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Series Introduction

Over the past 50 years, digital signal processing has evolved as a major
engineering discipline. The fields of signal processing have grown from the
origin of fast Fourier transform and digital filter design to statistical spectral
analysis and array processing, and image, audio, and multimedia processing,
and shaped developments in high-performance VLSI signal processor
design. Indeed, there are few fields that enjoy so many applications—signal
processing is everywhere in our lives.

When one uses a cellular phone, the voice is compressed, coded, and
modulated using signal processing techniques. As a cruise missile winds
along hillsides searching for the target, the signal processor is busy proces-
sing the images taken along the way. When we are watching a movie in
HDTV, millions of audio and video data are being sent to our homes and
received with unbelievable fidelity. When scientists compare DNA samples,
fast pattern recognition techniques are being used. On and on, one can see
the impact of signal processing in almost every engineering and scientific
discipline.

Because of the immense importance of signal processing and the fast-
growing demands of business and industry, this series on signal processing
serves to report up-to-date developments and advances in the field. The
topics of interest include but are not limited to the following:

. Signal theory and analysis

. Statistical signal processing

. Speech and audio processing

. Image and video processing

. Multimedia signal processing and technology

. Signal processing for communications

. Signal processing architectures and VLSI design



I hope this series will provide the interested audience with high-quality,
state-of-the-art signal processing literature through research monographs,
edited books, and rigorously written textbooks by experts in their fields.

K. J. Ray Liu



Preface

The main idea behind this book, and the incentive for writing it, is that
strong connections exist between adaptive filtering and signal analysis, to
the extent that it is not realistic—at least from an engineering point of
view—to separate them. In order to understand adaptive filters well enough
to design them properly and apply them successfully, a certain amount of
knowledge of the analysis of the signals involved is indispensable.
Conversely, several major analysis techniques become really efficient and
useful in products only when they are designed and implemented in an
adaptive fashion. This book is dedicated to the intricate relationships
between these two areas. Moreover, this approach can lead to new ideas
and new techniques in either field.

The areas of adaptive filters and signal analysis use concepts from several
different theories, among which are estimation, information, and circuit
theories, in connection with sophisticated mathematical tools. As a conse-
quence, they present a problem to the application-oriented reader. However,
if these concepts and tools are introduced with adequate justification and
illustration, and if their physical and practical meaning is emphasized, they
become easier to understand, retain, and exploit. The work has therefore
been made as complete and self-contained as possible, presuming a back-
ground in discrete time signal processing and stochastic processes.

The book is organized to provide a smooth evolution from a basic knowl-
edge of signal representations and properties to simple gradient algorithms,
to more elaborate adaptive techniques, to spectral analysis methods, and
finally to implementation aspects and applications. The characteristics of
determinist, random, and natural signals are given in Chapter 2, and funda-
mental results for analysis are derived. Chapter 3 concentrates on the cor-
relation matrix and spectrum and their relationships; it is intended to
familiarize the reader with concepts and properties that have to be fully
understood for an in-depth knowledge of necessary adaptive techniques in



engineering. The gradient or least mean squares (LMS) adaptive filters are
treated in Chapter 4. The theoretical aspects, engineering design options,
finite word-length effects, and implementation structures are covered in
turn. Chapter 5 is entirely devoted to linear prediction theory and techni-
ques, which are crucial in deriving and understanding fast algorithms opera-
tions. Fast least squares (FLS) algorithms of the transversal type are derived
and studied in Chapter 6, with emphasis on design aspects and performance.
Several complementary algorithms of the same family are presented in
Chapter 7 to cope with various practical situations and signal types.

Time and order recursions that lead to FLS lattice algorithms are pre-
sented in Chapter 8, which ends with an introduction to the unified geo-
metric approach for deriving all sorts of FLS algorithms. In other areas of
signal processing, such as multirate filtering, it is known that rotations
provide efficiency and robustness. The same applies to adaptive filtering,
and rotation based algorithms are presented in Chapter 9. The relationships
with the normalized lattice algorithms are pointed out. The major spectral
analysis and estimation techniques are described in Chapter 10, and the
connections with adaptive methods are emphasized. Chapter 11 discusses
circuits and architecture issues, and some illustrative applications, taken
from different technical fields, are briefly presented, to show the significance
and versatility of adaptive techniques. Finally, Chapter 12 is devoted to the
field of communications, which is a major application area.

At the end of several chapters, FORTRAN listings of computer subrou-
tines are given to help the reader start practicing and evaluating the major
techniques.

The book has been written with engineering in mind, so it should be most
useful to practicing engineers and professional readers. However, it can also
be used as a textbook and is suitable for use in a graduate course. It is worth
pointing out that researchers should also be interested, as a number of new
results and ideas have been included that may deserve further work.

I am indebted to many friends and colleagues from industry and research
for contributions in various forms and I wish to thank them all for their
help. For his direct contributions, special thanks are due to J. M. T.
Romano, Professor at the University of Campinas in Brazil.

Maurice G. Bellanger
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1
Adaptive Filtering and Signal
Analysis

Digital techniques are characterized by flexibility and accuracy, two proper-
ties which are best exploited in the rapidly growing technical field of adap-
tive signal processing.

Among the processing operations, linear filtering is probably the most
common and important. It is made adaptive if its parameters, the coeffi-
cients, are varied according to a specified criterion as new information
becomes available. That updating has to follow the evolution of the system
environment as fast and accurately as possible, and, in general, it is asso-
ciated with real-time operation. Applications can be found in any technical
field as soon as data series and particularly time series are available; they are
remarkably well developed in communications and control.

Adaptive filtering techniques have been successfully used for many years.
As users gain more experience from applications and as signal processing
theory matures, these techniques become more and more refined and sophis-
ticated. But to make the best use of the improved potential of these techni-
ques, users must reach an in-depth understanding of how they really work,
rather than simply applying algorithms. Moreover, the number of algo-
rithms suitable for adaptive filtering has grown enormously. It is not unu-
sual to find more than a dozen algorithms to complete a given task. Finding
the best algorithm is a crucial engineering problem. The key to properly
using adaptive techniques is an intimate knowledge of signal makeup. That
is why signal analysis is so tightly connected to adaptive processing. In
reality, the class of the most performant algorithms rests on a real-time
analysis of the signals to be processed.



Conversely, adaptive techniques can be efficient instruments for perform-
ing signal analysis. For example, an adaptive filter can be designed as an
intelligent spectrum analyzer.

So, for all these reasons, it appears that learning adaptive filtering goes
with learning signal analysis, and both topics are jointly treated in this book.

First, the signal analysis problem is stated in very general terms.

1.1. SIGNAL ANALYSIS

By definition a signal carries information from a source to a receiver. In the
real world, several signals, wanted or not, are transmitted and processed
together, and the signal analysis problem may be stated as follows.

Let us consider a set of N sources which produce N variables
x0; x1; . . . ; xN�1 and a set of N corresponding receivers which give N vari-
ables y0; y1; . . . ; yN�1, as shown in Figure 1.1. The transmission medium is
assumed to be linear, and every receiver variable is a linear combination of
the source variables:

yi ¼
XN�1
j¼0

mijxj; 0 4i 4N � 1 ð1:1Þ

The parameters mij are the transmission coefficients of the medium.

FIG. 1.1 A transmission system of order N.



Now the problem is how to retrieve the source variables, assumed to
carry the useful information looked for, from the receiver variables. It
might also be necessary to find the transmission coefficients. Stated as
such, the problem might look overly ambitious. It can be solved, at least
in part, with some additional assumptions.

For clarity, conciseness, and thus simplicity, let us write equation (1.1) in
matrix form:

Y ¼MX ð1:2Þ
with

X ¼
x0
x1
..
.

xN�1

2
6664

3
7775; Y ¼

y0
y1
..
.

yN�1

2
6664

3
7775

M ¼
m00 m01 � � � m0 N�1
m10 m11 � � � m1 N�1
..
. ..

.

mN�10 � � � mN�1 N�1

2
6664

3
7775

Now assume that the xi are random centered uncorrelated variables and
consider the N �N matrix

YYt ¼MXXtMt ð1:3Þ
where Mt denotes the transpose of the matrix M. Taking its mathematical
expectation and noting that the transmission coefficients are deterministic
variables, we get

E½YYt� ¼ME½XXt�Mt ð1:4Þ
Since the variables xið0 4 i 4 N � 1Þ are assumed to be uncorrelated, the
N �N source matrix is diagonal:

E½XXt� ¼

Px0
0 � � � 0

0 Px1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � PxN�1

2
6664

3
7775 ¼ diag½Px0

;Px1
; . . . ;PxN�1 �

where

Pxi
¼ E½x2i �



is the power of the source with index i. Thus, a decomposition of the receiver
covariance matrix has been achieved:

E½YYt� ¼M diag½Px0
;Px1

; . . . ;PxN�1 �Mt ð1:5Þ
Finally, it appears possible to get the source powers and the transmission

matrix from the diagonalization of the covariance matrix of the receiver
variables. In practice, the mathematical expectation can be reached, under
suitable assumptions, by repeated measurements, for example. It is worth
noticing that if the transmission medium has no losses, the power of the
sources is transferred to the receiver variables in totality, which corresponds
to the relation MMt ¼ IN ; the transmission matrix is unitary in that case.

In practice, useful signals are always corrupted by unwanted externally
generated signals, which are classified as noise. So, besides useful signal
sources, noise sources have to be included in any real transmission system.
Consequently, the number of sources can always be adjusted to equal the
number of receivers. Indeed, for the analysis to be meaningful, the number
of receivers must exceed the number of useful sources.

The technique presented above is used in various fields for source detec-
tion and location (for example, radio communications or acoustics); the set
of receivers is an array of antennas. However, the same approach can be
applied as well to analyze a signal sequence when the data yðnÞ are linear
combinations of a set of basic components. The problem is then to retrieve
these components. It is particularly simple when yðnÞ is periodic with period
N, because then the signal is just a sum of sinusoids with frequencies that are
multiples of 1=N, and the matrix M in decomposition (1.5) is the discrete
Fourier transform (DFT) matrix, the diagonal terms being the power spec-
trum. For an arbitrary set of data, the decomposition corresponds to the
representation of the signal as sinusoids with arbitrary frequencies in noise;
it is a harmonic retrieval operation or a principal component analysis pro-
cedure.

Rather than directly searching for the principal components of a signal to
analyze it, extract its information, condense it, or clear it from spurious
noise, we can approximate it by the output of a model, which is made as
simple as possible and whose parameters are attributed to the signal. But to
apply that approach, we need some characterization of the signal.

1.2. CHARACTERIZATION AND MODELING

A straightforward way to characterize a signal is by waveform parameters.
A concise representation is obtained when the data are simple functions of
the index n. For example, a sinusoid is expressed by



xðnÞ ¼ S sinðn!þ ’Þ ð1:6Þ
where S is the sinusoid amplitude, ! is the angular frequency, and ’ is the
phase. The same signal can also be represented and generated by the recur-
rence relation

xðnÞ ¼ ð2 cos!Þxðn� 1Þ � xðn� 2Þ ð1:7Þ
for n 5 0, and the initial conditions

xð�1Þ ¼ S sinð�!þ ’Þ
xð�2Þ ¼ S sinð�2!þ ’Þ
xðnÞ ¼ 0 for n < �2

Recurrence relations play a key role in signal modeling as well as in adaptive
filtering. The correspondence between time domain sequences and recur-
rence relations is established by the z-transform, defined by

XðzÞ ¼
X1

n¼�1
xðnÞz�n ð1:8Þ

Waveform parameters are appropriate for synthetic signals, but for prac-
tical signal analysis the correlation function rðpÞ, in general, contains the
relevant characteristics, as pointed out in the previous section:

rðpÞ ¼ E½xðnÞxðn� pÞ� ð1:9Þ

In the analysis process, the correlation function is first estimated and then
used to derive the signal parameters of interest, the spectrum, or the recur-
rence coefficients.

The recurrence relation is a convenient representation or modeling of a
wide class of signals, which are those obtained through linear digital filtering
of a random sequence. For example, the expression

xðnÞ ¼ eðnÞ �
XN
i¼1

aixðn� iÞ ð1:10Þ

where eðnÞ is a random sequence or noise input, defines a model called
autoregressive (AR). The corresponding filter is of the infinite impulse
response (IIR) type. If the filter is of the finite impulse response (FIR)
type, the model is called moving average (MA), and a general filter FIR/
IIR is associated to an ARMA model.



The coefficients ai in (1.10) are the FIR, or transversal, linear prediction
coefficients of the signal xðnÞ; they are actually the coefficients of the inverse
FIR filter defined by

eðnÞ ¼
XN
i¼0

aixðn� iÞ; a0 ¼ 1 ð1:11Þ

The sequence eðnÞ is called the prediction error signal. The coefficients are
designed to minimize the prediction error power, which, expressed as a
matrix form equation is

E½e2ðnÞ� ¼ AtE½XXt�A ð1:12Þ

So, for a given signal whose correlation function is known or can be
estimated, the linear prediction (or AR modeling) problem can be stated as
follows: find the coefficient vector A which minimizes the quantity
AtE½XXt�A subject to the constraint a0 ¼ 1. In that process, the power
of a white noise added to the useful input signal is magnified by the factor
AtA.

To provide a link between the direct analysis of the previous section and
AR modeling, and to point out their major differences and similarities, we
note that the harmonic retrieval, or principal component analysis, corre-
sponds to the following problem: find the vector A which minimizes the
value AtE½XXt�A subject to the constraint AtA ¼ 1. The frequencies of the
sinusoids in the signal are then derived from the zeros of the filter with
coefficient vector A. For deterministic signals without noise, direct analysis
and AR modeling lead to the same solution; they stay close to each other for
high signal-to-noise ratios.

The linear prediction filter plays a key role in adaptive filtering because it
is directly involved in the derivation and implementation of least squares
(LS) algorithms, which in fact are based on real-time signal analysis by AR
modeling.

1.3. ADAPTIVE FILTERING

The principle of an adaptive filter is shown in Figure 1.2. The output of a
programmable, variable-coefficient digital filter is subtracted from a refer-
ence signal yðnÞ to produce an error sequence eðnÞ, which is used in com-
bination with elements of the input sequence xðnÞ, to update the filter
coefficients, following a criterion which is to be minimized. The adaptive
filters can be classified according to the options taken in the following
areas:



The optimization criterion
The algorithm for coefficient updating
The programmable filter structure
The type of signals processed—mono- or multidimensional.

The optimization criterion is in general taken in the LS family in order to
work with linear operations. However, in some cases, where simplicity of
implementation and robustness are of major concern, the least absolute
value (LAV) criterion can also be attractive; moreover, it is not restricted
to minimum phase optimization.

The algorithms are highly dependent on the optimization criterion, and it
is often the algorithm that governs the choice of the optimization criterion,
rather than the other way round. In broad terms, the least mean squares
(LMS) criterion is associated with the gradient algorithm, the LAV criterion
corresponds to a sign algorithm, and the exact LS criterion is associated
with a family of recursive algorithms, the most efficient of which are the fast
least squares (FLS) algorithms.

The programmable filter can be a FIR or IIR type, and, in principle,
it can have any structure: direct form, cascade form, lattice, ladder, or
wave filter. Finite word-length effects and computational complexity vary
with the structure, as with fixed coefficient filters. But the peculiar point
with adaptive filters is that the structure reacts on the algorithm com-
plexity. It turns out that the direct-form FIR, or transversal, structure is
the simplest to study and implement, and therefore it is the most
popular.

Multidimensional signals can use the same algorithms and structures as
their monodimensional counterparts. However, computational complexity
constraints and hardware limitations generally reduce the options to the
simplest approaches.

FIG. 1.2 Principle of an adaptive filter.



The study of adaptive filtering begins with the derivation of the normal
equations, which correspond to the LS criterion combined with the FIR
direct form for the programmable filter.

1.4. NORMAL EQUATIONS

In the following, we assume that real-time series, resulting, for example,
from the sampling with period T ¼ 1 of a continuous-time real signal, are
processed.

Let HðnÞ be the vector of the N coefficients hiðnÞ of the programmable
filter at time n, and let XðnÞ be the vector of the N most recent input signal
samples:

HðnÞ
h0ðnÞ
hÞ1ðnÞ

..

.

hN�1ðnÞ

2
6664

3
7775; XðnÞ ¼

xðnÞ
xðn� 1Þ

..

.

xðnþ 1�NÞ

2
6664

3
7775 ð1:13Þ

The error signal "ðnÞ is
"ðnÞ ¼ yðnÞ �HtðnÞXðnÞ ð1:14Þ

The optimization procedure consists of minimizing, at each time index, a
cost function JðnÞ, which, for the sake of generality, is taken as a weighted
sum of squared error signal values, beginning after time zero:

JðnÞ ¼
Xn
p¼1

Wn�p½yðpÞ �HtðnÞXðpÞ�2 ð1:15Þ

The weighting factor, W , is generally taken close to 1ð0�W 4 1).
Now, the problem is to find the coefficient vector HðnÞ which minimizes

JðnÞ. The solution is obtained by setting to zero the derivatives of JðnÞ with
respect to the entries hiðnÞ of the coefficient vector HðnÞ, which leads toXn

p¼1
Wn�p½yðpÞ �HtðnÞXðpÞ�XðpÞ ¼ 0 ð1:16Þ

In concise form, (1.16) is

HðnÞ ¼ R�1N ðnÞryxðnÞ ð1:17Þ
with

RNðnÞ ¼
Xn
p¼1

Wn�pXðpÞXtðpÞ ð1:18Þ



ryxðnÞ ¼
Xn
p¼1

Wn�pXðpÞyðpÞ ð1:19Þ

If the signals are stationary, let Rxx be the N �N input signal autocorrela-
tion matrix and let ryx be the vector of cross-correlations between input and
reference signals:

Rxx ¼ E½XðpÞXtðpÞ�; ryx ¼ E½XðpÞyðpÞ� ð1:20Þ
Now

E½RNðnÞ� ¼
1�Wn

1�W
Rxx; E½ryxðnÞ� ¼

1�Wn

1�W
ryx ð1:21Þ

So RNðnÞ is an estimate of the input signal autocorrelation matrix, and ryxðnÞ
is an estimate of the cross-correlation between input and reference signals.

The optimal coefficient vector Hopt is reached when n goes to infinity:

Hopt ¼ R�1xx ryx ð1:22Þ
Equations (1.22) and (1.17) are the normal (or Yule–Walker) equations for
stationary and evolutive signals, respectively. In adaptive filters, they can be
implemented recursively.

1.5. RECURSIVE ALGORITHMS

The basic goal of recursive algorithms is to derive the coefficient vector
Hðnþ 1Þ from HðnÞ. Both coefficient vectors satisfy (1.17). In these equa-
tions, autocorrelation matrices and cross-correlation vectors satisfy the
recursive relations

RNðnþ 1Þ ¼WRNðnÞ þ Xðnþ 1ÞXtðnþ 1Þ ð1:23Þ

ryxðnþ 1Þ ¼WryxðnÞ þ Xðnþ 1Þyðnþ 1Þ ð1:24Þ
Now,

Hðnþ 1Þ ¼ R�1N ðnþ 1Þ½WryxðnÞ þ Xðnþ 1Þyðnþ 1Þ�
But

WryxðnÞ ¼ ½RNðnþ 1Þ � Xðnþ 1ÞXtðnþ 1Þ�HðnÞ
and

Hðnþ 1Þ ¼ HðnÞ þ R�1N ðnþ 1ÞXðnþ 1Þ½yðnþ 1Þ � Xtðnþ 1ÞHðnÞ�
ð1:25Þ



which is the recursive relation for the coefficient updating. In that expres-
sion, the sequence

eðnþ 1Þ ¼ yðnþ 1Þ � Xtðnþ 1ÞHðnÞ ð1:26Þ
is called the a priori error signal because it is computed by using the coeffi-
cient vector of the previous time index. In contrast, (1.14) defines the a
posteriori error signal "ðnÞ, which leads to an alternative type of recurrence
equation

Hðnþ 1Þ ¼ HðnÞ þW�1R�1N ðnÞXðnþ 1Þeðnþ 1Þ ð1:27Þ
For large values of the filter order N, the matrix manipulations in (1.25)

or (1.27) lead to an often unacceptable hardware complexity. We obtain a
drastic simplification by setting

R�1N ðnþ 1Þ � �IN
where IN is the ðN �NÞ unity matrix and � is a positive constant called the
adaptation step size. The coefficients are then updated by

Hðnþ 1Þ ¼ HðnÞ þ �Xðnþ 1Þeðnþ 1Þ ð1:28Þ
which leads to just doubling the computations with respect to the fixed-
coefficient filter. The optimization process no longer follows the exact LS
criterion, but LMS criterion. The product Xðnþ 1Þeðnþ 1Þ is proportional
to the gradient of the square of the error signal with opposite sign, because
differentiating equation (1.26) leads to

� @e
2ðnþ 1Þ
@hiðnÞ

¼ 2xðnþ 1� iÞeðnþ 1Þ; 0 4 i 4 N � 1 ð1:29Þ

hence the name gradient algorithm.
The value of the step size � has to be chosen small enough to ensure

convergence; it controls the algorithm speed of adaptation and the residual
error power after convergence. It is a trade-off based on the system engi-
neering specifications.

The gradient algorithm is useful and efficient in many applications; it is
flexible, can be adjusted to all filter structures, and is robust against imple-
mentation imperfections. However, it has some limitations in performance
and weaknesses which might not be tolerated in various applications. For
example, its initial convergence is slow, its performance depends on the
input signal statistics, and its residual error power may be large. If one is
prepared to accept an increase in computational complexity by a factor
usually smaller than an order of magnitude (typically 4 or 5), then the
exact recursive LS algorithm can be implemented. The matrix manipulations



can be avoided in the coefficient updating recursion by introducing the
vector

GðnÞ ¼ R�1N ðnÞXðnÞ ð1:30Þ

called the adaptation gain, which can be updated with the help of linear
prediction filters. The corresponding algorithms are called FLS
algorithms.

Up to now, time recursions have been considered, based on the cost
function JðnÞ defined by equation (1.15) for a set of N coefficients. It is
also possible to work out order recursions which lead to the derivation of
the coefficients of a filter of order N þ 1 from the set of coefficients of a
filter of order N. These order recursions rely on the introduction of a
different set of filter parameters, called the partial correlation
(PARCOR) coefficients, which correspond to the lattice structure for the
programmable filter. Now, time and order recursions can be combined in
various ways to produce a family of LS lattice adaptive filters. That
approach has attractive advantages from the theoretical point of view—
for example, signal orthogonalization, spectral whitening, and easy control
of the minimum phase property—and also from the implementation point
of view, because it is robust to word-length limitations and leads to flexible
and modular realizations.

The recursive techniques can easily be extended to complex and multi-
dimensional signals. Overall, the adaptive filtering techniques provide a wide
range of means for fast and accurate processing and analysis of signals.

1.6. IMPLEMENTATION AND APPLICATIONS

The circuitry designed for general digital signal processing can also be used
for adaptive filtering and signal analysis implementation. However, a few
specificities are worth point out. First, several arithmetic operations, such as
divisions and square roots, become more frequent. Second, the processing
speed, expressed in millions of instructions per second (MIPS) or in millions
of arithmetic operations per second (MOPS), depending on whether the
emphasis is on programming or number crunching, is often higher than
average in the field of signal processing. Therefore specific efficient archi-
tectures for real-time operation can be worth developing. They can be spe-
cial multibus arrangements to facilitate pipelining in an integrated processor
or powerful, modular, locally interconnected systolic arrays.

Most applications of adaptive techniques fall into one of two broad
classes: system identification and system correction.



The block diagram of the configuration for system identification is shown
in Figure 1.3. The input signal xðnÞ is fed to the system under analysis, which
produces the reference signal yðnÞ. The adaptive filter parameters and spe-
cifications have to be chosen to lead to a sufficiently good model for the
system under analysis. That kind of application occurs frequently in auto-
matic control.

System correction is shown in Figure 1.4. The system output is the adap-
tive filter input. An external reference signal is needed. If the reference signal
yðnÞ is also the system input signal uðnÞ, then the adaptive filter is an inverse
filter; a typical example of such a situation can be found in communications,
with channel equalization for data transmission. In both application classes,
the signals involved can be real or complex valued, mono- or multidimen-
sional. Although the important case of linear prediction for signal analysis
can fit into either of the aforementioned categories, it is often considered as
an inverse filtering problem, with the following choice of signals:
yðnÞ ¼ 0; uðnÞ ¼ eðnÞ.

FIG. 1.3 Adaptive filter for system identification.

FIG. 1.4 Adaptive filter for system correction.



Another field of applications corresponds to the restoration of signals
which have been degraded by addition of noise and convolution by a known
or estimated filter. Adaptive procedures can achieve restoration by decon-
volution.

The processing parameters vary with the class of application as well as
with the technical fields. The computational complexity and the cost effi-
ciency often have a major impact on final decisions, and they can lead to
different options in control, communications, radar, underwater acoustics,
biomedical systems, broadcasting, or the different areas of applied physics.

1.7. FURTHER READING

The basic results, which are most necessary to read this book, in signal
processing, mathematics, and statistics are recalled in the text as close as
possible to the place where they are used for the first time, so the book is, to
a large extent, self-sufficient. However, the background assumed is a work-
ing knowledge of discrete-time signals and systems and, more specifically,
random processes, discrete Fourier transform (DFT), and digital filter prin-
ciples and structures. Some of these topics are treated in [1]. Textbooks
which provide thorough treatment of the above-mentioned topics are [2–
4]. A theoretical veiw of signal analysis is given in [5], and spectral estima-
tion techniques are described in [6]. Books on adaptive algorithms include
[7–9]. Various applications of adaptive digital filters in the field of commu-
nications are presented in [10–11].

REFERENCES

1. M. Bellanger, Digital Processing of Signals — Theory and Practice (3rd edn),

John Wiley, Chichester, 1999.

2. A. V. Oppenheim, S. A. Willsky, and I. T. Young, Signals and Systems,

Prentice-Hall, Englewood Cliffs, N.J., 1983.

3. S. K. Mitra and J. F. Kaiser, Handbook for Digital Signal Processing, John

Wiley, New York, 1993.

4. G. Zeilniker and F. J. Taylor, Advanced Digital Signal Processing, Marcel

Dekker, New York, 1994.

5. A. Papoulis, Signal Analysis, McGraw-Hill, New York, 1977.

6. L. Marple, Digital Spectrum Analysis with Applications, Prentice-Hall,

Englewood Cliffs, N.J., 1987.

7. B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall,

Englewood Cliffs, N.J., 1985.

8. S. Haykin, Adaptive Filter Theory (3rd edn), Prentice-Hall, Englewood Cliffs,

N.J., 1996.



9. P. A. Regalia, Adaptive IIR Filtering in Signal Processing and Control, Marcel

Dekker, New York, 1995.

10. C. F. N. Cowan and P. M. Grant, Adaptive Filters, Prentice-Hall, Englewood

Cliffs, N.J., 1985.

11. O. Macchi, Adaptive Processing: the LMS Approach with Applications in

Transmission, John Wiley, Chichester, 1995.



2
Signals and Noise

Signals carry information from sources to receivers, and they take many
different forms. In this chapter a classification is presented for the signals
most commonly used in many technical fields.

A first distinction is between useful, or wanted, signals and spurious, or
unwanted, signals, which are often called noise. In practice, noise sources
are always present, so any actual signal contains noise, and a significant part
of the processing operations is intended to remove it. However, useful sig-
nals and noise have many features in common and can, to some extent,
follow the same classification.

Only data sequences or time series are considered here, and the leading
thread for the classification proposed is the set of recurrence relations, which
can be established between consecutive data and which are the basis of
several major analysis methods [1–3]. In the various categories, signals
can be characterized by waveform functions, autocorrelation, and spectrum.

An elementary, but fundamental, signal is introduced first—the damped
sinusoid.

2.1. THE DAMPED SINUSOID

Let us consider the following complex sequence, which is called the damped
complex sinusoid, or damped cisoid:

yðnÞ ¼ eð�þj!0Þn; n 5 0
0; n < 0

�
ð2:1Þ



where � and !0 are real scalars.
The z-transform of that sequence is, by definition

YðzÞ ¼
X1
n¼0

yðnÞz�n ð2:2Þ

Hence

YðzÞ ¼ 1

1� eð�þj!0Þz�1
ð2:3Þ

The two real corresponding sequences are shown in Figure 2.1(a). They are

yðnÞ ¼ yRðnÞ þ jyI ðnÞ ð2:4Þ
with

yRðnÞ ¼ e�n cos n!0; yI ðnÞ ¼ e�n sin n!0; n 5 0 ð2:5Þ
The z-transforms are

YRðzÞ ¼
1� ðe� cos!0Þz�1

1� ð2e� cos!0Þz�1 þ e2�z�2
ð2:6Þ

YI ðzÞ ¼
1� ðe� sin!0Þz�1

1� ð2e� cos!0Þz�1 þ e2�z�2
ð2:7Þ

In the complex plane, these functions have a pair of conjugate poles,
which are shown in Figure 2.1(b) for � < 0 and j�j small. From (2.6) and
(2.7) and also by direct inspection, it appears that the corresponding signals
satisfy the recursion

yRðnÞ � 2e� cos!0yRðn� 1Þ þ 32�yRðn� 2Þ ¼ 0 ð2:8Þ
with initial values

yRð�1Þ ¼ e�� cosð�!0Þ; yRð�2Þ ¼ e�2� cosð�2!0Þ ð2:9Þ
and

yI ð�1Þ ¼ e�� sinð�!0Þ; yI ð�2Þ ¼ e2� sinð�2!0Þ ð2:10Þ
More generally, the one-sided z-transform, as defined by (2.2), of equa-

tion (2.8) is

YRðzÞ ¼ �
b1yRð�1Þ þ b2½yRð�2Þ þ yRð�1Þz�1�

1þ b1z
�1 þ b2z

�2 ð2:11Þ

with b1 ¼ �2e� cos! and b2 ¼ e2�.



FIG. 2.1 (a) Waveform of a damped sinusoid. (b) Poles of the z-transform of the

damped sinusoid.



The above-mentioned initial values are then obtained by identifying
(2.11) and (2.6), and (2.11) and (2.7), respectively.

The energy spectra of the sequences yRðnÞ and yÞI ðnÞ are obtained from
the z-transforms by replacing z by e j! [4]. For example, the function jYI ð!Þj
is shown in Figure 2.2; it is the frequency response of a purely recursive
second-order filter section.

As n grows to infinity the signal yðnÞ vanishes; it is nonstationary.
Damped sinusoids can be used in signal analysis to approximate the spec-
trum of a finite data sequence.

2.2. PERIODIC SIGNALS

Periodic signals form an important category, and the simplest of them is the
single sinusoid, defined by

xðnÞ ¼ S sinðn!0 þ ’Þ ð2:12Þ
where S is the amplitude, !0 is the radial frequency, and ’ is the phase.

For n 5 0, the results of the previous section can be applied with � ¼ 0.
So the recursion

FIG. 2.2 Spectrum of the damped sinusoid.



xðnÞ � 2 cos!0xðn� 1Þ þ xðn� 2Þ ¼ 0 ð2:13Þ
with initial conditions

xð�1Þ ¼ S sinð�!0 þ ’Þ; xð�2Þ ¼ S sinð�2!0 þ ’Þ ð2:14Þ
is satisfied. The z-transform is

XðzÞ ¼ S
sin ’� sinð�!0 þ ’Þz�1
1� ð2 cos!0Þz�1 þ z�2

ð2:15Þ

Now the poles are exactly on the unit circle, and we must consider the
power spectrum. It cannot be directly derived from the z-transform. The
sinusoid is generated for n > 0 by the purely recursive second-order filter
section in Figure 2.3 with the above-mentioned initial conditions, the circuit
input being zero. For a filter to cancel a sinusoid, it is necessary and suffi-
cient to implement the inverse filter—that is, a filter which has a pair of zeros
on the unit circle at the frequency of the sinusoid; such filters appear in
linear prediction.

The autocorrelation function (ACF) of the sinusoid, which is a real sig-
nal, is defined by

rðpÞ ¼ lim
N!1

1

N

XN�1
n¼0

xðnÞxðn� pÞ ð2:16Þ

Hence,

FIG. 2.3 Second-order filter section to generate a sinusoid.



rðpÞ ¼ S2

2
cos p!0 � lim

N!1
1

N

S2

2

XN�1
n¼0

cos 2
2n� p

2
!0 þ ’

� �
ð2:17Þ

and for any !0,

rðpÞ ¼ S2

2
cos p!0 ð2:18Þ

The power spectrum of the signal is the Fourier transform of the ACF;
for the sinusoid it is a line with magnitude S2=2 at frequency !0.

Now, let us proceed to periodic signals. A periodic signal with period N
consists of a sum of complex sinusoids, or cisoids, whose frequencies are
integer multiples of 1=N and whose complex amplitudes Sk are given by the
discrete Fourier transform (DFT) of the signal data:

S0

S1

..

.

SN�1

2
6664

3
7775 ¼ 1

N

1 1 � � � 1
1 W � � � WN�1

..

. ..
. . .

. ..
.

1 WN�1 � � � W ðN�1Þ
2

2
6664

3
7775

xð0Þ
xð1Þ
..
.

xðN � 1Þ

2
6664

3
7775 ð2:19Þ

with W ¼ e�jð2�=NÞ.
Following equation (2.3), with � ¼ 0, we express the z-transform of the

periodic signal by

XðzÞ ¼
XN�1
k¼0

Sk

1� e jð2�=NÞkz�1
ð2:20Þ

and its poles are uniformly distributed on the unit circle as shown in Figure
2.4 for N even. Therefore, the signal xðnÞ satisfies the recursion

XN
i¼0

aixðn� iÞ ¼ 0 ð2:21Þ

where the ai are the coefficients of the polynomial PðzÞ:

PðzÞ ¼
XN
i¼0

aiz
�1 ¼

YN
k¼1
ð1� e jð2�=NÞkz�1Þ ð2:22Þ

So a0 ¼ 1, and if all the cisoids are present in the periodic signal, then aN ¼
1 and ai ¼ 0 for 14 i4N � 1. The N complex amplitudes, or the real
amplitudes and phases, are defined by the N initial conditions. If some of
the N possible cisoids are missing, then the coefficients take on values
according to the factors in the product (2.22).

The ACF of the periodic signal xðnÞ is calculated from the following
expression, valid for complex data:



rðpÞ ¼ 1

N

XN�1
n¼0

xðnÞ �xxðn� pÞ ð2:23Þ

where �xxðnÞ is the complex conjugate of xðnÞ. According to the inverse DFT,
xðnÞ can be expressed from its frequency components by

xðnÞ ¼
XN�1
k¼0

Ske
jð2�=NÞkn ð2:24Þ

Now, combining (2.24) and (2.23) gives

rðpÞ ¼
XN�1
k¼0
jSkj2e jð2�=NÞkp ð2:25Þ

and, for xðnÞ a real signal and for the configuration of poles shown in Figure
2.4 with N even,

rðpÞ ¼ S2
0 þ S2

N=2 þ 2
XN=2�1
k¼1
jSkj2 cos

2�

N
kp

� �
ð2:26Þ

The corresponding spectrum is made of lines at frequencies which are
integer multiples of 1=N.

The same analysis as above can be carried out for a signal composed of a
sum of sinusoids with arbitrary frequencies, which just implies that the

FIG. 2.4 Poles of a signal with period N.



period N may grow to infinity. In that case, the roots of the polynomial
PðzÞ take on arbitrary positions on the unit circle. Such a signal is said to be
deterministic because it is completely determined by the recurrence relation-
ship (2.21) and the set of initial conditions; in other words, a signal value at
time n can be exactly calculated from the N preceding values; there is no
innovation in the process; hence, it is also said to be predictable.

The importance of PðzÞ is worth emphasizing, because it directly deter-
mines the signal recurrence relation. Several methods of analysis primarily
aim at finding out that polynomial for a start.

The above deterministic or predictable signals have discrete power spec-
tra. To obtain continuous spectra, one must introduce random signals. They
bring innovation in the processes.

2.3. RANDOM SIGNALS

A random real signal xðnÞ is defined by a probability law for its amplitude at
each time n. The law can be expressed as a probability density pðx; nÞ defined
by

pðx; nÞ ¼ lim
�x!0

Prob½x 4 xðnÞ 4 xþ�x�
�x

ð2:27Þ

It is used to calculate, by ensemble averages, the statistics of the signal or
process [5].

The signal is second order if it possesses a first-order moment m1ðnÞ called
the mean value or expectation of xðnÞ, denoted E½xðnÞ� and defined by

m1ðnÞ ¼ E½xðnÞ� ¼
Z 1
�1

xpðx; nÞ dx ð2:28Þ

and a second-order moment, called the covariance:

E½xðn1Þxðn2Þ� ¼ m2ðn1; n2Þ ¼
Z 1
�1

Z 1
�1

x1x2pðx1; x2; n1; n2Þ dx1dx2 ð2:29Þ

where pðx1; x2; ; n1; n2Þ is the joint probability density of the pair of random
variables ½xðn1Þ; xðn2Þ�.

The signal is stationary if its statistical properties are independent of the
time index n—that is, if the probability density is independent of time n:

pðx; nÞ ¼ pðxÞ ð2:30Þ
The stationarity can be limited to the moments of first and second order.
Then the signal is wide-sense stationary, and it is characterized by the fol-
lowing equations:



E½xðnÞ� ¼
Z 1
�1

xpðxÞ dx ¼ m1 ð2:31Þ

E½xðnÞxðn� pÞ� ¼ rðpÞ ð2:32Þ
The function rðpÞ is the (ACF) of the signal.

The statistical parameters are, in general, difficult to estimate or measure
directly, because of the ensemble averages involved. A reasonably accurate
measurement of an ensemble average requires that many process realiza-
tions be available or that the experiment be repeated many times, which is
often impractical. On the contrary, time averages are much easier to come
by, for time series. Therefore the ergodicity property is of great practical
importance; it states that, for a stationary signal, ensemble and time
averages are equivalent:

m1 ¼ E½xðnÞ� ¼ lim
N!1

1

2N þ 1

XN
n¼�N

xðnÞ ð2:33Þ

rðpÞ ¼ E½xðnÞxðn� pÞ� ¼ lim
N!1

1

2N þ 1

XN
n¼�N

xðnÞxðn� pÞ ð2:34aÞ

For complex signals, the ACF is

rðpÞ ¼ E½xðnÞ �xxðn� pÞ� ¼ lim
N!1

1

2N þ 1

XN
�N

xðnÞ �xxðn� pÞ ð2:34bÞ

The factor xðn� pÞ is replaced by its complex conjugate �xxðn� pÞ; note that
rð0Þ is the signal power and is always a real number.

In the literature, the factor xðnþ pÞ is generally taken to define rðpÞ;
however, we use xðn� pÞ throughout this book because it comes naturally
in adaptive filtering.

In some circumstances, moments of order k > 2 might be needed. They
are defined by

mk ¼
Z 1
�1

xkpðxÞ dx ð2:35Þ

and they can be calculated efficiently through the introduction of a function
FðuÞ, called the characteristic function of the random variable x and defined
by

FðuÞ ¼
Z 1
�1

e juxpðxÞ dx ð2:36Þ

Using definition (2.35), we obtain the series expansion



FðuÞ ¼
X1
k¼0

ð juÞk
k!

mk ð2:37Þ

Since FðuÞ is the inverse Fourier transform of the probability density pðxÞ, it
can be easy to calculate and can provide the high-order moments of the
signal.

The moment of order 4 is used in the definition of the kurtosis Kx, or
coefficient of flatness of a probability distribution

Kx ¼
E½x4ðnÞ�
E2½x2ðnÞ� ð2:38Þ

For example, a binary symmetric distribution (�1 with equal probability)
leads to Kx ¼ 1. For the Gaussian distribution of the next section, Kx ¼ 3,
and for the exponential distribution

pðxÞ ¼ 1

�
ffiffiffi
2
p e�

ffiffi
2
p jxj=� ð2:39Þ

Kx ¼ 9.
An important concept is that of statistical independence of random vari-

ables. Two random variables, x1 and x2, are independent if and only if their
joint density pðx1; x2Þ is the product of the individual probability densities:

pðx1; x2Þ ¼ pðx1Þpðx2Þ ð2:40Þ

which implies the same relationship for the characteristic functions:

Fðu1; u2Þ ¼
ZZ1
�1

e jðu1x1þu2x2Þpðx1; x2Þ dx1dx2 ð2:41Þ

and

Fðu1; u2Þ ¼ Fðu1ÞFðu2Þ ð2:42Þ

The correlation concept is related to linear dependency. Two noncorre-
lated variables, such that E½x1x2� ¼ 0, have no linear dependency. But, in
general, that does not mean statistical independency, since higher-order
dependency can exist.

Among the probability laws, the Gaussian law has special importance in
signal processing.



2.4. GAUSSIAN SIGNALS

A random variable x is said to be normally distributed or Gaussian if its
probability law has a density pðxÞ which follows the normal or Gaussian
law:

pðxÞ ¼ 1

�x
ffiffiffiffiffiffi
2�
p e�ðx�mÞ

2=2�2x ð2:43Þ

The parameter m is the mean of the variable x; the variance �2x is the
second-order moment of the centered random variable ðx�mÞ; �x is also
called the standard deviation.

The characteristic function of the centered Gaussian variable is

FðuÞ ¼ e��
2
xu

2=2 ð2:44Þ
Now, using the series expansion (2.37), the moments are

m2kþ1 ¼ 0

m2 ¼ �2x; m4 ¼ 3�4x; m2k ¼
2k!

2kk!
�2kx ð2:45Þ

The normal law can be generalized to multidimensional random vari-
ables. The characteristic function of a k-dimensional Gaussian variable
xðx1; x2; . . . ; xkÞ is

Fðu1; u2; . . . ; ukÞ ¼ exp � 1

2

Xk
i¼1

Xk
j¼1

rijuiuj

 !
ð2:46Þ

with rij ¼ E½xixj �.
If the variables are not correlated, then they are independent, because rij

¼ 0 for i 6¼ j and Fðu1; u2; . . . ; ukÞ is the product of the characteristic func-
tions. So noncorrelation means independence for Gaussian variables.

A random signal xðnÞ is said to be Gaussian if, for any set of k time
values nið1 4 i 4 kÞ, the k-dimensional random variable x ¼ ½xðn1Þ; xðn2Þ;
. . . ; xðnkÞ� is Gaussian. According to (2.46), the probability law of that
variable is completely defined by the ACF rðpÞ of xðnÞ. The power spectral
density Sð f Þ is obtained as the Fourier transform of the ACF:

Sð f Þ ¼
X1

p¼�1
rðpÞe�j2�pf ð2:47Þ

or, since rðpÞ is an even function,



Sð f Þ ¼ rð0Þ þ 2
X1
p¼1

rðpÞ cosð2�pf Þ ð2:48Þ

If the data in the sequence xðnÞ are independent, then rðpÞ reduces to rð0Þ and
the spectrum Sð f Þ is flat; the signal is then said to be white.

An important aspect of the Gaussian probability laws is that they pre-
serve their character under any linear operation, such as convolution, filter-
ing, differentiation, or integration.

Therefore, if a Gaussian signal is fed to a linear system, the output is also
Gaussian. Moreover, there is a natural trend toward Gaussian probability
densities, because of the so-called central limit theorem, which states that the
random variable

x ¼ 1ffiffiffiffi
N
p

XN
i¼1

xi ð2:49Þ

where the xi are N independent identically distributed (i.i.d.) second-order
random variables, becomes Gaussian when N grows to infinity.

The Gaussian approximation can reasonably be made as soon as N
exceeds a few units, and the importance of Gaussian densities becomes
apparent because in nature many signal sources and, particularly, noise
sources at the micro- or macroscopic levels add up to make the sequence
to be processed. So Gaussian noise is present in virtually every signal pro-
cessing application.

2.5. SYNTHETIC, MOVING AVERAGE, AND
AUTOREGRESSIVE SIGNALS

In simulation, evaluation, transmission, test, and measurement, the data
sequences used are often not natural but synthetic signals. They appear
also in some analysis techniques, namely analysis by synthesis techniques.

Deterministic signals can be generated in a straightforward manner as
isolated or recurring pulses or as sums of sinusoids. A diagram to produce a
single sinusoid is shown in Figure 2.3. Note that the sinusoids in a sum must
have different phases; otherwise an impulse shape waveform is obtained.

Flat spectrum signals are characterized by the fact that their energy is
uniformly distributed over the entire frequency band. Therefore an
approach to produce a deterministic white-noise-like waveform is to gener-
ate a set of sinusoids uniformly distributed in frequency with the same
amplitude but different phases.

Random signals can be obtained from sequences of statistically indepen-
dent real numbers generated by standard computer subroutines through a



rounding process. The magnitudes of these numbers are uniformly distrib-
uted in the interval (0, 1), and the sequences obtained have a flat spectrum.

Several probability densities can be derived from the uniform distribu-
tion. Let the Gaussian, Rayleigh, and uniform densities be pðxÞ, pðyÞ, and
pðzÞ, respectively. The Rayleigh density is

pðyÞ ¼ y

�2
exp � y2

2�2

" #
ð2:50Þ

and the second-order moment of the corresponding random variable is 2�2,
the mean is �

ffiffiffiffiffiffiffiffi
�=2
p

, and the variance is ð2� �=2Þ�2. It is a density associated
with the peak values of a narrowband Gaussian signal. The changes of
variables

pðzÞ dz ¼ dz ¼ pðyÞ dy
leads to

dz

dy
¼ y

�2
exp � y2

2�2

" #

Hence,

z ¼ exp � y2

2�2

" #

and a Rayleigh sequence yðnÞ is obtained from a uniform sequence zðnÞ in
the magnitude interval (0, 1) by the following operation:

yðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln½1=zðnÞ�

p
ð2:51Þ

Now, independent Rayleigh and uniform sequences can be used to derive a
Gaussian sequence xðnÞ:

xðnÞ ¼ yðnÞ cos½2�zðnÞ� ð2:52Þ
In the derivation, a companion variable is introduced:

x 0ðnÞ ¼ yðnÞ sin 2�zðnÞ ð2:53Þ
Now, let us consider the joint probability pðx; x 0Þ and apply the relation
between rectangular and polar coordinates:

pðx; x 0Þ dx dx 0 ¼ pðx; x 0Þy dy dz ¼ pð yÞpðzÞ dy dz ð2:54Þ
Then

pðx; x 0Þ ¼ 1

2�y
pð yÞ ¼ 1

2��2
e�ðx

2þx02Þ=2�2 ¼ pðxÞpðx 0Þ ð2:55Þ



and finally

pðxÞ ¼ 1

�
ffiffiffi
2
p
�
e�x

2=2�2 ð2:56Þ

The two variables xðnÞ and x 0ðnÞ have the same distribution and, considered
jointly, they make a complex Gaussian noise of power 2�2. The above
derivation shows that this complex noise can be represented in terms of
its modulus, which has a Rayleigh distribution, and its phase, which has a
uniform distribution.

Correlated random signals can be obtained by filtering a white sequence
with either uniform or Gaussian amplitude probability density, as shown in
Figure 2.5. The filter HðzÞ can take on different structures, corresponding to
different models for the output signal [6].

The simplest type is the finite impulse response (FIR) filter, correspond-
ing to the so-called moving average (MA) model and defined by

HðzÞ ¼
XN
i¼0

hiz
�i ð2:57Þ

and, in the time domain,

xðnÞ ¼
XN
i¼0

hieðn� iÞ ð2:58Þ

where the hi are the filter impulse response.
The output signal ACF is obtained by direct application of definition

(2.34), considering that

E½e2ðnÞ� ¼ �2e ; E½eðnÞeðn� iÞ� ¼ 0 for i 6¼ 0

The result is

rðpÞ ¼ �2e
PN�p
i¼0

hihiþp; jpj 4 N

0; jpj > N

8<
: ð2:59Þ

FIG. 2.5 Generation of a correlated random signal.



Several remarks are necessary. First, the ACF has a finite length in
accordance with the filter impulse response. Second, the output signal
power �2x is related to the input signal power by

�2x ¼ rð0Þ ¼ �2e
XN
i¼0

h2i ð2:60Þ

Equation (2.60) is frequently used in subsequent sections. The power
spectrum can be computed from the ACF rðpÞ by using equation (2.48),
but another approach is to use HðzÞ, since it is available, via the equation

Sð f Þ ¼ �2e
XN
i¼0

hie
j2�if

�����
�����
2

ð2:61Þ

An infinite impulse response (IIR) filter corresponds to an autoregressive
(AR) model. The equations are

HðzÞ ¼ 1

1�PN
i¼1

aiz
�i

ð2:62Þ

and, in the time domain,

xðnÞ ¼ eðnÞ þ
XN
i¼1

aixðn� iÞ ð2:63Þ

The ACF can be derived from the corresponding filter impulse response
coefficients hi:

HðzÞ ¼
X1
i¼0

hiz
�i ð2:64Þ

and, accordingly, it is an infinite sequence:

rðpÞ ¼ �2e
X1
i¼0

hihiþp ð2:65Þ

The power spectrum is

Sð f Þ ¼ �2e

1�PN
i¼1

aie
�j2�if

����
����2

ð2:66Þ

An example is shown in Figure 2.6 for the filter transfer function:



HðzÞ ¼ 1

ð1þ 0:80z�1 þ 0:64z�2Þð1� 1:23z�1 þ 0:64z�2Þ
Since the spectrum of a real signal is symmetric about the zero frequency,
only the band ½0; fs=2�, where fs is the sampling frequency, is represented.

For MA signals, the direct relation (2.59) has been derived between the
ACF and filter coefficients. A direct relation can also be obtained here by
multiplying both sides of the recursion definition (2.63) by xðn� pÞ and
taking the expectation, which leads to

rð0Þ ¼ �2e þ
XN
i¼1

airðiÞ ð2:67Þ

rðpÞ ¼
XN
i¼1

airðp� iÞ; p 5 1 ð2:68Þ

For p 5 N, the sequence rðpÞ is generated recursively from the N preceding
terms. For 0 4 p 4 N � 1, the above equations establish a linear depen-
dence between the two sets of filter coefficients and the first ACF values.

They can be expressed in matrix form to derive the coefficients from the
ACF terms:

FIG. 2.6 Spectrum of an AR signal.



rð0Þ rð1Þ � � � rðNÞ
rð1Þ rð1Þ � � � rðN � 1Þ
..
. ..

. . .
. ..

.

rðNÞ rðN � 1Þ � � � rð0Þ

2
6664

3
7775

1
�a1
..
.

�aN

2
6664

3
7775 ¼

�2e
0
..
.

0

2
6664

3
7775 ð2:69Þ

Equation (2.69) is a normal equation, called the order N forward linear
prediction equation, studied in a later chapter.

To complete the AR signal analysis, note that the generating filter
impulse response is

hp ¼ rðpÞ �
XN
i¼1

airðpþ iÞ ð2:70Þ

This equation is a direct consequence of definition relations (2.63) and
(2.64), if we notice that

hp ¼ E½xðnÞeðn� pÞ� ð2:71Þ
Since rðpÞ ¼ rð�pÞ, equation (2.68) shows that the impulse response hp is
zero for negative p, which reflects the filter causality.

It is also possible to relate the AC function of an AR signal to the poles of
the generating filter.

For complex poles, the filter z-transfer function can be expressed in
factorized form:

HðzÞ ¼ 1QN=2
i¼1
ð1� Piz

�1Þð1� �PPiz
�1Þ

ð2:72Þ

Using the equality

Sð f Þ ¼ �2e jHðzÞHðz�1Þjjzj¼1 ¼
X1

p¼�1
rðpÞz�p

�����
�����
jzj¼1

ð2:73Þ

the series development of the product HðzÞHðz�1Þ leads to the AC function
of the AR signal. The rational function decomposition of HðzÞHðz�1Þ yields,
after simplification,

rðpÞ ¼
XN=q
i¼1

�ijPijn cos½n ArgðpiÞ þ �i� ð2:74Þ

where the real parameters �i and �i are the parameters of the decomposition
and hence are related to the poles Pi.



It is worth pointing out that the same expression is obtained for the
generating filter of the type FIR/IIR, but then the parameters �i and �i
are no longer related to the poles: they are independent.

A limitation of AR spectra is that they do not take on zero values,
whereas MA spectra do. So it may be useful to combine both [7].

2.6. ARMA SIGNALS

An ARMA signal is obtained through a filter with a rational z-transfer
function:

HðzÞ ¼
PN
i¼0

biz
�1

1�PN
i¼1

aiz
�1

ð2:75Þ

In the time domain,

xðnÞ ¼
XN
i¼0

bieðn� iÞ þ
XN
i¼1

aixðn� iÞ ð2:76Þ

The denominator and numerator polynomials of HðzÞ can always be
assumed to have the same order; if necessary, zero coefficients can be added.

The power spectral density is

Sð f Þ ¼ �2e

PN
i¼0

bie
�j2�if

����
����2

1�PN
i¼1

aie
�j2�if

����
����2

ð2:77Þ

A direct relation between the ACF and the coefficients is obtained by
multiplying both sides of the time recursion (2.76) by xðn� pÞ and taking the
expectation:

rðpÞ ¼
XN
i¼1

airðp� iÞ þ
XN
i¼0

biEðeðn� iÞxðn� pÞ� ð2:78Þ

Now the relationships between ACF and filter coefficients become non-
linear, due to the second term in (2.78). However, that nonlinear term
vanishes for p > N because xðn� pÞ is related to the input signal value
with the same index and the preceding values only, not future ones.
Hence, a matrix equation can again be derived involving the AR coefficients
of the ARMA signal:



rðNÞ rðN � 1Þ � � � rð0Þ
rðN þ 1Þ rðNÞ � � � rð1Þ

..

. ..
. . .

. ..
.

rð2NÞ rð2N � 1Þ � � � rðNÞ

2
6664

3
7775

1
�a1
..
.

�aN

2
6664

3
7775 ¼ b0bN

�2e
0
..
.

0

2
6664

3
7775 ð2:79Þ

For p > N, the sequence rðpÞ is again generated recursively from the N
preceding terms.

The relationship between the first ðN þ 1Þ ACF terms and the filter coef-
ficients can be established through the filter impulse response, whose coeffi-
cients hi satisfy, by definition,

xðnÞ ¼
X1
i¼0

hieðn� iÞ ð2:80Þ

Now replacing xðn� iÞ in (2.76) gives

xðnÞ ¼
XN
i¼0

bieðn� iÞ þ
XN
i¼1

ai
X1
j¼0

hjeðn� i � jÞ

and

xðnÞ ¼
XN
i¼0

bieðn� iÞ þ
X1
k¼1

eðn� kÞ
XN
i¼1

aihk�i ð2:81Þ

Clearly, the impulse response coefficients can be computed recursively:

h0 ¼ b0; hk ¼ 0 for k < 0

hk ¼ bk þ
XN
i¼1

aihk�i; k 5 1
ð2:82Þ

In matrix form, for the N þ 1 first terms we have

1 0 0 � � � 0
�a1 1 0 � � � 0
�a2 �a1 1 � � � 0

..

. ..
. ..

. . .
. ..

.

�aN �aN�1 �aN�2 � � � 1

2
666664

3
777775

h0 0 0 � � � 0
h1 h0 0 � � � 0
h2 h1 h0 � � � 0

..

. ..
. ..

. . .
. ..

.

hN hN�1 hN�2 � � � h0

2
666664

3
777775

¼

b0 0 0 � � � 0
b1 b0 0 � � � 0
b2 b1 b0 � � � 0

..

. ..
. ..

. . .
. ..

.

bN bN�1 bN�2 � � � b0

2
666664

3
777775 ð2:83Þ



Coming back to the ACF and (2.78), we have

XN
i¼0

biE½eðn� iÞxðn� pÞ� ¼ �2e
XN
i¼0

bihi�p

and, after simple manipulations,

rðpÞ ¼
XN
i¼1

airðp� iÞ þ �2e
XN�p
j¼0

bjþphj ð2:84Þ

Now, introducing the variable

dðpÞ ¼
XN�p
j¼0

bjþphj ð2:85Þ

we obtain the matrix equation

A

rð0Þ
rð1Þ
..
.

rðNÞ

2
6664

3
7775þ A 0

rð0Þ
rð�1Þ

..

.

rð�NÞ

2
6664

3
7775 ¼ �2e

dð0Þ
dð1Þ
..
.

dðNÞ

2
6664

3
7775 ð2:86Þ

where

A ¼
1 0 � � � 0
�a1 1 � � � 0

..

. ..
. . .

. ..
.

�aN �aN�1 � � � 1

2
6664

3
7775

A 0 ¼

0 �a1 � � � �aN
0 �a2 � � � 0

..

. ..
. ..

.

0 �aN
0 0 � � � 0

2
666664

3
777775

For real signals, the first ðN þ 1Þ ACF terms are obtained from the equation

rð0Þ
rð1Þ
..
.

rðNÞ

2
6664

3
7775 ¼ �2e ½Aþ A 0��1

dð0Þ
dð1Þ
..
.

dðNÞ

2
6664

3
7775 ð2:87Þ

In summary, the procedure to calculate the ACF of an ARMA signal
from the generating filter coefficients is as follows:

. ..
. .. . ..

. ..



1. Compute the first ðN þ 1Þ terms of the filter impulse response through
recursion (2.82).

2. Compute the auxiliary variables dðpÞ for 0 4 p 4 N.
3. Compute the first ðN þ 1Þ ACF terms from matrix equation (2.87).
4. Use recursion (2.68) to derive rðpÞ when p 5 N þ 1.

Obviously, finding the ACF is not a simple task, particularly for large
filter orders N. Conversely, the filter coefficients and input noise power
can be retrieved from the ACF. First the AR coefficients ai and the scalar
b0bN�

2
e can be obtained from matrix equation (2.79). Next, from the time

domain definition (2.76), the following auxiliary signal can be introduced:

uðnÞ ¼ xðnÞ �
XN
i¼1

aixðn� iÞ ¼ eðnÞ þ
XN
i¼1

bieðn� iÞ ð2:88Þ

where b0 ¼ 1 is assumed.
The ACF ruðpÞ of the auxiliary signal uðnÞ is derived from the ACF of xðnÞ

by the equation

ruðpÞ ¼ E½uðnÞuðn� pÞ�

¼ rðpÞ �
XN
i¼1

airðpþ iÞ �
XN
i¼1

airðp� iÞ þ
XN
i¼1

XN
j¼1

aiajrðpþ j � iÞ

or, more concisely by

ruðpÞ ¼
XN
i¼�N

cirðp� iÞ ð2:89Þ

where

ci ¼ c�i; c0 ¼ 1þ
XN
j¼1

a2j

ci ¼ �ai þ
XN
j¼iþ1

ajaj�i

ð2:90Þ

But ruðpÞ can also be expressed in terms of MA coefficients, because of the
second equation in (2.88). The corresponding expressions, already given in
the previous section, are

ruðpÞ ¼ �2e
PN�p
i¼0

bibiþp; jpj 4 N

0; jpj > N

8<
:



From these N þ 1 equations, the input noise power �2e and the MA
coefficients bið1 4 i 4 N; b0 ¼ 1Þ can be derived from iterative Newton–
Raphson algorithms. It can be verified that b0bN�

2
e equals the value we

previously found when solving matrix equation (2.79) for AR coefficients.
The spectral density Sð f Þ can be computed with the help of the auxiliary

signal uðnÞ by considering the filtering operation

xðnÞ ¼ uðnÞ þ
XN
i¼1

aixðn� iÞ ð2:91Þ

which, in the spectral domain, corresponds to

Sð f Þ ¼
ruð0Þ þ 2

PN
p¼1

ruðpÞ cosð2�pf Þ

1�PN
i¼1

aie
�j2�if

����
����2

ð2:92Þ

This expression is useful in spectral analysis.
Until now, only real signals have been considered in this section. Similar

results can be obtained with complex signals by making appropriate com-
plex conjugations in equations. An important difference is that the ACF is
no longer symmetrical, which can complicate some procedures. For exam-
ple, the matrix equation (2.86) to obtain the first ðN þ 1Þ ACF terms
becomes

ArþA 0 �rr ¼ �2e d ð2:93Þ

where r is the correlation vector, �rr the vector with complex conjugate entries,
and d the auxiliary variable vector. The conjugate expression of (2.86) is

�AA�rrþ �AA 0r ¼ �2e �dd ð2:94Þ

The above equations, after some algebraic manipulations, lead to

½ A�A 0ð �AAÞ�1 �AA 0�r ¼ �2e ½d �A 0ð �AAÞ�1 �dd� ð2:95Þ

Now two matrix inversions are needed to get the correlation vector. Note
that A�1 is readily obtained from (2.83) by calculating the first N þ 1
values of the impulse response of the AR filter through the recursion (2.82).

Next, more general signals of the types often encountered in control
systems are introduced.



2.7. MARKOV SIGNALS

Markov signals are produced by state variable systems whose evolution
from time n to time nþ 1 is governed by a constant transition matrix [8].

The state of a system of order N at time n is defined by a set of N internal
variables represented by a vector XðnÞ called the state vector. The block
diagram of a typical system is shown in Figure 2.7, and the equations are

Xðnþ 1Þ ¼ AXðnÞ þ BwðnÞ
yðnÞ ¼ CtXðnÞ þ vðnÞ ð2:96Þ

The matrix A is the N �N transition matrix, B is the control vector, and
C is the observation vector [9]. The input sequence is wðnÞ; vðnÞ can be a
measurement noise contaminating the output yðnÞ.

The state of the system at time n is obtained from the initial state at time
zero by the equation

XðnÞ ¼ AnXð0Þ þ
Xn
i¼1

An�iBwði � 1Þ ð2:97Þ

Consequently, the behavior of such a system depends on successive
powers of the transition matrix A.

The z-transfer function of the system HðzÞ, obtained by taking the z-
transform of the state equations, is

HðzÞ ¼ CtðZIN � AÞ�1B ð2:98Þ
with IN the N �N unity matrix.

The poles of the transfer function are the values of z for which the
determinant of the matrix ðZIN � AÞ is zero. That is also the definition of
the eigenvalues of A.

FIG. 2.7 State variable system.



The system is stable if and only if the poles are inside the unit circle in the
complex plane or, equivalently, if and only if the absolute values of the
eigenvalues are less than unity, which can be seen directly from equation
(2.97).

Let us assume that wðnÞ is centered white noise with power �2w. The state
variables are also centered, and their covariance matrix can be calculated.
Multiplying state equation (2.96) on the right by its transpose yields

Xðnþ 1ÞXtðnþ 1Þ ¼ AXðnÞXtðnÞAþ Bw2ðnÞBt

þ AXðnÞwðnÞBt þ BwðnÞXtðnÞAt

The expected values of the last two terms of this expression are zero,
because xðnÞ depends only on the past input values. Hence, the covariance
matrix Rxxðnþ 1Þ is

Rxxðnþ 1Þ ¼ E½Xðnþ 1ÞXtðnþ 1Þ� ¼ ARxxðnÞAt þ �2wBBt ð2:99Þ
It can be computed recursively once the covariance of the initial condi-

tions Rxxð0Þ is known. If the elements of the wðnÞ sequence are Gaussian
random variables, the state variables themselves are Gaussian, since they are
linear combinations of past input values.

The Markovian representation applies to ARMA signals. Several sets of
state variables can be envisaged. For example, in linear prediction, a repre-
sentation corresponding to the following state equations is used:

xðnÞ ¼ CtX̂XðnÞ þ eðnÞ
X̂XðnÞ ¼ AX̂Xðn� 1Þ þ Beðn� 1Þ

ð2:100Þ

with

A ¼

0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. ..
. . .

. ..
.

0 0 0 . .
.

1
aN aN�1 aN�2 � � � a1

2
666664

3
777775; B ¼

h1
h2
..
.

hN

2
6664

3
7775

C ¼
1
0
..
.

0

2
664

3
775; X̂XðnÞ ¼

x̂x0ðnÞ
x̂x1ðnÞ
..
.

x̂xN�1ðnÞ

2
6664

3
7775

The elements of vector B are the filter impulse response coefficients of
equation (2.80), and those of the state vector, x̂xiðnÞ are the i-step linear
predictions of xðnÞ, defined, for the ARMA signal and as shown later, by



x̂xiðnÞ ¼
Xi
k¼1

akx̂xðn� kÞ þ
XN�i
j¼1

aiþjxðn� i � jÞ þ
XN
j¼1

biþjeðn� i � jÞ

ð2:101Þ
It can be verified that the characteristic polynomial of the matrix A,

whose roots are the eigenvalues, is the denominator of the filter transfer
function HðzÞ in (2.75).

Having presented methods for generating signals, we now turn to analysis
techniques. First we introduce some important definitions and concepts [10].

2.8. LINEAR PREDICTION AND INTERPOLATION

The operation which produces a sequence eðnÞ from a data sequence xðnÞ,
assumed centered and wide-sense stationary, by the convolution

eðnÞ ¼ xðnÞ �
X1
i¼1

aixðn� iÞ ð2:102Þ

is called one-step linear prediction error filtering, if the coefficients are cal-
culated to minimize the variance of the output eðnÞ. The minimization is
equivalent, through derivation, to making eðnÞ orthogonal to all previous
data, because it leads to:

E½eðnÞxðn� iÞ� ¼ 0; i 5 1 ð2:103Þ
Since eðnÞ is a linear combination of past data, the following equations are
also valid:

E½eðnÞeðn� iÞ� ¼ 0; i 5 1 ð2:104Þ
and the sequence eðnÞ, called the prediction error or the innovation, is a
white noise. Therefore the one-step prediction error filter is also called the
whitening filter. The data xðnÞ can be obtained from the innovations by the
inverse filter, assumed realizable, which is called the model or innovation
filter. The operations are shown in Figure 2.8.

The prediction error variance Ea ¼ E½e2ðnÞ� can be calculated from the
data power spectrum density Sðe j!Þ by the conventional expressions for
digital filtering:

Ea ¼
1

2�

Z �

��
jAðe j!Þj2Sðe j!Þ d! ð2:105Þ

or, in terms of z-transforms,

Ea ¼
1

j2�

Z
jzj¼1

AðzÞAðz�1ÞSðzÞ dz
z

ð2:106Þ



where AðzÞ is the transfer function of the prediction error filter. The predic-
tion filter coefficients depend only on the input signal, and the error power
can be expressed as a function of Sðe j!Þ only. To derive that expression, we
must first show that the prediction error filter is minimum phase; in other
words, all its zeros are inside or on the unit circle in the complex z-plane.

Let us assume that a zero of AðzÞ, say z0, is outside the unit circle, which
means jz0j > 1, and consider the filter A 0ðzÞ given by

A 0ðzÞ ¼ AðzÞ z� �zz�10

z� z0

z� z�10

z� �zz0
ð2:107Þ

As Figure 2.9 shows,

z� �zz�10

z� z0

�����
�����
z¼e j!

z� z�10

z� �zz0

�����
�����
z�e j!

¼ 1

jz0j2
ð2:108Þ

and the corresponding error variance is

E 0a ¼
1

jz0j2
Ea < Ea ð2:109Þ

which contradicts the definition of the prediction filter. Consequently, the
prediction filter AðzÞ is minimum phase.

In (2.106) for Ea, we can remove the filter transfer function with the help
of logarithms, taking into account that the innnovation sequence has a
constant power spectrum density; thus,

2�j lnEa ¼
Z
jzj¼1

lnAðzÞ dz
z
þ
Z
jzj¼1

lnAðz�1Þ dz
z
þ
Z
jzj¼1

lnSðzÞ dz
z
ð2:110Þ

Now, since AðzÞ is minimum phase, lnAðzÞ is analytic for jzj 5 1 and the
unit circle can be replaced in the above integral with a circle whose radius is
arbitrarily large, and since

FIG. 2.8 Linear prediction filter and inverse filter.



lim
z!1

AðzÞ ¼ a0 ¼ 1

the first integral vanishes on the right side of (2.110). The second integral
also vanishes because it can be shown, by a change of variables from z�1 to z
that it is equal to the first one.

Finally, the prediction error power is expressed in terms of the signal
power spectrum density by

Ea ¼ exp
1

2�

Z �

��
lnSðe j!Þ d!

� �
ð2:111Þ

This very important result is known as the Kolmogoroff–Szegö formula.
A useful signal parameter is the prediction gain G, defined as the signal-

to-prediction-error ratio:

G ¼ 1

2�

Z �

��
Sðe j!Þ d!� exp 1

2�

Z �

��
lnSðe j!Þ d!

� �
ð2:112Þ

Clearly, for a white noise G ¼ 1.
At this stage, it is interesting to compare linear prediction and interpola-

tion. Interpolation is the filtering operation which produces from the data
xðnÞ the sequence

eiðnÞ ¼
X1
j¼�1

hjxðn� jÞ; h0 ¼ 1 ð2:113Þ

FIG. 2.9 Reflection of external zero in the unit circle.



with coefficients calculated to minimize the output power. Hence, eiðnÞ is
orthogonal to past and future data:

E½eiðnÞxðn� kÞ� ¼ Ei�ðkÞ ð2:114Þ
where �ðkÞ is the Dirac distribution and

Ei ¼ E½e2i ðnÞ� ð2:115Þ
Clearly, the interpolation error eiðnÞ is not necessarily a white noise. Taking
the z-transform of both sides of the orthogonal relationship (2.114) leads to

HðzÞSðzÞ ¼ Ei ð2:116Þ
Also

Ei ¼
1

j2�

Z
jzj¼1

HðzÞHðz�1ÞSðzÞ dz
z

ð2:117Þ

Combining equations (2.116) and (2.117) gives

Ei ¼ 1
. 1

2�

Z �

��

d!

Sðe j!Þ ð2:118Þ

Now, it is known from linear prediction that

Sðe j!Þ ¼ Ea

jAðe j!Þj2 ð2:119Þ

and

Ei ¼ Ea

. 1

2�

Z �

��
jAðe j!Þj2d! ¼ Ea

.X1
i¼0

a2i ð2:120Þ

Since a0 ¼ 1, we can conclude that Ei 4 Ea; the interpolation error
power is less than or equal to the prediction error power, which is a not
unexpected result.

Linear prediction is useful for classifying signals and, particular, distin-
guishing between deterministic and random processes.

2.9. PREDICTABLE SIGNALS

A signal xðnÞ is predictable if and only if its prediction error power is null:

Ea ¼
1

2�

Z �

��
jAðe j!Þj2Sðe j!Þ d! ¼ 0 ð2:121Þ

or, in the time domain,



xðnÞ ¼
X1
i¼1

aixðn� iÞ ð2:122Þ

which means that the present value xðnÞ of the signal can be expressed in
terms of its past values. The only signals which satisfy the above equations
are those whose spectrum consists of lines:

Sðe j!Þ ¼
XN
i¼1
jSij2�ð!� !iÞ ð2:123Þ

The scalars jSij2 are the powers of individual lines. The integer N can be
arbitrarily large. The minimum degree prediction filter is

AmðzÞ ¼
YN
i¼1
ð1� e j!i z�1Þ ð2:124Þ

However all the filters AðzÞ with

AðzÞ ¼ 1�
X1
i¼1

aiz
�1 ð2:125Þ

and such that Aðe j!i Þ ¼ 0 for 1 4 i 4 N satisfy the definition and are pre-
diction filters.

Conversely, since AðzÞ is a power series, Aðe j!Þ cannot equal zero for
every ! in an interval, and equations (2.121) and (2.122) can hold only if
Sðe j!Þ ¼ 0 everywhere except at a countable set of points. It follows that S
ðe j!Þ must be a sum of impulses as in (2.123), and AðzÞ has corresponding
zeros on the unit circle.

Finally, a signal xðnÞ is predictable if and only if its spectrum consists of
lines.

The line spectrum signals are an extreme case of the more general class of
bandlimited signals. A signal xðnÞ is said to be bandlimited if Sðe j!Þ ¼ 0 in
one or more frequency intervals. Then a filter Hð!Þ exists such that

Hð!ÞSðe j!Þ � 0 ð2:126Þ
and, in the time domain,X1

i¼�1
hixðn� iÞ ¼ 0

With proper scaling, we have

xðnÞ ¼ �
X1
i¼1

hixðn� iÞ �
X1
i¼1

h�ixðnþ iÞ ð2:127Þ



Thus the present value can be expressed in terms of past and future
values. Again the representation is not unique, because the function Hð!Þ
is arbitrary, subject only to condition (2.126). It can be shown that a band-
limited signal can be approximated arbitrarily closely by a sum involving
only its past values. Equality is obtained if Sðe j!Þ consists of lines only.

The above sections are mainly intended to serve as a gradual preparation
for the introduction of one of the most important results in signal analysis,
the fundamental decomposition.

2.10. THE FUNDAMENTAL (WOLD) DECOMPOSITION

Any signal is the sum of two orthogonal components, an AR signal and a
predictable signal. More specifically:

Decomposition Theorem

An arbitrary unpredictable signal xðnÞ can be written as a sum of two
orthogonal signals:

xðnÞ ¼ xpðnÞ þ xrðnÞ ð2:128Þ
where xpðnÞ is predictable and xrðnÞ is such that its spectrum SrðE j!Þ can be
factored as

Srðe j!Þ ¼ jHðe j!Þj2; HðzÞ ¼
X1
i¼0

hiz
�i ð2:129Þ

and HðzÞ is a function analytic for jzj > 1.
The component xrðnÞ is sometimes said to be regular. Following the

development in [10], the proof of the theorem begins with the computation
of the prediction error sequence

eðnÞ ¼ xðnÞ �
X1
i¼1

aixðn� iÞ ð2:130Þ

As previously mentioned, the prediction coefficients are computed so as
to make eðnÞ orthogonal to all past data values, and the error sequence is a
white noise with variance Ea.

Conversely, the least squares estimate of xðnÞ in terms of the sequence e
ðnÞ and its past is the sum

xrðnÞ ¼
X1
i¼0

hieðn� iÞ ð2:131Þ

and the corresponding error signal



xpðnÞ ¼ xðnÞ � xrðnÞ
is orthogonal to eðn� iÞ for i 5 0. In other words, eðnÞ is orthogonal to
xpðnþ kÞ for k 5 0.

Now, eðnÞ is also orthogonal to xrðn� kÞ for k 5 1, because xrðn� kÞ
depends linearly on eðn� kÞ and its past and eðnÞ is white noise. Hence,

E½eðnÞ½xðn� kÞ � xrðn� kÞ�� ¼ 0 ¼ E½eðnÞxpðn� kÞ�; k 5 1

and

E½eðnÞxpðn� kÞ� ¼ 0; all k ð2:132Þ
Expression (2.131) yields

E½xrðnÞxpðn� kÞ ¼ 0; all k ð2:133Þ
The signals xrðnÞ and xpðnÞ are orthogonal, and their powers add up to give
the input signal power:

E½x2ðnÞ� ¼ E½x2pðnÞ� þ E½x2r ðnÞ� ð2:134Þ
Now (2.131) also yields

E½x2r ðnÞ� ¼ Ea

X1
i¼0

h2i 4 E½x2ðnÞ� ð2:135Þ

Therefore,

HðzÞ ¼
X1
i¼0

hiz
�i

converges for jzj > 1 and defines a linear causal system which produces xrðnÞ
when fed with eðnÞ.

In these conditions, the power spectrum of xrðnÞ is
Srðe j!Þ ¼ EajHðe j!Þj2 ð2:136Þ

The filtering operations which have produced xrðnÞ from xðnÞ are shown
in Figure 2.10. If instead of xðnÞ the component in a signal sequence
xðnÞ � xrðnÞ ¼ xpðnÞ is fed to the system, the error epðnÞ, instead of eðnÞ, is
obtained. The sequence

epðnÞ ¼ eðnÞ � xrðnÞ �
X1
i¼1

aixrðn� iÞ
" #

ð2:137Þ

is a linear combination of eðnÞ and its past, via equation (2.131). But, by
definition,



epðnÞ ¼ xpðnÞ �
X1
i¼1

aixpðn� iÞ ð2:138Þ

which, using equations (2.132) and (2.133), yields

E½e2pðnÞ� ¼ E eðnÞ � xrðnÞ �
X1
i¼1

aixrðn� iÞ
 !" #(

� xpðnÞ �
X1
i¼1

aixpðn� iÞ
" #)

¼ 0

Therefore xpðnÞ is a predictable signal and the whitening filter AðzÞ is a
prediction error filter, although not necessarily the minimum degree filter,
which is given by (2.124). On the contrary, AðzÞ is the unique prediction
error filter of xðnÞ.

Finally, the spectrum Sðe j!Þ of the unpredictable signal xðnÞ is a sum

Sðe j!Þ ¼ Srðe j!Þ þ Spðe j!Þ ð2:139Þ
where Srðe j!Þ is the continuous spectrum of the regular signal xrðnÞ, and
Spðe j!Þ is the line spectrum of the deterministic component, the two com-
ponents being uncorrelated.

2.11. HARMONIC DECOMPOSITION

The fundamental decomposition is used in signal analysis as a reference for
selecting a strategy [11]. As an illustration let us consider the case, frequently
occurring in practice, where the signal to be analyzed is given as a set of 2
N þ 1 autocorrelation coefficients rðpÞ with �N 4 p 4 N, available from a
measuring procedure. To perform the analysis, we have two extreme
hypotheses. The first one consists of assuming that the signal has no deter-
ministic component; then a set of N prediction coefficients can be calculated

FIG. 2.10 Extraction of the regular component in a signal.



as indicated in the section dealing with AR signals by (2.69), and the power
spectrum is obtained from (2.66).

But another hypothesis is that the signal is essentially deterministic and
consists of N sinusoids in noise. The associated ACF for real data is

rðpÞ ¼ 2
XN
k¼1
jSkj2 cosðp!kÞ þ �2e �ðpÞ ð2:140Þ

where !k are the radial frequencies of the sinusoids and Sk are the ampli-
tudes. In matrix form,

rð0Þ � �2e
rð1Þ
rð2Þ
..
.

rðNÞ

2
666664

3
777775 ¼ 2

1 1 � � � 1
cos!1 cos!2 � � � cos!N

cos 2!1 cos 2!2 � � � cos 2!N

..

. ..
. ..

.

cosN!1 cosN!2 � � � cosN!N

2
666664

3
777775

�
jS1j2
jS2j2
..
.

jSN j2

2
6664

3
7775 ð2:141Þ

The analysis of the signal consists of finding out the sinusoid frequencies
and amplitudes and the noise power �2e . To perform that task, we use the
signal sequence xðnÞ. According to the above hypothesis, it can be expressed
by

xðnÞ ¼ xpðnÞ þ eðnÞ ð2:142Þ
with

xpðnÞ ¼
XN
i¼1

aixpðn� iÞ

Now, the data signal satisfies the recursion

xðnÞ ¼
XN
i¼1

aixðn� iÞ þ eðnÞ �
XN
i¼1

aieðn� iÞ ð2:143Þ

which is just a special kind of ARMA signal, with b0 ¼ 1 and bi ¼ �ai in
time domain relation (2.76). Therefore results derived in Section 2.6 can be
applied.



The impulse response can be computed recursively, and relations (2.82)
yield hk ¼ �ðkÞ. The auxiliary variable in (2.85) is dðpÞ ¼ �apð1 4 p 4 NÞ.
Rewriting the equations giving the autocorrelation values (2.84) leads to

rðpÞ ¼
XN
i¼1

airðp� iÞ þ �2e ð�apÞ; 1 4 p 4 N ð2:144Þ

or, in matrix form for real data,

rð0Þ rð1Þ � � � rðNÞ
rð1Þ rð0Þ � � � rðN � 1Þ
..
. ..

. . .
. ..

.

rðNÞ rðN � 1Þ � � � rð0Þ

2
6664

3
7775

1
�a1
..
.

�aN

2
6664

3
7775 ¼ �2e

1
�a1
..
.

�aN

2
6664

3
7775 ð2:145Þ

This is an eigenvalue equation. The signal autocorrelation matrix is sym-
metric, and therefore all eigenvalues are greater than or equal to zero. For N
sinusoids without noise, the ðN þ 1Þ � ðN þ 1Þ autocorrelation matrix has
one eigenvalue equal to zero; adding to the signal a white noise component
of power �2e results in adding �2e to all eigenvalues of the autocorrelation
matrix. Thus, the noise power �2e is the smallest eigenvalue of the signal, and
the recursion coefficients are the entries of the associated eigenvector. As
shown in the next chapter, the roots of the filter

AðzÞ ¼ 1�
XN
i¼1

aiz
�1 ð2:146Þ

called the minimum eigenvalue filter, are located on the unit circle in the
complex plane and give the frequencies of the sinusoids. The analysis is then
completed by solving the linear system (2.141) for the individual sinusoid
powers. The complete procedure, called the Pisarenko method, is presented
in more detail in a subsequent chapter [12].

So, it is very important to notice that a signal given by a limited set of
correlation coefficients can always be viewed as a set of sinusoids in noise.
That explains why the study of sinusoids in noise is so important for signal
analysis and, more generally, for processing.

In practice, the selection of an analysis strategy is guided by a priori
information on the signal and its generation process.

2.12. MULTIDIMENSIONAL SIGNALS

Most of the algorithms and analysis techniques presented in this book are
for monodimensional real or complex sequences, which make up the bulk of
the applications. However, the extension to multidimensional signals can be



quite straightforward and useful in some important cases—for example,
those involving multiple sources and receivers, as in geophysics, underwater
acoustics, and multiple-antenna transmission systems [13].

A multidimensional signal is defined as a vector of N sequences

XðnÞ ¼
x1ðnÞ
x2ðnÞ
..
.

xNðnÞ

2
6664

3
7775

For example, the source and receiver vectors in Figure 1.1 are multidimen-
sional signals. The N sequences are assumed to be dependent; otherwise they
could be treated as N different scalar signals. They are characterized by the
joint density function between them.

A second-order stationary multidimensional random signal is character-
ized by a mean vector Mx and a covariance matrix Rxx:

Mx ¼
E½x1ðnÞ�
E½x2ðnÞ�

..

.

E½xNðnÞ�

2
6664

3
7775; Rxx ¼ E½ðXðnÞ �MxÞðXðnÞ �MxÞt� ð2:147Þ

The diagonal terms of Rxx are the variances of the signal elements. If the
elements in the vector are each Gaussian, then they are jointly Gaussian and
have a joint density:

pðXÞ ¼ 1

ð2�ÞN=2½det Rxx�1=2
exp½� 1

2
ðX �MxÞtR�1xx ðX �MxÞ� ð2:148Þ

For the special case N ¼ 2,

Rxx ¼ �2x1 ��x1�x2
��x1�x1 �2x2

" #
ð2:149Þ

with � the correlation coefficient defined by

� ¼ 1

�x1�x2
E½ðx1 �m1Þðx2 �m2Þ� ð2:150Þ

If the signal elements are independent, Rxx is a diagonal matrix and

pðXÞ ¼
YN
i¼1

1

�2i
ffiffiffiffiffiffi
2�
p exp � ðxi �miÞ2

2�2i

" #
ð2:151Þ

Furthermore, if all the variances are equal, then



Rxx ¼ �2IN ð2:152Þ
This situation is frequently encountered in roundoff noise analysis in imple-
mentations.

For complex data, the Gaussian joint density (2.148) takes a slightly
different form:

pðXÞ ¼ 1

�N
1

detRxx

exp½�ðX �MxÞ	tR�1xx ðX �MxÞ� ð2:153Þ

Multidimensional signals appear naturally in state variable systems, as
shown in Section 2.7.

2.13. NONSTATIONARY SIGNALS

A signal is nonstationary if its statistical character changes with time. The
fundamental decomposition can be extended to such a signal, and the reg-
ular component is

xrðnÞ ¼
X1
i¼0

hiðnÞeðn� iÞ ð2:154Þ

where eðnÞ is a stationary white noise. The generating filter impulse response
coefficients are time dependent. An instantaneous spectrum can be defined
as

Sð f ; nÞ ¼ �2e
X1
i¼0

hiðnÞe�j2�fi
�����

�����
2

ð2:155Þ

So, nonstationary signals can be generated or modeled by the techniques
developed for stationary signals, but with additional means to make the
system coefficients time varying [14]. For example, the ARMA signal is

xðnÞ ¼
XN
i¼0

biðnÞeðn� iÞ þ
XN
i¼1

aiðnÞxðn� iÞ ð2:156Þ

The coefficients can be generated in various ways. For example, they can
be produced as weighted sums of K given time functions fkðnÞ:

aiðnÞ ¼
XK
k¼1

aikfkðnÞ ð2:157Þ

These time functions may be periodic functions or polynomials; a simple
case is the one-degree polynomial, which corresponds to a drift of the coef-
ficients. The signal depends on ð2N þ 1ÞK time-independent parameters.



The set of coefficients can also be a multidimensional signal. A realistic
example in that class is shown in Figure 2.11. The N time-varying filter
coefficients aiðnÞ are obtained as the outputs of N fixed-coefficient filters
fed by independent white noises with same variances. A typical choice for
the coefficient filter transfer function is the first-order low-pass function

HiðzÞ ¼
1

1� �z�1 ; 0� � < 1 ð2:158Þ

whose time constant is

� ¼ 1

1� � ð2:159Þ

For � close to unity, the time constant is large and the filter coefficients are
subject to slow variations.

The analysis of nonstationary signals is complicated because the ergodi-
city assumption can no longer be used and statistical parameters cannot be
computed through time averages. Natural signals are nonstationary.
However, they are often slowly time varying and can then be assumed
stationary for short periods of time.

2.14. NATURAL SIGNALS

To illustrate the preceding developments, we give several signals from dif-
ferent application fields in this section.

Speech is probably the most commonly processed natural signal through
digital communication networks. The waveform for the word ‘‘FATHER’’
is shown in Figure 2.12. The sampling rate is 8 kHz, and the duration is

FIG. 2.11 Generation of a nonstationary signal.



about 0.5 s. Clearly, it is nonstationary. Speech consists of phonemes and
can be considered as stationary on durations ranging from 10 to 25 ms.

It can be modeled as the output of a time-varying purely recursive filter
(AR model) fed by either a string of periodic pulses for voiced sections or a
string of random pulses for unvoiced sections [15].

The output of the demodulator of a frequency-modulated continuous
wave (FMCW) radar is shown in Figure 2.13. It is basically a distorted
sinusoid corrupted by noise and echoes. The main component frequency
is representative of the distance to be measured.

An image can be represented as a one-dimensional signal through scan-
ning. In Figure 2.14, three lines of a black-and-white contrasted picture are
shown; a line has 256 samples. The similarities between consecutive lines can
be observed, and the amplitude varies quickly within every line. The picture
represents a house.

2.15. SUMMARY

Any stationary signal can be decomposed into periodic and random com-
ponents. The characteristics of both classes can be studied by considering

FIG. 2.12 Speech waveform for the word ‘‘father.’’



as main parameters, the ACF, the spectrum, and the generating model.
Periodic signals have been analyzed first. Then random signals have been
defined, with attention being focused on wide-sense stationary signals;
they have second-order statistics which are independent of time.
Synthetic random signals can be generated by a filter fed with white
noise. The Gaussian amplitude distribution is especially important
because of its nice statistical properties, but also because it is a model
adequate for many real situations. The generating filter structures corre-
spond to various output signal classes: MA, AR, and ARMA. The con-
cept of linear prediction is related to a generating filter model, and the
class of predictable signals has been defined. A proof of the fundamental
Wold decomposition has been presented, and, as an application, it has
been shown that a signal specified by a limited set of correlation coeffi-
cients can be viewed as a set of sinusoids in noise. That is the harmonic
decomposition.

In practice, signals are nonstationary, and, in general, short-term statio-
narity or slow variations have to be assumed. Several natural signal exam-

FIG. 2.13 FMCW radar signal.



ples, namely speech, radar, and image samples, have been selected to illus-
trate the theory.

EXERCISES

1. Calculate the z-transform YRðzÞ of the damped cosinusoid

yRðnÞ ¼
0; n < 0

e�0:1n cos
n�

2
; n 5 0

(

and show the poles in the complex plane.
Give the signal energy spectrum and verify the energy relationship

Ey ¼
X1
n¼0

y2RðnÞ ¼
1

2�j

Z
jzj¼1

YRðzÞYRðz�1Þz�1 dz

Give the coefficients, initial conditions, and diagram of the second-
order section which generates yRðnÞ.

2. Find the ACF of the signal

xðnÞ ¼ cos n
�

3
þ 1

2
sin n

�

4

Determine the recurrence equation satisfied by xðnÞ and give the initial
conditions.

FIG. 2.14 Image signal: three lines of a black-and-white picture.



3. Evaluate the mean and variance associated with the uniform probability
density function on the interval ½x1; x2�. Comment on the results.

4. Consider the signal

xðnÞ ¼ 0 n < 0
0:8xðn� 1Þ þ eðnÞ; n 51

�
assuming eðnÞ is a stationary zero mean random sequence with power
�2e ¼ 0:5. The initial condition is deterministic with value xð0Þ ¼ 1.

Calculate the mean sequence mn ¼ E½xðnÞ�. Give the recursion, for
the variance sequence. What is the stationary solution. Calculate the
ACF of the stationary signal.

5. Find the first three terms of the ACF of the AR signal.

xðnÞ ¼ 1:27xðn� 1Þ � 0:81xðn� 2Þ þ eðnÞ
where eðnÞ is a unit power centered white noise.

6. An ARMA signal is defined by the recursion

xðnÞ ¼ eðnÞ þ 0:5eðn� 1Þ þ 0:9eðn� 2Þ þ xðn� 1Þ � 0:5xðn� 2Þ
where eðnÞ is a unit variance centered white noise. Calculate the gener-
ating filter z-transfer function and its impulse response. Derive the
signal ACF.

7. A two-dimensional signal is defined by

XðnÞ ¼
x1ðnÞ
x2ðnÞ

� 	
¼ 0

0

� 	
; n 4 0

0:63 0:36
0:09 0:86

� 	
Xðn� 1Þ þ 0:01

0:06

� 	
eðnÞ; n 5 1

8>><
>>:

where eðnÞ is a unit power centered white noise. Find the covariance
propagation equation and calculate the stationary solution.

8. A measurement has supplied the signal autocorrelation values
rð0Þ ¼ 5:75; rð1Þ ¼ 4:03; rð2Þ ¼ 0:46. Calculate the two coefficients of
the second-order linear predictor and the prediction error power.
Give the corresponding signal power spectrum.

9. Find the eigenvalues of the matrix

R3 ¼
1:00 0:70 0:08
0:70 1:00 0:70
0:08 0:70 1:00

2
4

3
5

and the coefficients of the minimum eigenvalue filter. Locate the zeros
of that filter and give the harmonic spectrum. Compare with the pre-
diction spectrum obtained in the previous exercise.
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3
Correlation Function and Matrix

The operation and performance of adaptive filters are tightly related to the
statistical parameters of the signals involved. Among these parameters, the
correlation functions take a significant place. In fact, they are crucial
because of their own value for signal analysis but also because their terms
are used to form correlation matrices. These matrices are exploited directly
in some analysis techniques. However, in the efficient algorithms for adap-
tive filtering considered here, they do not, in general, really show up, but
they are implied and actually govern the efficiency of the processing.
Therefore an in-depth knowledge of their properties is necessary.
Unfortunately it is not easy to figure out their characteristics and establish
relations with more accessible and familiar signal features, such as the spec-
trum.

This chapter presents correlation functions and matrices, discusses their
most useful properties, and, through examples and applications, makes the
reader accustomed to them and ready to exploit them. To begin with, the
correlation functions, which have already been introduced, are presented in
more detail.

3.1. CROSS-CORRELATION AND
AUTOCORRELATION

Assume that two sets of N real data, xðnÞ and yðnÞ, have to be compared,
and consider the scalar a which minimizes the cost function



JðNÞ ¼
XN
n¼1
½ yðnÞ � axðnÞ�2 ð3:1Þ

Setting to zero the derivative of JðNÞ with respect to a yields

a ¼
PN
n¼1

xðnÞyðnÞ
PN
n¼1

x2ðnÞ
ð3:2Þ

The minimum of the cost function is

JminðNÞ ¼ ½1� k2ðNÞ�
XN
n¼1

y2ðnÞ ð3:3Þ

with

kðNÞ ¼
PN
n¼1

xðnÞyðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

x2ðnÞ
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1
y2ðnÞ

s ð3:4Þ

The quantity kðNÞ, cross-correlation coefficient, is a measure of the degree
of similarity between the two sets of N data. To point out the practical
significance of that coefficient, we mention that it is the basic parameter
of an important class of prediction filters and adaptive systems—the least
squares (LS) lattice structures in which it is computed in real time recur-
sively.

From equations (3.2) and (3.4), the correlation coefficient kðNÞ is
bounded by

jkðNÞj 4 1 ð3:5Þ
and it is independent of the signal energies; it is said to be normalized.

If instead of xðnÞ we consider a delayed version of the signal in the above
derivation, a cross-correlation function can be obtained. The general,
unnormalized form of the cross-correlation function between two real
sequences xðnÞ and yðnÞ is defined by

ryxðpÞ ¼ E½ yðnÞxðn� pÞ� ð3:6Þ
For stationary and ergodic signals we have

ryxðpÞ ¼ lim
N!1

1

2N þ 1

XN
n¼�N

yðnÞxðn� pÞ ð3:7Þ



Several properties result from the above definitions. For example:

ryxð�pÞ ¼ Efxðnþ pÞy½ðnþ pÞ � p�g ¼ rxyðpÞ ð3:8Þ
If two random zero mean signals are independent, their cross-correlation
functions are zero. In any case, when p approaches infinity the cross-corre-
lation approaches zero. The magnitudes of ryxðpÞ are not, in general, max-
imum at the origin, but they are bounded. The inequality

½ yðnÞ � xðn� pÞ�2 5 0 ð3:9Þ
yields the bound

jryxðpÞj 4 1
2
½rxxð0Þ þ ryyð0Þ� ð3:10Þ

If the signals involved are the input and output of a filter

yðnÞ ¼
X1
i¼0

hixðn� iÞ ð3:11Þ

and

ryxðpÞ ¼ E½ yðnÞxðn� pÞ� ¼
X1
i¼0

hirxxðp� iÞ ð3:12Þ

the following relationships, in which the convolution operator is denoted 	,
can be derived:

ryxðpÞ ¼ rxxðpÞ 	 hðpÞ
rxyðpÞ ¼ rxxðpÞ 	 hð�pÞ
ryyðpÞ ¼ rxxðpÞ 	 hðpÞ 	 hð�pÞ

ð3:13Þ

When yðnÞ ¼ xðnÞ, the autocorrelation function (ACF) is obtained; it is
denoted rxxðpÞ or, more simply, rðpÞ, if there is no ambiguity. The following
properties hold:

rðpÞ ¼ rð�pÞ; jrðpÞj 4 rð0Þ ð3:14Þ
For xðnÞ a zero mean white noise with power �2x,

rðpÞ ¼ �2x�ðpÞ ð3:15Þ
and for a sine wave with amplitude S and radial frequency !0,

rðpÞ ¼ S2

2
cos p!0 ð3:16Þ

The ACF is periodic with the same period. Note that from (3.15) and (3.16)
a simple and efficient noise-elimination technique can be worked out to



retrieve periodic components, by just dropping the terms rðpÞ for small p in
the noisy signal ACF.

The Fourier transform of the ACF is the signal spectrum. For the cross-
correlation ryxðpÞ it is the cross spectrum Syxð f Þ.

Considering the Fourier transform Xð f Þ and Yð f Þ of the sequences xðnÞ
and yðnÞ, equation (3.7) yields

Syxð f Þ ¼ Yð f Þ �XXð f Þ ð3:17Þ
where �XXð f Þ is the complex conjugate of Xð f Þ.

The frequency domain correspondence for the set of relationships (3.13)
is found by introduction of the filter transfer function:

Hð f Þ ¼ Yð f Þ
Xð f Þ ¼

Yð f Þ �XXð f Þ
jXð f Þj2 ð3:18Þ

Now

Syxð f Þ ¼ Sxxð f ÞHð f Þ
Sxyð f Þ ¼ Sxxð f Þ �HHð f Þ
Syyð f Þ ¼ Sxxð f ÞjHð f Þj2

ð3:19Þ

The spectra and cross spectra can be used to compute ACF and cross-
correlation function, through Fourier series development, although it is
often the other way round in practice.

Most of the above definitions and properties can be extended to complex
signals. In that case the cross-correlation function (3.6) becomes

ryxðpÞ ¼ E½ yðnÞ �xxðn� pÞ� ð3:20Þ
In the preceding chapter the relations between correlation functions and

model coefficients have been established for MA, AR, and ARMA station-
ary signals. In practice, the correlation coefficients must be estimated from
available data.

3.2. ESTIMATION OF CORRELATION FUNCTIONS

The signal data may be available as a finite-length sequence or as an infinite
sequence, as for stationary signals. In any case, due to the limitations in
processing means, the estimations have to be restricted to a finite time
window. Therefore a finite set of N0 data is assumed to be used in estima-
tions.

A first method to estimate the ACF rðpÞ is to calculate r1ðpÞ by



r1ðpÞ ¼
1

N0

XN0

n¼pþ1
xðnÞxðn� pÞ ð3:21Þ

The estimator is biased because

E½r1ðpÞ� ¼
N0 � p

N0

rðpÞ ð3:22Þ

However, the bias approaches zero as N0 approaches infinity, and r1ðpÞ is
asymptotically unbiased.

An unbiased estimator is

r2ðpÞ ¼
1

N0 � p

XN0

n¼pþ1
xðnÞxðn� pÞ ð3:23Þ

In order to limit the range of the estimations, which are exploited sub-
sequently, we introduce a normalized form, given for the unbiased estimator
by

rn2ðpÞ ¼

PN0

n¼pþ1
xðnÞxðn� pÞ

PN0

n¼pþ1
x2ðnÞ PN0

n¼pþ1
x2ðn� pÞ

" #1=2
ð3:24Þ

The variance is

varfrn2ðpÞg ¼ E½r2n2ðpÞ� � E2½rn2ðpÞ� ð3:25Þ
and it is not easily evaluated in the general case because of the nonlinear
functions involved. However, a linearization method, based on the first
derivatives of Taylor expansions, can be applied [1]. For uncorrelated
pairs in equation (3.24), we obtain

varfrn2ðpÞg �
½1� r2nðpÞ�2
N0 � p

ð3:26Þ

rnðpÞ ¼
E½xðnÞxðn� pÞ�

½E½x2ðnÞ�E½x2ðn� pÞ��1=2 ð3:27Þ

is the theoretical normalized ACF.
Thus, the variance also approaches zero as the number of samples

approaches infinity, and rn2ðpÞ is a consistent estimate.
The calculation of the estimator according to (3.24) is a demanding

operation for large N0. In a number of applications, like radiocommunica-
tions, the correlation calculation may be the first processing operation, and



it has to be carried out on high-speed data. Therefore it is useful to have less
costly methods available. Such methods exist for Gaussian random signals,
and they can be applied as well to many other signals.

The following property is valid for a zero mean Gaussian signal xðnÞ:
rðpÞ ¼ �

2
ryxðpÞryxð0Þ ð3:28Þ

where

yðnÞ ¼ signfxðnÞg; yðnÞ ¼ �1
Hence the ACF estimate is

r3ðpÞ ¼ c
1

N0 � p

XN0

n¼pþ1
xðn� pÞsignfxðnÞg ð3:29Þ

where

c ¼ �
2
ryxð0Þ ¼

�

2N0

XN0

n¼1
jxðnÞj

In normalized form, we have

rn3ðpÞ ¼
N0

N0 � p

PN0

n¼pþ1
xðn� pÞsignfxðnÞg

PN0

n¼1
jxðnÞj

ð3:29aÞ

A multiplication-free estimate is obtained [2], which is sometimes called
the hybrid sign correlation or relay correlation. For uncorrelated pairs and p
small with respect to N0, the variance is approximately [3]

var frn3ðpÞg �
1

N0

�

2
� 2rnðpÞArcsin½rnðpÞ� þ

�

2
r2nðpÞ � 2r2nðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2nðpÞ

q� 	
ð3:30Þ

This estimator is also consistent.
The simplification process can be carried one step further, through the

polarity coincidence technique, which relies on the following property of
zero mean Gaussian signals:

rðpÞ ¼ rð0Þ sin �

2
E½signfxðnÞxðn� 1Þg�

h i
ð3:31Þ

The property reflects the fact that a Gaussian function is determined by its
zero crossings, except for a constant factor. Hence we have the simple
estimate



rn4ðpÞ ¼ sin
�

2

1

N0 � p

XN0

n¼pþ1
signfxðnÞxðn� pÞg

 !
ð3:32Þ

which is called the sign or polarity coincidence correlator. Its variance can
be approximated for N0 large by [4]

varfrn4ðpÞg �
1

N0

�2

4
½1� r2nðpÞ� 1�

2

�
Arcsin rðpÞ

� �2
" #

ð3:33Þ

In a Gaussian context, a more precise estimator is based on the mean of
the absolute differences. Consider the sequence

zpðnÞ ¼ xðnÞ � xðn� pÞ ð3:34Þ
Its variance is

E½z2pðnÞ� ¼ 2½rð0Þ � rðpÞ� ¼ 2rð0Þ 1� rðpÞ
rð0Þ

� 	
ð3:35Þ

and,

rðpÞ
rð0Þ ¼ 1� 1

2

E½z2pðnÞ
r0

ð3:36Þ

Using the Gaussian assumption and equation (3.28), an estimator is
obtained as

rn5ðpÞ ¼ 1� 1

2

PN0

n¼p
jxðnÞ � xðn� pÞj

PN0

n¼p
ðjxðnÞj þ jxðn� pÞjÞ

���������

���������

2

ð3:37Þ

The variances of the three normalized estimators rn2, rn3, and rn4 are
shown in Figure 3.1 versus the theoretical autocorrelation (AC) rðpÞ.
Clearly the lower computational cost of the hybrid sign and polarity coin-
cidence correlators is paid for by a lower accuracy. As concerns the estima-
tor rn5, it has the smallest variance and is closer to the theory [6].

The performance evaluation of the estimators has been carried out under
the assumption of uncorrelated sample pairs, which is no longer valid when
the estimate is extracted on the basis of a single realization of a correlated
process, i.e., a single data record. The evaluation can be carried out by
considering the correlation between pairs of samples; it shows a degradation
in performance [5].

For example, if the sequence xðnÞ is a bandlimited noise with bandwidth
B, the following bound can be derived for a large number of data N0 [7]:



varfr2ðpÞg 4
r2ð0Þ

BðN0 � pÞ ð3:38Þ

The worst case occurs when the bandwidth B is half the sampling fre-
quency; then xðnÞ is a white noise, and the data are independent, which leads
to

varfr2ðpÞg 4
2r2ð0Þ
N0 � p

ð3:39Þ

This bound is compatible with estimation (3.26). Anyway the estimator for
correlated data is still consistent for fixed p.

Furthermore, the Gaussian hypothesis is also needed for the hybrid sign
and polarity coincidence estimators. So, these estimators have to be used
with care in practice. An example of performance comparison is presented in
Figure 3.2 for a speech sentence of 1.25 s corresponding to N0 ¼ 10,000
samples.

In spite of noticeable differences between conventional and polarity coin-
cidence estimators for small AC values, the general shape of the function is
the same for both.

FIG. 3.1 Standard deviation of estimators versus theoretical autocorrelation for

large number of data N.



Concerning correlated data, an important aspect of simplified correlators
applied to real-life data is that they may attenuate or even cancel small
useful components. Therefore, if small critical components in the signal
have to be kept, the correlation operation accuracy in equipment must be
determined to ensure that they are kept. Otherwise, reduced word lengths,
such as 8 bits or 4 bits or even less, can be employed.

The first estimator introduced, r1ðpÞ, is just a weighted version of r2ðpÞ;
hence its variance is

varfr1ðpÞg ¼ var
N0 � p

N0

r2ðpÞ
� �

¼ N0 � p

N0

� �2

varfr2ðpÞg ð3:40Þ

The estimator r1ðpÞ is biased, but it has a smaller variance than r2ðpÞ. It is
widely used in practice.

The above estimation techniques can be expanded to complex signals,
using definition (3.20). For example, the hybrid complex estimator, the
counterpart of r3ðpÞ in (3.29), is defined by

r3cðpÞ ¼
�

2
�rryxcð0ÞryxcðpÞ ð3:41Þ

with

ryxcðpÞ ¼
1

N

X4
m¼1

e�jðm�1Þ�=2
X
Im

xðnÞ

where the summation domain itself is defined by

FIG. 3.2 Correlation function estimation for a speech sentence.



Im ¼
1 4 n 4 N0 � p

ðm� 1Þ�=2 4 Arg½xðn� pÞ� 4 m
�

2

(

The sign function has been replaced by a phase discretization operator that
uses the signs of the real components. This computationally efficient esti-
mator is accurate for the complex Gaussian stationary processes [8].

So far, stationarity has been assumed. However, when the signal is just
short-term stationary, the estimation has to be carried out on a compatible
short-time window. An updated estimation is obtained every time if the
window slides on the time axis; it is a sliding window technique, in which
the oldest datum is discarded as a new datum enters the summation.

An alternative, more convenient, and widely used approach is recursive
estimation.

3.3. RECURSIVE ESTIMATION

The time window estimation, according to (3.21) or (3.23), is a finite impulse
response (FIR) filtering, which can be approximated by an infinite impulse
response (IIR) filtering method. The simplest IIR filter is the first-order low-
pass section, defined by

yðnÞ ¼ xðnÞ þ byðn� 1Þ; 0 < b < 1 ð3:42Þ
Before investigating the properties of the recursive estimator, let us con-

sider the simple case where the input sequence xðnÞ is the sum of a constant
m and a zeor mean white noise eðnÞ with power�2e . Furthermore, if yðnÞ ¼ 0
for n < 0, then

yðnÞ ¼ m
1� bnþ1

1� b
þ
Xn
i¼0

bieðn� iÞ ð3:43Þ

Taking the expectation gives

E½ yðnÞ� ¼ m
1� bnþ1

1� b
ð3:44Þ

Therefore, an estimation of the input mean m is provided by the product
ð1� bÞyðnÞ, that is by the first-order section with z-transfer function:

HðzÞ ¼ 1� b

1� bz�1
ð3:45Þ

The noise power �20 at the output of such a filter is

�20 ¼ �2e
1� b

1þ b
ð3:46Þ



Consequently, the input noise is all the more attenuated than b is close to
unity. Taking b ¼ 1� �, 0 < �� 1 yields

�20 � �2e
�

2
ð3:47Þ

The diagram of the recursive estimator is shown in Figure 3.3. The corre-
sponding recursive equation is

MðnÞ ¼ ð1� �ÞMðn� 1Þ þ �xðnÞ ð3:48Þ
According to equation (3.44) the estimation is biased and the duration

needed to reach a good estimation is inversely proportional to �. In digital
filter theory, a time constant � can be defined by

e�1=� ¼ b ð3:49Þ
which for b close to 1, leads to

� � 1

1� b
¼ 1

�
ð3:50Þ

In order to relate recursive and window estimations, we define an equiva-
lence. The FIR estimator

yðnÞ ¼ 1

N0

XN0�1

i¼0
xðn� iÞ ð3:51Þ

which is unbiased, yields the output noise power

ð� 00Þ2 ¼
�2e
N0

ð3:52Þ

Comparing with (3.47), we get

2� � N0 ð3:53Þ

FIG. 3.3 Recursive estimator.



The recursive estimator can be considered equivalent to a window esti-
mator whose width is twice the time constant.

For example, consider the recursive estimation of the power of a white
Gaussian signal xðnÞ, the true value being �2x. The input to the recursive
estimator, x2ðnÞ, can be viewed as the sum of the constant m ¼ �2x and a zero
mean white noise, with variance

�2e ¼ e½x4ðnÞ� � �4x ¼ 2�4x ð3:54Þ
The standard deviation of the output, �P, is

�P ¼ �2x
ffiffiffi
�
p

ð3:55Þ
and the relative error on the estimated power is

ffiffiffi
�
p

.
Recursive estimation techniques can be applied to the ACF and to cross-

correlation coefficients; a typical example is the lattice adaptive filter.
Once the ACF has been estimated, it can be used for analysis or any

further processing.

3.4. THE AUTOCORRELATION MATRIX

Often in signal analysis or adaptive filtering, the ACF appears under the
form of a square matrix, called the autocorrelation matrix.

The N �N AC matrix Rxx of the real sequence xðnÞ is defined by

Rxx ¼
rð0Þ rð1Þ � � � rðN � 1Þ
rð1Þ rð0Þ � � � rðN � 2Þ
..
. ..

. ..
.

rðN � 1Þ rðN � 2Þ � � � rð0Þ

2
6664

3
7775 ð3:56Þ

It is a symmetric matrix and Rt
xx ¼ Rxx. For complex data the definition is

slightly different:

Rxx

rð0Þ rð1Þ � � � rðN � 1Þ
rð�1Þ rð0Þ � � � rðN � 2Þ

..

. ..
. ..

.

r½�ðN � 1Þ� r½�ðN � 2Þ� � � � rð0Þ

2
6664

3
7775 ð3:57Þ

Since rð�pÞ is the complex conjugate of rðpÞ, the matrix is Hermitian; that is,

R	xx ¼ Rxx ð3:58Þ
where ‘‘*’’ denotes transposition and complex conjugation.

To illustrate how naturally the AC matrix appears, let us consider an FIR
filtering operating with N coefficients:

...................

......................



yðnÞ ¼
XN�1
i¼0

hixðn� iÞ ð3:59Þ

In vector notation (3.58) is

yðnÞ ¼ HtXðnÞ ¼ XtðnÞH
The output power is

E½ y2ðnÞ� ¼ E½HtXðnÞXtðnÞH� ¼ HtRxxH ð3:60Þ
The inequality

HtRxxH 5 0 ð3:61Þ
is valid for any coefficient vector H and characterizes positive semidefinite
or nonnegative definite matrices [9]. A matrix is positive definite if

HtRxxH > 0 ð3:62Þ
The matrix Rxx is also symmetrical about the secondary diagonal; hence

it is said to be doubly symmetric or persymmetric. Define by JN the N �N
co-identity matrix, which acts as a reversing operator on vectors and shares
a number of properties with the identity matrix IN :

IN ¼

1 0 � � � 0 0
0 1 � � � 0 0
..
. ..

. ..
. ..

.

0 0 � � � 1 0
0 0 � � � 0 1

2
66664

3
77775; JN ¼

0 0 � � � 0 1
0 0 � � � 1 0
..
. ..

. ..
. ..

.

0 1 � � � 0 0
1 0 � � � 0 0

2
66664

3
77775 ð3:63Þ

The double symmetry property is expressed by

RxxJN ¼ JNRxx ð3:64Þ
Autocorrelation matrices have an additional property with respect to

doubly symmetric matrices, namely their diagonal entries are identical;
they are said to have a Toeplitz form or, in short, to be Toeplitz. This
property is crucial and leads to drastic simplifications in some operations
and particularly the inverse calculation, needed in the normal equations
introduced in Section 1.4, for example. Examples of AC matrices can be
given for MA and AR signals. If xðnÞ is an MA signal, generated by filtering
a white noise with power �2e by an FIR filter having P < N=2 coefficients,
then Rxx is a band matrix. For P ¼ 2,

xðnÞ ¼ h0eðnÞ þ h1eðn� 1Þ ð3:65Þ
Using the results of Section 2.5 yields



RMA1 ¼ �2e

h20 þ h21 h0h1 0 � � � 0 0
h0h1 h20 þ h21 h0h1 � � � 0 0
0 h0h1 h20 þ h21 � � � 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � h20 þ h21 h0h1
0 0 0 � � � h0h1 h20 þ h21

2
66666664

3
77777775
ð3:66Þ

Similarly, for a first-order AR process, we have

xðnÞ ¼ axðn� 1Þ þ eðnÞ
The matrix takes the form

RAR1 ¼
�2e

1� a2

1 a a2 � � � aN�1

a 1 a � � � aN�2

a2 a 1 � � � aN�3

..

. ..
. ..

. ..
.

aN�1 aN�2 aN�3 � � � 1

2
666664

3
777775 ð3:67Þ

The inverse of the AR signal AC matrix is a band matrix because the inverse
of the filter used to generate the AR sequence is an FIR filter. In fact, except
for edge effects, it is an MA matrix.

Adjusting the first entry gives for the first-order case

R�1AR1 ¼
1

�2e

1 �a 0 � � � 0
�a 1þ a2 �a � � � 0
0 �a 1þ a2 � � � 0

..

. ..
. ..

.
1þ a2 �a

0 0 0 �a 1

2
66664

3
77775 ð3:68Þ

This is an important result, which is extended and exploited in subsequent
sections.

Since AC matrices often appear in linear systems, it is useful, before
further exploring their properties, to briefly review linear systems.

3.5. SOLVING LINEAR EQUATION SYSTEMS

Let us consider a set of N0 linear equations represented by the matrix
equation

MH ¼ Y ð3:69Þ
The column vector Y has N0 elements. The unknown column vector H has
N elements, and the matrix M has N0 rows and N columns. Depending on

- - - - - - - -



the respective values of N0 and N, three cases can be distinguished. First,
when N0 ¼ N, the system is exactly determined and the solution is

H ¼M�1Y ð3:70Þ
Second, when N0 > N, the system is overdetermined because there are more
equations than unknowns. A typical example is the filtering of a set of N0

data xðnÞ by an FIR filter whose N coefficients must be calculated so as to
make the output set equal to the given vector Y :

xð0Þ 0 � � � 0
xð1Þ xð0Þ � � � 0

..

. ..
. ..

.

xðN � 1Þ xðN � 2Þ � � � xð0Þ
..
. ..

. ..
.

xðN0 � 1Þ xðN0 � 2Þ � � � xðN0 �NÞ

2
666666664

3
777777775

h0
h1
..
.

hN�1

2
6664

3
7775 ¼

yð0Þ
yð1Þ
..
.

yðN0 � 1Þ

2
6664

3
7775

ð3:71Þ
A solution in the LS sense is found by minimizing the scalar J:

J ¼ ðY �MHÞtðY �MHÞ
Through derivation with respect to the entries of the vector H, the solution
is found to be

H ¼ ðMtMÞ�1MtY ð3:72Þ
Third, when N0 < N, the system is underdetermined and there are more
unknowns than equations. The solution is then

H ¼MtðMMtÞ�1Y ð3:73Þ
The solution of an exactly determined system must be found in all cases.

The matrix ðMtMÞ is symmetrical, and standard algorithms exist to solve
equation systems based on such matrices, which are assumed positive defi-
nite. The Cholesky method uses a triangular factorization of the matrix and
needs about N3=3 multiplications; the subroutine is given in Annex 3.1.

Iterative techniques can also be used to solve equation (3.69). The matrix
M can be decomposed as

M ¼ Dþ E

where D is a diagonal matrix and E is a matrix with zeros on the main
diagonal. Now

H ¼ D�1Y �D�1EH

and an iterative procedure is as follows:



H0 ¼ D�1Y

H1 ¼ D�1Y �D�1EH0

Hnþ1 ¼ D�1Y �D�1EHn

ð3:74Þ

The decrement after n iterations is

Hnþ1 �Hn ¼ �ðD�1EÞnþ1D�1Y
The procedure may be stopped when the norm of the vector Hnþ1 �Hn falls
below a specified value.

3.6. EIGENVALUE DECOMPOSITION

The eigenvalue decomposition of an AC matrix leads to the extraction of the
basic components of the corresponding signal [10–13]—hence its signifi-
cance.

The eigenvalues 	i and eigenvectors Vi of the N �N matrix R are defined
by

RVi ¼ 	iVi; 0 4 i 4 N � 1 ð3:75Þ
If the matrix R now denotes the AC matrix Rxx, it is symmetric for real
signals and Hermitian for complex signals because

�		V	i Vi ¼ ðV	i RViÞ	 ¼ 	V	i Vi ð3:76Þ
The eigenvalues are the real solutions of the characteristic equation

detðR� 	INÞ ¼ 0 ð3:77Þ
The identity matrix IN has þ1 as single eigenvalue with multiplicity N, and
the co-identity matrix JN has �1.

The relations between the zeros and coefficients of polynomials yield the
following important results:

detR ¼
YN�1
i¼0

	i ð3:78Þ

Nrð0Þ ¼ N�2x ¼
XN�1
i¼0

	i ð3:79Þ

That is, if the determinant of the matrix is nonzero, each eigenvalue is
nonzero and the sum of the eigenvalues is equal to N times the signal
power. Furthermore, since the AC matrix is nonnegative definite, all the
eigenvalues are nonnegative:

..................................



	i 5 0; 0 4 i 4 N � 1 ð3:80Þ
Once the eigenvalues have been found, the eigenvectors are obtained by

solving equations (3.68). The eigenvectors associated with different eigen-
values of a symmetric matrix are orthogonal because of the equality

Vt
i Vj ¼

1

	i
Vt

i RVj ¼
	j
	i
Vt

i Vj ð3:81Þ

When all the eigenvalues are distinct, the eigenvectors make an orthonormal
base and the matrix can be diagonalized as

R ¼Mt�M ð3:82Þ
with M the N �N orthonormal modal matrix made of the N eigenvectors,
and � the diagonal matrix of the eigenvalues; when they have a unit norm,
the eigenvectors are denoted by Ui and:

Mt ¼ ½U0;U1; . . .UN�1�; Mt ¼M�1

� ¼ diagð	0; 	1; . . . ; 	N�1Þ
ð3:83Þ

For example, take a periodic signal xðnÞ with period N. The AC function is
also periodic with the same period and is symmetrical. The AC matrix is a
circulant matrix, in which each row is derived from the preceding one by
shifting. Now, if jSðkÞj2 denotes the signal power spectrum and TN the
discrete Fourier transform (DFT) matrix of order N:

TN ¼
1 1 � � � 1
1 w � � � wN�1

..

. ..
. ..

.

1 wN�1 � � � wðN�1ÞðN
�1Þ

2
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3
775; w ¼ e�j2�=N ð3:84Þ

it can be directly verified that

RTN ¼ TNdiagðjSðkÞj2Þ ð3:85Þ
Due to the periodicity assumed for the AC function, the same is also true for
the discrete cosine Fourier transform matrix, which is real and defined by

TcN ¼ 1
2
½TN þ T	N � ð3:86Þ

Thus

RTcN ¼ TcNdiagðjSðkÞj2Þ ð3:87Þ
and the N column vectors of TcN are the N orthogonal eigenvectors of the
matrix R. Then



R ¼ 1

N
TcNdiagðjSðkÞj2ÞTcN ð3:88Þ

So, it appears that the eigenvalues of the AC matrix of a periodic signal are
the power spectrum; and the eigenvector matrix is the discrete cosine
Fourier transform matrix.

However, the diagonalization of an AC matrix is not always unique. Let
us assume that the N cisoids in the signal xðnÞ have frequencies !i which are
no longer multiples of 2�=N:

xðnÞ ¼
XN
i¼1

Sie
jn!i ð3:89Þ

The ACF is

rðpÞ ¼
XN
i¼1
jSij2e jp!i ð3:90Þ

and the AC matrix can be expressed as

R ¼M	diagðjSij2ÞM ð3:91Þ
with

M ¼
1 e j!1 � � � e jðN�1Þ!1

1 e j!2 � � � e jðN�1Þ!2

..

. ..
. ..

.

1 e j!N � � � e jðN�1Þ!N

2
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But the column vectors in M	 are neither orthogonal nor eigenvectors of R,
as can be verified. If there are K cisoids with K < N, M becomes a K �N
rectangular matrix and factorization (3.91) is still valid. But then the signal
space dimension is restricted to the number of cisoids K , and N � K eigen-
values are zero.

The white noise is a particularly simple case because R ¼ �2e IN and all the
eigenvalues are equal. If that noise is added to the useful signal, the matrix
�2e IN is added to the AC matrix and all the eigenvalues are increased by �2e .

Example

Consider the sinusoid in white noise

xðnÞ ¼
ffiffiffi
2
p

sinðn!Þ þ eðnÞ ð3:92Þ
The AC function is

rðpÞ ¼ cosðp!Þ þ �2e �ðpÞ ð3:93Þ



The eigenvalues of the 3� 3 AC matrix are

R ¼
rð0Þ rð1Þ rð2Þ
rð1Þ rð0Þ rð1Þ
rð2Þ rð1Þ rð0Þ

2
4

3
5; 	1 ¼ �2e þ 1� cos 2!

	2 ¼ �2e þ 2þ cos 2!
	3 ¼ �2e

and the unit norm eigenvectors are

U1 ¼
1ffiffiffi
2
p

1
0
�1

2
4

3
5; U2 ¼

1

ð1þ 2 cos2 !Þ1=2
cos!
1

cos!

2
4

3
5; ð3:94Þ

U3 ¼
1

ð2þ 4 cos2 !Þ1=2
1

�2 cos!
1

2
4

3
5

The variations of the eigenvalues with frequency are shown in Figure 3.4.
Once a set of N orthogonal eigenvectors has been obtained, any signal

vector XðnÞ can be expressed as a linear combination of these vectors, which,
when scaled to have a unit norm, are denoted by Ui:

XðnÞ ¼
XN�1
i¼0

�iðnÞUi ð3:95Þ

FIG. 3.4 Variation of eigenvalues with frequency.



The coefficients aiðnÞ are the projection of XðnÞ on the vectors Ui. Another
expression of the AC matrix can then be obtained, assuming real signals:

R ¼ E½XðnÞXtðnÞ� ¼
XN�1
i¼0

E½�2i ðnÞ�UiU
t
i ð3:96Þ

The definition of the eigenvalues yields

E½�2i ðnÞ� ¼ 	i ð3:97Þ
Equation (3.97) provides an important interpretation of the eigenvalues:
they can be considered as the powers of the projections of the signal vectors
on the eigenvectors. The subspace spanned by the eigenvectors correspond-
ing to nonzero eigenvalues is called the signal subspace.

The eigenvalue or spectral decomposition is derived from (3.96):

R ¼
XN�1
i¼0

	iUiU
t
i ð3:98Þ

which is just a more explicit form of diagonalization (3.82). It is a funda-
mental result which shows the actual constitution of the signal and is
exploited in subsequent sections. For signals in noise, expression (3.98)
can serve to separate signal subspace and noise subspace.

Among the eigenparameters the minimum and maximum eigenvalues
have special properties.

3.7. EIGENFILTERS

The maximization of the signal-to-noise ratio (SNR) through FIR filtering
leads to an eigenvalue problem [14].

The output power of an FIR filter is given in terms of the input AC
matrix and filter coefficients by equation (3.60):

E½ y2ðnÞ� ¼ HtRH

If a white noise with power �2e is added to the input signal, the output SNR
is

SNR ¼ HtRH

HtH�2e
ð3:99Þ

It is maximized by the coefficient vector H, which maximizes HtRH, subject
to the constraint HtH ¼ 1. Using a Lagrange multiplier, one has to max-
imize HtRH þ 	ð1�HtHÞ with respect to H, and the solution is RH ¼ 	H.
Therefore the optimum filter is the signal AC matrix eigenvector associated
with the largest eigenvalue, and is called the maximum eigenfilter. Similarly,



the minimum eigenfilter gives the smallest output signal power. These filters
are characterized by their zeros in the complex plane.

The investigation of the eigenfilter properties begins with the case of
distinct maximum or minimum eigenvalues; then it will be shown that the
filter zeros are on the unit circle.

Let us assume that the smallest eigenvalue 	min is zero. The correspond-
ing eigenvector Umin is orthogonal to the other eigenvectors, which span the
signal space. According to the harmonic decomposition of Section 3.11, the
matrix R is the AC matrix of a set of N � 1 cisoids, and the signal space is
also spanned by N � 1 vectors Vi:

Vi ¼
1

e j!i

..

.

e jðN�1Þ!i

2
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3
775; 1 4 i 4 N � 1

Therefore Umin is orthogonal to all the vectors Vi, and the N � 1 zeros of the
corresponding filter are e j!i ð1 4 i 4 N � 1Þ, and they are on the unit circle
in the complex plane.

Now, if 	min is not zero, the above development applies to the matrix
ðR� 	minINÞ, which has the same eigenvectors as R, as can be readily ver-
ified.

For the maximum eigenvector Umax corresponding to 	max, it is sufficient
to consider the matrix ð	maxIN � RÞ, which has all the characteristics of an
AC matrix. Thus the maximum eigenfilter also has its zeros on the unit circle
in the z-plane as soon as 	max is distinct.

The above properties can be checked for the example in the preceding
section, which shows, in particular, that the zeros for Umin are e� j!.

Next, if the minimum (or maximum) eigenvalue is multiple, for example
N � K , it means that the dimension of the signal space is K and that of the
noise space is N � K . The minimum eigenfilters, which are orthogonal to the
signal space, have K zeros on the unit circle, but the remaining N � 1� K
zeros may or may not be on the unit circle.

We give an example for two simple cases of sinusoidal signals in noise.
The AC matrix of a single cisoid, with power S2, in noise is

R ¼
S2 þ �2e S2e j! � � � S2e jðN�1Þ!

S2e�j! S2 þ �2e � � � S2e jðN�2Þ!

..

. ..
. . .

. ..
.

S2e�jðN�1Þ! S2e�jðN�2Þ! � � � S2 þ �2e

2
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3
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The eigenvalues are



	1 ¼ NS2 þ �2e ; 	i ¼ �2e ; 2 4 i 4 N

and the maximum eigenfilter is

Umax ¼
1ffiffiffiffi
N
p

1
e�j!

..

.

e�jðN�1Þ!

2
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3
775 ð3:101Þ

The corresponding filter z-transfer function is

HMðzÞ ¼
1ffiffiffiffi
N
p zN � e jN!

z� e j! e�jðN�1Þ! ð3:102Þ

and the N � 1 roots

zi ¼ e jð!þ2�i=NÞ; 1 4 i 4 N � 1

are spread on the unit circle, except at the frequency !. HMðzÞ is the con-
ventional matched filter for a sine wave in noise.

Because the minimum eigenvalue is multiple, the unnormalized eigenvec-
tor Vmin is

Vmin ¼
�PN

i¼2
vie

jði�1Þ!

v2
..
.

vN

2
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3
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where N � 1 arbitrary scalars vi are introduced.
Obviously there are N � 1 linearly independent minimum eigenvectors

which span the noise subspace. The associated filter z-transfer function is

HmðzÞ ¼ ðz� e j!Þ
XN
i¼2

vi½zi�2 þ zi�3e j! þ � � � þ e jði�2Þ!� ð3:104Þ

One zero is at the cisoid frequency on the unit circle; the others may or may
not be on that circle.

The case of two cisoids, with powers S2
1 and S2

2 in noise leads to more
complicated calculations. The correlation matrix

R ¼
S2
1 þ S2

2 þ �2e S2
1e

j!1 þ S2
2e

j!2 ..
.

S2
1e

jðN�1Þ!1 þ S2
2e

jðN�1Þ!2

S2
1e
�j!1 þ S2

2e
�j!2 S2

1 þ S2
2 þ �2e ..

.
S2
1e

jðN�2Þ!1 þ S2
2e

jðN�2Þ!2

..

. ..
. . .

. ..
.

S2
1e
�jðN�1Þ!1 þ S2

2e
�jðN�1Þ!2 S2

1e
�jðN�2Þ!1 þ S2

2e
�jðN�2Þ!2 � � � S2

1 þ S2
2 þ �2e

2
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has eigenvalues [15]



	1 ¼ �2e þ
N

2
½S2

1 þ S2
2 � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

4
ðS2

1 � S2
2Þ2 þN2S2

1S
2
2F

2ð!1 � !2Þ
r

	2 ¼ �2e þ
N

2
½S2

1 þ S2
1 � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

4
ðS2

1 � S2
2Þ2 þN2S2

1S
2
2F

2ð!1 � !2Þ
r

	i ¼ �2e ; 3 4 i 4 N ð3:105Þ
Fð!Þ is the familiar function

Fð!Þ ¼ sinðN!=2Þ
N sinð!=2Þ ð3:106Þ

These results, when applied to a sinusoid amplitude A, xðnÞ ¼ A sinðn!Þ,
yield

	1;2 ¼ �2e þ
A2

4
N � sinðN!Þ

sin!

� �
ð3:107Þ

The extent to which 	1 and 	2 reflect the powers of the two cisoids
depends on their respective frequencies, through the function Fð!Þ, which
corresponds to a length-N rectangular time wnidow. For N large and fre-
quencies far apart enough,

Fð!1 � !2Þ � 0; 	1 ¼ NS2
1 þ �2e ; 	2 ¼ NS2

2 þ �2e ð3:108Þ
and the largest eigenvalues represent the cisoid powers.

The z-transfer function of the minimum eigenfilters is

HmðzÞ ¼ ðz� e j!1 Þðz� e j!2 ÞPðzÞ ð3:109Þ
with PðzÞ a polynomial of degree less than N � 2. Two zeros are on the unit
circle at the cisoid frequencies; the other zeros may or may not be on that
circle.

To conclude: for a given signal the maximum eigenfilter indicates where
the power is in the frequency domain, and the zeros of the minimum eigen-
value filter give the exact frequencies associated with the harmonic decom-
position of that signal.

Together, the maximum and minimum eigenfilters constitute a powerful
tool for signal analysis. However, in practice, the appeal of that technique is
somewhat moderated by the computation load needed to extract the eigen-
parameters, which becomes enormous for large matrix dimensions. Savings
can be obtained by careful exploitation of the properties of AC matrices
[16]. For example, the persymmetry relation (3.64) yields, for any eigenvec-
tor Vi,



JNRVi ¼ 	iJNVi ¼ RJNVi

Now, if 	i is a distinct eigenvalue, the vectors Vi and JNVi are colinear,
which means that Vi is also an eigenvector of the co-identity matrix JN ,
whose eigenvalues are �1. Hence the relation

JNVi ¼ �Vi ð3:110Þ
holds.

The corresponding property of the AC matrix can be stated as follows:
the eigenvectors associated with distinct eigenvalues are either symmetric or
skew symmetric; that is, they verify (3.110).

Iterative techniques help manage the computation load. Before present-
ing such techniques, we give additional properties of extremal eigenvalues.

3.8. PROPERTIES OF EXTREMAL EIGENVALUES

In the design process of an adaptive filter it is sometimes enough to have
simple evaluations of the extremal eigenvalues 	max and 	min. A loose bound
for the maximum eigenvalue of an AC matrix, derived from (3.79), is

	max 4 N�2x ð3:111Þ
with �2x the signal power and N �N the matrix dimension. A tighter bound,
valid for any square matrix R with entries rij , is known from matrix theory
to be

	max 4 max
j

XN�1
i¼0
jrijj ð3:112Þ

or

	max 4 max
i

XN�1
j¼0
jrijj

To prove the inequality, single out the entry with largest magnitude in the
eigenvector Vmax and bound the elements of the vector RVmax.

In matrix theory, 	max is called the spectral radius. It serves as a matrix
norm as well as the right side of (3.112).

The Rayleigh quotient of R is defined by

RaðVÞ ¼
VtRV

VtV
; V 6¼ 0 ð3:113Þ

As shown in the preceding section,



	max ¼ max
V

RaðVÞ ð3:114Þ

The diagonalization of R yields

R ¼M�1diagð	iÞM ð3:115Þ
It is readily verified that

R�1 ¼M�1diag
1

	i

� �
M ð3:116Þ

Therefore 	�1min is the maximum eigenvalue of R�1. The condition number of
R is defined by

condðRÞ ¼ kRk kR�1k ð3:117Þ
If the matrix norm kRk is 	max, then

condðRÞ ¼ 	max

	min

ð3:118Þ

The condition number is a matrix parameter which impacts the accuracy
of the operations, particularly inversion [9]. It is crucial in solving linear
systems, and it is directly related to some stability conditions in LS adaptive
filters.

In adaptive filters, sequences of AC matrices with increasing dimensions
are sometimes encountered, and it is useful to know how the extremal
eigenvalues vary with matrix dimensions for a given signal. Let us denote
by Umax;N the maximum unit-norm eigenvector of the N �N AC matrix
RN . The maximum eigenvalue is

	max;N ¼ Ut
max;NRNUmax;N ð3:119Þ

Now, because of the structure of the ðN þ 1Þ � ðN þ 1Þ AC matrix, the
following equation is valid:

	max;N ¼ ½Ut
max;N; 0�

�

rð0Þ rð1Þ � � � rðN � 1Þ rðNÞ
rð1Þ rð0Þ � � � rðN � 2Þ rðN � 1Þ
..
. ..

.
RN

..

. ..
.

rðN � 1Þ rðN � 2Þ � � � rð0Þ rð1Þ

rðNÞ rðN � 1Þ � � � rð1Þ rð0Þ

2
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3
77777775

Umax;N

0

2
4

3
5 ð3:120Þ

At the dimension N þ 1, 	max;Nþ1 is defined as the maximum of the
product Ut

Nþ1RNþ1UNþ1 for any unit-norm vector UNþ1. The vector
obtained by appending a zero to Umax;N is such a vector, and the following
inequality is proven:

............................................................

...............

..........



	max;N 4 	max;Nþ1 ð3:121Þ
Also, considering the minimization procedure, we have

	min;N 5 	min;Nþ1 ð3:122Þ
When N approaches infinity, 	max and 	min approach the maximum and the
minimum, respectively, of the signal power spectrum, as shown in the next
section.

3.9. SIGNAL SPECTRUM AND EIGENVALUES

According to relation (3.79), the eigenvalue extraction can be viewed as an
energy decomposition of the signal. In order to make comparisons with the
spectrum, we choose the following definition for the Fourier transform Yð f Þ
of the signal xðnÞ:

Yð f Þ ¼ lim
n!1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1
p

XN
�N

xðnÞe�j2�fn ð3:123Þ

The spectrum is the square of the modulus of Yð f Þ:
Sð f Þ ¼ Yð f Þ �YYð f Þ ¼ jYð f Þj2 ð3:124Þ

When the summations in the above definition of Sð f Þ are rearranged, the
correlation function rðpÞ shows up, and the following expression is obtained:

Sð f Þ ¼
X1

p¼�1
rðpÞe�j2�fp ð3:125Þ

Equation (3.125) is appropriate for random signals with statistics that are
known or that can be measured or estimated.

Conversely, the spectrum Sð f Þ is a periodic function whose period is the
reciprocal of the sampling frequency, and the correlation coefficients are the
coefficients of the Fourier series expansion of Sð f Þ:

rðpÞ ¼
Z 1=2

�1=2
Sð f Þe j2�pf df ð3:126Þ

In practice, signals are time limited, and often a finite-duration record of N0

data representing a single realization of the process is available. Then it is
sufficient to compute the spectrum at frequencies which are integer multiples
of 1=N0, since intermediate values can be interpolated, and the DFT with
appropriate scaling factor



YðkÞ ¼ 1ffiffiffiffiffiffi
N0

p
XN0�1

n¼0
xðnÞe�jð2�=NÞnk ð3:127Þ

is employed to complete that task. The operation is equivalent to making the
signal periodic with period N0; the corresponding AC function is also per-
iodic, with the same period, and the eigenvalues of the AC matrix are
jYðkÞj2; 0 4 k 4 N0 � 1.

Now, the N eigenvalues 	i of the N �N AC matrix RN and their asso-
ciated eigenvectors Vi are related by

	iV
	
i Vi ¼ V	i RNVi ð3:128Þ

The right side is the power of the output of the eigenfilter; it can be
expressed in terms of the frequency response by

V	i RNVi ¼
Z 1=2

�1=2
jHið f Þj2Sð f Þdf ð3:129Þ

The left side of (3.115) can be treated similarly, which leads to

min
�1=24 f4 1=2

Sð f Þ 4 	i 4 max
�1=24 f41=2

Sð f Þ ð3:130Þ

It is also interesting to relate the eigenvalues of the order N AC matrix to
the DFT of a set of N data, which is easily obtained and familiar to practi-
tioners. If we denote the set of N data by the vector XN , the DFT, expressed
by the matrix TN (3.84), yields the vector YN :

YN ¼
1ffiffiffiffi
N
p TNXN

The energy conservation relation is verified by taking the Euclidean norm of
the complex vector YN :

kYNk2 ¼ Y	NYN ¼ X	NXN

Or, explicitly, we can write

XN�1
k¼0
jYðkÞj2 ¼

XN�1
n¼0
jxðnÞj2

The covariance matrix of the DFT output is

E½YNY
	
N � ¼

1

N
TNRTN ð3:131Þ

The entries of the main diagonal are

E½jYðkÞj2� ¼ 1

N
V	kRNVk ð3:132Þ



with

V	k ¼ ½1; e j2�=N; . . . ; e jð2�=NÞðN�1Þ�
From the properties of the eigenvalues, the following inequalities are
derived:

	max 5 max
04 f4N�1

E½jYðkÞj2�

	min 5 max
04 k4N�1

E½jYðkÞj2� ð3:133Þ

These relations state that the DFT is a filtering operation and the output
signal power is bounded by the extreme eigenvalues.

When the data vector length N approaches infinity, the DFT provides the
exact spectrum, and, due to relations (3.130) and (3.133), the extreme eigen-
values 	min and 	max approach the extreme values of the signal spectrum
[17].

3.10. ITERATIVE DETERMINATION OF EXTREMAL
EIGENPARAMETERS

The eigenvalues and eigenvectors of an AC matrix can be computed by
classical algebraic methods [9]. However, the computation load can be enor-
mous, and it is useful to have simple and efficient methods to derive the
extremal eigenparameters, particularly if real-time operation is envisaged.

A first, gradient-type approach is the unit-norm constrained algorithm
[18]. It is based on minimization or maximization of the output power of a
filter with coefficient vector HðnÞ, as shown in Figure 3.5, using the eigen-
filter properties presented in Section 3.7. The output of the unit-norm filter
is

eðnÞ ¼ HtðnÞXðnÞ
½HtðnÞHðnÞ�1=2 ð3:134Þ

The gradient of eðnÞ with respect to HðnÞ is the vector

reðnÞ ¼ 1

½HtðnÞHðnÞ�1=2 XðnÞ � eðnÞ HðnÞ
½HtðnÞHðnÞ�1=2

� 	
ð3:135Þ

Now, the power of the sequence eðkÞ is minimized if the coefficient vector at
time nþ 1 is taken as

Hðnþ 1Þ ¼ HðnÞ � �eðnÞreðnÞ ð3:136Þ



where �, the adaptation step size, is a positive constant. After normalization,
the unit-norm filter coefficient vector is

Hðnþ 1Þ
kHðnþ 1Þk ¼

1

kHðnþ 1Þk HðnÞ � �eðnÞ
kHðnÞk XðnÞ � eðnÞ HðnÞ

kHðnÞk
� �� 	

ð3:137Þ
with

kHðnÞk ¼ ½HtðnÞHðnÞ�1=2

In the implementation, the expression contained in the brackets is com-
puted first and the resulting coefficient vector is then normalized to unit
norm. In that way there is no roundoff error propagation. The gradient-type
approach leads to the eigenequation, as can be verified by rewriting equation
(3.136):

Hðnþ 1Þ ¼ HðnÞ � �

kHðnÞk XðnÞXtðnÞ HðnÞ
kHðnÞk � e2ðnÞ HðnÞ

kHðnÞk
� 	

ð3:138Þ

Taking the expectation of both sides, after convergence, yields

R
Hð1Þ
kHð1Þk ¼ E½e2ðnÞ� Hð1Þ

kHð1Þk ð3:139Þ

The output signal power is the minimum eigenvalue, and Hð1Þ is the
corresponding eigenvector. Changing the sign in equation (3.136) leads to
the maximum eigenvalue instead.

The step size � controls the adaptation process. Its impact is analyzed
indepth in the next chapter.

FIG. 3.5 Unit-norm constrained adaptive filter.



Faster convergence can be obtained by minimizing the conventional cost
function

JðnÞ ¼
Xn
p¼1

Wn�pe2ðpÞ; 0�W 4 1 ð3:140Þ

using a recursive LS algorithm [19]. The improvement in speed and accuracy
is paid for by a significant increase in computation load. Furthermore,
because of approximations made in the derivation, an initial guess for the
coefficient vector sufficiently close to the exact solution is needed to achieve
convergence. In contrast, a method based on the conjugate gradient techni-
que converges for any initial guess in approximatelyM steps, whereM is the
number of independent eigenvalues of the AC matrix [20].

The method assumes that the AC matrix R is known, and it begins with
an initial guess of the minimum eigenvector Hminð0Þ and with an initial
direction vector. The minimum eigenvalue is computed as
Ut

minð0ÞRUminð0Þ, and then successive approximations UminðkÞ are developed
to minimize the cost function UtRU in successive directions, which are R-
conjugates, until the desired minimum eigenvalue is found.

The FORTRAN subroutine is given in Annex 3.2.

3.11. ESTIMATION OF THE AC MATRIX

The AC matrix can be formed with the estimated values of the AC function.
The bias and variance of the estimators impact the eigenparameters. The
bias can be viewed as a modification of the signal. For example, windowing
effects, as in (3.21), smear the signal spectrum and increase the dimension of
the signal subspace, giving rise to spurious eigenvalues [21]. The effects of
the estimator variance can be investigated by considering small random
perturbations on the elements of the AC matrix. In adaptive filters using
the AC matrix, explicitly or implicitly as in fast least squares (FLS) algo-
rithms, random perturbations come from roundoff errors and can affect,
more or less independently, all the matrix entries.

Let us assume that the matrix R has all its eigenvalues distinct and is
affected by a small perturbation matrix �R. The eigenvalues and vectors are
explicit functions of the matrix elements, and their alteration can be devel-
oped in series; considering only the first term in the series, the eigenvalue
equation with unit-norm vectors is

ðRþ�RÞðUi þ�UiÞ ¼ ð	i þ�	iÞðUi þ�UiÞ; 0 4 i 4 N � 1

ð3:141Þ
Neglecting the second-order terms and premultiplying by Ut

i yields



�	i ¼ Ur
i�RUi ð3:142Þ

Due to the summing operation in the right side, the perturbation of the
eigenvalue is very small, if the error matrix elements are i.i.d. random vari-
ables.

In order to investigate the eigenvector deviation, we introduce the nor-
malized error matrix �E, associated with the diagonalization (3.82) of the
matrix R:

�E ¼ �1=2M�RMt��1=2 ð3:143Þ
We can write (3.141), without the second-order terms and taking (3.142)
into account,

ðR� 	iINÞ�Ui ¼ ðUiU
t
i � INÞ�RUi ð3:144Þ

After some algebraic manipulations, we get

�Ui ¼
XN�1
k¼0
k 6¼1

ffiffiffiffiffiffiffiffiffi
	i	k
p
	i � 	k

�Eðk; iÞUk ð3:145Þ

where the �Eðk; iÞ are the elements of the normalized error matrix.
Clearly, the deviation of the unit-norm eigenvectors Ui depends on the

spread of the eigenvalues, and large deviations can be expected to affect
eigenvectors corresponding to close eigenvalues [22].

Overall, the bias of the AC function estimator affects the AC matrix
eigenvalues, and the variance of errors on the AC matrix elements affects
the eigenvector directions.

In recursive algorithms, the following estimation appears:

RNðnÞ ¼
Xn
p¼1

Wn�pXðnÞXtðnÞ ð3:146Þ

where W is a weighting factor ð0�W 4 1Þ and XðnÞ is the vector of the N
most recent data. In explicit form, assuming Xð0Þ ¼ 0, we can write

RN ðnÞ ¼

Pn
i¼1

Wn�ix2ðiÞ Pn
i¼2

Wn�ixðiÞxði � 1Þ � � � Pn
i¼N

Wn�ixðiÞxði �N þ 1Þ
Pn
i¼2

Wn�ixði � 1ÞxðiÞ Pn
i¼2

Wn�ix2ði � 1Þ � � � ..
.

..

. ..
. . .

.Pn
i¼N

Wn�ixðiÞxði �N þ 1Þ � � � � � � Pn
i¼N

Wn�ix2ði �N þ 1Þ

2
6666666664

3
7777777775

(3.147)



The matrix is symmetric. For large n it is almost doubly symmetric. Its
expectation is

EðRNðnÞ� ¼
1

1�W

�

ð1�WnÞrð0Þ ð1�Wn�1Þrð1Þ � � � ð1�WÞn�N�1rðN � 1Þ
ð1�Wn�1rð1Þ ð1�Wn�1rð0Þ � � � ..

.

..

. ..
. . .

.

ð1�Wn�Nþ1ÞrðN � 1Þ � � � � � � ð1�Wn�Nþ1Þrð0Þ

2
66664

3
77775

ð3:148Þ
For large n

E½RNðnÞ� �
1

1�W
R ð3:149Þ

In these conditions, the eigenvectors of RNðnÞ are those of R, and the eigen-
values are multiplied by ð1�WÞ�1.
Example

xðnÞ ¼ sin n
�

4


 �
; n > 0

xðnÞ ¼ 0; n 4 0

The eigenvalues of the 8� 8 AC matrix can be found from (3.105) in which

S1 ¼ S2 ¼
1

2
; !1 � !2 ¼

�

2

so that the term in the square root vanishes. Expression (3.107) can be used
as well, with A ¼ 1:

	1 ¼ 	2 ¼ 2; 	3 ¼ � � � ¼ 	8 ¼ 0

The eigenvalues of the matrix R 0ðnÞ

R 0ðnÞ ¼ RNðnÞ
2
Pn
i¼1

Wn�ix2ðiÞ
; W ¼ 0:95

are shown in Figure 3.6 for the first values of n. They approach the theore-
tical values as n increases.



3.12. EIGEN (KL) TRANSFORM AND
APPROXIMATIONS

The projections of a signal vector X on the eigenvectors of the AC matrix
form a vector

½�� ¼MtX ð3:150Þ

where M is the N �N orthonormal modal matrix defined in Section 3.6.
The transform is unitary ðMtM ¼ INÞ and called the Karhunen-Loève (KL)
transform. It is optimal for the class of all signals having the same second-
order statistics [23]. Optimality means the efficiency of a transform in
achieving data compression: the KL transform provides the optimum sets
of data to represent signal vectors within a specified mean square error. For
example, if M out of the N eigenvalues are zero or negligible, the N element
data vectors can be represented by N �M numbers only.

To prove that property we assume that the elements of the vector X are N
centered random variables and look for the unitary transform I which best
compresses the N elements of X into MðM < NÞ elements out of the N
elements yi of the vector Y given by

Y ¼ TX

The mean square error is

FIG. 3.6 Eigenvalues of the matrix R 0ðnÞ.



MSE ¼
XN

i¼Mþ1
Eð y2i Þ

If the new vectors of T are designated by Vt
Ti then

MSE ¼
XN

i¼Mþ1
Vt

TiE½XXt�VTi

The minimization of the above expression under the contraint of unit norm
vectors, using Lagrange multipliers, leads to:

E½XXt�VTi ¼ 	iVTi; M þ 1 4 i 4 N

The minimum is obtained if the scalars 	i are the N �M smallest eigenva-
lues of the matrix E½XXt� and VTi the corresponding unit norm eigenvectors.
The minimum mean square error is

ðMSEÞmin ¼
XN

i¼Mþ1
	i

and, in fact, referring to Section 3.6, it is the amount of signal energy which
is lost in the compression process.

However, compared with other unitary transforms like the DFT, the KL
transform suffers from several drawbacks in practice. First, it has to be
adjusted when the signal second-order statistics change. Second, as seen in
the preceding sections, it requires a computation load proportional to N2.
Therefore it is helpful to find approximations which are sufficiently close for
some signal classes and amenable to easy calculation through fast algo-
rithms. Such approximations can be found for the first-ordr AR signal.

Because of the dual diagonalization relation

R�1 ¼Mt��1M ð3:151Þ
the KL transform coefficients can be found from the inverse AC matrix as
well. For the first-order unity-variance AR signal, the AC matrix is given by
(3.67). The inverse (3.68) is a tridiagonal matrix, and the elements of the KL
transform for N even are [24]

mkn ¼ cn sin !n k�N þ 1

2

� �
þ n

�

2

� 	
ð3:152Þ

where cn are normalization constants and !n are the positive roots of

tanðN!Þ ¼ � ð1� a2Þ sin!
cos!� 2aþ a2 cos!

ð3:153Þ

The eigenvalues of R are



	i ¼
1� a2

ð1� 2a cos!i þ a2Þ1=2 ; 1 4 i 4 N ð3:154Þ

Now, the elements of the KL transform of a data vector are

�k ¼
XN
n¼1

cnxðnÞ sin !n k�N þ 1

2

� �
þ n

�

2

� 	
ð3:155Þ

Due to the nonharmonicity of sine terms, a fast algorithm is unavailable in
calculating the above expressions, and N2 computations are required.
However, if R�1 is replaced by

R 0 ¼ 1

1� a2

1þ a2 �a 0 � � � 0
�a 1þ a2 �a � � � 0
0 �a 1þ a2 � � � 0

..

. ..
. ..

. . .
. �a

0 0 0 �a 1þ a2

2
666664

3
777775 ð3:156Þ

where R 0 differs by just the first and last entries in the main diagonal, the
elements of the modal matrix become

m 0kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

N þ 1

r
sin

kn�

N þ 1

� �
ð3:157Þ

and the eigenvalues are

	 0i ¼ 1� 2
a

1þ a2
cos

i�

N þ 1

� �
; i ¼ 1; . . . ;N ð3:158Þ

The elements of the corresponding transform of a data vector are

� 0k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

N þ 1

r XN
n¼1

xðnÞ sin nk�

N þ 1

� �
ð3:159Þ

This defines the discrete sine transform (DST), which can be implemented
via a fast Fourier transform (FFT) algorithm.

Finally, for an order 1 AR signal, the DST is an efficient approximation
of the KL tranform.

Another approximation is the discrete cosine transform (DCT), defined
as

� 000 ¼
ffiffiffi
2
p

N

XN
n¼1

xðnÞ



� 00k ¼
2

N

XN
n¼1

xðnÞ cos ð2n� 1Þk�
2N

; 1 4 k 4 N � 1 ð3:160Þ

It can be extended to two dimensions and is widely used in image processing
[25].

3.13. SUMMARY

Estimating the ACF is often a preliminary step in signal analysis. After
definition and basic properties have been introduced, efficient estimation
techniques have been compared.

The AC matrix is behind adaptive filtering operations, and it is essential
to be familiar with its major characteristics, which have been presented and
illustrated by several simple examples. The eigenvalue decomposition has a
profound meaning, because it leads to distinguishing between the signal or
source space and the noise space, and to extracting the basic components.
The filtering aspects help to understand and assess the main properties of
eigenvalues and vectors. The extremal eigenparameters are especially crucial
not only for the theory but also because they control adaptive filter perfor-
mance and because they can provide superresolution analysis techniques.

Perturbations of the matrix elements, caused by bias and variance in the
estimation process, affect the processing performance and particularly the
operation of FLS algorithms. It has been shown that the bias can affect the
eigenvalues and the variance causes deviations of eigenvectors. The KL
transform is an illustrative application of the theoretical results.

EXERCISES

1. Use the estimators r1ðpÞ and r2ðpÞ to calculate the ACF of the sequence

xðnÞ ¼ sin n
�

5


 �
; 0 4 n 4 15

How are the deviations from theoretical values affected by the signal
frequency?

2. For the symmetric matrix

R ¼
1:1 �0:6 0:2
�0:6 1:0 �0:4
0:2 �0:4 0:6

2
4

3
5

calculate R2 and R3 and the first element r
ð4Þ
00 of the main diagonal of

R4. Compare the ratio r
ð4Þ
00 =r

ð3Þ
00 with the largest eigenvalue 	max.



Show that the following approximation is valid for a symmetric
matrix R and N sufficiently large:

R

	max

� �Nþ1
� R

	max

� �N

This expression can be used for the numerical calculation of the extre-
mal eigenvalues.

3. For the AC matrix

R ¼
1:0 0:7 0:0
0:7 1:0 0:7
0:0 0:7 1:0

2
4

3
5

calculate its eigenvalues and eigenvectors and check the properties
given in Section 3.6. Verify the spectral decomposition (3.98).

4. Find the frequency and amplitude of the sinusoid contained in the
signal with AC matrix

R ¼
1:00 0:65 0:10
0:65 1:00 0:65
0:10 0:65 1:00

2
4

3
5

What is the noise power? Check the results with the curves in Figure
3.4.

5. Find the spectral decomposition of the matrix

R ¼
1:0 0:7 0:0 �0:7
0:7 1:0 0:7 0:0
0:0 0:7 1:0 0:7
�0:7 0:0 0:7 1:0

2
664

3
775

What is the dimension of the signal space? Calculate the projections of
the vectors

XtðnÞ ¼ cos n
�

4


 �
; cos ðn� 1Þ�

4

h i
; cos ðn� 2Þ�

4

h i
;

h
� cos ðn� 3Þ�

4

h ii
; n ¼ 0; 1; 2; 3

on the eigenvectors.
6. Consider the order 2 AR signal

xðnÞ ¼ 0:9xðn� 1Þ � 0:5xðn� 2Þ þ eðnÞ
with E½e2ðnÞ� ¼ �2e ¼ 1. Calculate its ACF and give its 3� 3 AC matrix
R3. Find the minimum eigenvalue and eigenvector. Give the corre-



sponding harmonic decomposition of the signal and compare with the
spectrum.

Calculate the 4� 4 matrix R4 and its inverse R�14 . Comment on the
results.

7. Give expressions to calculate the DST (3.159) and the DCT by a
standard DFT. Estimate the computational complexity for N ¼ 2p.

ANNEX 3.1 FORTRAN SUBROUTINE TO SOLVE A LINEAR
SYSTEM WITH SYMMETRICAL MATRIX

SUBROUTINE CHOL(N,A,X,B)
C
C SOLVES THE SYSTEM [A]X=B
C A : SYMMETRIC COVARIANCE MATRIX (N*N)
C N : SYSTEM ORDER (N > 2)
C X : SOLUTION VECTOR
C B : RIGHT SIDE VECTOR

DIMENSION A(20,20),X(1),B(1)
A(2,1)=A(2,1)/A(1,1)
A(2,2)=A(2,2)-A(2,1)*A(1,1)*A(2,1)
D040I=3,N
A(I,1)=A(I,1)/A(1,1)
D020J=2,I-1
S=A(I,J)
D010K=1,J-1

10 S=S-A(I,K)*A(K,K)*A(J,K)
20 A(I,J)=S/A(J,J)

S=A(I,I)
D030K=1,I-1

30 S=S-A(I,K)*A(K,K)*A(I,K)
40 A(I,I)=S

X(1)=B(1)
D060I=2,N
S=B(I)
D050J=1,I-1

50 S=S-A(I,J)*X(J)
60 X(I)=S

X(N)=X(N)/A(N,N)
D080K=1,N-1
I=N-K
S=X(I)/A(I,I)
D070J=I+1,N

70 S=S-A(J,I)*X(J)



80 X(I)=S
RETURN
END

C

ANNEX 3.2 FORTRAN SUBROUTINE TO COMPUTE
THE EIGENVECTOR CORRESPONDING
TO THE MINIMUM EIGENVALUE BY THE
CONJUGATE GRADIENT METHOD [20]
(Courtesy of Tapan K. Sarkar, Department of
Electrical Engineering, Syracuse University,
Syracuse, N.Y. 13244-1240)

SUBROUTINE GMEVCG(N, X, A, B, U, SML, W, M)
C
C THIS SUBROUTINE IS USED FOR ITERATIVELY FINDING THE
C EIGENVECTOR CORRESPONDING TO THE MINIMUM EIGENVALUE
C OF A GENERALIZED EIGENSYSTEM AX = UBX.
C
C A - INPUT REAL SYMMETRIC MATRIX OF ORDER N, WHOSE
C MINIMUM EIGENVALUE AND THE CORRESPONDING
C EIGENVECTOR ARE TO BE COMPUTED.
C B - INPUT REAL POSITIVE DEFINITE MATRIX OF ORDER N.
C N - INPUT ORDER OF THE MATRIX A.
C X - OUTPUT EIGENVECTOR OF LENGTH N CORRESPONDING TO
C THE MINIMUM EIGENVALUE AND ALSO PUT INPUT
C INITIAL GUESS IN IT.
C U - OUTPUT MINIMUM EIGENVALUE.
C SML - INPUT UPPER BOUND OF THE MINIMUM EIGENVALUE.
C W - INPUT ARBITRARY VECTOR OF LENGTH N.
C M - OUTPUT NUMBER OF ITERATIONS.
C

LOGICAL AAEZ, BBEZ
REAL A(N,N), B(N,N), X(N), P(5), R(5), W(N), AP(5),

* BP(5), AX(5), BX(5)
NU = 0
M = 0
U1 = 0.0

1 DO 20 I=1,N
BX(I) = 0.0
DO 10 J=1,N

BX(I) = BX(I) + B(I,J)*X(J)



10 CONTINUE
20 CONTINUE

XBX = 0.0
DO 30 I=1,N

XBX = XBX + BX(I)*X(I)
30 CONTINUE

XBX = SQRT(XBX)
DO 40 I=1,N

X(I) = X(I)/XBX
40 CONTINUE

DO 60 I=1,N
AX(I) = 0.0
DO 50 J=1,N

AX(I) = AX(I) + A(I,J)*X(J)
50 CONTINUE
60 CONTINUE

U = 0.0
DO 70 I=1,N

U = U + AX(I)*X(I)
70 CONTINUE

DO 80 I=1,N
R(I) = U*BX(I) - AX(I)
P(I) = R(I)

80 CONTINUE
2 DO 100 I=1,N

AP(I) = 0.0
DO 90 J=1,N

AP(I) = AP(I) + A(I,J)*P(J)
90 CONTINUE
100 CONTINUE

DO 120 I=1,N
BP(I) = 0.0
DO 110 J=1,N

BP(I) = BP(I) + B(I,J)*P(J)
110 CONTINUE
120 CONTINUE

PA = 0.0
PB = 0.0
PC = 0.0
PD = 0.0
DO 130 I=1,N

PA = PA + AP(I)*X(I)
PB = PB + AP(I)*P(I)
PC = PC + BP(I)*X(I)
PD = PD + BP(I)*P(I)



130 CONTINUE
AA = PB*PC - PA*PD
BB = PB - U*PD
CC = PA - U*PC
AAEZ = ABS(AA) .LE. 1.OE-75
BBEZ = ABS(BB) .LE. 1.OE-75
IF(AAEZ .AND. BBEZ) GO TO 12
IF(AAEZ) GO TO 11
DD = -BB + SQRT(BB*BB-4.O*AA*CC)
T = DD/(2.O*AA)
GO TO 15

11 T = -CC/BB
GO TO 15

12 T = 0.0
15 DO 140 I=1,N

X(I) = X(I) + T*P(I)
140 CONTINUE

DO 160 I=1,N
BX(I) = 0.0
DO 150 J=1,N

BX(I) = BX(I) + B(I,J)*X(J)
150 CONTINUE
160 CONTINUE

XBX = 0.0
DO 170 I=1,N

XBX = XBX + BX(I)*X(I)
170 CONTINUE

XBX = SQRT(XBX)
DO 180 I=1,N

X(I) = X(I)/XBX
180 CONTINUE

DO 200 I=1,N
AX(I) = 0.0
DO 190 J=1,N

AX(I) = AX(I) + A(I,J)*X(J)
190 CONTINUE
200 CONTINUE

U = 0.0
DO 210 I=1,N

U = U + AX(I)*X(I)
210 CONTINUE

AI = ABS(U1 - U)
AJ = ABS(U)*1.OE-03
AK = AI - AJ
IF(AK .LT. 0.0) GO TO 3



DO 220 I=1,N
R(I) = U*BX(I) - AX(I)

220 CONTINUE
QN = 0.0
DO 230 I=1,N

QN = QN + R(I)*AP(I)
230 CONTINUE

Q = -QN/PB
DO 240 I=1,N

P(I) = R(I) + Q*P(I)
240 CONTINUE

M = M + 1
U1 = U

C WRITE (3, 9998) M
9998 FORMAT (/1X, 3HM =, I3)
C WRITE (3,9997)
9997 FORMAT (/2H, U/)
C WRITE (3, 9996) U
9996 FORMAT (1X, E14.6)
C WRITE (3, 9995)
9995 FORMAT (/5H X(I)/)
C WRITE (3, 9994) X
9994 FORMAT (1X, F11.6)

GO TO 2
3 CONTINUE

IF (U .LT. SML) RETURN
NU = NU + 1
CX = 0.0
DO 250 I=1,N

CX = CX + W(I)*BX(I)
250 CONTINUE

CX = CX/XBX
DO 260 I=1,N

W(I) = W(I) - CX*X(I)
X(I) = W(I)

260 CONTINUE
IF(NU .GT. N) GO TO 4
GO TO 1

4 WRITE (3, 9999)
9999 FORMAT (28H NO EIGENVALUE LESS THAN SML)

STOP
END
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4
Gradient Adaptive Filters

The adaptive filters based on gradient techniques make a class which is
highly appreciated in engineering for its simplicity, flexibility, and robust-
ness. Moreover, they are easy to design, and their performance is well char-
acterized. By far, it is the most widely used class in all technical fields,
particularly in communications and control [1, 2].

Gradient techniques can be applied to any structure and provide simple
equations. However, because of the looped structure, the exact analysis of
the filters obtained may be extremely difficult, and it is generally carried out
under restrictive hypotheses not verified in practice [3, 4]. However, simpli-
fied approximate investigations provide sufficient results in the vast majority
of applications.

The emphasis is on engineering aspects in this chapter. Our purpose is to
present the results and information necessary to design an adaptive filter and
build it successfully, taking into account the variety of options which make
the approach flexible.

4.1. THE GRADIENT—LMS ALGORITHM

The diagram of the gradient adaptive filter is shown in Figure 4.1. The error
sequence eðnÞ is obtained by subtracting from the reference signal yðnÞ the
filtered sequence ~yyðnÞ. The coefficients CiðnÞ, 0 4 i 4 N � 1, are updated by
the equation

ciðnþ 1Þ ¼ ciðnÞ � �
@eðnþ 1Þ
@ciðnÞ

eðnþ 1Þ ð4:1Þ



The products ½@eðnþ 1Þ=@ciðnÞ�eðnþ 1Þ are the elements of the vector VG,
which is the gradient of the function 1

2
e2ðnþ 1Þ. The scalar � is the adaptation

step. In the mean, the operation corresponds to minimizing the error power,
hence the denomination least means squares (LMS) for the algorithm.

The adaptive filter can have any structure. However, the most straight-
forward and most widely used is the transversal or FIR structure, for which
the error gradient is just the input data vector.

The equations of the gradient adaptive transversal filter are

eðnþ 1Þ ¼ yðnþ 1Þ �HtðnÞXðnþ 1Þ ð4:2Þ
and

Hðnþ 1Þ ¼ HðnÞ þ �Xðnþ 1Þeðnþ 1Þ ð4:3Þ
where HtðnÞ is the transpose of the coefficient vector and Xðnþ 1Þ is the
vector of the N most recent input data.

The implementation is shown in Figure 4.2. It closely follows the imple-
mentation of the fixed FIR filter, a multiplier accumulator circuit being
added to produce the time-varying coefficients. Clearly, 2N þ 1 multiplica-
tions are needed, as well as 2N additions and 2N active memories.

Once the number of coefficients N has been chosen, the only filter para-
meter to be adjusted is the adaptation step �.

In view of the looped configuration, our first consideration is stability.

4.2. STABILITY CONDITION AND SPECIFICATIONS

The error sequence calculated by equation (4.2) is called ‘‘a priori,’’ because
it employs the coefficients before updating. The ‘‘a posteriori’’ error is
defined as

FIG. 4.1 Principle of a gradient adaptive filter.



"ðnþ 1Þ ¼ yðnþ 1Þ �Htðnþ 1ÞXðnþ 1Þ ð4:4Þ

and it can be computed after (4.2) and (4.3) have been completed. Now,
from (4.2) and (4.3), (4.4) can be written as

"ðnþ 1Þ ¼ eðnþ 1Þ½1� �Xtðnþ 1ÞXðnþ 1Þ� ð4:5Þ

The system can be considered stable if the expectation of the a posteriori
error magnitude is smaller than that of the a priori error, which is logical
since more information is incorporated in "ðnþ 1Þ. If the error eðnþ 1Þ is
assumed to be independent of the N most recent input data, which is
approximately true after convergence, the stability condition is

j1� �E½Xtðnþ 1ÞXðnþ 1Þ�j < 1 ð4:6Þ

which yields

0 < � <
2

N�2x
ð4:7Þ

where the input signal power �2x is generally known or easy to estimate.
The stability condition (4.7) is simple and easy to use. However, in prac-

tice, to account for the hypotheses made in the derivation, it is wise to take
some margin. For example, a detailed analysis for Gaussian signals shows
that stability is guaranteed if [5, 6]

0 < � <
1

3

2

N�2x
ð4:8Þ

FIG. 4.2 Gradient adaptive transversal filter.



So, a margin factor of a few units is recommended when using condition
(4.7). Once the stability is achieved, the final determination of the step � in
the allowed range is based on performance, compared to specifications.

The two main specifications for gradient adaptive filtering are the system
gain and the time constant. The system gain G2

S can be defined as the
reference to error signal power ratio:

G2
S ¼

E½ y2ðnÞ�
E½e2ðnÞ� ð4:9Þ

For example, in adaptive prediction, GS is the prediction gain. The specifi-
cation is given as a lower bound for the gain, and the adaptation step and
the computation accuracy must be chosen accordingly.

The speed of adaptation is controlled by a time constant specification �e,
generally imposed on the error sequence. The filter time constant � can be
taken as an effective initial time constant obtained by fitting the sequence
E½e2ðnÞ� to an exponential for n ¼ 0 and n ¼ 1, which yields

ðE½e2ð0Þ� � E½e2ð1Þ�Þe�2=� ¼ E½e2ð1Þ� � E½e2ð1Þ� ð4:10Þ
Since � is related to the adaptation step �, as shown in the following

sections, imposing an upper limit �e puts a constraint on �. Indeed the
gain and speed specifications must be compatible and lead to a nonempty
range of values for �; otherwise another type of algorithm, like least squares,
must be relied upon.

First, the relation between adaptation step and residual error is investi-
gated.

4.3. RESIDUAL ERROR

The gradient adaptive filter equations (4.2) and (4.3) yield

Hðnþ 1Þ ¼ ½IN � �Xðnþ 1ÞXtðnþ 1Þ�HðnÞ þ �Xðnþ 1Þyðnþ 1Þ ð4:11Þ
When the time index n approaches infinity, the coefficients reach their
steady-state values and the average of Hðnþ 1Þ becomes equal to the aver-
age of HðnÞ. Hence, assuming independence between coefficient variations
and input data vectors, we get

E½Hð1Þ� ¼ R�1ryx ¼ Hopt ð4:12Þ
Using the notation of Section 1.4, we write

R ¼ E½XðnÞXtðnÞ�; ryx ¼ E½Xðnþ 1Þyðnþ 1Þ� ð4:13Þ



Therefore the gradient algorithm provides the optimal coefficient set Hopt

after convergence and in the mean. The vector ryx is the cross-correlation
between the reference and input signals.

The minimum output error power Emin can also be expressed as a func-
tion of the signals and their cross-correlation.

For the set of coefficients HðnÞ, the mean square output error EðnÞ is
EðnÞ ¼ E½ð yðnÞ �HtðnÞXðnÞÞ2� ð4:14Þ

Now, setting the coefficients to their optimal values gives

Emin ¼ E½ y2ðnÞ� �Ht
optRHopt ð4:15Þ

or

Emin ¼ E½ y2ðnÞ� �Ht
optryx ð4:16Þ

or

Emin ¼ E½ y2ðnÞ� � rtyxR
�1ryx ð4:17Þ

In these equations the filter order N appears as the dimension of the AC
matrix R and of the cross-correlation vector ryx.

For fixed coefficients HðnÞ the mean square error (MSE) EðnÞ can be
rewritten as a deviation from the minimum:

EðnÞ ¼ Emin þ ½Hopt �HðnÞ�tR½Hopt �HðnÞ� ð4:18Þ
The input data AC matrix R can be diagonalized as

R ¼Mtdiagð	iÞM; MtM ¼ IN ð4:19Þ
where, as shown in the preceding chapter, 	ið0 4 i 4 N � 1Þ are the eigen-
values and M the modal unitary matrix.

Letting

½�ðnÞ� ¼M½Hopt �HðnÞ� ð4:20Þ
be the coefficient difference vector in the transformed space, we obtain the
concise form of (4.18)

EðnÞ ¼ Emin þ ½�ðnÞ�tdiagð	iÞ½�ðnÞ� ð4:21Þ
Completing the products, we have

EðnÞ ¼ Emin þ
XN�1
i¼0

	i�
2
i ðnÞ ð4:22Þ

If � denotes the column vector of the eigenvalues 	i, and ½�2ðnÞ� denotes the
column vector with elements �2i ðnÞ, then



EðnÞ ¼ Emin þ�t½�2ðnÞ� ð4:23Þ
The analysis of the gradient algorithm is carried out by following the

evolution of the vector ½�ðnÞ� according to the recursion

½�ðnþ 1Þ� ¼ ½�ðnÞ� � �MXðnþ 1Þeðnþ 1Þ ð4:24Þ
The corresponding covariance matrix is

½�ðnþ 1Þ�½�ðnþ 1Þ�t ¼ ½�ðnÞ�½�ðnÞ�t � 2�MXðnþ 1Þeðnþ 1Þ½�ðnÞ�t
þ �2e2ðnþ 1ÞMXðnþ 1ÞXtðnþ 1ÞMt

ð4:25Þ

The definition of eðnþ 1Þ yields
eðnþ 1Þ ¼ yðnþ 1Þ �Hr

optXðnþ 1Þ þ Xtðnþ 1ÞMt½�ðnÞ� ð4:26Þ
Equations (4.25) and (4.26) determine the evolution of the system. In order
to get useful results, we make simplifying hypotheses, particularly about
e2ðnÞ [7].

It is assumed that the following variables are independent:

The error sequence when the filter coefficients are optimal
The data vector Xðnþ 1Þ
The coefficient deviations HðnÞ �Hopt

Thus

Ef½ yðnþ 1Þ �Ht
optXðnþ 1Þ�Xtðnþ 1ÞMt½�ðnÞ�g ¼ 0 ð4:27Þ

Although not rigorously verified, the above assumptions are reasonable
approximations, because the coefficient deviations and optimum output
error are noiselike sequences and the objective of the filter is to make
them uncorrelated with the N most recent input data. Anyway, the most
convincing argument in favor is that the results derived are in good agree-
ment with experiments.

Now, taking the expectation of both sides of (4.25), yields

Ef½�ðnþ 1Þ�½�ðnþ 1Þ�tg ¼ ½IN � 2� diagð	iÞ�Ef½�ðnÞ�½�ðnÞ�tg
þ �2E½e2ðnþ 1Þ� diagð	iÞ

ð4:28Þ

For varying coefficients, under the above independence hypotheses, expres-
sion (4.23) becomes

E½e2ðnþ 1Þ� ¼ Emin þ�tE½�2ðnÞ� ð4:29Þ
Considering the main diagonals of the matrices, and using vector nota-

tion and expression (4.29) for the error power, we derive the equation

E½�2ðnþ 1Þ� ¼ ½IN � 2 diagð	iÞ þ �2��t�E½�2ðnÞ� þ �2Emin� ð4:30Þ



A sufficient condition for convergence is that the sum of the absolute
values of the elements of any row in the matrix multiplying the vector
E½�2ðnÞ� be less than unity:

0 < 1� 2�	i þ �2	i
Xn�1
j¼0

	j

 !
< 1; 0 4 1i 4 N � 1 ð4:31Þ

from which we obtain the stability condition

0 < � <
2PN�1

j¼0
	j

¼ 2

N�2x

which is the condition already found in Section 4.2, through a different
approach.

Once the stability conditions are fulfilled, recursion (4.28) yields, as
n!1,

Ef½�ð1Þ�½�ð1Þ�tg ¼ �
2
Eð1ÞIN ð4:32Þ

Due to the definition of the vector ½�ðnÞ�, equation (4.32) also applies to the
coefficient deviations themselves. Thus the coefficient deviations, after con-
vergence, are statistically independent and have the same power.

Now, combining (4.32) and (4.29) yields the residual error ER:

Eð1Þ ¼ ER ¼
Emin

1� ð�=2ÞN�2x
ð4:33Þ

Finally, the gradient algorithm produces an excess output MSE related to
the adaptation step. Indeed, when � approaches the stability limit, the out-
put error power approaches infinity. The ratio of the steady-state MSE to
the minimum attainable MSE is called the final misadjustment Madj:

Madj ¼
ER

Emin

¼ 1

1� ð�=2ÞN�2x
ð4:34Þ

In practical realizations, due to the margin generally taken for the adap-
tation step size, the approximation

ER � Emin 1þ �
2
N�2x

� �
ð4:35Þ

is often valid, and the excess output MSE is approximately proportional to
the step size. In fact, it can be viewed as a gradient noise, due to the
approximation of the true cost function gradient by an instantaneous value.



4.4. LEARNING CURVE AND TIME CONSTANT

The adaptive filter starts from an initial state, which often corresponds to
zero coefficients. From there, its evolution is controlled by the input and
reference signals, and it is possible to define learning curves by parameter
averaging.

The evolution of the coefficient difference vector in the transformed space
is given by quation (4.24). Substituting equation (4.26) into this equation
and taking the expectation yields, under the hypotheses of Section 4.3,

E½�ðnþ 1Þ� ¼ ½IN � � diagð	iÞ�E½�ðnÞ� ð4:36Þ
Substituting into equation (4.29) and iterating from the time origin leads to

EðnÞ � Emin ¼ �t diagð1� �	iÞ2nE½�2ð0Þ� ð4:37Þ
The same results can also be derived from equation (4.30) after some sim-
plification, assuming the step size � is small.

Clearly, the evolution of the coefficients and the output MSE depends on
the input signal matrix eigenvalues, which provide as many different modes.
In the long run, it is the smallest eigenvalue which controls the convergence.

The filter time constant �e obtained from an exponential fitting to the
output rms error is obtained by applying definition (4.10) and neglecting the
residual error:

Eð0Þe�2=�e ¼ �t diagð1� �	iÞE½�2ð0Þ� ð4:38Þ
We can also obtain it approximately by applying (4.29) at the time origin:

�tE½�2ð0Þ� 1� 2

�e

� 	
¼ �t diagð1� 2�	iÞE½�2ð0Þ� ð4:39Þ

Hence

�e ¼
1

�

PN�1
i¼0

	iEf�2i ð0Þg
PN�1
i¼0

	iEf�2i ð0Þg	i
ð4:40Þ

If the eigenvalues are not too dispersed, we have

�e �
N

�
PN�1
i¼0

	i

¼ 1

��2x
ð4:41Þ

The filter time constant is proportional to the inverse of the adaptation
step size and of the input signal power. Therefore, an estimation of the
signal power is needed to adjust the adaptation speed. Moreover, if the



signal is nonstationary, the power estimation must be carried out in real
time to reach a high level of performance.

A limit on the adaptation speed is imposed by the stability condition
(4.7).

From equation (4.30), it appears that the rows of the square matrix are
quadratic functions of the adaptation step and all take their minimum norm
for

�m ¼
1PN�1

i¼0
	i

¼ 1

N�2x
ð4:42Þ

which corresponds to the fastest convergence. Therefore the smallest time
constant is

�e;min ¼ N ð4:43Þ
In these conditions, if the eigenvalues are approximately equal to the

signal power, which occurs for noiselike signals in certain modeling applica-
tions, the learning curve, taken as the output MSE function, is obtained
from (4.36) by

EðnÞ � ER ¼ ðEð0Þ � ERÞ 1� 1

N

� �2n

ð4:44Þ

For zero initial values of the coefficients, Eð0Þ is just the reference signal
power.

Overall, the three expressions (4.7), (4.33), and (4.41) give the basic infor-
mation to choose the adaptation step � and evaluate a transversal gradient
adaptive filter. They are sufficient in many practical cases.

Example

Consider the second-order adaptive FIR prediction filter in Figure 4.3, with
equations

eðnþ 1Þ ¼ xðnþ 1Þ � a1ðnÞxðnÞ � a2ðnÞxðn� 1Þ

a1ðnþ 1Þ
a2ðnþ 1Þ

� 	
¼ a1ðnÞ

a2ðnÞ
� 	

þ � xðnÞ
ðn� 1Þ

� 	
eðnþ 1Þ ð4:45Þ

The input signal is a sinusoid in noise:

xðnÞ ¼ sin
n�

4


 �
þ bðnÞ ð4:46Þ

The noise bðnÞ has power �2�bb ¼ 5� 10�5. The input signal power is �2�xx ¼ 0:5.
The step size � is 0.05. Starting from zero-valued coefficients, the evolution



of the output error, the two coefficients, and the corresponding zeros in the
complex plane are shown in Figure 4.4. Clearly the output error time con-
stant is in reasonably good agreement with estimation (4.41).

In the filter design process, the next step is the estimation of the coeffi-
cient and internal data word lengths needed to meet the adaptive filter
specifications.

4.5. WORD-LENGTH LIMITATIONS

Word-length limitations introduce roundoff error sources, which degrade
the filter performance. The roundoff process generally takes place at the
output of the multipliers, as represented by the quantizers Q in Figure 4.5.

In roundoff noise analysis a number of simplifying hypotheses are gen-
erally made concerning the source statistics. The errors are identically dis-
tributed and independent; with rounding, the distribution law is uniform in
the interval ½�q=2; q=2�, where q is the quantization step size, the power is
q2=12, and the spectrum is flat.

Concerning the adaptive transversal filter, there are two different cate-
gories of roundoff errors, corresponding to internal data and coefficients [8].

The quantization processes at each of the N filter multiplication outputs
amount to adding N noise sources at the filter output. Therefore, the output
MSE is augmented by Nq22=12, assuming q2 is the quantization step.

The quantization with step q1 of the multiplication result in the coeffi-
cient updating section is not so easily analyzed. Recursion (4.28) is modified
as follows, taking into account the hypotheses on the roundoff noise sources
and their independence of the other variables:

Ef½�ðnþ 1Þ�½�ðnþ 1Þ�tg ¼ ½IN � 2� diagð	iÞ�Ef½�ðnÞ�½�ðnÞ�tg

þ �2E½e2ðnþ 1Þ�diagð	iÞ þ
q21
12

IN

ð4:47Þ

FIG. 4.3 Second-order prediction filter.



FIG. 4.4 The second-order adaptive FIR prediction filter: (a) output error

sequence; (b) coefficient versus time; (c) zeros in the complex plane.



An additional gradient noise is introduced.
When n!1, equation (4.29) yields, as before,

ERT 1� �
2
N�2x

� �
¼ Emin þ

q21
12

N

2�
ð4:48Þ

Hence, the total residual error, taking into account the quantization of the
filter coefficients with step q1 and the quantization of internal data with step
q2, as shown in Figure 4.5, is

ERT ¼
1

1� ð�=2ÞN�2x
Emin þ

N

2�

q21
12
þN

q22
12

" #
ð4:49Þ

or, assuming a small excess output MSE,

ERT � Emin 1þ �
2
N�2x

� �
þ N

2�

q21
12
þN

q22
12

ð4:50Þ

This expression shows that the effects of the two kinds of quantizations are
different. Because of the factor 1

�, the coefficient quantization and the corre-
sponding word length can be very sensitive. In fact, there is an optimum �opt
for the adaptation step size which minimizes the total residual error; accord-
ing to (4.50) it is obtained through derivation as

1
2
EminN�

2
x �

N

2

q21
12

1

�2opt
¼ 0 ð4:51Þ

FIG. 4.5 Adaptive FIR filter with word-length limitations.



and

�opt ¼
1ffiffiffiffiffiffiffiffiffi

Emin

p
�x

1ffiffiffi
3
p q1

2
ð4:52Þ

The curve of the residual error versus the adaptation step size is shown in
Figure 4.6. For � decreasing from the stability limit, the minimum is reached
for �opt; if � is decreased further, the curve indicates that the total error
should grow, which indeed has no physical meaning. The hypotheses
which led to (4.50) are no longer valid, and a different phenomenon occurs,
namely blocking.

According to the coefficient evolution equation (4.3), the coefficient hiðnÞ
is frozen if

j�xðn� iÞeðnÞj < q1
2

ð4:53Þ

Let us assume that the elements of the vector �XðnÞeðnÞ are uncorrelated
with each other and distribute uniformly in the interval ½q1=2; q1=2�. Then

�2Efe2ðnÞXðnÞXtðnÞg ¼ q21
12

IN ð4:54Þ

FIG. 4.6 Residual error against adaptation step size.



If the coefficients are close to their optimal values and if the input signal can
be approximated by a white noise, then equations (4.54) and (4.51) are
equivalent. A blocking radius � can then be defined for the coefficients by

�2 ¼ Ef½HðnÞ �Hopt�tðHðnÞ �HÞopt�g ð4:55Þ
Now, considering that

HðnÞ �Hopt ¼ R�1E½eðnÞXðnÞ� ð4:56Þ
we have, from (4.54) and the identity XtX ¼ traceðXXtÞ,

�2 ¼ 1

12

q1
�


 �2XN�1
i�0

	�2i ð4:57Þ

The blocking radius is a function of the spread of the input AC matrix
eigenvalues. Blocking can occur for adaptation step sizes well over �opt,
given by (4.52), if there are small eigenvalues.

In adaptive filter implementations, the adaptation step size is often
imposed by system specifications (e.g., the time constant), and the coefficient
quantization step size q1 is chosen small enough to avoid the blocking zone
with some margin.

Quantization steps q1 and q2 are generally derived from expression (4.50).
Considering the crucial advantage of digital processing, which is that opera-
tions can be carried out with arbitrary accuracy, the major contribution in
the total residual error should be the theoretical minimal error Emin. In a
balanced realization, the degradations from different origins should be simi-
lar. Hence, a reasonable design choice is

1

2
Emin

N��2x
2

" #
¼ N

2�

q21
12
¼ N

q22
12

ð4:58Þ

If bc is the number of bits of the coefficients and hmax is the largest coefficient
magnitude, then, assuming fixed-point binary representation, we have

q1 ¼ hmax2
1�bc ð4:59Þ

Under these conditions

22bc ¼ 2

3

h2max

�2Emin�
2
x

ð4:60Þ

with the assumption that Emin is the dominant term in (4.50), that is,

G2
SEmin � �2y

By introducing the time constant specification �e, one has approximately



bc � log2ð�eÞ þ log2ðGSÞ þ log2 hmax

�x
�y

� �
ð4:61Þ

This expression gives an estimation of the coefficient word length necessary
to meet the specifications of a gradient adaptive filter. However there is one
variable which is not readily available, hmax; a simple bound can be derived,
if we assume a large system gain and refer to the eigenfilters of Section 3.7:

�2y ¼ E½ y2ðnÞ� � HtðnÞRHðnÞ 5 	minH
tðnÞHðnÞ ð4:62Þ

Now

�2y 5 	minh
2
max

and

hmax

�x
�y

� �2

4
�2x
	min

ð4:63Þ

Therefore, the last term on the right side of (4.61) is bounded by zero for
input signals whose spectrum is approximately flat, but it can take positive
values for narrowband signals.

Estimate (4.61) can produce large values for bc; that word length is
necessary in the coefficient updating accumulator but not in the filter multi-
plications.

In practice, additional quantizers can be introduced just before the multi-
plications by hiðnÞ in Figure 4.5 in order to avoid multiplications with high
precision factors. The effects of the additional roundoff noise sources intro-
duced that way can be investigated as above.

Often, nonstationary signals are handled, and estimate (4.61) is for sta-
tionary signals. In this case, a first approach is to incorporate the signal
dynamic range in the last term of (4.61).

To complete the filter design, the number of bits bi of the internal data
can be determined by setting

q2 ¼ maxfjxðnÞj; j yðnÞjg21�bi ð4:64Þ
with the assumption that �2x 5 �2y , which is true in linear prediction and
often valid in system modeling, and taking the value 4 as the peak factor of
the signal xðnÞ as in the Gaussian case. Thus

q2 ¼ 4�x2
1�bi

Now, (4.58) yields

22bi ¼ 24
4

3

1

Emin�



By introducing the specifications we obtain

bi � 2þ log2
�x
�y

� �
þ log2ðGSÞ þ 1

2
log2ð�eÞ ð4:65Þ

This completes the implementation parameter estimation for the stan-
dard gradient algorithm. However, some modifications can be made to
this algorithm, which are either useful or even mandatory.

4.6. LEAKAGE FACTOR

When the input signal vanishes, the driving term in recursion (4.3) becomes
zero and the coefficients are locked up. In such conditions, it might be
preferable to have them return to zero. This is achieved by the introduction
of a leakage factor � in the updating equation:

Hðnþ 1Þ ¼ ð1� �ÞHðnÞ þ �Xðnþ 1Þeðnþ 1Þ ð4:66Þ
The coefficient recursion is

Hðnþ 1Þ ¼ ½ð1� �ÞIN � �Xðnþ 1ÞXtðnþ 1Þ�HðnÞ þ �yðnþ 1ÞXðnþ 1Þ
ð4:67Þ

After convergence,

H1 ¼ E½Hð1Þ� ¼ Rþ �
�
IN

h i�1
ryx ð4:68Þ

The leakage factor � introduces a bias on the filter coefficients, which can be
expressed in terms of the optimal values as

H1 ¼ Rþ �
�
IN

h i�1
RHopt ð4:69Þ

The same effect is obtained when a white noise is added to the input
signal xðnÞ; a constant equal to the noise power is added to the elements
of the main diagonal of the input AC matrix.

To evaluate the impact of the leakage factor, we rewrite the coefficient
vector H1 as

H1 ¼Mtdiag
	i

	i þ �=�
� �

MHopt ð4:70Þ

The significance of the bias depends on the relative values of 	min and �
�.

Another aspect is that the cost function actually minimized in the whole
process is

J�ðnÞ ¼ E ½ yðnÞ � XtðnÞHðn� 1Þ�2 þ �
�
Htðn� 1ÞHðn� 1Þ

n o
ð4:71Þ



The last term represents a constraint which is imposed on the coefficient
magnitudes [9].

The LS solution is given by (4.68), and the coefficient bias is

H �Hopt ¼ Rþ �
�
IN


 ��1
R� IN

� 	
Hopt ð4:72Þ

Hence the filter output MSE becomes

ER ¼ Emin þ ½H �Hopt�tR½H �Hopt� ð4:73Þ
The leakage factor is particularly useful for handling nonstationary signals.
With such signals, the leakage value can be chosen to reduce the output
error power.

If the coefficients are computed by minimizing the above cost function
taken on a limited set of data, the coefficient variance can be estimated by

Ef½H �H0�½H �H0�tg ¼ ER Rþ �
�
IN

h i�1
R Rþ �

�

h i�1
ð4:74Þ

and the coefficient MSE HMSE is

HMSE ¼ ½H �Hopt�t½H �Hopt� þ traceðEf½H �H0�½H �H0�tgÞ ð4:75Þ
When � increases from zero, HMSE decreases from ERtraceðR�1Þ, then
reaches a minimum and increases, because in (4.75) the variance decreases
faster than the bias increases at the beginning, as can be seen directly for
dimension N ¼ 1 [9]. A minimal output MSE corresponds to the minimum
of HMSE.

A similar behavior can be observed when the gradient algorithm is
applied to nonstationary signals. An illustration is provided by applying a
speech signal to an order 8 linear predictor. The prediction gain measured is
shown in Figure 4.7 versus the leakage factor for several adaptation step
sizes �. The maximum of the prediction gain is clearly visible. It is also a
justification for the values sometimes retained for speech prediction, which
are � ¼ 2�6 and � ¼ 2�8.

The leakage factor, which can nicely complement the conventional gra-
dient algorithm, is recommended for the sign algorithm because it bounds
the coefficients and thus prevents divergence.

4.7. THE LMAV AND SIGN ALGORITHMS

Instead of the LS, the least absolute value (LAV) criterion can be used to
compare variables, vectors, or functions. It has two specific advantages: it
does not necessarily lead to minimum phase solutions; it is robust to outliers



in a data set. Similarly, the least mean absolute value (LMAV) can replace
the LMS in adaptive filters [10].

The gradient of the function jeðnþ 1Þj is the vector whose elements are

@jeðnþ 1Þj
@hi

¼ @

@hi
j yðnþ 1Þ � Xtðnþ 1ÞHðnÞj

¼ �xðnþ 1� iÞsign eðnþ 1Þ
ð4:76Þ

where sign e is þ1 if e is positive and �1 otherwise. The LMAV algorithm
for the transversal adaptive filter is

Hðnþ 1Þ ¼ HðnÞ þ �Xðnþ 1Þsign eðnþ 1Þ ð4:77Þ
where �, a positive constant, is the adaptation step.

The convergence can be studied by considering the evolution of the coef-
ficient vector toward the optimum Hopt. Equation (4.77) can be rewritten as

Hðnþ 1Þ �Hopt ¼ HðnÞ �Hopt þ�Xðnþ 1Þsign eðnþ 1Þ
Taking the norm squared of both sides yields

½Hðnþ 1Þ �Hopt�t½Hðnþ 1Þ �Hopt� ¼ ½HðnÞ �Hopt�t½HðnÞ �Hopt�
þ 2� sign eðnþ 1ÞXtðnþ 1Þ½HðnÞ �Hopt� þ�2Xtðnþ 1ÞXðnþ 1Þ

ð4:78Þ
or, with further decomposition,

kHðnþ 1Þ �Hoptk2 ¼kHðnÞ �Hoptk2 þ�2kXðnþ 1Þk2 � 2�jeðnþ 1Þj
þ 2� sign eðnþ 1Þ½ yðnþ 1Þ � Xtðnþ 1ÞHopt�

Hence we have the inequality

FIG. 4.7 Prediction gain vs. leakage factor for a speech sentence.



kHðnþ 1Þ �Hoptk2 4 kHðnÞ �Hoptk2 þ�2kXðnþ 1Þk2 � 2�jeðnþ 1Þj
þ 2�j yðnþ 1Þ � Xtðnþ 1ÞHoptj

Taking the expectation of both sides gives

EfkHðnþ 1Þ �Hoptk2g 4 kHðnÞ �Hoptk2
þ�2N�2x � 2�Efjeðnþ 1Þjg þ 2�Emin

ð4:79Þ
where the minimal error Emin is

Emin ¼ E½j yðnþ 1Þ � Xtðnþ 1ÞHoptj� ð4:80Þ
If the system starts with zero coefficients, then

EfkHðnþ 1Þ �Hoptk2g 4 kHoptk2

þ ðnþ 1Þð�2N�2x þ 2�EminÞ � 2�
Xnþ1
p¼1

EfjeðpÞjg

Since the left side is nonnegative, the accumulated error is bounded by

1

nþ 1
E

Xnþ1
p¼1
jeðpÞj

( )
4

�

2
N�2x þ Emin þ

kHoptk2
2�ðnþ 1Þ ð4:81Þ

This is the basic equation of LMAV adaptive filters. It has the following
implications:

Convergence is obtained for any positive step size �.
After convergence the residual error ER is bounded by

ER 4 Emin þ
�

2
N�2x ð4:82Þ

It is difficult to define a time constant as in Section 4.1. However, an adap-
tation time �A can be defined as the number of iterations needed for the last
term in (4.81) to become smaller than Emin. Then we have

�A ¼
1

�

kHoptk2
2Emin

ð4:83Þ

The performance of the LMAV adaptive filters can be assessed from the
above expressions. A comparison with the results given in Sections 4.3 and
4.4 for the standard LMS algorithm clearly shows the price paid for the
simplification in the coefficient updating circuitry. The main observation is
that, if a small excess output MSE is required, the adaptation time can
become very large.



Another way of simplifying gradient adaptive filters is to use the follow-
ing coefficient updating technique:

Hðnþ 1Þ ¼ HðnÞ þ�eðnþ 1Þsign Xðnþ 1Þ ð4:84Þ
This algorithm can be viewed as belonging to the LMS family, but with a
normalized step size. Since

sign x ¼ x

jxj ð4:85Þ

and jxj can be coarsely approximated by the efficient value �x, equation
(4.84) corresponds to a gradient filter with adaptation step size

� ¼ �

�x
ð4:86Þ

The performance can be assessed by replacing � in the relevant equations.
Pursuing further in that direction, we obtain the sign algorithm

Hðnþ 1Þ ¼ HðnÞ þ� sign eðnþ 1Þsign Xðnþ 1Þ ð4:87Þ
The detailed analysis is rather complicated. However, a coarse but generally
sufficient approach consists of assuming a standard gradient algorithm with
step size

� ¼ �

�x�e
ð4:88Þ

where �x and �e are the efficient values of the input signal and output error,
respectively.

In the learning phase, starting with zero-valued coefficients, it can be
assumed that �e � �y and the initial time constant �S of the sign algorithm
can be roughly estimated by

�S �
1

�

�y
�x

ð4:89Þ

After convergence it is reasonable to assume �2e ¼ Emin. If the adaptation
step is small, the residual error ERS in the sign algorithm can be estimated by

ERS � Emin 1þN�

2

�xffiffiffiffiffiffiffiffiffi
Emin

p
� �

ð4:90Þ

A condition for the above estimation to be valid is obtained by combin-
ing (4.7) and (4.88), which yields

�� 2

N



If the step size is not small enough, the convergence will stop when the error
becomes so small that the stability limit is reached, approximately

� � 2

N

�e
�x

In that situation, the residual error can be estimated byffiffiffiffiffiffiffiffi
ERS

p
� �

2
N�x ð4:91Þ

which can be compared with (4.82) when Emin is neglected.
It is worth pointing out that, for stability reasons, a leakage term is

generally introduced in the sign algorithm coefficient, giving

Hðnþ 1Þ ¼ ð1� �ÞHðnÞ þ� sign eðnþ 1Þsign Xðnþ 1Þ ð4:92Þ
Under these conditions, the coefficients are bounded by

jhiðnÞj 4
�

�
; 0 4 i 4 N � 1 ð4:93Þ

Overall, it can be stated that the sign algorithm is slower than the stan-
dard gradient algorithm and leads to larger excess output MSE [11–12].
However, it is very simple; moreover it is robust because of the built-in
normalization of its adaptation step, and it can handle nonstationary sig-
nals. It is one of the most widely used adaptive filter algorithms.

4.8. NORMALIZED ALGORITHMS FOR
NONSTATIONARY SIGNALS

When handling nonstationary signals, adaptive filters are expected to trace
as closely as possible the evolution of the signal parameters. However, due
to the time constant there is a delay which leads to a tracking error.
Therefore the excess output MSE has two components: the gradient mis-
adjustment error, and the tracking error.

The efficiency of adaptive filters depends on the signal characteristics.
Clearly, the most favorable situation is that of slow variations, as mentioned
in Section 2.13. The detailed analysis of adaptive filter performance is based
on nonstationary signal modeling techniques. Nonstationarity can affect the
reference signal as well as the filter input signal. In this section a highly
simplified example is considered to illustrate the filter behavior.

When only the reference signal is assumed to be nonstationary, the devel-
opments of the previous sections can, with adequate modifications, be kept.
The nonstationarity of the reference is reflected in the coefficient updating
equation (4.3) by the fact that the optimal vector is time dependent:



Hðnþ 1Þ �Hoptðnþ 1Þ ¼ HðnÞ �HoptðnÞ þ �eðnþ 1ÞXðnþ 1Þ ð4:94Þ
If it can be assumed that the optimal coefficients are generated by a first-
order model whose inputs are zero mean i.i.d. random variables enS;iðnÞ,
with variance �2nS, as in Section 2.13, then

Hoptðnþ 1Þ ¼ ð1� �jHoptðnÞ þ ½enS;0ðnþ 1Þ; . . . ; enS;ðN�1Þðnþ 1Þ�t ð4:95Þ
Furthermore, if the variations are slow, which implies � � 1, the net effect of
the nonstationarity is the introduction of the extra term �nSIN in recursion
(4.28). As already seen for the coefficient roundoff, the residual error ERTnS

is

ERTnS 1� �
2
N�2x

� �
¼ Emin þ

N

2�
�2nS ð4:96Þ

or, for small adaptation step size,

ERTnS � Emin 1þ �
2
N�2x

� �
þ N

2�
�2nS ð4:97Þ

In this simplified expression for the residual output error power with a
nonstationary reference signal, the contributions of the gradient misadjust-
ment and the tracking error are well characterized. Clearly, there is an
optimum for the adaptation step size, �opt, which is

�opt ¼
�nS

�x
ffiffiffiffiffiffiffiffiffi
Emin

p ð4:98Þ

which corresponds to balanced contributions.
The above model is indeed sketchy, but it provides hints for the filter

behavior in more complicated circumstances [13]. For example, an order 12
FIR adaptive predictor is applied to three different speech signals: (a) a male
voice, (b) a female voice, and (c) unconnected words. The prediction gain is
shown in Figure 4.8(a) for various adaptation step sizes. The existence of an
optimal step size is clearly visible in each case.

The performance of adaptive filters can be significantly improved if the
most crucial signal parameters can be estimated in real time. For the gra-
dient algorithms the most important parameter is the input signal power,
which determines the step size. If the signal power can be estimated, then the
normalized LMS algorithm

Hðnþ 1Þ ¼ HðnÞ þ �

�2x
Xðnþ 1Þeðnþ 1Þ ð4:99Þ

can be implemented. The most straightforward estimation �2x is Px1ðnÞ given
by



FIG. 4.8 Prediction gain vs. adaptation step size for three speech signals: (a) LMS

with fixed step; (b) normalized LMS; (c) sign algorithm.



Px1ðnÞ ¼ P0 þ
1

N0

XN0�1

i¼0
x2ðn� iÞ ð4:100Þ

where P0 is a positive constant which prevents division by zero. The para-
meter N0, the observation time window, is the duration over which the
signal can be assumed to be stationary.

For the prediction filter example mentioned above, the results corre-
sponding to P0 ¼ 0:5 and N0 ¼ 100 (the long-term speech power is unity)
are given in Figure 4.8(b). The improvements brought by normalization are
clearly visible for all three sentences. The results obtained with the sign
algorithm (4.87) are shown in Figure 4.8(c) for comparison purposes. The
prediction gain is reduced, particularly for sentences b and c, but the robust-
ness is worth pointing out: there is no steep divergence for too large �, but a
gradual performance degradation instead.

In practice, equation (4.100) is costly to implement, and the recursive
estimate of Section 3.3 is preferred:

Px2ðnþ 1Þ ¼ ð1� �ÞPx2ðnÞ þ �x2ðnþ 1Þ ð4:101Þ

Estimates (4.100) and (4.101) are additive. For faster reaction to rapid
changes, exponential estimations can be worked out. An efficient and simple
method to implement corresponds to a variable adaptation step size �ðnÞ
given by

�ðnÞ ¼ �

PxðnÞ
¼ 2�IðnÞ ð4:102Þ

where IðnÞ is an integer variable, itself updated through an additive process
(e.g., a sign algorithm [14]).

The step responses of Px1ðnÞ, Px2ðnÞ and the exponential estimate are
sketched in Figure 4.9. Better performance can be expected with the expo-
nential technique for rapidly changing signals.

Adaptation step size normalization can also be achieved indirectly by
reusing the data at each iteration.

The a posteriori error "ðnþ 1Þ in equation (4.4) is calculated with the
updated coefficients. It can itself be used to update the coefficients a second
time, leading to a new error "1ðnþ 1Þ. After K such iterations, the a poster-
iori error "K ðnþ 1Þ is

"K ðnþ 1Þ ¼ ½1� �Xtðnþ 1ÞXðnþ 1Þ�Kþ1eðnþ 1Þ ð4:103Þ

For � sufficiently small and K large, "K ðnþ 1Þ � 0, which would have been
obtained with a step size � satisfying



1��Xtðnþ 1ÞXðnþ 1Þ ¼ 0

that is

� ¼ 1

Xtðnþ 1ÞXðnþ 1Þ ð4:104Þ

The equivalent step size corresponds to the fastest convergence defined in
Section 4.4 by equation (4.42). So, the data reusing method can lead to fast
convergence, while preserving the stability, in the presence of nonstationary
signals.

The performance of normalized LMS algorithms can be studied as in the
above sections, with the additional complication brought by the variable
step size. For example, considering the so-called projection LMS algorithm

Hðnþ 1Þ ¼ HðnÞ þ �

Xtðnþ 1ÞXðnþ 1ÞXðnþ 1Þeðnþ 1Þ ð4:105Þ

one can show that a bias is introduced on the coefficients, which becomes
independent of the step size for small values, while the variance remains
proportional to � [15].

A coarse approach to performance evaluation consists of keeping the
results obtained for fixed step algorithms and considering the extreme para-
meter values.

FIG. 4.9 Step responses of signal power estimations.



4.9. DELAYED LMS ALGORITHMS

In the implementation, it can be advantageous to update the coefficients
with some delay, say d sampling periods. For example, with integrated
signal processors a delay d ¼ 1 can ease programming. In these conditions
it is interesting to investigate the effects of the updating delay on the adap-
tive filter performance [16].

The delayed LMS algorithm corresponds to the equation

Hðnþ 1Þ ¼ HðnÞ þ �Xðnþ 1� dÞeðnþ 1� dÞ ð4:106Þ
The developments of Section 4.3 can be carried out again based on the
above equation. For the sake of brevity and conciseness, a simplified ana-
lysis is performed here, starting from equation (4.24), rewritten as

½�ðnþ 1Þ� ¼ ½�ðnÞ� � �MXðnþ 1� dÞeðnþ 1� dÞ ð4:107Þ
Substituting (4.26) in this equation and taking the expectation yields, under
the hypotheses of Section 4.3,

Ef½�ðnþ 1Þ�g ¼ Ef½�ðnÞ�g � � diagð	iÞEf½�ðn� dÞ�g ð4:108Þ
The system is stable if the roots of the characteristic equation

rdþ1 � rd þ �	i ¼ 0 ð4:109Þ
are inside the unit circle in the complex plane. Clearly, for d ¼ 0, the con-
dition is

0 < � <
2

	max

ð4:110Þ

which is a stability condition sometimes used for the conventional LMS
algorithms, less stringent than (4.7).

When d ¼ 1, the stability condition is

0 < � <
1

	max

ð4:111Þ

which implies that delay makes the stability condition more stringent. If � is
small enough ð� < 1

4
	maxÞ, the roots of the second-order characteristic equa-

tion are real:

r1 � 1� �	ið1þ �	iÞ; r2 � �	ið1þ �	iÞ ð4:112Þ
The corresponding digital filter can be viewed as a cascade of two first-

order sections, whose time constants can be calculated; its step response is
approximately proportional to 1� ð1þ �	iÞrn1, where the factor 1þ �	i
reflects the effect of the root r2. However, neglecting the root r2, we can
state that, for small adaptation step sizes, the adaptation speed of the



delayed algorithm is similar to that of the conventional gradient algorithm.
In the context of this simplified analysis, the time constant �i for each mode
is roughly

�i �
1

�	i
ð4:113Þ

Now, for d 5 2, the characteristic equation (4.109) has a root on the unit
circle if

e jðdþ1Þ! � e jd! þ �	i ¼ 0 ð4:114Þ
The imaginary part of the equation is

sinðd þ 1Þ!� sin d! ¼ 0 ð4:115Þ
whose solutions are

! ¼ 0; ð2d þ 1Þ! ¼ ð2kþ 1Þ� ð�d 4 k 4 dÞ
As concerns the real part, it provides the equality

�	i ¼ 2ð�1Þk sin 2kþ 1

2ð2d þ 1Þ� ð4:116Þ

At this stage, the root locus technique can be employed. If �	i is increased
from zero, the first value which corresponds to a root of the equation is
obtained for k ¼ 0 and k ¼ �1, and
! ¼ �=2ð2d þ 1Þ

The stability is guaranteed if �	i remains smaller than the limit above. Hence
the stability condition

0 < � <
2

	max

sin
�

2ð2d þ 1Þ ð4:117Þ

For large d, the condition simplifies to

0 < � <
1

	max

�

2d þ 1
ð4:118Þ

Turning to the excess output MSE, a first estimation can be obtained by
considering only the largest root of the characteristic equation and assuming
that the delayed LMS is equivalent to the conventional LMS with a slightly
larger adaptation step. For d ¼ 1, referring to equation (4.112), we can take
the multiplying factor to be 1þ �	max. The most adverse situation for
delayed LMS algorithms is the presence of nonstationary signals, because
the tracking error can grow substantially.



4.10. THE MOMENTUM ALGORITHM

The momentum algorithm is an alternative approach to improve on the
performance of the gradient algorithm, while sacrificing little in computa-
tional complexity.

The starting point is the recursive equation for the output error energy in
the least squares approach. In Chapter 6, it will be shown that the following
equation holds:

Eðnþ 1Þ ¼WEðnÞ þ eðnþ 1Þ"ðnþ 1Þ ð4:119Þ
where W is the weighting factor ð0 <W < 1Þ. Assuming that the coefficient
vector is updated proportionally to the gradient of the error energy Eðnþ 1Þ
and approximating the ‘‘a posteriori’’ error "ðnþ 1Þ by the ‘‘a priori’’ error
eðnþ 1Þ, the momentum algorithm is obtained:

eðnþ 1Þ ¼ yðnþ 1Þ þHtðnÞXðnþ 1Þ
Hðnþ 1Þ ¼ HðnÞ þ �½HðnÞ �Hðn� 1Þ� þ �eðnþ 1ÞXðnþ 1Þ ð4:120Þ

The scalar � is called the momentum factor, by analogy with the use of the
term in mechanics. An obvious condition for stability is j�j < 1. In fact, the
stability of the momentum algorithm can be investigated in a way similar to
that of the gradient algorithm. The evolution of the coefficients is governed
by the equation

Hðnþ 1Þ ¼ ½INð1þ �Þ � �Xðnþ 1ÞXtðnþ 1Þ�HðnÞ
þ �yðnþ 1ÞXðnþ 1Þ � �Hðn� 1Þ ð4:121Þ

Replacing Xðnþ 1ÞXtðnþ 1Þ by INN�2x, to take a conservative approach, the
second-order characteristic equation of the system has its roots inside the
unit circle if

j1þ �� �N�2xj < 1þ �; � < 1 ð4:122Þ
which leads to the stability conditions

0 < � <
2ð1þ �Þ
N�2x

; � < 1 ð4:123Þ

The performance of the algorithm can be evaluated by following a pro-
cedure similar to that of the standard gradient algorithm, but with increased
complexity. However, considering that the momentum term introduces a
first-order difference equation with factor �, a coarse assessment of the
algorithm’s behavior is obtained by replacing � by �=ð1� �Þ in the expres-
sions obtained for the gradient algorithm. For example, this accounts for the
gain in convergence time observed in simulations [17].



4.11. VARIABLE STEP SIZE ADAPTIVE FILTERING

The performance of gradient adaptive filters is a compromise between speed
of convergence and accuracy. A large step size makes the adaptation fast,
while a small value can make the residual error close to the minimum.
Therefore, a variable step size can offer a potential for improvement, and
a possible approach is to apply the gradient algorithm to the step size itself
[18].

Assuming a time-varying step size, the filter output error can be expressed
by

eðnþ 1Þ ¼ yðnþ 1Þ � ½Hðn� 1Þ þ �ðnÞeðnÞXðnÞ�tXðnþ 1Þ ð4:124Þ
The step size �ðnÞ can be updated with the help of the derivative of e2ðnþ 1Þ
with respect to �. At time ðnþ 1Þ, the following operations have to be carried
out:

eðnþ 1Þ ¼ yðnþ 1Þ �HtðnÞXðnþ 1Þ
�ðnþ 1Þ ¼ �ðnÞ þ �eðnþ 1ÞeðnÞXtðnÞXðnþ 1Þ
Hðnþ 1Þ ¼ HðnÞ þ �ðnþ 1Þeðnþ 1ÞXðnþ 1Þ

ð4:125Þ

The above equations define a variable-step-size gradient algorithm, and the
parameter � is a real positive scalar that controls the step size variations. To
figure out the evolution of the step size, its updating equation can be rewrit-
ten as

�ðnþ 1Þ ¼ ½1� �e2ðnÞ½XtðnÞXðnþ 1Þ�2��ðnÞ
þ �½yðnþ 1Þ �Htðn� 1ÞXðnþ 1Þ�eðnÞXtðnÞXðnþ 1Þ ð4:126Þ

Clearly, the step size �ðnÞ decreases as the filter converges, and its mean value
stabilizes at a limit which is determined by the correlation of the input signal
and the correlation of the residual error.

4.12. CONSTRAINED LMS ALGORITHMS

The adaptive filters considered so far use a reference signal to compute the
output error, which serves to update the coefficients. It might happen that
this reference signal is zero, as in linear prediction. In such a situation, at
least one constraint must be imposed on the coefficients, to prevent the
trivial solution of all the coefficients being null. In linear prediction, it is
the first coefficient which is a one. Another example has been given in
Section 3.10 with the iterative calculation of the coefficients of an eigenfilter.



The case of a set of K independent linear constraints can be dealt with by
forming a reference signal from the input signal and the constraints, as
shown in Figure 4.10. The system is defined by the equations

eðnþ 1Þ ¼ HtðnÞXðnþ 1Þ
CtHðnÞ ¼ F

ð4:127Þ

The matrix C is formed by the K constraint vectors, F being a K-element
vector which is part of the constraint system. Now, a reference signal yqðnÞ
can be formed from the input signal with the help of the coefficient vector
WQ defined by

WQ ¼ C½CtC��1F ð4:128Þ
The matrix WS is orthogonal to the constraint vector and it has the rank
N � K . The adaptive filter HaðzÞ has N � K coefficients, which are updated
according to the LMS algorithm [19].

The constraints may also come as an addition to an adaptive filter with a
reference signal. Then the coefficients must be updated in a space which is
orthogonal to the constraint space. The algorithm is as follows

eðnþ 1Þ ¼ yðnþ 1Þ �HtðnÞXðnþ 1Þ
Hðnþ 1Þ ¼ P½HðnÞ þ �eðnþ 1ÞXðnþ 1Þ� þm

ð4:129Þ

with

P ¼ IN � C½CtC��1Ct m ¼ C½CtC��1F
The derivation of the equations (4.128) and (4.129) is obtained through the
Lagrange multiplier technique, which is detailed in Chapter 7, in the context
of least squares adaptive filtering.

FIG. 4.10 Constrained adaptive filter.



4.13. THE BLOCK LMS ALGORITHM

In some applications, it can be convenient to perform the coefficient adap-
tation less often than each sampling period. In block adaptive filtering, the
data sequences are arranged into blocks of length L and adaptation is
carried out only once per block.

Let XNLðmÞ denote the N � L-element input signal matrix associated with
block m and ½ yðmÞ� and ½eðmÞ� represent the L-element vectors of reference
signal and output error respectively. Then, the block LMS algorithm is
defined by the set of equations

eðmþ 1Þ� ¼ ½yðmþ 1Þ� � Xt
NLðmþ 1ÞHðmÞ

Hðmþ 1Þ ¼ HðmÞ þ � 1
L
XNLðmþ 1Þ½eðmþ 1Þ�

ð4:130Þ

The evolution of the N-element coefficient vector HðmÞ is determined by
substituting the error equation into the updating equation, to yield

Hðnþ 1Þ ¼ ½IN � �
1

L
XNLðmþ 1ÞXt

NLðmþ 1Þ�HðmÞ

þ �
L
XNLðmþ 1Þ½yðmþ 1Þ�

ð4:131Þ

The important point here is that the data are averaged. For L sufficiently
large, the following approximation is valid:

XNLðmþ 1ÞXt
NLðmþ 1Þ � LRxx ð4:132Þ

Thus the stability condition for the step size � is

0 < � <
2

	max

ð4:133Þ

If the input signal is close to a white noise, the adaptation time constant,
expressed in terms of the data period, is

� ¼ L
1

��2x
ð4:134Þ

where �2x is the input signal power, as usual. As concerns the residual error
power, it is not necessary to go through all the equations to assess the
impact of the block processing. The averaging operation carried out on
the driving term in the equation which gives the evolution of the coefficients
(4.131) produces a reduction of the error variance by the averaging factor L.
Thus, the residual error power can be expressed by



ER ¼ Emin

1

1� �
2

1

L
N�2x

ð4:135Þ

Compared to the standard LMS algorithm, it appears that the block algo-
rithm is slower but has a smoother operation. Also, it cannot track changes
in the data sequence which are limited to a single block.

It must be pointed out that some advantages in implementation can be
gained from the block processing of the data.

4.14. FIR FILTERS IN CASCADE FORM

In certain applications it is important to track the roots of the adaptive filter
z-transfer function—for instance, for stability control if the inverse system is
to be realized. It is then convenient to design the filter as a cascade of L
second-order sections HlðzÞ, 1 4 l 4 L, such that

HlðzÞ ¼ 1þ h1lz
�1 þ h2lz

�2

For real coefficients, if the roots zl are complex, then

h1l ¼ 2ReðzlÞ; h2l ¼ jzlj2 ð4:136Þ
The roots are inside the unit circle if

jh2lj < 1; jh1lj < 1þ h2l; 1 4 l 4 L ð4:137Þ
The filter transfer function is

HðzÞ ¼
YL
l¼1
ð1þ h1lz

�1 þ h2lz
�2Þ

The error gradient vector is no longer the input data vector, and it must be
calculated.

The filter output sequence can be obtained from the inverse z-transform

~yyðnÞ ¼ 1

2�j

Z
�

zn�1
YL
l¼1
ð1þ h1lz

�1 þ h2lz
�2ÞXðzÞ dz ð4:138Þ

where � is a suitable integration contour. Hence

@eðnþ 1Þ
@hki

¼ � @ ~yyðnþ 1Þ
@hki

¼ � 1

2�j

Z
�

znz�k
YL
l¼1
l 6¼i

ð1þ h1lz
�1 þ h2lz

�2ÞXðzÞ dz



or, more concisely,

@eðnþ 1Þ
@hki

¼ � 1

2�j

Z
�

znz�k
HðzÞ

1þ h1iz
�1 þ h2iz

�2 XðzÞ dz ð4:139Þ

Therefore, to form the gradient term gkiðnÞ ¼ @eðnÞ=@hki, it is sufficient to
apply the filter output ~yyðnÞ to a purely recursive second-order section, whose
transfer function is just the reciprocal of the section with index i. The
recursive section has the same coefficients, but with the opposite sign. The
corresponding diagram is given in Figure 4.11.

The coefficients are updated as follows:

hkiðnþ 1Þ ¼ hkiðnÞ þ �eðnþ 1Þgkiðnþ 1Þ; k ¼ 1; 2; 1 4 i 4 L ð4:140Þ

The filter obtained in this way is more complicated than the transversal FIR
filter, but it offers a simple method of finding and tracking the roots, which,
due to the presence of the recursive part, should be inside the unit circle in
the z-plane to ensure stability [20].

However, there are some implementation problems, because the indivi-
dual sections have to be characterized for the filter to work properly. That
can be achieved by imposing different initial conditions or by separating the
zero trajectories in the z-plane.

FIG. 4.11 Adaptive FIR filter in cascade form.



4.15. IIR GRADIENT ADAPTIVE FILTERS

In general, IIR filters achieve given minimum phase functions with fewer
coefficients than their FIR counterparts. Moreover, in some applications, it
is precisely an IIR function that is looked for. Therefore, IIR adaptive filters
are an important class, particularly useful in modeling or identifying systems
[21].

The output of an IIR filter is

~yyðnÞ ¼
XL
l¼0

alxðn� lÞ þ
XK
k¼1

bk ~yyðn� kÞ ð4:141Þ

The elements of the error gradient vector are calculated from the derivatives
of the filter output:

@ ~yyðnÞ
@al
¼ xðn� lÞ þ

XK
k¼1

bk
@ ~yyðn� kÞ
@al

; 0 4 l 4 L ð4:142Þ

and

@ ~yyðnÞ
@bk
¼ ~yyðn� kÞ þ

XK
i¼1

bi
@ ~yyðn� iÞ
@bk

; 1 4 k 4 K ð4:143Þ

To show the method of realization, let us consider the z-transfer function

HðzÞ ¼
PL
l¼0

alz
�1

1� PK
k¼1

bkz
�k
¼ NðzÞ

DðzÞ ð4:144Þ

The filter output can be written

~yyðnÞ ¼ 1

2�j

Z
�

zn�1HðzÞXðzÞ dz

Consequently

@ ~yyðnÞ
@al
¼ 1

2�j

Z
�

zn�1z�1
XðzÞ
DðzÞ dz ð4:145Þ

@ ~yyðnÞ
@bk
¼ 1

2�j

Z
�

zn�1z�k
1

DðzÞHðzÞXðzÞ dz ð4:146Þ

The gradient is thus calculated by applying xðnÞ and ~yyðnÞ to the circuits
corresponding to the transfer function 1

DðzÞ.



To simplify the implementation, the second terms in (4.142) and (4.143)
can be dropped, which leads to the following set of equations for the adap-
tive filter (in vector notation):

eðnþ 1Þ ¼ yðnþ 1Þ � ½AtðnÞ;BtðnÞ� Xðnþ 1Þ
~YYðnÞ

� 	
ð4:147Þ

Aðnþ 1Þ
Bðnþ 1Þ

� 	
¼ AðnÞ

BðnÞ
� 	

þ � Xðnþ 1Þ
~YYðnÞ

� 	
eðnþ 1Þ ð4:148Þ

The approach is called the output error technique. The block diagram is
shown in Figure 4.12(a). The filter is called a parallel IIR gradient adaptive
filter.

The analysis of the performance of such a filter is not simple, because of
the vector ~YYðnÞ of the most recent filter output data in the system equations.
To begin with, the stability can only be ensured if the error sequence eðnÞ is

FIG. 4.12 Simplified gradient IIR adaptive filters: (a) Parallel type (output error);

(b) series-parallel type (equation error).



filtered by a z-transfer function CðzÞ, such that the function CðzÞ=DðzÞ be
strictly positive real, which means

Re
CðzÞ
DðzÞ
� 	

> 0; jzj ¼ 1 ð4:149Þ

An obvious choice is CðzÞ ¼ DðzÞ.
An alternative approach to get realizable IIR filters is based on the

observation that, after convergence, the error signal is generally small and
the filter output ~yyðnÞ is close to the reference yðnÞ. Thus, in the system
equations, the filter output vector can be replaced by the reference vector:

eðnþ 1Þ ¼ yðnþ 1Þ � ½AtðnÞ;BtðnÞ� Xðnþ 1Þ
~YYðnÞ

� 	
ð4:150Þ

Aðnþ 1Þ
Bðnþ 1Þ

� 	
¼ AðnÞ

BðnÞ
� 	

þ � Xðnþ 1Þ
YðnÞ

� 	
eðnþ 1Þ ð4:151Þ

This is the equation error technique. The filter is said to be of the series-
parallel type; its diagram is shown in Figure 4.12(b). Now, only FIR filter
sections are used, and there is no fundamental stability problem anymore.
The performance analysis can be carried out as in the above sections. The
stability bound for the adaptation step size is

0 < � <
2

L�2x þ K�2y
ð4:152Þ

Overall the performance of the series-parallel IIR gradient adaptive filter
can be derived from that of the FIR filter by changing N�2x into L�2x þ K�2y .

In order to compare the performance of the parallel type and series-
parallel approaches, let us consider the expectation of the recursive coeffi-
cient vector after convergence, B1, for the parallel case. Equations (4.147)
and (4.148) yield

B1 ¼ E½ ~YYðnÞ ~YYtðnÞ��1Ef ~YYðnÞ½ yðnþ 1Þ � AtðnÞXðnþ 1Þ�g ð4:153Þ
The parallel-series type yields a similar equation, but with E½YðnÞYtðnÞ��1; if
the output error is approximated by a white noise with power �2e , then

E½YðnÞYtðnÞ� ¼ �2e IN þ E½ ~YYðnÞ ~YYtðnÞ� ð4:154Þ
and a bias is introduced on the recursive coefficients. The above equation
clearly illustrates the stability hazards associated with using ~YYðnÞ, because
the matrix can become singular. Therefore, the residual error is larger with
the parallel-series approach, while the adaptation speed is not significantly
modified, particularly for small step sizes, because the initial error sequences
are about the same for both types.



Finally, several structures are available, and IIR gradient adaptive filters
can be an attractive alternative to FIR filters in relevant applications.

4.16. NONLINEAR FILTERING

The digital filters considered up to now have been linear filters, which means
that the output is a linear function of the input data. We can have a non-
linear scalar function of the input data vector:

~yyðnÞ ¼ f ½XðnÞ� ð4:155Þ
The Taylor series expansion of the function f ðXÞ about the vector zero is

f ðXÞ ¼
X1
k¼0

1

k!

XN
i¼1

xi
@

@xi

" #k

f ðXÞ ð4:156Þ

with differential operator notation. When limited to second order, the
expansion is

~yyðnÞ ¼ y0 þHtXðnÞ þ traceðMXðnÞXtðnÞÞ ð4:157Þ
where y0 is a constant, H is the vector of the linear coefficients, and M is the
square matrix of the quadratic coefficients, the filter length N being the
number of elements of the data vector XðnÞ. This nonlinear filter is called
the second-order Volterra filter (SVF) [22].

The quadratic coefficient matrix M is symmetric because the data matrix
XðnÞXtðnÞ is symmetric. Also, if the input and reference signals are assumed
to have zero mean, ~yyðnÞ must also have zero mean, which implies

E½ ~yyðnÞ� ¼ y0 þ traceðMRÞ ð4:158Þ
Therefore (4.157) can be rewritten as

~yyðnÞ ¼ HtXðnÞ þ traceðM½XðnÞXtðnÞ � R�Þ ð4:159Þ
When this structure is used in an adaptive filter configuration, the coeffi-
cients must be calculated to minimize the output MSE, Efð yðnÞ � ~yyðnÞÞ2g:

For Gaussian signals, the optimum coefficients are

Hopt ¼ R�1E½ yðnÞXðnÞ�
Mopt ¼ 1

2
R�1E½ yðnÞXðnÞXtðnÞ�R�1

ð4:160Þ

It is worth pointing out that the linear operator of the optimum SVF, in
these conditions, is exactly the optimum linear filter. Thus, the nonlinear
filter can be constructed by adding a quadratic section in parallel to the
linear filter, as shown in Figure 4.13.



FIG. 4.13 Second-order nonlinear filter for Gaussian signals.



The minimum output MSE is

Emin ¼ E½ y2ðnÞ� � E½ yðnÞXðnÞ�tR�1E½ yðnÞXðnÞ�
� 1

2
traceðR�1E½ yðnÞXðnÞXtðnÞ�R�1E½ yðnÞXðnÞXtðnÞ�Þ

ð4:161Þ

The gradient techniques can be implemented by calculating the deriva-
tives of the output error with respect to the coefficients. The gradient adap-
tive SVF equations are

eðnþ 1Þ ¼ yðnþ 1Þ �HtðnÞXðnþ 1Þ
� traceðMðnÞ½Xðnþ 1ÞXtðnþ 1Þ � R�Þ

Hðnþ 1Þ ¼ HðnÞ þ �hXðnþ 1Þeðnþ 1Þ
Mðnþ 1Þ ¼MðnÞ þ �mXðnþ 1ÞXtðnþ 1Þeðnþ 1Þ

ð4:162Þ

where �h and �m are the adaptation steps.
The zeroth-order term traceðMðnÞRÞ is not constant in the adaptive

implementation. It can be replaced by an estimate of the mean value of
the quadratic section output, for example, using the recursive estimator of
Section 3.3.

The stability bounds for the adaptation steps can be obtained as in
Section 4.2 by considering the a posteriori error "ðnþ 1Þ:
"ðnþ 1Þ ¼ eðnþ 1Þ½1� �hXtðnþ 1ÞXðnþ 1Þ

� �mtraceðXðnþ 1ÞXtðnþ 1Þ½Xðnþ 1ÞXtðnþ 1Þ � R�Þ�
ð4:163Þ

Assuming that the linear operator acts independently, we adopt condition
(4.7) for �h. Now, the stability condition for �m is

j1� �mðtrace E½Xðnþ 1ÞXtðnþ 1ÞXðnþ 1ÞXtðnþ 1Þ� � trace R2Þj < 1

The following approximation can be made:

trace E½Xðnþ 1ÞXtðnþ 1ÞXðnþ 1ÞXtðnþ 1Þ� � ðN�2xÞ2 > trace R2

ð4:164Þ
Hence, we have the stability condition

0 < �m <
2

ðN�2xÞ2
ð4:165Þ

The total output error is the sum of the minimum error Emin given by
(4.140) and the excess MSEs of the linear and quadratic sections. Using
developments as in Section 4.3, one can show the excess MSE of the quad-
ratic section EM can be approximated by



EM �
�m
8
Emin½ðN�2xÞ2 þ 2 trace R2� ð4:166Þ

In practice, the quadratic section in general serves as a complement to the
linear section. Indeed the improvement must be worth the price paid in
additional computational complexity [23].

4.17. STRENGTHS AND WEAKNESSES OF
GRADIENT FILTERS

The strong points of the gradient adaptive filters, illustrated throughout this
chapter, are their ease of design, their simplicity of realization, their flex-
ibility, and their robustness against signal characteristic evolution and com-
putation errors.

The stability conditions have been derived, the residual error has been
estimated, and the learning curves have been studied. Simple expressions
have been given for the stability bound, the residual error, and the time
constant in terms of the adaptation step size. Word-length limitation effects
have been investigated, and estimates have been derived for the coeffficient
and internal data word lengths as a function of the specifications. Useful
variations from the classical LMS algorithm have been discussed. In short,
all the knowledge necessary for a smart and successful engineering applica-
tion has been provided.

Although gradient adaptive filters are attractive, their performance is
severely limited in some applications. Their main weakness is their depen-
dence on signal statistics, which can lead to low speed or large residual
errors. They give their best results with flat spectrum signals, but if the
signals have a fine structure they can be inefficient and unable, for example,
to perform simple analysis tasks. For these cases LS adaptive filters offer an
attractive solution.

EXERCISES

1. A sinusoidal signal xðnÞ ¼ sinðn�=2Þ is applied to a second-order linear
predictor as in Figure 4.3. Calculate the theoretical ACF of the signal
and the prediction coefficients. Verify that the zeros of the FIR pre-
diction filter are on the unit circle at the right frequency.

Using the LMS algorithm (4.3) with � ¼ 0:1, show the evolution of
the coefficients from time n ¼ 0 to n ¼ 10. How is that evolution mod-
ified if the MLAV algorithm (4.77) and the sign algorithm (4.87) are
used instead.

2. A second-order adaptive FIR filter has the above xðnÞ as input and



yðnÞ ¼ xðnÞ þ xðn� 1Þ þ 0:5xðn� 2Þ
as reference signal. Calculate the coefficients, starting from zero initial
values, from time n ¼ 0 to n ¼ 10. Calculate the theoretical residual
error and the time constant and compare with the experimental results.

3. Adaptive line enhancer. Consider an adaptive third-order FIR predic-
tor. The input signal is

xðnÞ ¼ sinðn!0Þ þ bðnÞ
where bðnÞ is a white noise with power �2b . Calculate the optimal coef-
ficients ai;opt, 1 4 i 4 3. Give the noise power in the sequence

sðnÞ ¼
X3
i¼1

ai;optxðn� iÞ

as well as the signal power. Calculate the SNR enhancement.
The predictor is now assumed to be adaptive with step � ¼ 0:1. Give

the SNR enhancement.
4. In a transmission system, an echo path is modeled as an FIR filter, and

an adaptive echo canceler with 500 coefficients is used to remove the
echo. At unity input signal power, the theoretical system gain, the echo
attenuation, is 53 dB, and the time constant specification is 800 sam-
pling periods. Calculate the range of the adaptation step size � if the
actual system gain specification is 50 dB.

Assuming the echo path to be passive, estimate the coefficient and
internal data word lengths, considering that the power of the signals
can vary in a 40-dB range.

5. An adaptive notch filter is used to remove a sinusoid from an input
signal. The filter transfer function is

HðzÞ ¼ 1þ az�1 þ z�2

1þ 0:9az�1 þ 0:81z�2

Give the block diagram of the adaptive filter. Calculate the error gra-
dient. Simplify the error gradient and give the coefficient updating
equation. The signal xðnÞ ¼ sinðn�=4Þ is fed to the filter from time
zero on. For an initial coefficient value of zero what are the trajec-
tories, in the z-plane, of the zeros and poles of the notch filter. Verify
experimentally with � ¼ 0:1.

6. An order 4 FIR predictor is realized as a cascade of two second-order
sections. Show that only one section is needed to compute the error
gradient and give the block diagram. What happens for any input
signal if the filter is made adaptive and the initial coefficient values
are zero. Now the predictor transfer function is



HðzÞ ¼ ð1� az�1 þ az�2Þð1þ bz�1 þ bz�2Þ
and the coefficients a and b are updated. Give the trajectories, in the z-
plane, of the predictor zeros.

Calculate the maximum predicting gain for the signal xð2pþ 1Þ ¼ 1,
xð2pÞ ¼ 0.

7. Give the block diagram of the gradient second-order Volterra adaptive
filter according to equations (4.162). Evaluate the computational com-
plexity in terms of numer of multiplications and additions per sam-
pling period and point out the cost of the quadratic section.
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5
Linear Prediction Error Filters

Linear prediction error filters are included in adaptive filters based on FLS
algorithms, and they represent a significant part of the processing. They
crucially influence the operation and performance of the complete system.
Therefore it is important to have a good knowledge of the theory behind
these filters, of the relations between their coefficients and the signal para-
meters, and of their implementation structures. Moreover, they are needed
as such in some application areas like signal compression or analysis [1].

5.1. DEFINITION AND PROPERTIES

Linear prediction error filters form a class of digital filters characterized by
constraints on the coefficients, specific design methods, and some particular
implementation structures.

In general terms, a linear prediction error filter is defined by its transfer
function HðzÞ, such that

HðzÞ ¼ 1�
XN
i¼1

aiz
�1 ð5:1Þ

where the coefficients are computed so as to minimize a function of the
output eðnÞ according to a given criterion. If the output power is minimized,
then the definition agrees wth that given in Section 2.8 for linear prediction.

When the number of coefficients N is a finite integer, the filter is a FIR
type. Otherwise the filter is IIR type, and its transfer function often takes the
form of a rational fraction:



HðzÞ ¼
1�PL

i¼1
aiz
�i

1�PM
i¼1

biz
�i

ð5:2Þ

For simplicity, the same number of coefficients N ¼ L ¼M is often
assumed in the numerator and denominator of HðzÞ, implying that some
may take on zero values.

The block diagram of the filter associated with equation (5.2) is shown in
Figure 5.1, where the recursive and the nonrecursive sections are repre-
sented.

As seen in Section 2.5, linear prediction corresponds to the modeling of
the signal as the output of a generating filter fed by a white noise, and the
linear prediction error filter transfer function in the inverse of the generating
filter transfer function. Therefore, the linear prediction error filter associated
with HðzÞ in (5.2) is sometimes designated by extension as an ARMA (L, M)
predictor, which means that the AR section of the signal model has L
coefficients and the MA section has M coefficients.

For a stationary signal, the linear prediction coefficients can be calculated
by LS techniques. A direct application of the general method presented in
Section 1.4 yields the set of N equations:

@

@aj
E½e2ðnÞ� ¼ rð jÞ �

XN
i¼1

airð j � iÞ ¼ 0; 1 4 j 4 N

which can be completed by the power relation (4.16)

EaN ¼ E½e2ðnÞ� ¼ rð0Þ �
XN
i¼1

airðiÞ

FIG. 5.1 IIR linear prediction error filter.



In concise form, the linear prediction matrix equation is

RNþ1
1
�AN

� 	
¼ EaN

0

� 	
ð5:3Þ

where AN is the N-element prediction coefficient vector and EaN is the
prediction error power. The ðN þ 1Þ � ðN þ 1Þ signal AC matrix, RNþ1, is
related to RN by

RNþ1 ¼
rð0Þ rð1Þ � � � rðNÞ
rð1Þ
..
.

rðNÞ RN

2
6664

3
7775; RN ¼ E½XðnÞXtðnÞ� ð5:4Þ

The linear prediction equation is also the AR modeling equation (2.63)
given in Section 2.5.

The above coefficient design method is valid for any stationary signal. An
alternative and illustrative approach can be derived, which is useful when
the signal is made of determinist, or predictable, components in noise.

Let us assume that the input signal is

xðnÞ ¼ sðnÞ þ bðnÞ ð5:5Þ
where sðnÞ is a useful signal with power spectral density Sð!Þ and bðnÞ a zero
mean white noise with power �2b . The independence relation between the
sequences sðnÞ and bðnÞ leads to

EaN ¼ E½e2ðnÞ� ¼ 1

2�

Z �

��
jHð!Þj2Sð!Þ d!þ �2bð1þ At

NANÞ ð5:6Þ

The factor jHð!Þj2 is a function of the prediction coefficients which can be
calculated to minimize EaN by setting to zero the derivatives of (5.6) with
respect to the coefficients. The two terms on the right side of (5.6) can be
characterized as the residual prediction error and the amplified noise,
respectively. Indeed their relative values reflect the predictor performance
and the degradation caused by the noise added to the useful signal.

If EaN ¼ 0, then there is no noise, �2b ¼ 0, and the useful signal is pre-
dictable; in other words, it is the sum of at most N cisoids. In that case, the
zeros of the prediction error filter are on the unit circle, at the signal fre-
quencies, like those of the minimal eigenvalue filter. These filters are identi-
dal, up to a constant factor, because the prediction equation

RNþ1
1
�AN

� 	
¼ 0 ð5:7Þ

is also an eigenvalue equation, corresponding to 	min = 0.



A characteristic property of linear prediction error filters is that they are
minimum phase, as shown in Section 2.8; all of their zeros are within or on
the unit circle in the complex plane.

As an illustration, first- and second-ordr FIR predictors are studied next.

5.2. FIRST- AND SECOND-ORDER FIR PREDICTORS

The transfer function of the first-order FIR predictor is

HðzÞ ¼ 1� az�1 ð5:8Þ
Indeed its potential is very limited. It can be applied to a constant signal in
white noise with power �2b :

xðnÞ ¼ 1þ bðnÞ
The prediction error power is

E½e2ðnÞ� ¼ jHð1Þj2 þ �2bð1þ a2Þ ¼ ð1� aÞ2 þ �2bð1þ a2Þ ð5:9Þ
Setting to zero the derivative of E½e2ðnÞ� with respect to the coefficient a
yields

a ¼ 1

1þ �2b
ð5:10Þ

The zero of the filter is on the real axis in the z-plane when �2b ¼ 0 and
moves away from the unit circle toward the origin when the noise power is
increased.

The ratio of residual prediction error to amplified noise power is maximal
for �2b ¼

ffiffiffi
2
p

, which corresponds to a SNR ratio of �1:5 dB. Its maximum
value is about 0.2, which means that the residual prediction error power is
much smaller than the amplified noise power.

The transfer function of the second-order FIR predictor is

HðzÞ ¼ 1� a1z
�1 � a2z

�2 ð5:11Þ
It can be applied to a sinusoid in noise:

xðnÞ ¼
ffiffiffi
2
p

sinðn!0Þ þ bðnÞ
The prediction error power is

E½e2ðnÞ� ¼ jHð!0Þj2 þ �2bð1þ a21 þ a22Þ
Hence,



a1 ¼ 2 cos!0

sin2 !0 þ
�2b
2

sin2 !0 þ �2bð2þ �2bÞ
ð5:12Þ

and

a2 ¼ �1 1� �2b
1þ �2b þ 2 cos2 !0

ð1þ �2bÞ2 � cos2 !0

" #
ð5:13Þ

When the noise power vanishes, the filter zeros reach the unit circle in the
complex plane and take on the values e�j!0 . They are complex if
a21 þ 4a2 < 0, which is always verified as soon as j cos!0j <

ffiffi
2
p
2
; that is,

�
4
4 !0 4 3�

4
. Otherwise the zeros are complex when the noise power is

small enough. The noise power limit �2bL is the solution of the following
third-degree equation in the variable x ¼ 1þ �2b :

x3 þ x2
3 cos2 !0

8 cos2 !0 � 4
� x

3

2
cos2 !0 þ

4 cos6 !0 þ cos2 !0

8 cos2 !0 � 4
¼ 0 ð5:14Þ

This equation has only one positive and real solution for the relevant values
of the frequency !0. So, �

2
bL can be calculated; a simple approximation is [2]

�2bL � 1:33!3
0 ð!0 in radiansÞ ð5:15Þ

The trajectory of the zeros in the complex plane when the additive noise
power varies is shown in Figure 5.2. When the noise power increases from
zero, the filter zeros move from the unit circle on a circle centered at þ1 and
with radius approximately !0; beyond �

2
bL they move on the real axis toward

the origin.
The above results are useful for the detection of sinusoids in noise.

5.3. FORWARD AND BACKWARD PREDICTION
EQUATIONS

The linear prediction error is also called the process innovation to illustrate
the fact that new information has become available. However, when a limited
fixed number of data is handled, as in FIR or transversal filters, the oldest
data sample is discarded every time a new sample is acquired. Therefore, to
fully analyze the system evolution, one must characterize the loss of the
oldest data sample, which is achieved by backward linear prediction.

The forward linear prediction error eaðnÞ is

eaðnÞ ¼ xðnÞ �
XN
i¼1

aixðn� iÞ



or, in vector notation,

eaðnÞ ¼ xðnÞ � At
NXðn� 1Þ ð5:16Þ

The backward linear prediction error ebðnÞ is defined by

ebðnÞ ¼ xðn�NÞ � Bt
NXðnÞ ð5:17Þ

where BN is the vector of the backward coefficients. The two filters are
shown in Figure 5.3.

The minimization of E½e2bðnÞ� with respect to the coefficients yields the
backward linear prediction matrix equation

RNþ1
�BN

1

� 	
¼ 0

EbN

� 	
ð5:18Þ

Premultiplication by the co-identity matrix JNþ1 gives

JNþ1RNþ1
�BN

1

� 	
¼ EbN

0

� 	
which, considering relation (3.57) in Chapter 3, yields

RNþ1
1

�JNBN

� 	
¼ EbN

0

� 	
ð5:19Þ

FIG. 5.2 Location of the zeros of a second-order FIR predictor applied to a sinu-

soid in noise with varying power.



Hence

AN ¼ JNBN; EaN ¼ EbN ¼ EN ð5:20Þ

For a stationary input signal, forward and backward prediction error
powers are equal and the coefficients are the same, but in reverse order.
Therefore, in theory, linear prediction analysis can be performed by the
forward and backward approaches. However, it is in the transition phases
that a difference appears, as seen in the next chapter. When the AC matrix is
estimated, the best performance is achieved by combining both approaches,
which gives the forward-backward linear prediction (FBLP) technique pre-
sented in Section 9.6.

Since the forward linear prediction error filter is minimum phase, the
backward filter is maximum phase, due to (5.20).

An important property of backward linear prediction is that it provides a
set of uncorrelated signals. The errors ebiðnÞ for successive orders 0 4 i 4 N
are not correlated. To show this useful result, let us express the vector of
backward prediction errors in terms of the corresponding coefficients by
repeatedly applying equation (5.17):

eb0ðnÞ
eb1ðnÞ
eb2ðnÞ

..

.

ebðN�1ÞðnÞ

2
666664

3
777775

t

¼ XtðnÞ

1 �B1

0 1 �B2

0 0 1 �BN�1
..
. ..

. ..
. . .

.

0 0 0 � � � 1

2
666664

3
777775 ð5:21Þ

FIG. 5.3 Forward and backward linear prediction error filters.



In more concise form, (5.21) is

½ebðnÞ�t ¼ XtðnÞMB

To check for the correlation, let us compute the backward error covariance
matrix:

Ef½ebðnÞ�½ebðnÞ�tg ¼Mt
BRNMB ð5:22Þ

By definition it is a symmetrical matrix. The product RNMB is a lower
triangular matrix, because of equation (5.18). The main diagonal consists
of the successive prediction error powers Eið0 4 i 4 N � 1Þ. But Mt

B is also
a lower triangular matrix. Therefore, the product must have the same struc-
ture; since it must be symmetrical, it can only be a diagonal matrix. Hence

Ef½ebðnÞ�½ebðnÞ�tg ¼ diagðEiÞ ð5:23Þ
and the backward prediction error sequences are uncorrelated. It can be
verified that the same reasoning cannot be applied to forward errors.

The AC matrix RNþ1 used in the above prediction equations contains RN ,
as shown in decomposition (5.4), and order iterative relations can be derived
for linear prediction coefficients.

5.4. ORDER ITERATIVE RELATIONS

To simplify the equations, let

raN ¼
rð1Þ
rð2Þ
..
.

rðNÞ

2
6664

3
7775; rbN ¼ JNr

a
N ð5:24Þ

Now, the following equation is considered, in view of deriving relations
between order N and order N � 1 linear prediction equations:

RN rbN

ðrbNÞt rð0Þ

2
4

3
5

1
�AN�1

0

2
664

3
775 ¼ EN�1

0

N

2
4

3
5 ð5:25Þ

where

KN ¼ rðNÞ �
XN�1
i¼1

ai;N�1rðN � iÞ ð5:26Þ

For backward linear prediction, using (5.20), we have

................ ............. .........

..........



rð0Þ ðraNÞt

raN RN

2
4

3
5

0
�BN�1

1

2
664

3
775 ¼

KN

0

EN�1

2
664

3
775 ð5:27Þ

Multiplying both sides by the factor kN ¼ KN=EN�1 yields

RNþ1

0
�BN�1

1

2
4

3
5kN

2
64

3
75 ¼ k2NEN�1

0
KN

2
4

3
5 ð5:28Þ

Subtracting (5.28) from (5.25) leads to the order N linear prediction equa-
tion, which for the coefficients implies the recursion

AN ¼ AN�1
0

� 	
� kN

BN�1
�1

� 	
ð5:29Þ

and

EN ¼ EN�1ð1� k2NÞ ð5:30Þ
for the prediction error power. The last row of recursion (5.29) gives the
important relation

aNN ¼ kN ð5:31Þ
Finally the order N linear prediction matrix equation (5.3) can be solved

recursively by the procedure consisting of equations (5.28), (5.31), (5.29),
and (5.30) and called the Levinson–Durbin algorithm. It is given in Figure
5.4, and the corresponding FORTRAN subroutine to solve a linear system
is given in Annex 5.1. Solving a system of N linear equations when the
matrix to be inverted is Toeplitz requires N divisions and NðN þ 1Þ multi-
plications, instead of the N3

3
multiplications mentioned in Section 3.4 for the

triangular factorization.
An alternative approach to compute the scalars ki is to use the cross-

correlation variables hjN defined by

hjN ¼ E½xðnÞeaNðn� jÞ� ð5:32Þ
where eaNðnÞ is the output of the forward prediction error filter having N
coefficients [3]. As mentioned in Section 2.5, the sequence hjN is the impulse
response of the generating filter when xðnÞ is an order N AR signal. From
the definition (5.16) for eaNðnÞ, the variables hjN are expressed by

hjN ¼ rð jÞ �
XN
i¼1

aiNrði þ jÞ

................ ............. .........

..........



or, in vector notation,

hjN ¼ rð jÞ � ðrjNÞtAN ð5:33Þ
where

ðrjNÞt ¼ ½rð j þ 1Þ; rð j þ 2Þ; . . . ; rð j þNÞ�
Clearly, the above definition leads to

h0N ¼ EN ð5:34Þ
and

kN ¼
hð�NÞðN�1Þ
EN�1

¼ hð�NÞðN�1Þ
h0ðN�1Þ

ð5:35Þ

A recursion can be derived from the prediction coefficient recursion (5.29) as
follows:

hjN ¼ hjðN�1Þ þ kNðrjNÞt BN�1
�1

� 	
ð5:36Þ

Developing the second term on the right gives

ðrjNÞt BN�1
�1

� 	
¼ �hð�j�NÞðN�1Þ ð5:37Þ

FIG. 5.4 The Levinson–Durbin algorithm for solving the linear prediction

equation.



Thus

hjN ¼ hjðN�1Þ � kNhð�j�NÞðN�1Þ ð5:38Þ
which yields, as a particular case if we take relation (5.35) into account,

h0N ¼ h0ðN�1Þð1� k2NÞ ¼ EN ð5:39Þ
Now a complete algorithm is available to compute the coefficients ki. It is

based entirely on the variables hji and consists of equations (5.35) and (5.38).
The FORTRAN subroutine is given in Annex 5.2. The initial conditions are
given by definition (5.33):

hj0 ¼ rð jÞ ð5:40Þ
According to the hjN definition (5.32) and the basic decorrelation property
of linear prediction, the following equations hold:

hji ¼ 0; �i 4 j 4 � 1 ð5:41Þ
If N coefficients ki have to be computed, the indexes of the variables hji

involved are in the range ð�N;N � 1Þ, as can be seen from equations (5.35)
and (5.38). The multiplication count is about NðN � 1Þ.

An additional property of the above algorithm is that the variables hij are
bounded, which is useful for fixed-point implementation. Considering the
definition (5.32), the cross-correlation inequality (3.10) of Chapter 3 yields

jhjN j ¼ jE½xðnÞeðn� jÞ�j 4 1
2
ðrð0Þ þ ENÞ

Since EN 4 rð0Þ for all N,

jhjN j 4 rð0Þ ð5:42Þ
The variables hjN are bounded in magnitude by the signal power.

The number of operations needed in the two methods presented above to
compute the ki coefficients is close to N2. However, it is possible to improve
that count by a factor 2, using second-order recursions.

5.5. THE SPLIT LEVINSON ALGORITHM

The minimization of the quantity

Ef½xðnÞ � Pt
NXðn� 1Þ�2 þ ½xðn� 1�NÞ � Pt

NXðn� 1Þ�2g
with respect to the elements of the vector PN yields

2RNPN ¼ raN þ rbN

or



PN ¼ 1
2
ðAN þ BNÞ ð5:43Þ

which reflects the fact that the coefficients PN are the symmetrical part of the
prediction coefficients.

The associated matrix equation is

RNþ2
1
�2PN

1

2
4

3
5 ¼ rð0Þ ðraNÞt rðN þ 1Þ

raN RN rbN
rðN þ 1Þ ðrbNÞt rð0Þ

2
4

3
5 1
�2PN

1

2
4

3
5 ¼ EpN

0
EpN

2
4

3
5
ð5:44Þ

with

EpN ¼ EN þ KNþ1 ¼ EN 1þ KNþ1
EN

� �
¼ ENð1þ kNþ1Þ ð5:45Þ

This equation can be exploited to compute the reflection coefficients recur-
sively, with the help of the matrix equations

RNþ2

1
�2PN�1

1
0

2
664

3
775 ¼

EpðN�1Þ
0

EpðN�1Þ
K 0

2
664

3
775 ð5:46Þ

and

RNþ2

0
1

�2PN�1
1

2
664

3
775 ¼

K 0

EpðN�1Þ
0

EpðN�1Þ

2
664

3
775 ð5:47Þ

with

K 0 ¼ rðN þ 1Þ þ rð1Þ � 2½rðNÞ; . . . ; rð2Þ�PN�1

and finally

RNþ2

0
1

�2PN�2
1
0

2
66664

3
77775 ¼

K 00

EpðN�2Þ
0

EpðN�2Þ
K 00

2
66664

3
77775 ð5:48Þ

with

K 00 ¼ rð1Þ þ rðNÞ � 2½rð2Þ; . . . ; rðN � 1Þ�PN�2

By recursion, the order two recursion is obtained as



1
�2PN

1

2
4

3
5 ¼

1
�2PN�1

1
0

2
664

3
775þ

0
1

�2PN�1
1

2
664

3
775� EpðN�1Þ

EpðN�2Þ

0
1

�2PN�2
1
0

2
66664

3
77775 ð5:49Þ

Thus, the coefficients PN can be computed from PN�1 and PN�2, with the
help of the error power variables EpðN�1Þ and EpðN�2Þ. The reflection coeffi-
cient kN itself can also be computed recursively, combining recursion (5.30)
for prediction error powers with equation (5.45), which leads to

EpðN�1Þ
EpðN�2Þ

¼ ð1þ kNÞð1� kN�1Þ ð5:50Þ

The initialization is

p11 ¼
rð1Þ
rð0Þ ¼ k1; 2p12 ¼ 2p22 ¼

rð1Þ þ rð2Þ
rð0Þ þ rð1Þ ð5:51Þ

The error power is computed directly, according to its definition

EpN ¼ rð0Þ � 2
XN
i¼1

rðiÞpiN þ rðN þ 1Þ ð5:52Þ

The main advantage of this method is the gain in operation count by a
factor close to two, with respect to the classical Levinson algorithm, because
of the symmetry of the coefficients ðpiN ¼ pðNþ1�iÞNÞ. The resulting algo-
rithm consists of equations (5.49), (5.50), and (5.52) and it is called the
split Levinson algorithm.

It is worth pointing out that the antisymmetric part of the prediction
coefficients can be processed in a similar manner.

The order recursions can be associated with a particular structure, the
lattice prediction filter.

5.6. THE LATTICE LINEAR PREDICTION FILTER

The coefficients ki establish direct relations between forward and backward
prediction errors for consecutive orders. From the definition of the order N
forward prediction error eaNðnÞ, we have

eaNðnÞ ¼ xðnÞ � At
NXðn� 1Þ ð5:53Þ

and the coefficient recursion (5.29), we derive

eaNðnÞ ¼ eaðN�1ÞðnÞ � kN ½�Bt
N�1; 1�Xðn� 1Þ ð5:54Þ

The order N backward prediction error ebNðnÞ is



ebNðnÞ ¼ xðn�NÞ � Bt
NXðnÞ ð5:55Þ

For order N � 1,

ebðN�1ÞðnÞ ¼ xðnþ 1�NÞ �
XN�1
i¼1

biðN�1Þxðnþ 1� iÞ ¼ ½�Bt
N�1; 1�XðnÞ

ð5:56Þ
Therefore, the prediction errors can be rewritten as

eaNðnÞ ¼ eaðN�1ÞðnÞ � kNebðN�1Þðn� 1Þ ð5:57Þ
and

ebNðnÞ ¼ ebðN�1Þðn� 1Þ � kNeaðN�1ÞðnÞ ð5:58Þ
The corresponding structure is shown in Figure 5.5; it is called a lattice filter
section, and a complete FIR filter of order N is realized by cascading N such
sections. Indeed, to start, eb0ðnÞ ¼ xðnÞ. Now the lattice coefficients ki can be
further characterized. Consider the cross-correlation

E½eaNðnÞebNðn� 1Þ� ¼ rðN þ 1Þ � Bt
Nr

a
N � At

NJNr
a
N þ At

NRNBN ð5:59Þ
Because of the backward prediction equation

RNBN ¼ rbN ¼ JNr
a
N ð5:60Þ

the sum of the last two terms in the above cross-correlation is zero. Hence

E½eaNðnÞebNðn� 1Þ� ¼ rðN þ 1Þ � Bt
Nr

a
N ¼ KNþ1

and

kN ¼
E½eaðN�1ÞðnÞebðN�1Þðn� 1Þ�

EN�1
ð5:61Þ

FIG. 5.5 Lattice linear prediction filter section.



The lattice coefficients represent a normalized cross-correlation of for-
ward and backward prediction errors. They are often called the PARCOR
coefficients [4]. Due to wave propagation analogy, they are also called the
reflection coefficients.

The lattice coefficient kN is related to the N zeros zi of the order N FIR
prediction error filter, whose transfer function is

HNðzÞ ¼ 1�
XN
i¼1

aiNz
�1 ¼

YN
i¼1
ð1� ziz

�1Þ ð5:62Þ

Since kN ¼ aNN , we have

kN ¼ ð�1ÞNþ1
YN
i¼1

zi ð5:63Þ

From the filter linear phase property, we know that jzij 4 1, which yields

jkN j 4 1 ð5:64Þ
Conversely, using (5.29), it can be shown iteratively that, if the lattice coef-
ficient absolute values are bounded by unity, then the prediction error filter
has all its roots inside the unit circle and, thus, it is minimum phase.
Therefore, it is very easy to check for the minimum phase property of a
lattice FIR filter. Just check that the magnitude of the lattice coefficients
does not exceed unity.

The correspondence between PARCOR and the transversal filter coeffi-
cients is provided by recursion (5.29). In order to get the set of
aiNð1 4 i 4 NÞ from the set of kið1 4 i 4 NÞ, we need to iterate the recur-
sion N times with increasing indexes. To get the ki from the aiN , we must
proceed in the reverse order and calculate the intermediate coefficients
ajiðN � 1 5 i 5 1; j 4 iÞ by the following expression:

ajði�1Þ ¼
1

1� k2i
½aji þ kiaði�jÞi�; ki ¼ aii ð5:65Þ

The procedure is stopped if ki ¼ 1, which means that the signal consists of i
sinusoids without additive noise.

Two additional relations are worth pointing out:

1�
XN
i¼1

ai ¼
YN
i¼1
ð1� kiÞ ð5:66Þ

rð0Þ ¼ �2x ¼
XN
i¼1

kiEi ð5:67Þ



A set of interesting properties of the transversal filter coefficients can be
deduced from the magnitude limitation of the PARCOR coefficients [5]. For
example,

jaiN j 4
N!

ðN � iÞ!i! 4 2N�1 ð5:68Þ

which can be useful for coefficient scaling in fixed-point implementation and
leads to

XN
i¼1
jaiN j 4 2N � 1 ð5:69Þ

and

kANk2 ¼ At
NAN 4

ð2nÞ!
ðn!Þ2 � 1 ð5:70Þ

This bound is reached for the two theoretical extreme cases where ki ¼ �1
and ki ¼ ð�1Þi�1ð1 4 i 4 NÞ.

The results we have obtained in linear prediction now allow us to com-
plete our discussion on AC matrices and, particularly, their inverses.

5.7. THE INVERSE AC MATRIX

When computing the inverse of a matrix, first compute the determinant. The
linear prediction matrix equation is

1
�AN

� 	
¼ rð0Þ ðraNÞt

raN RN

� 	�1
EN

0

� 	
ð5:71Þ

The first row yields

1 ¼ detRN

detRNþ1
EN ð5:72Þ

which, using the Levinson recursions, leads to

detRN ¼ ½rð0Þ�N
YN�1
i¼1
ð1� k2i ÞN�i ð5:73Þ

To exploit further equation (5.59), let us denote by Vi the column vectors of
the inverse matrix R�1Nþ1.

Considering the forward and backward linear prediction equations, we
can write the vectors V1 and VNþ1 as



V1 ¼
1

EN

1
�AN

� 	
; VNþ1 ¼

1

EN

�BN

1

� 	
ð5:74Þ

Thus, the prediction coefficients show up directly in the inverse AC matrix,
which can be completely expressed in terms of these coefficients.

Let us consider the 2ðN þ 1Þ � ðN þ 1Þ rectangular matrix MA defined by

Mt
A ¼

1 �a1N �a2N � � � �aNN 0 � � � 0 0

0 1 �a1N � � � �aðN�1ÞN �aNN � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 1 �a1N � � � �aNN 0

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N þ 1 N þ 1 (5.75)

The prediction equation (5.3) and relations (2.64) and (2.72) for AR signals
yield the equality

Mt
AR2ðNþ1ÞMA ¼ ENINþ1 ð5:76Þ

where R2ðNþ1Þ is the AC matrix of the order N AR signal. Pre- and post-
multiplying by MA and Mt

A; respectively, gives

ðMAM
t
AÞR2ðNþ1ÞðMAM

t
AÞ ¼ ðMAM

t
AÞEN ð5:77Þ

The expression of the matrix R�1Nþ1 is obtained by partitioning MA into two
square ðN þ 1Þ � ðN þ 1Þ matrices MA1 and MA2,

Mt
A ¼ ½Mt

A1;M
t
A2� ð5:78Þ

and taking into account the special properties of the triangular matrices
involved

R�1Nþ1 ¼
1

EN

ðMt
A1MA1 �MA2M

t
A2Þ ð5:79Þ

This expression shows that the inverse AC matrix is doubly symmetric. If
the signal is AR with order less than N, then R�1Nþ1 is Toeplitz in the center,
but edge effects appear in the upper left and lower right corners. A simple
example is given in Section 3.4.

Decomposition (5.67) can be extended to matrices which are not doubly
symmetric. In that case, the matrices MB1 and MB2 of the backward predic-
tion coefficients are involved, and the equation becomes

R�1Nþ1 ¼
1

EaN

ðMt
A1MB1 �MB2M

t
A2Þ ð5:79aÞ



An alternative decomposition of R�1Nþ1 can be derived from the cross-
correlation properties of data and error sequences.

Since the error signal eNðnÞ is not correlated with the input data
xðn� 1Þ; . . . ; xðn�NÞ, the sequences eN�iðn� iÞ, 0 4 i 4 N, are not corre-
lated. In vector form they are written

eNðnÞ
eN�1ðn� 1Þ

..

.

e0ðn�NÞ

2
6664

3
7775 ¼

1 � � � �AN � � � � � �
0 1 � � � �AN�1 � � �
..
. ..

. ..
.

0 0 � � � � � � 1

2
6664

3
7775

xðnÞ
xðn� 1Þ

..

.

xðn�NÞ

2
6664

3
7775 ð5:80Þ

The covariance matrix is the diagonal matrix of the prediction errors. After
algebraic manipulations we have

R�1Nþ1 ¼

1 0 � � � 0

�a1N 1 � � � 0

�a2N �a2ðN�1Þ � � � 0

..

. ..
. . .

. ..
.

�aNN �aðN�1ÞðN�1Þ � � � 1

2
66666664

3
77777775

E�1N 0 � � � 0

0 E�1N�1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � E�10

2
66664

3
77775

�

1 �a1N �a2N � � � �aNN

0 1 �a1ðN�1Þ � � � �a1ðN�1ÞðN�1Þ
..
. ..

. . .
. � � � ..

.

0 0 � � � � � � 1

2
6664

3
7775 ð5:81Þ

This is the triangular Cholesky decomposition of the inverse AC matrix.
It can also be obtained by considering the backward prediction errors,
which are also uncorrelated, as shown in Section 5.3.

The important point in this section is that the inverse AC matrix is
completely represented by the forward prediction error power and the pre-
diction coefficients. Therefore, LS algorithms which implement R�1N need
not manipulate that matrix, but need only calculate the forward prediction
error power and the forward and backward prediction coefficients. This is
the essence of FLS algorithms.

5.8. THE NOTCH FILTER AND ITS APPROXIMATION

The ideal predictor is the filter which cancels the predictable components in
the signal without amplifying the unpredictable ones. That favorable situa-
tion occurs with sinusoids in white noise, and the ideal filter is the notch
filter with frequency response

.
.

.



HNI ð!Þ ¼ 1�
XM
i¼1

�ð!� !iÞ ð5:82Þ

where �ðxÞ is the Dirac distribution and the !i, 1 4 i 4 M, are the frequen-
cies of the sinusoids. Clearly, such a filter completely cancels the sinusoids
and does not amplify the input white noise.

An arbitrarily close realization HNð!Þ of the ideal filter is achieved by

HNðzÞ ¼
QM
i¼1
ð1� e j!i z�1Þ

QM
i¼1
ð1� ð1� "Þe j!i z�1Þ

ð5:83Þ

where the positive scalar " is made arbitrarily small [6]. The frequency
response of a second-order notch filter is shown in Figure 5.6, with the
location of poles and zeros in the z-plane.

The notch filter cannot be realized by an FIR predictor. However, it can
be approximated by developing in series the factors in the denominator of
HNðzÞ, which yields

1

1� Piz
�1 ¼ 1þ

X1
n¼1
ðPiz

�1Þn ð5:84Þ

This approach is used to figure out the location in the z-plane of the zeros
and poles of linear prediction filters.

FIG. 5.6 The notch filter response, zeros and poles.



5.9. ZEROS OF FIR PREDICTION ERROR FILTERS

The first-order notch filter HN1ðzÞ is adequate to handle zero frequency
signals:

HN1ðzÞ ¼
1� z�1

1� ð1� "Þz�1 ð5:85Þ

A simple Tchebycheff FIR approximation is

HðzÞ ¼ 1� z�1

1� ð1� "Þz�1 ½1� ðbz
�1ÞN �

where b is a positive real constant. Now, a realizable filter is obtained for
b ¼ 1� ", because

HðzÞ ¼ ð1� z�1Þ½1þ bz�1 þ � � � þ bN�1z�ðN�1Þ� ð5:86Þ
Now constant b can be calculated to minimize the prediction error power.

For a zero frequency signal sðnÞ of unit power, a white input noise with
power �sb, the output power of the filter with transfer function HðzÞ given by
(5.74) is

E½e2ðnÞ� ¼ 2�2b
1þ b2N�1

1þ b
ð5:87Þ

The minimum is reached by setting to zero the derivative with respect to b;
thus

b ¼ 1

2N � 1þ ð2N � 2Þb
� 	1=2ðN�1Þ

ð5:88Þ

For b reasonably close to unity the following approximation is valid:

b � 1

4N � 3

� 	1=2ðN�1Þ
ð5:89Þ

According to (5.86) the zeros of the filter which approximates the pre-
diction error filter are located at þ1 and be j2�i=N , 1 4 i 4 N � 1, in the
complex plane. And the circle radius b does not depend on the noise power.
For large N, b comes close to unity, and estimate (5.89) is all the better.
Figure 5.7(a) shows true and estimated zeros for a 12-order prediction error
filter.

A refinement in the above procedure is to replace 1� z�1 by 1� az�1 in
HðzÞ and optimize the scalar a because, in the prediction of noisy signals, the
filter zeros are close to but not on the unit circle, as pointed out earlier,
particularly in Section 5.2.



The above approach can be extended to estimate the prediction error
filter zeros when the input signal consists of M real sinusoids of equal
amplitude and uniformly distributed on the frequency axis. The approxi-
mating transfer function is

HðzÞ ¼ 1� z�2M

1� b2Mz�2M
ð1� bNz�NÞ ð5:90Þ

If N ¼ k 2M, for integer k, the output error power is

E½e2ðnÞ� ¼ 2�2b
1þ b2N�2M

1þ b2M
ð5:91Þ

the minimization procedure leads to

b � M

2N � 3M

� 	1=2ðN�2MÞ
ð5:92Þ

Equation (5.89) corresponds to the above expression when M ¼ 1
2
. Note

that the zero circle radius b depends on the number N � 2M, which can be
viewed as the number of free or uncommitted zeros in the filter; the mission
of these zeros is to bring down the amplification of the input noise power. If
the noise is not flat, they are no longer on a circle within the unit circle.

The validity of the above derivation might look rather restricted, since
the sinusoidal frequencies have to be uniformly distributed and the filter
order N must be a multiple of the number of sinusoids M. Expression (5.92)
remains a reasonably good approximation of the zero modulus as soon as

FIG. 5.7 Zeros of a 12-order predictor applied to (a) a zero frequency signal and (b)

a �
12

frequency sinusoid.



N > 2M. For example, the true and estimated zeros of an order 12 linear
prediction error filter, applied to the sinusoid with frequency �

12
, are shown

in Figure 5.7(b).
When the sinusoidal frequencies are arbitrarily distributed on the fre-

quency, the output noise power is increased with respect to the uniform
case and the zeros in excess of 2M come closer to the unit circle center.
Therefore expression (5.92) may be regarded as an estimation of the upper
bound of the distance of the zeros in excess of 2M to the center of the unit
circle. That result is useful for the retrieval of sinusoids in noise [7].

The foregoing results provide useful additional information about the
magnitude of the PARCOR coefficients.

When the PARCOR coefficients ki are calculated iteratively, their mag-
nitudes grow, monotonically or not, up to a maximum value which, because
of equation (5.53), corresponds to the prediction filter order best fitted to the
signal model. Beyond, the ki decrease in magnitude, due to the presence of
the zeros in excess.

If the signal consists of M real sinusoids, then

jkN j � bN�2M; N 5 2M ð5:93Þ
Substituting (5.80) into (5.81) gives

kn �
M

2N � 3M

� �1=2

N 5 2M ð5:94Þ

Equation (5.94) is a decreasing law which can be extended to any signal and
considered as an upper bound estimate for the lattice coefficient magnitudes
for predictor orders exceeding the signal model order. In Figure 5.8 true
lattice coefficients are compared with estimates for sinusoids at freqeuncies �

2

and �
12
.

The magnitude of the maximum PARCOR coefficient is related to the
input SNR. The relation is simple for M sinusoids uniformly distributed on
the frequency axis, because the order 2M prediction error filter is

HðzÞ ¼ 1� b2Mz�2M ð5:95Þ
The optimum value of b is derived from the prediction error power as
before, so

b2M ¼ jk2M j ¼
SNR

1þ SNR
ð5:96Þ

The approach taken to locate the predictor zeros can also be applied to
the poles of an IIR filter.



5.10. POLES OF IIR PREDICTION ERROR FILTERS

The transfer function of a purely recursive IIR filter of order N is

HðzÞ ¼ 1

1�PN
i¼1

biz
�i

ð5:97Þ

Considering a zero frequency signal in noise, to begin with, we can obtain a
Tchebycheff approximation of the prediction error filter 1� az�1 by the
expression

HðzÞ ¼ 1� az�1

1� aNþ1z�ðNþ1Þ
¼ 1

1þ az�1 þ � � � þ aNz�N
ð5:98Þ

where 0� a < 1. Now the prediction error power is

E½e2ðnÞ� ¼ jHð1Þj2 þ �2b
X1
i¼0

h2i

 !

where the hi is the filter impulse response. A simple approximation is

FIG. 5.8 Lattice coefficients vs. predictor order for sinusoids.



E½e2ðnÞ� � jHð1Þj2 þ �2b
1þ a2

1� a2ðNþ1Þ
ð5:99Þ

The parameter a is obtained by setting to zero the derivative of the predic-
tion error power. However, a simple expression is not easily obtained.

Two different situations must be considered separately, according to the
noise power �2b . For small noise power

@

@a

1� a

1� aNþ1

� �2

� � 1

N þ 1
;
@

@a

1þ a2

1� a2ðNþ1Þ

" #
� 1

N þ 1

1

ð1� aÞ2

and

a � 1� �b ð5:100Þ
On the other hand, for large noise power, simple approximations are

@

@a

1� a

1� aNþ1

� �2

� �2ð1� aÞ; @

@a

1þ a2

1� a2ðNþ1Þ

" #
� 2a

which yield

a � 1

1þ �2b
ð5:101Þ

In any case, for a zero frequency signal the poles of the IIR filter are
uniformly distributed in the complex plane on a circle whose radius depends
on the SNR. We can rewrite HðzÞ as

HðzÞ ¼ 1QN
n¼1
ð1� ae jn!0z�1Þ

; !0 ¼
2�

N þ 1
ð5:102Þ

There is no pole at the signal frequency and, in some sense, the IIR predictor
operates by default.

The prediction gain is limited. Since jaj < 1 for stability reasons, we
derive a simple bound Emin for the prediction power from (5.99) and
(5.98), neglecting the input noise:

Emin ¼
1

ðN þ 1Þ2 ð5:103Þ

The above derivations can be extended to signals made of sinusoids in noise.
The results show, as above, that the purely recursive IIR predictors are not
as efficient as their FIR counterparts.



5.11. GRADIENT ADAPTIVE PREDICTORS

The gradient techniques described in the previous chapter can be applied to
prediction filters. A second-order FIR filter is taken as an example in
Section 4.4. The reference signal is the input signal itself, which simplifies
some expressions, such as coefficient and internal data word-length estima-
tions (4.61) and (4.65) in Chapter 4, which in linear prediction become

bc � log2ð�eÞ þ log2ðGpÞ þ log2ðamaxÞ ð5:104Þ
and

bi � 2þ 1
2
log2ð�eÞ þ log2ðGpÞ ð5:105Þ

where G2
p is the prediction gain, defined, according to equation (4.9) in

Chapter 4, as the input signal-to-prediction-error power ratio. The maxi-
mum magnitude of the coefficients, amax, is bounded by 2N�1 according to
inequality (5.68).

The purely recursive IIR prediction error filter in Figure 5.9 is a good
illustration of adaptive IIR filters. Its equations are

eðnþ 1Þ ¼ xðnþ 1Þ � BtðnÞEðnÞ
Bðnþ 1Þ ¼ BðnÞ þ �eðnþ 1ÞEðnÞ ð5:106Þ

with

BtðnÞ ¼ ½b1ðnÞ; . . . ; bNðnÞ�; EtðnÞ ¼ ½eðnÞ; . . . ; eðnþ 1�NÞ�

FIG. 5.9 Purely recursive IIR prediction filter.



The coefficient updating equation can be rewritten as

Bðnþ 1Þ ¼ ½IN � �EðnÞEtðnÞ�BðnÞ þ �xðnþ 1ÞEðnÞ ð5:107Þ
The steady-state position is reached when the error eðnþ 1Þ is no longer
correlated with the elements of the error vctor; the filter tends to decorrelate
the error sequence. The steady-state coefficient vector B1 is

B1 ¼ ðE½EðnÞEtðnÞ�Þ�1E½xðnþ 1ÞEðnÞ� ð5:108Þ
and the error covariance matrix should be close to a diagonal matrix:

E½EðnÞEtðnÞ� � �2e IN ð5:109Þ
The output power is

E½e2ðnþ 1Þ� ¼ E½x2ðnþ 1Þ� � Bt
1E½EðnÞEtðnÞ�B1 ð5:110Þ

which yields the prediction gain

G2
p ¼

�2x
�2e
� 1þ Bt

1B1 ð5:111Þ

Therefore the coefficients should take as large values as possible.
Note that, in practice, a local instability phenomenon can occur with

recursive gradient predictors [8]. As indicated in the previous section, the
additive input noise keeps the poles inside the unit circle. If that noise is
small enough, in a gradient scheme with given step �, the poles jump over the
unit circle. The filter becomes unstable, which can be interpreted as the
addition to the filter input of a spurious sinusoidal component, exponen-
tially growing in magnitude and at the frequency of the pole. The adaptation
process takes that component into account, reacts exponentially as well, and
the pole is pushed back in the unit circle, which eliminates the above spur-
ious component. Hence the local instability, which can be prevented by the
introduction of a leakage factor as in Section 4.6, which yields the coefficient
updating equation

Bðnþ 1Þ ¼ ð1� �ÞBðnÞ þ �eðnþ 1ÞEðnÞ ð5:112Þ
The bound on the adaptation step size � can be determined, as in Section

4.2, by considering the a posteriori error

"ðnþ 1Þ ¼ eðnþ 1Þ½1� �EtðnÞEðnÞ� ð5:113Þ
which leads to the bound

0 < � <
2

N�2e
ð5:114Þ



Since the output error power is at most equal to the input signal power,
the bound is the same as for the FIR structure. The initial time constant is
also about the same, if the step size is small enough, due to the following
approximation, which is valid for small coefficient magnitudes:

1

1þPN
i¼1

biz
�1
� 1�

XN
i¼1

biz
�1 ð5:115Þ

As an illustration, the trajectories of the six poles of a purely recursive
IIR prediction error filter applied to a sinusoid with frequency 2�

3
are

shown in Figure 5.10. After the initial phase, there are no poles at fre-
quencies � 2�

3
.

The lattice structure presented in Section 5.6 can also be implemented
in a gradient adaptive prediction error filter, as shown in Figure 5.11 for
the FIR case. Several criteria can be used to update the coefficient ki. A
simple one is the minimization of the sum of forward and backward
prediction error powers at each stage. The derivation of equations
(5.57) and (5.58) with respect to the coefficients leads to the updating
relations ð1 4 i 4 NÞ

FIG. 5.10 Pole trajectories of a gradient adaptive IIR predictor applied to a sinu-

soid at frequency 2 �
3
.



kiðnþ 1Þ ¼ kiðnÞ þ
�

2
½eaiðnþ 1Þebði�1ÞðnÞ þ ebiðnþ 1Þeaði�1Þðnþ 1Þ�

ð5:116Þ
which, from (5.57) and (5.58), can be rewritten as

kiðnþ 1Þ ¼ kiðnÞ þ � eaði�1Þðnþ 1Þebði�1ÞðnÞ � kiðnÞ
e2bði�1ÞðnÞ þ e2aði�1Þðnþ 1Þ

2

" #

ð5:117Þ
Clearly, the steady-state solution ki1 agrees with the PARCOR coefficient
definition (5.61).

The performance of the lattice gradient algorithm can be assessed
through the methods developed in Chapter 4, and comparisons can be
made with the transversal FIR structure, including computation accuracies
[9, 10]. However, the lattice filter is made of sections which have to be
analyzed in turn.

The coefficient updating for the first lattice section, according to Figure
5.11, is

k1ðnþ 1Þ ¼ k1ðnÞ þ � xðnþ 1ÞxðnÞ � k1ðnÞ
x2ðnþ 1Þ þ x2ðnÞ

2

" #
ð5:118Þ

For comparison, the updating equation of the coefficient of the first-order
FIR filter can be written as

aðnþ 1Þ ¼ aðnÞ þ �½xðnþ 1ÞxðnÞ � aðnÞx2ðnÞ� ð5:119Þ
The only difference resides in the better power estimation performed by the
last term on the right side of (5.118), and it can be assumed that the first
lattice section performs like a first-order FIR prediction error filter, which
leads to the residual error

FIG. 5.11 FIR lattice prediction error filter.



E1R ¼ ð1� k21Þ�2x 1þ �
2
�2x

� �
ð5:120Þ

To assess the complete lattice prediction error filter, we now consider the
subsequent sections. However, the adaptation step sizes are adjusted in these
sections to reflect the decrease in signal powers. To make the time constant
homogeneous, the adaptation step sizes in different sections are made inver-
sely proportional to the input signal powers.

In such conditions, the first section is crucial for global performance and
accuracy requirements. For example, the first section is the major contribu-
tor to the filter excess output noise power, and E1R can be taken as the total
lattice filter residual error.

Thus, transversal and lattice filters have the same excess output noise
power if the following equality holds:

�2x
YN
i¼1
ð1� k2i Þ

�

2
N�2x ¼ ð1� k21Þ�2x

�

2
�2x

Therefore, the lattice gradient filter is attractive, under the above hypoth-
eses, if

YN
i¼2

1

1� k2i
< N ð5:121Þ

that is, when the system gain is small and when the first section is very
efficient, which can be true in linear prediction of speech, for example.
Combinations of lattice and transversal adaptive filters can be envisaged,
and the above results suggest cascading a lattice section and a transversal
filter [11].

As for computational accuracy, the coefficient magnitudes of lattice fil-
ters are bounded by unity. Therefore, the coefficient word length for the
lattice prediction error filter can be estimated by

bcl � log2ð�eÞ þ log2ðGpÞ ð5:122Þ

which can be appreciably smaller than estimate (5.104) for the transversal
counterpart.

Naturally, simplified adaptive approaches, like LAV and sign algorithms,
can also be used in linear prediction with any structure.



5.12. ADAPTIVE LINEAR PREDICTION OF
SINUSOIDS

The AC matrix of order N of a real sinusoid with unit power is given by the
following expression, as mentioned earlier, for example in Section 3.7.

RN ¼
1 cos! . . . cosðN � 1Þ!

cos! 1 . . . cosðN � 2Þ!
..
. ..

. ..
.

cosðN � 1Þ! cosðN � 2Þ! . . . 1

2
6664

3
7775 ð5:123Þ

For ! ¼ �k=N (h integer), the vector

Uð!Þ ¼ 1ffiffiffiffi
N
p ½1; e �j!; . . . ; e �jðN�1Þ!�t

is a unitary eigenvector, as is Uð�!Þ, and the corresponding eigenvalues are

	i ¼ 	2 ¼
N

2
ð5:124Þ

If a white noise with power �2b is added, the eigenvalues become

	i ¼ 	2 ¼
N

2
þ �2b; 	i ¼ �2b ð3 4 i 4 NÞ ð5:125Þ

and the eigenvectors remain unchanged.
As shown in Section 3.7, the matrix RN is diagonalized as

RN ¼M�t�M ð5:126Þ
where the columns of M�1 are the two eigenvectors Uð!Þ and Uð�!Þ,
completed by a set of orthogonal eigenvectors

Now, according to the linear prediction matrix equation (5.3), the vector
of the transversal prediction coefficients of order N is

AN ¼ R�1N ½cos!; cos 2!; . . . ; cosN!�t ð5:127Þ
As shown in Section 3.6, the correlation vector can be expressed in terms of
the eigenvectors

cos!
cos 2!

..

.

cosN!

2
664

3
775 ¼

ffiffiffiffi
N
p

2
½e �j!Uð!Þ þ e j!Uð�!Þ� ð5:128Þ

Substituting (5.128) into (5.127) and using (5.126) with the orthogonality
property

........................



AN ¼
1

N=2þ �2b
½cos!; cos 2!; . . . ; cosN!� ð5:129Þ

If ! is not an integer multiple of �=N, the above results are not strictly
applicable. However, for �=N < ! < �� �=N, the eigenvalues remain
close to each other as indicated by equation (3.105), and the above expres-
sion can be retained as a reasonably close approximation of the prediction
coefficients. In fact, the results given in this section are an alternative and a
complement to those of Section 5.9.

If, instead of a single sinusoid, a set of M sinusoids is considered, and if
they all have unit power and are separated in frequency by more than �=N,
then the eigenvalues are approximately given by:

	i � N=2þ �2b; 1 4 i 4 2M

	i ¼ �2b; 2M þ 1 4 i 4 N
ð5:130Þ

and the linear prediction coefficient vector can be approximated by

AN �
1

N=2þ �2b
XM
i¼1

cos!i

cos 2!i

..

.

cosN!i

2
6664

3
7775 ð5:131Þ

An adaptive FIR predictor provides this vector, on average and in its steady
state. As concerns the learning curve, as indicated in Section (4.4), the time
constant associated with the eigenvalue 	i is

�i ¼ 1=�	i ð5:132Þ
For a single sinusoid in white noise, the two modes which form the coeffi-
cients have the same time constant:

�1 ¼ �2 ¼
1

�ðN=2þ �2bÞ
ð5:133Þ

which is also the time constant of the coefficients themselves and, hence, of
the prediction error.

It is worth pointing out that, according to the above results, the time
constant for a sinusoid without noise is N=2 times smaller than that of a
white noise with the same power. However, when the frequency of the
sinusoid approaches the limits of the frequency domain, i.e., 0 or �, one
of the two eigenvalues approaches zero and the corresponding time constant
grows to infinity. The same applies to the case of a signal consisting of M
sinusoids. More generally, the above properties stem from the fact that the



coefficients of the adaptive filter move in the signal subspace, as is clearly
shown by updating equation (4.3) for the gradient algorithm.

For the sake of completeness, similar results will now be derived for
complex sinusoids, for which a different approach will be used.

Let us consider the case of a single cisoid in noise:

xðnÞ ¼ e jn! þ bðnÞ ð5:134Þ
with bðnÞ a white noise with power �2b . The AC matrix is given by

RN ¼ �2bIN þ �VV1V
t
1 ð5:135Þ

where

Vt
1 ¼ ½1; e j!; e j2!; . . . ; e jðN�1Þ!�

The inverse matrix can be calculated with the help of the matrix inversion
lemma, presented in detail in Section 6.2 below,

R�1N ¼
IN
�2b
� IN
�2b

�VV1

1

�2b
Vt

1
�VV1 þ 1

� 	�1
Vt

1

1

�2b

and, in concise form

R�1N ¼
1

�2b
IN �

�VV1V
t
1

�2b þN

� 	
ð5:136Þ

The linear prediction coefficients are obtained through the minimization of
the cost function

J ¼ E½jxðnþ 1Þ � ð �AAÞtXðnÞj2� ð5:137Þ
which, as shown in Section 1.4, yields

A ¼ R�1N E½ �xxðnþ 1ÞXðnÞ� ð5:138Þ
Since it is readily verified that

E½ �xxðnþ 1ÞXðnÞ� ¼ �VV1e
�j! ð5:139Þ

the final expression is

A ¼ 1

N þ �2b
½e�j!; e�j2!; . . . ; e�jN!�t ð5:140Þ

The same procedure can be applied to a signal made of two sinusoids in
noise:

x1ðnÞ ¼ e jn!1 þ e jn!2 þ bðnÞ ð5:141Þ
with the AC matrix



R1 ¼ �2bIN þ �VV1V
t
1 þ �VV2V

t
2 ð5:142Þ

The matrix inversion lemma can be invoked again to obtain

R�11 ¼ R�1N � R�1N
�VV2½Vt

2R
�1
N

�VV2 þ 1��1Vt
2R
�1
N ð5:143Þ

and, since

E½ �xx1ðnþ 1ÞX1ðnÞ� ¼ �VV1e
�j!1 þ �VV2e

�j!2 ð5:144Þ
the prediction coefficient vector is

A1 ¼ R�11 ½ �VV1e
�j!1 þ �VV2e

�j!2 � ð5:145Þ
This is a complicated expression. In the special case when V2 ¼ �VV1, i.e.,
when !2 ¼ �!1 ¼ !, and ! is a multiple of �=N, it is readily verified that
expression (5.129) is obtained.

The approach can be extended to signals made ofM sinusoids in noise, to
yield an exact solution for the prediction coefficient vector.

5.13. LINEAR PREDICTION AND HARMONIC
DECOMPOSITION

Two different representations of a signal given by the first N þ 1 terms
½rð0Þ; rð1Þ; . . . ; rðNÞ� of its ACF have been obtained. The harmonic decom-
position presented in Section 2.11 corresponds to the modeling by a set of
sinusoids and is also called composite sinusoidal modeling (CSM); it yields
the following expression for the signal spectrum Sð!Þ according to relation
(2.127) of Chapter 2:

Sð!Þ ¼
XN=2
k¼1
jSkj2½�ð!� !kÞ þ �ð!þ !kÞ� ð5:146Þ

Linear prediction provides a representation of the signal spectrum by

Sð!Þ ¼ �2e

1�PN
i¼1

aie
�ji!

����
����2

ð5:147Þ

Relations between these two approaches can be established by considering
the decomposition of the z-transfer function of the prediction error filter
into two parts with symmetric and antisymmetric coefficients, which is the
line spectrum pair (LSP) representation [12].

The order recursion (5.29) is expressed in terms of z-polynomials by

1� ANðzÞ ¼ 1� AN�1ðzÞ � kNz
�N ½1� AN�1ðz�1Þ� ð5:148Þ



where

1� ANðzÞ ¼ 1�
XN
i¼1

aiNz
�i ð5:149Þ

Let us consider now the order N þ 1 and denote by PNðzÞ the polynomial
obtained when kNþ1 ¼ 1:

PNðzÞ ¼ 1� ANðzÞ � z�ðNþ1Þ½1� ANðz�1Þ� ð5:150Þ
Let QNðzÞ be the polynomial obtained when kNþ1 ¼ �1:

QNðzÞ ¼ 1� ANðzÞ þ z�ðNþ1Þ½1� ANðz�1Þ� ð5:151Þ
Clearly, this is a decomposition of the polynomial (5.114):

1� ANðzÞ ¼ 1
2
½PNðzÞ þQNðzÞ� ð5:152Þ

and 1
2
PNðzÞ and 1

2
QNðzÞ are polynomials with antisymmetric and symmetric

coefficients, respectively.
Since kNþ1 ¼ �1, due to the results in Section 5.6 and equation (5.63),

PNðzÞ and QNðzÞ have all their zeros on the unit circle. Furthermore, if N is
even, it is readily verified that PNð1Þ ¼ 0 ¼ QNð�1Þ. Therefore, the follow-
ing factorization is obtained:

PNðzÞ ¼ ð1� z�1Þ
YN=2
i¼1
ð1� 2 cosð
iÞz�1 þ z�2Þ

QNðzÞ ¼ ð1þ z�1Þ
YN=2
i¼1
ð1� 2 cosð!iÞz�1 þ z�2Þ

ð5:153Þ

The two sets of parameters 
i and !ið1 4 i 4 NÞ are called the LSP para-
meters.

If z0 ¼ e j!0 is a zero of the polynomial 1� AðzÞ on the unit circle, it is
also a zero of PNðzÞ and QNðzÞ. Now if this zero moves inside the unit circle,
the corresponding zeros of PNðzÞ and QNðzÞ move on the unit circle in
opposite directions from !0. A necessary and sufficient condition for the
polynomial 1� AðzÞ to be minimum phase is that the zeros of PNðzÞ and
QNðzÞ be simple and alternate on the unit circle [13].

The above approach provides a realization structure for the prediction
error filter in Figure 5.12. The z-transfer functions FðzÞ and GðzÞ are the
linear phase factors in (5.153). This structure is amenable to implementation
as a cascade of second-order sections, and the overall minimum phase prop-
erty is checked by observing the alternation of the z�1 coefficients. It can be
used for predictors with poles and zeros [14].



Equations (5.153) show that the LSP parameters 
i and !i are obtained
by harmonic decomposition of the sequences xðnÞ � xðn� 1Þ and
xðnÞ þ xðn� 1Þ. This is an interesting link beween harmonic decomposition,
or CSM, and linear prediction.

So far, the linear prediction problem has been solved using the ACF
function of the signal. However, it is also possible, and in some situations
necessary, to find the prediction coefficients directly from the signal samples.

5.14. ITERATIVE DETERMINATION OF THE
RECURRENCE COEFFICIENTS OF A
PREDICTABLE SIGNAL

A predictable signal of order p, by definition satisfies the recurrence relation

xðnÞ ¼
Xp
i¼1

aixðn� iÞ ð5:154Þ

Considering this equation for p different values of the index n leads to a
system of p equations and p unknowns, which can be solved for the p
prediction coefficients. In matrix form,

xðpÞ xðp� 1Þ � � � xð1Þ
xðpþ 1Þ xðpÞ � � � xð2Þ

..

. ..
. ..

.

xð2p� 1Þ xð2p� 2Þ � � � xðpÞ

2
6664

3
7775

a1
a2
..
.

ap

2
6664

3
7775 ¼

xðpþ 1Þ
xðpþ 2Þ

..

.

xð2pÞ

2
6664

3
7775 ð5:155Þ

An efficient solution is provided by an iterative technique consisting of pth-
order recursions. The approach is as follows. Assume that the system has
been solved at order N < p. A set of N prediction coefficients has been
found satisfying

FIG. 5.12 Line pair spectrum predictor.



xðpÞ xðp� 1Þ � � � xðpþ 1�NÞ
xðpþ 1Þ xðpÞ � � � xðpþ 2�NÞ

..

. ..
. ..

.

xðpþN � 1Þ xðpþN � 2Þ � � � xðpÞ

2
6664

3
7775

a1N
a2N
..
.

aNN

2
6664

3
7775 ¼

xðpþ 1Þ
xðpþ 2Þ

..

.

xðpþNÞ

2
6664

3
7775

ð5:156Þ
In a more concise form,

RNAN ¼ JXNðpþNÞ ð5:157Þ
where J is the coidentity matrix

J ¼
0 . . . 1
..
. ..

.

1 . . . 0

2
4

3
5;XNðpþNÞ ¼

xðpþNÞ
xðpþN � 1Þ

..

.

xðpþ 1Þ

2
6664

3
7775

and RN designates the N �N matrix of the input data involved in the
system of equations (5.156).

Referring to the forward linear prediction matrix equation, one can write

RNþ1
1
�AN

� 	
¼

eN
0
..
.

0

2
664

3
775 ð5:158Þ

where

eN ¼ xðpÞ �
XN
i¼1

aiNxðp� iÞ ð5:159Þ

and, in concise form,

eN ¼ xðpÞ � At
NXNðp� 1Þ ¼ xðpÞ � Xt

NðpþNÞJðR�1N ÞtXNðp� 1Þ
The same procedure can be applied to the backward linear prediction, and a
coefficient vector BN can be computed by

RN

bNN

bN�1N
..
.

b1N

2
6664

3
7775 ¼

xðp�NÞ
xðpþ 1�NÞ

..

.

xðp� 1Þ

2
6664

3
7775 ¼ JXNðp� 1Þ ð5:160Þ

From the definition of RNþ1, the following equation is obtained:

...
...
...
..



RNþ1
�BN

1

� 	
¼

0
..
.

0
eN

2
664

3
775 ð5:161Þ

The presence of eN in the right-hand side comes from the equation

xðpÞ � Xt
NðpþNÞBN ¼ xðpÞ � Xt

NðpþNÞR�1N JXNðp� 1Þ
Now, since

ðR�1N Þt ¼ JR�1J; JJ ¼ IN ð5:162Þ
it is clear that

eN ¼ xðpÞ � Xt
NðpþNÞBN ¼ xðpÞ � Xt

Nðp� 1ÞAN

At this stage, the prediction coefficient vectors ANþ1 and BNþ1 can be
readily obtained, starting from the equation

RNþ2
1
�AN

0

2
4

3
5 ¼

eN
0
..
.

0
eaN

2
66664

3
77775 ð5:163Þ

where

eaN ¼ xðpþN þ 1Þ � Xt
NðpþNÞAN ð5:164Þ

As concerns backward prediction, the equation is

RNþ2
0
�BN

1

2
4

3
5 ¼

ebN
0
..
.

0
eN

2
66664

3
77775 ð5:164aÞ

where

ebN ¼ xðp�N � 1Þ � Xt
Nðp� 1ÞBN ð5:165Þ

In fact, two different decompositions of RNþ2 are exploited, namely

RNþ2 ¼
RNþ1 JXNþ1ðp� 1Þ

Xt
Nþ1ðpþN þ 1Þ xðpÞ

� 	

¼ xðpÞ Xt
Nþ1ðp� 1Þ

JXNþ1ðpþN þ 1Þ RNþ1

" #



In order to get the equations for linear prediction at order N þ 1, it is
necessary to get rid of the last element in the right-hand side of equation
(5.163) and the first element in the right-hand side of equation (5.164). This
can be accomplished, assuming eN 6¼ 0, by the substitution leading to the
matrix equation

RNþ2

1

�AN

0

2
664

3
775� eaN

eN

0

�BN

1

2
664

3
775

2
664

3
775 ¼

eN �
eaNebN
eN

0

..

.

0

2
66666664

3
77777775

ð5:166Þ

and, for backward prediction

RNþ2

0

�BN

1

2
664

3
775� ebN

eN

1

�AN

1

2
664

3
775

2
664

3
775 ¼

0

..

.

0

eN �
eaNebN
eN

2
6666664

3
7777775 ð5:167Þ

Through direct identification of the factors in the equations for forward
and backward linear prediction at order N þ 1, the recurrence relations for
the coefficient vectors are obtained. For forward linear prediction, one gets

ANþ1 ¼ AN

0

� 	
þ eaN

eN

�BN

1

� 	
ð5:168Þ

and, for backward linear prediction,

BNþ1 ¼ 0
BN

� 	
þ ebN

eN

1
�AN

� 	
ð5:169Þ

The variable eN can itself be computed recursively by

eNþ1 ¼ eN �
eaNebN
eN

¼ eN 1� eaNebN
e2N

� �
ð5:170Þ

Finally, the algorithm is given in Figure 5.13. The computational complex-
ity, at order N is 4ðN þ 1Þ multiplications and one division. The total opera-
tion count for order p is 2ðpþ 1Þðpþ 2Þ multiplications and p divisions.



The algorithm obtained is useful in some spectral analysis techniques. Its
counterpart in finite fields is used in error correction, for example, for the
decoding of Reed–Solomon codes.

5.15. CONCLUSION

Linear prediction error filters have been studied. Properties and coefficient
design techniques have been presented. The analysis of first- and second-
order filters yields simple results which are useful in signal analysis, parti-
cularly for the detection of sinusoidal components in a spectrum. Backward
linear prediction provides a set of uncorrelated sequences. Combined with
forward prediction, it leads to order iterative relations which correspond to
a particular structure, the lattice filter. The lattice or PARCOR coefficients
enjoy a number of interesting properties, and they can be calculated from
the signal ACF by efficient algorithms.

The inverse AC matrix, which is involved in LS algorithms, can be
expressed in terms of forward and backward prediction coefficients and
prediction error power. To manipulate prediction filters and fast algorithms,
it is important that we be able to locate the zeros in the unit circle; the
analysis based on the notch filter and carried out for sinusoids in noise
provides an insight useful for more general signals.

The gradient adaptive techniques apply to linear prediction filters with a
number of simplifications, and the lattice structure is an appealing alterna-

Available at order N : AN , BN , eN
New data x ðp þ N þ 1Þ, x ðp � N � 1Þ

eaN ¼ x ðp þ N þ 1Þ; �Xt
N ðp þ NÞAN

ebN ¼ x ðp � N � 1Þ � X t
N ðp � 1ÞBN

eNþ1 ¼ eN 1� eaN
eN

ebN
eN

� �

ANþ1 ¼
AN

0

� 	
þ eaN

eN

�BN

1

� 	

BNþ1 ¼
0

BN

� 	
þ ebN

eN

1

�AN

� 	

FIG. 5.13 Algorithm for the computation of the linear prediction coefficients.



tive to the transversal structure. An additional realization option is offered
by the LSP approach, which provides an interesting link between linear
prediction and harmonic decomposition.

EXERCISES

1. Calculate the impulse responses hjið1 4 j 4 3; 0 4 i 4 6Þ corre-
sponding to the following z-transfer functions:

H1ðzÞ ¼ ð1þ z�1 þ 0:5z�2Þ2
H2ðzÞ ¼ 1

2
ð1þ z�1 þ 0:5z�2Þð1þ 2z�1 þ 2z�2Þ

H3ðzÞ ¼ 1
4
ð1þ 2z�1 þ 2z�2Þ2

Calculate the functions

EjðnÞ ¼
Xn
i¼0

h2ji; 0 4 n 4 6; 1 4 j 4 3

and draw the curves EjðnÞ versus n.
Explain the differences between minimum phase, linear phase, and

maximum phase.
2. Calculate the first four terms of the ACF of the signal

xðnÞ ¼
ffiffiffi
2
p

sin n
�

4


 �
Using the normal equations, calculate the coefficients of the predictor
of order N ¼ 3. Locate the zeros of the prediction error filter in the
complex z-plane. Perform the same calculations when a white noise
with power a2b ¼ 0:1 is added to the signal and compare with the above
results.

3. Consider the signal

xðnÞ ¼ sinðn!1Þ þ sinðn!2Þ
Differentiating (5.6) with respect to the coefficients and setting these
derivatives to zero, calculate the coefficients of the predictor of order
N ¼ 2. Show the equivalence with solving linear prediction equations.
Locate the zeros of the prediction error filter in the complex z-plane
and comment on the results.

4. Calculate the coefficients a1 and a2 of the notch filter with transfer
function

HðzÞ ¼ 1þ a1z
�1 þ a2z

�2

1þ ð1� "Þa1z�1 þ ð1� "Þ2a2z�2
; " ¼ 0:1



which cancels the signal xðnÞ ¼ sinð0:7nÞ.
Locate the poles and zeros in the complex plane. Give the frequen-

cies which satisfy jHðe j!Þj ¼ 1 and calculate Hð1Þ and Hð�1Þ. Draw
the function jHð!Þj.

Express the white noise amplification factor of the filter as a func-
tion of the parameter ".

5. Use the Levinson–Durbin algorithm to compute the PARCOR coeffi-
cients associated with the correlation sequence

rð0Þ ¼ 1; rðnÞ ¼ �0:9n 0 < � 4 1

Give the diagram of the lattice filter with three sections. Comment on
the case � ¼ 1.

6. Calculate the inverse of the 3� 3 AC matrix R3. Express the prediction
coefficients a1 and a2 and the prediction error E2. Compute R�13 using
relation (5.67) and compare with the direct calculation result.

7. Consider the ARMA signal

xðnÞ ¼ eðnÞ � 0:5eðn� 1Þ � 0:9xðn� 1Þ
where eðnÞ is a unit power white noise. Express the coefficients of the
FIR predictor of infinite order.

Using the results of Section 2.6 on ARMA signals, calculate the AC
function rðnÞ for 0 4 n 4 3. Give the coefficients of the prediction
filters of orders 1, 2, and 3 and compare with the first coefficients of
the infinite predictor. Locate the zeros in the complex plane.

8. The continuous signal xðnÞ ¼ 1 is applied from time zero on to the
adaptive IIR prediction error filter, whose equations are

eðnþ 1Þ ¼ xðnþ 1Þ � bðnÞeðnÞ
bðnþ 1Þ ¼ bðnÞ þ �eðnþ 1ÞeðnÞ

For � ¼ 0:2 and zero initial conditions, calculate the coefficient
sequence bðnÞ, 1 4 n 4 20. How does the corresponding pole move
in the complex z-plane?

A noise with power �2b is added to the input signal. Calculate the
optimum value of the first-order IIR predictor. Give a lower bound for
�2b which prevents the pole from crossing the unit circle. When there is
no noise, what value of the leakage factor has the same effect.

9. Give the LSP decomposition of the prediction filter

1� ANðzÞ ¼ ð1� 1:6z�1 þ 0:9z�2Þð1� z�1 þ z�2Þ
Locate the zeros of the polynomials obtained. Give the diagram of the
adaptive realization, implemented as a cascade of second-order filter
sections.



10. Use the algorithm of Figure 5.13 to show that the linear prediction
coefficients of the length 2p ¼ 12 sequence

1:707; 1;�0:293; 0; 0:293;�1;�1:707; 0; 1:707; 1;�0:293; 0
are given by

1� ANðzÞ ¼ ð1þ z�2Þð1� 1:414z�1 þ z�2Þ
Give the general expression of the input sequence xðnÞ.

ANNEX 5.1 LEVINSON ALGORITHM

SUBROUTINE LEV(N,Q,X,B)
C
C SOLVES THE SYSTEM : [R]X=B WITH [R] TOEPLITZ MATRIX
C N = SYSTEM ORDER ( 2 < N < 17 )
C Q = N+1 ELEMENT AUTOCORRELATION VECTOR :

r(0, ......,N)
C X = SOLUTION VECTOR
C B = RIGHT SIDE VECTOR

DIMENSION Q(1),X(1),B(1),A(16),Y(16)
A(1)=-Q(2)/Q(1)
X(1)=B(1)/Q(1)
RE=Q(1)+A(1)*Q(2)
D060I=2,N
T=Q(I+1)
D010J=1,I-1

10 T=T+Q(I-J+1)*A(J)
A(I)=-T/RE
D020J=1,I-1

20 Y(J)=A(J)
D030J=1,I-1

30 A(J)=Y(J)+A(I)*Y(I-J)
S=B(I)
D040J=1,I-1

40 S=S-Q(I-J+1)*X(J)
X(I)=S/RE
D050J=1,I-1

50 X(J)=X(J)+X(I)*Y(I-J)
RE=RE+A(I)*T

60 CONTINUE
RETURN
END



ANNEX 5.2 LEROUX-GUEGUEN ALGORITHM

SUBROUTINE LGPC(N,R,RK)
C
C LEROUX-GUEGUEN Algorithm for computing the PARCOR
C coeff. from AC-function.
C N =Number of coefficients
C R =Correlation coefficients (INPUT)
C RK=Reflexion coefficients (OUTPUT)
C

DIMENSION R(20),RK(20),RE(20),RH(20)
RK(1)=R(2)/R(1)
RE(1)=R(2)
RE(2)=R(1)-RK(1)*R(2)
D010I=2,N
X=R(I+1)
RH(1)=X
I1=I-1
D020J=1,I1
RH(J+1)=RE(J)-RK(J)*X
X=X-RK(J)*RE(J)

20 RE(J)=RH(J)
RK(I)=X/RE(I)
RE(I+1)=RE(I)-RK(I)*X
RE(I)=RH(I)

10 CONTINUE
RETURN
END
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6
Fast Least Squares Transversal
Adaptive Filters

Least squares techniques require the inversion of the input signal AC
matrix. In adaptive filtering, which implies real-time operations, recursive
methods provide means to update the inverse AC matrix whenever new
information becomes available. However, the inverse AC matrix is comple-
tely determined by the prediction coefficients and error power. The same
applies to the real-time estimation of the inverse AC matrix, which is deter-
mined by FBLP coefficients and prediction error power estimations. In these
conditions, all the information necessary for recursive LS techniques is
contained in these parameters, which can be calculated and updated. Fast
transversal algorithms perform that function efficiently for FIR filters in
direct form.

The first-order LS adaptive filter is an interesting case, not only because it
provides a gradual introduction to the recursive mechanisms, the initial
conditions, and the algorithm performance, but also because it is implemen-
ted in several approaches and applications.

6.1. THE FIRST-ORDER LS ADAPTIVE FILTER

The first-order filter, whose diagram is shown in Figure 6.1, has a single
coefficient h0ðnÞ which is computed to minimize at time n a cost function,
which is the error energy

E1ðnÞ ¼
Xn
p¼1
½ yðpÞ � h0ðnÞxðpÞ�2 ð6:1Þ



The solution, obtained by setting to zero the derivative of E1ðnÞ with respect
to h0ðnÞ is

h0ðnÞ ¼

Pn
p¼1

yðpÞxðpÞ
Pn
p¼1

x2ðpÞ
¼ ryxðnÞ

rxxðnÞ
ð6:2Þ

In order to derive a recursive procedure, let us consider

h0ðnþ 1Þ ¼ r�1xx ðnþ 1Þ½ryxðnÞ þ yðnþ 1Þxðnþ 1Þ� ð6:3Þ
From expression (6.2), we have

½rxxðnþ 1Þ � x2ðnþ 1Þ�h0ðnÞ ¼ ryxðnÞ ð6:4Þ
Hence

h0ðnþ 1Þ ¼ h0ðnÞ þ r�1xx ðnþ 1Þxðnþ 1Þ½ yðnþ 1Þ � h0ðnÞxðnþ 1Þ� ð6:5Þ
The filter coefficient is updated using the new data and the a priori error,
defined previously by

eðnþ 1Þ ¼ yðnþ 1Þ � h0ðnÞxðnþ 1Þ ð6:6Þ
Recall that this error is named ‘‘a priori’’ because it uses the preceding
coefficient value.

The scalar rxxðnþ 1Þ is the input signal energy estimate; it is updated by

rxxðnþ 1Þ ¼ rxxðnÞ þ x2ðnþ 1Þ ð6:7Þ
Together expressions (6.5) and (6.7) make a recursive procedure for the first-
order LS adaptive filter. However, in practice, the recursive approach can-

FIG. 6.1 Adaptive filter with a single coefficient.



not be exactly equivalent to the theoretical LS algorithm, because of the
initial conditions.

At time n ¼ 1, a coefficient initial value h0ð0Þ is needed by equation (6.5).
If it is taken as zero, relation (6.5) yields

h0ð1Þ ¼
yð1Þ
xð1Þ ð6:8Þ

which is the solution. However, in the second equation (6.7) it is not possible
to take rxxð0Þ ¼ 0 because there is a division in (6.5) and rxxð1Þ has to be
greater than zero. Thus, the algorithm is started with a positive value,
rxxð0Þ ¼ r0, and the actual coefficient updating equation is

h0ðnþ 1Þ ¼ hðnÞ þ xðnþ 1Þ
r0 þ

Pnþ1
p¼1

x2ðpÞ
½ yðnþ 1Þ � h0ðnÞxðnþ 1Þ�; n 5 0

ð6:9Þ
This equation still is a LS equation, but the criterion is different from (6.1).
Instead, it can be verified that it is

E 01ðnÞ ¼
Xn
p¼1
½ yðpÞ � h0ðnÞxðpÞ�2 þ r0h

2
0ðnÞ ð6:10Þ

The consequence is the introduction of a time constant, which can be eval-
uated by considering the simplified case yðnÞ ¼ xðnÞ ¼ 1. With these signals,
the coefficient evolution equation is

h0ðnþ 1Þ ¼ h0ðnÞ þ
1

r0 þ ðnþ 1Þ ½1� h0ðnÞ�; n 5 0

or

h0ðnþ 1Þ ¼ 1� 1

r0 þ nþ 1

� �
h0ðnÞ þ

1

r0 þ nþ 1
; n 5 0 ð6:11Þ

which, assuming h0ð0Þ ¼ 0, leads to

h0ðnÞ ¼
n

r0 þ n
¼ 1� 1

1þ n=r0
ð6:12Þ

The evolution of the coefficient is shown in Figure 6.2 for different values
of the initial constant r0. Note that negative values can also be taken for r0.

Definition (4.10) in Chapter 4 yields the coefficient time constant �c � r0.
Clearly, the initial constant r0 should be kept as small as possible; the lower
limit is determined by the computational accuracy in the realization.



Adaptive filters, in general, are designed with the capability of handling
nonstationary signals, which is achieved through the introduction of a lim-
ited memory. An efficient approach consists of introducing a memory-limit-
ing or -forgetting factor Wð0�W < 1Þ, which corresponds to an
exponential weighting operation in the cost function:

EW1ðnÞ ¼
Xn
p¼1

Wn�p½ yðpÞ � h0ðnÞxðpÞ�2 ð6:13Þ

Taking into account the initial constant r0, we obtain the actual cost func-
tion

E 0W1ðnÞ ¼
Xn
p¼1

Wn�p½ yðpÞ � h0ðnÞxðpÞ�2 þWnr0h
2
0ðnÞ ð6:14Þ

The updating equation for the coefficient becomes

h0ðnþ 1Þ ¼ h0ðnÞ þ
xðnþ 1Þ

r0W
nþ1 þ Pnþ1

p¼1
Wnþ1�px2ðpÞ

� ½ yðnþ 1Þ � h0ðnÞxðnþ 1Þ�; n 5 0

ð6:15Þ

In the simplified case xðnÞ ¼ yðnÞ ¼ 1, if we assume h0ð0Þ ¼ 0, we get

FIG. 6.2 Evolution of the coefficient of a first-order LS adaptive filter.



h0ðnþ 1Þ � h0ðnÞ þ
1

r0W
nþ1 þ ð1�Wnþ1Þ=ð1�WÞ ½1� h0ðnÞ�; n 5 0

ð6:16Þ
Now the coefficient time constant is �cW �Wr0. But for n sufficiently large,
the updating equation approaches

h0ðnþ 1Þ ¼Wh0ðnÞ þ 1�W ð6:17Þ
which corresponds to the long-term time constant

� � 1

1�W

The curves 1� h0ðnÞ versus time are shown in Figure 6.3 for r0 ¼ 1 and
W ¼ 0:95 and W ¼ 1. Clearly, the weighting factor W can accelerate the
convergence of h0ðnÞ toward its limit.

For the LMS algorithm with step size � under the same conditions, one
gets

h0ðnÞ ¼ 1� ð1� �Þn ð6:18Þ
The corresponding curve in Figure 6.3 illustrates the advantage of LS tech-
niques in the initial phase.

In the recursive procedure, only the input signal power estimate is
affected by the weighting operation, and equation (6.7) becomes

rxxðnþ 1Þ ¼WrxxðnÞ þ x2ðnþ 1Þ
In transversal filters with several coefficients, the above scalar operations

become matrix operations and a recursive procedure can be worked out to
avoid matrix inversion.

6.2. RECURSIVE EQUATIONS FOR THE ORDER N
FILTER

The adaptive filter of order N is defined in matrix equations by

eðnþ 1Þ ¼ yðnþ 1Þ �HtðnÞXðnþ 1Þ ð6:19Þ
where the vectors HðnÞ and XðnÞ have N elements. The cost function, which
is the error energy

ENðnÞ ¼
Xn
p¼1

Wn�p½ yðpÞ �HtðnÞXðpÞ�2 ð6:20Þ

leads, as shown in Section 1.4, to the least squares solution



HðnÞ ¼ R�1N ðnÞryxðnÞ ð6:21Þ
with

RNðnÞ ¼
Xn
p¼1

Wn�pXðpÞXtðpÞ; ryxðnÞ ¼
Xn
p¼1

Wn�pyðpÞXðpÞ ð6:22Þ

As shown in Section 1.5, two recurrence relations can be derived from (6.21)
and (6.22). Equation (1.25) is repeated here for convenience

Hðnþ 1Þ ¼ HðnÞ þ R�1N ðnþ 1ÞXðnþ 1Þ½ yðnþ 1Þ � Xtðnþ 1ÞHðnÞ�
ð6:23Þ

The matrix R�1N ðnþ 1Þ in that expression can be updated recursively with the
help of a matrix identity called the matrix inversion lemma [1]. Given
matrices A, B, C, and D satisfying the equation

A ¼ Bþ CDCt

the inverse of matrix A is

FIG. 6.3 Evolution of the coefficient error for two weighting factor values.



A�1 ¼ B�1 � B�1C½CtB�1C þD�1��1CtB�1 ð6:24Þ
The matrix A�1 can appear in various forms, which can be derived from the
identity

ðB�UDVÞ�1 ¼ ½IN � B�1UDV ��1B�1

where B is assumed nonsingular, through the generic power series expansion

ðIN � B�1UDVÞ�1B�1 ¼ ½IN þ B�1UDV þ ðB�1UDVÞ2 þ � � ��B�1 ð6:25Þ
The convergence of the series is obtained if the eigenvalues of ðB�1UDVÞ are
less than unity. Expression (6.25) is a generalized matrix inversion lemma
[2]. Consider, for example, regrouping and summing all terms but the first in
(6.25) to obtain

ðB�UDVÞ�1 ¼ IN þ B�1U½IN �DVB�1U��1DVB�1 ð6:26Þ
which is another form of (6.24).

This lemma can be applied to the calculation of R�1N ðnþ 1Þ in such a way
that no matrix inversion is needed, just division by a scalar. Since

RNðnþ 1Þ ¼WRNðnÞ þ Xðnþ 1ÞXtðnþ 1Þ ð6:27Þ
let us choose

B ¼WRNðnÞ; C ¼ Xðnþ 1Þ; D ¼ 1

then, lemma (6.24) yields

R�1N ðnþ 1Þ ¼ 1

W
R�1N ðnÞ �

R�1N ðnÞXðnþ 1ÞXtðnþ 1ÞR�1N ðnÞ
W þ Xtðnþ 1ÞR�1N ðnÞXðnþ 1Þ

" #
ð6:28Þ

It is convenient to define the adaptation gain GðnÞ by
GðnÞ ¼ R�1N ðnÞXðnÞ ð6:29Þ

which, using (6.28) and after adequate simplifications, leads to

Gðnþ 1Þ ¼ 1

W þ Xtðnþ 1ÞR�1N ðnÞXðnþ 1ÞR
�1
N ðnÞXðnþ 1Þ ð6:30Þ

Now, expression (6.28) and recursion (6.23) can be rewritten as

R�1N ðnþ 1Þ ¼ 1

W
½R�1N ðnÞ � Gðnþ 1ÞXtðnþ 1ÞR�1N ðnÞ� ð6:31Þ

and

Hðnþ 1Þ ¼ HðnÞ þ Gðnþ 1Þ½ yðnþ 1Þ � Xtðnþ 1ÞHðnÞ� ð6:32Þ



Relations (6.30)–(6.32) provide a recursive procedure to perform the filter
coefficient updating without matrix inversion. Clearly, a nonzero initial
value R�1N ð0Þ is necessary for the procedure to start; that point is discussed
in a later section.

The number of arithmetic operations represented by the above procedure
is proportional to N2, because of the matrix multiplications involved.
Matrix manipulations can be completely avoided, and the computational
complexity made proportional to N only by considering that RNðnÞ is a real-
time estimate of the input signal AC matrix and that, as shown in Chapter 5,
its inverse can be represented by prediction parameters.

Before introducing the corresponding fast algorithms, several useful rela-
tions between LS variables are derived.

6.3. RELATIONSHIPS BETWEEN LS VARIABLES

In deriving the recursive least squares (RLS) procedure, the matrix inversion
is avoided by the introduction of an appropriate scalar. Let

’ðnþ 1Þ ¼ W

W þ Xtðnþ 1ÞR�1N ðnÞXðnþ 1Þ ð6:33Þ

It is readily verified, using (6.28), that

’ðnþ 1Þ ¼ 1� Xtðnþ 1ÞR�1N ðnþ 1ÞXðnþ 1Þ
The scalar 
ðnÞ, defined by


ðnÞ ¼ XtðnÞR�1N ðnÞXðnÞ ð6:34Þ
has a special interpretation in signal processing. First, it is clear from


ðnþ 1Þ ¼ Xtðnþ 1Þ½WRNðnÞ þ Xðnþ 1ÞXtðnþ 1Þ��1Xðnþ 1Þ
that, assuming the existence of the inverse matrix


ðnþ 1Þ 4 Xtðnþ 1Þ½Xðnþ 1ÞXtðnþ 1Þ��1Xðnþ 1Þ
Since

½Xðnþ 1ÞXtðnþ 1Þ�Xðnþ 1Þ ¼ kXðnþ 1ÞkXðnþ 1Þ ð6:35Þ
where kXk the Euclidean norm of the vector X , the inverse matrix
½Xðnþ 1ÞXtðnþ 1Þ��1 by definition satisfies

½Xðnþ 1ÞXtðnþ 1Þ��1Xðnþ 1Þ ¼ kXðnþ 1Þk�1Xðnþ 1Þ ð6:36Þ
and the variable 
ðnÞ is bounded by

0 4 
ðnÞ 4 1



Now, from Section 2.12, it appears that the term in the exponent of the
joint density of N zero mean Gaussian variables, has a form similar to 
ðnÞ,
which can be interpreted as its sample estimate—hence the name of like-
lihood variable given to 
ðnÞ in estimation theory [3]. Thus, 
ðnÞ is a measure
of the likelihood that the N most recent input data samples come from a
Gaussian process with AC matrix RNðnÞ determined from all the available
past observations. A small value of 
ðnÞ indicates that the recent input data
are likely samples of a Gaussian signal, and a value close to unity indicates
that the observations are unexpected; in the latter case, Xðnþ 1Þ is out of the
current estimated signal space, which can be due to the time-varying nature
of the signal statistics. As a consequence, 
ðnÞ can be used to detect changes
in the signal statistics. If the adaptation gain GðnÞ is available, as in the fast
algorithms presented below, 
ðnÞ can be readily calculated by


ðnÞ ¼ XtðnÞGðnÞ ð6:37Þ
From the definitions, ’ðnÞ and 
ðnÞ have similar properties. Those rele-

vant to LS techniques are presented next.
Postmultiplying both sides of recurrence relation (6.27) by R�1N ðnÞ yields
RNðnþ 1ÞR�1N ðnÞ ¼WIN þ Xðnþ 1ÞXtðnþ 1ÞR�1N ðnÞ ð6:38Þ

Using the identity

det½IN þ V1V
t
2� ¼ 1þ Vt

1V2 ð6:39Þ
where V1 and V2 are N-element vectors, and the definition of ’ðnÞ, one gets

’ðnþ 1Þ ¼WN detRNðnÞ
detRNðnþ 1Þ ð6:40Þ

Because of the definition of RNðnÞ and its positiveness and recurrence rela-
tion (6.27), the variable ’ðnÞ is bounded by

0 4 ’ðnÞ 4 1 ð6:41Þ
which, through a different approach, confirms (6.36). This is a crucial prop-
erty, which can be used to check that the LS conditions are satisfied in
realizations of fast algorithms.

Now, we show that the variable ’ðnÞ has a straightforward physical
meaning. The RLS procedure applied to forward linear prediction is
based on a cost function, which is the prediction error energy

EaðnÞ ¼
Xn
p¼1

Wn�p½xðpÞ � AtðnÞXðp� 1Þ�2 ð6:42Þ

The coefficient vector is



AðnÞ ¼ R�1N ðn� 1ÞraNðnÞ ð6:43Þ
with

raNðnÞ ¼
Xn
p¼1

Wn�pxðpÞXðp� 1Þ ð6:44Þ

The index n� 1 in (6.43) is typical of forward linear prediction, and the RLS
coefficient updating equation is

Aðnþ 1Þ ¼ AðnÞ þ GðnÞeaðnþ 1Þ ð6:45Þ
where

eaðnþ 1Þ ¼ xðnþ 1Þ � AtðnÞXðnÞ ð6:46Þ
is the a priori forward prediction error.

The updated coefficients Aðnþ 1Þ are used to calculate the a posteriori
prediction error

"aðnþ 1Þ ¼ xðnþ 1Þ � Atðnþ 1ÞXðnÞ ð6:47Þ
or

"aðnþ 1Þ ¼ eaðnþ 1Þ½1� GtðnÞXðnÞ� ð6:48Þ
From definition (6.33) we have

’ðnÞ ¼ "aðnþ 1Þ
eaðnþ 1Þ ð6:49Þ

and ’ðnÞ is the ratio of the forward prediction errors at the next time. This
result can lead to another direct proof of inequality (6.41).

A similar result can also be obtained for backward linear prediction. The
cost function used for the RLS procedure is the backward prediction error
energy

EbðnÞ ¼
Xn
p¼1

Wn�p½xðp�NÞ � BtðnÞXðpÞ�2 ð6:50Þ

The backward coefficient vector is

BðnÞ ¼ R�1N ðnÞrbNðnÞ ð6:51Þ
with

rbNðnÞ ¼
Xn
p¼1

Wn�pxðp�NÞXðpÞ ð6:52Þ

The coefficient updating equation is now



Bðnþ 1Þ ¼ BðnÞ þ Gðnþ 1Þebðnþ 1Þ ð6:53Þ
with

ebðnþ 1Þ ¼ xðnþ 1�NÞ � BtðnÞXðnþ 1Þ ð6:54Þ
The backward a posteriori prediction error is

"bðnþ 1Þ ¼ xðnþ 1�NÞ � Btðnþ 1ÞXðnþ 1Þ ð6:55Þ
Substituting (6.53) into (6.55) gives

’ðnþ 1Þ ¼ "bðnþ 1Þ
ebðnþ 1Þ ð6:56Þ

which shows that ’ðnÞ is the ratio of the backward prediction errors at the
same time index.

In fact, this is a general result, which applies to any adaptive filter, and
the following equation is obtained in a similar manner:

’ðnþ 1Þ ¼ "ðnþ 1Þ
eðnþ 1Þ ð6:57Þ

It is worth pointing out that this result can lead to another proof of inequal-
ity (6.41). Let us consider the error energy (6.20) at time nþ 1:

ENðnþ 1Þ ¼W
Xn
p¼1

Wn�p½ yðpÞ �Htðnþ 1ÞXðpÞ�2 þ "2ðnþ 1Þ ð6:58Þ

and the variable

E 0Nðnþ 1Þ ¼W
Xn
p¼1

Wn�p½ yðpÞ �HtðnÞXðpÞ�2 þ e2ðnþ 1Þ ð6:59Þ

By definition of the optimal set of coefficients, the two following inequalities
hold

E 0Nðnþ 1Þ 5 ENðnþ 1Þ ð6:60Þ
and

ENðnþ 1Þ � "2ðnþ 1Þ 5 E 0Nðnþ 1Þ � e2ðnþ 1Þ ð6:61Þ
As a consequence,

e2ðnþ 1Þ 5 "2ðnþ 1Þ ð6:62Þ
The above results can be illustrated with the help of simple signals. For
example, with N ¼ 2 and xðnÞ a sinusoidal signal, the direct application of
the definition of ’ðnÞ yields, for large n



’ðnÞ � 2� 2ð1�WÞ ¼ 2W � 1 ð6:63Þ
This result can be generalized to any N, if the frequency ! in xðnÞ ¼ sin n!
satisfies the conditions: �=N 4 ! 4 �� �=N.

Now, for xðnÞ a white noise and W close to one,

E½’ðnÞ� � 1�Nð1�WÞ ð6:64Þ
The forward prediction error energy can be computed recursively.

Substituting equation (6.43) into the expression of Eaðnþ 1Þ yields

Eaðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�px2ðpÞ � Atðnþ 1ÞraNðnþ 1Þ ð6:65Þ

The recurrence relations for Aðnþ 1Þ and raNðnþ 1Þ, in connection with the
definitions for the adaptation gain and the prediction coefficients, yield after
simplification

Eaðnþ 1Þ ¼WEaðnÞ þ eaðnþ 1Þ"aðnþ 1Þ ð6:66Þ
Similarly, the backward prediction error energy can be calculated by

Ebðnþ 1Þ ¼WEbðnÞ þ ebðnþ 1Þ"bðnþ 1Þ ð6:67Þ
These are fundamental recursive computations which are used in the fast
algorithms.

6.4. FAST ALGORITHM BASED ON A PRIORI
ERRORS

In the RLS procedure, the adaptation gain GðnÞ used to update the coeffi-
cients is itself updated with the help of the inverse input signal AC matrix. In
fast algorithms, prediction parameters are used instead [4].

Let us consider the ðN þ 1Þ � ðN þ 1Þ AC matrix RNþ1ðnþ 1Þ; as pointed
out in Chapter 5, it can be partitioned in two different manners, exploited in
forward and backward prediction equations:

RNþ1ðnþ 1Þ ¼
Pnþ1
p¼1

Wnþ1�px2ðpÞ ½raNðnþ 1Þ�t

raNðnþ 1Þ RNðnÞ

2
4

3
5 ð6:68Þ

and

RNþ1ðnþ 1Þ ¼
RNðnþ 1Þ rbNðnþ 1Þ
½rbNðnþ 1Þ�t Pnþ1

p¼1
Wnþ1�px2ðp�NÞ

2
64

3
75 ð6:69Þ



The objective is to find Gðnþ 1Þ satisfying
RNðnþ 1ÞGðnþ 1Þ ¼ Xðnþ 1Þ ð6:70Þ

and it will be reached in two consecutive steps. In the first step, the adapta-
tion gain at order N þ 1, a vector with N þ 1 elements, will be calculated
from forward linear prediction parameters. Then, it will be used to derive
the desired gain Gðnþ 1Þ with the help of backward linear prediction para-
meters.

Since RNðnÞ is present in (6.68), let us calculate

RNþ1ðnþ 1Þ 0
GðnÞ

� 	
¼ ½raNðnþ 1Þ�tGðnÞ

XðnÞ
� 	

ð6:71Þ

From definitions (6.29) for the adaptation gain and (6.43) for the optimal
forward prediction coefficients, we have

½raNðnþ 1Þ�tGðnÞ ¼ Atðnþ 1ÞXðnÞ ð6:72Þ
Introducing the a posteriori prediction error, we get

RNþ1ðnþ 1Þ 0
GðnÞ

� 	
¼ X1ðnþ 1Þ � "aðnþ 1Þ

0

� 	
ð6:73Þ

where X1ðnÞ is the vector of the N þ 1 most recent input data. Similarly,
partitioning (6.69) leads to

RNþ1ðnþ 1Þ Gðnþ 1Þ
0

� 	
¼ Xðnþ 1Þ
½rbNðnþ 1Þ�tGðnþ 1Þ

� 	
ð6:74Þ

From definitions (6.70) and (6.51), we have

½rbNðnþ 1Þ�tGðnþ 1Þ ¼ Btðnþ 1ÞXðnþ 1Þ ð6:75Þ
and

RNðnþ 1Þ Gðnþ 1Þ
0

� 	
¼ X1ðnþ 1Þ � 0

"bðnþ 1Þ
� 	

ð6:76Þ

Now, the adapttion gain at dimension N þ 1, denoted G1ðnþ 1Þ with the
above notation, is defined by

RNþ1ðnþ 1ÞG1ðnþ 1Þ ¼ X1ðnþ 1Þ ð6:77Þ
Then, equation (6.73) can be rewritten as

RNþ1ðnþ 1Þ G1ðnþ 1Þ � 0
GðnÞ

� 	� 	
¼ "aðnþ 1Þ

0

� 	
ð6:78Þ

Equation (6.76) becomes



RNþ1ðnþ 1Þ G1ðnþ 1Þ � Gðnþ 1Þ
0

� 	� 	
¼ 0

"aðnþ 1Þ
� 	

ð6:79Þ

Now, linear prediction matrix equations will be used to compute G1ðnþ 1Þ
from GðnÞ, and then Gðnþ 1Þ from G1ðnþ 1Þ. The forward linear prediction
matrix equation, combining (6.43) and (6.65), is

RNþ1ðnþ 1Þ 1
�Aðnþ 1Þ

� 	
¼ Eaðnþ 1Þ

0

� 	
ð6:80Þ

Identifying factors in (6.80) and (6.78) yields

G1ðnþ 1Þ ¼ 0
GðnÞ

� 	
þ "aðnþ 1Þ
Eaðnþ 1Þ

1
�Aðnþ 1Þ

� 	
ð6:81Þ

The backward linear prediction matrix equation is

RNþ1ðnþ 1Þ �Bðnþ 1Þ
1

� 	
¼ 0

Ebðnþ 1Þ
� 	

ð6:82Þ

Identifying factors in (6.82) and (6.79) yields

G1ðnþ 1Þ � Gðnþ 1Þ
0

� 	
¼ "bðnþ 1Þ

Ebðnþ 1Þ
�Bðnþ 1Þ

1

� 	
ð6:83Þ

The scalar factor on the right side need not be calculated; it is already
available. Let us partition the adaptation gain vector

G1ðnþ 1Þ ¼ Mðnþ 1Þ
mðnþ 1Þ

� 	
ð6:84Þ

withMðnþ 1Þ having N elements; the scalar mðnþ 1Þ is given by the last line
of (6.83):

mðnþ 1Þ ¼ "bðnþ 1Þ
Ebðnþ 1Þ ð6:85Þ

The N-element adaptation gain is updated by

Gðnþ 1Þ ¼Mðnþ 1Þ þmðnþ 1ÞBðnþ 1Þ ð6:86Þ
But the updated adaptation gain is needed to get Bðnþ 1Þ. Substituting
(6.53) into (6.86) provides an expression of the gain as a function of avail-
able quantities:

Gðnþ 1Þ ¼ 1

1�mðnþ 1Þebðnþ 1Þ ½Mðnþ 1Þ þmðnþ 1ÞBðnÞ� ð6:87Þ

Note that, instead, (6.86) can be substituted into the coefficient updating
equation, allowing the computation of Bðnþ 1Þ first:



Bðnþ 1Þ ¼ 1

1�mðnþ 1Þebðnþ 1Þ ½BðnÞ þMðnþ 1Þebðnþ 1Þ� ð6:88Þ

In these equations, a new scalar is showing up. Since one must always be
careful with dividers, it is interesting to investigate its physical interpretation
and appreciate its magnitude range. Combining (6.85) and the energy updat-
ing equation (6.67) yields

1�mðnþ 1Þebðnþ 1Þ ¼ 1� "bðnþ 1Þebðnþ 1Þ
Ebðnþ 1Þ ¼ WEbðnÞ

Ebðnþ 1Þ ð6:89Þ

Thus, the divider 1�mðnþ 1Þebðnþ 1Þ is the ratio of two consecutive values
of the backward prediction error energy, and its theoretical range is

0 < 1�mðnþ 1Þebðnþ 1Þ 4 1 ð6:90Þ
Clearly, as time goes on, its value approaches unity, more so than when

the prediction error is small. Incidentally, equation (6.89) is an alternative to
(6.67) to update the backward prediction error energy. Overall a fast algo-
rithm is available and the sequence of operations is given in Figure 6.4. The
corresponding FORTRAN subroutine is given in Annex 6.1.

It is sometimes called the fast Kalman algorithm [4]. The LS initialization
is obtained by taking AðnÞ ¼ BðnÞ ¼ GðnÞ ¼ 0 and Eað0Þ ¼ E0, a small posi-
tive constant, as discussed in a later section.

The adaptation gain updating requires 8N þ 4 multiplications and two
divisions in the form of inverse calculations; in the filtering, 2N multiplica-
tions are involved. Approximately 6N memories are needed to store the
coefficients and variables. The progress with respect to RLS algorithms is
impressive; however, it is still possible to improve these figures.

The above algorithm is mainly based on the a priori errors; for example,
the backward a posteriori prediction error is not calculated. If all the pre-
diction errors are exploited, a better balanced and more efficient algorithm
is derived [5, 6].

6.5. ALGORITHM BASED ON ALL PREDICTION
ERRORS

Let us define an alternative adaptation gain vector with N elements, G 0ðnÞ,
by

RNðnÞG 0ðnþ 1Þ ¼ Xðnþ 1Þ ð6:91Þ
Because of the term RðnÞ in G 0ðnþ 1Þ, it is also called the a priori adaptation
gain, in contrast with the a posteriori gain Gðnþ 1Þ.

Similarly at order N þ 1



RNþ1ðnÞG 01ðnþ 1Þ ¼ X1ðnþ 1Þ ð6:92Þ
Exploiting, as in the previous section, the two different partitionings, (6.68)
and (6.69), of the AC matrix estimation RNþ1ðnÞ, one gets

RNþ1ðnÞ G 0ðnþ 1Þ
0

� 	
¼ X1ðnþ 1Þ � 0

ebðnþ 1Þ
� 	

ð6:93Þ

FIG. 6.4 Computational organization of the fast algorithm based on a priori

errors.



and

RNþ1ðnÞ 0
G 0ðnÞ

� 	
¼ X1ðnþ 1Þ � ebðnþ 1Þ

0

� 	
ð6:94Þ

Now, substituting definition (6.92) into (6.93) yields

RNþ1ðnÞ G 01ðnþ 1Þ � G 0ðnþ 1Þ
0

� 	� 	
¼ 0

ebðnþ 1Þ
� 	

ð6:95Þ

Identifying with the backward prediction matrix equation (6.82) gives a first
expression for the order N þ 1 adaptation gain:

G 01ðnþ 1Þ ¼ G 0ðnþ 1Þ
0

� 	
þ ebðnþ 1Þ

EbðnÞ
�BðnÞ

0

� 	
ð6:96Þ

Similarly (6.94) and (6.92) lead to

RNþ1ðnÞ G 01ðnþ 1Þ � 0
G 0ðnÞ

� 	� 	
¼ eaðnþ 1Þ

0

� 	
ð6:97Þ

Identifying with the forward prediction matrix equation (6.80) provides
another expression for the gain:

G 01ðnþ 1Þ ¼ 0
G 0ðnÞ

� 	
þ eaðnþ 1Þ

EaðnÞ
1
�AðnÞ

� 	
ð6:98Þ

The procedure for calculating G 0ðnþ 1Þ consists of calculating G 01ðnþ 1Þ
from the forward prediction parameters by (6.98) and then using (6.96).

Once the alternative gain G 0ðnÞ is updated, it can be used in the filter
coefficient recursion, provided it is adequately modified. It is necessary to
replace R�1N ðnþ 1Þ by R�1N ðnÞ in equation (6.23). At time nþ 1 the optimal
coefficient definition (6.21) is

½WRNðnÞ þ Xðnþ 1ÞXtðnþ 1Þ�Hðnþ 1Þ ¼WrYxðnÞ þ yðnþ 1ÞXðnþ 1Þ
which, after some manipulation, leads to

Hðnþ 1Þ ¼ HðnÞ þW�1R�1N ðnÞXðnþ 1Þ½ yðnþ 1Þ � Xtðnþ 1ÞHðnþ 1Þ�
ð6:99Þ

The a posteriori error

"ðnþ 1Þ ¼ yðnþ 1Þ � Xtðnþ 1ÞHðnþ 1Þ ð6:100Þ
has to be calculated from available data; this is achieved with the help of the
variable ’ðnÞ defined by (6.33), which is the ratio of a posteriori to a priori
errors. From (6.33) we have



W þ Xtðnþ 1ÞG 0ðnþ 1Þ ¼ W

’ðnþ 1Þ ¼ �ðnþ 1Þ ð6:101Þ

The variable �ðnþ 1Þ is actually calculated in the algorithm.
Substituting Hðnþ 1Þ from (6.99) into (6.100) yields the kind of relation-

ship already obtained for prediction:

"ðnþ 1Þ ¼ ’ðnþ 1Þeðnþ 1Þ ð6:102Þ
Now the coefficient updating equation is

Hðnþ 1Þ ¼ HðnÞ þ eðnþ 1Þ
�ðnþ 1ÞG

0ðnþ 1Þ ð6:103Þ

Note that, from the above derivations, the two adaptation gains are related
by the scalar �ðnþ 1Þ and an alternative definition of G 0ðnþ 1Þ is

G 0ðnþ 1Þ ¼ ½W þ Xtðnþ 1ÞR�1N ðnÞXðnþ 1Þ�Gðnþ 1Þ
¼ �ðnþ 1ÞGðnþ 1Þ ð6:104Þ

The variable �ðnþ 1Þ can be calculated from its definition (6.101). However,
a recursive procedure, similar to the one worked out for the adaptation gain,
can be obtained. The variable corresponding to the order N þ 1 is �1ðnþ 1Þ,
defined by

�1ðnþ 1Þ ¼W þ Xt
1ðnþ 1ÞG 01ðnþ 1Þ ð6:105Þ

The two different expressions for G 01ðnþ 1Þ, (6.96) and (6.98), yield

�1ðnþ 1Þ ¼ �ðnÞ þ e2aðnþ 1Þ
EaðnÞ

¼ �ðnþ 1Þ þ e2bðnþ 1Þ
EbðnÞ

ð6:106Þ

which provides the recursion for �ðnþ 1Þ and ’ðnþ 1Þ.
Since ’ðnþ 1Þ is available, it can be used to derive the a posteriori pre-

diction errors "aðnþ 1Þ and "bðnþ 1Þ, with only one multiplication instead
of the N multiplications and additions required by the definitions.

The backward a priori prediction error can be obtained directly. If the
N þ 1 dimension vector gain is partitioned,

G 01ðnþ 1Þ ¼ M 0ðnþ 1Þ
m 0ðnþ 1Þ

� 	
ð6:107Þ

the last line of matrix equation (6.96) is

m 0ðnþ 1Þ ¼ ebðnþ 1Þ
EbðnÞ

ð6:108Þ



which provides ebðnþ 1Þ through just a single multiplication. However, due
to roundoff problems discussed in a later section, this simplification is not
recommended. The overall algorithm is given in Figure 6.5.

The LS initialization corresponds to

Að0Þ ¼ Bð0Þ ¼ G 0ð0Þ ¼ 0; Eað0Þ ¼ E0; Ebð0Þ ¼W�NE0 ð6:109Þ

FIG. 6.5 Computational organization of the fast algorithm based on all prediction

errors.



where E0 is a small positive constant. Definition (6.101) also yields
�ð0Þ ¼W .

The adaptation gain updating section requires 6N þ 9 multiplications
and three divisions in the form of inverse calculations. The filtering sec-
tion has 2N þ 1 multiplications. Approximately 6N þ 7 memories are
needed. Overall this second algorithm can bring an appreciable improve-
ment in computational complexity over the first one, particularly for
large order N.

6.6. STABILITY CONDITIONS FOR LS RECURSIVE
ALGORITHMS

For a nonzero set of signal samples, the LS calculations provide a unique set
of prediction coefficients. Recursive algorithms correspond to exact calcula-
tions at any time, and, therefore, their stability is guaranteed in theory for
any weighting factorW . Since fast algorithms are mathematically equivalent
to RLS, they enjoy the same property. Their stability is even guaranteed for
a zero signal sequence, provided the initial prediction error energies are
greater than zero. This is a very important and attractive theoretical prop-
erty, which, unfortunately, is lost in realizations because of finite precision
effects in implementations [7–10].

Fast algorithms draw their efficiency from a representation of LS para-
meters, the inverse input signal AC matrix, and cross-correlation estima-
tions, which is reduced to a minimal number of variables. With the finite
accuracy of arithmetic operations, that representation can only be approx-
imate. So, the inverse AC matrix estimation R�1N ðnÞ appears in FLS algo-
rithms through its product by the data vector XðnÞ, which is the adaptation
gain GðnÞ. Since the data vector is by definition an exact quantity, the round-
off errors generated in the gain calculation procedure correspond to devia-
tions of the actual inverse AC matrix estimation from its theoretical infinite
accuracy value.

In Section 3.11, we showed that random errors on the AC matrix ele-
ments do not significantly affect the eigenvalues, but they alter the eigen-
vector directions. Conversely, a bias in estimating the ACF causes variations
of eigenvalues.

When the data vector XðnÞ is multiplied by the theoretical matrix R�1N ðnÞ,
the resulting vector has a limited range because XðnÞ belongs to the signal
space of the matrix.

However, if an approximation of R�1N ðnÞ is used, the data vector can have
a significant projection outside of the matrix signal space; in that case, the
norm of the resulting vector is no longer controlled, which can make vari-



ables exceed the limits of their magnitude range. Also, the eigenvalues can
become negative because of long-term roundoff error accumulation.

Several variables have a limited range in FLS algorithms. A major step in
the sequence of operations is the computation of a posteriori errors, from
coefficients which have been updated with the adaptation gain and a priori
errors. Therefore the accuracy of the representation of R�1N ðnÞXðnÞ by GðnÞ
can be directly controlled by the ratio ’ðnÞ of a posteriori to a priori pre-
diction errors. In realizations the variable ’ðnÞ, introduced in Section 6.3,
corresponds to

’ðnÞ ¼ 1� XtðnÞ½Rq
NðnÞ��1XðnÞ ð6:110Þ

where R
q
NðnÞ is the matrix used instead of the theoretical RNðnÞ. The variable

’ðnÞ can exceed unity if eigenvalues of R
q
NðnÞ become negative; ’ðnÞ can

become negative if the scalar XtðnÞ½Rq
NðnÞ��1XðnÞ exceeds unity.

Roundoff error accumulation, if present, takes place in the long run. The
first precaution in implementing fast algorithms is to make sure that the
scalar XtðnÞ½Rq

NðnÞ��1XðnÞ does not exceed unity.
To begin with, let us assume that the input signal is a white zero mean

Gaussian noise with power �2x. As seen in Section 3.11, for sufficiently large
n one has

RNðnÞ �
�2x

1�W
IN ð6:111Þ

Near the time origin, the actual matrix R
q
NðnÞ is assumed to differ from

RNðnÞ only by addition of random errors, which introduces a decoupling
between R

q
NðnÞ and XðnÞ. Hence the following approximation can be justi-

fied:

XtðnÞ½Rq
NðnÞ��1XðnÞ �

1�W

�2x
XtðnÞXðnÞ ð6:112Þ

The variable XtðnÞXðnÞ is Gaussian with mean N�2x and variance 2N�4x. If a
peak factor of 4 is assumed, a condition for keeping the prediction error
ratio above zero is

ð1�WÞðN þ 4
ffiffiffiffiffiffiffi
2N
p
Þ < 1 ð6:113Þ

This inequality shows that a lower bound is imposed on W . For example,
if N ¼ 10, then W > 0:95.

Now, for a more general input signal, the extreme situation occurs when
the data vector XðnÞ has the direction of the eigenvector associated with the
smallest eigenvalue 	qminðnÞ of Rq

NðnÞ. Under the hypotheses of zero mean
random error addition, neglecting long-term accumulation processes if any,
the following approximation can be made:



	qminðnÞ �
	min

1�W
ð6:114Þ

where 	min is the smallest eigenvalue of the input signal AC matrix. If we
further approximate XtðnÞXðnÞ by N�2x, the condition on ’ðnÞ becomes:

ð1�WÞN�
2
x

	min

< 1 ð6:115Þ

This condition may appear extremely restrictive, since the ratio �2x=	min

can take on large values. For example, if xðnÞ is a determinist signal with
additive noise and the predictor order N is large enough, �2x=	min is the
SNR. Inequalities (6.13) and (6.115) have been derived under restrictive
hypotheses on the effects of roundoff errors, and they must be used with
care. Nevertheless, they show that the weighting factor W cannot be chosen
arbitrarily small.

6.7. INITIAL VALUES OF THE PREDICTION ERROR
ENERGIES

The recursive implementations of the weighted LS algorithms require the
initialization of the state variables. If the signal is not known before time
n ¼ 0, it is reasonable to asume that it is zero and the prediction coefficients
are zero. However, the forward prediction error energy must be set to a
positive value, say E0. For the algorithm to start on the right track, the
initial conditions must correspond to a LS situation.

A positive forward prediction error energy, when the prediction coeffi-
cients are zero, can be interpreted as corresponding to a signal whose pre-
vious samples are all zero except for one. Moreover, if the gain Gð0Þ is also
zero, then the input sequence is

xð�NÞ ¼ ðW�NE0Þ1=2
xðnÞ ¼ 0; n 4 0; n 6¼ �N ð6:116Þ

The corresponding value for the backward prediction error energy is
Ebð0Þ ¼ x2ð�NÞ ¼W�NE0—hence the initialization (6.109).

In these conditions the initial value of the AC matrix estimation is

RNð0Þ ¼
1 0 � � � 0
0 W�1 � � � 0
..
. ..

. ..
.

0 0 � � � W�ðN�1Þ

2
664

3
775E0 ð6:117Þ

and the matrix actually used to estimate the input AC matrix is R	NðnÞ, given
by



R	NðnÞ ¼ RNðnÞ þWnRNð0Þ ð6:118Þ
The smallest eigenvalue of the expectation of R	NðnÞ, denoted 		minðnÞ, is
obtained, using (6.22), by

		minðnÞ ¼
1�Wn

1�W
	min þWnE0 ð6:119Þ

The first term on the right side is growing with n while the second is decay-
ing. The transient phase and the steady state are put in the same situation as
concerns stability if a lower bound is set on E0. Equation (6.119) can be
rewritten as

		minðnÞ ¼
	min

1�W
þWn E0 �

	min

1�W

� �
ð6:120Þ

Now, 		minðnÞ is at least equal to 	min=1�W if E0 itself is greater or equal to
that quantity. From condition (6.115), we obtain

E0 5 N�2x ð5:121Þ
This condition has been derived under extremely restrictive hypotheses; it is,
in general, overly pessimistic, and smaller values of the initial prediction
error energy can work in practice. The representation of the matrix RNðnÞ
in the system can stay accurate during a period of time longer than the
transient phase as soon as the machine word length is sufficiently large.
For example, extensive experiments carried out with a 16-bit microprocessor
and fixed-point arithmetic have shown that a lower bound for E0 is about
0:01�2x [11]. If the word length is smaller, then E0 must be larger. As an
illustration, a unit power AR signal is fed to a predictor with order N ¼ 4,
and the quadratic deviation of the coefficients from their ideal values is
given in Figure 6.6 for several values of E0. The weighting factor is W ¼
0:99 and a word length of 12 bits in fixed-point arithmetic is simulated.
Satisfactory operation of the algorithm is obtained for E0 5 0:1.

Finally, the above derivations show that the initial error energies cannot
be taken arbitrarily small.

6.8. BOUNDING PREDICTION ERROR ENERGIES

The robustness of LS algorithms to roundoff errors can be improved by
adding a noise sequence to the input signal. The smallest eigenvalue of the
input AC matrix is increased by the additive noise power with that method,
which can help satisfy inequality (6.115). However, as mentioned in Chapter
5, a bias is introduced on the prediction coefficients, and it is more desirable
to use an approach bearing only on the algorithm operations.



When one considers condition (6.115), one can observe that, for W and
N fixed, the only factor which can be manipulated is 	min, the minimal
eigenvalue of the N �N input signal AC matrix. That factor is not available
in the algorithm. However, it can be related to the prediction error energies,
which are available.

From a different point of view, if the input signal is predictable, as seen in
Section 2.9, the steady-state prediction error is zero for an order N suffi-
ciently large. Consequently, the variables EaðnÞ and EbðnÞ can become arbi-
trarily small, and the rounding process eventually sets them to zero, which is
unacceptable since they are used as divisors. Therefore a lower bound has to
be imposed on error energies when the FLS algorithm is implemented in
finite precision hardware. A simple method is to introduce a positive con-
stant C in the updating equation

Eaðnþ 1Þ ¼WEaðnÞ þ eaðnþ 1Þ"aðnþ 1Þ þ C ð6:122Þ

If �2e denotes the prediction error power associated with a stationary input
signal, the expectation of EaðnÞ in the steady state is

E½EaðnÞ� ¼
�2e þ C

1�W
ð6:123Þ

FIG. 6.6 Coefficient deviations for several initial error energy values.



The same value would have been obtained with the weighting factor W 0

satisfying

�2e þ C

1�W
¼ �2e

1�W 0 ð6:124Þ

and a first global assessment of the effect of introducing the constant C is
that it increases the weighting factor from W to W 0, which helps satisfy
condition (6.115).

As concerns the selection of a value for C, it can be related to the initial
error energy E0 and a reasonable choice can be:

C ¼ ð1�WÞE0 ð6:125Þ
In fact both E0 and C depend on the performance objectives and the infor-
mation available on the input signal characteristics.

A side effect of introducing the constant C is that it produces a leakage in
the updating of the backward prediction coefficient vector, which can con-
tribute to counter roundoff error accumulation.

Adding a small constant C to Eaðnþ 1Þ leads to the adaptation gain

G	1ðnþ 1Þ � G1ðnþ 1Þ � "aðnþ 1Þ
E2
a ðnþ 1Þ

1
�Aðnþ 1Þ

� 	
C ð6:126Þ

The last element is

m	ðnþ 1Þ � mðnþ 1Þ þ "aðnþ 1Þ
E2
a ðnþ 1Þ aNðnþ 1ÞC ð6:127Þ

and the backward prediction updating equation in these conditions takes the
form

Bðnþ 1Þ � ð1� �bÞBðnÞ þ Gðnþ 1Þebðnþ 1Þ ð6:128Þ
with

E½�b� � Cð1�WÞE½a2Nðnþ 1Þ�=EðEaðnþ 1Þ� ð6:129Þ
However, it must be pointed out that, with the constant C, the algorithm

is no longer in conformity with the LS theory and the theoretical stability is
not guaranteed for any signals. The detailed analysis further reveals that the
constant C increases the prediction error ratio ’ðnÞ. Due to the range limita-
tions for ’ðnÞ that can lead to the algorithm divergence for some signals. For
example, with sinusoids as input signals, it can be seen, using the results
given in Section 3.7 of Chapter 3, that ’ðnÞ can take on values very close to
unity for sinusoids with close frequencies. In those cases the value of the



constant C has to be very small and, consequently, a large machine word
length is needed.

The roundoff error accumulation process is investigated next.

6.9. ROUNDOFF ERROR ACCUMULATION AND ITS
CONTROL

Roundoff errors are generated by the quantization operations which gen-
erally take place after the multiplications and divisions. They are thought to
come from independent sources, their spectrum is assumed flat, and their
variance is q2=12, where q is the quantization step size related to the internal
word length of the machine used. The particularity of the FLS algorithms,
presented in the previous sections, is that accumulation can take place [6–9].
Basically, the algorithm given in Figure 6.4, for example, consists of three
overlapping recursions. The adaptation gain updating recursion makes the
connection between forward and backward prediction coefficient recursions,
and these recursions can produce roundoff noise accumulation [12].

Let us assume, for example, that an error vector �BðnÞ is added to the
backward prediction coefficient vector BðnÞ at time n. Then if we neglect the
scalar term in (6.87) and consider the algorithm in Figure 6.4, the deviation
at time nþ 1 is

�Bðnþ 1Þ ¼ ½IN ½1þmðnþ 1Þebðnþ 1Þ� � Gðnþ 1ÞXtðnþ 1Þ��BðnÞ
��BðnÞ�BtðnÞmðnþ 1ÞXðnþ 1Þ ð6:130Þ

If �BðnÞ is a random vector with zero mean, which is the case for a rounding
operation, the mean of �Bðnþ 1Þ is not zero because of the matrix
�BðnÞ�BtðnÞ in (6.130) and because mðnþ 1Þ is related to the input signal,
the expectation of the product mðnþ 1ÞXðnþ 1Þ is, in general, not zero. The
factor of �BðnÞ is close to a unity matrix—it can even have eigenvalues
greater than 1—thus the introduction of error vectors �BðnÞ at each time n
produces a drift in the coefficients. The effect is a shift of the coefficients from
their optimal values, which degrades performance. However, if the minimum
eigenvalue 	1min of the ðN þ 1Þ � ðN þ 1Þ input AC matrix is close to the
signal power �2x, the prediction error power, also close to �2x because of (5.6),
is an almost flat function of the coefficients and the drift can continue to the
point where the resulting deviation of the eigenvalues and eigenvectors of the
represented matrix R

q
NðnÞ makes ’ðnÞ exceed its limits (6.41). Then, the algo-

rithm is out of the LS situation and generally becomes unstable.
It is important to note that long-term roundoff error accumulation

affects the backward prediction coefficients but, except for the case
N ¼ 1, has much less effect on the forward coefficients. This is mainly



due to the shift in the elements of the gain vector, which is performed by
equation (6.81).

An efficient technique to counter roundoff error accumulation consists of
finding a representative control variable and using it to prevent the coeffi-
cient drift [13].

Since we have observed that roundoff error accumulation occurs in the
backward prediction section of the algorithms, it seems desirable to find an
alternative way to compute the backward linear prediction error ebðnþ 1Þ.

Combining equations (6.85) and (6.56) yields

ebðnþ 1Þ ¼ mðnþ 1ÞEbðnþ 1Þ=’ðnþ 1Þ ð6:131Þ

Now, considering the forward linear prediction matrix equation and
computing the first row, the equivalent of equation (5.72) is obtained:

1 ¼ detRNðnÞ
detRNþ1ðnþ 1ÞEaðnþ 1Þ ð6:132Þ

The same procedure can be applied to backward linear prediction, to
yield

1 ¼ detRNðnþ 1Þ
detRNþ1ðnþ 1ÞEbðnþ 1Þ ð6:133Þ

Combining the two above expressions with (6.40) we get

’ðnþ 1Þ ¼WNEbðnþ 1Þ=Eaðnþ 1Þ ð6:134Þ

and finally

ebðnþ 1Þ ¼ mðnþ 1ÞW�NEaðnþ 1Þ ð6:135Þ

Thus, the backward linear prediction error can be computed from variables
updated in the forward prediction section of the algorithm, and the variable

�ðnþ 1Þ ¼ ebðnþ 1Þ �mðnþ 1ÞW�NEaðnþ 1Þ ð6:136Þ

can be considered representative of the roundoff error accumulation in
algorithm FLS1. It can be minimized by a recursive least squares procedure
applied to the backward linear prediction coefficient vector and using adap-
tation gain Gðnþ 1Þ. In fact, to control the roundoff error accumulation, it
is sufficient to update the backward prediction coefficient vector as follows:

Bðnþ 1Þ ¼ BðnÞ þ Gðnþ 1Þ½ebðnþ 1Þ þ �ðnþ 1Þ� ð6:137Þ



As concerns algorithm FLS2, a similar procedure can be employed, based
on the variable m 0ðnþ 1Þ defined by equation (6.108). The correction vari-
able is

� 0ðnþ 1Þ ¼ ½xðnþ 1�NÞ �m 0ðnþ 1ÞEbðnþ 1Þ� � BtðnÞXðnþ 1Þ ð6:138Þ
and the roundoff error control can be implemented with no additional
multiplication if, in Figure 6.5, the backward coefficient updating recursion
is replaced by

Bðnþ 1Þ ¼ BðnÞ þ G 0ðnþ 1Þ½ebðnþ 1Þ þ ebðnþ 1Þ �m 0ðnþ 1ÞEbðnÞ�
�ðnþ 1Þ

ð6:139Þ
The FORTRAN program of the corresponding algorithm, including round-
off error accumulation control in the simplest version, is given in Annex 6.2.

It must be pointed out that there is no formal proof that the approaches
presented in this section avoid all possible roundoff error accumulation;
and, in fact, more sophisticated correction techniques can be devised.
However, the above techniques are simple and have been shown to perform
satisfactorily under a number of circumstances.

An alternative way of escaping roundoff error accumulation is to avoid
using backward prediction coefficients altogether.

6.10. A SIMPLIFIED ALGORITHM

When the input signal is stationary, the steady-state backward prediction
coefficients are equal to the forward coefficients, as shown in Chapter 5, and
the following equalities hold:

BðnÞ ¼ JNAðnÞ; EaðnÞ ¼ EbðnÞ ð6:140Þ
This suggests replacing backward coefficients by forward coefficients in FLS
algorithms. However, the property of theoretical stability of the LS principle
is lost. Therefore it is necessary to have means to detect out-of-range values
of LS variables. The variable �ðnÞ ¼W=’ðnÞ can be used in combination
with the gain vector G 0ðnÞ. The simplified algorithm obtained is given in
Figure 6.7. It requires 7N þ 5 multiplications and two divisions (inverse
calculations). The stability in the initial phase, starting from the idle state,
can be critical. Therefore, the magnitude of �ðnÞ is monitored, and if it falls
below W the system is reinitialized.

In some cases, particularly with AR input signals when the prediction
order exceeds the model order, the simplified algorithm turns out to provide
faster convergence than the standard FLS algorithms with the same para-



meters because the backward coefficients start with a value which is not zero
but may be close to the final one.

6.11. PERFORMANCE OF LS ADAPTIVE FILTERS

The main specifications for adaptive filters concern, as in Section 4.2, the
time constant and the system gain. Before investigating the initial transient
phase, let us consider the filter operation after the first data have become
available.

FIG. 6.7 Computational organization of a simplified LS-type algorithm.



The set of output errors from time 1 to n constitute the vector
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xð3Þ xð2Þ xð1Þ � � � 0

..

. ..
. ..

. ..
.

xðNÞ xðN � 1Þ � � � xð1Þ
..
. ..

. ..
.

xðnÞ xðn� 1Þ � � � xðnþ 1�NÞ

2
66666666664

3
77777777775

�
h0ðnÞ
h1ðnÞ
..
.

hN�1ðnÞ

2
6664

3
7775 ð6:141Þ

Recall that the coefficients at time n are calculated to minimize the sum of
the squares of the output errors. Clearly, for n ¼ 1 the solution is

h0ð1Þ ¼
yð1Þ
xð1Þ ; hið1Þ ¼ 0; 2 4 i 4 N � 1 ð6:142Þ

For n ¼ 2,

h0ð2Þ ¼
yð1Þ
xð1Þ

h1ð2Þ ¼
yð2Þ
xð1Þ � h0ð2Þ

xð2Þ
xð1Þ

hið2Þ ¼ 0; 3 4 i 4 N � 1

ð6:143Þ

The output of the adaptive LS filter is zero from time 1 to N, and the
coefficients correspond to an exact solution of the minimization problem. In
fact, the system of equations becomes overdetermined, and the LS proce-
dure starts only at time N þ 1.

In order to get simple expressions for the transient phase, we first analyze
the system identification, shown in Figure 6.8. The reference signal is

yðnÞ ¼ XtðnÞHopt þ bðnÞ ð6:144Þ
where bðnÞ is a zero mean white observation noise with power Emin, uncor-
related with the input xðnÞ. Hopt is the vector of coefficients which the
adaptive filter has to find.

The coefficient vector of the LS adaptive filter at time n is



HðnÞ ¼ R�1N ðnÞ
Xn
p¼1

Wn�p½XðpÞXtðpÞHopt þ XðpÞbðpÞ� ð6:145Þ

or, in concise form,

HðnÞ ¼ Hopt þ R�1N ðnÞ
Xn
p¼1

Wn�pXðpÞbðpÞ ð6:146Þ

Denoting by �HðnÞ the coefficient deviation

�HðnÞ ¼ HðnÞ �Hopt ð6:147Þ
and assuming that, for a given sequence xðpÞ, bðpÞ is the only random vari-
able, we obtain the covariance matrix

E½�HðnÞ�HtðnÞ� ¼ EminR
�1
N ðnÞ

Xn
p¼1

W2ðn�pÞXðpÞXtðpÞ
" #

R�1N ðnÞ ð6:148Þ

For W ¼ 1,

E½�HðnÞ�HtðnÞ� ¼ EminR
�1
N ðnÞ ð6:149Þ

At the output of the adaptive filter the error signal at time n is

eðnÞ ¼ yðnÞ � XtðnÞHðn� 1Þ ¼ bðnÞ � XtðnÞ�Hðn� 1Þ ð6:150Þ
The variance is

FIG. 6.8 Adaptive system identification.



E½e2ðnÞ� ¼ Emin þ XtðnÞE½�Hðn� 1Þ�Htðn� 1Þ�XðnÞ ð6:151Þ
and, for W ¼ 1,

E½e2ðnÞ� ¼ Emin½1þ XtðnÞR�1N ðn� 1ÞXðnÞ� ð6:152Þ
Now, the mean residual error power ERðnÞ is obtained by averaging over

all input signal sequences. If the signal xðnÞ is a realization of a stationary
process with AC matrix Rxx, for large n one has

RNðnÞ � nRxx ð6:153Þ
Using the matrix equality

XtðnÞR�1N ðnÞXðnÞ ¼ trace½R�1N ðnÞXðnÞXtðnÞ� ð6:154Þ
and (6.153), we have

ERðnÞ ¼ Emin 1þ N

n� 1

� �
ð6:155Þ

If the first datum received is xð1Þ, then, since the LS process starts at time
N þ 1, the mean residual error power at time n is:

ERðnÞ ¼ Emin 1þ N

n�N

� �
; n 5 N þ 1 ð6:156Þ

Thus, at time n ¼ 2N, the mean residual error power is twice, or 3 dB above,
the minimal value. This result can be compared with that obained for the
LMS algorithm, which, for an input signal close to being a white noise and a
step size corresponding to the fastest start, is

EðnÞ � Emin ¼ ½Eð0Þ � Emin� 1� 1

N

� �2n

ð6:157Þ

which was derived by applying results obtained in Section 4.4
The corresponding curves in Figure 6.9 show the advantage of the theo-

retical LS approach over the gradient technique when the system starts from
the idle state [14].

Now, when a weighting factor is used, the error variance has to be com-
puted from (6.148). If the matrix RNðnÞ is approximated by its expectation
as in (6.153), one has

RNðnÞ �
1�Wn

1�W
RxxXn

p¼1
W2ðn�pÞXðpÞXtðpÞ � 1�W2n

1�W2
Rxx

ð6:158Þ

which, using identity (6.154) again, gives



ERðnÞ � Emin 1þN
1�W

1þW

1þWn

1�Wn

� 	
ð6:159Þ

For n!1,

ERð1Þ ¼ Emin 1þN
1�W

1þW

� 	
ð6:160Þ

This expression can be compared to the corresponding relation (4.35) in
Chapter 4 for the gradient algorithm. The weighting factor introduces an
excess MSE proportional to 1�W .

The coefficient learning curve is derived from recursion (6.23), which
yields

�Hðnþ 1Þ ¼ ½IN � R�1N ðnþ 1ÞXðnþ 1ÞXtðnþ 1Þ��HðnÞ
þ R�1N ðnþ 1ÞXðnþ 1Þbðnþ 1Þ

ð6:161Þ

Assuming that �HðnÞ is independent of the input signal, which is true for
large n, and using approximation (6.158), one gets

E½�Hðnþ 1Þ� ¼ 1� 1�W

1�Wn

� �
E½�HðnÞ� ð6:162Þ

Therefore, the learning curve of the filter of order N is similar to that of
the first-order filter analyzed in Section 6.1, and for large n the time constant
is � ¼ 1=ð1�WÞ. It is that long-term time constant which has to be con-

FIG. 6.9 Learning curves for LS and LMS algorithms.



sidered when a nonstationary reference signal is applied to the LS adaptive
filter. In fact, 1=ð1�WÞ can be viewed as the observation time window of
the filter, and, as in Section 4.8, its value is chosen to be compatible with the
time period over which the signals can be considered as stationary; it is a
trade-off between lag error and excess MSE.

6.12. SELECTING FLS PARAMETER VALUES

The performance of adaptive filters based on FLS algorithms differs from
that of the theoretical LS filters because of the impact of the additional
parameters they require. The value of the initial forward prediction error
power E0 affects the learning curve of the filter.

The matrix R	NðnÞ, introduced in Section 6.7, can be expressed by

R	NðnÞ ¼ ½IN þWnRNð0ÞR�1N ðnÞ�RNðnÞ ð6:163Þ
As soon as n is large enough, we can use (6.25), to obtain its inverse:

½R	NðnÞ��1 � R�1N ðnÞ½IN �WnRNð0ÞR�1N ðnÞ� ð6:164Þ
In these conditions, the deviation �AðnÞ of the prediction coefficients due to
E0 is

�AðnÞ ¼WnR�1N ðnÞRNð0ÞAðnÞ ð6:165Þ
and the corresponding excess MSE is

�EðnÞ ¼ ½�AðnÞ�tRxx�AðnÞ ð6:166Þ
Approximating RNðnÞ by its expectation and the initial matrix RNð0Þ by
E0IN gives

�EðnÞ �W2nE2
0ðI �WÞ2AtðnÞR�1xx AðnÞ ð6:167Þ

for W close to 1,

ln½�EðnÞ� � 2 ln½E0ð1�WÞ� þ ln½AtðnÞR�1xx AðnÞ� � 2nð1�WÞ ð6:168Þ
For example, the curves k�AðnÞk2 as a function of n are given in Figure

6.10 for N ¼ 2, xðnÞ ¼ sinðn �
4
Þ, W ¼ 0:95, and three different values of the

parameter E0.
The impact of the initial parameter E0 on the filter performance is clearly

apparent from expression (6.168) and the above example. Smaller values of
E0 can be taken if the constant C of Section 6.8 is introduced.

The constant C in (6.122) increases the filter long-term time constant
according to (6.124).

The ratio ð1�W 0Þ=ð1�WÞ is shown in Figure 6.11 as a function of the
prediction error �2e . It appears that the starting value �2x=ð�2x þ CÞ should be



FIG. 6.10 Coefficient deviations for several prediction error energy values with

sinusoidal input.

FIG. 6.11 Weighting factor vs. prediction error power with constant C.



made as close to unity as possible. So, C should be smaller than the input
signal power �2x, which in turn, through (6.115), means that W approaches
unity.

If C is significantly smaller than �2x, the algorithm can react quickly to
large changes in input signal characteristics, and slowly to small changes. In
other words, it has an adjustable time window.

Another effect of C is to modify the excess misadjustment error power,
according to equation (6.160), in which W 0 replaces W .

Nonstationary signals deserve particular attention. The range of values
for C depends on E0 and thus on the signal power. Thus, if the input signal
is nonstationary, it can be interesting to use, instead of C, a function of the
signal power. For example, the following equation can replace (6.122):

Eaðnþ 1Þ ¼ EaðnÞ þ eaðnþ 1Þ"aðnþ 1Þ þWN½C1 þ C2x
2ðnþ 1Þ� ð6:169Þ

where C1 and C2 are positive real constants, chosen in accordance with the
characteristics of the input signal.

For example, an adequate choice for a speech sentence of unity long-term
power has been found to be C1 ¼ 1:5 and C2 ¼ 0:5. The prediction gain
obtained is shown in Figure 6.12 for several weighting factor values. As a
comparison, the corresponding curve for the normalized LMS algorithm is
also shown.

An additional parameter, the coefficient leakage factor, can be useful in
FLS algorithms.

FIG. 6.12 Prediction gain vs. weighting factor or step size for a speech sentence.



From the sequence of operations given in Figures 6.4 and 6.5, it appears
that, if the signal xðnÞ becomes zero, the prediction errors and adaptation
gain decay to zero while the coefficients keep a fixed value. The system may
be in the initial state considered in the previous sections, when the signal
reappears, if a leakage factor is introduced in coefficient updating equations.

Furthermore, such a parameter offers the advantages already mentioned
in Section 4.6—namely, it makes the filter more robust to roundoff errors
and implementation constraints.

However, the corresponding arithmetic operations have to be introduced
with care in FLS algorithms. They have to be performed outside the gain
updating loop to preserve the ratio of a posteriori to a priori prediction
errors. For example, in Figure 6.4 the two leakage operations

Aðnþ 1Þ ¼ ð1� �ÞAðnþ 1Þ;

Bðnþ 1Þ ¼ ð1� �ÞBðnþ 1Þ;
0 < � � 1 ð6:170Þ

can be placed at the end of the list of equations for the adaptation gain
updating. Recall that the leakage factor introduces a bias given by expres-
sion (4.69) on the filter coefficients. Note also that, with the leakage factor,
the algorithm is no longer complying with the LS theory and theoretical
stability cannot be guaranteed for any signals.

6.13. WORD-LENGTH LIMITATIONS AND
IMPLEMENTATION

The implementation of transversal FLS adaptive filters can follow the
schemes used for gradient filters presented in Chapter 4. The operations
in Figure 6.4, for example, correspond roughly to a set of five gradient filters
adequately interconnected. However, an important point with FLS is the
need for two divisions per iteration, generally implemented as inverse cal-
culations.

The divider EaðnÞ is bounded by

min E0;
C

1�W

� �
4 EaðnÞ 4

�2x
1�W

ð6:171Þ

and the constant C controls the magnitude range of its inverse. Recall that
the other dividers are in the interval [0, 1].

Overall, the estimations of word lengths for FLS filters can be derived
using an approach similar to that which is used for LMS filters in Section
4.5. For example, let us consider the prediction coefficients.



In two extreme situations, the FLS algorithm is equivalent to an LMS
algorithm with adaptation step sizes:

�max ¼
1

	minðnÞ
; �min ¼

1

	maxðnÞ
ð6:172Þ

Now, taking 	maxðnÞ � 	max=ð1�WÞ and recalling that 	max 4 N�2x, we
obtain an estimation of the prediction coefficient word length bc from equa-
tion (4.61) in Chapter 4:

bc � log2
N

1�W

� �
þ log2ðGpÞ þ log2ðamaxÞ ð6:173Þ

where Gp is the prediction gain and amax is the magnitude of the largest
prediction coefficient, as in Section 4.5. Thus, it can be stated that FLS
algorithms require larger word lengths than LMS algorithms, and the dif-
ference is about log2 N.

The implementation is guided by the basic constraint on updating opera-
tions, which have to be performed in a sample period. As shown in previous
sections, there are different ways of organizing the computations, and that
flexibility can be exploited to satisfy given realization conditions. In soft-
ware, one can be interested in saving on the number of instructions or on the
internal data memory capacity. In hardware, it may be important, particu-
larly in high-speed applications using multiprocessor realizations, to rear-
range the sequence of operations to introduce delays between internal filter
sections and reach some level of pipelining [15]. For example, the algorithm
based on a priori errors can be implemented by the following sequence at
time nþ 1:

eaðnþ 1Þ ! ebðnÞ ! EaðnÞ ! G1ðnÞ ! BðnÞ ! GðnÞ ! Aðnþ 1Þ ! "aðnþ 1Þ

The corresponding diagram is shown in Figure 6.13 for a prediction coeffi-
cient adaptation section. With a single multiplier, the minimum multiply
speed is five multiplications per sample period.

6.14. COMPARISON OF FLS AND LMS
APPROACHES—SUMMARY

A geometrical illustration of the LS and gradient calculations is given in
Figure 6.14. It shows how the inverse input signal AC matrix R�1xx rotates the
cost function gradient vector Grad J and adjusts its magnitude to reach the
optimum coefficient values.



FIG. 6.13 Adaptation section for a prediction coefficient in an FLS algorithm.

FIG. 6.14 Geometrical illustration of LS and gradient calculations.



In FLS algorithms, real-time estimations of signal statistics are computed
and the maximum convergence speed and accuracy can be expected.
However, several parameters have to be introduced in realizations, which
limit the performance; they are the weighting factor, initial prediction error
energies, stabilization constant, and coefficient leakage factor. But if the
values of these parameters are properly chosen, the performance can stay
reasonably close to the theoretical optimum.

In summary, the advantages of FLS adaptive filters are as follows:

Independence of the spread of the eigenvalues of the input signal AC matrix
Fast start from idle state
High steady-state accuracy

FLS adaptive filters can upgrade the adaptive filter overall performance in
various existing applications. However, and perhaps more importantly, they
can open up new areas. Consider, for example, spectral analysis, and let us
assume that two sinusoids in noise have to be resolved with an order N ¼ 4
adaptive predictor. The results obtained with the LMS algorithm are shown
in Figure 6.15. Clearly, the prediction coefficient values cannot be used
because they indicate the presence of a single sinusoid. Now, the same
curves for the FLS algorithm, given in Figure 6.16, allow the correct detec-
tion after a few hundred iterations. That simple example shows that FLS
algorithms can open new possibilities for adaptive filters in real-time spectral
analysis.

FIG. 6.15 LMS adaptive prediction of two sinusoids with frequencies 0.1 and 0.15.



EXERCISES

1. Verify, through matrix manipulations, the matrix inversion lemma
(6.24). Use this lemma to find the inverse M�1 of the matrix

M ¼ �IN þ XXt

where X is an N-element nonzero vector. Give the limit of M�1 when
�! 0. Compare with (6.35).

2. Calculate the matrix R2ð5Þ for the signal xðnÞ ¼ sinðn �
4
Þ and W ¼ 0:9.

Compare the results with the signal AC matrix. Calculate the likeli-
hood variable 
ð5Þ. Give bounds for 
ðnÞ as n!1.

3. Use the recurrence relationships for the backward prediction coeffi-
cient vector and the correlation vector to demonstrate the backward
prediction error energy updating equation (6.67).

4. The signal

xðnÞ ¼ sin n
�

2


 �
; n 5 0

xðnÞ ¼ 0; n < 0

is fed to an order N ¼ 4 FLS adaptive predictor. Assuming initial
conditions Að0Þ ¼ Bð0Þ ¼ Gð0Þ ¼ 0, calculate the variables of the algo-
rithm in Figure 6.4 for time n ¼ 1 to 5 when W ¼ 1 and for initial
error energies E0 ¼ 0 and E0 ¼ 1. Compare the coefficient values to
optimal values. Comment on the results.

FIG. 6.16 FLS adaptive prediction of two sinusoids.



5. In an FLS adaptive filter, the input signal xðnÞ is set to zero at time N0

and after. Analyze the evolution of the vectors AðnÞ, BðnÞ, GðnÞ and the
scalars EaðnÞ and �ðnÞ for n 5N0.

6. Modify the algorithm of Figure 6.4 to introduce the scalar �ðnÞ with
the minimum number of multiplications. Give the computational orga-
nization, and count the multiplications, additions, and memories.

7. Study the hardware realization of the algorithm given in Figure 6.5.
Find a reordering of the equations which leads to the introduction of
sample period delays on the data paths interconnecting separate filter
sections. Give the diagram of the coefficient adaptation section.
Assuming a single multiplier per coefficient, what is the minimum
multiply speed per sample period.

ANNEX 6.1 FLS ALGORITHM BASED ON A PRIORI
ERRORS

SUBROUTINE FLS1(N,X,VX,A,B,EA,G,W,IND)
C
C COMPUTE THE ADAPTATION GAIN (FAST LEAST SQUARES)
C N = FILTER ORDER
C X = INPUT SIGNAL : x(n+1)
C VX = N-ELEMENT DATA VECTOR : X(n)
C A = FORWARD PREDICTION COEFFICIENTS
C B = BACKWARD PREDICTION COEFFICIENTS
C EA = PREDICTION ERROR ENERGY
C G = ADAPTATION GAIN
C W = WEIGHTING FACTOR
C IND = TIME INDEX
C

DIMENSION VX(15),A(15),B(15),G(15),G1(16)
IF(IND.GT.1)GOTO30

C
C INITIALIZATION
C

DO20I=1,15
A(I)=0.
B(I)=0.
G(I)=0.
VX(I)=0.

20 CONTINUE
EA=1.

30 CONTINUE
C
C ADAPTATION GAIN CALCULATION



C
EAV=X
EPSA=X
D040I=1,N

40 EAV=EAV-A(I)*VX(I)
DO50I=1,N
A(I)=A(I)+G(I)*EAV
EPSA=EPSA-A(I)*VX(I)

50 CONTINUE
EA=W*EA+EAV*EPSA
G1(1)=EPSA/EA
DO60I=1,N

60 G1(I+1)=G(I)-A(I)*G1(1)
EAB=VX(N)
DO70I=2,N
J=N+1-I

70 VX(J+1)=VX(J)
VX(1)=X
DO80I=1,N

80 EAB=EAB-B(I)*VX(I)
GG=1.0-EAB*G1(N+1)
DO90I=1,N
G(I)=G1(I)+G1(N+1)*B(I)

90 G(I)=G(I)/GG
DO100I=1,N

100 B(I)=B(I)+G(I)*EAB
RETURN
END

ANNEX 6.2 FLS ALGORITHM BASED ON ALL THE
PREDICTION ERRORS AND WITH
ROUNDOFF ERROR CONTROL
(SIMPLEST VERSION)

SUBROUTINE FLS2(N,X,VX,A,B,EA,EB,GP,ALF,W,IND)
C
C COMPUTES THE ADAPTATION GAIN (FAST LEAST SQUARES)
C N = FILTER ORDER
C X = INPUT SIGNAL : x(n+1)
C VX = N-ELEMENT DATA VECTOR : X(n)
C A = FORWARD PREDICTION COEFFICIENTS
C B = BACKWARD PREDICTION COEFFICIENTS
C EA = PREDICTION ERROR ENERGY - EB
C GP = ‘‘A PRIORI’’ ADAPTATION GAIN



C ALF = PREDICTION ERROR RATIO
C W = WEIGHTING FACTOR
C IND = TIME INDEX
C

DIMENSION VX(15),A(15),B(15),G(15),G1(16),GP(15)
IF(IND.GT.1)GOTO30

C
C INITIALIZATION
C

DO20I=1,15
A(I)=0.
B(I)=0.
GP(I)=0.
VX(I)=0.

20 CONTINUE
EA=1.
EB=1./W**N
ALF=W

30 CONTINUE
C
C ADAPTATION GAIN CALCULATION
C

EAV=X
DO40I=1,N

40 EAV=EAV-A(I)*VX(I)
EPSA=EAV/ALF
G1(1)=EAV/EA
EA=(EA+EAV*EPSA)*W
D050I=1,N

50 G1(I+1)=GP(I)-A(I)*G1(1)
DO60I=1,N

60 A(I)=A(I)+GP(I)*EPSA
EAB1=G1(N+1)*EB
EAB=VX(N)-B(1)*X
DO65I=2,N

EAB=EAB-B(I)*VX(I-1)
65 CONTINUE

DO70I=1,N
70 GP(I)=G1(I)+B(I)*G1(N+1)

ALF1=ALF+G1(1)*EAV
ALF=ALF1-G1(N+1)*EAB
EPSB=(EAB+EAB-EAB1)/ALF
EB=(EB+EAB*EPSB)*W
DO80I=1,N



80 B(I)=B(I)+GP(I)*EPSB
DO90I=2,N
J=N+1-I

90 VX(J+1)=VX(J)
VX(1)=X
RETURN
END
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7
Other Adaptive Filter Algorithms

The derivation of FLS algorithms for transversal adaptive filters with N
coefficients exploits the shifting property of the vector XðnÞ of the N most
recent input data, which is transferred to AC matrix estimations. Therefore,
fast algorithms can be worked out whenever the shifting property exists. It
means that variations of the basic algorithms can cope with different situa-
tions such as nonzero initial state variables and special observation time
windows, and also that extensions to complex and multidimensional signals
can be obtained.

A large family of algorithms can be constituted and, in this chapter, a
selection is presented of those which may be of particular interest in differ-
ent technical application fields.

If a set of N data Xð1Þ is already available at time n ¼ 1, then when the
filter is ready to start it may be advantageous to use that information in the
algorithm rather than discard it. The so-called covariance algorithm is
obtained [1].

7.1. COVARIANCE ALGORITHMS

The essential link in the derivation of the fast algorithms given in the pre-
vious chapter is provided by the ðN þ 1Þ � ðN þ 1Þ matrix RNþ1ðnþ 1Þ,
which relates the adaptation gains Gðnþ 1Þ and GðnÞ at two consecutive
instants. Here, a slightly different definition of that matrix has to be
taken, because the first ðN þ 1Þ-element data vector which is available is
X1ð2Þ:



½X1ð2Þ�t ¼ ½xð2Þ;Xtð1Þ�
Thus

RNþ1ðnÞ ¼
Xn
p¼2

Wn�pX1ðpÞXt
1ðpÞ ð7:1Þ

The LS procedure for the prediction filters, because of the definitions, can
only start at time n ¼ 2, and the correlation vectors are

raNðnÞ ¼
Xn
p¼2

Wn�pxðpÞXðp� 1Þ

rbNðnÞ ¼
Xn
p¼2

Wn�pxðp�NÞXðpÞ
ð7:2Þ

The matrix RNþ1ðnþ 1Þ can be partitioned in two ways:

RNþ1ðnþ 1Þ ¼
Pnþ1
p¼2

Wnþ1�px2ðpÞ ½raNðnþ 1Þ�t

raNðnþ 1Þ RNðnÞ

2
64

3
75 ð7:3Þ

and

RNþ1ðnþ 1Þ ¼
RNðnþ 1Þ �WnXð1ÞXtð1Þ rbNðnþ 1Þ

½rbNðnþ 1Þ�t Pnþ1
p¼2

Wnþ1�px2ðp�NÞ

2
664

3
775ð7:4Þ

Now the procedure given in Section 6.4 can be applied again. However,
several modifications have to be made because of the initial term
WnXð1ÞXtð1Þ in (7.4).

The ðN þ 1Þ-element adaptation gain vector G1ðnþ 1Þ can be calculated
by equation (6.73) in Chapter 6, which yields Mðnþ 1Þ and mðnþ 1Þ.
Equation (7.4) leads to

½RNðnþ 1Þ �WnXð1ÞXtð1Þ�Mðnþ 1Þ þmðnþ 1ÞrbNðnþ 1Þ ¼ Xðnþ 1Þ
ð7:5Þ

Similarly the backward prediction matrix equation (6.74) in Chapter 6 com-
bined with partitioning (7.4) leads to

½RNðnþ 1Þ �WnXð1ÞXtð1Þ�Bðnþ 1Þ ¼ rbNðnþ 1Þ ð7:6Þ
Now the definition of Gðnþ 1Þ yields

.......................................

..
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Gðnþ 1Þ ¼ R�1N ðnþ 1ÞXðnþ 1Þ ¼ ½IN �WnR�1N ðnþ 1ÞXð1ÞXtð1Þ�
� ½Mðnþ 1Þ þmðnþ 1ÞBðnþ 1Þ� ð7:7Þ

The difference with equation (6.86) of Chapter 6 is the initial term, which
decays to zero as time elapses. The covariance algorithm, therefore, requires
the same computations as the regular FLS algorithm with, in addition, the
recursive computation of an initial transient variable. Let us consider the
vector

Dðnþ 1Þ ¼WnR�1N ðnþ 1ÞXð1Þ ð7:8Þ
A recursion is readily obtained by

RNðnþ 1ÞDðnþ 1Þ ¼WnXð1Þ ð7:9Þ
which at time n corresponds to

RNðnÞDðnÞ ¼Wn�1Xð1Þ
Taking into account relationship (6.47) in Chapter 6 between RNðnÞ and
RNðnþ 1Þ, one gets

Dðnþ 1Þ ¼ ½IN � R�1N ðnþ 1ÞXðnþ 1ÞXtðnþ 1Þ�DðnÞ ð7:10Þ
which with (7.7) and some algebraic manipulations yields

Dðnþ 1Þ ¼ 1

1� Xtð1ÞFðnþ 1ÞXtðnþ 1ÞDðnÞ ½IN � Fðnþ 1ÞXtðnþ 1Þ�DðnÞ
ð7:11Þ

where

FðnÞ ¼MðnÞ þmðnÞBðnÞ ð7:12Þ
The adaptation gain is obtained by rewriting (7.7) as

Gðnþ 1Þ ¼ ½IN �Dðnþ 1ÞXtð1Þ�Fðnþ 1Þ ð7:13Þ
Finally, the covariance version of the fast algorithm in Section 6.4 is

obtained by incorporating equations (7.11) and (7.13) in the sequence of
operations. The additional cost in computational complexity amounts to 4N
multiplications and one division.

Some care has to be exercised in the initialization. If the prediction coef-
ficients are zero, Að1Þ ¼ Bð1Þ ¼ 0, since the initial data vector is nonzero, an
initially constrained LS procedure has to be used, which, as mentioned in
Section 6.7, corresponds to the following cost function for the filter [1]:

JcðnÞ ¼
Xn
p¼1

Wn�p½ yðpÞ � XtðpÞHðnÞ�2 þ E0H
tðnÞWðnÞHðnÞ ð7:14Þ



where

WðnÞ ¼ diagðWn;Wn�1; . . . ;Wnþ1�NÞ
and E0 is the initial prediction error energy.

In these conditions, the actual AC matrix estimate is

R	NðnÞ ¼
Xn
p¼1

Wn�pXðpÞXtðpÞ þ E0WðnÞ ð7:15Þ

The value R�1N ð1Þ is needed because

Dð1Þ ¼ R�1N ð1ÞXð1Þ ¼ Gð1Þ
It can be calculated with the help of the matrix inversion lemma. Finally,

Dð1Þ ¼ Gð1Þ ¼ 1

E0 þ Xtð1ÞW�1ð1ÞXð1ÞW
�1ð1ÞXð1Þ ð7:16Þ

and for the prediction error energy Eað1Þ ¼WE0.
The weighting factor W introduces an exponential time observation win-

dow on the signal. Instead, it can be advantageous in some applications—
for example, when the signal statistics can change abruptly—to use a con-
stant time-limited window. The FLS algorithms can cope with that situa-
tion.

7.2. A SLIDING WINDOW ALGORITHM

The sliding window algorithms are characterized by the fact that the cost
function JSWðnÞ to be minimized bears on the N0 most recent output error
samples:

JSWðnÞ ¼
Xn

p¼nþ1�N0

½ yðpÞ � XtðpÞHðnÞ�2 ð7:17Þ

where N0 is a fixed number representing the length of the observation time
window, which slides on the time axis. In general, no weighting factor is
used in that case, W ¼ 1. Clearly, the AC matrix and cross-correlation
vector estimations are

RNðnÞ ¼
Xn

p¼nþ1�N0

XðpÞXtðpÞ; ryxðnÞ ¼
Xn

p¼nþ1�N0

yðpÞXðpÞ ð7:18Þ

Again the matrix RNþ1ðnþ 1Þ can be partitioned as



RNþ1ðnþ 1Þ ¼
Xnþ1

p¼nþ2�N0

xðpÞ
Xðp� 1Þ

� 	
½xðpÞ;Xtðp� 1Þ�

¼
Pnþ1

p¼nþ2�N0

x2ðnþ 1Þ ½raNðnþ 1Þ�t

raNðnþ 1Þ RNðnÞ

2
664

3
775

ð7:19Þ

and

RNþ1ðnþ 1Þ ¼
Xn

p¼nþ2�N0

XðpÞ
Xðp�NÞ

� 	
½XtðpÞ; xðp�NÞ�

¼
RNðnþ 1Þ rbNðnþ 1Þ
½rbNðnþ 1Þ�t Pnþ1

p¼nþ2�N0

x2ðp�NÞ

2
64

3
75

ð7:20Þ

However, the recurrence relations become more complicated. For the AC
matrix estimate, one has

RNðnþ 1Þ ¼ RNðnÞ þ Xðnþ 1ÞXtðnþ 1Þ � Xðnþ 1�N0ÞXtðnþ 1�N0Þ
ð7:21Þ

For the cross-correlation vector,

ryxðnþ 1Þ ¼ ryxðnÞ þ yðnþ 1ÞXðnþ 1Þ � yðnþ 1�N0ÞXðnþ 1�N0Þ
ð7:22Þ

The coefficient updating equation is obtained, as before, from

RNðnþ 1ÞHðnþ 1Þ ¼ ryxðnþ 1Þ
by substituting (7.22) and then, replacing RNðnÞ by its equivalent given by
(7.21):

Hðnþ 1Þ ¼ HðnÞ þ R�1N ðnþ 1ÞXðnþ 1Þ½ yðnþ 1Þ � Xtðnþ 1ÞHðnÞ�
� R�1N ðnþ 1Þ � ðnþ 1�N0Þ
� ½ yðnþ 1�N0Þ � Xtðnþ 1�N0ÞHðnÞ�

ð7:23Þ
backward variables are showing up: the backward innovation error is

e0ðnþ 1Þ ¼ yðnþ 1�N0Þ � Xtðnþ 1�N0ÞHðnÞ ð7:24Þ
and the backward adaptation gain is

G0ðnþ 1Þ ¼ R�1N ðnþ 1ÞXðnþ 1�N0Þ ð7:25Þ

.........................................

...............



In concise form, equation (7.23) is rewritten as

Hðnþ 1Þ ¼ HðnÞ þ Gðnþ 1Þeðnþ 1Þ � G0ðnþ 1Þe0ðnþ 1Þ
These variables have to be computed and updated in the sliding window
algorithms.

Partitioning (7.19) yields

RNþ1ðnþ 1Þ 0
G0ðnÞ

� 	
¼ xðnþ 1�N0Þ

Xðn�N0Þ
� 	

� "0aðnþ 1Þ
0

� 	
ð7:26Þ

with

"0aðnþ 1Þ ¼ xðnþ 1�N0Þ � Atðnþ 1ÞXðn�N0Þ ð7:27Þ
where the forward prediction coefficient vector is

Aðnþ 1Þ ¼ R�1N ðnÞ
Xnþ1

p¼nþ2�N0

xðpÞXðp� 1Þ ð7:28Þ

Similarly, the second partitioning (7.20) yields

RNþ1ðnþ 1Þ G0ðnþ 1Þ
0

� 	
¼ X1ðnþ 1�N0Þ � 0

"0bðnþ 1Þ
� 	

ð7:29Þ

with

"0bðnþ 1Þ ¼ xðnþ 1�N0 �NÞ � Btðnþ 1ÞXðnþ 1�N0Þ ð7:30Þ
and

Bðnþ 1Þ ¼ R�1N ðnþ 1ÞrbNðnþ 1Þ ð7:31Þ
Now, combining the above equations with matrix prediction equations,

as in Section 6.4, leads to

G01ðnþ 1Þ ¼ 0
GðnÞ

� 	
� "0aðnþ 1Þ

Eaðnþ 1Þ
1

�Aðnþ 1Þ
� 	

¼ M0ðnþ 1Þ
m0ðnþ 1Þ

� 	
ð7:32Þ

and

G0ðnþ 1Þ ¼M0ðnþ 1Þ þ "0bðnþ 1Þ
Ebðnþ 1Þ Bðnþ 1Þ

m0ðnþ 1Þ ¼ "0bðnþ 1Þ
Ebðnþ 1Þ

ð7:33Þ

Clearly, the updating technique is the same for both adaptation gains G
ðnÞ and G0ðnÞ. The adequate prediction errors have to be employed.

The method used to derive the coefficient recursion (7.23) applies to
linear prediction as well; hence



Aðnþ 1Þ ¼ AðnÞ þ R�1N ðnÞXðnÞ½xðnþ 1Þ � XtðnÞAðnÞ�
� R�1N ðnÞXðn�N0Þ½xðnþ 1�N0Þ � Xtðn�N0ÞAðnÞ�

ð7:34Þ

or, in more concise form,

Aðnþ 1Þ ¼ AðnÞ þ GðnÞeaðnþ 1Þ � G0ðnÞe0aðnþ 1Þ
Now, the prediction error energy Eaðnþ 1Þ, which appears in the matrix

prediction equations, is

Eaðnþ 1Þ ¼
Xnþ1

p¼nþ2�N0

x2ðpÞ � Atðnþ 1ÞraNðnþ 1Þ ð7:35Þ

Substituting (7.34) and the recursion for raNðnþ 1Þ into the above expression,
as in Section 6.3, leads to

Eaðnþ 1Þ ¼ EaðnÞ þ eaðnþ 1Þ"aðnþ 1Þ � e0aðnþ 1Þ"0aðnþ 1Þ ð7:36Þ
The variables needed to perform the calculations in (7.32), and in the same
equation for G1ðnþ 1Þ, are available and the results can be used to get the
updated gains.

The backward prediction coefficient vector is updated by

Bðnþ 1Þ ¼ BðnÞ þ Gðnþ 1Þebðnþ 1Þ � G0ðnþ 1Þe0bðnþ 1Þ ð7:37Þ
which leads to the set of equations:

Gðn þ 1Þ½1�mðnþ 1Þebðnþ 1Þ�
¼Mðnþ 1Þ þmðnþ 1ÞBðnÞ � G0ðnþ 1Þe0bðnþ 1Þmðnþ 1Þ

G0ðn þ 1Þ½1þm0ðnþ 1Þe0bðnþ 1Þ�
¼M0ðnþ 1Þ þm0ðnþ 1ÞBðnÞ þ Gðnþ 1Þebðnþ 1Þm0ðnþ 1Þ

ð7:38Þ
Finally, letting

k ¼ mðnþ 1Þ
1þm0ðnþ 1Þe0bðnþ 1Þ ; k0 ¼

m0ðnþ 1Þ
1�mðnþ 1Þebðnþ 1Þ ð7:39Þ

we obtain the adaptation gains

Gðnþ 1Þ ¼ 1

1� kebðnþ 1Þ ½Mðnþ 1Þ þ kBðnÞ � ke0bðnþ 1ÞM0ðnþ 1Þ�

G0ðnþ 1Þ ¼ 1

1þ k0e0bðnþ 1Þ ½M0ðnþ 1Þ þ k0BðnÞ þ k0ebðnþ 1ÞMðnþ 1Þ�
ð7:40Þ



The algorithm is then completed by the backward coefficient updating equa-
tion (7.37).

The initial conditions are those of the algorithm in Section 6.4, the extra
operations being carried out only when the time index n exceeds the window
length N0.

Overall the sliding window algorithm based on a priori errors has a
computational organization which closely follows that of the exponential
window algorithm, but it performs the operation twice to update and use its
two adaptation gains. The sequence of operations is given in Figure 7.1 and
the FORTRAN subroutine is given in Annex 7.1.

More efficient sliding window algorithms, but with a less regular struc-
ture, can be worked out by decomposing in two different steps the sequence
of operations for each new input signal sample [2].

As concerns the performance, the analysis of Section 6.11 can be repro-
duced for the sliding window. In system identification, the mean value of the
residual error power can be estimated with the help of equation (6.152),
which leads to

ERðnÞ ¼ Emin 1þ N

N0

� �
; n > N0 ð7:41Þ

It is interesting to compare with the exponential window and consider equa-
tion (6.160). The window length N0 and the forgetting factor W are related
by

N0 ¼
1þW

1�W
; W ¼ N0 � 1

N0 þ 1
ð7:42Þ

To study the convergence, let us assume that, at time n0, the system to be
identified undergoes an abrupt change in its coefficients, from vector H1 to
vector H2. Then the definition of HðnÞ yields

HðnÞ ¼ R�1N ðnÞ
Xn0

p¼n�N0

yðpÞXðpÞ þ
Xn

p¼n0þ1
yðpÞXðpÞ

 !
ð7:43Þ

For the exponential window, in these conditions one gets

E½HðnÞ �H2� ¼Wn�n0 ½H1 �H2� ð7:44Þ
and for the sliding window

E½HðnÞ �H2� ¼
N0 � ðn� n0Þ

N0

½H1 �H2�; n0 4 n 4 n0 þN0 ð7:45Þ

In the latter case, the difference vanishes after N0 samples, as shown in
Figure 7.2. It is the main advantage of the approach [3].



FIG. 7.1 Fast least squares sliding window algorithm.



The sliding window algorithm is subject to roundoff errrors accumula-
tion, and the control procedure of Section 6.9 can be applied.

7.3. ALGORITHMS WITH VARIABLE WEIGHTING
FACTORS

The tracking capability of weighted least squares adaptive filters is related to
the weighting factor value, which defines the observation time window of the
algorithm. In the presence of evolving signals, it may be advantageous, in
some circumstances, to continuously adjust the weighting factor, using a
priori information on specific parameters or measurement results.

In the derivation of fast algorithms, the varying weighting factor WðnÞ
raises a problem, and it is necessary to introduce the weighting operation on
the input signal and the reference signal rather than on the output error
sequence, as previously [4]. Accordingly, the data are weighted as follows at
time n:

yðnÞ;Wðn� 1Þyðn� 1Þ; . . . ;
Yn�p
i¼1

Wðn� iÞ
" #

yðpÞ; . . .

and the cost function is

FIG. 7.2 Step responses of exponential and sliding window algorithms.



JðnÞ ¼
Xn
p¼1

Yn�p
i¼1

Wðn� iÞ
" #

yðpÞ �HtðnÞ
Yn�p
i¼1

Wðn� iÞ
" #

DðpÞXðpÞ
" #2

ð7:46Þ
where DðpÞ is the diagonal matrix

DðpÞ ¼

1 0 � � � 0
0 Wðp� 1Þ � � � 0

..

. ..
. . .

. ..
.

0 0
QN�1
i¼1

Wðp� iÞ

2
666664

3
777775 ð7:47Þ

After factorization, the cost function can be rewritten as

JðnÞ ¼
Xn
p¼1

Yn�p
i¼1

W2ðn� iÞ
" #

½yðpÞ � XtðpÞDðpÞHðnÞ�2 ð7:48Þ

The coefficient vector that minimizes the cost function is obtained through
derivation and it is given by the conventional equation

HðnÞ ¼ R�1N ðnÞryxðnÞ ð7:49Þ
but the AC matrix, now, is

RNðnÞ ¼
Xn
p¼1

Yn�p
i¼1

W2ðn� iÞ
" #

DðpÞXðpÞXtðpÞDðpÞ ð7:50Þ

and the cross-correlation vector is

ryxðnÞ ¼
Xn
p¼1

Yn�p
i¼1

W2ðn� iÞ
" #

yðpÞDðpÞXðpÞ ð7:51Þ

The recurrence relations become

RNðnþ 1Þ ¼W2ðnÞRNðnÞ þDðnþ 1ÞXðnþ 1ÞXtðnþ 1ÞDðnþ 1Þ
ryxðnþ 1Þ ¼W2ðnÞryxðnÞ þ yðnþ 1ÞDðnþ 1ÞXðnþ 1Þ

ð7:52Þ

and, for the coefficient vector

Hðnþ 1Þ ¼ HðnÞ þ Gðnþ 1Þeðnþ 1Þ ð7:53Þ
The adaptation gain is expressed by

Gðnþ 1Þ ¼ R�1N ðnþ 1ÞDðnþ 1ÞXðnþ 1Þ ð7:54Þ
and the output error is



eðnþ 1Þ ¼ yðnþ 1Þ � Xtðnþ 1ÞDðnþ 1ÞHðnÞ ð7:55Þ
The same approach, when applied to forward linear prediction, leads to the
cost function

EaðnÞ ¼
Xn
p¼1

Yn�p
i¼1

W2ðn� iÞ
" #

xðpÞ � Xtðp� 1ÞDðp� 1ÞWðp� 1ÞAðnÞ
" #2

ð7:56Þ
and the prediction coefficient vector is

AðnÞ ¼ ½W2ðn� 1ÞRNðn� 1Þ��1raNðnÞ ð7:57Þ
In fact, the delay on the input data vector introduces additional weighting
terms in the equations, and the correlation vector is given by

raNðnÞ ¼
Xn
p¼1

Yn�p
i¼1

W2ðn� iÞ
" #

xðpÞWðp� 1ÞDðp� 1ÞXðp� 1Þ ð7:58Þ

Exploiting the recurrence relationships for RNðnÞ and raNðnÞ leads to the
following recursion for the prediction coefficient vector:

Aðnþ 1Þ ¼ AðnÞ þW�1ðnÞGðnÞeaðnþ 1Þ ð7:59Þ
where eaðnþ 1Þ is the forward a priori prediction error

eaðnþ 1Þ ¼ xðnþ 1Þ � XtðnÞDðnÞWðnÞAðnÞ ð7:60Þ
Now, the adaptation gain can be updated using a partition of the AC matrix
RNðnþ 1Þ as follows:

RNþ1ðnþ 1Þ ¼
Xn
p¼1

Ynþ1�p
i¼1

W2ðnþ 1� iÞ
" #

xðpÞ
Wðp� 1ÞDðp� 1ÞXðp� 1Þ

� 	
½xðpÞ;Xtðp� 1ÞDðp� 1ÞWðp� 1Þ

ð7:61Þ
and, in a more concise form,

RNþ1ðnþ 1Þ ¼ R1ðnþ 1Þ raNðnþ 1Þ
raNðnþ 1Þ W2ðnÞRNðnÞ

� 	
ð7:62Þ

Let us consider the product

RNþ1ðnþ 1Þ 0
W�1ðnÞGðnÞ

� 	
¼ xðnÞ

WðnÞDðnÞXðnÞ
� 	

� "aðnþ 1Þ
0

� 	
ð7:63Þ

where the a posteriori forward prediction error is



"aðnþ 1Þ ¼ xðnþ 1Þ � XtðnÞDðnÞWðnÞAðnþ 1Þ ð7:64Þ
The adaptation gain with N þ 1 elements is computed by

G1ðnþ 1Þ ¼ 0
W�1ðnÞGðnÞ

� 	
þ "aðnþ 1Þ
Eaðnþ 1Þ

1
�Aðnþ 1Þ

� 	
ð7:65Þ

Then, the updated adaptation gain Gðnþ 1Þ is derived from G1ðnþ 1Þ using
backward linear prediction equations. The cost function is

EbðnÞ ¼
Xn
p¼1

Yn�p
i¼1

W2ðn� iÞ
" #

xðp�NÞ
YN
i¼1

Wðp� iÞ
" #

� XtðpÞDðpÞBðnÞ
" #2

ð7:66Þ
and the backward linear prediction coefficient recursion is

Bðnþ 1Þ ¼ BðnÞ þ Gðnþ 1Þebðnþ 1Þ ð7:67Þ
with

ebðnþ 1Þ ¼ xðnþ 1�NÞ
YN
i¼1

Wðnþ 1� iÞ
" #

� BtðnÞDðnþ 1ÞXðnþ 1Þ

ð7:68Þ
As in Section 6.4, the backward linear prediction parameters can be used to
compute G1ðnþ 1Þ, which leads to the determination of Gðnþ 1Þ.

Finally, an algorithm with a variable weighting factor is obtained and it
has the same computational organization as the algorithm in Figure 6.4,
provided that the equations to compute the variables eaðnþ 1Þ, Aðnþ 1Þ,
"aðnþ 1Þ, G1ðnþ 1Þ, and ebðnþ 1Þ are modified as above. Of course,
Wðnþ 1Þ is a new datum at time n.

The approach can be applied to other fast least squares algorithms, to
accommodate variable weighting factors. The crucial option is the weighting
of the signals insead of the output error sequence. Another area where the
same option is needed is forward–backward linear prediction.

7.4. FORWARD–BACKWARD LINEAR PREDICTION

In some applications, and particularly in spectral analysis, it is advanta-
geous to define linear prediction from a cost function which is the sum of
forward and backward prediction error energies [5].

Accordingly, the cost function is the energy of the forward–backward
linear prediction error signal, expressed by



EðnÞ ¼
Xn
p¼1
½Wn�pxðpÞ � BtðnÞJWn�pþ1DXðp� 1Þ�2

þ ½Wn�ðp�nÞxðp�NÞ � BtðnÞWn�pDXðpÞ�2
ð7:69Þ

where J is the coidentity matrix (3.63) and D is the diagonal weighting
matrix

D ¼
1 0 � � � 0
0 W � � � 0
..
. ..

. ..
.

0 0 � � � WN�1

2
664

3
775 ð7:70Þ

The objective is to compute a coefficient vector which is used for backward
linear prediction and, also, with elements in reversed order, for forward
linear prediction, which explains the presence of the coidentity matrix J.

The vector of prediction coefficients is expressed by

DðnÞ ¼ ½RNðnÞ þW2JRNðn� 1Þ J��1½JraNðnÞ þ rbNðnÞ� ð7:71Þ
where

RNðnÞ ¼
Xn
p¼1

W2ðn�pÞDXðpÞXtðpÞD

raNðnÞ ¼
Xn
p¼1

W2ðn�pÞxðpÞWDXðp� 1Þ

rbNðnÞ ¼
Xn
p¼1

W2ðn�pÞxðp�NÞWNDXðpÞ

ð7:72Þ

Due to the particular weighting, the recurrence equations for the variables
are

RNðnÞ ¼W2RNðn� 1Þ þDXðnÞXtðnÞD
raNðnÞ ¼W2raNðn� 1Þ þ xðnÞWDXðn� 1Þ
rbNðnÞ ¼W2rbNðn� 1Þ þ xðn�NÞWNDXðnÞ

ð7:73Þ

The same procedure as in the preceding section leads to the recurrence
equation

Bðnþ 1Þ ¼ BðnÞ þW�2G1ðnÞ"aðnþ 1Þ þW�2G2ðnþ 1Þ"bðnþ 1Þ ð7:74Þ
where the forward adaptation gain is

G1ðnÞ ¼ ½RNðnÞ þW2JRNðn� 1ÞJ��1JWDXðnÞ ð7:75Þ



the forward a posteriori prediction error is

"aðnþ 1Þ ¼ xðnþ 1Þ �WXtðnÞDJBðnþ 1Þ ð7:76Þ
the backward adaptation gain is

G2ðnþ 1Þ ¼ ½RNðnÞ þW2JRNðn� 1ÞJ��1DXðnþ 1Þ ð7:77Þ
and the a posteriori backward prediction error is

"bðnþ 1Þ ¼ xðnþ 1�NÞWN � Xtðnþ 1ÞDBðnþ 1Þ ð7:78Þ
Since forward prediction and backward prediction are combined, the rela-
tionships between a priori and a posteriori errors take a matrix form

"aðnþ 1Þ
"bðnþ 1Þ

� 	
¼ 1þW�1XtðnÞDJG1ðnÞ W�1XtðnÞDJG2ðnþ 1Þ

W�2Xtðnþ 1ÞDG1ðnÞ 1þW�2Xtðnþ 1ÞDG2ðnþ 1Þ

" #

eaðnþ 1Þ
ebðnþ 1Þ

� 	
ð7:79Þ

As concerns the error energy, it is computed by

EðnÞ ¼
Xn
p¼1

W2ðn�pÞ½x2ðpÞ þW2Nx2ðp�NÞ� � BtðnÞ½JraNðnÞ þ rbNðnÞ�

ð7:80Þ
or, in a more concise recursive form,

Eðnþ 1Þ ¼W2EðnÞ þ eaðnþ 1Þ"aðnþ 1Þ þ ebðnþ 1Þ"bðnþ 1Þ ð7:80Þ
Now, in order to obtain a fast algorithm, it is necessary to introduce an
intermediate adaptation gain UðnÞ defined by

½RNðn� 1Þ þ JRNðn� 1ÞJ�UðnÞ ¼ DXðnÞ ð7:81Þ
Exploiting the recursion for RNðn� 1Þ, one gets

½RNðn� 1Þ þW2JRNðn� 2ÞJ þ JDXðn� 1ÞXtðn� 1ÞDJ�UðnÞ ¼ DXðnÞ
ð7:82Þ

Using (7.75) and (7.77), the intermediate adaptation gain UðnÞ is expressed
in a simple form

UðnÞ ¼ G2ðnÞ �W�1G1ðn� 1ÞXtðn� 1ÞDJUðnÞ ð7:83Þ
and more concisely

UðnÞ ¼ G2ðnÞ � G1ðn� 1Þ"uðnÞ ð7:84Þ
with



"uðnÞ ¼
Xtðn� 1ÞDJG2ðnÞ

W þ Xtðn� 1ÞDJG1ðn� 1Þ ð7:85Þ

The intermediate gain can be used to update G1ðnÞ. From definitions
(7.75) and (7.81), one gets

G1ðnÞ ¼W�1JUðnÞ �W�2UðnÞXtðnÞDG1ðnÞ ð7:86Þ
or, as above

G1ðnÞ ¼W�1JUðnÞ �UðnÞ"yðnÞ ð7:87Þ
with

"yðnÞ ¼
XtðnÞDJUðnÞ

W2 þ XtðnÞDUðnÞ ð7:88Þ

The updating of the backward linear prediction adaptation gain exploits the
two decompositions of the matrix RNþ1ðnÞ as defined by (7.73). After some
algebraic manipulations, one gets

½RNþ1ðnÞ þ JRNþ1ðnÞJ� ¼ RNðnÞ þW2JRNðn� 1ÞJ rbNðnÞ þ JraNðnÞ
½rbNðnÞ þ JraNðnÞ�t R1ðnÞ þW2NR1ðn�NÞ

� 	
ð7:89Þ

Then it is sufficient to proceed, as in Chapter 6, to compute the intermediate
adaptation gain with N þ 1 elements, denoted U1ðnþ 1Þ, from the forward
adaptation gain by

JU1ðnþ 1Þ ¼ G1ðnÞ
0

� 	
þ eaðnþ 1Þ

EðnÞ
�BðnÞ

1

� 	
¼ mðnþ 1Þ

JMðnþ 1Þ
� 	

ð7:90Þ

Similarly, with the backward adaptation gain, an alternative expression is
obtained

U1ðnþ 1Þ ¼ G2ðnþ 1Þ
0

� 	
þ ebðnþ 1Þ

EðnÞ
�BðnÞ

1

� 	
¼ Mðnþ 1Þ

mðnþ 1Þ
� 	

ð7:91Þ

And, finally, the backward adaptation gain is given by

G2ðnþ 1Þ ¼Mðnþ 1Þ þmðnþ 1ÞBðnÞ; mðnþ 1Þ ¼ ebðnþ 1Þ
EðnÞ ð7:92Þ

This equation completes the algorithm. The list of operations is given in
Figure 7.3 and the FORTRAN program is given in Annex 7.2. Applications
of the FBLP algorithm can be found in real time signal analysis.



7.5. LINEAR PHASE ADAPTIVE FILTERING

In some applications, like identification and equalization, the symmetry of
the filter coefficients is sometimes required. The results of the above section
can be applied directly in that case [5].

Let us first consider linear prediction with linear phase. The cost
function is

FIG. 7.3 Fast least squares forward–backward linear prediction algorithm.



EðnÞ ¼
Xn
p¼1

xðpÞ � Bt
‘ðnÞ
2

JXðp� 1Þ
� 	2

þ xðp� 1�NÞ � Bt
‘ðnÞ
2

Xðp� 1Þ
� 	2 !

ð7:93Þ
and the coefficients of the corresponding linear prediction filter make a
vector B‘ðnÞ satisfying the equation

½RNðnþ 1Þ þ JRNðn� 1Þ J�B‘ðnÞ
2
¼ JraNðnÞ þ rbNðn� 1Þ ð7:94Þ

For simplification purposes, the weighting factor W has been omitted in the
above expressions, which are very close to (7.69) and (7.71) for forward–
backward linear prediction. In fact, the difference is a mere delay in the
backward terms. Therefore, the intermediate adaptation gain can be used.

The linear phase coefficient vector B‘ðnÞ can be updated recursively by

B‘ðnþ 1Þ
2

¼ B‘ðnÞ
2
þ ½RNðn� 1Þ þ JRNðn� 1Þ J��1

ðJXðnÞ"aðnþ 1Þ þ XðnÞ"0bðnþ 1Þ�
ð7:95Þ

where the error signals are defined by

"aðnþ 1Þ ¼ xðnþ 1Þ � XtðnÞB‘ðnþ 1Þ
2

ð7:96Þ

and

"0bðnþ 1Þ ¼ xðn�NÞ � Xtðnþ 1ÞB‘ðnþ 1Þ
2

ð7:97Þ

The linear phase constraint, which is the symmetry of the coefficients, is
imposed if the error signals are equal:

"aðnþ 1Þ ¼ "0bðnþ 1Þ ¼ 1
2
"ðnþ 1Þ ¼ 1

2
½xðnþ 1Þ þ xðn�NÞ � XtðnÞB‘ðnþ 1Þ�

ð7:98Þ
Hence the coefficient updating equation

B‘ðnþ 1Þ ¼ B‘ðnÞ þ ½UðnÞ þ JUðnÞ�"ðnþ 1Þ ð7:99Þ
where UðnÞ is the intermediate adaptation gain defined by (7.81). The ‘‘a
posteriori’’ error "ðnþ 1Þ can be computed from the ‘‘a priori’’ error
eðnþ 1Þ. Starting from the definitions of the errors, after some algebraic
manipulations, the following proportionality expression is obtained:

eðnþ 1Þ ¼ "ðnþ 1Þ½1þ XtðnÞDW ½UðnÞ þ JUðnÞ�� ð7:100Þ
As concerns the linear phase adaptive filter, it can be handled in very

much the same way. The cost function is



JðnÞ ¼
Xn
p¼1

yðpÞ �HpðnÞ
XtðpÞJ þ XtðpÞ

2

� 	2
ð7:101Þ

and the coefficient vector H‘ðnÞ satisfiesXn
p¼1
½JXðpÞXtðpÞJ þ XðpÞXtðpÞ�H‘ðnÞ

2
¼
Xn
p¼1

yðpÞ½JXðpÞ þ XðpÞ� ð7:102Þ

Hence, the recursion

H‘ðnþ 1Þ ¼ H‘ðnÞ þ ½Uðnþ 1Þ þ JUðnþ 1Þ�"hðnþ 1Þ ð7:103Þ
follows, and the error proportionality relationship is

ehðnþ 1Þ ¼ "hðnþ 1Þ½1þ Xtðnþ 1ÞDW ½Uðnþ 1Þ þ JUðnþ 1Þ�� ð7:104Þ
The ‘‘a priori’’ error is computed according to its definition by

ehðnþ 1Þ ¼ yðnþ 1Þ � Xtðnþ 1ÞH‘ðnÞ ð7:105Þ
Finally, a complete algorithm for least squares linear phase adaptive filter-
ing consists of the equations in Figure 7.3 to update the intermediate gain
and the three filter section equations (7.105), (7.104), and (7.103).

The above algorithm is elegant but computationally complex. A simpler
approach is obtained directly from the general adaptive filter algorithm, and
is presented in a later section, after the case of adaptive filtering with linear
constraints has been dealt with.

7.6. CONSTRAINED ADAPTIVE FILTERING

Constrained adaptive filtering can be found in several signal processing
techniques like minimum variance spectral analysis and antenna array pro-
cessing. In fact, many particular situations in adaptive filtering can be
viewed as a general case with specific constraints. Therefore it is important
to be able to include constraints in adaptive algorithms [6].

The constraints are assumed to be linear, and they are introduced by the
linear system

CtHðnÞ ¼ F ð7:106Þ
where C is the N � K constraint matrix and F is a K-element response
vector. The set of filter coefficients that minimizes the cost function

JðnÞ ¼
Xn
p¼1

Wn�p½ yðpÞ �HtðnÞXðpÞ�2 ð7:107Þ



subject to the constraint (7.83), is obtained through the Lagrange multiplier
method.

Let us introduce an alternative cost function

J 0ðnÞ ¼
Xn
p¼1

Wn�p½ yðpÞ �HtðnÞXðpÞ�2 þ �tCtHðnÞ ð7:108Þ

where � is a k-element vector, the so-called Lagrange multiplier vector. The
derivative of the cost function with respect to the coefficient vector is

@J 0ðnÞ
@HðnÞ ¼ �2RNðnÞHðnÞ þ 2ryxðnÞ þ C� ð7:109Þ

and it is zero for

HðnÞ ¼ R�1N ðnÞ½ryxðnÞ þ 1
2
C�� ð7:110Þ

Now, this coefficient vector must satisfy the constraint (7.106), which
implies

Ct½R�1N ðnÞ½ryxðnÞ þ 1
2
C��� ¼ F ð7:111Þ

and

1
2
� ¼ ½CtR�1N ðnÞC��1½F � CtR�1N ðnÞryxðnÞ� ð7:112Þ

Substituting (7.112) into (7.110) leads to the constrained least squares solu-
tion

HðnÞ ¼ R�1N ðnÞryxðnÞ þ R�1N ðnÞC½CtR�1N ðnÞC��1½F � CtR�1N ðnÞryxðnÞ�
ð7:113Þ

Now, in a recursive approach, the factors which make HðnÞ have to be
updated. First let us define the N � k matrix �ðnÞ by

�ðnÞ ¼ R�1N ðnÞC ð7:114Þ
and show how it can be recursively updated. The basic recursion for the AC
matrix yields the following equation, after some manipulation:

R�1N ðnþ 1Þ ¼ 1

W
½R�1N ðnÞ � Gðnþ 1ÞXtðnþ 1ÞR�1N ðnÞ� ð7:115Þ

Right-multiplying both sides by the constraint matrix C leads to the follow-
ing equation for the updating of the matrix �ðnÞ:

�ðnþ 1Þ ¼ 1

W
½�ðnÞ þ Gðnþ 1ÞXtðnþ 1Þ�ðnÞ� ð7:116Þ



The second factor to be updated in HðnÞ as defined by (7.113) is ½Ct�ðnÞ��1,
and the matrix inversion lemma can be invoked. The first step in the pro-
cedure consists of multiplying both sides of (7.116) by Ct to obtain

Ct�ðnþ 1Þ ¼ 1

W
½Ct�ðnÞ þ CtGðnþ 1ÞXtðnÞ�ðnÞ� ð7:117Þ

Clearly, the second term in the right-hand side of the above equation is the
scalar product of two vectors. Therefore, the inversion formula is obtained
with the help of (6.24) as

½Ct�ðnþ 1Þ��1 ¼Wf½Ct�ðnÞ��1 þ Lðnþ 1ÞXtðnþ 1Þ�ðnÞ½Ct�ðnÞ��1g
ð7:118Þ

where Lðnþ 1Þ is the k-element vector defined by

Lðnþ 1Þ ¼ ½Ct�ðnÞ��1CtGðnþ 1Þ=f1þ Xtðnþ 1Þ�ðnÞ½Ct�ðnÞ��1CtGðnþ 1Þg
ð7:119Þ

or in a more concise form, using (7.118),

Lðnþ 1Þ ¼ 1

W
½Ct�ðnþ 1Þ��1CtGðnþ 1Þ ð7:120Þ

Once Gðnþ 1Þ is available, the set of equations (7.119), (7.118), (7.116)
constitute an algorithm to recursively compute the coefficient vector
Hðnþ 1Þ through equation (7.113). The adaptation gain Gðnþ 1Þ itself
can be obtained with the help of one of the algorithms presented in
Chapter 6.

7.7. A ROBUST CONSTRAINED ALGORITHM

In the algorithm derived in the previous section, the constraint vector F does
not explicitly show up. In fact, it is only present in the initialization phase
which consists of the two equations

�ð0Þ ¼ R�1N ð0ÞC ð7:121Þ
and

Hð0Þ ¼ �ð0Þ½Ct�ð0Þ��1F ð7:122Þ
Due to the unavoidable roundoff errors, the coefficient vector will deviate

from the constraints as time elapses, and a correction procedure is manda-
tory for long or continuous data sequences. In fact, it is necessary to derive a
recursion for the coefficient vector, which is based on the output error
signal. The coefficient vector can be rewritten as



HðnÞ ¼ R�1N ðnÞryxðnÞ þ �ðnÞ½Ct�ðnÞ��1½F � CtR�1N ðnÞryxðnÞ� ð7:123Þ
Now, substituting (7.116) and (7.118) into the above equation at time nþ 1,
using expression (7.120) and the regular updating equation for the uncon-
strained coefficient vector, the following recursion is obtained for the con-
strained coefficient vector

Hðnþ 1Þ ¼ HðnÞ þ Gðnþ 1Þeðnþ 1Þ �W�ðnþ 1ÞLðnþ 1Þeðnþ 1Þ
ð7:124Þ

with

eðnþ 1Þ ¼ yðnþ 1Þ �HtðnÞXðnþ 1Þ ð7:125Þ
In simplified form, the equation becomes

Hðnþ 1Þ ¼ HðnÞ þ Pðnþ 1ÞGðnþ 1Þeðnþ 1Þ ð7:126Þ
with the projection operator

Pðnþ 1Þ ¼ IN � �ðnþ 1Þ½Ct�ðnþ 1Þ��1Ct ð7:127Þ
Robustness to roundoff errors is introduced through an additional term

in the recursion, proportional to the deviation from the constraint expressed
as F � CtHðnÞ. Then the recursion becomes

Hðnþ 1Þ ¼ HðnÞ þ Pðnþ 1ÞGðnþ 1Þeðnþ 1Þ
þ �ðnþ 1Þ½Ct�ðnþ 1Þ��1½F � CtHðnÞ� ð7:128Þ

and it is readily verified that the coefficient vector satisfies the constraint for
any n.

Some factorization can take place, which leads to an alternative expres-
sion

Hðnþ 1Þ ¼ Pðnþ 1Þ½HðnÞ þ Gðnþ 1Þeðnþ 1Þ� þMðnþ 1Þ ð7:129Þ
where

Mðnþ 1Þ ¼ �ðnþ 1Þ½Ct�ðnþ 1Þ��1F ð7:130Þ
At this stage, it is worth pointing out that a similar expression exists for the
constrained LMS algorithm as mentioned in Section 4.12. The equations are
recalled for convenience:

Hðnþ 1Þ ¼ P½HðnÞ þ �Xðnþ 1Þeðnþ 1Þ� þM ð7:131Þ
with

M ¼ CðCtCÞ�1F; P ¼ IN � CðCtCÞ�1Ct ð7:132Þ



However, in the LMS algorithm, the quantities M and P are fixed, while
they are related to the signal autocorrelation in the FLS algorithm.

In order to finalize the robust algorithm, it is convenient to introduce the
matrix QðnÞ, with N � k elements, as

QðnÞ ¼ �ðnÞ½Ct�ðnÞ��1 ð7:132Þ
and compute the updated coefficient vector in two steps as follows:

H 0ðnþ 1Þ ¼ HðnÞ þ Gðnþ 1Þeðnþ 1Þ ð7:133Þ
and then

Hðnþ 1Þ ¼ H 0ðnþ 1Þ þQðnþ 1Þ½F � CtH 0ðnþ 1Þ� ð7:134Þ
In the robust algorithm, QðnÞ has to be computed recursively and it must be
free of roundoff error accumulation. The procedure is a direct combination
of (7.116) and (7.118). Let us define the vectors

Uðnþ 1Þ ¼ CtGðnþ 1Þ ð7:135Þ
and

Vðnþ 1Þ ¼ Xtðnþ 1ÞQðnÞ ð7:136Þ
Now, the recursion is

Qðnþ 1Þ ¼ ½QðnÞ � Gðnþ 1ÞVtðnþ 1Þ� Ik þ
Uðnþ 1ÞVtðnþ 1Þ

1� Vtðnþ 1ÞUðnþ 1Þ
� 	

ð7:137Þ
According to the definition (7.132) of the matrix QðnÞ, in the absence of
roundoff error accumulation, the following equality holds:

CtQðnþ 1Þ ¼ Ik ð7:138Þ
Therefore, if Q 0ðnþ 1Þ denotes a matrix with roundoff errrors, a correcting
term can be introduced in the same manner as above, and the correct matrix
is obtained as

Qðnþ 1Þ ¼ Q 0ðnþ 1Þ þ CðCtCÞ�1½Ik � CtQ 0ðnþ 1Þ� ð7:139Þ
Finally, the robust constrained FLS algorithm is given in Figure 7.4. The
number of multiplies, including error correction, amounts to
Nk2 þ 5Nkþ k2 þ kþ 2N. Additionally, k divisions are needed. Some
gain in computation is achieved if the term CðCtCÞ�1 in (7.139) is precom-
puted.

It is worth pointing out that the case of linear phase filters can be seen as
an adaptive constrained filtering problem. The constraint matrix for an odd
number of coefficients is taken as



C ¼
IðN�1Þ=2
0 � � � 0
�JðN�1Þ=2

2
4

3
5 ð7:140Þ

and for N even it is

C ¼ IN=2
�JN=2

� 	

while the response vector in (7.106) is

F ¼
0
..
.

0

2
4

3
5

The constrained algorithms provide an alternative to those presented in
Section 7.5.

FIG. 7.4 The robust CFLS algorithm.



7.8. THE CASE OF COMPLEX SIGNALS

Complex signals take the form of sequences of complex numbers and are
encountered in many applications, particularly in communications and
radar. Adaptive filtering techniques can be applied to complex signals in a
straightforward manner, the main peculiarity being that the cost functions
used in the optimization process must remain real and therefore moduli are
involved.

For reasons of compatibility with the subsequent study of the multidi-
mensional case, the cost function is taken as

JcX ðnÞ ¼
Xn
p¼1

Wn�pj yðpÞ � �HHtðnÞXðpÞj2 ð7:141Þ

or

JcX ðnÞ ¼
Xn
p¼1

Wn�peðpÞ �eeðpÞ

where �eeðnÞ denotes the complex conjugate of eðnÞ, and the weighting factor
W is assume real.

Based on the cost function, FLS algorithms can be derived through the
procedures presented in Chapter 6 [7].

The minimization of the cost function leads to

HðnÞ ¼ R�1N ðnÞryxðnÞ ð7:142Þ
where

RNðnÞ ¼
Xn
p¼1

Wn�pXðpÞ �XXtðpÞ

ryxðnÞ ¼
Xn
p¼1

Wn�p �yyðpÞXðpÞ
ð7:143Þ

Note that ½ �RRNðnÞ�t ¼ RNðnÞ, which is the definition of a Hermitian matrix.
The connecting matrix RNþ1ðnþ 1Þ can be partitioned as

RNþ1ðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�p xðpÞ
Xðp� 1Þ

� 	
½ �xxðpÞ; �XXtðp� 1Þ�

¼
Pnþ1
p¼1

Wnþ1�pjxðpÞj2 ½�rraNðnþ 1Þ�t

raNðnþ 1Þ RNðnÞ

2
64

3
75

ð7:144Þ



and

RNþ1ðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�p XðpÞ
xðp�NÞ

� 	
½ �XXtðpÞ; �xxðp�NÞ�

¼
RNðnþ 1Þ rbNðnþ 1Þ
½�rrbNðnþ 1Þ�t Pnþ1

p¼1
Wnþ1�pjxðp�NÞj2

2
64

3
75

ð7:145Þ

Following the definitions (7.42) and (7.43), the forward prediction coeffi-
cient vector is updated by

Aðnþ 1Þ ¼ R�1N ðnÞraNðnþ 1Þ ¼ AðnÞ þ R�1N ðnÞXðnÞ½ �xxðnþ 1Þ � �XXtðnÞAðnÞ�
ð7:146Þ

or

Aðnþ 1Þ ¼ AðnÞ þ GðnÞ �eeaðnþ 1Þ ð7:147Þ
where the adaptation gain has the conventional definition and

eaðnþ 1Þ ¼ xðnþ 1Þ � �AAtðnÞXðnÞ
Now, using the partitioning (7.44) as before, one gets

RNþ1ðnþ 1Þ 0
GðnÞ

� 	
¼ X1ðnþ 1Þ � "aðnþ 1Þ

0

� 	
ð7:148Þ

which, taking into account the prediction matrix equations, leads to the
same equations as for real signals:

G1ðnþ 1Þ ¼ 0
GðnÞ

� 	
þ "aðnþ 1Þ
Eaðnþ 1Þ

1
�Aðnþ 1Þ

� 	
¼ Mðnþ 1Þ

mðnþ 1Þ
� 	

The prediction error energy Eaðnþ 1Þ can be updated by the following
recursion, which is obtained through the method given in Section 6.3, for
RNðnÞ Hermitian:

Eaðnþ 1Þ ¼WEaðnÞ þ eaðnþ 1Þ �""aðnþ 1Þ ð7:149Þ
The end of the procedure uses the partitioning of RNþ1ðnþ 1Þ given in
equation (7.45) to express the order N þ 1 adaptation gain in terms of back-
ward prediction variables. It can be verified that the conjugate of the back-
ward prediction error

ebðnþ 1Þ ¼ xðnþ 1�NÞ � �BBtðnÞXðnþ 1Þ
appears in the updated gain



Gðnþ 1Þ ¼ 1

1� �eebðnþ 1Þmðnþ 1Þ ½Mðnþ 1Þ þ BðnÞmðnþ 1Þ� ð7:150Þ

The backward prediction coefficients are updated by

Bðnþ 1Þ ¼ BðnÞ þ Gðnþ 1Þ �eebðnþ 1Þ ð7:151Þ
Finally the FLS algorithm for complex signals based on a priori errors is
similar to the one given in Figure 6.4 for real data.

There is an identity between the complex signals and the two-dimensional
signals which are considered in the next section. Algorithms for complex
signals are directly obtained from those given for 2-D signals by adding
complex conjugation to transposition.

The prediction error ratio

’ðnÞ ¼ "aðnþ 1Þ
eaðnþ 1Þ ¼ 1� �XXtðnÞR�1N ðnÞXðnÞ ð7:152Þ

is a real number, due to the Hermitian property of the AC matrix estimation
RNðnÞ. It is still limited to the interval [0, 1] and can be used as a reliable
checking variable.

7.9. MULTIDIMENSIONAL INPUT SIGNALS

The input and reference signals in adaptive filters can be vectors. To begin
with, the case of an input signal consisting of K elements xiðnÞð1 4 i 4 kÞ
and a scalar reference is considered. It is illustrated in Figure 7.5. The
programmable filter, whose output ~yyðnÞ is a scalar like the reference yðnÞ,
consists of a set of k different filters with coefficient vectors
HiðnÞð1 4 i 4 kÞ. These coefficients can be calculated to minimize a cost
function in real time, through FLS algorithms.

Let �ðnÞ denote the k-element input vector

�tðnÞ ¼ ½x1ðnÞ; x2ðnÞ; . . . ; xkðnÞ�
Assuming that each filter coefficient vector HiðnÞ has N elements, let XðnÞ
denote the following input vector with KN elements:

XtðnÞ ¼ ½�tðnÞ; �tðn� 1Þ; . . . ; �tðnþ 1�NÞ�
and let HðnÞ denote the KN element coefficient vector

 � K�!  �K�!  �K�!
HtðnÞ ¼ ½h11ðnÞ; . . . ; hK1ðnÞ; h12ðnÞ; . . . ; hK2ðnÞ; . . . ; h1NðnÞ; . . . ; hKNðnÞ�

The output error signal eðnÞ is
eðnÞ ¼ yðnÞ �HtðnÞXðnÞ ð7:153Þ

..........

..........

..........

..........

..........



The minimization of the cost function JðnÞ associated with an exponential
time window,

JðnÞ ¼
Xn
p¼1

Wn�pe2ðpÞ

leads to the set of equations

@JðnÞ
@hijðnÞ

¼ 2
Xn
p¼1

Wn�p½yðpÞ �HtðnÞXðpÞ�xiðp� jÞ ¼ 0 ð7:154Þ

with 1 4 i 4 K , 0 4 j 4 N � 1. Hence the optimum coefficient vector at
time n is

HðnÞ ¼ R�1KNðnÞrKNðnÞ ð7:155Þ
with

RKNðnÞ ¼
Xn
p¼1

Wn�pXðpÞXtðpÞ

rKNðnÞ ¼
Xn
p¼1

Wn�pyðpÞXðpÞ

FIG. 7.5 Adaptive filter with multidimensional input and scalar reference.



The matrix RKNðnÞ is a cross-correlation matrix estimation. The updating
recursion for the coefficient vector takes the form

Hðnþ 1Þ ¼ HðnÞ þ R�1KNðnþ 1ÞXðnþ 1Þeðnþ 1Þ ð7:156Þ
and the adaptation gain

GK ðnÞ ¼ R�1KNðnÞXðnÞ ð7:157Þ
is a KN-element vector, which can be updated through a procedure similar
to that of Section 6.4.

The connecting matrix RKN1ðnþ 1Þ is defined by

RKN1ðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�p �ðpÞ
Xðp� 1Þ

� 	
½�tðpÞ;Xtðp� 1Þ� ð7:158Þ

and can be partitioned as

RKN1ðnþ 1Þ ¼
Pnþ1
p¼1

Wnþ1�p�ðpÞ�tðpÞ ½raKNðnþ 1Þ�t

raKNðnþ 1Þ RKNðnÞ

2
4

3
5 ð7:159Þ

where raKNðnþ 1Þ is the KN � K cross-correlation matrix

raKNðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�pXðp� 1Þ�tðpÞ ð7:160Þ

From the alternative definition

RKN1ðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�p XðpÞ
�ðp�NÞ

� 	
½XtðpÞ; �tðp�NÞ� ð7:161Þ

a second partitioning is obtained:

RKN1ðnþ 1Þ ¼
RKNðnþ 1Þ rbKNðnþ 1Þ
½rbKNðnþ 1Þ�t Pnþ1

p¼1
Wnþ1�p�ðnþ 1�NÞ�tðnþ 1�NÞ

2
64

3
75

ð7:162Þ
where rbKNðnþ 1Þ is the KN � K matrix

rbKNðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�pXðpÞ�tðp�NÞ ð7:163Þ

The fast algorithms use the prediction equations. The forward prediction
error takes the form of a K-element vector



eKaðnþ 1Þ ¼ �ðnþ 1Þ � At
K ðnÞXðnÞ ð7:164Þ

where the prediction coefficients form a KN � K matrix, which is computed
to minimize the prediction error energy, defined by

EaðnÞ ¼
Xn
p¼1

Wn�petKaðpÞeKaðpÞ ¼ trace½EKaðnÞ� ð7:165Þ

with the quadratic error energy matrix defined by

EKaðnÞ ¼
Xn
p¼1

Wn�peKaðpÞetKaðpÞ ð7:166Þ

The minimization process yields

AK ðnþ 1Þ ¼ R�1KNðnÞraKNðnþ 1Þ ð7:167Þ
The forward prediction coefficients, updated by

AK ðnþ 1Þ ¼ AK ðnÞ þ GK ðnÞetKaðnþ 1Þ ð7:168Þ
are used to derive the a posteriori prediction error "Kaðnþ 1Þ, also a K-
element vector, by

"Kaðnþ 1Þ ¼ �ðnþ 1Þ � At
K ðnþ 1ÞXðnÞ ð7:169Þ

The quadratic error energy matrix can also be expressed by

EKaðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�p�ðpÞ�tðpÞ � At
K ðnþ 1ÞraKNðnþ 1Þ ð7:170Þ

which, by the same approach as in Section 6.3, yields the updating recursion

EKaðnþ 1Þ ¼WEKaðnÞ þ eKaðnþ 1Þ"tKaðnþ 1Þ ð7:171Þ
The a priori adaptation gain GK ðnÞ can be updated by reproducing the

developments given in Section 6.4 and using the two partitioning equations
(7.159) and (7.162) for RKN1ðnþ 1Þ. The fast algorithm based on a priori
errors is given in Figure 7.6.

If the predictor order N is sufficient, the prediction error elements, in the
steady-state phase, approach white noise signals and the matrix EKaðnÞ
approaches a diagonal matrix. Its initial value can be taken as a diagonal
matrix

EKað0Þ ¼ E0IK ð7:172Þ
where E0 is a positive scalar; all other initial values can be zero.

A stabilization constant, as in Section 6.8, can be introduced by modify-
ing recursion (7.171) as follows:



FIG. 7.6 FLS algorithm for multidimensional input signals.



EKaðnþ 1Þ ¼WEKaðnÞ þ eKaðnþ 1Þ"tKaðnþ 1Þ þ CIK ð7:173Þ
where C is a positive scalar.

The matrix inversion in Figure 7.6 is carried out, with the help of the
matrix inversion lemma (6.26) of Chapter 6 by updating the inverse quad-
ratic error matrix:

E�1Ka ðnþ 1Þ ¼W�1 E�1Ka ðnÞ �
E�1Ka ðnÞeKaðnþ 1Þ"tKaðnþ 1ÞE�1Ka ðnÞ
W þ "tKaðnþ 1ÞE�1Ka ðnÞeKaðnþ 1Þ

" #

ð7:174Þ
The computational complexity of that expression amounts to 3K2 þ 2K
multiplications and one division or inverse calculation.

Note that if N ¼ 1, which means that there is no convolution on the input
data, then E�1Ka ðnÞ is just the inverse cross-correlation matrix R�1KNðnÞ, and it is
updated directly from the input signal data as in conventional RLS techni-
ques.

For the operations related to the filter order N, the algorithm presented
in Figure 7.2 requires 7K2N þ KN multiplications for the adaptation gain
and 2KN multiplications for the filter section. The FORTRAN program is
given in Annex 7.3.

The ratio ’ðnÞ of a posteriori to a priori prediction errors is still a scalar,
because

"aK ðnþ 1Þ ¼ eaK ðnþ 1Þ½1� Gt
K ðnÞXðnÞ� ð7:175Þ

Therefore it can still serve to check the correct operation of the multidimen-
sional algorithms. Moreover, it allows us to extend to multidimensional
input signals the algorithms based on all prediction errors.

7.10. M-D ALGORITHM BASED ON ALL PREDICTION
ERRORS

An alternative adaptation gain vector, which leads to exploiting a priori and
a posteriori prediction errors is defined by

G 0K ðnþ 1Þ ¼ R�1KNðnÞXðnþ 1Þ ¼ GK ðnþ 1ÞW
’ðnþ 1Þ ð7:176Þ

The updating procedure uses the ratio of a posteriori to a priori prediction
errors, under the form of the scalar �ðnÞ defined by

�ðnÞ ¼W þ XtðnÞR�1KNðn� 1ÞXðnÞ ¼ W

’ðnÞ ð7:177Þ



The computational organization of the corresponding algorithm is shown in
Figure 7.7. Indeed, it follows closely the sequence of operations already
given in Figure 6.5, but scalars and vectors have been replaced by vectors
and matrices when appropriate.

FIG. 7.7 Algorithm based on all prediction errors for M-D input signals.



The operations related to the filter order N correspond to 6K2N multi-
plications for the gain and 2KN multiplications for the filter section.

In the above procedure, the backward a priori prediction error vector
eKbðnþ 1Þ can also be calculated directly by

eKbðnþ 1Þ ¼ EKbðnÞmK ðnþ 1Þ ð7:178Þ
Again that provides means to control the roundoff error accumulation,
through updating the backward prediction coefficients, as in (6.139) of
Chapter 6 by

BK ðnþ 1Þ ¼ BK ðnÞ þ G 0K ðnþ 1Þ
� ½eKbðnþ 1Þ þ eKbðnþ 1Þ � EKbðnÞmK ðnþ 1Þ�=�ðnþ 1Þ

ð7:179Þ
Up to now, the reference signal has been assumed to be a scalar sequence.
The adaptation gain calculations which have been carried out only depend
on the input signals, and they are valid for multidimensional reference
signals as well. The case of K-dimensional (K-D) input and L-dimensional
(L-D) reference signals is depicted in Figure 7.8. The only modifications
with respect to the previous algorithms concern the filter section. The L-
element reference vector YLðnÞ is used to derive the output error vector eLðnÞ
from the input and the KN � L coefficient matrix HLðnÞ as follows:

eLðnþ 1Þ ¼ YLðnþ 1Þ �Ht
LðnÞXðnþ 1Þ ð7:180Þ

FIG. 7.8 Adaptive filter with M-D input and reference signals.



The coefficient matrix is updated by

HLðnþ 1Þ ¼ HLðnÞ þ
G 0K ðnþ 1ÞetLðnþ 1Þ

�ðnþ 1Þ ð7:181Þ

The associated complexity amounts to 2NKLþ L multiplications.
The developments given in Chapter 6 and the preceding sections have

illustrated the flexibility of the procedures used to derive fast algorithms.
Another example is provided by filters of nonuniform length [8].

7.11. FILTERS OF NONUNIFORM LENGTH

In practice it is desirable to tailor algorithms to meet the specific needs of
applications. The input sequences may be fed to filters with different lengths,
and adjusting the fast algorithms accordingly can provide substantial sav-
ings.

Assume that the K filters in Figure 7.5 have lengths Nið1 4 i 4 KÞ. The
data vector XðnÞ can be rearranged as follows:

XtðnÞ ¼ ½Xt
1ðnÞ;Xt

2ðnÞ; . . . ;Xt
K ðnÞ� ð7:182Þ

where

Xt
i ðnÞ ¼ ½xiðnÞ; xiðn� 1Þ; . . . ; xiðnþ 1�NiÞ�

The number of elements �N is

�N ¼
XK
i¼1

Ni ð7:183Þ

The connecting ð�N þ KÞð�N þ KÞ matrix R�N1ðnþ 1Þ, defined by

R�N1ðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�p

x1ðnþ 1Þ
X1ðnÞ

..

.

xK ðnþ 1Þ
XK ðnÞ

2
666664

3
777775

x1ðnþ 1Þ
X1ðnÞ

..

.

xK ðnþ 1Þ
XK ðnÞ

2
666664

3
777775

t

can again be partitioned in two different manners and provide the gain
updating operations. The algorithms obtained are those shown in Figures
7.6 and 7.7. The only difference is that the prediction coefficient �N � K
matrices are organized differently to accommodate the rearrangement of the
data vector XðnÞ.

A typical case where filter dimensions can be different is pole-zero mod-
eling.



7.12. FLS POLE-ZERO MODELING

Pole-zero modeling techniques are used in control for parametric system
identification.

An adaptive filter with zeros and poles can be viewed as a filter with 2-D
input data and 1-D reference signal if the equation error approach is chosen.
The filter defined by

~yyðnþ 1Þ ¼ AtðnÞXðnþ 1Þ þ BtðnÞ ~YYðnÞ ð7:184Þ
is equivalent to a filter as in Figure 7.5 with input signal vector

�ðnþ 1Þ ¼ xðnþ 1Þ
~yyðnÞ

� 	
ð7:185Þ

For example, let us consider the pole-zero modeling of a system with
output yðnÞ when fed with xðnÞ. An approach which ensures stability is
shown in Figure 4.12(b). A 2-D FLS algorithm can be used to compute
the model coefficients with input signal vector

�ðnþ 1Þ ¼ xðnþ 1Þ
yðnÞ

� 	
ð7:186Þ

However, as pointed out in Section 4.11, that equation error type of
approach is biased when noise is added to the reference signal. It is prefer-
able to use the output error approach in Figure 4.12(a). But stability can
only be guaranteed if the smoothing filter with z-transfer function CðzÞ
satisfying strictly positive real (SPR) condition (4.149) in Chapter 4 is intro-
duced on the error signal.

An efficient approach to pole-zero modeling is obtained by incorporating
the smoothing filter in the LS process [9]. A 3-D FLS algorithm is employed,
and the corresponding diagram is shown in Figure 7.9. The output error
signal f ðnÞ used in the adaptation process is

f ðnÞ ¼ yðnÞ � ½u1ðnÞ þ u2ðnÞ þ u3ðnÞ� ð7:187Þ
where u1ðnÞ, u2ðnÞ, and u3ðnÞ are the outputs of the three filters fed by ~yyðnÞ,
xðnÞ, and eðnÞ ¼ yðnÞ � ~yyðnÞ, respectively. The cost function is

J3ðnÞ ¼
Xn
p¼1

Wn�pf 2ðpÞ ð7:188Þ

Let the unknown system output be

yðnÞ ¼
XN
i¼0

aixðn� iÞ þ
XN
i¼1

biyðn� iÞ ð7:189Þ



or

yðnÞ ¼
XN
i¼0

aixðn� iÞ þ
XN
i¼1

bi ~yyðn� iÞ þ
XN
i¼1

bieðn� iÞ ð7:190Þ

From (7.187), the error signal is zero in the steady state if

aið1Þ ¼ ai; bið1Þ ¼ bi; cið1Þ ¼ bi; 1 4 i 4 N

Now, assume that a white noise sequence ðnÞ with power �2 is added to
the system output. The cost function to be minimized becomes

J3ðnÞ ¼
Xn
p¼1

Wn�p f ðpÞ þ ðpÞ �
XN
i¼1

ciðnÞðp� iÞ
" #2

ð7:191Þ

which, for sufficiently large n can be approximated by

J3ðnÞ �
Xn
p¼1

Wn�p f 2ðpÞ þ �2 1þ
XN
i¼1

c2i ðnÞ
" #" #

ð7:192Þ

FIG. 7.9 Adaptive pole-zero modeling with a 3-D FLS algorithm.



The steady-state solution is

aið1Þ ¼ ai; bið1Þ ¼ bi; cið1Þ ¼ 0; 1 4 i 4 N

Finally, the correct system identification is achieved, in the presence of
noise or not. The smoothing filter coefficients vanish on the long run when
additive noise is present. An illustration is provided by the following
example.

Example [9]

Let the transfer function of the unknown system be

HðzÞ ¼ 0:05þ 0:1z�1 þ 0:075z�2

1� 0:96z�1 þ 0:94z�2

and let the input be the first-order AR signal

xðnÞ ¼ e0ðnÞ þ 0:8xðn� 1Þ

where e0ðnÞ is a white Gaussian sequence.
The system gain GS defined by

GS ¼ 10 log
E½ y2ðnÞ�
E½e2ðnÞ�

is shown in Figure 7.10(a) versus time. The ratio of the system output signal
to additive noise power is 30 dB. For comparison the gain obtained with the
equation error or series-parallel approach is also given. In accordance with
expression (4.154) in Chapter 4, it is bounded by the SNR. The smoothing
filter coefficients are shown in Figure 7.10(b). They first reach the bi values
ði ¼ 1; 2Þ and decay to zero after.

The 3-D parallel approach requires approximately twice the number of
multiplications of the 2-D series-parallel approach.

7.13. MULTIRATE ADAPTIVE FILTERS

The sampling frequencies of input and reference signals can be different. In
the sample rate reduction case, depicted in Figure 7.11, the input and refer-
ence sampling frequencies are fS and fS=K , respectively. The input signal
sequence is used to form K sequences with sample rate fS=K which are fed
to K filters with coefficient vectors HiðnÞð0 4 i 4 K � 1Þ. The cost function
to be minimized in the adaptive filter, JSRRðKnÞ, is



JSRRðKnÞ ¼
Xn
p¼1

Wn�p½ yðKpÞ �HtðKpÞXðKpÞ�2 ð7:193Þ

The data vector XðKnÞ is the vector of the NK most recent input
values. The input may be considered as consisting of K different signals,
and the algorithms presented in the preceding sections can be applied.
The corresponding calculations are carried out at the frequency fs=k.

An alternative approach takes advantage of the sequential presentation
of the input samples and is presented for the particular and important case
where k ¼ 2.

FIG. 7.10 Pole-zero modeling of an unknown system: (a) System gain in FLS

identification. (b) Smoothing filter coefficients.



It is assumed that the input sequence is seen as two interleaved sequences
x1ðnÞ and x2ðnÞ and two input data vectors, X2NðnÞ and X1;2Nðnþ 1Þ are
defined as follows:

 � X2NðnÞ �!
x2ðnþ 1Þx1ðnþ 1Þx2ðnÞx1ðnÞ x2ðnþ 1�NÞx1ðnþ 1�NÞ

 � X1;2Nðnþ 1Þ �!
or in vector form

X2NðnÞ ¼
x2ðnÞ
x1ðnÞ
..
.

x1ðnþ 1�NÞ

2
6664

3
7775; X1;2Nðnþ 1Þ ¼

x1ðnþ 1Þ
x2ðnÞ
..
.

x2ðnþ 1�NÞ

2
6664

3
7775

The cost function is

JðnÞ ¼
Xn
p¼1

Wn�p½ yðpÞ �H2NðnÞX2NðpÞ�2 ð7:194Þ

where H2NðnÞ is the coefficient vector with 2N elements. The multirate
adaptive filter section consists of the two following equations:

eðnþ 1Þ ¼ yðnþ 1Þ �Ht
2NðnÞX2Nðnþ 1Þ

H2Nðnþ 1Þ ¼ H2NðnÞ þ G2Nðnþ 1Þeðnþ 1Þ ð7:195Þ

The adaptation gain vector G2NðnÞ is itself defined from the AC matrix

FIG. 7.11 Sample rate reduction adaptive filter.



R2NðnÞ ¼
Xn
p¼1

Wn�pX2NðpÞXt
2NðpÞ ð7:196Þ

as follows

G2NðnÞ ¼ R�12NðnÞX2NðnÞ ð7:197Þ
In the multirate fast least squares algorithm, the adaptation gain vector is
updated through linear prediction. A first error energy can be defined by

E1aðnÞ ¼
Xn
p¼1

Wn�p½x1ðpÞ � At
1;2NðnÞX2Nðp� 1Þ�2 ð7:198Þ

and it leads to the linear prediction matrix equation

R2Nþ1ðnþ 1Þ 1
�A1;2Nðnþ 1Þ

� 	
¼ E1aðnþ 1Þ

0

� 	
ð7:199Þ

where the extended ð2N þ 1Þ � ð2N þ 1Þ matrix is

R2Nþ1ðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�p x1ðpÞ
X2Nðp� 1Þ

� 	
½x1ðpÞ;Xt

2Nðp� 1Þ� ð7:200Þ

Now, the procedure of Chapter 6 can be applied to compute an extended
adaptation gain G1;2Nþ1ðnþ 1Þ from forward linear prediction and an
updated adaptation gain G1;2Nðnþ 1Þ from backward linear prediction.
The same procedure can be repeated with x2ðnþ 1Þ as the new data, leading
to another extended adaptation gain G2;2Nþ1ðnþ 1Þ and, finally, to the
desired updated gain G2Nðnþ 1Þ. The complete computational organization
is given in Figure 7.12; in fact, the one-dimensional FLS algorithm is run
twice in the prediction section.

The approach can be extended to multidimensional, or multichannel,
inputs with K elementary signals. It is sufficient to run K times the predic-
tion section for 1-D signals, and use the proper prediction and adaptation
gain vectors each time. There is no gain in computational simplicity with
respect to the algorithms presented in Sections 7.9 and 7.10, but the scheme
is elegant and easy to implement, particularly in the context of multirate
filtering.

As concerns the case of increasing sample rate, it is shown in Figure 7.13.
It corresponds to scalar input and multidimensional reference signals.

It is much more economical in terms of computational complexity than
the sample rate reduction, because the adaptation gain is computed once for
the K interpolating filters. All the calculations are again carried out at
frequency fS=K , the reference sequence being split into K sequences at that



FIG. 7.12 The algorithm FLS 2-D/1-D.



frequency. The system boils down to K different adaptive filters with the
same input.

In signal processing, multirate aspects are often linked with DFT appli-
cations and filter banks, which correspond to frequency domain conver-
sions.

7.14. FREQUENCY DOMAIN ADAPTIVE FILTERS

The power conservation principle states that the power of a signal in the
time domain equals the sum of the powers of its frequency components.
Thus, the LS techniques and adaptive methods worked out for time data can
be transposed in the frequency domain.

The principle of a frequency domain adaptive filter (FDAF) is depicted in
Figure 7.14. The N-point DFTs of the input and reference signals are com-
puted. The complex input data obtained are multiplied by complex coeffi-
cients and subtracted from the reference to produce the output error used to
adjust the coefficients.

At first glance, the approach may look complicated and farfetched.
However, there are two motivations [10, 11]. First, from a theoretical
point of view, the DFT computer is actually a filter bank which performs
some orthogonalization of the data; thus, an order N adaptive filter becomes
a set of N separate order 1 filters. Second, from a practical standpoint, the
efficient FFT algorithms to compute the DFT of blocks of N data, parti-
cularly for large N, can potentially produce substantial savings in computa-
tion speed, because the DFT output sampling frequency can be reduced by
the factor N.

FIG. 7.13 Sample rate increase adaptive filter.



Assuming N separate complex filters and combining the results of
Sections 6.1 and 7.8, we obtain the LS solution for the coefficients

hiðnÞ ¼

Pn
p¼1

Wn�p �yyTiðpÞxTiðpÞ
Pn
p¼1

Wn�pxTiðpÞ �xxTiðpÞ
; 0 4 i 4 N � 1 ð7:201Þ

where xTiðnÞ and yTiðnÞ are the transformed sequences.
For sufficiently large n, the denominator of that equation is an estimate

of the input power spectrum, and the numerator is an estimate of the cross-
power spectrum between input and reference signals. Overall the FDAF is
an approximation of the optimal Wiener filter, itself the frequency domain
counterpart of the time domain filter associated with the normal equations.
Note that the optimal method along these lines, in case of stationary signals,
would be to use the eigentransform of Section 3.12.

The updating equations associated with (7.201) are

hiðnþ 1Þ ¼ hiðnÞ þ r�1i ðnþ 1ÞxTiðnþ 1Þ � ½ yTiðnþ 1Þ � �hhiðnÞxTiðnþ 1Þ�
ð7:202Þ

and

riðnþ 1Þ ¼WriðnÞ þ xTiðnþ 1Þ �xxTiðnþ 1Þ ð7:203Þ

FIG. 7.14 FDAF structure.



The FFT algorithms need about ðN=2Þ log2ðN=2Þ complex multiplications
each, which have to be added to the N order 1 adaptive filter operations.
Altogether savings can be significant for large N, with respect to FLS algo-
rithms.

The LMS algorithm can also be used to update the coefficients, and the
results given in Chapter 4 can serve to assess complexity and performance.

It must be pointed out that the sample rate reduction by N at the DFT
output can alter the adaptive filter operation, due to the circular convolution
effects. A scheme without sample rate reduction is shown in Figure 7.15,
where a single orthogonal transform is used. If the first row of the transform
matrix consists of 1’s only, the inverse transformed data are obtained by just
summing the transformed data [12]. Note also that the complex operations
are avoided if a real transform, such as the DCT [equations (3.160) in
Chapter 3], is used.

A general observation about the performance of frequency domain adap-
tive filters is that they can yield poor results in the presence of nonstationary
signals, because the subband decomposition they include can enhance the
nonstationary character of the signals.

7.15. SECOND-ORDER NONLINEAR FILTERS

A nonlinear second-order Volterra filter consists of a linear section and a
quadratic section in parallel, when the input signal is Gaussian, as men-
tioned in Section 4.16.

In this structure, FLS algorithms can be used to update the coefficients of
the linear section in a straightforward manner. As concerns the quadratic

FIG. 7.15 FDAF with a single orthogonal transform.



section, its introduction in the least squares procedure brings a significant
increase of the computational complexity. However, it is possible to intro-
duce a simplified iterative procedure, based on the adaptation gain of the
linear section [13].

Let us consider the system to be identified in Figure 7.16. The input signal
xðnÞ is assumed to be a white noise, as well as the measurement noise bðnÞ,
which is uncorrelated with xðnÞ and has the power �2b . The cost function at
time n is

JðnÞ ¼
Xn
p¼1
½ yðpÞ � XtðpÞHðnÞ � XtðpÞMðnÞXðpÞ�2 ð7:204Þ

Due to the Gaussian hypothesis, the third-order moments vanish, and set-
ting to zero the derivatives yields for the linear section with N coefficients

Xn
p¼1

yðpÞXðpÞ �
Xn
p¼1

XðpÞXtðpÞ
" #

HðnÞ ¼ 0 ð7:205Þ

and for the quadratic section with N2 coefficients

Xn
p¼1

XðpÞXtðpÞyðpÞ �
Xn
p¼1

XðpÞXtðpÞMðnÞXðpÞXtðpÞ ¼ 0 ð7:206Þ

Since xðnÞ is a white noise, the coefficients are given by

FIG. 7.16 Identification of a second-order nonlinear system.



MðnÞ ¼ R�1N ðnÞ
Xn
p¼1

XðpÞXtðpÞyðpÞ
" #

R�1N ðnÞ ð7:207Þ

The above expressions for HðnÞ and MðnÞ are the counterparts of equa-
tions (4.162) in the least squares context. Therefore, the coefficients satisfy
the following recursion

Mðnþ 1Þ ¼MðnÞ þ Gðnþ 1Þeðnþ 1ÞGtðnþ 1Þ ð7:208Þ
with

eðnþ 1Þ ¼ yðnþ 1Þ � Xtðnþ 1ÞHðnÞ � Xðnþ 1ÞMðnÞXtðnþ 1Þ ð7:209Þ
The same derivation as in Section 4.16 leads to the following expression for
the output error power:

E½e2ðnþ 1Þ� � �2b 1þN

n
þ 2N

n2

� �
ð7:210Þ

where the terms N=n and 2N=n2 correspond to the linear and quadratic
terms respectively. Obviously, the speed of convergence of the nonlinear
section is limited by the speed of convergence of the linear section.

The approach can be extended to cost functions with a weighting factor.
In any case, the performance can be significantly enhanced, compared to
what the gradient technique achieves.

7.16. UNIFIED GENERAL VIEW AND CONCLUSION

The adaptive filters presented in Chapters 4, 6, and 7, in FIR or IIR direct
form, have a strong structural resemblance, illustrated in the following
coefficient updating equations:

new old input
����� coefficient =

����� coefficient

����� +

����� step
����� data

����� innovation

�����
vector vector size vector signal

To determine the terms in that equation, the adaptive filter has only the
data vector and reference signal available. All other variables, including the
coefficients, are estimated. There are two categories of estimates; those
which constitute predictions from the past, termed a priori, and those
which incorporate the new information available, termed a posteriori. The
final output of the filter is the a posteriori error signal

"ðnþ 1Þ ¼ yðnþ 1Þ �Htðnþ 1ÞXðnþ 1Þ ð7:211Þ
which can be interpreted as a measurement noise, a model error, or, in
prediction, an excitation signal.



The innovation signal iðnÞ represents the difference between the reference
yðnþ 1Þ and a priori estimates which are functions of the past coefficients
and output errors:

iðnþ 1Þ ¼ yðnþ 1Þ � F1½HtðnÞ;Htðn� 1Þ; . . .�Xðnþ 1Þ
� F2½"ðnÞ; "ðn� 1Þ; . . .� ð7:212Þ

or, in terms of variable deviations

iðnþ 1Þ ¼ �Htðnþ 1ÞXðnþ 1Þ þ�"ðnþ 1Þ ð7:213Þ
with

�Hðnþ 1Þ ¼ Hðnþ 1Þ � F1½HðnÞ;Hðn� 1Þ; . . .�
�"ðnþ 1Þ ¼ "ðnþ 1Þ � F2½"ðnÞ; "ðn� 1Þ; . . .�

The derivation of an adaptive algorithm requires the design of predictors
to generate the a priori estimates and a criterion defining how to use the
innovation iðnþ 1Þ to determine the a posteriori estimates from the a priori
ones.

When one takes

iðnþ 1Þ ¼ eðnþ 1Þ ¼ yðnþ 1Þ �HtðnÞXðnþ 1Þ ð7:214Þ
one simply assumes that the a priori estimate HðnÞ for the coefficients is the
a posteriori estimate at time n, which is valid for short-term stationary
signals, and that the a priori error signal is zero, which is reasonable since
the error signal is expected to be a zero mean white noise [14].

Minimizing the deviation between a posteriori and a priori estimates,
with the cost function

JðnÞ ¼ �HtðnÞRðnÞ�HðnÞ þ ½�"ðnÞ�2 ð7:215Þ
where RðnÞ is a symmetric positive definite weighting matrix, yields

Hðnþ 1Þ ¼ HðnÞ þ iðnþ 1Þ
1þ Xtðnþ 1ÞR�1ðnþ 1ÞXðnþ 1ÞR

�1ðnþ 1ÞXðnþ 1Þ
ð7:216Þ

The flow graph of the general direct-form adaptive filter is given in Figure
7.17. It is valid for real, complex, or M-D data. The type of algorithm
employed impacts the matrix RðnÞ, which is diagonal for the LSM algorithm
and a square symmetric matrix for the LS approaches. Only the IIR filter
discussed in Sections 4.15 and 7.12 uses an error prediction calculation to
control the stability. The coefficient prediction filter can be usd in a nonsta-
tionary environment to exploit the a priori knowledge on the nature of the
nonstationarity and perform an appropriate bandlimited extrapolation.



Finally, the transversal adaptive filters form a large, diverse, and versatile
family which can satisfy the requirements of applications in many technical
fields. Their complexity can be tailored to the resources of the users, and
their performances assessed accordingly. It is particularly remarkable to
observe how flexible the FLS algorithms are, since they can provide exact
solutions for different kinds of signals, observation conditions, and struc-
tures. A further illustration is given in the next chapter.

EXERCISES

1. Use the approach in Section 7.1 to derive an algorithm based on all
prediction errors as in Section 6.5, with nonzero initial input data
vector. What is the additional computation load?

2. Taking

eðnþ 1Þ ¼ yðnþ 1Þ �HtðnÞXðnþ 1Þ
instead of (7.41) as the definition for the output error signal, give the
computational organization of an alternative FLS algorithm for com-
plex signals. Show that only forward prediction equations are modified
by complex conjugation operations. Compare with the equations given
in Section 7.3.

3. Give the detailed computational organization of an FLS algorithm for
2-D input signals, the coefficient vectors H1ðnÞ and H2ðnÞ having
N1 ¼ N2 ¼ 4 elements. Count the memories needed. Modify the algo-
rithm to achieve the minimum number of operations when N1 ¼ 4 and

FIG. 7.17 General direct-form adaptive filter.



N2 ¼ 2. What reduction in number of multiplications and memories is
obtained?

4. Extend the algorithm given in Section 7.4 for M-D input signals to the
case of a sliding window. Estimate the additional computation load.

5. At the input of an adaptive filter with order N ¼ 4, the signal is
sampled at 4 kHz. The observed reference signal is available at the
sampling frequency 1 kHz. Give the FLS algorithm for this multirate
filter. Compare the complexities of the multirate algorithm and the
standard algorithm which corresponds to a 4-kHz reference signal
sampling rate. Compare also the performance of the two algorithms;
what is the penalty in adaptation speed brought by undersampling the
reference?

6. Use the technique described in Section 7.7 for pole-zero modeling to
design an LS FIR/IIR predictor. Compare the 2-D and 3-D
approaches in terms of computational complexity.

7. Consider the FDAF in Figure 7.10. The orthogonal transform of order
N is the DCT which produces real outputs; describe the corresponding
FLS algorithms. Compare the multiplication speed obtained with that
of a direct FLS algorithm of order N. Compare also the performance
of the two approaches.

ANNEX 7.1 FLS ALGORITHM WITH SLIDING
WINDOW

C
SUBROUTINE FLSSW(N,N0,X,A,EAB,EA,G,GO,IND)

C
C COMPUTES THE ADAPTATION GAIN (F.L.S. with SLIDING

WINDOW)
C N = FILTER ORDER
C NO = WINDOW LENGTH
C X = INPUT SIGNAL : x(n+1)
C VXO = DATA VECTOR : N+NO ELEMENTS
C A = FORWARD PREDICTION COEFFICIENTS
C B = BACKWARD PREDICTION COEFFICIENTS
C EA = PREDICTION ERROR ENERGY
C G = ADAPTATION GAIN
C GO = BACKWARD ADAPTATION GAIN

C IND = TIME INDEX
C

DIMENSION VXO(500),A(15),B(15),G(15),G1(16),
GO(15),GO1(16) IF(IND.GT.1)GOTO30



C
C INITIALIZATION
C

DO20I=1,15
A(I)=0.
B(I)=0.
G(I)=0.
GO(I)=0.

20 CONTINUE
DO21I=1,500
VXO(I)=0.

21 CONTINUE
EA=0.1

30 CONTINUE
C
C ADAPTATION GAIN CALCULATION
C

EAV=X
EPSA=X
EAVO=VXO(NO)
EPSAO=VXO(NO)
DO40I=1,N
EAV=EAV-A(I)*VXO(I)

40 EAVO=EAVO-A(I)*VXO(NO+I)
DO50I=1,N
A(I)=A(I)+G(I)*EAV-GO(I)*EAVO
EPSA=EPSA-A(I)*VXO(I)
EPSAO=EPSAO-A(I)*VXO(NO+I)

50 CONTINUE
EA=EA+EAV*EPSA-EAVO*EPSAO
G1(1)=EPSA/EA
GO1(1)=EPSAO/EA
DO60I=1,N
G1(I+1)=G(I)-A(I)*G1(1)
GO1(I+1)=GO(I)-A(I)*GO1(1)

60 CONTINUE
EAB=VXO(N)
EABO=VXO(N+NO)
DO70I=2,NO+N
J=NO+N+1-I

70 VXO(J+1)=VXO(J)
VXO(1)=X
DO80I=1,N
EAB=EAB-B(I)*VXO(I)
EABO=EABO-B(I)*VXO(I+NO)



80 CONTINUE
GG1=G1(N+1)/(1.+GO1(N+1)*EABO)
GGO=GO1(N+1)/(1.-G1(N+1)*EAB)
DO90I=1,N
G(I)=G1(I)+GG1*(B(I)-EABO*GO1(I))
G(I)=G(I)/(1.-GG1*EAB)
GO(I)=GO1(I)+GGO*(B(I)+EAB*G1(I))
GO(I)=GO(I)/(1.+GGO*EABO)

90 CONTINUE
DO100I=1,N

100 B(I)=B(I)+G(I)*EAB-GO(I)*EABO
RETURN
END

ANNEX 7.2 FLS ALGORITHM FOR FORWARD–
BACKWARD LINEAR PREDICTION

C
SUBROUTINE FLSFB(N,X,B,EE,U,W,IND)

C
C COMPUTES THE ADAPTATION GAINS FOR COMBINED

FORWARD-BACKWARD
C PREDICTION USING A FAST LEAST SQUARES ALGORITHM
C N = FILTER ORDER
C X = INPUT SIGNAL : x(n+1)
C VX = DATA VECTOR : X(n) ; N elements
C B = COEFFICIENT VECTOR ; N elements
C G1 = FORWARD GAIN VECTOR
C G2 = BACKWARD GAIN VECTOR
C U = SYMMETRIC GAIN VECTOR
C W = WEIGHTING FACTOR
C IND = TIME INDEX
C

DIMENSION VX(15),B(15),G1(15),G2(15),U(15),
U1(16) IF(IND.GT.1)GOTO30

C
C INITIALIZATION
C

DO20I=1,N
B(I)=0.
G1(I)=0.
G2(I)=0.
VX(I)=0.

20 CONTINUE
EPSU=0.



EE=0.1
30 CONTINUE

C
C ADAPTATION GAIN CALCULATION
C

DO40I=1,N
40 U(I)=G2(I)-G1(I)*EPSU

EPSG=0.
EPSGG=W*W
DO50I=1,N
EPSGG=EPSGG+VX(I)*U(I)

50 EPSG=EPSG+VX(I)*U(N+1-I)
EPSG1=EPSG
EPSG=EPSG/EPSGG
DO60I=1,N

60 G1(I)=(U(N+1-I)-EPSG*U(I))/W
EAV=0.
DO70I=1,N

70 EAV=EAV+B(N+1-I)*VX(I)
EAV=X-EAV*W
U1(1)=EAV/EE
DO80I=1,N

80 U1(N+2-I)=G1(I)-U1(1)*B(I)
DO90I=1,N

90 G2(I)=U1(I)+U1(N+1)*B(I)
ALF1=(EPSGG-EPSG*EPSG1)/(W*W)
EAB=VX(N)*W
DO100I=1,N-1

100 VX(N+1-I)=VX(N-I)*W
VX(1)=X
ALF2=0.
DO105I=1,N

105 ALF2=ALF2+VX(I)*G2(I)
ALF2=1.+ALF2/(W*W)
DO110I=1,N

110 EAB=EAB-B(I)*VX(I)
ALF12=0.
DO120I=1,N

120 ALF12=ALF12+VX(I)*G1(I)
ALF12=ALF12/(W*W)
EPSU=ALF12/ALF1
ALFF=ALF1*ALF2-ALF12*ALF12
EPSA=(ALF2*EAV-ALF12*EAB)/ALFF
EPSB=(ALF1*EAB-ALF12*EAV)/ALFF
EE=W*W*EE+EPSA*EAV+EPSB*EAB



DO130I=1,N
130 B(I)=B(I)+(G1(I)*EPSA+G2(I)*EPSB)/(W*W)

RETURN
END

C
C

ANNEX 7.3 FLS ALGORITHM WITH
MULTIDIMENSIONAL INPUT SIGNAL

SUBROUTINE FLS1MD(K,N,EAINV,UA,UB,VU,VU1,
A,G,B,W)

C
C COMPUTES THE ADAPTATION GAIN FOR MULTIDIMENSIONAL

INPUT SIGNAL
C
C K = NUMBER OF INPUT SIGNALS (FILTER DIMENSION)
C N = NUMBER OF COEFFICIENTS IN EVERY CHANNEL
C UA = INPUT VECTOR AT TIME (n+1)
C UB = INPUT VECTOR AT TIME (n+1-N)
C VU = KN ELEMENT DATA VECTOR AT TIME (n)
C VU1 = KN ELEMENT DATA VECTOR AT TIME (n+1)
C A = FORWARD LINEAR PREDICTION (KNxK) MATRIX
C B = BACKWARD LINEAR PREDICTION (KNxK) MATRIX
C G = ADAPTATION GAIN VECTOR
C EAINV = PREDICTION ERROR ENERGY INVERSE (KxK) MATRIX
C W = WEIGHTING FACTOR
C

DIMENSION UA(1),UB(1),VU(1),VU1(1),G(1)
DIMENSION A(20,10),B(20,10),EAINV(10,10)
DIMENSION SM(10),RM(20),EKA(10),EKB(10),
AUX(10,10)
DIMENSION EPKA(10),P1(10,10),P2(10),P3(10,10),
P5(10,10)
KN=K*N

C
C FORWARD LINEAR PREDICTION ERROR :
C

DO 1 I=1,K
PR=0.
P2(I)=0.
DO 2 J=1,KN
PR=PR+A(J,I)*VU(J)

2 CONTINUE
EKA(I)=UA(I)-PR



1 CONTINUE
C
C FORWARD PREDICTON MATRIX :
C

DO 3 I=1,KN
DO 4 J=1,K
A(I,J)=A(I,J)+G(I)*EKA(J)

4 CONTINUE
3 CONTINUE

C
C A POSTERIORI PREDICTION ERROR :
C

DO 5 I=1,K
PR=0.
DO 6 J=1,KN
PR=PR+A(J,I)*VU(J)

6 CONTINUE
EPKA(I)=UA(I)-PR

5 CONTINUE
C
C UPDATING OF ERROR ENERGY INVERSE MATRIX :
C

P4=0.
DO 7 J=1,K
DO 8 I=1,K
P1(J,I)=EKA(J)*EPKA(I)
P2(J)=P2(J)+EPKA(I)*EAINV(I,J)
P3(I,J)=0.
P5(I,J)=0.

8 CONTINUE
7 CONTINUE

DO 21 I=1,K
DO 22 J=1,K
DO 23 L=1,K
P3(I,J)=P3(I,J)+EAINV(I,L)*P1(L,J)

23 CONTINUE
22 CONTINUE

P4=P4+P2(I)*EKA(I)
21 CONTINUE

P4=P4+W
DO 24 I=1,K
DO 25 J=1,K
DO 26 L=1,K
P5(I,J)=P5(I,J)+P3(I,L)*EAINV(L,J)

26 CONTINUE



P5(I,J)=P5(I,J)/P4
25 CONTINUE
24 CONTINUE

DO 27 I=1,K
DO 28 J=1,K
EAINV(I,J)=(EAINV(I,J)-P5(I,J))/W
AUX(I,J)=EAINV(I,J)

28 CONTINUE
27 CONTINUE

C
C EAINV IS IN AUX FOR SUBSEQUENT CALCULATIONS
C KN+K ELEMENT ADAPTATION GAIN (VECTORS RM AND SM) :
C

DO 9 I=1,K
EX=0.
DO 10 J=1,K
EX=EX+AUX(I,J)*EPKA(J)

10 CONTINUE
AUX(I,1)=EX

9 CONTINUE
DO 11 I=K+1,KN+K
EX=0.
DO 12 J=1,K
EX=EX-A(I-K,J)*AUX(J,1)

12 CONTINUE
AUX(I,1)=EX+G(I-K)

11 CONTINUE
DO 13 I=1,KN
RM(I)=AUX(I,1)
IF(I.LE.K) SM(I)=AUX(KN+I,1)

13 CONTINUE
C
C BACKWARD PREDICTION ERROR :
C

DO 14 I=1,K
PR=0.
DO 15 J=1,KN
PR=PR+B(J,I)*VU1(J)

15 CONTINUE
EKB(I)=UB(I)-PR

14 CONTINUE
C
C KN ELEMENT ADAPTATION GAIN :
C

EX=0.



DO 16 I=1,K
EX=EX+EKB(I)*SM(I)

16 CONTINUE
EX=1./(1.-EX)
DO 17 I=1,KN
PR=0.
DO 18 J=1,K
PR=PR+B(I,J)*SM(J)

18 CONTINUE
G(I)=EX*(RM(I)+PR)

17 CONTINUE
C
C BACKWARD PREDICTION (KNxK) MATRIX :
C

DO 19 I=1,KN
DO 20 J=1,K
B(I,J)=B(I,J)+G(I)*EKB(J)

20 CONTINUE
19 CONTINUE

RETURN
END
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8
Lattice Algorithms and
Geometrical Approach

Although FLS algorithms for transversal adaptive sructures are essentially
based on time recursions, the algorithms for lattice structures make a joint
use of time and order recurrence relationships. For a fixed filter order value
N, they require more operations than their transversal counterparts.
However, they provide adaptive filters of all the intermediate orders from
1 to N, which is an attractive feature in those applications where the order is
not known beforehand and several different values have to be tried [1–3].

The order recurrence relationships introduced in Section 5.6 can be
extended to real-time estimates.

8.1. ORDER RECURRENCE RELATIONS FOR
PREDICTION COEFFICIENTS

Let ANðnÞ, BNðnÞ, EaNðnÞ, EbNðnÞ and GNðnÞ denote the input signal predic-
tion coefficient vectors, the error energies, and the adaptation gain at time n
for filter order N. The forward linear prediction matrix equation for order
N � 1 is

RNðnÞ 1
�AN�1ðnÞ

� 	
¼ EaðN�1ÞðnÞ

0

� 	
ð8:1Þ

Similarly, the backward prediction equation is

RNðnÞ �BN�1ðnÞ
1

� 	
¼ 0

EbðN�1ÞðnÞ
� 	

ð8:2Þ

Now, partitioning equation (6.61) in Chapter 6 for RNþ1ðnÞ yields



RNðnÞ rbNðnÞ

½rbNðnÞ�t R1ðn�NÞ

2
4

3
5

1
�AN�1ðnÞ

0

2
664

3
775 ¼

EaðN�1ÞðnÞ
0

KNðnÞ

2
664

3
775 ð8:3Þ

where the variable KNðnÞ, corresponding to the last row, is

KNðnÞ ¼
Xn
p¼1

Wn�pxðpÞxðp�NÞ � At
N�1ðnÞRN�1ðn� 1ÞBN�1ðn� 1Þ ð8:4Þ

In (8.4), forward and backward prediction coefficients appear in a balanced
manner. Therefore the same variable KNðnÞ appears in the backward pre-
diction matrix equation as well:

R1ðnÞ ½raNðnÞ�t

raNðnÞ RNðn� 1Þ

2
4

3
5 0

�BN�1ðn� 1Þ
1

2
664

3
775 ¼

KNðnÞ

0
EbðN�1Þðn� 1Þ

2
664

3
775 ð8:5Þ

as can be readily verified by analyzing the first row. Multiplying both sides
by the scalar KNðnÞ=EbðN�1Þðn� 1Þ gives

RNþ1ðnÞ
0

�BN�1ðn� 1Þ
1

� 	
KNðnÞ

EbðN�1Þðn� 1Þ

2
64

3
75 ¼

K2
NðnÞ

EbðN�1Þðn� 1Þ
0

KNðnÞ

2
664

3
775 ð8:6Þ

Now, subtracting equation (8.6) from equation (8.3) and identifying with
the forward prediction matrix equation (8.1) for order N, we botain the
following recursion for the forward prediction coefficient vectors:

ANðnÞ ¼ AN�1ðnÞ
0

� 	
� KNðnÞ
EbðN�1Þðn� 1Þ

BN�1ðn� 1Þ
�1

� 	
ð8:7Þ

The first row yields a recursion for the forward prediction error energies:

EaNðnÞ ¼ EaðN�1ÞðnÞ �
K2

NðnÞ
EbðN�1Þðn� 1Þ ð8:8Þ

The same method can be applied to backward prediction equations. Matrix
equation (8.3) can be rewritten as

RNþ1ðnÞ
1

�AN�1ðnÞ
� 	

KNðnÞ
EaðN�1ÞðnÞ

0

2
4

3
5 ¼

KNðnÞ
0

K2
NðnÞ

EaðN�1ÞðnÞ

2
664

3
775 ð8:9Þ

......................... ............ .............

....................... .................. ..................



Subtracting equation (8.9) from equation (8.5) and identifying with the
backward prediction matrix equation (8.2) for order N lead to recurrence
relations for the backward prediction coefficients vectors

BNðnÞ ¼ 0
BN�1ðn� 1Þ

� 	
� KNðnÞ
EaðN�1ÞðnÞ

�1
AN�1ðnÞ

� 	
ð8:10Þ

and for the backward prediction error energy

EbNðnÞ ¼ EbðN�1Þðn� 1Þ � K2
NðnÞ

EaðN�1ÞðnÞ
ð8:11Þ

The definitions of the backward prediction a priori error

eaNðnþ 1Þ ¼ xðnþ 1Þ � At
NðnÞXðnÞ

and backward prediction error

ebNðnþ 1Þ ¼ xðnþ 1�NÞ � Bt
NðnÞXðnþ 1Þ

in connection with recursions (8.7) and (8.10), lead to the lattice predictor
structure, which relates errors for orders N and N � 1:

eaNðnþ 1Þ ¼ eaðN�1Þðnþ 1Þ � KNðnÞ
EbðN�1Þðn� 1Þ ebðN�1ÞðnÞ ð8:12Þ

and

ebNðnþ 1Þ ¼ ebðN�1ÞðnÞ �
KNðnÞ

EaðN�1ÞðnÞ
eaðN�1Þðnþ 1Þ ð8:13Þ

Similarly, for a posteriori errors,

"aNðnþ 1Þ ¼ xðnþ 1Þ � At
Nðnþ 1ÞXðnÞ

and

"bNðnþ 1Þ ¼ xðnþ 1�NÞ � Bt
Nðnþ 1ÞXðnþ 1Þ

The lattice structure operations are

"aNðnþ 1Þ ¼ "aðN�1Þðnþ 1Þ � kbNðnþ 1Þ"bðN�1ÞðnÞ ð8:14aÞ

"bNðnþ 1Þ ¼ "bðN�1ÞðnÞ � kaNðnþ 1Þ"aðN�1Þðnþ 1Þ ð8:14bÞ
where

kaNðnþ 1Þ ¼ KNðnþ 1Þ
EaðN�1Þðnþ 1Þ ; kbNðnþ 1Þ ¼ KNðnþ 1Þ

EbðN�1ÞðnÞ
ð8:15Þ

are the estimates of the PARCOR or reflection coefficients introduced in
Section 5.5.



The flow diagram of the corresponding lattice filter section is shown in
Figure 8.1. The same structure can be used for a priori and a posteriori
errors. A prediction error filter of order N is obtained by cascading N such
sections.

Similar order recursions can be derived for the coefficients of adaptive
filters, the adaptation gain, and the ratio of a posteriori to a priori errors.

8.2. ORDER RECURRENCE RELATIONS FOR THE
FILTER COEFFICIENTS

An adaptive filter with N coefficients produces an output error signal eNðnÞ:

eNðnþ 1Þ ¼ yðnþ 1Þ �Ht
NðnÞXðnþ 1Þ ð8:16Þ

The coefficient vector HNðnÞ, which minimizes the error energy at time n, is
obtained by

HNðnÞ ¼ R�1N ðnÞryxNðnÞ ð8:17Þ

with

ryxNðnÞ ¼
Xn
p¼1

Wn�pyðpÞXNðpÞ

For a filter with N þ 1 coefficients, the equations are

eNþ1ðnþ 1Þ ¼ yðnþ 1Þ �Ht
Nþ1ðnÞXNþ1ðnþ 1Þ ð8:18aÞ

FIG. 8.1 Adaptive lattice prediction error filter section.



RNþ1ðnÞHNþ1ðnÞ ¼
ryxNðnÞPn

p¼1
Wn�pyðpÞxðp�NÞ

2
4

3
5 ð8:18bÞ

The coefficient vector HNþ1ðnÞ can be obtained from HNðnÞ with the help of
the partitioning (6.61) of Chapter 6 of the input signal AC matrix. As in the
preceding section, consider the equation

RNþ1ðnÞ
HNðnÞ

0

� 	
¼ RNðnÞ rbNðnÞ
½rbNðnÞ�t R1ðn�NÞ

" #
HNðnÞ

0

� 	

¼ ryxNðnÞ
½rbNðnÞ�tHNðnÞ

" # ð8:19Þ

The last row can also be written as

½rbNðnÞ�tHNðnÞ ¼ Bt
NðnÞRNðnÞHNðnÞ ¼ Bt

NðnÞryxNðnÞ ð8:20Þ
Subtracting equation (8.19) from (8.18a) yields

RNþ1ðnÞ HNþ1ðnÞ � HNðnÞ
0

� 	� 	
¼ 0

KfNðnÞ
� 	

ð8:21Þ

where

KfNðnÞ ¼
Xn
p¼1

Wn�pyðpÞ½xðp�NÞ � Bt
NðnÞXðpÞ� ð8:22Þ

Now, identifying equation (8.21) with the backward linear prediction matrix
equation leads to the following recurrence equation for the filter coefficients:

HNþ1ðnÞ ¼ HNðnÞ
0

� 	
� KfNðnÞ
EbNðnÞ

BNðnÞ
�1

� 	
ð8:23Þ

Substituting (8.23) into definition (8.17a) yields the relation for a priori
output errors

eNþ1ðnþ 1Þ ¼ eNðnþ 1Þ � KfNðnÞ
EbNðnÞ

ebNðnþ 1Þ ð8:24Þ

The corresponding equation for a posteriori errors is

"Nþ1ðnþ 1Þ ¼ "Nðnþ 1Þ � KfNðnþ 1Þ
EbNðnþ 1Þ "bNðnþ 1Þ ð8:25Þ

Altogether, equations (8.12), (8.13), and (8.24) constitute the set of a
priori equations for the lattice filter, while equations (8.14a,b) and (8.25)
give the a posteriori version.



The error energy can also be computed recursively. According to the
definition of the filter error output, we have

ENþ1ðnÞ ¼
Xn
p¼1

Wn�py2ðpÞ �Ht
Nþ1ðnÞRNþ1ðnÞHNþ1ðnÞ ð8:26Þ

Substituting recurrence relation (8.23) into (8.26) and using the backward
prediction matrix equation, we obtain the order recursion

ENþ1ðnÞ ¼ ENðnÞ �
K2

fNðnÞ
EbNðnÞ

ð8:27Þ

Obviously ENþ1ðnÞ 4 ENðnÞ, and the error power decreases as the filter
order increases, which is a logical result.

Recall from Section 6.4 that the adaptation gain can be computed in a
similar way. The derivation is repeated here for convenience. From the
definition relation

RNðnÞGNðnÞ ¼ XNðnÞ ð8:28Þ
we have

RNðnÞ
GN�1ðnÞ

0

� 	
¼ RN�1ðnÞ rbN�1ðnÞ
½rbN�1ðnÞ�t R1ðnþ 1�NÞ

" #
GN�1ðnÞ

0

� 	

¼ XN�1ðnÞ
½rbN�1ðnÞ�tGN�1ðnÞ

� 	 ð8:29Þ

The last row can be expressed by

½rbN�1ðnÞ�tGN�1ðnÞ ¼ Bt
N�1ðnÞXN�1ðnÞ ¼ xðnþ 1�NÞ � "bðN�1ÞðnÞ ð8:30Þ

and equation (8.29) can be rewritten as

GN�1ðnÞ
0

� 	
¼ GNðnÞ � R�1N ðnÞ 0

"bðN�1ÞðnÞ
� 	

ð8:31Þ

But the last row of the inverse AC matrix is proportional to the backward
prediction coefficient vector; hence

GNðnÞ ¼ GN�1ðnÞ
0

� 	
þ "bðN�1ÞðnÞ
EbðN�1ÞðnÞ

�BN�1ðnÞ
1

� 	
ð8:32Þ

This is equation (6.75) in Section 6.4. Recall that the other partitioning of
RNðnÞ and the use of forward variables led to equation (6.73) in Chapter 6,
which is a mixture of time and order recursions.

This expression is useful to recursively compute the ratio ’NðnÞ of a
posteriori to a priori errors, defined by



’NðnÞ ¼
"NðnÞ
eNðnÞ

¼ 1� Xt
NðnÞR�1N ðnÞXNðnÞ ¼ 1� Xt

NðnÞGNðnÞ

Direct substitution yields

’NðnÞ ¼ ’N�1ðnÞ �
"2bðN�1ÞðnÞ
EbðN�1ÞðnÞ

ð8:33Þ

The initial stage N ¼ 1 is worth considering:

’1ðnÞ ¼ ’0ðnÞ �
"2b0ðnÞ
Eb0ðnÞ

¼ 1� x2ðnÞPn
p¼1

Wn�px2ðpÞ

Thus, in order to compute ’NðnÞ recursively, it is sufficient to take ’0ðnÞ ¼ 1
and repeatedly use equation (8.33).

We reemphasize that ’NðnÞ is a crucial variable in FLS algorithms. It is of
particular importance in lattice algorithms because it forms an essential link
between order and time recursions.

8.3. TIME RECURRENCE RELATIONS

For a fixed filter order N, the lattice variable KNðnÞ can be computed recur-
sively in time. According to definition (8.4), we have

KNþ1ðnþ 1Þ ¼W
Xn
p¼1

Wn�pxðpÞxðp�N � 1Þ þ xðnþ 1Þxðn�NÞ

� At
Nðnþ 1ÞRNðnÞBNðnÞ

ð8:34Þ

Now, from the time recurrence relations (6.45), (6.26), and (6.53) in Chapter
6 for ANðnþ 1Þ, RNðnÞ, and BNðnÞ, respectively, the following updating
relation is obtained after some algebraic manipulations:

KNþ1ðnþ 1Þ ¼WKNþ1ðnÞ þ eaNðnþ 1Þ"bNðnÞ ð8:35Þ
Due to relations (6.49) and (6.56) of Chapter 6 between a priori and a
posteriori errors, an alternative updating equation is

KNþ1ðnþ 1Þ ¼WKNþ1ðnÞ þ "aNðnþ 1ÞebNðnÞ ð8:36Þ
Clearly, the variable KNþ1ðnÞ represents an estimation of the cross-corre-

lation between forward and backward order N prediction errors. Indeed,
equation (8.35) is similar to the prediction error energy updating relations
(6.58) and (6.59) derived and used in Chapter 6.

A similar relation can be derived for the filter output error energy ENðnÞ.
Equation (8.26) for order N and time nþ 1 corresponds to



ENðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�py2ðpÞ �Ht
Nðnþ 1ÞRNðnþ 1ÞHNðnþ 1Þ ð8:37Þ

Substituting the coefficient updating relation

HNðnþ 1Þ ¼ HNðnÞ þ GNðnþ 1ÞeNðnþ 1Þ ð8:38Þ
into (8.37), again yields after simplification

ENðnþ 1Þ ¼WENðnÞ þ eNðnþ 1Þ"Nðnþ 1Þ ð8:39Þ
For the filter section variable KfNðnþ 1Þ, definition (8.22) can be rewritten as

KfNðnþ 1Þ ¼
Xnþ1
p¼1

Wnþ1�pyðpÞxðp�NÞ

� ½Bt
NðnÞ þ Gt

Nðnþ 1ÞebNðnþ 1Þ�
� ½WryxNðnÞ þ yðnþ 1ÞXNðnþ 1Þ�

ð8:40Þ

which, after simplification, leads to

KfNðnþ 1Þ ¼WKfNðnÞ þ "bNðnþ 1ÞeNðnþ 1Þ ð8:41Þ
Note that the variable KfNðnþ 1Þ, which according to definition (8.22) is

an estimate of the cross-correlation between the reference signal and the
backward prediction error, can be calculated as an estimate of the cross-
correlation between the filter output error and the backward prediction
error. This is due to the property of noncorrelation between the prediction
errors and the data vector.

The recurrence relations derived so far can be used to build FLS algo-
rithms for filters in lattice structures.

8.4. FLS ALGORITHMS FOR LATTICE STRUCTURES

The algorithms combine time and order recurrence relations to compute, for
each set of new values of input and reference signals which become avail-
able, the lattice coefficients, the prediction and filter errors, their energies,
and their cross-correlations. For a filter of order N, the operations are
divided into prediction and filter operations.

To begin with, let us consider the initialization procedure. Since there are
two types of recursions, two types of initializations have to be distinguished.
The initializations for the order recursions are obtained in a straightforward
manner: the prediction errors are initialized by the new input signal sample,
the prediction error energies are set equal to the input signal power, and the
variable ’0ðnÞ is set to 1.



For time recursions, an approach to initialize the state variables of the
order N lattice filter can be obtained as an extension of that given in Section
6.7. The input signal for n 4 0 is assumed to consist of a single pulse at time
�N, which leads to

eaið0Þ ¼ ebið0Þ ¼ "aið0Þ ¼ "bið0Þ ¼ 0; 0 4 i 4 N � 1

Eaið0Þ ¼WNE0; 0 4 i 4 N � 1

Ebið0Þ ¼WN�iE0; 0 4 i 4 N � 1

Kið0Þ ¼ 0; 1 4 i 4 N

ð8:42Þ

where E0 is a real positive scalar. It can be verified that the prediction order
recursions, and particularly energy relations (8.8) and (8.11), are satisfied for
n ¼ 0. Indeed, in these conditions, the impact of the choice of the initial
error energy value E0 on the filter performance is the same as for the trans-
versal structure, and the relevant results given in Chapter 6 are still valid.

Many more or less different algorithms can be worked out from the basic
time and order recursions, depending on the selection of internal variables
and on whether the emphasis is on a priori or a posteriori error calculations
and on time or order recurrence relations.

There are general rules to design efficient and robust algorithms, some of
which can be stated as follows:

Minimize the number of state variables.
Give precedence to time recurrence whenever possible.
Make sure that reliable control variables are available to check the proper

functioning of the adaptive filter.

Accordingly, the lattice algorithm given below avoids using the cross-
correlation variable KiðnÞ and is based on a direct time updating of the
reflection coefficients [4].

Substituting the time recursion (8.36) and the error energy updating
equation into definition (8.15) gives

½Eaiðnþ 1Þ � eaiðnþ 1Þ"aiðnþ 1Þ�kaðiþ1ÞðnÞ ¼ Kiþ1ðnþ 1Þ � "aiðnþ 1ÞebiðnÞ
ð8:43Þ

Hence, using again (8.15) at time nþ 1 gives

kaðiþ1Þðnþ 1Þ � kaðiþ1ÞðnÞ þ
"aiðnþ 1Þ
Eaiðnþ 1Þ ½ebiðnÞ � kaðiþ1ÞðnÞeaiðnþ 1Þ� ð8:44Þ

Now, the time recursion (8.13) yields

kaðiþ1Þðnþ 1Þ ¼ kaðiþ1ÞðnÞ þ
"aiðnþ 1Þebðiþ1Þðnþ 1Þ

Eaiðnþ 1Þ ð8:45Þ



which provides a time updating for the reflection coefficients involving only
error variables.

The same procedure, using time recursions (8.35) and (8.12), leads to the
time updating equation for the other reflection coefficients in the prediction
section:

kbðiþ1Þðnþ 1Þ ¼ kbðiþ1ÞðnÞ þ
"biðnÞeaðiþ1Þðnþ 1Þ

EbiðnÞ
ð8:46Þ

For the filter section, let

kfNðnÞ ¼
KfNðnÞ
EbNðnÞ

ð8:47Þ

The same procedure again, using time recursion (8.21) and the filter error
energy updating relation, yields

kfiðnþ 1Þ ¼ kfiðnÞ þ
"biðnþ 1Þeiþ1ðnþ 1Þ

Ebiðnþ 1Þ ð8:48Þ

The computational organization of the lattice adaptive filter based on a
priori errors is given in Figure 8.2. The initial conditions are

ebið0Þ ¼ kaið0Þ ¼ kbið0Þ ¼ kfið0Þ ¼ 0; 0 4 i 4 N � 1

’ið0Þ ¼ 1; Eaið0Þ ¼WNE0; Ebið0Þ ¼WN�iE0; 0 4 i 4 N � 1

ð8:49Þ
and the FORTRAN program is given in Annex 8.1.

A lattice algorithm based on a posteriori errors can be derived in a similar
manner.

The computational complexity of the algorithm in Figure 8.2 amounts to
16N þ 2 multiplications and 3N divisions in the form of inverse calcula-
tions. About 7N memories are required.

The block diagram of the adaptive filter is shown in Figure 8.3. The filter
section is sometimes called the ladder section, and the complete system is
called a lattice-ladder adaptive filter.

Since it has been shown in Section 5.3 that the backward prediction
errors are uncorrelated, the filter can be viewed as a decorrelation processor
followed by a set of N first-order separate adaptive filters.

In the presence of stationary signals, the two sets of lattice coefficients,
like the forward and backward prediction coefficients, take on similar values
in the steady state. Algorithms which use only one set of coefficients, and
thus are potentially simpler, can be obtained with normalized variables [5].



8.5. NORMALIZED LATTICE ALGORITHMS

The variable KiðnÞ defined by equation (8.4) and updated by (8.35) corre-
sponds to a cross-correlation calculation. A true cross-correlation coeffi-
cient, with magnitude range ½�1; 1�, is obtained by scaling that variable
with the energies of the error signals, which leads to the normalized variable,
kiðnÞ, defined by

kiþ1ðnÞ ¼
Kiþ1ðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EaiðnÞEbiðn� 1Þp ð8:50Þ

A time recurrence relation can be derived, using (8.36) to get

FIG. 8.2 Computational organization of a lattice adaptive filter.



kiþ1ðnþ 1Þ ¼ ½Eaiðnþ 1Þ��1=2½WKiþ1ðnÞ þ eaiðnþ 1Þ"biðnÞ�½EbiðnÞ��1=2
ð8:51Þ

In order to make kiþ1ðnÞ appear in (8.51), we have to consider the ratios of
the error energies. The time updating equations can be rewritten as

W
EaiðnÞ

Eaiðnþ 1Þ ¼ 1� e2aiðnþ 1Þ
Eaiðnþ 1Þ ’iðnÞ ð8:52Þ

and

W
Ebiðn� 1Þ
EbiðnÞ

¼ 1� "
2
biðnÞ

EbiðnÞ
1

’iðnÞ
ð8:53Þ

If the normalized forward prediction error is defined by

enaiðnþ 1Þ ¼ eaiðnþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’iðnÞ

Eaiðnþ 1Þ

s
¼ "aiðnþ 1Þ½’iðnÞEaiðnþ 1Þ��1=2

ð8:54Þ
and the normalized backward prediction error by

enbiðnÞ ¼ "biðnÞ½’iðnÞEbiðnÞ��1=2 ð8:55Þ
then, the recurrence equation (8.51) becomes

kiþ1ðnþ 1Þ ¼ kiþ1ðnÞ½ð1� e2naiðnþ 1ÞÞð1� e2nbiðnÞÞ�1=2 þ enaiðnþ 1ÞenbiðnÞ
ð8:56Þ

FIG. 8.3 The lattice adaptive filter.



Clearly, with the above definitions, the normalized error variables are
intermediates between a priori and a posteriori errors.

To obtain an algorithm, we must derive recursions for the normalized
prediction errors. The order recursion (8.14a) for forward a posteriori errors
can be rewritten as

’iþ1ðnÞeaðiþ1Þðnþ 1Þ ¼ ’iðnÞeaiðnþ 1Þ � Kiþ1ðnþ 1Þ
EbiðnÞ

"biðnÞ ð8:57Þ

Substitution of the normalized errors in that expression leads to

enaðiþ1Þðnþ 1Þ ¼ Eaiðnþ 1Þ
Eaðiþ1Þðnþ 1Þ
� 	1=2 ’iðnÞ

’iþ1ðnÞ
� 	1=2

enaiðnþ 1Þ ð8:58Þ

The normalized variables can be introduced into the order recursions (8.8)
and (8.33) to yield

Eaðiþ1Þðnþ 1Þ ¼ Eaiðnþ 1Þ½1� k2iþ1ðnþ 1Þ� ð8:59Þ
and

’iþ1ðnÞ ¼ ’iðnÞ½1� e2nbiðnÞ� ð8:60Þ
Substituting into (8.58) leads to the final form of the time recurrence relation
for the normalized forward prediction error:

enaðiþ1Þðnþ 1Þ ¼ ½1� k2iþ1ðnþ 1Þ��1=2½1� e2nbiðnÞ��1=2
� ðenaiðnþ 1Þ � kiþ1ðnþ 1ÞenbiðnÞÞ

ð8:61Þ

The same method can be applied to backward prediction errors. Order
recursion (8.14b) is expressed in terms of normalized variables by

enbðiþ1Þðnþ 1Þ ¼ EbiðnÞ
Ebðiþ1Þðnþ 1Þ
� 	1=2 ’iðnÞ

’iþ1ðnþ 1Þ
� 	1=2

� ðenbiðnÞ � kiþ1ðnþ 1Þenaiðnþ 1ÞÞ
ð8:62Þ

Equation (8.11) for the energy can be written

Ebðiþ1Þðnþ 1Þ ¼ EbiðnÞ½1� k2iþ1ðnþ 1Þ� ð8:63Þ
An equation relating ’iþ1ðnþ 1Þ and ’iðnÞ can be obtained with the help of
adaptation gain recurrence relation (6.73) in Chapter 6, which yields

’iþ1ðnþ 1Þ ¼ ’iðnÞ �
"2aiðnþ 1Þ
Eaiðnþ 1Þ ð8:64Þ

and thus

’iþ1ðnþ 1Þ ¼ ’iðnÞ½1� e2naiðnþ 1Þ� ð8:65Þ



Hence the final form of the time recurrence relation for the normalized
backward prediction error is

enbðiþ1Þðnþ 1Þ ¼ ½1� k2iþ1ðnþ 1Þ��1=2½1� e2naiðnþ 1Þ��1=2
� ðenbiðnÞ � kiþ1ðnþ 1Þenaiðnþ 1ÞÞ ð8:66Þ

Finally equations (8.56), (8.61), and (8.66) make an algorithm for the nor-
malized lattice adaptive predictor.

Normalized variables can be introduced as well in the filter section. The
normalized filter output errors are defined by

eniðnÞ ¼ eiðnÞ
’iðnÞ
EiðnÞ
� 	1=2

¼ "iðnÞ½’ÞiðnÞEiðnÞ��1=2 ð8:67Þ

Then order recursion (8.25) yields

enðiþ1ÞðnÞ ¼
EiðnÞ
Eiþ1ðnÞ
� 	1=2 ’iðnÞ

’iþ1ðnÞ
� 	1=2

eniðnÞ �
KfiðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EiðnÞ’iðnÞ

p "biðnÞ
EbiðnÞ

 !
ð8:68Þ

Defining the normalized coefficients by

kfiðnÞ ¼
KfiðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EbiðnÞEiðnÞ
p ð8:69Þ

We can write the order recursion (8.27) for error energies as

Eiþ1ðnÞ ¼ EiðnÞ½1� k2fiðnÞ� ð8:70Þ
Substituting (8.60) and (8.70) into (8.68) leads to the order recursion for
filter output errors:

enðiþ1ÞðnÞ ¼ ½1� k2fiðnÞ��1=2½1� e2nbiðnÞ��1=2½eniðnÞ � kfiðnÞenbiðnÞ� ð8:71Þ
Now the normalized coefficients themselves have to be calculated. Once the
normalized variables are introduced in time recursion (8.41), one gets

kfiðnþ 1Þ ¼ EbiðnÞ
Ebiðnþ 1Þ
� 	1=2

EiðnÞ
Eiðnþ 1Þ
� 	1=2

WkfiðnÞ þ enbiðnþ 1Þeniðnþ 1Þ

ð8:72Þ
The time recursion for filter output error energies can be rewritten as

W
EiðnÞ

Eiðnþ 1Þ ¼ 1� e2i ðnþ 1Þ’iðnþ 1Þ
Eiðnþ 1Þ ¼ 1� e2niðnþ 1Þ ð8:73Þ

Substituting (8.53) and (8.73) into (8.72), we obtain the time recursion for
the normalized filter coefficients:



kfiðnþ 1Þ ¼ kfiðnÞ½1� e2nbiðnþ 1Þ�1=2½1� e2niðnþ 1Þ�1=2
þ enbiðnþ 1Þeniðnþ 1Þ ð8:74Þ

which completes the normalized lattice filter algorithm. The initializations
follow the definition of the normalized variables, which implies for the
prediction

ena0ðnþ 1Þ ¼ xðnþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ea0ðnþ 1Þp ¼ enb0ðnþ 1Þ ð8:75Þ

and for the filter section

en0ðnþ 1Þ ¼ yðnþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef 0ðnþ 1Þp ; Ef 0ðnþ 1Þ ¼WEf 0ðnÞ þ y2ðnþ 1Þ ð8:76Þ

Other initializations are in accordance with (8.49), with the additional equa-
tion Ef 0ð0Þ ¼ E0.

The computational organization of the normalized lattice adaptive filter
is shown in Figure 8.4, and a filter section is depicted in Figure 8.5.

In spite of its conciseness, this algorithm requires more calculations than
its unnormalized counterpart. The prediction section needs 10N þ 2 multi-
plications, 2N þ 1 divisions, and 3N þ 1 square roots, whereas the filter
section requires 6N þ 2 multiplications, N þ 1 divisions, and 2N þ 1 square
roots. Altogether, the algorithm complexity amounts to 16N þ 4 multiplica-
tions, 3N þ 2 divisions, and 5N þ 2 square roots. An important point is the
need for square-root calculations, which are a significant burden in imple-
mentations. The number of memories needed is about 3N.

Overall, the normalized algorithm may be attractive for handling non-
stationary signals with fixed-point arithmetic because it has a built-in mag-
nitude scaling of its variables. The resulting robustness to roundoff errors is
enhanced by the fact that only one set of prediction coefficients is calculated
[5–7].

The main advantage of the lattice approach is that it constitutes a set of
N adaptive filters with all orders from 1 to N. Therefore it may be interest-
ing to calculate the coefficients and adaptation gains of the corresponding
transversal filters.

8.6. CALCULATION OF TRANSVERSAL FILTER
COEFFICIENTS

The conversion from lattice to transversal prediction coefficients is per-
formed with the help of the order recursions (8.7) and (8.10), which can
be written as



Aiþ1ðnþ 1Þ ¼ Aiðnþ 1Þ
0

� 	
� kbðiþ1Þðnþ 1Þ BiðnÞ

�1
� 	

Biþ1ðnþ 1Þ ¼ 0
BiðnÞ

� 	
� kaðiþ1Þðnþ 1Þ �1

Aiðnþ 1Þ
� 	

ð8:77Þ

FIG. 8.4 Computational organization of the normalized lattice adaptive filter.



The coefficients of the transversal filters can be recursively computed from
order 2 to order N. However, it may be more convenient to replace BiðnÞ by
Biðnþ 1Þ in order to deal with a set of variables homogeneous in time.

Substituting the time recursions of the forward and backward prediction
coefficients into (8.77) and adding the order recursion (8.32) for the adapta-
tion gain, the conversion set becomes

Aiþ1ðnþ 1Þ ¼ Aiðnþ 1Þ
0

� 	
� kbðiþ1Þðnþ 1Þ Biðnþ 1Þ

�1

� 	

þ kbðiþ1Þðnþ 1Þebiðnþ 1Þ Giðnþ 1Þ
0

� 	

Biþ1ðnþ 1Þ ¼ 0

Biðnþ 1Þ

� 	
� ebiðnþ 1Þ 0

Giðnþ 1Þ

� 	

� kaðiþ1Þðnþ 1Þ �1
Aiðnþ 1Þ

� 	

Giþ1ðnþ 1Þ ¼ Giðnþ 1Þ
0

� 	
þ "biðnþ 1Þ
Ebiðnþ 1Þ

�Biðnþ 1Þ
1

� 	

ð8:78Þ

The corresponding flow graph is shown in Figure 8.6. The implementation
requires some care in handling the coefficient vectors. The operator Z�1 in
the flow graph represents a one-element shift of an ði þ 1Þ-element vector in
an ði þ 2Þ-element register. The input of the first section, corresponding to

FIG. 8.5 A section of normalized lattice adaptive filter.



i ¼ 0, is (1,1,0), and the output of the last section, corresponding to
i ¼ N � 1, yields the prediction coefficients.

The transversal coefficients HiðnÞ of the filter section are obtained recur-
sively from equation (8.23).

Note that a similar computational complexity can be obtained through
the direct calculation of the forward prediction transversal coefficients.
Suppose we want to calculate all the coefficients from order 1 to order N:
since the adaptation gain updating can use only forward variables, backward
variables are no longer needed, and the algorithm obtained by simplifying the
algorithms in Chapter 6 is shown in Figure 8.7. The computational complex-
ity is about 2NðN þ 1Þ multiplications and N divisions per time sample.

8.7. MULTIDIMENSIONAL LATTICE ALGORITHMS

The lattice algorithms for scalar input and reference signals can be extended
to vector signals. As shown in Section 7.5, for a K-element input signal the
prediction errors become a K-element vector, the lattice coefficients and
error energies become K � K matrices, and the prediction error ratios
remain scalars. It is sufficient to change accordingly the equations in
Figure 8.2 to obtain a multidimensional lattice algorithm.

As an example, let us consider the 2-D input signals �tðnÞ ¼ ½x1ðnÞ; x2ðnÞ�
and scalar reference yðnÞ, the notations being as in Section 7.4.

The 2i-element filter coefficient vector H2iðnÞ which minimizes the cost
function

FIG. 8.6 A section for calculating the transversal predictor coefficients.



J2iðnÞ ¼
Xn
p¼1

Wn�p½ yðpÞ �H2iðnÞXt
2iðpÞ�2 ð8:79Þ

satisfies the relation

R2iðnÞH2iðnÞ ¼ r2iðnÞ
The same relation at order i þ 1 is

Xn
p¼1

Wn�p X2iðpÞ
�ðp� iÞ

� 	
½Xt

2iðpÞ; �tðp� iÞ�H2ðiþ1ÞðnÞ ¼
r2iðnÞPn

p¼1
Wn�pyðpÞ�ðp� iÞ

2
4

3
5

ð8:80Þ

FIG. 8.7 Direct calculation of forward prediction transversal coefficients for orders

1 to N.



The partitioning of the matrix R2ðiþ1ÞðnÞ leads to
R2iðnÞ rb2iðnÞ

½rb2iðnÞ�t
Pn
p¼1

Wn�p�ðp� iÞ�tðp� iÞ

2
664

3
775

H2iðnÞ

0
0

2
664

3
775 ¼

r2iðnÞ

½rb2iðnÞ�tH2iðnÞ

2
664

3
775
ð8:81Þ

Hence

H2ðiþ1ÞðnÞ ¼
H2iðnÞ

0
0

2
4

3
5þ R�12ðiþ1ÞðnÞ 0

KiðnÞ
� 	

ð8:82Þ

with

KiðnÞ ¼
Xn
p¼1

Wn�pyðpÞ½�ðp� iÞ � Bt
2iðnÞX2iðpÞ� ð8:83Þ

the 2i � 2 backward prediction coefficient matrix being expressed by

B2iðnÞ ¼ R�12i ðnÞrb2iðnÞ
The backward prediction matrix equation is

R2ðiþ1ÞðnÞ �B2iðnÞ
I2

� 	
¼ 0

E2biðnÞ
� 	

ð8:84Þ

where E2biðnÞ is the 2� 2 backward error energy matrix. From the output
error definition

eiþ1ðnþ 1Þ ¼ yðnþ 1Þ �Ht
2ðiþ1ÞðnÞX2ðiþ1Þðnþ 1Þ ð8:85Þ

the following order recursion is obtained, from (8.82) and (8.84):

eiþ1ðnþ 1Þ ¼ eiðnþ 1Þ � Kt
i ðnÞE�12biðnÞe2biðnþ 1Þ ð8:86Þ

It is the extension of (8.24) to the 2-D input signal case.
Consequently, for each order, the filter output error is computed with the

help of the backward prediction errors, which are themselves computed
recursively with the forward prediction errors. The filter block diagram is
in Figure 8.3.

Simplifications can be made when the lengths of the two corresponding
adaptive filters, as shown in Figure 7.1, are different, say M and N þM.
Then the overall filter appears as a combination of a 1-D section with N
stages and a 2-D section with M stages. These two different sections have
to be carefully interconnected. It is simpler to make the 1-D section come
first [8].

............................................ ......... .................



At order N, the elements of the forward prediction error vector are

e
ð1Þ
aNðnþ 1Þ ¼ x1ðnþ 1Þ � ½x1ðnÞ; . . . ; x1ðnþ 1�NÞ�A11ðnÞ
e
ð2Þ
aNðnþ 1Þ ¼ x2ðnþ 1Þ � ½x1ðnÞ; . . . ; x1ðnþ 1�NÞ�A21ðnÞ

ð8:87Þ

and those of the backward prediction error vector are

e
ð1Þ
bNðnþ 1Þ ¼ x1ðnþ 1�NÞ � ½x1ðnþ 1Þ; . . . ; x1ðnþ 2�NÞ�B11ðnÞ
e
ð2Þ
bNðnþ 1Þ ¼ x2ðnþ 1Þ � ½x1ðnþ 1Þ; . . . ; x1ðnþ 2�NÞ�A21ðnÞ

ð8:88Þ

where the prediction coefficient matrices are partitioned as

A2NðnÞ ¼ A11ðnÞ A12ðnÞ
A21ðnÞ A22ðnÞ

� 	
; B2NðnÞ ¼ B11ðnÞ B12ðnÞ

B21ðnÞ B22ðnÞ
� 	

Clearly, e
ð1Þ
aNðnþ 1Þ and e

ð1Þ
bNðnþ 1Þ are the forward and backward predic-

tion errors of the 1-D process, as expected. They are provided by the last
stage of the 1-D lattice section. The two other errors e

ð2Þ
aNðnþ 1Þ and

e
ð2Þ
bNðnþ 1Þ turn out to be the outputs of 1-D filters whose reference signal
is x2ðnÞ.

Therefore, they can be computed recursively as shown in Section 8.2,
using equatins similar to (8.24) for the error signal and (8.41) for the
cross-correlation estimation; the initial values are e

ð2Þ
a0 ðnþ 1Þ ¼

e
ð2Þ
b0 ðnþ 1Þ ¼ x2ðnþ 1Þ.
Definition (8.88) and the procedure in Section 8.2 lead to

e
ð2Þ
aNðnþ 1Þ ¼ e

ð2Þ
aðN�1Þðnþ 1Þ � KaðN�1ÞðnÞ

EbðN�1Þðn� 1Þ e
ð1Þ
bðN�1ÞðnÞ ð8:89Þ

and for a posteriori errors

"ð2ÞaNðnþ 1Þ ¼ "ð2ÞaðN�1Þðnþ 1Þ � KaðN�1Þðnþ 1Þ
EbðN�1ÞðnÞ

"ð1ÞbðN�1ÞðnÞ ð8:90Þ

with

KaðN�1Þðnþ 1Þ ¼WKaðN�1ÞðnÞ þ "ð1ÞbðN�1ÞðnÞeð2ÞaðN�1Þðnþ 1Þ ð8:91Þ

We can obtain e
ð2Þ
bNðnþ 1Þ directly from the forward prediction errors,

because it has the same definitoin as e
ð2Þ
aNðnþ 1Þ except for the shift of the

data vector. Therefore the order recursive procedure can be applied again to
yield



"ð2ÞbNðnþ 1Þ ¼ "ð2ÞaðN�1Þðnþ 1Þ � KbNðnþ 1Þ
EaðN�1Þðnþ 1Þ "

ð1Þ
aðN�1Þðnþ 1Þ ð8:92Þ

and

KbNðnþ 1Þ ¼WKbNðnÞ þ "ð2ÞaðN�1Þðnþ 1Þeð1ÞaðN�1Þðnþ 1Þ ð8:93Þ
Finally, the 1-D/2-D lattice filter for nonuniform lengths is depicted in
Figure 8.8.

The above technique can be extended to higher dimensions to produce
cascades of lattice sections with increasing dimensions.

8.8. BLOCK PROCESSING

The algorithms considered so far assume that updating the coefficient is
needed whenever new data become available. However, in a number of
applications the coefficient values are used only when a set or block of n
data has been received. Updating at each time index is adequate in that case
too, but it may require an excessive number of arithmetic operations.

The problem is to compute the N elements of the coefficient vector HNðnÞ
which minimizes the cost function JNðnÞ given by

JNðnÞ ¼
Xn
p¼1
½ yðpÞ �Ht

NðnÞXNðpÞ�2 ð8:94Þ

FIG. 8.8 The 1-D/2-D lattice structure for nonuniform length filters.



where the block length n is usually significantly larger than the filter order
N.

As seen before, the solution is

HNðnÞ ¼
Xn
p¼1

XNðpÞXt
NðpÞ

" #�1Xn
p¼1

yðpÞXNðpÞ ð8:95Þ

If the initial data vector is null, Xð0Þ ¼ 0, it is recommended to carry out
the calculation up to the time nþN � 1 while taking Xðnþ 1Þ ¼ 0, because
the input signal AC matrix so obtained is Toeplitz. The computation of its
N different elements requires nN multiplications and additions. The same
amount is required by the cross-correlation vector. Once the correlation
data have been calculated, the prediction coefficients are obtained through
the Levinson algorithm given in Section 5.4, which requires N divisions and
NðN þ 1Þ multiplications. The filter coefficients are then calculated recur-
sively through (8.23), where the variable kfiðnÞ ð0 4 i 4 N � 1Þ can be
obtained directly from its definition (8.22), because the cross-correlation
coefficients ryxNðnÞ are available; again N divisions are required as well as
NðN � 1Þ multiplications. The corresponding FORTRAN subroutine is
given in Annex 5.1.

For arbitrary initial vectors or for zero initial input vector and summa-
tion stopping at n, the AC matrix estimation in (8.95) is no longer Toeplitz,
and order recursive algorithms can be worked out to obtain the coefficient
vector HNðnÞ. They begin with calculating the cross-correlation variables
KiðnÞ and KfiðnÞ from their definitions (8.3) and (8.22), and they use the
recursions given in the previous sections. They are relatively complex, in
terms of number of equations [9]. For example, the computational require-
ments are about nN þ 4:5N2 for prediction and 2nN þ 5:5N2 for the filter,
in the algorithm given in [10].

8.9. GEOMETRICAL DESCRIPTION

The procedure used to derive the FLS algorithms in the previous chapters
consists of matrix manipulations. A vector space viewpoint is introduced
below, which provides an opportunity to unify the derivations of the
different algorithms [3, 11–14].

The vector space considered is defined over real numbers, and its vectors
have M elements; it is denoted RM . The vector of the N most recent input
data is

XMðnÞ ¼ ½xðnÞ; xðn� 1Þ; . . . ; xð1Þ; 0; . . . ; 0�t

and the data matrix containing the N most recent input vectors is



XMN ðnÞ ¼ ½XMðnÞ;XMðn� 1Þ; . . . ;XMðnþ 1�NÞ�

The column vectors form a basis of the corresponding N dimensional sub-
space.

An essential operator is the projection matrix, which for a subspace U is
defined by

PU ¼ UðUtUÞ�1Ut ð8:96Þ

It is readily verified that PUU ¼ U. If U and Y are vectors, PUY is the
projection of Y on U as shown in Figure 8.9. The following are useful
relationships:

Pt
U ¼ PU; ðPUYÞtðPUYÞ ¼ YtPUY; PUPU ¼ PU ð8:97Þ

The orthogonal projection operator is defined by

Po
U ¼ I �UðUtUÞ�1Ut ð8:98Þ

Indeed the sum of the projections is the vector itself:

PUY þ Po
UY ¼ Y ð8:99Þ

Let us consider as a particular case the operator Po
fXMN ðn�1Þg applied to the

M-element vector XMðnÞ:

Po
fXMN ðn�1ÞgXMðnÞ ¼ XMðnÞ � XMNðn� 1Þ

� ½Xt
MN ðn� 1ÞXMNðn� 1Þ��1Xt

MNðn� 1ÞXMðnÞ

The product of the last two terms is

FIG. 8.9 Projection operator.



Xt
MNðn� 1ÞXMðnÞ

¼

xðn� 1Þ xðn� 2Þ; � � � xð2Þ xð1Þ 0 � � � 0

xðn� 2Þ xðn� 3Þ � � � xð1Þ 0 0 � � � 0

..

. ..
.

xðnþ 1�NÞ xðn�NÞ � � � � � � � � � � � � 0

2
66664

3
77775

xðnÞ
xðn� 1Þ

..

.

xð1Þ
..
.

0

2
66666666664

3
77777777775

ð8:100Þ
With the relations of the previous chapters, we have

Xt
MN ðn� 1ÞXMðnÞ ¼

Xn
p¼1

XNðp� 1ÞxðpÞ ¼ raNðnÞ ð8:101Þ

Similarly

½Xt
MNðn� 1ÞXMNðn� 1Þ� ¼

Xn
p¼1

XNðpÞXt
NðpÞ ¼ RNðn� 1Þ ð8:102Þ

Hence

½Xt
MNðn� 1ÞXMNðn� 1Þ��1Xt

MNðn� 1ÞXMðnÞ ¼ R�1N ðn� 1ÞraNðnÞ ¼ ANðnÞ
ð8:103Þ

Thus, the M-element forward prediction error vector is obtained:

Po
fXMN ðn�1ÞgXMðnÞ ¼ eMðnÞ ¼ XMðnÞ � XMNðn� 1ÞANðnÞ ð8:104Þ

It is such that

etMðnÞeMðnÞ ¼
Xn
p¼1
½xðpÞ � Xtðp� 1ÞANðnÞ�2 ¼ EaNðnÞ ð8:105Þ

and the forward prediction error energy is the squared norm of the ortho-
gonal projection of the new vector XMðnÞ on the subspace spanned by the N
most recent input vectors.

Finally, the operator Po
fXMN ðn�1Þg, denoted in a shorter form by Po

xðn� 1Þ,
is a prediction operator. Note that the first element in the error vector eMðnÞ
is the a posteriori forward prediction error

"aNðnÞ ¼ xðnÞ � Xt
Nðn� 1ÞANðnÞ ð8:106Þ



It is useful to define a dual prediction operator Qo
xðn� 1Þ which produces the

a priori forward prediction error as the first element of the error vector. It is
defined by

Qo
U ¼ I �UðUtStSUÞ�1UtStS ð8:107Þ

where S is the M �M shifting matrix

S ¼

0 1 0 � � � 0 0
0 0 1 � � � 0 0
..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 0 1
0 0 0 � � � 0 0

2
66664

3
77775

The product of S with a time-dependent M � 1 vector shifts this vector one
sample back. Therefore one has

SXMðnÞ ¼ XMðn� 1Þ; SXMNðnÞ ¼ XMN ðn� 1Þ ð8:108Þ
The M �M matrix StS is a diagonal matrix with 0 as the first diagonal
element and 1’s as the other elements.

As before, the operator Qo
fXMN ðn�1Þg is denoted by Qo

X ðn� 1Þ. Let us con-
sider the product Qo

X ðn� 1ÞXMðnÞ. Clearly,

Xt
MN ðn� 1ÞStSXMðnÞ ¼

Xn�1
p¼1

XNðp� 1ÞxðpÞ ¼ raNðn� 1Þ ð8:109Þ

and

Xt
MN ðn� 1ÞStSXMNðn� 1Þ ¼

Xn�2
p¼1

XNðpÞXt
NðpÞ ¼ RNðn� 2Þ ð8:110Þ

which leads to

Qo
X ðn� 1ÞXMðnÞ ¼ e 0MðnÞ ¼ XMðnÞ � XMN ðn� 1ÞANðn� 1Þ ð8:111Þ

The first element of the vector e 0MðnÞ is
eaNðnÞ ¼ xðnÞ � Xt

Nðn� 1ÞANðn� 1Þ ð8:112Þ
That operation itself can be expressed in terms of operators. In order to
single out the first element of a vector, we use the so-called M � 1 pinning
vector �:

� ¼ ½1; 0; . . . ; 0�t



Therefore the forward prediction errors are expressed by

"aNðnÞ ¼ �tPo
X ðn� 1ÞXMðnÞ ¼ Xt

MðnÞPo
X ðn� 1Þ� ð8:113Þ

and

eaNðnÞ ¼ �tQo
X ðn� 1ÞXMðnÞ ¼ Xt

MðnÞQo
X ðn� 1Þ� ð8:114Þ

These two errors are related by the factor ’Nðn� 1Þ, which is expressed in
terms of the space operators as follows:

�tPo
X ðnÞ� ¼ 1� Xt

NðnÞR�1N ðnÞXNðnÞ ¼ ’NðnÞ
Hence, we have the relationship beween Po

X and Q2
X :

�tQo
X ¼ ð�tPo

X�Þ�1�tPo
X ð8:115Þ

Fast algorithms are based on order and time recursions, and it is necessary
to determine the relationship between the corresponding projection opera-
tors.

8.10. ORDER AND TIME RECURSIONS

Incrementing the filter order amounts to adding a vector to the matrix
XMN ðnÞ and thus expanding the dimensionality of the associated subspace.
A new projection operator is obtained.

Assume U is a matrix and V a vector; then for any vector Y the following
equality is valid for the orthogonal projection operators:

Po
UY ¼ Po

U;VY þ Po
UVðVtPo

UVÞ�1VtPo
UY ð8:116Þ

It is the combined projection theorem illustrated in Figure 8.10. Clearly, if U
and V are orthogonal—that is, PUV ¼ 0 and Po

UV ¼ V—then equation
(8.116) reduces to

Po
UY ¼ Po

U;VY þ PVY ð8:117Þ
For the operators one gets

PU;V ¼ PU � Po
UVðVtPo

UVÞ�1VtPo
U ð8:118Þ

In Chapter 6, order recursions are involved in the adaptation gain updating
process. The adaptation gain GNðnÞ can be viewed as the first vector of an
N �M matrix

GX ¼ ðXt
MNXMNÞ�1Xt

MN ð8:119Þ
and



GNðnÞ ¼ R�1N ðnÞXNðnÞ ¼ GX ðnÞ� ð8:120Þ

In order to determine the operator associated with an expanded subspace, it
is useful to notice that XMNGX is the projection operator PX . For U a matrix
and V a vector, equations (8.118) and (8.99) lead to

½U;V �GU;V ¼ ½U;V � GU

0

� 	
þ ðV �UGUVÞðVtPo

UVÞ�1VtPo
U

Hence

GU;V ¼ GU

0

� 	
þ �GUV

1

� 	
ðVtPo

UVÞ�1VtPo
U ð8:121Þ

Similarly, if U and V are permuted, one gets

GV;U ¼ 0
GU

� 	
þ 1
�GUV

� 	
ðVtPo

UVÞ�1VtPo
U ð8:122Þ

These are the basic order recursive equations exploited in the algorithms in
Chapter 6.

The time recursions can be described in terms of geometrical operators as
well. Instead of adding a column to the data matrix XMN ðnÞ, we add a row to
the matrix XMNðn� 1Þ after a backward shift. Let us consider the matrices

FIG. 8.10 Illustration of the combined projection theorem.



StSX ¼

0 0 � � � 0

xðn� 1Þ xðn� 2Þ � � � xðn�MÞ
xðn� 2Þ xðn� 3Þ � � � xðn� 1�MÞ
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. ..
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.

xð1Þ 0 0

2
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3
77777775

��tX ¼

xðnÞ xðn� 1Þ � � � xðnþ 1�NÞ
0 0 � � � 0

..

. ..
. ..

.

0 0 � � � 0

2
66664

3
77775

ð8:123Þ

Clearly, their column vectors are orthogonal and they span orthogonal
subspaces. The following equality is valid for the projectors:

PX ¼ PStSX þ P��tX ð8:124Þ
Due to the definition of the shifting matrix, we have

StSSt ¼ St; SStS ¼ S; StS þ��t ¼ I ð8:125Þ
Thus

PStSX ¼ StPSXS ð8:126Þ
The time recursions useful in the algorithms involve the error signals, and,
therefore, the orthogonal projectors are considered. Definition (8.98) yields

StPo
SXS ¼ StS � StSXðXtStSXÞ�1XtStS ð8:127Þ

As time advances, the objective is to update the orthogonal projection
operator associated with the data matrix XMNðnÞ, and an equation linking
Po
SX and Po

X is looked for. Definitions (8.123) lead to

XtX ¼ XtStSX þ Xt��tX ð8:128Þ
Now, using the matrix inversion lemma (6.24) of Chapter 6, one gets

ðXtStSXÞ�1 ¼ ðXtXÞ�1 þ ðXtXÞ�1Xt�ð�tPo
Y�Þ�1�tXðXtXÞ�1 ð8:129Þ

Substituting into (8.127) yields, in concise form,

StPo
SXS ¼ StS½Po

X � Po
X�ð�tPo

X Þ�1�tPo
X �StS

Using the property (8.125), we obtain the time recursion equation

Po
X ¼ StPo

SXS þ Po
X�ð�tPo

X�Þ�1�tPo
X ð8:130Þ

To illustrate that result, let us postmultiply both sides by the reference signal
vector YMðnÞ, defined by



YÞMðnÞ ¼ ½ yðnÞ; yðn� 1Þ; . . . ; yð1Þ; 0; . . . ; 0�t

Clearly

Po
XYMðnÞ ¼

yðnÞ � Xt
NðnÞHNðnÞ

yðn� 1Þ � Xt
Nðn� 1ÞHNðnÞ
..
.

yð1Þ � Xt
Nð1ÞHNðnÞ
0
..
.

0

2
6666666664

3
7777777775
;HNðnÞ ¼ R�1N ðnÞryxNðnÞ

ð8:131Þ
The same operation at time n� 1 leads to

StPo
SXSYMðnÞ ¼

0
yðn� 1Þ � Xt

Nðn� 1ÞHNðn� 1Þ
..
.

yð1Þ � Xt
Nð1ÞHNðn� 1Þ

0
..
.

0

2
6666666664

3
7777777775

ð8:132Þ

Now

�tPo
X� ¼ 1� Xt

NðnÞRNðnÞXNðnÞ ¼ ’NðnÞ ð8:133Þ
and the last term of the right side of the recursion equation (8.130) is

Po
X�ð�tPo

X�Þ�1�tPo
XYMðnÞ ¼

’NðnÞ
�Xt

Nðn� 1ÞGNðnÞ
..
.

�Xt
Nð1ÞGNðnÞ

0
..
.

0

2
6666666664

3
7777777775
"NðnÞ
’NðnÞ

ð8:134Þ

The filter coefficient time updating equation

HNðnÞ ¼ HNðn� 1Þ þ GNðnÞ"NðnÞ
’NðnÞ

leads to the verifications of the result

Po
XYMðnÞ ¼ StPo

SXSYMðnÞ þ Po
X�ð�tPo

X�Þ�1�tPo
XYMðnÞ ð8:135Þ



It is important to consider the application of the time updating formula
(8.130) to the gain operator GX . Definition (8.119) and equation (8.115)
lead to

I � XGX ¼ StðI � SXGSX ÞS þ ðI � XGX Þ��tQo
X ð8:136Þ

Then, the properties of the shifting matrix S and pinning vector � yield,
after simplification, the following time updating formula for the gain opera-
tor:

GX ¼ GSXS þ GX��tQo
X ð8:137Þ

With the geometrical operators presented so far, all sorts of algorithms can
be derived.

8.11. UNIFIED DERIVATION OF FLS ALGORITHMS

The FLS algorithms are obtained by applying the basic order and time
recursions with different choices of signal matrices and vectors.

In order to derive the transversal algorithm based on a priori errors and
presented in Section 6.4, one takes U ¼ XMNðn� 1Þ and V ¼ XMðnÞ. The
following equalities are readily verified:

VtPo
U� ¼ "aNðnÞ; VtQo

U� ¼ eaNðnÞ
GUV ¼ ANðnÞ; VtPo

UV ¼ EaNðnÞ
ð8:138Þ

Therefore, the time updating of the forward prediction coefficients is
obtained by postmultiplying (8.137) by XMðnÞ. The time and order updating
equation for the adaptation gain is obtained by postmultiplying (8.122) by
�. The recursion for the error energy EaNðnÞ corresponds to premultiplying
the time updating formula (8.130) by Xt

MðnÞ and postmultiplying by XMðnÞ.
The backward variables are obtained in the same manner as the forward
variables, XMðn�NÞ replacing XMðnÞ.

The algorithm based on all prediction errors and given in Section 6.5 uses
the error ratio ’NðnÞ ¼ �tPo

X ðnÞ�, which is calculated through a time and
order updating equation.

Postmultiplying (8.118) by � and premultiplying by �t yields after sim-
plification

’Nþ1ðnÞ ¼ ’Nðn� 1Þ � "
2
aNðnÞ

EaNðnÞ
ð8:139Þ

Now, substituting (6.49) of Chapter 6 and the time recursion for the error
energy into (8.139) gives



’Nþ1ðnÞ ¼ ’Nðn� 1ÞEaNðn� 1Þ
EaNðnÞ

ð8:140Þ

A similar relation can be derived for the backward prediction error energies,
taking U ¼ XMNðnÞ and V ¼ XMðn�NÞ. It is

’NðnÞ ¼
’Nþ1ðnÞEbNðnÞ
EbNðn� 1Þ ð8:141Þ

In order to get a sequential algorithm, we must calculate the updated energy
EbNðnÞ. Postmultiplying (8.121) by U ¼ XMN ðnÞ and V ¼ XMðn�NÞ yields
the adaptation gain recursion (6.75) of Chapter 6, which shows that the last
element of GNþ1ðnÞ is

mðnÞ ¼ "bNðnÞ
EbNðnÞ

Hence

’NðnÞ ¼
’Nþ1ðnÞ

1� ebNðnÞmðnÞ
ð8:142Þ

Finally, the error ratio ’NðnÞ can be updated by equations (8.140) and
(8.142). The algorithm is completed by taking into account the backward
coefficient time updating equation and rewriting (6.75) of Chapter 6 as

GNþ1ðnÞ ¼ GNðnÞ½1� ebNðnÞmðnÞ�
0

� 	
þ �BNðn� 1Þ

1

� 	
mðnÞ ð8:143Þ

Dividing both sides by ’Nþ1ðnÞ and substituting (8.142) lead to

GNþ1ðnÞ
’Nþ1ðnÞ

¼
GNðnÞ
’NðnÞ
0

2
4

3
5þ �BNðn� 1Þ

1

� 	
mðnÞ
’Nþ1ðnÞ

ð8:144Þ

Therefore the a priori adaptation gain G 0NðnÞ ¼ GNðnÞ=’NðnÞ can be used
instead of GNðnÞ, and the algorithm of Section 6.5 is obtained. In Figure 6.5
’�1N ðnÞ is updated.

The geometrical approach can also be employed to derive the lattice
structure equations. The lattice approach consists of computing the forward
and backward prediction errors recursively in order. The forward a poster-
iori prediction error for order i is

"aiðnÞ ¼ Xt
MðnÞPo

U;V� ð8:145Þ
where

U ¼ XMði�1Þðn� 1Þ; V ¼ XMðn� iÞ
Substituting projection equation (8.118) into (8.145) yields



"aiðnÞ ¼ "aði�1ÞðnÞ � Xt
MðnÞPo

UVðVtPo
UVÞ�1VtPo

U� ð8:146Þ
The factors in the second term on the right side are

VtPo
U� ¼ "bði�1Þðn� 1Þ; VtPo

UV ¼ Ebði�1Þðn� 1Þ

Xt
MðnÞPo

UV ¼
Xn
p¼1

xðpÞxðp� iÞ � At
i�1ðnÞRi�1ðn� 1ÞBi�1ðn� 1Þ ¼ KiðnÞ

ð8:147Þ
Hence

"aiðnÞ ¼ "aði�1ÞðnÞ �
KiðnÞ

Ebði�1Þðn� 1Þ "bði�1Þðn� 1Þ

which is equation (8.14a). The corresponding backward equation (8.14b) is

"biðnÞ ¼ Xt
Mðn� iÞPo

U;V� ð8:148Þ
with U ¼ XMði�1Þðn� 1Þ, V ¼ XMðnÞ.

The a priori equations are obtained by using the operator Qo
U;V instead of

Po
U;V .
Algorithms with nonzero initial conditions in either transversal or lattice

structures are obtained in the same manner; block processing algorithms are
also obtained similarly.

8.12. SUMMARY AND CONCLUSION

The flexibility of LS techniques has been further illustrated by the derivation
of order recurrence relationships for prediction and filter coefficients and
their combination with time recurrence relationships to make fast algo-
rithms. The lattice structures obtained are based on reflection coefficients
which represent a real-time estimation of the cross-correlation between for-
ward and backward prediction errors. A great many different algorithms
can be worked out by varying the types and arrangements of the recursive
equations. However, if the general rules for designing efficient and robust
algorithms are enforced, the actual choice reduces to a few options, and an
algorithm based on direct time updating of the reflection coefficients has
been presented.

The LS variables can be normalized in such a way that time and order
recursions be kept. For the lattice structure, a concise and robust algorithm
can be obtained, which uses a single set of reflection coefficients. However,
the computational complexity is significantly increased by the square-root
operations involved.



The lattice approach can be extended to M-D signals with uniform and
nonuniform filter lengths. The 1-D/2-D case has been investigated.

Overall, the lattice approach requires more computations than the trans-
versal method. However, besides its academic interest, it provides all the
filters with orders from 1 to N and can be attractive in those applications
where the filter order is not known beforehand and when the user can be
satisfied with reflection coefficients.

A vector space viewpoint provides an elegant description of the fast
algorithms and their computational mechanisms. The calculation of errors
corresponds to a projection operation in a signal vector space. Order and
time updating formulae can be worked out for the projection operators. By
choosing properly the matrices and vectors for these projection operators,
one can derive all sorts of algorithms in a simple and concise way. The
method applies to transversal or lattice structures, with or without initial
conditions, with exponential or sliding time windows. Overall, the geometric
description offers a unified derivation of the FLS algorithms.

EXERCISES

1. The signal

xðnÞ ¼ sinðn�=3Þ þ sinðn�=4Þ
is fed to an order 4 adaptive FIR lattice predictor. Give the values of
the four optimal reflection coefficients. The weighting factor in the
adaptive algorithm is W ¼ 0:98; give upper bounds for the magnitudes
of the variables KiðnÞ. What are their steady-state values?

2. Give the computational organization of an FLS lattice algorithm in
which the cross-correlation estimation variables KiðnÞ are updated in
time and the a priori and a posteriori forward and backward predic-
tion errors are calculated. Count the multiplications, divisions, and
memories needed.

3. Consider the filter section in the block diagram in Figure 8.3. Calculate
the coefficient hiðnÞ of an order 1 LS adaptive filter whose input
sequence is ebiðnþ 1Þ and whose reference signal is eiðnþ 1Þ.
Compare with the expression of kfiðnÞ and comment on the difference.

4. Derive the lattice algorithm with direct time updating of the coeffi-
cients as in Figure 8.2, but with a posteriori errors. Hint: Use the error
ratios ’iðnÞ to get the a posteriori errors and then find the updating
equations for the reflection coefficients.

5. Let XN be an N-element vector such that 0 < Xt
NXN < 1. Prove the

identities



ðIN � XNX
t
NÞ1=2 ¼ IN �

1� ð1� Xt
NXNÞ1=2

Xt
NXN

XNX
t
N

ðIN � XNX
t
NÞ�1=2 ¼ IN þ

ð1� Xt
NXNÞ�1=2 � 1

Xt
NXN

XNX
t
N

ðIN � XNX
t
NÞ1=2XN ¼ XNð1� Xt

NXNÞ1=2

Show that the square roots of these matrices can be obtained with
N2

2
þ N

2
multiplications and one square-root calculation.

6. In order to derive normalized versions of the transversal FLS algo-
rithms, we define the normalized variables

eanðnÞ ¼
eaðnÞ

Eaðn� 1Þ ; "anðnÞ ¼
"aðnÞ
EaðnÞ

Define normalized versions of the prediction coefficients and the adap-
tation gain. Give the corresponding time updating relationships. Give
the updating equations for the error energies. Give the computational
organization of a normalized transversal FLS algorithm and compare
the complexity with that of the standaard algorithm.

7. In order to visualize the vector space approach, consider the case
where M ¼ 3, N ¼ 2 and the signal input sequence is

xðnÞ ¼ 0; n 4 0

xð1Þ ¼ 4; xð2Þ ¼ 2; xð3Þ ¼ 4

In the 3-D space ð0x; 0y; 0zÞ, draw the vectors XMð1Þ;XMð2Þ;XMð3Þ,
and the vector �. Calculate and show the vector Po

X ð2ÞXMð3Þ. Show
the forward and backward prediction errors at time n ¼ 3. Show how
the adaptation gains G2ð2Þ and G2ð3Þ are formed.

8. Find the order updating equation for the prediction opertor Q. Use it
to geometrically derive the lattice equations for a priori prediction
errors.

ANNEX 8.1 FLS ALGORITHM FOR A PREDICTOR IN
LATTICE STRUCTURE

SUBROUTINE FLSL(N,X,EAB,EA,EB,KA,KB,W,IND)
C
C COMPUTES THE PARAMETERS OF A LATTICE PREDICTOR
C N = FILTER ORDER
C X = INPUT SIGNAL
C EAB = VECTOR OF BACKWARD PREDICTION ERRORS

(A PRIORI)



C EA = VECTOR OF FORWARD PREDICTION ERROR ENERGIES
C EB = VECTOR OF BACKWARD PREDICTION ERROR ENERGIES
C KA,KB = LATTICE COEFFICIENTS
C W = WEIGHTING FACTOR
C IND = TIME INDEX
C

REAL KA,KB
DIMENSION
EAB(1),EA(1),EB(1),KA(1),KB(1),EAV(15),PHI(15)

C
C INITIALIZATION
C
C IF(IND.GT.1)GOTO30

X1=0
EO=1.
DO20I=1,N
EAB(I)=0.
EA(I)=EO*W**N
EB(I)=EO*W**(N-I)
KA(I)=0.
KB(I)=0.
PHI(I)=1.

20 CONTINUE
30 CONTINUE

C
C ORDER : 1
C

EO1=EO
EO=W*EO+X*X
EAV(1)=X-KB(1)*X1
EAB1=EAB(1)
EAB(1)=X1-KA(1)*X
KA(1)=KA(1)+X*EAB(1)/EO
KB(1)=KB(1)+EAV(1)*X1/EO1
EA(1)*W*EA(1)+EAV(1)*EAV(1)*PHI(1)
PHI1=PHI(1)
PHI(1)=1-X*X/EO
EB1=EB(1)
EB(1)=W*EB(1)+EAB(1)*EAB(1)*PHI(1)
X1=X

C
C ORDERS > 1
C

N1=N-1
DO50I=1,N1



EAV(I+1)=EAV(I)-KB(I+1)*EAB1
EAB2=EAB(I+1)
EAB(I+1)=EAB1-KA(I+1)*EAV(I)
KA(I+1)=KA(I+1)+EAV(I)*PHI1*EAB(I+1)/EA(I)
KB(I+1)=KB(I+1)+EAV(I+1)*EAB1*PHI1/EB1
EA(I+1)=W*EA(I+1)+EAV(I+1)*EAV(I+1)*PHI(I+1)
PHI1=PHI(I+1)
PHI(I+1)=PHI(I)*(1-PHI(I)*EAB(I)*EAB(I)/EB(I))
EB1=EB(I+1)
EB(I+1)=W*EB(I+1)+EAB(I+1)*EAB(I+1)*PHI(I+1)
EAB1=EAB2

50 CONTINUE
RETURN
END
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9
Rotation-Based Algorithms

The rotation operation has a unique feature: namely it does not affect the
norm of vectors. Therefore, with algorithms using exclusively rotations, no
increases or doublings of the dynamic range can be expected, like those
occurring in other algorithms, when data are squared or multiplied by
one another. Moreover, it is well known in digital filtering that rotations
can provide for optimal processing and ensure stability.

As pointed out in the previous chapter, the family of lattice algorithms
essentially relies on a triangular decomposition of the input signal autocor-
relation matrix, which is presented in Chapter 5. In fact, a similar decom-
position can be performed on the matrix of the input samples, namely the
so-called QR decomposition [1].

Using the QR decomposition technique, the solution to a least squares
problem is obtained in two steps. First, an orthogonal matrix is used to
transform the input signal sample matrix into another matrix whose ele-
ments are zeros except for a triangular submatrix. Then, the optimal set of
coefficients is derived through solving a linear triangular system of equa-
tions [2,3].

In this chapter, the QR decomposition is presented, and fast least squares
algorithms are derived for one-dimensional and multidimensional signals.
But, to begin with, the basic data rotation operation is analyzed.



9.1. THE ROTATION OPERATION

Let us consider a real data vector X with 3 elements,

X ¼
x2
x1
x0

2
4

3
5 ð9:1Þ

and two rotations R1 and R2 defined by the matrices

R1 ¼
1 0 0
0 cos 
1 � sin 
1
0 sin 
1 cos 
1

2
4

3
5; R2 ¼

cos 
2 0 � sin 
2
0 1 0

sin 
2 0 cos 
2

2
4

3
5 ð9:2Þ

Now let us design rotations R1 and R2 to cancel the middle and the top
elements respectively in vector X . This is achieved by choosing the rotation
angle 
1 such that

cos 
1 � sin 
1
sin 
1 cos 
1

� 	
x1
x0

� 	
¼ 0

s1

� 	
ð9:3Þ

where the variable s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x20

q
is the norm of the two-element data vec-

tor, which is rotation-invariant. Then

cos 
1 ¼
x0
s1
; sin 
1 ¼

x1
s1

ð9:4Þ

The same procedure can be applied again, using rotation angle 
2, leading
to:

cos 
2 � sin 
2
sin 
2 cos 
2

� 	
x2
s1

� 	
¼ 0

s2

� 	
ð9:5Þ

where s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ x20

q
and

cos 
2 ¼
s1
s2
; sin 
2 ¼

x2
s2

ð9:6Þ

The new variable s2 is the norm of the vector X . The entire operation is
described by the matrix equation

0
0
s2

2
4

3
5 ¼ R2R1

x2
x1
x0

2
4

3
5 ð9:7Þ

Therefore, the norm of any vector can be computed iteratively through a set
of rotations, defined by the elements of that vector. In the iterations the
cosine contains the previous value of the norm, while the sine introduces the
new data. As concerns initial values, the first element must be positive or



null. If x0 ¼ 0 and x1 6¼ 0, then 
1 ¼ �=2 and all the subsequent angles 
i
satisfy the inequalities

��=2 < 
i < �=2 ð9:8Þ

Next, the procedure is applied to the QR decomposition.

9.2. THE QR DECOMPOSITION

In transversal least squares adaptive filtering with N coefficients, the cost
function is defined, as in the previous chapters, by

JðnÞ ¼
Xn
p¼0

Wn�p½ yðpÞ � XtðpÞHðnÞ�2 ð9:9Þ

where yðpÞ is the reference sequence, XðpÞ is the vector of the N most recent
input samples at time p and W is the weighting factor. The N-coefficient
vector at time n, HðnÞ, minimizes the cost function JðnÞ. It is assumed that
the input sequence is xðnÞ ¼ 0 for n < 0.

Now, the input data matrix XNðnÞ is introduced. It is an ðnþ 1Þ �N-
element matrix defined by

XNðnÞ ¼
xðnÞ xðn� 1Þ � � � xðnþ 1�NÞ

W1=2xðn� 1Þ W1=2xðn� 2Þ � � � W1=2xðn�NÞ
..
. ..

. ..
.

Wn=2xð0Þ 0 � � � 0

2
6664

3
7775 ð9:10Þ

The first step in deriving algorithms consists of multiplying this matrix by a
rotation matrix QNðnÞ, in order to reduce the nonzero elements to a trian-
gular submatrix. In fact, there are two possible approaches to reach that
goal. The first one is based on forward linear prediction [2]. It yields the
following result, where SNðnÞ is an upper-left-triangular N �N matrix:

QNðnÞXNðnÞ ¼

0 � � � 0
..
. ..

.

0 � � � 0

SNðnÞ ..
.

� � � 0

2
666664

3
777775 ð9:11Þ

The dual approach exploits backward linear prediction, leading to



QNðnÞXNðnÞ ¼

0 � � � 0
..
. ..

.

0 � � � 0
..
.

TNðnÞ
0 � � � � � �

2
666664

3
777775 ð9:12Þ

where TNðnÞ is a lower-right-triangular N �N matrix [3].
Both approaches lead to fast algorithms, with similar computation com-

plexities. However, the backward technique has a number of advantages in
terms of simplicity of derivation, interpretation of internal variables, flex-
ibility of implementation and conciseness. It is the one which is adopted
here.

As concerns the rotation matrix QNðnÞ, later on, it will be shown how it is
constructed iteratively from the input data sequence.

Once the above triangularization has been completed, the solution of the
least squares problem in adaptive filtering is readily obtained. In fact, the
cost function JðnÞ given by (9.9) is the square of the norm of the error vector
expressed by

enðnÞ
W1=2en�1ðnÞ

..

.

Wn=2e0ðnÞ

2
6664

3
7775 ¼

yðnÞ
W1=2yðn� 1Þ

..

.

Wn=2yð0Þ

2
6664

3
7775� XNðnÞHðnÞ ð9:13Þ

Now both sides are multiplied by the rotation matrix QNðnÞ, and equations
(9.11) and (9.12) are used. The optimal coefficient vector is the vector HðnÞ
which cancels the last N elements of the vector obtained after rotation,
leading to

QNðnÞ
enðnÞ

W1=2en�1ðnÞ
..
.

W1=2e0ðnÞ

2
6664

3
7775 ¼

eqnðnÞ
eq n�1ðnÞ

..

.

eqNðnÞ
0
..
.

0

2
6666666664

3
7777777775

nþ 1�N

N

ð9:14Þ

Since rotations conserve the norms of the vectors, the cost function is
equivalently expressed by

JðnÞ ¼
Xn
p¼N

e2qpðnÞ ð9:15Þ

g
g



Finally, the error elements involved have been obtained by rotating the
reference vector by the matrix QNðnÞ.

Coming back to the triangular matrix TNðnÞ in (9.12), it is used to derive
a fast algorithm. We need to make clear the physical interpretation of its
elements, and the backward linear prediction problem serves that purpose.

9.3. ROTATIONS IN BACKWARD LINEAR
PREDICTION

The backward linear prediction energy at time n is denoted EbNðnÞ and
expressed by

EbNðnÞ ¼
Xn
p¼0

Wm�p½xðp�NÞ � XtðpÞBNðnÞ�2 ð9:16Þ

where BNðnÞ is the N-element vector of the transversal backward linear
prediction coefficients. Following the same path as in the previous section,
one can observe that EbnðnÞ is the square of the norm of the error vector
expressed by

ebnðnÞ
W1=2eb n�1ðnÞ

..

.

Wn=2eb0ðnÞ

2
6664

3
7775 ¼

xðn�NÞ
W1=2xðn� 1�NÞ

..

.

Wn=2xð�NÞ

2
6664

3
7775� XNðnÞBNðnÞ ð9:17Þ

Again, since rotations preserve the norms of the vectors, an equivalent
problem can be formulated after both sides of equation (9.17) have been
multiplied by the rotation matrix QNðnÞ. In fact, let us extend the input data
matrix by one column to the right and perform a multiplication of the
matrix XNþ1ðnÞ obtained by the rotation matrix QNðnÞ. In that operation,
the right column of the extended matrix XNþ1ðnÞ produces the following
vector

QNðnÞ
xðn�NÞ

W1=2xðn� 1�NÞ
..
.

W1=2xð�NÞ

2
6664

3
7775 ¼

ebqnðnÞ
ebqn�1ðnÞ

..

.

ebqNþ1ðnÞ
XbqNðnÞ

2
666664

3
777775

nþ 1�N

N

ð9:18Þ

As in equation (9.14), the top nþ 1�N elements of the vector obtained are
the rotated backward linear prediction errors, which make up the error
energy by

g
g



EbNðnÞ ¼
Xn
p¼N

e2bqpðnÞ ð9:19Þ

The remaining N bottom elements, XbqnðnÞ, are the result of rotating the
input data vector, and the backward linear prediction is the solution of the
system involving the triangular matrix

XbqNðnÞ ¼ TNðnÞBNðnÞ ð9:20Þ
Finally, rotating the extended matrix yields

QNðnÞ
xðn�NÞ

W1=2xðn� 1�NÞ
XNðnÞ ..

.

W1=2xð�NÞ

2
6664

3
7775 ¼

0 � � � 0 ebqnðnÞ
..
. ..

. ..
.

0 � � � 0 ebq Nþ1ðnÞ
TNðnÞ XbqNðnÞ

2
666664

3
777775

(9.21)
Now, from the right-hand-side matrix in the above equation, it is possible to
obtain the triangular matrix of order N þ 1, namely TNþ1ðnÞ. A set of n�N
rotations, as those described in Section 9.1, can be used to accumulate the
prediction errors, leading to the order recursion (9.22). Obviously, the recur-
sion is valid for any order N and, through induction, the following expres-
sion (9.23) is obtained for the triangular matrix.

TNþ1ðnÞ ¼
0 � � � 0 E1=2

bN ðnÞ
0 � � �
..
.

XbqNðnÞ
TNðnÞ

2
6664

3
7775 ð9:22Þ

TNþ1ðnÞ ¼

0 0 � � � E1=2
bN ðnÞ

..

. ..
.

0 E1=2
b1 ðnÞ � � � XbqNðnÞ

E1=2
b0 ðnÞ Xbq1ðnÞ � � �

2
66664

3
77775 ð9:23Þ

Thus, the triangular matrix TNþ1ðnÞ is made of the square roots of the
backward prediction error energies for its diagonal and it is made of the
rotated input data vectors, with orders 1 through N, for the remaining
nonzero elements.

At this point, no consideration has been given as to how the rotation
matrix QNðnÞ can be obtained. Actually, it can be constructed recursively for
each new input data sample. Let us assume that the rotation matrix is
available at time n� 1. It is denoted by QNðnþ 1Þ and produces the follow-



ing result, when it multiplies the input data matrix XNðnþ 1Þ, defined by
equation (9.10):

QNðn� 1ÞXNðn� 1Þ ¼
0 � � � 0
..
.

0 � � � 0
TNðn� 1Þ

2
664

3
775 ð9:24Þ

The input data matrix satisfies the relation

XNðnÞ ¼ xðnÞ � � � xðnþ 1�NÞ
W1=2XNðn� 1Þ

� 	
ð9:25Þ

Next, the following product is considered:

1 0
0 QNðn� 1Þ

� 	
XNðnÞ ¼

xðnÞ � � � xðnþ 1�NÞ
0 � � � 0
..
. ..

.

0 � � � 0
W1=2TNðn� 1Þ

2
66664

3
77775
ð9:26Þ

and the rotation matrix at time n is obtained from QNðn� 1Þ by a set of N
rotations, which cancel the first row of the right-hand side of (9.26).

The first of these N rotations is R1, defined by

R1 ¼

cos 
1 0 � � � 0 � sin 
1
0 1 � � � 0 0
..
. ..

. ..
. ..

.

0 0 � � � 1 0
sin 
1 0 � � � 0 cos 
1

2
66664

3
77775 ð9:27Þ

It cancels xðnÞ in (9.26) if the angle 
1 is chosen, using (9.23), such that

cos 
1 ¼
W1=2E1=2

b0 ðn� 1Þ
E1=2
b0 ðnÞ

; sin 
1 ¼
xðnÞ

E1=2
b0 ðnÞ

ð9:28Þ

Actually Eb0ðnÞ is the input signal energy. The next element in the first row
was xðn� 1Þ, but it has been changed by the first rotation. Let us denote it
by u. It is cancelled by the rotation matrix R2 expressed by

R2 ¼

cos 
2 0 � � � � sin 
2 0
0 1 � � � 0 0
..
. ..

. ..
.

sin 
2 0 � � � cos 
2 0
0 0 � � � 0 1

2
66664

3
77775 ð9:29Þ



Because the rotations lead to the triangular matrix at time n, the angle 
2 is
such that

u sin 
2 þW1=2E1=2
b1 ðn� 1Þ cos 
2 ¼ E1=2

b1 ðnÞ ð9:30Þ

and, therefore

cos 
2 ¼
W1=2E1=2

b1 ðn� 1Þ
E1=2
b1 ðnÞ

; sin 
2 ¼
u

E1=2
b1 ðnÞ

ð9:31Þ

Now, considering the time recursion for the backward prediction error
energy

Eb1ðnÞ ¼WEb1ðn� 1Þ þ e2b1qðnÞ ð9:32Þ

where eb1qðnÞ is the rotation linear prediction error, and identifying with
(9.31), it becomes clear that the scalar u is actually the rotation linear pre-
diction error eb1qðnÞ.

After N such steps, the operation is complete and the following recursion
is obtained:

QNðnÞ ¼ RN � � �R2R1
1 0
0 QNðn� 1Þ

� 	
ð9:33Þ

The angles are defined by

cos 
iþ1 ¼
W1=2E1=2

bi ðn� 1Þ
E1=2
bi ðnÞ

; sin 
iþ1 ¼
ebiqðnÞ
E1=2
bi ðnÞ

ð9:34Þ

It is worth emphasizing that such a factorization is possible only because the
matrix TNðn� 1Þ is triangular.

9.4. ROTATION IN FORWARD LINEAR PREDICTION

A dual path to reach the matrix TNþ1ðnÞ from TNðnÞ is provided by forward
linear prediction. The forward linear prediction energy, EaNðnÞ, is defined by

EaNðnÞ ¼
Xn
p¼0

Wn�p½xðpÞ � Xtðp� 1ÞANðnÞ�2 ð9:35Þ

and it is the square of the norm of the error vector
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eaNðnÞ
W1=2eaN�1ðnÞ

..

.

Wn=2ea0ðnÞ

2
6664

3
7775 ¼

xðnÞ
W1=2xðn� 1Þ

..

.

Wn=2xð0Þ

2
6664

3
7775� XNðn� 1Þ

0 � � � 0

� 	
ANðnÞ

ð9:36Þ
The input data matrix XNðn� 1Þ has to be completed with a bottom row of
zeros, to satisfy the time shift in forward linear prediction, and the rotation
matrix used for the triangularization must be modified accordingly. In the
following product, the top n�N elements of the resulting vector are the
rotated forward prediction errors, the next N elements, denoted XaqNðnÞ, are
the rotated input data vector

QNðn� 1Þ 0
0 1

� 	 xðnÞ
W1�2xðn� 1Þ

..

.

Wn=2xð0Þ

2
6664

3
7775 ¼

eaqnðnÞ
..
.

eaqNþ1ðnÞ
XaqNðnÞ
Wn=2xð0Þ

2
666664

3
777775

n�N

N

ð9:37Þ

As mentioned before, the linear prediction vector ANðnÞ is the solution of
the system

XaqNðnÞ ¼ TNðn� 1ÞANðnÞ ð9:38Þ
Since the objective is to derive the triangular matrix TNþ1ðnÞ from TNðn� 1Þ,
it is useful to consider the extended matrix XNþ1ðnÞ. The same rotation as in
expression (9.37) above yields

QNðn� 1Þ 0
0 1

� 	
XNþ1ðnÞ ¼

eaqnðnÞ 0 � � � 0

..

. ..
. ..

.

eaqNþ1ðnÞ 0 � � � 0

XaqNðnÞ ..
.

TN
ðn�1Þ

Wn=2xð0Þ 0 � � � 0

2
66666664

3
77777775

ð9:39Þ

Now, it is sufficient to accumulate the forward prediction error values
eaq Nþ1ðnÞ through eaqnðnÞ on the bottom element Wn=2xð0Þ to achieve trian-
gularization. In the process, the bottom element of the first column is
replaced by the square root of the forward linear prediction error energy.
As shown in Section 9.1, this accumulation is performed by a set of appro-
priate rotations, which have no bearing on the desired least squares algo-
rithm and are not required in explicit form. In fact, the next step consists of
the operation

g
g



Q�ðnÞ
XaqNðnÞ 0 � � �

..

.
TNðn� 1Þ

E1=2
aN ðnÞ 0 � � � 0

2
64

3
75 ¼ TNþ1ðnÞ ð9:40Þ

The rotation matrix Q�ðnÞ accumulates the vector XaqNðnÞ on the bottom
element and is the product of N rotations R�i defined by

R�i ¼

1 � � � cos�i � � � � sin �i
..
. . .

. ..
.

0 � � � 1 � � � 0
..
. ..

. . .
. ..

.

0 � � � sin �i � � � cos�i

2
666664

3
777775 ð9:41Þ

The angles �i can be determined in a straightforward manner from the
elements of the triangular matrices TNþ1ðnÞ and TNðn� 1Þ involved in equa-
tion (9.40). From expression (9.23) for a triangular matrix, and considering
the diagonal elements, combined with the fact that TNðn� 1Þ has been
completed with zeros in the bottom row, the following relationships appear
for 1pi2} 4 N:

E1=2
b iþ1ðnÞ ¼ cos�iþ1E

1=2
bi ðn� 1Þ ð9:42Þ

In order to illustrate the physical meaning of the angles, it is interesting to
compare the above equation with the following order recursion of the nor-
malized lattice algorithm derived in Chapter 8:

E1=2
b iþ1ðnÞ ¼ ½1� k2iþ1ðnÞ�E1=2

bi ðn� 1Þ ð9:43Þ
As a consequence, the following equivalence can be established

sin �i ¼ kiðnÞ; 1pi2 4 N ð9:44Þ
The procedure to calculate the angles �i is defined by the simplified relation

0
..
.

0
E1=2
b0 ðnÞ

2
664

3
775 ¼ Q�ðnÞ

XaqNðnÞ
E1=2
aN ðnÞ

� 	
ð9:45Þ

Note the relation obtained by reversing the above equation:

YN
i¼1

cos�i ¼ E1=2
aN ðnÞ=E1=2

b0 ðnÞ ð9:46Þ

Additionally, an explicit expression for sin �i is



sin �i ¼
xaqNiðnÞ

EaNðnÞ þ
PN
j¼1

x2aqNjðnÞ
" #1=2

¼ kiðnÞ ð9:47Þ

It provides useful information about the rotated input data: the elements
xaqNiðnÞ of the vector obtained by rotation of the input signal samples are
linked to the normalized lattice coefficients kiðnÞ.

9.5. THE FAST LEAST SQUARES QR ALGORITHM

In a recursive algorithm, the rotation matrix QNðnÞ has to be computed from
QNðn� 1Þ. The new input datum at time n, xðnÞ, sits at the upper left corner
in the matrix XNðnÞ. Now, in the triangularization operation, it is processed
by the first column of the rotation matrix. Therefore, it is sufficient, in the
search for a recursive algorithm, to concentrate on the first column of the
matrix.

Picking up the first column in a matrix is expressed in equations by a
multiplication of the matrix by a vector with a one at the top and zero
elsewhere. Such a vector is sometimes called a pinning vector. Taking into
account the recursion already obtained for QNðnÞ, namely expression (9.33),
the operation leads to

QNðnÞ
1
0
..
.

0

2
664

3
775 ¼

�NðnÞ
0
..
.

0
GNðnÞ

2
66664

3
77775 ð9:48Þ

where the new variables �NðnÞ and GNðnÞ are defined in terms of the angles
involved in the rotations R1 through RN .

As concerns �NðnÞ, it is expressed by

�NðnÞ ¼
YN
i¼1

cos 
i ð9:49Þ

and it has a simple physical meaning. From equation (9.14) for example, the
a posteriori error can be written as

enðnÞ ¼ ½eqnðnÞ; eqn�1ðnÞ; . . . ; eqNðnÞ; 0 � � � 0�Qt
NðnÞ

1
0
..
.

0

2
664

3
775 ð9:50Þ



which, using (9.48) yields

enðnÞ ¼ �NðnÞeqnðnÞ ð9:51Þ
Thus, the scalar �NðnÞ is the ratio of the a posteriori error at time n to the
rotation error. It is the square root of the prediction error ratio ’NðnÞ.

The elements of the vector GNðnÞ are given by

g1ðnÞ ¼ sin 
1 ¼ xðnÞ=E1=2
b0 ðnÞ

g2ðnÞ ¼ cos 
1 sin 
2 ¼ "b1ðnÞ=E1=2
b1 ðnÞ

gNðnÞ ¼ "bN�1ðnÞ=E1=2
bN�1ðnÞ

ð9:52Þ

where "biðnÞ is the a posteriori backward prediction error for order i, con-
nected to the rotation error by

"biðnÞ ¼ �iðnÞebiqðnÞ ð9:53Þ
From the algorithmic point of view, the vector GNðnÞ provides the link
between forward and backward linear prediction and it leads to a fast
algorithm.

The forward linear prediction procedure described above can be summar-
ized, combining (9.40) and (9.41), by the following factorization of the
rotation matrix QNþ1ðnÞ

QNþ1ðnÞ ¼ In�N 0
0 Q�ðnÞ

� 	
QeaðnÞ QNðn� 1Þ 0

0 1

� 	
ð9:54Þ

where QeaðnÞ stands for the combination of rotations used to accumulate the
forward prediction error values and produce the prediction error energy
EaNðnÞ.

Multiplying both sides by the pinning vector yields

In�N 0
0 Q�ðnÞ

� 	
QeaðnÞ

�Nðn� 1Þ
0
..
.

0
GNðn� 1Þ

0

2
6666664

3
7777775 ¼

�Nþ1ðnÞ
0
..
.

0
GNþ1ðnÞ

2
66664

3
77775 ð9:55Þ

The action of the matrix QeaðnÞ is resticted to the last rotation, which
projects the top element in the vector, �Nðn� 1Þ, at the bottom with the
multiplying factor eaqnðnÞ=E1=2

aN ðnÞ. Therefore, keeping just the bottom N þ 1
rows in (9.55), one gets

Q�ðnÞ GNðn� 1Þ
�Nðn� 1ÞeaqnðnÞ=E1=2

aN ðnÞ
� 	

¼ gNþ1ðnÞ
GNðnÞ

� 	
ð9:56Þ



A fast algorithm is obtained by combining equations (9.33), (9.45), (9.48),
(9.56). The sequence of operations is shown in Figure 9.1, where the unne-
cessary variables have been dropped and rotation matrices are restricted to
the size ðN þ 1Þ � ðN þ 1Þ. To prevent any confusion in notations the matrix
product R1R2 � � �RN in recursion (9.33) has been denoted QaðnÞ in its
restricted form.

The filter section is derived through application of recursion (9.33) to the
vector of the reference signal samples. The a posteriori output error, and the
a priori error as well, can be provided from the rotation output error
denoted eqðnþ 1Þ.

The FORTRAN subroutine for the FLS-QR algorithm is given in Annex
9.1, including the initialization of the internal variables.

9.6. IMPLEMENTATION ASPECTS

From an implementation point of view, there are two main motivations to
develop rotation-based algorithms. First, the adaptive filter variables can
keep the same dynamic range as the input variables. Second, numerical
stability can be ensured. The good numerical behavior of the QR-based
algorithm stems from the fact that rotations conserve the norms of the
vector. Thus, when computing with finite arithmetic, the following con-
straints must be satisfied for the limited precision variables, for 1 4 i 4 n:

cos2 
i þ sin2 
i 4 1; cos2 �i þ sin2 �i 4 1 ð9:57Þ
Moreover, it is interesting to notice in the algorithm of Figure 9.1 the
existence of a reduction mechanism for roundoff errors. The vector GNðnÞ
is a key variable. Assume that its square norm is increased by � at time n.
The last rotation in the prediction section yields

�2NðnÞ ¼ 1� kGNðnÞk2 �� ð9:58Þ
Then, at time nþ 1, the norm of the updated vector GNðnþ 1Þ is changed
approximatively by �½1� e2aqðnþ 1Þ=Eaðnþ 1Þ�. A detailed analysis of the
stability of QR-based algorithms can be found in reference [4].

As concerns the numerical calculations, they can be derived in two cate-
gories, namely rotations and angle calculations. The algorithm of Figure 9.1
comprises 3N rotations and 2N angle calculations, for the elements of
matrices Qa and Q� respectively. Each rotation is equivalent to a complex
multiplication, while the angle calculations are preferably implemented with
the help of look-up tables.

The block diagram of the prediction section is given in Figure 9.2,
emphasizing the sets of rotations in the prediction section and the feedback



FIG. 9.1 Computational organization of the fast least squares QR algorithm.



brought by the variable u. The two different directions for the propagation
of the calculations are worth pointing out. Note that the numerical accuracy
in the implementation can be monitored. The last rotation in the Q�ðnþ 1Þ
matrix provides, according to equation (9.55), the variable gNþ1ðnþ 1Þ,
which is the last element of GNþ1ðnÞ, and also the first element of the
same vector, i.e., g1ðnþ 1Þ, which can be computed directly from the
input data by

g1ðnþ 1Þ ¼ xðnÞ
E1=2
b0 ðnÞ

ð9:59Þ

At each time, the difference between the value given by the algorithm and
the direct computation reflects the numerical accuracy of the algorithm.
A VLSI implementation of the FLSQR algorithm is described in refer-
ence [5]. It is based on the CORDIC approach, which is particularly
efficient at performing signal processing functions in which rotations
are involved.

FIG. 9.2 Block diagram of the FLSQR adaptive filter.



9.7. THE CASE OF COMPLEX SIGNALS

Rotations suitable for complex data can be derived from the general form of
the elementary unitary matrix

Q
 ¼ e j� cos 
 �e j� sin 

e j� sin 
 e j� cos 


� 	
ð9:60Þ

with �� �� � þ � ¼ 0 (modulo 2�). However, the FLS-QR algorithm exhi-
bits several specificities which lead to a unique option for the rotation
matrix.

To begin with, the rotations involved in the algorithm lead to a real
vector, because its single nonzero element is the square root of the error
energy, the backward prediction error energy for the rotations denoted Q�

and the forward prediction error energy for Qa. In the matrices, every
rotation has to cancel the first element of a two-element vector and make
the second element real. Additionally, the second element in the rotated
vector is always real, because of order recursions and because it is the square
root of a prediction error energy. Finally, rotation matrices in the present
case can only take the form

Q
 ¼ c
 �s

�ss
 c


� 	
ð9:61Þ

with ðc
Þ2 þ s
 �ss
 ¼ 1, c
 being real and s
 complex.
Thus, in order to process complex data, it is sufficient to modify the angle

calculations accordingly.
The error ratio �NðnÞ is a product of c
 variables and remains real. The

forward linear prediction error energy is computed by

Eaðnþ 1Þ ¼WEaðnÞ þ eaqðnþ 1Þ �eeaqðnþ 1Þ ð9:62Þ
As an illustration, the following results have been obtained in the case of

system modelling. The reference signal is

yðnÞ ¼ ½0:5þ 0:8j�xðnÞ þ ð0:4þ 0:3jÞxðnþ 1Þ þ ð0:1þ 0:7jÞxðn� 2Þ
and xðnÞ is a white Gaussian noise whose power is unity. After 105 itera-
tions, one gets

YqðnÞ ¼ ½1:0þ 7:0j; 4:1þ 3:2j; 5:1þ 8:2j�t

The theoretical vector is derived from Section 2 and the equation

YqNðnÞ ¼ TNðnÞHðnÞ ð9:63Þ
The weighting factor in the simulation is W ¼ 0:99, and one gets



Yq3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�W
p ½0:1þ 0:7j; 0:4þ 0:3j; 0:5þ 0:8j�t

The rotation algorithm for complex data finds application in communica-
tion receivers, for equalization.

9.8. MULTIDIMENSIONAL SIGNALS

The procedure described in the previous sections can be applied to multi-
dimensional (MD) signals, leading to the FLS-QR algorithm for MD sig-
nals.

The case of two signals x1ðnÞ and x2ðnÞ is considered first. The ðnþ 1Þ �
2N input data matrix is defined by

X2N ¼
x1ðnÞ x2ðnÞ � � � x2ðnþ 1�NÞ

W1=2x1ðn� 1Þ W1=2x2ðn� 1Þ � � � W1=2x2ðn�NÞ
..
. ..

. . .
. ..

.

Wn=2x1ð0Þ Wn=2x2ð0Þ � � � 0

2
6664

3
7775 ð9:64Þ

Following the developments in the previous sections, a fast algorithm is
derived from the path to the matrix T2Nþ2ðnÞ from T2NðnÞ using forward
linear prediction. By definition,

Q2NðnÞX2NðnÞ ¼

0 � � � 0
..
.

0 � � � 0
0 � � �
..
.

T2NðnÞ

2
666664

3
777775 ð9:65Þ

A time recurrence relation for the rotation matrix Q2NðnÞ is obtained by
considering the equation

1 0
0 Q2Nðn� 1Þ

� 	
X2NðnÞ¼

x1ðnÞ x2ðnÞ � � � x2ðnþ 1�NÞ
..
. ..

. ..
.

0 0 � � � 0
W1=2 T2Nðn� 1Þ

2
6664

3
7775 ð9:66Þ

and canceling the first row of the right-hand-side matrix. Now let us intro-
duce forward linear prediction, as in (9.39), by the equation



Q2Nðn� 1Þ 0 0

0 1 0

0 0 1

2
64

3
75 X2Nþ2ðnÞ

0 � � � 0
� 	

¼

e1aqnðnÞ e2aqnðnÞ 0 � � � 0

..

. ..
. ..

. ..
.

e1aqNðnÞ e2aqNðnÞ 0 � � � 0

X1aqNðnÞ X2aqNðnÞ T2Nðn�1Þ
Wn=2x1ð0Þ Wn=2x2ð0Þ 0 � � � 0

0 0 0 � � � 0

2
66666666664

3
77777777775

ð9:67Þ

By using two sets of rotations, Q1eaðnÞ and Q2eaðnÞ, the prediction errors can
be accumulated to produce the matrix

X1aqNðnÞ X2aqNðnÞ T2Nðn� 1Þ
0 E1=2

22aNðnÞ 0 � � � 0
E1=2
11aNðnÞ E1=2

12aNðnÞ 0 � � � 0

2
4

3
5 ð9:68Þ

It appears that E1=2
11aNðnÞ is the prediction error energy for the signal x1ðnÞ. As

concerns the signal x2ðnÞ, its prediction error energy is the sum of two terms,
namely E12aNðnÞ which is linked to the signal x1ðnÞ and an orthogonal com-
ponent E22aNðnÞ.

The same triangularization procedure can be applied to the input signals
themselves, yielding

Q 

x1ðnÞ x2ðnÞ
0 W1=2E1=2

22b0ðn� 1Þ
W1=2E1=2

11b0ðn� 1Þ W1=2E1=2
12b0ðn� 1Þ

2
4

3
5 ¼ 0 0

0 E1=2
22b0ðnÞ

E1=2
11b0ðnÞ E1=2

12b0ðnÞ

2
4

3
5
ð9:67Þ

where Q is a product of two rotations. The matrix obtained is included in
the triangular matrices expressed by

T2Nþ2ðnÞ ¼

0 0 � � � E1=2
22bNðnÞ

..

. ..
. ..

.

0 E1=2
22b0ðnÞ � � � X2BqNðnÞ

E1=2
11b0ðnÞ E1=2

12b0ðnÞ � � �

2
66664

3
77775 ð9:68Þ

The procedure to derive a fast algorithm starts from (9.67). The matrix
T2Nþ2ðnÞ is obtained by a set of two rotation matrices Q1�ðnÞ and Q2�ðnÞ, and
the 2-D version of the factorization (9.54) is



Q2Nþ2ðnÞ ¼ Q2�ðnÞQ1�ðnÞQ2eaðnÞQ1eaðnÞ Q2Nðn� 1Þ 0
0 I2

� 	
ð9:69Þ

The restriction to the first column is obtained by multiplying both sides by
the pinning vector, which yields

�2Nþ2ðnÞ
0
..
.

0
G2Nþ2ðnÞ

2
66664

3
77775 ¼

�2Nþ2ðnÞ
0
..
.

0
g2Nþ2ðnÞ
g2Nþ1ðnÞ
G2NðnÞ

2
666666664

3
777777775

ð9:70Þ

and

�2Nþ2ðnÞ
0
..
.

0
y2Nþ2ðnÞ
y2Nþ1ðnÞ
G2NðnÞ

2
666666664

3
777777775
¼ Q2�ðnÞQ1�ðnÞQ2eaðnÞQ1eaðnÞ

�2Nðn� 1Þ
0
..
.

0
G2Nðn� 1Þ

0
0

2
666666664

3
777777775

ð9:71Þ

Finally, the matrices which cancel the first row of the right hand side matrix
in (9.66) are obtained by

�2NðnÞ
0
..
.

0
G2NðnÞ

2
66664

3
77775 ¼ R2N � � �R1

1
0
..
.

0

2
664

3
775 ð9:72Þ

The algorithm for 2-D signals closely follows the FLS-QR algorithm for 1-D
signals, the size of the vectors for internal data being doubled.

In fact, it is even possible to use the 1-D algorithm to perform multi-
dimensional adaptive filtering, as already shown in Section 7.13 for trans-
versal filters. Let us consider the rotated input data vector

e2aqðnþ 1Þ
X2qðnþ 1Þ

� 	
¼ Q2aðnÞ x2ðnþ 1Þ

W1=2X2qðnÞ
� 	

ð9:73Þ

and the prediction error energy

E2aðnþ 1Þ ¼WE2aðnÞ þ e22aqðnþ 1Þ ð9:74Þ



Next, the matrix Q2�ðnþ 1Þ can be computed according to equation (9.55),
and the following vector can be obtained, repeating (9.56):

G 02Nþ1ðnþ 1Þ ¼ Q2�ðnþ 1Þ G2NðnÞ
u

� 	
ð9:75Þ

Continuing with the sequence of operations in FLS-QR, a
ð2N þ 1Þ � ð2N þ 1Þ rotation matrix Q 02aðnþ 1Þ is computed by

� 02Nþ1ðnþ 1Þ
G 02Nþ1ðnþ 1Þ

� 	
¼ Q 02aðnþ 1Þ 1

0

� 	
ð9:76Þ

With the help of this matix, the new input data vector associated with
x1ðnþ 1Þ can be computed

e 01aqðnþ 1Þ
X 01qðnþ 1Þ

� 	
¼ Q 02aðnþ 1Þ x1ðnþ 1Þ

W1=2X 01qðnÞ
� 	

ð9:77Þ

and repetition of the above sequence of operations leads to the vector
G2Nþ2ðnþ 1Þ.

Since only the 2N � 2N matrix Q2aðnþ 1Þ is needed, the last two elements
in G2Nþ2ðnþ 1Þ can be dropped to obtain G2Nðnþ 1Þ. Therefore, in the
second path also, the computations can be carried out on vectors with 2N
elements. Finally, the rotation matrix Q2aðnÞ is updated in two paths of the
1-D linear prediction algorithm, fed with the data set ½x2ðnþ 1Þ;X2qðnÞ� and
½x1ðnþ 1Þ;X 01qðnþ 1Þ�, respectively.

The above approaches can be extended to multidimensional signals.
However, it is worth emphasizing that a specific triangularization operation
has to be included in the direct approach, according to (9.68), for each of the
K dimensions of the input signal. In contrast, the standard 1-D algorithm
can be used K times to achieve the same result, and is therefore simpler to
implement.

9.9. NORMALIZATION AND EQUIVALENCE WITH
LATTICE

The FLS-QR algorithm in Figure 9.1 can be made more regular by a nor-
malization operation, performed by the rotation

0

E1=2
b0 ðnþ 1Þ

� 	
¼ cos ðnþ 1Þ � sin ðnþ 1Þ

sin ðnþ 1Þ cos ðnþ 1Þ
� 	

xðnþ 1Þ
W1=2E1=2

b0 ðnÞ
� 	

ð9:78Þ
with



sin ðnþ 1Þ ¼ xðnþ 1Þ
E1=2
b0 ðnþ 1Þ ; cos ðnþ 1Þ ¼W1=2

b0 E1=2ðnÞ
E1=2
b0 ðnþ 1Þ

In the algorithm, xðnþ 1Þ is replaced by sin ðnþ 1Þ, and W1=2 is replaced
by cos ðnþ 1Þ. Then, the first angle calculation equation becomes

0
1

� 	
¼ Q�ðnþ 1Þ Xqðnþ 1Þ

E1=2
a ðnþ 1Þ

� 	
ð9:79Þ

and it is similar to the second angle calculation. In fact, the above equation
(9.79) can be reversed and expressed as

E1=2
a ðnþ 1Þ
Xqðnþ 1Þ

� 	
¼ JNQ

�1
� ðnþ 1ÞJN 1

0

� 	
ð9:80Þ

Now, an order recursion algorithm can be derived which turns out to be
equivalent to the normalized lattice algorithm.

Relationships between QR and lattice approaches have been pointed out
in the previous sections. According to the definitions in Section 8.5, the
normalized backward prediction error is

enbiðnþ 1Þ ¼ "biðnþ 1Þ
’1=2i ðnþ 1ÞE1=2

bi ðnþ 1Þ ¼ sin 
iþ1ðnþ 1Þ ð9:81Þ

and similarly,

enaiðnþ 1Þ ¼ eaqiðnþ 1Þ
E1=2
ai ðnþ 1Þ

ð9:82Þ

The lattice coefficients are linked to the angles by equation (9.47):
sin �iðnþ 1Þ ¼ kðnþ 1Þ. Finally, the same variables appear in both normal-
ized QR and normalized lattice algorithms.

9.10. CONCLUSION

Of all the algorithms for adaptive filtering, the FLS-QR given in Figure 9.1
is probably the best in many respects. It combines the performance of least
squares with the robustness of gradient techniques. It is a square-root type
of algorithm, and no expansion of the data dynamic range is necessary. The
angle calculations can be efficiently performed with the help of look-up
tables.

As concerns flexibility, it can cope with different situations: complex
signal, multidimensional signals, and temporary absence of data. Different
types of errors can be accommodated, and the internal variables can be
exploited for signal analysis. It is also possible, whenever it is necessary,



to deliver the transversal coefficients, using an iterative procedure similar to
the method given in Section 8.6 for the lattice structure.

EXERCISES

1. Consider the data vector X ¼ ½1; 0:7; 0:2;�0:5�t. Use a set of rotations
to compute its norm.

2. Study the relationships between the autocorrelation matrix RNðnÞ and
the triangular matrices SNðnÞ and TNðnÞ. Discuss the connections with
other triangular decompositions of RNðnÞ as in Chapter 5.

3. The input signal to a QR algorithm is xðnÞ ¼ sin n�=3. After 103 itera-
tions, the rotated data vector is

Xaq8 ¼ ½�0:520; 0:854; 0:018; 0:003;�0:004;�0:007;�0:005; 0:001�t

Give the value of the weighting factorW . Discuss the relative values of
the elements of the vector Xaq8.

4. In a modeling case, the input signal xðnÞ is a unit-power white noise
and the reference signal is

yðnÞ ¼ xðnÞ þ 0:7xðn� 1Þ þ 0:4xðn� 2Þ

For N ¼ 5 and W ¼ 0:99, give the theoretical value of the rotated
reference signal vector. Verify by simulation using the algorithm of
Figure 9.1.

5. Give the complete list of operations for the complex FLS-QR algo-
rithm of Section 9.7.

6. Give the complete list of operations for the normalized FLS-QR algo-
rithm of Section 9.9, in systolic form.

7. In the equalizer of a communication receiver, the reference signal is
derived from the adaptive filter output, in the tracking mode. Thus, the
filter output ~yyðnÞ has to be provided, and the following equation can be
used

0
Y 0qðnþ 1Þ

� 	
¼ QaðnþÞ

~yyðnþ 1Þ
W1=2YqðnÞ

� 	

Qaðnþ 1Þ and Yqðnþ 1Þ being known, justify the above equation and
explain how ~yyðnþ 1Þ and Y 0qðnþ 1Þ are calculated. Then show that
Yqðnþ 1Þ is obtained by the equation

Yqðnþ 1Þ ¼ Y 0qðnþ 1Þ þ GNðnþ 1Þeðnþ 1Þ



ANNEX 9.1 FORTRAN SUBROUTINE FOR THE
FLSQR ALGORITHM

C
SUBROUTINE FLSQR2(N,X,Y,EPSA,EPS,EA,GAMA,W,WD,
IND,YAQ)

C
C COMPUTES THE PREDICTION ERROR, THE ERROR RATIO AND

THE FILTER
C OUTPUT ERROR (TRIANGULAR FACTORIZATION QR - TYPE 2)
C N = FILTER ORDER
C X = INPUT SIGNAL : x(n+1)
C Xaq = TRANSFORMED FORWARD DATA VECTOR : N elements

(Reflection coefficients)
C Y = REFERENCE SIGNAL
C G = TRANSFORMED UNIT VECTOR

(Backward ‘‘a posteriori’’ prediction error
vector)

C EPSA = A POSTERIORI PREDICTION ERROR
C EA = PREDICTION ERROR ENERGY
C GAMA = ERROR RATIO
C W = WEIGHTING FACTOR
C

DIMENSION Xaq(15),G(16),CALF(15),SALF(15),
CTET(15),STET(15)
DIMENSION YAQ(15)
IF(IND.GT.1)GOTO30

C
C INITIALIZATION
C

DO20I=1,15
Xaq(I)=0.
Yaq(I)=0.
G(I)=0.
CALF(I)=1.
SALF(I)=0.
CTET(I)=1.
STET(I)=0.

20 CONTINUE
EA=1.
GAMA=1.

30 CONTINUE
C
C CALCULATION OF ROTATION ANGLES AND PREDICTION ERRORS
C



EPSAQ=X
DO50I=1,N
EPAQ=EPSAQ
EPSAQ=EPAQ*CTET(I)-WD*XAQ(I)*STET(I)
XAQ(I)=EPAQ*STET(I)+WD*XAQ(I)*CTET(I)

50 CONTINUE
EA=W*EA+EPSAQ*EPSAQ
E1=EA
EQ=SQRT(EA)
ALF2=GAMA*EPSAQ/EQ
DO60I=1,N
EB=XAQ(N+1-I)*XAQ(N+1-I)+E1
EBQ=SQRT(EB)
SALF(N+1-I)=XAQ(N+1-I)/EBQ
CALF(N+1-I)=EQ/EBQ
EQ=EBQ
E1=EB

60 CONTINUE
EN=G(N)*SALF(N)+ALF2*CALF(N)
DO70I=2,N
G(N+2-I)=G(N+1-I)*CALF(N+1-I)-EN*SALF(N+1-I)
EN1=G(N+1-I)*SALF(N+1-I)+EN*CALF(N+1-I)
EN=EN1

70 CONTINUE
G(1)=EN
GAMA=1.
DO80I=1,N
STET(I)=G(I)/GAMA
CTET(I)=SQRT(1.-STET(I)*STET(I))
GAMA=GAMA*CTET(I)

80 CONTINUE
EPSA=GAMA*EPSAQ

C
C FILTER SECTION
C

EPSQ=Y
DO90I=1,N
EPQ=EPSQ
EPSQ=EPQ*CTET(I)-WD*YAQ(I)*STET(I)
YAQ(I)=EPQ*STET(I)+WD*YAQ(I)*CTET(I)

90 CONTINUE
EPS=EPSQ*GAMA
RETURN
END
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10
Spectral Analysis

The estimation of prediction coefficients which is performed in the adapta-
tion gain updating section of FLS algorithms corresponds to a real-time
analysis of the input signal spectrum. Therefore, in order to make correct
decisions when choosing the algorithm parameter values, we need a good
knowledge of the signal characteristics, particularly its spectral parameters.

Independently of FLS algorithms, adaptive filters in general are often
used to perform signal analysis. Thus, it is clear that the fields of adaptive
filtering and spectral analysis are tightly interconnected.

In this chapter, the major spectrum estimation techniques are reviewed,
with emphasis on the links with adaptive filtering. To begin with, the objec-
tives are stated [1].

10.1. DEFINITION AND OBJECTIVES

In theory the spectral analysis of a stationary signal xðnÞ consists of comput-
ing the Fourier transform Xð f Þ defined by

Xð f Þ ¼
X1

n¼�1
xðnÞe�j2�nf ð10:1Þ

The function Xð f Þ consists of a set of pulses, or spectral lines, if the signal is
periodic or predictable. It has a continuous component if it is random.
These aspects are discussed in Chapter 2.

In practical situations, for many different reasons, only a finite set, or
record, of input data is available. and it is an estimate of the true spectrum



which is obtained. The set of N data, xðnÞð0 4 n 4 N � 1Þ, is considered as
a realization of a random process whose power spectral density, or spec-
trum, Sð f Þ is defined, as stated in Section 2.4, by

Sð f Þ ¼
X1

p¼�1
rðpÞe�j2�pf ð10:2Þ

where the ACF values for complex signals are defined by

rðpÞ ¼ E½xðnÞ �xxðn� pÞ�
The spectral analysis techniques aim at providing estimates of that true

spectrum Sð f Þ. To judge the performance, we envisage three criteria: resolu-
tion, fidelity, and variance.

The limitation of the data record length produces a smoothing effect in
the frequency domain which distorts and obscures details. If the estimated
spectrum is smoothed to the degree that two spectral lines of interest cannot
be distinguished, the estimator is said to have inadequate or low resolution.
The resolution is often judged subjectively [2]. Here, it is taken as the mini-
mum frequency interval necessary to separate two lines.

The fidelity can be measured by the distance of the estimated spectrum
from the true spectrum. It takes into account the error or bias, when esti-
mating the frequency of a line, as well as its amplitude.

The variance, as usual, measures the confidence one can have in the
estimator.

An ideal spectrum estimator would equally well, with respect to specified
criteria as above, represent the true spectrum, irrespective of its character-
istics. Unfortunately, it is not possible, and the different methods are in
general linked to particular signals and emphasize a specific criterion. The
presentation given below corresponds, to a certain degree, to an order of
increasing resolution. Therefore emphasis is put on line spectra, which
represent a significant share of the applications and permit simple and
clear comparisons.

10.2. THE PERIODOGRAM METHOD

From the available set of N0 data, an estimate Spdð f Þ of the spectrum is
obtained from

Spdð f Þ ¼
1

N0

XN0�1

n¼0
xðnÞe�j2�nf

�����
�����
2

ð10:3Þ

In order to relate Spdð f Þ t othe true spectrum Sð f Þ, let us expand the right
side and rearrange the summation:



Spdð f Þ ¼
XN0�1

p¼�ðN0�1Þ

1

N0

XN0�1

n¼p
xðnÞ �xxðn� pÞ

" #
e�j2�pf ð10:4Þ

The expression in brackets is the estimate r1ðpÞ of the ACF studied in
Section 3.2. Taking the expectation of both sides of (10.4) yields

E½Spdð f Þ� ¼
XN0�1

p¼�ðN0�1Þ
rðpÞN0 � jpj

N0

e�j2�pf ð10:5Þ

which, due to the properties of the Fourier transform, leads to

E½Spdð f Þ� ¼ Sð f Þ 	 sin2 �fN0

N0 sin
2 �f

ð10:6Þ

where * denotes the convolution operation, which corresponds to a filtering
operation in the frequency domain. The filtering function is shown in Figure
10.1.

When N0!1, one gets

lim
N0!1

E½Spdð f Þ� ¼ Sð f Þ ð10:7Þ

Thus, the estimate is unbiased. If the spectrum consists of just a line, it is
correctly found by that approach, as the peak of the estimate Spdð f Þ.
However, two lines associated with two sinusoids in the signal can only
be distinguished if they are at least separated by the interval �f ¼ 1=N0,

FIG. 10.1 The frequency domain filtering function in the periodogram method.



which, therefore, is the frequency resolution of the analysis.
The variance can be calculated. The following simple expression is

obtained for Gaussian signals:

varfSpdð f Þg ¼ S2ð f Þ 1þ sin2 2�fN0

N0 sin
2 2�f

" #
ð10:8Þ

Equation (10.8) shows that for large N0 the standard deviation of the esti-
mator is equal to its expectation. The estimator is not consistent.

In order to reduce the variance, we can divide the set of N0 data into K
subsets, with or without overlap. The periodogram is computed on each
subset, and the spectrum estimate is taken as the average of the values
obtained. By so doing, the variance is approximately S2ð f Þ=K , and if K is
made proportional to the record length N0, then the estimator is consistent.
However, the counterpart is a decrease in resolution by the factor K .

Data windowing can be incorporated in the method to counter the side-
lobe leakage effect. Let wðnÞ denote the weighting function, the estimate is

Spdwð f Þ ¼
1

K

XK
i¼1

1PM�1
n¼0

w2ðnÞ

XM�1
n¼0

xðiM þ nÞwðnÞe�j2�nf
�����

�����
2

ð10:9Þ

whereM ¼ N0=K is the number of data per section. In practice, some degree
of overlap is generally taken in the sectioning process to gain on the esti-
mator variance. For example, with M ¼ 2N0=K and a square cosine win-
dow, wðnÞ ¼ cos2ð�=MÞðn�M=2Þ, the variance is reduced by alsmot 25%
with respect to the case M ¼ N0=K and wðnÞ ¼ 1.

The above technique is also called the weighted periodogram or Welch
method [3]. It is made computationally efficient by using the FFT algorithm
to compute the periodograms of the data subsets. In that case, the spectrum
is estimated at discrete frequencies, which are interger multiples of fs=M, fs
being the input signal sampling frequency.

10.3. THE CORRELOGRAM METHOD

A critical point in the previous approach is the choice of the sectioning
parameter K value. It has to be a trade-off between resolution and variance,
but the information for making the decision is not readily available.
Consider equation (10.6); the effect of the convolution operation is negligi-
ble if the following approximation holds:



Sð f Þ 	 sin2 �fM

M sin2 �f
� Sð f Þ ð10:10Þ

or, in the time domain,

rðpÞ 1� jpj
M

� 	
� rðpÞ ð10:11Þ

Consequently, the length M of each section of the data record should be
significantly greater than the range of index values P0, over which the cor-
relation function is not negligible.

The correlogram method is in a better position in that respect. It consists
of the direct computation of the spectrum according to its definition (10.2).
If P ACF values are available, the estimate is

SCRð f Þ ¼
XP�1

p¼�ðP�1Þ
rðpÞe�j2�pf ð10:12Þ

or, as a function of the true spectrum,

SCRð f Þ ¼ Sð f Þ 	 sin�f ð2P� 1Þ
sin�f

ð10:13Þ

If the correlation values are computed using N0 data, as shown in Section
3.2, an estimate of the true correlation function is obtained, which in turn is
reflected in the spectrum estimation SCRð f Þ. It can be shown that the var-
iance is approximately

varfSCRð f Þg �
2P� 1

N0

S2ð f Þ ð10:14Þ

Therefore the number of correlation values must be taken as small as pos-
sible. The optimal conditions are obtained if P is chosen as P0, assuming the
AC function can be neglected for P > P0, as shown in Figure 10.2. The
estimation, according to (10.13), can become negative. In real applications,
the ACF values have to be estimated; another window wðpÞ is used instead
of the rectangular window, leading to the estimate

SCRwð f Þ ¼
XP�1

p¼�ðP�1Þ
wðpÞrðpÞe�j2�pf ð10:15Þ

With the triangular window, wðpÞ ¼ 1� jpj=P, the estimate is positive, as in
the previous section, and the information is available for choosing the sum-
mation range P. The variance is



varfSCRwð f Þg � S2ð f Þ 1
N0

XP�1
p¼�ðP�1Þ

w2ðpÞ ð10:16Þ

The correlogram is also called the Blackman–Tukey method [4]. Concerning
the computational complexity, the calculation of the ACF values has a
significant impact [5]. However, if the simplified techniques described in
Section 3.2 can be used, the need for multiplications is avoided and the
approach is made efficient.

In the methods described above, and particularly the periodogram, the
Fourier transform operates as a bank of filters whose coefficients are the
same for all the frequency values. Instead, the filter coefficients can be
adjusted for each frequency to minimize the estimation variance.

10.4. THE MINIMUM VARIANCE (MV) METHOD

The principle of that approach, also called the maximum likelihood or
Capon method [6], is to calculate the coefficients of a filter matched to the
frequency under consideration and take the filter output signal power as the
value of the power spectrum. Consequently, a sinusoid at that frequency is
undistorted, and the variance of the output is minimized.

The filter output is

yðnÞ ¼
XN
i¼0

hixðn� iÞ ¼ HtXðnÞ ð10:17Þ

FIG. 10.2 Optimal number of AC values in the correlogram method.



The N þ 1 coefficients are subject to the constraint

XN
i¼0

�hhie
�j2�if ¼ 1 ð10:18Þ

to preserve a cisoid at frequency f . Let

F ¼ ½1; e�j2�f ; . . . ; e�j2�Nf �t

be the vector with complex elements. The filter coefficients which minimize
the output power minimize the expression

E½ �HHt½XðnÞXtðnÞ�H� þ �ð1� �HHtFÞ ð10:19Þ
where � is a Lagrange multiplier.

The optimum coefficients are

Hopt ¼
�

2
R�1Nþ1F ð10:20Þ

Using equation (9.18) to get the value of � and substituting into the above
expression yields

Hopt ¼
1

�FFtR�1Nþ1F
R�1Nþ1F ð10:21Þ

The output signal power SMVð f Þ is

SMVð f Þ ¼ �HHt
optRNþ1Hopt ¼

1

�FFtR�1Nþ1F
ð10:22Þ

If such a filter is calculated for every frequency value, an estimate of the
power spectrum is

SMVð f Þ ¼
1PN

k¼0

PN
l¼0
�kle

�j2�ðk�lÞf
ð10:23Þ

where the values �kl are the elements of the inverse input signal AC matrix,
which have to be estimated from the input data set.

The function SMWð f Þ can be related to the prediction filter frequency
responses, denoted by Aið f Þ and defined by

Aið f Þ ¼ 1�
Xi
k¼1

akle
�j2�kf ; 0 4 i 4 N ð10:24Þ

The triangular decomposition of the inverse AC matrix [equation (5.81) of
Chapter 5] yields



1

SMVð f Þ
¼
XN
i¼0
jAið f Þj2 ð10:25Þ

or

1

SMVð f Þ
¼
XN
i¼0

1

SARið f Þ
ð10:26Þ

where

SARið f Þ ¼
1

1� Pi
k¼1

akie
�j2�kf

����
����2

ð10:27Þ

is the AR spectrum estimate, taken as the inverse of the squared prediction
error filter response.

Therefore, SMVð f Þ turns out to be the harmonic average of the AR
estimations for all orders from 0 to N; consequently it exhibits less resolu-
tion than the AR estimate with the highest order N. The emphasis with that
approach is on minimizing the variance.

The resolution of the MV method can be significantly improved.
According to the definition, it provides an estimate of the signal power at
each frequency. A better resolution is obtained by techniques which estimate
the power spectral density instead. As seen in Chapter 3 with eigenfilters, the
power spectral density is kept if the filter is unit norm, which leads to the
minimum variance with normalization estimate [7]

SMVNð f Þ ¼
�HHt
optRNþ1Hopt

�HHt
optHopt

ð10:28Þ

Using (9.21), we have

SMVNð f Þ ¼
�FFtR�1Nþ1F
�FFtR�2Nþ1F

ð10:29Þ

As an illustration, the functions SMVð f Þ and SMVNð f Þ are shown in
Figure 10.3 for a signal consisting of two sinusoids in white noise. The
data record length is 64; the filters have N þ 1 ¼ 10 coefficients; the
power of each sinusoid is 10 dB above the noise power. Clearly, the resolu-
tion of the normalized method is significantly improved, since it can distin-
guish the two sine waves, whereas the standard method cannot.

The MV method with normalization comes closer to the AR method, as
far as resolution is concerned. The price to be paid is a significant increase in
computations.



The methods presented so far are based on filtering the data with a filter
matched to a single sinusoid. Consequently, they are not optimal to resolve
several sinusoids. Methods for that specific case are presented next.

10.5. HARMONIC RETRIEVAL TECHNIQUES

The principle of harmonic decomposition has been introduced in Section
2.11 as an illustration of the fundamental decomposition of signals. It is
based on the assumption that the signal consists of real sinusoids with
uncorrelated random phases in white noise, and the spectrum is calculated
as

SHRð f Þ ¼ �2e þ
XM
i¼1
jSij2½�ð f � fiÞ þ �ð f þ fiÞ� ð10:30Þ

The corresponding ACF is

rðpÞ ¼ 2
XM
i¼1
jSij2 cosð2�pfiÞ þ �2e �ðpÞ ð10:31Þ

where �2e is the white noise power, fi are the sinusoid frequencies, and Si are
their amplitudes.

FIG. 10.3 Minimum variance spectral estimation of two sinusoids in white noise:

(a) standard method, (b) normalized method.



According to the results of Chapters 2 and 3, the noise power corre-
sponds to the smallest eigenvalue of the ð2M þ 1Þ � ð2M þ 1Þ AC matrix
R2Mþ1:

�2e ¼ 	min; 2Mþ1 ð10:32Þ
and the sinusoid frequencies are the zeros of the associated eigenvector
polynomial

H2Mþ1ðzÞ ¼ 1þ
X2M
i¼1

vmin; iz
�i ð10:33Þ

Once the M sinusoid frequencies have been obtained, the powers are
calculated by solving the system of equations (10.31) for
p ¼ 0; 1; . . . ;M � 1, corresponding to the matrix equation (2.41) of
Chapter 2.

If it is not known a priori, the order M is determined by calculating the
minimum eigenvalues 	min; 2Mþ1 for increasing orders until they become
virtually constant.

This method, called the Pisarenko method, provides, when the ACF
values are known, unbiased spectral estimates of signals consisting of the
sum of M sinusoids with uncorrelated random phases in white noise [8]. It is
very elegant and appealing from a theoretical point of view. However, with
real data, when the ACF has to be estimated, it exhibits a number of
limitations.

First of all, there is a fundamental practical difficulty related to the
hypothesis on the noise. Estimation bounds and experiments show that it
takes numerous samples for the characteristics of a white noise to appear. It
has been shown in Section 3.11 that errors on the AC matrix elements affect
the eigendirections; therefore, a bias is introduced on the sinusoid frequen-
cies which becomes significant for low SNRs and small data records. That
bias can be reduced by taking the order in the procedure greater than the
number of sinusoids M. In these conditions, the occurrence of spurious lines
can be prevented by choosing the minimum eigenvector in the noise space in
such a way that the zeros of the eigenpolynomial in excess be not on the unit
circle, as discussed in Section 10.8.

Example

To illustrate the impact of the number N0 of data available, let us take the
signal

xðnÞ ¼ sinðn!0 þ ’Þ
Estimator (3.23) for the AC function yields



r2ðpÞ ¼ 1
2
cos p!0 þ 1

2

sinðN0 � pÞ!0

ðN0 � pÞ sin!0

cos½ðN0 þ 1Þ!0 þ 2’�

Taking the order 2M þ 1 ¼ 3 in the procedure, the estimated frequency is

~!!0 ¼ cos�1
rð2Þ þ sign½rð1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð2Þ þ 8r2ð1Þ

p
4rð1Þ

" #

To judge the sensitivity of this estimator with respect to the AC function, it
is useful to calculate the derivatives:

@ ~!!0

@rð1Þ
����

���� ¼ rð2Þ
rð1Þ
����

���� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð2Þ þ 8r2ð1Þ

p tan�1 ~!!0

�� ��
@ ~!!0

@rð2Þ
����

���� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð2Þ þ 8r2ð1Þ

p tan�1 ~!!0

�� ��
Clearly, for ~!!0 small or close to �, the estimation is very sensitive to per-
turbations of rð1Þ or rð2Þ, which can come from the second term in the above
estimation of r2ðpÞ or from a noise component.

Concerning computational complexity, the procedure contains two
demanding operations: the eigenparameter calculation, and the extraction
of the roots of the eigenpolynomial. The determination of the frequencies fi
becomes inaccurate for large order M. It can be avoided if only the shape of
the spectrum is of interest by calculating

S 0HRð f Þ ¼
jHmj2

1þP2M
i¼1

vi;mine
�j2�if

����
����2

ð10:34Þ

where Hm is the peak of the modulus of H2Mþ1ðe j2�if Þ.
For the eigenparameter calculation, the conjugate gradient technique

given in Annex 3.2 is an efficient approach. Iterative gradient techniques,
mentioned in Section 3.10, can also be used; they permit an adaptive reali-
zation.

The hypothesis on the noise is avoided in the damped sinusoid decom-
position method, called the Prony method [9]. The principle consists of
fitting the set of N0 ¼ 2P data to P damped cisoids:

xðnÞ ¼
XP
i¼1

Siz
n
i ð10:35Þ

with

zi ¼ e�ð�iþj2�f
iÞ



As pointed out in Chapter 2, this is equivalent to assuming that the data
satisfy the recurrence relationship

xðnÞ ¼
XP
i¼1

aixðn� iÞ ð10:36Þ

The coefficients can be obtained by solving the system

xðpÞ xðp� 1Þ � � � xð1Þ
xðpþ 1Þ xðpÞ � � � xð2Þ

..

. ..
. ..

.

xð2p� 1Þ xð2p� 2Þ � � � xðpÞ

2
6666664

3
7777775

a1

a2

..

.

ap

2
6666664

3
7777775 ¼

xðpþ 1Þ
xðpþ 2Þ

..

.

xðN0Þ

2
6666664

3
7777775 ð10:37Þ

An iterative solution is given in Section 5.14, and the algorithm is presented
in Figure 5.13. The values zi are computed as the roots of the equation

1�
XP
i¼1

aiz
�i ¼ 0 ¼

YP
i¼1
ð1� ziz

�1Þ ð10:38Þ

Finally the amplitudes Si are obtained by solving the system

1 1 � � � 1

z1 z2 � � � zP

..

. ..
. ..

.

zP�11 zP�12 � � � zP�1P

2
6666664

3
7777775

S1

S2

..

.

SP

2
6666664

3
7777775 ¼

xð1Þ
xð2Þ
..
.

xðPÞ

2
6666664

3
7777775 ð10:39Þ

The spectral estimate corresponds to the Fourier transform of equation
(10.35); if we assume symmetry, xðnÞ ¼ xð�nÞ, the result, for continuous
signals, is

SDSð f Þ ¼
XP
i¼1

2�iSi

�2i þ 4�2ð f � fiÞ2
�����

�����
2

ð10:40Þ

The method can be extended to real undamped sinusoids. It is well suited to
finding out the modes in a vibration transient.

System (10.37) may be under- or overdetermined and solved as indicated
in Section 3.5. The overdetermination case corresponds to the AR
approach.



10.6. AUTOREGRESSIVE MODELING

The method is associated with the calculation of the linear prediction coeffi-
cients aið1 4 i 4 NÞ through the normal equations

RNþ1

1
�a1
..
.

�aN

2
6664

3
7775 ¼

EN

0
..
.

0

2
664

3
775 ð10:41Þ

where EN is the prediction error power and RNþ1 is an estimate of the signal
AC matrix. The spectrum is derived from the coefficients by

SARð f Þ ¼
EN

1�PN
i¼1

aie
�j2�if

����
����2

ð10:42Þ

The resolution capability of that approach is illustrated in Figure 10.4,
which shows the spectrum estimated from N ¼ 64 samples of a signal con-
sisting of two sinusoids separated by 1

5
ð 1
N0
Þ, the SNR being 50 dB. Clearly,

the AR method provides a good analysis, but the Fourier transform
approach cannot distinguish the two components; it is a high-resolution
technique.

The matrix RNþ1 used in (10.41) can be calculated from the set of N0 data
in various ways [10]. Let us consider the ðN0 þNÞ � ðN þ 1Þ input signal
matrix

FIG. 10.4 AR spectral estimation of two sinusoids.



XN0ðNþ1Þ ¼

xðN0Þ � � � 0
xðN0 � 1Þ � � � 0

..

. ..
.

xðN0 �N þ 1Þ � � � 0
xðN0 �NÞ � � � xðN0Þ

..

. � � � ..
.

xð1Þ � � � xðN þ 1Þ
0 � � � xðNÞ
..
. ..

.

0 � � � xð1Þ

2
666666666666666664

3
777777777777777775

U

Xa

L

ð10:43Þ

and denote by U, Xa, and L the upper, center, and lower sections, respec-
tively, as indicated. The choice

RNþ1 ¼ �XXtX ¼ �UUtU þ �XXt
aXa þ �LLtL ð10:44Þ

corresponds to the so-called AC equations, because the matrix obtained is
Hermitian and Toeplitz, like the theoretical AC matrix.

Another choice is

RNþ1 ¼ �XXt
aXa ð10:45Þ

which leads to the so-called covariance equations. The matrix is near
Toeplitz. To complete the picture, the prewindowed equations correspond
to

RNþ1 ¼ �XXt
aXa þ �LLtL ¼ �XXtX � �UUtU ð10:46Þ

and the postwindowed equations to

RNþ1 ¼ �XXt
aXa þ �UUtU ¼ �XXtX � �LLtL ð10:47Þ

Of these four types of equations, the covariance type is, in general, the most
efficient for resolution with short data records because it does not imply any
assumptions on the data outside the observation interval. The method is
well suited to adaptive implementation, as emphasized in the previous chap-
ters.

The values taken above for the matrix RNþ1 are based on forward linear
prediction. If the signal is stationary, the coefficients of the backward pre-
diction filter are identical to the coefficients of the forward prediction filter,
but reversed in time and conjugated, in the complex case. Therefore, the
most complete estimation procedure is based on minimizing the sum of the
forward and backward prediction error powers, and the corresponding
expression for the matrix RNþ1 is

.......................

.......................
g
g
g



RNþ1 ¼ �XXt
aXa þ �XXt

bXb ð10:48Þ
where Xb is the backward ðN0 �NÞ � ðN þ 1Þ matrix

Xb ¼
�xxðN0Þ � � � �xxðN0 �NÞ
..
. � � � ..

.

�xxðN þ 1Þ � � � �xxð1Þ

2
64

3
75

An efficient approach to solve the normal equations consists of calculating
the reflection coefficients. The LS lattice structure analysis given in Section
8.1 leads to the calculation of two sets of reflection coefficients kaiðnÞ and
kbiðnÞ for forward and backward prediction, respectively, defined by equa-
tion (8.16). For stationary signals, the PARCOR coefficient ki is unique and
given by expression (5.61) in Chapter 5. Estimates for ki from kaiðnÞ and
kbiðnÞ can be obtained in different ways. A first estimate is the geometric
mean

jkij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkaiðnÞjjkbiðn� 1Þj

p
ð10:49Þ

which, according to (8.50), corresponds to the normalized lattice structure.
Another estimate is the harmonic mean, corresponding to the so-called

Burg method [1]

1

ki
¼ 1

kaiðnÞ
þ 1

kbiðnÞ
ð10:50Þ

Accordingly, the coefficients are calculated for complex data by

ki ¼
2
PN0

j¼iþ1
ea;ði�1Þð jÞ �eeb;ði�1Þð j � 1Þ

PN0

j¼iþ1
jea;ði�1Þð jÞj2 þ jeb;ði�1Þð j � 1Þj2

ð10:51Þ

Their absolute values are bounded by unity, which corresponds to a stable
prediction error filter and a finite spectrum estimate at all frequencies.

The Burg procedure is summarized as follows:

1. Calculate k1 by

k1 ¼
2
PN0

j¼2
xð jÞ �xxð j � 1Þ

PN0

j¼2
jxð jÞj2 þ jxð j � 1Þj2

ð10:52Þ

2. For 1 4 i 4 N:
a. Calculate the prediction errors by



eaið jÞ ¼ eaði�1Þð jÞ � kiebði�1Þð j � 1Þ
ebið jÞ ¼ ebði�1Þð j � 1Þ � kieaði�1Þð jÞ

ð10:53Þ

b. Calculate the reflection coefficients kiþ1 by equation (9.51)
c. Calculate the prediction coefficients by

aii ¼ ki

aji ¼ ajði�1Þ � kiaði�jÞði�1Þ; 1 4 j 4 i � 1
ð10:54Þ

Independently of adaptive LS lattice filters, the procedure itself can be
made adaptive by the introduction of a weighting factor W in the summa-
tions of the numerator and denominator of equation (9.51). The updating
equations are

Diðnþ 1Þ ¼WDiðnÞ þ jeaði�1Þðnþ 1Þj2 þ jebði�1ÞðnÞj2

kiðnþ 1Þ ¼ kiðnÞ þ
1

Diðnþ 1Þ ½eaiðnþ 1Þ �eebði�1ÞðnÞ
þ eaði�1Þðnþ 1Þ �eebiðnþ 1Þ�

ð10:55Þ

The above updating technique can be simplified by making constant the
variable Diðnþ 1Þ, which leads to the gradient approach defined by expres-
sion (5.116) of Chapter 5.

The adaptive technique associated with the geometric mean approach
(10.49) is based on the adaptive normalized lattice algorithms described in
Section 8.5.

An interesting aspect of the lattice approach is that it provides the linear
prediction coefficients for all orders from 1 to N, and, consequently, the
corresponding spectral estimations.

Given a data record of length N0, the selection of the optimal predictor
order N is not straightforward. It if is too small, a smoothed spectrum is
obtained, which produces a poor resolution. On the contrary, if it is too
large, spurious peaks may appear in the spectrum.

The results given in Section 5.7 indicate that the predictor order N can be
chosen as the value which corresponds to the maximum of the reflection
coefficients jkij. Another choice is based on the prediction error power; it
minimizes the final prediction error (FPE) [11]

FPEðNÞ ¼ N0 þN þ 1

N0 �N�1
EN ð10:56Þ

Experience has shown that a reasonable upper bound for N is [12]

N 4
N0

3
ð10:57Þ



The resolution of the AR method strongly depends on the noise level.
Extending the results in Section 5.2, we can state that it is not possible to
distinguish between two real sinusoids separated by �f if the noise power
exceeds the limit �2L given approximately by

�2L � 40ð�f Þ3 ð10:58Þ
when the predictor order N is twice the number M of real sinusoids in the
signal. When N increases, the results of Section 5.8 show that the limit �2L
increases as a function of N � 2M.

For a single sinusoid in noise, the 3-dB bandwidth of the prediction error
filter can be roughly estimated by

B3AR �
1

N2 � SNR
ð10:59Þ

where SNR is the signal-to-noise ratio and the order N is assumed to be
large. The derivation is based on the hypothesis that the signal power can be
approximated by the product of the maximum value of SARð f Þ by B3AR.
Note that, for N large, the prediction error filter closely approximates the
notch filter of Section 5.7.

The parameter B3AR can represent the resolution of the method. The
comparison with the periodogram is illustrated by the ratio

B3AR

B3N

¼ 1

N � SNR
ð10:60Þ

which clearly shows the advantage of the AR method in resolution for large
SNR values.

The variance of the AR spectrum estimate is shown to be proportional to
1

N2N0
for an AR signal and to 1

N2N2
0

for a signal composed of sinusoids in
noise.

A noisy signal expressed by

xðnÞ ¼ xpðnÞ þ eðnÞ ð10:61Þ
where xpðnÞ is a predictable signal satisfying the recursion

xpðnÞ ¼
XM
i¼1

aixpðn� iÞ ð10:62Þ

and eðnÞ a noise, can be viewed as an ARMA signal because

xðnÞ ¼
XM
i¼1

aixðn� iÞ þ eðnÞ �
XM
i¼1

aieðn� iÞ ð10:63Þ



The gain obtained by increasing the predictor order corresponds to an
approximation of the MA section of the model [13]. However, a direct
ARMA modeling approach can be more efficient.

10.7. ARMA MODELING

The spectrum estimation is

SARMAð f Þ ¼ EN

1þPN
i¼1

bie
�j2�if

����
����2

1þPN
i¼1

aie
�j2�if

����
����2

ð10:64Þ

where EN is an error power and the signal xðnÞ is assumed to follow the
model

xðnÞ ¼
XN
i¼1

aixðn� iÞ þ eðnÞ þ
XN
i¼1

bieðn� iÞ ð10:65Þ

A detailed analysis of ARMA signals is provided in Section 2.6.
The results can be used to calculate the model coefficients from an esti-

mate of the 2N þ 1 first values of the signal ACF. The spectrum is then
calculated from (10.64). Recall, that the spectrum can be calculated without
explicitly determining the MA coefficients. The AR coefficients are found
from the extended normal equations (2.79), the ACF of the auxiliary signal
is derived from (2.89), and the spectrum is obtained from (2.92). All equa-
tions are from Chapter 2.

Adaptive aspects of ARMA modeling are dealt with in Section 4.15,
where the application of the LMS algorithm is discussed, and in Section
7.12, which covers FLS techniques. A particular simplified case worth point-
ing out is the notch filter presented in Section 5.8, whose transfer function is

HNðzÞ ¼
1þPN

i¼1
aiz
�i

1þPN
i¼1

aið1� "Þiz�i
ð10:66Þ

where the notch parameter " is a small positive scalar ð0 4 "� 1Þ. When
predictable signals are analyzed, because of the respective locations of its
zeros and poles in the z-plane, it can be a useful intermediate between the
prediction error filter, whose zeros are prevented from reaching the unit
circle by the noise, and the minimum eigenfilter, whose zeros are on the
unit circle.



The coefficients can be derived from a set of N0 data through iterative
techniques. The filter can also be made adaptive using gradient-type algo-
rithms [14]. With LS the nonlinear character of the problem can be over-
come in a way which illustrates the flexibility of that technique [15].
Consider the diagram in Figure 10.5. The input signal is fed to the recursive
section of the filter first. Then the output sequence obtained is fed to a
prediction filter, whose coefficients are updated using an FLS algorithm.

If the same coefficients at each time are also used in the recursive section,
an FLS adaptive notch filter is achieved. The value of the fixed-notch para-
meter " reflects the a priori information available about the signal: for
sinusoids in noise it can be close to zero, whereas noiselike signals lead to
choosing " close to unity. The results obtained for two sinusoids in noise are
shown in Figure 10.6. The SNR is 3 dB and " ¼ 0:1. The coefficient learning
curves and the locations of the corresponding filter zeros in the complex
plane demonstrate that the two sinusoids are clearly identified by an order 4
filter.

In that approach, which can be used for efficient real-time analysis, the
recursive section placed in front of the predictor enhances the lines in the
spectrum and helps the predictor operation. A similar effect can be obtained
with signal and noise space methods [16].

10.8. SIGNAL AND NOISE SPACE METHODS

The signal AC matrix estimates used in AR methods are degraded by noise.
Improvements can be expected from attempts to remove that degradation
[17].

Assume that M real sinusoids are searched in a signal. From the set of N0

data an estimate RN of the N �N AC matrix is computed. Its eigendecom-
position, as seen in Chapter 3, is

FIG. 10.5 FLS adaptive notch filter.



RN ¼
XN
i¼1

	iUiU
t
i ; 	1 5 	2 5 � � � 5 	N ð10:67Þ

and the prediction coefficient vector is

AN ¼ R�1N raN ¼
XN
i¼1

1

	i
UiU

t
i r

a
N ð10:68Þ

For N > 2M, if RN were the true AC matrix, the N � 2M last eigenvalues
would be zero. Therefore the N � 2M smallest eigenvalues of RN can be
assumed to be associated with the noise space, and the optimum approx-
imation of the true AC matrix is R 0N obtained by

R 0N ¼
X2M
i¼1

	iUiU
t
i ð10:69Þ

Thus, an improved estimate of the prediction coefficients is

A 0N ¼
X2M
i¼1

1

	i
UiðUt

i r
a
NÞ ð10:70Þ

FIG. 10.6 Identification of two sinusoids in noise by an adaptive notch filter:

(a) filter zeros in the complex plane, (b) coefficient learning curves.



If not known, the number of sinusoids can be determined from the observa-
tion of the eigenvalues 	i. Concerning the computational complexity, the
eigenvalue decomposition is a significant load.

Another estimate of the prediction coefficient vector can be found by
noticing that, for predictable signals in the absence of noise, the prediction
error is zero and the filter coefficient vector is orthogonal to all signal
vectors [18]. Therefore the estimate A 00N is a vector satisfying

Ut
i

1
�A 00N

� 	
¼ 0; 1 4 i 4 2M ð10:71Þ

where Ui now denotes an ðN þ 1Þ-element eigenvector of the estimated
ðN þ 1Þ � ðN þ 1Þ AC matrix RNþ1. The eigenvectors Uið1 4 i 4 2MÞ
span the signal space.

In matrix form the system (10.71) is

u12 � � � u1ðNþ1Þ
u22 � � � u2ðNþ1Þ
..
. � � �

u2M2 � � � u2MðNþ1Þ

2
6664

3
7775

a 001
a 002
..
.

a 00N

2
6664

3
7775 ¼

u11
u22
..
.

u2M1

2
6664

3
7775 ð10:72Þ

or, in concise form,

U2M;NA
00
N ¼ U2M;1

The system is underdetermined, since there are 2M equations in N
unknowns and N > 2M. The minimum norm solution is given by expression
(3.73) in Chapter 3, which here yields

A 00N ¼ Ut
2M;N ½U2M;NU

t
2M;N ��1U2M;1 ð10:73Þ

Because the eigenvectors are orthogonal and have unit norm, the above
equation simplifies to

A 00N ¼ ð1�Ut
2M;1U2M;1Þ�1Ut

2M;NU2M;1 ð10:74Þ

Once the estimation of the prediction coefficients has been calculated, the
spectrum is obtained by (10.42).

A further, efficient, approach to exploit the orthogonality of signal and
noise spaces consists of searching the set of M cisoids which are the most
closely orthogonal to the noise space, spanned by the N �M eigenvectors
UiðM þ 1 4 i 4 NÞ [19]. The M frequencies are taken as the peaks of the
function



Sð!Þ ¼ 1PN
i¼Mþ1

j �FFtð!ÞUij2
ð10:75Þ

where Fð!Þ is the cisoid vector

�FFtð!Þ ¼ ½1; e j!; . . . ; e jðN�1Þ!�
Weighting factors can also be introduced in the above summation.

The above methods, like those described in the previous sections, have a
resolution which is linked to the number N0 of the signal values available
and the signal-to-noise ratio SNR. An estimation is given by the expression

E½ð�f Þ2� ¼ 1

N2
0 � SNR

ð10:76Þ

The signal and noise space methods are essentially suited to batch pro-
cessing. Nevertheless, they provide a deep insight into the structures of real
signals and therefore are useful for adaptive filter design.

10.9. ESTIMATION BOUNDS

Adaptive techniques can be used for estimation purposes, and their perfor-
mance can be tested against estimation bounds in these cases [12–20, 22].

Let us consider an indirect estimation procedure in which a set of N
parameters 
i is derived from a set of N measurements �i. These measure-
ments are related to the parameters by

�i ¼ fið
1; . . . ; 
NÞ; 1 4 i 4 N ð10:77Þ
The absence of perturbations corresponds to optimal values, and a Taylor
series expansion in the vicinity of the optimum yields

�i � �i;opt ¼
@fi
@
1
ð
1;optÞ½
1 � 
1;opt� þ � � � þ

@fi
@
N
ð
N;optÞ½
N � 
N;opt�

ð10:78Þ
or, in matrix form

ð�� �optÞ ¼Mt
Gð
 � 
optÞ ð10:79Þ

where MG is the parameter measurement function gradient matrix.
The measurement covariance matrix is

E½ð�� �optÞð�� �optÞt� ¼Mt
GE½ð
 � 
optÞð
 � 
optÞt�MG ð10:80Þ

Assuming unbiased estimation, the parameter covariance matrix, denoted
var{
}, is



varf
g ¼ ðM�1G Þtvarf�gM�1G ð10:81Þ
This provides a lower bound for the variance of the parameter estimation


, obtained from the measurement vector � in the presence of perturbations.
If complex functions are involved, the transpose operation is replaced by
conjugate transpose.

If the numbers of parameters and measurements are different, pseudoin-
verses can be used. For example, with more measurements than parameters,
equation (10.81) can be written as

varf
g ¼ ½MGM
t
G��1MGvarf�gMt

G½MGM
t
G��1 ð10:82Þ

An important simplification occurs when the perturbation in the measure-
ments is just caused by a white noise with power �2b , because equation
(10.82) becomes

varf
g ¼ ½MGM
t
G��1�2b ð10:83Þ

For example, let us consider the cisoid in noise

xðnÞ ¼ ae jn! þ bðnÞ ð10:84Þ
and assume the amplitude a and the angular frequency ! have to be esti-
mated from N samples ð1 4 n 4 NÞ. The 2�N matrix MG is

MG ¼
@f1
@a
� � � @fN

@a
@f1
@!
� � � @fN

@!

2
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75 ¼ e j! � � � e jN!

jae j! � � � jNae jN!

� 	

and therefore

½MG
�MMt
G� ¼

N �jaNðN þ 1Þ
2

ja
NðN þ 1Þ

2
a2

NðN þ 1Þð2N þ 1Þ
6

2
64

3
75 ð10:85Þ

The variances of the estimates are

varfag ¼ 2�2b
2N þ 1

NðN � 1Þ ; varf!g ¼ 2�2b
6

a2NðN2 � 1Þ ð10:86Þ

The bound in equation (10.81) can also be expressed as

varf
g ¼ ½MGvarf�g�1Mt
G��1

This expression is reminiscent of the definition of joint probability densities
of Gaussian variables. In fact, the above procedure can be generalized in
estimation theory, using the log-likelihood function [20, 23].



Let Prð�j
Þ denote the conditional joint probability density function of
the random vector represented by the measurement vector �. The log-
likelihood function Lð
Þ is defined by

Lð
Þ ¼ ln½Prð�j
Þ� ð10:87Þ
The matrix Inf of the derivatives of the log-likelihood function is called
Fisher’s information matrix:

Inf ¼ �E

@L

@
1

� �2

� � � @L

@
1

@L

@
N

..

. ..
.

@L

@
N

@L

@
1
� � � @L

@
N

� �2

2
666664

3
777775 ð10:88Þ

For example, let us consider the case of M-D Gaussian signals with
probability density pðxÞ expressed by [equation (2.135) of Chapter 2]

PðXÞ ¼ 1

ð2�Þn=2
1

ðdet RÞ1=2 exp½�
1
2 ðX �mÞtR�1ðX �mÞ�

where the AC matrix R and the mean vector m are functions of a set of
variables 
. The information matrix elements are

infðk; lÞ ¼ 1

2
trace R�1

@R

@
k
R�1

@R

@
l

� 	
þ @m

t

@
k
R�1

@m

@
l
ð10:89Þ

The lower bound of the variance of the parameter vector estimation is called
the Cramer–Rao bound, and it is defined by

CRBð
Þ ¼ diag½I�1nf � ð10:90Þ
When the functional form of the log-likelihood function is known, for
unbiased estimates, a lower bound of the parameter estimates can be calcu-
lated, and the following set of inequalities hold:

varf
ig 5 CRBð
iÞ; 1 4 i 4 N ð10:91Þ
An unbiased estimator is said to be efficient if its variance equals the bound.

10.10. CONCLUSION

The analysis techniques discussed in this chapter provide a set of varied and
useful tools to investigate the characteristics of signals. These characteristics
are helpful in studying, designing, and implementing adaptive filters. In
particular, they can provide pertinent information on how to select filter



parameter values or to assess the dynamic range of the variables, which is
necessary for word-length determination.

As an illustration, consider the initial value E0 of the prediction error
energy in FLS algorithms, used for example in prediction applications. As
pointed out in Chapter 6, it controls the initial adaptation speed of the filter.
If the SNR is poor, it does not help to take a small value, and E0 can be
chosen close to the signal power; on the contrary, with high SNRs, small
values of the initial error energy make the filter fast and can lead to quick
detection of sinusoids for example.

Several analysis techniques, particularly the AR method, are well suited
to adaptive approaches, which lead to real-time signal analysis.

EXERCISES

1. Calculate the order N ¼ 16 DFT of the sequences

x1ðnÞ ¼ sin 2�
2:5

16
n

� �
; 0 4 n 4 15

x2ðnÞ ¼ sin 2�
3:5

16
n

� �
; 0 4 n 4 15

x3ðnÞ ¼ x1ðnÞ þ x2ðnÞ
Discuss the possibility of recognizing the sinusoids in the spectrum.

2. The real signal xðnÞ is analyzed with an N-point DFT operator. Show
that the signal power spectrum can be estimated by

SðkÞ ¼ XðkÞXðN � kÞ
where XðkÞ is the DFT output with index kð0 4 k 4 N � 1Þ. If
xðnÞ ¼ bðnÞ, where bðnÞ is a white noise with power �2b , calculate the
mean and variance of the estimator SðkÞ.

Now assume that the signal is

xðnÞ ¼ sin 2�
k0
N

n

� �
þ bðnÞ; 1 < k0 <

N

2

with k0 integer. Calculate the mean and variance of the estimator and
comment on the results. Is the analysis technique efficient?

3. A signal has ACF rð0Þ ¼ 1:0, rð1Þ ¼ 0:866, rð2Þ ¼ 0:5. Perform the
eigenvalue decomposition of the 3� 3 AC matrix and give the harmo-
nic decomposition of the signal. How is it modified if
(a) a white noise with power �2 is added to the signal:
(b) The ACF rðpÞ is replaced by 0:9PrðpÞ?
Give the shape of the spectrum using expression (10.34).



4. Consider the signal sequence

n ¼ 1 2 3 4 5 6

xðnÞ ¼ 1:05 0:72 0:45 � 0:32 � 0:61 � 0:95

Perform the damped sinusoid decomposition following the procedure
in Section 10.5 and calculate the spectrum SDSð f Þ:

5. For the signal

n ¼ 1 2 3 4 5 6 7 8 9 10

xðnÞ ¼ 1:41 1:43 1:35 1:22 1:14 0:91 0:84 0:67 0:51 0:31

calculate the matrix R4 according to expression (10.45) and use it to
derive three forward prediction coefficients. Calculate the AR spec-
trum and draw the curve SARð f Þ versus frequency.

Repeat the above operations with R4 calculated according to the
forward-backward technique (10.48). Compare the spectra obtained
with both approaches.

6. Consider the cisoids in noise

xðnÞ ¼ e jn!1 þ e jn!2 þ bðnÞ
and assume the angular frequencies have to be estimated from N
samples. Calculate the variance estimation bounds and show the
importance of the quantity !2 � !1.

Perform the same calculations when a phase parameter ’1 is intro-
duced

xðnÞ ¼ e jðn!1þ’1Þ þ e jn!2 þ bðnÞ
Comment on the impact of the phase parameter.
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11
Circuits and Miscellaneous
Applications

The integrated circuits, programmable microprocessors, and array proces-
sors designed for general signal processing can be used for the implementa-
tion of adaptive filters. However, several specific aspects can make the
realization of dedicated architectures worthwhile. A major feature of adap-
tive techniques is the real-time updating of a set of internal variables, with
the related checking operations. The optimization of some of the functions
included in that process may be justified; a typical function is the multi-
plication of the elements of a vector by a scalar. An important point also is
the introduction of arithmetic operations which are not widely used in other
areas of signal processing, namely division and, to a lesser extent, square
root.

11.1. DIVISION AND SQUARE ROOT

Division can be implemented in arithmetic logic units (ALUs) as a sequence
of shifts, subtractions, and tests. The procedure is time consuming, and a
more efficient approach is obtained by dedicated circuitry.

Let n and d be two positive numbers satisfying 0 < n < d. To calculate
n=d, use the following algorithm [1]:

t0 ¼ 2n� d;
t0 < 0; q1 ¼ 0

t0 5 0; q1 ¼ 1

t1 ¼ 2t0 � ð2q1 � 1Þd; t1 < 0; q2 ¼ 0
t1 5 0; q2 ¼ 1

ð11:1Þ



ti ¼ 2ti�1 � ð2qi � 1Þd; ti < 0; qiþ1 ¼ 0
ti 5 0; qiþ1 ¼ 1

It is readily verified that the following equations hold:

n ¼ d
Xi
j¼1

qj2
�j

 !
þ 2�i

ti þ d

2
; jtij < d ð11:2Þ

The bits qj are the most significant bits of the quotient q ¼ n=d. The algo-
rithm can be implemented in a sequential manner as shown in Figure 11.1,
assuming the same word length for n and d.

The number of full adders equals the number of bits of the factors plus
one. A parallel realization leads to an array of adders as with multipliers.

As an illustration, consider the following example: n ¼ 9 ¼ 001001;
d ¼ 21 ¼ 010101.

001001 ðnÞ
010010 ð2nÞ
þ 101011 ð�d; 2’s complementÞ

111101 ðt0 ¼ 2n� dÞ
q1 ¼ 0 ð1Þ 111010 ð2t0Þ

þ 010101

001111 ðt1Þ
q2 ¼ 1 ð0Þ 011110 ð2t1Þ

þ 101011 ð�dÞ
001001 ðt2Þ

q3 ¼ 1 ð0Þ 010010

ð11:3Þ

The result is q ¼ 3
7
¼ 0:011. . . .

When the word length of the divider d is smaller than the word length of
the dividend n, it may be advantageous to perform the operation as
q ¼ ð1

d
ÞXn, which corresponds to an inverse calculation followed by a multi-

plication.
The square-root extraction can be viewed as a division by an unknown

divider. The two operations have many similarities, and in both cases the
most significant bits of the result are obtained first.

In order to show how the square-root extraction can be performed recur-
sively, let us assume that the square root of a given number X has P bits and
that i bits ðs0; . . . si�1Þ are available after stage i of the extraction procedure.
The remainder Ri is expressed by



Ri ¼ X � ðSi2
P�iÞ2 ð11:4Þ

where

Si ¼
Xi�1
j¼0

si�1�j2
j

At the next stage, the remainder Riþ1 is

Riþ1 ¼ X � ½ð2Si þ siÞ2P�ðiþ1Þ�2 ð11:5Þ
The unknown si is a binary number, and thus s2i ¼ si. Now, expanding the
product on the right side of (11.5) yields

Riþ1 ¼ Ri � ð4Si þ 1Þsi22ðP�i�1Þ ð11:6Þ
Consequently, to obtain si it suffices to calculate the quantity

Qiþ1 ¼ Ri � ð4si þ 1Þ22ðP�i�1Þ ð11:7Þ
and take its sign bit.

Hence the procedure to perform the square-root extraction for a number
X having N bits ðN 4 2PÞ is as follows:

Initialization: R0 ¼ X , S0 ¼ 0
For i ¼ 0; . . . ;P� 1;

FIG. 11.1 A sequential divider.



Qiþ1 ¼ Ri � ð4Si þ 1Þ22ðP�i�1Þ
Qiþ1 5 0; si ¼ 1; Riþ1 ¼ Qiþ1; Siþ1 ¼ 2Si þ 1 ð11:8Þ
Qiþ1 < 0; si ¼ 0; Riþ1 ¼ Ri; Siþ1 ¼ 2Si

The desired square root is Sp.

Example

X ¼ 25 ¼ 011001; N ¼ 6 ¼ 2P
Q1 ¼ 001001; s0 ¼ 1; R1 ¼ 001001; S1 ¼ 000001
Q2 ¼ 001001 � 010100; s1 ¼ 0; R2 ¼ R1; S2 ¼ 000010
Q3 ¼ 0; s2 ¼ 1; R3 ¼ 0; S3 ¼ 000101 ¼ 5

The procedure can be implemented on a standard ALU as a sequence of
shift, additions, subtractions, and tests. Dedicated circuits can also be
worked out for sequential or parallel realization.

Overall, considering the algorithms (11.1) and (11.8) it appears that,
using a standard ALU, the division is more complex than the multiplica-
tion because it requires a test to decide between addition and subtraction
at each stage; the square root is more complex than the division because it
requires an addition, a subtraction, and two shifts at each stage. However,
if a dedicated circuit is built, the test needed in the division can be
included in the logic circuitry, and the division becomes equivalent to
the multiplication. The square-root extraction is still more complex than
the division.

11.2. A MULTIBUS ARCHITECTURE

Signal processing machines are characterized by the separation of the data
and control paths. For adaptive processing, additional flexibility is desir-
able, due to the real-time updating of the internal variables. Three data
paths can be distinguished: two for the factors of the arithmetic operations,
and one for the results. Therefore, a high level of efficiency and speed is
obtained with the four-bus programmable architecture sketched in Figure
11.2.

The data buses A and B are used for the arithmetic factors, bus C for the
results. The various system units, ALU, multiplier, and memories interact
with these buses in an adequate manner. An interface unit handles the data
exchanges with the external world. The control unit is connected through
the instruction bus I to the system units and external control signal sources.

The multibus approach brings a certain level of complexity in hardware
and software as well. However, the parallelism introduced that way offers a
pipelining capacity which leads to fast and efficient realizations [2, 3].



A wide range of programmable integrated microsignal processors is now
available, as well as specific parts to build multichip architectures. Machines
can now be designed for any kind of application. A selection of applications
from various fields is given below.

11.3. LINE CANCELING AND ENHANCEMENT

A frequently encountered problem is the canceling of a line while preserving
the rest of the spectrum. As mentioned in Section 5.8, the notch filter is the
appropriate structure. If the frequency of the line is not known or changing
with time, an adaptive version can be used, with gradient or FLS algorithms
as pointed out in Section 10.7. Good performance can be obtained under a
wide range of conditions [4].

The recursive section of the notch filter actually performs a line enhance-
ment. The general approach is based on linear prediction, as shown in
Figure 11.3.

Let us assume that the signal xðnÞ consists of M sinusoids in noise. The
output ~xxðnÞ of the adaptive prediction filter AðzÞ contains the same spectral
lines, with virtually no deviations in amplitudes and phases, provided the
filter order N exceeds 2M with a sufficient margin. However, as seen in
Section 5.2, the noise component power is reduced in ~xxðnÞ since the power
of the output eðnÞ is minimized. The delay � in front of the prediction filter
is chosen as a function of the correlation radius p0 of the noise ð� 5 p0Þ; in
case of white noise, a one-step predictor is adequate [5].

The improvement in SNR for the enhancer output ~xxðnÞ is the enhance-
ment gain Ge, which can be calculated using the results in Chapter 5; it is
proportional to the prediction filter order.

FIG. 11.2 A four-bus architecture for adaptive processing.



11.4. ADAPTIVE DIFFERENTIAL CODING

Besides signal analysis, linear prediction techniques can be used to con-
dense the representation of signals. The information in a signal is essen-
tially contained in the unpredictable components. Therefore, if the
predictable components are attenuated, the amplitude range of the samples
is reduced, fewer bits are needed to encode them, and a denser representa-
tion is obtained. In practice, for the sake of simplicity and ease of manip-
ulation, it is generally desirable that the original signal be retrievable from
the prediction error sequence only. Therefore, in an adaptive approach the
filter has to be implemented in a loop configuration as shown in Figure
11.4, in order to take into account the effects of output sequence
quantization.

FIG. 11.3 Adaptive line enhancement.

FIG. 11.4 Adaptive differential encoding to condense information.



The prediction error filter is of the FIR/IIR type.The coefficient update
section can use LMS algorithms as in Section 4.15, or the FLS algorithms as
pointed out in Section 7.12 on pole-zero modeling. Typical uses of the above
scheme are for signal storage or efficient transmission [6]. For example, in
communications the technique is known as ADPCM (adaptive differential
pulse code modulation), and it permits a telephone conversation to be
transmitted with unnoticeable degradations through a digital link with 32
kbit/s capacity [7].

The CCITT recommendation G.721 uses for prediction the diagram of
Figure 11.4. The transversal part, shown as DðZÞ in Figure 11.4, has six
coefficients, and its output is defined by

sezðkÞ ¼
X6
i¼1

biðk� 1Þdqðk� iÞ ð11:9Þ

where dqðkÞ is the signal resulting from the quantization of the error signal
eðnÞ.

The autoregressive section, shown as NðZÞ in Figure 11.4, has two coeffi-
cients only, for easy stability control, and the signal estimate seðkÞ is

seðkÞ ¼ sezðkÞ þ
X2
i¼1

aiðk� 1Þsrðk� iÞ ð11:10Þ

The reconstructed signal srðkÞ is defined by

srðkÞ ¼ seðkÞ þ dqðkÞ
Both sets of predictor coefficients are updated using a simplified gradient
algorithm. For the second-order predictor,

a1ðkÞ ¼ ð1� 2�8Þa1ðk� 1Þ þ 3 � 2�8sign½pðkÞpðk� 1Þ�
a2ðkÞ ¼ ð1� 2�7Þa2ðk� 1Þ þ 2�7sign½pðkÞpðk� 2Þ�

� f ½a1ðk� 1Þ�sign½pðkÞpðk� 1Þ�
ð11:11Þ

with

pðkÞ ¼ dqðkÞ þ sezðkÞ ð11:12Þ
and

f ða1Þ ¼ 4a1 if ja1j 4 2�1

f ða1Þ ¼ 2 signða1Þ if ja1j > 2�1
ð11:13Þ

The reason for introducing the variable pðkÞ is to make the adaptation more
robust to transmission errors by subtracting from the reconstructed signal
the portion coming out of the autoregressive section. As concerns the non-



linearity, i.e., the function f , it has been shown to prevent blocking in some
circumstances with tone signals.

The stability is guaranteed by the constraints

ja2ðkÞj 4 0:75; a1ðkÞ 4 1� 2�4 � a2ðkÞ ð11:14Þ
Note that, with the use of sign algorithms, the coefficients are implicitly
limited to �2. Additionally, the encoder includes a single tone detector
defined by

tdðkÞ ¼ 1 if a2ðkÞ < �0:71875
tdðkÞ ¼ 0 otherwise

ð11:15Þ

and used in the quantization step adaptation procedure, itself based on
adaptive techniques.

11.5. ADAPTIVE DECONVOLUTION

Deconvolution is applied to experimental data in order to remove distor-
tions caused by a measurement system to a desired inaccessible signal. Let us
assume that the experimental sequence yðpÞð1 4 p 4 nÞ is generated by
filtering the desired signal xðpÞ as follows:

yðpÞ ¼
XN�1
i¼0

hixðp� iÞ ð11:16Þ

The operation is described in matrix notation by

yðnÞ
yðn� 1Þ

..

.

yð1Þ

2
6664

3
7775 ¼

h0 h1 h2 � � � 0 0
0 h0 h1 � � � 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � hN�2 hN�1

2
6664

3
7775

xðnÞ
xðn� 1Þ

..

.

xð2�NÞ

2
6664

3
7775 ð11:17Þ

or

yðnÞ ¼ HtXðnÞ ð11:18Þ
According to the results in Section 3.5, an LS solution is obtained by

XðnÞ ¼ HðHtHÞ�1YðnÞ ð11:19Þ
The desired sequence xðnÞ can be retrieved in an adaptive manner through
the technique depicted in Figure 11.5.

The estimated data ~xxðnÞ are fed to the distorting FIR filter, whose coeffi-
cients are assumed to be known, and the output ŷyðnÞ is subtracted from the



experimental data to produce an error eðnÞ used to update the estimate at
time nþ 1.

The simplest approach one can think of consists of calculating ~xxðnþ 1Þ
by

~xxðnþ 1Þ ¼ 1

h0
yðnþ 1Þ �

XN�1
i¼1

hi ~xxðnþ 1� iÞ
" #

ð11:20Þ

However, it is unrealistic, due to initial conditions and the presence of noise
added in the mesurement process.

The gradient method corresponds to the updating equation

x1ðnþ 1Þ
x2ðnþ 1Þ

..

.

xNðnþ 1Þ

2
6664

3
7775 ¼

0
x1ðnÞ
..
.

xN�1ðnÞ

2
6664

3
7775þ �

h0
h1
..
.

hN�1

2
6664

3
7775 yðnþ 1Þ �

XN�1
i¼1

hixiðnÞ
" #

ð11:21Þ
where � is the adaptation step, the xiðnÞð1 4 i 4 NÞ are state variables, and
the restored signal at the system output is

~xxðnþ 1�NÞ ¼ xNðnÞ ð11:22Þ
The technique can be refined by using a more sophisticated adaptation

gain. If matrix manipulations can be afforded, LS techniques based on

FIG. 11.5 Signal restoration by adaptive deconvolution.



equation (11.19) can be worked out, associated with recursive procedures to
efficiently perform the computations [8, 9].

11.6. ADAPTIVE PROCESSING IN RADAR

Signal processing techniques are employed in radar for target detection by
whitening filters, separation of targets by high-resolution spectral analysis
methods, and target or terrain recognition by comparison with models or by
inverse filtering [10].

The target detection method is depicted in Figure 11.6.
When the signal sðtÞ is emitted, the signal received can be expressed by

yðtÞ ¼ Gsðt� t0Þ þ PðtÞ ð11:23Þ
where G is a complex parameter representing the propagation conditions, t0
is the delay of the signal reflected on the target, and PðtÞ is a perturbation
representing the multiple undesired reflections on various obstacles, or clut-
ter. The useful signal sðt� t0Þ can be much smaller than the perturbation,
which can be modeled by a colored and evolving noise or, in other words, by
an AR signal with variable parameters.

The perturbation can be significantly attenuated by an adaptive predic-
tion error filter, which performs a whitening operation and delivers the
signal ywðtÞ. The signal sðtÞ is fed to a filter with the same coefficients, and
the output is swðtÞ. Now the detection process consists of comparing to a
threshold the quantity

cð�Þ ¼ j
R
ywðtÞ�sswðt� �Þdtj2R jswðtÞj2dt ð11:24Þ

The corresponding operations are the correlation, squared modulus calcula-
tions, normalization, and decision.

FIG. 11.6 Target detection in the presence of colored evolving noise.



The order N of the adaptive whitening filter is typically close to 10, and
the sampling frequency is several megahertz.

The applications reviewed so far deal with one-dimensional signals. In
antenna arrays and image processing, M-D signals are involved.

11.7. ADAPTIVE ANTENNAS

The outputs from the elements of an antenna array can be combined to
produce a far field beam pattern which optimizes the reception of a desired
signal [11]. The beam can be directed towards the bearing of the signal, and
it can be configured to have sidelobes which attenuate jamming signals.
Moreover, an equalization of the transmission channel can be achieved.
In the block diagram in Figure 11.7, the N elements collect delayed versions
of the useful signal xðtÞ. For a linear array whose elements are separated by
a distance D, the basic delay is

�t ¼ d sin 


�
ð11:25Þ

where 
 is the incidence angle and � is the signal velocity. The delays are
compensated through N interpolators whose outputs are summed.

FIG. 11.7 Adaptive antenna array.



However, the filters connected to the antenna elements can do more than
just compensate the delays. If a replica of the signal is available, as in digital
transmission, and used as a reference, an error can be derived and the system
can become an M-D adaptive filter employing the algorithms presented in
Chapter 7.

An interesting simplification occurs if the antenna elements are narrow-
band, because the received signal can be considered as a sine wave. The
equation of a propagating wave is

sðx; tÞ ¼ S exp 2� ft� x

	


 �
ð11:26Þ

where 	 ¼ �=f is the wavelength associated to the frequency f . From equa-
tion (11.26) it appears that adequate beamforming can take place only if

D sin 


	
<

1

2
or D <

	

2
ð11:27Þ

Therefore 	=2 is an upper bound for the spatial sampling interval. The
filtering paths reduce to multiplications by weights wi ¼ expð j!�TiÞ with
0 4 i 4 N � 1 and �T ¼ ðD sin 
Þ=�. The coefficients wi can be calculated
to minimize the cross-correlation between the output yðnÞ and the inputs in
the absence of the desired signal. The corresponding equation is

RN
1

�WN�1

� 	
¼ E

0

� 	
ð11:28Þ

where RN is the input covariance matrix, WN�1 and ðN � 1Þ-element coeffi-
cient vector, and E the output error power. The coefficients can be found
and updated through gradient techniques.

Another approach consists of maximizing the output SNR, which leads
to the N-coefficient vector

WN ¼
1

�FFtR�1F
R�1F ð11:29Þ

with

�FF ¼ ½1; e j!�T ; . . . ; eðN�1Þj!�T �t

The similarity with linear prediction of time sequences is worth pointing out.

11.8. IMAGE SIGNAL PREDICTION

Linear models are useful in image processing for region classification and
segmentation and also for the detection of small regions which differ from
their surroundings [12].



A picture element (pixel) of a 2-D image can be represented by a white-
noise-driven linear model as

xðn;mÞ ¼
X
l;k

X
2M

aðl; kÞxðn� l;m� kÞ þ eðn;mÞ ð11:30Þ

where eðn;mÞ is a white noise with power �2e and M represents the support
region for the filter coefficients, called the mask. The mask M can take on
several forms. In prediction, it is associated with the past of the point ðn;mÞ.
The past of a point ðn0;m0Þ is related to causality and defined as the set of
points

fðn;mÞjn ¼ n0;m < m0; n < n0;�1 < m <1g
The model equation (11.30) can also be considered as a prediction operation
in which the signal xðn;mÞ is predicted by the summation ~xxðn;mÞ and eðn;mÞ
is the prediction error. The prediction coefficients aðl; kÞ can be calculated
from the 2-D normal equations

rðl; kÞ �
XX
p;q2M

aðp; qÞrðl � p; k� qÞ ¼ �2e �ðl; kÞ ð11:31Þ

where rðl; kÞ is the correlation function

rðl; kÞ ¼ E½xðn;mÞxðn� l;m� kÞ� ð11:32Þ
The image predictor can be made adaptive by using either gradient or LS
algorithms.

A third dimension can be introduced with television signals, considering
the sequence of frames.

A pixel is predicted from its past in the same frame and from elements of
the previous frames. Applications are for reduced rate encoding, for analysis
such as edge detection, and for noise reduction. The complexity issue is
crucial in that case, since the sampling rate is 13.5 MHz. Filters with only
a small number of coefficients can actually be implemented in real-time
hardware.

11.9. ARTIFICIAL INTELLIGENCE AND NEURAL
NETWORKS

Artificial intelligence (AI) techniques attempt to reproduce and automatize
simple learning and reasoning processes in order to give machines the ability
to reason at a level approaching human performance in limited domains.
Another of their goals is to extend and structure human-machine interaction
[14].



Successful achievements in that field are the so-called knowledge-based or
expert systems. A description of such a system is given in Figure 11.8. It is
essentially a structured software technique of performing logical interference
on symbolic data.

The expert system efficiency rests on the quality of its inference rules,
exploited by the inference engine, and of the information stored in the data
base.

In some areas, signal processing is involved in the process of constituting
the data bases on which AI works. For example, it can be needed to convert
the real data, which carry the relevant information into symbolic data.
Adaptive techniques can be useful in that process because of the improve-
ments in accuracy and speed achieved in analyzing signals and extracting the
parameters or features to condense the information.

In automation, it is increasingly important to equip machines or robots
with the capability to communicate with their environment in real time,
through acoustic and visual signals, like humans. To that purpose, signal
generation and recognition are fundamental operations.

Recognition can be defined as the automatic assignment of a signal to a
predetermined category in order to stimulate a predetermined subsequent
action. Clearly, adaptive processing methods, in one-dimensional and M-D
forms are instrumental in accurately and efficiently performing that task.

An approach which is particularly appealing for recognition and classi-
fication is that of neural networks. The basic idea is to model the brain and
its neurons, connected by synapses, by nonlinear elements linked by con-
nections which include weighting factors. Accordingly, the output ~yyðnÞ of a
nonlinear element is a function of the vector of the N input values xi given
by

~yy ¼ f
XN
i¼0

wixi

 !
; x0 ¼ 1 ð11:33Þ

where wi ð0 4 i 4 NÞ are the weighting factors and f ðxÞ the nonlinear func-
tion. This function, which allows the decision to be made, can be the step
associated with a comparator or a more regular or smoother function, like
the sigmoid associated with a saturable amplifier. The system defined by
equation (11.33) allows the classification in two categories of the input
vectors, depending on whether they produce a positive or negative output,
the boundary being given by the equation

w0 þ
XN
i¼1

wixi ¼ 0 ð11:34Þ



FIG. 11.8 A knowledge-based system.



For N ¼ 2, this is the equation of a line. The system is called a perceptron
[11]. Its coefficients can be determined through a learning procedure exploit-
ing a set of N0 input vectors XðnÞ, for which the output dðnÞ is known. The
gradient algorithm can be used in that operation

Wðnþ 1Þ ¼WðnÞ þ XðnÞ½dðnÞ � ~yyðnÞ�; 1 4 n 4 N0 ð11:35Þ
The separation of a set of elements of types A and B by a 3-coefficient
perceptron is illustrated in Figure 11.9.

The system can be made more sophisticated through the combination of
elements, like logic circuits. A network with 3 levels, or layers, is shown in
Figure 11.10. Basically, a 2-layer network can delimit convex domains,
associated with the outputs of the lower layer being zero. The 3-layer net-
work allows the combination of convex domains and can therefore reach
domains of any shape: it is a general classifier.

The learning process in a 3-layer perceptron can still exploit gradient
techniques, under the condition that the nonlinearity is a derivable function,
like the sigmoid for example. The cost function associated with anM-output
system is

J ¼
XM
i¼1
ðdi � ~yyiÞ2 ð11:36Þ

The iterative determination of the coefficients is based on the derivatives of
the output terms ~yyi with respect to these coefficients. In the computation, it
is very simple to verify that the output errors propagate backwards in the
same linearized network. The procedure is thus known as the method of
backpropagation. The corresponding equations and sequence of operations
form the backpropagation algorithm shown in Figure 11.11. It is also pos-
sible to use perceptrons with a feedback loop from output to input, like IIR
filtering.

FIG. 11.9 Using a 3-coefficient perceptron for classification.



The case of binary inputs leads to the so-called Hopfield network, which
consists of a set of N elements, whose outputs are �1, interconnected as
shown in Figure 11.12. The weighting coefficients are computed to mini-
mize, on a set of N0 reference vectors, the quadratic cost function

J ¼
XN
j¼1

XN0

n¼1
½xjðnÞ �

XN
i¼1
i 6¼j

wijxiðnÞ�2 ð11:37Þ

Under the hypothesis of approximately orthogonal reference data vectors,
one gets for the coefficients

Wij ¼
XN0

n¼1
xjðnÞxiðnÞ ði 6¼ jÞ

Wii ¼ 0 ði ¼ 1; . . . ;NÞ
ð11:38Þ

The technique is reminiscent of linear prediction. The cost function has a set
of N local minima and, in order to determine the class to which an input

FIG. 11.10 Three-layer perception for general classification.



FIG. 11.11 The backpropagation algorithm for multilayer neural networks.



vector belongs, it is sufficient to feed it to the network and let each output
evolve according to the equation

yjðnþ 1Þ ¼ f
XN
i¼1

wijyiðnÞ
" #

ð11:39Þ

When the system has reached its steady state, the output vector gives the
class to which the input vector belongs.

The neural network algorithms can be implemented in software and
hardware, as illustrated in Reference [12].

Overall, adaptive methods can contribute to the advances of AI techni-
ques. In return, AI techniques can contribute to the diffusion of adaptive
methods. For example, expert systems can be dedicated to adaptive filtering
and signal analysis and exploited by practitioners as a valuable help in their
efforts to optimize their realizations.

11.10. CONCLUSION

The range of applications which have been briefly introduced illustrate the
versatility of adaptive signal processing techniques and the universality of
their principles. In practice, it turns out that, for particular cases, variations
and adequate refinements are often introduced in the methods to tailor them
to the applications and enhance their efficiency. Therefore, these applica-
tions may look as many different fields. To a certain extent, it is true,

FIG. 11.12 Hopfield network for the classification of binary data.



however, there is a common ground, and it is the corresponding common
knowledge which is presented in the previous chapters.

The diffusion of adaptive techniques and the extension of their application
fields are highly dependent on the advances in technology. Considering the
successive generations of large and very large-scale integrated circuits, con-
sidering the growing family of integrated signal microprocessor chips, some
of which are even specially designed to suit the needs of adaptive filtering, it
appears that more and more technological resources are available.

Finally, it can be stated that adaptive methods are bound to have an
increasing impact in science and industry.

EXERCISES

1. Let us consider the adaptive line enhancer shown in Figure 11.3. The
input signal is xðnÞ ¼ sinðn�=4Þ and the delay is � ¼ 1. The adaptive
prediction filter AðZÞ has N ¼ 4 coefficients.

A white noise with power �2b ¼ 0:1 is added to the input signal.
Compute the four coefficients of the optimal prediction filter, using
the results of Section 5.12. What is the magnitude of the sinusoidal
component in the output ~xxðnÞ of the prediction filter?

Compute the noise power and give the value of the enhancement
gain Ge.

For large N, give the asymptotic value of the enhancement gain.
2. For speech, the following long-term autocorrelation coefficients are

considered:

r0 ¼ 1; r1 ¼ 0:86; r2 ¼ 0:56:

Compute the optimal coefficients of a linear predictor with N ¼ 2
coefficients. Give the value of the prediction gain Gp.

Give the block diagram of an ADPCM coder based on such a pre-
dictor. Propose a simple scheme to ensure stability in the decoder, in
the presence of transmission errors.

3. In a radar system, the useful signal xðnÞ ¼ sinðn�=3Þ is sent by the
emitter. The receiver captures the following signal: yðnÞ ¼
sinðn�=12Þ þ 0:01 sinðn� 2Þ�=3Þ. A linear predictor with two coeffi-
cients is used to attenuate the disturbing clutter component.

Give the optimal value of the N ¼ 2 predictor coefficients. Compute
the amplitude of the two sinusoidal components at the output of the
linear predictor.

Assume that a flat noise with power �2b ¼ 0:01 is added to the received
signal.What is the impact on the sinusoidal components at the output of
the linear predictor? Give the value of the signal-to-noise ratio.



4. A perceptron with N ¼ 3 coefficients and two inputs uses a step as its
nonlinear function. The training sequence XðnÞ and the known corre-
sponding output dðnÞ are as follows:

n = 1 2 3 4 5 6 7 8 9 10
x1ðnÞ = �0.5 5 2.5 0.5 1.5 �3 2 �1 �1.5 3.5
x2ðnÞ = 1 2.5 0.5 1 4.5 0.5 2.5 �0.5 2 2
dðnÞ = 1 �1 �1 �1 1 1 1 �1 1 �1

Compute the optimal values of the N ¼ 3 coefficients, using least
squares techniques. Now, the perceptron is used as a classifier and
dðnÞ ¼ 1 is associated with class A and dðnÞ ¼ �1 is associated with
class B. Give a global and direct way to determine coefficient values.
Compare the results with those of the least squares approach.
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12
Adaptive Techniques in
Communications

Communications are a major field of appliction for adaptive techniques, and
the corresponding algorithms can be found everywhere in networks, term-
inals, line equipment, switching machines, and human interfaces. All sorts of
conditions, constraints, and challenges are encountered. The applications
selected below illustrate this diversity, and focus on the flexibility of the
algorithms and their ability to cope with many different environments.

12.1. AUTOMATIC GAIN CONTROL

Automatic gain control (AGC) is a very common function in digital recei-
vers. For example, an AGC is generally associated with an analog-to-digital
(A/D) converter, to optimize the dynamic range. In that case, the gain of the
amplifier placed in front of the A/D converter is controlled by digital means.
In some cases, also, the amplifier is digital as well [1].

The objective is to make the signal power constant. If that constant is
unity, the gain G is just the inverse of the square root of the power of the
input signal xðnÞ. An implementation of a digital AGC is shown in Figure
12.1.

Estimation of the input signal power is performed by a narrow-band low-
pass filter HðZÞ, whose parameter " defines the estimation time constant �
by the relation

� ¼ 1

"
ð12:1Þ



according to classical results in digital filtering. The input to the filter is the
signal sðnÞ ¼ x2ðnÞ, whose variance is expressed by

varfsðnÞg ¼ E½s2ðnÞ � ðE½sðnÞ�Þ2� ð12:2Þ
Assuming the input samples to be uncorrelated, the estimate PxðnÞ of the
input signal power available at the filter output has the variance

varfPxðnÞ ¼ ½E½x4ðnÞ� � ðE½x2ðnÞ�Þ2�
"

2
ð12:3Þ

For example, if xðnÞ is Gaussian with power �2x, one gets

varfPxðnÞg ¼ 2�4x
"

2
¼ "�4x ð12:4Þ

Now, it must be pointed out that the power estimation induces a multi-
plicative noise at the output of the AGC. The estimate PxðnÞ can be con-
sidered as the sum of the true value and a noise bðnÞ

PxðnÞ ¼ E½x2ðnÞ� þ bðnÞ ð12:5Þ
Then, if the parameter " is sufficiently small,

G ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½x2ðnÞ� þ bðnÞ

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½x2ðnÞ�

p 1� bðnÞ
2E½x2ðnÞ�

� �
ð12:6Þ

and the AGC output is

uðnÞ ¼ xðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½x2ðnÞ�

p � xðnÞbðnÞ
2ðE½x2ðnÞ�Þ3=2 ð12:7Þ

In the Gaussian case, the power of the multiplicative noise component in the
output uðnÞ is

1

4�6x
E½x2ðnÞb2ðnÞ� ¼ "

4
ð12:8Þ

FIG. 12.1 Digital automatic gain control.



using (12.4) and assuming xðnÞ and bðnÞ to be uncorrelated. This equation
clearly shows the importance of the integrator parameter " The square-root
calculation in Figure 12.1 can be avoided if a magnitude estimation is per-
formed and jxðnÞj is fed to the integrator. However, a bias is introduced in
the estimation and, for a Gaussian input signal, it is given by

E½jxðnÞj� ¼
ffiffiffi
2

�

r
�x � 0:8�x ð12:9Þ

The approach can be extended to complex input signals in a straightforward
manner.

12.2. ECHO CANCELLATION

In transmission networks, echoes occur when a delayed and attenuated
version of the signal sent by the local emitter to the distant receiver reaches
the local receiver. These echo signals have their origin in the hybrid trans-
formers which perform the two/four-wire conversion, in the impedance mis-
matches along the two-wire lines, and, in some specific cases like hands-free
telephony, in acoustic couplings between loudspeakers and microphones in
the subscriber sets.

Echo cancellation or (more accurately) echo control, consists in modeling
these unwanted couplings between local emitters and receivers and subtract-
ing a synthetic echo from the real echo. Actually, it is a straight application
of adaptive filtering concepts and algorithms. However, the problem may
become extremely complex and challenging, depending on the environment,
the operational constraints, and the user requirements.

Two different situations can be distinguished, according to the nature of
the signals involved, typically data or voice. The case of data modems is
dealt with first, since it is easier to handle [2].

12.2.1. Data Echo Canceller

The most efficient exploitation of two-wire lines is achieved when data
signals are transmitted simultaneously in the two directions and in the
same frequency bands. This is called bidirectional or full-duplex transmis-
sion, in contrast to half-duplex transmission, when only one direction is
used at a time. The principle is illustrated in Figure 12.2

The signal xAðnÞ is sent from terminal A to terminal B through a two-wire
line. The signal yðnÞ at the input of the receiver of terminal A consists of two
components, namely the signal yBðnÞ coming from berminal B, which is the
useful data signal, and the returned unwanted echo generated from xAðnÞ



and denoted rAðnÞ . The task of the filter HðZÞ is to generate a synthetic echo
~yyðnÞ as close as possible to rAðnÞ, so that, after subtraction, the output error
eðnÞ is kept sufficiently close to yBðnÞ to make the transmission of data from
terminal B to terminal A satisfactory.

The selection of the parameters of the adaptive filter is guided by the
context. The number N of the coefficients is derived from the duration of the
echo impulse response that has to be compensated, taking into account the
sampling frequency. For example, let us consider a subscriber line of length
D ¼ 3 km, an electric signal velocity over this subscriber line � ¼ 2� 108 m/
s and a sampling frequency fs ¼ 2 MHz. If a single reflection on the distant
hybrid is taken into account, the number of coefficients of the echo canceller
is calculated by

N ¼ 2D

�
fS ð12:10Þ

which amounts to N ¼ 60 with the figures given above.
It is necessary to make the filter adaptive, because the characteristics of

the transmission line may change with time. It has been emphasized in
Chapter 4 that the nature of the input signal is critical to the performance
of any adaptive filter. Here, according to Figure 12.2, the input to the filter is
the sent data signal xAðnÞ, which generally is uncorrelated, has unit power,
and therefore has the autocorrelation matrix RN ¼ IN . This is the most
favorable situation for adaptive filtering, since LMS algorithms perform
as well as RLS algorithms; the adaptation step size � is bounded by 2=N
and the adaptation time constant � ¼ 1=�, as shown in Chapters 4 and 6.

FIG. 12.2 Echo cancellation for full-duplex data transmission.



In the learning phase, according to Section (4.4), the average output error
power is

ErðnÞ ¼ kHoptk22ð1� �Þ2n ð12:11Þ
The L2 norm of the echo coefficient vector, kHoptk22, represents the power of
the echo signal.

Now, in full-duplex transmission, the useful signal yBðnÞ in the reference
is smaller, and even generally much smaller, than the echo signal rAðnÞ. If As

designates the ratio of the echo to the useful signal, SNR and the desired
signal to noise ratio at receiver input, then the echo attenuation Ae must
satisfy the inequality

Ae > As þ SNR ðdBÞ ð12:12Þ
For example, assume SNR = 40 dB and As ¼ 20 dB; then Ae ¼ 60 dB,
which obviously implies a high level of performance for the echo canceller,
in terms of residual error in the steady state after convergence.

In the adaptation process, the useful signal creates a misadjustment of the
coefficients resulting in an excess output error. Denoting by �2y the power of
the useful received data signal and using equation (4.32), the variance of
each filter coefficient after convergence is �2y�=2, and the excess mean square
error is N times greater, namely N�2y�=2. In order to reach the target SNR,
the step size � must satisfy the inequality

N
�

2
<

1

SNR
ð12:13Þ

In the above derivation, it is assumed that the output error power is very
close to the power of the useful signal �2y . For example, if SNR = 104

(40 dB) and N ¼ 60, one gets � < 3:3� 10�6. This is a very small value,
leading to a very long learning phase. Therefore, whenever practical, the
echo canceller is trained in the half-duplex mode with a large step size. Then,
once a specified level of convergence has been observed, the step size is
switched to the appropriate small value.

The impact on the coefficient wordlength is worth emhasizing. The ana-
lysis given in Section 4.5 can be carried out in the present context, and
equation (4.61) simplifies to

bc � log2
1

�
þ 1

2
log2 Ae ð12:14Þ

With � ¼ 3:3� 10�6 and Ae ¼ 106, the estimated number of bits of the
coefficients is bc � 29. As pointed out in Section 4,5, it is not necessary to
implement the multiplications with such accuracy in the filter. The full
accuracy is just needed for the coeffiient updating.



12.2.2. Voice Echo Canceller

Voice Echo Cancellation, or control, turns out to be a somewhat different
problem, due to the specificities of the speech signal. First, in order to cope
with the high level of nonstationarity of speech, the algorithms have to be
properly designed. Second, due to the signal bandwidth and the velocity of
acoustic waves in the open air, very long filters are necessary in some appli-
cations. For example, using equation (12.10) with � ¼ 330 m/s, fs ¼ 8 kHz,
and 2D ¼ 100 m yields N ¼ 2400. This kind of filter length is encountered in
audioconferencing applications, for example. Some specific techniques, like
coefficient interpolation, can be employed to limit the complexity of the
device. Third, in order to reach a high level of performance and meet the
expectations of the users, the voice echo canceller may have to include
several other functions, like speech detection and denoising. Overall, a
very sophisticated device may result in the end [3].

A typical algorithm for adaptive acoustic echo cancellation is the so-
called affine projection (AP) algorithm, which in an extension of the normal-
ized LMS algorithm (NLMS) [4]. Let us consider a correlated input signal
xðnÞ. For first-order correlation, the vector Xðnþ 1Þ of the most recent input
samples at time nþ 1 can be expressed as a linear combination of two
orthogonal vectors by

Xðnþ 1Þ ¼ �XðnÞ þ Zðnþ 1Þ ð12:15Þ
where � is a scalar and Zðnþ 1Þ is orthogonal to XðnÞ, i.e.,

E½XðnÞtZðnþ 1Þ� ¼ 0 ð12:16Þ
Now, in the NLMS algorithm, the coefficient vector is updated by

Hðnþ 1Þ ¼ HðnÞ þ � Xðnþ 1Þeðnþ 1Þ
Xtðnþ 1ÞXðnþ 1Þ ð12:17Þ

as discussed in Section (4.8). With that algorithm and equation (12.15), the
updating vector at time nþ 1 is related to the updating vector at time n.
Some redundancy can be removed if the projection

�ðnþ 1Þ ¼ Xtðnþ 1ÞXðnÞ
XtðnÞXðnÞ ð12:18Þ

is calculated and used to derive Zðnþ 1Þ. In fact, �ðnþ 1Þ is just the first-
order prediction coefficient for the vector XðnÞ, since it minimizes the cost
function

J ¼ kXðnþ 1Þ � �ðnþ 1ÞXðnÞk2 ð12:19Þ
The AP algorithm consists of the equations



Hðnþ 1Þ ¼ HðnÞ þ � eðnþ 1ÞZðnþ 1Þ
Ztðnþ 1ÞXðnþ 1Þ ð12:20Þ

and

Zðnþ 1Þ ¼ Xðnþ 1Þ � �ðnþ 1ÞXðnÞ ð12:21Þ

completed by (12.18)
The updating of the coefficients is performed in a direction orthogonal to

XðnÞ. The output error eðnþ 1Þ is given, as before, by

eðnþ 1Þ ¼ yðnþ 1Þ �HtðnÞXðnþ 1Þ ð12:22Þ

It is readily verified that the a posteriori error "ðnþ 1Þ is zero if � ¼ 1. As
concerns complexity, the number of multiplications is twice that of the
NLMS. The convergence analysis is similar to that of the NLMS. The
procedure can be extended beyond first-order prediction, leading to
higher-order AP algorithms. With speech, experimental results show that
the AP approach accelerates the algorithms, with respect to NLMS algo-
rithms. As concerns the echo attenuation, realistic objectives can be set in
the range 30–50 dB.

During conversation, it may happen that both users talk at the same
time, and simultaneous bidirectional transmission takes place: the so-
called double-talk situation. It is particularly disturbing because it pro-
duces misalignment of the coefficients and a drop in echo attenuation. In
fact, it is generally recognized that the adaptive filter coefficients have to
be frozen during double talk, and the problem arises of double-talk
detection [5].

The performance of double-talk detectors is crucial for the comfort of the
users. Several techniques, more or less complicated, can be employed, and
they can be found in the current literature. A simple and reasonably efficient
technique is given in Figure 12.3. The idea is to compare the level of the
received signal rðnÞ with the level of the signal eðnÞ after subtraction of the
synthetic echo. In the absence of a distant talker signal in rðnÞ, the levels will
exhibit large differences, assuming that the echo canceller works properly.
On the other hand, during double talk, the levels come closer. Based on that
information, it is possible to decide on the presence or absence of double
talk and freeze or adjust the coefficients. Obviously, the parameters for level
detection and decision have to be chosen carefully to avoid false decision
and excessive delays. The level detectors can be based on power or ampli-
tude measurements, as in Section 12.1.



12.3. MODELS FOR CHANNEL EQUALIZATION AND
TARGET FILTERS

The transmission of digital data is based on the assumption that the channel
is linear-phase and satisfies the Nyquist criterion, namely that its transfer
function Cð f Þ satisfies the relation

Cð fb þ f Þ þ Cð fb � f Þ ¼ 1 ð12:23Þ
where fb is the symbol rate. This equation is the condition for the impulse
response to be zero at all the instants that are nonzero integer multiples of
Tb ¼ 1=fb, and consequently the condition for the absence of interference
between consecutive symbols. Obviously, practical channels do not meet the
criterion, and equalization must take place in the data receiver [6, 7].

In a given situation, the relevant equalizer structure is selected according
to the model of the channel, and it is important to review the models
associated with different transmission configurations. Ostensibly, in the
absence of noise and other disturbing signals, the optimal equalizer is just
the inverse of the channel model.

12.3.1. Channel Models

A common case is a channel that introduces amplitude and minimum-phase
distortion, with the transfer function C1ðZÞ given by

C1ðZÞ ¼
A

1�
XN
i¼1

aiZ
�1

ð12:24Þ

FIG. 12.3 Principle of a simple scheme for double talk detection.



It is an all-pole model, and all the poles are inside the unit circle, which
ensures stability. Typical of such channels are telephone cables. The optimal
equalizer HðZÞ, in the absence of noise, is the inverse of C1ðZÞ and is of the
FIR type, generally called the transversal equalizer.

In radiocommunications, the signals radiated by the antenna of the emit-
ter can reach the receiver antenna through several propagation paths.
Generally, a few paths for microwave links and many paths for mobile
radiocommunications. The model is

C2ðZÞ ¼ 1�
XM
i¼1

bkZ
�1

" #
ð12:25Þ

This is an all-zero model, and the inverse is an all-pole equalizer. If all the
zeros of the model are inside the unit circle, the function is minimum-phase
and the equalizer is generally implemented as a decision-feedback equalizer.

In many circumstances, the channel is not minimum-phase and, for
equalization purposes, the model transfer function is represented by:

C3ðZÞ ¼ A�ðZÞ 1�
XM
i¼1

biZ
�1

 !
ð12:26Þ

where the first factor �ðZÞ is a pure phase shifter and the second factor is
minimum-phase. In fact, �ðZÞ is a phase corrector which shrinks the zeros
outside the unit circle into the unit circle. Such a phase corrector is not
equalizable. However, if a delay can be tolerated, then a suitably specified
transversal filter can perform the task. Therefore the channel C3ðZÞ can be
equalized by the combination of a transversal equalizer and a decision-feed-
back equalizer.

The presence of noise in the transmission channel complicates the equal-
ization issues. First of all, if a white noise is added at the channel output, like
a measurement noise, the filter that maximizes the signal-to-noise ratio at a
given time is the so-called matched filter.

12.3.2. The Matched Filter

The matched filter is derived from the following objective: find the filter
frequency response Hð f Þ such that, at a given time 
, the output signal-
to-noise ratio is maximized. The input to the filter is assumed to be xðtÞ
given by

xðtÞ ¼ sðtÞ þ bðtÞ ð12:27Þ
where sðtÞ is the useful signal with Fourier transform Sð f Þ, and bðtÞ is a
white noise with spectral power density �. The useful filter output is



yðtÞ ¼
Z1
�1

Sð f ÞHð f Þe j2�ftdt ð12:28Þ

The output noise power is

PB ¼ �
Z1
�1
jHð f Þj2df ð12:29Þ

and the signal-to-noise ratio SNR at time 
 is expressed by

SNR ¼ jyð
Þj
2

PB

¼

Z1
�1

Sð f ÞHð f Þe j2�f 
df

������
������
2

�

Z1
�1

Hð f Þ�� ��2df
ð12:30Þ

Now, the Schwarz inequality can be invoked, namely

Z1
�1

Sð f ÞHð f Þe j2�f 
df

������
������
2



Z1
�1

Sð f Þ�� ��2df Z1
�1

Hð f Þ�� ��2df ð12:31Þ

Equality is reached for

Hð f Þe j2�f 
 ¼ kSð f Þ ð12:32Þ
where k is a real constant. Therefore the maximum of SNR is obtained for

Hð f Þ ¼ kSð f Þe�j2�f 
 ð12:33Þ
and, in terms of impulse responses,

hðtÞ ¼ ksð
 � tÞ ð12:34Þ
Finally, the impulse response of the optimal filter is proportional to the
time-inverted useful signal. The optimal filter is matched to the useful signal.

The meaning in the digital transmission context is that the optimal filter
coefficients, in the presence of white noise, are given by the channel-impulse-
response elements, in reverse order. Assuming that the data signal fed to the
channel is of unit power, the channel-impulse-response vector is
Ct ¼ ½c0; c1; . . . ; cN�1�, the noise power is �2b , the delay at the receiver output
is 
 ¼ N � 1, and the signal-to-noise ratio is



SNR ¼

XN�1
i¼0

c2i

�2b
ð12:35Þ

In terms of propagation, this result indicates that all the paths bring their
contribution to the final SNR. However, noise is not the only obstacle in
digital transmission: intersymbol interference has to be minimized.

12.3.3. The Wiener Filter

The problem of data transmission can also be appreciated from a signal
reconstruction perspective, using least squares. The situation is depicted in
Figure 12.4.

The objective is to minimize the power of the difference between output
and input signals, expressed by

J ¼
Z1
�1
jsðtÞ � ~ssðtÞj2dt ð12:36Þ

in the presence of the additive colored noise bðtÞ with power-spectral density
jBð f Þj2. According to the least squares principle, the optimal filter is
obtained when the error eðtÞ ¼ sðtÞ � ~ssðtÞ is uncorrelated with the filter
input xðtÞ, which implies

rexð�Þ ¼
Z1
�1
½sðtÞ � ~AAðtÞ�x ðt� �Þ dt ¼ 0 ð12:37Þ

In the spectral domain, using the results in Section 3.1 and the assumption
that the noise bðtÞ is uncorrelated with the input signal sðtÞ, the following
filter frequency response is obtained:

Hð f Þ ¼ jSð f Þj2Cð f Þ
jSð f Þj2jCð f Þj2 þ jBð f Þ2 ð12:38Þ

with jSð f Þj2 the power spectral density of the input signal. The above
expression can be rewritten in different forms. First, the inverse of the
channel response can be made apparent:

FIG. 12.4 Additive noise and Wiener filtering.



Hð f Þ ¼ 1

Cð f Þ
jCð f Þj2

jCð f Þj2 þ jBð f Þj2=jSð f Þj2 ð12:39Þ

Clearly, in the digital transmission context, in the absence of noise, the
optimal equalizer frequency response is the inverse of the channel frequency
response. However, in the presence of colored noise, the spectral density of
the noise affects the equalizer frequency response. Expression (12.39) can
also be related to the matched filter, considering the factorization

Hð f Þ ¼ Cð f Þ
jCð f Þj2 þ jBð f Þj2=jSð f Þj2 ð12:40Þ

In the presence of white noise with power �2b and a unit-power uncorrelated
input data signal, this equation simplifies to

Hð f Þ ¼ Cð f Þ
jCð f Þj2 þ �2b

ð12:41Þ

A comparison with equation (12.33) shows that the Wiener filter is subopti-
mal for digital transmission. The difference between the matched and
Wiener filters is discussed in a later section.

To conclude this section, an additional important aspect must be intro-
duced. The signals are actually transmitted between emitters and receivers in
analog form. A digital-to-analog conversion takes place in the emitter while
an analog-to-digital conversion is carried out in the receiver; in between, the
signal propagates in analog form. The sampling times in emitter and receiver
are not necessarily the same, and fractional delays are introduced. Thus, an
interpolating filter is part of the overall model and has to be included in the
equalizer function. It can severely degrade the performance of the equalizer,
because an accurate interpolation requires a large number of FIR coeffi-
cients, and this is why synchronization of the timing instants is generally
carried out separately in digital receivers.

12.4. TRANSVERSAL EQUALIZER

The adaptive transversal equalizer can cope with all the situations, but with
various degrees in performance. The principle is shown in Figure 12.5. In an
actual modem, the reference signal can have two origins. It can be the data
signal itself, dðnÞ, adequately delayed to reflect the delays incurred during
transmission and equalization. This is typical of the learning phase, with a
learning sequence known at the receiver, in a transmission procedure. The
received data ~ddðnÞ can also be used as the reference, and the equalizer is said



to be ‘‘decision-directed’’; it is the tracking phase and comes after the learn-
ing or training phase, when real data are transmitted.

With the LMS algorithm, the equations are:

eðnþ 1Þ ¼ dðnþ 1��Þ �HtðnÞXðnþ 1Þ
Hðnþ 1Þ ¼ HðnÞ þ �eðnþ 1ÞXðnþ 1Þ ð12:42Þ

where � is the delay in the total link. The received signal itself is related to
the data by

xðnÞ ¼
X1
i¼0

cidðn� iÞ ð12:43Þ

the channel transfer function being expressed by

CðZÞ ¼
X1
i¼0

ciZ
�1 ð12:44Þ

The optimal coefficient vector is

Hopt ¼ R�1xx E½dðnþ 1��ÞXðnþ 1Þ� ð12:45Þ
If the data sequence is uncorrelated, then

Hopt ¼ R�1xx

c�
c��1
..
.

c�þ1�N

2
6664

3
7775 ¼ R�1xx C� ð12:46Þ

Assuming that the data sequence has unit power, the minimal residual error
power after equalization is expressed by

Er ¼ 1� Ct
�R

�1
xxC� ð12:47Þ

FIG. 12.5 The transversal equalizer.



The importance of the delay is apparent, and the delay � has to be included
in the search for optimality.

Another crucial issue is the level of white noise included in the input
signal xðnÞ. If the noise power is �2b at the input, the noise power at the
decision point is

�2dec ¼ Ht
optHopt�

2
b ð12:48Þ

Therefore noise is amplified in the transversal equalization process. This can
be a serious limitation, since it degrades the performance of the transmission
system.

Implementation using the LMS algorithm is simple and robust. Other
algorithms like RLS, Lattice, or QR can also be used. Due to the FIR
structure, there is no stability issue.

The extension to complex signals is straightforwawrd, as pointed out in
Section 7.8. Computing the gradient of the squared norm of the complex
output error eðnÞ leads to the coefficient updating equation

Hðnþ 1Þ ¼ HðnÞ þ �eðnþ 1Þ �XXðnþ 1Þ ð12:49Þ
Indeed, the computational complexity increases four times

The length of the learning sequence is an important parameter, because it
affects the efficiency of the transmission link. It is determined from a study
of convergence in the decision-directed mode. First, the case of two-level
binary data, dðnÞ ¼ �1, is considered. Due to the decision device, there are
two optimal coefficient vectors, namely �Hopt, and zero is a saddle point on
the error surface. Once convergence has started the speed depends on the bit
error rate BER. Assuming that a wrong decision reverses the sign of the
output error, the impact of the bit error rate can be seen as a reduction of
the adaptation step size from � to �(1-2BER). Thus, a short learning
sequence suffices with binary data.

With multilevel signals, if d is the maximum distance between neighbor-
ing levels or neighboring points in the complex-plane constellation, the out-
put error is smaller than d=2. The error surface as a function of the
coefficient vector exhibits local minima, whose number is related to the
number of levels. In order to reach the global minimum in the decision-
directed mode, the coefficient vector must be sufficiently close to the opti-
mum vector when the decision-directed mode starts. Therefore, the learning
sequence must be long enough to bring the output error power below ðd=2Þ2.

As an illustration, let us consider real data and L level symbols, with
uniform amplitude and probability distributions, and distance d ¼ 1. The
signal power is Ps ¼ L2=12. If an LMS algorithm with maximum speed
ð� ¼ 1:N�2xÞ is used in the learning phase, according to equatin (4.44) in
Section 4.4, the length Ns of the learning sequence must be such that



L2

12
1� 1

N

� �2Ns

<
1

4
ð12:50Þ

where N is the number of equalizer coefficients. For example, if L ¼ 16 and
N ¼ 32, the length of the learning sequence is Ns > 70. Now, if the adapta-
tion step size is made smaller by a factor k, the length is approximately
multiplied by the same factor. Therefore it is essential for the efficiency of
the transmission link to get the fastest possible initial convergence. To that
purpose, fast least squares algorithms can be used to advantage.

12.5. DECISION FEEDBACK EQUALIZER—DFE

The objective of the DFE is to equalize FIR channels without inverting the
transfer function, in order to avoid the need for complicated stability con-
trol. The issue is also raised in Section 4.16, and the equation error techni-
que is introduced. In the context of equalization, the interpretation is as
follows: the channel impulse response is split into three sections: namely the
sample with maximal magnitude; the samples before, called precursors; and
the samples after, called postcursors. The DFE compensates the postcur-
sors.

From a signal-processing perspective, the problem is how to deal with the
zeros of the channel transfer function CðZÞ that are out of the unit circle.
Let Z0 be such a zero, implying

jZ0j > 1 ð12:51Þ
The corresponding factor in the equalizer transfer function should be

H0ðzÞ ¼
1

1� Z0Z
�1 ð12:52Þ

which can be developed in series as

H0ðzÞ ¼
�Z
Z0

1

1� Z

Z0

¼ �Z
Z0

X1
i¼0

Z

Z0

� �i

ð12:53Þ

Due to inequality (12.51), for a suitable integer P, an approximation of H0

ðzÞ is

H0ðzÞ �
�Z
Z0

XP
i¼0

Z

Z0

� �i

ð12:54Þ

This approximation cannot be implemented. However, if a delay is intro-
duced as



Z�ðPþ1ÞH0ðZÞ ¼ �
1

Z0

1

ZP
0

þ Z�1

ZP�1
0

þ � � � þ Z�P
 !

ð12:55Þ

a realizable transfer function is obtained. Therefore, a maximum-phase zero
in the channel can be approximately equalized if a delay is introduced. The
greater the delay, the better the approximation.

The structure of the approximation obtained is worth pointing out. The
equation (12.55) is the cascade of a gain and a backward linear predictor,
and it can be implemented in that way, if blind equalization is considered,
for example.

Coming back to the equalizer, its block diagram is shown in Figure 12.6.
It consists of a transversal section AðzÞ, also called a feedforward filter, and
a recursive section BðzÞ, also called a feedback filter, whose coefficients can
be updated with the LMS algorithm. The optimum values of the coefficients
Aopt and Bopt can be computed according to the least squares principle. The
output error is expressed by

eðnþ 1Þ ¼ dðnþ 1��Þ � BtðnÞDðn��Þ � AtðnÞXðnþ 1Þ ð12:56Þ

where � is the delay of the system. The least squares solution is readily
obtained by

Bopt

Aopt

� 	
¼ E

Dðn��Þ
Xðnþ 1Þ

� 	
½Dtðn��ÞXtðnþ 1Þ�

� 	�1
E dðnþ 1��Þ Dðn��Þ

Xðnþ 1Þ
� 	� 	
ð12:57Þ

The input xðnÞ satisfies equation (12.44) and, assuming uncorrelated unit
power data, one gets

FIG. 12.6 Principle of the adaptive DFE.



Bopt

Aopt

� 	
¼ INb

M
Mt RNa

� 	�1 0
..
.

0
C�

2
664

3
775 ð12:58Þ

The transversal and recursive sections have Na and Nb coefficients respec-
tively. RNa

is the Na �Na autocorrelation matrix of the input signal, INb
is

the Nb �Nb identity matrix. The Nb �Na matrix M is defined by:

M ¼ E

dðn��Þ
dðn� 1��Þ

..

.

dðnþ 1�Nb ��Þ

2
6664

3
7775½xðnþ 1Þ; xðnÞ; . . . ; xðnþ 2�NaÞ�

2
6664

3
7775
ð12:59Þ

Its elements are the coefficients ci of the channel impulse response. For
example, if Na ¼ Nb ¼ 3 and � ¼ 2, the matrix M is

M ¼
c3 c2 c1
c4 c3 c2
c5 c4 c3

2
4

3
5 ð12:60Þ

The Na-element vector C� is

Ct
� ¼ ½c�; c��1; . . . ; c�þ1�Na

� ð12:61Þ
An efficient way to compute the solution of equation (12.58) is to notice the
relationships between Aopt and Bopt vectors. Equation (12.56) can be rewrit-
ten as

Bopt þMAopt ¼ 0

MtBopt þ RNa
Aopt ¼ C�

ð12:62Þ

And, finally, the optimum values for the DFE coefficients are:

Aopt ¼ ½RNa
�MtM��1C�

Bopt ¼ �MAopt

ð12:63Þ

Now, the minimum mean square error (MMSE) at the output of the equal-
izer is, according to Section 4.3,

Emin ¼ E½d2ðn��Þ� � ½Bt
opt;A

t
opt� 0

C�

� 	
ð12:64Þ

which yields

Emin ¼ E½d2ðn��Þ� � At
optC� ð12:65Þ



It is worth pointing out that only the transversal section is involved. The
recursive section does not contribute to noise enhancement, which is one of
the key advantages of this approach [8, 9].

Example 1

Let us consider the input signal

xðnÞ ¼ 0:5dðnÞ þ 0:3dðn� 1Þ þ 0:1dðn� 2Þ
and assume the following parameter values: Na ¼ 2;Nb ¼ 1;� ¼ 1. Then
the terms in (12.63) are

RNa
¼ 0:35 0:18

0:18 0:35

� 	
; M ¼ ½0:1 0:3�; C� ¼ 0:3

0:5

� 	
which yields

Aopt ¼ 0:045
1:899

� 	
; bopt ¼ �0:5745

The output MMSE is Emin ¼ 1� At
optC� ¼ 0:0365. Now, let us change the

parameter values to Na ¼ 1;Nb ¼ 2;� ¼ 0. The optimal coefficient values
are

Aopt ¼ 0:3� ½0:3 0:1� 0:3

0:1

� 	� 	�1
0:5 ¼ 2

Bopt ¼ �
0:3

0:1

� 	
2 ¼ �0:6

�0:2

� 	
Emin ¼ 0

In fact, the channel transfer function is

CðZÞ ¼ 0:5ð1þ 0:6Z�1 þ 0:2Z�2Þ
and the equalizer has the same coefficients, with opposite signs, to cancel the
multipath signals.

Example 2

Consider a transmission channel with the maximum-phase transfer function

CðZÞ ¼ 0:5þ Z�1 þ 0:8Z�2

The input signal to the channel is assumed to be of unit power and uncor-
related, and an additive white noise with power �2b ¼ 0:1 is present at the
channel output. The parameter values are

Na ¼ Nb ¼ 2;� ¼ 1



Then

RNa
¼ 1:99 1:30

1:30 1:99

� 	
; M ¼ 0:8 1:0

0:0 0:8

� 	
; C� ¼ 1:0

0:5

� 	
The equalizer coefficients are

Aopt ¼ 0:4494
0:7865

� 	
; Bopt

1:1460
0:6292

� 	
The output mean square error is

Emin ¼ 0:1573

It is interesting to observe that the coefficients of the feedback section Bopt

are close to those of the minimum-phase function

CðZ�1Þ ¼ 0:8ð1þ 1:25Z�1 þ 0:625Z�2Þ
which shows how transversal and feedback sections share the equalization
task. The system output is

yðnÞ ¼ 0:2247dðnÞ þ 0:8425dðn� 1Þ
and the output mean square error can be decomposed as

Emin ¼ ½0:22472 þ ð1� 0:8426Þ2� þ 0:1½0:44942 þ 0:78652� ¼ 0:1573

to show the respective contributions of noise and intersymbol interference.
Obviously, with more transversal coefficients, and more system delay, the
output mean square error can be reduced.

An important point concerning the DFE is its sensitivity to decision
errors. In the tracking mode, the decision errors propagate in the feedback
section, and multiple errors can be created. In fact, the DFE, in the decision-
directed mode, is an IIR adaptive filter. Its poles should be inside the unit
circle, since it is supposed to compensate minimum-phase functions.
However, in the adaptive process and in the presence of decision errors,
they can go out of the unit circle. As discussed in section 5.11, the exponen-
tially growing output signal eventually brings the poles back within the unit
circle, but a burst of errors results whose length is linked to the adaptation
time constant. Therefore, the DFE can only work properly if the error rate
is small; otherwise, specific measures have to be taken [9].

12.6. FRACTIONALLY SPACED EQUALIZER

In the receiver, decisions are taken at the symbol rate fb to retrieve the data.
So far, it has been assumed that all the functions in the receiver are carried
out at that rate, including the equalization. However, it is known that the



signal spectrum exceeds the symbol rate by the amount of the roll-off of the
Nyquist filter, as shown in Figure 12.7.

Therefore sampling at the symbol rate generates aliasing, and the image
of the base band spectrum occurs around the frequency fb. According to
sampling theory, the phase of this image is linked to the sampling times. A
shift in timing produces a rotation of the phase of the image, and the base-
band spectrum and the image no longer add up in phase, in the filter transi-
tion band �f . Therefore the equalizer is sensitive to the sampling times, and
equalization may become impossible for frequencies in the vicinity of half
the symbol rate. As is well known in multirate filtering, the solution to the
problem is to increase the sampling rate sufficiently to avoid aliasing, which
leads to the so-called fractionally spaced equalizer [7, 10–12].

An equalizer with double sampling is shown in Figure 12.8. The input
signal sample sequence is split into two sequences which are fed to two
separate equalizers H1ðzÞ and H2ðzÞ operating at the symbol rate.

The output error is

eðnÞ ¼ dðn��Þ �Ht
1X1ðnÞ �Ht

2X2ðnÞ ð12:66Þ
The optimal coefficient vectors are given by

H1opt

H2opt

� 	
¼ R11 R12

R21 R22

� 	�1
rd1
dd2

� 	
ð12:67Þ

with, for i ¼ 1; 2 and j ¼ 1; 2,

Rij ¼ E½XiX
t
j �; rdi ¼ E½dðn��ÞXiðnÞ�

The updating of the coefficients is carried out at the symbol rate. It is
worth pointing out that the input-signal spectrum, except for the noise, goes
to zero in the vicinity of the symbol frequency fb, as shown in Figure 12.7.
Depending on the filter roll-off, the eigenvalues of the input signal AC
matrix may be widely spread, which may justify using RLS algorithms
instead of LMS for coefficient updating. In any case, if LMS is employed,

FIG. 12.7 Frequency response of the Nyquist filter.



it is advisable to use the leakage algorithm described in Section 4.6, to avoid
undesirable effects due to insufficient persistent excitation in some frequency
bands. In fact, the leakage factor prevents the uncontrolled growth of the
coefficients which may occur when no signal is present in some frequency
bands.

As concerns noise amplification, it takes place as in any transversal equal-
izer. The fractionally spaced equalizer can be completed by a feedback section,
to make the so-called fractionally spaced DFE. This combination is generally
recognized to be the most efficient approach to adaptive equalization.

12.7. MAXIMUM-LIKELIHOOD ALGORITHMS (MLA)

An alternative approach to channel equalization in receivers is maximum-
likelihood decoding. Instead of equalizing first and then decoding symbol by
symbol to retrieve the data, the idea is to take a block of samples and,
assuming that the channel transfer function is known, find the symbol
sequence which is the most likely to have produced the block of samples
considered [13, 14].

The principle, sketched in Figure 12.9, is the following: assuming that the
emitted data dðnÞ are known or have been decided for n < 0, find dð0Þ by the
maximum-likelihood method, using the channel transfer function CðZÞ,

FIG. 12.8 Double sampling equalizer.

FIG. 12.9 Maximum-likelihood decoding.



which is known or has been estimated. If the channel is FIR with N coeffi-
cients, the input signal xðnÞ is expressed by

xðnÞ ¼
XN�1
i¼0

cidðn� iÞ þ bðnÞ ¼ CtDðnÞ þ bðnÞ ð12:68Þ

where bðnÞ is a white Gaussian noise with power �2b . The sought datum dð0Þ
is involved explicitly in N received samples:

xð0Þ ¼ c0dð0Þ þ c1dð�1Þ þ � � � þ cN�1dð�N þ 1Þ þ bð0Þ
xð1Þ ¼ c0dð1Þ þ c1dð0Þ þ � � � þ cN�1dð�N þ 2Þ þ bð1Þ

..

.

xðN � 1Þ ¼ c0dðN � 1Þ þ c1dðN � 2Þ þ � � � þ cN�1dð0Þ þ bðN � 1Þ
ð12:69Þ

Now an error vector Eð0Þ can be built with the M elements ðM 5 NÞ
eð0Þ ¼ xð0Þ � CtDð0Þ
eð1Þ ¼ xð1Þ � CtDð1Þ

..

.

eðM � 1Þ ¼ xðM � 1Þ � CtDðM � 1Þ

ð12:70Þ

The maximum-likelihood technique consists in searching for the minimum
Emin of the L2 norm of the vector Eð0Þ:

kEð0Þk22 ¼
XM�1
i¼0

e2ðiÞ ð12:71Þ

for all possible emitted data values: dð0Þ; dð1Þ; . . . ; dðM � 1Þ. The decision
for dð0Þ is the value that is involved in Emin.

The following remarks are relevant.

. the channel coefficients are used in the computation of the error vector.

. the decision is taken with the delay � ¼M � 1.

. if each symbol carries K bits, dðnÞ can take 2K values, and 2KM vector
norms have to be computed.

Clearly, the computational complexity is a major issue, and the parameters
M and K have to be kept small. In fact, the scheme is practical for radio
channels with a few transmission paths and binary modulation.

Significant reductions in computational complexity can be obtained with
the VITERBI algorithm. The principle is as follows:



. initial conditions: vector Dð�1Þ is known.

. time 0: for each of the 2K possible transitions from vector Dð�1Þ to
vector Dð0Þ, e2ð0Þ is calculated.

. time 1: from each of the 2K vectors, or states, reached at time 0, 2K

transitions are possible to reach a state of time 1. The transitions define
paths starting from the known state Dð�1Þ and ending at state Dð1Þ. To
each path, a weight is attached which is the L2 norm of the error vector,
namely: e2ð0Þ þ e2ð1Þ.

. time M � 1: the path that has the smallest weight is selected, and the
value dð0Þ involved in that path is selected as the decoder output.

The geometrical representation of the states and the transitions at each time
is called a trellis. Note that it is sufficient to maintain 2KðN�1Þ states in the
trellis. An example is shown in Figure 12.10, for K ¼ 1 and N ¼ 3.

The simplifications in computations come from the following observa-
tions:

. at a given time n, of all the paths ending at state DðnÞ, it is sufficient to
keep only the path with the smallest weight.

. at time n, only the error values e2ðnÞ attached to the 2K transitions for
each of the states have to be calculated. Since there are 2KðN�1Þ states, 2KN

error values have to be calculated.
. each time, it might be sufficient to keep only a few paths, the so-called

survivors: those which have the smallest weights.

The performance of the scheme is sensitive to the parameter values, parti-
cularly the block size M and the number of survivors, but the most critical
input is the channel estimate which has to be carefully monitored.

FIG. 12.10 Trellis for the Viterbi algorithm.



12.8. COMPARISON OF EQUALIZATION
APPROACHES

In order to assess the relative performance of the various techniques con-
sidered so far for optimal reception, it is useful to provide some figures of
merit. The noise level that leads to a specified bit error rate can be a good
basis for comparison. The target bit error rate retained is BER 10�3.

With the maximum-likelihood (ML) technique, when the correct data
vector is picked, the minimum Emin of the norm of the error vector is
given by:

Emin ¼
XM�1
i¼0

b2ðnÞ ð12:72Þ

when expressions (12.68), (12.70), and (12.71) are combined. Assuming
binary data, a false dð0Þ yields the norm

Ef ¼
XN�1
i¼0
½bðiÞ þ 2ci�2 þ

XM�1
i¼N

b2ðnÞ ð12:73Þ

The difference is

Ef � Emin ¼ 4
XN�1
i¼0

cibðiÞ þ
XN�1
i¼0

c2i

" #
ð12:74Þ

The variable

u ¼
XN�1
i¼0

cibðiÞ ð12:75Þ

is Gaussian, and its variance is

�2u ¼ �2b
XN�1
i¼0

c2i ð12:76Þ

An error occurs whenever Ef � Emin < 0. The probability of this situation is
smaller than 10�3 if

�u <
1

3

XN�1
i¼0

c2i ð12:77Þ

Then the condition on the square root of the noise variance is

�b <
c0
3

1þ
XN�1
i¼1

c2i
c20

" #1
2

ð12:78Þ



Now, let us consider a DFE, with a recursive section only and N � 1
coefficients, as shown in Figure 12.11. The signal at the input of the decision
device is

yðnÞ ¼ xðnÞ �
XN�1
i¼1

cidðn� iÞ ð12:79Þ

and, if the coefficients take on the exact values, then

yðnÞ ¼ c0dðnÞ þ bðnÞ ð12:80Þ
Therefore, assuming that bðnÞ is a Gaussian noise, the condition
BER<10�3 implies

�b <
c0
3

ð12:81Þ

As concerns the transversal equalizer, it implements the inverse of the
channel transfer function or an approximation as follows:

C�1ðZÞ ¼ 1

c0 1þ PN�1
i¼1

ci
c0

Z�i
� 	 � 1

c0
1þ

XN�1
i¼1

hiZ
�i

" #
¼ HðzÞ ð12:82Þ

The condition on the bit error rate leads to

�b <
c0
3

1

1þ
XN�1
i¼1

h2i

" #1
2

ð12:83Þ

Expressions (12.78), (12.81), and (12.83) provide a ranking of the three
techniques. One can say that, with respect to the input noise, the DFE is
neutral, since it keeps the input value of the signal-to-noise ratio, and the
transversal equalizer degrades the SNR, while the MLA improves the SNR.

FIG. 12.11 Purely recursive DFE.



In fact, in the maximum-likelihood approach, the SNRs of the various
propagation paths add up.

Example

Let us consider the simple case where

CðZÞ ¼ 1

1� aZ�1
ð12:84Þ

The noise-level limits for the three approaches are given in table 12.1.
It must be pointed out that the above comparison implies many assump-

tions and, in practical situations, the comparison is not so clear-cut. In many
applications, the transversal equalizer is still the preferred technique,
because of its flexibility and ease of implementation, its robustness to deci-
sion errors, and its relative computational simplicity. However, if the system
has to operate close to the SNR limit in a very noisy environment, and if
long delays are acceptable, the MLA might be the right approach.

12.9. CARRIER FREQUENCY ESTIMATION

Shifts in carrier frequency can occur during the transmission of modulated
signals, due to local oscillators or, in mobile radio environments, to the so-
called Doppler effect. Assuming that a mobile station is moving at speed v
and it is receiving a signal emitted from a fixed base station with frequency
f , then the received frequency is shifted by �f , such that

�f ¼ f
�

c
cos 
 ð12:85Þ

where c is the radiowave velocity and 
 is the angle between the mobile
travelling direction and the direction of the source.

In the receiver, the frequency shift has to be compensated, and a conven-
tional technique is the phase-locked loop. However, when the transmission
takes place in bursts, like in some satellite communications, faster techni-

Table 12.1 Comparison of Equalization Techniques

MLA DFE Transversal

3�b <
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
a ¼ 0:8 1/0.6 1 1.3



ques are required. An approach is to estimate the carrier frequency from the
signal samples in the burst, then cancel it and proceed with the operations of
the optimal receiver [15, 16].

A preliminary step is to get rid of the modulation, and the methods used
to reach that goal are closely related to the modulation itself. For example,
with 4-QPSK modulation, it is sufficient to raise the signal samples to the
4th power. A 4-QPSK signal is expressed by:

xðnÞ ¼ Ae j ��4��2þ’ð Þ ð12:86Þ
and

x4ðnÞ ¼ �A4e j4’ ð12:87Þ
Indeed, a high-level noise component must be added to xðnÞ to reflect prac-
tical conditions, and it is enhanced by the operation. In practice, it is recom-
mended to multiply the phase of the signal xðnÞ by 4 and keep the magnitude
or, even, set it to unity.

In any case, the problem of compensating the carrier frequency in a burst
boils down to finding the frequency of a single sinusoid in noise, using N
samples. Let us assume the signal to be

xðnÞ ¼ Ae jðn!þ’Þ þ bðnÞ ð0 
 n 
 N � 1Þ ð12:88Þ
A target accuracy has to be specified first. With 4-QPSK, the residual fre-
quency error �! must be small enough, so that after N samples, data
extraction is still unambiguous, which implies

N�! <
1

2

�

2
ð12:89Þ

Now, the issue is whether this accuracy can be met, given the signal-to-noise
ratio SNR. The answer is provided by the estimation bounds.

The results of section (10.9) can be applied in a straightforward manner.
There are three unknown parameters: namely the amplitude A, the angular
frequency !, and the phase ’. Using definition (12.88) for the signal samples,
the gradient matrix MG is such that

MGM
t
G ¼

N

jA
NðN � 1Þ

2

jAN

�jANðN � 1Þ
2

A2 NðN � 1Þð2N � 1Þ
6

A2 NðN � 1Þ
2

�jAN

A2 NðN � 1Þ
2

A2N

2
666664

3
777775 ð12:90Þ

Since the three parameters to be estimated are real, the variances are
obtained using only the real part of the matrix MGM

t
G. Assuming the



noise to be complex with power �2b , the inverse of the real part of the matrix
MGM

t
G is multiplied by �2b=2 to produce the variances

varfAg ¼ �2b
2N

; varf!g ¼ 1

SNR

6

NðN2 � 1Þ ;

varf’g ¼ 1

SNR

ðN � 1Þ
Nð4N2 � 3N þ 1Þ

ð12:91Þ

Then, for a given SNR, the number of samples must satisfy the inequality

1

SNR

6

NðN2 � 1Þ <
1

N2

�

4


 �2
ð12:92Þ

or

N >
96

�2SNR
ð12:93Þ

For example, if SNR=0.1 (�10 dB), then N > 97. Note that, if a peak
factor is introduced in inequality (12.89) to reflect a probability limit, then
the number of samples is multiplied by the same factor.

Once equality (12.93) has been checked, the next step in to find an esti-
mation algorithm able to meet the bound. A classical approach consists of
performing an FFT on the input samples, taking the squared modulus of the
transformed values, and looking for the maximum of the signal spectral
power density through interpolation. The frequency corresponding to the
maximum is the desired estimate. One can also exploit the following prop-
erty: the autocorrelation function of a cissoid in noise is still a cissoid in
noise, as shown by the computation

rðpÞ ¼ 1

N � p

XN�1
n¼p

xðnÞ �xxðn� pÞ ¼ A2e jp! þ b 0ðpÞ ð12:94Þ

with b 0ðpÞ a noise component given by

b 0ðpÞ ¼ 1

N � p

XN�1
n¼p

Ae jðn!þ’Þ �bbðn� pÞ þ Ae j½ðn�pÞ!þ’�bðnÞ þ bðnÞ �bbðn� pÞ
" #

ð12:95Þ
Now the autocorrelation function of the sequence rðpÞ can be computed.
After several such iterations, the element with index p ¼ 1 in the autocorre-
lation function gives the desired estimate, after division by the element with
index 0, which is the corresponding signal power. It is worth pointing out
that the autocorrelation function of a given sequence is computed efficiently
through a cascade of three operations: calculating an FFT, taking the



square of the modulus of the transform outputs, and calculating the inverse
FFT.

Once the estimate e j ~!! of the true carrier frequency e j! has been obtained,
the compensation can be carried out as shown in Figure 12.12.

The optimal receiver can use the maximum-likelihood algorithm
described in Section 12.7 to retrieve the data from the N signal samples.

12.10. ALGORITHMS FOR RADIO
COMMUNICATIONS

Signal processing algorithms have been essential for all kinds of radio trans-
mission systems, e.g., microwave fixed links, satellites, and cellular wireless
networks. Some have been developed specially, like the DFE equalizer
which was introduced to cope with the high level of noise present in some
radio channels, while the transversal equalizer gave satisfactory perfor-
mance in wired communications, where accurate equalization is the main
priority and noise is less of a problem.

A typical example of the importance of some basic algorithms, like those
given in section 12.1, is given by the power control in cellular systems,
particularly those based on code division multiple access (CDMA) [17]. In
CDMA networks, several users share the same transmission channel, and it
is essential that the corresponding signals reach the base station receiver
with similar power levels, in order for the receiver to reliably separate and
decode all the signals. However, in a mobility context, the distance between
a user and the base station can vary considerably in a short time. Therefore,
nearby emitters must have their power reduced while distant emitters have
to push up their power levels. In fact, for a CDMA-based cellular system to
work properly, a global strategy to adaptively control the power levels of the
mobile users has to be implemented. To some extent, the same applies to the
base station itself, if it has the capability to perform a space separation of
the emitted signals.

In this section, several algorithms which find application in radio recei-
vers are described.

FIG. 12.12 Compensation of the carrier frequency.



12.10.1. Zero Forcing (ZF) Algorithm

The updating of the coefficients in a transversal equalizer can be simplified if
the data vector is employed instead of the input signal vector. The equations
are

eðnþ 1Þ ¼ dðnþ 1Þ �HtðnÞXðnþ 1Þ
Hðnþ 1Þ ¼ HðnÞ þ �eðnþ 1ÞDðnþ 1Þ ð12:96Þ

where Dðnþ 1Þ is the vector of the N most recent output data at time nþ 1,
and the filter has N coefficients. The scheme is particularly advantageous
with binary data. The updating equation leads to the cancellation of the
expectation

E½eðnÞDðnÞ� ¼ E½dðnÞDðnÞ �DðnÞXtðnÞHopt� ¼ 0 ð12:97Þ
when the optimal coefficient vector Hopt has been obtained. Now, the input
xðnÞ is related to the data by

xðnÞ ¼
X1
i¼0

cidðn� iÞ ð12:98Þ

Assuming uncorrelated data, equation (12.97) is rewritten as

1
0
..
.

0

2
664

3
775�

c0 0 � � � 0
c1 c0 � � � 0

..

. . .
.

cN�1 cN�2 � � � c0

2
666664

3
777775

h0
h1
..
.

hN�1

2
6664

3
7775 ¼ 0 ð12:99Þ

which means that the coefficients of the equalizer are such that, on average,
the N � 1 first terms of the impulse response of the channel and equalizer in
cascade are forced to zero. This is apparent if the product CðZÞHðZÞ is
computed. In fact, the coefficients Hopt are the N first values of the inverse
of the channel impulse response.

The ZF algorithm can be analyzed as the conventional LMS algorithm.
For example, the stability condition is derived from the a posteriori output
error "ðnþ 1Þ by:
"ðnþ 1Þ ¼ eðnþ 1Þ½1� �Dtðnþ 1ÞXðnþ 1Þ� ð12:100Þ

Following the reasoning of Section 4.2 and taking the expectations of the
absolute values of both sides yields the stability condition

0 < � <
2

Nc0
ð12:101Þ



The data are assumed to have unit power. It is worth pointing out that, since
the channel coefficients are not available beforehand, some initial guess is
necessary to select the adaptation step size �. In practice, it might be con-
venient to use the square root of the input signal power.

12.10.2. The Constant Modulus Algorithm (CMA)

The CMA algorithm belongs to the family of the so-called blind algorithms,
which means that no reference signal is available to guide the adaptation
process, which has to rely on a priori known characteristics of the signal.

A typical characteristic of many radio signals is the constant modulus,
which is a basic requirement to fully exploit the dynamic range of the
amplifiers and achieve the best protection against noise at a given signal
power level. Frequency modulation and phase modulation have this prop-
erty [18].

The CMA algorithm is commonly used in digital phase-locked loops, and
in channel equalizers when appropriate. Since there is no need to transmit
an initial learning sequence, the approach is particularly useful in circum-
stances where it is impossible or impractical to use a learning sequence, as in
broadcasting for example. The principle is shown in Figure 12.13.

The cost function JCM is defined by:

JCM ¼
1

4
E½A2 � j ~yyðnÞj2�2 ð12:102Þ

The instantaneous gradient is the derivative, with respect to the coefficients,
of the quantity in brackets. For real signals, one gets

GradðnÞ ¼ �½A2 � j ~yyðnÞj2� ~yyðnÞXðnÞ ð12:103Þ
The filter coefficients are updated by:

Hðnþ 1Þ ¼ HðnÞ þ �½A2 � j ~yyðnþ 1Þj2� ~yyðnþ 1ÞXðnþ 1Þ ð12:104Þ

FIG. 12.13 Principle of the CMA equalizer.



For complex signals, the derivative of the quantity j ~yyðnÞj2 with respect to the
coefficients is the vector 2 ~yyðnÞ �XXðnÞ, and the updating equation becomes

Hðnþ 1Þ ¼ HðnÞ þ �½A2 � j ~yyðnþ 1Þj2� ~yyðnþ 1Þ �XXðnþ 1Þ ð12:105Þ
With the same approach, sign algorithms can also be derived.

A critical issue with the above algorithm is convergence. Since the cost
function is not quadratic, and the algorithm includes nonlinear operations,
local minima exist. In addition, the performance, particularly the conver-
gence time, cannot be predicted.

12.10.3. Optimal Multipath Equalization

Multipath propagation is a typical feature of most radio channels. Rather
than mitigate the effect, the optimal receiver should exploit it and make the
various propagation paths contribute to the transmission. In fact, signals
carrying the same information should be combined in such a way that the
corresponding signal-to-noise ratios add up. The possibility has already
been demonstrated for the matched filter and the maximum-likelihood algo-
rithm, and it is considered below from a direct-weighting perspective.

Let us consider a set of K signals xk, such that

xk ¼ 1þ bk ð0 
 k 
 K � 1Þ ð12:106Þ
The desired quantity is 1, and bk is a white noise, of power Bk, in the
measurement. The K noise components are assumed uncorrelated. Next,
let us consider the weighted summation

y ¼ x0 þ
XK�1
k¼1

hkxk ð12:107Þ

The issue is to find the K � 1 coefficients hk that maximize the signal-to-
noise ratio in the signal y. Substituting (12.106) into (12.107) leads to

y ¼ 1þ
XK�1
k¼1

hk

 !
þ b0 þ

XK�1
k¼1

hkbk ð12:108Þ

The signal-to-noise ratio is expressed by

SNRy ¼
1þ

XK�1
k¼1

hk

 !2

B0 þ
XK�1
k¼1

h2kBk

ð12:109Þ



The maximum of the function is obtained when all the derivatives with
respect to the coefficients are zero. That condition for coefficient hi can be
shown to be

B0 þ
XK�1
k¼1

h2kBk ¼ 1þ
XK�1
k¼1

hk

 !
hiBi ð12:110Þ

Thus K � 1 such equations are obtained, and they form a system that pro-
vides the coefficient values. It is readily verified by mere substitution that the
solution to the system is

hk ¼
B0

Bk

ð0 
 k 
 K � 1Þ ð12:111Þ

The corresponding SNR is obtained by substituting (12.111) into (12.109),
which yields, after simple algebraic manipulations,

SNRy ¼ 1

B0

þ
XK�1
k¼1

1

Bk

ð12:112Þ

The signal-to-noise ratio of the weighted sum y is just the sum of the indi-
vidual SNRs. Coming back to the radio-transmission context, the output of
a multipath channel can be expressed by

xðnÞ ¼
XK�1
i¼0
½cidðn� iÞ þ biðnÞ� ð12:113Þ

where each of the K paths has an attenuation ci, a delay i and a noise
component biðnÞ with power Bi. If the paths can be separated, and if the
signal with index i is multiplied by c�1i , the noise power for that signal
becomes Bi=C

2
i . Now, if the signals are properly delayed and summed

with the coefficients given by (12.111), namely

hi ¼
c2i
Bi

ð12:114Þ

the signal-to-noise ratio of the signal yðn� KÞ so obtained is given by

SNRy ¼
XK�1
i¼0

c2i
Bi

ð12:115Þ

This expression becomes identical to (12.36) if all the paths have the same
noise power. In fact, a matched filter has been obtained.

From an application viewpoint, the above developments might look like
an academic exercise, since the paths generally cannot be separated and the
SNRs measured individually. However, the approach can be applied as such



in code-division multiple-access (CDMA) systems, because of the decorrela-
tion brought by the coding to delayed versions of the signal, and it is called
the ‘‘RAKE’’ receiver [17]. The structure is shown in Figure 12.14.

The channel impulse response is measured, and the M most significant
paths are identified, with their delays. The input multipath signal xðnÞ is fed
to a set ofM branches, called the fingers, which consist of delays, correlators
with the spreading sequence, and multipliers by the weighting coefficients.
The signal obtained by summation of the outputs of the branches is fed to
the detector which supplies the data. Actually the scheme is a direct imple-
mentation of the matched filter.

12.10.4. Adaptive Antennas for Cellular Systems

Adaptive antenna arrays have the potential to enhance the capacity of
cellular systems by exploiting spatial separation between subscribers. The
base station concentrates the signal power in the directions of the mobile
units to be reached and reduces the power radiated in the directions of the
other units. The same principle is applied to the reception of the signals
emitted by the mobiles. In fact, in cellular systems, the base stations are in a
position to perform a global optimization of the whole transmission system,
by combining send-and-receive information and by exploiting jointly the
estimation and equalization techniques for the paths of the mobiles they
are managing. However, in practice, a step-by-step introduction of these
concepts is necessary.

The block diagram of an adaptive array and the combination of space
diversity and equalization is shown in Figure 12.15.

FIG. 12.14 Structure of the RAKE receiver.



In fact, it is a DFE with a multichannel transversal section which can be
fractionally spaced. The algorithms presented in Sections 12.5 and 12.6 can
be used, as well as the results of Section 11.7 on adaptive antennas. If the
received signals are narrow-band, the transversal sections can be simplified
to single coefficients.

The scheme can direct the main antenna beam towards the desired mobile
unit and position nulls in the directions of interfering units, while equalizing
the transmission channel and minimizing the received noise. In fact, it is
shown to be optimal in the presence of multipath propagation and jammers
[19]. The problem with this general approach resides in the implementation,
with the practical limitations in terms of number of array elements, geome-
try, calibration, and filter dimensioning. A long learning phase is likely to be
necessary.

In order to speed up the process, a cascade approach can be contem-
plated, consisting of two steps. First an estimation of the directions of
arrival of the signals is performed. Then constrained equalization is
employed, with the appropriate algorithms of Sections 4.12 or 7.7.
Direction of arrival estimation and tracking is efficiently achieved by sub-
space methods, as in Section 10.8, and techniques are available to efficiently
carry out the singular-value decomposition of the relevant covariance
matrices [20].

At this point, the similarity between neural networks and equalizers is
worth pointing out. In fact, the adaptive equalizer in the decision-directed
mode is a classifier, like the perceptron described in Section 11.9. The results

FIG. 12.15 Adaptive multichannel equalizer.



obtained in equalization can be applied to perceptrons which use the same
nonlinear operator, in particular concerning convergence speed and residual
error power. Conversely, multilayer perceptrons can be used to equalize
nonlinear channels.

12.11. CONCLUSION

A wide range of adaptive techniques has been presented for equalization and
data retrieval in digital receivers. They are intented to cope with the many
different contexts encountered in communications, and they illustrate the
flexibility and efficiency of the general concept. For each specific applica-
tion, a technique or a combination of different techniques can be identified
to meet the objectives, while satisfying the constraints.

The trend in communications is towards using more powerful algorithms
and sophisticated structures. A typical example in wireless cellular commu-
nications is the use of multiple antenna elements at both the base station and
the mobile set. A multiple-input multiple-output system results, which
should permit a better exploitation of the radio channel and an increase
in data throughput [21]. In fact, transmission channels—and particularly
radio channels, because of the usable spectrum limitations—constitute a
limited resource, in contrast with an ever-growing demand for higher bit
rates and mobility.

Another beneficial effect of the progress in signal processing algorithms is
that it is now possible to reliably exploit channels that were judged until
recently as unusable for high-rate communication. A remarkable example is
the copper wire subscriber loop, which can now support bit rates of several
Mbit/s with the xDSL (Digital Subscriber Loop) systems [22–23].

EXERCISES

1. The scheme of Figure 12.1 is applied to the signal xðnÞ ¼ sin 1
4
n�. Give

the expression of the sequence PxðnÞ, an approximate expression for
the gain GðnÞ, and the output uðnÞ. Assuming that the output harmonic
distortion must be smaller than one percent, what is the maximum
value of the filter parameter "? What is the accuracy of the power
control in that case?

2. In order to reduce the computational complexity and speed up long
echo cancellers, use is sometimes made of interpolated adaptive filters,
in which a fraction only of the coefficient set is actually adaptively
computed, and the remainder is derived through linear interpolation.
Show that, in such a scheme, interpolation can be carried out on the



input signal, and adaptive filtering is performed on the interpolated
signals with a reduced set of coefficients.

Give the details of the operations for the simple case of N ¼ 5
coefficients and interpolation factor K ¼ 2. Discuss the performance
of the interpolated adaptive filter in that case.

3. Schwarz inequality: prove the inequality

½a1b1 þ a2b2�2 
 ½a21 þ a22�½b21 þ b22�
and give the conditions for equality. Use this result to prove inequality
(12.31).

4. A propagation channel has the coefficient vector Ct ¼ ½0:8; 1:0; 0:5�,
and the power of the additive noise is �2b ¼ 0:1. Give the coefficients
of the filter matched to the channel and the impulse response of the
channel-equalizer cascade. What is the overall delay and the maximal
value of the signal-to-noise ratio?

5. A transversal filter is considered to equalize a channel with the transfer
function

CðZÞ ¼ 0:5

1� 0:5Z�1

Compute the power of the received signal xðnÞ, assuming unit-power
uncorrelated input data. For N ¼ 2 coefficients, give the coefficient
values.

A white noise with power �2b ¼ 0:1 is added to the received signal.
Compute the values of the coefficients and compare with the previous
result. What is the noise enhancement factor?

From the impulse response of the channel-equalizer cascade, derive
the intersymbol interference power.

6. A two-path microwave channel is equalized by a transversal filter with
three coefficients. The model is

CðZÞ ¼ 1� 0:7e�j�=4Z�1

Assuming that the input data signal is uncorrelated and of unit power,
compute the equalizer coefficient vector Hopt and the noise enhance-
ment factor.

An alternative transversal equalizer FðZÞ is obtained by taking the
first three terms in the series development of C�1ðZÞ. Give the noise
enhancement factor in that case.

By computing the products CðZÞHoptðZÞ and CðZÞFðZÞ, show the
intersymbol interference in both cases.

Give the coefficient updating equation in the LMS approach. What
is the stability limit for the adaptation step size �?



7. Consider a transmission channel with the transfer function

CðZÞ ¼ 0:5þ 0:25Z�1 þ 0:1Z�2 þ 0:05Z�3

The input signal dðnÞ to the channel is assumed to be of unit power and
uncorrelated. Give the values of the coefficients of a decision-feedback
equalizer with two coefficients in the transversal section and a single
coefficient in the feedback section ðNa ¼ 2;Nb ¼ 1Þ, taking � ¼ 0 as
the total system delay. Compute the output mean square error, and
give the expression of the system output to show the residual inter-
symbol interference.

Next, an additive white noise with power �2b ¼ 0:1 is present at the
channel output. Compute the equalizer coefficients in that case, and
show the relative contributions of noise and intersymbol interference
in the output mean square error.

8. At the input of a double sampling equalizer, the received signals are

x1ðnÞ ¼ dðnÞ þ 0:7dðn� 1Þ þ 0:2dðn� 2Þ þ b1ðnÞ
x2ðnÞ ¼ 0:9dðnÞ þ 0:5dðn� 1Þ þ b2ðnÞ

where b1ðnÞ and b2ðnÞ are independant white noise signals with power
�2b ¼ 0:05 and the data dðnÞ are uncorrelated and of unit power.

Compute the optimal coefficients of the equalizer, with N ¼ 2 coef-
ficients in each branch.

Give the output error power. Compare with the regular nonfraction-
ally spaced equalizer, which uses x1ðnÞ only.

9. A transmission channel has the transfer function

CZÞ ¼ 1þ 0:7Z�1 þ 0:2Z�2

The input data are dðnÞ ¼ �1 and the following sequence is received
from time step 0 to time step 11:

xðnÞ ¼ f0:6; 1:2; 1:0;�1:2; 0:4; 0:2; 0:6;�0:2;�1:2;�0:5; 0:7; 1:4g
Knowing that dð�1Þ ¼ 1 and dð�2Þ ¼ �1, use the MLA algorithm to
find the sequence which has been transmitted.

Give the trellis representation with the states, transitions, paths, and
weights. Discuss the computational complexity.

10. In a radio receiver, the antenna consists of a linear array of three
uniformly spaced isotropic sensors, separated by the distance
d ¼ 	=2, where 	 is the wavelength of the carrier frequency f0, i.e., 	 ¼
c=f0 and c is the velocity of light. The useful signal is arriving from the
incidence angle 
 ¼ �=6 with respect to the array. The base-band signal



received by the center element in the array, after frequency shift and
sampling, is expressed by

x1ðnÞ ¼ sðnÞ þ b1ðnÞ
where sðnÞ is the useful source signal and b1ðnÞ is a white noise with
power �2b .

Give the expressions of the signals x0ðnÞ and x2ðnÞ received by the
other antenna elements, denoting by b0ðnÞ and b2ðnÞ the corresponding
noise signals assumed to have the power �2b .

After weighted summation, the system output is expressed by

yðnÞ ¼ �x0ðnÞ þ x1ðnÞ þ �x2ðnÞ
Give the relationship between the coefficients � and � necessary to
cancel a jammer arriving from incidence angle 0 (orthogonal to the
array). Compute the coefficients that maximize the output signal-to-
noise ratio.
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