

 www.4electron.com موقع عالم الإلكترون

....موقع عالم الإلكترون
واختصاصاتھا المختلفة لتكنلوجيةموقع إلكتروني متخصص في علوم الھندسة ا

 4electron.comمكتبة عالم الإلكترون

 ...إلى قارئ ھذا الكتاب ، تحية طيبة وبعد

حقيقياً في عالم يعج بالأبحاث والكتب والمعلومات، وأصبح العلم معياراً نعيش لقد أصبحنا
حلاً شبه بدورهوقد أمسى لتفاضل الأمم والدول والمؤسسات والأشخاص على حدٍّ سواء،

، فالبيئة تبحث عن حلول، وصحة الإنسان تبحث عن دة وخطورةاكل العالم حوحيدٍ لأكثر مش
الطاقة والغذاء حلول، والموارد التي تشكل حاجة أساسية للإنسان تبحث عن حلول كذلك، و

فأين نحن من . ويحاول أن يجد الحلول لھاالآن والماء جميعھا تحديات يقف العلم في وجھھا
 ھذا العلم ؟ وأين ھو منا؟

ن نوفر بين أيدي كل من حمل لأ www.4electron.comسعى في موقع عالم الإلكترون ن
من أدوات تساعده في ھذا الدرب، من ما نستطيعالتحديات لى عاتقه مسيرة درب تملؤه ع

ء والأفكار العلمية مواضيع علمية، ومراجع أجنبية بأحدث إصداراتھا، وساحات لتبادل الآرا
والمرتبطة بحياتنا الھندسية، وشروحٍ لأھم برمجيات الحاسب التي تتداخل مع تطبيقات الحياة
الأكاديمية والعملية، ولكننا نتوقع في نفس الوقت أن نجد بين الطلاب والمھندسين والباحثين

مجتمعٍ يساھم من يسعى مثلنا لتحقيق النفع والفائدة للجميع، ويحلم أن يكون عضواً في
 بتحقيق بيئة خصبة للمواھب والإبداعات والتألق، فھل تحلم بذلك ؟

رأيتھا في إحدى المواضيع حاول أن تساھم بفكرة، بومضة من خواطر تفكيرك العلمي، بفائدة
تأكد بأنك ستلتمس الفائدة في كل . جانب مضيء لمحته خلف ثنايا مفھوم ھندسي ماالعلمية، ب

 ...رى غيرك يخطوھا معك خطوة تخطوھا، وت

، أخي القارئ، نرجو أن يكون ھذا الكتاب مقدمة لمشاركتك في عالمنا العلمي التعاوني
بكل الإمكانيات المتوفرة لديه جاھزاً ww.4electron.com سيكون موقعكم عالم الإلكترونو

، أو طالب في علوم الھندسة قع الذي يبحث عنه كل باحثالبيئة والوا على الدوام لأن يحقق
 . ويسعى فيه للإفادة كل ساعٍ ، فأھلاً وسھلاً بكم

 مع تحيات إدارة الموقع وفريق عمله

www.4electron.com

Embedded
FreeBSD Cookbook

www.4electron.com

www.4electron.com

A Volume in the
Embedded Technology™ Series

Embedded
FreeBSD Cookbook
by Paul Cevoli

An imprint of Elsevier Science

Amsterdam Boston London New York Oxford Paris
San Diego San Francisco Singapore Sydney Tokyo

www.4electron.com

iv

Newnes is an imprint of Elsevier Science.

Copyright © 2002, Elsevier Science (USA). All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Elsevier Science
prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

ISBN: 1-5899-5004-6

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders for this book.
For information, please contact:

Manager of Special Sales
Elsevier Science
200 Wheeler Road
Burlington, MA 01803

For information on all Newnes publications available, contact our World Wide Web
home page at http://www.newnespress.com

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

www.4electron.com

Preface .. vii

Prerequisites and Other Resources .. vii

1 Getting Started .. 1

Overview ... 1

Embedded Systems .. 1

Internet Appliances ... 2

Compatibility of upgrades .. 3

Time to market ... 4

Labor pool .. 4

Licensing.. 4

The DIO Server Appliance .. 4

FreeBSD .. 5

GNU Development Tools ... 6

Java ... 7

Server .. 7

Data Acquisition ... 7

Boot Device.. 7

Summary ... 8

2 Systems Programming ... 9

Overview ... 9

Process ... 9

The ... 10

System Call .. 10

The ... 11

System Call .. 11

The ... 12

System Call .. 12

The ... 12

System Call .. 12

An Example.. 12

Process IDs.. 13

Security .. 14

An Example.. 15

The ... 16

and ... 16

System Calls .. 16

File Descriptors .. 17

Permissions ... 17

Current Working Directory ... 17

The ... 18

and ... 18

System Calls .. 18

The ... 18

System Call .. 18

Priority .. 19

State... 20

The ... 20

Function ... 20

The ... 21

System Call .. 21

Daemons... 21

Fork.. 21

www.4electron.com

Create a new session .. 22

Close file descriptors.. 22

Change the current working directory .. 22

Set the file mode creation mask... 22

Handle Child Exit Status .. 22

The ... 22

Function ... 22

The ... 23

Function ... 23

Summary ... 25

3 System Calls .. 27

Overview ... 27

Library Functions and System Calls.. 27

Software Interrupt .. 29

Passing Data.. 29

An Example.. 30

Creating a System Call ... 32

Load Handler ... 32

System Call Arguments ... 34

The ... 34

System Call .. 34

The ... 36

Structure .. 36

The System Call Number ... 36

The SYSCALL_MODULE Macro ... 38

Command Definitions... 39

Command Table .. 40

The ... 40

Function ... 40

Command Function Handlers .. 42

The ... 45

Program ... 45

An example .. 47

Summary ... 48

4 Device Driver ... 49

Overview ... 49

Driver Environment ... 49

Driver Structure ... 51

The ... 52

Structure .. 52

The ... 53

Structure .. 53

The ... 55

Structure .. 55

The ... 57

Structure .. 57

The ... 57

Structure .. 57

The ... 57

Macro ... 57

The ... 58

Structure .. 58

The DIO24 Device Driver .. 59

www.4electron.com

The ... 61

Function ... 61

The ... 62

Function ... 62

The ... 63

Function ... 63

The ... 64

Function ... 64

The ... 66

Function ... 66

The ... 66

Function ... 66

The ... 67

Function ... 67

The ... 68

Function ... 68

The ... 69

Function ... 69

The ... 69

Function ... 69

Register Shadowing ... 71

The ... 73

Function ... 73

Summary ... 76

5 Midlevel Interface Library ... 77

Overview ... 77

Shared Libraries .. 77

Accessing the Device Driver ... 79

The ... 80

System Call .. 80

The ... 81

System Call .. 81

The ... 81

System Call .. 81

The ... 82

System Call .. 82

The ... 82

System Call .. 82

PCI-DIO24 Hardware Registers.. 82

The DIO24 Application Interface Library ... 87

The ... 89

and ... 90

Functions ... 90

The ... 92

and ... 92

Functions ... 92

The ... 94

and ... 94

Functions ... 94

The diopolarity ... 95

The ... 95

and ... 95

functions... 95

The ... 97

and ... 97

www.4electron.com

Functions ... 97

The ... 98

Function ... 98

Summary ... 101

6 Daemons .. 103

Overview ... 103

Introduction to TCP/IP ... 103

IP Addressing... 105

ARP.. 105

RARP ... 106

ICMP .. 106

Ports ... 106

UDP ... 106

TCP.. 107

Socket System Calls ... 107

Connection Initiation .. 109

The ... 111

System Call .. 111

The ... 112

System Call .. 112

The ... 112

System Call .. 112

The ... 113

System Call .. 113

The ... 113

System Call .. 113

The ... 114

System Call .. 114

The ... 115

System Call .. 115

The DIO Daemon .. 115

The ... 115

Structure .. 116

The ... 117

Function ... 117

The ... 119

Function ... 119

The ... 120

Function ... 120

Summary ... 122

7 Remote Management .. 123

Overview ... 123

Using Secure Shell (SSH)... 123

The DIOShell ... 130

The ... 132

Function ... 132

The ... 133

Function ... 133

The ... 134

Function ... 134

The ... 135

Function ... 135

The ... 136

www.4electron.com

Function ... 136

The ... 137

Function ... 137

The ... 138

Function ... 138

The ... 139

Function ... 139

The ... 139

Function ... 139

The ... 140

Function ... 140

The ... 141

Utility .. 141

Summary ... 142

8 JNI Layer .. 143

Overview ... 143

The JDK .. 143

Creating the JNI Layer .. 145

The DIOLineState Class .. 147

The DIOLineNumber Class.. 148

The DIOLineDirection Class .. 149

The DIOIfJNI Class .. 150

The ... 154

Function ... 154

The ... 154

Function ... 154

The ... 155

Function ... 155

The Makefile .. 155

Summary ... 156

9 Web Access Using Tomcat .. 157

Overview ... 157

Tomcat .. 157

bin .. 158

JSP Overview.. 160

Comments.. 161

Directives ... 161

Declarations ... 162

Expressions ... 162

Code Scriptlets ... 162

The DIO JSP Page.. 162

Summary ... 165

10 Building the Kernel ... 167

Overview ... 167

The ... 168

Keyword ... 168

The ... 168

Keyword ... 168

The ... 168

Keyword ... 168

The ... 168

www.4electron.com

Keyword ... 168

Kernel Options ... 169

Controllers and Device Drivers .. 171

Building the DIO Kernel... 177

Building the FreeBSD Kernel .. 180

Summary ... 182

11 System Startup .. 183

Overview ... 183

Disk Geometry .. 183

Master Boot Record .. 185

Boot Loader ... 185

Partition Table.. 185

Magic Number.. 187

An Example.. 187

Unix Partitions.. 189

PC BIOS.. 189

FreeBSD Boot Loader ... 190

init .. 192

Starting DIO Components ... 194

Summary ... 196

12 The CompactFlash Boot Device 197

Overview ... 197

Solid-state Devices ... 197

Installing the TARC CompactFlash Adapter 198

Configuring the CompactFlash Device.. 199

Copying the Files to the Boot Device .. 201

Startup Configuration .. 201

Summary ... 205

A The FreeBSD License ... 207

B PCI Configuration ... 209

Vendor ID Register.. 211

Device ID Register .. 211

Command Register ... 211

Status Register.. 212

Revision ID.. 212

Class Code.. 212

Cache Line Size .. 212

Latency Timer ... 213

Header Type ... 213

BIST .. 213

Base Address Registers.. 213

CardBus CIS Pointer ... 213

Subsystem Vendor ID ... 213

Subsystem ID.. 213

Expansion ROM Address.. 213

Maximum Latency ... 214

Minimum Grant.. 214

www.4electron.com

Interrupt PIN .. 214

Interrupt Line ... 214

C Kernel Loadable Modules .. 215

Overview ... 215

Kernel Loadable Modules ... 215

System Calls ... 219

Device Drivers... 221

The open Function ... 225

The close Function... 225

The read Function.. 225

The write Function ... 226

Commands.. 226

www.4electron.com

vii

Preface

Discussing embedded systems in general is difficult, because each embedded
system is unique. Rather than presenting a list of general principles for
handling embedded development issues, this book presents examples of
problems encountered and solutions to those problems using real hardware
and software. In that sense, it is a “cookbook” for developers that offers
design “recipes” that can be elaborated on or modified as needed to solve
other design problems.

In addition to the source code provided to develop the DIO appliance, this
book contains real “how-to” information for obtaining releases of Open
Source software and describes the steps to install, configure and program.
Whether you are developing an actual appliance or experimenting with the
operating system, this book will help you familiarize yourself with all the
development issues, not just development concepts.

This book presents a set of common issues that are encountered during the
development of an embedded web appliance. Each chapter covers a specific
topic, discusses background information on the topic, and presents a design
solution for that topic. The chapters are not meant to present all possible
solutions, but rather provide information that can be used to help develop
your own solutions.

Developing an embedded system involves many skills beyond writing
source code. Identifying technologies that can be used to solve a problem,
installing, configuring, and packing are all skills that are equally important
but are often overlooked. All of these issues are covered, to give you a
complete picture of the embedded development process.

Prerequisites and Other Resources
This is a book about developing an internet appliance using FreeBSD and
the software tools contained in the FreeBSD distribution. As such, it assumes
the reader has some background in programming in C and C++ in a Unix
environment. In addition to basic programming skills it would be helpful if
you had a basic understanding of data structures and system programming.
This book is for readers that already know how to write and compile code

www.4electron.com

viii

and want to learn more about the FreeBSD environment and explore topics
that are different from a typical programming book. A few of the topics do
not require that you have a detailed background in computer hardware but
assume you have some knowledge and are willing to learn the skills necessary.

I wrote this book for people who wanted to delve a little deeper into the
FreeBSD operating system. Many of the issues presented in this book go
beyond programming in C or C++ and present issues that an embedded
systems engineer would be faced with during product development. This is
not a book about FreeBSD internals and how to hack the kernel. FreeBSD
has distinguished roots and there are already excellent resources available
to learn about FreeBSD operating system internals and system administra
tion. I recommend The Design and Implementation of the 4.4 BSD Operating
System, The Complete FreeBSD, and The FreeBSD Handbook, located at
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html.
In addition to these resources, the FreeBSD web site contains numerous mail
ing lists, user groups, newsgroups and web resources. There are also excellent
references for programming Unix, such as Advanced Programming in the Unix
Environment and The C Programming Language, both available on amazon.com.

Organization
This book contains 12 chapters and 3 appendices.

Chapter 1, Getting Started, introduces you to embedded systems and
describes Internet appliances and FreeBSD. Additionally, the major pieces of
hardware and software used to build the Internet appliance described in this
book are covered.

Chapter 2, Systems Programming, introduces you to the Unix process and
daemons. A process is fundamental to Unix programming. A Unix daemon
is a special type of process. The details of creating a daemon from a Unix
process are discussed.

Chapter 3, System Calls, describes exactly what a system call is and how it is
implemented in FreeBSD.

Chapter 4, Device Drivers, provides a description of FreeBSD device drivers
and their data structures. Tools available to driver writers are discussed and
used to develop an actual device driver for a PCI data acquisition controller.

www.4electron.com

ix

Chapter 5, Midlevel Interface Library, presents a discussion of shared libraries
and how user code accesses a device driver.

Chapter 6, Daemons, builds on the topics presented in Chapter 2 by imple
menting a Unix daemon that uses sockets to provide a simple protocol to
read and write to the data acquisition board.

Chapter 7, Remote Management, discusses how to provide a secure method
for remote management. A configuration shell is developed and may be
accessed remotely via SSH.

Chapter 8, JNI Layer, introduces the user to JNI, an interface to allow Java
programmers to call C code.

Chapter 9, Web Access using Tomcat, provides the steps necessary to display
dynamic web content. The procedure for configuring Tomcat, a JSP server,
and writing JSP pages is discussed. You will develop a JSP page that displays
the status of the data acquisition controller.

Chapter 10, Building the Kernel, discusses the steps for building a
custom kernel based on the hardware and specific features of the DIO
Internet appliance.

Chapter 11, System Startup, provides a discussion of the FreeBSD booting
process and modifications necessary to the startup scripts to run the services
required by the DIO appliance such as Tomcat, ssh and loading custom KLDs.

Chapter 12, The CompactFlash Boot Device, provides a description of partition
ing a flash device and loading the code developed in the previous chapters
of this book onto the flash to make a living, breathing appliance server.

Appendix A, The FreeBSD License, is a copy of the FreeBSD license.

Appendix B, PCI Configuration, discusses the PCI configuration space.
Knowledge of PCI configuration registers is needed for developing device
drivers for PCI controllers. The appendix describes the registers in PCI
configure space and their uses.

Appendix C, Kernel Loadable Modules, covers KLDs, which are used for
system calls and device drivers in Chapters 2 and 4. The appendix provides

www.4electron.com

x

a discussion of the individual components that make KLDs and their uses.

In order to get the most out of this book, I recommend not getting bogged
down in the details but trying to gain a general understanding of the
topic through studying one way to implement a solution to that topic.
By becoming familiar with each step involved in developing an embedded
system, you should be able to apply the concepts to any development task
you may encounter.

What’s on the CD-ROM?
The accompanying CD-ROM contains the source code for the programs
used in the book and a fully searchable pdf version of the entire text.

Conventions

Macro Text

Macro text is used for source code.

Bold Macro Text

Bold Macro Text is used for program output and shell input.

www.4electron.com

1 1 CHAPTER ONE

Getting Started

Overview
Embedded computer systems permeate all aspects of our daily lives.
Alarm clocks, coffee makers, digital watches, cell phones, and automobiles
are just a few of the devices that make use of embedded systems. The
design and development of such systems is unique, because the design
constraints are different for each system. Essential to the development of
an embedded system is an understanding of the hardware and software
used for development.

Embedded Systems
An embedded system consists of hardware and software designed to solve a
specific application. Many applications consist of more than simple computer
hardware and software. For example, an industrial vision system designed to
control a robotic arm consists of an embedded computer, camera, display,
and the robotic arm. Each of these components are embedded systems on
their own.

Embedded systems have evolved over the years from simple self-contained,
single-purpose systems to fully integrated, web-aware systems. The rapid
changes in technology and added requirements have caused developers to
take a new approach to the design and development of those systems. Let’s
take a quick look at how the product markets and requirements have evolved.

Classic embedded systems have been considered dedicated solutions to a
single application. In these classic systems, the hardware was custom
designed to solve a specific application and the operating system was

www.4electron.com

developed internally. All the
software was self-contained
in nonvolatile RAM and
there was a limited user
interface. Examples of these
types of embedded systems
are microwave ovens, MP3
players and cell phones.

As the Internet grew, the requirements
of embedded systems also began to
grow in complexity. In addition to
solving classic embedded systems
problems, system designers were
required to add connectivity for send-
ing and receiving data or providing
an automated method for software
upgrades. Rather than increase the
development effort, system designers
have moved toward using third-party
hardware and evaluating open source
software. Examples of these next-
generation embedded systems are load
balancers, Virtual Private Networks
(VPN) and Ethernet switches.

Internet Appliances
Many of the embedded systems developed today are what would be called
servers just a few years ago. These systems are developed using PC hardware,
run an embedded application, have Internet connectivity, and run network
services for remote configuration. These latest incarnations of embedded
systems are called Internet appliances.

2 Embedded FreeBSD
Cookbook

1 2 3
4 5 6
7 8 9

0RESET PREHEAT

Press to Open

START STOP

Microwave Oven

Figure 1-1. Classic embedded system

Load Balancer

Server #1

Server #2

Server #3

Clustered Load Balancer

TCP/IP

Figure 1-2. Load balancer

www.4electron.com

3 Chapter One
Getting Started

Network connectivity requires the addition of network protocols, services,
and networking hardware. Web services require the addition of more
complex application software. These additional requirements significantly
increase the hardware cost, development, and complexity of embedded
systems development.

The added performance requirements add scalability to the list of system
requirements, further limiting the choice of solutions of computer design.
Additionally the investment of developing an embedded solution must be
protected; as the hardware evolves, the final choice of hardware and software
must be compatible from release to release. With the rapid development
schedules of the high-tech sector, hardware and software solutions must be
flexible enough to meet the needs of evolving markets and customers.

To address the increased complexity of embedded systems, a new category
has become popular—the appliance server. An appliance server is a network-
enabled embedded computer designed to perform a single task and provide
superior performance and higher reliability than a general-purpose server.
Applications ideal for appliance servers include VPN, network attached
storage (NAS), and load balancing.

Development Issues
While the cost of computer components and time to market continue to
decrease, functionality and features for a typical embedded system continue
to increase. In order to respond to this, many project developers choose to
use third-party hardware and open-source software and develop only those
components that provide value-added features. The classic model of embed
ded systems development using custom hardware and homegrown operating
systems has been replaced in many of the systems being developed today. Let’s
take a look at a few of the development issues related to embedded systems
relying on third parties for some of the core components.

Compatibility of upgrades
By choosing third-party hardware and open-source software, a system
designer ensures access to compatible technology from multiple vendors and
allows the completed system to be developed quicker and for a lower cost.
Systems designers can focus resources toward developing their application,
rather than keeping resources focused on maintaining the operating system
or developing the next hardware platform.

www.4electron.com

4 Embedded FreeBSD
Cookbook

Time to market
An open-source operating system reduces the time to qualify and develop
the software solution. The server appliances address increased time pressure
to market and hardware flexibility by using an increasingly rich set of third-
party hardware and software. By relying on readily available hardware and
software, the server appliance developer can focus on solving the application.

Labor pool
The increased complexity of Internet appliances requires the transition from
simple embedded tools to an off-the-shelf integrated development environ
ment with tools that facilitate the development of secure, reliable, and long-
running systems. Additionally, an off-the-shelf integrated development
environment reduces the time to market, as well as training time.

Licensing
Traditional real-time operating system software licenses restrict the source
to the licensee and may require a royalty fee for distribution. In contrast,
open-source software licenses allow the licensee to make the software freely
available to anyone who wishes to use it.

The DIO Server
Appliance
The remainder of this chapter dis
cusses an Internet appliance that will
be developed in this book, the digital
input-output (DIO) server appliance.
The DIO server appliance is an
embedded system that provides the
capability to read and write digital IO
lines. The digital lines are monitored
via the Internet using sockets, a
secure command shell, or a browser.

The software uses an open-source
operating system and tools, FreeBSD
4.4 and the GNU development suite.
The system software and application

Sockets

TCP/IP

System Boot
CompactFlash

Free BSD 4.4 Data
Acquisition

Tomcat

DIO Server Appliance

Figure 1-3. DIO server appliance

www.4electron.com

5 Chapter One
Getting Started

are developed in the remaining chapters of this book, presenting the design,
development, and implementation of an actual server appliance.

The hardware to develop the DIO server appliance is a standard PC and a
third-party digital IO data acquisition card. The boot device is a CompactFlash
adapter and CompactFlash card, which can be purchased over the Internet.

Software
FreeBSD
FreeBSD is an optimal solution for Internet appliances and other embedded
systems that require Internet connectivity, networking performance, and
reliability. Additionally, FreeBSD comes with an industry standard set of soft
ware development and configuration management tools and application
software. It is a Unix-compatible, open-source operating system that offers
unprecedented reliability and security. It runs some of the Internet’s busiest
web sites, such as Yahoo and Hotmail, and supplies the basis of embedded
products like the AMI Stortrends NAS and the IBM Whistle/InterJet II.

The core of FreeBSD is largely based on BSD/OS, which was developed in
the mid-1970s and is known for excellent support, stability, small footprint,
and simple installation. Much of the early BSD Unix development was
funded by DARPA to support the development of Internet protocol, TCP/IP.

FreeBSD, as implied by the name, is available free of charge. It can be down
loaded directly from the FreeBSD website at ftp://ftp.FreeBSD.org/pub/FreeBSD/.
Or, if you're like me and want to have an actual CD, as well as support the
FreeBSD effort, there are a number of retail outlets where FreeBSD can be
purchased, such as the BSD Mall, http://www.bsdmall.com/freebsd1.html,
or a number of local retail outlets such as Staples, CompUSA and Frys.

Besides providing financial support by purchasing an official release,
there is yet another way to support FreeBSD. The FreeBSD distribution
is an open source project. If you’re interested, you can contribute time
and source code development. Information about contributing to
FreeBSD development can be found on the FreeBSD website,
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/contributing/index.html.

In addition to its mature networking technology, the FreeBSD kernel con
tains support for many disk and storage management facilities and secure

www.4electron.com

6 Embedded FreeBSD
Cookbook

networking protocols. The features and benefits of FreeBSD are summed up
in the following paragraphs.

•	 Security FreeBSD offers security features that make it suitable for e-
commerce applications, secure Internet transmission, and virtual private
networks. Many fixes to security-related bugs have been incorporated into
FreeBSD over the years, to ensure that it is suitable for use in security-
critical environments.

•	 Robustness FreeBSD is based on software that has been in development
for more than 20 years. Its continued development is focused on quality
rather than quantity, and changes to the core software are carefully con
trolled. The core FreeBSD kernel and its features represent the highest
quality embedded operating system on the market.

•	 Small Footprint FreeBSD is fully customizable and may be configured
to run with an absolute bare minimum of software, lending itself to some
of the most limited embedded applications. PicoBSD, a targeted version
of FreeBSD, contains fully bootable systems that fit on a floppy disk. In
addition to the flexibility, many embedded systems boot from a DiskOn-
Chip or CompactFlash device. Many of these devices are readily supported
by FreeBSD.

•	 License FreeBSD is distributed using the BSD License, which permits,
but does not require, the sharing of the source code. Because of the BSD
license, and the fact that many embedded systems require the inclusion
of proprietary technology for application-specific hardware included with
these systems, or intrinsic to the design itself, such as on-board custom
components, BSD systems tend to be a superior choice relative to other
Open Source systems, where such intellectual property cannot be kept
private due to licensing issues.

GNU Development Tools
The standard FreeBSD distribution contains the GNU suite of development
tools, consisting of compilers, linkers, librarians, debuggers, performance
management, and configuration management tools. In addition to their depth,
the GNU tools provide updates and numerous support options, in the form
of mailing lists and news groups.

www.4electron.com

7 Chapter One
Getting Started

Java
Using Java, system designers can develop applications that can be run on a
browser anywhere. In addition to the ease of developing the network portion
of the appliance, using the Java Native Interface (JNI), system developers can
bridge legacy systems to the added requirements of network-centric embed
ded systems.

Hardware
The DIO server appliance developed in this book uses only third-party hard
ware. The hardware requirements are a network-capable PC-based hardware
platform, a PCI-based digital IO controller, and a solid-state boot device and
ATAPI interface card.

Server
The Network Engines Roadster is a high-performance 1U Internet appliance
that provides an easily customized solution for any application. The Network
Engines Roadster includes an Intel Celeron processor, 32 MB of RAM, dual
Ethernet ports, one PCI slot and two serial ports.

Data Acquisition
The DIO Internet appliance hardware we will be using, the Measurement
Computing PCI-DIO24 Digital IO Controller, can read and write digital IO
signals. It is a PCI controller that provides 24 bits of digital IO. In addition
to the PCI-DIO24 controller, the DIO server appliance uses the C37FF-2
Cable and CIO-MINI 37 Terminal for connecting the digital signals from
the controller.

Boot Device
Embedded systems tend to be deployed in more rigorous environments than
a typical desktop computer. A hard drive may become damaged or wear out
in this type of environment. A trend in embedded systems development is
to use CompactFlash. A CompactFlash device appears similar to a standard
IDE drive. In order to use a CompactFlash device as a boot device, a
CompactFlash adapter is required. There are numerous CompactFlash-to-
IDE adapters available.

www.4electron.com

8 Embedded FreeBSD
Cookbook

TAPR CompactFlash Adapter II

The Tucson Amateur Packet Radio (TAPR) Club sells an IDE CompactFlash
Adapter that can be used with generally available CompactFlash cards. The
CompactFlash Adapter plugs into an IDE slot and a power connecter. Once
the CompactFlash adapter is connected and a CompactFlash device inserted,
the device can be used just like an IDE hard drive.

Sandisk 32 MB CompactFlash Disk

The Sandisk CompactFlash is a small flash memory device that serves as our
embedded boot device. In conjunction with the TAPR CompactFlash Adapter,
we are able to use the Sandisk device as an IDE boot device. Sandisk Compact-
Flash devices are available in any office supply store; these are the same
devices used in digital cameras and portable MP3 players.

Summary
In this chapter we’ve discussed the use of third-party hardware and open-
source software for developing an Internet appliance. The remainder of the
book is focused on the development of the DIO Internet appliance using
FreeBSD. Each chapter discusses a topic related to embedded system develop
ment and provides a solution. By the end of the book, we will have
developed a working appliance.

www.4electron.com

2 9 CHAPTER TWO

Systems Programming

Overview
Fundamental to any programming task in FreeBSD is the process, which is an
executing program. It could be a network file system (NFS) daemon serving
files, a gcc compile or a shell displaying the date—all these tasks are performed
in the context of a process. An understanding of processes is critical for
grasping concepts presented in later chapters. This chapter introduces
systems programming using processes.

Many system services are provided by a special type of process known as a
daemon process. As part of our discussion of processes, we will look at the
characteristics of a daemon process and develop skeleton source code for a
daemon. In this chapter we will cover topics including

• A FreeBSD process

• Process creation and termination

• Process attributes

• Daemon processes

Process
A running program is an instance of a process. One of the numerous features
provided by a FreeBSD kernel is a protected environment called User Mode.
In User Mode, a process cannot access hardware or protected system variables.
If a process attempts to access protected memory, the process is terminated.
A process running in memory consists of five segments: text, initialized data,
uninitialized data, stack and heap.

www.4electron.com

10 Embedded FreeBSD
Cookbook

Text is typically read only and contains the

machine instructions for the program. Initial

ized data contains variables that are preinitial

ized by the program text. Uninitialized data

(traditionally called bss) contains data that is

not initialized. The stack is used to pass

parameters between functions and to contain

local variables and function return addresses.

The heap is an operating-system-provided

area used for dynamic memory allocation.

We can look at the size of a program’s sections,

invoking the size command. Output of the

size command for the hostname program is

in Listing 2-1.

stack

heap

unitialized data

initialized data

text

Figure 2-1. Process Running in Memory

size hostname
text data bss dec hex filename

39452 4020 1968 45440 b180 hostname

Listing 2-1

The output shows the text size as 39452 bytes, the data section as 4020
bytes and bss size of 1968 bytes. Stack and heap are assigned by the operat
ing system for each process. The text and data sections contain data. Since
the bss section is uninitialized, the image only contains its size; bss memory
is set to zeros by the operating system when the program is loaded.

Process Creation
When a process is created a complete copy of the original process, known
as the parent, is created. The newly created process is called the child. Once
process creation is completed, the child process is scheduled to execute.
This yields two running instances of the same program. The processes can
only be differentiated by the process identifier.

The fork System Call
A new process is created when a running process invokes the fork system
call. The fork system call is the only way to create a new process.

www.4electron.com

11 Chapter Two
Systems Programming

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

Fork is unique in that the single call to fork returns twice. Fork returns
the process identifier (PID) of the child to the parent process, and it returns
0 to the newly created child process.

When a process is created, the following list of attributes is inherited from the
parent file descriptors: process group ID, access groups, working directory,
root directory, control terminal, resources, interval timers, resource limits,
file mode mask, and signal mask.

The execve System Call
Many times a process is created to run another program. The execve sys
tem call is used this way and is invoked immediately following a fork sys
tem. An execve system call will replace the currently executing program
with a new program.

#include <unistd.h>

int execve(const char *path, char *const argv[], char *const envp[]);

The execve system call takes three parameters; path is the path and filename
of the new program to execute; argv contains a pointer to the argument string
to pass to the program; envp contains a list of environment variables.

The execve system call returns –1 on error. The execve system call has
numerous wrappers in the Standard C Library, known as the exec family
of functions.

Process Termination
A process can terminate intentionally by calling exit or unintentionally
by receiving a signal from another process. Regardless of the reason, when
a process terminates, a notification is returned to the parent. If the parent
process does not receive the notification, the child process becomes a
zombie. The child will remain a zombie until the parent retrieves the child’s
exit status.

www.4electron.com

12 Embedded FreeBSD
Cookbook

The _exit System Call
A process will terminate when the program invokes the _exit system call.
The _exit system call will cause the SIGCHLD signal to be thrown to the
parent process.

#include <unistd.h>

void _exit(int status);

The _exit system call will never return. The _exit system call is more
commonly called by the Standard C library function exit.

The wait System Call
The wait system call allows a parent process to check to see if termination
information is available for a child process. Wait will suspend execution
until the child process returns.

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);

On success, the child process identifier (PID) is returned to the parent process,
or –1 is returned if there is an error. The child’s exit status is returned by the
status parameter.

An Example
Listing 2-1 illustrates the usage of the fork, wait, execve, and exit calls.
The parent process makes a fork system call to create a child process.
There are two control paths in the main program, one for the parent and
another for the child.

int main(int argc, char **argv)
{

pid_t pid;
int status;

if ((pid = fork()) > 0)

{

printf(“%d: waiting for the child\n”, pid);

wait(&status);

www.4electron.com

13 Chapter Two
Systems Programming

printf(“%d: child status = %d\n”, pid, status);

}
else if (pid == 0)
{

execve(“/bin/date”, NULL, NULL);

}

exit(0);
}

Listing 2-1
The fork system calls returns to both the parent and the child processes.
The parent process calls the wait system call, causing the parent process to
sleep until the child process exits. The child process calls execve to run the
date program and display the date to the console.

The output of the program in Listing 2-1 from my system looks like this:

./process
542: waiting for the child
Mon Jan 7 19:54:46 EST 2002
542: child status = 0

Process IDs
Every process is created with a unique ID called its process identifier, or
PID. In addition to its own PID, every process contains its parent process ID,
or PPID. A listing of processes, their PIDs, and PPIDs may be obtained by
using the ps –aj command. Here is a partial listing from my system.

USER PID PPID PGID SESS JOBC STAT TT TIME COMMAND
root 453 451 453 fb0700 0 Is+ p0 0:00.01 /bin/cat
root 456 454 456 fb6d00 0 Is+ p1 0:00.04 /bin/csh
root 458 456 458 fb6d00 1 S p1 0:08.21 emacs
root 459 458 459 fc7dc0 0 Ss p2 0:00.06 /bin/csh -i

The getpid and getppid System Calls

A process can retrieve its PID and PPID by calling the getpid and
getppid functions, respectively.

#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

www.4electron.com

14 Embedded FreeBSD
Cookbook

Every process has a parent process. When a process is created, the parent
process ID is assigned so it can return the termination status.

Security
A process is assigned two users on creation, the real user and the effective user.

User ID and Group ID

Every process has a user identifier, UID, and a group identifier, GID. The UID
and GID of a process are the username and group of the user that invoked
the program. UIDs are mapped to user names in /etc/passwd. GIDs are
mapped to group names in the /etc/group file. A process can retrieve its
user ID and group ID by calling the getuid and getgid system calls.

The getuid and getgid System Calls

The getuid and getpid system calls return the UID and GID for the
running process. Both system calls always succeed.

#include <unistd.h>
#include <sys/types.h>

uid_t getuid(void);
uid_t getgid(void);

Effective User ID and Effective Group ID

When a process is created, it is assigned an effective user ID and an effective
group ID. Under most circumstances, the effective ID and the real ID are the
same. It is possible for a program to be configured so that it executes as a
different user or group. For example, the passwd utility needs root user access
so it has permission to edit the /etc/passwd file. The passwd utility is
configured so it executes with its effective user ID as root and gives passwd
the correct permission to edit the /etc/passwd file.

The geteuid and getegid System Calls

The geteuid and getegid system calls return the effective group and
effective user, respectively.

#include <unistd.h>
#include <sys/types.h>

www.4electron.com

15 Chapter Two
Systems Programming

uid_t geteuid(void);
uid_t getegid(void);

The geteuid and getegid system calls always succeed.

The seteuid and setegid System Calls

A process may be able to change the effective user ID or effective group ID
by invoking the seteuid and setegid system calls. The seteuid and
setegid system calls can set the effective user ID and effective group ID.

#include <unistd.h>
#include <sys/types.h>

uid_t seteuid(void);
uid_t setguid(void);

The seteuid and setegid system call return 0 on success and –1 on error.

An Example
Using the functions described for user and group IDs, Listing 2-2 prints the
process real and effective user and group IDs.

int main(int argc, char **argv)
{

printf(“UID = %d\n”, getuid());
printf(“GID = %d\n”, getgid());
printf(“EUID = %d\n”, geteuid());
printf(“EGID = %d\n”, getegid());

exit(0);
}

Listing 2-2

The output of the program on my system displays as follows:

./ids
UID = 1001
GID = 1001
EUID = 1001
EGID = 1001

www.4electron.com

16 Embedded FreeBSD
Cookbook

A quick look at the /etc/passwd and /etc/group files shows that this
program is executing as user paul and group paul, which is my logon name
and group.

Here is my logon name in the /etc/password file; column three contains
my UID.

paul:*:1001:1001:Paul Cevoli:/home/paul:/bin/sh

Here is my login group entry from the /etc/group file; column three
contains my GID.

paul:*:1001:

Process Groups
A process group consists of a group of related processes. In addition to the
PID and PPID, a process contains the process group ID, the PGID. Each
process group contains a unique process group identifier. Every process
group is able to have a single process group leader; a process group leader is
denoted by the process group ID being the same as the PID.

The setpgid and getpgid System Calls
A process is able to set and get its PGID through the use of the setpgid
and getpgid system calls.

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgrp);
pid_t getpgid(pid_t pid);

A process is only able to set the process group of itself and its children
processes. One use of process groups is to send signals to a group of processes.

Files
A child process inherits the environment of the parent process that created it.
This includes files descriptors, file permissions and the current working directory.

www.4electron.com

17 Chapter Two
Systems Programming

File Descriptors
A file descriptor is a low-level interface used to access an IO interface. File
descriptors are implemented as an int. Every process contains a list of open file
descriptors. A child process inherits any open file descriptors from the parent.

Permissions
Every process contains a default set of file permissions called file creation
mode mask. The file creation mode mask is 9 bits that represent read, write
and execute permissions for the file owner, file group, and everybody else.
A processes file creation mode mask is modified by the umask system call.

The umask System Call

The file permission mask is typically set by the umask command in the
user’s login shell. The file permission amsk can be modified by the umask
system call. The umask system call sets the process file creation mask to the
value contained in umask.

#include <sys/stat.h>
mode_t umask(mode_t numask);

The previous value of the file creation mask is returned to the caller.

Current Working Directory
Every process contains a current working directory, which is the directory
where the process was started.

The chdir System Call

A process may change its current working directory by invoking the chdir
system call. The path argument contains the path to be used as the current
working directory.

#include <unistd.h>
int chdir(const char *path);

The chdir system call returns 0 on success and –1 on error.

Resources
A process inherits the resource limits from its parent process. Resources may
be read or modified by the setrlimit and getrlimit system calls.

www.4electron.com

18 Embedded FreeBSD
Cookbook

The setrlimit and getrlimit System Calls
The setrlimit and getrlimit system calls read and modify process
resource limits. Setrlimit and getrlimit take a resource parameter that
specifies the resource to be read or written; a list of resources is contained in
/usr/include/sus/resource.h. The second argument is a struct
rlimit pointer:

struct rlimit {
rlim_t rlim_cur; /* current (soft) limit */
rlim_t rlim_max; /* maximum value for rlim_cur */

};

which is used for the resource value.

#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);
int setrlimit(int resource, const struct rlimit *rlp);

The setrlimit and getrlimit system calls return 0 on success and –1
on error.

Sessions
A set of process groups can be collected into a session, a set of processes that
are associated with a controlling terminal. Sessions are used to group a user
login shell and the process it creates or to create an isolated environment for
a daemon process.

The setsid System Call

#include <unistd.h>

pid_t setsid(void);

The setsid() function creates a new session. The calling process is the
session leader of the new session, is the process group leader of a new
process group, and has no controlling terminal. The calling process is the
only process in either the session or the process group.

www.4electron.com

19 Chapter Two
Systems Programming

Controlling Terminal
A session may have a controlling terminal; this is the device used to logon.
The session leader that initiated the connection of the controlling terminal
is considered the controlling process. The controlling terminal is established
for us when we login. There are times when a program wants to talk to the
controlling terminal.

Scheduling

Priority

Execution time is made available to a process according to its process priority.
Priorities range from 0 through 127. Process priorities are defined in
/usr/include/sys/param.h. The lower the process priority, the more
favorable scheduling priority it receives.

The getpriority and setpriority System Calls

A process priority may be read and modified using the setpriority and
getpriority system calls.

#include <sys/time.h>
#include <sys/resource.h>

int getpriority(int which, int who);
int setpriority(int which, int who, int prio);

The getpriority and setpriority system calls work differently based
on the which parameter.

which Definition

PRIO_PROCESS process identifier

PRIO_PGRP process group identifier

PRIO_USER user ID

The setpriority and getpriority system calls return 0 on success and
–1 on error.

www.4electron.com

20 Embedded FreeBSD
Cookbook

State
A process is in one of five states at any time. The process state is
used internally by the FreeBSD kernel to organize processes.
Process states and their definitions are described below.

Description

SIDL Initial state of a process on creation while waiting for
resources to be allocated.

SRUN The process is ready to run.

SSLEEP The process is suspended waiting for an event.

SSTOP The process is being debugged or suspended.

SZOMB The process has exited and is waiting to notify its parent.

Signals
Signals are mechanisms to notify a process that a system event
has occurred. Every process contains a table that defines an
associated action to handle a signal that is delivered to a process;
at process creation, all signals contain a default action. A signal
is handled in one of three ways: it is ignored, caught, or handled
by the default action set by the kernel.

A user can define a function that is invoked when a process
receives a signal; this is called a signal handler. The signal
handler is said to catch the signal. Signals are defined in
/usr/include/sys/signal.h. It is important to note that
two signals, SIGSTOP and SIGKILL, cannot be caught and will
terminate a process.

The signal Function
The signal function is used to specify a user-defined signal
handler for a specific signal. The signal function is a wrapper
for the sigaction system call.

#include <signal.h>

void (*sig_t) (int)
sig_t signal(int sig, sig_t func);

www.4electron.com

21 Chapter Two
Systems Programming

The sig parameter specifies which signal the signal handler will catch. The
func parameter allows a user to specify a user-defined signal handler. The
default action of the signal may be reset, by specifying SIG_DFL as the signal
handler. A signal may be ignored, by specifying SIG_IGN as the signal handler.
Ignoring a signal causes subsequent instances of the signal to be ignored and
pending instances to be discarded.

If successful, signal returns the previous action; otherwise, SIG_ERR is
returned and the global variable errno is set to indicate the error.

The kill System Call
The kill system call sends a signal to a process or group process group.

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

The pid parameter is the process ID to send the signal. A process ID greater
than zero is sent to that specific process. A process ID of zero sends the signal
to all the members of the process group of the sending process. A process ID
of –1 sends the signal to all processes if the super user; otherwise, it is sent
to all processes with the same user ID as the sending process. Sig is the
signal sent.

The kill() function returns the value 0 if successful; otherwise the value
–1 is returned and the global variable errno is set to indicate the error.

Daemons
A daemon is a special process that runs in the background, usually provid
ing a service. Daemon processes are usually started at system boot time and
remain running until the system is halted. All daemons have some common
process attributes. In the following section, we will cover issues common to
daemon processes.

• Fork
The first thing a daemon process does is to create a child process via the
fork system. After the child process is created, both the parent and the

www.4electron.com

22 Embedded FreeBSD
Cookbook

child run the same program simultaneously. A daemon process will dis
associate itself from the parent process and put itself in the background.

• Create a new session
The next step is to create a new session. Creating a new session provides
us with the following benefits: the process becomes a session leader of a
new session, the process becomes the group leader of a new process
group, and the process has no controlling terminal.

• Close file descriptors
Recall that a child process inherits its environment from the parent process.
If the parent process has any open file descriptors, the child will have a
copy of the open file descriptors. It’s a good idea to assume any file
descriptor may be open and close them all.

• Change the current working directory
In addition to open file descriptors, the child inherits the current working
directory. If the current working directory is a mounted file system, that
file system would not be able to be unmounted.

• Set the file mode creation mask
The file mode creation mask is inherited from the parent and may be set
to deny certain permissions.

• Handle Child Exit Status
If a daemon forks child processes to handle requests it must handle the
child SIGCLD signal or the child process will become a zombie.

A Skeleton Daemon Function
The handle_sigcld Function
Listing 2-2 demonstrates the code necessary to handle the exit process of a
child process. Recall if a parent doesn’t retrieve the exit code of a child
process, the child process becomes a zombie process. A parent process can
avoid creating zombie processes by installing the handle_sigcld signal
handler to catch the SIGCLD signal when a child exits.

www.4electron.com

23 Chapter Two
Systems Programming

void handle_sigcld()
{

int pid;
int status;

while ((pid = wait3(&status, WNOHANG, (struct rusage *)NULL))
> 0)

;
}

Listing 2-2

Note that the handle_sigcld function invokes the wait3 system call as
NOHANG. This is so the parent continues execution and does not block
waiting for a child to exit. This allows the parent to continue responding to
requests or to perform other tasks.

The init_daemon Function
The init_daemon function in Listing 2-3 handles the details of making the
child process a daemon process as described in this section.

void
init_daemon()
{

int childpid = 0;
int fd = 0;
struct rlimit max_files;

/*
** create a child process

*/

if ((childpid = fork()) < 0)

{

/* handle the error condition */
exit(-1);

}
else if (childpid > 0)
{

/* this is the parent, we may successfully exit */
exit(0);

}

www.4electron.com

24 Embedded FreeBSD
Cookbook

/* now executing as the child process */

/* become the session leader */

setsid();

/*

** close all open file descriptors, need to get the maximum
** number of open files from getrlimit.
*/
bzero(&max_files, sizeof(struct rlimit));

getrlimit(RLIMIT_NOFILE, &max_files);

for (fd = 0; fd < max_files.rlim_max; fd++)

{

close(fd);

}

/*
** the current working directory is held open by the
** kernel for the life of a process so the file system
** cannot be unmounted, reset the current working
** directory to root.

*/

chdir(“/”);

/*
** a process inherits file access permissions from the

** process which created it, reset the user access mask

*/

umask(0);

/*
** we don’t care about the exit status but we need to

** cleanup after each process that handles a request so

** the system isn’t flooded with zombie processes

*/

signal(SIGCHLD, handle_sigcld);

}

Listing 2-3

www.4electron.com

25 Chapter Two
Systems Programming

Summary
In this chapter we’ve covered process attributes in FreeBSD, as well as the
common systems calls used to create, terminate, and manage a process. Our
discussion of processes was completed by introducing a special type of
process known as the daemon process. The details of creating a daemon
process have been presented and encapsulated into a general purpose
function, init_daemon.

We’ll revisit the discussion of daemon processes again in Chapter 6, when
we implement a daemon to handle DIO queries using sockets. Next, let’s
jump into the implementation of FreeBSD system calls.

www.4electron.com

www.4electron.com

3 27 CHAPTER THREE

System Calls

Overview
As mentioned in the previous chapter, the FreeBSD kernel provides an exe
cution environment for a process called User Mode. A process executing in
User Mode cannot directly access kernel memory, kernel data structures or
hardware. Access to kernel memory and hardware resources is restricted to
the FreeBSD kernel, which executes in a privileged mode of the underlying
processor known as Kernel Mode. FreeBSD provides a detailed interface for
a user process to obtain basic services from the kernel known as system calls.

The benefit of restricting certain tasks to the kernel is twofold. First, it
relieves a system engineer from the details of programming device hardware.
Second, by providing and enforcing a detailed interface to the system call
interface, the kernel can ensure that the parameters passed by a user program
are correct and will not cause a system crash. The added protection in the
kernel provides a stable run-time environment for applications.

In this chapter we will discuss the details of FreeBSD system calls. After our
discussion of system calls is complete, we will implement a system call that
reads and writes kernel memory along with an application that provides
simple debugging capabilities.

Library Functions and System Calls
The Standard C Library provides an API consisting of header files and
libraries that contain implementations of many commonly needed functions
and IO routines. The Standard C library is implemented as both library
functions and system calls.

www.4electron.com

28 Embedded FreeBSD
Cookbook

To a system designer, library functions and system calls appear to be the
same. Both have defined function prototypes and return values. To an
application programmer, the functional implementation is not important.
The interface, function name, parameters, and return value are important.
The difference resides in the implementation.

When a program calls a library
function program, execution is
passed to the library function, the
requested operation is performed,
and control returned to the calling
function. All this occurs in the
context and address space of the
running process.

process heap

User Space

User Space

process

system call

Figure 3-1. Library Function Call

A system call is a request to the kernel to
execute a privileged operation on behalf of a
user process. When a program makes a system
call, program execution transitions from User
Mode to Kernel Mode, the kernel performs the
requested operation, then program execution
transitions back from Kernel Mode to User Mode.
In order for the operation to be performed, the
process must make a request to the kernel.

Figure 3-2. System Call

Kernel Space

System Call Implementation
System calls are implemented in two steps. The first step is to transition
from User Mode into Kernel Mode, which is accomplished by using a soft
ware interrupt. In addition, data must be passed from User Mode to Kernel.
In this section we will look at these details.

www.4electron.com

29 Chapter Three
System Calls

Software Interrupt
On an Intel x86 processor, a program executing in User Mode performs a
switch into Kernel Mode by executing a software interrupt. A software inter
rupt is an event that is processed asynchronously by the processor, using an
interrupt handler. An interrupt handler is called in response to the invocation of
a hardware or software interrupt. A software interrupt is different from a hard
ware interrupt, because it occurs synchronously within the running process.

Software interrupts are invoked on an Intel x86 processor by executing the INT
instruction. The INT instruction takes a number between 0 and 255 that desig
nates the interrupt vector. System calls are assigned to interrupt vector 128 (0x80).
A process will invoke a system call by executing the INT $080 instruction.

Every interrupt vector contains an entry in the Interrupt Descriptor Table
(IDT). The IDT is a table of 256 longwords. Each longword represents the
address for the interrupt handler for the specific interrupt vector. For a
system call, the system call interrupt handler is located at 0x200. 0x200 is
derived by interrupt vector 0x80 * 4 = 0x200.

Once the processor

encounters either a soft

ware or hardware interrupt,

it fetches the address from

the Interrupt Descriptor

Table (IDT) for the specific
 User Space

process

int 0x80
syscall

Kernel Space

INT 0x80

syscall2 system
call

interrupt vector and
executes that interrupt
vector. After the interrupt
handler is completed,
execution returns to the
user process.

Passing Data

Figure 3-3. Interrupt Handling

The kernel implements many different system calls. To distinguish between
different system calls, a number is passed that designates which system call is
being made; this number is called the system call number. A list of defined
system calls can be found in /sys/kern/syscalls.master. Before a sys
tem call is made, the system call number is pushed onto the program stack.

www.4electron.com

30 Embedded FreeBSD
Cookbook

In addition to the system call number, many

system calls take parameters. Parameters are

passed to the kernel using the C calling con

vention. The caller pushes the system call

parameters on the stack, one after another, in

reverse order, right to left, so that the first

argument specified to the function is pushed

last. On return from the system call, the caller

restores the stack to its original value before

the call; this is called popping the stack.

arg # n

arg 1

system call
number

•
•
•

Figure 3-4. System Call Number
An Example
To demonstrate how the compiler generates system calls, let’s look at the
generated output of a program that makes a system call. Listing 3-1 contains
a program that makes an open and close system call.

#include <stdio.h>
#include <fcntl.h>

int main(int argc, char **argv)
{
int fd;

fd = open(“file.dat”, O_RDWR);

close(fd);

}

Listing 3-1

NOTE: In order to simplify the listed output, optimizations are turned off so the assembly
code is easier to read, and the program is linked statically. The compile line used is:

gcc -00 -static -o open open.c

After the program in Listing 3-1 has been compiled and linked, we can use
the objdump utility to disassemble the output to look at the compiler gener
ated system calls.

objdump –disassemble open

Listing 3-2 contains a partial listing of the open program disassembly. Of
particular interest is the pushing of parameters and system call numbers
onto the stack and the execution of the INT instruction.

www.4electron.com

31 Chapter Three
System Calls

080481c4 <main>:
80481cd: 6a 02 push $0x2
80481cf: 68 01 84 04 08 push $0x8048401
80481d4: e8 7f 00 00 00 call 8048258 <_open>
80481d9: 83 c4 10 add $0x10,%esp

08048258 <_open>:
8048258: 8d 05 05 00 00 00 lea 0x5,%eax
804825e: cd 80 int $0x80

8048262: c3 ret

Listing 3-2

Listing 3-2 shows the steps performed by the compiler to generate the
assembly code to make an open system call. The instructions located at
80481cd and 80481cf push the open mode and filename onto the stack.
The main program then calls the open system call. Open then pushes its
system call number, 5, onto the stack in line 8048258, then invokes the
software interrupt. After the return from open, the stack is restored to its
original value in line 80481d9.

truss
In the previous sections, we’ve taken a detailed look at how system calls are
implemented. In this section, we’ll show how a standard utility uses system
calls to accomplish its task. truss is a FreeBSD command containing a
utility used to trace system calls and see signals received by a named process.
Using the truss command we’ll look at how the pwd command makes
system calls. The pwd command displays the current working directory of a
process. Listing 3-3 contains the output of the truss command when used
to analyze the pwd command.

readlink(“/etc/malloc.conf”,0xbfbff578,63) ERR#2 ‘No such
file or directory’

mmap(0x0,4096,0x3,0x1002,-1,0x0) = 671432704
(0x28054000)
break(0x8058000) = 0 (0x0)
break(0x8059000) = 0 (0x0)
sigaction(SIGSYS,0xbfbff660,0xbfbff648) = 0 (0x0)
__getcwd(0x8058000,0x3fc) = 0 (0x0)
sigaction(SIGSYS,0xbfbff648,0x0) = 0 (0x0)
fstat(1,0xbfbff388) = 0 (0x0)

www.4electron.com

32 Embedded FreeBSD
Cookbook

ioctl(1,TIOCGETA,0xbfbff3bc) = 0 (0x0)
write(1,0x8058400,6) = 6 (0x6)
exit(0x0) process exit, rval = 0

Listing 3-3 truss output

The output generated by truss shows the system calls made by the pwd
command. Of particular interest is are the system calls to sigaction.
Recall from the previous chapter, sigaction is used to install a signal
catcher. This code is protecting against a nonexistent system call.

Once the SIGSYS signal catcher is installed, the program calls getcwd, the
internal system call to return the current working directory of the current
process. After the return from getcwd, the signal catcher for SIGSYS is restored.

Before the program exits, the write system call is invoked to write the cur
rent working directory to the control terminal.

Creating a System Call
A system call can be developed as a kernel-loadable module (KLD).
Appendix C presents an overview of kernel-loadable modules. In this sec
tion, we will discuss the pieces of KLD, along with our implementation of
the copymem system call.

Adding a System Call
In the previous sections, we’ve covered the implementation and practical
uses of system calls. In the following sections of this chapter, we are going to
develop a system call, copymem, which reads or writes kernel memory. The
copymem system call tasks four parameter; kernel address, user address,
number of bytes, and direction for a copy. The prototype is:

int copymem(int kern_addr, int user_addr, int nbytes, int direction);

Once the implementation of the copymem system call is complete, we will fin
ish our discussion of system calls by implementing a simple utility that accepts
commands to read and write kernel memory using the copymem system call.

Load Handler
The first piece of code necessary for a KLD system call is the load handler.
The load handler is responsible for handling any initialization or cleanup

www.4electron.com

33 Chapter Three
System Calls

when the module is being loaded, unloaded, or the system is shutting down.
Every KLD is required to have a load handler. Listing 3-4 implements the
load handler for the copymem system call.

static int32_t

load (struct module *module, int cmd, void *arg)

{

int32_t err = 0;

switch (cmd)

{

case MOD_LOAD:

uprintf(“copymem system call loaded succesfully\n”);

break;

case MOD_UNLOAD:

uprintf(“copymem system call unloaded succesfully\n”);

break;

default:

err = EINVAL;

break;

}

return(err);
}

Listing 3-4

The load handler accepts three arguments. The first is a linked list of mod
ules currently loaded in the system. The second argument is the cmd param
eter that represents the condition for load handler being called. The defined
commands are:

Command Action

MOD_LOAD Passed when the module is loaded

MOD_UNLOAD Passed when the module is unloaded

MOD_SHUTDOWN Passed when the system is shutting down

Table 3-1 Load Module Commands

The final argument is a user-defined argument passed to the load handler.
This is discussed further in the SYSCALL_MODULE section.

www.4electron.com

34 Embedded FreeBSD
Cookbook

System Call Arguments
In the system call discussion, we showed how a user program passes the
parameters to a system call on the stack. In the kernel implementation, the
parameters are passed as a structure argument. Each element of the structure
is one parameter passed from the user program.

Listing 3-5 defines the copymem_args structure. The copymem structure
has four elements, one for each of the four parameters passed to the
copymem system call.

struct copymem_args
{

int32_t kernel_addr; /* kernel address */
int32_t user_addr; /* user provided buffer */
int32_t len; /* length of transfer */
int32_t direction; /* to kernel 1, from 0 */

};

Listing 3-5

The copymem system call accepts four parameters: the kernel mode address,
a user mode address, the length of the copy, and a number representing the
direction of the copy. The two directions implemented by copymem are from
kernel mode to user mode or from user mode to kernel mode.

The copymem System Call
Now that we have the load handler and arguments defined, we can implement
the actual copymem system call. System calls take two arguments. The first is
the proc structure, which contains the current state and settings for the calling
process; the proc structure is defined in /usr/include/sys/proc.h.

The second argument is the argument structure; in our case, it will be the
copymem_args structure defined in the previous section. Listing 3-6
contains the source code listing of copymem.

static int32_t

copymem(struct proc *p, struct copymem_args *uap)

{

int stat;

www.4electron.com

35 Chapter Three
System Calls

if (uap->direction == 0)

{

stat = copyin((void *)uap->user_addr, (void *)uap-

>kernel_addr, uap->len);

}

else if (uap->direction == 1)

{

stat = copyout((void *)uap->kernel_addr, (void *)uap-

>user_addr, uap->len);

}

#if DEBUG
if (stat != 0)
{

uprintf(“copy failed, stat = %d\n”, stat);
}

#endif

return(0);

}

Listing 3-6

The copymem function implements two paths of control based on the direc
tion parameter. Memory is either copied from user mode to kernel mode or
kernel mode to user mode. Because of the processor hardware details,
addressing in user mode and kernel mode may be slightly different, so
copying memory between user mode and kernel mode may be more
involved than using the Standard C library memcpy function. The FreeBSD
kernel provides function utilities to handle the details of copy memory
between user mode and kernel mode.

The copyin and copyout Functions

The copyin and copyout functions are used to copy memory between
user mode and kernel mode.

#include <sys/types.h>
#include <sys/systm.h>

int copyin(const void *uaddr, void *kaddr, size_t len);
int copyout(const void *kaddr, void *uaddr, size_t len);

www.4electron.com

36 Embedded FreeBSD
Cookbook

The copyin function copies len bytes of data from the user mode address
uaddr to the kernel mode address kaddr. The copyout function copies
len bytes of data from the kernel mode address kaddr to the user mode
address uaddr.

The sysent Structure
Every system call in the FreeBSD kernel has a sysent structure, defined in
/usr/include/sys/sysent.h. The sysent structure takes two elements,
the number of parameters, which is two as defined by the dumpmem_args
structure, and the name of the system call function. Listing 3-7 defines the
copymem sysent.

static struct sysent copymem_sysent =
{

4, /* number of parameters */
copymem /* system call */

};

Listing 3-7

System calls are contained in the sysent structure, defined in
/sys/kern/init_sysent.c. When a KLD system call is made, a new
entry is added to the kernel global sysent structure. Listing 3-8 contains a
partial listing of the sysent structure.

/* The casts are bogus but will do for now. */
struct sysent sysent[] = {
{ 0, (sy_call_t *)nosys }, /* 0 = syscall */
{ AS(rexit_args), (sy_call_t *)exit }, /* 1 = exit */
{ 0, (sy_call_t *)fork }, /* 2 = fork */
{ AS(read_args), (sy_call_t *)read }, /* 3 = read */
{ AS(write_args), (sy_call_t *)write }, /* 4 = write */
{ AS(open_args), (sy_call_t *)open }, /* 5 = open */

{ AS(close_args), (sy_call_t *)close }, /* 6 = close */

Listing 3-8

The System Call Number
A system call number must be declared; since there is no system call num
ber defined, this value should be set to NO_SYSCALL. The kernel defines
the system call number dynamically.

www.4electron.com

37 Chapter Three
System Calls

static int32_t syscall_num = NO_SYSCALL;

When the KLD system call is loaded into the kernel, systent entry
copymem_sysent is assigned to the first open index in the kernel global
sysent structure. The index into the sysent array is the system call number.

The specifics of installing a new system call are found in the
syscall_register function listed in /sys/kern/kern_syscalls.c.
Listing 3-9 contains the syscall_register function.

int
syscall_register(int *offset, struct sysent *new_sysent,

struct sysent *old_sysent)
{

if (*offset == NO_SYSCALL) {
int i;

for (i = 1; i < SYS_MAXSYSCALL; ++i)
if (sysent[i].sy_call == (sy_call_t

*)lkmnosys)
break;

if (i == SYS_MAXSYSCALL)
return ENFILE;

*offset = i;
} else if (*offset < 0 || *offset >= SYS_MAXSYSCALL)

return EINVAL;
else if (sysent[*offset].sy_call != (sy_call_t *)lkmnosys)

return EEXIST;

*old_sysent = sysent[*offset];

sysent[*offset] = *new_sysent;

return 0;

}

Listing 3-9

When a new system call is added, the kernel function syscall_register
is called. The offset and sysent structure for the new call are passed. If the
offset is NO_SYSCALL, syscall_register scans the sysent structure
looking for an empty system call location. If one is found, the system call is
inserted and the offset is set to the index of the sysent structure, where the
call has been inserted.

www.4electron.com

38 Embedded FreeBSD
Cookbook

The SYSCALL_MODULE Macro
The final task for creating a system call module is to declare the module.
The macro used to define a system call is the SYSCALL_MODULE defined in
/usr/include/sys/sysent.h. The SYSCALL_MODULE macro gets
passed the following parameters:

Argument Description

name Name is a generic name used for the system call.

offset Offset is the system call number. This is the index into the kernel global
sysent structure.

sysent The sysent structure defined for this system call.

evh The load handler function name.

arg This is reserved and usually set to NULL.

The copymem SYSCALL_MODULE declaration is contained in Listing 3-10.

/* declare the system call */

SYSCALL_MODULE(copymem, &syscall_num, ©mem_sysent, load, NULL);

Listing 3-10

The SYSCALL_MODULE macro takes five arguments:

Copymem is a unique name for the KLD. The second parameter syscall_num
represents the system call number, which also represents the offset in the
kernel global sysent structure containing system calls. The third parameter
contains the sysent structure for the new system call. The fourth argument
is a pointer to the load handler for this KLD. The fifth and final argument
represents a pointer for the user-defined KLD data to the load handler.

A Simple Debugger
In the previous section we created a new system call that provides a mecha
nism for a user program to read and write kernel memory. The remainder of
this chapter defines a program that implements a simple command parser,
giving us a utility for reading and modifying kernel memory.

www.4electron.com

39 Chapter Three
System Calls

Command Definitions
The copymem utility is command driven. To simplify command parsing, a
structure data type is defined, command_t, which contains an ASCII com
mand string, a function pointer, and a help string.

/*
** command definition
*/
typedef struct
{

char *command; /* string representing command */
fptr functionptr; /* pointer to command implementation*/
char *helpstring; /* text help string */

} command_t;

Listing 3-11

The command element contains an ASCII string that is used to compare the
command with user input. The function pointer contains a pointer to a rou
tine that implements the command.

/*
** command function pointer definition

*/

typedef void (*fptr) (int, char *);

Listing 3-12

The function type, fptr, is defined as the prototype for all command
handlers. Every command is passed by two parameters. The first parameter
is the system call number. Because copymem is a KLD system, there is no
system call wrapper, so the system call is made by using the syscall
system call. It takes the system call number and system call parameters and
performs the system call as defined in the previous section.

#include <sys/syscall.h>
#include <unistd.h>
int syscall(int number, ...);

The second is the command string entered by the user. Every command
handler is self-contained so each command handler parses its own arguments
from the command string.

www.4electron.com

40 Embedded FreeBSD
Cookbook

Command Table
The command table represents all the commands implemented by the
copymem utility. Our implementation of the copymem utility has four
commands: read kernel memory, write kernel memory, quit, and help.

A command table is defined so the parser can iterate through all the com
mands after receiving user input. All the command handlers are forward
declared so we can declare our command table.

/*
** command table definition

*/

void read_handler(int num, char* args);

void write_handler(int num, char* args);

void quit_handler(int num, char* args);

void help_handler(int num, char* args);

command_t commands[] =
{

“read”, read_handler, “read address length - reads memory”,
“write”, write_handler, “write address length - writes memory”,
“quit”, quit_handler, “quit - exits program”,
“help”, help_handler, “help - displays command help”,
NULL, 0, NULL, /* terminating record */

};

Listing 3-13

The command table contains all the implemented commands. Each entry in
the command table links the ASCII command with its command handler
and help string.

Adding a new command is straightforward. Declare the command handler
and add the ASCCI string, command handler, and help string to the com
mand table. After adding the entry to the command table, implement the
command handler.

The dumpmem Function
The dumpmem function, contained in Listing 3-14, is a utility function that
dumps memory in hexadecimal and ASCII character format. Dumpmem is
called by the read_handler function to display the request kernel memory.

www.4electron.com

41 Chapter Three
System Calls

/*
** name: dumpmem
** effect: dumps memory in hexadecimal and ASCII formats
*/
static int32_t

dumpmem(uint32_t kernp, uint8_t* userp, uint32_t len)

{

int32_t i, j;

int32_t rows = len / CHARS_PER_ROW;

uint8_t *ptr = (uint8_t *)userp;

printf(“\n\n”);

for (i = 0; i < rows; i++)

{

uint32_t kernaddr;

kernaddr = kernp + (i * CHARS_PER_ROW);

printf(“%08x: “, kernaddr);

for (j = 0; j < CHARS_PER_ROW; j++)

printf(“%02x “, ptr[i * CHARS_PER_ROW + j]);

for (j = 0; j < CHARS_PER_ROW; j++)

{

if (isprint((int) ptr[I * CHARS_PER_ROW + j]))

printf(“%c”, ptr[i * CHARS_PER_ROW + j]);

else

printf(“.”);

}

printf(“\n”);

}

printf(“\n”);

return(0);
}

Listing 3-14

Dumpmem is used to display the memory in three columns. The first column
contains the kernel address; the second column is 8 bytes of data displayed in
hexadecimal notation. The last column is the same 8 bytes of data contained

www.4electron.com

42 Embedded FreeBSD
Cookbook

in the second column in ASCII format. If character is nonprintable, the dot
(.) character is printed.

Command Function Handlers
Each command implements its own command handler. The command
handler is responsible for parsing its parameters and performing the com
mand action.

Read Command

The read command is used to read and display kernel memory. The read
command takes two parameters, the kernel address and a length. The
maximum size of a read is 4096 bytes defined by the BUFFER_MAX macro.
This maximum is an arbitrary value.

void read_handler(int num, char* iobuf)
{

int32_t stat = 0;
int32_t i;
uint32_t kerneladdr;
uint32_t length;

/* verify the command arguments */

i = sscanf(iobuf, “%*s %x %x”, &kerneladdr, &length);

if (i != 2)

return;

/* limit the command to our buffer size */

if (length > BUFFER_MAX)

length = BUFFER_MAX;

/* perform the command */

stat = syscall(num, kerneladdr, iobuf, length, KERNEL_READ);

if (stat != 0)

{

printf(“syscall failed\n”);

return;

}

dumpmem(kerneladdr, iobuf, length);
}

Listing 3-14

www.4electron.com

43 Chapter Three
System Calls

After parsing the parameters, the call to copymem is made. Because copymem
is a user-defined system call, the call is made using the syscall function.

Write Handler

The write command is used to write kernel memory. The write command
takes two parameters, the kernel address and a length. The maximum size of
a write is 4096 bytes defined by the BUFFER_MAX macro. This maximum is
an arbitrary value.

void write_handler(int num, char* iobuf)
{

int32_t stat = 0;
int32_t i;
uint32_t kerneladdr;
uint32_t length;

/* verify command arguments */

i = sscanf(iobuf, “%*s %x %x”, &kerneladdr, &length);

if (i != 2)

return;

/* limit the command to our buffer size */

if (length > BUFFER_MAX)

length = BUFFER_MAX;

/* read the input buffer */

printf(“>> “);

for (i = 0; i < length; i++)

iobuf[i] = getchar();

printf(“\n”);

/* perform the command */

stat = syscall(num, kerneladdr, iobuf, length, KERNEL_WRITE);

if (stat != 0)

{

printf(“syscall failed\n”);
}

}

Listing 3-15

www.4electron.com

44 Embedded FreeBSD
Cookbook

After parsing the write parameters, the write command accepts additional
input from the user, the data to write to the location. Once the data is input,
the write handler calls the copymem system call to write the kernel memory.

Quit Handler

The quit handler is used to clean up and exit the program. The quit com
mand handler does not use the input parameters; they are ignored.

void quit_handler(int num, char* args)
{

/*
** since this is the program exit we must free the user
** buffer malloced in the main program
*/
free(args);
exit(0);

}

Listing 3-16

The quit handler frees the user buffer used for commands, then exits the
program normally.

Help Handler

The help command handler is used to display help text strings. The help
command handler does not use the input parameters; they are ignored.

/*
** display help commands

*/

void help_handler(int num, char* args)

{

command_t* cmdptr;

/* parse the users command */

cmdptr = &commands[0];

while (cmdptr->command != NULL)

{

printf(“\t%s\n”, cmdptr->helpstring);
cmdptr++;

}

}

Listing 3-17

www.4electron.com

45 Chapter Three
System Calls

Every command entry contains a help text string. The help command handler
iterates through all the commands and displays each command help string.

The main Program
The copymem program handles initialization and command parsing. Since
the copymem system call is a KLD and the system call number is dynamically
assigned, the system call number must be determined by querying the kernel
module subsystem. This can be accomplished by calling modfind and
modstat. The modfind call takes the name of a kernel module; the
copymem system call is named copymem; modfind returns the module ID.

#include <sys/param.h>

#include <sys/module.h>

int modfind(const char *modname);

Once we have the module ID, modstat is called to obtain the
module_stat structure. The module_stat structure contains the system
call number in the module_stat.data.intval element.

#include <sys/param.h>

#include <sys/module.h>

int modstat(int modid, struct module_stat *stat);

Now that we have the dynamically assigned system call number for
copymem, the system call number is passed to the handler functions, so
they can make the appropriate system call.

Once we have determined the system call number, a user buffer is allocated
to pass the command arguments to the command handler functions. The
size of the user buffer BUFFER_MAX is arbitrary. The main function listing
is contained below.

int main(int argc, char** argv)
{

int err;
int syscall_num;
char* userp = NULL;
struct module_stat stat;

/* verify the module is loaded */

memset(&stat, 0, sizeof(struct module_stat));

stat.version = sizeof(struct module_stat);

www.4electron.com

46 Embedded FreeBSD
Cookbook

err = modstat(modfind(“copymem”), &stat);

if (err != 0)

{

printf(“%s unable to obtain dumpmem system call
information\n”, argv[0]);

exit(0);
}

/* retrieve the system call number */

syscall_num = stat.data.intval;

userp = (uint8_t *)malloc(BUFFER_MAX);

if (userp == NULL)

{

printf(“%s: unable to allocate user buffer\n”);

exit(-1);

}

while (1)

{

command_t* cmdptr;

printf(“\n> “);

gets(userp);

/* parse the users command */

cmdptr = &commands[0];

while (cmdptr->command != NULL)

{

if (strncmp(userp, cmdptr->command, strlen(cmdptr->com-
mand)) == 0)

{
cmdptr->functionptr(syscall_num, userp);

}

cmdptr++;

}

}

/* since quit handles cleanup and exit we’ll never get here */
return(err);

}

Listing 3-18

www.4electron.com

47 Chapter Three
System Calls

After initialization, the main program enters an endless loop, processing
commands and calling the command handler functions. The program is ter
minated when the user enters the quit command. Then the quit command
handler cleans up and exits.

An example
Now that we’ve created basic kernel debugger functionality, let’s try an
example. Contained in the kernel is the OS version. For a simple, benign
test in modifying kernel memory, we can use our newly developed copymem
utility to modify the OS version in kernel memory.

Before we begin our test, let’s display the OS version using the standard
uname command.

uname -r
4.4-RELEASE

Here, uname displays the OS version 4.4-RELEASE. The OS version is con
tained in the kernel global variable named osversion. We can determine
the address in memory OS osversion by scanning the kernel program
using the nm utility and looking for the osversion variable.

nm /kernel | grep osrelease
c0205a94 r __set_sysctl_set_sym_sysctl___kern_osrelease
c023f4c2 D osrelease
c022aca0 d sysctl___kern_osrelease

From the output of the selected output of the nm command, we see that the
kernel address of osrelease is c023f4c2. We can now run our copymem
utility to modify this location in memory. Before we modify the memory, we
will display it to verify the address is correct. After verifying the address, we
overwrite the version with new data, then display the same location again to
see that the address has been modified.

./copymem

> read c023f4c2 10

c023f4c2: 34 2e 34 2d 52 45 4c 45 4.4-RELE
c023f4ca: 41 53 45 00 00 00 c0 b6 ASE.....

www.4electron.com

48 Embedded FreeBSD
Cookbook

> write c023f4c2 8

>> cookbook

>

> read c023f4c2 10

c023f4c2: 63 6f 6f 6b 62 6f 6f 6b cookbook

c023f4ca: 41 53 45 00 00 00 c0 b6 ASE.....

> quit

Using copymem, we have successfully modified the osversion
string. As one final check, we will rerun the uname command
and see that, in fact, we have modified the FreeBSD OS version
string.

uname -r
cookbookASE

The output of the uname utility now displays the expected
results.

Summary
In this chapter we have discussed the details of FreeBSD system
calls. Understanding how these work is an excellent introduction
to kernel hacking. As part of our discussion, we’ve implemented
a system call and utility that will allow us to read and write a
kernel memory from an application program.

www.4electron.com

4 49 CHAPTER FOUR

Device Driver

Overview
A device driver is an extension of the FreeBSD kernel that implements a
standard software interface to hardware. Device drivers consist of data struc
tures and a fixed set of functions provided by the device driver writer. The
kernel calls driver functions in response to conditions, such as a driver load,
power management event, device interrupt, or an application requesting a
service.

In order to develop a device driver, an understanding of the related kernel
data structures and driver method functions is needed. This chapter covers
topics including:

• Driver environment

• Device driver kernel data structures

• Driver method functions

• Steps for developing a FreeBSD device driver

• The PCIO-DIO24 device driver

Driver Environment
A FreeBSD device driver contains two major components, autoconfiguration,
device_method_t, and the device switch table, cdevsw. Before discussing the
implementation of the data structures, let’s take a look at the environment of
a device driver and the role each of the data structures plays in a running
FreeBSD system.

www.4electron.com

50 Embedded FreeBSD
Cookbook

Autoconfiguration
The autoconfiguration code detects the hardware at load time and is respon
sible for allocating hardware resources during load, deallocating hardware
resources on unload, and putting hardware in a consistent state in response
to power management events. The auto configuration code typically is only
used at load and unload time.

Root Bus

ISA Bus EISA BusPCI Bus

NIC Controller

Sound
Controller

Data Acq
Controller

ing system buses. As devices on each system

each system bus.

Figure 4-1. Root Bus

it adds devices to the root device, represent

bus are probed, child devices are added to

The FreeBSD kernel
maintains a tree of
device objects. At
system startup a root
device is created called
the root_bus. When
the kernel code boots,

Autoconfiguration is the procedure carried out by the FreeBSD kernel that
dynamically finds and enables hardware. The kernel probes for system
buses and, for each bus that is found, devices are attached, initialized, and
configured. During autoconfiguration, a device driver probe routine is
called. Probe is responsible for detecting the hardware to determine if any
other devices are attached. Once a device is successfully probed the
FreeBSD kernel must attach to it. The attached function initializes the
device hardware and any software state.

The Device Switch Table
The device switch table consists of a set of routines that comprise the upper
and lower halves of the device driver. The upper half provides the system
call implementation for the device driver such as read, write, open, ioctl and
close. Upper half functions execute synchronously with a user process and
are preemptable, permitted to block. The lower half routines interface with
the device registers and implement the hardware interrupt service routine.
Lower half routines are not preemptable and cannot block.

www.4electron.com

51 Chapter Four
Device Driver

A typical device driver accepts requests from the upper half, and then
enqueues the request to be handled by the lower half. Each request is
enqueued in a common data structure shared by the upper and lower halves.
Because the upper and lower halves of a device driver run independently, it
is critical that access to any data shared by the upper and lower halves of a
device driver is properly synchronized.

KLDs Revisited
As with the system call described in Chapter 3, FreeBSD provides support for
dynamically loadable device drivers. In addition to the typical device driver
data structures required by a FreeBSD device driver, KLD framework data
structures for dynamic load and unload features for the DIO device driver
are described and implemented.

Driver Structure
A FreeBSD device driver consists of various entry points into driver functions
or methods that the FreeBSD I/O subsystem calls when it wants the driver to
perform a specific function. Two structures are provided for FreeBSD device
driver writers to implement the driver functions. device_method_t is the
structure used for auto configuration functions and cdevsw is used for
system calls and interrupts. The following sections discuss the more common
function callbacks and the conditions that cause the functions to be called.

device_method_t cdevsw

probe

detach

suspend
•
•
•

attach

shutdown

open

read

loctl
•
•
•

close

write

Figure 4-2. Device Driver

www.4electron.com

52 Embedded FreeBSD
Cookbook

Driver Data Structures

The device_method_t Structure

The driver’s device_method_t is the list that contains the driver’s autocon
figuration method functions. The device_method_t contains a list of func
tions that are implemented for this driver and is terminated by a null entry.
The device_method_t structure is defined in /usr/include/sys/bus.h.

typedef struct device_op_desc *device_op_desc_t;

typedef struct device_method device_method_t;

typedef int (*devop_t)(void);

struct device_method {
device_op_desc_t desc;
devop_t func;

};

The following is a list of the more common device method functions with
brief descriptions of each.

int probe(device_t dev)

The probe method is called when the driver is loaded and is used to deter
mine if the device is present. If probe is successful in finding the device then
it should return 0; otherwise an appropriate error code should be returned.

int attach(device_t dev)

If the probe is successful, then the attach driver method is called, which
is responsible for initializing the hardware, allocating system resources and
adding the device switch table entry into the kernel global device switch
table. attach should return 0 on success.

int detach(device_t dev)

Detach is called when a driver is about to be removed from the system.
detach is responsible for putting the hardware in a consistent state, deallo
cating system resources and removing the device switch table entry from the
kernel global device switch table. The detach method should return 0 on
success.

www.4electron.com

53 Chapter Four
Device Driver

int shutdown(device_t dev)

The shutdown method is called during system shutdown to allow a driver
to place its hardware in a quiescent state.

int suspend(device_t dev)

The suspend method is used by the power management subsystem to allow
the driver save configuration before power is removed.

int resume(device_t dev)

The resume method is used by the power management subsystem to allow
the driver to initialize before power is applied.

The cdevsw Structure
In addition to the autoconfiguration component of the device driver, each
driver contains a device table structure, represented by the cdevsw structure.
The cdevsw table contains functions that implement standard system calls
such as open, close, read, write, and ioctl.

The cdevsw structure defines an entry in FreeBSD’s kernel device switch
table. The device switch table, cdevsw, is a kernel data structure that con
tains an entry for every device driver in the kernel. The cdevsw structure is
defined in /usr/include/sys/conf.h.

/*
* Character device switch table
*/

struct cdevsw {
d_open_t *d_open;
d_close_t *d_close;
d_read_t *d_read;
d_write_t *d_write;
d_ioctl_t *d_ioctl;
d_poll_t *d_poll;
d_mmap_t *d_mmap;
d_strategy_t *d_strategy;
const char *d_name; /* base device name, e.g. ‘vn’ */
int d_maj;
d_dump_t *d_dump;
d_psize_t *d_psize;

www.4electron.com

54 Embedded FreeBSD
Cookbook

u_int d_flags;
int d_bmaj;
/* additions below are not binary compatible with 4.2 and

below */
d_kqfilter_t *d_kqfilter;

};

We’ll take a look at each individual element of the cdevsw.

static int d_open(dev_t dev, int flags, int devtype, struct proc *p)

open is called when a process calls the open system call with the device
special filename. It is responsible for enforcing any rules or restrictions that
the device may have.

static int d_close(dev_t dev, int flags, int devtype, struct proc *p)

close is called when a process calls the close system call with the file
descriptor obtained by calling open with the device special name. It is
responsible for any device cleanup task, such as putting the device in a
consistent state.

static int d_read(dev_t dev, struct uio* uio, int flags)

read is called when a process calls the read system call with the file descrip
tor obtained by calling open with the device special name.

static int d_write(dev_t dev, struct uio* uio, int flags)

write is called when a process calls the write system call with the file
descriptor obtained by calling open with the device special name.

static int d_ioctl(dev_t dev, ulong cmd, caddr_t data, int flag,
struct proc *p)

ioctl is called when a program calls the ioctl system call with the file
descriptor obtained by calling open with the device special name. It is used
to provide any device-dependent operations.

static int d_poll(dev_t dev, int which, struct proc *p)

poll is used by the driver to see if a specific event has occurred.

www.4electron.com

55 Chapter Four
Device Driver

static int d_mmap(dev_t dev, struct vm_offset_t offset, int nprot)

mmap is used to map memory into a process space.

static void d_strategy(struct buf *bp);

Used to start a read or write operation on the lower half of the driver.

char d_name

d_name represents the device driver name.

int d_maj

d_maj is the device major number. Every device has a major number.
Typically, when you begin developing a device driver you would consult
/usr/src/sys/conf/majors to find an unused major number and use that.

static int d_dump_t(dev_t dev);

dump is used to save the contents of physical onto secondary storage when
the system is about to crash.

static int d_psize_t(dev_t dev);

psize returns the size of a disk drive partition.

There is one more function worth noting that is not contained in the
cdevsw structure but is an integral part of many device drivers—that is the
interrupt handler. The interrupt handler is assigned at driver load time and
is considered the lower half of the device driver.

static void d_intr(void* arg)

d_intr represents the device interrupt handler. It is responsible for any
hardware function to clear a pending interrupt and to initiate any operations
in response to a hardware interrupt.

The device_t Structure
A device object is an abstract representation of a hardware device. Every
piece of hardware attached to the FreeBSD kernel is represented by a device

www.4electron.com

56 Embedded FreeBSD
Cookbook

object. A device object that has been successfully probed and attached con
tains device class and device driver objects. The device object is accessed
via a set of set and get routines. There are functions to add, remove and
traverse parent and child nodes. We are developing a driver for a simple
controller so our focus will be on the routines that relate to that. The routines
used to access the driver specific fields are:

typedef struct device *device_t;

The device structure is listed in /usr/include/sys/bus_private.h
and listed below.

struct device {
/*
* Device hierarchy.
*/

TAILQ_ENTRY(device) link; /* list of devices in parent */
device_t parent;
device_list_t children; /* list of subordinate devices */

/*
* Details of this device.
*/

device_ops_tops;
driver_t *driver;
devclass_t devclass; /* device class which we are in */
int unit;
char* nameunit; /* name+unit e.g. foodev0 */
char* desc; /* driver specific description */
int busy; /* count of calls to device_busy() */
device_state_t state;
u_int32_t devflags; /* api level flagdevice_get_flags()*/
u_short flags;
u_char order; /* order from device_add_child_ordered() */
u_char pad;
void *ivars;
void *ivars;
void *softc;

};

The device_t structure contains a set of accessor functions to set and get
specific entries of the device_t function. A device_t accessor function is
prefixed by device_. As we discuss the DIO device driver, you will notice

www.4electron.com

57 Chapter Four
Device Driver

calls to the defined accessor functions. Each function is named appropriately
to represent the action it performs on the device_t structure. This naming
convention assists in the description and understanding of the DIO driver code.

The driver_t Structure
Every driver in the FreeBSD kernel is represented by its driver object. The
driver object contains the name of the device, a list of driver method functions,
type of device and size of the private data structure. The driver object is
declared in the driver source code file.

typedef struct driver driver_t;

struct driver {
const char *name; /* driver name */
device_method_t *methods; /* method table */
size_t softc; /* size of device softc struct */
void *priv; /* driver private data */
device_ops_t ops; /* compiled method table */
int refs; /* # devclasses containing driver */

};

The softc Structure
In addition to the kernel data structures, every driver contains a data struc
ture used for local state information, configuration information, or any other
data that must be saved. This structure is called the driver softc structure.
Each driver declares its own softc structure. A standard use of the softc
structure is for passing data between the upper and lower halves of the
device driver.

struct devclass_t

The devclass object represents a class of devices. It has two objectives.
The first is to provide a mapping from name to device. The second is to
maintain a list of drivers. For example, a devclass with name pci would
keep a list of all the drivers for PCI hardware.

typedef struct devclass *devclass_t;

The DRIVER_MODULE Macro

DRIVER_MODULE(name, busname, driver_t driver, devclass_t devclass,
modeventhand_t evh, void *arg);

www.4electron.com

58 Embedded FreeBSD
Cookbook

FreeBSD provides support for dynamic loading and unloading of drivers.
The autoconfiguration code is the method to communicate with the FreeBSD
dynamic kernel linker (KLD) subsystem.

The dev_t Structure
Every device in the system is represented by a dev_t structure, which con
tains the device switch table, maximum IO size and device flags. The dev_t
structure is responsible for mapping the upper level calls to the actual device
driver implementation. The dev_t and specinfo declarations are found
in /usr/include/sys/conf.h.

typedef struct specinfo *dev_t;

struct specinfo {
u_int si_flags;

#define SI_STASHED 0x0001 /* created in stashed storage */
udev_t si_udev;
LIST_ENTRY(specinfo) si_hash;
SLIST_HEAD(, vnode) si_hlist;
char si_name[SPECNAMELEN + 1];
void *si_drv1, *si_drv2;
struct cdevsw *si_devsw;
int si_iosize_max; /* maximum I/O size (for physio &al) */
union {

struct {
struct tty *__sit_tty;

} __si_tty;

struct {

struct disk *__sid_disk;

struct mount *__sid_mountpoint;

int __sid_bsize_phys; /* min physical block size */

int __sid_bsize_best; /* optimal block size */

} __si_disk;
} __si_u;

};

The make_dev Function

The make_dev function creates a dev_t structure and places it in the list of
devices for the systems. All loaded devices contain an entry in the dev_t list.

dev_t make_dev(struct cdevsw *cdevsw, int minor, uid_t uid, gid_t
gid, int perms, char *name, ...)

www.4electron.com

59 Chapter Four
Device Driver

cdevsw represents the device switch table for the device driver.

minor designates which minor device number is being created.

uid is the user id that owns the dev_t device that is created.

gid is the group ID that owns the dev_t device that is created

perms represents the permissions assigned to the dev_t device that is created.

name contains the device name being created.

make_dev creates a new dev_t structure. If successful, the device name
represented by name is created in the /dev directory. The device is owned
by the user and group contained in the call to make_dev and will consist of
the permissions contained in the call to make_dev.

The destroy_dev Function

The destroy_dev function destroys a dev_t entry in the list of available

devices in the system.

void destroy_dev(dev_t dev);

destroy_dev takes one parameter.

dev, the returned values from make_dev.

destroy_dev has no return value.

The DIO24 Device Driver
In this section we will develop a FreeBSD character device driver that
accesses the features of the PCI-DIO24 controller. Before writing any driver
code, it is a good idea to create a list of tasks the device driver is going to
perform. The list of tasks to be implemented for the DIO device driver are:

• Probe the PCI-DIO24 hardware

• Allocate hardware resources during load

• Deallocate hardware resources during unload

www.4electron.com

60 Embedded FreeBSD
Cookbook

• Read and write to the PCI DIO24 hardware registers

• Handle the PCI-DIO24 interrupt

Skeleton Driver Source
In developing a device driver, it’s common to start from a skeleton device
driver code base, a driver that is similar to the driver being written or a
driver shell that implements the empty prototypes of common driver
functions, and add features as needed. FreeBSD provides a shell script
that generates a shell device driver, make_device_driver.sh in
/usr/share/example/drivers. The output of the shell script contains
all the necessary driver data structures, stub driver callback functions and a
KLD development environment.

NOTE

The make_device_driver.sh script contained in FreeBSD 4.4 only generates
an ISA device driver. I obtained the current version of make_device_driver.sh
using CVSUP, which generates both ISA and PCI drivers.

CVSUP is a software package for distributing and updating collections of files across a
network. All the necessary files and options are provided in the /usr/share/
examples/drivers directory to update the make_device_driver.sh script.

To generate the shell device driver, call make_device_driver.sh with the
device name to be created. For this device, I’ve called it dio, for digital IO.

make_device_driver.sh dio

The output of the make_device_driver.sh script is contained in three
directories. The directories and their contents are summarized in Table 4-2.

Directory Contents

/sys/dev/dio Contains the source code for the driver, dio.c

/usr/src/sys/sys Contains the file dioio.h used to define driver ioctl codes

/sys/modules/dio Contains a complete KLD build environment

make_device_driver.sh output
Table 4-2

www.4electron.com

61 Chapter Four
Device Driver

The sample DIO device driver source contains a shell implementation of both
ISA and PCI device drivers. Because the PCI-DIO24 is a PCI card, the first
modification I made to the DIO source code was to remove all references to
the ISA callback functions. Once this was complete, I performed a complete
build to make sure the remaining code was still correct.

DIO Driver Functions

The dio_pci_probe Function

The first task of the device driver is to detect if its hardware is present. This
is called probing the device. Device probing is performed by the probe device
method. Dio.c contains a function for probing a PCI device implemented
in the function dio_pci_probe.

dio_pci_probe calls the kernel function pci_get_devid to return the
Vendor ID and Device ID for this device. pci_get_dev returns a 32-bit long-
word of which the upper 16 bits contain the PCI Device ID and the lower 16
bits contains the PCI vendor ID for this card. The following code shows the
modifications to the pci_ids structure for the PCI-DIO24.

static struct _pcsid
{

u_int32_t type;
const char *desc;

} pci_ids[] = {
{ 0x00281307, “Measurement Computing PCI-DIO24 Digital
I/O Card” },

{ 0x00000000, NULL }
};

The DIO device driver can now be built and loaded, and it successfully
recognizes the PCI-DIO24 card. The complete dio_pci_probe function is
listed below.

static int

dio_pci_probe (device_t device)

{

u_int32_t type = pci_get_devid(device);
struct _pcsid *ep =pci_ids;

while (ep->type && ep->type != type)

www.4electron.com

62 Embedded FreeBSD
Cookbook

++ep;

if (ep->desc) {

device_set_desc(device, ep->desc);
return 0; /* If there might be a better driver, return -2 */

} else {
return ENXIO;

}

}

dio_pci_probe scans the pci_ids structure in an attempt to match the
vendor and device IDs. When a match is found, the verbal description of the
device is updated using the kernel function device_set_desc.

TIP

FreeBSD has a utility that dumps information about PCI devices, called pciconf.
Utilities such as pciconf are used for debugging and verifying your hardware is work
ing correctly before developing a device driver.

The pciconf utility is used to detect that the hardware is successfully loaded and
recognized by FreeBSD. pciconf –l will give you a list of PCI devices present in your
system. Once you have installed a hardware peripheral, it should always be listed in the
output of the pciconf command.

The dio_pci_attach Function
Once a device driver successfully probes the hardware, the kernel calls the
driver attach method. The attach method is responsible for allocating hard
ware resources and for the PCI-DIO24 making the character device. The
PCI_DIO24 board has three hardware resources, an interrupt and two IO
ports. dio.c contains the attach method dio_pci_attach.

static int
dio_pci_attach(device_t device)
{

interror;
struct dio_softc *scp = DEVICE2SOFTC(device);

error = dio_attach(device, scp);

if (error) {

dio_pci_detach(device);

}

www.4electron.com

63 Chapter Four
Device Driver

/* handle softc initialization */

dio_softc_init(device);

return (error);
}

dio_pci_attach uses two utility routines to accomplish its tasks,
dio_attach and dio_allocate_resources.

dio_attach is responsible for adding the interrupt to the list of system
interrupt handlers after the interrupt has been allocated.

The dio_allocate_resource function handles the allocation of the
interrupt and register hardware resources.

The dio_attach Function
The attach device handler function is called if the controller hardware is
found. The attach device handler is responsible for creating the dev_t
structure, allocating hardware resources and setting up the device interrupt.

dio_attach(device_t device, struct dio_softc * scp)
{

device_t parent = device_get_parent(device);
int unit = device_get_unit(device);

scp->dev = make_dev(&dio_cdevsw, 0,

UID_ROOT, GID_OPERATOR, 0600, “dio%d”, unit);

scp->dev->si_drv1 = scp;

if (dio_allocate_resources(device)) {

goto errexit;

}

/* register the interrupt handler */

/*

* The type should be one of:
* INTR_TYPE_TTY
* INTR_TYPE_BIO
* INTR_TYPE_CAM
* INTR_TYPE_NET
* INTR_TYPE_MISC
* This will probably change with SMPng. INTR_TYPE_FAST may be

www.4electron.com

64 Embedded FreeBSD
Cookbook

* OR’d into this type to mark the interrupt fast. However,
* fast interrupts cannot be shared at all so special precautions
* are necessary when coding fast interrupt routines.
*/

if (scp->res_irq) {
/* default to the tty mask for registration */ /* XXX */
if (BUS_SETUP_INTR(parent, device, scp->res_irq,

INTR_TYPE_TTY,
diointr, scp, &scp->intr_cookie) == 0) {

/* do something if successful */
} else {

goto errexit;
}

}

return 0;

errexit:
/*
* Undo anything we may have done
*/

dio_detach(device, scp);

return (ENXIO);

}

dio_attach calls the kernel function make_dev to create the dev_t
entry in the dev-t list, then calls dio_allocate_resource to
reserve the PCI-DIO24 controller’s hardware resources.

After successfully allocating the hardware resources, including IO registers
and interrupt, dio_attach calls the kernel MACRO BUS_SETUP_INTR,
which is responsible for installing the interrupt handler, diointr, at the
requested IRQ level. The IRQ level is retrieved during the resource allocation.

Additionally, if there is an error during the attach setup, it is usually good
form to detach all resources and leave the system in the same state as
when called.

The dio_alloc_resources Function
dio_alloc_resources allocates all three PCI_DIO24 hardware resources.

www.4electron.com

65 Chapter Four
Device Driver

When allocating PCI resources, the ID value passed into bus_alloc_resources
should be the offset into the PCI Configuration registers.

static int
dio_allocate_resources(device_t device)
{

int error;

struct dio_softc *scp = DEVICE2SOFTC(device);

/* allocate the interrupt status/control port, bus address
1 */

scp->rid_badr1 = 0x14;
scp->res_badr1 = bus_alloc_resource(device, SYS_RES_IOPORT,

&scp->rid_badr1, 0ul, ~0ul, 1, RF_ACTIVE);
if (scp->res_badr1 == NULL) {

scp->res_badr1 = 0;
goto errexit;

}

/* allocate the data/configuration port, bus address 2 */
scp->rid_badr2 = 0x18;

scp->res_badr2 = bus_alloc_resource(device, SYS_RES_IOPORT,
&scp->rid_badr2, 0ul, ~0ul, 1, RF_ACTIVE);

if (scp->res_badr2 == NULL) {
scp->res_badr2 = 0;

goto errexit;
}

/* allocate the interrupt */
scp->res_irq = bus_alloc_resource(device, SYS_RES_IRQ,

&scp->rid_irq, 0ul, ~0ul, 1, RF_SHAREABLE|RF_ACTIVE);
if (scp->res_irq == NULL) {

goto errexit;
}

return (0);

errexit:
error = ENXIO;
/* cleanup anything we may have assigned. */
dio_deallocate_resources(device);
return (ENXIO); /* for want of a better idea */

}

www.4electron.com

66 Embedded FreeBSD
Cookbook

dio_allocate resources performs its function through the use of the
kernel function bus_allocate_resource.

The dio_pci_detach Function
When a device driver shuts down, whether during unload or reboot, the
driver’s detach routine is called. The detach routine is responsible for clean
ing up and deallocating hardware resources.

static int

dio_pci_detach (device_t device)

{

interror;

struct dio_softc *scp = DEVICE2SOFTC(device);

error = dio_detach(device, scp);
return (error);

}

The detach flow is structured in a similar design as the attach flow. There are
two utility routines. dio_detach is responsible for removing the interrupt
from the system list of interrupt handlers. Also, dio_deallocate_resources
is used to return the register and interrupt resources to the system.

The dio_detach Function
The detach handler function is called in response to an event causing your
hardware to shut down—for example, when the system administrator has
requested your driver to unload or your PCcard hardware has been removed.

static int

dio_detach(device_t device, struct dio_softc *scp)

{

device_t parent = device_get_parent(device);

/*
* At this point stick a strong piece of wood into the
* device to make sure it is stopped safely. The alternative
* is to simply REFUSE to detach if it’s busy. What you do
* depends on your specific situation.
*

* Sometimes the parent bus will detach you anyway, even if
* you are busy. You must cope with that possibility. Your
* hardware might even already be gone in the case of card

www.4electron.com

67 Chapter Four
Device Driver

* bus or pccard devices.
*/

/*
* Take our interrupt handler out of the list of handlers
* that can handle this irq.
*/

if (scp->intr_cookie != NULL) {

if (BUS_TEARDOWN_INTR(parent, device,

scp->res_irq, scp->intr_cookie) != 0) {

printf(“intr teardown failed.. continuing\n”);

}
scp->intr_cookie = NULL;

}

/*
* deallocate any system resources we may have
* allocated on behalf of this driver.
*/

return dio_deallocate_resources(device);

}

dio_detach handles removing the interrupt from the list of interrupt han
dlers so the interrupt resource can be returned to the system. Deallocating
an active interrupt is a sure-fire recipe for crashing the system.

The detach routine should return 0 if it is successful.

The dio_deallocate_resources Function
The dio_deallocate_resources function handles shutting down and
releasing hardware resources back to FreeBSD.

static int
dio_deallocate_resources(device_t device)
{

struct dio_softc *scp = DEVICE2SOFTC(device);

if (scp->res_irq != 0) {

bus_deactivate_resource(device, SYS_RES_IRQ,

scp->rid_irq, scp->res_irq);

bus_release_resource(device, SYS_RES_IRQ,

scp->rid_irq, scp->res_irq);

scp->res_irq = 0;

www.4electron.com

68 Embedded FreeBSD
Cookbook

}

if (scp->res_badr1 != 0) {

bus_deactivate_resource(device, SYS_RES_IOPORT,

scp->rid_badr1, scp->res_badr1);

bus_release_resource(device, SYS_RES_IOPORT,

scp->rid_badr1, scp->res_badr1);

scp->res_badr1 = 0;

}

if (scp->res_badr2 != 0) {

bus_deactivate_resource(device, SYS_RES_IOPORT,

scp->rid_badr2, scp->res_badr2);

bus_release_resource(device, SYS_RES_IOPORT,

scp->rid_badr2, scp->res_badr2);

scp->res_badr2 = 0;

}

if (scp->dev) {
destroy_dev(scp->dev);

}

return (0);

}

The dio_deallocate_resources function uses two kernel functions
to perform its task, bus_deactivate_resource and
bus_release_resource.

The dioopen Function
The dioopen function is called when a process opens the device special file
/dev/dio0. When open is called, the open character driver open function
is called.

static int

dioopen(dev_t dev, int oflags, int devtype, struct proc *p)

{

struct dio_softc *scp = DEV2SOFTC(dev);

/*
* Do processing
*/

if (scp->open_count == 0)

www.4electron.com

69 Chapter Four
Device Driver

{
/* any inits that require no open file descriptors */

}

scp->open_count++;

return (0);
}

The open function does nothing more than increment a counter to track the
number of opens. The open function should return 0 if there is no error.

The dioclose Function
The dioclose function is called when the last file descriptor opened to the
DIO driver is closed. Our implementation simply clears the open count. The
close function should return 0 if there is no error and the appropriate error
code, if an error occurs.

static int

dioclose(dev_t dev, int fflag, int devtype, struct proc *p)

{

struct dio_softc *scp = DEV2SOFTC(dev);

/*
* Do processing
*/

scp->open_count = 0;

return (0);
}

It is a common misconception that the close call is paired with open calls—
i.e., that every open has a corresponding close. This is not the case.

The dioioctl Function
An ioctl is a device-specific interface to a device driver. Each ioctl can be
used to either send or receive data from a user application or control device
behavior. Ioctls are defined so that each ioctl is a unique number within
your driver.

The dioioctl device method function handles four ioctl codes, each

www.4electron.com

70 Embedded FreeBSD
Cookbook

used to read or write a PCI-DIO24 controller register.

static int
dioioctl (dev_t dev, u_long cmd, caddr_t data, int flag, struct
proc *p)
{

struct dio_softc *scp = DEV2SOFTC(dev);
struct dioreg_t *arg = (struct dioreg_t*) data;
volatile int port = 0;

/* check the args */

if (arg->size != sizeof(struct dioreg_t))

{

return (ENXIO);

}

switch (cmd) {

case DHIOPORTREAD:

if (arg->reg != CONFIG)

{

port = scp->res_badr2->r_start + arg->reg;
arg->val = DIO_INB(port);

}

else

{

/* copy the shadow value of the CONFIG register */
arg->val = scp->config;

}
break;

case DHIOPORTWRITE:

port = scp->res_badr2->r_start + arg->reg;

DIO_OUTB(port, arg->val);

/* shadow the CONFIG register, reg is write only */
if (arg->reg == CONFIG)

{

scp->config = arg->val;

}

break;

case DHIOCTRLREAD:
port = scp->res_badr1->r_start + arg->reg;
arg->val = DIO_INL(port);
break;

www.4electron.com

71 Chapter Four
Device Driver

case DHIOCTRLWRITE:
port = scp->res_badr1->r_start + arg->reg;
DIO_OUTL(port, arg->val);
break;

default:
return (ENXIO);

}
return (0);

}

Register Shadowing
One notable exception to this code is the config register. The config
register is a write-only register. Any attempt to read the config register
returns undefined results. To provide read capability of the config register,
a copy of each write to the config register is saved, or cached. By caching a
copy of the write to the config register, the driver has the value to provide
to an application when a config register read is performed. This technique
is called register shadowing.

Defining ioctl Codes

The DIO device driver has four ioctls defined, an ioctl to read and write
to both of the defined PCI-DIO24 register base addresses. It is important to
note that there are multiple registers offset from PCI Base Address 2. Each
ioctl is provided with a mechanism to set the offset, allowing access to any
of the PCI-DIO24 registers.

Before defining our ioctls, it is necessary to understand the details for defin
ing them. These can be found in the file /usr/include/sys/ioccom.h,
which contains macros used to define ioctl. These macros are summed up
in the following table:

_IO(g, n) Used to define a void ioctl

_IOR(g, n, t) Used to define an ioctl that reads data

_IOW(g, n, t) Used to define an ioctl that writes data

_IOWR(g, n, t) Used to define an ioctl that reads and writes data

ioctl macros
Table 4-3

www.4electron.com

72 Embedded FreeBSD
Cookbook

Each of these macros is used as a basis for defining ioctls. For example,
the sample ioctl provided in dioio.h, DHIOCRESET, uses _IO, it doesn’t
read or write any data from the driver, and it issues the command to reset
the card.

The parameters for the ioctl macros are:

g A unique code, typically an ASCII definition such as ‘N’

n A unique number for this ioctl

t The size of the data used for this ioctl

ioctl macro parameters
Table 4-4

Four ioctls have been defined, one each for a read or write PCI configura
tion registers listed in base address registers one and two.

#define DHIOPORTREAD _IOWR(‘D’, 1, struct dioreg_t) /* read
bar2 */
#define DHIOPORTWRITE _IOW(‘D’, 2, struct dioreg_t) /* write
bar2 */
#define DHIOCTRLREAD _IOWR(‘D’, 3, struct dioreg_t) /* read
bar1 */
#define DHIOCTRLWRITE _IOW(‘D’, 4, struct dioreg_t) /* write
bar1 */

Each ioctl represents either a read or write operation to one of the two
defined register spaces, bar1 and bar2.

In addition to the ioctl codes defined above, the format of the data passed
between an application and the device driver must be defined. Since the
ioctls define read and write registers, minimally the data passed to the
device driver should contain the offset into the register space and the value
to read or write. For the purpose of data integrity, the size of the structure
being passed has been added. This structure used to pass data between an
application and the device is defined in dioio.h and is called dioreg_t.

struct dioreg_t
{

int32_t size;

www.4electron.com

73 Chapter Four
Device Driver

int32_t reg;
int32_t val;

};

dioreg_t contains three elements: size represents the size of the structure;
reg is the register that is being read or written; and, finally, val, which con
tains the value to be written to the register if the ioctl is a write operation
or it is the value of the register if it is a read operation.

The diointr Function
The diointr function is called when the PCI-DIO24 controller generates
an interrupt. The requirements for the interrupt handler in our application
are minimal—if there is an interrupt, clear it and proceed.

static void
diointr(void *arg)
{

struct dio_softc *scp = (struct dio_softc *) arg;

uint32_t interrupt_stat;

volatile uint32_t port = scp->res_badr1->r_start + INTSR;

/* read the interrupt status register */

interrupt_stat = DIO_INL(port);

/*

** if there is an interrupt pending clear it otherwise
** do nothing. The controller is the PLX Technologies
** 9052, see the spec sheet at http://www.plxtech.com
** for details.
*/

if (interrupt_stat & 0x04)
{

/* interrupt is active clear it */
DIO_OUTL(port, interrupt_stat | 0x0400);

}

return;
}

We learn from the PLX 9052 specification that to check to see if an interrupt
is pending, the Interrupt Status register is read. The DIO interrupt handler

www.4electron.com

74 Embedded FreeBSD
Cookbook

reads the interrupt status register, then tests the interrupt pending bit, 0x04.
If it is determined that an interrupt is pending, then the interrupt is cleared
by writing the interrupt clear bit 0x0400 back to the interrupt status register.

A typical interrupt handler would perform some action, reading a value from
a sample register and storing it in an array or set an event in response to
some external event. Interrupt handlers are one of the most application- and
device-specific pieces of source code to write.

The Device File
The device file is a special file used by an application to gain access to the
device driver. Device files are files opened by an application, like an ordinary
file, but FreeBSD accesses a device driver instead of a file. Device files reside
in the /dev directory and are created with the mknod command.

mknod creates a device special file of the specified major and minor number
provided to the mknod command. The syntax of the mknod command is
as follows:

mknod name c major minor

Major numbers are defined in the file, /usr/src/sys/conf/majors.
For the DIO device file, the minor number is zero. Minor numbers are
provided so that drivers, such as the terminal driver, can have multiple
instances of a single device driver. Each driver instance is represented by a
different minor number.

The syntax for creating the DIO device file is as follows:

mknod DIO c 200 0

With the creation of the device file, driver development is completed. How
ever, there is one additional step. FreeBSD provides a utility, MAKEDEV,
which provides a convenient method for administrators to create device files.
It is a generally accepted practice to add your device file creation to the
MAKEDEV script when creating a new device driver. The modification to
MAKEDEV for the DIO device driver is listed below.

dio*)
unit=`expr $i : ‘dio\(.*\)’`

www.4electron.com

75 Chapter Four
Device Driver

mknod dio$unit c 200 `unit2minor $unit`

;;

MAKEDEV is invoked with the name of the device with the minor number
appended to the name. For example,

MAKEDEV dio0

The MAKEDEV script strips off the minor number from the device name
for use by the mknod command. This is represented by the `unit2minor
$unit` syntax.

Building, Loading and Unloading
The make_device_driver.sh script provides a complete kernel-loadable
driver build environment. The make file contains commands to build, clean,
install, and uninstall the device driver. Let’s take a look at the build environ
ment and each command in a little more detail.

make_device_driver.sh created a KLD build directory for the DIO
device driver in the /sys/modules/dio directory. Before attempting any of
the commands described below, cd to the sys/modules/dio directory.

cd /sys/modules/dio

A common source of bugs and inconsistencies during driver development
stems from building a driver with stale object files. The make clean command
deletes all the object and the driver files forcing all the components to be
built and linked.

make clean

A device driver consists of include files and other disjoint pieces of source
code that must be compiled in a specific order. The KLD driver build environ
ment contains a command that computes and resolves build dependencies.
The make depend command handles the details of computing the dependen
cies for the device driver build.

make depend

www.4electron.com

76 Embedded FreeBSD
Cookbook

Once the build dependencies have been resolved and are up
to date, the next revision of the device driver can be built.
The make command is used to build all the components of
the device driver and link them together to create the device
driver module.

make

The output of the build process is the file dio.ko, the driver KLD.

During the development process a driver is built, tested, modified
and features added. KLDs are installed and uninstalled dynamically.
In order to iterate revisions of the device driver, it is necessary
to uninstall the current revision. The make uninstall command
unloads the current running version. Make uninstall calls
kldunload to remove the driver from the kernel.

make uninstall

To install a version of your driver make install dynamically loads
the driver into the running system. Make install calls
kldload to load the driver into the running kernel.

make install

Additional commands may be added by each individual driver
developer. However, the tools provided by FreeBSD give the
driver developer a robust set of utilities to hit the ground run
ning for developing a device driver.

Summary
This chapter covered the details needed by a device driver
developer to implement a working FreeBSD device driver. Major
data structures, available tools and a description of the driver
build environment have been covered, giving the driver devel
oper the necessary information to implement a functioning
FreeBSD device driver.

www.4electron.com

5 77 CHAPTER FIVE

Midlevel Interface Library

Overview
In the previous chapter, we developed a FreeBSD device driver to read and
write the PCI-DIO24 hardware registers and service the controller interrupt.
In this chapter, we will develop a shared library that uses the DIO device
driver and serves as the software interface for programming the PCI-DIO24
data acquisition board.

Providing an application interface library isolates the device programming
details and operating system specifics to the library and device driver. This
design enables system engineer tasks to interface with the PCI-DIO24 con
troller using a simple C interface and minimizes the impact of changing the
underlying hardware or operating system.

Topics discussed in this chapter are:

• Shared libraries

• Creating and using shared libraries

• Accessing FreeBSD device drivers

• Low-level system calls

• PCI-DIO24 register definitions

• Design and implementation of the digital IO interface shared library

Shared Libraries
A shared library is code that is grouped together to provide specific func
tionality that can be reused across multiple programs. For example, without

www.4electron.com

78 Embedded FreeBSD
Cookbook

the Standard C library, libc, every software engineer would need to write
low-level IO routines, string routines, math routines, and so forth.

There are typically two types of libraries developed by system engineers,
static and shared. If a program is linked to a static library, the components of
the library become part of the final executable, making the output one mono
lithic program. All linker symbols are resolved at link time, and the program
is self-contained. If the library is modified for bug fixes or new features, the
application must be rebuilt to incorporate the changes made to the static library.

When linking with a shared library, the final executable contains references
to the shared library. Shared libraries are loaded when a program is run, and
the symbols are resolved at run-time. If a shared library is modified, only the
library is replaced. A program can use the updated library the next time it runs.

Creating and Using Shared Libraries
Shared libraries are loaded at run-time and are not linked to a specific run
time address. Shared libraries use the same naming conventions as static
libraries; the name of the shared library is prefixed with lib, but the
extension is .so, instead of .a, which is used for static libraries.

When compiling the source code for a shared library, the code must be
linked as position independent code. This is accomplished by specifying the
–fpic switch to gcc.

gcc –c –fpic -o dioif.o dioif.c

When building a shared library, gcc needs to know that the output is a
shared library. This is done by specifying the –shared switch. For example,
the code presented in this chapter is contained in the file dioif.c. In order
to build a shared library, the following line would be used with gcc.

gcc –shared -o libdioif.so dioif.o

Linking with a shared library is the same as linking with a static library; i.e.,
the –l switch specifies the library, and the -L switch specifies a path to find
the library.

gcc –o diotest diotest.c –L. -ldioif

www.4electron.com

79 Chapter Five
Midlevel Interface Library

The ldd command can be used to list the shared libraries that link into an
executable. All the listed libraries must be available when the program is run
or a warning message is printed and the program will not execute.

Loading Shared Libraries
A program linked with shared libraries contains a list of required shared
libraries but not the location where the libraries exist. When a program is
executed, the dynamic linker, ld-elf.so.1, searches the default library
path, consisting of /lib and /usr/lib. If a shared library is installed in
another directory, the dynamic linker needs to be told where to search for
those shared libraries.

There are two methods for adding additional shared library search paths to
the dynamic linker.

The first solution is to link the program and specify the location of the
shared libraries, using the –Wl,–rpath option to gcc. This is a linker switch
that adds the named directory to the run-time search path for shared libraries.

gcc –o diotest diotest.c –L. –ldioif –Wl,-rpath /usr/proj/lib

When diotest is executed libdioif.so will be loaded from
/usr/proj/lib.

The other solution is to set the LD_LIBRARY_PATH environment variable.
This is a colon-separated list of directories. If LD_LIBRARY_PATH is set, the
directories listed are searched, in addition to the default libraries searched by
the linker.

Accessing the Device Driver
A device driver is a kernel extension that is inaccessible to a user program.
Access to device drivers is provided through special files, known as device
files, and low-level system calls. In the previous chapter, we developed a
device driver for the PCI-DIO24 controller. In this section, we will look at
the necessary details to access the device driver and program the
PCI-DIO24 controller.

www.4electron.com

80 Embedded FreeBSD
Cookbook

Device Files
In FreeBSD, all input and output is performed by file operations. Devices
are represented by special files called device files. A device file appears as a
regular filename to an application, but it is bound to a specific device driver
through a device number. A device number is derived from the device major
and minor numbers. The major number identifies the device driver bound
to a specific device. A minor number identifies a sub device for the major
devices. The minor number is used by the device driver to determine which
device to send the IO request to.

Let’s take a look at the device files for the standard ATAPI disk driver, ad0. If
you issue the ls –l ad0* commands in the /dev directory, you’ll see the
following files with two numbers separated by commas. These are the major
and minor numbers.

crw-r——- 2 root operator 116, 0 Oct 24 17:07 ad0a
crw-r——- 2 root operator 116, 1 Oct 24 17:07 ad0b
crw-r——- 2 root operator 116, 2 Oct 24 17:07 ad0c
crw-r——- 2 root operator 116, 3 Oct 24 17:07 ad0d
crw-r——- 2 root operator 116, 4 Oct 24 17:07 ad0e
crw-r——- 2 root operator 116, 5 Oct 24 17:07 ad0f
crw-r——- 2 root operator 116, 6 Oct 24 17:07 ad0g
crw-r——- 2 root operator 116, 7 Oct 24 17:07 ad0h

The device ad0a is an ATAPI hard disk with major number 116. The minor
numbers 0 through 7 represent different partitions on the hard disk.

Device Driver System Calls
A FreeBSD device driver is accessed through a standard set of low-level IO
system calls. Once a program has opened the device file for a specific device,
the program is able to access the device driver and a standard set of low-level
IO system calls in FreeBSD. These calls are listed in the following sections.

The open System Call
Before a program can access a device driver and physical hardware, it must
obtain a file descriptor. A file descriptor is obtained by opening the device
file with the open system call.

www.4electron.com

81 Chapter Five
Midlevel Interface Library

#include <fcntl.h>

int open(const char *path, int flags, …);

The path argument is the name of the device file for a specific device driver.
The flags parameter is a mask that specifies how the file is to be opened.
The flags are defined in the header file fcntl.h.

The open system call returns a file descriptor if the call is successful or –1
otherwise. A file may not be opened if the file does not exist or a user does
not have permission to access the file. If an error occurs, the system variable
errno is set to the appropriate value.

The close System Call
After a program has finished accessing a device, the file descriptor should be
closed. This allows the file descriptor to be reused. If the device driver pro
vides exclusive access, closing the device will allow another program to
access the device.

#include <unistd.h>
int close(int d);

The close system call takes a single parameter, a file descriptor obtained by
the open system call. Close returns 0 on success and –1 otherwise. If an
error occurs, the system variable errno is set to the appropriate value.

The ioctl System Call
Ioctl is an all-purpose interface for controller hardware. A device driver
can provide a specific function through the use of the ioctl function.
Using an ioctl function generally requires detailed knowledge of the
device being used.

#include <sys/ioctl.h>

int ioctl(int d, unsigned long request, char* argp);

Here, ioctl takes a file descriptor returned by the open system call. The sec
ond argument is a request code defined by the device being used. The third
argument is a pointer to a buffer provided for arguments required for the request.

ioctl returns –1 if an error occurs. If an error occurs, the system variable
errno is set to the appropriate value.

www.4electron.com

82 Embedded FreeBSD
Cookbook

The read System Call
Input is performed by calling the read system call. The read system call
takes a buffer and length and receives data from the device driver.

#include <sys/types.h>

#include <sys/uio.h>

#include <unistd.h>

ssize_t read(int d, void *buf, size_t nbytes);

The first parameter to read is a file descriptor provided by the open system
call. The second argument is a buffer to return the data being read. The last
argument is the number of bytes being read.

Read returns the number of bytes read or –1 if an error occurs. If an error
occurs, the system variable errno is set to the appropriate value. Read will
return 0 if an end of file is encountered.

The write System Call
Output is performed by the write system call. The write system call takes a
buffer pointer and length and passes it to the driver.

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

ssize_t write(int d, const void *buf, size_t nbytes);

The first parameter to read is a file descriptor provided by the open system
call. The second argument is a buffer to return the data being written. The
last argument is the number of bytes being written. Write returns the num
ber of bytes written or –1 if an error occurs. If an error occurs, the system
variable errno is set to the appropriate value.

PCI-DIO24 Hardware Registers
Before developing the interface library for the PCI-DIO24 board, we must
have a thorough understanding of the hardware registers. Hardware registers
are special memory locations provided by a controller or used to control the
hardware. The PCI-DIO24 contains five hardware registers. Each register is
located in PCI configuration space.

www.4electron.com

83 Chapter Five
Midlevel Interface Library

The details for programming the registers are found in the PCI-DIO24 User’s

Manual provided by Measurement Computing along with the controller.

The PCI-DIO24 controller uses a PLX 9052 PCI Slave interface controller.

Additional details are found in the PCI 9052 Data Book provided by

PLX Technology.

A PCI controller uses hardware resources such as IO port registers, memory-

mapped registers, and interrupts. The specifics of the resources being used

are contained in the device PCI Configuration registers. PCI Configuration

contains 6 base address registers, 0–5. Additional details concerning PCI

configuration registers are contained in Appendix C.

The name, location, register space, and description of each of the five PCI

DIO24 registers are contained in Table 5-1.

Register Register Space Byte Offset Function

Configuration Register Base Address 2 3 Controls IO data line direction

Port A Data Base Address 2 0 Port A data lines 0 – 7

Port B Data Base Address 2 1 Port B data lines 8 – 15

Port C Data Base Address 2 2 Port C data lines 16 – 23

Interrupt Status/Control Base Address 1 4C Interrupt Control

Table 5-1. PCI-DIO24 Registers

The details of each register are provided in the following sections.

Configuration Register
The Configuration Register is responsible for programming the direction of
the digital data ports. A data port is a subset of digital lines. The Configura
tion Register is an 8-bit register located at byte offset 3 from the PCI Base
Address Register 2.

The PCI-DIO24 has four data ports, each containing a subset of the PCI
DIO24 digital lines. All of the digital lines in a specific port must be pro
grammed in the same direction, input or output. However, each port may
be programmed independently of other ports. Each bit of the Configuration
Register is defined in Table 5-2.

www.4electron.com

84 Embedded FreeBSD
Cookbook

Bit Description Value

0 Port C Low Direction 0 output, 1 input

1 Port B Direction 0 output, 1 input

2 Reserved NA

3 Port C High Direction 0 output, 1 input

4 Port A Direction 0 output, 1 input

5 Reserved NA

6 Reserved NA

7 Reserved Always set to 1

Table 5-2. Configuration Register

Bits 0, 1, 3, and 4 are used to program the data port directions. Setting these
bits to a value of 1 will program the corresponding data port digital lines as
inputs; alternately, setting the bits to a value of 0 will program the corre
sponding data port digital lines as outputs.

It is important to note that bit 7 must always be set to 1; this is a function of
the configuration hardware register. Writing to this register with bit 7 set to
0 will produce undefined results.

Port A Data Register
The Port A Data Register is an 8-bit
register located at byte offset 0 from PCI
Base Address Register 2. The Port A Data
register corresponds to digital IO lines 0
through 7. Each bit of the Port A Data
register is defined in Table 5-3.

The Port A Data register bits correspond to
digital lines 0 though 7. The direction of
Port A digital IO lines is programmed by
Configuration Register bit 4.

Bit Description

0 Digital line 0

1 Digital line 1

2 Digital line 2

3 Digital line 3

4 Digital line 4

5 Digital line 5

6 Digital line 6

7 Digital line 7

Table 5-3. Port A Data Register

www.4electron.com

85 Chapter Five
Midlevel Interface Library

Port B Data Register
The Port B Data Register is an 8-bit regis
ter located at byte offset 1 from PCI Base
Address Register 2. The Port B Data regis
ter is responsible for digital I/O lines 8
through 15. Each bit of the Port B Data
register is defined in Table 5-4.

The Port B Data register corresponds to
digital lines 8 through 15. The direction
of Port B digital IO lines is programmed
by Configuration Register bit 1.

Bit Description

0 Digital line 8

1 Digital line 9

2 Digital line 10

3 Digital line 11

4 Digital line 12

5 Digital line 13

6 Digital line 14

7 Digital line 15

Port C Data Register Table 5-4. Port B Data Register

The Port C Data Register is an 8-bit register located at byte offset 2 from PCI
Base Address Register 2. The Port C Data register is responsible for digital

Bit Description

0 Digital line 16

1 Digital line 17

2 Digital line 18

3 Digital line 19

4 Digital line 20

5 Digital line 21

6 Digital line 22

7 Digital line 23

I/O lines 16 through 23. Each bit of the Port C Data
register is defined in Table 5-5.

The Port C Data register bits correspond to digital
lines 16 though 23. The Port C Data register is differ
ent from Port A and Port B data registers in that its
lines are split into two groups, Port C Low and Port C
High. Each of these groups, Port C Low and Port C
High, can be programmed independently. Port C Low
bits correspond to bits 0 through 3 in the Port C data
register. The direction of these lines is programmed by
Configuration Register bit 0. Port C High corre
sponds to bits 4 through 7 in the Port C data register.
The direction of these lines is programmed by
Configuration Register bit 3.

Table 5-5. Port C Data Register

Interrupt Status Register
The Interrupt Status Register is a 32-bit register located at PCI Base Address
Register 1 at byte offset hexadecimal 4C. This register is responsible for
programming interrupt enable/disable, interrupt polarity, interrupt status,

www.4electron.com

86 Embedded FreeBSD
Cookbook

and PCI interrupt disable. Each bit of the Interrupt Status register is defined
in Table 5-6.

Bit Description Value

0 Interrupt Enable 0 disabled, 1 enabled

1 Interrupt Polarity 0 active low, 1 active high

2 Interrupt Status 0 interrupt not active, 1 interrupt active

3 Reserved NA

4 Reserved NA

5 Reserved NA

6 PCI Interrupt Enable 0 disabled, 1 enabled

7 Reserved NA

8 Reserved NA

9 Reserved NA

10 Interrupt Clear Writing a 1 clears this interrupt

31:11 Reserved NA

Table 5-6. Interrupt Status Register

The Interrupt Status Register contains bits that program the controller
interrupt, enable and disable the controller interrupt, and provide the
interrupt status.

The interrupt enable bit, bit 0, enables or disables the controller interrupt;
when set to 1, the interrupt is enabled; otherwise, it is disabled.

Interrupt polarity bit, bit 1, controls the type of interrupt. This bit controls
on which edge the interrupt is active, low to high transition, or high to low
transition. The default is active high.

The interrupt status bit, bit 2, provides us with a status bit to determine if
an interrupt is active.

The PCI interrupt bit, bit 6, controls the PCI interrupt enable. A value of 1
enables PCI interrupts; 0 disables the PCI interrupts.

Writing to the Interrupt clear, bit 10, clears a pending interrupt.

www.4electron.com

87 Chapter Five
Midlevel Interface Library

The DIO24 Application Interface Library
The implementation of the DIO24 Interface library consists of four functional
categories. Each functional category is related to programming the different
features of the controller. The categories are register utilities, reading and
writing the digital IO lines, programming the configuration register, and pro
gramming the interrupt controller. Each of the following sections addresses
the functions for the functional category.

The dio_get and dio_set Functions
All accesses to the PCI-DIO24 hardware registers are provided by two
internal library functions, dio_get and dio_set. These two functions are
responsible for obtaining a file descriptor to the device, if necessary; packing
the data into the ioctl structure; and making the appropriate ioctl call to
the driver.

static int32_t dio_get(int32_t reg, int32_t *pval)
static int32_t dio_set(int32_t reg, int32_t val)

The implementation of each of these functions is similar. Listing 5-1 demon
strates how the file descriptor to the device driver is obtained. If the internal
file descriptor variable diofd is not set, the function attempts to open the
device and obtain a file descriptor using the following code.

/* if the device is not open, open it */

if (diofd == -1)

{

diofd = open(“/dev/dio0”, O_RDWR);
if (diofd == -1)
{
return(-1);
}

}

Listing 5-1

Once a valid file descriptor is obtained, the code packages the request into
the appropriate ioctl structure. Recall from the previous chapter that all
ioctl to the DIO device driver accept a dioreg_t structure, containing
the dioreg_t size, register, and value for the ioctl. The register structure
used by the DIO device driver is shown in Listing 5-2.

www.4electron.com

88 Embedded FreeBSD
Cookbook

struct dioreg_t
{

int32_t size;
int32_t reg;
int32_t val;

};

Listing 5-2

The dio_set and dio_get functions set a local dioreg_t structure and
make the ioctl call. The code to fill in the ioctl and call the driver is
contained in Listing 5-3.

/* fill in the device structures */

regt.size = sizeof(struct dioreg_t);

regt.reg = reg;

regt.val = val;

/* send the request to the driver */

if (reg == INTSR)

{

ioctl(diofd, DHIOCTRLWRITE, ®t);
}
else
{

ioctl(diofd, DHIOPORTWRITE, ®t);
}

Listing 5-3

Here, dio_set and dio_get must distinguish which ioctl to send the
register access request to. Recall there are two register spaces, base address 1
and base address 2. Since the interrupt status register, INTSR, is the only
register that accesses PCI base address 1, if the specified register is INTSR,
the ioctl is sent to the control register in PCI base address 1; otherwise,
the ioctl is sent to the port write ioctl, which accesses PCI base address 2.

Accessing the Digital IO Lines
Access to the digital IO lines is provided by two functions, dio_set_line
and dio_get_line. The PCI-DIO24 contains 24 digital IO lines. To identi
fy each line, a C enum is provided to represent each.

www.4electron.com

89 Chapter Five
Midlevel Interface Library

The dioline_t enum
The enum data type is used repeatedly throughout the digital IO library. By
defining enums, we force the compiler to enforce type safety to our functions,
which comes in handy during debugging. Listing 5-4 shows the dioline_t
enum.

typedef enum dioline_t
{

line0 = 0,
line1 = 1,
line2 = 2,
line3 = 3,
line4 = 4,
line5 = 5,
line6 = 6,
line7 = 7,
line8 = 8,
line9 = 9,
line10 = 10,
line11 = 11,
line12 = 12,
line13 = 13,
line14 = 14,
line15 = 15,
line16 = 16,
line17 = 17,
line18 = 18,
line19 = 19,
line20 = 20,
line21 = 21,
line22 = 22,
line23 = 23,
totallines

} dioline_t;

Listing 5-4

The dioline_t enum provides us with a convenient type, and since the
first argument to dio_set_line and dio_get_line is type dioline_t,
this will force the compiler to do parameter type checking. Additionally, if
the underlying hardware is changed and the line values needs to be modi
fied, the source code changes are limited to the header file and a recompile
of the remaining code base.

www.4electron.com

90 Embedded FreeBSD
Cookbook

The diolinestate_t enum
As with the line number type, there is a line state enum, diolinestate_t,
which defines all the possible states for the digital IO line. Since the PCI
DIO24 provides only digital IO lines, the states are either set or clear, set sig
nifying the active high state and clear signifying an active low state.

typedef enum diolinestate_t
{

clear = 0,
set = 1

} diolinestate_t;

Listing 5-5

The dio_set_line and dio_get_line Functions
Reading and writing the digital IO lines are performed by the
dio_get_line and dio_set_line functions.

#include <dioif.h>

int32_t dio_set_line(dioline_t line, diolinestate_t val)

int32_t dio_set_line(dioline_t line, dioline_state_t val)

Here, dio_set_line and dio_get_line are responsible for mapping the
line passed in by the user to the port where that line resides. The mapping is
accomplished by the following switch statement in Listing 5-6.

/* convert the line to the register */
switch (line)
{
case line0:
case line1:
case line2:
case line3:
case line4:
case line5:
case line6:
case line7:

reg = PORTADATA;

break;

case line8:

case line9:

www.4electron.com

91 Chapter Five
Midlevel Interface Library

case line10:

case line11:

case line12:

case line13:

case line14:

case line15:

reg = PORTBDATA;
break;

case line16:

case line17:

case line18:

case line19:

case line20:

case line21:

case line22:

case line23:

reg = PORTCDATA;
break;

default:
return(-1);

break;
}

Listing 5-6

The switch statement takes the line input. Once the correct register is deter
mined, the register and value are passed to the dio_set or dio_get rou
tine. In the following case, dio_get:

/* read the data register */
dio_get(reg, &val);

This function calls the utility register read routine to handle the details of
reading the value of the digital IO line.

Programming the Interrupt Controller
The interrupt controller functions are used to enable and disable the local
interrupt, enable and disable the PCI interrupt, and program the interrupt
polarity. The DIO interface library contains functions to read and write each
of these bits in the interrupt controller status register.

www.4electron.com

92 Embedded FreeBSD
Cookbook

As with the line setting functions, enums are used to define the values for
specific states.

The diointstate_t enum
At any time an interrupt is enabled or disabled, to help in defining the
details of the interface library API the diointstate_t is defined, which
represents the state of the interrupt and the PCI interrupt. Both sets of func
tions that enable the interrupt and PCI interrupt take the dioinstate_t
parameter. Listing 5-7 shows the diointstate_t data type.

typedef enum diointstate_t
{

disable = 0,
enable = 1

} diointstate_t;

Listing 5-7

Here, dioinstate_t has two values, defined as disable and enable.
These values correspond to the bit settings for these bits in the interrupt
controller register.

The dio_set_int and dio_get _int Functions
The PCI-DIO24 contains a bit to program the local interrupt. The local
interrupt is either enabled or disabled.

#include <dioif.h>
int32_t dio_set_int(diointstate_t state)
int32_t dio_get_int(diointstate_t* state)

The local interrupt is controlled by programming bit 0 in the interrupt status
control register. The local interrupt bit is defined by the INT_BIT literal.

#define INT_BIT 0x01

Setting the local interrupt bit involves reading the interrupt control status
register, modifying the local interrupt bit, then writing the new value back to
the interrupt control register. Listing 5-8 demonstrates the code to set the
interrupt bit.

www.4electron.com

93 Chapter Five
Midlevel Interface Library

/* read the current value of the register */

if (dio_get(INTSR, &val) < 0)

{

return(-1);
}

/* set only the interrupt bit */
if (state == enable)

val |= INT_BIT;
else

val &= ~INT_BIT;

/* write the updated value back */

if (dio_set(INTSR, val) < 0)

{

return(-1);
}

Listing 5-8

To read the state of the local interrupt bit, the interrupt status control register
is read, and then the state of bit 0 is read. The following code demonstrates
the method for reading the local interrupt state. After reading the interrupt
status control register, bit 0 is checked to determine the state of the local
interrupt. Listing 5-9 demonstrates the code to read the interrupt bit.

/* read the current value of the status register */

if (dio_get(INTSR, &val) < 0)

{

return(-1);
}
/* get the status of the interrupt bit */
if (val & INT_BIT)

*state = enable;
else

*state = disable;

Listing 5-9

INT_BIT is defined as

#define INT_BIT 0x01

www.4electron.com

94 Embedded FreeBSD
Cookbook

The if tests the state and sets the user’s input parameter appropriately.

The dio_set_pciint and dio_get_pciint Functions
As with the local interrupt, the PCI-DIO24 contains a bit to program the
PCI interrupt. Access to the PCI interrupt bit is provided by the
dio_set_pciint and dio_get_pciint functions.

#include <dioif.h>
int32_t dio_set_pciint(diointstate_t state)
int32_t dio_get_pciint(diointstate_t* state)

The PCI interrupt is programmed in bit 6 of the interrupt status control reg
ister. The PCI int bit is defined locally as:

#define PCIINT_BIT 0x40

Setting the PCI interrupt bit consists of reading the current value of the
interrupt status control register, modifying the value of the PCI interrupt bit,
and then writing the new value back to the interrupt control status register.
Listing 5-10 demonstrates the code to write the PCI interrupt bit.

if (dio_get(INTSR, &val) < 0)
{

return (-1);
}

if (state == enable)
val |= PCIINT_BIT;

else
val &= ~PCIINT_BIT;

if (dio_set(INTSR, val) < 0)
{

return(-1);
}

Listing 5-10

As with the local interrupt, the interrupt status control register is read, then
the state of the PCI interrupt bit is tested, and the user parameter is set
appropriately. Listing 5-11 lists the code that reads the status register to
obtain the PCI interrupt bit.

www.4electron.com

95 Chapter Five
Midlevel Interface Library

/* read the current value of the status register */

if (dio_get(INTSR, &val) < 0)

{

return(-1);
}

if (val & PCIINT_BIT)
*state = enable;

else
*state = disable;

Listing 5-11

The diopolarity enum
Interrupt polarity determines whether the interrupt is generated on the
rising or falling edge of the interrupt signal. The choices are active high,
where the interrupt is generated on the rising edge, or active low, where
the interrupt is generated on the falling edge. The states are defined by
the dio_polarity_t enum. Listing 5-12 defines the diopolarity enum.

typedef enum diopolarity_t
{

activelo = 0,
activehi = 1

} diopolarity_t;

Listing 5-12

The dio_set_polarity and dio_get_polarity functions
The dio_set_polarity and dio_get_polarity functions program on
which edge the interrupt is generated.

#include <dioif.h>
int32_t dio_set_polarity(diopolarity_t pol)
int32_t dio_get_polarity(diopolarity_t* pol)

The interrupt polarity bit is bit 2 in the interrupt control status register, and
is defined as follows:

#define POL_BIT 0x02

www.4electron.com

96 Embedded FreeBSD
Cookbook

Setting the polarity bit consists of reading the current value of the interrupt
status control register, modifying the polarity bit, then writing the new value
back to the interrupt status register. Listing 5-13 demonstrates the code to
read the polarity bit.

/* read the register */
if (dio_get(INTSR, &val) < 0)
{

return(-1);
}

/* update the polaity bit only */
if (pol == activehi)

val |= POL_BIT;
else

val &= ~POL_BIT;

/* write the register */
if (dio_set(INTSR, val) < 0)
{

return(-1);
}

Listing 5-13

To get the status of the polarity bit, the interrupt status control register is
read and bit 2 is tested to obtain the current state of the interrupt polarity.
Listing 5-14 demonstrates code to read the polarity register.

/* read the current value of the status register */

if (dio_get(INTSR, &val) < 0)

{

return(-1);
}

if ((val & POL_BIT) == 0)
*pol == activelo;

else
*pol = activehi;

Listing 5-14

www.4electron.com

97 Chapter Five
Midlevel Interface Library

Programming the Configuration Register
The configuration register programs the direction of the data IO ports. The
DIO interface library contains functions to read and write the configuration
register, as well as a utility function that provides the direction of an individ
ual digital IO line.

The dioconfig_t enum
Each of the bits that controls a port has a bit defined in the dioconfig_t
enum. These defines are used to program the data port directions. Listing
5-15 shows the dioconfig_t data type. These defines directly coincide
with the bits in the config register to program the port directions.

typedef enum dioconfig_t
{

porta_in = 0x10, /* port a configured as input lines */
portb_in = 0x02, /* port b configured as input lines */
portcl_in = 0x01, /* port c low configured as input lines */
portch_in = 0x08, /* port c high configured as input lines */

} dioconfig_t;

Listing 5-15

The dio_set_config and dio_get_config Functions
The dio_set_config and dio_get_config functions are used to read
and write the config register. The config parameter represents a bitwise OR-
ed value of the dioconfig_t data type.

#include <dioif.h>

int32_t dio_set_config(dio_config_t config)
int32_t dio_get_config(dio_config_t* config)

Here, dio_set_config sets the direction of the digital ports, and it returns
0 on success or –1 on failure.

Listing 5-16 represents the code to write the config bits, the parameter
passed directly through to the DIO device driver.

newcfg = (uint32_t) cfg;

newcfg |= 0x80; /* PCI-DIO24 needs high bit set */

www.4electron.com

98 Embedded FreeBSD
Cookbook

if (dio_set(CONFIG, cfg) < 0)
{

return(-1);
}

Listing 5-16

In the code below, dio_get_config returns the direction of the digital
ports, and it returns 0 on success or –1 on failure. Listing 5-16 demonstrates
the code to read the config register.

if (dio_get(CONFIG, (int32_t*)cfg) < 0)
{

return(-1);
}

Listing 5-16

As with the config write, the config register is read and the result passed
directly back to the calling function.

The diodirection_t enum
Each digital IO line is programmed to be either input or output; the
diodirection_t enum defines a digital line state as either lineout or
linein. Listing 5-17 demonstrates the diodirection_t enum.

typedef enum diodirection_t
{

lineout = 0,
linein = 1,

} diodirection_t;

Listing 5-17

This enum is used as output for the dio_get_direction function.

The dio_get_direction Function
The function dio_get_direction returns the direction of the
specified line.

www.4electron.com

99 Chapter Five
Midlevel Interface Library

#include <dioif.h>

int32_t dio_get_direction(dioline_t line, diodirection_t* dir)

The implementation of dio_get_direction is straightforward. The value
of the configuration register is necessary so we can check the port direction
bits. Listing 5-18 shows the code to read the config register.

/* read the configuration register */
if (dio_get_config(&direction) < 0)
{

return(-1);
}

Listing 5-18

Once we have a valid copy of the configuration register, it is necessary to
determine which port direction needs to be checked. The port direction bit
is determined by the input digital line number. The digital line corresponds
to a specific port bit which is determined in a case statement.

/*
** check the direction of the request lines port configuration
** bit
*/
switch (line)
{
case line0:
case line1:
case line2:
case line3:
case line4:
case line5:
case line6:
case line7:

value = (((direction & porta_in) != 0) ? linein : lineout);
break;

case line8:
case line9:
case line10:
case line11:

www.4electron.com

100 Embedded FreeBSD
Cookbook

case line12:
case line13:
case line14:
case line15:

value = (((direction & portb_in) != 0) ? linein : lineout);
break;

case line16:
case line17:
case line18:
case line19:

value = (((direction & portcl_in) != 0) ? linein : lineout);
break;

case line20:
case line21:
case line22:
case line23:

value = (((direction & portch_in) != 0) ? linein : lineout);
break;

}

Listing 5-19

Lines 0 through 7 correspond to port A, lines 8 through 15 correspond to
port B, lines 16 through 19 to port C Low and lines 20 through 23 to Port C
High. Once we have the correct port register value, it just needs to be
checked to see if it is set or not. If the value is 0, the port is programmed as
an output, and otherwise the port is programmed as an input. Listing 5-20
shows the code to set the correct direction of the digital line.

if (value == 0)
*val = lineout;

else
*val = linein;

Listing 5-20

The dio_get_direction function returns 0 on success or –1 on failure.

www.4electron.com

101 Chapter Five
Midlevel Interface Library

Summary
In this chapter we’ve connected the pieces between the DIO device driver,
which resides in the kernel, with a shared library residing in user space. As
previously described, a system programmer is now provided with an intu
itive C interface that can be programmed to without worrying about the bits,
bytes and nibbles of driver programming and operating system internals.

In the upcoming chapters, we will continue to build on this to provide an
even higher level interface, so we can monitor the PCI-DIO24 digital lines
over the Internet and via the World Wide Web.

www.4electron.com

www.4electron.com

6 103 CHAPTER SIX

Daemons

Overview
A feature of Internet appliances is that they can be monitored and configured
via the Internet. This chapter begins a series of chapters that focuses on
implementing Internet access to the DIO Internet appliance through Internet
interfaces and protocols, such as sockets, SSL, and Java Server Pages. This
chapter shows how to implement a socket-based daemon and a custom
protocol used by remote clients to communicate with the DIO appliance.
Topics covered include:

• introduction to TCP/IP

• sockets

• digital IO protocol

• DIOD server daemon

Introduction to TCP/IP
TCP/IP is a protocol used by computers to exchange information over a net
work. TCP/IP development was funded by the Department of Defense (DoD)
in the 1970s, in order to provide a method to share research information for
the DoD. Since that time, TCP/IP has grown to become the major protocol
of the Internet. One of the major benefits of TCP/IP is that it provides a
defined method for a heterogeneous system to exchange information.

Before jumping into the details of TCP/IP, let’s look at a few definitions and
background information. Each computer, or endpoint, connected to a net
work is referred to as a host. The TCP/IP protocol defines the set of rules for

www.4electron.com

104 Embedded FreeBSD
Cookbook

the process of transferring data between hosts.
Because of the complexity of the protocol, it is
defined in layers. TCP/IP consists of four layers,
each responsible for a different aspect of the
communication and its own protocol. These
combined layers are commonly referred to as
the TCP/IP stack.

Application Layer

Network Layer

Link Layer

Transport Layer

Figure 6-1. TCP/IP Stack
TCP/IP Stack

Application

Network

Link

Application

Network

Link

Transport Transport

Each layer on the transmitting host has a
peer-to-peer relationship with the receiv
ing host. Every layer is responsible for a
specific aspect of communication, such
as physical transfer of data, addressing,
routing, flow control, and data organiza-
tion/reorganization.

Peer to Peer Figure 6-2. Peer-to-Peer Relationship

The following sections describe each of the four TCP/IP layers in more detail.

Link Layer
At the bottom of the TCP/IP stack is the Link Layer. It handles the physical
aspects of data transfer and provides a reliable, error-free transmissions
medium. The link layer is comprised of hardware and software represented
by the network interface controller (NIC) and the device driver in the oper
ating system. Each NIC is independently addressable, using a unique hard
ware address.

There are numerous hardware implementations of the Link Layer, which
include, but are not limited to, Ethernet, token ring, FDDI, and serial lines.
Each different hardware implementation uses an independent addressing
scheme. The Link Layer provides an independent mechanism to send higher
layer protocol data and to resolve higher layer protocol addresses.

www.4electron.com

105 Chapter Six
Daemons

Network Layer
The network layer of the TCP/IP stack is implemented using the Internet
Protocol (IP). IP is a connectionless, unreliable protocol. It is connectionless
because there is no state information maintained for successive packets and
unreliable, because there is no guarantee that a packet arrives at its destina
tion. The purpose of the IP layer is to provide a constant addressing scheme
for sending and receiving data packets and a mechanism to map between IP
addressing and the underlying Link Layer addressing.

In the previous section, we mentioned that the Link Layer consists of a variety
of different hardware addressing schemes. The IP protocol defines a consistent
addressing method, the IP address, and protocols to map IP addresses to
the underlying hardware addresses. These protocols are known as Address
Resolution Protocol (ARP), Reverse Address Resolution Protocol (RARP), and
Internet Control Message Protocol (ICMP).

IP Addressing
An IP address is a unique 32-bit number used for addressing IP packets.
An IP address is written as four octets—i.e., 192.10.0.1.

There are five different classes of IP addresses: Class A, Class B, Class C, Class
D, and Class E. Each class is distinguished by the upper bits of the IP address.

1111RRRR RRRRRRRR RRRRRRRR RRRRRRRR
First 4 Bits 1111, 28 Reserved Bits

The different classes are used to distribute different numbers of bits between
the network ID and the host ID.

Three classes of addresses are used by the IP layer: unicast, multicast, and
broadcast. Unicast addresses are destined for a single host. Multicast addresses
are destined for a specific group of hosts. Broadcast addresses are destined for
all hosts on a given network.

ARP
ARP is the mechanism that maps the Link Layer hardware address to the
host IP address. When a packet is being sent to another IP address, the

www.4electron.com

106 Embedded FreeBSD
Cookbook

mapping between the IP address and the hardware address must be resolved.
The ARP protocol sends a broadcast request to the network with the desti
nation IP address. Each host receives the packet and checks to see if the
request IP address matches its own IP address. If the IP address does not
match, the packet is ignored. If the IP address does match, the host responds
to it with its IP address and hardware address.

RARP
RARP is the protocol used by a diskless host to determine its IP address.
When a host boots, it typically reads its IP address from a configuration file
contained on the host’s local disk. If the host booting is diskless, it will
send an RARP request to the network, asking for someone to reply with its
IP address.

ICMP
ICMP is used to communicate error messages and special conditions. ICMP
messages may be acted upon by either the IP layer or upper layers of the
TCP/IP protocol.

Transport Layer
The transport layer provides the method for addressing network data to a
specific application. The TCP/IP stack contains two protocols for sending
packets, Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP). Regardless of which protocol being used, TCP or UDP, both the client
and server machines must agree on the address, or port, used to transfer data.

Ports
The main mechanism to address network data to a specific application is
a port. A port is a 16-bit integer. Reserved ports are listed in the
/etc/services file.

UDP
UDP provides a connectionless, unreliable protocol. A UDP transfer consists
of the sending of one packet without the overhead of establishing a connec
tion or verification that the data has successfully reached its destination.

www.4electron.com

107 Chapter Six
Daemons

TCP
TCP provides a reliable, connection-oriented protocol. Connection-oriented
means that two applications must establish a TCP connection before they
begin exchanging data. TCP provides reliability by breaking each transfer up
into manageable segments and verifying that each segment arrives correctly
at its destination. In addition to the verification of data, TCP consists of flow
control, so a destination host does not lose data due to lack of buffer space.

Application Layer
The application layer consists of network-aware applications that send and
receive packets, using UDP and TCP ports. The application layer is not
specifically a layer of the TCP/IP stack but a customer of the TCP/IP stack.
As part of the application layer, a user will find services that provide network
file and print sharing services, name resolution services, and user interfaces.

Socket System Calls
The programming interface for developing socket-based solutions using
FreeBSD is sockets. Socket-based applications typically are written to solve
networked applications. Networked applications are typically written as two
interacting components, client and server. A server handles requests from a
number of clients. A client, or application, makes requests to a server. An
example of the client-server model is the World Wide Web. Your computer
browser is a client application; web sites, or the computers that host the web
sites, are the servers.

Implementation of a server consists of establishing a listening socket, waiting
for a client connection, accepting the client request, performing the client
request, and closing the connection. The DIO daemon developed later in
this chapter is an example of a socket-based server.

A client creates a connection socket, sends its request to the server, processes
any received data, and closes the connection. Each server may process
requests from many clients.

www.4electron.com

108 Embedded FreeBSD
Cookbook

Network Byte Order
Any application that transfers data from one computer to another computer
must be concerned with how the data is read. Different processors represent
data in different formats. The two most widely accepted ways of representing
data are known as big endian and little endian. Big endian systems store the
most significant byte first, and little endian systems store the least significant
byte first. For socket applications, the standard method of data transfer is
big endian, also known as the network byte order.

Byte 0 Byte 1 Byte 2 Byte 3

Big Endian

Byte 3 Byte 2 Byte 1 Byte 0

Little Endian

The socket system call interface provides functions to convert shorts and longs
between host and network byte order. Each of these calls is described below.

The htonl System Call

The htonl system call converts a host longword (32 bits) to network
byte order.

#include <sys/param.h>
u_long htonl(u_long hostlong);

The return value is the converted long word.

The htons System Call

The htons system call converts a host short word (16 bits) to network
byte order.

#include <sys/param.h>
u_short htons(u_short hostshort);

www.4electron.com

109 Chapter Six
Daemons

The return value is the converted short word.

The ntohl System Call

The ntohl system call converts a network longword (32 bits) to host
byte order.

#include <sys/param.h>
u_long ntohl(u_long netlong);

The return value is the converted long word.

The ntohs System Call

The ntohs system call converts a host short word (16 bits) to host byte order.

#include <sys/param.h>
u_short ntohs(u_short netshort);

The return value is the converted short word.

Sockets
FreeBSD provides a set of system calls used for socket communications. In
this section, the socket system calls are described and categorized based on
their use. Subsequent sections demonstrate usage of the socket system calls.

Connection Initiation
Before data is transferred between a client and server, a connection must be
established. Socket connections are created by calling socket system calls.
Socket system calls that create a connection are the same for both clients and
servers. In the following sections, the sockets system calls used for creating
sockets and establishing a socket connection are presented.

The socket System Call

The basic means of communication over a network is a socket, which is
an end point of communication. Sockets are created by calling the socket
system call.

#include <sys/types.h>
#include <socket.h>

int socket(int domain, int type, int protocol);

www.4electron.com

110 Embedded FreeBSD
Cookbook

Here, socket returns a descriptor to be used with subsequent socket calls.
Socket takes three parameters. The first is the domain, which selects the
domain in which communication will take place; there are many domains
defined for sockets. Our implementation of the diod daemon is Internet-
based, so PF_INET is the domain that represents the Internet protocol family.

The second parameter, type, defines the semantics of the connection. The
defined types are listed in the following table.

Type Notes

SOCK_STREAM Sequenced reliable full duplex byte stream

SOCK_DGRAM Connectionless unreliable communication

SOCK_RAW Interface to internal Internet protocols

SOCK_RDM Reliable delivery packet

SOCK_SEQPACKET Sequenced packet stream

The third parameter, protocol, is used to select the protocol for the connec
tion. Most sockets only support one protocol for each specified connection;
the protocol parameter is typically 0.

Socket returns a valid socket if successful, or –1 if an error occurs.

The bind System Call

Before data can be transmitted using a socket, the socket must be associated
with a service port. The bind system call is used to bind a socket to a serv
ice port.

#include <sys/types.h>
#include <socket.h>

int bind(int s, struct sockaddr* addr, socketlen_t len);

The bind system call takes three parameters. The first parameter is the
socket descriptor returned by the socket system call. The second parameter
is a protocol specific address. The diod is Internet-based in the PF_INET
protocol; the parameter is a sockaddr_in structure. The sockaddr_in
structure is defined in /usr/include/netinet/in.h.

www.4electron.com

111 Chapter Six
Daemons

struct sockaddr_in {
u_char sin_len;
u_char sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

The sin_len element represents the length of the structure. The sin_family
describes the address family, AF_INET. The sin_port is the 16-bit port
number to bind. The sin_addr element is a 32-bit IP address that represents
the host to connect. The third parameter is the length of the structure passed as
the sockaddr parameter. Bind returns 0 if successful and –1 if there is an error.

The close System Call

When a network service is shut down, proper cleanup is recommended. The
socket descriptor should be closed, using the close system call, the same as
a file descriptor.

#include <unistd.h>

int close(int fd);

The descriptor passed is the socket descriptor returned by the socket system
call. The close system call terminates the socket. Close returns 0 on success,
–1 on error.

Server
The DIO server we are developing is a connection-based server. A connection-
based application is similar to file IO. A connection is opened with another
process and that connection remains with the same process and host for the
remainder of the transfer operation. The DIO server operations consist of
requests to perform data acquisition operations. The types of requests will
be discussed in more detail in the protocol section. The remainder of this
section focuses on the socket calls for creating socket connections.

The listen System Call
Once the server has successfully created a socket, it must designate itself
willing to listen for incoming requests. Listening on a socket is performed by
calling the listen system call.

www.4electron.com

112 Embedded FreeBSD
Cookbook

#include <sys/types.h>
#include <socket.h>

int listen(int s, int backlog);

The first parameter is the socket descriptor returned by the socket system
call. The second parameter, backlog, specifies the maximum number of out
standing connections that may be queued by the server. Listen returns 0 on
success or –1 on error.

The accept System Call
After the port is configured to listen, connections may be accepted. The
accept system call will block until a connection is requested by a client or
a signal is received.

#include <sys/types.h>
#include <socket.h>

int accept(int s, struct sockaddr* addr, socketlen_t len);

The accept system call takes the first connection on the connection queue
and creates another socket.

Accept returns a nonnegative value on success or –1 on error.

Client
Because the DIO server is a connection-based server, a client requiring serv
ices from the DIO server must create and connect to the socket provided.
This section describes the socket system calls used to connect to the socket
provided by the DIO server.

The connect System Call

#include <sys/types.h>
#include <sys/socket.h>

int connect(int s, struct sockaddr* serv, socketlen_t len);

www.4electron.com

113 Chapter Six
Daemons

The first parameter is the socket descriptor returned by the socket system call.
The second parameter is a protocol-specific parameter. For our use, it contains
the IP address of the server and the socket number of the service that the
client is requesting. The last parameter is the length of the structure passed
in as the second parameter. Connect returns 0 on success or –1 on error.

Connection Data Transfer
After the connection is established between the client and the server, data is
exchanged using the send and recv system calls.

The send System Call
Data is sent through a socket using the send system call.

#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int s, void* msg, size_t len, int flags);

The first parameter is the socket descriptor returned by the socket system
call. The second parameter is a pointer to the data being sent. The third
parameter is the length in bytes of the data being sent. The last parameter
contains flags used for data transfer.

Flag Description

MSG_OOB Out of band data

MSG_PEEK Look at incoming message

MSG_DONTROUTE Send message direct

MSG_EOR Packet completes record

MSG_EOF Packet completes transmission

Send returns the number of characters sent on success or –1 on error.

The recv System Call
Data is retrieved on a socket by calling the recv system call.

www.4electron.com

114 Embedded FreeBSD
Cookbook

#include <sys/types.h>
#include <sys/socket.h>

int recv(int s, void* msg, size_t len, int flags);

The first parameter is the socket descriptor returned by the socket system
call. The second parameter is the buffer to store the data. The third parame
ter contains the number of bytes to read from the socket. The last parameter
contains one or more flags.

Flag Description

MSG_OOB Process out of band data

MSG_PEEK The data is copied into the buffer but is not removed from
the input queue.

MSG_WAITALL Wait for a complete request or error

Recv returns the number of bytes received or –1 on error.

Connectionless Data Transfer
An alternative to a connection-oriented server is a connectionless server. A
connectionless server is different, because a connection is not established
prior to transferring data. In a connectionless protocol, the server blocks on
a port until data is received from a client.

The recvfrom System Call
The recvfrom() system call receives a message from a socket and captures
the address from which the data was sent. Unlike the recv() call, which
can only be used on a connected stream socket or bound datagram socket,
recvfrom() can be used to receive data on a socket, whether or not it is
connected. If no messages are available at the socket, the recvfrom() call
blocks until a message arrives, unless the socket is nonblocking .

#include <sys/types.h>
#include <sys/socket.h>

ssize_t recvfrom(int s, void *buf, size_t len, int flags, struct
sockaddr *from, socklen_t *fromlen);

If a socket is nonblocking, –1 is returned and the external variable errno is
set to EWOULDBLOCK.

www.4electron.com

115 Chapter Six
Daemons

The sendto System Call
Sendto is called to transmit data to a socket. The sendto() call tranmits
a message through a connection-oriented or connectionless socket. If it’s a
connectionless socket, the message is sent to the address specified by to. If s
is a connection-oriented socket, the to and tolen parameters are ignored.

#include <sys/types.h>
#include <sys/socket.h>

ssize_t sendto(int s, const void *msg, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen);

The sendto system call returns the number of characters transmitted or –1,
if there is an error.

The DIO Daemon
Now that we’ve introduced the socket system calls, we will use them to create
the DIO daemon. The DIO daemon is a connection-oriented, socket-based
daemon used to handle requests related to the PCI-DIO24 data acquisition
board. The DIO daemon, in connection with a simple protocol developed in
this section, is used to provide a client with a simple mechanism to query
digital IO lines on our server.

Protocol
Before delving into the details of the digital IO daemon, we will define the
protocol used between the client and server. The protocol consists of the
operations that are performed by the digital IO daemon and the format of
the requests. The complete protocol consists of an enum that defines the set
of operations that are provided by the DIO daemon and a structure used to
transfer data between the DIO server and client.

The operation_t enum
The DIO daemon performs three operations: read the direction of a line,
read a line, and write a line. These operations are defined by the enum
operation_t.

www.4electron.com

116 Embedded FreeBSD
Cookbook

/*
** define the operations for the digital io protocol
*/
typedef enum operation_t
{

read_line = 0, /* read a value to a digital IO line */
write_line, /* write a value to a digital IO line*/
read_direction, /* request the direction of an IO line */

} operation_t;

The DIO interface library has more capabilities than these three operations.
For the sake of simplicity, we will only provide the capabilities to query the
state of the lines and read or write the lines, based on their current state.

Providing the capability to configure the PCI-DIO24 controller by the server
could create race conditions. For example, one client could be reading or
writing a digital line, while another client is reconfiguring the digital IO
lines. Additionally, a client could reconfigure lines with equipment attached,
causing damage to the controller or equipment connected to the controller.

The diod_request Structure
In the previous section, we defined the operation performed by the DIO
daemon; now we can define the format of the requests and responses. The
diod_request_t type contains the diod server request.

typedef struct diod_request_t
{

int32_t size; /* size of this structure */
uint32_t magic; /* predefined magic number */
int32_t sequence; /* sequence sent by server */
operation_t operation;/* requested service */
int32_t line; /* digital line for service request */
int32_t value; /* read or write value */

} diod_request_t;

The first two elements, size and magic, are used to verify that the data
received contains a valid request. The size element contains the size of
diod_request_t. The magic element contains a fixed value unique to a
diod_request_t structure.

www.4electron.com

117 Chapter Six
Daemons

The sequence element contains a nonzero value, passed from the server to
client. This field is used by the client to verify that the request was received
and handled by the server.

The operation element contains the type of request. Valid operations were
covered in the previous section.

The last two elements contain the data specific to the DIO request. The line
element contains the digital line where the operation is to be performed.

The last field is the value; if this is a write operation, this is the value to be
written; if it is a read operation, this is the value read from the DIO line.

Server
This section describes the details of the diod server. The server is broken
down into a few basic functions that initialize the daemon, read, process,
and return client requests. The diod daemon runs as a daemon; in addition
to the functions described here, the daemon init_daemon and
handle_sigcld function developed in Chapter 2 are used by the diod
daemon.

The process_request Function
Process request is a utility function used to handle each client request. Once
a connect is made by a client, the process_request function reads the
request, validates that the data read contains a valid diod request, calls the
appropriate DIO interface library function, packages the results, and returns
them to the client.

int32_t process_request(int32_t sockfd)
{

int32_t n;
diod_request_t req;
diod_request_t* preq = &req;

/*
** a client connection has been made, read
** and verify we have a valid request
*/
n = recv(sockfd, preq, sizeof(diod_request_t), 0);
if (n != sizeof(diod_request_t))

www.4electron.com

118 Embedded FreeBSD
Cookbook

{

return(-1);

}

/* verify the data and contents of the request */

if (preq->magic != DLOG_MAGIC)

{

printf(“incorrect magic number, n = %#x\n”, preq->magic);
return(-1);

}

if (preq->size != sizeof(diod_request_t))
{

printf(“invalid request\n”);

return(-1);

}

/*
** this is a valid request, parse and handle it

*/

switch(preq->operation)

{

case read_line:

dio_get_line((dioline_t)preq->line, (diolinestate_t
*)&preq->value);

break;

case write_line:
dio_set_line((dioline_t)preq->line, (diolinestate_t)preq-

>value);
break;

case read_direction:
dio_get_direction((dioline_t)preq->line,

(diodirection_t*)&preq->value);
break;

}

/*
** set a non-zero value so we can verify this request has
** been serviced
*/
preq->sequence = sockfd;

www.4electron.com

119 Chapter Six
Daemons

/*
** the request is completed send the results back to the
** client process
*/
send(sockfd, preq, sizeof(diod_request_t), 0);

return(0);
}

The process request function is called after the socket connection is estab
lished. The purpose of process_request is threefold: to read the request
from the client via the recv system call; if the request is valid, perform the
requested operation via the DIO interface library; return the results to the
calling client via the send system call.

The init_dio Function
The init_dio function handles the details of programming the PCI-DIO24
controller for our specific application. Our application consists of polling the
digital IO lines; the init_dio function programs the interrupt, then config
ures the digital IO ports to meet our design requirements.

void
init_dio()
{

/*
** before setting up the socket, program the board to suit

the
** needs of our application.
**

** for this application we will be polling only, disable the
** interrupts
*/

dio_set_int(disable);

dio_set_pciint(disable);

/* set the digital lines, ports a and cl are input, b and ch
are output */

dio_set_config((dioconfig_t)(porta_in | portcl_in));
}

The calls to dio_set_int and dio_set_pciint disable the PCI-DIO24
controller interrupt. After the interrupt is disabled, the Digital IO ports are

www.4electron.com

120 Embedded FreeBSD
Cookbook

programmed. Digital IO ports A and CL are programmed as inputs; B and
CH are left as outputs. This configuration gives us 12 digital input lines and
12 digital output lines.

The main Function
The main function is responsible for initialization, creating the socket connec
tion, and handling client requests. The main program calls the init_daemon
function created in Chapter 2 to create a daemon process. After returning from
the init_daemon function, the init_dio function is called; init_dio is
responsible for programming the PCI-DIO24 controller for our application.

With the initialization complete, the main program focuses on setting up the
connection. The socket is created and bound for DIO client requests. Once
the socket is successfully set up, the diod daemon listens for a client request.

We are now online and waiting for client requests; each request that arrives
is accepted, a new process is created, and the request is handed off to the
child process to be completed. The parent process goes back and waits for
the next request.

The child process really only needs to hand off the request to the
process_request function and exit. Process_request takes the socket
file descriptor for the socket, so it reads the client request, then sends the
response back.

int main(int argc, char** argv)
{

int fd = 0;
int32_t sockfd = -1;
int32_t stat = 0;
struct sockaddr_in server_addr;

/* turn ourselves into a daemon */
init_daemon();

/* handle the controller initialization */
init_dio();

/*
** create a TCP/IP socket
*/

www.4electron.com

121 Chapter Six
Daemons

sockfd = socket(AF_INET, SOCK_STREAM, 0);

if (sockfd < 0)

{

printf(“unable to create socket\n”);
exit(-1);

}

/*
** bind the socket to our Internet address and service port

*/

bzero(&server_addr, sizeof(struct sockaddr_in));

server_addr.sin_family = AF_INET;
server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
server_addr.sin_port = htons(DIOD_TCP_PORT);

stat = bind(sockfd, (struct sockaddr *) &server_addr, size-
of(struct sockaddr_in));

if (stat < 0)
{

exit(-1);

}

/*
** wait for client requests

*/

listen(sockfd, 5);

while (1)
{

int32_t child_pid= 0;
int32_t sockfd_new = 0;
uint32_t client_len = sizeof(struct sockaddr_in);
struct sockaddr_in client_addr;

bzero(&client_addr, sizeof(struct sockaddr_in));
client_len = sizeof(struct sockaddr_in);

sockfd_new = accept(sockfd, (struct sockaddr
*)&client_addr, &client_len);

if (sockfd_new < 0)
{

continue;

}

www.4electron.com

122 Embedded FreeBSD
Cookbook

/*
** fork a child process to handle the request, then go
** back and wait for more

*/

child_pid = fork();

if (child_pid < 0)

{

exit(-1);

}

else if (child_pid == 0)

{

close(sockfd);

/*
** handle the client request

*/

process_request(sockfd_new);

exit(0);

}

}

dio_shutdown();

exit(0);
}

The main function will run forever, creating child processes to handle
client requests.

Summary
In this chapter we have covered the basics of TCP/IP and details of socket
system calls, and developed a connection-oriented socket daemon to handle
network requests for DIO lines. Using the code provided in this chapter,
along with the code in the previous three chapters, we have developed a
data acquisition appliance that can be monitored over the Internet.

In the upcoming chapters, we will change our focus from the system’s pro
gramming details to developing application software that allows the DIO
appliance to be monitored and configured over the Internet.

www.4electron.com

7 123 CHAPTER SEVEN

Remote Management

Overview
Many Internet appliances are installed in a remote location that is not easily
accessible. One feature often required by an Internet appliance is remote
management. Remote management is often implemented using telnet, rlogin
and rsh. Although these tools are reliable, they are insecure. The Secure Shell
(SSH) was developed to provide remote access to systems that use encryption
to pass data between systems for security. The standard FreeBSD installation
contains an open source implementation of SSH, called OpenSSH.

While SSH can protect an Internet appliance against attacks such as IP
spoofing and packet snooping, it cannot protect the system once someone
has logon access. In order to provide additional security, we will develop a
custom shell that only allows a user to access features related to the DIO
appliance. This limits the damage a cracker can do, if access is gained.

In this chapter, we will cover topics including:

• SSH

• Configuring SSH

• Creating a management logon account

• Developing a custom DIO management shell

Using Secure Shell (SSH)
Remote configuration is not a new concept to Internet appliances. For years,
systems engineers have provided remote access using rsh, rlogin and telnet.
These tools provide methods for remote configuration but are prone to being

www.4electron.com

124 Embedded FreeBSD
Cookbook

cracked because the data transmitted, including usernames and passwords,
is not encrypted. Rsh and rlogin can provide minimal security by being
configured to provide access only to trusted hosts; however, IP addresses
can be spoofed, making one host appear as another.

SSH provides a method for allowing remote access to another machine using
encryption. It also provides login capabilities, while encrypting the data
exchanged between multiple systems. Transmitting encrypted data mini
mizes exposure to crackers snooping Internet connections.

SSH is implemented using the client-server module—i.e., the SSH server
listens for SSH connections from an SSH client. The SSH client and server
exchange two keys to establish a connection. One key is the public key to
which everyone has access, and the other is the private key. Both keys are
required for successful data exchange. Data that is encrypted using the
public key can only be decrypted using the private key.

Getting SSH
OpenSSH is part of the standard distribution of FreeBSD. However, if you
need a patch or want to run the latest version of OpenSSH, it is contained in
the ports package distributed with FreeBSD. To update the installed version
of OpenSSH, you must cd to the OpenSSH port directory, and then execute
the standard commands for updating a port. The latest copy of OpenSSH
can be retrieved by executing the following commands.

cd /usr/ports/security/openssh
make
make install
make clean

These commands make, install, and clean up the latest version of the
OpenSSH FreeBSD software.

Running SSH
The SSH daemon, sshd, comes as part of the standard FreeBSD distribution.
To run sshd at system start, the following lines must be added to the
/etc/rc.conf file. The rc.conf file is used to provide custom
startup configuration.

www.4electron.com

125 Chapter Seven
Remote Management

sshd_enable=”YES”

The rc.conf file is a script file that contains variables used to customize
system startup. This file is not executing as a script; it is included by other
files to conditionalize system startup.

The rc script is a command script used to control reboots; rc reads the
contents of the rc.conf script to determine the custom components for
starting the system. A closer look at the rc script shows how the re.conf
file is read.

if [-r /etc/defaults/rc.conf]; then
. /etc/defaults/rc.conf
source_rc_confs

elif [-r /etc/rc.conf]; then
. /etc/rc.conf

fi

Looking through the rc script further, you will find code that shows the ssh
daemon being started, conditional on the sshd_enable variable. If the
sshd_enable variable is set to yes, the rc starts the ssh. The code in my
rc script that does this is shown below.

case ${sshd_enable} in
[Yy][Ee][Ss])

if [-x ${sshd_program:-/usr/sbin/sshd}]; then

echo -n ‘ sshd’;

${sshd_program:-/usr/sbin/sshd} ${sshd_flags}

fi
;;

esac

Once the system boots, it is ready to accept SSH connections.

Configuring SSH
The standard file used to configure SSH is /etc/ssh/sshd_config. The
sshd_config file is a simple configuration file, containing the file format
with “ValueName Value” pairs using a simple space as a separator. A copy of a
default sshd_config is contained in Listing 7-1.

www.4electron.com

126 Embedded FreeBSD
Cookbook

This is ssh server systemwide configuration file.

#

$FreeBSD: src/crypto/openssh/sshd_config,v 1.4.2.5 2001/01/18

22:36:53 green Exp $

Port 22
#Protocol 2,1
#ListenAddress 0.0.0.0
#ListenAddress ::
HostKey /etc/ssh/ssh_host_key
HostDsaKey /etc/ssh/ssh_host_dsa_key
ServerKeyBits 768
LoginGraceTime 120
KeyRegenerationInterval 3600
PermitRootLogin no
ConnectionsPerPeriod has been deprecated completely

After 10 unauthenticated connections, refuse 30% of the new
ones, and refuse any more than 60 total.
MaxStartups 10:30:60
Don’t read ~/.rhosts and ~/.shosts files
IgnoreRhosts yes
Uncomment if you don’t trust ~/.ssh/known_hosts for
RhostsRSAAuthentication
#IgnoreUserKnownHosts yes
StrictModes yes
X11Forwarding yes
X11DisplayOffset 10
PrintMotd yes
KeepAlive yes

Logging
SyslogFacility AUTH
LogLevel INFO
#obsoletes QuietMode and FascistLogging

RhostsAuthentication no

For this to work you will also need host keys in
/etc/ssh_known_hosts
RhostsRSAAuthentication no

RSAAuthentication yes

www.4electron.com

127 Chapter Seven
Remote Management

To disable tunneled clear text passwords, change to no here!
PasswordAuthentication yes
PermitEmptyPasswords no
Uncomment to disable s/key passwords
#SkeyAuthentication no
#KbdInteractiveAuthentication yes

To change Kerberos options
#KerberosAuthentication no
#KerberosOrLocalPasswd yes
#AFSTokenPassing no
#KerberosTicketCleanup no

Kerberos TGT Passing does only work with the AFS kaserver
#KerberosTgtPassing yes

CheckMail yes
#UseLogin no

Uncomment if you want to enable sftp
#Subsystem sftp /usr/libexec/sftp-server

Listing 7-1

The sshd_config file options are described in the following sections.

Port 22

The Port option specifies the port number ssh daemon listens to for
incoming connections.

ListenAddress 192.168.1.1

The ListenAddress options specifies the IP address of the interface network
on which the ssh daemon server socket is bind. The default is 0.0.0.0.

HostKey /etc/ssh/ssh_host_key

The HostKey option specifies the location containing the private host key.

ServerKeyBits 1024

The ServerKeyBits options specifies how many bits to use in the server
key. These bits are used to generate its RSA key when the daemon starts.

www.4electron.com

128 Embedded FreeBSD
Cookbook

LoginGraceTime 600

The LoginGraceTime options specifies how long, in seconds, after a
connection request the server will wait before disconnecting if the user
has not successfully logged in.

KeyRegenerationInterval 3600

The KeyRegenerationInterval options specifies how long, in seconds, the
server should wait before automatically regenerated its key.

PermitRootLogin no

The PermitRootLogin options specifies whether root can log in using ssh.

IgnoreRhosts yes

The IgnoreRhosts options specifies whether rhosts or shosts files should
not be used in authentication. For security reasons it is recommended to
no use rhosts or shosts files for authentication.

IgnoreUserKnownHosts yes

The IgnoreUserKnownHosts options specifies whether the ssh daemon
should ignore the user’s $HOME/.ssh/known_hosts during
RhostsRSAAuthentication.

StrictModes yes

The StrictModes option specifies whether ssh should verify user’s permis
sions in their home directory and rhosts files before accepting login.

X11Forwarding no

The X11Forwarding options specifies whether X11 forwarding should be
enabled or not on this server. Since the DIO appliance runs without GUI
installed, we can safely turn this option off.

PrintMotd yes

The PrintMotd option specifies whether the ssh daemon should print the
contents of the /etc/motd file when a user logs in interactively.

SyslogFacility AUTH

The SyslogFacility option specifies the facility code used when logging
messages from sshd. The facility specifies the subsystem that produced
the message—in our case, AUTH.

www.4electron.com

129 Chapter Seven
Remote Management

LogLevel INFO

The LogLevel option specifies the level that is used when logging messages
from sshd.

RhostsAuthentication no

The RhostsAuthentication option specifies whether sshd can try to use
rhosts based authentication. Because rhosts authentication is insecure you
shouldn’t use this option.

RhostsRSAAuthentication no

The RhostsRSAAuthentication option specifies whether to try rhosts
authentication in concert with RSA host authentication.

RSAAuthentication yes

The RSAAuthentication option specifies whether to try RSA authentica
tion. This option must be set to yes for better security in your sessions.

PasswordAuthentication yes

The PasswordAuthentication option specifies whether we should use
password-based authentication.

PermitEmptyPasswords no

The PermitEmptyPasswords option specifies whether the server allows
logging in to accounts with a null password.

AllowUsers admin

The AllowUsers option specifies and controls which users can access
ssh services.

Remote Administration Account
In order to restrict the operation allowed by a remote configuration, the
only connection allowed remotely is to login via the dioadmin account. The
dioadmin is a special account that runs a custom shell developed in this
chapter. When the shell is exiting, the user is logged out.

dioadmin:*:1002:1002:DIO Administrator:/home/dioadmin:/bin/sh

The dioadmin account has its own UID and GID 1002. It is configured to
run the Bourne Shell. When the Bourne Shell executes, it reads a customized
file in the user’s home directory called .profile. The dioadmin .profile
file contains two lines:

www.4electron.com

130 Embedded FreeBSD
Cookbook

/usr/local/bin/dioshell
exit

This effectively allows the user to run the dioshell. When dioadmin exits,
the dioshellcontrol returns to the .profile file, and the dioadmin account
is logged off.

The DIOShell
In the previous section we discussed SSH and created a new account to be
used for the DIO administrator. The DIO administrator account is created
with a custom shell, the DIOShell, which is limited to commands to DIO
operations. The remainder of this chapter deals with the implementation of

the DIOShell.

The command_t Structure
The DIOShell is implemented using a simple command parser. Every com
mand is implemented as a command string, a command handler function,
and a help string. The command handler function contains two arguments,
the complete string entered by the user and the command specific string.

typedef void (*fptr) (char *, uint8_t *);

typedef struct
{

char *command; /* string representing command */
fptr functionptr;/* pointer to command implementation */
char *helpstring;/* text help string */

} command_t;

Listing 7-2

Every command is implemented by a command_t structure.

The command Table
The command table represents all the available commands in the DIOShell.
Each function is forward declared, so the command table may be created.
The DIOShell is a table-driven utility. User input is parsed, and the first
argument is matched to the commands contained in the command table.

www.4electron.com

131 Chapter Seven
Remote Management

If a command is matched, the command handler function is called to com
plete command processing.

void readline_handler(char* args, uint8_t* p);
void writeline_handler(char* args, uint8_t* p);
void config_handler(char* args, uint8_t* p);
void int_handler(char* args, uint8_t* p);
void pciint_handler(char* args, uint8_t* p);
void setpolarity_handler(char* args, uint8_t* p);
void getpolarity_handler(char* args, uint8_t* p);
void getdirection_handler(char* args, uint8_t* p);
void quit_handler(char* args, uint8_t* p);
void help_handler(char* args, uint8_t* p);

command_t commands[] =
{

“read”, readline_handler, “[0-23] reads the spec
ified digital IO line”,

“write”, writeline_handler, “[0-23] [0 | 1] writes
the specified digital IO lines”,

“configin”, config_handler, “[A,B,CL,CH] [in | out]
config the digital IO ports”,

“int”, int_handler, “[enable | disable]
enable or disable interrupts”,

“pciint”, pciint_handler, “[enable | disable]
enable or disable pci interrupts”,

“setpol”, setpolarity_handler, “[hi | lo] set the
interrupt polarity”,

“getpol”, getpolarity_handler, “get the interrupt
polarity”,

“getdir”, getdirection_handler, “read the direction of
the specified line”,

“quit”, quit_handler, “exits program”,
“help”, help_handler, “displays command

help”,
NULL, 0, NULL, /*

terminating record */
};

Listing 7-3

The command table, command, in Listing 7-3 contains all the commands
implemented by the DIOShell. Commands included are read line, write line,
configure the ports, configure the interrupt, configure the PCI interrupt, set

www.4electron.com

132 Embedded FreeBSD
Cookbook

and get the interrupt polarity. Each command is described in more detail in
subsequent sections.

Since the DIOShell command is table driven, the last entry contains a termi
nating record. This is to denote the end of the table. Without the terminat
ing record, we would need some other mechanism to determine when we’ve
reached the end of the table and keep the command parsing loop from run
ning rampant over process memory.

The readline_handler Function
The read handler function is used to read a digital IO line. Read line com
mands are entered using syntax

> read line

where line is a value between 0 and 23. Read will print the value of the
requested line 0 or 1.

void

readline_handler(char* args, uint8_t* p)

{

DIOline_t line;

DIOlinestate_t state;

sscanf(args, “%*s %d %d”, &line, &state);

/* check the parameters */

if ((line < line0) || (line > line23))

{

printf(“illegal line number\n”);

return;

}

if (dio_get_line(line, &state) == 0)

{

printf(“line %d = %d\n”, line, state);

}

else

{

printf(“read line failed\n”);
}

}
Listing 7-4

www.4electron.com

133 Chapter Seven
Remote Management

Here, readline_handler parses the input provided by the user. If the
input is valid, the dio_get_line function is called to read the state of the
digital IO line.

The writeline_handler Function
The writeline_handler function is used to write a digital IO line. The
write line command is entered using the following syntax,

> write line value

where line is a value between 0 and 23, and value is either 0 or 1. Write
will set the requested line output to the value input by the user.

void

writeline_handler(char* args, uint8_t* p)

{

DIOline_t line;

DIOlinestate_t state;

sscanf(args, “%*s %d %d”, &line, &state);

/* check the parameters */

if ((line < line0) || (line > line23))

{

printf(“illegal line number\n”);

return;

}

/* check the parameters */

if ((state != set) && (state != clear))

{

printf(“illegal state\n”);

return;

}

if (dio_set_line(line, state) != 0)
{

printf(“write line failed\n”);
}

}

Listing 7-5

www.4electron.com

134 Embedded FreeBSD
Cookbook

The write handler function uses sscanf to parse the user’s input. If the
command arguments are correct, dio_set_line is called to set the
requested lines output.

The config_handler Function
The config_handler function is used to change the port configurations.
The config command is entered using the following syntax:

> configin port

where ports is any combination of A, B, CL and CH. The specified ports are
configured as digital inputs.

void

config_handler(char* args, uint8_t* p)

{

char port[32];

DIOconfig_t cfg = 0;

sscanf(args, “%*s %s”, port);

/* scan the string looking for ports */

if ((strstr(port, “A”) != NULL) || (strstr(port, “a”) != NULL))

{

cfg |= porta_in;

}

if ((strstr(port, “B”) != NULL) || (strstr(port, “b”) != NULL))
{

cfg |= portb_in;
}

if ((strstr(port, “CL”) != NULL) || (strstr(port, “cl”) !=

NULL))

{

cfg |= portcl_in;

}

if ((strstr(port, “CH”) != NULL) || (strstr(port, “ch”) !=

NULL))

{

cfg |= portch_in;

www.4electron.com

135 Chapter Seven
Remote Management

}

/* we’ve built the cfg mask write it to the register */

if (dio_set_config(cfg) != 0)

{

printf(“config failed\n”);
}

}

Listing 7-6

The config function uses sscanf to parse the user’s input. The argument
to the config in command can take multiple ports represented by their
letters, A, B, CL, and CH. The port letters can be contained in any order in
the input string. The only requirement is that the ports are listed together,
with no spaces. Once the ports are determined, the dio_set_config
function is called to configure the input ports.

The int_handler Function
The int_handler function is used to enable or disable interrupts. The int
command is entered using the following syntax:

> int value

where value is either string enable or disable.

void

int_handler(char* args, uint8_t* p)

{

char state[32];

DIOintstate_t s;

sscanf(args, “%*s %s”, state);

if ((strcmp(state, “enable”) == 0) || (strcmp(state, “ENABLE”)
== 0))

{
s = enable;

}

else if ((strcmp(state, “disable”) == 0) || (strcmp(state,

“DISABLE”) == 0))

{

s = disable;

www.4electron.com

136 Embedded FreeBSD
Cookbook

}

else

{

printf(“illegal state\n”);

return;

}

if (dio_set_int(s) != 0)
{

printf(“set int failed\n”);
}

}

Listing 7-7

The int_handler function parses the user input looking for either the
enable or disable string to determine the interrupt setting. If the user input
is correct, dio_set_int is called to set the interrupt state.

The pciint_handler Function
The pciint_handler function is used to set pci interrupts. The pciint
command is entered using the following syntax,

> pciint value

where value is either the string enable or disable.

void

pciint_handler(char* args, uint8_t* p)

{

char state[32];

DIOintstate_t s;

sscanf(args, “%*s %s”, state);

if ((strcmp(state, “enable”) == 0) || (strcmp(state, “ENABLE”)
== 0))

{
s = enable;

}
else if ((strcmp(state, “disable”) == 0) || (strcmp(state,

“DISABLE”) == 0))

{

s = disable;

www.4electron.com

137 Chapter Seven
Remote Management

}

else

{

printf(“illegal state\n”);

return;

}

if (dio_set_pciint(s) != 0)
{

printf(“set pciint failed\n”);
}

}

Listing 7-8

The pciint_handler function parses the user input looking for either the
enable or disable string to determine the interrupt setting. If the user input
is correct, dio_set_pciint is called to set the interrupt state.

The setpolarity_handler Function
The setpolarity_handler function is used to set the interrupt polarity.
The set polarity command is entered using the following syntax:

> setpol value

where value is either high or low.

void

setpolarity_handler(char* args, uint8_t* p)

{

char state[32];

DIOpolarity_t polarity;

sscanf(args, “%*s %s”, state);

if ((strcmp(state, “hi”) == 0) || (strcmp(state, “HI”)) == 0)
{

polarity = activehi;
}
else if ((strcmp(state, “lo”) == 0) || (strcmp(state, “LO”))

== 0)

{

polarity = activelo;

}

www.4electron.com

138 Embedded FreeBSD
Cookbook

else
{

printf(“invalid polarity\n”);

return;

}

if (dio_set_polarity(polarity) != 0)
{

printf(“error writing polarity\n”);
}

}

Listing 7-9

The int_handler function parses the user input looking for either the
high or low string to determine the interrupt polarity setting. If the user
input is correct, dio_set_polarity is called to set the interrupt polarity.

The getpolarity_handler Function
The getpolarity_handler function is used to read the interrupt polarity.
The get polarity command is entered using the following syntax:

> getpol

Getpol takes “not” arguments.

void

getpolarity_handler(char* args, uint8_t* p)

{

DIOpolarity_t polarity;

if (dio_get_polarity(&polarity) == 0)

{

printf(“pol = %d\n”, polarity);

}

else

{

printf(“error reading polarity\n”);
}

}

Listing 7-10

The getpolarity_handler calls the dio_get_polarity function; if the
call is successful, the interrupt polarity is displayed by the DIO shell.

www.4electron.com

139 Chapter Seven
Remote Management

The getdirection_handler Function
The getdirection_handler function is used to read the direction of a dig
ital IO line. The get direction command is entered using the following syntax:

> getdir line

where line is a value between 0 and 23.

void

getdirection_handler(char* args, uint8_t* p)

{

DIOline_t line;

DIOdirection_t direction;

sscanf(args, “%*s %d”, &line);

/* check the parameters */

if ((line < line0) || (line > line23))

{

printf(“illegal line number\n”);

return;

}

if (dio_get_direction(line, &direction) == 0)

{

printf(“line %d %s\n”, direction, (direction == linein ?

“in” : “out”));

}

else

{

printf(“error reading direction\n”);
}

}

Listing 7-11

The getdirection_handler function parses the user input looking for
the line number. After determining the line, dio_get_direction is called,
and the digital IO line direction is displayed, either in or out, depending on
the port’s configured direction.

The quit_handler Function
The quit_handler function is used to exit the shell. The quit command
is entered using the following syntax.

www.4electron.com

140 Embedded FreeBSD
Cookbook

> quit

Quit takes no arguments.

void
quit_handler(char* args, uint8_t* p)
{

/*
** since this is the program exit we must free the user
** buffer malloced in the main program
*/
free(args);
exit(0);

}

Listing 7-12

The quit command handler releases resources and exits the shell.

The help_handler Function
The help_handler function is used to display command help. The help
command is entered using the following syntax.

> help

Help takes no arguments.

void

help_handler(char* args, uint8_t* p)

{

command_t* cmdptr;

cmdptr = &commands[0];

while (cmdptr->command != NULL)

{

printf(“\t%s %s\n”, cmdptr->command, cmdptr->helpstring);
cmdptr++;

}
}

Listing 7-13

The help handler iterates through the command table, displaying the help
string for each command.

www.4electron.com

141 Chapter Seven
Remote Management

The DIOShell Utility
The DIOShell main handles all initialization and allocation of resources,
then enters the command parsing loop until the quit command is called.
The utility initialization amounts to the allocation of a command buffer of
BUFFER_MAX bytes. Once the buffer is successfully allocated, the parser
loop is entered.

int main(int argc, char *argv)
{

uint8_t* userp = NULL;

userp = (uint8_t *)malloc(BUFFER_MAX);

if (userp == NULL)

{

printf(“%s: unable to allocate user buffer\n”);

exit(-1);

}

while (1)

{

command_t* cmdptr;

printf(“\n> “);

gets(userp);

/* parse the users command */

cmdptr = &commands[0];

while (cmdptr->command != NULL)

{

if (strncmp(userp, cmdptr->command, strlen(cmdptr->com-
mand)) == 0)

{
cmdptr->functionptr(userp, (char *)NULL);

break;
}

cmdptr++;

}

if (cmdptr->command == NULL)

{

printf(“ invalid command\n”);

}

}

www.4electron.com

142 Embedded FreeBSD
Cookbook

/* since quit handles cleanup and exit we’ll never get here */
exit(0);

}

Listing 7-14

The command parsing loop consists of displaying the > prompt, reading the
user input, then parsing the command. The command parsing is performed
by matching the first string entered by the user to the command element of
each entry in the command table. If there is a match, the command handler
function is called. All additional parsing and actions are handled by each
individual command handler.

The Makefile

BASE=DIOShell
DEST=/usr/local/bin
INCLUDES=-I../../inc
LIBRARIES=-L /usr/local/lib -ldioif

DIOShell: DIOShell.c Makefile
gcc $(INCLUDES) -o $(BASE) $(LIBRARIES) $(BASE).c
cp $(BASE) $(DEST)

clean:
rm -f $(BASE)
rm -f $(DEST)/$(BASE)

rm -f *.o

Summary
This chapter covered the basics of installing, building, and configuring
OpenSSH, the secure shell, using FreeBSD. The secure shell provides the
basic login allowing secure access to the DIO appliance.

After the discussion of OpenSSH we developed a framework used to
implement a basic command line parser and engine that uses callbacks
to implement actions based on user input. This framework is used to
implement the DIOShell, a digital IO specific shell for the DIO Appliance.

www.4electron.com

8 143 CHAPTER EIGHT

JNI Layer

Overview
The next phase of development in the DIO appliance project is to make the
DIO interface Web-aware. The first step toward this is to develop a Java
Native Interface (JNI) for the DIO interface library. The JNI is a programming
interface, included in the Java Development Kit (JDK) for FreeBSD, for
writing Java native methods for calling C/C++ routines.

• Installing the JDK for FreeBSD

• Defining JNI DIO features

• Implementing native C data types in Java

• Implementing the JNI native interface layer for the DIO interface library

The JDK
Before we begin developing the JNI layer for the DIO interface library,
our development environment must be configured for Java development.
Configuring the development environment consists of downloading a copy
of the Java Development Kit and setting a few environment variables.

Getting the JDK
The first step in developing the JNI layer is obtaining a copy of the JDK. The
JDK is not a standard item in the FreeBSD distribution but is available in the
FreeBSD ports. To obtain the latest copy of the JDK, change the working
directory to the the JDK ports directory, /usr/ports/java/jdk and
execute the following commands:

www.4electron.com

144 Embedded FreeBSD
Cookbook

cd /usr/ports/java/jdk
make
make install
make clean

These instructions can be used to update, build and install any of the
FreeBSD port packages. The make command retrieves and builds the latest
version of the specific port. The next step, make install, installs the
binaries on your system. After the port is updated, built, and installed, it’s a
good idea to clean the binaries and temporary build files so disk space isn’t
exhausted. The make clean instruction handles the details of cleaning up
the build files.

The JDK_HOME Environment Variable
Many of the JDK tools, build environment, and run-time environment
depend on the JDK_HOME environment variable to run correctly. After
building and installing the JDK, you’ll want to set your JDK_HOME environ
ment variable to the directory where the JDK was installed using the make
install command. On my development system, the JDK is installed in
/usr/local/jdk1.1.8. A quick look at my environment using the
setenv command shows my JDK_HOME environment variable set.

JDK_HOME=/usr/local/jdk1.1.8

A good place to set the JDK_HOME environment variable is in your startup
shell scripts. My account uses the csh; the following line is added to my
.cshrc script so it is set at logon.

setenv JDK_HOME /usr/local/jdk1.1.8

The CLASSPATH Environment Variable
The CLASSPATH environment variable tells the Java Virtual Machine and other
Java applications (for example, the Java tools located in the jdk1.1.8/bin
directory) in which directory to find the class libraries, including user-defined
class libraries. The DIO class libraries are kept in a separate directory in
/usr/local/dio, the directory used to keep the DIO software.

setenv CLASSPATH=/usr/local/dio/class

The CLASSPATH variable is set in the login script.

www.4electron.com

145 Chapter Eight
JNI Layer

The LD_LIBRARY_PATH Environment Variable
LD_LIBRARY_PATH is an environment variable where the system’s shared-
library loader looks for shared libraries before looking in the system’s default
shared-library directories. The default shared-library search path is /lib,
/usr/lib, /usr/local/lib.

setenv LD_LIBRARY_PATH=/usr/local/dio/lib

As with the JDK_HOME and CLASSPATH environment variables, the
LD_LIBRARY_PATH variable is set in login startup scripts.

Creating the JNI Layer
In this section we are going to develop a JNI layer to read and write digital
IO lines and read the configured direction of a line. Since we’ve already
developed a C interface to perform these tasks, an intermediate layer is devel
oped, the JNI, which provides the mechanism to call C code from Java code.

Before we turn the crank and begin emitting mass quantities of Java source
code, let’s take a look at the procedure for developing our JNI interface.
First, we need to identify the features that are going to
be called from Java. As previously mentioned, they are
read line, write line, and read direction. These three
capabilities have been implemented by the DIO interface
library as dio_set_line, dio_get_line, and
dio_read_direction. In addition to the functions,
we are going to implement the enums used by these C
functions. Java doesn’t support enums as a native type,
so we’ll need to be a little creative.

With the features defined, we’ll take the first step in
developing the JNI layer—defining a Java interface for
the DIO interface library functions. The Java interface is
a Java class that uses native functions as the bridge to
call our C DIO interface library. The Java functions call
the native functions, which, in turn, call the C functions. Figure 8-1.

Java

The JNI
Layer

C Interface

The JNI Layer

After the Java class is defined, the Java compiler, javac, is run, which pro
duces the java class files. Java class files are byte codes typically executed by
the Java environment.

www.4electron.com

146 Embedded FreeBSD
Cookbook

The Java class files are used as
input to another tool in the
JDK, javah. Javah produces a
native header file for functions
that were declared native in the
Java class. The generated header
file is used for inclusion in the
C file that implements the
native functions.

Finally, once the Java object is
completed, the native imple
mentation is completed, and
the code is compiled into class
files and shared libraries and
located in the appropriate
directories pointed to by the
LD_LIBRARY_PATH and
CLASSPATH environment
variables, so it can be executed.

Java Native Class

C++ Header File

Java Class File

Javac

Javah

emacs

g++

Java

C++ Source Code

Shared Library

Figure 8-2. Structure of JNI Layer

Implementing C enums in Java
Even though Java has borrowed heavily from C++ syntax, some features of
the C++ language are not implemented in Java. One such feature is enums.
Since the dio_set_line, dio_get_line and dio_read_direction
functions all use enums, we are going to define corresponding types in Java.

There have been a few slightly different definitions of enums in the C language.
Initially they were just integers with no type checking. In later definitions,
they became proper types but with minimal type algebra. For clarity, I’ll define
my intended use of enums, and we’ll proceed with the Java implementation.
A C language enum is a list of objects grouped together into a fixed set. Each
of the objects within the list have a defined value.

In Java, we can create the grouping using a class with a private constructor.
By making the constructor private, the creation of class objects is restricted.
Because we’ve made a class with a private constructor, creation of new
objects is limited to that class. We can now create the members of the enum
within that class. Let’s take a look at the DIOLineState class.

www.4electron.com

147 Chapter Eight
JNI Layer

The DIOLineState Class
The C implementation of the line state is an enum with two states, clear and
set. Let’s take another look at the diolinestate_t, defined in dioif.h in
Listing 8-1.

typedef enum diolinestate_t
{

clear = 0,
set = 1

} diolinestate_t;

Listing 8-1

The diolinestate_t enum contains two members, clear with a value of
0 and set with a value of 1.

The DIOLineState class in Figure 8-2 provides an implementation of two
states scoped by DIOLineState. The DIOLineState constructor is private,
limiting the instantiation of DIOLineState object to class members. In
essence we’ve created a name scope, DIOLineState, similar to the C name
scope diolinestate_t. Now that we’re resolved the naming scope, we
have the remaining task of defining the line states. Both set and clear are
defined as public static final members, making them publicly accessible
fixed values of the DIOLineState class.

public final class DIOLineState
{

public static final DIOLineState clear = new
DIOLineState(0);

public static final DIOLineState set = new
DIOLineState(1);

public int State()

{

return(state_);

};

private DIOLineState(int state)

{

state_ = state;

};

private int state_;
}
Listing 8-2

www.4electron.com

148 Embedded FreeBSD
Cookbook

Using the DIOLineState class defined in Figure 8-2, we’ve created two states
scoped by the DIOLineState name that can be used by Java programs,
DIOLineState::set and DIOLineState::clear.

The DIOLineNumber Class
As with the DIOLineState class, the DIOLineNumber class uses a private
constructor to limit the scope of the member functions for the
DIOLineNumber class. The DIOLineNumber class contains a static final
method for each of the enum values in the C enum, effectively emulating the
C enum values. Listing 8-3 contains a complete listing of the
DIOLineNumber class.

public final class DIOLineNumber
{

public static final DIOLineNumber line0 = new DIOLineNumber(0);
public static final DIOLineNumber line1 = new DIOLineNumber(1);
public static final DIOLineNumber line2 = new DIOLineNumber(2);
public static final DIOLineNumber line3 = new DIOLineNumber(3);
public static final DIOLineNumber line4 = new DIOLineNumber(4);
public static final DIOLineNumber line5 = new DIOLineNumber(5);
public static final DIOLineNumber line6 = new DIOLineNumber(6);
public static final DIOLineNumber line7 = new DIOLineNumber(7);
public static final DIOLineNumber line8 = new DIOLineNumber(8);
public static final DIOLineNumber line9 = new DIOLineNumber(9);
public static final DIOLineNumber line10 = new DIOLineNumber(10);
public static final DIOLineNumber line11 = new DIOLineNumber(11);
public static final DIOLineNumber line12 = new DIOLineNumber(12);
public static final DIOLineNumber line13 = new DIOLineNumber(13);
public static final DIOLineNumber line14 = new DIOLineNumber(14);
public static final DIOLineNumber line15 = new DIOLineNumber(15);
public static final DIOLineNumber line16 = new DIOLineNumber(16);
public static final DIOLineNumber line17 = new DIOLineNumber(17);
public static final DIOLineNumber line18 = new DIOLineNumber(18);
public static final DIOLineNumber line19 = new DIOLineNumber(19);
public static final DIOLineNumber line20 = new DIOLineNumber(20);
public static final DIOLineNumber line21 = new DIOLineNumber(21);
public static final DIOLineNumber line22 = new DIOLineNumber(22);
public static final DIOLineNumber line23 = new DIOLineNumber(23);

public int Number()
{
return(number_);
};

www.4electron.com

149 Chapter Eight
JNI Layer

private DIOLineNumber(int number)

{

number_ = number;

};

private int number_;
}

Listing 8-3

DIOLineNumber contains additional member functions used to set and get
the actual line number; these are necessary for the native functions to pass
the correct integer value to the C DIO interface library.

The DIOLineDirection Class
The DIOLineDirection class implementation follows the same pattern as the
DIOLineNumber and DIOLineState classes defined in the previous sections.
The class contains two public declarations that represent the values of the line
state. These values, lineout and linein, directly correspond to the C enum
dio_direction, defined in the DIO Interface library developed in Chapter
5. Listing 8-4 shows our implementation of the DIOLineDirections class.

public final class DIOLineDirection
{

public static final DIOLineDirection lineout = new
DIOLineDirection(0);

public static final DIOLineDirection linein = new
DIOLineDirection(1);

public int Direction()

{

return(direction_);

};

private DIOLineDirection(int direction)

{

direction_ = direction;

};

private int direction_;
}

Listing 8-4

www.4electron.com

150 Embedded FreeBSD
Cookbook

The implementation of the DIOLineDirection class contains a private con
structor limiting the values of the class, and a private variable, direction_,
that contains the value of direction, which will be used to pass into the C
implementation of the DIO interface.

The Java Code
Now that some of our basic data types have been defined, it’s time to define
the Java-to-C interface class. Perhaps the most important task in defining the
JNI class is to first define which features are included. For simplicity’s sake,
we will define a Java class that provides the same capabilities provided by
the diod daemon, a JNI layer that provides member functions to read,
write, and determine the direction of the PCI-DIO24 digital IO lines. The
interfaces for each of these functions are contained in the DIO interface
library; the JNI provides a way to call these functions from Java.

Developing the JNI layer requires nothing more than the use of the native
attribute keyword. The native keyword allows the implementation of the
member function to be deferred. The actual implementation of the native
member functions will occur in a C++ class, defined in a later step.

The DIOIfJNI Class
Let’s take a look at the DIOIfJNI class. The DIOIfJNI class is used to create a
bridge between the Java world and the DIO interface library. The first task is
to import the classes we used to implement the DIO interface enums in Java,
DIOLineNumber, DIOLineState, and DIOLineDirection.

The Java implementation of each of our functions—read line, write line, and
read direction—are similar; they call a native function that calls the DIO
interface library and returns any data obtained from the DIO interface
library back to the calling function. Listing 8-5 contains a subset interface to
the DIO interface library and the contents of the file DIOIfJNI.java.

import DIOLineNumber;
import DIOLineState;
import DIOLineDirection;

public class DIOIfJNI
{

www.4electron.com

151 Chapter Eight
JNI Layer

public native int SetLineNative(int line, int value);
public void SetLine(DIOLineNumber line,

DIOLineState value)
{

int stat = SetLineNative(line.Number(), value.State());
}

public native int GetLineNative(int line);

public DIOLineState GetLine(DIOLineNumber line)

{

int value;
DIOLineState state;

value = GetLineNative(line.Number());

if (value == 0)

return DIOLineState.clear;

else

return DIOLineState.set;

}

public native int GetDirectionNative(int line);

public DIOLineDirection GetDirection(DIOLineNumber line)

{

int dir;
DIOLineDirection direction;

dir = GetDirectionNative(line.Number());
if (dir == 0)
return DIOLineDirection.lineout;
else
return DIOLineDirection.linein;

}

}

Listing 8-5

The DIOIfJNI library defines three Java member functions that call into the
DIO interface library, using the JNI, GetLine, SetLine, and GetDirection. For
each of the Java functions there is a corresponding native function that will
be used to the corresponding C function, GetLineNative, SetLineNative, and
GetDirectionNative.

www.4electron.com

152 Embedded FreeBSD
Cookbook

Generate the Class Files
With the initial Java class defined, the class needs to be compiled using the
Java compiler, javac. The output of the Java compiler, the Java class file, is
necessary for the next step, so we’ll be unable to proceed without compiling.
The Java class is compiled using the following command:

javac DIOIfJNI.java

The output of this command will be the file DIOIfJNI.class. The byte
codes output from the javac compiler represent the implementation of the
DIOIfJNI class. When working with native methods, the bytecodes are also
used to generate a header file for the native code to be developed. We’ll
learn more about this in the next step of developing the JNI layer.

Generate the Header Files
The Java class file is used as input for the javah tool. The javah tool uses the
java.class file and generates ANSI function prototypes for the defined
native member functions. It is important that the class files reside in a direc
tory contained in the CLASSPATH environment variable.

javah –jni DIOIfJNI

The –jni option in the example tells javah to generate a JNI function proto
type header. The output of the javah tool is the file DIOIfJNI.H; Listing
8-6 contains the complete listing of this file. DIOIfJNI.h is available for
inclusion by the file containing the native source code implementation.

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class DIOIfJNI */

#ifndef _Included_DIOIfJNI

#define _Included_DIOIfJNI

#ifdef __cplusplus

extern “C” {

#endif

/*

* Class: DIOIfJNI
* Method: SetLineNative
* Signature: (II)I
*/

www.4electron.com

153 Chapter Eight
JNI Layer

JNIEXPORT jint JNICALL Java_DIOIfJNI_SetLineNative
(JNIEnv *, jobject, jint, jint);

/*
* Class: DIOIfJNI
* Method: GetLineNative
* Signature: (I)I
*/

JNIEXPORT jint JNICALL Java_DIOIfJNI_GetLineNative
(JNIEnv *, jobject, jint);

/*
* Class: DIOIfJNI
* Method: GetDirectionNative
* Signature: (I)I
*/

JNIEXPORT jint JNICALL Java_DIOIfJNI_GetDirectionNative
(JNIEnv *, jobject, jint);

#ifdef __cplusplus
}
#endif
#endif

Listing 8-6

Each of the three function prototypes takes two parameters, in addition to the
formal parameters contained in the native method function. The first argument
is a pointer to a JNIEnv object, containing the JVM execution environment.
The second argument, jobject, is similar to a this reference in C++.

One other important note is that the generated header files include the file
jni.h. This file contains all the necessary JNI definitions. It is important to
point the include directory path for the C compiler to the JDK header
files. We’ll look at this in more detail in the Makefile section of this chapter.

The Native Code
Now it’s time to write the implementations of the native functions. The
native functions represent the bridge from Java to C. Native functions are
written using C++ and are called by the Java member functions in the
DIOIfJNI object. These functions, in turn, call directly through to the C
implementation of the DIO interface library. The primary object of the native
functions is to provide the glue to massage Java data types onto C data

www.4electron.com

154 Embedded FreeBSD
Cookbook

types, pass the appropriate data between the layers, and provide access to
the C library from Java.

The Java_DIOIfJNI_SetLineNative Function
The Java_DIOIfJNI_SetLineNative function is used to call the DIO inter
face library dio_set_line which, in turn, is used to write a digital IO line.

JNIEXPORT jint JNICALL Java_DIOIfJNI_SetLineNative
(JNIEnv *env, jobject thisObj, jint line, jint value)

{
dioline_t dioline = static_cast<dioline_t>(line);
diolinestate_t diostate;

dio_set_line(dioline, diostate);

}

Listing 8-7

The Java_DIOIfJNI_SetLineNative accepts the parameters passed by
the Java caller and passes them through to the dio_set_line function,
implemented by the DIO interface library.

The Java_DIOIfJNI_GetLineNative Function
The Java_DIOIfJNI_GetLineNative function is used to call the DIO inter
face library dio_get_line which, in turn, is used to read a digital IO line.

JNIEXPORT jint JNICALL Java_DIOIfJNI_GetLineNative
(JNIEnv *, jobject, jint line)

{
dioline_t dioline = static_cast<dioline_t>(line);
diolinestate_t diostate;

dio_get_line(dioline, &diostate);

return (diostate);
}

Listing 8-8

The Java_DIOIfJNI_GetLineNative provides the means to call the
dio_get_line function, which reads the state of a digital IO line. The line is
passed into the dio_get_line and a local variable is used to contain the state of
the digital line provided by the dio_get_line function. After dio_get_line
is called the return value is returned to the Java calling function.

www.4electron.com

155 Chapter Eight
JNI Layer

The Java_DIOIfJNI_GetDirectionNative Function
The Java_DIOIfJNI_GetDirectionNative function is used to call the
DIO interface library dio_get_direction which, in turn, is used to read
the direction of a digital IO line.

JNIEXPORT jint JNICALL Java_DIOIfJNI_GetDirectionNative
(JNIEnv *, jobject, jint line)

{
dioline_t dioline = static_cast<dioline_t>(line);
diodirection_t diodirection;
int32_t stat;

dio_get_direction(dioline, &diodirection);

return (diodirection);
}

Listing 8-9

As with the previous function, Java_DIOIfJNI_GetDirectionNative
passes the requested line number directly through to the
dio_get_direction function; the line direction is contained in a local
variable and passed back to the Java calling function.

The Makefile
When developing the JNI interface, it is necessary to include the JDK
include file directories. The two directories necessary are include and
include/freebsd . In the JNI layer Makefile, these directories were
added to the CFLAGS variable. Listing 8-10 shows the complete Makefile
for developing the JNI interface for the DIO appliance.

CFLAGS= -fpic -shared -I../inc -I$(JDK_HOME)/include -
I$(JDK_HOME)/include/freebsd

all: libdioifjni.so

DIOIfJNI.h: DIOIfJNI.java DIOLineNumber.java DIOLineState.java
DIOLineDirection.java

javac DIOIfJNI.java
javah -jni DIOIfJNI

libdioifjni.so: DIOIfJNI.h DIOIfJNI.cpp

www.4electron.com

156 Embedded FreeBSD
Cookbook

g++ $(CFLAGS) -o libdioifjni.so DIOIfJNI.cpp -L/usr/local/lib
-ldioif

cp libdioifjni.so /usr/local/lib

clean:
rm -f libdioifjni.so
rm -f DIOIfJNI.h

Listing 8-10

In addition to the typical C compiler rules, additional rules are created for
executing the Java compiler and automatically generating the JNI header file
using javah.

Summary
In this chapter, we’ve taken a close look at installing the JDK for Java and
JNI development, along with setting up an environment for development
and debugging. After setting up the JDK development environment, we’ve
developed a JNI interface that supports an interface to a few of the basic
functions implemented in the DIO interface library, through the implemen
tation of the DIOIfJNI object. With the implementation of the set line,
get line, and get direction functions as a foundation, you could
implement the remainder to DIO interface class in the JNI layer.

Using the implementation of the DIOIfJNI object, we are now able to
development a JSP page and monitor the state of the digital IO lines from a
web page, which is the topic of discussion in our next chapter.

www.4electron.com

9 157 CHAPTER NINE

Web Access Using Tomcat

Overview
In the previous chapter, we developed a JNI layer for the DIO appliance
library. This represents the first of two steps in implementing a web interface
to monitor the DIO’s digital IO lines. The second step is to develop a Java
Server Page (JSP) that uses the JNI object developed in Chapter 8 to read
and write the digital IO lines via a web page.

JSP is a technology that allows us to develop web pages that display dynamic
content. Using the JNI object developed in Chapter 8, along with the JSP
page developed in this chapter, we will be able to develop a web page that
displays the DIO lines dynamically. In order to display JSP pages we’ll install
and configure a JSP engine. The FreeBSD ports collection contains Tomcat, a
Java-based web server that provides support for JSP.

In this chapter, we will discuss issues related to JSP developing, including:

• Installing the Tomcat JSP server on FreeBSD.

• Setting up the Tomcat environment.

• The elements of a JSP page.

• Developing the DIO JSP interface.

Tomcat
As with the JDK in the previous chapter, our first step is to download and
install the Tomcat server that provides JSP support. Tomcat is provided in
the ports collection and is downloaded, installed, and configured using the
standard ports installation procedure. Let’s review those steps now.

www.4electron.com

158 Embedded FreeBSD
Cookbook

Installing Tomcat
The version of Tomcat installed on my system is Tomcat 3.2.3.

cd /usr/ports/www/jakarta-tomcat
make
make install
make clean

These instructions may be used to update, build, and install any of the
FreeBSD port packages. The make command retrieves and builds the latest
version of the specific port. The next step, make install, installs the
binaries on your system. After the port is updated, built, and installed, it’s a
good idea to clean the binaries and temporary build files so disk space isn’t
exhausted; make clean handles the details of cleaning up the build files.

The TOMCAT_HOME Environment Variable
Once the Tomcat port has been compiled and installed, the environment
should be set up. This consists of setting the TOMCAT_HOME environment.
The correct value of TOMCAT_HOME is the directory in which Tomcat was
installed. On my system this is /usr/local/tomcat.

Starting and Stopping Tomcat

bin

As part of the Tomcat port installation, a script, tomcat.sh, is installed in
the /usr/local/etc/rc.d directory. This script is responsible for starting
Tomcat at system boot time. Once Tomcat is installed, you can restart your
system and verify that it is working properly by starting your browser and
pointing it to the url,

http://localhost:8080

You should see the Tomcat main page in your browser.

www.4electron.com

159 Chapter NINE
Web Access using Tomcat

The Tomcat Directory Structure
Once Tomcat has been installed, it creates a series of directories in the
TOMCAT_HOME directory. Let’s take a quick look and familiarize ourselves
with each of the directories and their contents.

bin
During installation, Tomcat installs a series of scripts in the
TOMCAT_HOME/bin directory for Tomcat administration. Two of the most
used scripts are startup.sh and shutdown.sh. These scripts are used
to start and stop Tomcat.

Starting Tomcat is performed by the following command:

cd $TOMCAT_HOME/bin
startup.sh

www.4electron.com

160 Embedded FreeBSD
Cookbook

Stopping Tomcat is performed by the following command:

cd $TOMCAT_HOME/bin
shutdown.sh

doc

The doc directory contains Tomcat documentation in html format, so you
can point your browser there and peruse the documentation.

lib

The lib directory contains jar files used by Tomcat. This lib directory is
automatically appended to the CLASSPATH environment variable.

logs

The logs directory is used to store Tomcat’s logs.

webapps

Before venturing into JSP syntax, there is one more important detail. Now
that Tomcat is running successfully, where are JSP pages placed? The default
location for content is the $TOMCAT_HOME/webapps/root directory.

conf

The conf directory contains Tomcat’s configuration files. Two of the most
used configuration files are server.xml and web.xml. These files are used
to configure Tomcat and control settings for web applications using Tomcat.

JSP Overview
JSP is used to display dynamic content. A typical JSP page consists of an HTML
file with special directives that display dynamic content. For the DIO display
page, we’ll be developing a standard html page, using JSP directives to call
the JNI code developed in the previous chapter to read the DIO digital input
lines. Before jumping into the details of JSP, let’s look at a simple JSP page.

<%@ page language=”java” contentType=”text/html” %>
<html>

<head>
<title>

Hello DIO JSP Page
</title>

</head>

www.4electron.com

161 Chapter NINE
Web Access using Tomcat

<body>
<% out.println(“Hello DIO!\n”); %>

</body>

</html>

Listing 9-1

This JSP page, hellodio.jsp, consists of HTML with JSP directives for
using Java. We’ll explore JSP syntax in the following sections. To view the
hellodio page, enter the following into your browser,

http://localhost:8080/hellodio.jsp. The hellodio.jsp page displays:

Hello DIO!

in your browser.

JSP Syntax
As mentioned in the previous section, a JSP page looks like html, with JSP
codes that tell the JSP engine where to look for supporting Java classes or for
inserting Java code to generate dynamic content into the web page.

Comments
Like all programming languages, JSP provides an element for adding
comments to your JSP code. A comment is denoted by the <%— —%> tags.

<%— JSP is really cool %>

Directives
JSP directives are used to specify how the JSP page is handled. A JSP
directive does not produce any visible output. A directive is specified by the
<%@ %> tag. For example, in Listing 9-1, the Java language was selected
using the page directive.

<%@ page language=”java” contentType=”text/html” %>

There are three types of directives: page, language, and contentType. The
page directive in Listing 9-1 is used for specifying the language and content
type. In this case, Java is the language and html is the content. In addition,
the page directive has many methods for controlling page attributes.

www.4electron.com

162 Embedded FreeBSD
Cookbook

The language attribute is used to specify the scripting language. Although
JSP is able to use multiple scripting languages, Tomcat only supports Java.
Subsequently, Java is the default language, but it is set in the page directive
for the sake of clarity.

Finally, the contentType attribute is used to specify the type of content
produced by the JSP page. Once again looking at Listing 9-1, the output is
html, the most common type of page. Other types of pages are text/plain,
text/xml for applications, and so forth.

Declarations
The next type of JSP statement is a declaration statement. The declaration
statement is denoted by the <%! %> tags. A declaration allows the pro
grammer to define page level variables for storing information that a page
may need.

<%! int jspvar = 27; %>

Expressions
JSP expressions are used to evaluate expressions and convert the result into
text for display in the output page. JSP expressions use the <%= %> tags.

Code Scriptlets
Code scriptlets, denoted by the <% %> tags, are used to run Java code when
the page is serviced by the Web server. In Listing 9-1, we used a JSP scriptlet
to write Hello DIO! to the output page.

<% out.println(“Hello DIO!\n”); %>

The DIO JSP Page
Now that we’ve taken a look at the JSP syntax, it’s time to develop our DIO
JSP page for displaying the states of digital IO lines via your favorite web
browser. Let’s take a look at Listing 9-2. The JSP begins by declaring the lan
guage and contentType. Once again, the settings are the default values but
the JSP code is better understood by declaring these here. After the page
directive, the JSP page contains a few lines of html to set the title page for
your browser.

www.4electron.com

163 Chapter NINE
Web Access using Tomcat

The body of the JSP page contains the code necessary to generate output for
displaying the digital IO lines. First we load the DIO interface library. Note
we’re using the system loader because we’re using a native library. After
loading the DIO interface library, the code consists of a few output statements
and using the DIOIfJNI interface to determine the direction of the lines. If
they are input, it reads them and displays the values.

<%— Copyright (c) 2002 Paul Cevoli and Butterworth Heinemann —%>

<%@ page language=”java” contentType =”text/html” %>

<html>
<head>

<title> DIO Appliance JSP Page </title>
</head>

<body>

<%

System.loadLibrary(“dioifjni”);

%>

<%— declare an instance of the DIO JNI object —%>

<%!

DIOIfJNI DIO = new DIOIfJNI();

%>

<%

out.println(“\n”);

out.println(“DIO Appliance JSP Monitor\n”);

<%— display the line status, using lines 0 thru 7 —%>

if (dio.GetDirection(DIOLineNumber.line0) ==

DIOLineDirection.linein)

{

if (dio.GetLine(DIOLineNumber.line0) ==

DIOLineState.clear)

out.println(“0”);

else

out.println(“1”);

}

if (dio.GetDirection(DIOLineNumber.line1) ==

www.4electron.com

164 Embedded FreeBSD
Cookbook

DIOLineDirection.linein)
{

if (dio.GetLine(DIOLineNumber.line1) ==
DIOLineState.clear)

out.println(“0”);
else

out.println(“1”);
}

if (dio.GetDirection(DIOLineNumber.line2) ==
DIOLineDirection.linein)

{
if (dio.GetLine(DIOLineNumber.line2) ==

DIOLineState.clear)
out.println(“0”);

else
out.println(“1”);
}

if (dio.GetDirection(DIOLineNumber.line3) ==
DIOLineDirection.linein)

{
if (dio.GetLine(DIOLineNumber.line3) ==

DIOLineState.clear)
out.println(“0”);

else
out.println(“1”);
}

if (dio.GetDirection(DIOLineNumber.line4) ==
DIOLineDirection.linein)

{
if (dio.GetLine(DIOLineNumber.line4) ==

DIOLineState.clear)
out.println(“0”);

else
out.println(“1”);
}

if (dio.GetDirection(DIOLineNumber.line5) ==
DIOLineDirection.linein)

{
if (dio.GetLine(DIOLineNumber.line5) ==

www.4electron.com

165 Chapter NINE
Web Access using Tomcat

DIOLineState.clear)

out.println(“0”);

else

out.println(“1”);

}

if (dio.GetDirection(DIOLineNumber.line6) ==

DIOLineDirection.linein)

{

if (dio.GetLine(DIOLineNumber.line6) ==

DIOLineState.clear)

out.println(“0”);

else

out.println(“1”);

}

if (dio.GetDirection(DIOLineNumber.line7) ==
DIOLineDirection.linein)

{
if (dio.GetLine(DIOLineNumber.line7) ==

DIOLineState.clear)
out.println(“0”);

else
out.println(“1”);
}

%>
</body>

</html>

Listing 9-2

The JSP page displays lines 0–7 for sake of brevity. Displaying the other lines
could consist of adding the code testing the relevant lines or extending the
DIOIfJNI class to use iterators, and then iterate through all the lines.

Summary
In this chapter we reviewed the syntax of JSP pages and developed a JSP page
to display digital IO lines for the DIO appliance. The programming tasks are
now completed for the DIO appliance. In the remaining chapters, we’ll focus
on building the kernel and making sure our components start properly.

www.4electron.com

www.4electron.com

167 CHAPTER TEN 10

Building the Kernel

Overview
The kernel is the core of the FreeBSD operating system. It is responsible for
managing resources, enforcing security, networking, disk access, and more.
The default kernel is located in the file /kernel.

In the design and development of an embedded system, disk space and
memory are critical resources. Unlike a typical desktop computer packed
with RAM and disk space, an embedded computer only needs minimal
support to perform its task, with respect to software as well as hardware.

During FreeBSD installation, a kernel is installed on your computer called
the GENERIC kernel. The GENERIC kernel is created to support as many
computers and configurations as possible to simplify the installation process.
This chapter discusses how to configure and build a custom FreeBSD kernel
to suit our hardware and DIO application.

The Kernel Configuration File
The first step toward building a kernel is to create a custom kernel configu
ration file, which allows us to tailor the kernel for our specific hardware.
One recommended method for creating a custom kernel config file is to start
with the generic config file, located in /usr/i386/conf/GENERIC and
remove the extra peripherals. We will create our config file using this
method, but first we’ll look at the GENERIC file.

The GENERIC kernel provides support for many popular peripherals
contained in PCs. Most of these devices can be removed to give us a
much smaller kernel. Kernel configuration files are located in the
/sys/i386/conf directory.

www.4electron.com

168 Embedded FreeBSD
Cookbook

GENERIC Configuration File
In the following sections you’ll find definitions of the main parts of a kernel
configuration file.

The machine Keyword
The machine keyword defines the CPU architecture the kernel will execute
on. The GENERIC Configuration file for the x86 FreeBSD distribution is
i386. Only one machine keyword can be specified in the config file.

machine i386

The cpu Keyword
The cpu keyword defines the CPU types the kernel will execute on.
GENERIC is configured to run on Intel 386 and greater CPUs. A kernel can
be configured to run on more than one CPU. However, the CPUs defined in
the configuration file must be binary-compatible. If the DIO runs on a
Celeron processor, our configuration will consist of I686_CPU architecture.

cpu I386_CPU
cpu I486_CPU
cpu I586_CPU
cpu I686_CPU

The ident Keyword
Here, ident is used to specify the name of the kernel. Each configuration
file should have a unique name. The value specified by the ident keyword
is the value displayed on the system console during boot.

ident GENERIC

The maxusers Keyword
The maxusers keyword tunes the sizes of kernel internal data structures.
The larger this value, the more system memory is used. Because the DIO
appliance is a dedicated system, we will lower this value to consume less
system memory.

maxusers 32

www.4electron.com

169 Chapter Ten
Building the Kernel

Kernel Options
The following sections provide a description of each of the global kernel
options for the GENERIC configuration file.

The makeoptions Keyword

The makeoptions keyword specifies compiler options that are processed
by the config command and passed to the C compiler. For example, if we
wanted the debugging option to analyze system crash dump, the following
line would be added.

makeoptions DEBUG=-g #Build kernel with gdb(1) debug symbols

The options Keyword

The options keyword is used to customize the kernel by setting
various options.

MATH_EMULATE If your computer contains an i386 or i486 processor
without a math coprocessor, the kernel may provide math coprocessor
support. Since our data logger uses a Celeron processor, which contains
floating-point support, this will be removed.

options MATH_EMULATE #Support for x87 emulation

INET These options are used for networking access, INET and INET6.
The DIO appliance will not be connected to an IPV6 network, so these will
be removed.

options INET #InterNETworking
options INET6 #IPv6 communications protocols

File Systems FreeBSD provides support for numerous file systems. FFS,
originally known as UFS, is the default file system that the data logger uses.
Additionally, we will be booting from a flash device and running using a
memory file system and would like to keep support for MSDOS floppy disks
and CDROMs for a future upgrade path.

options FFS #Berkeley Fast Filesystem
options FFS_ROOT #FFS usable as root device [keep
this!]

www.4electron.com

170 Embedded FreeBSD
Cookbook

options SOFTUPDATES #Enable FFS soft updates support
options MFS #Memory Filesystem
options MD_ROOT #MD is a potential root device
options NFS #Network Filesystem
options NFS_ROOT #NFS usable as root device, NFS
required
options MSDOSFS #MSDOS Filesystem
options CD9660 #ISO 9660 Filesystem
options CD9660_ROOT #CD-ROM usable as root, CD9660
required
options PROCFS #Process filesystem
options COMPAT_43 #Compatible with BSD 4.3 [KEEP THIS!]

SCSI Delay The kernel has a tunable value for probing the SCSI bus. The
data logger does not have any SCSI peripherals, so this will be removed.

options SCSI_DELAY=15000 #Delay (in ms) before probing SCSI

Console This allows users to grab the console; this is particularly useful for
X Windows. Since the DIO appliance does not run X Windows, this will
be removed.

options UCONSOLE #Allow users to grab the console

Ktrace Support for the ktrace system call. This feature is useful for
debugging and reverse engineering system utilities. This will be removed.

options KTRACE #ktrace(1) support

System V Interprocess Communication These options provide support for
System V interprocess communication, shared memory, messages, and
semaphores. These are most useful for X Windows, but other system utilities
may use these as well.

options SYSVSHM #SYSV-style shared memory
options SYSVMSG #SYSV-style message queues
options SYSVSEM #SYSV-style semaphores

Multiprocessor Support These options provide multiprocessor support; since
the data logger runs on a single CPU Celeron, these will be removed.

www.4electron.com

171 Chapter Ten
Building the Kernel

To make an SMP kernel, the next two are needed
#options SMP # Symmetric MultiProcessor Kernel
#options APIC_IO # Symmetric (APIC) I/O

Controllers and Device Drivers
Buses The next section provides support for system buses. The data logger
uses ISA and PCI buses; EISA will be removed.

device isa
device eisa
device pci

Floppy Drive Controllers The data logger will at most support a single floppy
drive; the second device may be removed.

Floppy drives
device fdc0 at isa? port IO_FD1 irq 6 drq 2
device fd0 at fdc0 drive 0
device fd1 at fdc0 drive 1

ATAPI Controllers The next section provides support for ATA and ATAPI
devices. The DIO appliance uses ATA disk and ATAPI CDROM support to
boot and access peripherals for debugging and upgrades.

device ata0 at isa? port IO_WD1 irq 14
device ata1 at isa? port IO_WD2 irq 15
device ata
device atadisk # ATA disk drives
device atapicd # ATAPI CDROM drives
device atapifd # ATAPI floppy drives
device atapist # ATAPI tape drives
options ATA_STATIC_ID #Static device numbering

SCSI Controllers The GENERIC kernel provides support for many SCSI
controllers and devices. The DIO appliance does not use any SCSI
peripherals, so all of these may be removed.

device ahb # EISA AHA1742 family
device ahc # AHA2940 and onboard AIC7xxx devices
device amd # AMD 53C974 (Tekram DC-390(T))
device isp # Qlogic family
device ncr # NCR/Symbios Logic

www.4electron.com

172 Embedded FreeBSD
Cookbook

device sym # NCR/Symbios Logic (newer chipsets)
options SYM_SETUP_LP_PROBE_MAP=0x40

Allow ncr to attach legacy NCR devices
when

both sym and ncr are configured

device adv0 at isa?
device adw
device bt0 at isa?
device aha0 at isa?
device aic0 at isa?

device ncv # NCR 53C500

device nsp # Workbit Ninja SCSI-3

device stg # TMC 18C30/18C50

SCSI peripherals

device scbus # SCSI bus (required)

device da # Direct Access (disks)

device sa # Sequential Access (tape etc)

device cd # CD

device pass # Passthrough device (direct SCSI access)

RAID Controllers As with SCSI, the GENERIC kernel provides support for
numerous RAID peripherals. The data logger does not use any RAID devices,
so all of these may be removed.

RAID controllers interfaced to the SCSI subsystem
device asr # DPT SmartRAID V, VI and Adaptec SCSI RAID
device dpt # DPT Smartcache - See LINT for options!
device mly # Mylex AcceleRAID/eXtremeRAID

RAID controllers
device aac # Adaptec FSA RAID, Dell PERC2/PERC3
device ida # Compaq Smart RAID
device amr # AMI MegaRAID
device mlx # Mylex DAC960 family
device twe # 3ware Escalade

Keyboard and Mouse The next section builds support for the keyboard,
consoles, mouse, and FreeBSD splash screen. We’ll keep support for all of
these for debugging and administration of the DIO, with the exception of
the splash screen, which will be removed.

www.4electron.com

173 Chapter Ten
Building the Kernel

atkbdc0 controls both the keyboard and the PS/2 mouse
device atkbdc0 at isa? port IO_KBD
device atkbd0 at atkbdc? irq 1 flags 0x1
device psm0 at atkbdc? irq 12

device vga0 at isa?

splash screen/screen saver
pseudo-device splash

syscons is the default console driver, resembling an SCO con
sole

device sc0 at isa? flags 0x100

Enable this and PCVT_FREEBSD for pcvt vt220 compatible console
driver

#device vt0 at isa?
#options XSERVER # support for X server on a vt console
#options FAT_CURSOR # start with block cursor
If you have a ThinkPAD, uncomment this along with the rest of
the PCVT lines
#options PCVT_SCANSET=2 # IBM keyboards are non-std

Floating Point The floating point device is required by the kernel; do not
remove this line.

Floating point support - do not disable.
device npx0 at nexus? port IO_NPX irq 13

Power Management FreeBSD has the option of providing power management.
The data logger does not use power management, so this will be removed.

Power management support (see LINT for more options)
device apm0 at nexus? disable flags 0x20 # Advanced
Power Management

PCCARD Support The GENERIC kernel provides support for PCCARD
peripherals. These can be removed.

PCCARD (PCMCIA) support
device card
device pcic0 at isa? irq 0 port 0x3e0 iomem 0xd0000

www.4electron.com

174 Embedded FreeBSD
Cookbook

device pcic1 at isa? irq 0 port 0x3e2 iomem 0xd4000 disable

Serial Port Four serial ports are supported by default. The Roadster hardware
has two; the first two serial ports are kept for support, administration,
and debugging.

Serial (COM) ports
device sio0 at isa? port IO_COM1 flags 0x10 irq 4
device sio1 at isa? port IO_COM2 irq 3
device sio2 at isa? disable port IO_COM3 irq 5
device sio3 at isa? disable port IO_COM4 irq 9

Parallel Port The parallel port contains printer support, TCP/IP support, and
SCSI support. We’ll keep printer support for debugging and administration.

Parallel port
device ppc0 at isa? irq 7
device ppbus # Parallel port bus (required)
device lpt # Printer
device plip # TCP/IP over parallel
device ppi # Parallel port interface device
#device vpo # Requires scbus and da

Ethernet Controllers There are numerous network interface cards built into the
FreeBSD kernel. The data logger uses an Intel EtherExpress Pro 100; other
controllers may be removed. One important note about the EtherExpress Pro
100: support is added on top of the MII bus support, so this driver must be
kept in the kernel configuration file, in order to properly build the
EtherExpress Pro 100 support.

PCI Ethernet NICs.

device de # DEC/Intel DC21x4x (``Tulip’’)

device txp # 3Com 3cR990 (``Typhoon’’)

device vx # 3Com 3c590, 3c595 (``Vortex’’)

PCI Ethernet NICs that use the common MII bus controller code.

NOTE: Be sure to keep the ‘device miibus’ line in order to use

these NICs!

device miibus # MII bus support

device dc # DEC/Intel 21143 and various workalikes

device fxp # Intel EtherExpress PRO/100B (82557, 82558)

www.4electron.com

175 Chapter Ten
Building the Kernel

device pcn # AMD Am79C97x PCI 10/100 NICs
device rl # RealTek 8129/8139
device sf # Adaptec AIC-6915 (``Starfire’’)
device sis # Silicon Integrated Systems SiS 900/SiS 7016
device ste # Sundance ST201 (D-Link DFE-550TX)
device tl # Texas Instruments ThunderLAN
device tx # SMC EtherPower II (83c170 ``EPIC’’)
device vr # VIA Rhine, Rhine II
device wb # Winbond W89C840F
device wx # Intel Gigabit Ethernet Card (``Wiseman’’)
device xl # 3Com 3c90x (``Boomerang’’, ``Cyclone’’)

ISA Ethernet NICs.
‘device ed’ requires ‘device miibus’
device ed0 at isa? port 0x280 irq 10 iomem 0xd8000
device ex
device ep
device fe0 at isa? port 0x300
Xircom Ethernet
device xe
PRISM I IEEE 802.11b wireless NIC.
device awi
WaveLAN/IEEE 802.11 wireless NICs. Note: the WaveLAN/IEEE really
exists only as a PCMCIA device, so there is no ISA attachment
needed and resources will always be dynamically assigned by the
pccard code.
device wi
Aironet 4500/4800 802.11 wireless NICs. Note: the declaration
below will work for PCMCIA and PCI cards, as well as ISA cards
set to ISA PnP mode (the factory default). If you set the
switches on your ISA card for a manually chosen I/O address and
IRQ, you must specify those parameters here.
device an
The probe order of these is presently determined by
i386/isa/isa_compat.c.
device ie0 at isa? port 0x300 irq 10 iomem 0xd0000
#device le0 at isa? port 0x300 irq 5 iomem 0xd0000
device lnc0 at isa? port 0x280 irq 10 drq 0
device cs0 at isa? port 0x300
device sn0 at isa? port 0x300 irq 10

Pseudo Devices

Pseudo devices are devices that are built into the kernel but do not contain

www.4electron.com

176 Embedded FreeBSD
Cookbook

any hardware. Common uses for pseudo devices are logging, pseudo terminals,
vnodes and snoop devices. The DIO appliance uses the network loopback
and ethernet support pseudo devices.

Pseudo devices - the number indicates how many units to allocate.
pseudo-device loop # Network loopback
pseudo-device ether # Ethernet support
pseudo-device sl 1 # Kernel SLIP
pseudo-device ppp 1 # Kernel PPP
pseudo-device tun # Packet tunnel.
pseudo-device pty # Pseudo-ttys (telnet etc)
pseudo-device md # Memory “disks”
pseudo-device gif # IPv6 and IPv4 tunneling
pseudo-device faith 1 # IPv6-to-IPv4 relaying (translation)

The `bpf’ pseudo-device enables the Berkeley Packet Filter.
Be aware of the administrative consequences of enabling this!
pseudo-device bpf #Berkeley packet filter

USB Support

USB support is provided to connect USB devices to FreeBSD. Although the
Roadster hardware does supply USB ports, the DIO appliance does not use
the USB bus. Support for USB will be removed.

USB support
device uhci # UHCI PCI->USB interface
device ohci # OHCI PCI->USB interface
device usb # USB Bus (required)
device ugen # Generic
device uhid # “Human Interface Devices”
device ukbd # Keyboard
device ulpt # Printer
device umass # Disks/Mass storage - Requires scbus and da
device ums # Mouse
device uscanner # Scanners
USB Ethernet, requires mii
device aue # ADMtek USB ethernet
device cue # CATC USB ethernet
device kue # Kawasaki LSI USB ethernet

www.4electron.com

177 Chapter Ten
Building the Kernel

Building the DIO Kernel

Hardware Inventory
First, take an inventory of
your hardware. The Network
Engines Roadster used for
this project is a basic Intel PC
clone. Our inventory results
in the hardware list shown in
Table 10-1.

Table 10-1. Hardware Inventory

Next, we need to create a
simple kernel config file. I

Peripheral Options

CPU 366 MHz Celeron

Memory 32 MB SDRAM

Floppy Drive AT Floppy

CDROM IDE CD-ROM

Parallel Port 1

Buses ISA, PCI

Serial Ports 2

Boot Device 32 MB ATAPI Flash,
MFS Support

Network Intel EtherExpress Pro 100

suggest making a copy of the
GENERIC config file and removing the keywords that represent hardware and
options that are not representative of the DIO appliance, as discussed in the
previous sections. I named my config file DIO.

The DIO Kernel Configuration File
Here is a copy of the updated configuration file, DIO. You’ll notice that
many of the irrelevant devices have been removed and many of the other
system settings have been tuned to represent the listed hardware.

DIO - Digital Appliance Kernel Configuration File

For more information on this file, please read the handbook
section on Kernel Configuration Files:

http://www.FreeBSD.org/handbook/kernelconfig-config.html

The handbook is also available locally in /usr/share/doc/hand
book if you’ve installed the doc distribution, otherwise always
see FreeBSD World Wide Web server (http://www.FreeBSD.org/) for
the latest information.

www.4electron.com

178 Embedded FreeBSD
Cookbook

An exhaustive list of options and more detailed explanations
of the device lines is also present in the ./LINT configuration
file. If you are in doubt as to the purpose or necessity of a
line, check first in LINT.

$FreeBSD: src/sys/i386/conf/GENERIC,v 1.246.2.34 2001/08/12
13:13:46 joerg Exp $

machine i386
cpu I686_CPU
ident DIO
maxusers 8

#makeoptions DEBUG=-g #Build kernel with gdb(1) debug

options
options
options
options
options
options
options
options
required
options
options
options
required
options
options
options
options
options
options
options
options
options
options
options
options

MATH_EMULATE
INET
FFS
FFS_ROOT
MFS
MD_ROOT
NFS
NFS_ROOT

MSDOSFS
CD9660
CD9660_ROOT

PROCFS
COMPAT_43

#symbols

#Support for x87 emulation
#InterNETworking

#Berkeley Fast Filesystem
#FFS usable as root device [keep this!]
#Memory Filesystem

#MD is a potential root device
#Network Filesystem

#NFS usable as root device, NFS

#MSDOS Filesystem
#ISO 9660 Filesystem
#CD-ROM usable as root, CD9660

#Process filesystem
#Compatible with BSD 4.3 [KEEP THIS!]

SCSI_DELAY=15000 #Delay (in ms) before probing SCSI
UCONSOLE #Allow users to grab the console
USERCONFIG #boot -c editor
SYSVSHM #SYSV-style shared memory
SYSVMSG #SYSV-style message queues
SYSVSEM #SYSV-style semaphores
P1003_1B #Posix P1003_1B real-time extensions
_KPOSIX_PRIORITY_SCHEDULING
ICMP_BANDLIM #Rate limit bad replies
KBD_INSTALL_CDEV # install a CDEV entry in /dev

www.4electron.com

179 Chapter Ten
Building the Kernel

To make an SMP kernel, the next two are needed
#options SMP # Symmetric MultiProcessor Kernel
#options APIC_IO # Symmetric (APIC) I/O

device isa
device eisa
device pci

Floppy drives
device fdc0 at isa? port IO_FD1 irq 6 drq 2
device fd0 at fdc0 drive 0

If you have a Toshiba Libretto with its Y-E Data PCMCIA floppy,
don’t use the above line for fdc0 but the following one:
#device fdc0

ATA and ATAPI devices
device ata0 at isa? port IO_WD1 irq 14
device ata1 at isa? port IO_WD2 irq 15
device ata
device atadisk # ATA disk drives
device atapicd # ATAPI CDROM drives
device atapifd # ATAPI floppy drives
device atapist # ATAPI tape drives
options ATA_STATIC_ID #Static device numbering

atkbdc0 controls both the keyboard and the PS/2 mouse
device atkbdc0 at isa? port IO_KBD
device atkbd0 at atkbdc? irq 1 flags 0x1
device psm0 at atkbdc? irq 12

device vga0 at isa?

syscons is the default console driver, resembling an SCO con
sole
device sc0 at isa? flags 0x100

Floating point support - do not disable.
device npx0 at nexus? port IO_NPX irq 13

Serial (COM) ports
device sio0 at isa? port IO_COM1 flags 0x10 irq 4
device sio1 at isa? port IO_COM2 irq 3

www.4electron.com

180 Embedded FreeBSD
Cookbook

Parallel port

device ppc0 at isa? irq 7

device ppbus # Parallel port bus (required)

device lpt # Printer

device ppi # Parallel port interface device

PCI Ethernet NICs.

PCI Ethernet NICs that use the common MII bus controller code.

NOTE: Be sure to keep the ‘device miibus’ line in order to use

#these NICs!

device miibus # MII bus support

device fxp # Intel EtherExpress PRO/100B (82557, 82558)

Pseudo devices - the number indicates how many units to

#allocate.
pseudo-device loop # Network loopback
pseudo-device ether # Ethernet support
pseudo-device sl 1 # Kernel SLIP
pseudo-device ppp 1 # Kernel PPP
pseudo-device tun # Packet tunnel.
pseudo-device pty # Pseudo-ttys (telnet etc)
pseudo-device md # Memory “disks”
pseudo-device gif # IPv6 and IPv4 tunneling
pseudo-device faith 1 # IPv6-to-IPv4 relaying (translation)

Building the FreeBSD Kernel
Now that you’ve tuned your kernel config file to fit your hardware, it’s time
to build the FreeBSD kernel. This is a multiple-step, but straightforward,
process. It consists of the following steps.

Config
First, you must change your directory to the kernel config directory. Then
run the config on your configuration file.

cd /sys/i386/conf
config DIO

If you see error messages, you must fix your kernel config file before going

www.4electron.com

181 Chapter Ten
Building the Kernel

on to the next step. Generally, if you see the following message, you may
proceed to the next step.

Don’t forget to do a ``make depend’’
Kernel build directory is ../../compile/DIO

To proceed to build your kernel, change the directory to the DIO kernel
build directory.

cd ../../compile/DIO

Starting Clean
It’s always a good idea to start with a clean build and remove any stale object
files. We’ll clean any object files created in a prior build. Cleaning the build
directory will cause the kernel build time to increase, but it’s better to start
with a fresh set of object files, in case there is a problem with the new ker
nel. You can eliminate the possibility of building with stale files.

Cleaning object files consists of running the make clean command in the
kernel build directory.

make clean

Running make clean will display lots of output. It’s ok, as it’s cleaning up
object files and dependency files for the kernel.

Generating Dependencies
The kernel is a complex program make needs to generate file dependencies.
Config has done most of the work for you already and stored the method for
generating dependencies in the make file. Running make depend in the
kernel build directory generates the dependencies.

make depend

Running make depend will also generate lots of output.

www.4electron.com

182 Embedded FreeBSD
Cookbook

Building the Kernel
You’re almost there! Now, it’s time to build the kernel. make is ready to build
all the sources and link the necessary files and libraries to make your custom
kernel. To do this, run the make command in the kernel build directory.

make

As with previous kernel building commands, make will generate lots of out
put. It is important to notice error messages during this process; although if
there are any serious error messages, the build process stops.

Installing the Kernel
After the kernel is successfully built, it must be installed. The makefile
contains an install option for installing the kernel and any kernel modules
that may have been built as part of the kernel build process. Typing make
install in the kernel build directory will install the kernel and any
associated kernel modules.

make install

Here, make install performs two important steps. First, it installs the
new kernel into the root partition. Second, and more importantly, it creates a
copy of your current kernel, named kernel.old, in the root partition. This
is done in case your new kernel doesn’t boot or contains a fatal error. During
the boot process, you can select to boot from kernel.old at the boot:
prompt at system startup. This could keep you from having to reinstall your
entire system, if there is an error.

Summary
In this chapter, we discussed and reviewed the components of the GENERIC
kernel configuration file. In addition, we looked at the DIO appliance hard
ware and created a custom kernel configuration file for our appliance. In the
next chapter, we will look at booting and FreeBSD system startup.

www.4electron.com

183 CHAPTER ELEVEN 11

System Startup

Overview
One of the most important aspects of an embedded system development is
the system startup and boot process. There are numerous reasons for under
standing the booting and system startup process, such as adding the initializa
tion of a custom component to the boot sequence, understanding what types
of devices are bootable for system specification, or starting components or
ensuring that components of the embedded system are started, as in the case
of the DIO appliance. This chapter focuses on the FreeBSD booting process.

First, a quick look at the PC booting process will provide the background
for the three FreeBSD boot stages. After the discussion of the FreeBSD boot
process, the chapter continues with a discussion of the FreeBSD booting
stage components and system startup. Once the discussion of the boot
process is complete, we’ll add code to start the DIO daemon and load the
copymem system call and DIO device driver developed in previous chapters.

Disk Geometry
The boot process for each different device is slightly different. The DIO
appliance boot device consists of a CompactFlash card, which appears as a
hard disk. Since our discussion assumes booting from a hard disk, it is tai
lored to that technique. Before we jump into a discussion of the boot
process, it will help to understand the layout of the disk and where the
pieces of loader reside on the disk.

www.4electron.com

184 Embedded FreeBSD
Cookbook

Platters
A hard disk consists of flat round disks called platters. Each platter is coated
with a special material designed to store information in the form of magnetic
patterns. They are composed of two main substances: a substrate material
that forms the bulk of the platter and gives it structure and rigidity, and a
magnetic media coating that actually holds the magnetic impulses that
represent the data.

Heads
The read/write heads of the hard disk are the interface between the magnetic
physical media on which the data is stored and the electronic components
that make up the rest of the hard disk. The heads handle converting bits to
magnetic pulses and storing them on the platters and reversing the process
to read the data back.

Cylinders
Platters are organized into specific structures to enable the organized storage
and retrieval of data. Each platter contains information recorded in concen
tric circles called cylinders. A cylinder is
similar in structure to the annual rings
of a tree.

Sectors
Each cylinder is further broken down

into smaller pieces called sectors. Each

sector holds 512 bytes of information.

Addressing
Each sector on a disk is addressed using a

Figure 11-1. Disk Sectors
format of head, cylinder and sector. For
example, the first sector on a disk resides at
head 0, cylinder 0, sector 1.

www.4electron.com

185 Chapter Eleven
System Startup

Master Boot Record
In the first sector of a hardware disk is the Master Boot Record (MBR). The
MBR is a special record that contains the information for loading the operating
system. The MBR resides on the first sector of the hard disk, head 0, cylinder
0, sector 1 and is one sector long, 512 bytes. The MBR contains three com
ponents: the boot loader, partition table and a magic number. The boot
loader contained in the MBR is the first piece of code executed by the BIOS.

Boot Loader
The boot loader begins at offset 0 and is 446 bytes long. The boot code
reads the partition table, also contained in the MBR, and attempts to load
the first sector of the active partition in the partition table. Only one parti
tion can be active.

Partition Table
Beginning at offset 1BEH
is the partition table. The
partition table contains four
entries of 16 bytes each that
describe how the disk is
partitioned. The partition
table entries begin at offset
1BEH, 1CEH, 1DEH and
1EEH in the MBR.

Each entry contains infor
mation about the partition
such as beginning and ending
position on the disk, what
type of partition, and length
in sectors. A description of

Offset Content

00H Partition state: 00H if not active,
80H if active

01H Head where partition begins

02H Sector where partition begins

03H Cylinder where partition begins

04H Partition type

05H Head where partition ends

06H Sector where partition ends

07H Cylinder where partition ends

08H Distance from the MBR to the first
sector of the partition, in sectors

0CH Length of the partition, in sectors

Table 11-1
each partition table entry is contained in Table 11-1.

The partition table contains up to four distinct sections of the disk; partitions
may not overlap. A common use of partitions is to configure a computer to
boot multiple operating systems. Each partition may have a different operat
ing system loaded.

www.4electron.com

186 Embedded FreeBSD
Cookbook

State

The first entry in the partition is the state, which is either value 0 or 80H.
A value of 80H denotes that this partition is active and can be booted.

Start of partition

The next three bytes contain the start of the partition in head, sector, cylinder
format. Disks traditionally access storage by head, cylinder and sector offset.
With the constant increase in capacity of hard drives, the space reserved in
the MBR became too small to address a complete hard drive. To handle this
issue, a new addressing scheme was developed that used the bits in the
head, cylinder and sector fields. This new scheme is called Logical Block
Addressing (LBA).

Let’s look at an example using the start of the partition offset 2, the sector,
and 3, the cylinder. The address of the starting sector is computed using the
offsets 2 and 3 from the partition table and a few bitwise operations.

Cylinder = (Offset(3) | ((Offset(2) & C0H) << 2);
Sector = Offset(2) & 3FH;
Start = Cylinder | Sector;

The address of the sector is computed by combining all 8 bits of the cylin
der contained in offset 3 with the upper 2 bits of the sector value. These 10
bits contain the upper 10 bits of the address of the sector. The lower 6 bits
of the sector in offset 2 contain the sector within the cylinder. The address
is the combination of the computed
cylinder and the computed sector.

Type

The type of the partition represents the file
system type. A few of the common types of
partitions are contained in Table 11-2.

End of partition

The next three bytes contain the end of the
partition in head, sector, cylinder format. The
logical block address (LBA) of the partition
end is computed using the same method as
the start of the partition.

Type Description

00H Empty

01H DOS 12 bit FAT

04H DOS 16 bits

05H Extended partition

82H Linux Swap

83H Linux Native

A5H BSD

B7H BSDI

B8H BSDI swap

Table 11-2

www.4electron.com

187 Chapter Eleven
System Startup

Distance from MBR

The next four bytes represent the LBA of the partition. The LBA is the sector
offset from the beginning of the disk to the beginning of the partition.

Length

The last four bytes contain the size of the partition in sectors.

Magic Number
The magic number is AA55H and is located at offset 1FEH. Whenever the
MBR is read, the magic number is read and tested to make sure the sector
read contains the value AA55H.

An Example
Let’s take a look at the first sector on my development machine. We’ll use
two utilities, dd and hexdump, to read and display the contents of sector 1
track 0, the MBR.

dd if=/dev/ad0s1a of=boot.bin count=1
1+0 records in
1+0 records out
512 bytes transferred in 0.026990 secs (18970 bytes/sec)
hexdump -C –v boot.bin
00000000 eb 3c 00 00 00 00 00 00 00 00 00 00 02 00 00 00 |.<..............|
00000010 00 00 00 00 00 00 00 00 12 00 02 00 00 00 00 00 |................|
00000020 00 00 00 00 00 16 1f 66 6a 00 51 50 06 53 31 c0 |.......fj.QP.S1.|
00000030 88 f0 50 6a 10 89 e5 e8 c7 00 8d 66 10 cb fc 31 |..Pj.......f...1|
00000040 c9 8e c1 8e d9 8e d1 bc 00 7c 89 e6 bf 00 07 fe |.........|......|
00000050 c5 f3 a5 be ee 7d 80 fa 80 72 2c b6 01 e8 67 00 |.....}...r,...g.|
00000060 b9 01 00 be be 8d b6 01 80 7c 04 a5 75 07 e3 19 |.........|..u...|
00000070 f6 04 80 75 14 83 c6 10 fe c6 80 fe 05 72 e9 49 |...u.........r.I|
00000080 e3 e1 be ac 7d eb 52 31 d2 89 16 00 09 b6 10 e8 |....}.R1........|
00000090 35 00 bb 00 90 8b 77 0a 01 de bf 00 b0 b9 00 ac |5.....w.........|
000000a0 29 f1 f3 a4 29 f9 30 c0 f3 aa e8 03 00 e9 60 13 |)...).0.......`.|
000000b0 fa e4 64 a8 02 75 fa b0 d1 e6 64 e4 64 a8 02 75 |..d..u....d.d..u|
000000c0 fa b0 df e6 60 fb c3 bb 00 8c 8b 44 08 8b 4c 0a |....`......D..L.|
000000d0 0e e8 53 ff 73 2a be a7 7d e8 1c 00 be b1 7d e8 |..S.s*..}.....}.|
000000e0 16 00 30 e4 cd 16 c7 06 72 04 34 12 ea 00 00 ff |..0.....r.4.....|
000000f0 ff bb 07 00 b4 0e cd 10 ac 84 c0 75 f4 b4 01 f9 |...........u....|
00000100 c3 52 b4 08 cd 13 88 f5 5a 72 f5 80 e1 3f 74 ed |.R......Zr...?t.|
00000110 fa 66 8b 46 08 52 66 0f b6 d9 66 31 d2 66 f7 f3 |.f.F.Rf...f1.f..|
00000120 88 eb 88 d5 43 30 d2 66 f7 f3 88 d7 5a 66 3d ff |....C0.f....Zf=.|
00000130 03 00 00 fb 77 44 86 c4 c0 c8 02 08 e8 40 91 88 |....wD.......@..|
00000140 fe 28 e0 8a 66 02 38 e0 72 02 88 e0 bf 05 00 c4 |.(..f.8.r.......|
00000150 5e 04 50 b4 02 cd 13 5b 73 0a 4f 74 1c 30 e4 cd |^.P....[s.Ot.0..|
00000160 13 93 eb eb 0f b6 c3 01 46 08 73 03 ff 46 0a d0 |........F.s..F..|
00000170 e3 00 5e 05 28 46 02 77 88 c3 2e f6 06 ba 08 80 |..^.(F.w........|
00000180 0f 84 79 ff bb aa 55 52 b4 41 cd 13 5a 0f 82 6f |..y...UR.A..Z..o|

www.4electron.com

188 Embedded FreeBSD
Cookbook

00000190 ff 81 fb 55 aa 0f 85 64 ff f6 c1 01 0f 84 5d ff |...U...d......].|
000001a0 89 ee b4 42 cd 13 c3 52 65 61 64 00 42 6f 6f 74 |...B...Read.Boot|
000001b0 00 20 65 72 72 6f 72 0d 0a 00 80 90 90 90 00 00 |. error.........|
000001c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 80 00 |................|

000001f0 01 00 a5 ff ff ff 00 00 00 00 50 c3 00 00 55 aa |..........P...U.|

We can see the last two bytes contain a valid magic number, AA55H. They
are reversed in the display because the x86 is little endian architecture and
hexdump is displaying the output in bytes, which reverses the order.

Let’s use a more focused version of the hexdump command to dump just the
bytes of the partition table.

hexdump -C –s 0x1be –v boot.bin

000001be 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

000001ce 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

000001de 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

000001ee 80 00 01 00 a5 ff ff ff 00 00 00 00 50 c3 00 00 |............P...|

We can see from the hexdump of the MBR on my machine, the last entry
in the partition table contains a FreeBSD partition which is active and is
the length of the complete disk. Let’s take a more detailed look at our boot
partition located at offset 1EEH.

Offset 0 shows this is the active partition, 80H, and offset 4 shows this is a
FreeBSD partition, A5H. Offsets 1, 2 and 3 give us the starting sector of this
partition in head, sector, cylinder format. This tells us that the partition starts
with the MBR. Offsets 5, 6 and 7 give us the ending sector of the partition in
head, sector and cylinder format. The values of FFH in all these fields denote
that the partition uses the whole disk. Offsets 8-B give us the distance from
the MBR to the beginning of the partition; this value is 0. Once again, denot
ing the partition begins with the MBR. The final four bytes of the partition
table contain the number of sectors in the partition.

Boot Slice
Now that we’ve identified the partition table, we’ll take a look at how Free-
BSD uses it. Within a disk partition, FreeBSD creates a slice, which is used
by FreeBSD to implement the traditional Unix filesystem of 8 partitions, a
through f. As you may have noticed, the term “partition” is used to repre
sent numerous things, which is why the term “slice” was brought into play.

www.4electron.com

189 Chapter Eleven
System Startup

Let’s define a few terms to
avoid confusion.

A slice is a section of a disk;
each disk contains at most
four slices. The slices are
defined by a table contained
in the MBR.

A partition is a section of a
slice. Each partition may
contain a file system or
swap space in FreeBSD.

Partition 2

Partition 3

Partition 4

Partition 1
(FreeBSD Slice)

Master Boot

A FreeBSD slice is
defined by the

MBR partition table.

a
b
c
d
e
f
g

h

Partition 1
(FreeBSD Slice)

The UNIX filesystem
partitions are then
implemented within
the FreeBSD slice.

Partition Table

Figure 11-2. Partition Table and Slice Unix Partitions
A Unix disk is divided into as many as 8 partitions. A partition represents a
separate entity on the disk. FreeBSD disks typically use 4 of the 8 available
partitions: the a partition is used for the root file system, the b partition is
used for the swap partition. The f partition contains the user partition, and
the e partition is used for the var filesystem. An important note is the c
partition, which historically is used to represent the whole disk.

We can look at the /etc/fstab file to see how the disk is partitioned.

/dev/ad0s1b none swap sw 0 0
/dev/ad0s1a / ufs rw 1 1
/dev/ad0s1f /usr ufs rw 2 2
/dev/ad0s1e /var ufs rw 2 2

This disk contains four partitions. The partition is denoted by the last letter
of the device name in column 1. Partition a contains the root file system, b
the swap partition, f the user partition and e the var partition.

PC BIOS
After turning on or resetting your computer program, execution begins with
generic code contained in the PC called the BIOS. The BIOS is the lowest level
software in a computer and provides an interface between the software and
the hardware. The BIOS (basic input/output system) has the task of initializ
ing the hardware, loading and running the boot loader contained in the MBR.

www.4electron.com

190 Embedded FreeBSD
Cookbook

The boot loader is a program that resides in the MBR and is loaded and run
by the BIOS. The BIOS loads it into memory and begins program execution.
The information contained in the MBR includes information to find the
boot loader on disk, a program to read the boot loader into memory and
begin execution.

Once a PC is powered on, the BIOS has a list of tasks to perform:

1. A series of tests are performed on existing hardware to ensure the
hardware is working properly.

2. Hardware resources are initialized and assigned.

3. Configured boot devices are searched for a valid boot sector.

4. The boot sector is loaded and control is transferred to the boot loader.

After the system boots, the BIOS reads the MBR into location 7C00H; the
last two bytes of that sector should contain the MBR magic number AA55H.
If the last two bytes are AA55H, control is passed to the boot loader routine;
otherwise the system stops.

FreeBSD Boot Loader
Once the BIOS loads the MBR into memory, the FreeBSD booting process
begins. It consists of three stages, each stage providing more features and
increasing in size. The first two stages are actually part of the same program
but are split into two due to space constraints. The third stage is an options
boot loader. Individual components of the boot process are located in the
/boot directory.

ls -l /boot
total 533
-r—r—r— 1 root wheel 512 Sep 18 13:28 boot0
-r—r—r— 1 root wheel 512 Sep 18 13:28 boot1
-r—r—r— 1 root wheel 7680 Sep 18 13:28 boot2
-r-xr-xr-x 1 root wheel 149504 Sep 18 13:28 cdboot
drwxr-xr-x 2 root wheel 512 Oct 24 16:52 defaults
-r-xr-xr-x 1 root wheel 147456 Sep 18 13:28 loader
-r—r—r— 1 root wheel 9237 Sep 18 13:28 loader.4th
-rw-r—r— 1 root wheel 67 Dec 16 16:51 loader.conf
-r—r—r— 1 root wheel 12064 Sep 18 13:28 loader.help
-r—r—r— 1 root wheel 338 Sep 18 13:28 loader.rc

www.4electron.com

191 Chapter Eleven
System Startup

-r—r—r— 1 root wheel 512 Sep 18 13:28 mbr
-r-xr-xr-x 1 root wheel 149504 Sep 18 13:28 pxeboot
-r—r—r— 1 root wheel 25121 Sep 18 13:28 support.4th

The source code that represents the FreeBSD boot stages resides in
/sys/i386/biosboot directory. For a dedicated FreeBSD system, the boot
code contained in the MBR resides in /boot/boot0. The source code for
boot0 resides in /sys/boot/i386. Let’s take a closer look at the boot stages.

boot1 and boot2
The first stage is loaded by the MBR to location

7C00H and is limited to 512 bytes. This first

boot copies itself to 10000H and loads the sec-

ond-stage boot into memory. The second-stage

boot resides in the first 15 sectors of the boot

slice, bringing the total of the first and second

boot to 16 sectors or 8K bytes. The first and

second stages of the boot process are actually

built together so boot1 knows exactly where

boot2 starts execution and calls that entrypoint.

Stage two consists of the boot2 program, which
understands how to read the FreeBSD file sys
tem so it can find the files necessary to boot and Figure 11-3. Boot Stages

provides a simple interface to the user to choose
the kernel or loader to run. The second stage loads the third stage loader
into memory before passing control to the third stage, /boot/loader. The
source code for boot1 and boot2 is found in /sys/boot/i386.

boot 1
(sector 0/0/1)

boot 2
(sector 0/0/2)

Stage 3
(sector 0/0/16)

Stage 3
Loader, /boot/loader, is started by the second-stage bootstrap loader. The
third-stage loader copies the kernel into memory and starts executing it.
The kernel is loaded from the FreeBSD file system so the third-stage loader
has the information to read the filesystem. Loader uses configuration files
contained in the /boot directory for load options and parameters. The files,
/boot/loader.conf, /boot/loader.rc are parsed for load options. The loader
copies the kernel image into memory and passes parameters to the kernel
via the stack.

www.4electron.com

192 Embedded FreeBSD
Cookbook

System Startup
After the kernel is loaded and the system starts up, the kernel creates a user
daemon to complete initialization call init, which is PID 1.

init
Once the kernel is loaded, control is passed to the init daemon. The init
daemon is responsible for transitioning through the different user-mode levels
and starting resources, file systems, networking daemons and configuration.
Init is responsible for making sure the file systems are consistent and starting
system daemons and initializing terminals for user login based on the
resource configuration files.

The resource configuration files are executed by a main Bourne Shell script,
/etc/rc. The rc script reads a series of files that contain system configuration
code. The rc file doesn’t need modifications; its behavior can be changed by
setting and clearing variables in the /etc/rc.conf and /etc/defaults/rc.conf files.
Let’s take a closer look at the compoents of the rc file that are relevant to the
DIO appliance.

Configuration

One of the first tasks of the init daemon is to read two files that contain
global configuration files for the system that enable and disable systems dae
mons started by init. The first file /etc/defaults/rc.conf is a global confiura
tion file and should not be changed. The second file /etc/rc.conf is a system
tuneable file. Variables may be set in /etc/rc.conf to override the values in
/etc/defaults/rc.conf.

If there is a global system configuration file, suck it in.

#

if [-r /etc/defaults/rc.conf]; then

. /etc/defaults/rc.conf
source_rc_confs

elif [-r /etc/rc.conf]; then
. /etc/rc.conf

fi

We see the rc file checks for the existence of the rc.conf files. If they exist,
they are read.

www.4electron.com

193 Chapter Eleven
System Startup

In Chapter 7 we modified the rc.conf to ensure the SSH daemon sshd was
started by rc.

System Settings

One of the configuration files is for system tuning. The sysctl utility is used
to tune FreeBSD kernel parameters in a running system. The rc script reads
the settings in /etc/rc.sysctl and executes these statements using sysctl.

Set sysctl variables as early as we can

if [-r /etc/rc.sysctl]; then

. /etc/rc.sysctl
fi

The sysctl utility is used for parameter tuning. In our case, since we’re boot
ing from a flash device, the number of writes must be limited. One of the
ways to do this is to disable swapping. Swapping is the method of moving
unused pages of memory to disk, to free memory for executing programs.
Because the DIO appliance is a dedicated system, swapping is not necessary.

Our rc.sysctl file contains the following line:

swap_enabled=0

Customization

One of the last tasks rc performs is to look for user-defined startup scripts.
The rc script searches a defined directory looking for files that end in the
suffix .sh. The local_startup variable is set by /etc/defaults/rc.conf, which
defines the local path to search. The default value is /usr/local/etc/rc.d.

For each valid dir in $local_startup, search for init scripts
matching *.sh

case ${local_startup} in
[Nn][Oo] | ‘’)

;;
*)

echo -n ‘Local package initialization:’
slist=””

www.4electron.com

194 Embedded FreeBSD
Cookbook

for dir in ${local_startup}; do
if [-d “${dir}”]; then

for script in ${dir}/*.sh; do
slist=”${slist}${script_name_sep}${script}”

done
fi

done

script_save_sep=”$IFS”

IFS=”${script_name_sep}”

for script in ${slist}; do

if [-x “${script}”]; then

(set -T

trap ‘exit 1’ 2

${script} start)

fi

done

IFS=”${script_save_sep}”

echo ‘.’

;;

esac

Starting DIO Components
Up to this point, we’ve discussed the FreeBSD boot process. In order for the
DIO appliances to run correctly, the components developed in the previous
chapters must be loaded and started. From the previous section we’ve dis
covered that the rc script looks in /usr/local/etc/rc.d for scripts that have the
suffix .sh and runs those at system start. Let’s take a look:

-r-xr-xr-x 1 root wheel 504 Dec 10 07:39 tomcat.sh

We’ll create a file, dio.sh, and put it in /etc/local/etc. All local scripts contain
the same format. Each script is a Bourne Shell script.

The dio.sh Script
In addition to the standard system daemons, the DIO appliance will load
the copymem system call, the DIO device driver, and start the diod
daemon. In order to accomplish this, we’ve added a script, diosh, to the
/usr/local/etc/rc.d directory. Let’s take a look at the code.

www.4electron.com

195 Chapter Eleven
System Startup

#!/bin/sh

case “$1” in
start)

if [-f /modules/copymem.ko]; then
kldload copymem.ko

fi

if [-f /modules/dio.ko]; then

kldload dio.ko

fi

if [-f /usr/local/dio/bin/diod]; then

/usr/local/dio/bin/diod > /dev/null && echo ‘ diod’
ps -agx | grep “/usr/local/dio/bin/diod” | awk ‘{

print $1 }’ > /var/run/diod.pid
fi
;;

stop)

kill -9 `cat /var/run/diod.pid`

;;

*)

echo “”

echo “Usage: `basename $0` { start | stop }”

echo “”

exit 64

;;

esac

The first line starts the Bourne Shell. The dio.sh script is called with a
parameter start, during system startup, or stop, during system shutdown.

During system startup, the dio.sh script performs three tasks. First, if the
copymem module exists, it loads it using the KLD loader. Next, if the DIO
device driver exists, then it also loads it using the KLD loader. Finally, if the
diod daemon exists, it is started. Once the diod daemon is started, the PID
of the diod daemon is saved in /var/run/diod.pid. It is common practice to
save the PID of a daemon in the /var/run directory so the daemon can be
killed on system shutdown.

The next case is for system shutdown. During system shutdown the diod
daemon is killed. The PID is retrieved from the /var/run/diod.pid file created
during system initialization.

www.4electron.com

196 Embedded FreeBSD
Cookbook

Summary
In this chapter we’ve taken a look at the PC booting process and the stages
of booting FreeBSD, and we’ve added the DIO components developed in
previous chapters to the FreeBSD system startup. Our system will now be
started automatically and be ready for use after each reboot. Now, on to the
next chapter where all the pieces will be tied together and built into a
CompactFlash device.

www.4electron.com

197 CHAPTER TWELVE 12

The CompactFlash Boot Device

Overview
This chapter focuses on creating a boot device from a solid-state device,
specifically, the Sandisk 32MB CompactFlash device. Solid-state devices
provide increased stability due to the lack of moving parts. However, due
to the limited disk space and write capacity, some basic system-level issues
need to be addressed, such as limiting writes to the CompactFlash boot
device, not using swap space, and running with memory file systems.

Specific topics that will be covered in this chapter include

• Solid-state devices

• Installing and verifying the TARC CompactFlash Adapter

• Configuring the CompactFlash device

• CompactFlash system startup issues

Solid-state Devices
A CompactFlash device is a nonvolatile solid-state device used for storage.
To the FreeBSD kernel, a CompactFlash device appears as an IDE disk drive.
An important consideration for using solid-state devices is that each sector
has a limited write capacity. For this reason an embedded system typically
uses the CompactFlash device to boot the system, and then the system
executes out of a memory file system. Also, there is no swap partition
configured on a CompactFlash device.

www.4electron.com

198 Embedded FreeBSD
Cookbook

Installing the TARC CompactFlash Adapter
In order to use a CompactFlash device as a FreeBSD boot device, the DIO
appliance must have a CompactFlash adapter. The Tucson Amateur Radio
Club (TARC) distributes such an adapter. More information on this adapter
can be found at http://www.tapr.org. The TARC CompactFlash adapter
allows any Type I or Type II Compact Flash device to be used as a standard
IDE drive.

The TARC CompactFlash adapter uses an IDE connection, a standard 3.5"
floppy driver power connector and a CompactFlash device. During develop
ment, I chose to connect the CompactFlash adapter as the primary slave
device, as this configuration allows a simple configuration and test setup.
Once the development life cycle is complete, the Compact Flash boot
adapter will be configured as the primary boot device.

Before making any connections, be sure to shut down and power off your
system. After the IDE connection is complete, connect the 3.5-inch power
connector to the TARC CompactFlash adapter. Once the power and IDE
connections are complete, install the CompactFlash memory into the
TARC adapter.

Once the physical installation is complete, we’ll verify that the CompactFlash
has been installed and is working properly. Since the CompactFlash device
appears as a standard IDE device, FreeBSD should recognize the device
using a standard kernel. We can verify this by using the dmesg command
and looking at the output of the probed devices during system startup.

dmesg

[selected output]
ata0-master: DMA limited to UDMA33, non-ATA66 compliant cable
ad0: 12419MB <ST313021A> [25232/16/63] at ata0-master UDMA33
ad2: 30MB <SunDisk SDCFB-32> [490/4/32] at ata1-master PIO1
acd0: CDROM <CD-912E/ATK> at ata0-slave using PIO3

Looking at the selected output, we can see the CompactFlash is detected and
present at device ad2. Now that we have successfully installed the
CompactFlash adapter, we’ll look at configuring the device and loading our
DIO appliance software.

www.4electron.com

199 Chapter Twelve
The CompactFlash Boot Device

Configuring the CompactFlash Device
Configuring the CompactFlash device is similar to configuring any other
boot device for FreeBSD. The development hardware we’re using has the
development disk installed as the primary master device (ad0) and the
CompactFlash installed as the secondary master device (ad2).

To create the initial configuration for the CompactFlash device, we’ll use the
standard tools for creating a FreeBSD installation. Because the CompactFlash
device appears as an IDE disk, all the tools run normally. For our first task,
we will partition and format the CompactFlash device so we can load the DIO
appliance software. To get started, change directory to the /stand directory
and run sysinstall.

cd /stand
./sysinstall

Partitioning the CompactFlash Device
After starting sysinstall, choose custom from the installation menu, then
choose partition. Sysinstall will ask you to select the drive to partition.
Select ad2, the CompactFlash device.

In the partition menu, delete any existing partitions using the d option.
After all the existing partitions are deleted, create a new partition using the
c option. The size of the partition should be the default size, 62720 sectors,
and the type should be 165, a FreeBSD partition. After creating a partition,
choose the w option to write this to the flash device. When you are prompted,
if you are absolutely sure, choose [Yes].

After choosing to write the partition information to the CompactFlash, you
then will be prompted to install the boot manager. You should choose the
FreeBSD Boot Manager. The CompactFlash device is now partitioned. You
can exit from the partition menu by choosing the q option.

Creating the Disklabel
The next step is to create a disklabel in the existing partition. Select the label
options from the sysinstall menu. In the label menu, create a partition that will
be mounted as the root partition, /, that consists of the entire space available.

www.4electron.com

32

200 Embedded FreeBSD
Cookbook

/dev/ad2s1a / 30MB UFS

Once this is complete, write it out to the CompactFlash device. You may
exit the sysinstall utility. Typically a FreeBSD installation uses multiple
partitions, such as root and swap and var. However, since the DIO appliance
does not use swap or the var filesystem, those partitions are not necessary.

Formatting the File System
The CompactFlash is now almost ready for prime time. The next step is to
format the file system, accomplished using the newfs command.

newfs /dev/ad2s1a
Warning: 2848 sector(s) in last cylinder unallocated
/dev/ad2s1a: 62688 sectors in 16 cylinders of 1 tracks, 4096
sectors

30.6MB in 1 cyl groups (16 c/g, 32.00MB/g, 7616 i/g)
super-block backups (for fsck -b #) at:

Upon completion of the newfs command, the CompactFlash device can be
mounted. Once the mount is completed, files can be copied and the system
boot testing can begin.

Mounting the File System
With the CompactFlash partitioned and file system formatted, the Compact-
Flash can now be mounted. Mounting the device is accomplished using the
mount command.

mount /dev/ad2s1a /flash

After mounting the device, we can verify that it is properly mounted by
displaying the file system using the df command.

df /flash
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad2s1a 30359 1 27930 0% /flash

Using the output of df we can see that the CompactFlash device, /dev/ad2s1a,
is mounted on /flash and contains just under 30 MB of disk capacity.

www.4electron.com

201 Chapter Twelve
The CompactFlash Boot Device

Copying the Files to the Boot Device
We’ve now come to the final step of creating the boot device. The Compact-
Flash is partitioned, formatted and mounted, and it’s time to copy the files
from our development disk to the CompactFlash device. Creating a system
image for an embedded device is somewhat of a “black art.” There are a
variety of ways to determine the components of your embedded system. I’ll
briefly describe two methods here to be used as a guideline for creating your
final image. Whether you use these methods or create your own method, no
amount of experience can circumvent the often unheralded and underappre-
ciated—but extremely critical, particularly for an embedded system project—
step of creating the final image. No amount of preparation can replace the
time-consuming process of iteration and testing.

The Iterative Approach
Our system is configured so that we can iterate and test the CompactFlash
device. Copy the required files to the flash disk. Once you’re ready to test the
CompactFlash device, type the space bar at the boot prompt and enter ad(2,a).
This causes a boot from the CompactFlash device. If there are files missing,
reboot the system normally, make the necessary changes and try again.

The Installation Approach
Another way to develop your release image is to install FreeBSD in a con
ventional manner to a hard drive, add your application software and then
verify your system is working as expected. Then pare your system to the size
required by your boot device. After paring down and testing your system as
required, dd the entire filesystem to be transferred to your boot device.

Startup Configuration
Much of the diskless boot is handled by the rc.diskless2 script. Control
of a diskless FreeBSD system is handled by /etc/rc.diskless2. In order for
rc.diskless2 to be invoked, the following line must be added to /etc/rc.conf:

diskless_mount=/etc/rc.diskless2

Let’s take a look at the rc.diskless2 script in Listing 12-1.

www.4electron.com

202 Embedded FreeBSD
Cookbook

Copyright (c) 1999 Matt Dillon
All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS
IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

$FreeBSD: src/etc/rc.diskless2,v 1.5.2.8 2001/07/24 09:49:37 dd
Exp $

rc.diskless2

Provide a function for normalizing the mounting of memory
filesystems. This should allow the rest of the code here to
remain as close as possible between 5-current and 4-stable.
$1 = size
$2 = mount point
$3 = md unit number (ignored in pre 5.0 systems)
$4 = (optional) bytes-per-inode
mount_md() {

if [-n “$4”]; then

www.4electron.com

203 Chapter Twelve
The CompactFlash Boot Device

bpi=”-i $4”

fi

/sbin/mount_mfs -s $1 -T qp120at $bpi dummy $2

}

If there is a global system configuration file, suck it in.

#

if [-r /etc/defaults/rc.conf]; then

. /etc/defaults/rc.conf
source_rc_confs

elif [-r /etc/rc.conf]; then
. /etc/rc.conf

fi

echo “+++ mfs_mount of /var”
mount_md ${varsize:=65536} /var 1

echo “+++ populate /var using /etc/mtree/BSD.var.dist”
/usr/sbin/mtree -deU -f /etc/mtree/BSD.var.dist -p /var

echo “+++ create log files based on the contents of /etc/newsys
log.conf”

LOGFILES=`/usr/bin/awk ‘$1 != “#” { printf “%s “, $1 } ‘
/etc/newsyslog.conf`
if [-n “$LOGFILES”]; then

/usr/bin/touch $LOGFILES
fi

mount -a # chown and chgrp are in /usr

#

XXX make sure to create one dir for each printer as requested

#by lpd

#

If /tmp is a symlink, assume it points to somewhere writable,

like /var/tmp, otherwise, use a small memory filesystem for

/tmp.

if [! -h /tmp]; then

mount_md ${tmpsize:=20480} /tmp 2
fi

extract a list of device entries, then copy them to a writable
fs

www.4electron.com

204 Embedded FreeBSD
Cookbook

(cd /; find -x dev | cpio -o -H newc) > /tmp/dev.tmp
mount_md 4096 /dev 3 512
(cd /; cpio -i -H newc -d < /tmp/dev.tmp)

Listing 12-1

Listing 12-1 shows the code for the rc.diskless2 scripts provided with the
FreeBSD 4.4 release. This script handles booting a diskless system and
handles the special requirements for that type of system.

First, rc.diskless2 reads in the global configuration rc.conf files. Next the
/var directory is mounted with a default size of 65536 sectors. Following the
creating of var in memory, the directory structure for var is created by the
mtree command and necessary log files are created based on the contents of
/etc/newsyslog.conf. With the var file system created and the necessary log
files created, the file systems can be mounted via the mount command.
Next, the /tmp directory is created in memory with a default size of 20480
sectors. Finally the /dev is created in memory and then populated.

As you can see, many of the details of booting a diskless system are handled
by the rc.diskless2 script. With a few custom modifications, our system will
be ready for prime time. Let’s take a closer look at some of the settings.

Configuring Read-only File Systems
The /var directory is used for many temporary files and log files. Once you
have configured your system to run rc.diskless2 system, the /var directory
will be mounted as a memory file system. One of the parameters contained
in the rc.diskless2 script is varsize. The varsize variable represents the size,
in sectors, for the /var directory. The default is 65536, larger than available
memory. We’ll set varsize to a value that better represents the requirements
of the DIO appliance.

varsize=8192

As with the /var directory, the /tmp directory is created by the rc.diskless2
script. The default size is 10480 sectors. We’ll set this to 8192 sectors, as
this value better represents the DIO appliance’s requirement. The size of the
tmp directory is controlled by the tmpsize variable.

www.4electron.com

205 Chapter Twelve
The CompactFlash Boot Device

tmpsize=8192

With the /var and /tmp directories created in memory, we can now change
the mounting of the root directory to read-only. Changing the mounting
options for the root directory requires a modification to the /etc/fstab file.

/dev/ad2s1a / ufs ro 1 1

Mounting the root partition, /, as read only ensures that the DIO appliance
application does not write to the CompactFlash device.

Summary
This chapter presents the details of creating a FreeBSD image that boots
from CompactFlash. Using CompactFlash as a boot device makes the process
of creating a boot image easier because the kernel does not need any special
device drivers or configuration options. The CompactFlash device in conjunc
tion with the TAPR CompactFlash adapter appears as an IDE disk. Depending
on the application and product, there are other devices available as boot
devices, such as PCCard memory and M Systems’s DiskOnChip memory.
These devices can be used with FreeBSD, but require more configuration steps.

The development of our DIO is now complete, and you should be comfort
able using FreeBSD’s many powerful features. In summary, let’s take a look at
a few other embedded appliances that use FreeBSD as the core embedded
operating system.

The AMI StorTrends NAS is a networked attached-storage device that uses
FreeBSD as its embedded operating system. The StorTrends NAS boots from
a Flash device and provides access to storage via SMB/CIFS or NFS. Among
other features are TCP/IP, DHCP, DNS, NTP, SMTP and SNMP connectivity
and configuration. The StorTrends NAS is managed and configured remotely
via a web browser.

The IBM InterJet II is another network appliance that uses FreeBSD as its
embedded operating system. The InterJet II is a small network appliance
whose features include: e-mail server, Apache, Firewall, FTP, DNS and
DHCP services. Like the StorTrends NAS, the InterJet II is configured and
managed using a web connection and web browser.

www.4electron.com

206 Embedded FreeBSD
Cookbook

Juniper Networks develops cable IP services and systems. FreeBSD provides
the foundation for their development of a next-generation routing architec
ture, as FreeBSD has the ability to scale and support the tremendous growth
projections for the Internet.

These commercial products demonstrate the rich features and flexibility of
FreeBSD for use with embedded applications.

www.4electron.com

207 APPENDIX AA

The FreeBSD License
Copyright 1994-2002 FreeBSD, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modifi
cation, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT ``AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE FREEBSD PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are
those of the authors and should not be interpreted as representing official
policies, either expressed or implied, of the FreeBSD Project or FreeBSD, Inc.

www.4electron.com

www.4electron.com

209 APPENDIX BB

PCI Configuration

This chapter provides a description of the PCI bus and the PCI configura
tion registers. The PCI-DIO24 Digital IO card is a PCI bus data acquisition
controller. In order for the FreeBSD DIO device driver to correctly detect
the presence of the PCI-DIO24 controller, the device driver must read the
PCI configuration registers. Access to the PCI configuration registers is con
veniently hidden from the FreeBSD device driver writer though the use of
the PCI kernel subsystem.

The PCI Bus
PCI is an acronym for Peripheral Component Interconnect. The PCI bus speci
fication defines a system interconnect for computer components that require fast
access to each other and/or system memory. A typical PCI device consists of a
PCI interface controller on a PCI expansion card. Examples of PCI expansion
cards are network controllers, display adapters, SCSI controllers and Fibre
Channel host bus adapters. One benefit of the PCI specification is its vendor and
platform independence. PCI buses are found in Intel, Apple and Sun computers.

The PCI Bus specification is managed by the PCI Special Interest Group
(PCI-SIG). For information regarding the PCI Specification contact:

PCI Special Interest Group (PCI-SIG)
5440 SW Westgate Dr., #217
Portland, OR 97221
Phone: 503-291-2569
FAX: 503-297-1090
administration@pcisig.com

www.4electron.com

210 Embedded FreeBSD
Cookbook

PCI Configuration Registers
This section provides a description of the PCI device configuration header
and PCI configuration registers. Any functional PCI device contains a block
of 64 double words called the PCI configuration header. The first 16 double
words are defined by the PCI specification and are known as the configura
tion header region.

The PCI configuration header region can be in two formats known as type 0
or type 1. Header type 1 is used for PCI-to-PCI bridges. Header type 0 is
for all other devices. Figure B-1 illustrates the format of type 0 PCI device
configuration registers.

Offset Byte3 Byte2 Byte1 Byte0

0 Device ID Vendor ID

4 Status Register Command Register

8 Class Code Revision ID

12 BIST Header Type Latency Timer Cache Line Size

16 Base Address 0

20 Base Address 1

24 Base Address 2

28 Base Address 3

32 Base Address 4

36 Base Address 5

40 Card CIS Pointer

44 Subsystem ID Subsystem Vendor ID

48 Expansion ROM Base Address

54 Reserved

56 Reserved

60 Max Latency Min Grant Interrupt Pin Interrupt Line

Figure B-1. PCI Configuration Header

www.4electron.com

211 Appendix B
PCI

The subsequent sections describe each mandatory PCI configuration register
that is implemented by all PCI devices. The most notable for device driver
writers are the vendor ID and device ID registers. These registers are used to
determine if the physical device is installed in the system.

Vendor ID Register
The Vendor ID Register is a 16-bit register that contains a unique value iden
tifying the device manufacturer. Every PCI manufacturer registers with the
PCI SIG to obtain a unique Vendor ID. The Measurement Computing
Vendor ID is hexadecimal 1307.

Device ID Register
The Device ID register is a 16-bit register that contains a unique value,
defined by the manufacturer, for this PCI device. The PCI-DIO24 Device ID
is hexadecimal 28.

Command Register
The command register is a 16-bit register that provides control over the
device’s ability to respond to PCI accesses. Currently only bits 0:9 are defined.
Each of the defined bits represents a capability. The PCI designer sets the
bits that are implemented by the device. The bits are defined as follows:

Bit Function

0 IO Access Enable

1 Memory Access Enable

2 Master Enable

3 Special Cycle Recognition

4 Memory Write and Invalidate Enable

5 VGA Palette Snoop Enable

6 Parity Error Response

7 Wait Cycle Enable

8 System Error Enable

9 Fast Back-to-Back Enable

10:15 Reserved

www.4electron.com

212 Embedded FreeBSD
Cookbook

Status Register
The Status Register is a 16-bit register that provides the device status.
The bits are defined in the status register as follows:

Bit Function

0:4 Reserved

5 66 MHz Capable

6 UDF Supported

7 Fast Back-to-Back Capable

8 Data Parity Reported

9:10 Device Select

11 Signaled Target Abort

12 Received Target Abort

13 Received Master Abort

14 Signaled System Error

15 Detected Parity Error

Revision ID
The revision ID register contains an 8-bit value assigned by the manufac
turer that contains the device revision number.

Class Code
The class code register is a 24-bit register that defines the base class, sub
class and programming interface.

0:7 8:15 16:23

Sub-Class Code Class CodeProgramming interface

The class code, sub-class code and programming interface are defined by
the PCI Interface specification.

Cache Line Size
The cache line size register is an 8-bit register that defines the system cache
line size in double word increments.

www.4electron.com

213 Appendix B
PCI

Latency Timer
The latency time is an 8-bit register that defines the minimum amount of
time, in PCI clock cycles, that the bus master can retain ownership of the bus.

Header Type
The header type register is an 8-bit register that defines the type of device.
Bit 7 is set to 0 or 1, defining single function or multi function.

BIST
The BIST register is an 8-bit register that can be used for PCI devices that
implement Built In Self Test (BIST).

Base Address Registers
The base address registers are 32-bit registers used to determine the PCI
memory mapped and IO spaces used by the device. A PCI device may have
up to 6 base address registers that are used to utilize memory mapped or IO
address space.

CardBus CIS Pointer
The CardBus CIS Pointer Register is a 32-bit register implemented by
devices that share silicon between the cardbus and PCI bus.

Subsystem Vendor ID
The subsystem vendor ID is a 16-bit register used to uniquely identify an
add-in card. The subsystem vendor ID is obtained from the PCI-SIG.

Subsystem ID
The subsystem ID is a 16-bit register used to define additional features for a
PCI device. The subsystem ID is defined by the vendor.

Expansion ROM Address
For devices that that contain power-on self test (POST) code, BIOS and
interrupt service routines, the Expansion ROM address register is a 32-bit
register that contains the starting address and size of the ROM code.

www.4electron.com

214 Embedded FreeBSD
Cookbook

Maximum Latency
The maximum latency register is an 8-bit register that specifies how often
the device needs to access the PCI bus.

Minimum Grant
The minimum grant register is an 8-bit register that defines how long the
master would like to retain PCI bus ownership whenever it initiates a trans
action.

Interrupt PIN
The interrupt pin register is an 8-bit register that defines which of the 4 PCI
interrupt request pins the PCI device is connected to.

Interrupt Line
The interrupt line register is an 8-bit register used to identify which of the
system interrupt lines on the system interrupt controller the PCI device
interrupt is routed on.

www.4electron.com

215 CAPPENDIX C

Kernel Loadable Modules

Overview
One of the features of FreeBSD is a dynamic kernel linker that provides
system engineers and system administrators with the capability to load and
unload drivers and system calls in a running system. This appendix provides
the necessary background information for writing kernel loadable modules
(KLDs). In addition to covering the details of the different types of FreeBSD
KLDs, at the completion of this appendix you will have skeleton code that
can be used for your own KLDs.

In this chapter we will cover

• The core components of a KLD

• System calls as KLD

• Device drivers as KLD

• KLD commands

Kernel Loadable Modules
Every KLD contains three core components: the Makefile, which provides a
simple environment to build a KLD and provides the developer with a rapid
prototype and build environment; the load handler function, which provides
the entry points for the load, unload and system shutdown behavior for the
KLD and the module data structure; and the module data structure, which
contains the name and entry point of the load function.

When a new KLD is loaded into a running system, dynamic load execution
of the KLD starts based on the entry point in the module data structure.

www.4electron.com

216 Embedded FreeBSD
Cookbook

Makefile
Building a KLD is a straightforward process and the details of KLD building are
provided in a system-includable makefile located in /usr/share/mk/bsd.kmod.mk.
Your makefile declares the source files that consist of the KLD in the make-
file variable SRCS and declares the name of the KLD in the variable KMOD
by including the system makefile in the /usr/share/mk directory; the rest of
the details are handled for you. Listed below is a sample makefile for a
skeleton KLD.

SRCS=kld_generic.c
KMOD=kld_generic

.include <bsd.kmod.mk>

After the declaration of the SRCS and KMOD variables, a standard KLD
makefile includes the KMOD makefile template, bsd.kmod.mk.

The Load Handler Function
The load handler function is called by the kernel dynamic linker when a
module is loaded or unloaded or the system is shut down. The function pro
totype for the load handler function is defined in /usr/include/sys/module.h

typedef int (*modeventhand_t)(module_t mod, int
/*modeventtype_t*/ what, void *arg);

The load handler function takes three arguments: a module, the event and a
user-defined argument.

static int load_handler(struct module *m, int cmd, void* arg)
{

int stat = 0;

switch(cmd)
{
case MOD_LOAD:

break;

case MOD_UNLOAD:

break;

www.4electron.com

217 Appendix C
Kernel Loadable Modules

case MOD_SHUTDOWN:

break;

default:
stat = EINVAL;

}

return(stat);
}

The module pointer is a linked list of currently loaded modules and contains
information relevant to loaded modules. Commands are defined by the
modeventtype defined in /usr/include/sys/module.h. The cmd argument
represents the reason why the load handler is being called. There are three
conditions under which a KLD load handler is called.

typedef enum modeventtype {
MOD_LOAD,
MOD_UNLOAD,
MOD_SHUTDOWN

} modeventtype_t;

Command Description

MOD_LOAD The KLD is being loaded

MOD_UNLOAD The KLD is being unloaded

MOD_SHUTDOWN The system is shutting down

The last argument is a user-defined parameter. The arg parameter represents
a void pointer that can be used by the KLD developer to pass information
into the KLD.

The moduledata_t Structure
The moduledata_t structure contains the data to interface to the dynamic
kernel loader. There are three elements in the moduledata_t stucture.

www.4electron.com

218 Embedded FreeBSD
Cookbook

typedef struct moduledata {
char *name; /* module name */
modeventhand_t evhand; /* event handler */
void *priv; /* extra data */

} moduledata_t;

The name is a string used by the kernel linker for this module. The load
handler function was discussed in the previous section and contains the
KLD load function. The last element is a pointer used to pass user-defined
data to the load handler.

static moduledata_t kld_generic_module =
{

“kld_generic”, /* KLD name
*/

load_handler, /* event handler
*/

NULL, /* private data passed to event
handler */
};

The DECLARE_MODULE Macro
The core pieces of a KLD are all united by the DECLARE_MODULE macro.
DECLARE_MODULE takes four parameters. The first parameter represents a
unique name for the kernel module. The second parameter is data for the
type of load modules; the third argument is a subsystem type and the final
parameter signifies load order.

#define DECLARE_MODULE(name, data, sub, order) \
SYSINIT(name##module, sub, order, module_register_init,

&data) \
struct __hack

The listing below contains a sample declaration for our generic module.

DECLARE_MODULE(kld_generic, kld_generic_module, SI_SUB_KLD,
SI_ORDER_ANY);

The first parameter is a generic name for the KLD, kld_generic. The second
argument contains the KLD defined modeuledata_t structure. The third argu
ment is a system type. System types are defined in /usr/include/sys/kernel.h.
The final argument contains the load order of the KLD, SI_ORDER_ANY.

www.4electron.com

219 Appendix C
Kernel Loadable Modules

The DECLARE_MODULE has individual invocations based on the type of
KLD being developed—system call or device driver. The next sections will
look at each of the different invocations of the DECLARE_MODULE macro.

System Calls
System calls are a specific type of KLD module. This section describes addi
tional components necessary for a KLD system call.

The System Call Function
A system call KLD contains the system call function, which contains two
parameters, the proc structure and the system call arguments. A sample
prototype is listed below.

typedef int sy_call_t __P((struct proc *, void *));

The first argument to a system call is always the proc structure. The second
argument is a user-defined structure that represents the system call parameters.

An example system call, kld_syscall, is listed below.

static int

kld_syscall (struct proc *p, void *arg)

{

uprintf(“KLD System Call\n”);
return(0);

}

The first argument to kld_syscall is the proc structure, which represents the
current state of the calling process and. is defined in /usr/include/sys/proc.h.
The second argument contains the parameters to the system call. For the
kld_syscall example there are none.

The sysent Structure
Each system call contains a sysent entry in the kernel global sysent table.
The sysent struct takes two elements. The first element is the number of
parameters passed to the system call, and the second element is a function
pointer to the system call.

www.4electron.com

220 Embedded FreeBSD
Cookbook

struct sysent { /* system call table */
int sy_narg; /* number of arguments */
sy_call_t *sy_call; /* implementing function */

};

static struct sysent kld_syscall_sysent =
{

0, /* number of arguments
*/

kld_syscall /* system call function pointer
*/
};

The KLD system call creates a sysent structure to be insterted in the kernel
global sysent table.

The offset Variable
The FreeBSD kernel contains a table of all system calls. Each KLD system call
defines a static global variable offset that represents the system call number.
The system call number value represents the index into the kernel global
sysent table for that system call. A KLD system call assigns the offset value to
NOS_SYCALL. When the system call is loaded, the kernel linker finds the
first available slot in the sysent table and assigns the system call to that slot.

#define NO_SYSCALL (-1)

static int offset = NO_SYSCALL;

The SYSCALL_MODULE Macro
The SYSCALL_MODULE macro is the KLD system call version of the previ
ously defined DECLARE_MODULE macro. The SYSCALL_MODULE macro
is defined in /usr/include/sus/sysent.h and contains five arguments.

#define SYSCALL_MODULE(name, offset, new_sysent, evh, arg) \
static struct syscall_module_data name##_syscall_mod = { \

evh, arg, offset, new_sysent
\
};
\

www.4electron.com

221 Appendix C
Kernel Loadable Modules

The first argument is the generic name for this system call. The second
parameter is the offset representing the system call number. The third
parameter contains the sysent entry to be added to the kernel global sysent
structure. The fourth parameter is the system call load handler function. The
final parameter is a user-defined parameter to be passed to the system call
loaded handler in parameter four.

You may have noticed that the system call example we’ve developed doesn’t
contain a moduledata_t structure. Further analysis of the SYSCALL_MODULE
macro shows that the moduledata_t structure is generated by the
SYSCALL_MODULE declaration.

For our sample KLD system call the declaration takes the following form:.

SYSCALL_MODULE(kld_syscall, &offset, &kld_syscall_sysent,
load_handler, NULL);

Device Drivers
The dynamic kernel linker provides support for the dynamic load and
unload device drivers. This section covers the required components for a
KLD device driver.

The cdevsw Structure
Every device driver contains a device switch entry. The device switch table is
defined in /usr/include/conf.h and it contains the device handler functions,
device major number and flags.

struct cdevsw {
d_open_t *d_open;
d_close_t *d_close;
d_read_t *d_read;
d_write_t *d_write;
d_ioctl_t *d_ioctl;
d_poll_t *d_poll;
d_mmap_t *d_mmap;
d_strategy_t *d_strategy;
const char *d_name; /* base device name, e.g. ‘vn’ */
int d_maj;

www.4electron.com

222 Embedded FreeBSD
Cookbook

d_dump_t *d_dump;
d_psize_t *d_psize;
u_int d_flags;
int d_bmaj;
/* additions below are not binary compatible with 4.2
/*and below */
d_kqfilter_t *d_kqfilter;

};

Before declaring a cdevsw entry for the KLD device driver, a little back
ground work is required. Let’s take at look at these steps before the cdevsw
entry is declared.

The first component of a KLD device driver is the device switch table entry.
A KLD driver contains driver handler functions for open, close, read and
write. Each function is forward declared so it can be listed in the device
switch table.

d_open_t kld_open;
d_close_t kld_close;
d_read_t kld_read;
d_write_t kld_write;

Before creating the device switch table, a device major number is required.
The file /sys/conf/majors contains the defined major device numbers.
Numbers 32 through 38 are predefined for KLD device drivers; 35 is a
reasonable value for development.

#define KLD_DRIVER_MAJOR 35

Now with the required components for the device switch table defined, we
can declare the KLD driver cdevsw switch entry. An example cdevsw entry is
listed below.

static struct cdevsw kld_cdevsw =
{

kld_open, /* open function */
kld_close, /* close function */
kld_read, /* read function */
kld_write, /* write function */
noioctl, /* ioctl function */

www.4electron.com

223 Appendix C
Kernel Loadable Modules

nopoll, /* poll function */
nommap, /* mmap function */
nostrategy, /* strategy function */
“kld_driver”, /* driver name */
KLD_DRIVER_MAJOR, /* major number */
nodump, /* dump function */
nopsize, /* psize function */
D_TTY, /* driver flags */
-1 /* block major number */

};

The dev_t Variable
In addition to the cdevsw entry, each KLD driver must also declare a dev_t
variable, the device type. The dev_t variable holds the dev_t for the driver
load entry. The dev_t value is required to destroy the driver on module
unload. Each dev_t variable is statically defined in the driver source file.

static dev_t kld_dev;

The Driver load_handler Function
The KLD driver load handler requires additional steps compared to a generic
load handler. During KLD driver load a device must be created. The device
is a handle used by the call to make_dev during driver load. Consequently,
when the module is unloaded the driver must be destroyed.

static int load_handler(struct module *m, int cmd, void* arg)
{

int stat = 0;

switch(cmd)
{
case MOD_LOAD:

/*
** make_dev creates a dev_t structure for a new device
*/

kld_dev = make_dev(&kld_cdevsw,/* device switch table

*/
0, /* minor number for this device

*/
UID_ROOT, /* user device owner */

www.4electron.com

224 Embedded FreeBSD
Cookbook

GID_WHEEL, /* group device owner */
0600, /* device permissions */
“klddriver”); /* device name */

break;

case MOD_UNLOAD:

/*

** destroy device registration on module unload

*/

destroy_dev(kld_dev);

break;

case MOD_SHUTDOWN:

break;

default:
stat = EINVAL;

}

return(stat);
}

The DEV_MODULE Macro
A KLD device driver declares a DEV_MODULE macro which is defined in
the /usr/include/sys/conf.h and contains three arguments.

The first argument is the device name. The second argument is the load
handler, and the last argument is a user-defined parameter passed to the
load handler.

#define DEV_MODULE(name, evh, arg) \
static moduledata_t name##_mod = { \

#name, \
evh, \
arg \

}; \
DECLARE_MODULE(name, name##_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE)

As with the system call KLD the DEV_MODULE macro declares the module-
data_t structure used by the KLD.

www.4electron.com

225 Appendix C
Kernel Loadable Modules

Our example declaration for the KLD sample device driver is as follows:

DEV_MODULE(kld_driver_sample, load_handler, NULL);

The Driver Functions
Now that the required KLD components are defined, the remainder of driver
development consists of implementing the driver handler functions. This
generic KLD device driver just contains print statements in each function.
The functions are listed below.

The open Function
The open function is called when an application calls the open system call
for the driver device note.

int kld_open(dev_t dev, int oflags, int devtype, struct proc *p)
{

uprintf(“kld driver: open\n”);
return (0);

}

The close Function
The close function is called when the last open handle to the device driver
is closed.

int kld_close(dev_t dev, int fflag, int devtype, struct proc *p)
{

uprintf(“kld driver: close\n”);
return (0);

}

The read Function
The read driver function is called when an application calls the read system
call with an open file handle to the device driver.

int kld_read(dev_t dev, struct uio *uio, int ioflag)
{

uprintf(“kld driver: read\n”);
return (0);

}

www.4electron.com

226 Embedded FreeBSD
Cookbook

The write Function
The write driver function is called when an application calls the read system
call with an open file handle to the device driver.

int kld_write(dev_t dev, struct uio *uio, int ioflag)
{

uprintf(“kld driver: write\n”);
return (0);

}

The Device File
The final step for the driver function is to create the device file. Device files
are created using the mknod command.

mknod kldd c 35 0

The device node is the user space name used to access a device driver.

Commands
KLDs use three system commands to load, unload and display the status of
KLDs. A brief description of each commands follows.

The kldstat Command
The kldstat command lists the current load modules.

kldstat
Id Refs Address Size Name
1 2 0xc0100000 19fe48 kernel
2 1 0xc146c000 19000 usb.ko

The kldload Command
The kldload command is used to load a KLD into the kernel. Kldload takes
one command, the name of the KLD file, typically with the extension .ko

www.4electron.com

227 Appendix C
Kernel Loadable Modules

kldload -v ./kld_driver.ko
Loaded ./kld_driver.ko, id=5
kldstat
Id Refs Address Size Name
1 3 0xc0100000 19fe48 kernel
2 1 0xc146c000 19000 usb.ko
5 1 0xc148e000 2000 kld_driver.ko

The kldunload Command
The kldunload command is used to unload the module from the kernel.
Kldunload can unload using a module id or module name.

kldunload -n kld_driver.ko
kldstat
Id Refs Address Size Name
1 2 0xc0100000 19fe48 kernel

2 1 0xc146c000 19000 usb.ko

www.4electron.com

www.4electron.com

229

INDEX

Numbers and Symbols
_exit system call, 12

A
accept system call, 112

adapter, CompactFlash, 198

appliance server, 3

appliances, Internet, 2–3, 123

application interface library, 77–101

ARP, 105

ATAPI disk driver, 80, 171

autoconfiguration code, 50

B
big endian, 108

bind system call, 110

BIOS, PC, 189–190

boot device, 7

boot loader, 185, 190–191

boot slice, 188–190

boot1, 191

boot2, 191

Bourne Shell, 129, 192

BSD license, 6

bss, 10

byte order, 108

C37FF–2 cable, 7

cdevsw structure, 53

chdir system call, 17

child process, 10

CIO–MINI 37 terminal, 7

CLASSPATH environment variable, 144

close system call, 81, 111

command handlers, 39

command_t structure, 130

CompactFlash, 7

adapters, 7–8

boot device, 197–205

compatibility issues, 3

config register, 71, 97

config_handler function, 134

connect system call, 112

connectionless data transfer, 114–115

controlling terminal, 19

copyin and copyout functions, 36

copymem system call, 32–36, 38

command table, 39

cpu keyword, 168

current working directory, 17

CVSUP, 60

cylinders, 184

D
daemon, 21–24, 103–122, 115–117

dependencies, 181

destroy_dev function, 58

dev_t structure, 58

devclass, 57

device driver, 49–76

environment, 49–51

structure, 51

accessing, 79

system calls, 80

device file, 74–75, 80

device switch table, 50

device_method_t structure, 52

device_t structure, 55–57

digital input-output server appliance, see

DIO server appliance

DIO daemon, 115

C

www.4electron.com

230 Embedded FreeBSD
Cookbook

DIO JSP page, 162–165

DIO kernel, 177–180

DIO server appliance, 4–5

hardware requirements, 6–7

dio.sh script, 194

dio_alloc_resources

function, 64–66
dio_attach function, 63–64
dio_deallocate_resources

function, 67

dio_detach function, 66

dio_get and dio_set functions, 87

dio_pci_attach function, 62–63

dio_pci_detach function, 66

dio_pci_probe function, 61

dio_set_line and

dio_get_line, 88, 90

dio_set_polarity and

dio_get_polarity, 95

dioclose function, 69

DIOIfJNI class, 150

diointr function, 73

dioioctl function, 69–71

dioopen function, 68–69

DIOShell, 130–142

command table, 130–132

disk geometry, 183–184

driver_t structure, 57

dumpmem function, 40

E
embedded system

definition, 1

next generation, 2

enum data type, 88–90, 92, 95

Ethernet controllers, 174

Ethernet switches, 2

execve system call, 11

F
file

descriptor, 17, 22

permissions, 17

file system, formatting, 200

fork system call, 10–11, 21

FreeBSD, definition and benefits, 5

G
GENERIC kernel, 167

get_direction_handler

function, 139

getgid system call, 14–16

getpgid system call, 16

getpid system call, 13

getpolarity_handler function, 138

getppid system call, 13

getpriority system call, 19

getrlimit system call, 17–18

getuid system call, 14–16

GID, 4

GNU development suite, 4, 6

group identifier, see GID

H
handle_sigcld function, 22

hardware inventory, 177

heads, hard disk, 184

help handler, 44

help_handler function, 140

I

Internet appliances, 2–3

init_daemon function, 23

implementing system calls, 28–29

www.4electron.com

231 Index

interrupt, software, 29

INT, 29

Interrupt Descriptor Table, see IDT

IDT, 29

ioctl, 69, 71, 81

interrupt controller, 91–96

Internet Protocol, 105

addressing, 105

IP, see Internet Protocol

ICMP, 106

init_dio function, 119

int_handler function, 135

ident keyword, 168

init daemon, 192

J
Java Development Kit, see JDK

Java Native Interface, see JNI layer

Java Server Page, see JSP

Java, 6

javah tool, 152

Java-to-C interface class, 150

JDK, 143–145

JDK_HOME environment variable, 148

JNI layer, 143–156

JSP, 157, 160–165

syntax, 161–162

K
kill system call, 21

kernel, 27

building, 167–182

Kernel Mode, 27

kernel-loadable module, see KLD

KLD, 32, 51, 215–227

Makefile, 216

device drivers, 221–223

kldstat command, 226

kldload command, 227

kldunload command, 227

L
LD_LIBRARY_PATH environment

variable, 145

library functions, 27–28

license, FreeBSD, 207

licensing, 4

listen system call, 111

little endian, 108

load handler, 33, 216

M
main function, 44–45, 120–122

make_dev function, 58–59

mknod command, 74

MAKEDEV utility, 74

make clean command, 74

make depend command, 75

make command, 76

machine keyword, 168

maxusers keyword, 168

make options keyword, 169

master boot record, see MBR

MBR, 185, 190

magic number, 187

moduledata_t structure, 218

N
NAS, see Network attached storage

native functions, 153–156

network attached storage (NAS), 3

Network Engines Roadster, 7

www.4electron.com

232 Embedded FreeBSD
Cookbook

O
open system call, 80

options keyword, 169

P
parent process, 10

partition table, disk, 185

passwd utility, 14

PCI bus, 209–214

PCI configuration registers, 210

pciconf utility, 62

PCI-DIO24 Digital IO Controller, 7, 59–60

hardware registers, 82–86

application interface library, 87–88

pciint_handler function, 136

PGID, 16

PID, 12, 13

platters, 184

process

creation, 10

definition, 10

group, 16

identifier, see PID

security, 14

state, 20

termination, 11–13

pseudo devices, 176

pwd command, 31

Q
quit handler, 40, 44

quit_handler function, 139–140

R
RAID controllers, 172

RARP, 106

read command, 42, 82

readline_handler function, 132

recv system call, 113

recvfrom system call, 114

register shadowing, 71

remote administration account, 129–130

resources, 17–18

root_bus, 50

S
Sandisk CompactFlash disk, 7

scheduling, 19–20

priority, 19

scriptlets, 162

SCSI controllers, 171

sectors, hard drive, 184-186

addressing, 184

Secure Shell, see SSH

send system call, 113

sendto system call, 115

server, DIO, 117–122

session, 18, 22

setpgid system call, 16

setpolarity_handler function, 125

setpriority system call, 19

setrlimit system call, 17–18

setsid system call, 18

shared libraries, 77–79

shell device driver, 60

sigaction system call, 27

signal function, 20

signals, 20

size command, 10

socket system calls, 107, 109

sockets, 109–111

softc structure, 57

software interrupts, 29

solid-state devices, 197

SSH, 123–129

www.4electron.com

V

233 Index

sshd, 124

SYSCALL_MODULE macro, 37, 220

sysent structure, 36, 220

system call number, 30

system calls, 27–47, 219

number, 36

system startup, 192

T
TAPR CompactFlash Adapter II, 7

TCP/IP, 103–107

application layer, 107

link layer, 104

network layer, 105

transport layer, 106

Tomcat server, 157–165

directory structure, 159–160

truss command, 31

U
User Mode, 10, 27

user identifier, see UID

UID, 14

umask system call, 17

UDP, 106

Unix partitions, 189

Virtual Private Network (VPN), 2

VPN, see Virtual Private Network

W
wait system call, 12

write command, 42, 82

writeline_handler function, 133

www.4electron.com

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

[[NEWNES.]] AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION OR
PRODUCTION OF THE ACCOMPANYING CODE (“THE PRODUCT”) CANNOT AND DO NOT
WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING THE PRODUCT.
THE PRODUCT IS SOLD “AS IS” WITHOUT WARRANTY OF ANY KIND (EXCEPT AS HEREAFTER
DESCRIBED), EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY
WARRANTY OF PERFORMANCE OR ANY IMPLIED WARRANTY OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE. [[NEWNES.]] WARRANTS ONLY THAT THE MAGNETIC
CD-ROM(S) ON WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND
FAULTY WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY
(90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER’S SOLE AND
EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO EITHER
REPLACEMENT OF THE CD-ROM(S) OR REFUND OF THE PURCHASE PRICE, AT [[NEWNES.]]’S
SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR TORT
(INCLUDING NEGLIGENCE), WILL [[NEWNES.]] OR ANYONE WHO HAS BEEN INVOLVED IN
THE CREATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER FOR ANY
DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CON
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT OR
ANY MODIFICATIONS THEREOF, OR DUE TO THE CONTENTS OF THE CODE, EVEN IF
[[NEWNES.]] HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

ANY REQUEST FOR REPLACEMENT OF A DEFECTIVE CD-ROM MUST BE POSTAGE PREPAID AND
MUST BE ACCOMPANIED BY THE ORIGINAL DEFECTIVE CD-ROM, YOUR MAILING ADDRESS
AND TELEPHONE NUMBER, AND PROOF OF DATE OF PURCHASE AND PURCHASE PRICE.
SEND SUCH REQUESTS, STATING THE NATURE OF THE PROBLEM, TO ELSEVIER SCIENCE
CUSTOMER SERVICE, 6277 SEA HARBOR DRIVE, ORLANDO, FL 32887, 1-800-321-5068.
[[NEWNES.]] SHALL HAVE NO OBLIGATION TO REFUND THE PURCHASE PRICE OR TO
REPLACE A CD-ROM BASED ON CLAIMS OF DEFECTS IN THE NATURE OR OPERATION OF
THE PRODUCT.

SOME STATES DO NOT ALLOW LIMITATION ON HOW LONG AN IMPLIED WARRANTY LASTS,
NOR EXCLUSIONS OR LIMITATIONS OF INCIDENTAL OR CONSEQUENTIAL DAMAGE, SO
THE ABOVE LIMITATIONS AND EXCLUSIONS MAY NOT [[NEWNES.]] APPLY TO YOU. THIS
WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS
THAT VARY FROM JURISDICTION TO JURISDICTION.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE UNITED STATES
LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY FURTHER
SALE OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED STATES DEPARTMENT
OF COMMERCE ADMINISTRATION REGULATIONS. COMPLIANCE WITH SUCH REGULATIONS
IS YOUR RESPONSIBILITY AND NOT THE RESPONSIBILITY OF [[NEWNES.]].

www.4electron.com

	Preface
	Prerequisites and Other Resour ces

	1 Getting Started
	Embedded Systems
	Internet Appliances
	The DIO Server Appliance

	2 Systems Programming
	Process
	Daemons

	3 System Calls
	Library Functions and System Calls
	Creating a System Call

	4 Device Driver
	Driver Environment
	Driver Structure
	The DIO24 Device Driver

	5 Midlevel Inter face Library
	Shared Libraries
	Accessing the Device Driver
	PCI-DIO24 Hardware Registers
	The DIO24 Application Inter face Library

	6 Daemons
	Introduction to TCP/IP
	Socket System Calls
	The DIO Daemon

	7 Remote Management
	Using Secure Shell (SSH)
	The DIOShell

	8 JNI Layer
	The JDK
	Creating the JNI Layer

	9 Web Access Using Tomcat
	Tomcat
	JSP Overview
	The DIO JSP Page

	10 Building the Kernel
	Building the DIO Kernel
	Building the FreeBSD Kernel

	11 System Startup
	Disk Geometry
	Master Boot Record
	PC BIOS
	FreeBSD Boot Loader
	Starting DIO Components

	12 The CompactFlash Boot Device
	Solid-state Devices
	Installing the T ARC CompactFlash Adapter
	Configuring the CompactFlash Device
	Copying the Files to the Boot Device
	Startup Configuration

	A The FreeBSD License
	B PCI Configuration
	C Kernel Loadable Modules
	Kernel Loadable Modules
	System Calls
	Device Drivers
	Commands

