictable network-processing field. It has not created net-
work-processing products yet, although it marginally tried. It has created mainstream computing
products as pushed by Intel and therefore deserves closer examination.

Of course, SMT should not be confused with the basic fundamental premise of multithreading that
is characteristic of network-processor offerings, which we have discussed throughout the book.
Computer architects devised multithreading as a way to hide from an application some undesirable
but unavoidable effects, such as memory latency. Several combinations of these basic approaches can
be made. For example, multiple parallel engines can be placed on each pipeline stage.

So although the architecture itself is very important and some vendors go out of their way to tout
the advantages their approach bestows to the contemplated applications, take a step back and look at
the overall picture before becoming emotionally involved with a specific choice.

SOFTWARE DEVELOPMENT ISSUES

Network-processing vendors approach the issue of software development from different angles. Aside
from the Net ASIC solutions, which essentially provide a fixed-functionality nonprogrammable
solution, the rest of the platforms require some sort of programming. This programming can be
straightforward, tedious, efficient, or painful for those who have to actually do the coding. Further
compounding the problem, the programming model offered by a specific network-processor platform
may facilitate or actually inhibit the efficient programming that has to occur. Some architectures are
pipelined, multithreaded, or even sequential. One software-engineering solution cannot be expected
to fit all possible requirements. In fact, the primary concern of mapping wire-speed-performance soft-
ware functionality onto the available computing resources (the number of computing engines and of
processing cycles) exists on all architectures. The issue then becomes how efficiently each of these
varied architectures handles the tasks at hand.

Let us look at the programming aspects of the problem. On one side of the spectrum, some ven-
dors have been essentially preoccupied by the hardware prowess of their design and may have neg-
lected and/or underestimated the need for superb software development tools to create and deliver
wire-speed, feature-rich software. Text-based or graphical user interface (GUI)-based software devel-
opment environments are available from different vendors trying to differentiate their offering. Other
vendors propose a high-level language compiler, usually C, which is sometimes an optimizing com-
piler but sometimes it is not. Other vendors expect the users to write massive code in RISC assembly
or, worse, in obscure NPU assembly. Neither case is ideal for full-fledged applications development.
Some vendors also use proprietary languages with a certain value proposition.

Many vendors who have been preoccupied with offering a superb hardware solution have even
resorted to offering free software implementation of protocols such as Internet Protocol version 4 and
6 (IPv4/IPv6) and Multiprotocol Label Switching (MPLS) to their customers to entice them with one-
stop shopping and a shortened time to market. In reality, this is usually the case from vendors whose
software environments are not up to par in functionality with their competition or whose program-
ming language compilers are not as efficient as those of others. As a result, vendors use this method
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1. SMT was heavily researched by Dr. Mario Nemirovsky at the University of California Santa Barbara. It was then used in net-
work processors he developed with Clearwater Networks. He is currently pursuing a similar approach with a new venture called
Kayamba Inc. (www.kayamba.com). From a computation standpoint, SMT technology has been dubbed hyperthreading by Intel
and recently introduced into products exhibiting improved performance throughput. An interesting article on this topic is
“Hyperthreading Technology Architecture and Microarchitecture” by Deborah T. Marr et al. in the Intel Technology Journal
Q1 (2002). This and other related papers can be also found online at www.intel.com/technology/hyperthread/
index.htm?iid5sr1hyper&. Another interesting article is “Intel’s Hyperthreading Takes Off” by Kevin Krewell in the
Microprocessor Report (December 2, 2002). It is also available online to paid subscribers at www.mdronline.com/
mpr/h/2002/1202/164801.html. SMT is researched at many schools with a notable example Prof. Susan Eggers’ and Prof. Hank
Levy’s group at the University of Washington. See www.cs.washington.edu/research/smt/index.html.
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to try to distract the customer’s attention away from the real issues. Think about it. Why would some-
one offer sophisticated network engineering software for free? Be careful when free code is offered,
regardless of which brand name is offering it.

Of course, typical customers look at this as an advantage if bug-free, tested, and validated soft-
ware is obtained for free from a highly reputable NPU vendor. However, it is only helpful in the short
term. Even if this solves some of the problems that the customer’s product Release-One team con-
fronts, the larger issue for the customer is how the Release-Two team will eventually deal with sub-
sequent problems associated with modifying code that the customer has not written in the first place.
Surprisingly, many companies do not think about this. This “hot potato” attitude is typical in some
younger organizations where product Release-One teams just want to get rid of the current problem.
This happens most often when teams are working under tremendous pressure to perform miracles
within a short amount of time and with a limited budget. These teams ultimately do not exhibit much
regard or sensitivity toward future problems down the line. However, this does not necessarily stem
from ill intentions. It is usually a quasi-invisible by-product of the context we just discussed.
Designers will pay a price for such a short-term advantage.

Let us look now at the problem from another angle—namely, how software can be mapped onto
the underlying network-processing architecture. We have seen that there are sequential and parallel
architectures. Parallel architectures exhibit some degrees of pipelining and multithreading. In order
to develop software that performs at wire speed, a designer must ensure that very few computing
cycles are wasted. Some software pertains to deciding what operations need to be performed on traf-
fic packets, whereas other software deals with actually performing specific operations on the traffic
packets.

If the programmer is required to have an intimate knowledge of the underlying NPU hardware
architecture in order to set the functional module allocation and the performance optimization of the
engines, then both of the following statements are true:

• This is very tedious work that few people can properly perform and that cannot be done on some
platforms.

• This task makes the developed software completely dependent on the underlying architecture.

Perfectly and deterministically mapping the actual software on the available computing resources
is not easy. In fact, it is only on rare occasions that it is possible. Therefore, it is not a discipline that
we can expect to apply across the board. Most network processors are based on a single-image pro-
gramming model, which completely shields the programmer from hardware intricacies and details.

This convenience results in immediate inefficiency as instruction cycles will be wasted at some point
sooner or later. Typically, this implies that all processing engines within network processors execute
the same code on various packets. Some pipelined designs offer several packet engines at each stage.
A designer can have the convenience of different pieces of code running on different packets at the
same time. This might bring up the subject of packet allocation to various computing resources. It is
generally not desirable to extend this granularity of program allocation to the average software engi-
neer for many reasons. Some applications might negate efficiency choices imposed by other programs.
At the same time, some code must change as applications and protocols are upgraded. Reallocating the
executable software modules usually becomes a continuous nightmare and a moving target.

The problem is even further compounded when the packet engines in network processors are
expected to be multithreaded. The packet engines handle a packet, and whenever the execution thread
stalls because something unforeseen occurs, such as a memory lookup or a longer calculation, the
packet engine swaps the entire context and starts working on another packet that might have been kept
aside temporarily. Meanwhile, the other packet is kept on hold pending the successful completion of
the previous operation that caused the stall. A lack of adequate multithreading capabilities has been a
major limitation of classical CISC/RISC processors in the network-processing field. SMT is an
intriguing and highly promising field of computer architecture in this context. As we discussed pre-
viously, it has been the subject of intense research and development as well as passionate debate.

If the customer’s organization must change software to reflect new functionality, techniques/
algorithms, and protocols (which is usually just a matter of time), the software must be massively
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rewritten. This is a nontrivial task. If the organization has to develop new product platforms on a new
NPU (as will be the case if the NPU vendor goes out of business), the prospect of having to rewrite
software is daunting. This shows why large network equipment vendors (NEVs) have on many occa-
sions been reluctant to adopt NPU chips from startups that might not be around in a couple of years.
This makes it nearly impossible to maintain and upgrade the equipment. The intertwined nature of so
many seemingly unrelated problems could trigger a domino-like effect, if software development,
which is their common denominator, is not addressed properly.

Yet another angle of looking at the problem is the choice of programming language. Writing low-
level RISC code for each RISC or very long instruction word (VLIW) pico/microengine is a theoret-
ical option, but it has little if any practical value. The task is daunting and the learning curve is very
steep since few software engineers are competent enough to perform the task in a reasonable amount
of time and with manageable quantities of bugs. As a result, the software will be difficult to maintain
and upgrade. This is a huge price to pay just for the pleasure of efficiently utilizing the processing
bandwidth of the NPU. On the other hand, high-level languages such as C/C��, which are widely
known and used by engineers in the industry, also offer a series of undesirable trade-offs.

Traditional CPU devices do not have the specialized network-related machine instructions to per-
form the tasks that are required of them. Enhancing the instruction set architecture to tackle wire-
speed requirements immediately hampers the chances that an optimizing compiler will be able to use
these extensions transparently without the user noticing. It seems that what is gained in programming
ease by abstracting away from the hardware is lost in performance-tuning capabilities of the applica-
tion software.

The following example illustrates the important ramifications of these issues. Before this chapter
went to press, IBM announced that its future generations of network processors will be based on
engines that take advantage of the PowerPC instruction set, because the proprietary instruction set
approach taken by the microengines in the NPUs such as the NP4GS3 seems to have run into a limited
time span compared to the widely accepted PowerPC platform for which so many tools are available.

The problem becomes even more interesting when we consider the use of functional or descrip-
tive languages in order to perform coding (such as Agere’s Functional Programming Language [FPL]
and Intel’s Network Classification Language [NCL]) as opposed to procedural languages such as
C/C��. However, we will not expand on this issue.2

SOFTWARE DEVELOPMENT COST

An interesting case (although not a very useful application from an everyday-life standpoint) is a
benchmark test that Purdue University Professor Douglas E. Comer has documented in the web site
that accompanies his network-processing book.3 He calls the application “bump-in-the-wire.” It is
essentially a program that looks at incoming packet traffic, detects packets addressed to port 80 by
properly parsing and classifying them, and then simply counts the number of packets that are
addressed to port 80.

On his book’s web site, Prof. Comer provides a mix of classical C code and assembly for the Intel
IXP1200 NPU platform. The web site also supplies other submissions that describe Agere’s imple-
mentation of the same application using FPL code. The numbers are quite telling. The Intel-based 
C-and-assembly language implementation requires 1,491 noncommented (counted using the NCSL
tool) lines of source, whereas the Agere FPL approach was implemented in 46 lines of code. Counting
lines of source code can often be an inaccurate task, so make sure oranges are compared with oranges.
The same software engineering tool (NCSL) must be used. It does not take a rocket scientist to see
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2. For more information, refer to the work covering this aspect in the white paper from Agere Systems “Network Processors
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FIGURE 16.1 Based on an actual implementation of DiffServ-based quality of serv-
ice (QoS) by programming in a functional language such as Agere’s FPL as opposed to
traditional procedural programming based on C, a scaling factor is calculated between
the two approaches. It allows one to extrapolate to a first order of approximation the
expected difference in program size when confronted with a new application, such as the
development of software for a network interface card (NIC) of a third-generation radio
network controller (RNC). The numbers still speak for themselves even if it is assumed
they may be off from reality by a wide margin. (Source: Agere Systems)
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that a flagrant ratio of 1:30 in lines of code needed for an application written by two different meth-
ods creates significant and direct development cost differentials between the two methods.

A major problem associated with the software development process is the estimation of how much
it costs to develop a solution with given resources within a certain amount of time and maintain it dur-
ing its useful lifetime. Budgets, manpower, and other resource planning are essential by-products of
such knowledge. This topic is extremely deep and we barely touch the surface here. Quite a few spe-
cialized references can be consulted for more information.4

Some very insightful ideas have been produced by proponents of functional (descriptive) lan-
guages (such as Agere’s FPL) as opposed to those basing their approach on procedural languages
(such as C and microengine assembly) and the quantified results are staggering. In fact, this turns out
to be the case to such an extent that even if some of the publicly disclosed numbers (which can be eas-
ily replicated if the publicly available models and assumptions are similarly used by anyone else) are
off by a wide percentage, the approach still deserves a meticulous consideration as it enables signif-
icant savings.5

4. Two classic textbooks on the subject are Software Engineering Economics by Barry W. Boehm, (Upper Saddle River, New
Jersey: Prentice-Hall, 1982) and Software Cost Estimation with COCOMO II by Barry W. Boehm et. al. (Upper Saddle River, New
Jersey: Prentice-Hall, 2000). Software engineers for 20� years have been using the COCOMO model to make financial decisions,
set project budgets and schedules, negotiate tradeoffs, plan to maintain or upgrade legacy products, and decide where to imple-
ment process improvement. The model accepts estimates of either logical lines of code or function points as the primary input
parameter. One can also find in this source an implementation of the COCOMO model as well as coverage of emerging extensions
such as object point data, application point data, the phase schedule and effort model (COPSEMO), dynamic COCOMO, the RAD
schedule estimation model (CORADMO), the commercial-off-the-shelf integration model (COCOTS), the quality estimation model
(COQUALMO), and the productivity estimation model (COPROMO).
5. Modeling results and methodology were discussed in depth between the originators of this work and the author
over a series of documented private communications in November 2002.
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Figure 16.2 illustrates some of the results. The figure examines a case of an IP/MPLS router design
that implements (in software) an impressive series of protocols. More specifically, it contains Ethernet
Digital Intel Xerox (DIX), 802.3, Asynchronous Transfer Mode (ATM) signaling to host, ATM oper-
ations, administration, and maintenance (OAM) handling, IPv4 over ATM Adaptation Layer Level 5
(AAL5), IPv6 over AAL5, Point-to-Point Protocol (PPP) over Packet over SONET (POS), virtual
local area network (VLAN), MPLS, IPv4 and IPv6 routing, Internet Control Message Protocol
(ICMP) to host, multicast, Differentiated Services (DiffServ), packet policing, and packet shaping.

As shown in Figure 16.2, the functional/descriptive coding approach has an intriguingly positive
impact on the development cost as opposed to the classic approach taken based on coding in languages
like C. These specific comparative results are based on the multiplicative scale factor inferred and cal-
culated from the work shown in Figure 16.1.

It is therefore important for companies and organizations that contemplate developing software on
network-processing platforms to realize that this is not business as usual, that it involves many hid-
den aspects, and that the choice of a platform and the choice of architecture it entails also implies sev-
eral advantages or disadvantages regarding the timely delivery of functional, wire-speed-performance
software that can be reused, upgraded, and maintained in the future. This cannot be stressed enough.

A REAL-LIFE CASE STUDY: DESIGN ISSUES WITH AN MSR

We will conclude this part of the book by looking at a complex real-life case where numerous choices
are available. The systems architect who designs a cutting-edge multiservice switch/router is con-
fronted with a dazzling array of different component technologies and possible configurations. We
attempt to provide a sample of the challenges involved and the trade-offs confronted. This process is
extremely complex so it is impossible to cover all the issues in a few pages, but we will try to give a
clear idea of what it takes to come up with such a product.
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FIGURE 16.2 IP/MPLS router-based NPU software development cost comparison when coding in descriptive lan-
guages such as Agere’s FPL, ASL, and classical procedural coding in C (Source: Agere Systems)
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Our analysis will serve as a tentative first iteration of a potential design. In a real-life environment,
many teams of people are involved in researching, documenting, discussing, and debating issues
before decisions are made. Here we will discuss a design process that is slightly less elaborate than
one that an entire engineering department would undertake. That process would be much more
involved than the traditional back-of-the-napkin designs for which some Silicon Valley or Greater
Boston-based networking companies have become famous.

Task Definition

Assume that our designer’s task is to build a complete, scalable, heavy-duty, edge network multi-
service switch/router that can handle multiple 1 Gigabit Ethernet connections downstream connect-
ing four IP LANs with a 10 Gigabit Ethernet uplink connection to some centrally located server. The
designer must also have the capability to switch and route traffic to and from these two realms and to
and from an OC-48c realm, which can be ATM and/or POS.

The desired system must be carrier-grade reliable, which implies the judicious redundancy of
cards, and scalable in a typical 19-inch rack environment. This means the designer will need to con-
sider choices that allow the original shelf to be upgraded eventually to a multishelf configuration with-
out losing track of power consumption or the number of available slots in a chassis. The system will
need to be upgradeable to potentially handle frame-relay and time-division multiplexing (TDM) traf-
fic if required in the future. Multiple protocols will need to be supported and executed inside the MSR.
We will also examine the most important task of eventually allocating these protocols on different
parts of the platform.

Design Approach

Assuming the visible and hidden cost issues that we discussed earlier in the chapter will eventually
be uncovered, our designer first looks at two broad categories of component choices: switch fabric
scalability and network-processing platform. We anticipate that this context with four distinct 1 GbE
LANs and a 10 GbE server connection in conjunction with double OC-48c traffic (ATM or POS) made
redundant starts from 40 Gbps switching bandwidth. It can eventually scale to a massive 640 Gbps
bandwidth with more 10 GbE server uplinks.

This fundamental requirement will steer the feasibility study team to choose an appropriate switch
fabric chipset. Let’s say that our designer is intrigued by Agere’s PI40 switch fabric’s scalability and
implementation robustness. While considering the switch fabric from this vendor as well as from oth-
ers, our designer also starts considering other systems-related issues. Let us assume that the team can-
not afford to design ASICs, due to a lack of budget, time, and/or skills. Off-the-shelf components need
to be chosen as much as possible.

The following items attract the designer’s attention:

• A powerful network-processing platform from the same vendor that offers the switch fabric (always
a good idea) for both the 1 GbE and the 10 GbE environments.

• The vendor’s ability to offer chips that can handle TDM and ATM/POS traffic.

• The convenience of integrated serialization/deserialization (serdes) for the switch interfaces.

• Physical (PHY) interface/Media Access Control (MAC) capabilities in-house with the main vendor,
which can provide one-stop shopping from an established vendor. All of these are very important
for our hard-pressed designer.

The designer also notices that Agere’s NPUs are based on a computational model and architecture
that allow the optimal allocation of tasks to threads running on multiple pipelines. Unfortunately, the
designer cannot count on getting application software for free like other vendors would try to propose
to entice our designer to their platform. However, the solidity of the development environment and
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tools, especially the software engineering environment/language/tools and context whose metrics
show undisputable economies of development, end up tilting the balance. Our designer tells his or her
colleagues that code won’t be written in plain vanilla C or C�� or even RISC assembly and that a
short training will be needed in FPL and other advanced development tooling to make things happen.
This seems like a reasonable investment with a significant and quantifiable return.

Preliminary Design Outlook

Requirements will need to be created for the various cards. If cards can be bought already with these
specs, all the better. That saves time and money. Otherwise, the corresponding card design proposed
by the vendor will have to be implemented by our designer’s organization in new and perhaps custom-
size cards that fit the available slots.

Our system designer first considers that the 19-inch rack will allow 12 slots. He or she can plug
one full-size card or two half-size cards in each slot. The midplane and the backplane issues must also
be considered as we advance in the conceptualization of the design. For proof-of-concept and evalu-
ation steps, a designer would ask the vendor (in this case, Agere) if they have something to propose
for this situation. The short answer is yes, because the company offers a full-fledged integrated devel-
opment environment called Festino, which could be of help. In reality, however, this is not an opti-
mized environment, and customers will want to ultimately design their own system that offers
configurations that are not possible or available with Festino. We will not deviate from our subject
though.

Our designer first considers a shelf with 12 slots. The designer starts doing a back-of-the-envelope
calculation of what is needed.

• Slot 1 will be dedicated to the system host CPU card. Two half-size cards are needed for carrier-
quality redundancy.

• Slot 2 will be the initial switch fabric card. Our designer first thinks of the 40 Gbps environment
and will consider the 640 Gbps (or Tbps) realm later in a variation of the design. The initial con-
cept will be based on the two PI-40SAX cards, which are half-size cards and can therefore be
inserted into the same slot. Again two cards of each are needed for redundancy.

• Slots 3 and 4 will be occupied by two (for redundancy) full-size 10 GbE cards for the uplink con-
nection to the server.

• Slots 5 and 6 will be dedicated to two double OC-48c cards for the ATM/POS connections.

• Slots 7 and 8 will each be devoted to two half-size cards. Each card will offer four 1 GbE connec-
tions for a total of eight 1 GbE ports per slot and for redundancy per shelf 16�1 GbE connections.

• This leaves slots 9 to 12 free for the moment.

• If necessary, the designer should expect to expand onto a new shelf.

We can consider using a frame-relay card or a TDM card as our system grows. Enough room is
available to position a multiple-card switch fabric solution that expands the available bandwidth
within one or even more than one shelf. The chassis will end up being quite overloaded so power per
square foot will be an issue. Our designer thinks about two system-cooling choices: an upper fan tray
on top that sucks the heat away from the space between the cards or a lower fan tray that blows the
air away from the boards. He or she sighs with temporary relief. Not a hurdle yet.

The designer’s attention turns now to the cards. First, the 4�1.25 GbE card must be able to pro-
vide connections occurring over copper or fiber optics. Both this card and the TADM line card (more
about it here below) will interface with the OC-48 card using either the Gigabit Media Independent
Interface (GMII) or the System Packet Interface 3 (SPI-3) interface, which are carried on the same set
of pins.
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The 10 GbE card represents a challenge for our designer, but not an insurmountable problem. This
is because in addition to the 10 Gigabit Ethernet NPU, Agere also provides their own in-house
Synchronous Optical Network (SONET) framer. However, they do not provide the data engine, so a
hybrid solution must be found.

Our designer does not need to tackle frame relay now, but he or she can think about solutions
offered by an alternative source because Agere currently does not have high-density High-level Data
Link Control (HDLC) framer and therefore cannot propose such a line card. This vendor could be
someone like PMC-Sierra.

Cards then need to be found or designed. The first point to check is obviously the fabric and NPU
vendor. Agere proposes multiple cards that could be used for this purpose but not all of them. The
issues can be summarized as follows.

The designer notices that the network-processor aspects of the OC-48c card and the 4�1.2 GbE
card are essentially identical; therefore, only the PHY/framer aspects of these cards will be different.

The designer notices that the OC-48 cards and the 4�1.25GbE cards are essentially identical as
they are implemented around Agere’s APP5xx chip; therefore, only the framer/PHY cards corre-
sponding to these different interfaces will be different. The key component of the OC-48 ATM/POS
framer/PHY card is Agere’s TADM. Several versions are available of the TADM (the current one is
the TADM042G5) and its sister-part the TDAT, which can handle the transmission convergence and
SONET/Synchronous Digital Hierarchy (SDH) terminal/add/drop multiplexing (ADM) functionality
in ring, linear, and mesh networks. The TADM can handle 155/622/2488 Mbps traffic and readily sup-
ports frame relay, POS, and ATM networks. It offers low-voltage differential signaling (LVDS) inter-
faces to the backplane for SONET/SDH ADM and crossconnect functions. It also supports either a
synchronous or asynchronous generic microprocessor interface for control purposes. The TDAT is
almost identical, but lacks the crossconnect and ADM functions of the full-featured TADM.

The TADM among other things provides for the encapsulation and de-encapsulation of packet and
ATM streams into and out of SONET/SDH payloads. It interfaces with the NPU-based line card using
standard Universal Test and Operations PHY Interface for ATM (UTOPIA) or enhanced UTOPIA
interfaces (the latter is dubbed PLATO by Agere). As shown in Figure 16.4, the TADM interfaces with
the fiber optics either directly to a transceiver, in the case of OC3/12 , or to a transponder, in the case
of OC-48. For OC-12, the TADM can talk directly to four separate transceivers, interfacing with them
with one differential pair for each optics at 622 MHz. For OC-3, the TADM can also talk directly to
four separate transceivers, interfacing to them with one differential pair for each optic at 155 MHz.
For OC-48, the TADM talks to the transponder with 16 bits operating at 155 MHz. The transponder
then performs the serializer/deserializer functionality to interface to the 2.488 GHz optics.

Incidentally, our switch/router designer has also noticed that MAC controllers are included in the
Agere NPUs, which ultimately makes the board design work much easier.

The approach just described based on the common use of the TADM chip is interesting as the com-
munication will have to be handled properly at the midplane. The midplane will end up probably look-
ing like a star and the backplane will need to contain serdes-based links that might run in the center
height of the cards. At the same time, it seems obvious to our designer that the main physical chal-
lenge with the system design around the switch fabric card(s) is not going to be something like the
power consumption per square foot that must be addressed for the line cards. Instead, the problem
will be physically managing the access to and from the switch fabric for so many I/O lines.

More specifically, in terms of requirements of the 4�1.25 GbE cards,

• The 4�1.25 Gbps PHY I/O card must be able to interface to the APP550-equipped line card through
connectors that attach to the midplane of the system platform. The I/O card probably should have a
6U form factor (233.35 mm�160 mm).

• A rough block diagram for the contemplated 4�1.25 Gbps PHY I/O card is provided in Figure 16.3.
Each block is roughly described as follows:

• It must be able to provide four physical medium dependent (PMD) interface connectors (RJ-45)
for connecting category 5 (CAT5) twisted-pair connections to a Gigabit Ethernet transceiver
through the appropriate magnetics.
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• It must provide four Gigabit Ethernet PHY layer devices with a GMII/GPCS, which corresponds
to layer 1 of the Open System Interface (OSI) model. The PHYs connect the media (CAT5 twisted-
pair) to the MAC layer, which corresponds to OSI layer 2.

• It must allow for the appropriate connection of the GMII/GPCS and management/mode select
interface signals to the backplane connector.

• It must provide programmable logic based on field-programmable gate array (FPGA) or custom-
programmable logic device (CPLD) for the interfacing of the PHY Hardware Control Interface
(HCI) to the local bus interface of the system platform.

• It must provide adequate logic analyzer connectivity as required for engineering debugging and/or
other system test verification purposes.

• It must accept power from the port card through the backplane connector.

• It must provide sufficient software and drivers as required for configuration and control of the
PHY I/O card.

• The PMD mentioned here can be four standard RJ-45 CAT5 twisted-pair connectors that interface
to four of the Intel LXT1000’s network interface through the appropriate magnetics.

• To support Gigabit Ethernet over copper twisted-pair connections, a very common choice is the Intel
LXT1000 Gigabit Ethernet Transceiver. It will be used in our case as the PHY interconnect device.
It supports Gigabit Ethernet over such a medium and supplies all of the PHY layer functions needed
to interface to a Gigabit Ethernet controller. Four LXT1000 devices are required to interface to the
four GMII interfaces of the Agere NPU. The physical connection between the LXT1000 and the
GMII interfaces will be made through an industry-standard very-high-density VHDM backplane
connector.
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FIGURE 16.3 The PHY structure of a possible 4�1.25 GbE card based on the Intel LXT1000 (Source: Agere
Systems)
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• The LXT1000 uses a single common network interface to support 1000BASE-T, 100BASE-TX,
and 10BASE-T. This physical interface consists of four signal pairs that are used for 1,000 Mbps
transmission. Each signal pair consists of two bidirectional signals that transmit and receive at the
same time.

• The LXT1000 also provides a Management Data Input/Output (MDIO) interface and an HCI. The
MDIO enables upper-layer devices to monitor and control the state of the LXT1000. The HCI will
be used to set configuration options and operational settings of the device. Both of these interfaces
will connect to the local bus FPGA interface through the VHDM backplane connector for local
control.

• The I/O card should provide a programmable logic device that will be used to interface the
LXT1000’s HCI interface to the Peripheral Computer Interconnect (PCI) local bus through the
VHDM connector. The programmable logic should contain registers that can be accessed for read-
ing or writing from over the PCI local bus. These registers will be used to control the signals asso-
ciated with the HCI.

• The appropriate devices must be foreseen in the final design to provide support for the required
clock frequencies, and the appropriate filtering and decoupling components must be used as
required.

This seems like a reasonable list of requirements regarding this specific board for the engineering
team, which must ultimately do the same thing for all components in the design and then put together
full-fledged specifications on their intended design before starting the design of the board. We don’t
exhaustively design a system here. We just want to give a sample of the effort and diligence needed
to come up with a system solution.
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FIGURE 16.4 The principle of multiple-source use of the TADM chip in the PHY interfacing with POS, ATM,
or frame relay, and OC-48 or slower links (Source: Agere Systems)
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Switch Fabric

The system designer next starts conceptualizing some deeper insights about how the project will
evolve. The vendor proposes the switch fabric PI-40SAX card that can be used in the lower configu-
ration of the MSR, but as the designer also has in his or her mind the follow-on generation of the prod-
uct, Agere’s PI40C and PI40X cards sound like the desired solution in an upgraded system.

As shown in the Agere technology chapters, the PI40X is the crossbar and PI40C is the scheduler
and queues. Agere has them as full-size cards in their Festino development environment, but our
designer is preoccupied with the optimization of the overall MSR design. Hence, a design decision is
tacitly made that the PI40X and PI40C cards will have to be redesigned to become half-size cards.
Agere offers the design guidelines, but the designer’s organization is responsible for producing its
own (half-size now) PI40X and PI40C cards. (We are using the same names here but we will not repeat
them from now on in this discussion; these names correspond to the in-house designed half-size switch
fabric cards.) These must be combined as two of each (for redundancy) in our chassis. The designer
must also keep in mind that the PI40X chips are unidirectional; hence, they must be doubled for a
duplex solution. Also, one PI40C can be combined with up to four PI40X fabric chips.

Assuming that the redesigned PI40X cards are half-size and that two of them can occupy one slot,
then in a combination of 1�5 (meaning one scheduler PI40C and four crossbars PI40X), three slots
must be filled—two that will individually contain two of the new half-size PI40X cards (for a total of
four PI40X) and one that contains a half-size PI40C card. This means that for redundancy and relia-
bility, this configuration must be doubled. Assume that six slots will be devoted to switch fabric cards.
If the physical arrangement of the serdes links can be handled properly, this can possibly be brought
down to five if the two redundant PI40C cards are combined in one slot of the chassis as half-size
cards.

If the switching bandwidth requirements for the future of our MSR dictate a fifth PI40X, then a
new PI40C will automatically be needed. However, the elegance of the approach starts appearing
when our designer visualizes a second shelf in the same rack, where 12 new slots are available. A new
PI40C or a combination of a PI40C and several PI40Xs can be put together in the new shelf and pro-
duce a multiple-shelf MSR that expands reliably and spectacularly.

It should also be clear that the switch fabric cards do not exhibit a density of integration that is
anywhere close to the one encountered on line cards. As a result, power density is not as big a con-
cern as it is with line cards.

This corroborates the designer’s initial hunch that the switch fabric cards could and should 
be redesigned in half-size to save slots. However, the limiting factor for the tight integration will 
be the physical management of the numerous links interfacing these multiple fabric cards with the
backplane.

System Considerations

The designer now starts thinking about the overall system functionality. First, he or she must consider
what happens on the line cards.

Line Cards Line cards will be based on Agere’s network processors. The APP550 will be used for
each line card, as shown in Figure 16.5, handling the 4�1 GbE or OC-48c ATM/POS links, whereas
the APP750NP/TM chipset will be used for the 10 GbE line cards. Depending on the applications that
are expected to run, a further level of granular thinking is required. For example, the APP5XX fam-
ily offers different NPU components optimizing the cost solution. The APP550 is a good choice 
for a full-fledged and varied MSR platform. The APP550TM offers the possibility of embedded 
segmentation and reassembly (SAR)ing and traffic management. The APP540 does not offer the pos-
sibility of extensive ATM reassembly functionality. Consequently, when the intended solution is
purely IP-packet driven, APP540 may be the right choice. Another related component, the APP530,
offers the possibility of cutting the performance speed in half, which may be the right choice for some
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traffic environments. Yet another member of this network-processing family, the APP520, supports
only two as opposed to four Gigabit Ethernet interfaces.

Traffic management will be handled by the native Agere traffic managers for each wire-speed
regime.

Some applications only require traffic management at the egress path. We will assume our system
is complicated enough to require traffic management at both the ingress and the egress paths. Our
designer therefore expects the 750TM on the 10 GbE cards on the ingress and egress paths. The same
principle is also expected with the 550 on the 4�1 GbE and OC-48c cards.

The line cards will be computationally split into three planes of computing realms: the data plane,
the control plane, and the management plane. Data plane tasks will be the responsibility of the net-
work processor. Signaling protocols and some parts of routing protocols such as Open Shortest Path
First (OSPF) and Border Gateway Protocol (BGP), or the signaling part of Private Network-to-
Network Interface (PNNI) (central routing will be reserved for the system host CPU card) will be
offloaded onto the line cards. They will all run on the control plane host CPU of each line card. The
management plane work will combine configuration management of the various chips on each line
card and exception processing. For our design, the control and management plane may be combined
on the same host CPU running on each line card.

The designer goes back and forth in this iterative process, mentally scanning issues locally (per
card) and globally (per system). Forward movement only occurs when consistency is ensured at both
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FIGURE 16.5 Typical 2.5 Gbps line card based on the APP550. The 10 GbE card of our case study would be struc-
tured along similar guidelines, but with the APP750 network processor and traffic manager chipset instead. (Source:
Agere Systems)
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levels of granularity in his or her thought process. An issue that has now popped up in his or her mind
is the granularity of the partitioning of each protocol among the host CPUs that are on the individual
line cards and the central system host CPU. A few years ago a pioneering approach taken by some
vendors involved distributing ATM protocols by putting the ATM signaling on the line cards.6 This
was a result of the poor performance during ATM call setup time. The same principle now can be used
in routing protocol partitioning. The designer starts allocating protocols from an inventory of desired
capabilities. Label distribution protocols such as MPLS or Resource Reservation Protocol (RSVP)
will be allowed to run on the line card.

IPv4 and IPv6 will obviously be running on the line cards so the NPUs can handle classification
and forwarding at wire speed. The routing tables will also be loaded into local memory residing on
each line card; however, the routing table will be calculated centrally on the host CPU card. This is
done because the centralized execution of the Dijkstra7 algorithm, for example, or the policy aspects
of protocols such as BGP, especially for a large network, will need to run on the host CPU card (here
at slot 1). From this card, an updated copy will be periodically downloaded to the line cards for local
use by the NPUs. These thoughts are crossing the designer’s mind for a reason; they will soon guide
him or her toward deciding the computational horsepower that must be made available on each and
every card. The designer will then need to budget instructions per second and memory requirements
to avoid any surprises. For the moment, however, he or she is just working through the problem.

A major concern is how to handle exceptions. For example, if a bizarre application such as mas-
sive and pervasive virus scanning is imposed onto the designer, the designer has two choices. Through
its classification capabilities, the NPU will detect something unusual on the packet it processes. It will
either flag that to the line card’s control CPU for processing, which will realize that it has to be for-
warded to the system CPU for the virus scanning, or (preferably) it will directly forward such a packet
to the host CPU where the virus-scanning code is executed. The downside of this approach is that the
designer does not know how often the system CPU will be interrupted by such requests.

If it is not virus scanning and say for instance that a denial of service attack is detected instead,
the designer cannot afford to bring down the entire MSR with such a potential outburst of internal
traffic. The application will therefore tell the designer whether it is acceptable to interrupt the system
CPU often or whether it is preferable to provide the design with a dedicated coprocessor card (in
another slot) where this type of processing can occur without penalizing the host CPU.

An example of such requirements could be some sophisticated firewall functionality. Typical fire-
wall functionality can be described as a series of address and port-based filters that are expected to
run on the NPU at each line card. Access control lists (ACLs) can be easily maintained by the NPU.
However, more sophisticated firewalls adopt the stateful inspection method pioneered by CheckPoint
Software. In such an environment, lots of session-related information must be retained in special (and
numerous) data structures. Remember that Agere’s approach is not optimized for the proper termina-
tion (including the setup and tear down) of TCP sessions. If high-speed stateful inspection function-
ality is desired, then not that many choices are available. Parts of the stateful-inspection-based
application code will therefore have to run on a beefed-up system host CPU card or on a firewall-
coprocessor card in a separate slot.

Another point of interest is Network Address Translation (NAT), which should run on the line cards
at least partially. As soon as the start of an NAT session is detected by the NPU, it is flagged to the
host CPU on the line card, which steps in and sets it up properly. An alternative is to have the trans-
lation table locally stored. The NPU would not only perform the classification, but it would also han-
dle the address-bit-fields swapping and the forwarding.

It is also interesting to note that the network processor can handle all Ethernet address learning
and aging on the wire-speed path, if necessary, as a design option. This can also be done on a control
plane CPU. The former can be accomplished by stealing cycles from the engine that does the policing.

Similar considerations will have to be entertained mentally if other applications are required such
as address learning based on multiple virtual private networks (VPNs) spanning more than one port.
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Depending on the number and size of the VPNs as well as on the security policies in place, different
approaches can be taken. It could be argued that the entire chassis is the customer’s so it is safe to
leave everything on the software to do and wherever it could run. Others may say that in a specific
customer context (a sensitive government agency), the MSR software cannot be allowed to propagate
addresses of new VPN members to members of other VPNs that share physical ports. On the other
hand, even if this is not the case, the address learning is a minor computational chore that can be seen
as a minute nuisance when the network is operating at steady state. Therefore, it can always be safely
sent to the system CPU. The counterargument states that the problem is acute precisely when the net-
work starts up with many users at the same time. This dilemma cannot be avoided, so for our purposes
we will assume that the designer can live with the idea that his or her prospective users will be com-
ing to work at random times during the day; therefore, this is not an issue. However, this shows how
seemingly mundane events can drastically affect the design of such a complex product.

In terms of network management, an approach such as using the Simple Network Management
Protocol (SNMP) will be required. Locally produced statistics memory should be accessible by GET
commands to the centralized network manager that runs on the system CPU card. Things can run
either by periodic polling of the line cards or in some cases by exception. In the latter case, an SNMP
trap is thrown when a special event occurs and the manager catches it for logging and reporting and
perhaps subsequent actions.

The last issue of interest to our designer is that the OC-48c card proposed by Agere can be con-
figured with two different approaches in mind: to optimize performance or to optimize equipment
density.

On the OC-48 card, two NPUs will be needed in the highest-performance setting—one for each
direction (ingress and egress). Something such as Agere’s VPP chip can also be placed at the coproces-
sor port to handle AAL2 traffic in a very dense configuration, if necessary. If security is needed, the
possibility of a security coprocessor configuration must be evaluated.

System CPU Card The level of expected activity on the system CPU card tells our designer to ori-
ent his or her attention toward candidate boards with multiple CPUs. In addition to a native PowerPC,
processors are available such as QED from PMC that embed multiple MIPS cores, which can handle
many of these side chores that line cards conveniently offload onto the system card. To achieve the
level of activity the designer expects on the host CPU where the routing protocols such as BGP and
OSPF run usually requires a PowerPC of the caliber of a 7410. PMC is an example of a vendor that
offers a multitude of processors that can fit on such cards. They will connect to the rest of the switch
through the Compact PCI over the midplane, which also handles serdes-based connections between
the cards.

The host CPU will run embedded Linux or VxWorks as the operating system. The control CPU
on the line cards usually runs VxWorks as the operating system, although Linux is sometimes chosen
on the line cards as well. It often becomes more of an issue about the development tools and envi-
ronment that is available to design, package, and deliver a solution. However, for the moment, our
designer does not need to make up his or her mind fully.

Control Plane CPUs on Line Cards The load of the 10 GbE cards will definitely justify something
like a 7410 PowerPC as host CPU, whereas a PowerQUICC 3 class CPU or maybe a PowerPC 750
would usually be expected for the other lower-speed line cards (4�1 GbE and OC-48c). Incidentally,
our designer realizes that such a PowerQUICC 2 or 3 CPU should also be placed ideally (but not nec-
essarily) on the switch fabric cards to make a more complete design with diagnostics and handle front-
panel light-emitting diodes (LEDs).

Resources Budget

The designer then starts adding up the available resources needed. Using the Agere simulator from
the Festino development environment, the main data plane applications will be written, tested, simu-
lated, and evaluated at typical and worst-case scenarios of traffic based on the available modeling.
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Then the number of instructions that must be executed per second, as well as instruction memory and
data memory requirements, will be tabulated for each line card’s computational needs on the ingress
and egress paths, depending on whether one or two NPUs are used on each card. The findings should
corroborate his or her initial choices for CPU at each instance, or the choice will have to be revised.

The process will continue on the control plane CPU as well as on the system CPU based on the
development tools that are available by the operating system of choice, such as Linux or VxWorks. A
similar budget for control plane CPUs will be compiled and the appropriate choices of CPU and mem-
ory locally on each card will be settled upon.

This has been a very brief overview of how to tackle the issues of designing real-life equipment.
For obvious reasons, we have not been able to expand on the task in depth, but the intention was to
combine concepts and notions that we covered in numerous chapters into a meaningful stream of rea-
soning that shows how design architects try to squeeze system choices into the constraints imposed
upon them by specification and product requirements.

SUMMARY

In this chapter, we tried to fill the most important gaps of material that remained uncovered in the rest
of the book. We discussed memory technologies and looked deeper into software development costs.
We uncovered some very important software ownership issues and discussed the costs and modeling
of productivity to develop this software. We concluded by skimming the surface of a large-scale real-
life design challenge—namely, that of an MSR—in order to show the magnitude and the complexity
of the problem. We also put ideas and concepts into perspective, especially for newcomers in the field.

SUGGESTED REFERENCES

Memory manufacturer web sites have extensive literature, technical notes, and articles on the various
memory technologies. These documents describe their functionality, principles of operation, systems
design, and trade-offs. The following are a few good examples:

www.micron.com

www.fujitsu.com

www.infineon.com

www.rambus.com

www.samsung.com

www.toshiba.com

www.idt.com

A very good reference on numerous fundamental memory technologies is the following textbook:

Betty Prince, High Performance Memories: New Architecture DRAMs and SRAMs Evolution and Function, revised
updated edition (New York: John Wiley, 1999).

Dr. Betty Prince’s company Memory Strategies International is also a great source for more up-
to-date memory-related advice, reference publications and material, and consulting. The company’s
web site is www.memorystrategies.com.

She provides a glimpse into the near future of memory technologies in her most recent book
Emerging Memories: Technologies and Trends (Dordrecht, The Netherlands: Kluwer Academic
Publishers, 2002).

RLDRAM is discussed in depth at www.rldram.com.
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Regarding components mentioned in the MSR case study, pertinent data sheets and white papers
can be found at Agere Microsystems’ web site at www.agere.com.

An interesting article summarizing some issues regarding Network Processor architectures 
is “Steering Your Way Through Net Processor Architectures,” by Scott Matheson from Silicon 
Access Networks, CommsDesign.com, July 24, 2002. Also availabe online at www.commsdesign.com/
story/OEG20020724S0079.

A very interesting article comparing Reduced Latency DRAM with CAM and SRAM in network
processing contexts is: “RLDRAMs vs. CAMs/SRAMs, Part I” by Infineon's Eugene Chang,
Bill Lu and Felix Markhovsky, CommsDesign.com, June 3, 2003, also available on line 
at http://www.commsdesign.com/design_corner/OEG20030603S0007. The second part, “RLDRAM
vs. CAMs/SRAMs: Part 2,” can be found online at http://www.commsdesign.com/design_corner/
OEG20030609S0089.
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CHAPTER 17

SECURITY COPROCESSORS

NOTE

The subject of security coprocessors is directly related to the book’s main theme of network proces-
sors. It would be an obvious omission if they were not somehow included in our coverage. In writing
this chapter, our dilemma was how much we could assume that readers had an adequate cryptographic
background that would enable them to understand the fundamental concepts of this chapter. After long
thought and consultation with people in the industry, we decided that it would be better to include in
this chapter some of the basic cryptography knowledge that is required. Therefore, this chapter is more
or less self-contained for the nonspecialist reader. If the reader only wants to understand systems
issues because cryptography may already be a familiar field, the chapter’s introductory sections can
be skipped. If the reader has no interest whatsoever in security, this chapter can be seen as an add-on
at the end of the main book core. Some readers may not need it. However, others who do need to
understand both the cryptography basics and the security coprocessor functionality and trade-offs in
a network processing unit (NPU) system will find a lot of interesting information in this extensive
chapter.

INTRODUCTION

Although the security of communications was originally a problem of government (predominantly
of the military and intelligence) and of a few privileged powerful organizations/corporations that could
afford expensive technology-based protection mechanisms, it is now one of the major concerns among
individuals and corporations. Information-related crimes of all sorts are reported daily.

Identifying network and device vulnerabilities is a daily event and occurrences increase exponen-
tially. Incidents of major fraud, petty theft, the misappropriation of identities, denial of service, virus
infection, worm spreading, and even access to sensitive material about people, companies, and
processes have skyrocketed. For example, corporate espionage is no longer a taboo expression, and
organized crime in many nations is keeping its eyes on potentially vulnerable and lucrative targets.
Unfortunately, the context has not escaped the attention of terrorist groups worldwide who are always
out looking for opportunities to wreak havoc against their enemy societies by harming or destroying
computer-based infrastructures and utility networks, thereby disrupting people’s day-to-day lives. This
can be done from a distance through the illicit use of networks.

Unfortunately, the techniques of committing these illicit acts have become widely known and appli-
cable. Essentially anyone can find tutorials and recipes for this type of action either on the Internet, in
easily available books/publications, and even at quasi-legitimate conventions where computer and net-
work hackers gather to boast about their accomplishments. People do not need Ph.D.s in electrical
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engineering or computer science anymore to commit such cybercrimes. In many cases, high-school
students with laptops are able to disrupt organizations and perpetrate these crimes. What is more wor-
risome in the current networks that offer global connectivity is that these crimes can happen in the pri-
vacy of someone’s enterprise, office, or even home even though the perpetrator may have initiated the
action from the other side of the planet. Because of the ease with which this trend has been spreading,
the general consensus is that corporate (and often private) communications must be secured.

However, cybercrime does not just come from the outside. It can just as likely originate from inside
the walls of an enterprise or organization through several ways and for several reasons, such as revenge
from disgruntled employees. It can also occur through unauthorized access to privileged corporate
information that can be used illegally to commit securities fraud, insider trading, and so on. Whether
it is file downloading between sites or files exchanged between workstations on the same local area
network (LAN), whether it is electronic purchasing or bill payment where a person wants to guaran-
tee the confidentiality of the session, or whether it is corporate e-mail (or, more recently, full-fledged
telephone conversations and videoconferencing), users want to rely on security.

However, confidentiality is only one aspect of the problem. Beyond matters of personal or corpo-
rate security, communications security is also mandatory in ordinary contexts. Users have become
more mobile over the last decade and want easy access anywhere and anytime to published, audio,
and/or video content. Companies can only safely distribute this material from their servers if the
requesting user can be properly authenticated as a legitimate user with an account in good standing.

This overall context has therefore created a ubiquitous and ever-increasing need for communica-
tions security through the encryption of the transmitted content and the authentication of the parties
involved, whether individuals are talking over the telephone, software programs are running on dif-
ferent computers that communicate with each other, or users are attempting to access a web site in
order to carry out a legitimate electronic-purchase or payment transaction over the Internet.

Controlled access to specific resources, confidentiality, the authentication of communicating par-
ties, and the nonrepudiation of financial transactions are all based on structured and often industry-
wide standardized use of cryptographic technologies.

Robust cryptography in its multiple forms remains a set of heavily computation-intensive
processes whose aggregate load only increases exponentially in some networked devices if the high
speeds of today’s networks and the plethora of communication sessions that exchange packets/frames
are considered. For example, securing communications from a PC on an Ethernet does not imply the
same load of computations in real time as securing hundreds or thousands of simultaneous sessions
involving millions of packets entering and leaving a corporate LAN/wide area network (WAN) gate-
way. Because each one of these unrelated sessions is simultaneously encrypted with different keys
under different algorithms and techniques, the security-related processing load can become stagger-
ing. It can easily drive the most powerful processors to their knees.

In this chapter, we will show how the fundamental technologies that enable communications secu-
rity in the high-speed global network are implemented inside families of powerful and specialized
chips that offload the computational workload that is associated with real-time encryption and authen-
tication from ordinary network processors. These chips are collectively known in the industry as secu-
rity coprocessors.

SECURE COMMUNICATIONS APPLICATIONS 
IN NETWORK PROCESSING

Many communication sessions involve material that has already been secured offline prior to its trans-
mission. A typical example would be encrypting the content of a computer file or e-mail message and
then transmitting it over an insecure link. The methods and techniques used for this purpose are also
based on cryptography. As a result, they are intimately, but not completely, related to the realm
described here. We will concentrate on communications security rather than information security. 
We will also limit our discussion to the high-speed processing environment of modern and future 
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networks. We will discuss the applicability on network-attached devices, which support multiple par-
allel high-speed sessions over an insecure network such as the Internet or the WAN.

Three fundamental types of network applications require security-related processing:

• Virtual private networks (VPNs).

• Electronic transactions.

• Wireless communications.

VPNs

VPN is a generic term that describes several unrelated technologies and approaches toward building
and managing a communication network between computers. This is done in a way that the users of
the VPN have the continuous impression of communicating with each other over a closed, private,
and secure network that is inaccessible to unauthorized outsiders. The word impression is a key term
here as a VPN is not deployed over physically private links; it is deployed over a public and insecure
network instead.

VPNs are created in two fundamental ways:

• By using network-induced methodologies and techniques such as the Multiprotocol Label Switching
(MPLS) approach, where sets of labels are created for specific VPNs that the carrier sets up and
manages for the customer. These labels are attached to all legitimate packets. On their way to a des-
tination, these packets are switched and routed appropriately by the core network MPLS-enabled
routers/switches in such a way that no physical access is given to packets originating from and des-
tined to users who do not belong to a specific VPN.

• By applying cryptographic techniques, especially encryption and authentication, on the payload of
packets. A security context is created that allows the generation of packets, which can still be routed
by the core network like all regular packets (as their address headers are not encrypted and there-
fore are comprehensible by the routers), but whose payload is encrypted in such a way that only the
intended recipient can decipher and therefore recover the original payload content.

The first technique among these two does not require cryptographic processing because the net-
work infrastructure and the routers physically segregate access to and from the packets, as well as to
and from the network nodes, according to strict policy and membership tables. These must be main-
tained for each VPN. This is an added-value function that carriers can offer to customers. The analy-
sis of the potential vulnerabilities of MPLS routers or MPLS-based VPN schemes has nothing to do
with our discussion; this topic would fall under the category of information security so we will not
elaborate on it here. The second of these two techniques, however, does fall squarely on our lap. We
discuss it in the section “IPsec” later in the chapter.

Conducting Secure Electronic Transactions

With the arrival of established cryptographic techniques, several new applications such as e-commerce
have appeared during the last decade. People can now safely engage in actual financial transactions
with a web-based server remotely over the Internet (or a similar network) using a bidirectionally
authenticated and fully encrypted link that is set up for this purpose between the server and a work-
station/PC. Browsing software allows the easy use of the link. The user obtains remote access to
menus, services, or the possibility of safe and discrete data entry into online forms as if business was
being directly conducted at a brokerage house or a bank. People can now safely make payments or
transfer funds from one account to another. They can browse online catalogs before they decide what
to purchase securely on the spot. They can also download sensitive material that is available online
with restricted access without having to establish a special VPN first. Secure Socket Layer (SSL) has
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become the de facto standard protocol that devices and servers use to set up secure sessions that enable
this type of secure communications environment.

Wireless Security

First it was the laptop, then it was the cellular phone, and now it is the personal digital assistant
(PDA). Mobile users can connect to the world through a wireless carrier or through a wireless LAN
(WLAN) or through a Wi-Fi hotspot on which they may be connected. They are then connected to the
rest of the global network through some gateway. The expanded capabilities of mobile computing
have now blurred the boundaries between the types of functionality available. People can access the
global network from almost anywhere. Who could believe 10 years ago that cellular phones would be
embedded with a color display and the capability of playing real-time video? The issues of security
originally encountered by computers have now become everyday issues for all communicating
devices. Secure access to servers, to the Internet for browsing or for conducting transactions is a key
requirement for mobile devices that communicate through wireless links. From a network-processing
standpoint, three fundamental types of security issues appear in this environment:

• End devices perform session authentication and, in some cases, encrypt and decrypt the two-way
air interface, such as the part of the link between the wireless device and the base transceiver or
repeater of the WLAN. The rest of the link to the other party with whom one communicates essen-
tially remains insecure unbeknownst to the average user. This type of security (when available or
when activated) is relatively low in computational requirements. It is easily handled by the embed-
ded logic or software in the end device (a handset, laptop, and so on).

• Mobile devices that need to engage in secure browsing and electronic transactions are often based
on the Wireless Application Protocol (WAP), which uses a security architecture called Wireless
Transport Layer Security (WTLS) that is reminiscent of SSL. Figure 17.1 illustrates the structure.
The WAP gateway between the mobile device and the server is needed to translate the transmitted
web page content from the elaborate land-based Hypertext Transfer Protocol (HTTP) to the lean
world of wireless microbrowsers where small displays cannot be clogged with undesirable banner-
like advertisements. However, the same gateway that enables the Internet browsing in the first place
is also the Achilles heel of the solution in terms of security. Although the two links are secured using
encryption, uplink WTLS-based traffic coming from the mobile device over the air interface to the
gateway is decrypted at the gateway and reencrypted for the subsequent link to the server. The same
thing happens in the opposite direction (downlink). The gateway is the only place where the sensi-
tive traffic can be intercepted while it is temporarily in the clear. Similar issues (albeit not based 
on WAP) surround the Wi-Fi and WLAN arenas, where wirelss security has been one of the major
problems.

This fact is slowly pushing the industry toward adopting end-to-end solutions. Several efforts are
currently under way. New algorithms and techniques have been steadily introduced such as Kasumi
(an offspring of Mitsubishi’s MISTY cipher) for third-generation European cellular handsets and
Wi-Fi Protected Access (WPA) for IEEE 802.11 networks. At the same time, some wireless equip-
ment manufacturers use mainstream cryptography (such as Data Encryption Standard [DES] and
Advanced Encryption Standard [AES]) to address some of the market’s security concerns and a new
sweeping standard IEEE 802.11i is being prepared. Not many people are fully aware of the issues
surrounding the act of securing wireless links in the cellular industry such as reliable hand-off from
cell to cell. We will not expand on these issues here. Refer to the book Wireless Security: Threats,
Models, and Solutions by Randall K. Nichols and Panos C. Lekkas (New York: McGraw-Hill,
December 2001) for a more in-depth discussion of all these issues.

• Base stations must be able to sustain several encrypted sessions with a plethora of devices. These
sessions use different encryption keys, and entire cryptographic contexts must be maintained. This
is the first indication of a potential need for a dedicated coprocessor where the main baseband
processor of the base transceiver station will offload cryptographic computations in order to pre-
serve its own capability of managing a cell or a family of cells in the first place.
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CRYPTOGRAPHY: SOME BASIC NOTIONS

This book examines network processing. Therefore, we will not to spend too much time on the sub-
ject of cryptography. For more information on this topic, refer to the several outstanding texts we list
at the end of the chapter. For the sake of convenience and because a significant portion of the readers
most likely do not possess any special expertise on the subject, we will introduce some fundamental
concepts and state some facts without any further elaboration. The notions we explain will also put
the capabilities of security coprocessor chips into context, and the uninitiated reader will be able to
appreciate the impact of what vendors integrate inside their chips and why.

At the transmitting station, encryption or enciphering is a deterministic mathematical process
amounting to the controlled alteration of an input bit sequence called plaintext, which a user intends
to send to the other party with whom he or she is in a communication session. The encryption process
is controlled by the use of another bit sequence called encryption key in order to produce a new bit
sequence called cipher, also known as ciphertext or encrypted output. Ciphertext is supposed to be
illegible, if not unusable, by unauthorized parties. Describing the ciphertext as “unusable” implies that
even if an eavesdropper copies it for subsequent analysis offline, it is not expected to yield any clues
about the plaintext’s content.

The inverse process is called decryption or deciphering. It is a mathematical process that receives
the ciphertext as one of its inputs along with another bit sequence called the decryption key and pro-
duces the original plaintext.
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FIGURE 17.1 The security approach in a WAP environment based on a gateway that decrypts and
reencrypts in both directions while operating between incompatible mobile and land-based network 
infrastructures. No end-to-end security can be guaranteed in this scheme.
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The encryption and decryption processes map onto a series of logical and computational steps
described in the corresponding encryption and decryption algorithms that implement the process in
hardware or software. The traditional analysis of speed versus the cost of implementation dictates in
every case what, if any, portion of a cryptographic algorithm should be implemented in hardware or
software and why.

The encryption and authentication processes constitute the area of cryptographic operations. It can
also be argued that hashing (discussed in a later section) is also part of that realm, but the boundary
is somewhat blurred because some hashing is for security and other hashing is for other computational
needs such as accelerating the indexing of database files. We will not discuss the latter form of hash-
ing here.

Private- or Symmetric-Key Encryption

If the keys used for encryption and decryption are identical at the transmitter and receiver, respec-
tively, we talk about symmetric encryption. In the case of devices communicating with each other from
a distance, the encryption key that the transmitter intends to use must be somehow conveyed to the
receiver in advance of any transmission. This poses some logistical security problems, which are thor-
oughly discussed in the references at the end of the chapter. For the moment, we will assume that the
transmitting party manages to convey the encryption key to the receiver in a safe and timely fashion.
The receiver, knowing the encryption algorithm, will be able to use the same key as its decryption key.
Once it applies it to the received ciphertext, it will safely and reliably produce the original plaintext.

The security of the arrangement (assuming that both the algorithm and the key are considered
cryptographically secure) requires that no unauthorized third party knows the key. Symmetric-key
encryption is also called private-key encryption because of the secrecy required to protect the encryp-
tion/decryption key. In some private encryption schemes, the keys are not symmetric. A simple exam-
ple would be a case where the same algorithm but two different keys (for example, K1 and K2) are
agreed upon, where K1 is used to encrypt traffic originating from party A and destined for party B,
and K2 is used to encrypt the traffic originating from party B and destined for party A. In this case,
party A encrypts with K1 and decrypts with K2, whereas party B encrypts with K2 and decrypts with
K1. Different algorithms can also be used for different directions of traffic, but systems synchroniza-
tion issues usually become more difficult to manage.

Symmetric encryption is computationally fast, meaning that it can occur in real time on content
that is unknown previously (such as live telephone conversation, streaming video transmission, high-
speed data link, and so on). All securely transmitted live traffic today is encrypted using private/
symmetric encryption algorithms. This does not necessarily include the offline-secured material such
as a piece of e-mail (or other text file) that is first encrypted by software tools and then transmitted
because this is material that can usually be secured with an acceptable delay in time. Therefore,
depending on the availability of cryptographic tools, the user can often engage other cryptographic
techniques and, more specifically, techniques that belong to the realm of public-key cryptography.

Public-Key Cryptography

The need to transfer the encryption and decryption key from the transmitter to the intended receiver
securely has always been a weak point of symmetric encryption. The encryption algorithm may be
powerful, but managing the key distribution is extremely tricky. Critical defense links have been com-
promised historically not by attacking the encryption algorithm or by trying to identify weaknesses
in its design, but by compromising the safety of the courier that was entrusted to transport the encryp-
tion key to the recipient. If an adversary must absolutely decrypt an important communications ses-
sion, it is infinitely easier to obtain a copy of the key physically (for example, from a careless
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secretary’s drawer) rather than using supercomputers and a team of mathematical experts for years
trying to crack the algorithm.

To solve this problem, the field of public-key cryptography was invented. The details and ramifi-
cations behind it are explained in any of the basic cryptography books listed at the end of the chap-
ter. We will only describe the fundamental notions to set up our discussion on security coprocessors.

According to the public-key cryptographic model, every user A (a person, or a computer, or even
a program) is issued a pair of bit sequences. One of them is called the user’s public key (KpubA) and
the other is called the user’s private key (KprivA). Similarly, user B who intends to communicate with
user A is also issued a pair of public and private keys (KpubB and KprivB). Several public-key crypto-
graphic techniques are available in the industry and although the underlying mathematics may be dif-
ferent, they all share the same principles described here.

Once the pair of keys has been generated for a user, the public key can become publicly known
without any constraint. It enhances security rather than compromises it. People freely share their pub-
lic key with others without any fear. The user’s private key, however, must remain private and secret
so that only the user knows it. The robustness and beauty of the concept relies on the premise that the
public key of user A or B is known by everyone, whereas the private key of user A or B is only known
by user A or B respectively.

We deviate for a moment to clarify a concept. Earlier the term issuance was used for these pairs
of keys. Public-key cryptography sometimes uses an overriding security officer (for example, at the
enterprise level) that issues these keys to legitimate users of an organization. In other well-known
cases, such as the famous Pretty Good Privacy (PGP) encryption environment, users generate their
own public-private key pairs by clicking a few buttons from a menu-driven software program. We do
not concern ourselves here with key management issues that pertain to information security. Key man-
agement is a generic term describing all issues related to generating, updating, discarding, recycling,
verifying, storing, distributing, and managing cryptographic keys safely and reliably among a group
of users in a specific group or community of interests according to applicable organizational policies.
It is applicable to both private- and public-key cryptographic contexts, but it requires more work in
public-key cryptographic contexts.

Let us return to the concept of public-key cryptography. In order for users A and B to securely
communicate with each other based on such a method, the following process must occur.

User A starts by using user B’s publicly known (or previously and openly shared) public key KpubB

and encrypts the plaintext content of the traffic that user A wants to transmit to user B. Once user B
receives the ciphertext, it decrypts it by using its own private key KprivB, which is exclusively in user
B’s possession). This is the only way to decrypt traffic that is encrypted by user B’s public key. This
assures user A that only user B can decrypt the traffic. Inversing the flow direction, if user B needs to
respond to user A using the same method, user B must use user A’s openly known public key KpubA in
order to encrypt its message to user A and then user B transmits it. Only user A can decrypt this arriv-
ing ciphertext, as it is in possession of the private key KprivA needed to decrypt this traffic.

Because a completely different key is used by the transmitter for enciphering than the key that is
used at the receiver for deciphering, the public-key cryptography realm is also known as asymmetric-
key cryptography.

All currently known public-key cryptography techniques are extremely slow computationally. One
public-key technique may have advantages over another, such as the size of the encryption keys or the
computation time needed to perform operations. However, the common characteristic of all public-
key cryptographic techniques is that they are much slower than symmetric encryption techniques. It
is surprising how many people seem to be unaware of that fact.

This difference in speed is the fundamental reason a two-layer cryptographic approach is usually
used in secure communication sessions:

• Private symmetric-key cryptography algorithms are used at the bottom layer to protect the trans-
mitted content.
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• Public-key cryptography algorithms are used at the top layer of this two-layered hierarchy to cre-
ate a common shared secret bit-sequence, which can serve as the equivalent of a secure envelope
for the safe and reliable exchange between the communicating parties of the session key that is usu-
ally generated by one of the two communicating devices. The two communicating parties usually
use this session key as the initial encryption and decryption key of the underlying symmetric encryp-
tion algorithm.

The word initial was used in the previous paragraph. In older symmetric encryption systems (and
in offline or mostly software-based cryptographic systems), the same key was used during the entire
communications session. This is no longer the case with many state-of-the-art communications secu-
rity designs, where systems engineering experience drawn from decades of military and intelligence-
related networks has created the widespread know-how that allows systems engineers to design robust
handshake protocols as well as methods and techniques that allow the encryption keys to be dynam-
ically updated from both sides in a communication link at predetermined frequent, sparse, or even
quasirandomly chosen points in time during the ongoing transmission. The advantage of such a
cryptographic environment is that even if one of these symmetric keys is compromised, only a small
portion of the overall transmission will be sacrificed. The disadvantage is that this increases the over-
all design complexity and key management.

The following are some interesting, but not obvious, points regarding this technique:

• Once a user has encrypted a bit sequence with someone else’s public key, he or she cannot decipher
the ciphertext back to plaintext, as the user is usually not in possession of the private key of the
intended recipient. This is not the case with symmetric cryptography where both parties can pro-
duce cipher and plaintext, given the availability of the common key.

• The generation of the session key in the public-key cryptography arena and the symmetric key(s)
used in the encryption of the actual content has nothing to do with the underlying cryptography.
These are usually random or pseudorandom bit sequences that are generated by one of the parties
based on random number generation (RNG) techniques. In some systems, a physically separate
device generates the random numbers. This poses the danger of physically tampering with the sys-
tem, if, for example, someone opens up the chassis and physically injects values into the encryptor
chip that replace the intended RNG. The military and intelligence communities require tamper-
resistant designs based on strict standards. In these systems, the slightest effort from an intruder to
open a system chassis box or to even remotely try to physically access internal circuits will leave
indelible traces and marks, and will zeroize internal registers, thereby prohibiting piracy and illicit
use. The main processor (or encryption processor) requests a random bit sequence. The RNG then
produces it and feeds it to the encryption processor, which can be a CPU running security algorithms
in software or a security coprocessor chip.
In some other systems, an embedded RNG (many technologies allow this to be done inside a sili-
con die) inside the security coprocessor chip generates these random values. The subject of RNG is
vast. The references listed at the end of the chapter can provide more information on the subject and
its ramifications.

• We must distinguish between truly random and pseudorandom or quasirandom bit sequences.
Several statistical tests correlating samples of larger windows rolling over a bit sequence can deter-
mine a series of criteria according to which scientists rate the degree of randomness in bit sequences.
The National Institute of Standards and Technology (NIST) web site (www.itl.nist.gov/fipspubs/
index.htm) contains several test suites designed to check and rate the degree of randomness. Just
because something looks random does not mean it is actually random. Very successful attacks have
been staged against the source of randomness in many a cryptographic system. Random sources are
ideal for the production of these values.
However, another environment may require a pseudorandom bit sequence instead. This is required
for a family of encryption algorithms called stream ciphers, where a lot of additive key material
must be generated that is not easy for a third party to guess. This material is deterministically 
created in synch between the transmitter and receiver. It is pseudorandom material that is usually
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created from finite state machines (FSMs) such as linear feedback shift registers (LFSRs) that are
set up at both parties based on a commonly obtained session key and then advanced independently
of each other in order to produce the same pseudorandom bit sequence at both communicating
devices.

BLOCK CIPHERS, STREAM CIPHERS, AND CRYPTOGRAPHIC MODES

Symmetric encryption algorithms used for the traffic content protection are usually classified in one
of two families: block ciphers or stream ciphers.

Block Ciphers

In this case, the encryption of the plaintext occurs block per block, where the block is a chunk of con-
secutive plaintext bits. Until recently, blocks for instance in the DES algorithm were 64 bits long. Most
modern block ciphers use blocks that are 128, 192, or 256 bits long.

Block ciphers usually require a key generation and scheduling mechanism. Based on the original
symmetric algorithm key, this mechanism applies specific steps to generate a series of subkeys, which
will be scheduled for use subsequently by the algorithm and in a sequential order for each one of the
multiple rounds that must be executed.

A block of plaintext is read in and combined with the first subkey. A series of processing steps has
to be taken on it involving operations such as bit shifts, rotations, substitutions, and permutations. This
is the first of several rounds. A round refers to the basic processing logic of the algorithm. The out-
put of the first round is fed into the second round along with the second subkey and so on until the
specified number of rounds and the required number of subkeys is exhausted. The number of rounds
depends on the algorithm. For example, DES is specified with 16 rounds. Rijndael (AES) is specified
with 9 rounds if both the key and block size are 128 bits long, 11 rounds if either the key or the block
is 192 bits long and neither of them is longer than that, and 13 rounds if either the block or the key is
256 bits long. During the standardization process of the AES algorithm, it was settled that the official
standard supports one block size only of 128 bits, whereas the key can be of 128, 192, or 256 bits.
Rijndael supports all 9 possible combinations of key size versus block size, where each one them can
be 128, 192, or 256 bits long. This issue of whether multiple key- and block-size combinations are
possible is one of the many intercompatibility factors between communicating systems.

Figure 17.2 shows the evolution of a run of DES over a block of plaintext. Ki is the subkey used
in each round. We use DES processing as an example because it is still the bulwark of the Inter-
net Protocol Security (IPsec) arena, which applies strongly and predominantly on the network-
processing field. All concepts we discuss in this chapter are directly related to the cryptographic
reality; therefore, they can almost always be applied to other algorithms as well, such as Rijndael. In
Figure 17.2, L and R denote the left half and the right half of the block-size reference, respectively.
The 64-bit blocks would respectively correspond to the 32 MSB bits and the 32 LSB bits. The first
block, called IP, represents an initial permutation where bits effectively are reshuffled according to a
specific order. The last block is the inverse of that permutation and ensures that the same algorithm
can be used for both encryption and decryption. Some DES implementations do not include these two
steps. Although it has been proven that this does not alter the security characteristics of the algorithm,
it does violate the standard specification, which is an issue when the intercompatibility of devices
comes to play.

In order to give a better idea about how things work, Figure 17.3 shows the subkey generation and
key-scheduling mechanism for DES, as well as the f function, which is involved in each DES round,
as shown in Figure 17.2. The internal details of the substitution boxes (known as S boxes) and the per-
mutation boxes (which are just small lookup tables with specific content from an implementation
standpoint) can be found in any of the cryptography books listed at the end of the chapter. The folded
modular structure based on the L and R approach in the implementation of the DES f function is a

SECURITY COPROCESSORS 367

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SECURITY COPROCESSORS



368 NETWORK PROCESSORS

FIGURE 17.2 The flow of DES as an example of a typical block
cipher in multiple rounds with subkeys scheduled for each round
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FIGURE 17.3 The right side shows the key-scheduling mechanism for DES; the left side depicts
the Feistel network that is shown in Figure 17.2 with the DES f function.
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classical cryptographic technique called Feistel network. This network is at the heart of many mod-
ern ciphers, such as Kasumi. One of the main characteristics of the Feistel structure is that working
the properly scheduled subkeys at the receiver and rearranging the left and right sides ensures that
decryption is a straightforward process. This property makes the same algorithm capable of encrypt-
ing and decrypting.

The encryption engine produces the ciphertext output that corresponds to the plaintext block it had
previously read in only after all the specified rounds are completed. In the case of DES, it would mean
that 64 bits of ciphertext are produced corresponding to the 64 bits (equal to one block length) of plain-
text that it just finished processing. If more plaintext is available at the input, the process continues
with a next block of input bits. If not, there is usually a specification as to what happens at the last
block of plaintext—for example, padding with zeros to generate a block of input bits with some con-
trol characters to notify the receiver that no more input is available.

In some cases, higher-level protocols on the stack communicate the length of the transmitted bit
sequence up front so by the time encryption occurs, the receiver is already set up with session coun-
ters to accept only the amount of bits it was told it was going to receive. Therefore, no cryptographic
prowess is necessary to address the issue.

At decryption, the process is simply inversed. Based on the decryption key, the receiver starts by
performing the same key generation and scheduling process. The list of subkeys is usually engaged
with the reverse order, starting from the last one and moving on to the first one that was used at
encryption.

Stream Ciphers

In this case, which is mostly (but not exclusively) favored by the military and intelligence communi-
ties, the plaintext is processed bit per bit with a quasirandom bit sequence (usually as long as the plain-
text) that is known as key material. The key material can often be mapped through some lookup table
or function mechanism onto the plaintext, or as more often is the case, it can be combined additively
with the plaintext such as using an exclusive OR (XOR) logical operation in order to produce cipher-
text. XORing plaintext traffic with good-quality random material makes the ciphertext extremely dif-
ficult for an adversary to tackle. An interesting property of the XOR function is that by XORing this
ciphertext with the same additive material, the original plaintext is produced. In other words, a stream
cipher has the following relationships:

Plaintext P � Additive key material K → Ciphertext C

Ciphertext C � Additive key material K → Plaintext P

Even if the same sequence that is generated at the transmitter is generated at the receiver for the
production of the additive key material, ensuring that the correctly corresponding bit positions are
used for XORing with the plaintext is not a trivial problem. The problem of synchronizing the addi-
tive key material sequence at the receiver with the one used at the transmitter has been notorious. It
is known as the problem of preservation of cryptographic synchronization and has been one of the
issues that have plagued stream ciphers. Refer to the book Wireless Security: Threats, Models, and
Solutions by Randall K. Nichols and Panos C. Lekkas (New York: McGraw-Hill, December 2001) for
a deeper discussion of the subject and for a description of a technique that solves this problem. The
other major problem for stream ciphers has been the statistical quality of the key material, meaning
the degree of randomness of the key-generation process. It falls under the same category of problems
associated with random or random-like bit sequences.

Cryptographic Modes

Implementing encryption algorithms in communication systems brings along numerous systems engi-
neering concerns that we cannot possibly cover in this short overview. They can range from efficiency

SECURITY COPROCESSORS 369

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

SECURITY COPROCESSORS



and fault tolerance to capabilities to guard against the loss of synchronization all the way to resistance
to specific types of attacks (such as chosen plaintext and error injection in the ciphertext). As the
requirements are diverse based on each system implementation, the cryptographic community has
developed several types of cryptographic modes of operation. These have been exhaustively analyzed
and documented, and their behavior is well understood. A cryptographic mode is usually the combi-
nation of the underlying cipher algorithm along with some feedback mechanisms and other associ-
ated operations that produce a chain-like behavior.

The most widely known and used cryptographic modes are electronic codebook (ECB), cipher
block chaining (CBC), cipher feedback (CFB) (also known as cipher text auto key mode [CTAK]),
and output feedback (OFB) (also known as key auto key [KAK] mode. Many other less widely known
modes such as propagating CBC mode, OFB with a nonlinear function, and plaintext feedback are
available, but we will not elaborate on those here. Bruce Schneier’s book Applied Cryptography:
Protocols, Algorithms, and Source Code in C (New York: John Wiley, 1996) examines the pros and
cons of many cryptographic modes. The important point for our discussion is that different crypto-
graphic modes are available and the choice of which one to use in a system or session may very well
decide whether two devices can communicate. As mentioned earlier, the interoperability of crypto-
graphic systems has traditionally been a problem. Just saying that two systems support the same
encryption algorithm does not mean they can exchange information even if they posses the encryp-
tion key.

The basic modes, except for ECB, which is essentially the fundamental mode of encrypting block
per block until the plaintext has been exhausted, require the use of initialization vectors (IVs). These
are also sometimes referred to as seed values.
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FIGURE 17.4 CBC mode applied on a block cipher like DES cipher and the associated need for an IV
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For example, let us examine the case of the CBC mode as applied for example to DES (but it will
be the same situation no matter what algorithm is used). As shown in Figure 17.4, the cipher output
Cn-1 from processing every block is used to XOR the following incoming plaintext block Pn prior to
encryption.

So how is the first pass started since no previous ciphertext is available? The answer is by using a
random bit sequence (equal in length to the block size) and by proceeding accordingly. The IV can
be any bit sequence of that same length. In fact, cryptographic systems openly communicate the cho-
sen IV to their communications partner. IVs are generated by the same RNG module that we discussed
earlier. In some systems, it can come from different sources, such as a timestamp, an internal clock,
or a combination of some internal states as read from registers.

It makes absolutely no difference for the algorithm’s security whether the IV is known. In fact, an
eavesdropper who is monitoring a link will always be seeing the C1, C2, . . . Cn ciphertext chunks
(which are used as XOR inputs in the following block processing). These are all publicly available so
they are irrelevant for the easy breaking of the cipher. Schneier’s book elaborates on this subject.

So why was a mode like CBC needed in the first place? In the traditional ECB mode (block-per-
block encryption with the same key schedule), the same plaintext will always generate the same
ciphertext output, which sometimes opens other ways for an attacker to crack the code (by guessing
the key). For example, all payment checks have the phrase “Pay to the order of” at the same position.
By correlating this type of plaintext and ciphertext information, an attacker can guess the encryption
key with higher probability. When the algorithm is operating in the CBC mode, the same plaintext
will never be the same at the input of the encryption process, as it is always XORed first with the
ciphertext that was produced from the previous block processing. Identical plaintext blocks will
always produce different ciphertext; therefore, CBC is a much more secure mode of operation.

Keep in mind, however, that there is no free lunch in technology. Despite its beauty, CBC
inevitably has shortcomings. For example, a single-bit error in the CBC-produced ciphertext output
can be shown to always cause a whole block at the receiver to decipher to garbage and a single-bit
error at the corresponding position of the original error of the recovered plaintext from the subsequent
block. This drawback is called error extension, and it can be detrimental in some applications. After
these two errors (first a block and then a bit are deciphered incorrectly), the system recovers auto-
matically, and CBC is said to be self-recovering. However, this is only true as long as the block-level
synchronization is maintained. If a bit is lost or an extra bit is inserted into the ciphertext due to some
interference, the receiver will continue decrypting traffic to garbage and the algorithm will be unable
to recover. This is a good example of a classic case where higher-layer communication protocols cou-
pled with error correction codes (ECCs) must be combined at the right place to preserve the integrity
of CBC-based cryptographic operations.

In the IP network world, this can mean that the security requirements of a streaming audio or video
application that runs with the Real-Time Protocol (RTP) over User Datagram Protocol (UDP) (which
is less reliable than Transmission Control Protocol [TCP]) may actually negate the use of underlying
encryption if the latter is configured to run in an undesirable cryptographic mode, whereas file trans-
fer or e-mail sent simultaneously with the former may have absolutely no problem with it, as they run
using TCP’s reliability of connection.

Some people are surprised to suddenly find out that the choice of encryption technique is often not
dictated by security concerns and requirements only, but by the apparently irrelevant network proto-
col stack and software infrastructure, which seem completely unrelated factors at first glance.

IMPORTANT CRYPTOGRAPHIC CONSIDERATIONS
IN COMMUNICATIONS

Several techniques are being systematically used in the implementation of cryptographically equipped
communication systems. Some of these techniques have become mainstream ideas, whereas some
remain less well known to users. We will mention several of these techniques to give an idea of what
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issues the systems architect must consider in order to design a robust system and how all of these capa-
bilities weigh in adversely when they must be performed under the proverbial gun of high-speed links
that require real-time attention.

Many of these techniques originated from defense networks and were initially implemented and
perfected on civilian/industrial networks by being embedded inside protocol-sensitive encryptors that
operated at the data link layer on X.25 and frame-relay networks in the early 1990s. The positive expe-
rience acquired from those networks was successfully taken advantage of at the network layer when
the Internet Engineering Task Force (IETF) designed IPsec, which adapts most of these methods to
the IP layer.

Weak Keys

When some of the possible keys used in an algorithm are known or found to be less secure than oth-
ers, this specific cryptographic algorithm is characterized by a nonlinear key space. Conversely, when
this is not the case, the algorithm’s key space is flat.

For example, the DES algorithm contains weak, semi-weak, and possibly weak keys:

• Four DES keys that are composed only of 1s or only of 0s, or keys where one half is composed of
1s whereas the other half is composed only of 0s, are weak. The DES algorithm and key expansion
structures cause these keys to suffer from the highly undesirable effect that all rounds of DES are
encrypted by the same subkey.

• Some pairs of DES keys encrypt plaintext to the same ciphertext. Instead of generating 16 subkeys
(for the 16 rounds of DES), these keys only generate two different subkeys, each of which is used
eight times during encryption or decryption. The result is that in any of these pairs, if one of the keys
is used for the encryption, the other key from the pair can be used for decryption and the plaintext
will be recovered. These keys are semi-weak keys and are listed in any good basic cryptography book,
such as Schneier’s book.

• Some DES keys are known to produce only four subkeys. Each subkey is used only four times in a
DES run (16 rounds). They are not as weak as the semi-weak keys, but they are not as strong as typ-
ical keys; hence, they are possibly weak keys.

• A lot of cryptanalysis has been done on the safety of using complement keys (replacing 1s with 0s
and 0s with 1s) and determining what can occur if plaintext is encrypted with a key and subsequently
with its complement. Under these conditions, specific relationships can be identified between
ciphertext and its logical complement. This can lead to specific types of attacks. It is recommended
that the use of complement keys be avoided.

A sophisticated security coprocessor that uses internal random number sources to generate sym-
metric keys must have the ability to verify whether the random bit sequences that it generates satisfy
any of these unfortunate and dangerous profiles. If they pass the test, they can be used and are
formally issued and transmitted to the other party. If they fail, the RNG must be consulted again for
a new random bit sequence. As the number of weak keys is usually not large, it just takes a small
lookup table (such as in the case of DES with 64 entries with 64 bits in each slot) and a small checkup
routine.

For complement keys, the system should keep a copy of all previously generated keys in a buffer
and check if any new generated key during the session happens to be the complement of a previous
one. Incidentally, this is obviously not a requirement when the same symmetric key is used through-
out a session (in other words, when no rekeying occurs).

The cost of implementing this kind of verification is negligible, but the cost of loss due to an attack
can be significant if it is not implemented. It is surprising how many DES-encrypting systems in the
market do not check for weakness when they produce a new key.
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Protocol-Sensitive Encryption

The first use of communications encryptors on digital lines was applied to point-to-point links, where
all the transmitted bits including the useful information, the headers, and the trailers of frames (in the
case of old BSC/SDLC protocols) are encrypted. These encryptors were called link encryptors
and did not care what protocol was used on the link they purported to secure. Assuming that the
receiver was always listening to the channel and that it was in possession of the symmetric key 
used for the encryption, decryption was not a problem. For obvious reasons, people applied this tech-
nique predominantly on private leased lines or on wireless radio links (in land-mobile or space 
communications).

However, with the arrival of packetized networks such as X.25 and frame relay, as well as with the
subsequent asynchronous transfer mode IP/ATM explosion, the act of encrypting indiscriminately all
traffic on a link bit stopped. Instead, only the payload of packets or frames would be encrypted by
leaving the headers (which contain source and destination addresses) untouchable so that the
encrypted packets or frames could still be routed and switched by the network infrastructure without
problems. That provides the benefit of packet-switched networks to customers who needed to move
away from the old regime of leased lines for financial reasons while providing them with the ability
to operate and exchange information with other sites in a more secure environment than before.

From a security standpoint, the idea was that decryption would only be possible at the intended
destination receiver, and any other party accidentally or intentionally intercepting the packets or
frames could not decipher its contents. Of course, the CRC codes of the new packets/frames would
have to be regenerated after the payload encryption. The CRC process result is usually attached as
part of the packet’s trailer, so in this case, a new trailer would have to be calculated and attached
instead. However, that was difficult. This marked the beginning of a new era in communications secu-
rity—the era of protocol-sensitive encryption. The IPsec effort decided to implement this idea, taking
security one layer higher and securing IP packets.

Hashing

The term hashing function in cryptography denotes a one-way mathematical procedure that takes an
input bitstream of arbitrary length and produces a fixed-length output called the hash. Hashing func-
tions are also known in the industry by several other names, such as message digest (MD), compres-
sion or contraction function, cryptographic checksum, fingerprint, message integrity check (MIC), and
manipulation detection code (MDC). The term one-way means that hashing functions cannot be
inverted—in other words, given the hash output, the input bitstream that produced it cannot be found.

Good hashing functions have several spectacular characteristics. First, their collision probability
is very low. In other words, given an input and its hash, it is extremely difficult and highly unlikely
that another bitstream input that produces the same hash output will be found. Second, given a bit-
stream input of arbitrary length and its corresponding hash, even a subtle change of only one bit at the
input will produce a new hash by changing on average around half of the bits of the original hash.
Third, hashing algorithms are supposed to be public knowledge and should not be kept secret.

The use of hashes is an outstanding mechanism that can ensure the integrity of transmitted infor-
mation. By calculating the hash of an underlying piece of information and by attaching the hash to
the transmitted information, the recipient is given an opportunity to verify the integrity of the data
transmission. This can be done locally by calculating the hash of the received data and by comparing
the received hash with the locally calculated one. If no one tampered with the transmitted data, the
hashes should be identical.

Of course, if the information must be kept confidential, encryption must be used in addition to
hashing. This eliminates the potential danger that someone may intercept the transmission, alter the
actual content, calculate a new hash to replace the old one, attach the new hash to the new altered
transmission, and then forward the new data-plus-hash combination to the unsuspecting recipient.
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The converse argument also works. Even if the data are not confidential, both encryption and hash-
ing must be used to protect against the stipulated attack. For example, payment clearinghouses receive
millions of short messages daily from financial institutions defining different combinations of pay-
ments of specific amounts from a debit account to a credit account. An attacker does not necessarily
intend to steal information or money. In this example, he or she can simply wreak havoc on the oper-
ation by completely destroying the reliability of the transmission where amounts of money are sys-
tematically erred and accounts are messed up without the attacker having direct monetary advantage.
Therefore, hashing must be intimately combined with encryption even when confidentiality and
secrecy are not required.

Message Authentication Codes (MACs)

By appending a secret key that is mutually known to both communicating parties next to the infor-
mation bitstream input of a hashing function, a hash is created (also known as keyed hash) that can
only be verified by the recipient if he or she is in possession of this secret key. This technique is called
message authentication code (MAC) or data authentication code (DAC). In the case of an entire bit-
stream of substantial length, the stream is usually fragmented into reasonable-size chunks, which are
key-hashed to produce the corresponding MACs that become part of the new bitstream and are sent
along with the information bits at predetermined locations (for example, at the end of each one of the
stream chunks of information).

A special type of keyed MAC is the hashed MAC (HMAC), which is defined in RFC 2104. It is
actually a keyed hash inside another keyed hash and is used by IPsec for the authentication of all mes-
sages. The exact definition of this function can be found in any basic cryptography book.

Digital Signatures

A spectacular by-product of public-key cryptography is the ability to generate a digital signature. This
is produced if the fundamentals of public-key cryptography are engaged in an inverse scenario. More
specifically, if user A encrypts a message using its own private key KprivA and transmits it to user B,
then user B can look up user A’s public key KpubA in a public directory or over the Internet at some key
server. User A may have also already openly communicated it to user B along with other users. The
retrieved public key KpubA is used to decrypt the message.

As the pair of keys (KprivA and KpubA) allow the encryption and decryption in either direction and
no other key can be used for either of these roles, the message could have been encrypted only by user
A—hence, the equivalent notion of digitally signing. If instead of just signing the message digitally,
user A also wanted to keep it confidential, user A should encrypt the information with the intended
recipient’s (in this case, user B) public key as discussed earlier in addition to digitally signing.

Public-key operations take a long time. For example, on the same hardware platform, Rivest-
Shamir-Adleman (RSA) encryption is about 1,000 times slower than DES encryption. To ensure that
digital signatures are completed in a reasonable amount of time, it is now common practice on all dig-
ital signature algorithms that a hashing function is used to produce a hash of the bitstream input (which
can be long for a communications session). Then the digital signature algorithm is invoked on the hash
itself. As the hash is usually a few bytes long, the process should now take an acceptable amount of
time to calculate.

At the receiver, it works as follows. The receiver receives information. If it is encrypted, it is
decrypted. Then the hash is locally generated from what was received and the signature is verified on
the hash. If it is correct (that is, the decrypted hash matches the locally produced one), the informa-
tion is accepted as legitimately signed.
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Session Key Exchange

Public-key cryptography also enables a session key to be easily generated, which can be used by the
communicating parties for many different purposes, such as a secure envelope for the secure exchange
of the first symmetric key to be used for the content encryption or a mutual seed of pseudorandom
LFSR structures to be used in some systems to generate specific random-looking streams as in stream
ciphers.

The beauty of the session-key idea is that two (or more) parties can engage in a remote handshake
protocol to produce it. This takes a maximum of a few seconds in most real-life settings. At the end
of the handshake, a common bit sequence has been generated that is essentially impossible for any
eavesdropper who monitored the handshake exchanges to guess. This now becomes a common shared
secret, which the parties can use in any form and fashion to authenticate themselves to each other.

Digital Certificates

In the example given in the previous section, when user A signed a message and sent it to user B, if
user B was not already in possession of user A’s public key KpubA, it would have to retrieve it from a
server or from some other source. A legitimate fear is that what is perceived as the legitimate public
key KpubA of user A may actually not be the real public key of user A. This is especially a concern
when the physical distance between the parties or other logistical issues inhibit the easy key exchange
or when a lesser degree of acquaintance and confidence in the content of a key exchange is involved.
An imposter user C could impersonate user A and send digitally signed messages presenting itself as
user A.

The only way to know true from false here is the use of digital certificates. These are small digi-
tal data structures, which are attached to the transmission content that certify the signer’s bona fide
thereby verifying the content’s validity. The certificate is acceptable to the receiver if it is digitally
signed by a certificate authority (CA) that is acceptable to both parties. It is common that certificates
of certificates are required in many cases where parties must communicate securely but don’t know
or fully trust each other. This often culminates to the absurd situation of hierarchical chains of cer-
tificates dangling behind the actual information message of importance. Stripping each level of cer-
tification at the receiver may require that special directories be looked up. A CA may have to be
contacted in order for the recipient to verify the signature involved and before the recipient’s security
management system proceeds with the following layer of security. The process concludes when 
the actual payload has been authenticated and deciphered, and can be accepted for subsequent local
processing.

The process can be intricate and involves algorithmic and computational aspects. Issues of scala-
bility are of paramount importance in network-processing equipment so the systems architect must
be always aware of what is absolutely necessary and what is superfluous.

We conclude the short overview of this subject by clarifying that two computational aspects are
associated with digital signatures: generating digital signatures and verifying digital signatures. Both
are needed for a system to handle authentication; however, the former is computationally slower than
the latter. When a vendor says that their equipment handles digital signatures in X milliseconds, find
out which one of the two operations they refer to.

Embedded Sequence Counters

We often take for granted that in packetized networks higher-level protocols generate counters and
map their content into header fields. The advantage of this is that the receiver knows upon reception
of a packet that this is the kth packet out of a total of m packets. If packets arrive out of order, which
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is extremely probable in a routed world as they are traversing many different routes on their way to
the same destination, the appropriate intelligence will reorder the packets at the receiver in the cor-
rect sequence, stripping away the headers and trailers. The reordered recovered payload is then pre-
sented to the higher layers that await to process it (the presentation and application layers).

To ensure that unintended receivers (eavesdroppers) do not acquire any knowledge about how
many packets intended for a destination are parts of a specific transmission sequence, protocol-sen-
sitive encryptors (and now IPsec) embed internal counters inside the secure payload with a sliding
window over the bitstream. The receiver upon decryption will know that this is the kth packet from a
transmission of m consecutive packets that should be accepted according to the current window. If the
counter is connected to a well-thought-out timestamping process, it protects against playback attacks,
even if someone knows the cryptographic context and tries to alter the packets. In simpler words, we
cannot be receiving the 141st packet for payment clearance as all the packet-related counters in today’s
sessions should be in the 10,000s.

Address Tunneling

Before the word firewall became a household name in the 1990s, protocol-sensitive hardware encryp-
tors operating at the data link layer and positioned at gateway positions between LAN and the WAN
pioneered the concept of masking addresses to protect end stations. The concept was easily expanded
to the IP layer with IP-level encryption and has by now been institutionalized by IPsec in one of its
operational modes. Instead of encrypting just the payload of the packet, the addresses are also
encrypted, so the real source and destination are not publicly visible to the routers and switches in the
network infrastructure. New default addresses are created and prefixed (as opposed to appended) as
new headers to the encrypted packet. The appropriate new trailers are calculated and attached.

In addition to encryption, this process therefore encapsulates the original packet (along with its
headers and trailers) inside a new packet, which behaves like an envelope and can be easily routed by
the IP network routers without a problem.

The encapsulating packet can have its payload encrypted (a second superposed time) by the encap-
sulating mechanism, and the original packet can be tunneled inside the externally encrypted process.
Upon arrival at the destination, the encapsulation is stripped away, the top-level packet is decrypted,
and the new packet that appears beneath it from the tunnel with the intended destination addresses is
steered accordingly to the correct destination by the use of translation tables that map, for instance,
external to internal addresses, which must remain invisible to the WAN.

Timestamp (Nonrepudiation)

As mentioned earlier, events such as counters must sometimes be associated with specific windows
in time. Some transmissions also require a good indication of the moment in time that they were ini-
tiated or executed. Timestamping is a generic term that embeds a reading of time in a time-sensitive
message. The significance of this message depends on the requirements of the application. Time can
be read from an internal clock or from a time server, which may be next door or at the other side of
the planet. The concepts of how this time server is trusted and how its answer is kept untampered are
related to the information security discipline, which is amply discussed in the references. The idea is
however, that if a payment instruction to a financial institution is timestamped, hashed, and digitally
signed, then upon signature verification, no discussion can occur about whether the order was sent or
whether it was actually originated by the person who digitally signed the order. Cryptography there-
fore enables nonrepudiation and in some cases this can be an issue of very serious importance.
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Rekeying

Sophisticated hardware-based encryption systems are capable of changing the underlying symmetric
encryption key several times during the same session. Some systems can do it periodically, whereas
others can do it at quasirandom points in time. This dramatically enhances the security of the com-
munication, but it causes a significant increase in the cost of implementation. This is because spe-
cialized signaling protocols (usually working in-band) are needed to safely and reliably halt the
exchange of live traffic with the necessary buffering and without loss of information, to renegotiate
or generate a new symmetric key, to initialize the appropriate internal states at both the transmitting
and receiving portions of the communicating parties, and to resume traffic from the correct point using
the new cryptographic context and key.

Security Associations (SAs)

In a network-processing environment, where numerous sessions are set up and maintained, it is vitally
important to preserve the cryptographic context of each session in such a way that no mixing of keys
or parameters can occur between sessions. This capability is handled by IPsec through security asso-
ciations (SAs).

COMMON CRYPTOGRAPHIC ALGORITHMS

Many encryption algorithms of variable capabilities and commercial success are available. The sym-
metric encryption world has been so far dominated by the use of DES during the last 25 years and the
use of the Triple DES derivative in the last 5 years or so. Other widely used algorithms are RC4, IDEA,
etc. Details about the internal workings of these algorithms can be found in any good fundamental
cryptography textbook.

Triple DES is a composite algorithm, which is usually based on a two-key approach and extremely
rarely on a three-key approach. Because of mathematical and efficiency reasons, a discussion of the
cryptographic efficiency merits between the two approaches goes beyond this short overview. See 
the references at the end of the chapter for more information. In the two-key approach of Triple DES,
the plaintext P is encrypted with a key K1. Then the ciphertext is decrypted with a key K2 and the new
result is reencrypted with the first key K1. The length of the bit concatenation of K1 and K2 creates
a new effective composite key that is twice as long as single-key DES. This is the base of the increased
security afforded by Triple DES. Instead of being 64 bits long, the keys are now 128 bits long,
which is much more secure. This method is called encrypt decrypt encrypt (EDE). EDE has other vari-
ations such as using three different keys (as explained in Schneier’s book). Figure 17.5 illustrates the
principle.

As our emphasis is on network-processing environments, readers with an interest in chip archi-
tectures may want to contemplate the fact that 1 run of DES implies 16 rounds, each of which con-
tains several operations bit shifts, logical XORing, table lookups, substitutions, and permutations. A
Triple DES environment requires 3�16 � 48 rounds, with different subkeys scheduled for each
round. As there is no free lunch in technology, from a hardware design standpoint, two extreme
choices are available. One choice is to have a small efficient DES module that implements the com-
putations of one round and keeps the internal state in buffers, so the triple DES data flow actually
implies 48 passes through this same module (a solution that is inexpensive and slow). The other choice
is to have a huge pipeline of 48 replicas of a DES encryption round module that allows wire-speed
performance, but with a huge expense in silicon and power consumption.
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As fears about DES security grew over the last few years, the U.S. government moved through a
public bid and scrutiny process to establish the new Advanced Encryption Standard (AES), which
ended up being the Belgian algorithm Rijndael. Several good descriptions of the Rijndael algorithm
can be found in the references at the end of the chapter. A good source to start with is located at 
J. Savard’s web site at http://fn2.freenet.edmonton.ab.ca/~jsavard/crypto/comp04.htm. The NIST web
site (www.itl.nist.gov/fipspubs/index.htm) has extensive high-quality documentation of the entire
process that led to the scrutiny and the acceptance of the new standard. Numerous papers analyze the
algorithm and discuss its implementation in software and in hardware in either field-programmable
gate array (FPGA) or in application-specific integrated circuit (ASIC) form. The inventors of the
algorithm, Dr. Joan Daemen and Dr. Vincent Rijmen, also have lots of interesting information on their
web site1, which is maintained at the cryptographic research group of the Katholieke Universiteit
Leuven (KUL). Their site includes code and links to other sites that have Rijndael implementations
in C, Lisp, Ada, Visual Basic, Java, and other languages, as well as even a Matlab-based simulator of
the algorithm. Daemen and Rijmen have also recently published a book called The Design of Rijndael:
AES—The Advanced Encryption Standard, which explains the design philosophy and the algorithm
functionality in depth. All these sources are listed in the references at the end of the chapter.

For the sake of clarity, we will just mention a few basic characteristics here to provide a first
impression of the Rijndael algorithm compared to DES.
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FIGURE 17.5 Triple DES encryption using the EDE configuration: (a) using more often two keys and 
(b) rarely three keys
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Rijndael uses multiple rounds of a series of essentially repetitive operations except for a couple of
minor variations at the beginning and the end of the execution. Figure 17.6 shows the Rijndael oper-
ations. They are as follows:

• Byte substitution, where each byte of the input block is replaced according to a substitute found in
a specified way in an S box.

• Shift row, where the input block (for example, 128 bits) is composed of bytes ordered from 1 to 16.
These byte orders are arranged vertically from 1 to 16 in 4 columns of 4 rows, each creating a 4�4
table. Then the rows of this table are made to rotate horizontally by a specific number of positions
depending on the row number. For example, the first row stays intact, the second is rotated by one
position, the third is rotated by two positions, and the fourth is rotated by three positions. As a result,
a new 4�4 table is produced that reorders the bytes.

• Mix column, where this last result is now multiplied by the 4�4 matrix:

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

This is done using Galois field multiplication techniques in GF[28], which means that the bytes are
treated as polynomials and not as numbers. If more than 8 bits are produced by some multiplica-
tion, the result is XORed with Rijndael’s generating polynomial of the chosen Galois field—that is,
the bit sequence 100011011.

• Add round key, where the subkey used in the current round is XORed with the result of the previ-
ous operation.
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FIGURE 17.6 Operations during one round of Rijndael processing
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We will not discuss the exact key schedule generation for Rijndael here as it can be found in
the suggested references. Rijndael has been designed to take advantage of the latest microprocessor
architectures. It can be easily and inexpensively implemented to run even on small processors such as
in smart cards. Several publicly disclosed hardware designs enable the algorithm to sustain a variety
of multigigabits-per-second-throughput (albeit not in smart cards).

So far our discussion has presented the types of questions that network equipment vendor (NEV)
designers should ask security co-processor vendors when probing about the internals of an imple-
mentation. Duplicate implementations are available to support the encrypting and decrypting of full-
duplex operations. Designs are also available where one fast cryptographic module that is alternatively
switched between both directions is used on a time-shared basis. The trade-off will be the cost of
implementation as opposed to the speed of operations and throughput. In high-speed network-pro-
cessing designs, duplicate (if not multiple) cryptographic modules are expected for the symmetric
algorithm. Different cryptographic modes and combinations of different key sizes (and ideally also
block sizes) must be supported. Support for the capability to appropriately seed the IVs in the CBC
implementation must also be available. The latency of the key-scheduler switching overhead should
be considered, whereby supporting different cryptographic contexts should not be excessively long to
avoid penalizing the aggregate performance.

Diffie-Hellman (DH)

The most fundamental and definitely the most famous technique for the generation of a common
shared secret is the Diffie-Hellman (DH) algorithm, which is described and analyzed at length in all
fundamental cryptography books. We provide a brief description here for the sake of convenience.

Two (or more with some small protocol extensions—see Schneier’s book) communicating parties
(A and B) agree in public on a specific large prime number p, which is called the modulus of the oper-
ation, and a (mathematical group) generator g that they will use for the ensuing calculations. The gen-
erator must be chosen in such a way that for any integer Z�p, a number W exists so that gW mod p �
Z. In other words, g can produce or generate all numbers from 1 to p�1.

The DH protocol is a four-step process:

1. First, the two parties independently generate a secret large random number (bit sequence), which
is denoted here with the lowercase letters a and b for users A and B, respectively. These random
numbers must be smaller than p.

2. Then they both proceed with the mathematical process of calculating the modular exponentiation
of the chosen group generator g raised to a power equal to the respective random number modulo
the large prime p that has been previously agreed upon. In other words, divide by p and retain the
remainder of the operation. The result is called the DH public key of each party. It is shown here
with the uppercase letters A and B. The public key and the public key from public-key crypto-
graphic schemes such as RSA are irrelevant to each other:

3. User A then sends over the public insecure network its own public key A to user B, and user B
sends its own public key B to user A:

Public key A
User A              User B

Public key B
User A              User B

B � gb mod p

A � ga mod p
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4. They both then independently modularly exponentiate the public key, which they just received
from the other party, by raising it to the power of their own privately generated random number, a
and b, respectively. In other words, user A, which has received the public key B, which is equal to
gb mod p, now raises it to the secret power a that only user A knows; therefore, user A now pri-
vately obtains a new sequence:

(17.1)

Likewise, user B, which has received the public key A, which is equal to ga mod p, now raises it
to the secret power b that only user B knows; therefore, user B now privately obtains a new
sequence:

(17.2)

The right-hand sides of Equations 17.1 and 17.2 are identical. Therefore, the two parties have just
independently generated a common bit S sequence that no third party that may have been eavesdrop-
ping on their session can guess or calculate. The interesting characteristic of the DH protocol is that
although the associated computations are quite straightforward (albeit difficult to conceive on the back
of an envelope), the inverse problem that an attacker confronts is extremely difficult to solve. This is
called the discrete logarithm problem. In this example, it would mean that an attacker who knows g
and p (as they are not secret) and who monitored the line and therefore knows A and B, cannot eas-
ily guess or calculate the S sequence.

This S sequence, or some derivative of it, can be used as the session key. In some systems, the first
device can do the following:

• Generate randomly a symmetric key Ks for the underlying content encryption.

• Encrypt this secret key Ks using the session key S as the encryption key.

• Send it to the other party.

Because the second device also generated the same session key S, it will be able to decrypt the
message and recover the underlying symmetric key Ks. They are now both in position to engage into
secure communication using their algorithm of choice, such as Triple DES, Rijndael, and so on.

The possibly of a man-in-the-middle attack must be eliminated, which in some exaggerated and
highly improbable but quite possible cases can make user A believe that it is communicating with user
B when user A is actually communicating with attacker C instead and make user B believe that it is
communicating with user A when in fact user B is communicating with attacker C instead. The idea
is shown in the following, where users A and B are led to believe that they are communicating with
each other when they are actually not.

A C B

The danger in this scenario is that the attacker negotiates a different DH session with each user.
To thwart such an attack, users A and B must digitally sign the public keys A and B that they send out
to the other party. Because attacker C cannot forge the signatures, the attack fails. The DH protocol
handshake will go through only if the signatures are verified by the respective recipients.

From a computational standpoint, we will simply mention that on a specific hardware platform,
doubling the DH key size from 512 to 1,024 bits almost quadruples the time needed per operation. A
significant difference appears in performance when the protocol is executed in hardware with assist
units or purely in software. For example, modular exponentiation is done as a series of successive

S � Ab � 1ga mod p 2b � gab mod p

S � Ba � 1gb mod p 2a � gba mod p
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multiplications. The most reputable algorithm for modular multiplication is the Montgomery
algorithm. Numerous descriptions of circuit architectures that implement Montgomery arithmetic are
described in the annual proceedings of the Cryptographic Hardware and Embedded Security (CHES)
conference. For more information, consult either Çetin Kaya Koç’s web site (http://islab.oregonstate
.edu/koc/) or Christof Paar’s web sites (www.ece.wpi.edu/faculty/cxp.html and http://crypto.ruhr-
uni-bochum.de). Many security coprocessors have an embedded specialized hardware unit that carries
out Montgomery exponentiations in hardware, thereby tremendously accelerating the performance.

COMMON PUBLIC-KEY CRYPTOGRAPHY ALGORITHMS

Many hashing and keyed-hashing algorithms are available. However, the most common ones to be
aware of are the Secure Hashing Algorithm (SHA-1), which is very strong as it was designed by the
National Security Agency (NSA) to preserve the integrity of messages. This has become a key ingre-
dient of the Digital Signature Algorithm (DSA). The establishment of the new AES standard has
launched an ongoing discussion about expanding the same hashing principle to larger block sizes that
are commensurate with the higher performance afforded by the more modern and powerful algorithms
such as Rijndael and other contestants of the AES. These discussions regarding SHA-256 and even
longer along with the latest proposals are documented at the NIST cryptographic web site.

Other widely known hashing algorithms include MD5 and RIPEMD. They are all documented in
detail in essentially every good cryptography textbook.

In the public-key cryptography arena, the undisputed leading technology in terms of years of use,
several deployed solutions, and worldwide acceptance is RSA technology, which is based upon the
difficulty of factoring very large numbers that are the product of two large primes. The steps taken in
RSA-based security are as follows:

1. One first comes up with a number n that is the product of two large primes p and q, where p and
q must remain secret and are eventually discarded at the end of an operation.

2. A number e is agreed upon, which is relatively prime to (that is, has no common factors with) the
product (p�1)(q�1). Different sources recommend different values, but e is typically one of the
following: 3, 17, and more often 65537 (� 216 � 1). The RSA public key is the pair (n, e).

3. The RSA private key is then the number d � e-1 mod [(p�1)(q�1)].

4. Either key can be used for encryption and the other one will be able to decrypt the cipher.

5. Encryption on a message m to produce cipher c is c � me mod n.

6. Decryption of the cipher c to recover the message m is m � cd mod n.

Implementations for the decryption are usually based on the Extended Euclid Algorithm to find
the inverse of a number in modular arithmetic. However, to accelerate the private-key operations, some
cryptographic coprocessors offer the possibility of using a special module that implements the famous
Chinese Remainder Theorem (CRT). In that case, the values of p, q, and values close to them, such as
d mod (p�1) or d mod (q�1), are saved and others are easily calculated from them for subsequent
use. Both theorems are fundamental pieces of knowledge in elementary number theory and can be
found in any good textbook on cryptography or number theory.

Several sources of benchmarking information are available to compare the time it takes between
various operations. Without intending to scrutinize the efficiency of algorithms or code implementa-
tions, we show some results publicly available from Wei Dai’s Crypto�� benchmarking work in
Table 17.1 (see www.eskimo.com/~weidai/benchmarks.html). This is provided solely to compare the
impact of some typical cryptographic operations on systems. The absolute values of these items are
irrelevant to our discussion. What is important here is the impact on the performance from the choice
of algorithm and the key size.
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The longer the key, the more computationally heavy the work. Notice the time difference (for spe-
cific key lengths especially when they are getting longer) between actually generating a digital sig-
nature and simply verifying one. Public-key decryption takes more time than public-key encryption.
This is because in order to enhance security, the private key is usually longer than the public one. As
a result, the modular exponentiation operations involved with public-key decryption (the equivalent
of digital signature generation) are computationally more involved. This is why security coprocessors
sometimes possess extra assist units (such as the implementation of the CRT or Montgomery expo-
nentiators to implement the associated arithmetic efficiently) or why they use other design tricks such
as the precomputation of several powers of the modulus that accelerate calculations and keep them
readily available in a lookup table.

If a potential user wants to further scrutinize the internals of a security coprocessor, he or she may
want to find out how the quality of primes is ensured. Naïve users usually think that in order to cre-
ate that effect, large random numbers are generated and then the system tries to factor them in order
to ensure that a generated number (intended to be a prime) is a prime. Many different probabilistic
primality testing algorithms are available and a system at configuration time or at design time was put
together in such a way that it allows the setting of a threshold of acceptable failure risk in the gener-
ation of such numbers. The embedded cryptographic system will then generate large random num-
bers and apply one or more primality tests to them. These test are run with a varying degree of
confidence based on the risk threshold stipulated by the user. The system will make a judgment as to
whether the generated number is indeed prime. The subject has fascinating ramifications, but it goes
way beyond the coverage of our chapter.

The following are a few other well-known public-key techniques:

• The unpatented El-Gamal system, which is similar in approach to the DH and RSA processes, but
in terms of encryption, the ciphertext is twice as long as the plaintext.

• The DSS, which is standardized as FIPS-186.
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TABLE 17.1 Time Comparisons of Performance on the Same Platform of Several Typical Public-Key
Cryptographic Operations

Public-key based cryptographic Time spent on an Intel
operation description Key size Celeron 450 platform

RSA signature generation 512 bits 0.4 msec/operation

RSA signature verification 512 bits 0.3 msec/operation

RSA signature generation 1,024 bits 27 msec/operation

RSA signature verification 1,024 bits 0.7 msec/operation

Digital Signature Standard (DSS) signature generation 512 bits 4 msec/operation

DSS signature generation with precomputation 512 bits 2 msec/operation

DSS signature verification 512 bits 5 msec/operation

DSS signature generation 1,024 bits 15 msec/operation

DSS signature generation with precomputation 1,024 bits 5 msec/operation

DSS signature verification 1,024 bits 18 msec/operation

RSA encryption 512 bits 0.2 msec/operation

RSA decryption 512 bits 4 msec/operation

RSA encryption 1,024 bits 1 msec/operation

RSA decryption 1,024 bits 27 msec/operation
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• The lattice-cryptography-based NTRU cryptosystem, which is starting to make a significant inroad
in the wireless market due to its speed and modest computational resource requirements. The com-
pany’s web site contains a series of white papers and excellent tutorials (see www.ntru.com).

• Elliptic-curve cryptography (ECC) and some more recent variations of its principles such as hyper-
elliptic-curve-based cryptography. In the last few years, ECC public-key cryptography has become
a potential large-scale contestant, as it offers similar levels of protection to RSA but with signifi-
cantly shorter keys (an order of magnitude shorter), which translates into bandwidth savings. A
quick series of tutorials on fundamentals of ECC can be found at the Certicom web site at www.
certicom.com. A series of standards have been already compiled using ECC cryptography to imple-
ment session key exchanges (such as elliptic-curve-based Diffie-Hellman [EC-DH]) and digital sig-
natures (such as EC-DSA, which is the standard elliptic-curve-based Digital Signature Algorithm
[EC-DSA]).

Both the Institute of Electrical and Electronics Engineers (IEEE) and American National
Standards Institute (ANSI) have been actively pursuing standards along several dimensions of these
technologies, although many of these technologies (such as Rijndael) have not yet received the IETF’s
blessing and therefore do not appear in implementations such as IPsec for the moment—a situation
that is most likely to change in the not-so-distant future.

In general, a designer must weigh the pros and cons between execution speed and security. Longer
keys provide higher security, but they take computationally longer to complete. Dedicated security
coprocessors do not penalize the main CPU or NPU; therefore, the dilemma goes away. The issue then
is to decide how flexible or powerful the security coprocessor is and how easy it will be to interface
with the NPU at hand.

STANDARDIZED SECURITY PROTOCOLS

By now, it should be clear that in order for devices to communicate safely and securely with each
other, a series of issues needs to be settled at communication setup time, including the following:

• Which algorithms will be used among the many that may be implemented inside a system?

• What will be the session key generation mechanism?

• What if the other party supports only some but not all the available techniques?

• How do both parties fall back on a common denominator?

• What if the parties are able to set up a session according to multiple options? Who gets to decide
what will be used and based on what criteria?

• How will the symmetric key be generated?

• What will decide the size of the symmetric key?

• How will IVs be generated?

• For some algorithms, what will decide the size of the block?

• What mode of the symmetric algorithm will be used?

• What wider provisions must be set up at both communicating parties in order to allow the possibil-
ity of safe recovery of the session if cryptographic errors or losses prohibit the correct decryption
of some block? For instance, will one have to go back and reconstitute the stack buffers with prior
ciphertext and previously scheduled subkeys in order to recover the session (and if so, up to what
extent) or should a system drop a session altogether?

• How is all of this communicated to and enforced on the other party?

• What will be the session key exchange protocol?
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• How will the communicating parties ensure that none of the generated symmetric keys are weak?

• How will the authentication be handled?

• Will it be unidirectional or bidirectional?

• Will it be necessary to certify either party’s credentials?

• Will it be necessary to perform integrity checking and other security mechanisms? If so, which
ones?

• Will it be necessary to rekey the underlying symmetric algorithm periodically? If so, how often will
rekeying have to be reinitiated? Based on which protocol?

• How are rekeyed IVs generated and communicated to other parties every time?

• How are IVs generated and communicated to the other party every time?

• Which one of the communicating parties will initiate it? Who enforces the mechanism?

• Will the communicating parties spend the rest of their lives trying to handshake a multitude of pro-
tocols in order to set up a meaningful session or will they eventually time out and drop the effort?
Under what conditions does this occur and what event logging takes place?

The list can go on and on. The intention here is not to be exhaustive, but simply to put things into
the overall computational-load context and to show the magnitude and importance of the interoper-
ability problem.

IPsec

IPsec is the current de facto standard in the security of IP-protocol-based networks as it provides mul-
tiple mechanisms that ensure confidentiality, integrity, and authentication. The book IPsec: The New
Security Standard for the Internet, Intranets, and Virtual Private Networks by Naganand Doraswamy
and Dan Harkins (Upper Saddle River, New Jersey: Prentice-Hall, 1999) is an outstanding source of
tutorial information. It also contains numerous references to the multiple RFC documents that detail
all aspects of IPsec. Here we will limit ourselves only to some generalities to put things into a net-
work-processing context.

IPsec establishes security relationships between end devices, between end devices and gateways
(such as firewalls), or between gateways connecting two LANs from different sites with each other
over the insecure WAN. It is designed to function in one of two modes (transport and tunneling), and
it allows the use of two basic packet-forming protocols in either of these two modes with the inten-
tion of securing IP datagram traffic: Authentication Header (AH) and Encapsulating Security Payload
(ESP). The landscape is also complemented with a sophisticated key-generation-and-sharing hand-
shake protocol, which is called Internet Key Exchange (IKE).

Several cryptographic techniques are used in the heart of IPsec’s protocols (along the directions
we briefly described earlier). Support is available for several symmetric (such as DES, Triple DES,
IDEA, and RC4), asymmetric (such as RSA and DSS), and hashing (such as SHA-1 and MD5) algo-
rithms all operating with different key sizes, which are configurable to suit security and performance
requirements. The fundamental idea behind the IETF’s effort that created IPsec was that IPsec-com-
pliant devices designed by different manufacturers that desired to communicate with each other
securely should be able to engage in a handshake mechanism at session establishment time, commu-
nicate their cryptographic capabilities and user preferences to each other, and automatically negoti-
ate transparently for the user the setup of a session that is configured along a greatest common
denominator of capabilities as well as security requirements.

The IPsec transport mode is used when upper-layer protocols need to be protected such as UDP
or TCP in end-to-end sessions, whereas the tunnel mode is used when complete IP datagrams need to
be protected, as is the case in gateway-to-gateway communications where one does not want LAN-
internal destination addresses or even specific sessions to be monitored outside while they traverse
the WAN. In transport mode, the IPsec header is inserted between the IP header and the upper-layer
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protocol header. In tunnel mode, the entire packet to be protected is encapsulated inside another data-
gram, and an IPsec header is inserted between the outer and inner headers. Figure 17.7 illustrates this.

We mentioned earlier the concept of security associations (SAs), which allow the structured han-
dling of multiple secure sessions. SAs are unidirectional; therefore, a different SA is used for inbound
as opposed to outbound traffic. In the case of IPsec, they are identified by an index called Security
Parameter Index (SPI), which is inside each packet and ultimately enables the parties to map the secu-
rity services they require on specific links based on established security policies (as contained in a
policy database) as well as on multiple cryptographic contexts (keys, sequence numbers, destination
and source addresses, and the choice of protocol used).

The AH protocol provides data integrity, data source authentication, and protection against play-
back (replay) attacks. As it does not provide confidentiality, it involves a new packet header but not a
new trailer.

The ESP protocol provides confidentiality, data integrity, and data source authentication of IP
packets as well as protection against replay attacks. We saw earlier that a new ESP header is created.
Part of the ESP packet payload is encrypted and a portion is in the clear to allow the recipient to prop-
erly process the packet. All the operations needed to create this new material obviously require a new
trailer. The result is a new combination of plaintext-ciphertext-and-authenticated material, as shown
in Figure 17.8.

It goes without saying that as both confidentiality and authentication are ensured by the ESP
protocol, the SPI, which identifies an SA, refers to a combination of cipher and authenticator algo-
rithms. In addition to using block ciphers in CBC mode, communication of the necessary IV is also
foreseen.

The AH and ESP protocols can be used independently or jointly in some sessions. Security and
computational issues are involved depending on which one is performed first and on which mode
IPsec is configured to perform (transport or tunnel) in that specific case. The pros and cons go beyond
our scope and the reader is referred to the literature.
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FIGURE 17.7 IPsec restructuring of IP packets according to the transport and tunnel modes
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IKE is used to establish shared security parameters and authenticated keys, which amounts to
establishing SAs between peer systems that are engaged into an IPsec session. More specifically, IKE
is a hybrid of the Oakley (from which it has adopted multiple modes) and SKEME (from which it has
adopted sharing and rekeying techniques) protocols. It operates in the Internet Security Association
and Key Management Protocol (ISAKMP) framework, which fully defines packet formats, retrans-
mission timers, and message construction requirements. As a result, IKE defines its own way of deriv-
ing authenticated keying material and negotiating shared policy.

A few words are appropriate here about the module names that we just mentioned. First, Oakley
was designed by University of Arizona cryptographer Hilarie Orman. It is a free-form protocol that
essentially enables parties to advance the state of the protocol at their own pace. It allows an authen-
ticated key exchange. IKE actually borrowed the idea of some of its modes from Oakley and codified
them into concretely specified handshake exchanges.

SKEME is a key exchange protocol that was originally designed by cryptographer Hugo
Krawczyk. It defines a mechanism of authenticated key exchange, whereby the communicating par-
ties use public-key encryption to authenticate each other and then they share some randomly gener-
ated components of the exchange, which the parties exchange among themselves using public
encryption. It may be combined with a regular DH handshake.

ISAKMP is a framework that was developed originally by the NSA and defines how peer devices
engage into a secure communications session. This includes how the exchanged messages are con-
structed and formatted, and the exact state transitions that have to be undergone in order to secure the
communication session. It provides means that allow a device to properly authenticate a peer, to
exchange information needed for a key exchange, and to negotiate security services. Although this
covers the whys and hows, it does not cover the whats of the exchanges. The details of what exactly
must be negotiated is left to another type of specification document, which in the case of IPsec is
called the Domain of Interpretation (DOI). The exact bit field positions reflect the exact significance
of all parameters involved with algorithm choices and configurations.

In addition to encryption and authentication, IPsec addresses several other interesting aspects of
operation. One of them is network-layer compression. The payload content is compressed prior to
being encrypted. In fact, this is exactly how it should always be, because if it is done the other way
around, the process ends up being worthless because compression is impossible or, as more often is
the case, because compressing an encrypted stream is not a reversible operation and the receiver can-
not decrypt traffic. IPComp is the protocol used for IPsec compression. It creates a type of SA known
as the IP Payload Compression Protocol (PCP). Other techniques of compressing are available in this
same IP realm such as the Lempel-Ziv standard (LZS) and Deflate, but we will not spend any more
time on them here. Other issues of interest are also how IPsec behaves in a multicast environment and
how the Network Address Translation (NAT) protocol can be consolidated within the same context
where IPsec security may be required. The textbook by Doraswamy and Harkins covers all of these
issues in detail.
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FIGURE 17.8 The packet structure after application of the ESP protocol
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As a conclusion, the overriding point we want to make is that the consolidated need for significant
computational power justifies offloading all IPsec operations onto an accelerating coprocessor.

SSL

SSL is a layered handshake protocol that was originally designed by Netscape and through lots of
bumpy industrial quasi-consensus and intervention by the IETF, it has become a formal standard now
covered by RFC 2246 and it is known as Transport Layer Security (TLS). Its so-called record layer
lies on top of reliable transport protocols such as TCP.

The principles on which SSL is built have already been discussed so nothing should be surprising.
If a client device wants to establish a secure communication session with a server, three steps must
be taken during the handshake phase:

• After the server has been authenticated, the two parties must agree on the cryptographic algorithms
to be used in the session.

• The keys to be used by the agreed-upon algorithms must be derived and established.

• The handshake may optionally authenticate the client.

Once the handshake phase has been successfully concluded, the data transfer phase begins.
To understand the computational load needed at session setup time, let’s look at the handshake

process a little closer. For more details, refer to the excellent book SSL and TLS: Designing and
Building Secure Systems by Eric Rescorla (Reading, Massachusetts: Addison Wesley, 2000).

1. The client first sends a list of algorithms it can support and a random number to the server. Both
parties will use this random number for subsequent calculations.

2. The server chooses the cipher it prefers from the proposed list and sends it back to the client along
with a digital certificate, which contains the server’s public key. Other information is also located
in the certificate that the client can potentially use to further authenticate the server, if necessary.
The server also sends another random number that will also be used by the parties as part of the
key-generation calculations.

3. The client verifies the server’s certificate and extracts the server’s public key. The client will then
generate a random secret string called the premaster secret. It encrypts it with the server’s public
key and sends it to the server.

4. From the premaster secret, the two parties will independently calculate the MAC and encryption
keys. This is done by both parties using the same Key Derivation Function (KDF) in order to derive
the same master secret, which will subsequently be used to generate the actual cryptographic keys.

5. The handshake process is concluded by first having the client calculate a MAC of all the hand-
shake messages and then send it to the server.

6. The server calculates and sends a MAC of all the handshake messages to the client.

The load is heavier at session setup time than during the actual data transfer phase where encryp-
tion/decryption acceleration is desirable. SSL accelerators are therefore needed where it makes sense
to introduce them—for example, at servers or gateways.

The SSL protocol sometimes allows the use of a significantly accelerated variant called resump-
tion or resume handshake, where the parties agree to use the same master secret from a previous ses-
sion and therefore forego the time spent starting cryptographic calculations again from scratch.
According to Rescorla, this has been shown to accelerate the session setup by almost a factor of 20
in the case of session keys that are 512 bits long. This special resume handshake should only be used
in cases where the convenience of some types of frequent connections for specific client devices out-
weighs the security concerns; therefore, it should only be engaged judiciously.
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FIGURE 17.9 The systems configuration of a SafeNet-2141 security coprocessor based on
the Peripheral Computer Interconnect (PCI) bus (Source: SafeNet)
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SECURITY COPROCESSORS: A CLASSIFICATION

Security coprocessors come in many forms and shapes. Users can offload computationally intensive
cryptographic operations to specialized chips. This has been the case from the original DES encryp-
tor chips in the early 1990s from companies like VLSI Technology (now Philips Semiconductor) to
the latest coprocessors like SafeNet’s SafeXcel-2141 coprocessor, which has been designed together
with Analog Devices (and also contains a powerful embedded and user-programmable digital signal
processor [DSP] core), as shown in Figures 17.9 and 17.10, which are used in computational envi-
ronments of workstations or small gateways with aggregate throughputs less than 1 Gbps. Figure 17.9
shows how the coprocessor fits into a system, and Figure 17.10 shows the internal structure of the
chip. The cryptographic modules are shown in gray for clarity.

However, the trend in the network-processing arena, where wire speeds of several gigabits per sec-
ond is the norm and where every packet flowing by belongs to a completely different session and must
be treated in a different way involving different ciphers and keys, places a tremendous stress on tra-
ditional encryption chips. These classical encryption chips contain special hardware units that will
calculate all modular exponentiations with hardware assistance. On top of that are usually embedded
modules that will calculate DES (and/or AES in the latest designs) in the appropriate mode, as well
as hashes such as MD5 and SHA-1. The main systems processor therefore hands out the data to be
secured along with the parameters required to the security coprocessor, which will calculate all that
is required and pass the results of the cryptographic calculations back to the main CPU. The main
CPU during that time can use its power on other tasks.

In our case, we emphasize two types of security coprocessors: IPsec accelerators and SSL accel-
erators. The products appear in chip and board format.
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Systems Considerations when Engaging a Security Coprocessor

Regardless of their speed of processing, security processing can be conceived either in a look-aside
or flow-through architecture. The principles are shown in Figures 17.11 and 17.12, respectively, where
the corresponding cases of a typical NPU-based high-speed line card is depicted. Some interesting
systems-related issues are associated with both of these architectures.

In the look-aside architecture, incoming traffic(1) that needs decryption or decapsulation is for-
warded by the NPU to the security coprocessor. After local processing, it is sent back(2) to the NPU
for further classification and forwarding. Outgoing traffic(3) that needs encryption, hashing, or encap-
sulation is forwarded by the NPU to the security coprocessor. After processing, it is sent back to the
NPU for subsequent scheduling(4) and transmission over the line interface. As soon as the host CPU
(or the NPU in the case of a network-processing piece of equipment) receives a packet, it will deter-
mine whether it requires security-related processing. If it does, it will forward the packets through the
host bus (usually PCI, but in some security coprocessors, it can also be PCIX, which just doubles the
performance of the bus, or HyperTransport, which unfortunately is not natively supported by network
processors) to the security coprocessor for subsequent processing, whether this is hashing, encryp-
tion, or decryption.

In the flow-through architecture, the security coprocessor sits in front of the network processor so
it intercepts all incoming traffic. If it requires decryption or decapsulation, it can handle these tasks
independently, in which case it will ultimately hand over decrypted traffic to the NPU for subsequent
classification and forwarding. Likewise, outgoing traffic coming out of the NPU will be encrypted
and/or encapsulated prior to its transmission over the line interface. As shown in Figure 17.12, bidi-
rectional traffic at points 1 and 4 is encrypted, whereas it is decrypted at points 2 and 3.

390 NETWORK PROCESSORS

FIGURE 17.10 The internal structure of the Analog Devices/SafeNet-2141L security coprocessor chip (Source:
Analog Devices)
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The security processor will need access to the data associated with the secure session such as the
keys, policies, and parameters. This usually requires a storage capacity per session of up to a few hun-
dreds of bytes. In many cases where the number of sessions is limited, if the security coprocessor chip
contains on-chip memory this information can be stored on-chip where it is both convenient and 
relatively safe. However, when several sessions (tens of thousands, if not hundreds of thousands of
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FIGURE 17.12 A security coprocessor sitting next to a network processor in a flow-
through architecture
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FIGURE 17.11 A security coprocessor sitting next to an NPU in a look-aside
architecture
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sessions) need to be maintained, some sort of massive external memory will be required to preserve
the session states. In these cases, synchronous dynamic random access memory (SDRAM) is usually
used.

The obvious bandwidth issue associated with the frequent duplex use of the PCI/host bus to send
traffic back and forth between the network processor and the security coprocessor indicates that the
look-aside solution can only be sustained for relatively low-end systems where line speed is OC-3 or
OC-12 and not more than 1 Gbps. The flow through is extremely scalable to line speeds to the extent
that the security coprocessor has been designed to sustain the wire-speed processing. The system-
related downside of the flow-through approach is that some comprehensive information about the state
of various applications that are running at higher layers must be made systematically available to the
security coprocessor, so that it can make the correct decisions about what to do on incoming or out-
going packets without disturbing the network processor or other CPUs in a complete system.

In terms of the security ratings of a system, several levels of certification of how secure a device
is deemed to be are available. The Federal Information Protection Standard (FIPS)-140 standard
describes the requirements a device must satisfy to be rated at a specific level of security needed (in
this case) by the U.S. federal government. As an example of the implications, we will mention the
danger of having the security coprocessor access an external block of SDRAM to obtain the neces-
sary keys and other session-related information. If the system is not designed to be tamper-proof,
essentially anyone can open the chassis and gain physical access to the memory pins, thereby read-
ing the sensitive information simultaneously with the security coprocessor in order to subsequently
attack a system or a link.

If the system is designed according to the FIPS-140 standard and the security coprocessor is
housed in the same tamper-proof cryptographic module with the session-state memory in such a way
that when it detects intrusion and a specific trigger is created, then a specific pin can be activated
(when available) on some security coprocessor chips, and that event will zeroize all internal registers
and storage so no sensitive internal material can be obtained by an intruder. Of course, the box design
(if it has been designed according to the same standard guidelines) will also leave physical traces and
undeniable proof of the physical tampering.

Yet another approach that systems designers can take is for the security coprocessor to write and
retrieve encrypted session-related data to and from the session memory only when it obtains access
to the session-state memory directly (bypassing the network processor or host CPU). This way even
if someone obtains access to that session-state memory, the illicitly retrieved session-state data are
meaningless. The price for such an elevated degree of protection is a significant decrease in crypto-
graphic throughput performance as the security coprocessor now has to meticulously encrypt and
decrypt all the session’s cryptographic metadata—that is, the data that it needs in order to actually
encrypt and decrypt user traffic on behalf of the network processor or host CPU.

Be extremely cautious with public-key cryptographic performance ratings, as companies unfortu-
nately report results partially and in arbitrary units that are extremely difficult to compare. The
prospective user should therefore understand the constraints of the technology and ask vendors the
appropriate questions until the full picture is disclosed.

IPsec Acceleration Some manufacturers quote RSA operations or DH operations, but in addition
to being vague, they are not even close to defining what is actually obtained by acquiring their prod-
uct. IPsec has multiple parameters that can define the computational context. It is therefore important
to know what parameter compares with what. It is important first and foremost to know the follow-
ing items as an IPsec accelerator spends most of its time encrypting and reformatting payloads of
packets:

• How it performs with a typical (such as RC4) and worst-case cipher (such as the combination of
Triple DES with SHA-1 hashing).

• How it performs with different key sizes (and, when applicable, when combined with different block
sizes).
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• How performance is affected when IPsec is configured respectively with AH, ESP, and potentially
AH/ESP protocols.

• What happens when IPsec works in transport and, more importantly (in terms of workload that it
then has to churn), in tunnel mode.

• How the link performance is degraded when the link is sustained as simplex or as full duplex.

• What happens under a specific and pertinent key exchange protocol. The exact context of the
exchange environment must be defined, so that oranges are compared with oranges, so to speak. For
instance, one may want to know what happens when IKE is used with a DH operation, an RSA (or
DSA) signature generation, and an RSA (or DSA) signature verification where the key sizes are
standardized. For example, some DH cases can use 180-bit exponents and RSA keys can be stipu-
lated to be 1,024 bits (typically good security) or 2,048 bits (much more conservative security) and
so forth.

Do not neglect finding out how the IPsec accelerator behaves in a more subtle situation where it
must be decided whether the consecutively flowing packets belong to different SAs. Many vendors
would assume that many of the consecutive packets belong to the same SA and therefore the configu-
ration data are readily available in a lookup table. This is one extreme case that suits the vendor. A ques-
tion at the other extreme of the argument should be asked instead—namely, how is the performance
affected if all parading packets during the test belong to different security associations and the crypto-
graphic context has to be completely updated after each packet has been processed? The truth of a typ-
ical case would then lie somewhere in the middle.

With this fundamental set of overall IPsec performance parameters more or less delineated, the
potential user should then go even deeper into the relevant worth of actual hardware-assist units and
probe deeper into the vendor claims in order to ultimately bring out the real substance of performance
numbers, which are relevant to one’s own design requirements and targets. The public-key-related
questions that must be answered by a prospective vendor are listed in the section “SSL Acceleration.”

On the cipher side, the prospective user must also keep an eye on the advertised throughput num-
bers. If an IPsec accelerator or a security coprocessor can handle multiple algorithms such as Triple-
DES and AES, be aware of the extra header bytes that the algorithm may require. Triple DES can
require up to 57 extra bytes to be added to a packet, whereas Rijndael/AES with its longer IV require-
ments can add up to 65 bytes to the size of an original packet. If the packets used in a throughput test
are long enough (longer than 1KB), this extra overhead may be conveniently ignored. If an environ-
ment is tested where packets are very short, as is the case in some instances where packets can be as
short as 64 bytes, then the extra crypto overhead suddenly occupies half the bandwidth available.
Therefore, when speaking about throughput, define exactly what is measured.

The wire-speed bit rate, packets per second, and actual cumulative payload (such as the data con-
tent of packets after headers and trailers are stripped away) divided over time are all very distinct enti-
ties and all denote bit rates. Yet they are somehow usurped concepts that some security chip vendors
will not hesitate to use liberally to present a favorable view of their product. It is up to the user to dis-
cern the truth.

These pointed questions toward a vendor not only formulate a set of expected answers that reflect
the environment of a potential user, but they necessarily lead to results that are more meaningful when
mapped onto an environment.

SSL Acceleration From what we discussed, it should be obvious that SSL performance is more an
issue at session setup time. An SSL server has a very different workload from a client device in that
case, so be careful about what is compared. The server first signs its certificate, which it sends to the
client, and then hashes some pieces of information, which it also sends to the client. Signing is a
euphemism for encrypting something with a private key. In the public-key arena, people usually talk
loosely about encryption when they refer to the operation of encrypting content with someone’s pub-
lic key. In the time rating that vendors typically report to characterize such processes, they quote RSA
sign operations per second.
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To start with, this number is not clear at all. In fact, all vendors do not use it similarly:

• Some manufacturers include the time that their chip takes to produce hashes, in which case some
new questions naturally arise: Which hash algorithm was used? How will the performance change
if a different hash algorithm were used instead? What will the performance look like without the
hashing?

• Some manufacturers do not include time in the time quotes for these public-key operations to
account for hashes because they say that digitally signing takes much more time than producing the
hash, so they argue that it can be neglected (or so they think).

Even if we focus on the RSA encrypt/decrypt operations, which in a digital signature environment
directly correspond to the processes of verifying and generating a digital signature, respectively, we
will need to know the size of the keys if a hardware-assist unit is used, such as for the CRT calcula-
tion. In Table 17.1, where we show some qualitative relationships between operations, we used the
term operations to denote the modular exponentiation of the signature generation or verification
process.

Some vendors talk in terms of sessions per second, transactions per second, keys per second, or
exponentiations per second. Some vendors also quote figures for the shorter resume-handshake pro-
tocols when they should actually be quoting their performance on the full-fledged SSL session setup
handshake. It is therefore critical for a prospective user who is comparing security coprocessors to
submit the prospective vendors to the rigors of a thorough questioning so that no misunderstandings
will occur. The best way to go about doing this is to leave no stones unturned and to insist on figures
that show the full-fledged SSL handshake protocol capabilities, where hashes must be calculated, sig-
natures must be generated, and signatures must be verified.

The result of a performance inquiry with a manufacturer should not just yield a couple of numbers
as many vendors would have the users believe. It should produce a three-dimensional matrix of num-
bers that will say a lot to the overall systems architect about how a specific coprocessor might work
in a new systems design that he or she is trying to sketch out and budget.

Last but not least, we need to point out that unfortunately several security coprocessor vendors are
not fully prepared to easily share this type of objective detail with customers; therefore, be persistent.

SUMMARY

In this chapter, we discussed issues related to funtionality of security coprocessors operating in a net-
work-processing environment. We looked at the fundamentals of most aspects surrounding private-
and public-key cryptographic algorithms and operations as required in communications systems. We
also discussed the most commonly used security protocols from a systems standpoint. We explained
how to compile elaborate educated lists of criteria that consolidate the best practices of cryptography
into ways that allow an individual to probe deeper into vendors’ claims in order to identify the true
substance of a security coprocessor product. Finally, we reviewed the architectures of typical security
coprocessors and identified systems engineering techniques of introducing them into larger switch-
ing/routing systems next to network processors. We also discussed the trade-offs that are associated
with their respective use.
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2001).
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