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Preface

The understanding of elementary excitations in electronic systems is of a basic importance,

both from a practical as well as from a fundamental point of view. For example, optical

properties and electrical transport in materials are primarily governed by excitation processes.

On the other hand, our main source of knowledge on the dynamics of elementary electronic

systems, such as isolated atoms, ions or molecules, is their response to an external probing

field, that excites the system. Generally, the corresponding quantum mechanical description

in terms of excitation amplitudes, entails a thorough understanding of the relevant excitation

spectrum of the system under study. For this purpose, efficient theoretical and calculational

techniques have been developed, and their implementations have rendered possible a detailed

insight into the nature and the dynamics of various electronic states in a variety of materials.

This progress is driven, to a large extent, by recent breakthroughs in the experimental fabrica-

tion, characterization and spectroscopic techniques which, in addition to providing stringent

tests of various aspects of current theoretical approaches, have also pointed out open questions

to be addressed by theory. Particularly remarkable is the diversity of the electronic materials

studied experimentally, ranging from isolated atoms to clusters and surfaces. It is this aspect

which is emphasized in this presentation of some of the theoretical tools for the description

of excited states of finite and extended electronic systems. The main goal is to highlight

common features and differences in the theoretical concepts that have been employed for the

understanding of electronic excitations and collisions in finite few-body (atomic) systems and

large, extended systems, such as molecules, metal clusters and surfaces.

The complete work is divided in two parts. The first part, which is this present book, deals

with the foundations and with the main features of the theoretical methods for the treatment of

few-body correlated states and correlated excitations in electronic systems. The forthcoming

second volume includes corresponding applications and the analysis of the outcome of theory

as contrasted to experimental findings.



XII Preface

A seen from a quick glance at the table of contents, the book starts by reviewing the main

aspects of the two-body Coulomb problem, which sets the frame and the notations for the

treatment of few-body systems. Subsequently, we sketch a practical scheme for the solution

of two-body problems involving an arbitrary non-local potential. Furthermore, an overview is

given on the mainstream concepts for finding the ground state of many-body systems. Sym-

metry properties and universalities of direct and resonant excitation processes are then ad-

dressed. Starting from low-lying two-particle excitations, the complexity is increased to the

level of dealing with the N -particle fragmentation in finite Coulomb systems. Having in mind

the theoretical treatment of excitations in extended and in systems with a large number of

active electrons, we introduce the Green’s function theory in its first and second quantization

versions and outline how this theory is utilized for the description of the ground-state and of

many-particle excitations in electronic materials.

The topics in this book are treated differently in depth. Subjects of a supplementary or an

introductory nature are outlined briefly, whereas the main focus is put on general schemes for

the treatment of correlated, many-particle excitations. In particular, details of those theoretical

tools are discussed that are employed in the second forthcoming part of this work.

Due to the broad range of systems, physical processes and theoretical approaches relevant

to the present study, only a restricted number of topics is covered in this book, and many im-

portant related results and techniques are not included. In particular, in recent years, numerical

and computational methods have undergone major advances in developments and implemen-

tations, which are not discussed here, even though the foundations of some of these techniques

are mentioned. Despite these restrictions, it is nevertheless hoped that the present work will

provide and initiate some interesting points of view on excitations and collisions in correlated

electronic systems.

The work is purely theoretical. It should be of interest, primarily for researchers working

in the field of theoretical few-body electronic systems. Nonetheless, the selected topics and

their presentations are hoped to be interesting and comprehensible to curious experimentalists

with some pre-knowledge of quantum mechanics.

The results of a number of collaborations with various friends and colleagues can be found

in this book. I would like to take this opportunity to thank few of them. I am particularly

indebted to M. Brauner, J. S. Briggs, J. Broad and H. Klar for numerous collaborations, dis-
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cussions and advice on charged few-particle problems. I would also like to thank P. Bruno,

A. Ernst, R. Feder, N. Fominykh, H. Gollisch, J. Henk, O. Kidun, and K. Kouzakov for

fruitful collaborations, encouragements and valuable discussions on the theoretical aspects

of electronic excitations and correlations in condensed matter. Furthermore, I am grateful to

L. Avaldi, I. Bray, R. Dörner, A. Dorn, R. Dreizler, J. Feagin, A. Kheifets, J. Kirschner, A.

Lahmam-Bennani, J. Lower, H. J. Lüdde, J. Macek, J. H. McGuire, D. Madison, S. Mazevet,

R. Moshammer, Yu. V. Popov, A.R.P. Rau, J.-M.Rost, S. N. Samarin, H. Schmidt-Böcking,

A. T. Stelbovics, E. Weigold and J. Ullrich for many insightful and stimulating discussions

we had over the years on various topics of this book. Communications, discussions and con-

sultations with E. O. Alt, V. Drchal, T. Gonis, J. Kudrnovský, M. Lieber and P. Ziesche are

gratefully acknowledged.
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their competent help and support in the preparation of the book.

Jamal Berakdar
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1 The two-body Kepler problem: A classical treatment

This chapter provides a brief summary of the theoretical treatment of non-relativistic two-

body Coulomb systems. An extensive account can be found in standard textbooks, e. g. [1].

The purpose here is to introduce the basic ideas and notations utilized in the quantum theory

of interacting charged particles. Particular attention is given to the approach pioneered by

W. Pauli [4] which utilizes the existence of an additional integral of motion due to the dynam-

ical symmetry of Coulomb-type potentials, namely the Laplace-Runge-Lenz vector [2]. Let

us consider a system consisting of two interacting particles with charges z1 and z2 and masses

m1 and m2. In the center-of-mass system, the two-particle motion is described by a one-body

Hamiltonian H0 that depends on the relative coordinates of the two particles. Its explicit form

is 1

H0 =
1
2μ

p2
0 −

z12

r0
, (1.1)

where z12 = −z1z2 and the reduced mass is denoted by μ = m1m2/(m1 +m2). The vectors

r0 and p0 are respectively the two-particle relative coordinate and its conjugate momentum.

In addition to the total energy E, the angular momentum L0 = r0×p0 is a conserved quantity

due to the invariance of Eq. (1.1) under spatial rotations. Furthermore, the so-called Laplace-

Runge-Lenz vector [2]

A = r̂0 +
1

μz12
L0 × p0 (1.2)

is as well a constant of motion. This is readily deduced by noting that

∂tp0 = −z12r̂0/r2
0

1Unless otherwise specified, atomic units are used throughout this book.
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and therefore the time derivative of A vanishes, i.e.

∂tA = ∂tr̂0 +
1

μz12
L0 × (∂tp0)

=
∂tr0

r0
− [r0 · (∂tr0)]r0

r3
0

− 1
r3
0

[r0 × (∂tr0)]× r0 = 0.

(1.3)

For the derivation of the classical trajectories it is instructive to introduce the dimensionless

Figure 1.1: The motion of two particles interacting via a Coulomb-type potential takes place in
the plane spanned by the vectors A and A × L.

quantities

r = z12 r0/a, p = p0 a/(z12�), and L = L0/�,

where the length scale is given by a = �2/(μe2) (for clarity, the electron charge e and � are

displayed here). The Hamiltonian (1.1) transforms into H = 2a/(z2
12e

2)H0, whereas in the

scaled coordinates, the Laplace-Runge-Lenz vector (A) has the form

A = r̂ + L× p. (1.4)

Thus, the Hamiltonian H0 (1.1) measured in the energy units ε = (z2
12e

2)/(2a) is

H = H0/ε = p2 − 2/r. (1.5)

Since ∂tA = 0 = ∂tL and A ·L = 0 we deduce that the relative motion of the two particles is

restricted to a plane P defined by A and L×A, as illustrated in Fig. 1.1. The relative position
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vector r in the plane P is uniquely specified by the components [see Fig. 1.1]

x = r · (L×A), and y = r ·A.

The components x and y can be written in the form

y = r − L2, x = −L2(r · p). (1.6)

Furthermore we conclude that since

L2 = r2p2 − (r · p)2, the relation x2/L4 = r2p2 − L2 (1.7)

applies.

Thus, for a given total (scaled) energy E = p2 − 2/r the components x and y of the

position vector r are determined by the equation[
y E + (L2E + 1)

]2 − E

L4
x2 = L2E + 1. (1.8)

Further straightforward algebraic manipulations lead to

A2 = L2E + 1 ≥ 0.

Relation (1.8) is the defining equation for conic sections in the normal form:

• For E < 0 the motion proceeds along an elliptical closed orbit with A being along the

main axis. The excentricity of the orbit is determined by |A|.

• For E > 0 Eq. (1.8) defines a hyperbola.

• If E = 0 (and hence p2 = 2/r) we conclude from Eq. (1.7) and from r = y + L2 that

y = x2/(2L4)− L2/2.

This equation describes a parabola with a curvature L−4. If in addition L � 1 the

parabola degenerates to an almost straight line along A starting from the origin [see

Fig. 1.1].





2 Quantum mechanics of two-body Coulomb systems

2.1 Historical background

In a seminal work [4] W. Pauli applied the correspondence principle to introduce the hermitian

Laplace-Runge-Lenz operator A and showed that A commutes with the total Hamiltonian H ,

i. e. [H,A] = 0. Using group theory he utilized this fact for the derivation of the bound

spectrum of the Kepler problem. Later on, V. A. Fock [5] argued that the degeneracy of the

levels, having the same principle quantum numbers, is due to a “hidden” dynamical symmetry.

I. e. in addition to the symmetry with respect to the (spatial) rotation group O(3), the Kepler

problem with bound spectrum possesses a symmetry with respect to a wider (compact) group

O(4) (rotation in a four-dimensional space). Shortly after that V. Bargmann [6] showed how

the separability of the (bound) two-body Coulomb problem in parabolic coordinates is linked

to the existence of the conserved quantity A. J. Schwinger [7] utilized the rotational invariance

with respect to O(4) for the derivation of the Coulomb Green’s function. It is this line of

development which we will follow in the following compact presentation of this topic. A

detailed discussion of the Coulomb Green’s function in connection with the O(4) symmetry

is deferred to section 11.3.

The dynamical symmetry is related to the form of the Coulomb potential and persists

in the n dimensional space. In fact, S. P. Alliluev [8] showed that the Hamiltonian of the

n-dimensional (attractive) Kepler problem possesses a hidden symmetry with respect to the

O(n + 1) group. For n = 3 (e.g. the hydrogen atom) Fock showed [5] that the spectrum

is described by the irreducible representations of O(4). Those are finite dimensional since

O(4) is a compact group, i. e. a continuous group with finite volume. For the description of

the discrete and the continuous spectrum one has to utilize the non-compact analog of O(4),

namely the Lorenz group (for more details and further references see Ref. [9]).
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2.2 Group theoretical approach to the two-body problem

The classical vector (1.4) can not be translated directly into quantum mechanics as the Laplace-

Runge-Lenz vector operator A because it would be non-hermitian. An acceptable definition

for the (polar) vector operator A that satisfies A = A†, is 1

A = r̂ +
1
2

(L× p− p× L) . (2.1)

Since for any vector operator, such as p the relation L × p − p × L = i[L2,p] applies, we

can write A in the form

A = r̂ +
i

2
[L2,p]. (2.2)

With this definition of A one verifies the following commutation relations between the oper-

ators L,A and H

L× L = iL, (2.3)

A×A = −iH L, (2.4)

L×A + A× L = i2A, (2.5)

[H,L] = 0 = [H,A], (2.6)

A · L = 0 = L ·A. (2.7)

Furthermore, using Eq. (2.2) it is readily shown that

A2 = 1 + H(L2 + 1). (2.8)

Eqs. (2.6, 2.7) state that L and A (and H) are conserved while Eq. (2.8) serves to derive

Bohr’s formula of the energy level scheme, as shown below. Introducing the normalized

Laplace-Runge-Lenz operators as

N = A/h, h =

⎧⎪⎨⎪⎩
1/
√
−H ∀E < 0,

1/
√

H ∀E > 0,

1 E = 0,

(2.9)

1Hereafter we use the shorthand notation
P

ij [Ai,Bj ]εijk = (A × B)k where A and B are vector operators.
A vector operator satisfies the relation L × A + A × L = 2iA (same applies for B or any vector operator).
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the Hamiltonain H is scaled out of Eqs. (2.4–2.7) which then simplify to

L× L = iL , (2.10)

N×N = κ iL , (2.11)

N · L = 0 = L ·N , (2.12)

L×N + N× L = 2 iN. (2.13)

Here we adopt the definition κ = sgn(−E) and κ = 0 for E = 0. Eq. (2.8) becomes

−κHN2 = 1 + H(L2 + 1), if E �= 0, (2.14)

N2 = 1 + H(L2 + 1), if E = 0. (2.15)

The relations (2.10–2.13) coincide with the commutation relations between the generators of

the homogeneous Lorenz group describing rotations and translations. For E = 0 (i. e. κ = 0)

the Lorenz group (2.10–2.13) degenerates to the Galilean group. For a given positive energy

E > 0 the continuum wave functions are the irreducible representations of the Lorenz group.

This representation is infinite dimensional and unitary because the values of the orbital angu-

lar momentum l are not restricted for a fixed positive energy (E > 0). Furthermore, L and

N, the generators of the group, are hermitian for H > 0. In contrast, for the bound spec-

trum (E < 0) a finite number of (orbital angular momentum) states corresponding to a given

principal quantum number n provides a finite dimensional, non-unitary representation. The

non-unitarity is a consequence of the fact that the generators N are antihermitian for H < 0.

2.2.1 The bound spectrum

As well known, for E < 0 there is a one-to-one correspondence between the representations

of the Lorenz group and the compact O(4) group that have the six generators (L,N). On

the other hand a reduction of the O(4) algebra into two O(3) algebras can be achieved upon

introducing the operators

J(1) =
1
2

(L + N) , (2.16)

J(2) =
1
2

(L−N) . (2.17)
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These satisfy the commutation relations of two independent angular momentum operators,

namely

J(1) × J(1) = iJ(1), (2.18)

J(2) × J(2) = iJ(2), (2.19)

[J(2)ν
× J(2)ν

] = 0, ∀ ν = 1, 2, 3. (2.20)

Thus, each of J(1) and J(2) can be regarded as the generators of rotations in three dimensions.

From a group theory point of view the three components of J(1) and of J(2) are the members

of two independent Lie algebras SO1(3) and SO2(3) [9]. As noticed by O. Klein [10], the

Lie algebra implied by Eqs. (2.18–2.20) is then SO1(3)× SO2(3) = SO(4) which describes

rotations in a four dimensional space. The representations of the Lie group SO(4) are thus

labelled by the two angular momenta j1 = 0, 1/2, 1, 3/2 · · · and j2 = 0, 1/2, 1, 3/2 · · · . The

eigenvalues of the Casimir operators J2(1)and J2(2) of the groups SO1(3) and SO2(3) are

respectively j1(j1 + 1) and j2(j2 + 1). Due to the restriction (2.7) we deduce from (2.16,

2.17) that

J2
(1) = J2

(2) =
1
4
(
L2 + N2

)
, (2.21)

i. e. j1 = j2. Furthermore, from Eq. (2.14) follows

H = −(N2 + L2 + 1)−1 = −(4J2
(1) + 1)−1.

This means, employing the |j1m1〉 ⊗ |j2m2〉 representation, and taking into account the con-

dition j1 = j2 = j, the energy eigenvalues E are (2j + 1)2-fold degenerated and are given

by

E = − 1
4j(j + 1) + 1

= − 1
(2j + 1)2

, j = 0,
1
2
, 1, · · · ,

E = − 1
n2

, n := (2j + 1) = 1, 2, 3 · · · . (2.22)

2.2.2 Eigenstates of two charged-particle systems

The states |Ψnlm〉 that form the representations of SO(4) are obtained as follows. Since

|j1m1〉 and |j2m2〉 are eigenvectors of angular momentum operators they can be regarded as

spherical tensors (see appendix A.1 for definitions and notations of spherical tensors) of rank
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j with components m = −j · · · j [note j = j1 = j2 = (n − 1)/2, see Eq. (2.22)]. From

SO(4) = SO1(3)× SO2(3) we deduce that |Ψnlm〉 is obtained via the tensor product2

|Ψnlm〉

=
∑

m1m2

〈
n− 1

2
m1

n− 1
2

m2

∣∣∣∣ lm〉 ∣∣∣∣j =
n− 1

2
m1

〉
⊗
∣∣∣∣j =

n− 1
2

m2

〉
. (2.23)

Noting that L = J(1) + J(2) and N = J(1) − J(2) [cf. Eqs. (2.16, 2.17)] we can rewrite

Eq. (2.23) in terms of the eigenvalues m and q of the components Lz and Nz with respect

to an appropriately chosen axis z. Since m = m1 + m2 and q = m1 −m2 the state vector

|Ψnlm〉 is readily expressed in terms of the common eigenstates |φnqm〉 of the operators Lz ,

Nz and H in which case Eq. (2.23) takes on the form

|Ψnlm〉 =
∑

q

〈
n− 1

2
m + q

2
n− 1

2
m− q

2

∣∣∣∣ lm〉 |φnqm〉 . (2.24)

The explicit forms of the wave functions Ψnlm(r) and φnqm(r) are given in the next section.

2.3 The two-body Coulomb wave functions

The quantum mechanical two-body Coulomb problem is exactly solvable in only four coordi-

nate systems [3]:

1. In spherical coordinates the two-particle relative position r is specified by

r = r(sin θ cos ϕ, sin θ sin ϕ, cos θ) where θ ∈ [0, π] and ϕ ∈ [0, 2π] are the polar and

the azimuthal angles. The chosen set of commuting observables is {H,L2,Lz}.

2. In the spheroconic coordinates the coordinate r is given by

r = r(snα dnβ, cnα cnβ, dnα snβ), where r ∈ [0,∞[, α ∈ [−K, K], and

β ∈ [−2K ′, 2K ′], here 4K (4iK ′) is the real (imaginary) period of the Jacobi-elliptic

functions3 [238]. The set of commuting observables that are diagonalized simultaneously

is {H,L2,L2
x + k′L2

y}.
2The tensor product of two spherical tensors Tq1m1 and Tq2m2 with ranks q1 and q2 and compo-

nents m1 = −q1, · · · , q1 and m2 = −q2, · · · , q2 is the spherical tensor Pkm where Pkm =P
m1m2

〈q1m1 q2m2|km〉Tq1m1Tq2m2 . For more details see appendix A.1.
3 The Jacobi elliptic integrals are defined as u =

R ϕ
0

dθ√
1−k2 sin2 θ

. sn(u) = sin ϕ, cn(u) = cosϕ and

dn(u) = (1 − k2 sin2 ϕ)1/2. For the definition of the spheroconic coordinates k [k′] is deduced from the modulus
of sn(α) and cn(α) [sn(β), cn(β) and dn(β)].
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3. In spheroidal coordinates the relative coordinate r is defined as

r = R
2

(√
(ξ2 − 1)(1− η2) cos ϕ,

√
(ξ2 − 1)(1− η2) sin ϕ, ξη + 1

)
where R is a real

positive constant and ξ ∈ [1,∞[, η ∈ [−1, +1], and ϕ ∈ [0, 2π[. In this case the

chosen set of commuting operators is {H,L2 − 2RNz ,Lz}. For R → 0 the spheroidal

coordinates degenerates to the spherical coordinates whereas for R → ∞ they coincide

with the parabolic coordinates.

4. In the parabolic coordinates the preferred set of commuting operators is {H,Lz,Nz}. It

is this coordinate system which will be discussed below and will be utilized in the next

chapters of this book for the treatment of the few-body problem.

2.3.1 Spherical coordinates

The derivation of the normalized wave functions Ψnlm(r) in spherical coordinates can be

found in standard books on quantum mechanics [1]. Here we only give the final expression

Ψnlm(r) = Rnl(r)Ylm(r̂), (2.25)

Rnl(r) =
2

n2(n + 1)!

[
(n− l − 1)!

(n + l)!

]1/2 (2r

n

)l

e−
r
n L2l+1

n+l

(
2r

n

)
. (2.26)

The angular motion is described by the spherical harmonics Ylm(r̂) whereas the radial part

Eq. (2.26) is given in terms of the associated Laguerre polynomials4 La
b (x) [12, 99].

2.3.2 Parabolic coordinates

As mentioned above, as an alternative set of three commuting operators for the description of

the two-body Coulomb problem one may choose {H,Lz,Az}. The corresponding coordinate

system in which the Schrödinger equation separates is the parabolic coordinates. Those are

given in terms of the defining parameters of two systems of paraboloids with the focus at the

origin and an azimuthal angle ϕ in the (x, y) plane. The relation between these coordinates

4The Laguerre polynomials are obtained according to the formula Ln(z) = ez dn

dzn

ˆ
e−z zn

˜
. The associated

Laguerre polynomials are given by Lm
n (z) = dm

dzm Ln(z) and satisfy the differential equation

ˆ
z∂2

z + (m + 1 − z)∂z + (n − m)
˜ Lm

n (z) = 0. (2.27)
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and the cartesian coordinates (in which the position vector r is given by r = (x, y, z)) is

x =
√

ξη cos ϕ, ξ = r + r · ẑ,
y =
√

ξη sin ϕ, η = r − r · ẑ,
z = 1

2 (ξ − η), tanϕ = y
x ;

ξ ∈ [0,∞[, η ∈ [0,∞[, ϕ ∈ [0, 2π].

(2.28)

The Laplacian Δ expressed in parabolic coordinates reads

Δ =
4

ξ + η
( ∂ξξ∂ξ + ∂ηη∂η ) +

1
ηξ

∂2
ϕ. (2.29)

Thus, the Schrödinger equation for an electron in the field of an ion with a charge Z = 1

a.u. is

(H − Ē)φ = 0,(
p2 − 2

r
− E

)
φ = 0, (2.30)

where E = 2Ē. In parabolic coordinates Eq. (2.30) has the following form{
4

ξ + η
[ ∂ξξ∂ξ + ∂ηη∂η + 1 ] +

1
ηξ

∂2
ϕ + E

}
φ = 0. (2.31)

Multiplying this equation by (ξ + η)/4 and upon inserting in (2.31) the ansatz

φ = NE e±i mϕ u1(ξ)u2(η), (2.32)

where m ≥ 0, and NE is an energy dependent normalization constant, (2.33)

we obtain the two determining equations for functions u1(ξ) and u2(η) as

∂ξ(ξ∂ξu1) +
E

4
ξu1 −

m2

4ξ
u1 + c1u1 = 0, (2.34)

∂η(η∂ξu2) +
E

4
ηu2 −

m2

4η
u2 + c2u2 = 0. (2.35)

Here c1 and c2 are integration constants satisfying

c1 + c2 = 1. (2.36)

Since the function u1 have the limiting behaviour

lim
ξ→0

u1 → ξm/2 and lim
ξ→∞

u1 → exp(−
√
−E ξ/2) (2.37)

it is advantageous to write down u1 in the form

u1 = ξm/2 exp(−
√
−E ξ/2)g1(ξ). (2.38)
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From Eq. (2.34) one deduces for the unknown function g1 the determining equation[
x∂2

x + (m + 1− x)∂x +
(

c1√
−E
− m + 1

2

)]
g1 = 0, (2.39)

where x = ξ
√
−E. The solution of the differential equation Eq. (2.39) is the associated

Laguerre polynomials Lm
n (z), as readily verified upon a comparison with Eq. (2.27), i. e.

g1(x) = Lm
n1+m(x), (2.40)

n1 =
c1√
−E
− (m + 1)

2
= 0, 1, 2, · · · . (2.41)

In an analogous way one expresses the function u2 in terms of associated Laguerre polynomi-

als as

u2 = ηm/2 exp (−
√
−E η/2) Lm

n2+m(η
√
−E), (2.42)

n2 = c2/
√
−E − (m + 1)/2 = 0, 1, 2, · · · . (2.43)

With this formula we conclude that the function, defined by Eq. (2.32), has the final form

φ = NE e±i mϕu1u2,

= NE e±i mϕ ×

×ξm/2 exp (−
√
−E ξ/2) Lm

n1+m(ξ
√
−E)

×ηm/2 exp (−
√
−E η/2) Lm

n2+m(η
√
−E). (2.44)

Since c1 + c2 = 1 we conclude from Eqs. (2.41, 2.43) that

1√
−E

= n =
1√
− 2Ē

,

where the integer number n is identified as the principle quantum number and is related to n1

and n2 via

n := n1 + n2 + m + 1 = 0, 1, 2, · · · , i.e. E = − 1
n2

.

The connection between the separability sketched above and the Laplace-Runge-Lenz vec-

tor becomes apparent when the component Nz (Lz) of N (L), along a chosen quantization

axis, is expressed in parabolic coordinates. This has been done by V. Bargmann [6] who

showed that the states |n1n2m〉 are eigenvectors of Nz , Lz and H .

The operator N is a polar vector (odd under parity operation). In contrast L is an axial

vector and as such is even under parity. Therefore, as far as parity is concerned, the states
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|n1n2m〉 are mixed, i.e. they have no well-defined parity. This is as well clear from the

definition of the parabolic coordinates (2.28) that gives preference to the z direction (and

therefore the parabolic eigenstates derived above are symmetrical with respect to the plane

z = 0).

The presence of a preferential space direction in the definition of the parabolic variables

makes this coordinate system predestinate for formulating problems that involve a direction

determined by physical measurements, such as an external electric field or the asymptotic

momentum vector of a continuum electron. A well-known demonstration of this statement is

the separability in parabolic coordinates of the two-body Hamiltonian in the presence of an

electric field E (the Stark effect). In this case one chooses the z axis to be along the field and

writes down the Schrödinger equation as

(H − E z − E)φ = 0.

Expressing this relation in the coordinate (2.28) and making the ansatz (2.32) one obtains two

separate, one-dimensional differential equations for the determination of u1 and u2, namely[
∂ξξ∂ξ +

E

4
ξ − m2

4ξ
+
E
2

ξ2 + c1

]
u1(ξ) = 0, (2.45)[

∂ηη∂η +
E

4
η − m2

4η
− E

2
η2 + c2

]
u2(η) = 0. (2.46)

These relations make evident the complete separability of the Stark effect in parabolic coordi-

nates.

2.3.3 Analytical continuation of the two-body Coulomb wave functions

Another example involving a physically defined direction in space occurs in ionization prob-

lems. There, the wave vector k of the continuum electron is specified experimentally. Thus, a

suitable choice for the space direction ẑ, that enters the definition of the parabolic coordinates,

is ẑ ≡ k̂. In this case the parabolic coordinates are

ξ = r + r · k̂, (2.47)

η = r − r · k̂, (2.48)

ϕ = arctan(y/x). (2.49)

Since we are dealing in case of Ē > 0 with continuum problems one may wonder whether it is

possible to utilize the wave function (2.32) (with the asymptotically decaying behaviour (2.37))
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to describe the two-particle continuum, i.e. whether Eq. (2.32) can be continued analyti-

cally across the fragmentation threshold. To answer this question we note that the associ-

ated Laguerre polynomials can be written in terms of the confluent hypergeometric functions5

1F1(a, b, z) [11, 12] as

Lm
n (z) =

(m + n)!
m!n! 1F1(−n, m + 1, z). (2.52)

Defining the (generally) complex wave vector k =
√

2Ē and choosing the phase convention

for Eqs. (2.44) such that

φ = NE e±i mϕu∗
1u2 (2.53)

we deduce the general solution of Schrödinger equation for one electron in the field of a

residual ion with a unit positive charge (i.e. Eq. (2.32)) as (we recall the assumption that the

electron-ion reduced mass is unity)

φ = Nk,m e±i mϕ ξm/2ηm/2 eik·r

1F1(−i
c1

k
+

1−m

2
, 1 + m,−ikξ)

1F1(i
c2

k
+

1−m

2
, 1 + m, ikη), (2.54)

where m ≥ 0, Nk,m = N(k,±m), c1 + c2 = 1, k ∈ C.

Since 1F1(a, b, z) is analytic for all values of the complex arguments a, b, z, except for nega-

tive integer values of b one can use Eq. (2.54) for the description of the all bound and contin-

uum states. Outgoing continuum waves characterized by the wave vector k are obtained from

(2.54) upon the substitution m→ 0, c1 → −ik/2 in which case (2.54) reduces to

φout = N+
k eik·r

1F1(−iαk, 1, ik(r − k̂ · r) ). (2.55)

5The confluent hypergeometric function 1F1(a, b, z) is the solution of the confluent Kummer-Laplace differential
equation [11, 12]

z u′′ + (b − z)u′ − a u = 0. (2.50)

1F1(a, b, z) is also called Kummer’s function of the first kind. The confluent hypergeometric function has the series
representation [11, 12]

1F1(a, b, z) = 1 +
a

b
z +

a(a + 1)

b(b + 1)

z2

2!
+ · · · =

∞X
j=0

(a)j

(b)j

zj

j!
, (2.51)

where (a)j denotes the Pochhammer symbols; its form is inferred from (2.51). The power series representing the
function 1F1(a, b, z) is convergent for all finite z ∈ C. If a and b are integers, a < 0, and either b > 0 or b < a,
then the series yields a polynomial with a finite number of terms. Except for the case b ≤ 0, b ∈ N, the function
1F1(a, b, z) is an entire function of z.
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The incoming continuum wave is obtained by using m → 0, c1 → −ik/2 in which case

Eq. (2.54) yields

φin = N−
k eik·r

1F1(iαk, 1,−ik(r + k̂ · r) ). (2.56)

The parameter αk = − 1
k is generally referred to as the Sommerfeld parameter. For two

particles with arbitrary masses m1 and m2 and charges Z1 and Z1, the Sommerfeld parameter

α12 is defined as

α12 =
Z1Z2μ12

k12
, (2.57)

where μ12 is the reduced mass and k12 is the momentum conjugate to the relative coordinate

r12. The normalization constants N±
k can be obtained from the normalization of the asymp-

totic flux and read (a detailed derivation is given in chapter 8)

N±
k = (2π)−3/2e−παk/2Γ(1± iα). (2.58)

It is readily verified that with this normalization the above wave functions satisfy

〈φin,k′ |φin,k〉 = 〈φout,k′ |φout,k〉 = δ(k− k′), (2.59)

and

φin,k(r) = φ∗
out,−k(r). (2.60)

In the above procedure we obtained the Coulomb continuum states from the bound states via

analytical continuation in the complex k plane. One can now reverse the arguments and de-

rives the bound state spectrum from the knowledge of the continuum states. This becomes

of considerable importance when considering many-body systems for which approximate ex-

pressions for the continuum wave functions are known. Such a case we will encounter in

chapter 8.

For bound states (E < 0) the wave vector k is purely complex and hence we write it

in the form k = −i/c, c ∈ R. Now we recall that the bound state spectrum is manifested

as poles of the scattering amplitude in the complex k space. From the analyticity properties

of the hypergeometric function one concludes that the poles in the complex k plane (which

correspond to the bound states) originate from the analytically continued normalization factor

N− = (2π)−3/2 eiπc/2Γ(1− c). (2.61)
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This function has isolated poles when c = n ∈ N+ is a positive integer, meaning that

k = −i/n =
√

2E ⇒ E = −1/2n2. The simultaneous description of the bound and the

continuum spectrum is made possible by an analytical continuation into the complex k plane.

This procedure can be utilized for cases involving a more general form of the potentials where

an analytical treatment is not possible. The tools and methods for such a procedure are out-

lined in the next chapter.



3 One particle in an arbitrary potential

Due to the special functional form of the Coulomb potential we were able to derive the elec-

tronic quantum mechanical states analytically. In general, however, the electrons are subject

to more complicated, non-local, energy-dependent forces. E. g., as shown in chapter 14, the

propagation of a single particle or a single hole in a surrounding medium can be described

by a Schrödinger-type differential equation involving a non-local, energy-dependent poten-

tial, called the self-energy. Therefore, we sketch in this chapter a general method for the

treatment of the quantum mechanical properties of a non-relativistic particle in a non-local

(energy-dependent) potential.

3.1 The variable-phase method

The quantum mechanics of a particle is fully described by its wave function derived from

the Schrödinger equation, i.e. from the solution of a second-order differential equation. In

numerous situations however, it suffices to know certain features related to the particle motion,

e. g. for the derivation of the scattering cross section from an external potential the knowledge

of only the scattering phase shifts is necessary. Therefore, it is useful to reformulate the

problem of finding the wave function in a one which yields directly physical observables,

such as the scattering phase shifts and the scattering amplitudes. This kind of an approach

has been put forward by Calogero [13] and by Babikov [14] and is generally known as the

variable-phase approach (VPA), or the phase-amplitude method. In the VPA the Schrödinger

equation, as a second order differential equation (DE), is transformed into a pair of first-order,

coupled DEs. The solutions of these DEs yield the so-called phase and amplitude functions.

An important feature of the VPA is the decoupling of the two first order DEs [13, 14]. This

is because the solution of some physical problems is obtained by treating only one of the two

DEs. Solving both first-order DEs yields completely the same information carried by the wave
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function. Due to its versatileness and its close relation to the required physical quantities the

VPA has found applications in various fields of physics [17–21]. In this chapter we sketch the

basic elements of the VPA for local and non-local potentials.

3.2 Phase-amplitude equations for non-local potentials

Let us consider a non-relativistic, spinless particle with the energy k2 subject to a hermitian,

non-local potential V (r, r′) = V (r′, r). A quantum mechanical description of this particle

requires the solution of the Schödinger eqaution1

�Ψ(r) + k2Ψ(r) =
∫

dr′V (r, r′)Ψ(r′). (3.1)

Assuming isotropy of space, the potential V (r, r′) is a function of the scalar variables r2, r′2,

r · r′ = rr′ cos θ only. In spherical coordinates, Eq. (3.1) separates into an angular and a

radial part. The radial part u�(r) of the solution of the Schrödinger equation is derived from

the relation

d2

dr2
u�(r) +

(
k2 − �(� + 1)

r2

)
u�(r) =

∞∫
0

dr′V�(r, r′)u�(r′). (3.2)

Here the non-local potential associated with the orbital angular momentum � is given by

V�(r, r′) = V�(r′, r) = 2πrr′
1∫

−1

V�(r, r′)P�(cos θ)d(cos θ),

where � is an orbital quantum number. Instead of solving directly for u� one introduces in the

VPA the functions α�(r) and δ�(r) such that

u�(r) = α�(r)F�(r), (3.3)

where

F�(r) = [cos δ�(r)j�(kr)− sin δ�(r)n�(kr)] . (3.4)

The functions j�(kr) and n�(kr) are the Riccati-Bessel functions which are the regular and

the irregular solutions in absence of the potential. Because two new functions have been

introduced to mimic u� an additional condition on the derivative is required, namely
d

dr
u�(r) = α�(r)

[
cos δ�(r)

d

dr
j�(kr)− sin δ�(r)

d

dr
n�(kr)

]
, (3.5)

1For simplicity we use units in which 2m = 1 = �, Z = 1.
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or one can write equivalently

dα�(r)
dr

F�(r) = α�(r)
dδ�(r)

dr
G�(r), . (3.6)

The function G�(r) is conveniently expressed in terms of the Riccati-Bessel functions as

G�(r) = sin δ�(r)j�(kr) + cos δ�(r)n�(kr).

The functions δ�(r) and α�(r) are called respectively the phase and the wave-amplitude

functions. The names as well as the physical significance of δ�(r) and α�(r) become obvious

when we consider the cut-off potential V
(R)
� obtained from the potential V�(r, r′) terminated

at the position R, i.e.

V
(R)
� (r, r′) = V�(r, r′)θ(R− r)θ(R− r′), (3.7)

where θ is the step function [θ(x > 0) = 1, θ(x < 0) = 0]. The functions δ�(R) and α�(R)

are the (physically measurable) partial scattering phase shift δ̂�

(R)
and the asymptotic ampli-

tude α̂
(R)
� of the wave function of the particle subjected to the potential V

(R)
� . This means

that the function δ�(R) and α�(R) contain information pertinent not only to the potential in

question but also to an infinite series of a certain class of potentials [V (R)
� (r, r′), ∀R ]. Ob-

viously the asymptotic value of δ�(r) yields the scattering phase for the potential V�(r, r′),

i.e. δ�(∞) = δ̂�.

To derive determining equations for the phase and for the amplitude functions we evaluate

at first the derivative of the function F� as

dF�(r)
dr

=
d

dr
[j�(kr) cos δ�(r)− n�(kr) sin δ�(r)] ,

=
[
dj�(kr)

dr
cos δ�(r)− j�(kr) sin δ�(r)

dδ�(r)
dr

− dn�(kr)
dr

sin δ�(r)− n�(kr) cos δ�(r)
dδ�(r)

dr

]
,

=
[
dj�(kr)

dr
cos δ�(r)−

dn�(kr)
dr

sin δ�(r)
]
− dδ�(r)

dr
G�(r).

(3.8)
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Furthermore, for the first derivative of u�(r) we find

du�(r)
dr

=
d(α�(r)F�(r))

dr
,

= α�(r)
dF�(r)

dr
+

dα�(r)
dr

F�(r)

= α�(r)
dF�(r)

dr
+ α�(r)

dδ�(r)
dr

G�(r),

= α�(r)
[
dj�(kr)

dr
cos δ�(r)−

dn�(kr)
dr

sin δ�(r)
]

.

(3.9)

The second derivative of u�(r) is more complicated. Its explicit form reads

d2u�(r)
dr2

=
d

dr

(
α�(r)

[
dj�(kr)

dr
cos δ�(r)−

dn�(kr)
dr

sin δ�(r)
])

,

=
dα�(r)

dr

[
dj�(kr)

dr
cos δ�(r)−

dn�(kr)
dr

sin δ�(r)
]

+ α�(r)
[
d2j�(kr)

dr2
cos δ�(r)−

d2n�(kr)
dr2

sin δ�(r)
]

− α�(r)
dδ�(r)

dr

[
dj�(kr)

dr
sin δ�(r) +

dn�(kr)
dr

cos δ�(r)
]

,

= α�(r)
dδ�(r)

dr

(
G�(r)
F�(r)

[
dj�(kr)

dr
cos δ�(r)−

dn�(kr)
dr

sin δ�(r)
]

−
[
dj�(kr)

dr
sin δ�(r) +

dn�(kr)
dr

cos δ�(r)
])

+ α�(r)
[
d2j�(kr)

dr2
cos δ�(r)−

d2n�(kr)
dr2

sin δ�(r)
]

,

= α�(r)
dδ�(r)

dr

W

F�(r)

+ α�(r)
[
d2j�(kr)

dr2
cos δ�(r)−

d2n�(kr)
dr2

sin δ�(r)
]

.

(3.10)
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The function W has been introduced as an abbreviation for the expression

W

F�(r)
=

G�(r)
F�(r)

[
dj�(kr)

dr
cos δ�(r)−

dn�(kr)
dr

sin δ�(r)
]

,

−
[
dj�(kr)

dr
sin δ�(r) +

dn�(kr)
dr

cos δ�(r)
]

=
1

F�(r)

{
G�(r)

[
dj�(kr)

dr
cos δ�(r)−

dn�(kr)
dr

sin δ�(r)
]

− F�(r)
[
dj�(kr)

dr
sin δ�(r) +

dn�(kr)
dr

cos δ�(r)
]}

=
1

F�(r)

{
n�(kr)

dj�(kr)
dr

− j�(kr)
dj�(kr)

dr

}[
cos2 δ�(r) + sin2 δ�(r)

]
.

(3.11)

From this relation it is clear that W is the Wronskian of the functions n�(kr) and j�(kr) and

hence W is equal to −k, i. e.

W = n�(kr)
dj�(kr)

dr
− j�(kr)

dn�(kr)
dr

= −k. (3.12)

Having derived the first and the second derivative for u� we can now write down the radial

Schrödinger equation in the form

− α�(r)
dδ�(r)

dr

k

F�(r)(δ�(r))
+
{

α�(r)
[
d2j�(kr)

dr2
cos δ�(r)−

d2n�(kr)
dr2

sin δ�(r)
]

+α�(r)
(

k2 − �(� + 1)
r2

)
[j�(kr) cos δ�(r)− n�(kr) sin δ�(r)]

}

=

∞∫
0

dr′V�(r, r′)α�(r′)F�(δ�(r′)). (3.13)

The curly bracket in this expression contains the solution of the free equation and hence van-

ishes. This leads to the differential equation for the phase function

dδ�(r)
dr

= −F�(δ�(r))
k

∞∫
0

dr′V�(r, r′)
α�(r′)
α�(r)

F�(δ�(r′)). (3.14)

Once δ�(r) has been derived one can obtain α�(r) from the relation

dα�(r)
dr

F�(δ�(r)) = α�(r)
dδ�(r)

dr
G�(δ�(r)), (3.15)

α�(r′)
α�(r)

= exp

⎛⎝− r∫
r′

ds
dδ�(s)

ds

G�(δ�(s))
F�(δ�(s))

⎞⎠ . (3.16)
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With this expression taken into account we arrive at the principal determining equation for

δ�(r) in the case of non-local potentials [23]:

dδ�(r)
dr

= −1
k

F�(r)

∞∫
0

dr′V (r, r′)F�(r′) exp

⎡⎣− r∫
r′

dδ�(s)
ds

G�(s)
F�(s)

ds

⎤⎦. (3.17)

3.2.1 The local potential case

The case of local potentials is readily derived from Eq. (3.17) by imposing the restriction that

V (r, r′) = V (r′)δ�(r)(r − r′).

Equation (3.17) reduces then to the well-established phase equation for problems involving lo-

cal potentials, which has been derived in the original works of [13,14]. The explicit expression

for δ�(r) in the local-potential case is

dδ�(r)
dr

= −V (r)
k

F 2
� (r) = −V (r)

k
[j�(kr) cos δ�(r)− n�(kr) sin δ�(r)]

2 . (3.18)

3.2.2 Numerical considerations

The equation (3.17) for the general case has to be solved with the initial condition

δ�(0) = 0

which corresponds to vanishing phase shift δ�(0) = δ̂�

(R=0)
= 0, i. e. δ� vanishes in absence

of the potential V
(R=0)
� (r, r′) = 0 ∀ r, r′. In this context we recall the statement made in

the introduction with regard to the properties of the VPA, namely that the equation for the

phase function does not contain the wave-amplitude function α�(r), which is confirmed by

Eq. (3.17).

Having solved for δ�(r), one obtains the function α�(r) upon an integration of Eq. (3.6)

with the formal result being

α(r) = α(0) exp

⎛⎝ r∫
0

ds
G�(s)
F�(s)

dδ�(s)
ds

⎞⎠ . (3.19)
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Furthermore, we note that the functions F, N and G are interrelated via the equations

dF = Nds−Gdδ,

⇒
r∫

r′

(
−G

F
dδ

)
=

r∫
r′

(
dF

F
− Nds

F

)
= ln

(
F (r)
F (r′)

)
−

r∫
r′

N(s)
F (s)

ds.

(3.20)

Hence, the determining equation for the phase function can be written in the form

dδ�(r)
dr

=
(
−1

k

)
F 2

� (r)

∞∫
0

dr′V�(r, r′) exp

⎡⎣− r∫
r′

N�(s)
F�(s)

ds

⎤⎦, (3.21)

where the function Nα� is given in terms of the derivatives of the Riccati-Bessel functions as

Nα�(s) = cos δ�(s)
dj�(ks)

ds
− sin δ�(r)

dn�(kr)
ds

.

3.3 The scattering amplitude representation

The influence of an external potential on the motion of quantum particles is often described by

means of the partial scattering amplitude (SA) F̂�. The SA is linked to the partial scattering

phase via the relation [22]

F̂� =
1
k

sin δ̂�e
ibδ� .

In the same way one introduces in the VPA the scattering amplitude function as

F�(r) =
1
k

sin δ�(r) eiδ�(r). (3.22)

The significance of F�(r) for physical problems follows from the properties of δ�(r), namely

the value of the scattering amplitude function F�(r = R) yields the physical scattering ampli-

tude F̂ (R)
� for a particle subjected to the cut-off potential V

(R)
� [see Fig. 3.1 for an illustration].

The relations derived for δ�(r) in the previous section lead to an integro-differential equation

for the SA function that can be employed for the determination of all bound state energies of

the particle in a local or in a non-local potential. For this purpose one introduces the auxiliary

functions

f�(r) ≡ kF�(r) = eiδ�(r) sin δ�(r),

F̃�(r) ≡ F�(r)eiδ�(r) = j�(r) + ih
(1)
� (kr)f�(r),

G̃�(r) ≡ G�(r)eiδ�(r) = n�(r) + h
(1)
� (r)f�(r). (3.23)
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Expressing δ�(r) through f�(r) we find

dδ�(r)
dr

=
1

2if�(r) + 1
df�(r)

dr
. (3.24)

Taking Eqs. (3.4, 3.6) into account, the phase equation (3.17) yields a determining equation

for the function f�(r) which has the explicit form

df�(r)
dr

=
(
−1

k

)√
2if�(r) + 1 F̃�(r)

×
∞∫
0

dr′V�(r, r′)
F̃�(r′)√

2if�(r′) + 1
exp

⎡⎣− r∫
r′

ḟ�(s)ds

(2if�(s) + 1)
G̃�(s)

F̃�(s)

⎤⎦ .

(3.25)

This equation is to be solved with the initial condition

f�(0) = 0.

In case the potential is local, Eq. (3.25) reduces to (cf. Refs. [15, 16])

if V (r, r′) = V (r′)δ(r − r′) ⇒ df�(r)
dr

= −1
k
· V�(r)F̃ 2

� (r). (3.26)

The partial SA associated with the orbital momentum � describes stationary and quasi-stationary

states characterized by the behaviour of SA for complex wave vectors k. The poles of the SA

along the positive imaginary semi-axis (k = iκn, κn ∈ R+) correspond to the energies of

stationary states of the discrete spectrum, i.e. En = (iκn)2 < 0. Therefore, the energy

spectrum is deduced from f�(r, k) via the condition

f�(∞; κn) =∞. (3.27)

For rewriting Eq. (3.25) in the case of k = iκ, κ > 0 we note that the Riccati-Bessel functions

of imaginary arguments can be expressed through the modified Riccati-Bessel functions of

real arguments p�(κr) and q�(κr), namely

j�(iκr) = βp�(κr), (3.28)

n�(iκr) =
i

β

[
β2p�(κr)− q�(κr))

]
, (3.29)

h
(1)
� (iκr) =

1
β

q�(κr), (3.30)

β := (i)�+1. (3.31)



3.3 The scattering amplitude representation 25

In equation (3.25) the main integrand with respect to r′ can be transformed into the form

exp

[
−
∫ r

r′

df�(s)
2if�(s) + 1

Ĝ�(s)
F̂�(s)

]

= exp

[
−
∫ r

r′

df�(s)
2if�(s) + 1

i
[
β2p�(κs)− q�(κs) (if�(s) + 1)

]
[β2p�(κs) + q�(κs) (if�(s))]

]

= exp
[
−
∫ r

r′

1
2

d(2if�(s) + 1)
2if�(s) + 1

− q�(κs) d(if�(s))
q�(κs) if�(s) + β2p�(κs)

]
.

(3.32)

At first we note that the factor involving the integral can be simplified as

exp
[
−
∫ r

r′

1
2

d(2if�(s) + 1)
2if�(s) + 1

]
= exp

{
−1

2
ln
[

2if�(r) + 1
2if�(r′) + 1

]}
=

√
2if�(r′) + 1√
2if�(r) + 1

.

(3.33)

Comparing with Eq. (3.25) and using the identity (3.20) we obtain the Volterra integro-

differential equation of the first-kind for the determination of the function 2 if�(r)

d(if�(r))
dr

=− 2
β2κ

[
if�(r)q�(κr) + β2p�(κr)

]2
×

r∫
0

dr′�V (r, r′) cosh

⎧⎨⎩−
r∫

r′

ds
if�(s)q̇�(κs) + β2ṗ�(κs)
if�(s)q�(κs) + β2p�(κs)

⎫⎬⎭ .

(3.34)

Equivalently, one can substitute

if�(r) ≡ β2y�(r)

to obtain from Eq. (3.34) the relation for the real function y�(r)

dy�(r)
dr

= − 2
κ

[y�(r)q�(κr) + p�(κr)]2

×
r∫

0

dr′V�(r, r′) cosh

⎧⎨⎩−
r∫

r′

ds
y�(s)q̇�(κs) + ṗ�(κs)
y�(s)q�(κs) + p�(κs)

⎫⎬⎭ .
(3.35)

Since the potential V�(r, r′) is hermitian and because the functions p�(κr) and q�(κr) are real,

the initial condition y�(0, κ) = 0 implies that y�(r, κ) is real everywhere. The bound energy

spectrum E = −κ2 is given by the poles of y�(∞, κ).

2The upper dot on the function f(x) denotes differentiation with respect to the argument, i.e. ḟ(x) =
df(x)

dx
.
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For a numerical implementation it is advantageous to regularize Eq. (3.35) by introducing

the inverse function

y� = 1/φ�. (3.36)

Equivalently, one may opt to use a tangent function regularization, i. e. one applies the substi-

tution

y� = tan γ�. (3.37)

Upon using the procedure (3.36), and taking Eq. (3.35) into account, the problem reduces to

the solution of the integro-differential equation

dφ�(r)
dr

=
2
κ

[q�(κr) + φ�(r)p�(κr)]2

×
r∫

0

dr′V�(r, r′) cosh

⎧⎨⎩−
r∫

r′

ds
q̇�(κs) + φ�(s)ṗ�(κs)
q�(κs) + φ�(s)p�(κs)

⎫⎬⎭ .
(3.38)

On the other hand, if the option (3.37) is more appropriate one has to deal with an equation

for γ� that has the following form

dγ�(r)
dr

= − 2
κ

[q�(κr) sinγ�(r) + p(κr) cosγ�(r)]
2

×
r∫

0

dr′V�(r, r′) cosh

⎧⎨⎩−
r∫

r′

ds
sin γ�(s) q̇�(κs) + cos γ�(s) ṗ�(κs)
sin γ(s) q�(κs) + cos γ�(s) p�(κs)

⎫⎬⎭ .
(3.39)

For the solution of this equation the initial condition

γ�(0, κ) = 0

has to be imposed. The eigenenergies are then provided by the zeros of φ�(∞, κ), or by the

condition

γ�(∞, κ) = (2n− 1)π/2, n ∈ N.

More details and an explicit scheme for the numerical implementation can be found in Ref. [23].

3.4 Illustrative examples

For an illustration let us consider a neutral atom. The quantity of interest is the scattering

amplitude function F0(r) for a zero orbital momentum � = 0.
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Figure 3.1: The arctangent of the scattering amplitude function γ0(r) for a particle subjected to the
Coulomb potential V (r) = −1/r (upper plot) or subjected to the Coulomb potential which is cut off at
the radial distance R = 10 (lower plot). At the distance R the value of the function γ0(r = R) coincides

with the arctangent of the scattering amplitude bγ0
(R) = arctan(κcF0

(R)
) of the particle that moves in

the cut-off potential V (R)(r).

For a particle with the energy E = −0.0556 Hartree subject to an attractive Coulomb po-

tential V (r) the function γ0(r) = arctan(κF0(r)) exhibits the behaviour shown in Fig. 3.1.

The potential V (r) = −1/r is finite everywhere and hence the derivative of γ0(r) is influ-

enced by V at all radial distances. The physical, observable (arctangen) value of the scattering

amplitude is given by the asymptotic (arctangent) value of the SA function, i.e. γ0(∞) = γ̂0 =

arctan F̂0. For the potential V (R) obtained by cutting off V (r) at the radial distance R, the

value of the derivative of γ0(r) vanishes beyond the distance R. This means, the value of the
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Figure 3.2: The function γ0(r) at different negative energies of a particle in an attractive Coulomb
potential. The labels (a-d) refer to the different energies as follows: (a) E = −0.5 × 10−10 Hartree, (b)
E = −0.01 Hartree, (c) E = −0.0556 Hartree, (d) E = −0.5 Hartree. The inset shows the behavior
of γ0(r) near γ0(r) = 5

2
π.

function γ0(r) coincides with the asymptotic value γ̂0
(R) ≡ γ0(∞) = γ0(R), as illustrated in

Fig. 3.1.

Figure 3.2 illustrates how γ0(r) behaves at different energies. We recall that we are dealing

with s states only. The various energy levels occur when the value of the function γ0(r) is

(n − 1/2)π. It might well be that this value is admitted at a finite radial distance R. In this

case the eigenstate is associated with the cut-off potential V (R). From these considerations

it is evident that the VP method provides, at the same time, the energy spectra of an infinite

number of potentials V (R) where R is an arbitrary distance that falls within the range where

the potential V is active.
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The inset of Fig. 3.2 shows the behaviour of the function γ0(r) around its value γ0(r) =
5
2π on an enlarged scale. The figure indicates the occurrence of eigenstates marked by (a)

and (b) at finite radial distances and therefore, these eigenenergy states are associated with

potentials which are cut off at corresponding radial distances. The inset reveals the behaviour

of these states at the distances ra and rb. From the inset it is also clear that for the case

labelled (c) (which corresponds to the 3s-state) the function γ0 will reach 5
2π at an infinitely

large distance and hence the corresponding energy eigenstate is an eigenstate of the Coulomb

potential V (r). The ground state energy Ed, associated with the potential V (r), is indicated

by the fact that limr→∞ γ0(r, Ed)→ π/2.
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In previous chapters we discussed the quantum mechanical methods and tools for the descrip-

tion of the bound and the excited states of a single particle in an external potential. With

growing number of interacting particles an exact treatment becomes however intractable. Ex-

amples of this case are many-body systems with non-separable quantum Hamiltonians, such

as large atoms, molecules, clusters and solids. Therefore, various concepts have been put

forward to circumvent this situation. In particular, nowadays the ground state of a variety of

many-body systems can be calculated efficiently by searching for the minimal energy of the

system which singles out the ground state. In contrast, variational approaches to excitation

processes [24] require more elaborate numerical procedures. On the other hand, the objects of

physical interest are the transition amplitudes for certain reactions and response functions to

external perturbations. These quantities are determined not only by the excited state achieved

in the process, but also by the initial state, which in most cases is the ground state. In fact,

weak perturbations (compared to the strength of interactions present in the probe) results is

small fluctuations in the values of the relevant physical observables <O> around their ground

state expectation values <O>0 [52, 84]. The calculations of <O> are efficiently performed

by means of the so-called random-phase approximation (RPA) [52, 84], which will be dis-

cussed in chapter 14. In view of this situation its useful to give a brief overview on some of

the ground-state methods, before addressing the treatment of excited and continuum states.

A widely followed rout for finding the ground-state of many interacting particles is to re-

duce the problem to the solution of a single particle moving in an effective (non-local) field.

The Rayleigh-Ritz variational principle is then employed to find the ground state with the min-

imal energy. A prominent example is the Hartree-Fock (HF) method [25,26]. In a HF approach

the exchange interaction between parallel-spin electrons is correctly treated leading a non-

local exchange potential for the single-particle motion. The correlation hole for antiparallel
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spin electrons is neglected however. More elaborate treatments are provided by the variational

configuration interaction (CI) method (see e. g. Ref. [27, 28, 53] and references therein), and

by the projective and size-extensive coupled cluster (CC) method [28–30, 53]. The Møller-

Plesset many-body perturbation approach [31] and the wave-function based Monte Carlo

method [33, 243] have as well proved to be powerful tools. On the other hand, density-based

concepts [41, 43, 54–56], and in particular the local-density approximation within the density

functional theory, proved to be exceptionally versatile and effective, and therefore they are

now widely used in various branches of physics and chemistry. Furthermore, the Green’s

function method (see e. g. [52, 84, 85, 107] and references therein), which is based on the

quasi-particle concept, offers a systematic and a diagrammatic tool for the treatment of the

ground and the excited states of correlated systems. In chapter 14 the Green’s function con-

cept is covered, whereas is this chapter a brief overview is provided on the main ground state

methods, mentioned above.

4.1 Time-scale separation

Generally, inhomogeneous electronic systems consist of heavy immobile ions surrounded by

the much lighter electrons. While the electrostatic forces between the particles are generally

comparable, the large difference between the electrons’ and the ions’ masses implies that the

momentum transfer to the ionic motion is small. In addition, due to the large difference be-

tween the velocities of the ions and the electrons we can assume that, on the typical time-scale

for the nuclear motion, the electrons may relax to the ground-state for a fixed configuration

of the ions. This approximative separation of the electronic and the ionic motion has been

pointed out the by Born and Oppenheimer (BO) in 1927 [34]. Our aim here is to illustrate the

general idea of the BO approximation, which is utilized in later chapters of this book. Detailed

discussions of the various aspects of the BO approximation can be found in numerous books

on quantum chemistry (e. g. [35]).

Generally, the stationary state of a non-relativistic system consisting of Ne electrons and

Ni less mobile ions1 is described by the solution Ψ of the time-independent Schrödinger

1This approximation does not exclude the possibility of studying the dynamic of the ions, for once the electronic
configuration is known, the ionic equation of motion can be solved, which yields the phonon spectrum (cf. Eq. (4.7)).
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equation. At first, one writes the wave function Ψ is the form

Ψ ({ri}, {Rα}) = χ{Rα} ({ri}) Φ ({Rα}) , (4.1)

where {ri} and {Rα} are two sets of position vectors that specify, in an appropriately chosen

reference frame, the coordinates of respectively the electrons and the ions. The charges and

masses of the latter are denoted by Zα and Mα respectively . The electronic wave function

χ{Rα} ({ri}) depends parametrically on the positions of the ions {Rα} and is determined as

a solution of the electronic part of the Schrödinger equation

[He − Ee({Rα})] χ{Rα} ({ri}) = 0, (4.2)

where the electronic Hamiltonian He has the explicit form

He =
Ne∑
i=1

−1
2
∇2

ri
+

Ne∑
i,j>i=1

1
|ri − rj |

−
Ne∑
i=1

Ni∑
α=1

Zα

|ri −Rα|
,

=
Ne∑
i=1

−1
2
∇2

ri
+

1
2

Ne∑
i

Ne∑
j �=i

1
|ri − rj |

+
Ne∑
i=1

V
(i)
ext(ri).

(4.3)

The energy eigenvalues Ee({Rα}) of the electronic Hamiltonian He are functions of the po-

sitions of the ions. The total wave function Ψ, given by Eq. (4.1), is the solution of the

eigenvalue equation⎡⎣He −
Ni∑
i=1

1
2Mα

∇2
Rα

+
Ni∑

β>α=1

ZαZβ

|Rα −Rβ |

⎤⎦Ψ ({ri}, {Rα})

= EΨ ({ri}, {Rα}) . (4.4)

Taking Eq. (4.2) into account one concludes that

χ

⎡⎣− Ni∑
α=1

1
2Mα

∇2
Rα

+
Ni∑

β>α=1

ZαZβ

|Rα −Rβ |
+ Ee({Rα})

⎤⎦Φ ({Rα})−A

= EΨ ({ri}, {Rα}) , (4.5)

where the non-adiabatic coupling cross term A is given by

A :=
1

2Mβ

⎧⎨⎩∑
β

2
(∇Rβ

Φ
)
·
(∇Rβ

χ
)

+ Φ∇2
Rβ

χ

⎫⎬⎭ . (4.6)
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The adiabatic energy contribution Ee is generally dominant over the remaining non-adiabatic

terms whose values can be calculated using perturbation theory [32].

Neglecting the non-adiabatic function Eq. (4.6) results in a separation of the electrons and

the ions dynamics. The former is described by (4.2), whereas the ionic motion is treated by

solving the Schrödinger equation⎡⎣− Ni∑
α=1

1
2Mα

∇2
Rα

+
Ni∑

β>α=1

ZαZβ

|Rα −Rβ |
+ Ee({Rα})

⎤⎦Φ ({Rα})

= EΦ ({Rα}) , (4.7)

i. e. the electronic energy Ee({Rα}) enters as a part of the adiabatic potential surface that

dictates the motion of the ions2. The adiabatic technique of separating various degrees of

freedom is of a general nature. In the context of the present work we will utilize the adiabatic

idea, in particular in section 9.6.1, for separating out the laboratory-frame from the body-fixed

motion in a three-body system.

4.2 Hartree-Fock approximation

Within the Hartree Fock theory [25, 26] the many-body eigenfunction Ψ is written as an an-

tisymmetrized product (Slater determinant) of single-particle spin-orbitals ψj(xj), where xj

stands for spin and spatial coordinates. The many-body problem is then reduced to the task of

minimizing the energy functional

E[Ψ] = 〈Ψ|H |Ψ〉 , (4.8)

which, according to the Rayleigh-Ritz principle, yields the ground-state wave function and

the associated energy. In terms of the single-particle orbitals the minimization procedure is

expressed as

δ

δψ

⎡⎣< H > −
∑

j

εj

∫
|ψj |2dr

⎤⎦ = 0, (4.9)

2In practice the use of Newtonian mechanics is generally sufficient for the description of the ionic motion (whilst
the adiabatic potential surface is determined from quantal calculations of the electronic states). The relaxation of
the nuclear positions to achieve the minimum-energy configuration is performed by means of molecular dynamic
simulations [36, 37].
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where εi are Lagrange multipliers introduced to ensure that the orbitals ψi are normalized.

The key point is that Eq. (4.9) leads to a set of one-electron Schrödinger-type determining

equations for the single particle orbitals, the well-known Hartree-Fock equations(
−1

2
∇2

i + Vion(r)
)

ψi(r) +
∑

j

∫
dr′
|ψj(r′)|2
|r− r′| ψi(r)

−
∑

j

δσiσj

∫
dr′

ψ∗
j (r′)ψi(r′)
|r− r′| ψj(r) = εiψi(r),

(4.10)

where σj are spin indices. The HF equation can be written in the form

−1
2
∇2ψi(r) + Vion(r)ψi(r) + Ûψi(r) = εiψi(r). (4.11)

Here Û is a non-local potential operator whose action can be inferred from Eq. (4.10). Vion is

the local ionic (external) potential.

From a numerical point of view Eq. (4.11) is a one-electron equation involving a nonlocal

potential. The eigensolutions can be found, for example by means of the methods outlined in

chapter 3.

The HF-equation (4.10) contains four terms. The first and the second term of the right

hand side of Eq. (4.10) describe the kinetic energy and the (external) electron-ion potential

contributions to the total energy. The third term, also called the Hartree term, is due to the

electrostatic potential arising from the charge distribution of the electrons. It should be men-

tioned that this term contains an unphysical self-interaction of electrons when j = i, which

is removed by equivalent contributions from the fourth, or the exchange term. The exchange

term is a result of the Pauli principle included in the assumption that the total wave function is

an antisymmetrized product of single particle orbitals. The effect of accounting for exchange

is that electrons with the same spin projections avoid each other leading to the so-called ex-

change hole. In contrast to exchange effects, the Hartree-Fock theory does not treat correctly

the Coulomb correlations between the electrons since the electron is assumed to be subject to

an average non-local potential arising from the other electrons. This shortcoming may lead to

serious failures in predicting the electronic structure of materials [38]. Nevertheless, as will

be discussed in chapter 14, the HF model provides a useful starting point for more elaborate

many-body calculations.
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4.2.1 Basis set expansion

For finding numerical solutions of the HF equations, it is customary to expand the orbitals [28]

in a basis set {ϕj} of a finite size K, i. e. one writes

ψi =
K∑
k

cijϕj . (4.12)

With this ansatz for the HF orbitals the relation (4.10) transforms into a set of matrix equa-

tions for the expansion coefficients cij that can be solved, e. g. by iterative diagonalisation.

The basis must be sufficiently complete so that the Hartree-Fock orbitals are correctly repro-

duced. The suitable choice depends on the physical problem under study. E. g., for extended

(delocalized) electronic systems plane waves are useful, whereas for (molecular) systems with

localised electrons Gaussians basis sets proved to be most effective.

4.3 Configuration interaction

The configuration interaction (CI) method [27, 28, 53] is a variational-based approach that

goes beyond the Hartree-Fock ansatz of a single-determinant for the total wave function. In

contrast to Eq. (4.12), where the HF orbitals are written in terms of basis functions, the CI

method relies on a linear expansion of the exact many-body wave function Ψ in terms of

Slater determinants. This is done via the ansatz

Ψ =
∞∑

k=0

ckDk. (4.13)

In principle, the determinants Dk can be any complete set of Ne-electron antisymmetric func-

tions. However, in practice Dk are often given by means of HF orbitals since the HF de-

terminant D0 is expected to be the best single-determinant approximation to the exact wave

function Ψ. This highlights the anticipation that the first term in the expansion is dominant,

i.e. c0 ≈ 1. This is because in many cases the HF energy is quite close to the total energy and

what is left is a small part that needs to be reproduced by a large number of configurations.

The number of determinants in the expansion (4.13) truncated at the term kmax is

kmax =
K!

Ne!(K −Ne)!
, (4.14)
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where K is the number of basis states (K � Ne, cf. Eq. (4.12)) (we recall Ne is the number

of the electrons). Therefore, in practice the CI method can be applied to relatively small

systems only. In addition, care should be taken as to where to truncate the expansion (4.13).

Typically, the expansion is terminated after only double or quadruple excitations from the

reference determinant D0. For the ground state, this amounts to replacing occupied orbitals

by an unoccupied one. The truncation scheme is called the CI singles-doubles (CISD) and CI

singles-doubles-triples-quadruples (CISDTQ) method. Naturally, this procedure leaves asides

all the other terms in the expansion (4.13). An additional known problem of the CI method

is that the method is size-none-extensive. For finite reference spaces the CI scheme does not

perform equally well when the size of the system varies. This shortcoming induces some

difficulties when results for systems of different sizes are compared.

4.4 The coupled cluster method

The lack of size extensivity and the substantial computational cost of the CI method has led

to the development of several related methods.

The coupled-cluster (CC) scheme [28–30, 53] is a non-variational method that resolves

the problem of the size non-extensivity of the CI and yields in most cases very accurate re-

sults. Within the CC approach the wave function is obtained from the reference HF solution

ΨHF = D0 as

ΨCC = exp(T)ΨHF , (4.15)

where T is an operator that generates the k fold excitations from a reference state

T =
∑

k

Tk = T1 + T2 + . . . . (4.16)

For example, applying the operator T2 on the HF state generates excitations of pairs of occu-

pied states ij to pairs of virtual states kl, i.e.

T2ΨHF =
∑

ckl
ijD

kl
ij . (4.17)

The expansion coefficients ckl
ij have to be calculated self-consistently. The CC doubles wave

function has thus the form

ΨCCD = (1 + T2 + T2
2/2 + T3

2/3! + . . . )ΨHF , (4.18)
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ΨCCD = D0 +
∑

tkl
ijD

kl
ij +

1
2

∑∑
tkl
ij t

op
mnDklop

ijmn + . . . . (4.19)

It can be shown [29] that the CC singles-doubles calculations scale as the sixth power of

the number of basis states. This sets a practical bound on the number of electrons that can

be treated accurately with this method. For example, calculations including up to quadruple

excitations scale as the tenth power of the number of states. Therefore, in practice, the CC

expansion (4.17) is often truncated after including all double excitations.

4.5 Variational and diffusion Monte Carlo techniques

The variational Monte Carlo method (VMC) uses the Monte Carlo integration scheme [33,

243] and the variational principle to find out the best trial many-body function Ψt that mini-

mizes the total energy (hereafter, for simplicity, we use N as the number of electrons)

E =
∫

Ψ∗
t HΨt dr1 . . . drN∫
Ψ∗

t Ψt dr1 · · · drN
=

∫
|Ψt|2

(
HΨt

Ψt

)
dr1 · · · drN∫

|Ψt|2 dr1 · · · drN
.

Expectation values of other observables can be found similarly. The position-dependent term
HΨt

Ψt
is called the local energy EL and is central to both variational and diffusion Monte

Carlo (DMC) methods 3. From this quantity one calculates by means of, e.g. the Metropolis

algorithm [338], the configuration sample from the probability density distribution and obtains

the energy E by averaging EL over the configuration set. In this way accurate energies of

many-body wave functions are obtained [243]. The variance of EL serves as an indicator for

the accuracy of E (and the corresponding variational functions) but this does not guarantee

the accuracy of other calculated observables.

4.6 Density functional theory

In contrast to the wave function-based HF and the post HF methods, the density functional

theory (DFT) relies on the concept of electronic density. In its original version DFT deals

3In the DMC (and related) methods one converts the differential Schrödinger equation with certain boundary
conditions into an integral equation and solves for the integral equation by stochastic methods. The motivation for
this procedure is the formal similarity of the Schrödinger equation in imaginary time and the diffusion equation
(see appendix A.4). This renders possible the use of a random process to solve the imaginary time Schrödinger
equation [39, 40].
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with ground-state properties only. This section provides a brief overview on the DFT theory.

For more details the reader is referred to the extensive literature on this topic (see e.g. [54–57]).

4.6.1 The Hohenberg-Kohn theorem

The basic idea of DFT relies on the following observation: the electronic Hamiltonian (4.3),

within the BO approximation, consists of a static external potential Vext =
∑N

i=1 V
(i)
ext(ri)

generated by the surrounding ions and of a remainder term

F =
N∑

i=1

⎡⎣−1
2
∇2

ri
+

1
2

N∑
j �=i

1
|ri − rj |

⎤⎦ ,

which is universal to all electronic systems with N number of particles. Thus, the ground state

Ψ0 of a specific system is determined once N and Vext are given. This means that the ground

state and the electronic density n0 it generates, are functional of N and Vext.

In 1964 Hohenberg and Kohn (HK) [41] proved the remarkable statement that, within

an additive constant, an external potential Vext is uniquely determined by the corresponding

single-particle ground state electronic density. This important statement has the following

consequence: For densities n(r) which are ground-state densities for some external potential4

Vext the functional F̄ [n] = 〈 Ψ|F |Ψ 〉 is determined uniquely. This is because n(r) fixes,

in addition to Vext, the number of particles N =
∫

drn(r) and hence the operator F and the

associated wave function Ψ are determined. This leads to the second HK statement.

Let us define the functional

E [n] = F [n] +
∫

drn(r)Vext(r), (4.20)

where V (r) is an arbitrary external potential determined by n(r) (and unrelated to Vext) and

F [n] is an unknown universal functional. The statement is then, for all v representable densi-

ties n(r) the variational principle E [n] ≥ E0 applies, where E0 is the ground-state energy for

N electrons in the external potential V (r). This means, minimizing E [n] yields the ground

state energy E0.

Based on a constrained search formulation, Levy [58] gave the following arguments for

the validity of the Hohenberg-Kohn theorem. Consider a conservative system consisting of

4Such densities are called v representable.
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N particles interacting via the pair potentials vij and are subject to an external potential Vext.

The Hamiltonian is then

H = T +
1
2

∑
i�=j

vij + Vext = F + Vext,

where T stands for the kinetic energy operator. One considers the functionalF defined as [58]

F [n(r)] = min
nΨ(r)→n(r)

〈 Ψ|F |Ψ 〉. (4.21)

This means, given a set of functions {Ψ} that yield the single-particle density5 nΨ(r) = n(r),

the functional F takes the minimal value in the set of the expectation values {〈 Ψ|F |Ψ 〉}.
Furthermore, let us assume Ψ0 to be the ground state yielding the density n0(r) and having

the energy E0.

Considering an N electron state Ψ[n] that yields the density [n] and minimizes F [n], then

we obtain from the definitions of F and the energy functional E

E [n(r)] = F [n(r)] +
∫

drn(r)Vext(r) = 〈Ψ[n]|F + Vext|Ψ[n]〉. (4.22)

The variational principle sets a bound on the values of E [n(r)], namely

E [n(r)] ≥ E0 = 〈Ψ0|F + Vext|Ψ0〉. (4.23)

This is valid for all densities obtainable from the N electron wave functions (i.e. N repre-

sentable6). On the other hand, in the sense of Eq. (4.21), the ground-state wave function Ψ0 is

just a member of the set {Ψn0} and hence the relations apply

F [n0(r)] ≤ 〈Ψ0|F |Ψ0〉,

⇒ F [n0(r)] +
∫

drn0(r)Vext(r) ≤ 〈Ψ0|F |Ψ0〉+
∫

drn0(r)Vext(r),

⇒ E [n0(r)] ≤ E0. (4.24)

Combining these findings with Eq. (4.23) we deduce

E [n(r)] ≥ E [n0(r)] = E0. (4.25)

5We recall that a given Ψ produces a unique n(r). The reverse statement is however invalid because there is in
general an infinite number of Ψ, that yield the same density n(r).

6The requirement of the N representability of the density imposes the conditions [42] that
R

dr
˛̨
∇n1/2(r)

˛̨2
is

real and finite.
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4.6.2 The Kohn-Sham equations

The HK theorem proofs the functional relation between physical observables and the ground-

state density. Thus, instead of dealing with the many-electron wave function (which is gener-

ally dependent on 3N variables), it suffices to treat the ground-state properties using functions

of only three variables, namely the single particle density. Thus, numerical efforts scale lin-

early with the system size. This great advantage goes on the expense that some expressions for

the unknown universal functional F have to be determined. Once such approximations for F
are available, one can perform the practical implementation according to the Kohn and Sham

theory [43]. The correlated many-body system is formally mapped onto a fictitious system of

non-interacting particles. Then a standard variational problem is formulated using Lagrange

multipliers to account for certain constraints and the whole task reduces to the solution of a set

of coupled differential equations. This is achieved by representing the single-particle density

n(r) by means of a set of auxiliary single-particle orbitals

n(r) =
N∑

i=1

ψ∗
i (r)ψi(r). (4.26)

The next step consist of separating E [n(r)] into expressions related to the kinetic energy

T [n(r)], the two-body interactionW [n(r)] and the external potential term, i.e.

E [n(r)] = T [n(r)] +W [n(r)] +
∫

dr n(r)Vext(r),

= Ts [n(r)] +WH [n(r)]

+
{
T [n(r)]− Ts [n(r)] +W [n(r)]−WH [n(r)]

}
+
∫

dr n(r)Vext(r),

= Ts [n(r)] +WH [n(r)] + Exc[n(r)] +
∫

dr n(r)Vext(r).

(4.27)

The functional Ts [n(r)] derives from the kinetic energy of the non-interacting electron gas

that possesses the electronic density n(r), i.e.

Ts [n(r)] = −1
2

N∑
i=1

∫
dr ψ∗

i (r)∇2ψi(r) , (4.28)

whereasWH [n(r)] is given by the Hartree energy

WH [n(r)] =
1
2

∫ ∫
drdr′

n(r)n(r′)
|r− r′| .
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Thus, many-body effects are contained in the exchange and correlation part

Exc[n(r)] = T [n(r)]− Ts [n(r)] +W [n(r)]−WH [n(r)] . (4.29)

Recalling that the reference system we chose, i.e. the non-interacting electron gas, has the

same electronic density as the real system, we conclude that if the (exact) ground state can be

written as a direct product of single-particle orbitals then the terms Ts andWH describe the

kinetic and the interaction energy. This is the reason for writing E in the form of Eq. (4.27).

The variational principle for the Hohenberg-Kohn density-functional under the constraint∫
dr n(r) = N is formulated as

δ

{
E [n(r)] +

∫
drVextn(r)− μ

[(∫
dr n(r)

)
−N

]}
= 0, (4.30)

where μ is a Lagrange multiplier. Replacing the variation with respect to the density by a

variation with respect to the orbitals ψi leads to the Kohn-Sham (KS) equations7[
−1

2
∇2

i + Vext(r) + VH(n, r) + Vxc(r)− εi

]
ψi(r) = 0,[

−1
2
∇2

i + Veff(r)− εi

]
ψi(r) = 0, (4.31)

where the exchange and correlation potential Vxc(r) derives from

Vxc(r) =
δExc[n(r)]

δn(r)
. (4.32)

The (density-dependent) effective one-particle Kohn-Sham!potential is given in terms of

Vext(r), the Hartree potential term VH(n, r) and Vxc(r) as Veff(r) = Vext(r) + VH(n, r) +

Vxc(r). Therefore, the KS equations depend on the density which is generated by the or-

bitals obtained from (4.31) (cf. 4.26). Thus, the Kohn-Sham equations have to be solved

self-consistently8. The missing part in this solution procedure is Exc (that yields Vxc). If one

assumes Vxc = 0 the above procedure reduces to the Hartree approximation, whereas the

assumption Vxc = Vx leads to the HF approximation (Vx is the exchange potential) and the

orbitals play the same role as in the HF theory. Generally, however, the orbitals ψi and the

associated eigenvalues εi are just mathematical objects representing the physical ground-state.

Unfortunately, the general form of the effective KS potential is unknown since Exc has been

7For finding the orbitals the Schrödinger-type equation has to be solved. The computational efforts (of diagonal-
izing the respective Hamiltonian) scale as the cube of the system-size, in contrast to the original linear scaling (with
the system size) of finding the minimum of the HK functional only.

8The convergence to the ground-state minimum is guaranteed by the convex nature of the density-functional [44].
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evaluated only for few simple systems [54–56]. Formally however, one can show that in con-

trast to the non-local HF potential the KS potential is multiplicative and contains correlation

effects (in as much as these effects are incorporated in Exc).

4.6.3 The local density approximation

The above approach to the many-body problem depends critically on the approximation to

the generally unknown functional Exc. The most prominent of the approximations that have

been put forward is the local density approximation (LDA) in which the value of an inhomo-

geneous electronic system with a density n(r) is derived from the results for the exchange-

correlation energy of the homogeneous electron gas that has the same density n(r). This

is done by assuming that, for inhomogeneous electronic systems, the contribution to the

exchange-correlation energy originating from an infinitesimal spatial volume Δr is the same

as in the case of a homogeneous electron gas with the same density n(r) found in the local

infinitesimal region Δr, i.e.

ELDA
xc [n(r)] =

∫
dr εxc(n(r)) n(r) , (4.33)

where εxc(n(r)) is the exchange-correlation energy per electron in a homogeneous electron

gas with the electronic density n(r). Accurate expressions for εxc are obtained from the

Green’s function Monte Carlo method [45]. Generally, one can say for systems with slow

varying charge densities the LDA provides a good description of the ground-state properties.

Unfortunately, in real systems the density generally varies rapidly. Nevertheless, the calcula-

tions using LDA are in surprisingly good accord with experimental findings for a wide range

of materials [46]. This is traced back in part to the fact that the LDA functional satisfies

certain sum rule for the exchange-correlation hole that must be fulfilled by the exact func-

tional [46]. In fact, as shown by quantum Monte Carlo calculations, the LDA benefits from

a cancellation of errors in the LDA exchange and correlation energies [47]. Therefore, care

should be taken when improving on LDA. E.g. an improvement of only the exchange or the

correlation term may invalidate the error cancellation which may adversely affect the perfor-

mance of the theory. For strongly correlated systems the LDA is found be inaccurate (see

e. g. [28] and references therein). E.g. the LDA calculations predict transition metal oxides,

which are Mott insulators, to be either semiconductors or metals. In addition, the LDA does
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not describe correctly hydrogen bonding and van der Waals forces. Furthermore, within the

LDA the asymptotic behaviour of the density is incorrect. The effective potential behaves as

V LDA
xc −→

r→ ∞ e−γr in contrast to the exact Vxc → − e2

r which precludes a correct prediction of

the properties of negative ions.

4.6.4 Gradient corrections

A way to improve on the LDA is to include gradient corrections by assuming E to be a func-

tional of the density. Its gradient can be obtained by expanding the xc-energy in terms of

gradients of the density

Exc[n] = E [0]
xc + E [2]

xc + E [4]
xc + . . . , (4.34)

=
∫

dr
{

εLDA
xc (n(r)) + B[2]

xc (n(r))[∇n(r)]2 + . . .
}

. (4.35)

This procedure, which is termed generalized gradient approximation (GGA), improves the

LDA description of the exchange and correlation hole only for short separations of the two

interacting particles, for larger inter-particle distances it is oscillatory and of the wrong sign.

In addition, the damping is poor and the exact sum rules for the exchange and correlation hole

are not satisfied. To correct these deficiencies a real space cut-off may be carried out which

removes the incorrect tails of the exchange and correlation hole, so that it matches as close as

possible all the properties of the exact hole [59]. This results in a correction to the LDA that

has the form

ΔEGGA
xc =

∫
dr εLDA

xc (n(r)) fxc(n(r),
[∇n]2

n
8
3

) . (4.36)

The function fxc ensures that the limits of low and high densities as well as of the low density

gradients are correctly reproduced. In this way the exchange and correlation term Vxc has the

correct asymptotic form which leads to a reasonable description of negative ions. While the

GGA yields significantly improved results (over the LDA) for molecular systems, for solids

the improvement is not systematic [48]. In addition, the van-der-Waals interaction can not be

treated using the GGA.
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4.6.5 Implicit orbital functionals

In this method Exc is written in terms of KS orbitals (which are implicitly functionals of the

electronic density). For the description of the exchange contribution one utilizes the Fock term

EKS
x [n] =

1
2

occ∑
i,j

∫∫
dr1dr2 ψ∗

i (r1) ψ∗
j (r2) v12(r1, r2) ψi(r2)ψj(r1) , (4.37)

where v12 is the two-particle interaction. This procedure removes self-interactions from the

term WH + Ex and leads to correct asymptotic behaviour. As far as exchange is concerned

multiplicative effective potentials V KS
x (r) are obtained by means of the so-called optimized

potential method (OPM) [60] by solving the integral equation∫
dr′ V KS

x (r′) K(r′, r)−Q(r) = 0 . (4.38)

The kernel of this equation K and the inhomogeneous term Q are expressible in terms of

the orbitals. Therefore, one has to iterate the KS equations and solve at the same time for

the optimized-potential integral equation. For the treatment of the correlation part a pertur-

bative approach similar to the Møller Plesset method has been suggested recently [61, 62].

Calculations showed that this scheme is capable of describing van-der-Waals bonding as well

as atomic and ionic correlation energies [62]. An effective practical implementation of this

approach for large systems is the subject of current research.

4.6.6 Self-interaction corrections

In DFT the question of the spurious self-interaction (SI) terms arises, i.e. the possibility of

the electron interacting with itself. The self-interaction corrections (SIC) impose on the exact

exchange-correlation functional the condition that the self-interaction energy of the electron

cloud must be cancelled by an equivalent term in the the exchange-correlation energy. A

procedure for removing SI from approximate expressions for the exchange-correlation func-

tionals has been put forward by Perdew and Zunger (PZ) [117]. From Eq. (4.31) it follows

that the KS total energy EKS
tot is (for one spin-component)

EKS
tot =

N∑
i=1

〈ψi|−
1
2
∇2

i |ψi〉+
1
2

∫
dr1dr2

n(r1) n(r2)
|r1 − r2|

+
∫

drVext(r)n(r) + Exc[n(r)].

(4.39)
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On the other hand the energy E1e
tot of a one-electron system with a charge density distribution

n(r) is

E1e
tot = 〈ψ| −1

2
∇2| ψ〉+

∫
drVext (r)n (r).

This imposes on the exact exchange-correlation functional the condition:

1
2

∫
n (r1)n (r2)
|r1 − r2|

dr1dr2 + Exc[n(r)] = 0.

Therefore, Perdew and Zunger (PZ) [117] suggested to remove the self-interaction from the

Kohn-Sham total energy, by making the prescription

EPZ
tot = EKS

tot −
N∑

i=1

{
1
2

∫
dr1dr2

ni (r1)ni (r2)
|r1 − r2|

+ Exc [ni]
}

.

The PZ correction scheme has the desirable properties that the correction term (enclosed in

parentheses) vanishes if Eex is exact. In addition, the exchange-correlation potentials possess

the correct asymptotic (radial) behavior. On the other hand, the total energy and the exchange-

correlation potentials become orbital-dependent. This is seen as follows. In the conventional

DFT the KS-orbitals ψi are eigenfunctions of the same (Fock) operator

h(KS) = −1
2
∇2 + VH (r) + Vext (r) + Vxc (r)

with an eigenenergy εi. In contrast, in the PZ scheme these orbitals are eigenfunctions of

different Fock operators h
(PZ)
i given by the equation

h
(PZ)
i = h(KS) + V

(PZ)
i (r),

and the potential V
(PZ)
i (r) has the form

V
(PZ)
i (r) = −δExc [ni]

δni
−
∫

dr′
ni (r′)
|r− r′| .

The orbital dependence of h
(PZ)
i results in complications in the numerical self-consistent

implementation. Therefore, one may choose to realize numerically the PZ-SIC within the

optimized effective potential (OEP) scheme [118] resulting in eigen-equations that are for-

mally identical to the KS equations (4.31). The resulting Fock operator h
(OEP )
i has the form

h(OEP ) = h(KS)+V (OEP )(r), where V (OEP )(r) is such that the PZ functional is minimized.
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4.6.7 Extensions of DFT

The original ground state DFT theory has been extended to deal with various systems and

physical processes. Here, the prominent cases are mentioned.

To deal with situations where the spin polarization plays a role, such as in magnetic and

relativistic systems a ground-state spin-polarized DFT [63, 64] has been developed. Further-

more, to address (equilibrium) statistical mechanical questions a finite temperature DFT has

been put forward [65] as well as a density functional theory for superconductors [66]. Systems

subject to an external time-dependent potential Vext(r, t) can be in principle treated within the

time-dependent DFT (TDFT) [67,68]. In this case it has been shown [67,68] that, for specified

initial many-particle state, the time-dependent density n(r, t) determines the time-dependent

external potential Vext(r, t) up to a purely time-dependent function. This existence theorem

has been generalized by Li and Tong [49] to multi-component systems with various kinds

of particles. Furthermore, it has been shown that observables are expressible as functionals

depending on the density and the chosen initial conditions. A time-dependent calculational

scheme analogous to KS method can be developed such that

n(r, t) =
N∑

i=1

ψ∗(r, t)ψ(r, t),

i∂tψ(r, t) =
[
−1

2
∇2

i + Vext(r, t) +
∫

dr′
n(r′, t)
|r− r′| + Vxc(r, t)

]
ψ(r, t),

i∂tψ(r, t) =
[
−1

2
∇2

i + Veff(r, t)
]

ψ(r, t), (4.40)

where a splitting of the Hartree and the external potential term has been carried out in the same

manner as in Eq. (4.31). In (4.40) the effective potential Veff(r, t) is implicitly dependent on

the initial conditions. From a practical point of view, it is not clear whether the approach lead-

ing to (4.40) will be useful for the time-dependent case as it has been for the time-independent

DFT. For example, in the KS equations (4.40, 4.31) the relations have been rearranged such

that the Hartree approach [which includes Vext(r) + VH(n, r), cf. (4.31)] is the leading order

approximation (with respect to Vxc). For time-dependent problems it is not obvious that such

a choice is reasonable, for the time-dependent HF theory was not particularly successful [69].

The question of which suitable (approximate) functionals to use is still open.
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The analogous approximation to the LDA, the so-called adiabatic local density approx-

imation (ALDA) has yielded useful results for some systems (e.g. laser ablation of atoms).

In the ALDA one assumes the exchange and correlation term Vxc(r, t) to be approximated

by d
dnεxc(n(r))|n(r)=n(r,t), where εxc(n(r)) is the exchange and correlation energy pro unit

volume of the homogeneous electron gas. The ALDA is formally justified in case of slowly

varying (in time) external potentials and slow varying densities. Extensions of the ALDA are

provided by the linear response treatment [70] and the time dependent OPM. For small ex-

ternal perturbations the linear response approach (first order perturbation theory) is a reliable

starting point and has led to satisfactory results for the excitation energies [70], even though a

systematic application to extended systems is still outstanding.
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In the previous chapter methods have been discussed that are capable of predicting ground

state properties of electronic systems. In general, an adequate description of excitation pro-

cesses entails the knowledge not only of the ground state but also of the excited states and

of the way the external perturbation couples to the system under study. While this combined

task is in general quite complicated to perform without severe approximations, valuable in-

formation can be gained from symmetry considerations of the transition amplitudes and the

symmetry properties of the external perturbation field. In what follows we illustrate these

statements in the case of excitation processes by ultraviolet radiations. Therefore, we specify

first the properties of the radiation field and quantify its coupling to electronic systems. In

a second step we inspect from a general point of view the symmetry properties of the elec-

tronic excitation probabilities. Subsequently, we address the question of obtaining appropriate

expressions for the excited states.

5.1 Electric dipole transitions

We will be dealing with radiative processes where the photon density is large so that the

electromagnetic field can be treated classically. We operate in the Coulomb gauge, i. e.,

∇ ·A = 0. In vacuum we can set Φ = 0, where A and Φ are the field vector and the scalar po-

tentials, respectively. It should be noted, however, that in a polarizable medium, such as near

a metal surface A may change rapidly which invalidates the assumption∇ ·A = 0 unless the

dielectric constant ε is unity [155, 156]. To avoid this complication the photon energies have

to be well above the plasmon energies [157]. The monochromatic, plane-wave solution for A

can be written in the form

A(r, t) = Aê
{

exp
[
i(k · r− ωt)

]
+ exp

[
−i(k · r− ωt)

] }
= A0e

−iωt +
(
A0e

−iωt
)∗

.
(5.1)
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The wave vector k ist related to the photon frequency ω via k = αω, where α is the fine-

structure constant. The energy-density ρ of the (classical) radiation field averaged over the

period T = 2π/ω is given by

ρ =
ω2A2

2π
. (5.2)

Thus, the energy-flux density, i. e. the intensity I , is given by I = ρ/α. The interaction of the

classical radiation field with an N-electron system is described by the Hamiltonian

H =
1
2

N∑
j=i

[
pj +

1
c
A(rj , t)

]2

+ V, (5.3)

where V is the total potential of the undisturbed system and pj are the one-particle momentum

operators. For low-intensity field we can set A2 ≈ 0 (for A ≈ 0.01 and photon energy of

50 eV we arrive at a maximum intensity I ≈ 5 ∗ 1017 W/m2). In addition, due to divA = 0,

A(rj , t) commutes with pj and Eq. (5.3) reduces to

H = H + W (rj , t), (5.4)

where H is the Hamiltonian of the unperturbed system and the perturbation W is given by

W = W̃ + W̃ †. With the solution (5.1) the perturbation W̃ has the explicit form1

W̃ =

⎧⎨⎩A

c

N∑
j=1

exp[i(k · rj)] ê · pj

⎫⎬⎭ e−iωt,

= W̃0e
−iωt. (5.5)

Let us assume the unperturbed system to be in the stationary state |i〉 with energy εi, i. e.,

(H − εi)|i〉 = 0. (5.6)

Under the action of the perturbation W (t), within the time lap τ , the system performs a tran-

sition into excited states |f〉 which lay within the interval β and β + dβ, where β stands for

collective quantum numbers that specify the final channel. In a time-dependent first-order

perturbation treatment of the action of W , the transition probability dwif amounts to [158]

dwif =
∑
αi

∣∣∣∣∫ τ

0

dt〈f |W̃0e
i(Ef−εi−ω)t + W̃ †

0 ei(Ef−εi+ω)t|i〉
∣∣∣∣2 dβ. (5.7)

1The diamagnetic term A2/(2c2) has been neglected and the relation ∇ ·A|i 〉 = (divA) |i 〉+(A · ∇) |i 〉 =
(A · ∇) |i 〉 is utilized.
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Here Ef is the energy of the final state and αi denotes the unresolved quantum numbers

which characterize the initial-state. From Eq. (5.7) it is clear that the system gains [loses]

energy under the action of W̃ (t) [W̃ (t)†], i. e. W̃ (t) and W̃ (t)† corresponds, respectively,

to photon absorption and induced emission. In what follows we consider photoabsorption,

only, and define Ei = ε + ω. For a small characteristic interaction time τ the time integral in

Eq. (5.7) is readily performed and we can define a transition rate dPif = dwif/τ which, after

simple algebraic manipulations, can be deduced to be

dPif = (2π)2
Iα

ω2

∑
αi

|〈f |W̃0|i〉|2 δ(Ef − Ei) dβ. (5.8)

We define the differential cross section dσ/dβ as the transition rate normalized to the incom-

ing flux density I/ω, i. e.

dσ = ωdPif/I. (5.9)

Considering moderate photon energies (say < 500 eV) one can operate within the dipole

approximation in which case Eq. (5.9) reduces to

dσ = 4π2 α

ω

∑
αi

|Mfi |2δ(Ei − Ef )dβ, (5.10)

where the dipole-matrix element is given by

Mfi =
N∑
j

〈f |ê · pj |i〉. (5.11)

Making use of the canonical commutation relations −i[rj , H] = pj and assuming that |i〉
and |f〉 are eigenfunctions of the same Hamiltonian H , the velocity form Eq. (5.10) can be

converted into the length form

dσ = 4π2αω
∑
αi

∣∣∣∣∣∣
N∑
j

〈f |rj |i〉

∣∣∣∣∣∣
2

δ(Ef − Ei)dβ. (5.12)

In practice, |i〉 and |f〉 are derived using different approximate procedures for H and thus the

velocity and length forms yield, in general, different predictions. Conversely, equivalent cross

sections, calculated within the length and velocity forms, mean merely that same approxima-

tions have been made in the initial and final channel, say however nothing about the quality
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of these approximations. Nevertheless, it is desirable to choose |i〉 and |f〉 as eigenstates of

the same (approximate) Hamiltonian to preclude spurious transitions in absence of the pertur-

bation W̃0. We note furthermore that regardless of the form in which the dipole operator is

presented, it’s mathematical structure is always a sum of single-particle operators.

5.2 Single-photoelectron emission

The calculations of the cross sections (5.12) entails the knowledge of the initial state |i〉, which

is usually the ground state and can thus be evaluated by the methods discussed in chapter (4).

For the determination of the excited state |f〉 different approaches are employed that will be

discussed in the next chapters. In many important cases however, decisive information are ex-

tracted from symmetry considerations of the dipole matrix elements (5.12) and the symmetry

of |i〉 and |f〉. Obviously this is a notable simplification and hence we will recall briefly some

prominent cases.

5.2.1 One-electron photoemission from unpolarized targets

Let us consider the one-photon one-electron continuum transitions for unpolarized targets and

linear polarized light. It has been shown by Yang [159] that if the spin of the photoelectron is

not resolved and the residual ion is randomly oriented, the angular distribution of the photo-

electrons, i.e. the cross section for the emission of a photoelectron under a solid angle Ω with

a fixed energy E, is given by

dσ

dΩ
=

σ0

4π
[1 + βaP2(cos θ)], (5.13)

where σ0 is the total cross section, −1 ≤ βa ≤ 2 is the so-called asymmetry parameter, P2 is

the second Legendre polynomial and θ is the angle between the photoelectron momentum p

and and the electric field direction (for linear polarization) or between p and the light propa-

gation direction (for circular polarization). The argument for the validity of the relation (5.13)

is straightforward: under the specified conditions the cross section is a scalar invariant under

rotations. The directional dependence of σ is given by p and by the polarization direction ê.
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These two vectors can be considered as spherical tensors2 of rank 1. On the other hand the

scalar invariant formed by these two (spherical) vectors is the scalar product of two spheri-

cal tensors [143, 144]
∑

m Clm(ê)Clm(p̂)∗ = Pl(ê · p̂), where Clm is a spherical harmonic

normalized to 4π/(2l + 1) [143] . Since l ≤ 2 and l = 1 is excluded due to odd parity, one

obtains the general expression (5.13) for the cross section.

We note that the helicity of the light does not enter into Eq. (5.13), i.e. the cross section

(5.13) does not depend dynamically on the polarization of the photon. The determination

of the initial and the final states wave function is necessary only when the actual value of

βa and/or σ0 are needed. Otherwise, the only piece of information on |i〉 that is essential

for the validity of (5.13) is that the initial state is an angular momentum eigenstate. On the

other hand βa and σ0 and hence the entire cross section is completely specified by only two

measurements, e.g. under the (magic) angle P2(ê · p̂) = 0 one obtains σ0.

5.2.2 Single photoemission from polarized targets

In a photoemission experiment that resolves the spin of the photoelectron or, if the target atoms

are polarized, Yang’s formula (5.13) breaks down, because more than two relevant directions

are involved. As an example let us consider the case of polarized atomic targets with â being a

unit vector along the quantization axis. Furthermore, we assume the hyperfine structure of the

target to be quantified by angular quantum numbers F0. The population of the hyperfine states

is conveniently described by the density matrix ρF0M0F0M ′
0

(cf. Ref. [145]). To factor out the

dependence of ρF0M0F0M ′
0

on the magnetic sublevels M0 the density matrix is expressed in

terms of the state multipoles (also called the statistical tensors) ρK0 (see Ref. [145] for details).

This is done via the relation

ρF0MF F0M ′
F

=
∑
K

{
(−1)K−F0−M0

√
4π

2K + 1

〈 F0 −M0F0M
′
0 | KM ′

0 −M0 〉 ρK0 YKM ′
0−M0

(â)

}
, (5.15)

2The spherical components Aq of a cartesian vector operator A = (x, y, z) are

A1 = − 1√
2
(x + iy), A0 = z, A−1 =

1√
2
(x − iy).. (5.14)

The scalar product of two spherical tensors Tl and Sl is given by Tl · Sl =
P

m(−1)m TlmSlm , more details and
definitions of spherical tensors are given in appendix A.1 .
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where YKQ is a standard spherical harmonics and 〈 · · · | · · · 〉 stands for the Clebsch-Gordon

coefficients. The structure of the angular distribution of the photoelectrons, emitted from the

target described by the density matrix (5.15), is obtained by inspecting the scalar invariants

that can be formed out of the three vectors â, ê and p. The general form of the cross section

is then deduced to be (see Ref. [146] for a detailed derivation)

dσ

dΩ
= 4π2αω(−1)1+λ

∑
LKY

〈 1λ1− λ|Y 0 〉 ρK0 B(L, K, Y )BLK
Y 0 (p̂, â), (5.16)

where p̂ is the emission direction of the photoelectron. λ quantifies the polarization state of

the light, i.e. λ = ±1 indicates right/left circular polarization whereas λ = 0 stands for a

linear polarized photon. The angular function BLK
Y 0 (p̂, â) in Eq. (5.16) is a bipolar harmonic

resulting of coupling (i.e., the tensor product) of two spherical harmonics associated with the

directions p̂ and â (cf. appendix A.1). The generalized asymmetry parameters B that appear

in Eq. (5.16) are given by

B(L, K, Y ) = (2F0 + 1)
{

K J0 J0

I F0 F0

}
∑

ljJl′j′J′
(−1)J0+I+F0+Jf +J− 1

2
√

[(2l + 1)(2l′ + 1)(2j + 1)(2j′ + 1)

(2J + 1)(2J ′ + 1)〈 l0l′0|L0 〉
{

L J ′ J
Jf j j′

}{
L j′ j
1
2 l l′

}
⎧⎨⎩ L J J ′

K J0 J0

Y 1 1

⎫⎬⎭ 〈Jf (l
1
2
); J ‖ r ‖ J0〉〈 Jf (l′

1
2
)j′; J ′ ‖ r ‖ J0 〉∗.

(5.17)

In this equation L is the total orbital angular momentum, J is the total electronic angular

momentum with a coupling scheme (LS)J , I is the nuclear spin, and F is the overall angular

momentum with the coupling scheme (JI)F . 〈 · · · ‖ O ‖ · · · 〉 is the reduced matrix element

of the operator O.

The symmetry properties of the Clebsch-Gordon coefficients [cf. Eq. (5.16)] indicate that

the term Y = 1 is responsible for a circular dichroism in the cross section, i.e. a dependence of

the cross section on the helicity of the photon, provided B andB are non-vanishing. In the sim-

plest case (K = L = 1) the angular function reduces to the expression B11
10(p̂, â) ∝ (p̂×â)·k,

where k is the light propagation direction. This means that the circular dichroism vanishes

if the vectors p̂ and â are linearly dependent (i.e. parallel or antiparallel). A finite value of
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B requires J0 ≥ 1
2 . One should note, however, that the total cross section does not reveal

any dichroism since the angular integration over the emission direction of the photoelectron

selects L = 0. Physically, the circular dichroism arises due to the existence of an initial target

orientation described by K = 1 and realized, e.g. by optical pumping. In a photoemission

process this orientation is transferred to the photoelectron continuum.

5.3 General properties of emitted dipole radiation

The dipole transition probabilities for the photoabsorption and for the induced photoemission

are given by Eq. (5.7). In the previous section we analyzed the products (photoelectrons)

of a photoabsorption process. This section provides a compact account of the theoretical

description of the polarization and the angular distributions of emitted dipole radiations, as

put forward originally by Fano and Macek [121]. Following the de-excitation of a certain

sample photons are emitted. Starting from the expression (5.12) for the cross section one

derives for the intensity of the emitted photons at a distance R from the source the expression

I = < I >i

I = c
∑
mf

|〈 f |ê∗ ·D|i 〉|2, (5.18)

where D =
∑

i ri is the dipole operator, c = ω4
ifα3/(2πR2) and ωif = (Ei − Ef )/� is

the frequency of the emitted light with Ei and Ef being the energies associated with |i 〉 and

|f 〉. The symbol < I >i indicates the weighted average over initial-state degeneracies. The

magnetic sublevels mf of the final state are not resolved. The treatment is restricted by the

requirement that |i 〉 and |f 〉 are angular momentum eigenstates.

Eq. (5.18) can be written as

I = c
〈
i|(ê ·D)Pf (ê ·D)†|i

〉
. (5.19)

Here we introduced the scalar projection operator Pf =
∑

mf
|f 〉〈 f |which is invariant under

joint rotations of |f〉 and 〈f |. The operators D and PfD are polar vector operators. We Recall

that the relation

(a · b)(c · d) =
1
3
(a · c)(b · d) +

1
2
(a× c)(b× d) + T2(a, c) · T2(b,d) (5.20)

applies where a, c,b,d are vector operators and T2(a,b) is a tensor of rang 2 constructed

from the spherical vectors (see footnote 2 on p. 53) a and b, i. e. T2m(a,b) =
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∑
qq′〈 1q1q′|2m 〉aq bq′ . Furthermore we note that the scalar product of two tensors is given

by T2 · S2 =
∑

m(−1)m T2mS2m. Expressing the polarization vector ê in terms of the ellip-

ticity β of the light, i. e.

ê = (cosβ, i sin β, 0) (5.21)

one obtains for the intensity (5.19) using (5.20) (applied to (ê ·D)Pf (ê ·D)†) the following

formula

I = c

[
1
3
〈 i|D · (PfD)|i 〉 − i

2
sin(2β)〈 i|[D× (PfD)]k|i 〉

− 1√
6
〈 i|T20(D, (PfD))|i 〉+ cos(2β)〈 i|T̄22(D, (PfD))|i 〉

]
,

= c

[
− 1√

3
〈 i|T00|i 〉 −

1√
2

sin(2β)〈 i|T10|i 〉

− 1√
6
〈 i|T20|i 〉+ cos(2β)〈 i|T̄22|i 〉

]
.

(5.22)

In this equation we utilized the relations

ê · ê∗ = 1, ê× ê∗ = −i sin(2β) (0, 0, 1) = −i sin(2β) k̂,

T22(ê, ê∗) = T2−2(ê, ê∗) =
1
2

cos(2β), T20(ê, ê∗) = − 1√
6
,

T21(ê, ê∗) = T2−1(ê, ê∗) = 0.

The symbol k stands for the photon wave vector. In addition we defined

T̄22(D, (PfD)) = [T22(D, (PfD)) + T2−2(D, (PfD))]/2.

The tensor TKq(D, (PfD)) is built out of the spherical components of D and (PfD), i. e. (cf.

appendix A.1)

TKQ(D, (PfD)) =
∑
qq′
〈 1q1q′|KQ 〉Dq(PfD)q′ . (5.23)

Therefore, the rang of tensors occurring in Eq. (5.22) indicates the transformation behaviour

of the respective terms in Eq. (5.22). The first term behaves as scalar under rotations whereas

the second term transforms as a vector. The third and fourth terms are alignment tensors.

Considering the initial-state manifold jimi, the Wigner-Eckart-theorem, stated by Eq. (A.8),
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can be utilized and yields in combination with (5.23) the relations

〈 i|TKQ|i 〉 = 〈 jimiKQ|jim
′
i 〉〈 i ‖ TK ‖ i 〉, (5.24)

=
∑

qq′mf

〈 1q1q′|KQ 〉 〈 i|Dq|f 〉〈 f |(PfD)q′ |i 〉

= 〈 i ‖ D ‖ f 〉〈 f ‖ D ‖ i 〉 G, where

G =
∑

qq′mf

〈 1q1q′|KQ 〉 〈 jfmf1q|jim
′
i 〉〈 jimi1q′|jfmf 〉. (5.25)

Thus, the K dependence of 〈 i ‖ TK ‖ i 〉 is given by Ḡ = G/(〈 jimiKQ|jim
′
i 〉)

which is shown to be proportional to a re-coupling coefficient

{
ji 1 jf

1 ji K

}
. Hence,

from Eq. (5.24) we conclude that the K dependence of 〈 i|TKQ|i 〉/(〈 jimiKQ|jim
′
i 〉) is

given by this re-coupling coefficient. This in turn reveals the K dependence of the terms in

the expansion (5.22). To express (5.22) in terms of the total angular molmentum J one re-

lates the matrix elements (5.24) of the tensor TKQ to those of the tensor SKQ(J, J). The

object SKQ(J, J) is the result of a tensor product of the states |Jm 〉 and |Jm′ 〉 (note

that |Jm 〉 can be considered as a spherical tensor of rang J with spherical components m)

SKQ(J, J) =
∑

q,q′〈 1q1q′|KQ 〉 |Jq 〉|Jq′ 〉. The same steps done in Eqs. (5.24–5.25) can

be repeated for 〈 i|SKQ|i 〉 and one deduces that the K dependence of 〈 i ‖ SK ‖ i 〉 is given

by a re-coupling coefficient so that

〈 i ‖ TK ‖ i 〉
〈 i ‖ SK ‖ i 〉 = λK(ji, jf )

〈 i ‖ T0 ‖ i 〉
〈 i ‖ S0 ‖ i 〉

and

λK(ji, jf ) = (−1)jf−ji

{
ji 1 jf

1 ji K

}
{

ji 1 ji

1 ji K

} .

From these relations and from Eq. (5.24) we conclude that

〈 i|TKQ|i 〉 = 〈 i|SKQ|i 〉
〈 i ‖ TK ‖ i 〉
〈 i ‖ SK ‖ i 〉 = λK(ji, jf )

〈 i ‖ T0 ‖ i 〉
〈 i ‖ S0 ‖ i 〉 〈 i|SKQ|i 〉

which can be now inserted in Eq. (5.22) to obtain an expression for the light intensity in terms

of the total angular momentum. In Ref. [121] a detailed discussion of the physical contents of

the resulting terms in Eq. (5.22) is provided. E.g. the first term

Itot := −c
1√
3
〈 i|T00|i 〉 = −c

1√
3
〈 i ‖ T0 ‖ i 〉
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is the unpolarized and angle-integrated total intensity. Since

〈 i ‖ S0 ‖ i 〉 = − 1√
3
ji(ji + 1)

we can parameterize the intensity (5.22) in terms of the expectation values of the total angular

momentum, namely

I = Itot

[
1− 3√

2
λ1(ji, jf ) sin(2β)Ok̂

−
√

3
2
λ2(ji, jf ) A20 + 3λ2(ji, jf ) cos(2β) Ā2

]
, (5.26)

where Ok̂ is the component along k̂ of the orientation vector O. O is proportional to the

initial state expectation value of the components of the total angular momentum J, i. e.

O ∝ 〈 i|J|i 〉/[ji(ji + 1)].

The components of the alignment tensors A20 and Ā2 are respectively determined by

〈 i|3J2
z − J2|i 〉/[ji(ji + 1)], and 〈 i|J2

x − J2
y|i 〉/[ji(ji + 1)].

The merit of Eqs. (5.26, 5.22) is that properties of the radiation field are completely decoupled

from the dynamical target properties which are described by Ok̂, A20 and Ā2. To illustrate

the importance of this procedure let us ask which quantity describes the difference ΔLR be-

tween the emission of left and right-hand (circular, or elliptically) polarized light? From

Eq. (5.21) it is clear that exchanging ê by ê∗ amounts to the formal replacement β � −β.

The only quantity in Eqs. (5.26, 5.22) sensitive to this replacement is sin(2β) 〈 i|T10|i 〉 (or

sin(2β) λ1(ji, jf )Ok̂). Therefore, to evaluate ΔLR it suffices to consider sin(2β) 〈 i|T10|i 〉.

5.4 Symmetry properties of many-body photoexcitations

In section 5.2.1 we derived Eq. (5.13) as a parameterization for the angular distribution of

a single continuum photoelectron. In this section we seek a similar description for the cross

section of multiple photo-excitation and multi-photoionization. As in the preceding section 5.3

we assume the initial target state to be randomly oriented. In addition the magnetic sublevels

of the final-ion state and the spin-state of the photoelectrons are not resolved. The cross section
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for this process (5.12)

σ ∝
∑
Mf

1
2Ji + 1

∑
Mi

| 〈 f | ê ·D | i 〉 | 2,

=
∑
Mf

〈
f
∣∣∣(ê ·D) (ê · (PiD))†

∣∣∣ f〉 , (5.27)

where Pi =
1

2Ji + 1

∑
Mi

| Φi 〉〈 Φi | δ(Eγ + εi − E). (5.28)

The dipole operator in length form is D =
∑

n rn. The many-particle initial and final state

vectors are |i〉 and |f〉, respectively. Since the initial state is randomly oriented the operator Pi

is a scalar with respect to spatial rotations. Physically Pi describes the initial spectral density

of the target.

Comparing Eq. (5.28) with Eq. (5.19) for emitted radiations from excited targets we note

that the formal structure of these two equations is the same. Hence, we can write

σ ∝
[
1
3
〈 f |D ·D′|f 〉 − i

2
sin(2β)〈 f |[D×D′]k|f 〉

− 1√
6
〈 f |t20(D,D′)|f 〉+ cos(2β)〈 f |t̄22(D,D′)|f 〉

]
,

=
[
− 1√

3
〈 f |t00|f 〉 −

1√
2

sin(2β)〈 f |t10|f 〉

− 1√
6
〈 f |t20|f 〉+ cos(2β)〈 f |t̄22|f 〉

]
,

(5.29)

where D′ := PiD and t̄22(D,D′) = [t22(D,D′) + t2−2(D,D′)]/2. The tensors tKQ are

given by

tKQ(D, (PiD)) =
∑
qq′
〈 1q1q′|KQ 〉Dq(PiD)q′ . (5.30)

One may suggest to repeat the steps (5.19–5.26) of the preceding section to arrive at a param-

eterization of the cross section analogous to the relation (5.28). This procedure is valid if the

final excited (multi-particle) state is an eigenstate of angular momentum. The resulting param-

eterization is an obvious analogue of Eq. (5.26). Generally however, and in particular when

dealing with continuum transitions (as in photoemission), the final state is not an angular-

momentum eigenstate. Hence, the Wigner-Eckart-theorem, i.e. Eq. (5.25), does not apply

(also compare Eq. (A.8)) and consequently a relation similar to (5.26) can not be obtained for

photoemission. Two methods have been developed [147–154] to remedy this situation:
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1) one may expand the final state in angular momentum eigenstates (partial-wave expan-

sion) in which case Eq. (5.25) applies to each term of the expansion.

2) One may express right from the outset the cross section (5.28) in terms of tensorial pa-

rameters and group these parameters according to their transformational properties.

Here we consider the first procedure, i. e. we expand the final state |f〉 in partial waves. To

illustrate the significance of multiple excitations we consider both cases single and double

photoionization. For single ionization the final state can be written as

|fs〉 =
∑
lm

| ψlm 〉Clm(k̂1) (5.31)

where Clm(k̂1) is a spherical harmonic in the notation of Ref. [143] and k1 is the wave vector

of the photoelectron. For double ionization the analogous expansion is

|fd〉 =
∑

lalblm

∣∣Ψ−
lalblm

〉
Blalb

lm (k̂a, k̂b). (5.32)

The wave vectors of the two photoelectrons are ka and kb and Blalb
lm (k̂a, k̂b) is a bipolar

spherical harmonics [143] [ Bl1l2
lm (x̂, ŷ) =

∑
m1m2

〈 l1m1l2m2 | lm 〉Cl1m1(x̂)Cl2m2(ŷ)].

The partial wave expansions can now be inserted in Eq. (5.29). For brevity and clarity let

us consider only the term− i
2 sin(2β)〈 f |[D×D′]k|f 〉 of this expansion. As explained in the

preceding section this term describes the dependence ΔLR of the cross section on the helicity

of the light, i.e. ΔLR = −i sin(2β)〈 f |[D×D′]k|f 〉. According to Yang’s formula [102] for

single ionization Δs
LR should vanish, i.e. the relation must apply

Δs
LR = −i sin(2β)〈 fs | [D×D′]k | fs 〉 = 0. (5.33)

Upon substituting (5.31) into (5.33), applying the Wigner-Eckart theorem, and performing the

sum over m, we conclude

Δs
LR = −i sin(2β)

∑
l′l

(−)l′
(

l′ l 1
0 0 0

)
C10(k̂)〈 ψl′ ‖ D×D′ ‖ ψl 〉. (5.34)

The key point is that only even or only odd values of l and l′ contribute because of parity

conservation. Assuming the initial state to be a parity eigenstate the 3 − j symbol in (5.34)

is then equal to zero because l′ + l + 1 = odd. Moreover l′ = l because (l′, l, 1) satisfy a

triangular relation.
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In contrast to single photoemission, for one-photon double ionization (PDI) parity conser-

vation does not imply the absence of dichroism. Parity conservation in DPI implies that la + lb

is either even or odd. To explore the properties of quantity

Δd
LR = −i sin(2β)〈 fd | [D×D′]k | fd 〉 = 0

(which is generally referred to as the circular dichroism CD) we substitute the partial wave

expansion (5.32) and apply the Clebsch-Gordon series for bipolar harmonics [144]

Blalb
lm (â, b̂)Bl′al′b

l′m′(â, b̂)∗ = (−)la+lb+l′+m′√
(2l + 1)(2l′ + 1)∑

LaLbKQ

(2La + 1)(2Lb + 1)
(

la l′a La

0 0 0

)(
lb l′b Lb

0 0 0

)⎧⎨⎩ l l′ K
la l′a La

lb l′b Lb

⎫⎬⎭
〈 lml′ −m′ |KQ 〉BLaLb

KQ (â, b̂).

(5.35)

In the final channel one couples the angular momentum Jf of the residual ion with the angu-

lar momentum l of the electron pair to obtain the resultant angular momentum J . Now the

Wigner-Eckart theorem can be applied and the summation over all magnetic quantum numbers

can then be performed. The result for Δd
LR is

Δd
LR = −i sin(2β)

∑
LaLb

γLaLb
BLaLb

10 (k̂a, k̂b) (5.36)

where

γLaLb
=

∑
lalbll′al′bl′JJ′

(−)la+lb+l′+J′+Jf +1(2J ′ + 1)(2La + 1)(2Lb + 1)

√
(2l + 1)(2l′ + 1)

3

(
la l′a La

0 0 0

)(
lb l′b Lb

0 0 0

)
{

l′ Jf J ′

J 1 l

}⎧⎨⎩ l l′ 1
la l′a La

lb l′b Lb

⎫⎬⎭
〈 Jf (l′al′b)l

′; J ′ ‖ D×D′ ‖ Jf (lalb)l; J 〉.

(5.37)

Eqs. (5.36) and (5.37) can be simplified if the assumption is made that the initial target state

and the final ion state have a well-defined parity. In this case the state of the two contin-

uum electrons is a parity eigenstate with a parity π = (−)la+lb , where la and lb are the or-

bital angular momenta of the electrons. We note that many pairs of angular momenta (la, lb)
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will contribute to the two-electron continuum state such that la + lb is either even or odd.

For example, double photoionization of He or H− in the two-electron ground state has the

symmetry (1S) which results for the final state in a 1P odd symmetry with configurations

(la, lb) = (s, p), (p, d), (d, f), · · · .
From (5.37) it follows that only pairs of (La, Lb) with La = Lb contribute to the dichroism

(5.36). Upon further inspection of the 3− j symbols in (5.37) we conclude that the finiteness

of the coefficients requires that the following relations have to be fulfilled

la + l′a + La = even,

lb + l′b + Lb = even.

This means that

La + Lb = even

because la + lb and l′a + l′b are both either even or odd. From the 9 − j symbol we deduce

that the three numbers (1, La, Lb) satisfy a triangular relation. Since the case La = Lb ± 1

leads to odd values of La + Lb we conclude that La = Lb. Eq. (5.36) can thus be written in

the form

Δd
LR = −i sin(2β)

∑
L

γLLBLL
10 (k̂a, k̂b). (5.38)

Since only the diagonal elements γLL contribute to Eq. (5.38) one might expect that the

dichroism is less sensitive a quantity to the description of the scattering dynamics than the

cross sections.

5.4.1 Propensity rules for the dichroism in multiple photoionization

Parameterizing the cross sections in the form (5.22, 5.29) does not only disentangle the de-

pendencies on the radiation field properties from the electronic dynamics but it also provides

valuable information on the symmetry of the various terms in the expansion (5.29). To be

specific let us analyze the main symmetry features of Eq. (5.38). Due to the Pauli principle

the Δd
LR must be invariant under an exchange of the two electrons, i.e.

Δd
LR(β,ka,kb) = Δd

LR(β,kb,ka). (5.39)
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The dichroism Δd
LR is odd with respect to inversion of the helicity of the photon, i.e.

Δd
LR(β,ka,kb) = −Δd

LR(−β,ka,kb). (5.40)

The angular functions BLL
10 (k̂a, k̂b) determine the angular dependence of the dichroism, as

seen from Eq. (5.38). These functions are explicitly given by

BLL
10 (k̂a, k̂b) =

∑
M

〈 LML−M | 10 〉CLM (k̂a)CL−M (k̂b). (5.41)

From this equation we deduce the following properties:

1. BLL
10 (k̂a, k̂b) are purely imaginary. This follows from the relation

CLM (x̂)∗ = (−)MCL−M (x̂)

for spherical harmonics and the symmetry formula

〈 L−MLM | 10 〉 = −〈 LML−M | 10 〉

for Clebsch-Gordon coefficients. The dichroism Δd
LR is a difference of cross sections

and as such must be real. Therefore, we conclude that the coefficients γLL are real as

well.

2. BLL
10 (k̂a, k̂b) are parity-even in the solid angles associated with the momenta ka,kb of

the two photoelectrons, i.e. BLL
10 (−k̂a,−k̂b) = BLL

10 (k̂a, k̂b) which follows from the

parity of spherical harmonics given by CLM (−x̂) = (−)LCLM (x̂).

3. From the symmetry of Clebsch-Gordon coefficients, we deduce furthermore that Eq. (5.41)

is odd with respect to exchange of the electrons, i.e. BLL
10 (k̂b, k̂a) = −BLL

10 (k̂a, k̂b).

This relation implies that:

4. BLL
10 (k̂a, k̂b) vanishes when the two electrons escape in the same direction and, due to

relation (5.39), the functions γLL has to satisfy the condition

γLL(ka, kb) = −γLL(kb, ka). (5.42)

This leads to a vanishing dichroism for emission of two electrons with equal energies.
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5. BLL
10 vanishes when the electrons recede in a back-to-back configuration (k̂b ‖ −k̂a).

This is concluded by considering the quantity

BLL
10 (x̂, x̂) =

∑
M

〈 LML−M | 10 〉CLM (x̂)CL−M (x̂)

and substituting the expansion

CLM (x̂)CL−M (x̂) =
∑
K

〈 LML−M |K0 〉〈 L0L0 |K0 〉CK0(x̂).

The orthogonality of Clebsch-Gordon coefficients selects then the only value K = 1 for

which, however, 〈 L0L0 | 10 〉 = 0. For k̂b = −k̂a we use CLM (−x̂) = (−)LCLM (x̂)

and repeat the arguments above.

6. The Δd
LR vanishes if the direction of the incident light k̂ and the electrons’ vector mo-

menta ka,kb are linearly dependent. The above consideration assumes a co-ordinate

frame with z axis being along k̂. Now let us select an arbitrary direction of k̂a described

by the polar angles θa, ϕa. If the three vectors k̂ and ka,kb are linearly dependent the

spherical position of k̂b is determined by θb, ϕb = ϕa + Nπ with N = integer. The

product of phase factors of the spherical harmonics is then real. For this reason also the

bipolar harmonics (5.41) are real which contradicts the prediction that they are purely

imaginary, except for the case when they are equal to zero.

7. The Δd
LR vanishes in a non coincidence experiment, i. e. if we integrate over one of the

directions k̂a or k̂b. This follows directly from the orthogonality of spherical harmonics

and L ≥ 1.

The above analysis does not provide a value for Δd
LR but it is nevertheless a valuable bench-

mark symmetry check for experimental and theoretical studies that calculate the magnitude

of Δd
LR.

We recall that our derivation is based on the partial wave expansion (5.32) which has the

advantage that the angular momenta in the expansion (5.32) can be related to those present in

the initial states. As illustrated above, it allows a direct conclusion on the symmetry properties

and propensity rules for the transition amplitude. The disadvantage of this procedure is as well

clear from the above derivation: For many particle excitations the expansion (5.32) becomes

rapidly more complicated and one has then to resort to a direct tensorial expansion of the cross

sections in terms of rotational invariants.



5.5 Resonant photoexcitaions processes 65

5.5 Resonant photoexcitaions processes

In the previous sections we outlined briefly some of the main features of the electric dipole

transitions that can be deduced from general symmetry considerations. In this section we

illustrate the influence of the details of the excited states on the photoemission processes.

5.5.1 Single channel

We consider the case where, upon absorbing the photon, the ground state of the target A is

elevated into a meta-stable bound state ϕ of A∗ that couples to the continuum ψ̃E of A+ and

decays subsequently into A+ and a photoelectron of energy E, i.e. we study the reaction

A + �ω → A∗ → A+ + e−. (5.43)

The questions of how to describe the photoexcited state ΨE and how the intermediate reso-

nant state will show up in the spectrum of the photoelectron have been addressed by Fano

[119, 120] using the following arguments. In the basis (|ϕ 〉, |ψ̃E 〉) the Hamiltonian H

is not diagonal. Leaving aside the discrete state |ϕ 〉 we determine the continuum states

ψE =
∫∞
0

c(E, E′)|ψ̃E′ 〉 dE′ such that 〈ψE′ |H|ψE′′〉 = E′δ(E′ − E′′). Now we include

in the basis set |ψE 〉 the discrete state |ϕ 〉 and determine the wave functions ΨE that satisfies

HΨE = EΨE by means of the basis-set expansion

|ΨE 〉 = a(E)|ϕ〉+
∫ ∞

0

b(E, E′)|ψE′ 〉 dE′. (5.44)

Using this ansatz we conclude from the relations

〈 ϕ|H|ΨE 〉 = E〈 ϕ|ΨE 〉 and 〈 ψE′′ |H|ΨE 〉 = E〈 ψE′′ |ΨE 〉

that the expansion coefficients b are given by

b(E, E′) =
[
P

1
E − E′ + Z(E)δ(E − E′)

]
VE′a(E). (5.45)

Furthermore, one deduces the relation

(Eϕ − E) a(E) = −
∫

b(E, E′)V ∗
E′ dE′, (5.46)
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where P (f) stands for the principle value of f . In Eqs. (5.45, 5.46) we introduced the defini-

tion

Eϕ = 〈 ϕ|H|ϕ 〉, (5.47)

VE = 〈 ψE |H|ϕ 〉, (5.48)

Z(E) =
(

E − Eϕ − P

∫ |VE′ |2
E − E′ dE′

)
|VE |−2. (5.49)

Asymptotically, i.e. for large distances r, the discrete and the continuum states behave as

lim
r→∞ϕ(r)→ 0 and lim

r→∞ψE →
1
r

sin(kr + δ̄(E)),

where k is the wave vector and δ̄ is a phase shift. From Eqs. (5.44, 5.46) we deduce thus the

asymptotic behaviour for ΨE to be

lim
r→∞ΨE(r) → 1

r

∫ [
P

1
E − E′ + Z(E)δ(E − E′)

]
VE′a(E) sin(k′r + δ̄(E′)) dE′,

=
1
r

√
π2 + Z2

[
Z√

π2 + Z2
sin(kr + δ̄) ,

− π√
π2 + Z2

cos(kr + δ̄)
]

VE a(E)

=
1
r

√
π2 + Z2 sin(kr + δ̄ + Δ) VE a(E). (5.50)

The phase Δ is determined by the relations

cosΔ = Z(π2 + Z2)−1/2, and

sin Δ = −π(π2 + Z2)−1/2. (5.51)

Thus, the phase shift Δ due to the resonant state is expressible as

tanΔ(E) = −π/Z(E). (5.52)

From the normalization condition 〈 ΨE |ΨE′ 〉 = δ(E − E′) and from Eqs. (5.44, 5.46) we

conclude that

〈 ΨE |ΨE′ 〉 = a∗(E)a(E′)
[
f(E)− f(E′)

E − E′

+ P

∫ |VE′′ |2
(E − E′′)(E′ − E′′)

dE′′ + δ(E − E′)Z2(E′)|VE′ |2
]
, (5.53)

where the function f is given by the equation

f(E) := P

∫ |VE′ |2
E − E′ dE′.
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From the relation (5.53) we therefore obtain

〈 ΨE |ΨE′ 〉 = a∗(E)a(E′)
[
π2 + Z2(E′)

]
|VE′ |2 δ(E − E′), (5.54)

which upon integration over E′ leads to the expression for |a|2

|a(E)|2 =
1

[π2 + Z2(E)] |VE |2
, (5.55)

=
|VE |2

[ E − ( Eϕ + f(E) ) ]2 + Γ2
. (5.56)

In this equation we made use of (5.49) and introduced the quantity

Γ = π|VE|2,

which characterizes the width of a resonance located at

ER := Eϕ + f(E).

The resonance lifetime is thus

τ = �/Γ = �/(π|VE|2).

The cross section (5.12) for the process (5.43) is σ(E) = 4π2αω|〈 ΨE |ê · r|φ0 〉|2 where

|φ0 〉 is the ground state and |ΨE 〉 is represented by Eq. (5.44). From Eqs. (5.44, 5.45) it

follows that ΨE can be written in the form

|ΨE 〉 = a(E) [ |φ 〉+ Z(E)VE |ψE 〉 ] , where

|φ 〉 = |ϕ 〉+ P

∫
VE′

E − E′ |ψE′ 〉 dE′ (5.57)

is the modified discrete state. From Eqs. (5.56, 5.52) we deduce that

a(E) = (sin Δ)/(πVE) and Z(E) = −π cot(Δ).

Therefore, the dipole matrix element can be written as a sum of a resonant and an non-resonant

term, namely

〈 ΨE |ê · r|φ0 〉 =
sin Δ(E)

πVE
〈 φ|ê · r|φ0 〉 − cosΔ(E)〈 ψE |ê · r|φ0 〉

= 〈 ψE |ê · r|φ0 〉 (q sin Δ− cosΔ) . (5.58)

The dimensionless parameter

q =
〈 φ|ê · r|φ0 〉

πVE〈 ψE |ê · r|φ0 〉
(5.59)
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is called the shape parameter. From Eqs. (5.51) it follows that

(q sin Δ− cosΔ)2 =
(Z + qπ)2

(π2 + Z2)
.

Introducing the dimensionless parameter ε, also called the reduced energy, as

ε =
(E − ER)

Γ
= Z/π,

we can thus write

(q sin Δ− cosΔ)2 =
(ε + q)2

1 + ε2
.

With this expression we obtain the Fano-Beutler line profile [119] for the cross section σ as

σ(E) = σ0
(q + ε)2

1 + ε2
. (5.60)

The cross section σ0 represents a non-resonant background. Fig. 5.1 shows the quantity σ/σ0

[cf. Eq. (5.60)] as a function of q and ε. As q increases the profile tends to a symmetrical

Lorenzian-shape profile, whereas for q = 0 the profile exhibits a dip at ε = 0. The latter case

is called window resonance. In the general case however the profile is asymmetric.

5.5.2 Multi-channel resonant photoexcitations

The treatment of the photoexcitation [127] of a resonant state ϕ coupled to many continua

ψi
E (i = 1, · · · , N) proceeds along similar lines. In brief, one performs in analogy to Eq. (5.44)

for all the involved N continua the expansion

|ΨjE 〉 = aj(E)|ϕ〉+
N∑

i=1

∫ ∞

0

bij(E, E′)|ψiE′ 〉 dE′. (5.61)

From HΨjE = EΨjE one deduces that

N∑
i=1

∫ ∞

0

bij(E, E′)〈 ϕ|H|ψiE′ 〉 dE′ = (E − Eϕ)aj(E), and

(E − E′)bij(E, E′) = aj(E)〈 ϕ|H|ψiE 〉. (5.62)

As a solution of these equations one writes

bij(E, E′) =
ViE′ aj(E)

E − E′ + δ(E − E′)Cij(E), (5.63)

where ViE is a matrix element given by

ViE = 〈 ϕ|H|ψiE 〉.
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Figure 5.1: The Fano-Beutler Profile for different shape parameters q and different reduced
energies ε.

On the other hand, the elements of the matrix Cij(E) are unknown and need to be determined.

To do so we conclude from Eqs. (5.62, 5.63) that

aj(E) =

{∑
i

ViECij(E)

}{
E − Eϕ −

∫ ∑
k [VkE′ ]2

E − E′ dE′
}−1

.

(5.64)

This relation combined with the normalization condition of the wave function (5.61) leads to

the determining equation for the elements of Cij(E)∑
jl

C∗
ij(E)Bjl(E)Cil = 1, (5.65)

where the matrix Bjl is given by

Bjl(E) = δjl +
π2VjEVlE

∑
k [VkE ]2(

E − Eϕ −
∫ P

k[VkE′ ]2

E−E′ dE′
)2 .

Assuming that the channels are asymptotically decoupled we inspect the asymptotic behaviour

of the wave function (5.61), as done in Eq. (5.50), and obtain a relation for ai(E) analogous
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to the single channel case [i.e. Eq. (5.54)], namely

lim
r→∞ΨiE → −πai(E)

N∑
j=1

VjE cos(kjr + δ̄j) +
∑

j

Cij(E) sin(kjr + δ̄j),

⇒ [−iπai(E)VjE + Cij(E)] ei(kjr+δ̄j) = 0, i �= j. (5.66)

The energy-dependent function ai(E), fN (E) and Cij(E) are given by the relations

ai(E) =

∑
j Cij(E)VjE

E − ( Eϕ + fN (E) )
, (5.67)

fN (E) :=
∫ ∑

k [VkE′ ]2

E − E′ dE′,

Cij(E) = iπVjEai(E), i �= j. (5.68)

The steps (5.53–5.56) can now be repeated to obtain the width of the resonance (which yields

ΓN = π
∑N

j (VjE)2 =
∑N

j Γj).

An expression for the wave function (5.66) is obtained upon inserting Eqs. (5.67–5.68)

in (5.66). This results in an expression that can be utilized for the calculation of the optical

transition matrix elements (5.58). Formulas for the line profiles are obtained by defining, as

done in Eq. (5.57), a modified discrete state φN and introducing the shape parameters qN as

qN =
〈 φN |ê · r|φ0 〉

π
∑N

i ViE〈 ψiE |ê · r|φ0 〉
. (5.69)

Analogously, one defines the reduced energy εN as the quantity

1
εN

=
π
∑

j(VjE)2

E − [ Eϕ + fN (E) ]
=

π
∑

j(VjE)2

E − ERN

. (5.70)

The total cross section σtot(E) in all channels normalized to the non-resonant background

σ0(E) is then completely specified by the parameters qN , εN and by the correlation index ρc

σtot(E)/σ0(E) = 1 + ρ2
c

[
(qN + εN )2

1 + ε2N
− 1

]
. (5.71)

The correlation index ρc is a relative measure for the coupling strength of the resonance to the

individual continua, as readily deduced from its determining equation

ρ2
c =

∣∣∣∑N
j VjE〈 ψjE |ê · r|φ0 〉

∣∣∣2[∑N
j (VjE)2

] [∑N
j |〈 ψjE |ê · r|φ0 〉|2

] . (5.72)

Having sketched the essential steps for isolating and parameterizing the relevant quantities

that describe the manifestation of resonant states, the question arises as how to calculate these
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quantities and what role is played by the inner-particle correlation in many-particle resonant

states? The next section gives an overview on some of the aspects of this intensively studied

topic.

5.6 Few-body resonances

Resonances show up in various physical systems, such as in nuclear reactions, in electron-

atom and electron-molecular scattering processes and in photoionization ( [128,162,322] and

references therein). The complexity and the various facets of resonance formation and decay

in a many particle system are elucidated by one of the simplest few-body systems, namely

helium. As illustrated in Fig. 5.2, doubly excited (two-electron) states lay above the first

ionization threshold, i.e. it takes more energy to excite the two electrons to the next available

level than to singly and directly ionize the target. While this observation is valid for two

electron atoms, for more complex systems doubly excited states can as well be situated below

the first ionization threshold.

As shown by Fig. 5.2, the doubly excited states of helium form an infinite number of

perturbed Rydberg series converging to the single ionization thresholds, where one electron

is left in an excited state of the residual ion. The doubly excited states are coupled to one or

more continua and form thus resonances that decay by autoionization.

In 1963 Madden and Codling [163] made the first experimental observation of the full

series of helium doubly excited levels with 1P o symmetry3 in the 60 − 65 eV energy range.

Fano and co-workers [128] (see also [162]) pointed out that these early observations are man-

ifestations of a breakdown of the independent-particle picture. Since He+(2s) and He+(2p)

have the same energy one would expect three series with comparable intensity converging

to the same threshold. In an independent particle model they are labelled by the configura-

tions 2snp, 2pns, and 2pnd. Experimentally, however, a single intense series was observed

which is intercalated by a faint one. As an explanation, it has been suggested [120] that the

electron-electron interaction will mix the series 2snp, 2pns, into a 2snp + 2pns (plus) and a

2snp−2pns (minus) series. In this picture the excited electron pair is viewed as a joint (quasi)

particle characterized by two quantum numbers. One quantum number is assigned to its inter-

3We recall the spectroscopic notation 2S+1Lπ in the LS coupling where L is the total orbital momentum, S is
the total spin and π is the parity.
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Figure 5.2: The term scheme of helium showing increasing number of channels and their interconnec-
tion by various processes (adopted from Ref. [128]).

nal motion whereas the other quantum number describes the motion of the center-of-mass of

the pair. Since the optical transitions from the ground state to the plus levels are favored, only

a single intense series is observed. The width of the measured lines is a measure for the rate

of the autoionization of the excited levels.

5.6.1 Regularities and classifications of doubly excited states

These findings by Madden and Codling and by Fano and co-workers sparked a wealth of

further experimental and theoretical investigations [162]. In particular, several classifica-

tion schemes have been developed in order to understand the origin of the regularities in

the occurrence of resonances and why resonances with the same total symmetry reveal dras-

tically different characteristics. Here we briefly mention the adiabatic hyperspherical ap-

proach [128, 164–167, 178], the widely used doubly excited symmetry basis scheme (DESB)

[168–170] and the molecular orbital (MO) scheme [172] which contains and explains the

DESB. A completely new approach for the treatment of the dynamics of two-electron atoms

is offered by modern semi-classical concepts [173, 174]. In this method the systematics of
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resonance series is ascribed to certain characteristic periodic orbits in a classical three-body

system. Resonant and bound states are distinguished from the ground state via the use of

periodic orbit trace formulas.

The adiabatic hyperspherical approach [128, 164–167, 178] was one of the first models to

be utilized. As will be outlined below, in the adiabatic hyperspherical approach the overall size

of the system is characterized by one coordinate, the hyperradius, which is treated adiabati-

cally, i.e. one assumes that the motion along the hyperradius is significantly slower than along

other coordinates. As in the case of the Born-Oppenheimer method (Sec. 4.1) the adiabatic-

ity assumption leads to a quasi-separability of the problem. Thus, as long as the adiabaticity

hypotheses is viable the motion of the correlated electrons takes place in one-dimensional

(adiabatic) potentials. The lowest of these potential curves contains a Rydberg series of bound

states, whereas the potential curves of the excited channels carry the autoionizing, i. e. doubly

excited Rydberg series. From a mathematical point of view, the adiabatic assumption is no

longer valid at very high excitations where a series of avoided crossing between the potential

curves occur.

In the DESB approach features of the dynamical SO4 symmetry for the two-body Coulomb

potential (cf. Sec. 2.2) are exploited by considering for the two electron case a coupled rep-

resentation SO4 ⊗ SO4. Doubly excited states are classified by the set of quantum numbers

N (K, T )A
n that have the following meaning: N and n are respectively the principal quantum

numbers of the inner and outer electrons. Given a symmetry 2S+1Lπ there are several series

converging to the same threshold He+(N). Different series below a specified threshold N are

characterized by the approximate quantum numbers (K, T )A, whereas a specific state within

the series is classified with the quantum numbers n, K, T . If the outer electron is excited fur-

ther away from the inner core, the principle quantum number N of the inner electron is a good

quantum number. In contrast, n is, in general, not a good quantum number and therefore it is

conventionally replaced by an appropriate effective quantum number.

The quantum number T is obtained by quantizing the projection of the total angular mo-

mentum onto B := A1 − A2, where A1/2 are the Laplace-Runge-Lenz vectors of the two

independent electrons (see Sec. 2.2). Specifically, the relation applies (B ·L)2 |NnKTLπ〉 =

T 2(K + n)2 |NnKTLπ〉. The quantum number K describes the inter-electronic angular
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correlation

〈cos θ12〉 = −
K

N
+

N2 − 1−K2 − T 2 + 2l1 · l2
2Nn

, (5.73)

where θ12 is the mutual angle between the position vectors of the two electrons. The ranges

of the values of the quantum numbers K, T are given by

T = 0, 1, · · · , min(L, N − 1),

K = −(N − T − 1), −(N − T − 1) + 2, · · · ,−(N − T − 1) + 2(N − T − 1).

For n � N one deduces from Eq. (5.73) that 〈cos θ12〉 → −K/N , meaning that for the

highest value of K the electrons reside on average at opposite sides of the nucleus. On the

other hand, for vanishing K, one obtains 〈θ12〉 ≈ 90◦.

While K describes the angular correlation, the further quantum number A has been in-

troduce [170, 178] to describe the radial correlation. The values of A are −1, 0 or 1. More

precisely A behaves according to

A = π(−)T+S, for K > L−N, eitherwise A = 0.

This means A is not an independent quantum number. A = ±1 quantifies the nodal structure

of the wave function for equidistant electrons from the origin (r1 = r2). States with A = −1

have a node, whereas states with A = 1 have an antinode. For A = 0 the state is highly

asymmetric with one electron being close to the residual ion and the other electron being

far away from the inner core, i.e. radial correlations are small in this case. Furthermore, the

investigation of the vibrational structure [171] has led to the quantum number nν [179] which

is given in terms of N, K, T as

nν = (N −K − T − 1)/2.

This quantum number nν counts the nodes in the θ12 coordinate.

Using the set of the DESB quantum numbers, the structure of the doubly excited states

can be made comprehensible. In addition, this scheme enabled a clear understanding of the

autoionization rates to different channels and the photoexcitation strengths to different states

as well as the existence of propensity rules for autoionization and photoexcitations [175–177],

e.g. for photoexcitation experiment (investigating high-lying 1P o(N = 3 − 8) of H−) the

propensity rules ΔA = 0, Δnν = 0 apply [175, 176].
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The DESB quantum numbers are combinations of the parabolic quantum numbers

[N1N2m]A (cf. Sec. 2.2) that describe a polarized state in the single-electron N−manifold

resulting from the removal of one electron whilst the other remains bound [176]. This interre-

lation is given below. The link between the adiabatic hyperspherical method and the algebraic

approach has been established by Lin [178]. He was able to relate in a unique way the approx-

imate quantum numbers from the algebraic approach to the hyperspherical potential curves.

In the MO approach [172] the three-body problem is formulated in a Jacobi coordinate

system, i.e. one introduces the two position vectors r and R, defined as

r = (r1 + r2)/2, R = r1 − r2 ≡ r12.

The inter-electronic distance r12 is then treated adiabatically4. The advantage of this treatment

is that for fixed (adiabatic coordinate) r12, the wave function is separable in prolate spheroidal

coordinates5 [180]

λ = (r1 + r2)/r12, μ = (r1 − r2)/r12 .

The (molecular) wave function is then written as a product of orbitals characterized by the

molecular quantum numbers nλ, nμ that count the number of nodes along the coordinates λ

and μ. In addition to the coordinates λ and μ a further coordinate ϕ is needed that describes the

projection of the angular momentum of the electrons’ center of mass onto the inter-electronic

axis. The corresponding quantum number is usually referred to as m. Thus, an adiabatic

MO state, which builds a Rydberg series, is specified by the quantum numbers (nλ, nμ, m)

or equivalently by the parabolic quantum numbers [N1N2m]A (cf. Sec. 2.2). The different

members of each Rydberg series can be constructed as vibrational states in the corresponding

molecular potential. A single member of a Rydberg series, is specified by a vibration-like

quantum number n̄ = n − N for even nμ and n̄ = n − N − 1 for odd nμ. The connection

between the (independent) MO quantum numbers nλ, nμ, m, the DESB quantum numbers

K, T, A, nν , and the parabolic quantum mumbers is [182]:

4We note here that treating r12 adiabatically does not mean that the electron-electron interaction is weak. In fact
it is the strong repulsion between the two particles which stabilizes this coordinate [181].

5In the limits r12 → 0 or r12 → ∞ the spheroidal surfaces coincide with spherical or paraboloidal surfaces.
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DESB parabolic MO
A = A = (−)nμ ,
T = m = m,
K = N2 −N1 = [nμ/2]− nλ,
N = N1 + N2 + |m|+ 1 = nλ + [nμ/2] + |m|+ 1,
nν = N1 = nλ.
The symbol [x] means the integer part of x. Based on the MO approach it has been possible

[182] to establish propensity rules for photoabsorption and autoionization processes. With

these rules the different oscillator strengths and widths for different Rydberg series within a

N manifold have been explained .

5.6.2 Complex rotation method

For a direct numerical calculation of energies and widths of doubly excited states various

methods have been applied. In particular, we mention here the Feshbach projection operator

formalism [183, 184], the close-coupling approximation [185], the hyperspherical coordinate

method [186], and the multiconfiguration Hartree-Fock method [187].

The most accurate resonance computations are nowadays performed using the complex

coordinate rotation method [186, 188–197]. The idea of this approach is based on the di-

latation analytic continuation [198–200]. The advantage of the complex rotation method is

that it transforms the continuum resonance wave function to a square-integrable (localized)

wave function typical for a bound state. This brings about considerable simplifications, for

the resonance wave function can then be calculated using existing bound-state codes which

are mostly based on the variational ansatz for a complex Hamiltonian [201], i.e. bound and

resonant states are treated on equal footing. This method has yielded accurate results for few-

body resonant states. To illustrate the basic elements of the complex rotation method let us

consider the Hamiltonian of a two-electron atomic system which, in Rydberg units, reads

H = T + V = −Δ1 −Δ2 −
2Z

r1
− 2Z

r2
+

2
r12

,

where Z is the charge of the residual ion. The complex-rotation method consists in transform-

ing formally the radial coordinate rj according to the rule

rj → rj exp(iθ),
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where θ is referred to as the rotational angle. The Hamiltonian H transforms as

H → H̃(θ) = T exp(−2iθ) + V exp(−iθ).

The eigenvalues of the transformed Hamiltonian are obtained by solving the complex-eigenvalue

problem

E(θ) =
〈Ψ| H̃(θ) |Ψ〉
〈Ψ|Ψ〉 ,

where the wave function Ψ is usually expanded in a basis set functions.

To find the resonances one search for eigenvalues Eres of the operator H̃(θ) that do not

depend on the rotational angle θ. The real part of the complex eigenvalue is interpreted as

the resonance position Er, whereas the imaginary part as the half-width of the resonance Γ/2

(i.e. Eres = Er + iΓ/2). Due to the finite-size of the employed basis, however, in practice the

resonance eigenvalues do depend weakly on θ. Resonances are then identified by a minimal

value of ∂E/∂θ. Furthermore, the photoabsorption cross section σ(ω) is obtained by a sum

over all (resonant and continuum) eigenstates of H̃(θ), more precisely [202]

σ(ω) ∝ ω�
[∑

i

〈Ψ0|
∑

j rj exp(iθ) |Ψi〉 〈Ψi|
∑

j rj exp(iθ) |Ψ0〉
Ei − E0 − �ω

]
,

where the index i runs over the states of all the electrons j and the index 0 labels the ground

state.





6 Two-electrons systems at the complete fragmentation
threshold: Wannier theory

The treatment of many-body systems within an effective single-particle or a mean-field ap-

proach (e.g., as done by DFT in section 4.6 or by HF in section 4.2) implies that the interaction

of a single particle with any other particular particle in the system is in general weaker than

the interaction with the surrounding rest of the system. This picture losses its validity when

two or more particles are highly excited, for the excited particles can access a large manifold

of degenerate orbitals and will adjust their motion as dictated by their mutual interaction in

the presence of the mean field. As a direct demonstration of this statement we discussed in the

previous section the properties of doubly excited states of helium. From this example one ex-

pects that inter-electronic correlation plays a major role when the electrons are excited to states

with energies close to the double ionization threshold I++. Therefore, considerable attention

(e.g. [90,131–138] and references therein) has been devoted to the question of how the double

ionization cross section σ++ at I++ is influenced by the correlated motion of the electrons.

In a seminal work Wannier [90] addressed this question using classical arguments and derived

in 1953 a threshold law for the double electron escape. Meanwhile, the conclusions of his

work have been, to a large extent, confirmed experimentally and using a variety of theoretical

approaches (cf. e. g. Refs. [91, 134, 138, 250] and further references therein). Here we adhere

to Wannier’s original work and sketch the main steps of Wannier’s arguments and results. For

details of other theoretical and experimental approaches we refer to Refs. [90, 131–138].
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6.1 Classical mechanics of two excited electrons at the
double escape threshold

Let us consider two electrons with vanishing total orbital angular momentum (L = 0) and

ask the cross section σ2+(E) behaves near E = I++, where E is the total energy of the

electron pair. Since L = 0 the motion takes place in one plane depicted in Fig. 6.1. Only three

variables are sufficient for description of the two electron trajectories:

Figure 6.1: The coordinate system for two electrons moving in a plane.

R =
√

r1 + r2, θ = arccos(r̂1 · r̂2), α = arctan(
r1

r2
) (6.1)

⇔ r1 =
(

R sin α cosϕ1

R sin α sin ϕ1

)
, (6.2)

r2 =
(

R cos α cos ϕ2

R cosα sin ϕ2

)
, θ = ϕ1 − ϕ2. (6.3)

The coordinates R, θ and α are called the hyperspherical coordinates [129,164,165,203–206].

The hyperradius R quantifies the size of the triangle formed by the two vectors r1 and r2

whereas the mock angles θ and α describe the shape of this triangle. The kinetic energy

T = 1
2

(
.
r2
1 +

.
r2
2

)
casts in the coordinate system (6.1)

T =
1
2

.

R
2

+
1
2
R2

[
.
α

2 + sin2 α
.
ϕ

2
1 + cos2 α

.
ϕ

2
2

]
.
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The classical orbital momentum is L = Lz , where Lz = R2 sin2 α
.

ϕ1 + R2 cos2 α
.

ϕ2. From

Lz = 0 and
.

θ =
.

ϕ1 −
.

ϕ2 we deduce that
.
ϕ1 =

.

θ cos2 α and
.

ϕ2 = −
.

θ sin2 α, so that the

kinetic energy is written as

T =
1
2

.

R
2

+
1
2
R2 .

α
2 +

1
8
R2

.

θ
2
sin2 2α.

The potential energy for the two electrons moving in the field of a residual ion with a positive

charge Z is

V = −Z

r 1
− Z

r 2
+

1
r12

=
C (α, θ)

R
,

where the mock-angle dependent part C (α, θ) of the potential energy is given by

C (α, θ) = − Z

sin α
− Z

cos α
+

1√
1− sin 2α cos θ

.

To write down the equations of motion we express the Lagrange function L in hyperspherical

coordinates as

L =
1
2

.

R
2

+
1
2
R2 .

α
2 +

1
8
R2

.

θ
2
sin2 2α− C (α, θ)

R
.

(6.4)

Likewise, the total energy E can be written in the form

E =
1
2

.

R
2

+
1
2
R2 .

α
2 +

1
8
R2

.

θ
2
sin2 2α +

C (α, θ)
R

.

(6.5)

The equations of motion for the two electrons in hyperspherical coordinates are then given by

the expressions

..

R = R
.
α

2 +
1
4
R

.

θ
2
sin2 2α +

C

R2
(6.6)

d

dt

(
R2 .

α
)

=
1
4
R2

.

θ
2
sin 4α− 1

R

∂C

∂α
(6.7)

d

dt

(
1
4
R2

.

θ sin2 2α

)
= − 1

R

∂C

∂θ
. (6.8)



82 6 Two-electrons systems at the complete fragmentation threshold: Wannier theory

From a key importance is the similarity principle which states the following. When the system

is expanding the trajectories remain topologically invariant. This is due to scaling transforma-

tion

R → R′ = βR,

α → α′ = α,

θ → θ′ = θ,

t → t′ = β3/2t,

E → E′ =
E

β
, (6.9)

where β is an arbitrary real positive constant. Using this scaling feature one deduces, that

for E ≥ 0, and along each trajectory the function R(t) has, if at all, one minimum and no

maximum. The proof is straightforward. From Eq. (6.6) we deduce that R
..

R = R2 .
α

2 +
1
4R2

.

θ
2
sin2 2α + C

R = R2 .
α

2 + 1
4R2

.

θ
2
sin2 2α + E − T , meaning that

R
..

R = E − 1
2

.

R
2

+
1
2
R2 .

α
2 +

1
8
R2

.

θ
2
sin2 2α.

Therefore, if R is stationary (i.e. if
.

R = 0) we obtain
..

R > 0, in other words if R(t) has an

extremum it can not be more than one minimum (two minima means at least one maximum

has to be in between them, in which case
..

R < 0 must apply)1.

Another important statement is the following: Statistically almost all trajectories with

E = 0 belong to the single ionization channel, i.e. asymptotically only one electron escapes

and the other remains bound. The proof is straightforward. Let us label the individual elec-

trons’ energies by E1 and E2. The constraint E = 0 = E1 + E2 is satisfied by an infinity

of trajectories for which one electron has a positive energy E1 > 0 (unbound) and the other

has a negative (bound) energy E2 = −Z2/(2n2). In contrast if we require E1 > 0 and

E2 > 0 the condition E = E1 + E2 = 0 has only one solution. Thus, from a statistical

point of view the double ionization is extremely unlikely compared to the single ionization.

Nevertheless, one observes experimentally a considerable amount of double ionization events.

1If E = 0 and all velocities vanish (
·
R =

.
α =

.
θ = 0) then Eq. (6.5) requires

..
R = 0. To investigate the

stationarity of R(t) in this case one has to inspect higher differentiations of R(t). Doing so one concludes
...
R = 0,

however, for the four-fold time differentiation one calculates R
....
R = R2 ..

α
2
+ 1

4
R2

..
θ
2
sin2 2α which means

····
R > 0.

Hence, the trajectory R(t) shows for E = 0 only one minimum.



6.1 Classical mechanics of two excited electrons at the double escape threshold 83

Therefore, the time evolution of the electrons’ distances from the residual ion (as described

by α(t)) can not be statistically distributed. Hence, the key point is to find out the (dynamical)

mechanism that stabilizes the two electrons’ motion, in particular the motion along α(t) has

to be stabilized at certain value α0. Identifying such a stabilization process is equivalent to

finding a non-statistical pathway for double ionization, for the scaling Eq. (6.9) implies that

α = α0 remains stabile when the system size, characterized by the hyperradius R, expands

by an amount β.

To this end one inspects the variation of the potential with respect to α and θ and finds out

that the conditions
∂C

∂α
=

Z cos α

sin2 α
− Z sin α

cos2 α
+

cos 2α cos θ

(1− sin 2α cos θ)2/3
= 0,

∂C

∂θ
= − sin 2αsinθ

2
√

(1− sin 2α cos θ)3/2
= 0, (6.10)

are fulfilled at

α0 = π/2, and θ0 = π, (6.11)

i.e. when the two electrons are on opposite sides and at equal distances from the residual ion

(r1 = −r2).

For this reason it is appropriate to expand the potential C(α, θ) around the extremal posi-

tions. This yields the following expansion coefficients

C(α, θ) ≈ −C0 −
1
2
C1(α− α0)2 +

1
2
C2(θ − θ0)2, (6.12)

where

C0 =
1√
2
(4Z − 1), C1 =

1√
2
(12Z − 1), and C2 =

1√
32

. (6.13)

From Eq. (6.12) we deduce that the motion around the extremal (saddle) point is stable along

θ but unstable along α (upon a small perturbations).

Using Eq. (6.5)2 the equations of motion (6.8) can now be linearized around the saddle

point to yield
..

R = −C0

R2
, (6.14)

d

dt
(R2 .

α) =
C1

R
(α− α0), (6.15)

d

dt
(
1
4
R2

.

θ) = −C2

R
(θ − θ0). (6.16)

2Note that from Eq. (6.5) at the saddle point one deduces that
.
R =

q
2E + 2 C0

R
.
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Exchanging in these relations the variation in time into a variation with respect to the radial

distance 3 R one finds for E = 0

.

R =

√
2C0

R
, (6.17)

R2∂2
Rα +

3R

2
∂Rα− C1

2C0
(α− α0) = 0, (6.18)

R2∂2
Rθ +

3R

2
∂Rθ +

2C2

C0
(θ − θ0) = 0. (6.19)

For the solution of these equations we make the ansatz

α(R) ≈ α0 + Rn,

which yields for n

n = −1
4
± 1

2
μ, (6.20)

μ =
1
2

√
100Z − 9
4Z − 1

. (6.21)

Thus, the general solution for α(R) can be written as

α(R) = α0 + a R− 1
4− 1

2 μ + b R− 1
4+ 1

2 μ, (6.22)

where a(E) and b(E) are (energy dependent) integration constants. Likewise, we write θ(R)

in the form

θ(R) ≈ θ0 + Rm and obtain m = −1
4 ± i

2 μ̄,

where

μ̄ =
1
2

√
9− 4Z

4Z − 1
.

Thus, the general solution for θ(R) is

θ(R) = θ0 + ā R− 1
4 cos

( μ̄

2
ln R + b̄

)
, (6.23)

where ā(E) and b̄(E) are integration constants.

3This is valid for t > t0 where t0 is determined from the minimum of R(t), i.e. from the condition
.
R(t) = 0.
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6.1.1 Wannier threshold law: a classical approach

The (total) cross section for the double escape σ2+(E) is obtained from the time variation of

the (microcanonical) phase space volume ΩE which is available for the two excited electrons

at a fixed energy E, i. e.

σ2+(E) =
.

ΩE =
d

dt

[∫
dRdαdθ

∫
dpRdpαdpθ δ

(
p2

R

2
− C0

R
− E

)]
, (6.24)

where pR, pα and pθ are the momenta conjugate to coordinates R, α and θ, respectively.

Noting that∫
dR

∫
pRδ

(
p2

R

2
− C0

R
− E

)
=
∫

dR

(
dR

dt

)−1

,

we can write Eq. (6.24) as

σ2+(E) =
∫

dαdθ

∫
dpαdpθ. (6.25)

The momenta conjugate to α and θ can be calculated from the Lagrange function L (given by

Eq. (6.4)) according to the relations 4

pα = ∂ .
α L = R2

.

R∂Rα(R) =
√

2C0R
3/2 ∂Rα(R), and (6.26)

pθ = ∂ .

θ
L =

1
4
R2

.

θ sin2(2α) ≈ 1
4
R2

.

R∂Rθ(R) =
√

2C0

4
R3/2 ∂Rθ(R). (6.27)

Therefore, the cross section (6.25) can be written as

σ2+(E) =
C0

2
R3

∫
dα d(∂Rα) dθ d(∂Rθ) . (6.28)

For the calculation of the cross section (6.28) we need thus only the variation of the quantities

α, ∂Rα and θ, ∂Rθ. The variation of these variables can be viewed as a variation of the

integration constants a, b, ā, b̄, more precisely from Eqs. (6.23, 6.22) it follows that

σ++(E) =
μμ̄C0

4

∫
(ā) dā da db db̄ . (6.29)

Thus, the functional dependence of a, b, ā, b̄ determines the energy behaviour of the cross

section. In particular the behaviour of b is decisive, as clear from the asymptotic behaviour of

α Eq. (6.22) at large distances R. Taking the scaling properties of the trajectories (Eq. (6.9))

into account and imposing the condition that the (divergent) trajectory has to stay bound,

4We recall that for E = 0 the relation applies
.
R =

q
2C0
R

.
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when E = 0 is approach, we conclude that b = Eμ/2−1/4b̃, where b̃ is energy independent.

At E = 0 the constants a, ā, b̄ become energy independent and the cross section Eq. (6.29)

simplifies to the universal form

σ+2(E) ∝ Eμ/2−1/4. (6.30)

This universal energy dependence of σ++(E) is called the Wannier threshold law.

The classical mechanical derivation outlined above rests on the assumption of vanishing

E, it gives no indications on the energy range of validity of (6.30). Furthermore, the above

arguments make clear that the cross section (at E = 0) does not depend on E1 and E2 and

hence all the energy-sharing possibilities are equally probable. This statement is called the

ergodic theorem. The Wannier exponent μ/2− 1/4 depends on the charge Z through the

dependence of μ (Eq. (6.21)) on Z: for Z = 1 one obtains μ/2− 1/4 = 1.127, whereas for

Z → ∞ which is the case for two independent particles one deduces μ/2− 1/4 = 1, i.e. the

interaction between the particles changes qualitatively the behaviour of the ionization cross

section.

6.1.2 Remarks on the classical treatment of two electrons at threshold

Summarizing this section we recall that the threshold law for double electron escape into the

continuum of a residual positive ion can be derived in the framework of classical mechanics

[90]. Inspection of the equations of motion indicates that the subspace relevant for double

escape is the subset of the configuration space where both electrons are at equal distances

from the ion and in opposite directions. The basic origin of this behaviour is the existence of

a saddle point in the total potential surface for this (Wannier) configuration.

How the classical motion proceeds in the Wannier configuration is readily inferred from

the following argumentation:

The classical motion for the two electrons is governed by the equations

..
r1 = −Zr1

r3
1

+
r1 − r2

|r1 − r2|3
,

..
r2 = −Zr2

r3
2

+
r2 − r1

|r2 − r1|3
. (6.31)

As readily verified, the Wannier mode r = r1 = −r2 solves for Eqs. (6.31). Both relations

(6.31) collapse then to one equation

..
r = − (Z − 1/4)r

r3
(6.32)
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that describes a Kepler problem with an effective residual ion charge Z̄ = Z − 1/4, i.e. the

electron-electron interaction is incorporated as a static screening of the ion’s field. In this

context we note that in the Fermi liquid theory of Landau [50, 84] the interacting electronic

system is mapped onto a non-interacting one where the single particle (quasi-particles) prop-

erties (such as the particle’s mass and charge) are re-normalized. The same approach can be

followed here: Eq. (6.32) can be written in the form

..
r =

Z Zer
r3

, (6.33)

where the “quasi-particle” charge Ze = −1 + 1/(4Z) can be viewed as the re-normalized

electron charge, i.e. the two electrons move independently in the field of the ion but each of

them having the reduced charge Ze. For a strong residual field |Z| � 1 we obtain Ze = −1

a.u., i.e. the normalization due to the electron-electron interaction (and hence this interaction

itself) can be neglected.

The details of the motion prescribed by Eq. (6.33) has been discussed at length in Sec. 1,

both from a classical and quantum mechanical point of view. Let us recall the main findings

again: Below the threshold I++ both electron move along elliptic orbits of equal size and

are located in the same plane [cf. Fig. 1.1]. For all times t the Wannier condition r1 = −r2

applies. Hence, the motions within the two ellipses are strongly correlated in phase. As

derived in Sec. 1, at threshold the ellipses degenerate into a straight line, which means that

the electrons perform a symmetric stretch vibration without rotation. In case the ellipses

degenerate into a circle we end up with the case of a linear rotor, whose constant length is

determined by the condition that the electron-ion interaction compensates for the electron-

electron interaction and the centrifugal force. The existence of a further rigid-body solution

(a top) has been pointed out in Ref. [207]. A detailed review of the periodic orbit analysis of

He can be found in Ref. [208].





7 Quantum mechanics of many-electron systems at the
double escape threshold

7.1 Generalities of many-electron threshold escape

A number of quantum mechanical studies, e.g. [131–135] confirmed the Wannier threshold

law (6.30) for the two electron escape. For three-electron escape only few works exist, e.g.

[210, 211]. For more particles threshold emission little is known. Therefore, it is instructive

to consider the generalities of many-electron escape at the fragmentation threshold.

7.1.1 Cross section dependence on the number of escaping particles

From the structure of the density of states one concludes the following: at threshold the prob-

ability for many-electron escape decreases rapidly with the number N of excited electrons.

For N � 1, the threshold state for the N particle fragmentation, constitutes a set of measure

zero, and hence it is extremely unlikely to be populated. This statement is evidenced by a

comparison between the two and the three-electron threshold emission [Fig. 7.1].

As argued for the double emission case and demonstrated in Fig. 7.1 (a) the threshold con-

straint E = 0 = E1 +E2 is satisfied by an infinity of states for which one electron has a posi-

tive energy E1 > 0 (unbound) and the other has a negative (bound) energy E2 = −Z2/(2n2),

whereas only one state (I++) satisfies E1 = 0 and E2 = 0. For triple electron escape

(Fig. 7.1(b)) the number of states that fulfill 0 = E1 + E2 + E3 = E1 + E increases, a subset

is shown in Fig. 7.1 (b), where for clarity, the manifold of two electron states is combined

into one axis E1 + E2: the case E3 > 0 and −E3 = E = E1 + E2 corresponds to the sit-

uation where electron “3” is unbound whereas the electron pair “1, 2” has a negative energy,

i. e. either both electrons occupy a doubly excited bound state or one of them is bound and

the other is unbound such that their energies combine to −E3. Similar arguments apply when

electron “3” is bound (E3 < 0). This increase in the number of states with increasing N is to
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Figure 7.1: A schematic drawing for some of the available states for the total zero energy of two (a) and
three (b) electron systems. E1 and E2 in (a) denote the energies of the two electrons (E1 + E2 = 0),
whereas in (b) E3 is the energy of the third electron (E1 +E2 +E3 = 0). The double (triple) ionization
threshold is indicated by I++ (I+++).

be contrasted with the fact that the threshold is reached only if Ej = 0, ∀ j = 1 · · ·N , which

leads us to the conclusion that the threshold state is extremely unlikely to be populated with

increasing number of particles. To put this statement in a mathematical language we recall

that the total cross section at threshold is determined by phase-space arguments [132, 212].

Generally, the total cross section σN+ for the emission of N particles has the structure [214]

σN+ ∝
∫
| 〈f |O |i〉 |2 δ(Ef − Ei)d3k1 · · · d3kN , (7.1)

⇒ σN+ ∝
∫ [∫

| 〈f |O |i〉 |2 dΩ1 · · · dΩ2

]
(k1. . . . .kN ) δ(Ef − Ei) dE1 · · · dEN ,

(7.2)

where O is a (hermitian) operator that induces the transition from the initial state |i〉 (with

energy Ei) to the final state 〈f | (with energy Ef ). The vectors kj , j = 1 · · ·N are the

momenta acquired by the escaping electrons in the asymptotic region. Hence, the parabolic

dispersion relations Ej = k2
j /2 apply. In Eq. (7.2) the wave vectors kj , j = 1 · · ·N are

characterized by the solid angles Ωj and by their magnitudes kj .

In a limited region around the threshold the state (O |i〉) has only a very weak dependence

on the total excess energy E = E1 + · · ·+ EN . Hence, the energy dependence of σN+(E) is

determined by the factor

ρ(E) =
∫

(k1 · · · kN ) δ(E − (E1 + · · ·+ EN )) dE1 · · · dEN = E3N/2−1 (7.3)

and by the E-dependence of the normalization N of |f〉. If all electrons are considered free,



7.1 Generalities of many-electron threshold escape 91

i.e. if f(r1, · · · , rN ) = (2π)−3N/2
∏N

j=1 exp(ikj · rj), the functionN is energy independent

and we deduce

σN+(E) PW= E3N/2−1 = e(3N/2−1) ln E . (7.4)

This means, for E � 1 the cross section decreases rapidly with increasing number of particles

N . For Coulomb systems, this N scaling behaviour is not expected to be changed qualita-

tively when including final-state interactions in |f〉. E.g. if all the N electrons are viewed as

moving independently in the field of the ion we obtain for the final state f(r1, · · · , rN ) =

Nind
∏N

j=1 exp(ikj · rj)ϕj(rj ,kj), where the distortion factor ϕj(rj ,kj) describes the in-

fluence of the residual ion field on the jth electron. As will be shown in detail below, the

normalization factor Nind in this case has the behaviour limEj→0Nind →
∏N

j=1 k−1
j =∏N

j=1(2Ej)−1/2. Combining this threshold behaviour of Nind with Eq. (7.3) we obtain

σN+(E) ind= EN−1 = e(N−1) ln E . (7.5)

This threshold law is valid when the strength of the ion Coulomb field dominates over all other

interactions in the systems, e.g. for highly charged ions. Including the correlation between the

electrons decreases the cross section, as shown for N = 2 (cf. Eqs. (6.30, 7.5)).

7.1.2 Structure of the total potential surface for N electron systems

A key ingredient of the Wannier theory for double escape is the existence of a saddle point

in the total potential surface around which the total potential can be expanded. Thus, an

important question to be answered for a many-electron system is how to determine the saddle

points of the potential. Fig. 7.1 (b) gives a first hint that in many electron systems several

(local) saddle points can exist, e.g. for E1 + E3 = 0 but for E3 < 0, i.e. if electron “3” is

bound to the core we obtain the saddle point known for the two electron escape. The saddle

points we are interested in are singled out by the requirement that all excited particles recede

from the residual ion into the asymptotic region 1 with a vanishing total energy.

1In the Wannier theory the R subspace is divided in three zones: the reaction zone 0 ≤ R < a, where a defines
the region in which a description of the internal structure of the atom is important. In the Coulomb zone a ≤ R ≤ R0

the internal structure of the residual ion is irrelevant for the motion of the two electrons, i.e. one can treat the ion as
a point charge. In the free zone R > R0 the kinetic energy is much larger than the potential energy. The constant
hyperradius R0 marks the border between the Coulomb zone and the free zone and is determined by the condition

that the kinetic and the potential energies are of the same strength, i.e. |E| = e2

R0
where e is the charge of the electron

and E = (k2
1 + k2

2)/2 is the kinetic energy. At threshold (E → 0), the distance R0 tends to infinity and therefore
only the Coulomb zone is of interest for threshold fragmentation studies.
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The total potential V can be divided into an attractive Ua and a repulsive part Ur

V = Ua + Ur, Ua = −
N∑
j

Z

rj
, Ur =

N∑
j>i

1
|ri − rj |

. (7.6)

As in the two-electron case, the potential V (7.6) can be transformed into hyperspherical

coordinates. The hyperradius is defined as

R =

√√√√ N∑
j=1

r2
j . (7.7)

The total potential can be written as [213]

V = C(ω)/R. (7.8)

Here ω stands for a set of 3N−1 angles that are chosen appropriately 2. Stationarity at a fixed

R is then deduced from the condition

∇C(ω) = 0.

Furthermore, the curvature of C(ω) is as well needed to pin down the nature of the extremal

points, as demonstrated in the two-electron (Wannier) case.

The following analysis relies on the fact that Ua is always negative and Ur is always

positive. As a consequence the total potential is minimal if Ua is maximal and Ur is minimal.

Therefore, we investigate the stationarity of Ua and Ur separately. Let us first inspect the

extremal positions of the attractive part Ua of the potential (7.6) at a given hyperradius R. For

this purpose the function g(λ) = Ua + λ(R2 − r2
1 · · · − r2

N ) has to be analyzed where λ is

a Lagrange multiplier. Due to the structure of the equation (7.8) for the total potential at a

given R it is more convenient to inspect the function C̄ = R g. Introducing the dimensionless

parameters

αj = rj/R,

we find that C̄ is stationary for

αj0 = 1/
√

N.

2Due to rotational invariance only 3N−4 angles enter dynamically into the solution of the problem, the remaining
three (Euler) angles describe rigid-body space rotations.
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Furthermore, C̄ has the power expansion

C̄(αj) = −CN0 −
1
2
C10

∑
j

(αj − αj0)2 + · · · , (7.9)

where the expansion coefficients are given by

CN0 = ZN3/2, C10 = 3ZN3/2. (7.10)

Eqs. (7.9, 7.10) are in complete analogy to Eqs. (6.12, 6.13) that result from the expansion

of the total potential around the Wannier saddle points in the two-electron case. In fact it is

straightforward to verify that Eqs. (7.9, 7.10) reduces to Eqs. (6.12, 6.13) for N = 2 and if the

electron-electron interaction term is neglected. The stationarity condition αj = 1/
√

N means

that all electrons have the same distance from the residual ion. The actual geometrical ar-

rangement of the electrons around the ion is deduced as follows: The gradient of the potential

is the force Fr exerted by the ion on the electronic cloud. Since this force Fr does not change

sign, the minimal value that can be acquired by Fr is zero. The minimum is reached when the

center of the electronic charge coincides with the position of the ion. This is deduced from the

following equation

Fr =
−ZN3/2

R3

⎡⎣ N∑
j

rj

⎤⎦ =
−ZN3/2

R3
RCM,

Fr = 0 ⇒ RCM = 0, (7.11)

where RCM is the center of mass of the electronic cloud. The geometrical arrangement of

the electrons in space at the stationary position of the total potential is further determined by

minimizing the repulsive term Ur. The geometrical shape formed by arranging the electrons

around the ion has to be invariant under rotation. This is because such a rotation is generated

by a cyclic permutation of the electrons and such a permutation leaves the potential invariant.

Furthermore, the geometrical shape has to be invariant under a reflection at any plane P that

goes through the ion and bisecting any rij , where rij ⊥ P . The reason for this is that this

reflection operation is equivalent to an exchange of only i by j (and subsequent rotation if

needed).

The arrangement of three electrons around the ion in the equilibrium configurations form

an equilateral triangle, four form a regular tetrahedron and five form a symmetric bipyramid,

these shapes are illustrated schematically in Fig. 7.2.
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Figure 7.2: The Wannier configuration at the saddle point for two (a), three (b), four (c) and
five (d) electrons.

7.1.3 Quantum mechanics of N electrons at low kinetic energies

The quantum mechanical state ΨE(R, ω), at the total energy E of N interacting, non-relativistic

electrons is determined by the Schrödinger equation which in hyperspherical coordinates has
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the form [209][
Δ− 2V + 2E

]
ΨE(R, ω) = 0,{

R1−3N∂RR3N−1∂R −
Λ2

R2
− 2C(ω)

R
+ 2E

}
ΨE(R, ω) = 0. (7.12)

The second-order differential operator Λ acting only in the subspace spanned by the angles ω

is the grand angular momentum, i.e. it is the quadratic Casimir operator of the 3N -dimensional

rotation group3 SO(3N). All Coulomb singularities, occurring when any two-particles dis-

tances tend to zero, reappear in the hyperspherical coordinates ω. The motion along R is

singularity free for N > 1 4. This statement is readily substantiated by considering the Pois-

son equation

ΔV = −4π
∑

j

Zδ(rj) + 4π
∑
i�=j

δ(ri − rj). (7.13)

From Eq. (7.12) we inferred the form of the hyperspherical Laplacian Δ =

R1−3N∂RR3N−1∂R − Λ2/R2 and insert it in (7.13) to obtain

ΔV = ΔC(ω)/R =
{

−4π Zδ(R), for N = 1,
1

R3

[
Λ2 + 3(N − 1)

]
C(ω), for N ≥ 2 . (7.14)

Recalling that the volume element in hyperspherical coordinates5 behaves as R3N−1 near the

origin we conclude that for N ≥ 2 the motion along the coordinate R is free from singularities.

This means all two-particle Coulomb singularities must be contained in the coordinates ω. At

the N particle coalescence point, i.e. for R → 0, the wave function ΨE(R, ω) possesses a

power series expansion containing logarithmic terms in R, the so-called Fock expansion, that

will be briefly sketched in the next chapter.

As in the three-dimensional space, where Λ coincides with the orbital momentum operator,

the eigenvalues and the eigenfunctions FK(ω) of Λ2 are determined from the relation6

Λ2FK(ω) = K

(
K +

3N − 1
2

)
FK(ω), K = 0, 1, 2, · · · . (7.15)

3The grand angular momentum Λ2 is given by Λ2 =
P

j>i Λ2
ij , where Λij = xipj − xjpi are the generators

of space rotation in RN (cf. appendix A.1). The position (xi) and momentum (pj ) operators satisfy the canonical
commutation relation [xi, pj ] = δij and the scalar operator Λ2 commutes with all the elements Λij , i.e. [Λ2, Λij ] =
0, ∀ i, j.

4This makes the radial coordiante R a possible suitable choice as an adiabatic coordinates as well as a reasonable
measure for the size of the N particle system.

5The N dimensional volume element dVN =
QN

j=1 d3xj transforms in hyperspherical coordinates as dVN =

dRdS = RN−1dR dΩ, where dS is the element of the surface area. We note that
R

dΩ = 2πN/2

Γ(n/2)
and that the

volume of an N dimensional sphere is VN = πN/2

Γ(N/2+1)
RN , where Γ(x) is the Gamma function [99].

6The eigenfunctions of Λ are obtained by considering the harmonic homogeneous polynomials Yλ(r) of degree
λ. Homogeneity means that Yλ(r) = rλYλ(ω). Acting with the hyperspherical Laplacian on Yλ(r) and using the
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The first order derivatives in Eq. (7.12) are transformed away upon the ansatz

ΨE(R, ω) = (kR)−
3N−1

2 ψE(R, ω), (7.16)

where k =
√

2E is a hyperspherical wave vector. Since the whole system is invariant under

overall rotation the angular and radial part of the wave function ΨE(R, ω) are separable, i. e.

ψE(R, ω) = χ(R)FK(ω). (7.17)

For the region where around the saddle point the potential C(ω) varies slowly and therefore

gradient terms of C(ω) can be neglected, i.e. one may approximate C(ω), to a first order, by

the value C0 = C(ω0) at the equilibrium position ω0. Taking Eqs. (7.15, 7.16) into account

and inserting Eq. (7.17) into (7.12) we obtain a one dimensional determining equation for the

χ(R) {
∂2

R −
L(L + 1)

R2
+

2C0

R
+ 2E

}
χL(R) = 0, (7.18)

where

L(L + 1) = K

(
K +

3N − 1
2

)
+ (3N − 1)(3N − 3)/4.

Eq. (7.18) has the same structure as for one particle in an external potential that we treated

before, [cf. Eq. (3.2)]. At E = 0 the solution of Eq. (7.18) is given in terms of Hankel

functions

χL(R) =
√

R
{

c1H
(1)
2L+1(

√
−8C0R) + c2H

(2)
2L+1(

√
−8C0R)

}
, (7.19)

where c1 and c2 are integration constants. Of interest for the fragmentation channel is the

large R asymptotic of the function (7.19) which is

χ(R) →
R→0

R1/4
[
c′1e

i
√

8C̄0R + c′2e
−i
√

8C̄0R
]
, (7.20)

where c1 and c2 are constants and C̄0 = −C0.

Away from the equilibrium position C(ω) �= C0 = constant, the problem is then to find

a solution for the equation (at E = 0){
∂2

R −
[
Λ2 + (3N − 1)(3N − 3)/4

R2
+

2C(ω)
R

]}
ψE(R, ω) = 0. (7.21)

homogeneity and harmonicity properties of Yλ(r) yields for the n dimensional operator Λ

Λ2
n(ω)Yλ(ω) = λ(λ + n − 2)Yλ(ω).

From all possible eigenfunctions Yλ(ω) only those are then adopted which are finite, single-valued and continuous
over ω. These are the so-called hyperspherical harmonics.
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The solution (7.20) at the stationary point suggests the ansatz

ψE(R, ω) = Rn exp
[
i
√

R q(ω)
]
. (7.22)

The function q(ω) is determined by inserting (7.22) into (7.21) which yields{
− 1

R2

[
exp[−i

√
R q(ω)] Λ2 exp[i

√
R q(ω)]

]
+

i(n− 1/4)q
R3/2

+
1

R2

[
n(n− 1)− (3N − 1)(3N − 3)/4

]
− 1

R

[
q2/4 + 2C(ω)

] }
Rn = 0. (7.23)

Expanding the exponential term in this equation in a power series we obtain

exp(−iϕq) Λ2 exp(iϕq)

= Λ2 + iϕ[Λ2, q]− 1
2!

ϕ2
[
[Λ2, q], q

]
− i

3!
ϕ3
[[

[Λ2, q], q
]
, q
]

+ · · · .

In addition, one can show that the commutation relation[[
[Λ2, q], q

]
, q
]

= 0

applies which leads to the exact relation

exp(−iϕq) Λ2 exp(iϕq) = Λ2 + iϕ[Λ2, q]− 1
2
ϕ2
[
[Λ2, q], q

]
.

Inserting this relation in Eq. (7.23) leads to{
i

R3/2

[
(n− 1/4)q − [Λ2, q]

]
+

1
R2

[
n(n− 1)− (3N − 1)(3N − 3)/4− Λ2

]
+

+
1
R

[
1
2
[[Λ2, q], q]− q2/4− 2C(ω)

] }
Rn = 0. (7.24)

This equation can be further simplified by taking advantage of the relations [Λ2, q]g(ω) =

g Λ2 q − 2(∇g) · (∇q) and [[Λ2, q], q]g(ω) = −2g(∇q)2, ∀g(ω).

Since we are interested in the asymptotic (large R) behaviour we neglect the term that falls

off as R−2 leading to the conclusion that Eq. (7.24) is valid identically if

q2 + 4(∇q)2 + 8C(ω) = 0, (7.25)

1
4

+
(

Λ2q

q

)
ω=ω0

= n. (7.26)
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The condition (7.26) is deduced from the fact that the gradient of the function Rn at the equi-

librium position ω0 has to vanish. Since Eq. (7.25) is quadratic in q we obtain two solutions

Q1 and Q2 and accordingly, due to Eq. (7.26), two exponents n1 and n2. These two solutions

merge together at ω0 as shown above.

Equation (7.21) is invariant under the exchange

(kR, C/k) � (R, C). (7.27)

This transformation combined with Eqs. (7.25, 7.26) leads to the constraint that the whole

solution (7.22) should be invariant under the transformation

(kR, C/k, Q1/
√

k, Q2/
√

k, n1.n2) � (R, C, Q1, Q2, n1, n2). (7.28)

The solution (7.22) has thus the form

ψE(kR, ω) = (kR)1/4

{
A (kR)n1−1/4 exp

[
i
√

R Q1(ω)
]

+ B (kR)n2−1/4 exp
[
i
√

R Q2(ω)
]}

, (7.29)

where A and B are energy dependent constants. Thus, the total wave function (7.16) has the

form

ΨE(R, ω) = (kR)−
3N−1

2 + 1
4 A

{
(kR)n1−1/4 exp

[
i
√

kR
Q1√

k

]

+ Dkn1−n2 (kR)n2−1/4 exp
[
i
√

kR
Q2√

k

]}
. (7.30)

Here we made use of the condition B = Dkn1−n2A where the constant D is energy inde-

pendent. This constraint ensures that both parts of the solution (7.29) are of equal magnitudes

near threshold.

7.1.4 Quantal calculations of the universal threshold behaviour

As discussed above using Eq. (7.2) the cross section for the escape of multiple electrons de-

pends on the phase space factor ρ(E), as given by Eq. (7.3), as well as on the excess-energy

dependence of the transition matrix elements. The latter dependence is solely determined by

the behaviour of the final state, i.e. of Eq. (7.30) as function of the energy: For n1 > n2 the
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first part of this wave function (7.30) (which behaves as k− 3N−1
2 + 1

4 ) dominates asymptotically

and yields thus the normalization of the wave function. In the internal region, which the rele-

vant region for the evaluation of the transition matrix elements and hence for the cross section

Eq. (7.2), the second part of the wave function (7.30) is decisive. The energy dependence of

this part is readily deduced from (7.30) as k− 3N−1
2 + 1

4+n1−n2 . Combining this behaviour with

Eq. (7.3) we deduce the universal threshold behaviour

σN+ ∝ En1−n2− 1
4 . (7.31)

To obtain the value of the exponent for a certain number of particles N one has to solve the

equations (7.25, 7.26). E.g. for two particles we obtain

n1 = +

q
100Z−9
4Z−1 −1

8 + i
4

√
9−4Z
4Z−1 ,

n2 = −
q

100Z−9
4Z−1 −1

8 + i
4

√
9−4Z
4Z−1 , (7.32)

which determines the energy dependence of the cross section to be

σ2+ ∝ E
1
4

“q
100Z−9
4Z−1 −1

”
. (7.33)

This relation is identical to the Wannier threshold law that we derived classically in sec-

tion (6.1.1).

7.1.5 Incorporation of symmetry and spin in many-particle wave
functions

The above treatment of the N electron wave function does not account for the spin variable.

For non-relativistic systems, in which the spin and the spatial degrees of freedom are decou-

pled, the effect of the spin degrees of freedom can be considered separately. The spin part of

electronic wave function dictates then the symmetry of the radial part in such a way that the

antisymmetry of the total wave function is ensured. According to Knirk [213] the wave func-

tions (7.16) can be classified by means of the following good quantum numbers: the parity

(π), the total orbital momentum and its projections L, ML, as well as by the total spin (S) and

its components along a quantization axis (MS). The wave function (7.16) is then written as

ΨE,πLMLSMS
(R, ω) = R− 3N−1

2

∑
j

ψj,πLML
(R, ω)Θj,SMS

, (7.34)

where the functions ψj,πLML
(R, ω) have the same radial structure as Eq. (7.22). Furthermore,

the functions Θj,SMS
are spin joint eigenfunctions of S2 and Sz . The index j runs over the
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degeneracies of the spin states of S2. The Pauli principle imposes certain symmetry properties

on ψj,πLML
(R, ω) when two electrons are exchanged, in particular some of the functions

ψj,πLML
(R, ω) will have nodes at the equilibrium position. This situation can be accounted

for by writing ψj,πLML
(R, ω) in the form (cf. Eq. (7.22))

ψj,πLML
(R, ω) = fj,πLML

(ω) Rn exp[i
√

R q(ω)].

Repeating the steps for this function as done for the ansatz (7.22) one derives the determining

equation{
i

R3/2

[
(n− 1/4)q − [Λ2, q]

]
+

1
R2

[
n(n− 1)− (3N − 1)(3N − 3)/4− Λ2

]
+

1
R

[
1
2
[[Λ2, q], q]− q2/4− 2C(ω)

] }
Rn fj,πLML

(ω) = 0. (7.35)

Comparing this relation with Eq. (7.23) one can repeat the steps leading from Eq. (7.23) to the

determining relations for q(ω) and (n) (7.25, 7.26) and obtain the same relation (7.25) q(ω),

i.e. q(ω) is independent of the nodal structure of the wave functions. The exponents n depend

however on f , i.e. on the nodes of the wave functions near the stationary point:

n =
1
4

+
(

Λ2q

q

)
ω=ω0

− 2
(

(∇q) · (∇fj)
q fj

)
ω=ω0

. (7.36)

From Eq. (7.31) it is clear that this change in n will be reflected in a modified threshold law

when the wave function possesses nodes at the equilibrium7.

7If the wave function has no nodes at the saddle point the function fj is unity.



8 Highly excited states of many-body systems

In the preceding chapters we have seen that the description of quantum mechanical two-

particle systems can, in general, be reduced to the treatment of a one particle problem for

the relative motion, that can in general be handled exactly by theory. Ground state properties

of many-body systems can as well in most cases be treated theoretically by utilizing varia-

tional techniques to find the minimal (ground-state) energy of the system. For excited systems

the situation is more complex. Already for three particles one observes the formation of res-

onant states that are strongly affected by electronic correlation. Semi-quantitative and exact

diagonalization methods provide a satisfactory description of these autoionizing states. With

an increasing number of electrons and/or higher excitations such methods become however

intractable. Under certain special conditions (e.g. E = 0), quantities (such as the low-energy

total cross section) which are determined by the available N particle phase-space can be de-

rived from a general consideration of the structure of the N particle wave function. Apart

from these special cases, we are faced with the problem of how to construct approximate

many-body wave functions. It is the aim of this chapter to address this question for a system

consisting of N interacting excited electrons.

8.1 General remarks on the structure of the N particle
Schrödinger equation

Before addressing the solution techniques of the many-body Schrödinger equation it is in-

structive to recall some general aspects of the many-body wave functions.

8.1.1 The Fock expansion

As discussed in previous chapters, the treatment of the two-body problem involves in general

the solution of a one-dimensional, second-order ordinary differential equation. Solutions of
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such equations can be expressed in terms of a power series in the relevant variables [1]. The

existence and convergence of such solutions are guaranteed by well-established theorems in

the field of ordinary differential equations [215]. In essence, a power series expansion for

regular solutions exist if, and only if, the potential has a power series expansion including at

most a weak singularity.

The treatment of non-separable, many-body problems requires the solution of higher di-

mensional partial differential equations. To connect to the theory of ordinary differential

equation one may convert the N particle Schrödinger equation into an equivalent system of

second-order ordinary differential equations, e.g. as done in the hyperspherical treatment. On

the other hand, one may attempt to solve approximately the N particle Schrödinger equation

directly. For both routes, there exist, in general, no power series solutions analogous to the

one-dimensional case. The main reason behind this difference between the two and many-

body problems is that the Schrödinger equation for N particle systems contains a multi-center

potential for N > 2, and a non-central interaction generates in the solution logarithmic terms,

in addition to powers in the relevant particle variables.

A prominent example of this situation is the fact that the ground state of helium can not be

expanded in an analytic series of the interparticle coordinates [216]. Bartlett proved the exis-

tence of a formal expansion including logarithmic functions of the interparticle coordinates.

A direct practical demonstration of this (anomaly) has been demonstrated by Fock [204], who

used the hyperspherical coordinates to show that the exact three-body wave function Ψ(R, ω)

has, in the neighborhood of the three-body coalescence point (R = 0) the expansion

Ψ(R, ω) =
∞∑

k=0

Rk

[k/2]∑
p=0

(lnR)p
ψkp(ω)

∣∣∣∣∣∣
|R|�1

, (8.1)

where the upper limit on the second summation [k/2] denotes the largest integer that does

not exceed k/2. Substituting this expansion into the Schrödinger equation Fock obtained

a recurrence relation, involving differential operators, for the angular functions ψkp(ω) for

k = 0 and k = 1, and he obtained solutions which are in agreement with those of Bartlett.

Since the original work of Bartlett and Fock a considerable amount of studies on the Fock

expansion have been carried out (e.g. [217–224]). In particular it has been shown [220, 221]

that the Fock expansion can be extended to an arbitrary system of charged particles and to

states of any symmetry. In fact Leray [225] proved that every solution of the N electron
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Schrödinger equation can be written in the form of the Fock expansion. However, an explicit

numerical investigation of the expansion coefficients for an arbitrary number of electrons is

still outstanding.

8.1.2 The Kato cusp conditions

The Coulomb interaction between two charged particles diverges at their coalescence point.

On the other hand the normalization condition of the wave function Ψ implies that |Ψ| has

to have an upper bound everywhere. In fact Kato [140] has shown that all eigenfunctions

of a many-particle Coulombic system are continuous everywhere and hence finite, even at

the Coulomb singularities. This means the divergences of the potentials at the two-particle

collision points have to be compensated for by equivalent diverging terms in the kinetic energy.

Kato has shown that this behaviour is reflected in certain properties of the exact wave function

around the two-body coalescence points. Namely, he proved that if two particles of masses

mi and mj and charges zi and zj approach each other (rij → 0) and all other interparticle

distances remain finite then the many-body wave function Ψ has to satisfy (the Kato cusp

conditions) [140]

∂ Ψ̃
∂ rij

∣∣∣∣∣
rij=0

= zizj μji Ψ(rij = 0), ∀ i, j ∈ [1, N ], (8.2)

where Ψ̃ is the wave function averaged over a sphere of small radius rε � 1 around the

singularity rij = 0 and μij is the reduced mass of the particles i and j.

Later on Kato’s result has been extended [226] by inspecting the solution in the vicinity of

the coalescence points and requiring all the terms that diverge in the limit of rij → 0 to cancel

each other. This yields an expansion for the wave function Ψ in the form (rij ≡ r)

Ψ =
∞∑

l=0

m=1∑
m=−l

rl flm(r) Ylm(θ, φ), (8.3)

where

flm(r) = f0
lm(r)

[
1 +

zizjμij

l + 1
r +O(r2)

]
. (8.4)

The function f0
lm is the first term in the series expansion 1 in powers of r

flm(r) =
∞∑

j=0

f j
lmrj .

1The correct power expansion of the wave function around the two-body collision point is best illustrated for the
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8.1.3 Boundary conditions for the N -body problem

In addition to the regularity conditions (8.1, 8.2) certain asymptotic boundary conditions can

be imposed on the solution of the Schrödinger equation. As illustrated in the case of two

particles (page 14), according to the prescribed boundary conditions, appropriate solutions

for standing (i.e. bound) waves (2.54), outgoing waves (2.55), or incoming waves (2.56) have

been singled out. When carrying over this procedure to many-body systems one encounters

two problems: (1) For N > 2 a variety of (mixed) boundary conditions (or channels) occurs,

e.g. one may consider a system of N (indistinguishable) electrons, where few electrons are

bound and few others are in the continuum, as detailed in section 9.8. (2) For Coulomb

systems the boundary conditions, as such are difficult to derive. This is because the Coulomb

interaction has an infinite range and the particles are strictly speaking never free.

Since we know the exact form of the Coulomb two-body wave functions (2.54, 2.55,

2.56), the asymptotic behaviour is readily deduced in this case. This same behaviour is as

well easily obtained by considering the Schrödinger equation for the relative motion of two

charged particles (with charges z1 and z2 having a reduced mass μ)[
Δ− 2μz1z2

r
+ k2

]
Ψk(r) = 0. (8.5)

The position vector r is the two-particle relative coordinte and k is the momentum conjugate

to r. The distortion of the plane wave motion due to the presence of the potential is exposed

by the ansatz

Ψk(r) = Nkeik·rΨ̄k(r), (8.6)

where Nk is a normalization factor. The large relative distance (asymptotic) behaviour of (8.5)

is obtained by neglecting terms that fall off faster than the Coulomb potential. This leads to[
ik ·∇− μz1z2

r

]
Ψ̄k(r) = 0. (8.7)

case of a one-electron hydrogenic positive ion with a charge Z. In this case the wave function behaves as

Ψ ∝ rl

»
1 − Z

l + 1
r + O(r2)

–
Ylm(θ, φ) ⇒ ∂rΨ ∝

h
lrl−1 − Zrl + O(rl+1)

i
Ylm(θ, φ).

Thus, for l = 0 we readily conclude

∂rΨ̃
˛̨̨
r=0

= −ZΨ(r = 0).
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This equation admits a solution of the form Ψ̄ = exp(iφ), where

φ±
k (r) = ±z1z2μ

k
ln k(r ∓ k̂ · r). (8.8)

Thus, the asymptotic wave function reads

Ψk(r) = Nkeik·r e±iαk ln k(r∓k̂·r), (8.9)

which explicitly displays the Coulomb potential-induced modification of the asymptotic plane-

wave motion. The factor z1z2μ/k = z1z2/v (v is the relative velocity) is the Sommerfeld

parameter that we introduced in Eq. (2.57).

The result (8.9) coincides with the asymptotic form of the wave function (2.56), i.e. in

the two-particle case the procedure of solving the asymptotic Schrödinger equation is redun-

dant. This solution strategy becomes however useful when considering many-particle systems,

where the exact wave function is unknown.

In fact it has been suggested [71] that in the limit of large interparticle separations, the

wave function Ψ(r1, · · · , rN ) for N charged particles (with charges Zj) moving in the con-

tinuum of a massive residual ion of charge Z takes on a generalized form of Eq. (8.9), namely

lim
rlm→∞
rn→∞

Ψ(r1, · · · , rN ) → (2π)−3N/2
N∏

s=1

ξs(rs)ψs(rs)
N∏

i,j=1
j>i

ψij(rij), (8.10)

∀ l, m, n ∈ [1, N ]; m > l.

The functions ξj(rj), ψj(rj), ψij(rij) are given by

ξj(rj) = exp(ikj · rj), (8.11)

ψj(rj) = exp
[
∓iαj ln(kj rj ± kj · rj)

]
, (8.12)

ψij(rij) = exp
[
∓iαij ln(kij rij ± kij · rij)

]
. (8.13)

The vectors kij are the momenta conjugate to rij , i. e. kij := (ki − kj)/2. The Sommerfeld

parameters αj , αij are given by

αij =
ZiZj

vij
, αj =

ZZj

vj
. (8.14)

In Eq. (8.14) vj denotes the velocity of particle j relative to the residual charge whereas

vij := vi − vj. While the functional form of Eq. (8.10) is plausible accounting for each pair

of interaction by a corresponding Coulomb-phase distortion, the actual derivation of Eq. (8.10)
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is not as straightforward as in the two-body case. This is due to the many-body correlation

between the particles, even in the asymptotic region.



9 The three-body Coulomb system

The classical three-body problem, e. g. the study of the dynamics of the system moon-earth-

sun, has been the subject of research since the early days of modern physics, yet there are still

some unanswered questions to be addressed [86,87]. The quantum mechanical atomic analog,

namely the Coulomb three-body problem is as well one of the first “many-body problems” to

be investigated quantum mechanically [88] and is still the subject of lively research, as de-

tailed below. From a formal point of view, the three-body problem is generally not solvable

exactly in the sense, that the number of integrals of motion is less than the number of degrees

of freedom. On the other hand, it has been demonstrated using several methods that, e.g. for a

system consisting of two-electrons and a positive ion, physical observables can be calculated

numerically and are in an impressively good agreement with experimental findings [92–97]

(see also [317, 321, 322] and references therein for different types of three-body systems).

This kind of numerical studies, not covered in this work, is extremely important for predict-

ing reliably and/or comparing with experiments. On the other hand, it is highly desirable to

uncover analytically the features pertinent to the three-body motion and trace their footprints

when considering systems with a larger number or containing different types of particles. In

this context it should be mentioned that, from a conceptual and a practical point of view,

methods and tools that are developed for the three-body problem are not a priori relevant for

may-body (thermodynamic) systems. This is because, in contrast to few-body systems, in

an extended medium the fluctuations in the values of the single-particle quantities (such as

energies and momenta) are generally of a less importance for the mean-field values of the re-

spective quantities. This observation can be utilized for the description of phenomena inherent

to thermodynamic many-body systems, such as their collective response. On the other hand,

however, with increasing number of particles in a “small” system, a crossover behaviour is

expected to emerge that marks the transition from a small (atomic-like) to an extended, ther-
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modynamic behaviour, and vice versa (see Refs. [21, 105, 368] for concrete examples). It is

one of the aims of this and of the forthcoming chapters to address these issues using purely

analytical methods.

This chapter is devoted to the analytical treatment of the three-body Coulomb scattering

problem, which has received recently much of attention [71–77, 79–82]. While, in contrast to

the two-body problem, exact three-body solutions are not available, under certain, asymptotic

conditions analytical solutions can be obtained. These solutions are found to carry some of

the general features of the two-body scattering, such as the characteristic asymptotic phases.

In section 7 we encountered another special situation, where the solution can be expanded in

a power series around the saddle point of the potential with the expansion coefficients being

determined by the properties of the total potential surface. Apart from such special cases,

the treatment of the Coulomb three-body problem is complicated, mainly because of the infi-

nite range of Coulomb forces which forbids free asymptotic states of charged particles. This

excludes the straightforward use of standard tools of scattering theory, such as the standard

perturbation expansion (more precise details are given in chapter 11).

On the other hand, one can always attempt to solve the Schrödinger equation directly.

An important prototype of three-body systems, where such an attempt has been undertaken,

consists of two electrons moving in the field of a massive nucleus. Such systems are realized

as the final state achieved in the electron impact ionization (the so-called (e,2e) process) and

in the double photoionization of atomic systems (this process is referred to as (γ, 2e) process).

One of the traditional method to solve the Schrödinger equation in this case is to reduce the

three-body system approximatively to two two-body subsystems which are uncoupled in the

configuration space. The correlation between these two subsystems is then accounted for

parametrically, e.g. by the use of momentum-dependent effective product charges [122–124].

This results in a six-dimensional wave function of the three-body continuum state, which

is expressed in the coordinates ra, rb of two electrons a, b with respect to the nucleus. No

explicit dependence appears in the solution on the electron-electron relative coordinate rab =

ra−rb. This means that wave functions provided by such methods do not satisfy the Kato cusp

conditions at the electron-electron collision point (the derivative with respect to rab vanishes,

cf. Eq. (8.2)). Furthermore, asymptotically these solutions do not go over into the known
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asymptotic form. Therefore, it is necessary to address the full dependence of the Schrödinger

equation on the coordinate rab that describes the electronic correlation.

Mathematically, the three-body Schrödinger equation constitutes an elliptical partial dif-

ferential equation in six variables with a non-denumerable infinity of solutions. Therefore,

to single out the physically meaningful solution, appropriate boundary conditions are needed

which are prescribed on an asymptotic five-dimensional closed manifoldM. Unfortunately,

even the specification of such asymptotic states is an involved task. Redmond [71] and oth-

ers [72, 125, 126] proposed asymptotic scattering states valid in a subspace ofM in which all

interparticle distances tend to infinity. Alt and Mukhamedzhanov [75] argued that a correct

description of the whole asymptotic regionM requires the introduction of local relative mo-

menta. It should be remarked here, that asymptotic states are needed as boundary conditions

to select acceptable solutions of the Schrödinger equation. From a practical point of view,

however, the asymptotic wave functions are of limited value, for the evaluation of transition

amplitudes involves an integration over regions in the configuration space which are outside

the asymptotic domainM.

The next sections outline a strategy to construct three-body continuum states which are,

to a leading order, exact asymptotic solutions on the manifoldM. The Kato-cusp conditions

are shown to be satisfied at all three two-body collision points. The finite-distance behaviour

is also studied and the analytical structure of the wave function at the three-body dissociation

threshold is investigated.

9.1 Appropriate coordinate systems

As well-known from classical mechanics the appropriate choice of generalized coordinates

is an essential step in the solution of the equation of motion. Thus, it is useful to inspect

the possible suitable choices of coordinate systems for the formulation of few-body Coulomb

problems. Special emphasis is put on the coordinate systems that will be utilized in the next

chapters.
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9.1.1 Separation of internal and external coordinates

In the center of mass system, six coordinates are required for the description of the three-body

problem. Since the total potential is rotationally invariant one usually decomposes these six

coordinates into three internal coordinates describing the size and the shape of the triangle

formed by the nucleus and by the two electrons (cf. Fig. 6.1). Further three external coordi-

nates are needed to specify the orientation of the principal axes of inertia of the three particles

with respect to a space-fixed coordinate frame [these coordinates are usually chosen to be the

Eulerian angles (αe, βe, γe)].

9.1.2 Spherical polar coordinates

The total potential depends only on the internal coordinates. Therefore, one can use the spher-

ical polar coordinates r1, r2 and θ, that are displayed in Fig. 6.1 (page 80), and write the wave

function in the separable form [143, 227]

ΨLM (r1, r2) =
L∑

k=−L

ψLk(r1, r2, θ)dL
Mk(αe, βe, γe). (9.1)

The finite rotation matrices dL
Mk(αe, βe, γe) are eigenfunctions of the total angular momen-

tum operator1. The advantage of this separable form of the wave function is most clear when

considering S three-body states, in which case there is no need to consider the external coor-

dinates2.

9.1.3 Hyperspherical coordinates

Hyperspherical coordinates (R, ω), as previously introduced in Eq. (7.12), are a prototypical

example of accounting for the isotropy of space, i.e. for the invariance of the system under

overall rotations. The advantage of this coordinate system is that it displays explicitly the

good quantum numbers resulting from this symmetry, namely the orbital quantum numbers.

Disadvantage is the complicated form of the potential energy C(ω)/R. The hyperspherical

1See Ref. [228] for the complications that arise for N ≥ 4 and appendix A.1 for further details.

2For S states the kinetic and the potential energy terms have a transparent structure in the coordinate system
(r1, r2, θ), e.g. the Laplacian reads [229]

Δbreit = r−2
1 ∂r1r2

1∂r1 + r−2
2 ∂r2r2

2∂r2 +
h
r−2
1 + r−2

2

i
(sin θ)−1∂θ(sin θ)∂θ . (9.2)
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coordinate system is very well suited for the study of collective phenomena that occur when

the system expands or condenses (recall Eq. (7.13) on page 95 and the discussion thereafter).

The Wannier threshold behaviour that we discussed in the preceding chapter is just one of

numerous examples.

9.1.4 Relative coordinates

An obvious coordinate system in which the potential energy is diagonal, is the relative coor-

dinate system [230]

r1, r2, r12. (9.3)

These quantities are scalar and hence can be regarded as the internal (body-fixed) variables.

The price for the potential being diagonal is that the kinetic energy term is not separable,

e.g. for S states the Laplacian reads

Δrel = r−2
1 ∂r1r

2
1∂r1 + r−2

2 ∂r2r
2
2∂r2 + 2r−2

12 ∂r12r
2
12∂r12 +

+
r2
1 + r2

12 − r2
2

r1r12
∂r1∂r12 +

r2
2 + r2

12 − r2
1

r2r12
∂r2∂r12 . (9.4)

The weights of the mixed derivatives have a simple meaning, namely

cos θj =
r2
i + r2

12 − r2
j

2rir12
; i �= j = 1, 2.

The angle θ is θ = arccos(r̂1 · r̂2), whereas the angles θ1, θ2 are displayed in Fig. 6.1. These

angles are the internal angles of the triangle formed by the three-particles. The rotation of this

triangle in space may be described by Euler angles.

In contrast to the hyperspherical coordinates that emphasize the collective aspects of

many-body systems, the relative coordinate system underlines the two-body nature of the

Coulomb interactions. Thus, this system is useful when considering situations in which the

two-body dynamics is dominant, e. g. in the asymptotic region. A major shortcoming of the

relative coordinate system is its restriction to the three-body problem in which case the number

of internal variables coincides with the number of particles. In contrast, for N -body system

N(N − 1)/2 relative coordinates are present. Therefore, the definition (9.3) is unique only

for the three-body system.
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9.1.5 Elliptic coordinates

To account for the fact that a three-body electronic system has a definite symmetry under

particle interchange one may use the elliptic coordinates, defined as

s = r1 + r2, t = r1 − r2, u = r12. (9.5)

As clear from this definition, t (s) is odd (even) under particle exchange. The angular corre-

lation is described by the coordinate u. As readily verified, the potential energy has a simple

structure in these coordinates on the expense of having non-separable kinetic energy terms,

e. g. for S states the Laplacian has the form [231]

Δec = 2
{

∂2
s2 + ∂2

t2 + u−2∂uu2∂u +
4

(s2 − t2)
(s∂s − t∂t)

+
2

u(s2 − t2)

[
s(u2 − t2)∂u∂s − t(u2 − s2)∂u∂t

]}
.

(9.6)

For the three-body problem the elliptic coordinates turned out to be useful to exhibit the sym-

metry properties of the wave functions. For the N -particle case however we encounter the

same problem as in the relative coordinate case, because according to Eq. (9.5) one operates

with pairs of particles and the number of these pairs grows quadratically with N .

9.2 Coordinate systems for continuum problems

As discussed in details in Chapter 2 for a two-body Coulomb system there is a decisive dif-

ference between the generic symmetry operations associated with the bound (O(4) rotations)

and continuum states (rotation plus translation). This is clearly exhibited by the structure of

these states: While the bound states (2.26) explicitly indicate the isotropy of space (and hence

the use of spherical coordinates is appropriate), the analytical structure of continuum states

(2.55, 2.56) underlines the existence of a preferential direction (the polar vector k). Thus, the

appropriate symmetry operations are translation along and rotation around the quantum num-

ber k. The overall rotation symmetry is still conserved but in the sense that the position and

the direction k is rotated. As a consequence of this difference between bound and continuum

states we have seen that the most appropriate coordinate for the continuum (Stark) states are

the parabolic coordinate set (2.49).

For continuum N particle systems additional complications arise: The potential energy de-

pends on (few) internal coordinates only, and hence, from a dynamical point of view, it seems
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reasonable to employ an internal body-fixed coordinate system, such as (9.3). On the other

hand, the structure of the two-body Coulomb continuum wave functions (2.55, 2.56) indicates

the necessity to account for the space fixed direction k. In addition, since N body continuum

states are labelled by a number of wave vectors {kj}, j = 1, · · · , N , the translational and

cylindrical symmetry around one specific direction, say k1, is generally lost. Therefore, for

the N -body continuum case there is not a uniquely preferential choice for the most appropriate

coordinate system, as in the two-body case (2.49).

9.2.1 Jacobi coordinates

A coordinate system which is most suitable to describe the kinetic energy terms and to treat

all particles (of different masses) democratically is the Jacobi coordinate system [232]. In

contrast to the relative coordinate system (9.4) where the potential energy has a diagonal term

on the expense of having cross terms (even for S states), in the Jacobi coordinate system,

the kinetic energy is diagonal whereas potential energy has a complicated form. Since we are

going to employ this reference frame intensively later on, we examine it in some details for the

case of three-particles. For the general case of N particles the reader is referred to Ref. [233]

and references therein.

Having separated out the uniform center-of-mass motion, a system of three particles, with

masses mi and charges Zi i ∈ 1, 2, 3, can be described by one set of the three Jacobi coor-

dinates sets (rij ,Rk); i, j, k ∈ {1, 2, 3}; εijk �= 0; j > i. An illustration of this coordinate

system is shown in Fig. 9.1. A priori, no preference is given to any of the three sets of Ja-

cobi coordinates, however physically the different sets correspond to different grouping of the

three-body system, e.g. if two particles are bound the third is in the continuum it is advanta-

geous to use the set in which one of the Jacobi coordinates is the relative position between the

bound particles. The Jacobi sets of coordinates are linked to each others via the transformation

(
r13

R2

)
= D3

(
r12

R3

)
and

(
r23

R1

)
= D2

(
r12

R3

)
, (9.7)
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Figure 9.1: The different sets of the Jacobi coordinates (rij ,Rk); i, j, k ∈ {1, 2, 3}; εijk �= 0; j > i.
The coordinate rij is the relative position between particle i and particle j whereas Rk is the relative
position of particle k with respect to the center of mass of the two particles i and j.

where the dimensionless rotation matrices are given by the relations

D3 =
(

μ12/m1 1
1− μ13 · μ12/m2

1 −μ13/m1

)
, and

D2 =
(

−μ12/m2 1
−1 + μ23 · μ12/m2

2 −μ23/m2

)
. (9.8)

The reduced masses are defined as

μij = mimj/(mi + mj) ; i, j ∈ {1, 2, 3}; j > i.

In what follows we denote the momenta conjugate to (rij ,Rk) by (kij ,Kk). These momenta

are related to each others in a similar manner as in the case of the positions vectors, namely(
k12

K3

)
= Dt

2

(
k23

K1

)
= Dt

3

(
k13

K2

)
, (9.9)

where Dt
3 and Dt

2 are respectively the transposed matrices of D1 and D2. With these inter-

relations between the three sets of the Jacobi coordinates it is straightforward to show that

the scalar product (rij ,Rk) ·
(

kij

Kk

)
has the same value for all three sets of the Jacobi

coordinates.

The special feature of the Jacobi coordinates is that the kinetic energy operator H0 is

represented in a diagonal form, i. e.3

3For brevity, here and unless otherwise stated, no distinction is made in the notation between an operator O and
its matrix representation 〈 α|O|α′ 〉 with respect to the basis {α}.
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H0 = − 1
2μij

Δrij
− 1

2μk
ΔRk

, ∀ (rij ,Rk) , (9.10)

where the reduced mass μk is given by

μk = mk(mi + mj)/(m1 + m2 + m3).

The eigensolution of the free Hamiltonian (9.10) are plane waves expressed in Jacobi coordi-

nates with an eigenenergy

E0 =
k2

ij

2μij
+

K2
k

2μk
, ∀ (kij ,Kk) . (9.11)

The full three-body time-independent Schrödinger equation⎡⎢⎣H0 +
3∑

i,j

j>i

Zij

rij
− E

⎤⎥⎦ 〈rkl,Rm|Ψ〉 = 0 (9.12)

has however a complicated form in the Jacobi coordinates, because the relative coordinates rij

occurring in the potential part have to be expressed in terms of the chosen Jacobi set (rkl,Rm).

This done by utilizing Eq. (9.7). In Eq. (9.12) product charges have been introduced as Zij =

ZiZj ; j > i ∈ {1, 2, 3}.

9.2.2 Parabolic coordinates

As discussed in the case of two particle scattering the appropriate coordinates for continuum

two-body states are the parabolic coordinates (2.49). Thus, it is suggestive to extend the

definition of the coordinate system (2.49) to the three-body case by introducing the curvilinear

coordinates [74]

ξ1 = r23 + k̂23 · r23, η1 = r23 − k̂23 · r23,

ξ2 = r13 + k̂13 · r13, η2 = r13 − k̂13 · r13,

ξ3 = r12 + k̂12 · r12, η3 = r12 − k̂12 · r12. (9.13)
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The conditions for the uniqueness of this transformations are provided by the Jacobi determi-

nant

dξ1 ∧ dξ2 ∧ dξ3 ∧ dη1 ∧ dη2 ∧ dη3

d3rij ∧ d3Rk

=
{[

(k̂12 × k̂23) · r23

][
k̂13 · (r13 × r23)

]
+
[
(k̂13 × k̂12) · r13

] [
k̂23 · (r13 × r23)

]} 8
r23 r13 r12

. (9.14)

This means the transformation (9.13) is unique if the vectors k̂12 and k̂23 are linearly inde-

pendent. Note that in our case the vectors k̂12, k̂23 and k̂13 satisfy a triangular relation and

hence it suffices to ensure that k̂12 and k̂23 are linearly independent. The definition of the

coordinate set (9.13) does not include the variable ϕ, which appears in the two-particle case in

Eq. (2.49). That is a consequence of the loss of the cylindrical symmetry around one specific

wave vector kj , due to the presence of the other wave vectors ki, i �= j, which are physically

relevant.

9.2.3 Parabolic-relative coordinates

The derivation of the two-body Coulomb bound states (2.54) in the parabolic coordinates

(2.49), as well as the analytical continuation of these states to the continuum (2.55, 2.56)

lead to an important observation: A plane wave state subjected to a Coulomb potential is

modified in a characteristic way. The Coulomb distortion effects are described by one coor-

dinate, either ξ or η, depending on whether incoming or outgoing wave boundary conditions

are imposed. For the formation of standing waves a (coherent) combination of incoming and

outgoing waves is required and hence the need for both ξ and η for the description of the

bound states (2.54).

For the treatment of continuum states with well-specified boundary conditions, there is no

need to account, in the definition of the coordinates, for both incoming and outgoing wave

boundary conditions, as done in Eq. (9.13). Only ηj or ξj , j = 1, 2, 3 are sufficient to account

for the Stark-like behaviour of the two-body Coulomb continuum states. This leaves us with

three other coordinates to choose.

A suitable choice is made upon recalling that the coordinates ηj or ξj , j = 1, 2, 3 are

pertinent to separate two-body systems. To account for a collective behaviour of the three-
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body system one has to introduce coordinates similar to, e.g. the hyperspherical, relative or

elliptical coordinates. Thus, we introduce the curvilinear coordinates [77]

ξ±1 = r23 ± k̂23 · r23,

ξ±2 = r13 ± k̂13 · r13,

ξ±3 = r12 ± k̂12 · r12,

ξ4 = r23,

ξ5 = r13,

ξ6 = r12 .

(9.15)

The coordinates (ξ4, ξ5, ξ6) parameterize the shape and the size of the triangle spanned by the

three particles. The space-fixed dynamics is described by (ξ1, ξ2, ξ3). As in the case of (9.13),

the uniqueness of the transformations (9.15) is inferred from the Jacobi determinant

dξ+
1 ∧ dξ+

2 ∧ dξ+
3 ∧ dξ4 ∧ dξ5 ∧ dξ6

d3rij ∧ d3Rk

∝
{
(k̂12 × k̂23) · r23 [k̂13 · (r13 × r23)]

+ (k̂13 × k̂12) · r13 [k̂23 · (r13 × r23)]
} 1

r23 r13 r12
. (9.16)

From this relation it is evident that the transformation (9.15) is unique if, e. g. | k̂13 · k̂23 |�= 1.

The ± sign in the definition of the coordinates (9.15) indicate appropriate choices accord-

ing to the type of the boundary conditions.

An essential point which, unfortunately has not been yet thoroughly investigated, derives

from Eqs. (2.53, 2.60, 2.61) (page 14). Assume we are able to derive approximate expressions

for the many-body continuum wave function Ψ with certain boundary conditions. Eqs. (2.53,

2.60) suggest that the bound states wave functions can be obtained by combining wave func-

tions with incoming and outgoing wave boundary conditions. Continuing analytically the

normalization NΨ of Ψ one may be able to identify the bound state spectrum from the poles

of NΨ.

9.2.4 Parabolic-hyperspherical coordinates

A further important coordinate system, which makes use of the hyperspherical and the Ja-

cobi coordinates frame is the scaled coordinate system, called the parabolic-hyperspherical
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coordinate system [78]

ξ±1 =
1

r23
(r23 ± k̂23 · r23),

ξ±2 =
1

r13
(r13 ± k̂13 · r13),

ξ±3 =
1

r12
(r12 ± k̂12 · r12),

ζ = arctan
rij

Rk

,

γ = R̂k · r̂ij ,

ρ = (R
2

k + r2
ij)

1/2 .

(9.17)

As will be shown below, the form of the Schrödinger equation is considerably simplified by

introducing the mass-dependent Jacobi coordinates

rij = μ
1/2
ij rij , Rk = μ

1/2
k Rk. (9.18)

Again the introduction of the ± signs in Eqs. (9.17) allows for the treatment of problems with

different kinds of boundary conditions. In Eqs. (9.17) the coordinates ξi, i ∈ {1, 2, 3} play

the role of Euler angles in a hyperspherical treatment where the laboratory reference frame is

specified by the directions of the relative momenta that are determined asymptotically. The

body-fixed dynamics is described by the coordinates (ζ, γ, ρ).

9.3 Approximate three-body states and the
parabolic-relative coordinates

Now let us inspect the structure of the Schrödinger equation in the parabolic-relative coordi-

nates (9.15). The potential energy depends only on ξ4, ξ5, ξ6 and is diagonal in these coor-

dinates. Thus, it remains to clarify the form of the kinetic energy. To this end we operate

in Jacobi coordinates and subsequently transform the Schrödinger equation to the parabolic-

relative coordinates (9.15). As we are considering continuum solutions of the Schrödinger

equation (9.12) at a fixed total energy (9.11) we make for the wave function the ansatz

Ψ(rij ,Rk) = Nkij ,Kk
exp(i rij · kij + i Rk ·Kk) Ψ(rij ,Rk), (9.19)
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where Nkij ,Rk
is a normalization factor. Upon inserting this ansatz in the Schrödinger Eq. (9.12)

we obtain the following determining equation for the function Ψ(rij ,Rk)[
1

μij
Δrij

+
1
μk

ΔRk
+ 2i

(
1

μij
kij · ∇rij

+
1
μk

Kk · ∇Rk

)

− 2
3∑

m,n
n>m

Zij

rmn

]
Ψ(rij ,Rk) = 0.

(9.20)

The main task is now to transform this partial differential equation into the coordinate system

(9.15). Doing so Eq. (9.20) casts

[ Hpar + Hin + Hmix] Ψ(ξ1, . . . , ξ6) = 0 . (9.21)

The key point is that the operator Hpar is differential in parabolic (external) coordinates

(ξ1, ξ2, ξ3) only. It has namely the form

Hpar :=
2

μ23ξ4
[∂ξ1 ξ1 ∂ξ1 + ik23 ξ1 ∂ξ1 − μ23 Z23]

+
2

μ13ξ5
[∂ξ2 ξ2 ∂ξ2 + ik13 ξ2 ∂ξ2 − μ13 Z13]

+
2

μ12ξ6
[∂ξ3 ξ3 ∂ξ3 + ik12 ξ3 ∂ξ3 − μ12 Z12] . (9.22)

It is important to note that the potential enters these equations as the constant product charges

Zij . This means the eigenfunctions of the operator (9.22) diagonalize exactly the total po-

tential. Therefore, the terms Hin and Hmix in Eq. (9.21) must be due to parts of the kinetic

energy operator.

Inspecting the equation (9.22) one readily concludes that Hpar can be written as a sum of

three commuting one-dimensional differential operators, i. e.

Hpar =
2

μ23ξ4
hξ1 +

2
μ13ξ5

hξ2 +
2

μ12ξ6
hξ3 , (9.23)

where the operators hξi
satisfy the commutation relations

[hξi
, hξj

] = 0, i �= j = 1, 2, 3. (9.24)

The explicit form of the one-dimensional operators hj is

hξj
= ∂ξj

ξj ∂ξj
+ ikkl ξj ∂ξj

− μkl Zkl, εjkl �= 0, (9.25)

which is readily deduced from Eqs. (9.23, 9.22).
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Comparing Eq. (9.25) with the confluent hypergeometric differential equation (2.50) (on

page 14) leads to the conclusion that the eigenfunctions of the operators hξj
are the confluent

hypergeometric functions with zero eigenvalues. In other words we can write

hξj
[ 1F1 (iαkl, 1, −ikkl ξj)] = 0, εjkl �= 0. (9.26)

By virtue of Eqs. (9.24, 9.23) one concludes that the closed form eigenfunctions of Hpar

[Eq. (9.23)] with zero eigenvalues are

HparΨpar = 0, (9.27)

where Ψpar is a direct product of the eigenfunctions of the operators hξj
, i. e.

Ψpar(ξ1, ξ2, ξ3) = 1F1 (iα23, 1, −ik23 ξ1 )

1F1 (iα13, 1, −ik13 ξ2 )

1F1 (iα12, 1, −ik12 ξ3 ) . (9.28)

Here αij = Zijμij/kij are the Sommerfeld parameters.

The entire solution (9.19) is expressible in terms of the coordinates (9.15) because the

plane-wave arguments can be transformed into (9.15) and have then the form

kij · rij + Kk ·Rk =
3∑

j>i=1

mi + mj

m1 + m2 + m3
kij · rij ,

=
μ1

m1
k23 (ξ1 − ξ4) +

μ2

m2
k13 (ξ2 − ξ5) +

μ3

m3
k12 (ξ3 − ξ6)

(9.29)

The solution (9.28) coincides with the so-called 3C approximation [72–74,130]. The name

refers to the fact that this wave function consists of three two-body parabolic wave functions.

Due to Eq. (9.24) the normalization of the wave function (9.28) is readily obtained from the

normalization of the hydrogenic wave function in parabolic coordinates (2.58), namely

Nkij ,Kk
= (2π)−3

3∏
i>j=1

e−παij/2 Γ(1− iαij). (9.30)

The operator Hin in Eq. (9.21) is differential in internal (body fixed) coordinates only and

depends parameterically on the coordinates ξ1/2/3. It is explicit form is

Hin :=
1

μ23

[
1
ξ2
4

∂ξ4 ξ2
4 ∂ξ4 + 2 i k23

ξ1 − ξ4

ξ4
∂ξ4

]
+

1
μ13

[
1
ξ2
5

∂ξ5 ξ2
5 ∂ξ5 + 2 i k13

ξ2 − ξ5

ξ5
∂ξ5

]
+

1
μ12

[
1
ξ2
6

∂ξ6 ξ2
6 ∂ξ6 + 2 i k12

ξ3 − ξ6

ξ6
∂ξ6

]
. (9.31)
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It is remarkable that this operator possesses a structure similar to Hpar, namely Hin is the sum

of three commuting operators operating in a one dimensional space:

Hin := hξ4 + hξ5 + hξ6 , (9.32)

where hξj
, j = 4, 5, 6 are respectively the three terms in Eq. (9.31) (for example hξ4 =

1
μ23

[
1
ξ2
4

∂ξ4 ξ2
4 ∂ξ4 + 2 i k23

ξ1−ξ4
ξ4

∂ξ4

]
). From Eq. (9.31) it is readily deduced that the fol-

lowing commutation relations

[hξi
, hξj

] = 0, i �= j = 4, 5, 6, (9.33)

apply. The eigenfunctions of the operators hξj
, j = 4, 5, 6 can as well be found in closed

form. Since these operators are parts of the kinetic energy, their eigenfunctions will not show

the slow decay characteristic for the Coulomb potentials. In fact, if we inspect for example

the operator hξ4 we arrive at the conclusion that the derivative fξ4 of its eigenfunction is

determined by the differential equation

[ξ4 ∂ξ4 + 2(1 + i k23ξ1)− 2 i k23ξ4] fξ4 = 0. (9.34)

This equation can be solved by the ansatz

fξ4 = Nξ4 eλ1ξ4+ λ2 ln(ξ4),

which after inserting in the differential equation (9.34) yields

fξ4 = Nξ4

(
ξ4

)2ik23

eik23ξ1 ξ4 e−2ξ4 . (9.35)

This relation exhibits explicitly the fast decaying behaviour of the eigenfunctions of Hin with

growing ξ4, which underlines the unimportance of Hin for the asymptotic behaviour. At short

distances however, the contribution of Hin to the total solution is generally not negligible.

The remainder term Hmix contains mixed derivatives resulting from off-diagonal elements

of the metric tensor and couples internal to external motion4

Hmix :=
6∑

u �=v=1

{
(∇rij

ξu) · (∇rij
ξv) + (∇Rk

ξu) · (∇Rk
ξv)
}

∂ξu
∂ξv

. (9.36)

4Note that the operator Hin (9.31) contains as well coupling terms between the internal (ξj , j = 4, 5, 6) and the
external (ξj , j = 1, 2, 3) coordinates. This is also obvious from Eq. (9.35). If one wishes to construct eigenfunctions
that diagonalize Hin and Hpara at the same time, it is more convenient to add the coupling terms, that appear in
(9.31) and depend on (ξj , j = 4, 5, 6), to the mixing operator Hmix.
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The structure and the role played by the mixing term Hmix is in analogy to what we discussed

for the non-adiabatic mixing term (4.6) that appears in the context of the Born-Oppenheimer

and the adiabatic approximations. The origin of this analogy is the parametric (adiabatic) de-

pendence of Hpar on the internal coordinates. It should be noted however, that this behaviour

appears naturally from the structure of the Schrödinger equation and is not the result of a spe-

cific ansatz for the wave function, as done, for example by making the assumption (4.1) for

the wave function when applying the BO approximation.

Recalling our discussion of the procedure that lead to the adiabatic solutions we conclude,

that the simplest approximation is to neglect the action of mixing (non-adiabatic) terms Hmix

on the wave function (9.28). If this doing is justified then the wave function (9.28) can be

employed as a good approximate expression for the exact three-body continuum state. For

this reason it is imperative to study the properties of the operators Hin, Hmix and their action

on the wave function (9.28). At first it is instructive to explore the exact boundary conditions

for the three-body Coulomb continuum. This we will perform first in Jacobi coordinates and

then transform the results into the parabolic relative coordinate system.

9.4 Asymptotic properties of the three-body wave equation

The asymptotic behaviour of the three-body wave function (9.19) in the limit of large inter-

particle distances rij is obtained by specializing Eq. (8.10) to three-particles which yields in

the Jacobi coordinate system [71, 72, 74, 125, 126]

lim
rij→∞
Rk→∞

Ψ(rij ,Rk) → (2π)−3 exp(i kij · rij + i Kk ·Rk)

×
3∏

i,j=1
j>i

exp
(
±iαij ln(kij rij ± kij · rij)

)
, ∀ (rij , Rk).

(9.37)

This expression is sometimes referred to as the Redmond asymptotic. The ’+’ and ’−’ signs

refer to different boundary conditions. Note that the Sommerfeld parameters αij depend only

on the relative velocities kij/μij of the three pairs

αij =
Zijμij

kij
, (9.38)

i. e. these parameters have a pure two-body nature and do not carry any information on the

three-body coupling strength. As already mentioned above, for N -particle systems different
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types of asymptotics can be defined. E. g., for a three-body system described using a certain

Jacobi coordinate set (rij ,Rk), one can consider the case where one Jacobi coordinate tends

to infinity whereas the other coordinate remains finite [75]. For this reason in a three-body

system one defines the following asymptotic regions

L :=
{

rij ,Rk ; rij →∞ and Rk →∞, ∀ (rij ,Rk)
}

, (9.39)

Lα :=
{
rij ,Rα ;

rij

Rα
→ 0 and Rα →∞, ∀ (rij ,Rα)

}
, (9.40)

Lij :=
{
rij ,Rk ;

Rk

rij
→ 0 and rij →∞, ∀ (rij ,Rk)

}
. (9.41)

In the region L where the Redmond asymptotic is valid all particles are far apart and their

position vectors are not linearly dependent. In the regime Lij two particles (i and j) are far

away from each other and the third particle resides at the center of mass of i and j. Thus,

in this region all interparticle distances are large (Lij ⊂ L holds, but not the converse) and

hence Eq. (9.37) applies. An important region contained in the domain Lij is the Wannier

configuration for two electrons moving in the field of a positive ion (the two electrons are the

particles i and j). In the asymptotic region Lα the particle α is far away from the compound

formed by i and j. In this case Eq. (9.37) does not hold true [75], as explicitly demonstrated

below.

The asymptotic form of the wave function in the region Lα derives from the Schrödinger

equation Eq. (9.12) which in Lα has the leading order form(
H0 +

Zij

rij
+

Zα (Zi + Zj)
Rα

− E

)
ψas

α = 0; ∀ (rij ,Rα) ∈ Lα . (9.42)

Since the kinetic energy operator is separable in any set of Jacobi coordinates it follows

that Eq. (9.42) is separable in the coordinates (rij ,Rα).

The solutions of (9.42) are simply a product of two Coulomb waves under the constraint

that Rα →∞, i.e.

ψas
α = (2π)−3/2 exp(i kij · rij + i Kα ·Rα)

×Nij 1F1 (iαij , 1, −i [kij rij + kij · rij ] )

× exp [iγα ln(Kα Rα + Kα ·Rα)] , (9.43)
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where the parameters γα and Nij are functions of the momenta, namely

γα =
Zα(Zi + Zj)μα

Kα
, Nij = (2π)−3/2 e−παij/2 Γ(1− iαij). (9.44)

The existence of a global analytic asymptotic defined on M = Lα

⋃Lij derives from the

fact that the regions Lα and Lij are not disjoint. In order to find such an asymptotic form

and to facilitate the investigation of the behaviour of the eigenfunctions of the operators Hpar,

Hin and Hmix at finite distances, we consider Eq. (9.28) in Jacobi coordinates which has the

explicit form

Ψ(rij ,Rk) ≈ Ψ3C(rij ,Rk),

= (2π)3/2 exp(i kij · rij + i Kk ·Rk)
3∏

m,n=1
n>m

Nmn 1F1

(
iαmn, 1, −i [kmn rmn + kmn · rmn]

)
.

(9.45)

To unravel the contributions of the (non-adiabatic mixing) operators Hmix and Hin we make,

for the exact solution of (9.12), the general ansatz

Ψ(rij ,Rk) = Ψ3C(rij ,Rk)( 1− f(rij ,Rk) ) . (9.46)

If Hin and Hmix can be neglected then f ≡ 0. In case only Hmix vanishes the function f can

be expressed in terms of the eigenfunctions of Hin that can be derived in parabolic coordinates,

as outlined above and then converted into Jacobi coordinates. Here we leave open the form

of f and derive a general determining equation in Jacobi coordinates. Later on we will show

how f can be incorporated effectively in the wave function (9.45).

To simplify notations let us choose the set (r13,R2) and insert (9.46) in (9.12). This leads

to the differential equation[
1

2μ13
Δr13 +

1
μ13

(ik13 + α13k13 F13 + α12k12 F12) · ∇r13

]
· f

+
[

1
2μ23

Δr23 +
1

μ23
(ik23 + α23k23 F23 − α12k12 F12) · ∇r23

]
· f

− α12k12 F12 · (Z13 F13 − Z23 F23) (1− f) = Dpol(f) . (9.47)

The terms Fij are expressible in terms of confluent hypergeometric functions as

Fij = 1F1 (1 + iαij , 2, −i[kij rij + kij · rij ] )
1F1 (iαij , 1, −i[kij rij + kij · rij ] )

(k̂ij + r̂ij) . (9.48)
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This derivation of (9.47) underlines the fact that the kinetic and the potential energy terms

have different appropriate coordinates, i.e. while the generic coordinates for the Coulomb

potential are the relative positions rij , the kinetic energy operator is diagonal in Jacobi co-

ordinates. Therefore, cross terms are in general inevitable if one treats at the same time the

kinetic and the potential energy terms. Here we transformed the Jacobi coordinates into the

relative coordinates (r13, r23) (cf. Eq. (9.29)). This introduces the mass-polarization term

Dpol in (9.47) which has the form

Dpol(f) =
1

m3
( D1 (f − 1) + D2 f ), (9.49)

where the differential operator D2 has the explicit form

D2 = [α13k13 F13 + α12k12 F12] · ∇r23

+ [α23k23 F23 − α12k12 F12] · ∇r13 +∇r23 · ∇r13 . (9.50)

The second operator D1 that occurs in Eq. (9.49) is expressed as

D1 = (α13k13)(α23k23) F13 · F23

− (α13k13)(α12k12) F13 · F12

+ (α23k23)(α12k12) F23 · F12

+ 2k12(α12k12)(i− α12)(1 + k̂12 · r̂12)

× 1F1 (2 + iα12, 3, −i[k12 r12 + k12 · r12] )
1F1 (iα12, 1, −i[k12 r12 + k12 · r12] )

+ (α12k12)
1F1 (1 + iα12, 2, −i[k12 r12 + k12 · r12] )

1F1 (iα12, 1, −i[k12 r12 + k12 · r12] )
2

r12
.

(9.51)

The operators D1 and D2 are negligible in cases where the mass of one of the particles, say

m3 is much larger than the mass of the other two particles. This is, for example, the case

for two electrons moving in the field of a massive ion. As clearly seen from Fig. 9.1 in this

situation the relative and one set of the Jacobi coordinates coincide. This is also clear from

the structure of the polarization term (9.49) for (m1/m3)→ 0.

Finding the solution of the Schrödinger equation (9.12) is equivalent to the task of solving

for the partial differential equation (9.47). As a first attempt we may ask when the expression

Ψ3C(rij ,Rk) is a good approximate of the exact solution Ψ(rij ,Rk), or in other words when
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the function f is negligibly small (‖f‖ � 1). Mathematically, the function f = 0 is a solution

of Eq. (9.47), if the inhomogeneous term

R = μ12Z12 F12 · (Z13 F13 − Z23 F23) +
1

m3
D1 (9.52)

vanishes. If this were the case one obtains a manifold of solutions f = constant. The

acceptable solution out of this manifold is then singled out by the normalization requirement.

IfR is finite the solutions f , as defined by Eq. (9.47), is obtained upon solving the equation

f = f0 −
∫

d3r′13

∫
d3r′23 G(r13 − r′13, r23 − r′23)R(r′13, r

′
23) . (9.53)

Here G(r13, r23) denotes the Green’s function of a Schrödinger type equation, namely[
1

2μ13
Δr13 +

1
2μ23

Δr23

+
i

μ13
K13 · ∇r13 +

i

μ23
K23 · ∇r23

− 1
m3

D2

]
G(r13, r23) = δ3(r13) δ3(r23).

(9.54)

The quantities K13 stands for complex effective vectors defined by the relations

K13 = k13 − iα13k13 F13 − iα12k12 F12,

K23 = k23 − iα23k23 F23 + iα12k12 F12. (9.55)

To specify the boundary condition of this equation we have to inspect the asymptotic

behaviour of the functionR.

Obviously the behaviour of the inhomogeneous termR in Eq. (9.52) is dictated by the gen-

eralized functions Fij (9.48). Asymptotically, an expression is derived for Fij by inspection

of the asymptotic properties of the hypergeometric functions which leads to

lim
rij→∞ |Fij | →

∣∣∣∣∣ k̂ij + r̂ij

kij · (k̂ij + r̂ij) rij

∣∣∣∣∣ + O
(
|kij rij + kij · rij |−2

)
. (9.56)

From this asymptotic form of Fij and from the dependence of expression R (9.52) on Fij

we conclude that the inhomogeneous term R decays asymptotically faster than the Coulomb

potential, only in the case when two independent Jacobi coordinates tend to infinity. This limit

can be expressed equivalently as rij →∞ ∀ i, j ∈ {1, 2, 3}; j > i. In this asymptotic regime

we have

lim
rij→∞
Rk→∞

R → O
(
|kij rij + kij · rij |−2

)
, ∀ rij ,Rk ∈ L, (9.57)
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as is evident from (9.56). Since a negligibleR is equivalent to f = 0 and f = 0 is equivalent

to the conclusion that Ψ→ Ψ3C we infer that, in the subspaces L and Lij (whereR → 0), the

wave function Ψ3C is the leading order asymptotic eingenstate of the Schrödinger equation

(9.12).

In the asymptotic subspace Lα only the function Fij takes on its asymptotic form (9.56).

From Eq. (9.56) it is then clear that the expressionR (Eq.9.52) is of the order of the Coulomb

potential and hence can not be neglected. Accordingly, f = 0 does not solve (9.47) and Ψ3C

is not a global asymptotic solution of (9.12) inM.

Thus, boundary conditions for equation (9.54) are as follows

f(rij ,Rk) = 0, ∀ rij ,Rk ∈ L, (9.58)

f(rij ,Rk) = 1− ψas
α

Ψ3C
, ∀ rij ,Rα ∈ Lα . (9.59)

Due to the condition (9.58) the solution f0 of the homogeneous equation is f0 = 0.

An alternative (instead of solving for Eq. (9.54)) way for finding approximate wave func-

tion relies on the following observation [75, 77]: In the Schrödinger equation (9.12) the total

energy and the total potentials occur as sums of single particle objects. As a matter of principle

however, only the total energy and only the total potential are of relevance for the dynamics

of the system. Any transformation leaving these quantities unchanged and not affecting the

boundary conditions should not have an influence on the exact solution of the Schrödinger

equation (9.12).

Therefore, one can write for the total potential the invariance relations

3∑
i,j

j>i

Zij(rij)
rij

≡
3∑

i,j

j>i

Zij

rij
. (9.60)

Accordingly, the total energy E0 (9.11) is invariant under any transformation that satisfies

k̄2
ij(Rk, rij)

2μij
+

K̄2
k(Rk, rij)

2μk
≡

k2
ij

2μij
+

K2
k

2μk
= E0, ∀ (kij ,Kk) . (9.61)

These relations serve as a definition of the position-dependent product charges Z̄ij and the

position dependent magnitude of the wave vectors K̄k, k̄ij . The conditions (9.60, 9.61) ensure

that the total potential and the total energies are conserved for any choice of the functional

dependence of Z̄ij and K̄k, k̄ij .
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It should be emphasized that the splitting of the total potential and energy into two-body

terms is unique only when the exact wave function separates in a product of three two-body

wave functions. This is, for example, the case for the 3C approximation in its range of validity,

i. e. in the domain L. This puts on Z̄ij and K̄k, k̄ij the additional constraint

Zij(rij ,Rk) → Zij , ∀ rij ,Rα ∈ Lα, (9.62)

k̄ij(Rk, rij) → kij , ∀ rij ,Rα ∈ Lα, (9.63)

K̄k(Rk, rij) → kij , ∀ rij ,Rα ∈ Lα. (9.64)

At first sight it seems that Eqs. (9.60, 9.61) are just a formal manipulation of the total potential

and the total energy and do not lead to any new insight into the solution of the Schrödinger

equation (9.12). To clarify the advantage of Eqs. (9.60, 9.61) we note that there will be an

infinity of solutions satisfying Eqs. (9.60, 9.61) and the boundary conditions imposed on the

functions Z̄ij and/or the functions K̄k, k̄ij .

This additional freedom can be used as follows. Given an approximate solution of the

three-body problem one determines the parts R of (9.12) that are not described by this solution.

In a second step we can use the freedom gained by introducing Eqs. (9.60, 9.61) and determine

Z̄ij and K̄k, k̄ij in a way that the neglected terms R are minimized. This procedure is

not unusual in theoretical physics. In fact it is at the heart of the Fermi liquid theory of

Landau [50, 52]. There correlation effects, i. e. loosely speaking (correlation) parts of the

Hamiltonian not incorporated in a single-particle picture, are subsumed as a modification of

the single particle properties leading thus to the concept of quasi particles. We will elaborate

on this point in chapter 14. The difference here is that we are treating all two-particle (pair)

correlations to infinite orders. This we interpret as having three quasi particles, each of them

is formed out of one of the possible pairs in the system. (3-body) Correlation effects that go

beyond two-body correlations are then incorporated as modifications of the properties and the

interactions of the quasi particles. In other words our quasi particles are in fact quasi particle

pairs.

To formulate precisely the above statement we recall that in a three-body problem all

(isolated) two-body interactions are described by the wave function Ψ3C. Higher order corre-

lation are isolated and assigned to the termR, given by Eq. (9.52). Therefore, we require that

the position-dependent product charges Zij are determined in such a way that the condition
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(9.60) is fulfilled and the remainder term R is minimized. The next requirement concerns the

asymptotic domain. As demonstrated above, the three-body system fragments in a set of three

two-body systems only when all particles are well separated, which leads us to the conclusion

that Ψ3C is a correct asymptotic solution of the Schrödinger equation only in the region L. To

obtain asymptotic expressions in other asymptotic domains we require that

R[Zij(rij ,Rα)] → 0, ∀ rij ,Rα ∈ Lα, (9.65)

Zij is finite, ∀ rij ,Rk ∈ L . (9.66)

Leaving aside the question of whether or not we can satisfy in practice the above requirements

imposed on Zij(rij ,Rα), a serious problem arises in this concept. Once we have determined

the functions Zij(rij ,Rα) we have to insert them into the Schrödinger equation (9.12). How

then can we solve the resulting differential equation? The key to resolve this question is pro-

vided by the observation that lead us to the introduction of the parabolic coordinates (9.15),

namely that the interactions (governed by the total potential) can depend on body-fixed coordi-

nates only. This restricts further the allowed functional dependence of Zij(rij ,Rα) and call at

the same time for the use of parabolic-relative coordinates (9.15) for the actual determination

of Zij(rij ,Rα).

9.5 Dynamical screening in few-body systems

To inspect how the position-dependent charges Zij(rij ,Rα) will affect the structure of the

Schrödinger equation let us recall our finding (9.21) (page 119) that the Schrödinger equation

in the parabolic-relative coordinate system possesses an approximate (asymptotic) separabil-

ity. Furthermore, the operator Hpar (9.22) depends only parametrically on the internal coor-

dinates (ξ4, ξ5, ξ6). This means, given a set of ‘parameters’ (ξ4, ξ5, ξ6) the eigenfunctions of

Hpar can be found exactly [cf. (9.45)]. This feature of Hpar persists if the product charges Zij

depend only on the internal coordinates (ξ4, ξ5, ξ6), in which case the parametric dependence

of Hpar on (ξ4, ξ5, ξ6) is maintained. In view of this situation, it is appropriate to make the

ansatz

Z̄ij = Zij(ξ4, ξ5, ξ6). (9.67)
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With this functional dependence the regular exact eigenfunction of Hpar with a zero eigen-

value has the explicit form

ΨDS3C(ξ1, ξ2, ξ3)|(ξ4,ξ5,ξ6) = 1F1 (iβ23(ξ4, ξ5, ξ6), 1, −ik23 ξ1 )

1F1 (iβ13(ξ4, ξ5, ξ6), 1, −ik13 ξ2 )

1F1 (iβ12(ξ4, ξ5, ξ6), 1, −ik12 ξ3 ) . (9.68)

The functions βmn play the role of position and momentum dependent Sommerfeld parame-

ters and are given by

βmn =
Zmn(ξ4, ξ5, ξ6) μmn

kmn
. (9.69)

The modifications of the Sommerfeld parameters βmn can be interpreted as a dynamic screen-

ing of the interaction of the two particles m and n by the presence of the third one. Therefore,

the wave function (9.68) has been termed the dynamically screened, three-body Coulomb

wave function (DS3C) [77].

The structure of the wave function (9.68) illudes to a separation in two-body systems, one

should note, however, that each of the hypergeometric functions occurring in (9.68) is gener-

ally dependent on all coordinates and looses therefore the two-body character. From a physical

point of view Eq. (9.69) states that the strength of the interaction between two particles i and

j is no longer determined by their (constant) product charges ZiZj , as is the case in two-body

scattering or in Ψ3C (9.46). It is rather described by a dynamical product-charge functions

Zij(ξ4, ξ5, ξ6) depending on the shape of the triangle formed by the three particles (regardless

of its orientation in space). In searching for the explicit functional dependence we require

a correct asymptotic behaviour everywhere and we seek a functional form of Zij(ξ4, ξ5, ξ6)

that minimizes the part not diagonalized by (9.28). To preserve the scaling properties of the

Schrödinger Eq. (9.12) when introducing the functions Zij(ξ4, ξ5, ξ6), we split the total po-

tential in three terms that have the structure

V ij = Zij/rij , j > i

Each of these potentials is assumed to be the most general linear superposition of the three

physical two-body potentials Vij := ZiZj/rij , with coefficients aij that depend on the inter-



9.5 Dynamical screening in few-body systems 131

nal coordinates. This is achieved by means of the linear expansion⎛⎝ V 23

V 13

V 12

⎞⎠ = A

⎛⎝ V23

V13

V12

⎞⎠ , (9.70)

where A(ξ4, ξ5, ξ6) is a 3× 3 matrix with elements aij = aij(ξ4···6):

A =

⎛⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎠ . (9.71)

Since the relation Zij = V ij rij applies, the functions Zij(ξ4, ξ5, ξ6) can be deduced from

(9.70) once the matrix A is identified.

The requirement of the invariance of the total potential under the transformation (9.70)

imposes the condition

3∑
i=1

aij = 1 ; j = 1, 2, 3 . (9.72)

Any matrix A whose elements satisfy the three equations (9.72) leaves the total potential and

hence the Schrödinger equation and its exact solutions invariant. To uniquely identify the

coefficients aij six further determining equations are needed, in addition to (9.72). These

conditions are chosen as to achieve certain desired properties of the resulting wave function.

The simplest choice for the matrixA, which is compatible with (9.72), isA = 1. The resulting

wave function ΨDS3C reduces in this case to Ψ3C (9.28). From Eq. (9.70) we conclude that

A = 1 means that the coupling between any of the three two-body subsystems is disregarded.

Hence, the wave function Ψ3C contains only two-particle interactions.

9.5.1 Two electrons in the field of a positive ion

The dynamic of the three-body system depends decisively on the mass and on the charge state

of the particles. Therefore, it is to be expected that the coupling matrix A is not universal

but specific to the three-body problem under study. This feature, while understandable and

unavoidable due to physical arguments, presents from a practical point of view a disadvantage

of the DS3C approach, for in each specific three-body case, the matrixA has to be determined

separately.

Presently, the properties of A have been studied for the case of two electrons moving

in the field of a massive positive ion which has a charge Z. It is customary in the field of
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electron-atom collisions to designate the relative coordinates of the electrons with respect to

the nucleus by ra and rb. In our notation this corresponds to choosing m3 as the mass of

the residual ion. The coordinates r13 ≡ ξ2, r23 ≡ ξ1 and r12 ≡ ξ3 become then rb, ra and

rba = rb − ra, respectively. To connect with traditional nomenclature we further rename

correspondingly the conjugate momenta, product charges and Sommerfeld parameters.

The invariance condition of the Schrödinger equation under the introduction of the product-

charge functions z̄j(ξ4···6) reads (here we use the notation z̄b ≡ Z̄13, z̄a ≡ Z̄23, z̄ba ≡ Z̄12)∑
j

z̄j(ξ4···6)
rj

≡ −Z

ra
+
−Z

rb
+

1
rab

, j ∈ {a, b, ab}. (9.73)

The wave functions containing z̄j must be compatible with the three-body asymptotic bound-

ary conditions. These are specified by the shape and by the size of the triangle formed by

the three particles (two electrons and the ion). This means, the derived wave function must

be, to a leading order, an asymptotic solution of the three-body Schrödinger equation when

the aforementioned triangle tends to a line (two particles are close to each other and far away

from the third particle) or in the case where, for an arbitrary shape, the size of this triangle

becomes infinite. The latter limit implies that all interparticle coordinates ra,b,ab must grow

with the same order, otherwise we eventually fall back to the limit of the three-particle triangle

being reduced to a line [77], as described above. In addition we require the Wannier threshold

law for double electron escape (given by Eq. (6.30)) to be reproduced when the derived wave

functions are used for the evaluation of the matrix elements. The conditions specified above

are sufficient to determine z̄j and thus the wave function ΨDS3C (9.68).

The applicability of the wave function ΨDS3C to scattering reactions is hampered by the

involved functional dependence leading to complications in the numerical determination of

the normalization and of the scattering matrix elements.

The normalization of the wave function Ψ3C derives directly from the normalization of the

two-body Coulomb wave function. This is a consequence of the internal separability of the

operator Hpar. This normalization argument holds true if the product charges z̄j were position

independent or if they depend only parametrically on the internal coordinates. In the latter

case one has still to tackle the problem of normalizing continuum functions of complicated

functional form. This normalization problem is resolved upon making the approximation

ri

rj
∝ vi

vj
, (9.74)
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in which case the position dependence of z̄j(ra, rb, rab) is converted into velocity dependence.

This assumption suffices for the conversion because the coordinate dependence of the product

charges occurs, due to dimensionality arguments, as a ratio of positions. It should be empha-

sized that the approximation (9.74) is not a classical one, i. e. it is not assumed that the motion

of the particles proceeds along classical trajectories. In fact the whole problem is still treated

full quantum mechanically (by the wave function ΨDS3C). Equation (9.74) merely means that

the total potential is exactly diagonalized in the phase space where Eq. (9.74) is satisfied, as

readily deduced from Eq. (9.73).

Equation (9.74) renders possible the normalization of ΨDS3C since in this case we obtain

z̄j = z̄j(ka, kb, kab) and hence we deduce for the normalization NΨDS3C the expression

NΨDS3C =
∏
j

Nj , j ∈ {a, b, ba},

Nj = exp[−βj(ka, kb, kba)π/2] Γ[1− iβj(ka, kb, kba)]. (9.75)

It has been shown [89] that the velocity-dependent product charges for Z = 1 possess the

form

z̄ba(va,vb) =
[
1− (f g)2 ab1

]
ab2 ,

(9.76)

z̄a(va,vb) = −1 + (1− z̄ba)
v1+a

a

(va
a + va

b )vab
,

z̄b(va,vb) = −1 + (1− z̄ba)
v1+a

b

(va
a + va

b )vab
.

(9.77)

The functions occurring in Eqs. (9.76, 9.77) are defined as (va, vb are the electrons’ velocities

and vab = va − vb)

f :=
3 + cos2 4α

4
, tanα =

va

vb
, (9.78)

g :=
vab

va + vb
, (9.79)

b1 :=
2vavb cos(θab/2)

v2
a + v2

b

, (9.80)

b2 := g2(−0.5 + μ̄), (9.81)

a :=
E

E + 0.5
, (9.82)
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where E is the total energy of the two continuum electrons, measured in atomic units. μ̄ =

μ/2− 1/4 is the Wannier index (cf. Eq. (6.30)), the value of μ̄ depends on the residual ion

charge value, the numerical value of μ̄ for a unity charge of the residual ion is μ̄ = 1.127).

The interelectronic relative angle θab is given by θab = arccos(v̂a · v̂b). With increasing

excess energies (E � 1) one verifies that a → 1 [Eq. (9.82)] and all dependencies of the

product-charge functions (9.76–9.77) which are due to incorporating the Wannier threshold

law, become irrelevant. The charges (9.76–9.77) reduce then to those given in Ref. [77] with

Eq. (9.74) being applied. From the functional forms of the charges (9.76–9.77) it is clear that

when two particles approach each other (in velocity space) they experience their full two-body

Coulomb interactions, whereas the third one ‘sees’ a net charge equal to the sum of the charges

of the two particles that are close to each other.

9.5.2 Dynamical screening via complex effective wave vectors

As documented by Eqs. (9.60, 9.61) three-body effects can be captured by theory upon the

introduction of effective quantities, such as product charges and wave vectors. In the preceding

section we discussed how the dynamical product-charge concept can be exploited to derive

correlated three-body wave functions. Here we discuss the approach of local wave vectors.

The idea of dynamical effective wave vectors have been utilized in two cases, 1.) for the

incorporation of some of the short-range three-body interactions, not included in Hpar [83],

and 2.) for accomplishing correct asymptotic behaviour in the entire asymptotic region [75].

In the latter case, and specializing to a system of two electrons in the field of an ion, local

wave vectors are derived to be [75]

k̄a = ka + f̄(αab,kba, rb), (9.83)

k̄b = kb + f̄(αab,kab, ra), (9.84)

k̄ab = kab + f̄(αa,ka, rCM ) − f̄(αb,kb, rCM ), (9.85)

where rCM = (ra + rb)/2 is the electron-pair center-of-mass coordinate, αj , (j = a, b, ab)

are the Sommerfeld parameters and the distortion function f̄(α,k, r) is defined as

f̄(α,k, r) =
r

R

[
1F1(1 + iα, 2,−i(kr + k · r))
−i 1F1(iα, 1,−i(kr + k · r))

](
k̂ + r̂

)
. (9.86)

The distance R = ra + rb + rab quantifies the “size” of the triangle formed by the three

particles. Using the position dependent (complex) momenta (9.83, 9.85) one can prove [75]
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that the wave function

ΨM(ra, rb, rab) = N̄ exp(i ka · rb + i kb · rb)

1F1 (iα′
a, 1, −i [k′

a ra + k′
a · ra] )

1F1 (iα′
a, 1, −i [k′

b rb + k′
b · rb] )

1F1 (iα′
ab, 1, −i [k′

ab rab + k′
ab · rab] ) , (9.87)

is (to leading order) correct in the entire asymptotic domainM. The modified Sommerfeld

parameters α′
j are obtained from αj by replacing kj by k̄j . In Eq. (9.87) the constant N̄ de-

rives from the normalization of the wave function. Unfortunately, it has not been yet possible

to evaluate this factor. When the manifoldM is approached the complex wave vectors (9.85)

turn real. This is deduced from the following behaviour of f̄ in the domainM

f̄(α,k, r)
∣∣∣

rj∈M
j=a,b,ab

→ k̂ + r̂

kR(1 + k̂ · r̂)
.

The difference between the DS3C approach and the wave function ΨM is the following. While

in both cases the total potential is treated to all orders and parts of the kinetic energy are

neglected, in the DS3C theory one tries to remedy this shortcoming by accounting effectively

for the short-range dynamics. In contrast when constructing the wave function ΨM only

asymptotic arguments are employed. The more important difference from a practical point of

view is that the DS3C wave function can be normalized, whereas the wave function Eq. (9.87)

has not yet been normalized. The importance of the normalization factor is most highlighted

when considering the threshold behaviour for the double electron escape and contrasting it

with the Wannier threshold law (6.30).

9.5.3 Threshold behaviour

In chapter 6 we showed that at very low energies the cross section for two-electron double

escape exhibits a universal behaviour, the Wannier threshold law, as given by Eq. (6.24).

Thus, it is of interest to establish the low-energy properties of the wave function Ψ3C(ra, rb)

and ΨDS3C(ra, rb) and to contrast the findings with the Wannier predictions. Such an analysis

for the wave function (9.87) is not possible, for this wave function is not normalized. As can

be anticipated from the derivation of the Wannier threshold law (see in particular Eq. (6.24)),
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the normalization, which encompasses the density of states available for the two electrons, is

decisive for the value of the cross section.

From a conceptual point of view the key difference between the methods we employed

to derive the wave functions Ψ3C(ra, rb) and ΨDS3C(ra, rb) and those utilized to obtain

the Wannier threshold law, is that in the Wannier case the kinetic energy is treated exactly,

while the potential energy is expanded in a Taylor series around the saddle point and only the

leading-order terms of this expansion are included in the theory. In contrast, in the 3C or DS3C

wave function treatment one diagonalizes the potential exactly and neglects (cross) terms of

the kinetic energy, i.e. the short-range dynamic is not properly treated. This shortcoming is

reflected in a spurious threshold behaviour of the Ψ3C.

The Ψ3C leads to cross sections for the two-particle double escape that decreases expo-

nentially with decreasing small excess energy [89, 98]. This is at variance with the Wannier

theory and with experimental findings (cf. e. g. Refs. [91, 134, 138, 250] and further refer-

ences therein). The physical reason for this behaviour is the following. Since the Ψ3C regards

the three-body system as three non-interacting two-body systems the three-particle density of

states (DOS) generated by Ψ3C is directly proportional to the density of states of isolated two-

electron systems. The latter DOS decreases exponentially when the two electrons are close to

each other in velocity space.

To formulate this qualitative arguments more precisely and to show how the coupling

introduced by zj , j = a, b, ba removes this deficiency we consider the cross section σ2+(E)

for double escape, given by the formula

σ2+(E) ∝
∫
|T |2δ(E − Ei)d3kad3kb, (9.88)

where Ei is the total energy in the initial channel. The transition-matrix element occurring in

Eq. (9.88) has the form

T = 〈 Ψka,kb
|Wi|Φi 〉. (9.89)

The transition operator and the initial state of the three-body system are denoted by Wi and

|Φi 〉, respectively. As discussed in the context of the Wannier theory, near threshold the

functions Φi and Wi are in general hardly dependent on the excess energy E = Ea + Eb

(both energies Ea and Eb of the electrons are positive and small). Therefore, Eq. (9.88) can
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be written in the form of an expectation value as follows

σ2+(E) ∝ 〈Φi|Wi (DOSv) Wi|Φi〉 . (9.90)

In the context of the Green’s function theory, which the subject of chapter 11, the quantity

DOSv is called the local density of states per unit volume and is given as

DOSv(ε, ra, rb) =
∫

d3kad3kbΨka,kb
(ra, rb)δ(Ea + Eb − ε)Ψ∗

ka,kb
(ra, rb). (9.91)

The density of states (DOS) is obtained from (9.91) as

DOS(ε) =
∫

dradrbDOSv(ε, ra, rb). (9.92)

Equations (9.88–9.92) make clear that the energy dependence of σ2+(E) is entirely deter-

mined by the energy behaviour of the two-particle density of states (Eq. (9.92)) that can be

occupied by the two escaping electrons 5.

On the other hand, according to Eq. (9.91) the E dependence of the DOS is determined by

the normalization factor |NΨ|2 of the wave function Ψ, provided the radial part of the wave

function Ψr is well behaved near threshold. To investigate how the energy dependence of

|NΨ|2 is reflected in the cross section behaviour we introduce the hyperspherical momenta

K := (k2
a + k2

b )/2 = E, tanβ =
ka

kb
, and cos θk = k̂a · k̂b. (9.93)

As far as the DS3C wave function is concerned we note that the dynamical product charges

are limited to the intervals, za, zb ∈ [−Z, 0]; zba ∈ [0, 1], i.e. a two-body interaction can be

screened by the presence of a third charged particle, but it does not change its sign. For small

excess energies E → 0, the wave function ΨDS3C(ra, rb) [see Eq. (9.68)] can be expanded in

terms of Bessel functions [99, 139]. The leading order term with respect to the excess energy

reads

lim
E→0

ΨDS3C(ξ1···6) = (2π)−3NDS3CJ0(2
√
−zaξ1) J0(2

√
−zbξ2) I0(

√
2zabξ3), (9.94)

where J0(x), I0(x) are Bessel and modified Bessel functions, respectively. A similar equation

applies to Ψ3C upon the replacement za = −Z = zb, zab = 1. Expressing Eq. (9.88)

5Note that Eq. (9.90) can be written in the form

σ2+(E) ∝
Z

dra drb 〈Φi|Wi|rarb〉DOSnl〈r′ar′b|Wi|Φi〉.

The trace of the local part of the non-local density of state DOSnl yields the DOS.
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in the hyperspherical momentum coordinates (9.93), one performs the integration over the

variable K. Furthermore, due to the overall rotational invariance of the system Eq. (9.88)

reduces to

σ+2(E) ∝ E2

∫
sin2 2β |NΨ|2|Tr|2 dβ d(cos θk) dϕab dϕa. (9.95)

NΨ is the normalization of the function Ψ, whereas ϕab and ϕa are the azimuthal angles of

kab and kb with respect to an appropriately chosen axis. The quantity Tr is the transition ma-

trix element T [Eq. (9.89)] with the normalization NΨ of the final-state wave function being

factored out. As evident from Eq. (9.95) the excess-energy dependence of σ(E) is directly

related to the excess-energy behaviour of |NΨ|2, if for E � 1 the variation of Tr as function

of E is insignificantly slow. On the other hand, the function NΨ is given, as a matter of defini-

tion, by the integral behaviour of the radial part of the wave function. This interrelation is best

demonstrated by the threshold behaviour of the cross section σ+2 that is obtained by various

wave functions having the threshold expansion (9.94). E.g. the Bessel function J0(x) has an

oscillatory bound asymptotic behaviour, whereas the modified Bessel function I0(x), corre-

sponding to the electron-electron interaction, is unbound for large arguments x. Therefore,

the normalization |Nab|2 of the electron-electron Coulomb wave decreases exponentially with

vanishing excess energy. Specifically, one derives for the normalization factors the following

expressions

|Nj |2 = 2πβj

(
e2πβj − 1

)−1
, j = a, b, ab. (9.96)

For E � 1 the factors Nj behaves as

|Nb|2 = −2πβb =
−2πz̄b√
2E cos β

, ∀z̄b < 0, (9.97)

|Na|2 = −2πβa =
−2πz̄a√
2E sin β

, ∀z̄a < 0, (9.98)

|Nab|2 =
2πz̄ab√

2Ef(θk, β)
exp

(
−2π

z̄ab√
2Ef(θk, β)

)
, ∀z̄ab > 0, (9.99)

where the function f is defined as

f(θk, β) =
√

1− sin 2β cos θk . (9.100)

For z̄ab > 0 the behaviour (9.99) of |Nab| results in an exponential decline of σ2+(E) when

the excess energy is lowered (note that to obtain Ψ3C we employ z̄ab = 1). Cross sections
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calculated with ΨDS3C do not exhibit this spurious behaviour as the term I0(
√

2z̄abξ3) con-

tribute to the wave function only in a limited region of the Hilbert space (because z̄ab → 0 for

ξ3 → ∞). From this argument however, it is not clear whether the Wannier threshold law is

reproduced or not by ΨDS3C.

Depending on the employed dynamical mode the cross section σ2+(E) behaves as fol-

lows. In a free particle model, i.e. when the motion of the two electrons is described by plane

waves we have NPW = 2π−3 = constant) and one deduces from Eq. (9.95) the threshold

law σ(E) ∝ E2. In an independent Coulomb particle model, i.e. if z̄ab ≡ 0, z̄b = −Z = z̄a,

we obtain Nab = 1 and thus σ(E) ∝ E. This is deduced upon substitution of Eqs. (9.97, 9.98)

into Eq. (9.95). In the first Born approximation, i.e. z̄b ≡ 0 ≡ z̄ab, z̄a = −Z, Eqs. (9.95,

9.98) yield σ(E) ∝ E1.5.

To address the question of the threshold behaviour of the cross section calculated within

the DS3C model we insert Eqs. (9.97–9.99) into Eq. (9.95) and obtain

σ(E) ∝ E

∫
z̄bz̄az̄ab√

2E
exp

(
−2π

z̄ab√
2E

f−1(θk, β)
)

[
sin 2β f−1(θk, β) |Tr(θk, β, ϕb, ϕa)|2

]
dβdϕbdϕa d(cos θk). (9.101)

Equation (9.101) is valid for Z̄ij �= 0. Due to the structure of Eq. (9.101) it is convenient to

write the function z̄ab in the form

z̄ab = (1− η ab1)ab2 , (9.102)

where a = E/Ei is a dimensionless parameter. Within the DS3C theory the functions b1 and

b2 are determined to be

b2 ∝ n where n = 0.5 +
μ

2
− 1

4
− 1; b1 =

2vavb cos(θab/2)
v2

a + v2
b

. (9.103)

One verifies that with this functional dependence of z̄ab the Wannier threshold law is repro-

duced and the integrand in Eq. (9.101) is a slowly varying function of E (note that

Tr,DS3C(kb,ka) varies insignificantly slow with E), i. e.

σ2+(E) = Eμ/2−1/4

∫
Tr,DS3C(kb,ka) dϕb dϕa d(cos θk) dβ. (9.104)

9.5.4 Kato cusp conditions

In the preceding sections we have seen that the properties of the three-body wave functions are

well defined in the asymptotic region. For short distances, the structure of the wave function
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can as well be deduced. For example, if only two particles are close to each other, the wave

function satisfies certain constraints known as the Kato cusp conditions [140, 141] (this is

valid in case Ψ(rij ,Rk) does not vanish at the two-body coalescence points). The Kato cusp

conditions have been introduced in section 8.1.2 (page 103). Here we inspect the behaviour of

the approximate three-body functions Ψ3C/DS3C(rij ,Rk) around the two-body coalescence

points, i.e. the question is whether the relation(
∂ Ψ̃(rij ,Rk)

∂ rij

)
rij=0

= Zij μji Ψ(rij = 0,Rk) , ∀ (rij ,Rk) (9.105)

is satisfied by Ψ3C/DS3C, where Ψ̃(rij ,Rk) is the wave function averaged over a sphere

of small radius rε � 1 around the singularity rij = 0. To investigate the behaviour of

Ψ̃DS3C(ra, rb) at, e.g. the collision point (rb = 0, ra/rb → ∞), we linearize ΨDS3C(ra, rb)

around rb = 0 and find the leading order terms to be

Ψ̃DS3C(rb, ra) = N exp(ika · ra) 1F1

(
iβa, 1, −i [ka ra + ka · ra]

)
× 1F1

(
iβba, 1, −i [kba rba + kba · rba]

)
D(rb) ,

(9.106)

where N is a normalization constant and the function D(rb) has the form

D(rb) =
2π

4πr2
ε

∫ 1

−1

r2
ε d cos θ

[
1 + ikb cos θ + αbkb rb(1 + cos θ)

]
,

= 1 + αb kb rb . (9.107)

To derive Eq. (9.107) one chooses the z axes to be along the direction kb and defines cos θ =

k̂b · r̂b. In the limit (rb → 0 ; ra/rb → ∞) the effective Sommerfeld parameter βb tends to

the conventional parameter αb. Therefore, we obtain(
∂ Ψ̃DS3C(rb, ra)

∂ rb

)
rb=0

= zbN exp(ika · ra) 1F1

(
iβa, 1, −i [ka ra + ka · ra]

)
× 1F1

(
iβba, 1, −i [kba rba + kba · rba]

)
,

= zb ΨDS3C(rb = 0, ra) .

(9.108)

It is straightforward to repeat the above steps and show that the Kato cusp conditions at

(ra = 0, rb/ra → ∞) and (rba = 0 , rb � 1, ra � 1) are fulfilled. As far as the wave

function Ψ3C(rb, ra) is concerned, one can use the procedure employed for ΨDS3C(rb, ra)

and show that Ψ3C(rb, ra) satisfies the Kato cusp conditions and hence possesses a regular
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behaviour at all two-body collision points. This finding is not surprising since the 3C model

treats all two-body interactions to all orders [73, 82, 142].

9.5.5 Compatibility with the Fock expansion

Both functions ΨDS3C(rb, ra) and Ψ3C(rb, ra) are not compatible with the Fock expansion

(8.1), i.e. these functions do not exhibit correct behaviour at the three-body collision point.

The conclusion is evident from the fact that at the three-body coalescence point all distances

are small. Hence, the confluent hypergeometric functions occurring in ΨDS3C(rb, ra) and

Ψ3C(rb, ra) can be expanded in a power series (2.51) in the variable ra, rb and rab. The

resulting expansions of the wave functions ΨDS3C(rb, ra) and Ψ3C(rb, ra) do not contain any

logarithmic terms and hence are at variance with the Fock condition (8.1). The reason why

the wave function ΨDS3C(rb, ra) and Ψ3C(rb, ra) do not satisfy the Fock expansion is that

at the triple collision point the collective behaviour is dominant rather then the successive

two-body collisions. To incorporate collective features of the system it is more convenient to

formulate the Schrödinger equation in an appropriate coordinate system, such as the parabolic

hyperspherical coordinates.

9.6 Parabolic-hyperspherical approach

In the preceding section the formulation of the three-body problem within the parabolic-

relative coordinate approach uncovered the approximate separable structure of the Schrödinger

equation (9.12). In particular, we were able to derive exact eigensolutions Ψpar(ξ1, ξ2.ξ3)

(cf. Eq. (9.28)) of the operator (9.22) which is differential in the coordinates ξ1,2,3. The re-

maining coordinates ξ4,5,6 enter this solution parametrically, i. e.

Ψ(ξ1, . . . , ξ6) ≈ Ψpar(ξ1, ξ2, ξ3)|(ξ4,ξ5,ξ6). (9.109)

This interrelation between the six degrees of freedom resembles similar situations encountered

in adiabatic treatments where some degrees of freedom are varied parametrically, or even

‘frozen’ (cf. section 4.1 on the Born-Oppenheimer and the adiabatic approximation). Thus, it

seems appropriate to treat the coordinates ξ4,5,6 adiabatically. The problem which arises when

trying to realize this suggestion is that the potential as function of ξ4,5,6 becomes singular at

certain points, these are the two-body collision points. This rules out a treatment of these
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coordinates as a slow varying variable in the whole Hilbert space. On the other hand we have

shown explicitly upon analyzing Eq. (7.14) (page 95) that when the problem is formulated

in hyperspherical coordinates, the motion along the hyperradius ρ is smooth and does not

exhibit any a singular behaviour. Therefore, for an adiabatic treatment one should switch

to hyperspherical coordinates. On the other hand we have seen that it is of great advantage

to include in the definition of the coordinate system the generic coordinates for Coulomb

scattering, namely the parabolic coordinates ξ1,2,3. For this reason we consider the three-body

problem formulated in the parabolic-hyperspherical coordinate system (9.17).

9.6.1 Parabolic-hyperspherical Schrödinger equation

Transforming the three-body Schrödinger equation (9.12) into the scaled Jacobi coordinates

(9.18) and making the ansatz (9.19) leads to the expression[
Δrij

+ ΔRk
+ 2i

(
1
√

μij
kij · ∇rij

+
1√
μk

Kk · ∇Rk

)

− 2
3∑

m,n
n>m

qmn

rmn

]
Ψ(rij ,Rk) = 0, (9.110)

where

qmn = μ
1/2
ij Zij .

The task is now to transform Eq. (9.110) into the parabolic hyperspherical coordinates (9.17).

The Jacobi determinant for this transformation scales as ρ5 sin2 2ζ/4 and does not vanish

except for cases where a pair of the three vectors kij or rij and Rk are linearly dependent.

Similar to the N -particle hyperspherical formulation (Eq. (7.12)), in the curvilinear coor-

dinates (9.17) the six-dimensional Laplacian Δ := Δrij
+ ΔRk

is the sum of a hyperradial

kinetic energy term and a centrifugal term, i.e.

Δrij
+ ΔRk

= ρ−5 ∂ρ ρ5 ∂ρ −
Λ2

ρ2
. (9.111)

The differential operator Λ2 is a self-adjoint scalar operator defined in the Hilbert space

L2(ω, dω), on the domain ω = [0, 2] × [0, 2] × [0, 2] × [0, π/2] × [−1, 1], where ω ≡
{ξ1, ξ2, ξ3, ζ, γ}. Since this domain is compact the operator Λ2 has a discrete spectrum and
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is associated with the grand angular momentum, i. e. the Casimir operator of the O(6) group.

The differential operator Λ2 can be decomposed further as

Λ2 = Λ2
in + Λ2

ext + Λ2
mix . (9.112)

The operator Λ2
in is differential in the internal angles {ζ, γ} only, whereas Λ2

ext operates

only in the subspace spanned by {ξi; i = 1, 2, 3}. The operator Λ2
mix plays the role of a

rotational coupling term in the conventional hyperspherical approach. It contains the mixed

derivatives resulting from off-diagonal elements of the metric tensor and couples internal to

external motion. The explicit expressions for Λ2
in is

Λ2
in = − 4

sin2 2ζ

[
− 2γ ∂γ + (1− γ) ∂2

γ + sin 2ζ cos 2ζ ∂ζ +
1
4

sin2 2ζ ∂2
ζ

]
,

Λ2
in = − 4

sin2 2ζ

[
∂2ζ sin2 2ζ ∂2ζ − L̂2

γ

]
. (9.113)

For a given Jacobi coordinate set (rij ,Rk) the quantity L̂2
γ is the operator of the squared

orbital angular momentum of the particle ‘k’ with respect to the centre-of-mass of the pair

‘ij’. This is concluded by expressing Λ2
in in terms of the angle θ := arccos γ, which yields

the following expression for L̂2
γ

L̂2
γ = − sin−1 θ ∂θ sin θ ∂θ . (9.114)

The differential operator Λ2
ext has the form

Λ2
ext := −ρ2

{
1

r2
23 μ23

[
2∂ξ1 ξ1 ∂ξ1 − ∂ξ1 ξ2

1 ∂ξ1

]
1

r2
13 μ13

[
2∂ξ2 ξ2 ∂ξ2 − ∂ξ2 ξ2

2 ∂ξ2

]
1

r2
12 μ12

[
2∂ξ3 ξ1 ∂ξ3 − ∂ξ3 ξ2

3 ∂ξ3

]}
, (9.115)

whereas the coupling term Λ2
mix has the structure

Λ2
mix := −ρ2

∑
u �=v

{
(∇rij

u) · (∇rij
v) + (∇Rk

u) · (∇Rk
v)
}

∂u∂v;

u, v ∈ {ξ1, ξ2, ξ3, ζ, γ, ρ} . (9.116)

A key property of the operator Λ2
ext (9.115) is its parametric dependence on the internal

coordinates, and in particular on the hyperradius ρ. This is readily seen by expressing the
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function rij that occurs in (9.115) in terms of (ζ, γ, ρ), i.e.

r13 = ρ sin ζ,

r23 = ρ

[
cos2 ζ + (

m1

m1 + m3
)2 sin2 ζ + γ sin 2ζ

]1/2

,

r12 = ρ

[
cos2 ζ + (

m3

m1 + m3
)2 sin2 ζ − γ sin 2ζ

]1/2

. (9.117)

The gradient terms occurring in the Schrödinger equation (9.110) have to be expressed in the

parabolic-hyperspherical coordinates. Having done that one finds the following expressions

2i

(
1
√

μij
kij · ∇rij

+
1√
μk

Kk · ∇Rk

)
= Dext + Din, (9.118)

where the function Dext has the form

Dext := 2i
(

k23

r23μ23
(2ξ1 − ξ2

1)∂ξ1

+
k13

r13μ13
(2ξ2 − ξ2

2)∂ξ2

+
k12

r12μ12
(2ξ3 − ξ2

3)∂ξ3

)
. (9.119)

The differential operator Din depends only on the gradient of the internal coordinates

Din := 2i
[

1
√

μij
kij · ∇rij

u +
1√
μk

Kk · ∇Rk
u

]
∂u,

u ∈ {ζ, γ, ρ} . (9.120)

Using the above relations for the kinetic energy operators the Schrödinger equation (9.12) can

now be written as the sum of internal (body-fixed) and external (laboratory-fixed) differential

operators with an additional (rotational) mixing term[
Hin + Hext −

Λ2
mix

ρ2

]
Ψ(ξ1, ξ2, ξ3, ζ, γ, ρ) = 0. (9.121)

The differential operator Hin depends on body-fixed degrees of freedom and has the form

Hin = ρ−5 ∂ρ ρ5 ∂ρ −
Λ2

in

ρ2
+ Din, (9.122)
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whereas the external differential operator takes on the form

Hext = −Λ2
ext

ρ2
+ Dext − 2

3∑
m,n

n>m

qmn

rmn
,

=
2

r2
23 μ23

[
∂ξ1 ξ1 ∂ξ1 − ∂ξ1 ξ2

1 ∂ξ1 + ik23r23(2ξ1 − ξ2
1)∂ξ1 − μ23r23q23

]
+

2
r2
13 μ13

[
∂ξ2 ξ2 ∂ξ2 − ∂ξ2 ξ2

2 ∂ξ2 + ik13r13(2ξ2 − ξ2
2)∂ξ2 + μ13r13q13

]
+

2
r2
12 μ12

[
∂ξ3 ξ1 ∂ξ3 − ∂ξ3 ξ2

3 ∂ξ3 + ik12r12(2ξ3 − ξ2
3)∂ξ3 + μ12r12q12

]
.

(9.123)

The various terms in this equation can be grouped as follows

Hext =
2

r2
23 μ23

[∂ξ1 ξ1 ∂ξ1 + ik23r23ξ1∂ξ1 − μ23r23q23]

+
2

r2
13 μ13

[∂ξ2 ξ2 ∂ξ2 + ik13r13ξ2∂ξ2 + μ13r13q13]

+
2

r2
12 μ12

[∂ξ3 ξ1 ∂ξ3 + ik12r12ξ3∂ξ3 + μ12r12q12] + Hrm.

(9.124)

The differential operator Hrm depends on ξ1, ξ2, ξ3 only. It has the explicit form

Hrm =
2

r2
23 μ23

[
−∂ξ1 ξ2

1 ∂ξ1 + ik23r23(ξ1 − ξ2
1)∂ξ1

]
+

2
r2
13 μ13

[
−∂ξ2 ξ2

2 ∂ξ2 + ik13r13(ξ2 − ξ2
2)∂ξ2

]
+

2
r2
12 μ12

[
−∂ξ3 ξ2

3 ∂ξ3 + ik12r12(ξ3 − ξ2
3)∂ξ3

]
.

(9.125)

The eigenfunctions of the operator Hext−Hrm have already been treated, these functions are

namely (cf. Eq. (9.22))

HDS3C︷ ︸︸ ︷
(Hext −Hrm) ΨDS3C = 0.

The explicit form of Ψ̄DS3C in the coordinates Eq. (9.17) is

ΨDS3C(ξ1, ξ2, ξ3, ζ, γ, ρ) = 1F1 (iβ23(ζ, γ), 1, −i [k23 r23ξ1] )

1F1 (iβ13(ζ, γ), 1, −i [k13 r13ξ2] )

1F1 (iβ12(ζ, γ), 1, −i [k12 r12ξ3] ) . (9.126)
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The relative coordinates rij have to be expressed in terms of parabolic-hyperspherical coordi-

nates using (9.117). The plane-wave part can as well be written in terms of (9.17) since the

relation applies

kij · rij + Kk ·Rk =
3∑

j>i=1

mi + mj

m1 + m2 + m3
kij · rij ,

=
m2 + m3

m1 + m2 + m3
(ξ1 − 1)k23 r23

+
m1 + m3

m1 + m2 + m3
(ξ2 − 1)k13 r13

+
m1 + m2

m1 + m2 + m3
(ξ3 − 1)k12 r12 . (9.127)

The Sommerfeld parameters appearing in Eq. (9.126) are expressed in terms of product charge

functions Zij

βij(ζ, γ) :=
Zijμij

kij
. (9.128)

The effective product charge functions Zij are dependent on the internal coordinates. Their

specific functional dependence for a given system can be determined as done in the previous

section.

9.7 Parabolic-hyperspherical adiabatic expansion

Recalling the splitting Hext = HDS3C + Hrm we rearrange equation (9.121) in the form[
−1

2
ρ−5 ∂ρ ρ5 ∂ρ +

Λ2
in

2ρ2
− 1

2
HDS3C −

1
2
Frm

]
Ψ(ξ1, ξ2, ξ3, ζ, γ, ρ) = 0. (9.129)

Here we have separated the function Frm which is given by the formula

Frm = Hrm −
Λ2

mix

ρ2
+ Din.

In this section we outline how the ideas developed in the context of hyperspherical treatments

can be utilized to deal with the dynamics in the internal coordinates. To this end we discard at

first the mixing term Frm and introduce the hyperspherical adiabatic Hamiltonian as

U(ρ) =
1
2
[
Λ2

in − ρ2HDS3C(ρ, ωp)
]
, (9.130)

where the collective symbol ωp stands for all coordinates but ρ. Now let us consider the

eigenvalue problem

[U(ρ)− Uν ] Φν(ρ, ωp) = 0. (9.131)
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The eigenvalues and eigenfunctions of U(ρ) depend parametrically on ρ. They are usually

called the hyperspherical adiabatic eigenvalues and channel functions, respectively. For a

given ρ the functions Φν(ρ, ωp) form a complete orthonormal basis

〈Φν(ρ, ωp)|Φν′(ρ, ωp)〉 = δνν′ .

Using this basis the solutions of Eq. (9.129) are expanded as

Ψ(ωp, ρ) =
1

ρ5/2

∑
ν

Fν(ρ)Φν(ρ, ωp). (9.132)

The substitution of this expansion in Eq. (9.129) yields a set of defining equations for the

radial functions Fn(ρ)[
−1

2
∂2

ρ + Wν(ρ)
]

Fν(ρ) =
∑
ν′

[
Pνν′(ρ)∂ρ +

1
2
Qνν′(ρ)

]
Fν′(ρ), (9.133)

where the quantity Wν(ρ) constitutes the so-called hyperspherical potentials and is given by

the equation

Wν(ρ) =
8Uν(ρ) + 15

8ρ2
. (9.134)

The non-adiabatic coupling terms that appear in Eq. (9.133) are given by the matrices

Pνν′(ρ) = 〈Φν(ρ, ωp)|∂ρ|Φν′(ρ, ωp)〉 ,

Qνν′(ρ) =
〈
Φν(ρ, ωp)|∂2

ρ |Φν′(ρ, ωp)
〉
. (9.135)

The numerical task is then to include a sufficient number of expansion terms in (9.132) and

to solve Eq. (9.134) taking account of the appropriate boundary conditions. This task is sim-

plified greatly by truncating the expansion (9.132) after the first term which yields the known

hyperspherical adiabatic approximation (this amounts to operate within the spirit of the adia-

batic Born-Oppenheimer approximation that we discussed in chapter 4.1). The wave function

assumes then the form

Ψν,HSA(ωp, ρ) =
1

ρ5/2
Fν(ρ)Φν(ρ, ωp). (9.136)

The radial function in this equation satisfies the one-dimensional differential equation[
−1

2
∂2

ρ + Wν(ρ)− 1
2
Qνν(ρ)

]
Fν(ρ) = 0. (9.137)

For the present choice of the operator U the eigenfunctions Φν(ρ, ωp) are expressible in terms

of the known eigenfunctions of HDS3C and Λ2
in.
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9.8 Three-body wave functions with mixed boundary
conditions

In section 2.3.3 (page 13) we considered the behaviour of the two-body Coulomb wave func-

tions when the energy varies from negative to positive values crossing the ionization threshold.

In particular, we discussed how the bound and the continuum energies and wave functions are

interrelated. For the three-body problem we considered separately the wave function below

(doubly excited states) and above the complete fragmentation threshold. The question which

will be addressed in this section is how the structure of the three-body wave function changes

when some of the particles are bound and the others are in the continuum. Clearly this situ-

ation is akin to many-body systems. The asymptotic boundary conditions are then mixed in

the sense that they consist of both, decaying and oscillating parts. As evident from Eq. (9.37),

for the case of three continuum particles, the presence of Coulomb potentials forbids a simple

asymptotic behaviour, such as plane waves in case of short-range potentials. Therefore, it is

not clear from the outset how the bound state is polarized by the presence of a continuum

particle and at the same time how the motion of the continuum electron is distorted due to the

structured residual ion.

For the sake of clarity we investigate systems consisting of one continuum electron moving

in the field of a electron ion. This means, the latter consists of a structureless core with

charge Z and one bound electron. In this case the laboratory frame coincides (to a very good

approximation) with the center of mass system. The wave function ψ describing the system at

the energy E derives as the solution of the time-independent Schrödinger equation[
Δa + Δb +

2 Z

ra
+

2 Z

rb
− 2

rab
+ 2E

]
ψ(ra, rb) = 0 . (9.138)

As previously mentioned, the positions of the two electrons with respect to the residual ion are

denoted traditionally by ra and rb. The total energy E of the system is the sum of the energy

of the continuum electron Ea = k2
a/2 and that of the bound electron which resides in a state

specified by the principle, orbital and magnetic quantum numbers n, �, m, respectively, i. e.

E = − Z2

2 n2
+

k2
a

2
. (9.139)

As discussed in some detail in Section 2.3.3 the unperturbed (hydrogenic) state of the

bound electron ‘b’ has the structure [158, 161]

ζb
n,�,m(rb) = r−1

b χn,�(rb) exp(−Z rb

n
) Y�m(r̂b) , (9.140)
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where χn,�(rb), Y�m(r̂b) are, respectively, the radial wave functions and the spherical har-

monics. In view of the structure of Eq. (9.140) and of the general dependence of the contin-

uum wave functions, it is appropriate to write the solution of the full equation (9.138) as the

ansatz

Ψbf(ra, rb) = ψ̄ rb
−1 e−Z rb/n

∞∑
k=0

ξk. (9.141)

Here the distorted motion of the continuum electron is described by the (continuum) part of

the ansatz

ψ̄(ra, rb) = exp(ika · ra + iφ) , (9.142)

where the distortion factor φ is generally complex and needs to be determined. On the other

hand, the expansion (coefficient) functions ξk are assumed to have the form

ξk =
1
rk
b

χn,�(rb)Y�,m(r̂b) . (9.143)

Inserting the ansatz (9.141) in the Schrödinger equation (9.138) yields the relation

[
−
(

2 Z

n
+

2
rb

)
∂rb

+ Δb + 2i ka ·∇a

+ Δa +
2 Z

rb
+

2 Z

ra
− 2

rab

](
eiφ

∑
k

ξk

)
= 0 (9.144)

Carrying out the calculations for the differential operators acting on eiφ
∑

k ξk we obtain the

following determining differential equation for the functions ξk[
Δa + Δb + i(Δa + Δb)φ− (∇aφ)2 − (∇bφ)2

+ 2i(∇bφ · ∇b + ∇aφ · ∇a)− 2i

(
Z

n
+

1
rb

)(
∂φ

∂rb
− i

∂

∂rb

)
− 2 ka ·∇aφ + 2i ka ·∇a +

2 Z

rb
+

2 Z

ra
− 2

rab

]∑
ξk = 0 . (9.145)

Let us now inspect the asymptotic behaviour of this equation. First we note that the leading

order terms in the asymptotic regime are those which fall off faster than the Coulomb potential,
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i. e. asymptotically Eq. (9.145) reduces to[
−2i

Z

n

(
∂φ

∂rb
− i

∂

∂rb

)
− 2 ka ·∇aφ

+ 2i ka ·∇a +
2 Z

rb
+

2 Z

ra
− 2

rab

]∑
ξk = 0. (9.146)

Since the functions ξk and φ are independent and the equation (9.146) is valid irrespective of

the values of ξk and φ we conclude that the function φ must satisfy
i Z

n

∂φ

∂rb
+ ka ·∇aφ− Z

ra
− Z

rb
+

1
rab

= 0 . (9.147)

For the solution of this equation we make the ansatz

φ± = −in ln(rb) + Φ±, (9.148)

Φ± = ∓ Z

ka
ln(ka ra ∓ ka · ra) + φ̃± . (9.149)

The complex function φ̃± is arbitrary and will be determined below. Since φ describes the

distortion of the continuum electron motion, a distinction has been made between outgoing

(+ sign) and incoming (− sign) wave boundary conditions. The term−in ln(rb) in Eq. (9.148)

results in a real exponential factor in Eq. (9.141). This exponentially decaying function is then

included in the functions ξk, as introduced by Eq. (9.143). The term∓ Z
ka

ln(ka ra ∓ ka ·ra)

in Eq. (9.149) describes the phase distortion of the continuum electron due to the presence of

a residual charge (the core) with charge Z. This is basically, the Coulomb phase distortion

if the ion were structureless. The fact that the ion has a bound electron is reflected by the

presence of a second distorting factor in Eq. (9.149) namely the phase φ̃±. Substitution of

of Eq. (9.148) in (9.147) results in the relation (only incoming wave boundary conditions are

considered for brevity)

i Z

n

∂φ̃+

∂rb
+ ka ·∇aφ̃+ +

1
rab

= 0 . (9.150)

The solution of this equation has the form

φ̃+ =
1
λ

ln(λ rab + c · rab) , (9.151)

where the independent complex quantities λ and c are determined upon substituting (9.151)

in (9.150) which yields

c = −ka + i
Z

n
r̂b,

λ2 =
(

ka − i
Z

n
r̂b

)2

. (9.152)
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For outgoing-wave boundary conditions we can repeat the steps outlined above and arrive

at the final result

φ̃− = − 1
λ

ln(λ rab − c · rab) . (9.153)

From Eqs. (9.152) it follows that

if ra � rb, ka � Z/n
Eq. (9.149)

=⇒ Φ± = ∓ Z − 1
ka

ln(ka ra ∓ ka · ra).

(9.154)

This means if the bound system consists of a neutral atom, i. e. an electron and a singly charged

positive ion (so that Z − 1 = 0), and if the continuum electron energy is much larger than the

bound state energy then the distortion of the continuum electron motion can be neglected.

The effect of the polarization of the bound state and the phase distortion of the contin-

uum electron motion is best illustrated by considering the real and the imaginary part of the

complex function exp(iφ̃−). This can be done by rewriting λ in the form

λ = x + iy , (9.155)

where x and y are real functions and hence the function φ̃− takes on the form

φ̃− =
λ∗

|λ|2 ln
[
v2 + u2

]1/2
+ i arctan

(u

v

)
. (9.156)

The real functions v and u are given by the equations

v = xrab − ka · rab,

u = yrab +
Z

n
r̂b · rab . (9.157)

Furthermore, we can express the complex function exp(iφ̃−) in terms of the real phase func-

tion ζ and the amplitude function A by writing

exp(iφ̃−) = A exp(iζ). (9.158)

The amplitude A is a measure for the polarization degree of the initial state due to correlation

effects between the bound and the continuum electrons. On the other hand ζ quantifies the dis-

tortion of the motion of the continuum electrons. The explicit expression for the polarization

function A is

A = exp(−�φ̃−),

=
[
v2 + u2

]y/2|λ|2
exp

[
− x

|λ|2 arctan
u

v

]
. (9.159)
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Following the same steps we derive for the phase distortion ζ the expression

ζ = � φ̃−,

= ln
[
v2 + u2

]x/2|λ|2
+
[

y

|λ|2 arctan
u

v

]
. (9.160)

The expressions for x and y are then obtained by substituting (9.156) into (9.150).

This yields two coupled differential equations that can be solved and the solution is given in a

closed analytical form as

x =

⎧⎨⎩
[

1
4

(
k2

a −
Z2

n2

)2

+
Z2

n2
(r̂b · ka)2

]1/2

+
1
2

(
k2

a −
Z2

n2

) ⎫⎬⎭
1/2

, (9.161)

y = −Z(r̂b · ka)
x n

. (9.162)

This result concludes our analysis of the bound-continuum mixed asymptotic behaviour.

At finite distances one can proceed along the same lines followed for the derivation of the

asymptotic behaviour and derive for the term ψ̄ in Eq. (9.141) the closed analytical expression

ψ̄∓ = Nnorm exp(ika · ra) 1F1

[
±iαa, 1, ∓ika (ra ± k̂a · ra)

]
1F1 [±iαλ, 1, ∓i(λrab ∓ c · rab))] . (9.163)

The complex vector c and λ are determined by Eqs. (9.152), Nnorm is a normalization

constant and αλ = 1/λ. Physical processes involving the wave function (9.163) are numerous.

E. g., in the case of excitation of neutral atoms by electron impact a final state is achieved

that consists of one continuum electron and one excited electron. The latter electron is still

bound to the positive ion core. In fact it is for this case where the wave function (9.163)

has been successfully employed. The calculations have been performed [160] for the angular

correlation parameters of the 1s→ 2p transition in atomic hydrogen.

9.8.1 Asymptotic states of two bound electrons

In the case that both electrons are bound one can as well find asymptotic solutions ψasy(ra, rb)

using similar method [234, 235], as those outlined above. It should be noted however, that, as

explained in section (9.5.5), methods relying on separating the three-body system into non-

interacting three two-body subsystems will not be able to reproduce the correct behaviour

at the condensation point where the Fock expansion (8.1) has to be satisfied. For bound
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states, where the electrons are confined to a small region in space, the Fock expansion is

more relevant than for continuum states. From a physical point of view the problem becomes

clear when recalling that the centrifugal potential arises as a part of the kinetic energy and

hence will always falls off faster than the Coulomb potential. Thus, when seeking asymptotic

solutions of the wave equation only to the first order in the Coulomb potentials the effect of the

centrifugal terms (and further terms) is completely neglected. This is a decisive difference to

the treatment of the bound-continuum states in the preceding section, because the centrifugal

force on the bound electron is exactly taken into account, as seen from the ansatz Eq. (9.140),

when the continuum electron is well separated from the residual ion.

The treatment of two electrons bound to a structureless core with a charge Z employs the

same arguments of the preceding section. In brief, in analogy to Eq. (9.142), one makes for

the wave function ψasy(ra, rb) of two electrons the ansatz

ψasy(ra, rb) = e−λa ra−λbrb+ϕ(ra,rb). (9.164)

Inserting this ansatz in the Schrödinger equation and neglecting terms that fall off asymp-

totically faster than the Coulomb potentials one obtains determining equations for λa/b and

ϕ(ra, rb). The resulting form of the wave function ψasy(ra, rb) is

ψasy(ra, rb) = NasyA(r̂a, r̂b) rZ/λa−1
a r

Z/λb−1
b{[

rab − F (λar̂a − λbr̂b)
]
· (ra − rb)

}F

e−λara−λbrb ,
(9.165)

where Nasy is a normalization factor and

F−1 = |λar̂a − λbr̂b| . (9.166)

The angular functionA(r̂a, r̂b) remains undetermined. At a given total energy E, the relation

E = −λ2
b/2− λ2

a/2 applies.

9.9 Partial-wave decomposition of three-body wave
functions

Expanding wave functions in terms of partial waves is one of the most widely used methods

in quantum mechanics. In particular, for systems with a rotational symmetry an expansion in

terms of spherical harmonics is very effective. The method and its features are best illustrated

for the one-particle case.
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9.9.1 Expansion of Coulomb wave functions in spherical harmonics

Let us consider the scattering of one particle with charge Z1 from the Coulomb field of a

second charge Z2. In spherical coordinates the relative motion along the radial variable r is

governed by the Schrödinger equation (cf. 7.12)[
− 1

2μm

(
r−2∂rr

2∂r − r−2L2
)

+
Z1Z2

r
− E

]
ψ = 0, (9.167)

where μm is the reduced mass and L2 is the orbital angular momentum. Expanding ψ in the

form

ψ(r,k) = Nψr−1
∞∑

l=0

Fl(k, r)
(

4π

2l + 1

) l∑
m=−l

Y ∗
lm(k̂)Ylm(r̂),

= Nψr−1
∞∑

l=0

Fl(k, r)Pl(k̂ · r̂), (9.168)

where Nψ is a normalization constant and k is the wave vector conjugate to r. The expan-

sion coefficients Fl(k, r) are determined by inserting the ansatz (9.168) into the Schrödinger

equation (9.168) which yields[
∂2

r + k2 − l(l + 1) r−2 − 2αck

r

]
Fl(k, r) = 0, (9.169)

where αc = μmZ1Z2/k is the Sommerfeld parameter. Making the ansatz

Fl(k, r) = eikr (kr)l+1 F̄l(ξ), (9.170)

where ξ = −2ikr and inserting it in (9.169) we obtain the Kummer-Laplace differential

equation (2.50) (page14)[
ξ∂2

ξ + (2l + 2− ξ)∂ξ − (l + 1 + iαc)
]
F̄l(ξ) = 0. (9.171)

Therefore, the solution which is regular at r = 0 reads

F̄l = nl 1F1(l + 1 + iαc, 2l + 2, ξ), (9.172)

where nl is an integration constant. Inserting this equation in (9.170) we conclude that the

regular spherical Coulomb wave function has the (large r) asymptotic behaviour

Fl(k, r) r→∞−→ nl
(2l + 1)!

2l

eπαc/2+iσl

Γ(l + 1 + iαc)
sin (kr − lπ/2− αc ln(2kr) + σl) .

(9.173)
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The quantity

σl = arg Γ(l + 1 + iαc)

is the Coulomb phase shift and hence the Coulomb scattering (S-)matrix element Sl(k) is

given by

Sl(k) = e2iσl =
Γ(l + 1 + iαc)
Γ(l + 1− iαc)

.

Using Eqs. (9.173, 9.170, 9.168) we obtain the Coulomb function in the following partial

wave representation

ψ(r,k) = (2π)−3/2(kr)−1
∞∑

l=0

(2l + 1)il eiσl Fl(k, r) Pl(k̂ · r̂). (9.174)

The normalization has been determined by utilizing the orthogonality properties of the Le-

gendre polynomials. As to be expected the expression (9.174) reduces to the well-known

partial wave decomposition of the plane wave in the limit αc → 0, i. e.

ψ(r,k)
∣∣∣
αc→0

−→ (2π)−3/2
∞∑

l=0

(2l + 1)iljl(kr)Pl(k̂ · r̂), (9.175)

where jl(kr) is a spherical Bessel function.

9.9.2 Partial wave expansion of approximate three-body wave functions

Comparing the derivation of the two-body Coulomb wave function using the method of par-

tial wave decomposition with the derivation in parabolic coordinates (section 2.3.2), it seems

that the partial wave approach is more complicated and does not yield any further significant

insight. In addition, as the Coulomb potential drops off very slowly the partial wave expan-

sion of the scattering amplitude is expected to converge slowly (if at all). Nonetheless, the

partial-wave decomposition method is useful when the potential contains a short-range part

or when questions are addressed that concern the symmetry and the properties of excitation

processes, such as the presence of selection rules. In fact in chapter 5 we have demonstrated

how the selection rules for photoexcitation processes are derived using rotational symmetry

properties. More importantly we have seen in section 5.4 (page 58) that this approach can

be utilized to many-electron systems which is of great importance from a theoretical and ex-

perimental point of view (see also [239, 240] and references therein). The aim of this section
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is therefore to explore the possibility of expanding interacting three-body systems in partial

waves.

The partial wave expansion in spherical harmonics is best suited for systems with a central

isotropic potential force, as clearly seen from the derivation of the partial wave decomposition

of the Coulomb wave function (9.174). Therefore, one may expect serious obstacles when

carrying over the analysis of the preceding section to N correlated particle systems, because

in this case, for a single particle, there will be more than one force center, even though the

overall rotation symmetry is maintained.

In this section we inspect the possibility of expanding in partial waves the three-body wave

functions we have derived previously, such as the 3C and the DS3C wave functions. These

wave functions have the structure

Ψ = ψ−
ka

(ra)ψ−
kb

(rb)F−
kab

(ra − rb), (9.176)

where the function ψ−
kj

(rj) = Nψeikj ·rj
1F1(iαj , 1,−i[kjrj + kj · rj ]), (i = a, b) is a two-

body Coulomb wave as it occurs for example in (9.45). As demonstrated by Eq. (9.174) the

function ψ−
kj

(rj), i = a, b can be expanded in terms of partial waves using the radial functions

fl(k, r)

ψ−
k =

∑
l

fl(k, r)Pl(k̂ · r̂),

=
∑
l,m

fl(k, r)C∗
lm(k̂)Clm(r̂). (9.177)

To simplify notation we introduced spherical harmonics normalized such that

Clm(r̂) =

√
4π

2l + 1
Ylm(r̂). (9.178)

The (correlation) function F−
kab

(ra − rb) in Eq. (9.176) that depends on the interelectronic

coordinate can be formally expanded as

F−
kab

(ra − rb) =
∑
l,m

gl(kab, rab)C∗
lm(k̂ab)Clm(r̂ab). (9.179)

The key point is that the function gl(kab, rab) depends only on the body-fixed coordinate

rab = |ra− rb| and carries therefore no total angular momentum. The factor Clm(r̂ab) can be

expressed as a sum over bipolar harmonics [236]

Clm(r̂ab) =
l∑

λ=0

clλ r−l
ab rλ

a rl−λ
b B

λ (l−λ)
l m (r̂a, r̂b), (9.180)
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where the coefficients cl λ are given by

cl λ = (−)l λ

√
(2l)!

(2l − 2λ)!(2λ)!
, (9.181)

and the bipolar harmonics are obtained from the tensor product of two spherical harmonics,

namely

B
λ (l−λ)
l m (r̂a, r̂b) =

∑
ν

〈λν (l − λ)(m− ν)|lm〉Cλν(r̂a)C(l−λ) (m−ν)(r̂b). (9.182)

A formal expansion in partial waves of the three-body wave function Ψ is obtained upon

inserting Eqs. (9.177, 9.179, 9.180) into Eq. (9.176) which leads to the series expansion

Ψ =
∑

l1,l2,l,λ

fl1(ka, ra) fl2(kb, rb) gl(kab, rab)∑
m1,m2,m

cl λ r−l
ab rλ

a rl−λ
b C∗

l1 m1
(k̂a) C∗

l2 m2
(k̂b)

C∗
l m(k̂ab) Cl1 m1(r̂a) Cl2 m2(r̂b)B

λ (l−λ)
l m (r̂a, r̂b). (9.183)

The next step is then to expand the expression

X := Cl1 m1(r̂a) Cl2 m2(r̂b)B
λ (l−λ)
l m (r̂a, r̂b) (9.184)

in terms of eigenfunctions of the total angular momentum. To this end we use the definition

of the bipolar harmonics and deduce the coupling relation

Cl1 m1(r̂a) Cλ ν(r̂a) =
∑

L1 M1

(−1)M1(2L1 + 1)
(

l1 λ L1

m1 ν −M1

)
(

l1 λ L1

0 0 0

)
CL1 M1(r̂a).

(9.185)

Likewise, we write

Cl2 m2(r̂b) C(l−λ) (m−ν)(r̂b) =
∑

L2 M2

(−1)M2(2L2 + 1)
(

l2 (l − λ) L2

m2 (m− ν) −M2

)
(

l2 (l − λ) L2

0 0 0

)
CL2 M2(r̂b).

(9.186)



158 9 The three-body Coulomb system

With these relations we derive for the function X (given by Eq. (9.184)) the expression

X =
∑

L1 M1 L2 M2 ν

〈λν (l − λ)(m− ν)|lm〉 (−)M1+M2(2L1 + 1)(2L2 + 1)(
l1 λ L1

m1 ν −M1

)(
l1 λ L1

0 0 0

)
(

l2 (l − λ) L2

m2 (m− ν) −M2

)(
l2 (l − λ) L2

0 0 0

)
CL1 M1(r̂a)CL2 M2(r̂b).

(9.187)

The spherical harmonics in Eq. (9.187) depending on the orbital angular momenta L1 and L2

are coupled to the total angular momentum L by virtue of the equation

CL1 M1(r̂a)CL2 M2(r̂b) =
∑
L M

〈L1M1 L2M2|LM〉BL1L2
LM (r̂a, r̂b). (9.188)

Inserting this relation in Eq. (9.187) and performing the sums over ν, M1 and M2 (see [237]

3.21) we derive the relation

X =
∑

L1 L2 L

(−)L+l+m
√

(2l + 1)(2L + 1) (2L1 + 1)(2L2 + 1)(
l1 λ L1

0 0 0

)(
l2 (l − λ) L2

0 0 0

)
BL1L2

LM (r̂a, r̂b)∑
l12

(2l12 + 1)
(

l1 l2 l12
m1 m2 −(m1 + m2)

)(
l12 l L

−(m1 + m2) −m M

)
⎧⎨⎩ l1 l2 l12

λ (l − λ) l
L1 L2 L

⎫⎬⎭ .

(9.189)
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Substituting Eq. (9.189) into Eq. (9.183) we obtain the partial wave expansion of the wave

function Ψ

Ψ =
∑

l1 m1 l2 m2
l m λ

L1 L2 L M l12

fl1(ka, ra) fl2(kb, rb) g1(kab, rab)

C∗
l1 m1

(k̂a) C∗
l2 m2

(k̂b) C∗
l m(k̂ab)

clλ r−l
ab rλ

a r
(l−λ)
b

(−)L+l+m
√

(2l + 1)(2L + 1) (2L1 + 1)(2L2 + 1)(2l12 + 1)(
l1 λ L1

0 0 0

)(
l2 (l − λ) L2

0 0 0

)
(

l1 l2 l12
m1 m2 −(m1 + m2)

)(
l12 l L

−(m1 + m2) −m M

)
⎧⎨⎩ l1 l2 l12

λ (l − λ) l
L1 L2 L

⎫⎬⎭BL1L2
LM (r̂a, r̂b).

(9.190)

To perform the sums over m1, m2 and m we consider the quantities

S =
∑

m1 m2

(
l1 l2 l12
m1 m2 −m12

)
Cl1m1(k̂a)Cl2m2(k̂b),

U =
(−)l1−l2+m12

√
2l12 + 1

(
l12 l L
−m12 −m M

)
Bl1l2

l12m12
(k̂a, k̂b),

S′ =
∑

m12 m

(
l12 l L
−m12 −m M

)
Clm(k̂ab) Bl1l2

l12m12
(k̂a, k̂b). (9.191)

Using Eq. (9.180) we deduce for the function S′

S′ =
∑

k

clk k−l
ab kk

a k
(l−k)
b S′′,

S′′ =
∑

m12 m ν

〈kν (l − k)(m− ν)|lm〉
(

l12 l L
−m12 −m M

)
Ckν(k̂a)C(l−k) (m−ν)(k̂b)Bl1l2

l12m12
(k̂a, k̂b),

S′′ =
∑

m1 m2 m12 m

(
l12 l L
−m12 −m M

)
〈l1m1l2m2|l12m12〉

Cl1m1(k̂a) Cl2m2(k̂b) B
k (l−k)
lm (k̂a, k̂b).

(9.192)
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For the factor

Cl1m1(k̂a)Cl2m2(k̂b)B
k (l−k)
lm (k̂a, k̂b)

that appears in Eq. (9.192) we employ the result (9.189) that we derived previously for X .

This yields the expression

S′′ =
∑

K1K2

(−)L+M+l+l1−l2

√
(2l + 1)(2l12 + 1)

2L + 1
(2K1 + 1)(2K2 + 1)(

l1 k K1

0 0 0

)(
l2 (l − k) K2

0 0 0

)
⎧⎨⎩ l1 l2 l12

k (l − k) l
K1 K2 L

⎫⎬⎭BK1K2
LM (k̂a, k̂b). (9.193)

With this equation we conclude that three-body wave functions that can be written as a product

of single particle wave functions and wave functions depending on the relative distance can

be written in the most general form

Ψ =
∑

l1 l2 l12 λ l k L1 L2 K1 K2 L M

fl1(ka, ra) fl2(kb, rb) gl(kab, rab)

(kabrab)−l kk
a rλ

a k
(l−k)
b r

(l−λ)
b

(2l + 1)(2l12 + 1)(2L1 + 1)(2L2 + 1)(2K1 + 1)(2K2 + 1)(
l1 λ L1

0 0 0

)(
l1 k K1

0 0 0

)
(

l2 (l − λ) L2

0 0 0

)(
l2 (l − k) K2

0 0 0

)
⎧⎨⎩ l1 l2 l12

λ (l − λ) l
L1 L2 L

⎫⎬⎭
⎧⎨⎩ l1 l2 l12

l2 (l − k) l
K1 K2 L

⎫⎬⎭
BK1K2

LM (k̂a, k̂b) BL1L2
LM (r̂a, r̂b).

(9.194)

9.9.3 Three-body S states

For S states, i.e. for L = M = 0 the 9− j symbol reduces to⎧⎨⎩ l1 l2 l12
λ (l − λ) l
L1 L2 0

⎫⎬⎭ =
(−)l2+λ+l+L1δL1L2δl12l√

(2l + 1)(2L1 + 1)

{
l1 l2 l

l − λ λ L1

}
.

(9.195)
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Furthermore, the bipolar harmonic simplifies to

BL1L1
00 (r̂a, r̂b) =

∑
m

〈L1mL1 −m|00〉 CL1m(r̂a) CL1−m(r̂b),

=
∑
m

(−)L1−m

√
2L1 + 1

CL1m(r̂a) CL1−m(r̂b),

=
(−)L1

√
2L1 + 1

PL1(r̂a, r̂b). (9.196)

With these simplifications we obtain for the wave function Ψ the expression

Ψ =
∑

l1 l2 l λ k L1 K1

fl1(ka, ra) fl2(kb, rb) gl(kab, rab)

(kabrab)−l kk
a rλ

a k
(l−k)
b r

(l−λ)
b

(−)λ+k (2l + 1)(2L1 + 1)(2K1 + 1)(
l1 λ L1

0 0 0

)(
l1 k K1

0 0 0

)
(

l2 (l − λ) L1

0 0 0

)(
l2 (l − k) K1

0 0 0

)
{

l1 l2 l
(l − λ) λ L1

}{
l1 l2 l

(l − k) k K1

}
PK1(k̂a · k̂b) PL1(r̂a · r̂b).

(9.197)

9.9.4 Partial-wave expansion of two-center Coulomb functions

Having determined the formal structure of the partial wave decomposition for three-body wave

functions we turn now to the actual determination of the radially dependent expansion coef-

ficient functions. For the case of one charged particle moving in a central Coulomb field we

already derived the explicit expression (9.174). Thus, it remains the task to determine a sim-

ilar expansion for a Coulomb particle in a two-center potential. This situation is in fact the

generic case for many-electron systems whereas Eq. (9.174) is valid only for two charged par-

ticle systems. In this section we consider only two-center Coulomb waves. To this end let us
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inspect the function

fc(K, ρr − r)
|ρr − r| = 1F1(−iα, 1, i[K|ρr − r|+ K · (ρr − r)]), (9.198)

=
1

Γ(−iα)Γ(1 + iα)|ρr − r|

∫ 1

0

dt t−iα−1(1− t)iα

× exp{it[K|ρr − r|+ K · (ρr − r)]}.

(9.199)

Equation (9.199) follows from the integral representation of the hypergeometric function

1F1(a, b, z) [99, 139]. Now we convert |ρr − r| in the exponent of Eq. (9.199) into a vec-

tor form by using the formula

e−Λ|ρr−r|

|ρr − r| =
1

2π2

∫
d3q

eiq·(ρr−r)

q2 + Λ2
. (9.200)

In the following calculations we introduce the convergence factor λ1 and use the abbreviation

Λ = λ1 − itK. (9.201)

The final result is achieved by performing the limit λ1 → 0+.

Using the relation (9.200) on can write Eq. (9.199) as

fc(K, ρr − r)
|ρr − r| =

1
2π2Γ(−iα)Γ(1 + iα)

∫ 1

0

dt t−iα−1 (1− t)iα I(t), (9.202)

where the function I is expressed as the three-dimensional integral

I(t) =
∫

d3q
ei(q+tK)·ρr−i(q+tK)·r

q2 + Λ2
. (9.203)

By introducing the substitution

Q = q + tK

the function I is transformed into the form

I(t) =
∫

d3Q
eiQ·ρr e−iQ·r

(Q− tK)2 + Λ2
. (9.204)
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For the plane waves in this expression we employ the partial wave expansion (9.175) and

conclude that

fc(K, ρr − r)
|ρr − r| =

8
Γ(−iα)Γ(1 + iα)

∑
λ μ l m

iλ−l Yλμ(ρ̂r) Ylm(r̂)

∫ 1

0

dt t−iα−1 (1− t)iα∫ ∞

0

dQ Q2 jλ(Qρr
) jl(Qr)∫

d2Q̂
Y ∗

λμ(Q̂) Y ∗
lm(Q̂)

Q2 + t2K2 + Λ2 − 2tQ ·K .

(9.205)

In this expression the product of spherical harmonics Y ∗
λμ(Q̂)Y ∗

lm(Q̂) can be simplified using

the relation

Y ∗
λμ(Q̂)Y ∗

lm(Q̂) =
∑
L

∑
M

(−1)λ−l

[
(2λ + 1)(2l + 1)

4π

]1/2

×
(

l λ L
0 0 0

)
×〈lλmμ|LM〉 Y ∗

LM (Q̂).

(9.206)

Furthermore, we couple Y ∗
λμ(ρ̂r) and Y ∗

lm(r̂) to obtain the bipolar harmonics YLM
λl (ρ̂r, r̂).

This is done via the tensor product (see appendix A.1.2)

YLM
λl (ρ̂r, r̂) =

∑
m μ

〈lλmμ|LM〉 Y ∗
λμ(ρ̂r) Y ∗

lm(r̂).
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Using the above relations we can express fc(K,ρr−r)
|ρr−r| in terms of the bipolar harmonics as

fc(K, ρr − r)
|ρr − r| =

8√
4πΓ(−iα)Γ(1 + iα)

∑
l λ L M

il−λ [(2λ + 1)(2l + 1)]1/2

(
l λ L
0 0 0

)
YLM

λl (ρ̂r, r̂)∫ 1

0

dt t−iα−1 (1− t)iα∫ ∞

0

dQ Q2 jλ(Qρr
) jl(Qr)∫ 1

−1

du

Q2 + t2K2 + Λ2 − 2tQ K u∫ 2π

0

dϕ Y ∗
LM (Q̂).

(9.207)

Here we choose the quantization axis such that Q̂ ‖ K̂ and introduce the variable u =

cos(θQ). Noting that

Y ∗
LM (Q̂) = (−1)M

[
(2L + 1)

4π

(L−M)!
(L + M)!

]1/2

PM
L (u) e−imϕ (9.208)

we evaluate one of the integral in Eq. (9.207) as∫ 2π

0

dϕ Y ∗
LM (Q̂) = 2π Y ∗

L0(Q̂) δM0 =
√

π(2L + 1) PL(u). (9.209)

Therefore, Eq. (9.207) can now be written in the form

fc

|ρr − r| =
∑
L λ l

il−λ [(2λ + 1)(2l + 1)(2L + 1)]1/2

(
l λ L
0 0 0

)
YL0

λl (ρ̂r, r̂)FL
λl(ρr, r, K),

(9.210)

where the functions FL
λl(ρr, r, K) are defined as

FL
λl(ρr, r, K) =

4
Γ(−iα)Γ(1 + iα)

∫ 1

0

dt t−iα−1 (1− t)iα∫ ∞

0

dQ Q2 jλ(Qρr
) jl(Qr)∫ 1

−1

du PL(u)
Q2 + t2K2 + Λ2 − 2tQ K u

.

(9.211)
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The integration over the t variable can be performed upon the reformulation

Q2 + t2K2 + Λ2 − 2tQ K u = Q2 + λ2
1 − 2t(Q + iλ1) K u,

which leads to the equation

FL
λl(ρr, r, K) = 4

∫ ∞

0

dQ Q2 jλ(Qρr
) jl(Qr)

Q2 + λ2
1∫ 1

−1

du PL(u)
Γ(−iα) Γ(1 + iα)∫ 1

0

dt t−iα−1 (1− t)iα

1− 2t K u
Q−iλ1

. (9.212)

The t integration is readily performed by introducing the variables

b = −iα, c = a = 1, and z =
2K u

Q− iλ1
. (9.213)

From the integral representation of the hypergeometric function

1
Γ(−iα) Γ(1 + iα)

∫ 1

0

dt t−iα−1 (1− t)iα

1− t z
= 2F1(1,−iα, 1, z) = (1− z)iα

(9.214)

we then deduce the relation for FL
λl

FL
λl(ρr, r, K) = 4

∫ ∞

0

dQ Q2 jλ(Qρr
) jl(Qr)

Q2 + λ2
1∫ 1

−1

du PL(u)
(

1− 2Ku

Q− iλ1

)iα

. (9.215)

Now let us examine the integral

I
(α)
L (z) :=

∫ 1

−1

du PL(u) (1− z u)iα .

For PL(u) the following relation

PL(u) =
1

2L L!
DL

[
(u2 − 1)L

]
applies. Therefore, the integral I

(α)
L (z) can be evaluated by integrating L times by parts. This

leads us to the expression

I
(α)
L (z) =

1
2L L!

⎧⎪⎨⎪⎩
L−1∑
j=0

zj (1− zu)iα−j Γ(iα + 1)
Γ(iα + 1− j)

DL−j−1
[
(u2 − 1)L

] ∣∣∣∣∣∣
1

−1

+
zL Γ(iα + 1)
Γ(iα + 1− L)

∫ 1

−1

du (1− zu)iα−L (u2 − 1)L

}
.

(9.216)
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Making use of the equation

DM [(u2 − 1)]L
∣∣1
−1

= DM (u− 1)L (u + 1)L
∣∣1
−1

, (9.217)

=
M∑

k=0

(
M
k

)
Dk(u− 1)L DM−k(u + 1)L

∣∣∣∣∣
1

−1

(9.218)

we obtain the following relation

DM [(u2 − 1)]L
∣∣1
−1

=
M∑

k=0

(
M
k

)
L!

(L− k)!
(u− 1)L−k

L!
(L + k −M)!

(u + 1)L+k−M

∣∣∣∣1
−1

= 0, if M < L.

(9.219)

Thus, the integral I
(α)
L (z) has the form

I
(α)
L (z) =

zL Γ(iα + 1)
2L L! Γ(iα + 1− L)

∫ 1

−1

du (u− 1)L (u + 1)L (1− zu)iα−L.

(9.220)

Shifting the variable according to

u = 1− 2t→ u− 1 = −2t, u + 1 = 2(1− t)

we obtain

I
(α)
L (z) =

zL Γ(iα + 1) 2L+1

Γ(L + 1) Γ(iα + 1− L)

∫ 1

0

dt tL (1− t)L (1− z + 2zt)iα−L.

(9.221)

The next step consists of introducing the abbreviations

b = L + 1, c = 2L + 2, a = L− iα.

Recalling the integral representation (9.214) of the hypergeometric function 2F1(a, b, c, z)

and comparing with (9.220) we conclude that

I
(α)
L (z) = 2L+1

(
z

1− z

)L (1− z)iα Γ(iα + 1) Γ(L + 1)
Γ(iα + 1− L) Γ(2L + 2)

× 2F1

(
L− iα, L + 1, 2L + 2,

−2z

1− z

)
.

(9.222)
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If desired, this expression can be further simplified by making use of the fact that the hyper-

geometric function, occurring in (9.222), is related to the associated Legendre function of the

second kind [238] Qμ
ν (z) where

ν = L, μ = −1− iα, and
2

1− x
=
−2z

1− z
⇒ 1− x =

1− z

−z
= 1− 1

z
⇒ x = 1/z.

(9.223)

Therefore, the integral I
(α)
L (z) is expressible in terms of the associated Legendre functions of

the second kind. The result is

I
(α)
L (z) =

(
z

1− z

)L (1− z)iα Γ(iα + 1)2
Γ(iα + 1− L) Γ(L− iα)

(
1 + z

z

) 1+iα
2

(
1− z

z

)L+1− 1+iα
2

e(1+iα)iπ Q−1−iα
L (1/z).

(9.224)

This expression is further simplified to yield

I
(α)
L (z) =

(−1)L+1 2
Γ(−iα) z

(1− z2)iα/2+1/z e−απ Q−1−iα
L (1/z). (9.225)

Noting that the relation

(2L + 1) Q−1−iα
L (1/z)

√
1
z2
− 1 = Q−iα

L+1 −Q−iα
L−1

(9.226)

applies, we conclude that the value of the integral I
(α)
L (z) can be written as

I
(α)
L (z) =

2(−1)L+1 (1− z2)iα/2 e−απ

Γ(−iα)
[
Q−iα

L+1(1/z)−Q−iα
L−1(1/z)

]
.

(9.227)

With this expression for I
(α)
L (z) we end up with the final result for FL

λl(ρr, r, K), namely

FL
λl(ρr, r, K) = 4

∫ ∞

0

dQ Q2

Q2 + λ2
1

jλ(Qρr
) jl(Qr) Iα

L

(
2K

Q− iλ1

)
.

(9.228)



168 9 The three-body Coulomb system

Therefore, the object of interest, i. e. Eq. (9.207), has the following final partial wave decom-

position

fc

|ρr − r| = 4
∑
L λ l

il−λ

∫ ∞

0

dQ Q2

Q2 + λ2
1

[(2λ + 1)(2l + 1)(2L + 1)]1/2

×
(

l λ L
0 0 0

)
×YL0

λl (ρ̂r, r̂) jλ(Qρr
) jl(Qr) Iα

L

(
2K

Q− iλ1

)
.

(9.229)

The one-dimensional integral over Q has not been performed analytically yet, but it can be

performed numerically.



10 Correlated continuum states of N systems

In chapter 8 we investigated in full details a number of aspects related to the three-body

Coulomb problem. In particular, we have seen that the appropriate choice of the coordinate

system renders possible the theoretical treatment in a transparent and a direct way. The ques-

tion addressed in this chapter is, whether it is possible to extend the concepts developed for

the three-body problem to deal with the excited states of N particle systems? A quick glance

at the coordinate systems (9.13, 9.15, 9.17) (page 118) employed for the three-body problem

leads to a negative answer to this question. Leaving aside the spin-degrees of freedom, in

general, a system of interacting N particles can be treated using a center-of-mass coordinate

system which has the dimension ndim = 3N − 3. The definitions of the coordinate systems

(9.13, 9.15, 9.17) rely on the relative positions (momenta) rij (kij) between the particles. The

number of rij (or kij) is given by the number of pairs which is npairs = N(N − 1)/2. Only

for N = 3 we have npairs = ndim which makes clear the peculiarity of the three-body prob-

lem. Nevertheless, the structure of the three-body wave functions provides valuable hints on

what to expect for N particle systems. For N = 3 we were able to split approximately the

total Hamiltonian in a part [cf. Eq. (9.22)] having asymptotically oscillating eigenfunctions

[cf. Eqs. (9.22, 9.37)] that incorporate the long-range inter-particle correlation. A second part

[Eq. (9.31)] has eigenfunctions that decay exponentially [Eq. (9.35)] with distance and ac-

counts for the short-range interactions. This situation bears a resemblance of the behaviour of

a prototypical many-electron thermodynamical1 system, the interacting homogeneous electron

gas (EG) embedded in a neutralizing homogeneous background charge. In a series of funda-

mental papers Pines and co-workers [50,84] pointed out that in an interacting electron gas the

long-range part of the interelectronic Coulomb interactions is describable (quantum mechani-

1The term “thermodynamic” is used in this work for systems which have an infinitely large number of particles N
and occupying an infinitely extended volume V , while the particle density ne = N/V remains finite, i. e. the limits
apply V → ∞, N → ∞, N/V → ne.
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cally) in terms of collective fields. These fields represent organized plasma oscillations of the

electron gas. The total Hamiltonian is then written in terms of these collective modes and a

set of individual electrons that interact with one another via short-range screened Coulomb

potentials. The short-range part of the electron-electron interaction can be parameterized re-

markably well by a Yukawa-type potential (exponentially screened Coulomb potential) with

a screening length depending on the electron gas density. There is, in addition, a mixing

term that couples the individual particles to the collective modes. This mixing term can be

eliminated under certain conditions [50]. As we will see later on in the chapter this formal

analogy between the EG and finite N electron systems (N <∞) persists in the sense that the

long-range part of the interaction can be disentangled from the short-range interactions, and a

mixing term between these two types of interactions can be identified.

10.1 The interacting electron gas

A finite electronic system S with Ne electrons confined to the space volume V is expected to

reveal features akin to the EG when Ne and V increases while the density ne = Ne/V remains

finite. To clarify the analogies and the differences between the properties of S and EG it is

instructive to recall the main aspects of the EG relevant to the present work. Only a brief

introduction is given while a detailed treatment can be found elsewhere, e. g. [50, 52, 84, 85].

In the interacting homogeneous electron gas (jellium) model one considers Ne electrons

confined to a volume V and interacting via the two-particle Coulomb potentials

hee =
∑
j>i

V (rij), V (rij) =
1

|ri − rj |
. (10.1)

The complete system is neutral. The charge neutrality is guaranteed by a homogeneous back-

ground positive charge with a constant (ionic) density nion = Ne/V that acts as a constant

crystal potential. The total Hamiltonian is then

H = he + hion + he,ion, (10.2)

where the electronic part has the form

he = −1
2

Ne∑
j

Δj + hee. (10.3)
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The operator hion is the part related to the background charge and has the form

hion = lim
λi→0+

1
2

∫
d3rd3r′

nion(r)nion(r′)
|r− r′| exp(−λi|r− r′|) =

2π N2
e

λ2
i V

. (10.4)

Here λi is a convergence factor. Furthermore, the interaction of the electrons with the ionic

background is described by

he,ion = lim
λi→0+

−
Ne∑
j=1

∫
d3r

nion(r)
|r− rj |

exp(−λi|r− r′|) = −4π N2
e

λ2
i V

. (10.5)

From the preceding it is clear that the most appropriate non-interacting single particle states

labelled by the quantum numbers (wave vectors) k are the plane wave states

ξk(r) =
1√
V

eik·r. (10.6)

Assuming boundary conditions sets a quantization constraint on the wave vectors ( k =

2π(nx, ny, nz)/L, where nx,y,z ∈ Z and L3 = V ). Using this basis, we can write the

electron-electron interaction hee part in the second quantization (for clarity the spin indices

have been suppressed)

hee =
1
2

∑
k1,··· ,k4

v(k1, · · · ,k4)c+
k1

c+
k2

ck4ck3 , (10.7)

where c+
k (ck) is the operator for the creation (annihilation) of the single particle state labelled

by k. The symmetry of the particles is taken into account by the (fermionic) commutation

relations of c+
k and ck. The matrix element v(k1, · · · ,k4) of the (two-body) electron-electron

interaction V is given by

v(k1, · · · ,k4) = lim
λi→0+

∫
d3r1d

3r2
e−λi|r1−r2|

|r1 − r2|
ξ∗k1

(r1)ξ∗k2
(r2)ξk3(r1)ξk4(r2)

=
4π

V (|k1 − k2|2 + λ2
i )

δ ([k1 − k3]− [k4 − k2]) . (10.8)

With this relation Eq. (10.7) can be written as

hee =
2π

V λ2
i

∑
kk′

c+
k c+

k′ck′ck +
2π

V

∑
kk′k′′

1
k′′2 c+

k+k′′c
+
k′−k′′ck′ck,

=
2π

λ2
i V

[−Ne + NeNe] +
2π

V

∑
k,k′,k′′ �=0

1
k′′2 c+

k+k′′c
+
k′−k′′ck′ck, (10.9)

where Ne is the particle number operator. The term in (10.9) proportional to NeNe cancels

out with the two terms on the right-hand side of Eqs. (10.5, 10.4). Till this stage there were

no limitations on the number of particles. To neglect the term (10.9) that is proportional to



172 10 Correlated continuum states of N -body systems

Ne we need however to operate in the thermodynamic limit, in which case this term gives an

energy per particle E/N = −2π/(λ2
i V ) that vanishes for large V . With this restriction the

total Hamiltonian (10.2) is written in a second quantized form as a sum of single particle and

two-particle terms

H =
∑
k

k2

2
c+
k ck +

2π

V

∑
k,k′,k′′ �=0

1
k′′2 c+

k+k′′c
+
k′−k′′ck′ck,

= H0 + Wee. (10.10)

Here H0 is the (kinetic energy) Hamiltonian of the non-interacting EG (the Sommerfeld

model) which can be exactly diagonalized analytically. As a first attempt one can account

for the electronic interaction term Wee by means of perturbation theory. As clear from the

structure of (10.10) this approach is reasonable and in fact yields good results [84] when the

mean kinetic energy (or more generally the single particle energy contribution) is large as

compared to the average electron-electron energy. This is the case for an electron gas or when

the single particle confinement scatters strongly. This is for example the case for the ground

state of helium where the mean kinetic energy is considerably (roughly three times) larger

than the electron correlation energy contribution. For very slow electrons and shallow con-

fining potentials, such as in quantum dots [241] the electron-electron interaction becomes the

dominant factor and a preference to a single particle description is no more justified. Exam-

ples of the manifestations of the electron-electron interactions in this limit are for example

the predicted Wigner crystallization [242] in EG or the striking effects of correlation on the

structure of doubly excited resonance states in helium, that we discussed in section 5.6.

10.2 Excited states of N interacting electrons

From the preceding discussion it is clear that when considering N slow electrons moving in

the field of an ion (which we will do in the next section), special attention should be given

to the electron-electron interaction. Such states are realized experimentally by multiply ex-

citing or multiply ionizing atomic and molecular systems by electrons [244–249, 251–260],

photons [261] or other charged-particles [262–268]. Measurements of the cross sections for

such reactions provide a tool to test the many-body excited state and may as well shed light

on the physics of low-density electron gas. From a theoretical (numerical) point of view there

are significant differences between the conventional treatment of the EG Hamiltonian (10.9)
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and that of N slow moving electrons in the field of an ion. Most importantly, in the latter

case one has to deal with excited electronic states subject to a singular confining potential (the

Coulomb potential of the ion). The singularity problem of the confinement is absent when

considering the electrons in a harmonic trap, as usually done in the case of artificial atoms

(quantum dots). However, even with this computationally convenient confining potential only

the energetically low-lying excited states of a small number of electrons (N < 20) have been

treated full numerically [269, 270] by means of the path integral Monte-Carlo method [243],

that will be outlined briefly later on. The approach followed in this chapter is to find approx-

imate solution of the N electron state by directly analyzing the properties of the many-body

time-independent Schrödinger equation.

10.2.1 Formal development

Let us consider a system consisting of N charged particles of equal masses m and with charges

Zj , j ∈ [1, N ] subject to the Coulomb field of a residual massive charge Z with mass M and

M � m. With the assumption m/M → 0 the centre-of-mass system coincides with the

laboratory frame of reference. We seek eigensolution ΨN (r1, · · · , rN ) of the non-relativistic

time-independent Schrödinger equation of the N -body system at the energy E, i.e.⎡⎢⎣H0 +
N∑

j=1

ZZj

rj
+

N∑
i,j

j>i=1

ZiZj

rij
− E

⎤⎥⎦ ΨN (r1, · · · , rN ) = 0, (10.11)

where rj is the position vector of the particle j with respect to the residual charge Z and

rij := ri − rj . The kinetic energy operator H0 is the sum of single particle operators

H0 = −
N∑

�=1

Δ�/2m,

where Δ� is the Laplacian with respect to the coordinate r�. The energy E is chosen to be

above the complete fragmentation threshold. The N -particle state is characterized by N given

asymptotic momenta �k�, i.e. the wave function satisfies the boundary conditions

−i�∇�ΨN (r1, · · · , rN )
ΨN (r1, · · · , rN )

∣∣∣∣
r�→∞

= �k�. (10.12)

The total energy of the system E is then given by

E =
N∑

l=1

El, where El =
k2

l

2m
. (10.13)
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The structure of the three-body wave function (9.45) and the realization of the importance of

electronic correlation for the desired states indicate that all interactions in the system should

be treated equally. Therefore, we make for the wave function ΨN (r1, · · · , rN ) the following

ansatz

Ψ(r1, · · · , rN ) = NΦI(r1, · · · , rN )ΦII(r1, · · · , rN )χ(r1, · · · , rN ). (10.14)

The function ΦI incorporates the interaction (to infinite order) of the particles with the ion

in absence of the correlation, whereas ΦII describes to infinite order all isolated two-body

interactions. The function χ(r1, · · · , rN ) encompasses all higher order interactions and N is

a normalization constant.

Mathematically this means that ΦI satisfies the differential equation⎛⎝H0 +
N∑

j=1

ZZj

rj
− E

⎞⎠ΦI(r1, · · · , rN ) = 0. (10.15)

This equation is completely separable. The solution can be written in the product form

ΦI(r1, · · · , rN ) = ΦI(r1, · · · , rN )
N∏

j=1

ξj(rj), (10.16)

where ΦI(r1, · · · , rN ) describes the effect of the ionic potential. The free-motion is charac-

terized by the plane waves ξj(rj) = exp(ikj · rj) (cf. Eq. (10.6)).

Substituting (10.16) into Eq. (10.15) one concludes that the regular solution ΦI is given

by the closed form

ΦI(r1, · · · , rN ) =
N∏

j=1

ξj(rj)ϕj(rj), (10.17)

where the function ϕj(rj) is a confluent hypergeometric function

ϕj(rj) = 1F1[αj , 1,−i(kjrj + kj · rj)]. (10.18)

The independent particle solution ΦI is a good approximation for the total wave function

if |ZZj | � |ZjZi|; ∀ i, j ∈ [1, N ]. If this is the case one can treat the correlation term

perturbatively, but keeping in mind the convergence problems of the perturbation series when

dealing with infinite range potentials (cf. chapter 11).

In the next step we capture the isolated two-body correlations to infinite order. This is

done by making for ΦII the ansatz

ΦII(r1, · · · , rN ) = ΦII(r1, · · · , rN )
N∏

j=1

ξj(rj). (10.19)
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The distortion factor due the inter-particle correlations is written as a product of pair correla-

tion factors, i. e.

ΦII(r1, · · · , rN ) =
N∏

j>i=1

ϕij(rij). (10.20)

The correlation within a pair of charged particles is described by the function

ϕij(rij) = 1F1[αij , 1,−i(kijrij + kij · rij)].

Note that ϕij(rij) describes the scattering events between particles i and j to infinite or-

der. In fact the function ϕij(rij)
∏N

l=1 ξl(rl) solves for the Schrödinger Eq. (10.11) for ex-

tremely strong correlations between the particles i and particle j, i. e. |ZZl| � |ZiZj | �
|ZmZn|, ∀ l, m, n �= i, j, i.e. the relation applies(

H0 +
ZiZj

rij
− E

)
ϕij(rij)

N∏
j=1

ξj(rj) = 0. (10.21)

It is clear however that the function (10.19) does not solve for Eq. (10.11) when the correla-

tions between the particles are of comparable strength and Z = 0, i.e. in a situation similar to

the interacting EG. On the other hand from Eq. (10.21) it is readily concluded that the poten-

tial part is taken into account exactly by the function (10.19). Thus, higher order correlation

terms, which are neglected by (10.19), originate from the kinetic energy operator. Therefore,

we inspect the action of the Laplacian on the wave function ΦII , as given by Eq. (10.19)

ΔmΦII =
m−1∑
l=1

Δmϕlm

N∏
j>i

i�=l

ϕij +
N∑

n=m+1

Δmϕmn

N∏
j>i

j �=n

ϕij + Am, m ∈ [1, N ].

(10.22)

The differential operator Am is given by cross gradient terms in the following manner

Am = 2
m−1∑
l=1

[
(∇mϕlm) ·

(
N∑

n=m+1

∇mϕmn

)]
N∏

j>i

j �=n,i �=l

ϕij

+
m−1∑
l=1

⎡⎣(∇mϕlm) ·

⎛⎝ m−1∑
l �=s=1

∇mϕsm

⎞⎠⎤⎦ N∏
j>i

s �=i �=l

ϕij

+
N∑

n=m+1

⎡⎢⎣(∇mϕmn) ·

⎛⎜⎝ N∑
t=m+1
t�=n

∇mϕmt

⎞⎟⎠
⎤⎥⎦ N∏

j>i

j �=t�=n

ϕij , m ∈ [1, N ].

(10.23)



176 10 Correlated continuum states of N -body systems

As pointed out above the wave function (10.19) encompasses all multiple scattering events

within all (isolated) pairs of particles. What is left out are correlations between the pairs. To

extract a defining equation for these higher order correlations we switch off the Coulomb field

of the ion (i.e. we set Z = 0 in Eq. (10.11)) and insert the function (10.19) into the resulting

Schrödinger equation (10.11). Making use of the relation (10.22) we identify the term which

prevents complete separability to be

A =
N∑

m=1

Am, (10.24)

where the functions Am are given by Eq. (10.23). As clear from Eq. (10.23) the term Am

couples a pair of particles to all other pairs in the system. Thus, it is obvious that all the

terms in the sum (10.23) are absent for a three-body system since in this case only one pair

of interacting particle exist (recall we are considering the case Z = 0). Furthermore, Eq.

(10.22) evidences that the coupling term Am is a part of the kinetic energy operator and thus

should fall off faster than the Coulomb potential. This hints on the existence of an asymptotic

separability in the regime where Am → 0.

The above remarks apply to the case where Z = 0, i.e. in the limit of interacting electron

gas (but without exchange). When switching on the Coulomb field of the residual ion the

particles will not only interact with the ion but all pairs of particle will couple to other pairs

formed by one particle and the ion. A mathematical description of this higher order coupling

term is provided by the function χ(r1, · · · , rN ) that occurs in Eq. (10.14). A determining

equation for this function is derived upon the substitution of the expressions (10.19, 10.17) in

(10.14). Inserting this in the Schrödinger equation (10.11) yields{
H0 −

A

ΦII

−
N∑

�=1

[
(∇� ln ΦI + ∇� ln ΦII) · ∇�

+ (∇� ln ΦI) · (∇� ln ΦII)
]

+ E

}
χ(r1, · · · , rN ) = 0 . (10.25)

Rewriting χ in the form

χ(r1, · · · , rN ) =
N∏

j=1

ξ∗(rj)[1− f(r1, · · · , rN )], (10.26)

where f(r1, · · · , rN ) is a function to be determined and inserting in Eq. (10.25) we obtain an
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inhomogeneous differential equation for the determination of f (and hence χ){
H0 −

N∑
�=1

[∇�(lnΦI + ln ΦII) + ik�] · ∇�

}
f +R(1− f) = 0, (10.27)

where the inhomogeneous termR is

R :=
N∑

m=1

{
(∇m ln ΦI) · (∇m ln ΦII)

+
m−1∑
l=1

N∑
p=m+1

(∇m ln ϕlm) · (∇m ln ϕmp)

+
1
2

m−1∑
l=1

m−1∑
s �=l

(∇m ln ϕlm) · (∇m ln ϕsm)

+
1
2

N∑
n=m+1

N∑
n�=q=m+1

(∇m ln ϕmn) · (∇m ln ϕmq)

⎫⎬⎭ . (10.28)

Inspecting the structure of the function R it becomes clear that it contains the coupling terms

between all the individual N(N−1)/2 two-particle subsystems. To explore the regime where

these coupling terms are negligible we have to analyze the norm of the term R. At first we

note that

∇� ln ΦI = α�k� F�(r�), (10.29)

where the functions F�(r�) is explicitly given by

F�(r�) = 1F1 [1 + iα�, 2, −i(k� r� + k� · r�) ]
1F1 [iα�, 1, −i(k� r� + k� · r�) ]

(k̂� + r̂�) . (10.30)

Furthermore we calculate for the gradient of logarithm of ΦII the relation

∇m ln ΦII =
N∑

n=m+1

∇m ln ϕmn +
m−1∑
l=1

∇m ln ϕlm

=
N∑

n=m+1

αmnkmnFmn(rmn)−
m−1∑
l=1

αlmklmFlm(rlm).

(10.31)

Here the functions Flm(rlm) are determined by

Fij(rij) := 1F1 [1 + iαij , 2, −i(kij rij + kij · rij) ]
1F1 [iαij , 1, −i(kij rij + kij · rij) ]

(k̂ij + r̂ij) . (10.32)
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The functionR (10.28) is written in terms of the generalized functions Fij(rij), Fl(rl) as

R =
N∑

m=1

{
αmkmFm(rm) ·

[
N∑

n=m+1

αmnkmnFmn(rmn)

−
m−1∑
s=1

αsmksmFsm(rsm)

]

−
m−1∑
l=1

N∑
p=m+1

αlmαmpklmkmpFlm · Fmp

+
1
2

m−1∑
l=1

m−1∑
s �=l

αlmαsmklmksmFlm · Fsm

+
1
2

N∑
n=m+1

N∑
n�=q=m+1

αmnαmqkmnkmqFmn · Fmq

⎫⎬⎭ .

(10.33)

The properties ofR are governed by that of the generalized functions Fij(rij) and Fl(rl).

The asymptotic properties of these functions derive directly from the asymptotic expansion of

the hypergeometric functions [11, 12] which are

lim
rij→∞ |Fij(rij)| →

∣∣∣∣∣ k̂ij + r̂ij

kij · (k̂ij + r̂ij) rij

∣∣∣∣∣ + O
(
|kij rij + kij · rij |−2

)
,

lim
rj→∞ |Fj(rj)| →

∣∣∣∣∣ k̂j + r̂j

kj · (k̂j + r̂j) rj

∣∣∣∣∣ + O
(
|kj rj + kj · rj |−2

)
.

(10.34)

Since R is a sum of products of Fij and Fl the expression R is of a finite range, and the

leading order term in the asymptotic expansion ofR behaves as

lim
rij→∞
rl→∞

R → O
(
|kij rij + kij · rij |−2, |kl rl + kl · rl|−2

)
, ∀ j > i, l ∈ [1, N ].

(10.35)

From this equation we conclude that in the limit of large rj and large rkl the term R can be

neglected asymptotically. Consequently, the leading order solution of the exact wave function

of the Schrödinger equation (10.11) is

Ψ(r1, · · · , rN ) ≈ N
N∏

m>l,j=1

ξj(rj)ϕj(rj)ϕlm(rlm). (10.36)
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This wave function reduces to the wave function (9.45) which we have derived for the three-

body case and possesses the asymptotic properties (10.12) and (9.37). In fact, the above

procedure provides the mathematical foundation for the asymptotic form (9.37). From a phys-

ical point of view Eq. (10.36) states that the N particle system fragments asymptotically in

N(N − 1)/2 non-interacting pairs. The particles as such are not free because of multiple

scattering within the pairs. Furthermore, it is worth noting that, how fast the limit (10.35) is

approached is determined by the values of the momenta. For large inter-particle momenta the

asymptotic region covers a large portion of the Hilbert space, as inferred from Eq. (10.34).

10.2.2 Normalizing the N -body wave functions

In the preceding section the normalization factor N remains undetermined. As a matter of

definition N derives from a 3N -dimensional integral over the norm of the function (10.36).

For large N this procedure is inhibitable for correlated (continuum) systems. Therefore, we

resort to a different method. We require that the flux generated by the wave function (10.36)

through an asymptotic manifold defined by a constant large inter-particle separations have to

be the same as that corresponding to normalized plane-waves, i.e.

JPW = JΨ, (10.37)

where the flux generated by the plane-wave is given by

JPW = − i

2
(2π)−3N

[
N∏
l

ξ∗l (rl)∇
N∏
l

ξl(rl)−
N∏
l

ξl(rl)∇
N∏
l

ξ∗l (rl)

]
,

= (2π)−3N
N∑

l=1

kl,

(10.38)

where the total gradient ∇ :=
∑N

l=1 ∇l has been introduced. The flux associated with the

wave function (10.36) is derived by utilizing Eqs. (10.29, 10.31) and writing the total gradient
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of the wave function (10.36) as

∇Ψ := N
N∑

m=1

⎧⎪⎨⎪⎩ikmΨ + αmkmFmΨ +

⎡⎢⎣ N∑
n=m+1

αmnkmnFmn(rmn)
N∏

j>i

j �=n

ϕij

−
m−1∑
l=1

αlmklmFlm(rlm)
N∏

j>i

i�=l

ϕij

⎤⎥⎦ N∏
s=1

ξs(rs)ϕs(rs)

⎫⎪⎬⎪⎭ .

(10.39)

Here the shorthand notation

Fmn = Fmnϕmn

has been used. As far as the asymptotic flux is concerned only the first term of Eq. (10.39)

contributes, as can be concluded from Eqs. (10.30, 10.32). Making use of the asymptotic

expansion of the confluent hypergeometric function and accounting only for the leading-order

terms in the interparticle distances, the flux JΨ is inferred to be

JΨ = N 2
N∏

j=1

exp(παj)
Γ(1− iαj)Γ∗(1− iαj)

N∏
m>l=1

exp(παlm)
Γ(1− iαlm)Γ∗(1− iαlm)

N∑
n=1

kn,

(10.40)

where Γ(x) is the Gamma function. From Eqs. (10.37, 10.38, 10.40) we derive the final result

N = (2π)−3N/2
N∏

j=1,m>l=1

exp[−π(αlm + αj)/2]Γ(1− iαj)Γ(1− iαlm).

(10.41)

As to be expected, for a three-body system this normalization factor reduces to the normaliza-

tion of the wave function (9.45) that has been derived exactly on page 124.

10.2.3 The two-body cusp conditions

Since all isolated two-body interactions are correctly accounted for by the wave function

(10.36) it is to be expected that the Kato cusp conditions introduced in section 8.1.2 are satis-

fied by the wave function (10.36). To verify the validity of this statement, which ensures the
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regular behavior at the two-particle collision points, we inspect the relation[
∂ Ψ̃(r1, · · · , rN )

∂ ri

]
ri=0

= kiαiΨ(r1, · · · , ri = 0, · · · , rN ),

∀ (ri/rj)→ 0, (ri/rlm)→ 0; m > l, i �= j ∈ [1, N ] .

(10.42)

The quantity Ψ̃(r1, · · · , rN ) is the wave function Ψ(r1, · · · , rN ) averaged over a sphere of

small radius rδ � 1 around the singularity ri = 0. An equivalent condition guarantees

regularity at the coalescence points rij → 0. To analyze whether or not the wave function

(10.36) satisfies the conditions (10.42) we linearize Ψ(r1, · · · , rN ) around ri = 0 and average

over a sphere of small radius rδ � 1. This leads to the equation

Ψ̃(r1, · · · , rN ) = NΨ D(ri)
N∏

i�=j=1
l>m

ξjϕj(rj)ϕlm(rlm), εilm �= 0,

(10.43)

where NΨ is a normalization factor and the form of the function D(ri) can be calculated to be

D(ri) =
2π

4πr2
δ

∫ 1

−1

r2
δ d cos θ

[
1 + iki cos θ + αiki ri(1 + cos θ)

]
,

= 1 + αi ki ri ,

(10.44)

with cos θ = k̂i · r̂i. From Eqs. (10.44, 10.43) one concludes that[
∂ Ψ̃(r1, · · · , rN )

∂ ri

]
ri=0

= αiki NΨ

N∏
i�=j=1
l>m

ξjϕj(rj)ϕlm(rlm),

= αikiΨ(r1, · · · , ri = 0, · · · , rN ), εilm �= 0.

(10.45)

Similar considerations lead to the conclusion that the wave function (10.36) also satisfies the

Kato cusp conditions at the collision points (rij → 0). As for the case of the approximate

three-body wave function (9.45), the N -body wave function (10.36) has a power series expan-

sion around the triple collision point, a behaviour which is at variance with the Fock expansion

(8.1).

Finally, it should be remarked that the wave function (10.36) has been successfully em-

ployed for the calculations of the scattering cross section of three and four-body collisions,
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e.g. in the case of electron-impact double ionization in which case a four-particle state is

achieved in the final channel (three electrons and the residual ion) (cf. Ref. [214] and refer-

ences therein).
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In the preceding we described a stationary, non-relativistic quantum mechanical few-body

system by diagonalizing its Hamolitonian H , i.e. by solving the eigenvalue problem

H |αν〉 = λν |αν〉 ,∑
ν

|αν〉 〈αν | = . (11.1)

Physical properties of the system are then deduced from the spectrum λν . For example, ther-

modynamical properties can be obtained from the grand thermodynamical potential Ωtherm =∫ μ

−∞ dλ(λ− λν) n(λ). Here the quantity

n(λ) =
∑

ν

δ(λ− λν) (11.2)

is the density of states and μ is the chemical potential. As demonstrated in the previous two

chapters, with a growing number of particles, solving directly for the Schrödinger equation

becomes increasingly difficult numerically, and only under some special conditions and lim-

itations approximate wave functions can be found analytically. Therefore, alternative, more

effective methods and techniques are desirable. One of these methods is the Green’s func-

tion (GF) approach which is widely applied in virtually all branches of many-body theoret-

ical physics. The GF strategy acknowledges, right from the outset the complexity of the

many-body problem and hence develops a systematic and a powerful machinery for carry-

ing out approximations. Consequently, the real power and usefulness of the GF becomes

more prevalent when processes and properties in many-body compounds are addressed. The

Green’s function formalism has been developed for the treatment of systems at zero temper-

atures [52, 84, 85, 107, 279], at finite temperatures (Matsubara Green’s function [277]) and at

non-equilibrium conditions (Keldysh Green’s function [108, 278]). There exist an extensive

literature on the GF theory and its applications (e. g. [52, 84, 85, 107, 279]) here we provide

a compact overview with special attention to aspects related to interacting few-body elec-
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tronic systems and their excitations. Some selected properties and definitions of the finite-

temperature and the non-equilibrium GF methods are included in the appendices A.4 and A.5.

This chapter provides an overview of the single-particle, zero temperature GF and its use in

excitation and collision processes.

11.1 Definitions and general remarks on the Green’s
functions

The GF approach is rooted in the theory of inhomogeneous differential equations. The GF G

is introduced as a solution of a differential equation with a singular inhomogeneity (delta

function), specifically

[z −H(r)]G(r, r′, z) = δ(r− r′), (11.3)

which can be written in the representation-independent form

[z −H] G(z) = , (11.4)

where H(r) is a linear hermitian and time-independent differential operator with a spectrum

given by (11.1) and z ∈ C. If z is not an eigenvalue of H , which is the case for imaginary z

(H is hermitian), then Eq. (11.3) can be inverted to yield

G(z) = [z −H]−1;

=
∑

ν

|αν〉 〈αν |
z − λν

. (11.5)

Since λν ∈ R we conclude that G(z) is analytic in the entire complex z plane, except for the

points on the real z axis that coincide with λν . This means that the poles of G(z) indicate the

positions of the eigenvalues λν . The Green’s function and the eigenfunctions 〈 r |αν〉 satisfy

the same boundary conditions on the surface of the domain where they are defined.

If λν lies in the continuum the side limits

lim
η→0

G(r, r′, λν ± i|η|) =: G±(r, r′, λν); η ∈ R (11.6)

are defined but they are different depending on whether the real z axis is approached from

the upper or from the lower half plane of the complex z plane, which signifies that GF has a

branch cut along the real part of the z axis that coincides with the continuous spectrum. From
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Eqs. (11.6, 11.5) it follows that

G−(r, r′, z) =
[
G+(r′, r, z)

]∗ ; ⇒ �G−(r, r, z) = �G+(r, r, z),

�G−(r, r, z) = −�G+(r, r, z), (11.7)

G∗(r, r′, z) = G(r′, r, z∗); ⇒ G(r, r′, z) ∈ R, for λν �= z ∈ R. (11.8)

According to Eqs. (11.5, 11.6) we can write

G±(λ) = lim
η→0+

∑
ν

|αν〉
1

λ− λν ± iη
〈αν | .

=
∑

ν

|αν〉
{

lim
η→0+

[
λ− λν

(λ− λν)2 + η2
∓ i

η

(λ− λν)2 + η2

]}
〈αν | .

(11.9)

This equation can be simplified by means of the relations

lim
η→0+

x/(x2 + η2) = P (1/x), lim
η→0+

η/(x2 + η2) = πδ(x), (11.10)

where P stands for the principle value and we obtain

G±(λ) = P
∑

ν

|αν〉 〈αν |
λ− λν

∓ iπ
∑

ν

|αν〉 δ(λ− λν) 〈αν | . (11.11)

Comparing with Eq. (11.2) we realize that the density of states n(λ) has a simple expression

in terms of the GF (or more precisely in terms of the discontinuity of GF at the branch cut),

namely

n(λ) = ∓ 1
π
� trG±(λ),

= i
1
2π

tr
[
G+(λ)−G−(λ)

]
. (11.12)

The diagonal elements of the operator

ρ(λ) =
∑

ν

|αν〉 δ(λ− λν) 〈αν | = ∓
1
π
�G±(λ) =

i

2π

[
G+(λ)−G−(λ)

]
, (11.13)

which appear in Eq. (11.11) are a measure for the density of states per unit volume, as can be

seen from n(λ) =
∫

d3r〈r|ρ(λ)|r〉. Furthermore, the following relations are verified

∂zG(r, r′, z) = −
∑

ν

〈 r |αν〉 〈αν | r′ 〉
(z − λν)2

,

= −
∑

ν

〈 r |αν〉
z − λν

∑
ν′

〈αν′ | r′ 〉
z − λν′

∫
d3r′′ 〈αν | r′′ 〉〈 r′′ |αν′〉 ,

= −
∫

d3r′′G(r, r′′, z)G(r′′, r′, z);

∂zG(r, r, z) = −
〈
r|(z −H)−2|r

〉
< 0.

(11.14)
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Further straightforward considerations lead to the useful inequalities

�G(z) ≶ 0, for �(z) ≷ 0.

Additional relations that are useful for practical applications, are obtained upon inspecting

Eq. (11.5) and performing the following operations

G(z) =
∫ ∞

−∞
dλ

1
z − λ

∑
ν

|αν〉 δ(λ− λν) 〈αν |,

=
∫ ∞

−∞
dλ

ρ(λ)
z − λ

= ∓ 1
π

∫ ∞

−∞
dλ
�G±(λ)
z − λ

=
i

2π

∫ ∞

−∞
dλ

[G+(λ)−G−(λ)]
z − λ

.

(11.15)

The real and the imaginary parts of the Green’s function are not independent. This is a conse-

quence of the analyticity of G(z) which imposes the Kramers-Kronig relations

�G+(z) =
1
π

P

∫ ∞

−∞

�G+(λ)
λ− z

dλ,

�G+(z) = − 1
π

P

∫ ∞

−∞

�G+(λ)
λ− z

dλ.

(11.16)

As mentioned above the GF (11.5) possesses poles at the positions of the eigenvalues λν .

The residue of G(r, r′, z) at the pole position λν is

gλν∑
g

〈 r|αν,g〉〈 αν,g|r′ 〉.

The summation runs over all degenerate eigenstates |αν,g〉 associated with the level λν . The

degeneracy gλν
is obtained from the diagonal elements of G(z), specifically

gλν
=
∫

d3rRes [G(r, r, λν)] = tr {Res [G(λν)]} .

For non-degenerate states one readily obtains

〈 r|αλν
〉〈 αλν

|r′ 〉 = Res [ G(r, r′, λν) ]1/2
. (11.17)

The phase ϕλν
of the state 〈 r|αλν

〉 is calculated from the relation

ϕλν
= −i ln

⎧⎪⎨⎪⎩ Res [G(r, 0, λν)]{
Res [G(r, r, λν)] Res [G(0, 0, λν)]

}1/2

⎫⎪⎬⎪⎭ . (11.18)

Here the phase convention ϕλν
= 0 at r = 0 has been made.
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Having introduced the essential definitions and notations of the GF method we address

now its power in treating perturbationally the coupling of the system to an external field.

11.1.1 The transition (T ) operator

Suppose that the Hamiltonian H in Eq. (11.4) consists of a solvable part H0 with a corre-

sponding Green’s operator G0(z) = (z − H0)−1 and a residual interaction V = H − H0.

From

[z −H0 − V ]G(z) = ,

G0(z) [z −H0 − V ]G(z) = G0(z), (11.19)

one obtains the Lippmann-Schwinger equation [271]

G(z) = G0(z) + G0(z)V G(z) = G0(z) + G(z)V G0(z),

= G0(z) + G0(z)V G0(z) + G0(z)V G0(z)V G0(z) + · · · . (11.20)

This integral equation can be further reformulated as

G(z) = [ −G0(z)V ]−1 G0(z),

= V −1

⎧⎪⎨⎪⎩V [ −G0(z)V ]−1︸ ︷︷ ︸
T (z)

⎫⎪⎬⎪⎭G0(z),

= V −1 {V + V [G0(z) + G0(z)V G0(z) + · · · ] V }G0(z),

= V −1 [V + V G(z)V ] G0(z). (11.21)

Therefore, the relations apply

V G(z) = T (z)G0(z), G(z)V = G0(z)T (z),

⇒ G(z) = G0(z) + G0(z)T (z)G0(z). (11.22)

In the above equations we defined the transition operator

T = V + V G(z)V = V + T (z)G0(z)V = V + V G0(z)T (z). (11.23)

One of the reasons for introducing the T operator is that it disentangles the solvable part H0

of the Hamiltonian from the residual interaction V (cf. (11.22)), i.e. T = V [ −G0(z)V ]−1.

From this relation it is clear that the practical task of calculating the matrix elements of T

consists in inverting matrices which are limited in size if V is short ranged. This favorable

feature hints on serious complications in the case of the infinite-range Coulomb potentials, a

problem which will be discussed in the next sections.
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11.1.2 The Møller and the scattering (S) operators

We examine now the continuum eigenstates |ΨE〉 of the Hamiltonian (11.19), i.e. we seek

solution of the inhomogeneous differential equation

[E −H0] |ΨE〉 = V |ΨE〉 . (11.24)

The energy E belongs to the continuum spectrum. Furthermore, we assume the solution of

the reference Hamiltonian H0 to be known, i.e. the general solution of the homogeneous part

of Eq. (11.24) is

[E −H0] |φ〉 = 0. (11.25)

We note in this context that usually H0 and V are chosen such that the energy E lies in the

continuum spectrum of both operators H0 and H = H0 + V . The general solution of (11.24)

is then readily given in terms of the resolvent G0(E)± of H0, namely∣∣Ψ±
E

〉
= |φ〉+ G±

0 (E)V
∣∣Ψ±

E

〉
. (11.26)

If E does not belong to the spectrum of H0, this equation (11.26) turns homogeneous (|φ〉 = 0

in this case)

|ΨE〉 = G0(E)V |ΨE〉 , E < 0. (11.27)

Equation (11.26) can be utilized for finding the continuum eigenstates and eigenvalues of

either H0 and/or H . In contrast, Eq. (11.27) is appropriate for deriving the discrete eigenstates

and discrete eigenvalues of H . To deduce the bound state wave functions and energies one

determines at first the eigenvalues ζ(E) ∈ R of the operator G±
0 (E)V , i.e. we solve for the

eigenvalue problem

ζ(E) |ΨE〉 = G0(E)V |ΨE〉 , E < 0. (11.28)

Decomposing |ΨE〉 and V in partial waves we obtain from (11.28) a set of determining equa-

tions for the partial wave components Ψ�(p, E) of the wave function. In momentum space

these equations read

ζ(E)Ψ�(p, E) =
∫ ∞

0

dp′ p′2
V�(p, p′)Ψ�(p′, E)

E − p′2/2
, E < 0. (11.29)

In practice the integral is replaced by a numerical sum and a matrix eigenvalue problem is

obtained that can be solved numerically for a given E. In a second step Eq. (11.29) is solved
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for different E < 0 and one finds eventually the energy E0 for which ζ(E0) = 1 applies.

The above procedure can also be interpreted as finding the bound spectrum associated with

the scaled potential V/ζ(E).

Now let us inspect more closely Eq. (11.26) which is related to the continuous spectrum

and write it in the form∣∣Ψ±
E

〉
= |φ〉+ G±

0 (E)V |φ〉+ G±
0 (E)V G±

0 (E)V |φ〉+ · · · ,

=

{
+
[

G±
0 (E) + G±

0 (E)V G±
0 (E) + · · ·

]
V

}
|φ〉 ,

=
[

+ G±(E)V
]︸ ︷︷ ︸

Ω±(E)

|φ〉 ,

=
︷ ︸︸ ︷[

+ G±
0 (E)T

]
|φ〉 .

(11.30)

The operator Ω±(E) is called the Møller operator [272]. It has the action of mapping the state

of the system |φ〉 (in the absence of the perturbation V ) onto the state |Ψ〉 in the presence

of V . The operator

S = Ω−†Ω+ (11.31)

is called the scattering operator or simply the S operator. To elucidate its physical meaning

let us assume the system to be in a state φEi
before switching on the interaction V and to go

over into the state φEf
upon the action of V . The matrix elements of Sif of the S operator

can be expressed in terms of the discontinuity of the Green’s function at the branch cut, i.e.

Sif =
〈
φEf
|S|φEi

〉
=
〈
φEf
|Ω−†Ω+|φEi

〉
,

=
〈
Ψ−

Ef
|Ψ+

Ei

〉
,

= δf,i +
〈

φEf

∣∣∣∣V [
G+(Ef )−G−(Ef )

] ∣∣∣∣Ψ+
Ei

〉
.

(11.32)

In deriving this relation we made use of the identities[
〈Ψ+

Ei
|Ψ−

Ef
〉 − 〈Ψ+

Ei
|Ψ+

Ef
〉
]∗

=
[
S∗

if − δi,f

]∗
=
[
〈Ψ+

Ei
|Ω−(Ef )− Ω+(Ef )|φEf

〉
]∗

=
{〈

Ψ+
Ei

∣∣∣∣ [G−(Ef )−G+(Ef )
]
V

∣∣∣∣φEf

〉}∗
.

(11.33)
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Using Eq. (11.11) the S matrix elements simplify to

Sfi = δf,i − i2πδ(Ef − Ei) 〈φEf
|V |Ψ+

Ei
〉,

= δf,i − i2πδ(Ef − Ei) 〈φEf
|V Ω+(Ei)|φEi

〉,

= δf,i − i2πδ(Ef − Ei) 〈φEf
|T+(Ei)|φEi

〉

= δf,i − i2πδ(Ef − Ei) T+
if (Ei),

= δf,i − i2πδ(Ef − Ei) 〈φEf
|V + V G+

0 (Ei)V

+ V G+
0 (Ei)V G+

0 (Ei)V + · · · |φEi
〉.

(11.34)

In deriving the last two equations we made use of Eqs. (11.30, 11.23) which also show that

V Ω±(z) = T±(z).

Performing similar steps we derive the equivalent expression

Sfi = δf,i − i2πδ(Ef − Ei) 〈Ψ−
Ef
|V |φEi

〉. (11.35)

Eqsuations (11.34, 11.35) illustrate the physical meaning of the S and T operators. The

state |φEi
〉 develops under the action of V into

∣∣φEf

〉
. The on-shell matrix elements of the

T operator describes this process as an infinite, coherent, sequence of multiple scattering of

|φEi
〉 from V . The first term in the Eqs. (11.34, 11.35) stands for the unscattered flux. The

first term in the multiple scattering expansion of the transition matrix elements in Eqs. (11.34)

is identified as Fermi’s golden rule.

11.1.3 Transition probabilities and cross sections

The S matrix elements Sfi or the on-shell part of Tif yield the transition probability ampli-

tude. Thus, to obtain the probability Pfi we have to evaluate |Sfi|2. For this purpose we

switch to the time domain by utilizing the relation

2πδ(Ef − Ei) =
∫ ∞

−∞
dt ei(Ef−Ei)t

and evaluating

Pfi = SfiS
∗
fi.



11.2 The Coulomb problem in momentum space 191

Upon elementary manipulations we derive for the transition rate, i. e. the transition probability

per unit time, the relation

dPfi

dt
= 2δf,i�Tfi + 2πδ(Ef − Ei)|Tfi|2, (11.36)

= 2πδ(Ef − Ei)|Tfi|2. (11.37)

This equation is valid for inelastic transitions, where δf,i = 0.

In scattering processes one encounters often the situation, where an incoming projectile

with initial velocity v0 induces (via the projectile-target interaction V ) a transition in the sys-

tem from a well prepared state (described by H0) to an infinitesimal group of final states cen-

tered around a certain level. For example, the final state of the projectile can be characterized

by the density of states d3k, centered around an asymptotically measured wave vector k. In

collision theory it is customary to normalize the transition rate for this reaction to the asymp-

totic probability flux density jp of the incoming projectile (cf. Eq. (10.38) on page 179) and

to call it the multiple differential “cross section”1 σ(k) which is determined by the equation

σ(k) :=
dPfi

dt

1
jp

d3k, (11.38)

= (2π)4
1
v0
|Tfi|2δ(Ef − Ei)d3k. (11.39)

11.2 The Coulomb problem in momentum space

Having introduced the basic tools of the Green’s function approach we turn in this section

to the derivation of the Coulomb Green’s function. For this purpose it is advantageous to

consider at first the momentum space eigenfunction of a hydrogenic system consisting of an

electron and a massive ion with charge Z.

In principle hydrogenic orbitals φ(p) in momentum space can be derived by Fourier trans-

forming directly the real-space wave functions [273]. Another approach is to utilize the O(4)

symmetry of the Coulomb potential (discussed in chapter 2) for the derivation of φ(p), as

done by Fock [5]. The connection between the O(4) symmetry and the momentum-space

wave function φ(p) is that φ(p) coincides (apart from a normalization factor) with the hy-

perspherical harmonics defined on the compact unit sphere embedded in the four dimensional

space. These functions are also referred to as the momentum space Sturmians [274,275,280].

1This definition entails that the cross section does not always have area units.
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We consider at first bound states with energy E where

E = −p2
0

2
< 0.

The result for the continuum spectrum can be inferred by analytic continuation as, e.g. done

in section 2.3.3. In momentum space the Schrödinger equation for one electron in the field of

a massive ion with charge Z has the form[
p2 + p2

0

]
φ(p)− Z

π2

∫
d3q

φ(q)
|q− p|2 = 0. (11.40)

An expression for φ(q) is conveniently derived by scaling the momenta by p0 and then embed-

ding the three-dimensional momentum space R3 in a four dimensional space R4. The (scaled)

space R3 is then projected stereographically onto the unit sphere S3 ⊂ R4 (see the illustration

in Fig. 11.1) . In what follows we denote the elements of R4 by ξ = (ξ0, �ξ) and the vectors

defining S3 by û, i.e. the vectors û are those ξ = (ξ0, �ξ) which satisfy ξ2
0 + �ξ2 = 1, where

�ξ ∈ R3 and ξ0 ∈ R. For p > p0 we project onto the upper hemisphere (cf. Fig. 11.1), whereas

for p < p0 the space R3 is projected onto the lower hemisphere of S3.

From straightforward geometric considerations we express û by its components along the

directions n̂ and p/p0 (cf. Fig. 11.1), i. e. we write

û = a n̂ + b p/p0

a2 + b2p2/p2
0 = 1; a + b = 1, (11.41)

meaning that

a =
p2 − p2

0

p2 + p2
0

, b =
2p2

0

p2 + p2
0

. (11.42)

In other words each point p/p0 in R3 is mapped onto (ξ0, �ξ) ∈ R4, where

ξ0 =
p2 − p2

0

p2 + p2
0

, �ξ =
2p0p

p2 + p2
0

. (11.43)

The element of area on the sphere is given by

d3Ω =
d3�ξ

|ξ0|
=
(

2p0

p2 + p2
0

)3

d3p, or δ(Ω− Ω′) =
(

p2 + p2
0

2p0

)3

δ(p− p′).

(11.44)

From Eq. (11.41) we conclude that the distance between two points

û =
p2 − p2

0

p2 + p2
0

n̂ +
2p0

p2 + p2
0

p, and v̂ =
q2 − p2

0

q2 + p2
0

n̂ +
2p0

q2 + p2
0

q (11.45)
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Figure 11.1: An illustration of the stereographic projection of the three-dimensional momentum
space R3 onto the three-dimensional unit sphere S3 in R4.

on the unit sphere is

|û− v̂|2 =
4p2

0

(p2 + p2
0)(q2 + p2

0)
|p− q|2 . (11.46)

With this relation for the distance (|p− q|2) and expressing the volume element in R3 in terms

of the surface area on S3 [Eq. (11.44)] we can rewrite the Schrödinger equation (11.40) in the

form [
p2 + p2

0

]2
φ(p)− Z

2p0π2

∫
d3Ωû

(q2 + p2
0)2φ(q)

|û− v̂|2 = 0. (11.47)

Making the substitution[
p2 + p2

0

]2
4p

5/2
0

φ(p) = φ̃(û),[
q2 + q2

0

]2
4p

5/2
0

φ(q) = φ̃(v̂),

(11.48)

we obtain the integral equation

φ̃(v̂) =
Z

2p0π2

∫
d3Ωû

φ(û)
|û− v̂|2 . (11.49)
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Introducing the spherical harmonics Yλlml
defined on the compact manifold S3 ⊂ R4 (and

hence the quantum number λlml are discrete) and noting that

1
4π2|û− v̂|2 =

∑
λlml

1
2λ + 2

Yλlml
(v̂)Y∗

λlml
(û) =: D(Ωû, Ωv̂), (11.50)

the eigenvalue problem Eq. (11.49) is solved by inserting (11.50) into (11.49) an exploiting

the orthogonality properties of the hyperspherical harmonics to obtain

φ(v̂) = Yλlml
(v̂). (11.51)

The eigenvalues are

p0 =
Z

λ + 1
, E = −p2

0

2
= − Z2

2(λ + 1)2
⇒ λ + 1 = n. (11.52)

The structure of the eigenfunctions (11.51) evidences explicitly the O(4) rotational symmetry

of the Coulomb problem, as discussed in chapter 22.

Equation (11.50) is a definition of the function D(Ω, Ω′) on the sphere. It is worth noting

that Eq. (11.50) has a similar form as the Green’s function of the four-dimensional Poisson

equation, namely (n = λ + 1)

D(ξ, ξ′) =
1

4π2

1
(ξ − ξ′)2

=
∑
λlml

1
2n
Yλlml

(v̂)Y∗
λlml

(û), (11.53)

−ΔD(ξ, ξ′) = δ(ξ − ξ′), (11.54)

where ξ and ξ′ are being constrained to the sphere S3.

In four dimensions a vector ξ ∈ S3 is uniquely characterized by three angles α, θ and ϕ

(for vectors off the unit sphere S3 the radius ρ is also required), where

ξ0 = cos α, �ξ = sin α (sin θ cos ϕ, sin θ sin ϕ, cos θ).

The four dimensional spherical harmonics Ynlml
(α, θ, ϕ) are related to the standard three-

dimensional spherical harmonics Ylml
(θ, ϕ) via the relation [276]

Ynlml
(α, θ, ϕ) = Rnl(α)Ylml

(θ, ϕ)

= Nnl (sinα)lCl+1
n−l−1(cosα) Ylml

(θ, ϕ),
(11.55)

2Note that the four-dimensional spherical harmonics Ynlm are eigenfunctions of the Laplace operator acting in
the domain S3. Thus, these wave functions describe a free particle moving on S3. The principal quantum number
n is in fact a (hyper) angular-momentum quantum number. This demonstrates explicitly that the origin of the l
(accidental) degeneracy in R3 has its origin in a four-dimensional rotational symmetry.
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where Cl+1
n−l−1 are the Gegenbauer polynomials [99]. The normalization constant is chosen

such that∫ π

0

dαRnl(α)Rn′l(α) sin2 α = δnn′ .

11.3 The Coulomb two-body Green’s functions

Similar to Eq. (11.40) the Green’s function G(p,p′) of the Coulomb potential in momentum

space satisfies the equation

−1
2
[
p2 + p2

0

]
G(p,p′) +

Z

2π2

∫
d3p′′ 1

|p− p′′|2 G(p′′,p′) = δ(p− p′). (11.56)

Performing for the Green’s function the steps that lead to Eqs. (11.46, 11.47, 11.48) one

transforms the Green’s function G(p,p′) to Γ(Ω, Ω′) where the function Γ(Ω, Ω′) is given by

Γ(Ω, Ω′) = − 1
2(2p0)3

(p2
0 + p2)2 G(p,p′) (p2

0 + p′2)2. (11.57)

As in the case of the wave function (cf. Eq. (11.49)) one obtains then the following integral

equation for Γ(Ω, Ω′) [7]

Γ(Ω, Ω′)− 2ν

∫
dΩ′′ D(ξ, ξ′′) Γ(Ω′′, Ω′) = δ(Ω, Ω′), (11.58)

where

ν = Z/p0

The poles of the Green’s function can be obtained by using Eq. (11.50), i.e. we constrain ξ, ξ′′

to S3. In this case we readily derive the solution of Eq. (11.58) to be

Γ(Ω, Ω′) =
∑
λlml

Yλlml
(Ω)Y∗

λlml
(Ω′)

1− ν/n
. (11.59)

From this equation we recover the (bound) spectrum as the poles of Γ(Ω, Ω′) that occur at

Z/p0 = ν = n. The energy levels are thus enumerated by n and occur at

En = −p2
0/2 = −Z2/(2n2). (11.60)

The wave functions are recovered as the residua related to these poles in the energy plane as

φ(p) =
4p

5/2
0

[p2 + p2
0]

2Ynlml
(Ω). (11.61)
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To obtain a general expression for the Green’s function we have to employ the solution

(11.53) of the Poisson equation instead of Eq. (11.50), i.e. we have to relax the condition of

constraining the variables in Eq. (11.50) to S3. This yields, as in the case of the solution of

the Poisson equation in three dimensions, a function of the form

D(ξ − ξ′) =
∑
nlml

ρn−1
<

ρn+1
>

1
2n
Ynlml

(Ω)Y∗
nlml

(Ω′), (11.62)

where ρ is the length of ξ. If |ξ| is larger (smaller) than |ξ′| then ρ> (ρ<) is the length of

|ξ| (|ξ′|). With Eq. (11.62) we deduce for Eq. (11.58) a representation in terms of a one-

dimensional integral

Γ(Ω, Ω′) = δ(Ω− Ω′) +
ν

2π2

1
(ξ − ξ′)2

+
ν2

2π2

∫ 1

0

dρ ρ−ν

(1− ρ)2 + ρ(ξ − ξ′)2
.

(11.63)

To obtain this relations the expansion has been utilized

1
(1− ρ)2 + ρ(ξ − ξ′)2

= 2π2
∞∑

n=1,lml

ρn−1

n
Ynlml

(Ω)Y∗
nlml

(Ω′),

1
1− ν/n

= 1 +
ν

n
+

ν2

n

∫ 1

0

dρ ρ−νρn−1; ∀ ν < 1.

(11.64)

From Eq. (11.63) we obtain the Schwinger expression for the Coulomb Green’s function [7]

G(p,p′, E) =
δ(p− p′)
E − T

+
1

E − T

{
− Z

2π2|p− p′|2
[
1−

−4iν

∫ 1

0

dρ
ρ−iν

f(1− ρ)2 − 4ρ

]}
1

E − T ′ .

(11.65)

In this equation the kinetic energies T and T ′ are given by

T = p2/2, T ′ = p′2/2. (11.66)

The function f has the form

f =
(p2

0 − p2)(p2
0 − p′2)

p2
0|p− p′|2 . (11.67)

The expression (11.65) is valid for bound states only (E < 0) due to the restriction iν < 0.

As Schwinger pointed out [7], this restriction is circumvented by analytic continuation. This
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is achieved by replacing the real integral over ρ in Eq. (11.65) by a contour integral. The

integration is performed along the path C that begins at ρ = 1 + i0+ with a zero phase of

ρ and then moves to the origin encircling it once and then terminates at ρ = 1 − i0+. The

Green’s function has then the general form

G(p,p′, E) =
δ(p− p′)
E − T

+
1

E − T

⎧⎨⎩ −Z

2π2|p− p′|2

⎡⎣1−

− 4iν

e2πν − 1

∫
C

dρ
ρ−iν

f(1− ρ)2 − 4ρ

⎤⎦⎫⎬⎭ 1
E − T ′ .

(11.68)

Alternative representations are obtained from this expressions upon performing partial inte-

gration yielding

G(p,p′, E) =
δ(p− p′)
E − T

+
1

E − T

⎧⎨⎩ −Z

2π2|p− p′|2

× 4
1− e2πν

∫
C

dρ ρ−iν∂ρ

⎡⎣ ρ

f(1− ρ)2 − 4ρ

⎤⎦⎫⎬⎭ 1
E − T ′ .

(11.69)

and

G(p,p′, E) =
1

E − T

⎧⎨⎩ −Z

2π2|p− p′|2

× 4if

ν(e2πν − 1)

∫
C

dρ ρ−iν∂ρ

⎡⎣ ρ(1− ρ2)
[f(1− ρ)2 − 4ρ]2

⎤⎦⎫⎬⎭ 1
E − T ′ .

(11.70)

As discussed above the Green’s function as function of the energy has poles at bound-state

energies and branch cut along the continuum spectrum of the system.

Properties of the Coulomb Green’s function

The Coulomb GF has some peculiar features. In addition to the complicated asymptotic be-

haviour due to the long-range tail of the Coulomb potentia, the Coulomb Green’s function
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does not have a well-defined on-shell limit, i.e. the limits p → ±
√

2E, p′ → ±
√

2E, or

p → p′ → ±
√

2E are not well-defined [7, 281]. As deduced from Eq. (11.23), this fact is re-

flected in a similar anomalous behaviour of the T matrix elements which are directly related to

the scattering amplitude. As demonstrated by Schwinger [7] the amplitude for the Rutherford

scattering can nevertheless be extracted from Eq. (11.70) by first removing singular factors

and then taking the on-shell limit. Later on a similar procedure has been applied when eval-

uating the (physical) on-shell T matrix elements for scattering processes involving Coulomb

interaction (see e.g. [282] and references therein).

The derivation of the above expressions for the Coulomb GF, which is due to Schwinger

[7] (see also [283]), utilizes the O(4) symmetry of the bound Coulomb system and then the

continuum spectrum is incorporated via analytical continuation. Equivalently, one can employ

the O(1, 3) (rotation plus translation) of the continuum spectrum and obtains directly the

GF [284–287]. It should be also noted that Hostler [288] has provided an alternative derivation

of the GF starting from the spectral representation (11.5) and showing that the continuum

spectrum may be integrated over, such that the sum of the discrete states is cancelled. The

expression derived by Hostler [288] can be retrieved from Eq. (11.68) upon the substitution

x = (1 + ρ)/(1− ρ).

A further approach to obtain the GF has been put forward by Okubo and Feldman [281]

who solved the integral equation (cf. 11.20)

G(p,p′, E) =
δ(p− p′)
E − T ′ +

1
E − T

∫
d3p′′ V (p,p′′)G(p′′,p′, E) (11.71)

using the integral transform method. The resulting GF is expressed in terms of a one-dimen-

sional integral

G(p,p′, E) =
δ(p− p′)
E − T ′ +

2
E − T ′

∫ ∞

0

dξ
Q(ξ, p′, E)

[ξ(p2 − p2
0) + |p− p′|2]2

, (11.72)

where the function Q is a solution of the differential equation

∂ξQ(ξ, p′, E) =
iZ√

2
Q(ξ)√

ξ(ξ + 1)E − ξT ′ . (11.73)

The solution of this equation is

Q(ξ, p′, E) =
Z

2π2

{√
ξ(ξ + 1)E − ξT ′ + ξ

√
E√

ξ(ξ + 1)E − ξT ′ − ξ
√

E

}iν

. (11.74)

Inserting (11.74) in (11.72) results in an expression for the Green’s function that is shown to

be identical [289] to the Green’s functions (11.70).
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A closed form expression of the Coulomb Green’s function can be obtained [290] by

decomposing the integrand in (11.68) in partial fraction and expressing the contour integral in

terms of hypergeometric functions. This is done as follows: in (11.68) the contour integral is

rewritten as

4iν

e2πν − 1

∫
C

dρ
ρ−iν

f(1− ρ)2 − 4ρ

=
4iν

f(f+ − f−)

∫ 1

0

dt

{
t−1−iν

1− t f+
− t−1−iν

1− t f−

}
, (11.75)

where the functions f± are defined as

f± =
(

1 +
2
f

)
∓ 2
√

1 + f

f
. (11.76)

Recalling the integral representation of the hypergeometric function 2F1(a, b, c, z) [99]

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt
tb−1(1− t)c−b−1

(1− t z)a
, �(c) > �(b) > 0, (11.77)

we can evaluate the integrals (11.75) in terms of the hypergeometric functions 2F1(a, b, c, z)

and insert them (provided �(−iν) > 0) in Eq. (11.68) to achieve a closed form expression

for G. It should be noted that this same result has been also obtained [285] by expressing

the GF in terms of Gegenbauer polynomials and utilizing the relation between the Gegen-

bauer Polynomials and the hypergeometric functions, see [289, 291–294] for further details

and references.

11.4 The off-shell T-matrix

From Eq. (11.22) it is clear that once the Green’s function is obtained the off-shell T matrix

can be derived according to the equation

G(p,p′, E) =
δ(p− p′)
E − T ′ +

T (p,p′, E)
[E − T ][E − T ′]

. (11.78)

The expressions for the Green’s function given in the previous sections can now be utilized for

the derivation of T . E.g. using Eqs. (11.75, 11.77, 11.68) we derive for the off-shell transition



200 11 Green’s function approach at zero temperatures

matrix elements under the condition that �(iν) < 0

T (p,p′, E) =
−Z

2π2|p− p′|2

{
1 +

1√
1 + f

[
2F1(1,−iν, 1− iν, f−)

− 2F1(1,−iν, 1 − iν, f+)
]}

. (11.79)

The convergence properties of this expression are readily obtained from those for the hyper-

geometric function 2F1(a, b, c, z) which converges on the entire unit circle |z| = 1.

From Eq. (11.22) we conclude that, similarly to GF, the matrix elements T (p,p′, E + iη),

1 � η ∈ R
+ possess an infinite set of simple poles for iν = n ∈ N+ associated with the

bound states of the spectrum. This follows directly from the properties of hypergeometric

functions 2F1 occurring (11.79) which have poles at [99]

lim
η→0+

{
Z√

−2(E + iη)

}
= n ∈ N

+.

11.4.1 The on-shell limit of the Coulomb T matrix elements

As illuded to above the Coulomb Green’s function does not approach a well-defined limit on

the energy shell. Due to the inter-relation between G and T it is expected that the T matrix

elements will show similar anomalous behaviour. This tendency can be explored [293, 295]

by transforming the hypergeometric functions in (11.79) according to [99]

2F1(a, b, c, z) =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

(−z)−a
2F1(a, 1− c + a, 1− b + a, z−1)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b
2F1(b, 1− c + b, 1− a + b, z−1).

(11.80)

With this relation Eq. (11.79) can be rewritten in the form

T (p,p′, E) =
−Z

2π2|p− p′|2
{
τa(p,p′, E) + τb(p,p′, E)

}
, (11.81)
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where

τa(p,p′, E) = 1− 1√
1 + f

{
iνf+

1 + iν
2F1(1, 1 + iν, 2 + iν, f+)

+ 2F1(1,−iν, 1− iν, f+)
}

,

= 1− 1√
1 + f

⎧⎨⎩1 +
∞∑

j=1

2ν2

j2 + ν2
f j
+

⎫⎬⎭ .

(11.82)

The function τb is given by

τb(p,p′, E) =
(−f+)−iν

√
1 + f

Γ(1− iν)Γ(1 + iν),

=
f−iν
+√
1 + f

πν

sinh πν
(−)−iν ,

=
f−iν
+√
1 + f

2πν

e2πν − 1
. (11.83)

To explore the on-shell limit we calculate, that near the energy shell the functions f and f±,

given by Eq. (11.67) and Eq. (11.76), are related as

f+ ≈ f/4, f∗
+ ≈ f∗/4. (11.84)

In addition, the function τa (11.82) tends to zero in the half-energy-shell limit, i. e. for p→ p0

or p′ → p0. This is inferred from the definition of f (11.67), which also tends to zero half

on-shell, so that the function τa (11.82) can be expanded in powers of f as [296]

τa =
f

2(1 + ν2)
− 3f2

2(1 + ν2)(4 + ν2)
+ O(f3). (11.85)

With the help of Eqs. (11.82, 11.83, 11.84, 11.85) we infer the behaviour of T (p,p′, E) in the

half-energy shell as well as in the on-shell limits. At first let us inspect the half-energy-shell

limit, i. e.

lim
p′→p0

T (p,p′, p2
0/2 + i0+) =

−Z

2π2|p− p0|2
2πν

e2πν − 1

[
f

4

]−iν

.

(11.86)

From a physical point of view this (half) on-shell expression should coincide with the Coulomb

scattering amplitude3 − 1
4π2 f(p̂·p̂0), which obviously does not do. To isolate the source of this

3In the (first-order) Born approximation Wentzel [297] and Oppenheimer [298] derived the Coulomb scattering
amplitude as

fB(p̂ · p̂0) =
2Z

|p − p0|2
, (11.87)
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problem we rewrite Eq. (11.86) taking advantage of the definitions of f and τb [Eqs. (11.67,

11.82)]

lim
p′→p0

T (p,p′, p2
0/2 + iη)

∣∣∣∣∣
η→0+

= lim
p′→p0

g(p)
[
− 1

4π2
f(p̂ · p̂0)

]
g(p′), (11.89)

with the off-shell factors g(pj) being defined as

g(p) =
[
p2
0 − p2 + iη

4p2
0

]−iν

Γ(1− iν) e−πν/2;

g(p′) =
[
p2
0 − p′2 + iη

4p2
0

]−iν

Γ(1− iν) e−πν/2.

(11.90)

In the on-shell limit p→ p0 these functions are singular and contain divergent phase factors.

This is readily inferred from the relation

lim
p→p0, p′→p0,

g(p0) = (4p2
0)

iν Γ(1− iν) e−iν ln η. (11.91)

Obviously these factors diverge for η → 0. This means on the other hand that the physical

on-shell Coulomb scattering amplitude and the off-shell T matrix elements are related to each

others via singular factors that account for the absence of free asymptotic states in the initial

and in the final channels in two-body Coulomb scattering. This fact has already been noted

by Schwinger [7] who suggested to incorporate these singular off-shell factors into the free

Green’s function G0.

Interestingly, in the high energy limit (p0 � 1), where conventionally the Born series

(11.20) is expected to perform well, Eq. (11.86) reduces to

lim
p′→p0

T (p,p′, p2
0/2 + iη)

∣∣∣∣∣
η→0+, p0→∞

−→ −Z

2π2|p− p0|2
e−iν ln(f/4).

(11.92)

which yielded the correct Rutherford formula for the differential cross section

dσB

dΩ
=

dσexact

dΩ
=

Z2

4p4
0 sin4(θ/2)

.

The polar angle θ is measured with respect to the incoming beam. On the other hand a number of studies [299–303]
have shown that this coincidence of the Born and the exact result is due to the fact that the exact Coulomb scattering
amplitude contains only additional phase factors

fexact(p̂ · p̂0) =
2Z

|p − p0|2
»

4p2
0

|p − p0|2
–−iν

e2iσ0 ;

σ0 = arg Γ(1 + iν).

(11.88)



11.4 The off-shell T-matrix 203

This relation follows from

lim
p0
1

2πν

e2πν − 1
→ 1. (11.93)

This means summing up the complete Born series T = V + V G0V + V G0V G0V + · · ·
produces merely a modification of the Coulomb scattering amplitude by a divergent phase

factor which is irrelevant for the evaluation of the cross section (provided the on-shell limit

is taken after performing all calculations). This highlights at the same time the danger of

dealing with the perturbation expansions for Coulomb systems, e.g. such as evaluating only

certain terms in (11.20): when Coulomb potentials are involved one has to deal with divergent

factors that sum up to a single (irrelevant) phase in the final result. Thus, despite the fact

that the first order term produces the correct cross section (cf. Eq. (11.87), a truncation of the

expansion after certain terms may well lead to a situation where the divergent terms do not

sum up correctly and hence divergent cross sections are obtained [301].
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In the preceding section we discussed the subtle features and difficulties related to the infinite-

range tail of the Coulomb potential. For “well-behaved” potentials, however, the Lippmann-

Schwinger integral equations (11.20) for T or G are powerful tools for the treatment of two-

particle systems, because the kernel K = G0V can be made square integrable1 and hence stan-

dard results of the Fredholm theory of integral equations [308] can be utilized. For three-body

problem (involving “well-behaved” potentials) the situation changes. Even though we can for-

mally define the resolvent of the three-body Schrödinger equation as G = G0+G0UG (where

U is the total potential consisting of pair interactions) two difficulties arise when attempting

to derive state vectors or evaluate the matrix elements: 1.) In contrast to the two-particle case,

for a three-body system the Lippmann-Schwinger equations for the state vectors do not have

a unique solution [306, 307]. 2.) As proved by Faddeev [304, 305] the kernel K = G0U of

the Lippmann-Schwinger integral equations is not a square integrable operator for N ≥ 3,

i.e. the norm ‖K(E)‖ =
{

tr
[
K(E)K†(E)

]}1/2
is not square integrable, even after itera-

tions. The source of this problem is the occurrence of disconnected diagrams where one of

the particles is a spectator and does not interact with the other particles. Faddeev and Wein-

berg [304, 305, 309] also addressed the question of the compactness of K and found that the

kernel K is not compact. In view of this situation Faddeev and others [304,305,309–314,318]

proposed a new formulation of the three-body problem in terms of convergent integral equa-

tions. In particular, Faddeev has shown in details that the kernel of his equations is connected

after one iteration. In fact, with certain (weak) requirements on the potential it can be shown

that the kernel is compact for all but physical values of E, which implies that the solution of

the Faddeev equations is unique at energies below the three-body breakup threshold.

1In fact the kernel K(E) = G0(E)V is not square integrable, but it can be made so by iterating the integral
equation once or by multiplying by V 1/2.
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In the next section we will outline briefly without going into the mathematical details the

main elements of the Faddeev theory.

12.1 Faddeev approach to the three-body problem

Let us consider a non-relativistic three-body system. The total potential V is a sum of pairwise

interactions Vij , i.e.

V =
∑
j>i

Vij =
∑

k

Vk. (12.1)

Here we introduced the following notation for the pair potentials

Vk = Vij , εijk �= 0; V0 ≡ 0.

Accordingly, we introduce the total transition operator T , the auxiliary operators Tj and the

transition operator tj of the pair j by the following equations

T = V + V G0T,

Tj = Vj + VjG0T, (12.2)

tj = Vj + VjG0tj , j = 1, 2, 3.

(12.3)

From these definitions it is readily verified that

T =
3∑

j=1

Tj . (12.4)

Since Vj = tj − tjG0Vj we can deduce for the operator Tj the following relations

Tj = tj − tjG0Vj + tjG0T − tjG0VjG0T,

= tj + tjG0(T − Tj),

Tj = tj + tjG0(Tk + Tl), εjkl �= 0.

(12.5)

This relation constitutes the Faddeev equations that can be written in the matrix form⎛⎝ T1

T2

T3

⎞⎠ =

⎛⎝ t1
t2
t3

⎞⎠+ [K]

⎛⎝ T1

T2

T3

⎞⎠ . (12.6)
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The kernel [K] is a matrix operator that depends on the (off-shell) two-body transition matrix

elements tj , i.e.

[K] =

⎛⎝ 0 t1 t1
t2 0 t2
t3 t3 0

⎞⎠G0. (12.7)

While this kernel seems to contain disconnected terms, any further iteration of (12.6) is free

of expressions with disconnected diagrams. A careful inspection of the kernel matrix showed

[304,305] that it is square integrable, i.e. tr
∑3

ij=1

{
[K]ij [K]†ij

}
<∞. As clear from (12.7),

the building blocks of the Faddeev equations are the off-shell two-body tj matrix elements.

The unitarity of tj ensures the unitarity of the solution T .

Since the T operators and the Green’s operator G(E) are related to each other via relation

G = G0 + G0TG0, we can write G(E) in the form

G = G0 +
3∑

j=1

Gj . (12.8)

Similar to Tj the auxiliary operators Gj are expressed in terms of the pair Green’s operators

gj = G0 + G0Vjgj (12.9)

via the relation that follows directly from (12.6)⎛⎝ G1

G2

G3

⎞⎠ =

⎛⎝ g1 −G0

g2 −G0

g3 −G0

⎞⎠+ [K̃]

⎛⎝ G1

G2

G3

⎞⎠ . (12.10)

The kernel of this matrix integral equation derives from the kernel [K̃] of (12.6) as

[K̃] = G0 [K]G−1
0 .

Having established the relations for G and T we can write equivalent relations for the state

vectors [317], in a similar way as demonstrated in the preceding chapter.

12.1.1 The Lovelace operator, Lovelace equations and AGS equations

In a three-body system a variety of interaction channels exist. For example, let us consider

the situation that one of the particles, say particle 1, to be initially decoupled2 from the other

two particles, which are bound to each other. This asymptotic three-body state we denote by

2We assume all interactions in the system to be of a finite range.
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|φα〉, where α labels all the quantum numbers needed for the characterization of the state of

the system. |φα〉 is an eigenstate of the “channel” Hamiltonian Hα, i.e.

Hα |φα〉 = [H0 + Vα] = Eα |φα〉. (12.11)

A collision of particle 1 from the bound system (23) may leave (23)∗, which labels an excited

state of the system (23). It may also lead to three unbound particles (break-up channel).

Particle 1 may as well be elastically scattered from (23) or may substitute for one of the

bound particles (rearrangement channel). We designate the three-body state achieved upon

the collision by |φβ〉 and the corresponding channel Hamiltonian by Hβ where

Hβ |φβ 〉 = [H0 + Vβ ] |φβ 〉 = Eβ |φβ 〉 . (12.12)

As in Eq. (11.30), we define channel Møller operators that select the (interacting) three-body

state that develops from (to) the asymptotic state |φα〉 ( |φβ〉) under the action of the pertur-

bation V̄α (V̄α)

|Ψ+
α 〉 = Ω+

α |φα 〉 = (1 + G+ V̄α)|φα 〉, (12.13)

|Ψ−
β 〉 = Ω−

β |φβ 〉 = (1 + G− V̄β)|φβ 〉 . (12.14)

The interaction potentials V̄α and V̄α are those parts of the total potential that are not contained

in Hα and Hβ , i.e.

V̄α = H −Hα, V̄β = H −Hβ, (12.15)

where H is the total three-body Hamiltonian.

As in the two-body case (cf. 11.31) we define the S operator as

S = Ω−†
β Ω+

α .

The matrix elements Sβ,α of the S operator provide a measure for the transition probability

from the channel α to β. Sβ,α are determined from

〈 Ψ−
β |Ψ+

α 〉 = 〈 φβ|Ω−†
β Ω+

α |φα 〉 = 〈 φβ|S|φα 〉. (12.16)

Reformulating Sβ,α according to the steps (11.32)–(11.34) we obtain the post form for the

matrix elements Sβ,α [315, 319]

〈 φβ|S|φα 〉 = δβ,α − 2 i π δ(Eβ − Eα) 〈 φβ|V̄β |Ψ+
α 〉, (12.17)
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as well as the prior form

〈 φβ |S|φα 〉 = δβ,α − 2 i π δ(Eβ − Eα) 〈 Ψ−
β |V̄α|φα 〉. (12.18)

Comparing these two relations for Sβ,α with Eqs. (11.34, 11.35) makes clear that the matrix

elements Tβα := 〈 φβ|V̄β |Ψ+
α 〉 and Tβα = 〈Ψ−

β |V̄α|φα 〉 play the role of the transition matrix

elements, where

Tβα = 〈 φβ |V̄β Ω+
α |φα 〉 = 〈 φβ |V̄β (1 + G+V̄α)|φα 〉 = 〈 φβ |U+

βα|φα 〉. (12.19)

Similarly we deduce the relations

Tβα = 〈 φβ |Ω−†
β V̄α|φα 〉 = 〈 φβ|(1 + V̄β G+) V̄α|φα 〉 = 〈 φβ|U−

βα|φα 〉. (12.20)

The two-channel operators

U+
βα = Vβ (1 + G+V̄α) = V̄β + V̄β G+

0 V̄α + V̄β G+
0 V G+

0 V̄α + · · · , (12.21)

U−
βα = (1 + V̄β G+) V̄α = V̄α + V̄β G+

0 V̄α + V̄β G+
0 V G+

0 V̄α + · · · , (12.22)

are called the Lovelace-operators [311]. From the above derivation it is evident that U+
βα and

U−
βα play the role of a two-channel transition operator.

The channel transition operators Tγ , (γ = α, β), defined as

T±
γ = Vγ + T±

γ G±
0 (E)Vγ, (12.23)

yield in combination with Eqs. (12.21, 12.22) the Faddeev-Lovelace equations

U+
βα = V̄β +

∑
γ �=α

U+
βγG+

0 T+
γ ,

U−
βα = V̄α +

∑
γ �=β

T+
γ G+

0 U−
βγ .

(12.24)

Using Eq. (12.23) the potential Vγ can be expressed in terms of Tγ , and if inserted in the

Faddeev-Lovelace equations, one obtains the so-called Faddeev-Watson multiple scattering

expansion [315]. A further variant of the Faddeev equations for the Lovelace operators (12.24)

are the so-called Alt-Grassberger-Sandhas (AGS) equations

U+
βα = (E −H0)(1− δβα) +

∑
γ �=β

T+
γ G+

0 U+
γα. (12.25)

From this equation we also obtain a multiple scattering expansion by iterating the T operator

(12.23) that occurs in (12.25) to obtain

U+
βα = (E −H0)(1− δβα) +

∑
γ �=β,γ �=α

T+
γ +

∑
γ �=β,δ �=γ

T+
γ G+

0 T+
δ G+

0 U+
δα, (12.26)
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i.e. successive T operators in the last term of this equation should be different. The AGS

equations (12.25) link the operators for the elastic U+
ββ and the rearrangement reactions U+

βα,

(β �= α). The break-up processes are also incorporated (the operator T+
γ G+

0 requires the

knowledge of U+
γα in the full Hilbert space). More details on the AGS scheme as well as on

the numerical realization of the Faddeev equations and of the various problems that arise in

this context can be found in Ref. [317].

The Faddeev approach to the three-body problem can be generalized to finite many-

particle systems. This has been done by Yakubovsky [316]. In the next section we outline

an alternative route to the four and many-body finite systems [101].

12.2 Reduction scheme of the Green’s operator of
N -particle systems

The Faddeev theory of the three-particle problem delivered the formula (12.10) for the deter-

mination of the three-body Green’s operator in terms of the reference Green’s function G0

and two-particle quantities, the off-shell two-body Green’s and transition operators gj and

tj , which are the known input in the theory. In this section we address the question of

how to generalize this scheme such that we obtain the transition and the Green’s operators

of an interacting N -body system from the solutions of the N − M body problem, where

M = 1, 2 · · · , N − 2.

For this purpose let us consider a nonrelativistic system consisting of N particles interact-

ing via pair-wise interactions vij , i. e. the total potential U (N) can be written as

U (N) =
N∑

j>i=1

vij . (12.27)

At this stage there is no need to specify constraints on the individual potentials vij , because

we are going to perform only algebraic manipulations.

The essential point of what follows is that the potential U (N) satisfies the recurrence rela-

tions

U (N) =
1

N − 2

N∑
j=1

u
(N−1)
j , (12.28)

u
(N−1)
j =

1
N − 3

N−1∑
k=1

u
(N−2)
jk , j �= k. (12.29)
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The interaction term u
(N−1)
j is the total potential of the N particle system in which only N−1

particles are interacting, while the particle labelled j is free. This means all interaction lines

to particle j are switched off. In terms of the pair potentials vmn the interaction u
(N−1)
j casts

u
(N−1)
j =

N∑
m>n=1

vmn, m �= j �= n. (12.30)

To illustrate the meaning of Eqs. (12.28, 12.29) we consider in Fig. 12.1 the interaction poten-

tial of a system consisting of six particles. According to Eqs. (12.28, 12.29) the total potential

of the six interacting particles can be linearly expanded in terms of the total potentials of

five correlated particles. In the latter potentials the number of interaction lines can be further

reduced by mapping onto the total potentials of four interacting particles (cf. Eq. (12.29)).

Figure 12.1: A pictorial representation of the total potential expansion (12.28) for six inter-
acting particles enumerated and marked by the full dots at the corners of the hexagon. The
hexagon stands for the full potential U (6) of the six correlated particles and is reduced ac-
cording to (12.28) to five pentagons. Each pentagon symbolizes the full five body potential

ũ
(5)
j =

“
u

(5)
j

”
/4 of those five particles that are at the corners of the pentagon. Particles that

reside not at a corner of a pentagon are free (disconnected).
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This recursive procedure can be repeated to reach the case of the pair-interactions. From

Fig. 12.1 it is clear that all interactions are treated on equal footing. Furthermore, the N -body

potential is reduced systematically to sums of N −M potentials with M = 1, 2, · · · , N − 2.

The total Hamiltonian can be written as

H(N) = H0 + U (N) = H0 +
1

N − 2

N∑
j=1

u
(N−1)
j .

The key question is now whether the N particle transition operator

T (N) = U (N) + U (N)G0T
(N) (12.31)

and the interacting N -body Green’s operators

G(N) = G0 + G0U
(N)G(N) (12.32)

satisfy recursion relations similar to Eq. (12.28) [in Eqs. (12.31, 12.32) we used G0(z) =

(z−H0)−1]. To answer this question we proceed as follows: Making use of the decomposition

(12.28), we write the integral equation for the transition operator as

T (N) =
N∑

j=1

T
(N−1)
j , (12.33)

T
(N−1)
j = ũ

(N−1)
j + T (N)G0ũ

(N−1)
j , j = 1, · · · , N. (12.34)

The scaled potentials ũ
(N−1)
j are defined as

ũ
(N−1)
j =

(
u

(N−1)
j

)
/(N − 2).

It should be emphasized that the (auxiliary) operators T
(N−1)
j , given by Eq. (12.34), are not

the T operators of a system in which only N −1 particles are interacting. This is evident from

the fact that on the right-hand side of Eq. (12.34) the N -particle T operator reappears.

The transition operator of the N particle system in which all interaction lines to particle j

are switched off, while the remaining N − 1 particles are interacting via the scaled potential

ũ
(N−1)
j , has the form

t
(N−1)
j = ũ

(N−1)
j + ũ

(N−1)
j G0t

(N−1)
j . (12.35)
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Using this relation we reformulate Eq. (12.34) in the following manner

T
(N−1)
j = t

(N−1)
j + t

(N−1)
j G0T

(N) − t
(N−1)
j G0

(
ũ

(N−1)
j + ũ

(N−1)
j G0T

(N)
)

,

= t
(N−1)
j + t

(N−1)
j G0

(
T (N) − T

(N−1)
j

)
,

= t
(N−1)
j + t

(N−1)
j G0

N∑
k �=j

T
(N−1)
k .

(12.36)

In matrix form this integral equation can be expressed as⎛⎜⎜⎜⎜⎜⎜⎝
T

(N−1)
1

T
(N−1)
2

...

T
(N−1)
N−1

T
(N−1)
N

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
t
(N−1)
1

t
(N−1)
2

...

t
(N−1)
N−1

t
(N−1)
N

⎞⎟⎟⎟⎟⎟⎟⎠+ [K(N−1)]

⎛⎜⎜⎜⎜⎜⎜⎝
T

(N−1)
1

T
(N−1)
2

...

T
(N−1)
N−1

T
(N−1)
N

⎞⎟⎟⎟⎟⎟⎟⎠ . (12.37)

The kernel [K(N−1)] is a matrix operator consisting of the (off shell) transition operators with

N − 1 interacting particles. It has the explicit form

[K(N−1)] =

⎛⎜⎜⎜⎜⎜⎝
0 t

(N−1)
1 t

(N−1)
1 . . . . . . t

(N−1)
1

t
(N−1)
2 0 t

(N−1)
2 . . . . . . t

(N−1)
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t
(N−1)
N−1 . . . . . . t

(N−1)
N−1 0 t

(N−1)
N−1

t
(N−1)
N . . . . . . t

(N−1)
N t

(N−1)
N 0

⎞⎟⎟⎟⎟⎟⎠G0. (12.38)

According to the scheme (12.37) the lowest order approximation to the T (N) operator of the

N interacting particles is given by

T (N) =
N∑

j=1

t
(N−1)
j . (12.39)

For the potential depicted in Fig. 12.1 the first iteration of the integral equation (12.37) is

shown diagrammatically in Fig. 12.2. From this illustration it is obvious that the lowest or-

der approximation is a sum of N elements each representing separate systems with different

interacting particles. Thus, the matrix elements of the operators t
(N−1)
j can be evaluated indi-

vidually and independent of each other, which brings about a substantial simplification in the

numerical realization.

From the defining equation of t
(N−1)
j (12.35) and from the structure of the related potential

Eq. (12.29) it is evident that the above procedure can be repeated and the operator t
(N−1)
j can
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Figure 12.2: A diagrammatic representation of Eq. (12.39) for a system consisting of six corre-
lated particles (cf. Fig. 12.1). The hexagons and the pentagons (with a specific orientation) label
the same potentials as explained in Fig. 12.1. Each of the pictures stands for a transition opera-
tor of the six-body system (the particles are labelled by straight lines). The respective transition
operator is indicated on each of the diagrams.

also be expressed in terms of the transition operators of systems in which only N −2 particles

are interacting, i.e.

t
(N−1)
j =

N−1∑
k �=j

T
(N−2)
k

and the operators T
(N−2)
k are deduced from a relation similar to Eq. (12.37) with N being

replaced by N − 1.

Now we focus on the corresponding relations for the N particle Green’s operator. Since

the T and the G operators are linked to each others via

G(N) = G0 + G0T
(N)G0
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we can deduce from the recursive scheme for the T (N) operators that the Green’s operator

G(N) can be cast in the form

G(N) = G0 +
N∑

j=1

G
(N−1)
j . (12.40)

As in the case for the transition operators T (N), the (auxiliary) operators G
(N−1)
j are related

(but not identical) to the Green’s operators g
(N−1)
j of systems in which only N − 1 particles

are correlated by virtue of ũ
(N−1)
j , more precisely⎛⎜⎜⎜⎜⎜⎜⎝

G
(N−1)
1

G
(N−1)
2

...

G
(N−1)
N−1

G
(N−1)
N

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
g
(N−1)
1 −G0

g
(N−1)
2 −G0

...

g
(N−1)
N−1 −G0

g
(N−1)
N −G0

⎞⎟⎟⎟⎟⎟⎟⎠+ [K̃(N−1)]

⎛⎜⎜⎜⎜⎜⎜⎝
G

(N−1)
1

G
(N−1)
2

...

G
(N−1)
N−1

G
(N−1)
N

⎞⎟⎟⎟⎟⎟⎟⎠ , (12.41)

where

[K̃(N−1)] = G0[K(N−1)]G−1
0 .

From Eqs. (12.37, 12.41) the following picture emerges. Assuming that the Green’s operator

of the interacting N − 1 body system is known, the Green’s operator of the N particles can

be evaluated by solving a set of N linear, coupled integral equations (namely Eqs. (12.37,

12.41)). This case we encountered in Fig. 12.2 for the first-order iteration of the operator

T (N). If, on the other hand, only the solution of the N − M problem is known, where

M = 2, · · · , N − 2, we have to perform a hierarchy of calculations starting by obtaining the

solution for the N −M + 1 problem and repeating the procedure to reach the solution of the

N -body problem. Thus, the lowest order approximation within this strategy [first iteration of

(12.41)] is schematically shown in Fig. 12.3 for N particles, where only the solution of the

two-body problem is exactly known (numerically or analytically). The first step (lower part of

Fig. 12.3) consists in constructing the three-particle Green’s function and from that the four-

particle Green’s function, going up in the hierarchy till the Green’s function of the interacting

N particle system is derived.

Figure 12.3 as well as equations (12.37, 12.41) suggest the existence of disconnected

terms. It can be shown however that any iteration of the kernels of Eqs. (12.37, 12.41) is free

of disconnected terms since the disconnected terms occur only in the off-diagonal elements of
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[KN−M ] and [K̃N−M ]. Furthermore, it is clear from Eqs. (12.37, 12.41) and from Fig. 12.3

that for N = 3 the present method reduces to the Faddeev approach.

Figure 12.3: A diagrammatic representation of the lowest order approximation to Eqs. (12.37, 12.41)
that yields the Green’s operator G(N) of N interacting particles. The total potential is labelled by the
black circle. The interactions between N − 1, N − 2, and N − 3 particles are indicated by ellipses with
different eccentricities. The particles are symbolized by the solid lines. Only those particles that cross an
ellipse are interacting. Each diagram stands for the Green’s operator (specified on top of the diagram).
The corresponding potential is indicated by the circles and/or the ellipses.
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12.3 Thermodynamics of interacting N -particle systems

Strictly speaking, finite systems do not expose phase transitions [102]. For example, in a finite

system thermodynamical quantities have naturally an upper bound and so do their fluctuations

(which grow infinite in the thermodynamic limit). Nevertheless, we expect to observe the

onset of a critical behaviour when the thermodynamic limit is approached. The traditional

theory that addresses these questions is the finite-size scaling theory (e.g. [104] and references

therein).

The incremental scheme (12.37, 12.41) outlined in the previous section for the deriva-

tion of the Green’s function G(N) of an interacting N -particle system can be utilized to deal

with thermodynamic problems in finite correlated systems. In this context it is important to

note that our Green’s function expansion (12.41) is derived for a fixed number of particles

N . Its essence is to dilute the interaction strength by successively mapping the interacting

system onto a non-interacting one. Therefore, it is appropriate to operate within the canonical

ensemble.

The canonical partition function3 can be expressed in terms of the electronic density of

states (DOS) [defined by Eq. (11.12)] as [84]

Z(β) =
∫

dE Ω(E) e−βE . (12.42)

The DOS, denoted by Ω(E), can be deduced from the imaginary part of the trace of G(N) via

[cf. Eq. (11.12)], i.e.

Ω(E) = − 1
π

tr
[
�G(N)(E)

]
.

An important feature of the recurrence scheme (12.41), and in particular of its first iteration

shown in Fig. 12.3, is that the Green’s function G(N)(E) is given as a sum of less correlated

GF’s. This is decisive for the calculation of the trace (and hence of Ω(E)), since in this case

the trace of G(N)(E) is directly linked to the sum of traces of the GF’s for systems with a

lower number of interacting particles [cf. Fig. 12.3]. This immediately leads (in a first order

approximation) to the recursion relation for the canonical partition function Z(N)

Z(N) =
N∑

j=1

Z
(N−1)
j − (N − 1)Z0, (12.43)

3For the rest of this section β denotes the inverse temperature; in the units used, the Boltzmann constant is unity.
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where Z0 is the canonical partition function of a reference system consisting of independent

particles. This can be taken as the non-interacting homogeneous electron gas described by the

Hamiltonian H0, but H0 and the associated Z0 can as well be chosen as any known reference

system. In (12.43) Z
(N−1)
j is the canonical partition function of a system containing N parti-

cles. The interaction strength in this system is however diluted by cutting all interaction lines

that connect to particle j.

Equation (12.43) that relies on the GF expansion (12.41) renders possible the study of ther-

modynamic properties of finite systems on a microscopic level. In particular, relation (12.43)

offers a tool for the investigation of the inter-relation between the thermodynamics and the

strength of correlations in a finite system. For the study of the onset of critical behaviour we

can utilize the ideas put forward by Yang and Lee [102,103]. As an example let us consider the

onset of condensation in a quantum Bose gas, the ground-state occupation number η0(N, β)

is given by

η0(N, β) = − 1
β

∂ε0Z
(N)(β)

Z(N)(β)
= − 1

β

∑N
j=1 ∂ε0Z

(N−1)
j − (N − 1)∂ε0Z0

Z(N)
,

(12.44)

where ε0 is the ground-state energy. Eq. (12.44) offers the possibility to study systematically

the influence of the inter-particle interaction strength on the onset of the critical regime. As

customary in the theory of Yang and Lee [102, 103], one may as well opt to investigate in

the complex β plane the roots of of the partition function, i. e. of Eq. (12.43). Zero points of

Z(N)(β) that approach systematically the real β axis signify a possible occurrence of critical

behaviour in the thermodynamic limit.

12.4 Incremental product expansion of the many-body
Green’s function

The Green’s operator expansion (12.41) has been derived using formal relations between the

Hamilton operator and its resolvent as well as by utilizing an exact recursive relation of the

total potential. Thus, the expansion (12.41) is formally exact. From a calculational point

of view however, the first order approximation, depicted in Fig. 12.3 is of prime interest in

particular as it allows for a direct study of the thermodynamics of finite correlated systems.
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A close look at this first order term reveals however several deficiencies, e.g. 1.) The first-

order term [shown in Fig. 12.3] does not yield the exact solution in the case where the total

potential (12.28) is separable (for example, if the potential shown in Fig. 12.1) has the form

U (N) = v12 + v34 + v56). This is clearly seen from the structure of the GF. For separable

Hamiltonians the total GF (and the state vectors) has to be a product of the GF’s (and state

vectors) of the individual separable parts. In contrast, we obtain from Fig. 12.1 an expansion

as a sum for the Green’s function (12.41). 2.) The applicability of our scheme to Coulomb

potentials will be discussed below. Here we note that the first order term of (12.41) does not

have the correct asymptotic behaviour (8.10) that results in the asymptotic separability. This

is evident from the three-particle case where, in a first-order approximation, the three-body

state vector is expressed as a sum of three two-body Coulomb states (and a free particle state).

This is at variance with the asymptotic form (8.10). To remedy this deficiency we develop in

this section a recursive product expansion scheme for the total Green’s function.

12.4.1 Expansion of the Green’s operator of uncorrelated clusters

To illustrate the idea of the product expansion let us inspect the properties of the GF of a

system consisting of N particles that are distributed between L clusters. The clusters which

are labelled by the index l contain each ml interacting particles, i.e.

L∑
l

ml = N.

We consider the case where the particles within different clusters do not interact with each

other. However within each subdivision l, the ml particles are correlated via the ml interaction

potential v
(ml)
l . The total interaction potential U (N) is then

U (N) =
L∑
l

v
(ml)
l . (12.45)

The total Hamiltonian H(N) of the system has the form

H(N) = H0 + U (N), (12.46)
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where H0 is a non-interacting operator. Now we introduce the Green’s operator Gm of a

system with the total potential
∑m

j=1 v
(mj)
j , m ∈ [1, L], i.e.⎡⎣z −H0 −

m∑
j=1

v
(mj)
j

⎤⎦Gm(z) = , m ∈ [1, L]. (12.47)

Thus, as clear from Eq. (12.45) the following relations apply.

GL ≡ G(N), where G(N)(z) =
[
z −H(N)

]−1

is the Green’s operator of the total system. On the other hand Eq. (12.46) can be reformulated

as ⎛⎝H0 +
m−1∑
j=1

v
(mj)
j

⎞⎠
︸ ︷︷ ︸

H(m−1)

+
L∑

j=m

v
(mj)
j = H(N),

[
z −H(m−1)

]
Gm−1(z) = .

(12.48)

Furthermore, we conclude that[
z −H(L−1) − v

(mL)
L

]
GL(z) = ,

⇒
[
− GL−1(z) v

(mL)
L

]
GL(z) = GL−1(z).

(12.49)

This equation leads to the recurrence relations

G(N) ≡ GL = GL−1

[
+ v

(mL)
L GL

]
,

GL−1 = GL−2

[
+ v

(mL−1)
L−1 GL−1

]
.

(12.50)

The Green’s operator G(N)(z) can thus be written in the exact product form

G(N) = G0

[
+ v

(m1)
1 G1

]
· · ·

[
+ v

(mL−1)
L−1 GL−1

] [
+ v

(mL)
L GL

]
.

(12.51)
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12.4.2 Green’s operator expansion of correlated finite systems

The decomposition (12.51) is valid for a system consisting of decoupled clusters each of

which contains a certain number of interacting particles. The question to be addressed now

is, whether the same or a similar product expansion for G(N) holds true when the interac-

tion between the clusters is switched on. To shed light on this problem we study again a

system with N particles that interact via pair potentials vij and formulate the total poten-

tial U (N) =
∑N

j>i=1 vij according to the recursion relation (12.28, 12.29). Furthermore

we introduce the auxiliary Green’s operator G
(N−1)
m of the system that involves the potential∑m

j=1 ũ
(N−1)
j , m ∈ [1, N ], i.e.⎡⎣z −H0 −

m∑
j=1

ũ
(N−1)
j

⎤⎦G(N−1)
m (z) = , m ∈ [1, N ].

(12.52)

In this notation we have

G
(N−1)
N ≡ G(N).

Since the total hamiltonian can be written as

H(N) =

⎡⎣K +
N−1∑
j=1

ũ
(N−1)
j

⎤⎦
︸ ︷︷ ︸

H
(N−1)
N−1

+ ũ
(N−1)
N , (12.53)

we obtain for the resolvent of H(N)[
z −H

(N−1)
N−1 − u

(N−1)
N

]
G(N)(z) = . (12.54)

Employing Eq. (12.52) we obtain[
−G

(N−1)
N−1 ũ

(N−1)
N

]
G(N)(z) = G

(N−1)
N−1 (z). (12.55)

These reformulations lead us to the recurrence relations

G(N) ≡ G
(N−1)
N = G

(N−1)
N−1

[
+ ũ

(N−1)
N G

(N−1)
N

]
, (12.56)

G
(N−1)
N−1 = G

(N−1)
N−2

[
+ ũ

(N−1)
N−1 G

(N−1)
N−1

]
. (12.57)

Thus, the total Green’s operator is expressible exactly in the product expansion

G(N) = G0

[
+ ũ

(N−1)
1 G

(N−1)
1

]
· · ·
[

+ ũ
(N−1)
N−1 G

(N−1)
N−1

] [
+ ũ

(N−1)
N G

(N−1)
N

]
.

(12.58)



222 12 Operator approach to finite many-body systems

While this relation is formally exact it is of little practical use since on the right hand side the

total Green’s operator appears again. Thus, a systematic approximation scheme is needed for

numerical realization. For this purpose we recall that according to Eq. (12.52) the operator

G
(k)
l , k, l ∈ [2, N ] is the Green’s operator of a system involving l potentials (

∑l
j=1 ũ

(k)
j ).

Each of these potentials (ũ(k)
j ) describes the interaction between k particles. Therefore, ac-

cording to Eq. (12.40) the Green’s operator G
(k)
l has the series expansion

G
(k)
l = G0 +

l∑
j=1

Γ(k)
j .

In an analogous way to relation (12.41) the operators Γ(k)
j are related to the Green’s operators

g
(k)
j associated with the potentials (ũ(k)

j ) via linear coupled integral equations⎛⎜⎜⎜⎜⎜⎜⎝
Γ(k)

1

Γ(k)
2
...

Γ(k)
l−1

Γ(k)
l

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
g
(k)
1 −G0

g
(k)
2 −G0

...

g
(k)
l−1 −G0

g
(k)
l −G0

⎞⎟⎟⎟⎟⎟⎟⎠+ [K̃(k)]

⎛⎜⎜⎜⎜⎜⎜⎝
Γ(k)

1

Γ(k)
2
...

Γ(k)
l−1

Γ(k)
l

⎞⎟⎟⎟⎟⎟⎟⎠ .

(12.59)

As for the case of Eq. (12.41) the kernel [K̃(k)] of the integral equation (12.59) contains only

Green’s operators with a reduced number of interactions. For simplicity and clarity let us

consider the first order term (first iteration) of Eq. (12.59) from which follows

G
(k)
l = G0 +

⎡⎣ l∑
j=1

g
(k)
j

⎤⎦− lG0. (12.60)

The central quantity in the product expansions (12.56, 12.57) of the total Green’s operator has

the form +u
(k)
l G

(k)
l = G−1

0 (G0 +G0u
(k)
l G

(k)
l ). The structure of this quantity is unravelled

by Eq. (12.60) which indicates that

G0 + G0u
(k)
l G

(k)
l = G0 + G0u

(k)
l g

(k)
l + G0u

(k)
l g

(k)
l−1 + · · ·

· · ·+ G0u
(k)
l g

(k)
1 − (l − 1)G0u

(k)
l G0 ,

= g
(k)
l + G0u

(k)
l

[
G0 + G0u

(k)
l−1g

(k)
l−1

]
+ · · ·

· · ·+ G0u
(k)
l

[
G0 + G0u

(k)
1 g

(k)
1

]
− (l − 1)G0u

(k)
l G0 ,

G0 + G0u
(k)
l G

(k)
l = g

(k)
l + G0u

(k)
l

[
G0u

(k)
l−1g

(k)
l−1 + · · ·+ G0u

(k)
1 g

(k)
1

]
.

(12.61)
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From this relation it follows

+ u
(k)
l G

(k)
l = + u

(k)
l g

(k)
l + u

(k)
l

[
G0u

(k)
l−1g

(k)
l−1 + · · ·+ G0u

(k)
1 g

(k)
1

]
,

G
(k)
l = g

(k)
l + G0u

(k)
l−1g

(k)
l−1 + · · ·+ G0u

(k)
1 g

(k)
1 .

(12.62)

The leading term of equation (12.62) is identified as the Green’s operator g
(k)
l . All other terms

are higher order multiple scattering between different subdivisions of the total system. Hence,

the first-order terms in the exact expansions (12.56, 12.57) attain the forms

G(N) = G
(N−1)
N = g

(N−1)
N−1

[
+ ũ

(N−1)
N g

(N−1)
N

]
, (12.63)

g
(N−1)
N−1 = g

(N−1)
N−2

[
+ ũ

(N−1)
N−1 g

(N−1)
N−1

]
. (12.64)

The Green’s operator G(N) can then be expressed in the explicit form

G(N) = G
(N−1)
N = g

(N−1)
1

[
G−1

0 g
(N−1)
2

]
· · ·

[
G−1

0 g
(N−1)
N−1

] [
G−1

0 g
(N−1)
N

]
.

(12.65)

The whole set of (flow) equations reads

G(N−1)
n = G0

[
+ ũ

(N−1)
1 g

(N−1)
1

]
· · ·

· · ·
[

+ ũ
(N−1)
N−2 g

(N−1)
N−2

] [
+ ũ

(N−1)
N−1 g

(N−1)
N−1

] [
+ ũ

(N−1)
N g

(N−1)
N

]
,

(12.66)

g
(N−2)
N−1 =

...

G0

[
+ ũ

(N−2)
1 g

(N−2)
1

]
· · ·
[

+ ũ
(N−2)
N−2 g

(N−2)
N−2

] [
+ ũ

(N−2)
N−1 g

(N−2)
N−1

]
,

(12.67)
...

g
(2)
3 = G0

[
+ ũ

(2)
1 g

(2)
1

] [
+ ũ

(2)
2 g

(2)
2

] [
+ ũ

(2)
3 g

(2)
3

]
.

(12.68)

The recursive scheme (12.68) is the main result of this subsection. Eqs. (12.68) can be visu-

alized by means of Fig. 12.1 and 12.2. In a first step the total potential, say for six particles

as in the case of Fig. 12.1, is reduced to a set of six potentials ũ
(5)
j , (j = 1 · · · 6) involving

five interacting particles. For each of these potentials ũ
(5)
j the (off-shell) Green’s operator g

(5)
j
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is calculated. If this last step is possible the six particle Green’s operator is readily given by

Eq. (12.66). If the five-particle Green’s operator should be simplified we express each of the

five-particle potentials ũ
(5)
j in terms of four-particle potentials ũ

(4)
jk , k �= j, evaluate the four-

particle Greens function g
(4)
jk , k �= j and obtain the five particle Green’s operator from (12.67).

This procedure can be repeated until we reach Eq. (12.68) where the three-body Green’s op-

erator is written in terms of two-body Green’s operator which are generally amenable to nu-

merical (or analytical) calculations. In fact, for the three-body problem the present scheme

contains only one term (12.67) which is identical to the Møller operator expansion suggested

in Ref. [73]. Furthermore, it is straightforward to show that on the two-body energy shell the

approximation (12.68) for the three-particle problem produces a state vector which is a prod-

uct of three (isolated) two-body states. For Coulomb potentials this state is identical to the

eigenfunctions of the operator (9.22) (on page 119) and possesses thus the correct asymptotic

behaviour (8.10) as detailed in chapter (8).

The expansion (12.68) has favorable features from the point of view of perturbation theory:

for clarity let us consider the three-body case, i.e. Eq. (12.68). Same arguments hold true for

the general case. For a three body system, in which the interaction ũ
(2)
2 strength between

two particles, say particle 1 and particle 3, is small compared to the other interactions in the

system. Eqs. (12.68) can then by expanded perturbationally as

g
(2)
3 = G0

[
+ ũ

(2)
1 g

(2)
1

] [
+ ũ

(2)
2 G0 + ũ

(2)
2 G0ũ

(2)
2 G0 + · · ·

] [
+ ũ

(2)
2 g

(2)
3

]
,

≈ g
(2)
1 G−1

0 g
(2)
3 + g

(2)
1 ũ

(2)
2 g

(2)
3 + · · · .

(12.69)

This means in the extreme case of ũ
(2)
2 = 0 we obtain a product of two two-body Green’s

operators, which is the correct result, for in this case the three-body Hamiltonian is separable

in two two-body Hamiltonians. While this results seems plausible it is not reproduced by the

first iteration of the Faddeev equations, where for ũ
(2)
2 = 0 we obtain a solution as a sum of

two two-body Green’s operators. Further terms of the perturbation expansion (12.69) regard

the two interacting two-body subsystems as quasi single particles which are perturbationally

coupled by the small parameter ũ
(2)
2 .
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12.4.3 Remarks on the applicability to Coulomb potentials

Originally the Faddeev approach has been developed for short-range potentials in which case

the kernel of the Faddeev equations is connected (after one iteration). Hence, according to the

Fredholm alternative [308], either the homogeneous or the inhomogeneous equations possess

unique solutions [305,317]. We recall that the solution of the homogeneous Faddeev equation

yields the bound or the resonant states depending on whether the energy eigenvalues are real

of complex. With this solid mathematical background the Faddeev approach has been suc-

cessfully applied to a variety of problems involving short-range interactions, in particular in

nuclear-physics the Faddeev equations have found numerous applications (see for example,

Refs. [321, 322] and references therein).

Recalling that the kernel (12.7) of the Faddeev equations is given in terms of off-shell two-

body T -operators we expect serious difficulties when the infinite-range Coulomb potentials

are involved, for in this case the two-body T operators contains divergent terms, as explicitly

shown in section 11.4. The same arguments apply to the integral matrix equations with the

kernel (12.38). In view of the importance of the Coulomb interaction for physical systems

several techniques have been put forward to circumvent this situation (see e.g. [323–328] and

references therein). Here we mention some of these attempts.

For a three-body system governed by short-range and Coulomb forces Noble [323] sug-

gested to include in the reference Green’s function G0 in Eq. (12.10) all the Coulomb inter-

actions, i.e. in this case G0 is a (three-body) Coulomb Green’s operator whose exact form

is generally not known. Having encapsulated the Coulomb potential peculiarities in G0 one

obtains the “Faddeev-Noble” equations which are mathematically well behaved. To show

briefly the basics of this idea let us assume that the total potential (12.1) is a sum of two-body

interactions, each consisting of a repulsive Coulomb part Vk and a short range part V
(s)
k , i. e.

V =
∑
j>i

Vij + V
(s)
ij =

∑
k

Vk + V
(s)
k . (12.70)

In the spirit of the Faddeev approach, the three-body state vector is split into a sum of three

vectors

|Ψ〉 =
3∑

j=1

|ψk〉 , (12.71)
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where the state vector components are derived according to

|ψk〉 = GCoul(z)V (s)
k |Ψ〉 . (12.72)

The Coulomb Green’s operator is deduced from

GCoul(z) =

[
z −H0 −

3∑
k=1

Vk

]−1

.

Each of the Faddeev components |ψk〉 (12.72) of the wave function carries only one type of

two-body asymptotics. That is the case if GCoul(z) does not possess bound state poles4. The

integral equations deduced by Noble for the components |ψk〉 (12.72) are

|ψk〉 = GCoul,k(z)V (s)
k

∑
j �=k

|ψj〉 , (12.73)

where the channel Green’s operator GCoul,k(z) is given by

GCoul,k(z) =

⎡⎣z −H0 −
3∑

j=1

Vj − V
(s)
k

⎤⎦−1

.

Obviously, this procedure reduces to the standard Faddeev approach in the absence of Coulomb

interactions. However, it has the disadvantage that the (unknown) Coulomb Green’s function

is used as an input in the theory. Therefore, Bencze [329] has suggested to use instead of

the (unknown) three-body Coulomb Green’s operator the channel-distorted Coulomb Green’s

operator. This approximation brings indeed significant simplification in the practical imple-

mentation [331].

Using similar ideas employed in Noble’s and Bencze work, the recursive scheme (12.37)

can be applied to Coulomb problems. Recently, this has been realized numerically for a four-

particle system [101].

As briefly outlined above, Noble’s approach relies on a splitting (in the two-body con-

figuration space) of the total potential in Coulomb-type short-range interactions. One can

however perform the separation in the three-body configuration space, as done by Merkuriev

and co-workers [324, 325]. This renders possible the treatment of attractive as well as re-

pulsive Coulomb interactions. The integral equations (with connected kernels) derived in

4This is valid for repulsive Coulomb interactions. This presents a limitation of the range of applicability of the
original work of Noble.
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this case can be transformed [324, 325] into differential equations with specified (asymptotic)

boundary conditions. From the numerical point of view the resulting “Faddeev-Merkuriev”

integral equations are less favorable since their kernel contains the Green’s operators with a

complicated structure.

A further method to deal with the long-range tail of the Coulomb interaction is to screen

or to cut it off at some large distance R0. A re-normalization procedure is then used to obtain

the results for the unscreened case (R0 →∞) [330].

12.5 Path-Integral Monte-Carlo method

In previous chapters we described the properties of a quantum finite system by certain ap-

proximate solutions of the Schrödinger equation. The Green’s function can be represented

using these solutions. Equivalently, one can transform the differential Schrödinger equa-

tion satisfying certain boundary conditions, into an integral equation and seek suitable ex-

pressions for the Green’s function. An alternative route to obtain numerically the propaga-

tor and hence the Green’s function has been developed by Feynman using the path integral

method [332, 333, 335]. Here we outline the main feature of this method with emphasis on

numerical realization by means of the Monte-Carlo technique.

Using Eq. (12.42) we were able to describe the (equilibrium) thermodynamic of quantum

systems, after having determined the corresponding density of states using (approximate) ex-

pressions for Green’s function. On the other hand the expectation value of any observable O

derives from the density operator ρ as

〈 O 〉 =
tr(Oρ)

Z
, ρ = e−βH ,

where Z is the partition function given by Z = tr(ρ), and H = H0 + V is the Hamiltonian

with a non-interacting part H0 and V is the potential energy. As mentioned in section (12.3),

the desired physical quantities are readily inferred from the partition function, e.g. the internal

energy E derives as E = −∂β(lnZ). Since in general V and H0 do not commute the relation

for the density operator

e−β(H0+V ) = e−βH0 e−βV e−β2[H0,V ]/2 (12.74)

applies.
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For a system of distinguishable particles the partition function has the explicit form

Z(β) =
∫

d3r1〈 r1|e−βH |r1 〉,

=
∫

d3r1 · · ·
∫

d3rM

M∏
j=1

〈 rj |e−βH/M |rj+1 〉.

(12.75)

For N fermions the partition function ZF (β) reads

ZF (β) =
∫

d3r1 · · ·
∫

d3rM
1

N !

∑
P

(−)δP 〈 r1|e−βH/M |r2 〉 · · ·

· · · 〈 rM−1|e−βH/M |P(rM ) 〉, (12.76)

where rj , j = 2 · · ·M are intermediate coordinates and M is the number of “time slices”.

Furthermore, P is the N -particle permutation (exchange) operator and the sum in (12.76)

runs over all permutations. The advantage of writing the partition function in this way is that

the contribution of the commutator in (12.74) becomes of a less importance with growing M

(or/and) increasing temperature [334], namely

e−β(H0+V ) =
{

e−
β
M H0 e−

β
M V e−

β2

2M2 [H0,V ]

}M

,

M→∞→
{

e−
β
M H0 e−

β
M V

}M

+O(β2/M2).

(12.77)

Thus, for the evaluation of the partition function of a system consisting of N polarized

fermions in D space dimensions one has to perform D × N × M dimensional integrals.

In absence of any spin dependent interaction in the Hamiltonian Takahashi and Imada [337]

have shown that for N interacting electrons with position vectors rj the partition function can

be written as

Z =
(

1
N !

)M ∫ ⎡⎣ M∏
i=1

N∏
j=1

d3rj,i

⎤⎦ M∏
k=1

det(A(k, k + 1))

× exp

(
− β

M

M∑
i=1

V (r1,i, . . . , rN,i)

)
+O

(
β3

M2

)
.

(12.78)
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The matrix elements of A are given by

[A(k, k + 1)]i,j =
(

M

2πβ

)D/2

exp
[
−M

2β
(ri,k − rj,k+1)2

]
. (12.79)

Here ri,j , j = 1 . . .M are the intermediate coordinates of the position vectors ri satisfying

the boundary condition ri,M+1 = ri,1. The numerical task is then to evaluate the (D ×
N×M )-dimensional integrals (12.78). This is usually done using standard Metropolis Monte

Carlo techniques [336,338]. Accurate results are achieved with increasing the number of time

slices M and/or for higher temperatures.

With decreasing temperatures an enormous amount of time steps is required. An additional

difficulty is the so-called the “fermion sign problem” [339, 340]: the integrand (12.78) is

not always positive because of its dependence on the determinant det(A). Therefore, the

expectation value of a position dependent observable O is to be evaluated as

〈O〉 =
∑G

j=1 Ojsign(Ij)∑G
j=1 sign(Ij)

. (12.80)

In the jth Monte Carlo step Og refers to the value of the observable O and Ij is the integrand

in (12.78) evaluated at the step j. The ratio between the integrands in (12.78) having positive

signs (I+) and negative sign (I−) is given approximately by [341, 342]

I+ − I−

I+ + I−
∼ e−β(EF −EB), (12.81)

where the energies EF and EB are the ground state of the fermionic (antisymmetric ground

state) and bosonic (symmetric ground state) system, respectively. Obviously, for higher tem-

peratures the sign problem is of less importance but with decreasing temperatures the sta-

tistical error in (12.80) grows rapidly. Despite these difficulties (which can be partly cir-

cumvented, see e.g. [343]) the path integral Monte-Carlo method has been applied success-

fully to a number of electronic systems with a limited number of electrons (N < 20), e.g.

[269, 270, 343, 344].





13 Finite correlated systems in a multi-center potential

In the previous parts of this book we studied the bound and the continuum spectrum of a

finite electronic system in a single external potential. Here we focus on the description of

the scattering of a finite correlated system from a multi-center potential, such as the crystal

potential of solids or surfaces. We begin with a brief summary of the relevant tools for the

treatment of the single-particle scattering in periodic potential.

13.1 Single-particle scattering from a multi-center
potential

The treatment of the spectrum and in particular of the ground state of a particle in an ordered

and disordered multi-center potential is a wide field with well-established techniques [51,

347, 348]. One of the important tools for the description of the scattering of a particle from

a crystal potential is the so-called scattering-path formalism [350, 351], which is outlined

below. The scattering path operator offers a convenient way for the evaluation of the T matrix

elements. Of particular interest in the context of the present work is the generalization of this

single-particle (multi-scattering-center) scheme as to deal with the scattering of correlated

compounds (atoms, molecules, ...) from multi-center potentials.

13.1.1 Scattering-path formalism

Let us consider a non-relativistic particle scattered from a multi-center potential wext. We

assume that the potential wext is a superposition of M non-overlapping potentials wi each

acting only in the domain Ωi centered around the position Ri i. e.

wext(r) =
M∑
i

wi(ri), Ωi ∩ Ωj = 0, ∀ j �= i, ri = r−Ri (13.1)
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As discussed in details in the previous chapter, the complete information on the scattering

dynamics is carried by the T operator

t±ext(z) = wext + wextG
±
0 (z)t±ext, (13.2)

where G±
0 is the Green’s operator in absence of wext and the ± signs stands for incoming or

outgoing wave boundary conditions. For brevity we will suppress the ± signs and the energy

argument z. As done in the context of the recursive scheme (12.36) we employ the expansion

(13.1) to deduce for (13.2)

text =
M∑

k=1

q(k), (13.3)

q(k) = wk + wkG0text (13.4)

q(k) = wk + wkG0q
(k) +

M∑
l �=k

wkG0q
(l). (13.5)

The single site transition operator is given by

tk = wk + wkG
(N)
int tk.

Therefore, Eq. (13.5) is expressible as

q(k) = tk +
M∑

l �=k

tkG0q
(l). (13.6)

As done in (12.38) we can express this relation in a matrix integral equation as⎛⎜⎜⎜⎜⎜⎝
q(1)

q(2)

...
q(M−1)

q(M)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
t1
t2
...

tM−1

tM

⎞⎟⎟⎟⎟⎟⎠+ [K]

⎛⎜⎜⎜⎜⎜⎝
q(1)

q(2)

...
q(M−1)

q(M)

⎞⎟⎟⎟⎟⎟⎠ . (13.7)

The kernel [K] is given in terms of single-site operators tk

[K] =

⎛⎜⎜⎜⎜⎝
0 t1 t1 . . t1
t2 0 t2 . . t2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
tM−1 . tM−1 0 tM−1

tM . tM tM 0

⎞⎟⎟⎟⎟⎠G0. (13.8)

Alternatively, we can write

text =
M∑
k

⎧⎨⎩tk +
M∑

l �=k

tkG0(tl + wlG0text)

⎫⎬⎭ . (13.9)
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As pointed out by Gyorffy [350,351] a particularly useful way to represent text is achieved by

introducing the scattering path operators τ ij as

τ ij = tiδij +
M∑

k �=i

tiG0τ
ik = tiδij +

M∑
k �=j

τ ikG0tj . (13.10)

A comparison with Eq. (13.6) yields

q(i) =
M∑
j

τ ij , text =
M∑
i

q(i) =
M∑
ij

τ ij . (13.11)

The operator q(k) describes the collision process of the particle from the site k in the presence

of all other scatterers. The operators τkl contain the details on the scattering and the propa-

gation process of the particle under the influence of the potential wk following an encounter

of the particle with the potential centered around the site l. The matrix elements of the oper-

ators τ ij can be written in a suitable form for numerical realization, taking into account that

the matrix elements of the single site operators tk vanish outside the domain Ωk (note that

tk = wk + wkGwk and wk(r) = 0 for r ∈/Ωk)

〈r| τ ij |r′〉 = 〈ri| τ ij
∣∣r′j〉 = 〈ri| ti |r′i〉+

+
∑
k �=i

∫
d3r′′i d3r′′′k 〈ri| ti |r′′i 〉 〈r′′i + Ri|G0 |r′′′k + Rk〉 〈r′′′k | τkj

∣∣r′j〉 ,

r′j = r′ −Rj , ri = r−Ri. (13.12)

The matrix elements of the free Green’s operator Gik
0 = 〈r′′i + Ri|G0 |r′′′k + Rk〉 are ob-

viously dependent on the structure of the crystal formed by the scattering potentials. They

can be evaluated, e.g. in an angular momentum basis which is particularly convenient if the

potentials wk are spherically symmetric [352]. An important feature of the scattering path

operators (that follows from the special form of the scattering potential (13.1)) is that the on-

shell matrix elements of τ ij are directly related to the matrix elements of the T operator (and

hence to experimental observables). The above relations deduced for the T operator can be

employed for the derivation of corresponding equations of the Green’s function of a particle

in a multi-center potential.

13.1.2 Scattering of correlated compounds from multi-center potentials

The expression of the single-particle T operator in terms of scattering path operators plays a

central role in the calculation of electron scattering in ordered and disordered materials. Such
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calculations are required for the treatment of a variety of important processes in condensed

matter physics, such as the low, high and medium energy electron diffraction and scattering

from crystals [345, 346], and single photoelectron emission from solids and surfaces [111].

For the description of the scattering of correlated compounds from multi-center potentials

the derivation for the single-particle case, as outline in the previous section, has to be recon-

sidered. This situation arises for example in the treatment of colliding atoms, molecules and

correlated electrons from surfaces (see [349, 353] and references therein). In this section we

will generalize the scattering path operator concept to the scattering of particles with internal

structure and expose how the internal motion of the compound is influenced by the scattering

from the external multi-center potential and vice versa. To this end we consider a compound

consisting of N particles that interact via the total internal potential U
(N)
int . This compound is

scattered from the external potential Wext with M centers, i.e.

Wext =
M∑
k

N∑
l

wkl. (13.13)

The interaction of particle l with the scattering site k is described by the potential wkl.

The total Hamiltonian of the system can thus be written as

H = H
(N)
int + Wext, (13.14)

H
(N)
int = H0 + U

(N)
int . (13.15)

H0 is the Hamilton operator of the compound in absence of U
(N)
int and Wext. In the previous

chapter we discussed a number of methods for the description of the Green’s operator

G
(N)
int (z) =

[
z −H

(N)
int

]−1

(13.16)

of the correlated compound in absence of Wext. We therefore isolate the problem of treating

G
(N)
int (z) from that of describing the scattering of N particles from a M center scattering

potential. This is achieved by writing for the transition operator Text

Text = Wext + WextG
(N)
int Text. (13.17)

Now we define the interaction of the compound with the scattering site k as

w̄k =
N∑

l=1

wkl. (13.18)
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With this definition we write for Text

Text =
M∑

k=1

Qk, (13.19)

Qk = w̄k + w̄k G
(N)
int Text. (13.20)

Defining the T operator q̄k for the scattering of the compound from the site k as

q̄k = w̄k + q̄k G
(N)
int w̄k (13.21)

we can write for the auxiliary operators Qk

Qk = q̄k + q̄k G
(N)
int

[
Text −

(
q̄k + q̄kG

(N)
int Text

)]
= q̄k + q̄kG

(N)
int

M∑
j �=k

Qj . (13.22)

From Eqs. (13.18, 13.21) and introducing the T operator of the particle l from the scattering

site k as

tkl = wkl + wklG
(N)
int tkl (13.23)

we can write furthermore

q̄k =
N∑

l=1

[
wkl + wklG

(N)
int q̄k

]
=

N∑
l=1

qkl (13.24)

qkl := wkl + wklG
(N)
int q̄k (13.25)

qkl = tkl + tklG
(N)
int

[
q̄k −

(
wkl + wklG

(N)
int q̄k

)]
(13.26)

qkl = tkl + tklG
(N)
int [q̄k − qkl] (13.27)

qkl = tkl + tklG
(N)
int

N∑
j �=l

qkj (13.28)
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The above equation can be written in the compact form

Text =
M∑

k=1

Qk,

⎛⎜⎜⎜⎜⎜⎝
Q1

Q2

...
QM−1

QM

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
q̄1

q̄2

...
q̄M−1

q̄M

⎞⎟⎟⎟⎟⎟⎠+ [Kq̄]

⎛⎜⎜⎜⎜⎜⎝
Q1

Q2

...
QM−1

QM

⎞⎟⎟⎟⎟⎟⎠ ,

q̄k =
N∑

l=1

qkl,

⎛⎜⎜⎜⎜⎜⎝
qk1

qk2

...
qkN−1

qkN

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
tk1

tk2

...
tkN−1

tkN

⎞⎟⎟⎟⎟⎟⎠+ [Kk]

⎛⎜⎜⎜⎜⎜⎝
qk1

qk2

...
qkN−1

qkN

⎞⎟⎟⎟⎟⎟⎠ ,

tkl = wkl + wklG
(N)
int tkl. (13.29)

Thus, an essential part of the calculations is the evaluation of the single site transition operator

tkl. This operator describes the scattering of the particle l from the scattering site k under the

influence of the internal correlations in the compound, which are contained in G
(N)
int . Depend-

ing on the nature of U
(N)
int one chooses the appropriate method for the treatment of G

(N)
int . The

kernels of the integral equations (13.29) depend on (off-shell) T matrices and on G
(N)
int

[Kq̄] =

⎛⎜⎜⎜⎜⎝
0 q̄1 q̄1 . . . q̄1

q̄2 0 q̄2 . . . q̄2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
q̄M−1 . . q̄M−1 0 q̄M−1

q̄M . . q̄M q̄M 0

⎞⎟⎟⎟⎟⎠G
(N)
int ,

(13.30)

[Kk] =

⎛⎜⎜⎜⎜⎝
0 tk1 tk1 . . . tk1

tk2 0 tk2 . . . tk2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
tkN−1 . . tkN−1 0 tkN−1

tkN . . tkN tkN 0

⎞⎟⎟⎟⎟⎠G
(N)
int .

(13.31)
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As done in the preceding section one can formulate the above relation as well in terms of

many-particle scattering path operators [354].

The above formulations can be extended to the treatment of the single particle [51, 347]

and the multi-particle [355] scattering from disordered (alloyed) potentials.





14 Excitations in extended electronic systems

14.1 Time-dependent single-particle Green’s functions

In chapter 11 we introduced the Green’s function associated with the time-independent Schrö-

dinger equation for a single-particle. Analogously, we define the single particle Green’s

function g(r, r′, t, t′) corresponding to the time-dependent Schrödinger equation with a time-

dependent source term f(r, t)

[i∂t −H(r)]φ(r, t) = f(r, t) (14.1)

as the solution of an equivalent equation with a point source, i. e.

[i∂t −H(r)] g(r, r′, t, t′) = δ(r− r′)δ(t− t′). (14.2)

The GF g(r, r′, t, t′) and φ(r, t) satisfy the same boundary conditions. From the homogeneity

of the time space we conclude that g(r, r′, t, t′) depends only on the time difference τ = t− t′.

The relation between g(r, r′, t, t′) and the time-independent GF (11.4) is unravelled by ex-

pressing g(r, r′, t, t′) in terms of its frequency (ω) components

g(r, r′, t− t′ = τ ) =
1
2π

∫ ∞

−∞
dω′e−iω′τg(r, r′, ω′) (14.3)

and inserting into Eq. (14.2). This yields for g(r, r′, ω) the determining equation

[ω −H(r)] g(r, r′, ω) = δ(r− r′).

Comparing this equation with Eq. (11.4) we see that g(r, r′, ω) is equal to G(r, r′, z = ω).

On the other hand, as discussed in chapter 11, G(r, r′, z = ω) is an analytical function of ω

(ω ∈ C) with isolated singularities or a continuum branch cut along the real ω axis. Therefore,

the integral (14.3) along the real axis is not well-defined and one has to resort to a (side)

limiting procedure as done in Eq. (11.6). The time-dependent GF is then obtained from the
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time-independent GF (11.6) via the Fourier transform (14.3), i.e.

g±(r, r′, t− t′ = τ ) =
1
2π

∫ ∞

−∞
dω′e−iω′τG±(r, r′, ω′); (14.4)

g−(r, r′, τ ) =
[
g+(r′, r,−τ )

]∗
. (14.5)

Since all singularities of G±(r, r′, ω) (and g±(r, r′, ω)) occur on the real ω axis we can ex-

press the GF g± in terms of the discontinuity

g̃(τ ) = g+(τ )− g−(τ ),

namely

g±(r, r′, τ ) = ±Θ(±τ )g̃(τ ). (14.6)

From Eq. (11.13) it follows for the propagator g̃(τ )

g̃(τ ) =
1
2π

∫ ∞

−∞
dω′e−iω′τ [G+(ω′)−G−(ω′)

]
,

= −i
∑

ν

∫ ∞

−∞
dω′e−iω′τ |αν〉 δ(ω′ − λν) 〈αν | , (14.7)

= −i
∑

ν

e−iλντ |αν〉 〈αν | ,

= −ie−iH(t−t′) = −iU(t− t′), (14.8)

where U(t− t′) is the time-development operator. The solution of the inhomogeneous Schrö-

dinger equation (14.1) is the sum of the general solution φ0(r, t) of the homogeneous equation

and the particular solution given by the Green’s function, i.e.

φ(r, t) = φ0(r, t) +
∫

dr′dt′g+(r, r′, t− t′)f(r′, t′), (14.9)

φ0(r, t) = i

∫
dr′g̃(r, r′, t− t′)φ0(r′, t′). (14.10)

In Eq. (14.9) we rely on the causality principle to exclude the solution involving g− (the

response at the time t occurs due to the action of the source at t′ < t). For this reason the

GF g+ (g−) is often referred to as the single-particle, retarded (advanced) Green’s function

gr
1 (ga

1 ), because it describes the retarded (advanced) response of the system to an external

perturbation. Thus, from Eq. (14.7) one deduces for the non-local spectral density (per unit

volume) (cf. the time-independent case (11.12))

gr
1(τ )− ga

1 (τ ) = −i
∑

ν

∫ ∞

−∞
dω′e−iω′τ |αν〉 δ(ω′ − λν) 〈αν | , (14.11)

gr
1(ω)− ga

1 (ω) = −i2π
∑

ν

|αν〉 δ(ω − λν) 〈αν | . (14.12)
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Equation (14.9) makes evident the role of the GF: the wave function φ at the position r and

time t emerges from the wave function at a previous time t′ < t and all positions r′ with a

weight factor determined by the amplitude g̃.

The matrix elements of the single particle Green’s function (14.8) reads

〈α|g̃(τ )|β〉 = −i〈α|e−iH(t−t′)|β〉

= −i〈0|cαe−iH(t−t′)c†β|0〉, (14.13)

where cj (c†j) are the fermionic annihilation (creation) operators and |0〉 is the vacuum state.

The GF (14.13) contains information on kinetic quantities such as particle density (cf. (11.13),

(11.12)) and is the analog to the so-called “greater” (correlation) function g> (Eqs. (A.35)),

which will be introduced in the context of many-body system (cf. appendix A.5).

Equivalently to Eq. (14.13), one can express the retarded and advanced GF (14.6) as the

expectation value of an operator describing a single particle creation, its propagation and

subsequent annihilation, i.e.

〈α|g±(t− t′)|β〉 = ∓iΘ(±(t− t′))〈0|cαe−iH(t−t′)c†β|0〉. (14.14)

To derive an expression of these matrix elements in the frequency space one employs the

integral representation of the Θ function Θ(t − t′) = i
2π limη→0+

∫
dω′ exp[−iω′(t−t′)]

ω′+iη and

obtains

〈α|g±(ω)|β〉 =: g±(α, β, ω) = 〈0|cα
1

ω −H ± iη
c†β |0〉. (14.15)

This relation offers a way for a systematic perturbational treatment. In case H can be

decomposed as H = H0 + V we can use the relation (A−B)−1 = A−1 + A−1B(A−B)−1

which is valid for any two operators A and B and deduce from (14.15) the Dyson equation

g±(α, β, ω) = 〈0|cα
1

ω −H0 ± iη
c†β|0〉+

+
∑
γδ

〈0|cα
1

ω −H0 ± iη
c†γ |0〉〈γ|V |δ〉〈0|cδ

1
ω −H ± iη

c†β |0〉.

(14.16)
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14.2 Green’s function approach to excitations in extended
electronic systems

For strongly correlated systems or for multiple high excitations in extended systems (such as

one-electron or one-photon double electron emission, i. e. (e, 2e) [356–360] or (γ, 2e) [112])

methods are needed that go beyond a mean field or a first-order perturbational treatment of the

interaction between the excited particles. This is because the (highly) excited particles have

access to a large manifold of degenerate states and will thus adjust their motion according to

their mutual interactions. This is contrast to a ground-state behaviour or to the case of small

perturbations where the effective mean field created by all the particles plays a dominant

role. For the latter case there are a number of theories available, like the hole-line expansion

or the coupled-cluster methods [52, 53, 106], however these theories can not cope with high

excitations. For the treatment of correlated excited states the Green’s function approach is

well suited, however the method as introduced in previous sections, becomes intractable with

increasing N since in this case one works within the first quantization scheme, i. e. states have

to be (anti)symmetrized. In addition, as discussed in the previous chapter, the reduction of the

N -body Green’s function to quantities that are amenable to calculations becomes increasingly

difficult for large N . An attractive and a power method for the treatment of extended systems

within Green’s function theory has been put forward by Migdal and Galitskii as well as by

Martin and Schwinger [107,108]. Applying methods of field theory they developed [107,108]

a technique that connects, by means of Feynman diagrams, the single particle (sp) propagator

to higher-order propagators. In addition, a systematic approximation scheme is available [52,

84,85] that allows the efficient evaluations of the physical observables. The system symmetry

in this case enters though (anti)commutation relations of the operators [52, 84, 85]. This route

has found extensive applications in various fields of physics. Here, we mention the aspects

that are of an immediate relevance to multiple excitations in electronic systems.

14.2.1 Single-particle Green’s functions for extended systems

In a many-body system the single-particle Green’s function g(αt, βt′) is defined as an ex-

pectation value of the time-ordered product of two operators evaluated with respect to the

correlated, exact (normalized) ground-state |Ψ0〉 of the N electron system (see appendix A.2
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for a brief introduction)

g(αt, βt′) = −i〈Ψ0|T [aHα(t) a†
Hβ(t′)]|Ψ0〉, (14.17)

where T is the time ordering operator. This definition is in analogy to the single-particle case

(14.13). The fermionic creation and annihilation operators a†
Hβ(t′) and aHα(t) are given in

the Heisenberg picture, e.g.

aHα(t) = eiHtaαe−iHt . (14.18)

The operators a†
Hβ(t′) and aHα(t) are represented by an appropriate basis, the members of

which are characterized by α and β. If the system possesses translational symmetry it is

advantageous to employ the momentum eigenstates {k} as the basis states, as done below.

The time-ordering operator has the action

T [aHα(t) a†
Hβ(t′)] =

{
aHα(t) a†

Hβ(t′) (t > t′)
− a†

Hβ(t′)aHα(t) (t < t′)
. (14.19)

The effect of the chronological operator T can be described in terms of the step function

Θ(t− t′), in which case the Green’s function is given by

ig(k, t− t′) = Θ(t− t′)〈Ψ0|aHk(t)a†
Hk(t′)|Ψ0〉 −Θ(t′ − t)〈Ψ0|a†

Hk(t′)aHk(t)|Ψ0〉

= Θ(t− t′)
∑

γ

e−i[E(N+1)
γ −E

(N)
0 ](t−t′)

∣∣∣〈Ψ(N+1)
γ |a†

k|Ψ0〉
∣∣∣2

−Θ(t′ − t)
∑

δ

e−i[E
(N)
0 −E

(N−1)
δ ](t−t′)

∣∣∣〈Ψ(N−1)
δ |ak|Ψ0〉

∣∣∣2 . (14.20

Ψ(N+1)
γ and Ψ(N−1)

δ stand for a complete set of eigenstates of the (N + 1)- and the (N − 1)-

particle system, respectively. The energy of the correlated ground state of the N particle

system is denoted by E
(N)
0 , whereas E

(N+1)
γ and E

(N−1)
δ refer to the energies for the excited

correlated states of, respectively, the (N +1) and the (N − 1) particle systems. The exponen-

tials with the energy arguments in Eq. (14.20) stem from the Hamiltonians in the exponential

functions in the definition (14.18) of the Heisenberg operators. Recalling the integral repre-

sentation of the step function Θ(t) = − limη→0
1

2πi

∫∞
−∞ dω e−iωt

ω+iη , the Green’s function in the

energy space can be obtained via Fourier transforming the time difference t− t′ to the energy

variable ω (homogeneity of the time-space is assumed). This yields the spectral or Lehmann
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representation of the sp Green’s function [109],

g(k, k′, ω) = lim
η→0

[
〈Ψ0|a†

k

1

ω − [H − E
(N)
0 ] + iη

a†
k′ |Ψ0〉

+ 〈Ψ0|a†
k′

1

ω − [E(N)
0 −H]− iη

a†
k|Ψ0〉

]
, (14.21)

g(k, k′, ω) = lim
η→0

[∑
γ

z∗kγzk′γ

ω − ω+
γ + iη

+
∑

δ

z̄kδ z̄
∗
k′δ

ω − ω−
δ − iη

]
, (14.22)

zkγ = 〈Ψ(N+1)
γ |a†

k|Ψ0〉, ω+
γ = E(N+1)

γ − E
(N)
0 ,

z̄kδ = 〈Ψ(N−1)
δ |ak|Ψ0〉, ω−

δ = E
(N)
0 − E

(N−1)
δ , (14.23)

g(k, ω) = lim
η→0

[∑
γ

∣∣∣〈Ψ(N+1)
γ |a†

k|Ψ0〉
∣∣∣2

ω − [E(N+1)
γ − E

(N)
0 ] + iη

+
∑

δ

∣∣∣〈Ψ(N−1)
δ |ak|Ψ0〉

∣∣∣2
ω − [E(N)

0 − E
(N−1)
δ ]− iη

]
.

(14.24)

Equation (14.21) is in complete analogy with the single-particle equation (14.15), except for

the second part of (14.21) which describes the propagation of the hole (naturally absent in

the single particle case). Relations (14.24, 14.21) highlight the significance of the sp Green’s

function for measurable physical quantities. The poles of g correspond to the change (ω+
γ =

E
(N+1)
γ −E

(N)
0 ) in energy (with respect to E

(N)
0 ) if a particle have been added to the system

and occupies the excited state γ or if one particle is removed (ω−
δ = E

(N)
0 − E

(N−1)
δ ) from

the reference ground state with N interacting particles, leaving the N − 1 particle system

in the excited state δ. The residua of these poles are given by the spectroscopic factors zkδ

and z̄kδ, meaning that the measurable probabilities of adding and removing one particle with

wave vector k to produce the specific state γ (δ) of the residual system. Clearly, the latter

probability is of a direct relevance to the (e,2e) experiments [356–360]. The infinitesimal

quantity η in Eq. (14.24) shifts the poles below the Fermi energy [the states of the (N − 1)

system] to slightly above the real axis and those above the Fermi energy [the states of the

(N + 1) system] to slightly below the real axis.
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Useful quantities for the study of the influence of correlation are the so-called the hole and

the particle spectral functions which are obtained from the diagonal elements (14.24) of the

spectral representation of the single-particle Green’s function as

Sh(k, ω) =
1
π
� g(k, ω)

=
∑

γ

∣∣∣〈Ψ(N−1)
γ |ak|Ψ0〉

∣∣∣2 δ(ω − (E(N)
0 − E(N−1)

γ )), for ω ≤ ε−F ;

(14.25)

Sp(k, ω) =
1
π
� g(k, ω)

=
∑

γ

∣∣∣〈Ψ(N+1)
γ |a†

k|Ψ0〉
∣∣∣2 δ(ω − (E(N+1)

γ − E
(N)
0 )), for ω > ε+F ,

(14.26)

where

ε+F = E
(N+1)
0 − E

(N)
0 ; ε−F = E

(N)
0 − E

(N−1)
0 .

The diagonal part of the sp Green’s function can thus be represented as an integral over all

single hole and single particle excitations, i. e.

g(k, ω) = lim
η→0

(∫ εF

−∞
dω′ Sh(k, ω′)

ω − ω′ − iη
+
∫ ∞

εF

dω′ Sp(k, ω′)
ω − ω′ + iη

)
. (14.27)

In general (and in particular for finite systems) ε+F and ε−F are different. For extended “normal”

systems1 ε+F and ε−F are equal within an error of N−1.

A quantity of a fundamental importance is the single-particle density matrix ρβα which

derives from the sp propagator by means of the Lehmann representation (14.21) as

ρβα = − i

2π

∫
dωeiωηg(α, β, ω) =

∑
n

〈 Ψ0|a†
β|Ψ(N−1)

n 〉〈 Ψ(N−1)
n |aα|Ψ0 〉

= 〈 Ψ0|a†
βaα|Ψ0 〉 (14.28)

Furthermore, the expectation value for any single-particle operator O is obtained as 〈Ô〉 =∑
αβ〈α|O|β〉ραβ , where 〈α|O|β〉 is the matrix representation of O in the basis |α〉. The

1Normal systems are those for which there exists a discontinuity at the Fermi momentum kF in the momentum
distribution. For non-interacting normal Fermi liquids this discontinuity is 1 and vanishes for systems with pairing
correlations, such as superconductors and super fluids.
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occupation (depletion) number n(α) (d(α)) of the single particle state α can be evaluated

from the hole (particle) spectral functions as

n(α) = 〈 Ψ0|a†
αaα|Ψ0 〉 =

∑
n

∣∣∣〈 Ψ(N−1)
n |aα|Ψ0 〉

∣∣∣2 =
∫ ε−F

−∞
dωSh(α, ω),

d(α) =
∫ +∞

ε+F

dωSp(α, ω),

n(α) + d(α) = 1. (14.29)

The last relation follows from the anticommutation relation for a†
α and aα. As shown by

Galitskii and Migdal [363] the ground state energy (for a system with two-body interactions)

can as well be obtained from the hole spectral function and the expectation value of the kinetic

energy part Tkin (i.e. E
(N)
0 = 1

2

∑
α,β

∫ ε−F
−∞ dω Sh(α, β, ω) [〈 α|Tkin|β 〉+ ωδα,β ] ).

The above relations highlight the importance of the hole and the particle spectral functions

as well as the significance of the single-particle removal or addition spectroscopies, such as

single photoemission [110, 111] and (e,2e) processes [114, 116]. In fact it has been docu-

mented that the high-energy transmission mode (e,2e) spectroscopy is capable of mapping out

the hole spectral functions for a variety of condensed matter systems [364].

14.2.2 The self-energy concept

It is useful to split the total Hamiltonian H in a non-interacting (single particle) part H0 (with

known spectrum εα, i.e. H0 =
∑

α εαa†
αaα) and a part V containing two-particle correlations.

The Lehmann-representation for the uncorrelated single-particle Green’s function g0(α, β, ω)

associated with H0 is readily deduced as

g0(α, β, ω) = δαβ

{
Θ(εα − εF)
ω − εα + iη

+
Θ(εF − εα)
ω − εα − iη

}
. (14.30)

Employing the equation of motion (in the Heisenberg picture) for the operators a†
α and aα,

e.g. i∂taHα = [aHα, H] and Eq. (14.30) one deduces the relation [84]

g(α, β, t) = g0(α, β, t) + g0(α, γ, t− t′) [Σ(γ, δ, t′ − t′′)] g(δ, β, t′′), (14.31)

g(α, β, ω) = g0(α, β, ω) + g0(α, γ, ω) Σ(γ, δ, ω) g(δ, β, ω), (14.32)

Here and unless otherwise specified, the following convention is used hereafter. For prod-

uct terms one sums over all repeated indices and integrate over the whole range of repeated
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continuous (time) variables. The operator Σ is called the mass operator or the irreducible self-

energy. From (14.32) it is clear that all the effects of the (non-interacting) residual part H0 are

encapsulated in g0, whereas all correlation effects induced by the interaction V are accounted

for by Σ. It should be noted in this context that (14.32) is still a single particle equation, i.e. Σ

does not contain full information on many-body processes in the system, such as double and

triple excitations (described by the two and three particle Green’s function). Σ describes (ex-

actly) however all (integral) many-body effects that are relevant for the single particle Green’s

function. The (simplest) first order approximation to Σ is the so-called Hartree-Fock (static)

self energy

ΣHF (k, k′) = − i

2π
lim

η→0+

∫
dω′ eiω′η Vkα,k′β g(α, β, ω′), (14.33)

where Vkα,k′β are the matrix elements of the two-particle interaction including the direct and

the exchange term.

14.2.3 Hedin equations and the GW approximation

The role of Σ is elucidated by inserting the Lehmann representations for g0 and g into the

Dyson equation (14.32) and inspecting the residua of the poles ω+
γ and ω−

δ . By doing so one

derives eigenvalue equations for the spectroscopic factors zkγ and z̄kδ (14.23), e.g. for the

hole pole ω−
δ one obtains∑

k′
[〈 k|H0|k′ 〉+ Σ(k, k′, ω)] z̄k′δ

∣∣∣∣∣
ω=ω−

δ

= ωz̄kδ. (14.34)

Expanding the Dyson equation in terms of ω in the neighborhood of the pole ω−
δ and taking

only first order terms of this expansion one obtains the magnitude of the spectroscopic factors

as [365, 366]∑
k

|z̄kδ|2 = 1 +
∑
k,k′

(z̄kδ)∗
(

∂ωΣ(k, k′, ω)|ω=ω−
δ

)
z̄k′δ. (14.35)

Eq. (14.34) makes clear that the self-energy plays the role of an effective, energy-dependent

(non-local) potential. In fact the (integral) Dyson equation converted into a differential form

reads

[i∂t −H0] g(αt, βt′)−
∑

γ

∫
dt′′Σ(αt, γt′′)g(γt′′, βt′) = δ(α− β)δ(t− t′).

(14.36)
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As shown by Hedin [367] the self-energy is related to the Green’s function g by a set of

coupled integral equations, referred to as the Hedin equations (the symbol y = x+ means

y = limη→0+(x + |η|))

g(1, 2) = g0(1, 2) +
∫

d(3, 4)g0(1, 3)Σ(3, 4)g(4, 2), (14.37)

Σ(1, 2) = i

∫
d(3, 4)W (1, 3+)g(1, 4)Γ(3, 2, 4), (14.38)

W (1, 2) = V (1, 2) +
∫

d(3, 4)P (3, 4)W (4, 2), (14.39)

P (1, 2) = −i

∫
d(3, 4)g(1, 3)Γ(3, 4, 2)g(4, 1+), (14.40)

Γ(1, 2, 3) = δ(1− 2)δ(2− 3) +
∫

d(4, 5, 6, 7)
δΣ(1, 2)
δg(4, 5)

g(4, 6)g(7, 5)Γ(6, 7, 3).

(14.41)

In these equations the variables (α1t1) are grouped into a single index 1. These equations

reveal in a transparent way how the various physical quantities are interrelated: The polar-

ization function P , which describes the response of the system to an external perturbation as

a (de)excitation of a particle-hole pair, re-normalizes the bare interaction V to result in the

screened interaction W (14.39). The screened interaction W and the vertex function Γ, which

describes the interactions between the holes and the particles, are the essential ingredients for

the determination of Σ. On the other hand the change in the effective potential following the

excitation is decisive in determining Γ, as given by Eq. (14.41).

Obviously the practical solution of the Hedin equations is complicated and hence one

has to resort to approximation schemes. A widely used approximation is the so-called GW

approximation [367] in which one neglects the second term in (14.41), i.e. one sets

Γ(1, 2, 3) ≈ δ(1− 2)δ(2− 3), (14.42)

i.e. one discards the vertex corrections. The polarization function is then given by the

P (1, 2) = −ig(1, 2)g(2, 1+) (14.43)

which amounts to the random-phase approximation to the polarization propagator [84]. The

self-energy attains the form

ΣGW (1, 2) = ig(1, 3)W (3, 1), (14.44)
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and hence the name GW for this approximate procedure. Comparing Eqs. (14.33, 14.44) one

sees that the GW scheme can be viewed as an extension of the HF scheme in that a screened

interaction W is used instead of the bare interaction Vkα,k′β . This is due to the influence

of the fluctuations of the medium (described by P ) on the two-body interaction V . In con-

trast to ΣHF the self-energy ΣGW acts as a dynamical effective potential. Such dynamical

screening effects can as well be incorporated within the HF scheme but on the expense of cal-

culating the particle-hole excitation, e.g. by means of RPA [21, 368]. In principle, the Hedin

equations, even within the GW approximation have to be performed self-consistently. It turns

out however, that the first iteration provides useful results for a number of physical quanti-

ties (cf. e.g. Refs. [369, 370] and references therein), whereas the second iteration does not

yield a systematic improvement. The (e,2e) experiments measuring the hole spectral func-

tions of aluminum have been reproduced by the GW fairly well near the quasi-particle peak

but substantial deviations have been observed for the satellite structures (plasmons) [371].

To circumvent this shortcoming of the GW the cumulant expansion2 [372] turns out to be a

computationally tractable method [371].

14.3 Two-body Green’s functions

As mentioned above the self-energy carries (integral) information on many-body excitations

that are relevant for the sp Green’s function. These excitations are naturally described by

higher order Green’s function, which hints on the interrelation between the various many-

particle GF. In fact, by considering the equation of motion for the sp propagator one can

derive the relation [85]

i∂tg(α, β, t− t′) = δ(t− t′) + εαg(α, β, t− t′) +

+
1
2

∑
ηη′η′′

Vαη, η′η′′ (−i)〈Ψ(N)
0 |T

[
a†
Hη(t)aHη′′(t)aHη′(t)a†

Hβ(t′)
]
|Ψ(N)

0 〉.

(14.45)

2In the cumulant expansion the hole spectral function is written as Sh(k, ω) =
nk
2π

R ∞
−∞ dτ eiωτ e−iεkτ+C(k,τ), where nk is the occupation number of the state characterized by the wave vector

k and the energy εk . C(k, τ) is the cumulant operator containing only boson-type diagrams describing the emission
and absorption of plasmons. Interactions between the hole and the particle-hole pairs are not accounted for. In prac-
tice one equates the cumulant expansion G(k, τ) = e−iεkτ+C(k,τ) = G0(k, τ)

ˆ
1 + C(k, t) + C2(k, t) + · · ·

˜
with the iteration of the Dyson equation (G = G0 + G0ΣG0 + · · · ), where Σ ≡ ΣGW is used (without
self-consistency). This yields for the cumulant G0C = G0ΣG0.
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Obviously the second term is a two-body Green’s function (g2(βt1, β
′t′1, γt2, γ

′t′2)) with a

special time ordering describing the propagation of a particle-hole pair, meaning that the sp

and the two-particle GFs are interrelated. Equation (14.45) is in fact the first cycle in a hierar-

chy that links the N -particle propagator to the (N + 1)-particle propagator [107, 108].

Here we briefly discuss the two-body Green’s function which is of a direct relevance to

the two-particle spectroscopy, such as two-electron emission upon the impact of photons or

charged particles (for a review see Ref. [214] and references therein) . Generally the two-body

(four-point) Green’s function is defined as

g2(βt1, β
′t′1, γt2, γ

′t′2)

= −i〈Ψ(N)
0 |T

[
aHβ′(t′1)aHβ(t1)a

†
Hγ(t2)a

†
Hγ′(t′2)

]
|Ψ(N)

0 〉. (14.46)

As seen from this definition, depending on the time ordering the Green’s function g2 de-

scribes particle-hole, particle-particle and hole-hole excitations. Generally, the (four-time)

two-body Green’s function can be split into a non-interacting part consisting of two noninter-

acting single-particle (dressed) propagators [cf. Eq. (14.32)] and a second part involving the

vertex function Γ [52]

g2(αt1, α
′t′1, βt2, β

′t′2)

= i

[
g(αβ, t1 − t2) g(α′β′, t′1 − t′2)− g(αβ′, t1 − t′2) g(α′β, t′1 − t2)

]

−
∫

dta dtb dtc dtd

[∑
abcd

g(α a, t1 − ta) g(α′ b, t′1 − tb)

+ 〈ab|Γ(ta, tb; tc, td)|cd〉 g(c β, tc − t2) g(d β′, td − t′2)

]
. (14.47)

According to equation (14.47) the kernel function Γ can be considered as an effective coupling

between dressed particles. In fact, within the ladder approximation, Γ can be expressed in

terms of the two-body interaction V , as done below.



14.3 Two-body Green’s functions 251

14.3.1 The polarization propagator

Assuming homogeneity of time space the Green’s function (14.46) can be reduced to the two-

time polarization propagator as [52]

Π(β, β′, γ, γ′, t, t′ = 0)

= g2(βt+, β′0+, γt, γ′0)− 〈Ψ(N)
0 |a†

β′aβ|Ψ(N)
0 〉〈Ψ(N)

0 |a†
γaγ′ |Ψ(N)

0 〉. (14.48)

Fourier transforming this equation into frequency space, as done in the case of the sp GF, one

obtains the Lehmann-representation of Π as

Π(αβ, γδ; Ω) =
∑
n�=0

〈Ψ(N)
0 |a†

βaα|Ψ(N)
n 〉〈Ψ(N)

n |a†
γaδ|Ψ(N)

0 〉
Ω− [E(N)

n − E
(N)
0 ] + iη

−
∑
m �=0

〈Ψ(N)
0 |a†

γaδ|Ψ(N)
m 〉〈Ψ(N)

m |a†
βaα|Ψ(N)

0 〉
Ω− [E(N)

0 − E
(N)
m ]− iη

. (14.49)

From this relation it is evident that the polarization function describes all particle-hole excita-

tions within the N body system, i.e. it accounts for the fluctuations with respect to the ground

state. While Π does not describe particle removal or addition to the N particle system it still

may have a strong influence on such processes. This is because Π plays an essential role in the

determination of the self-energy which in turn dictates the behaviour of the sp Green’s func-

tion and the spectral functions. For the electron removal from C60, this has been demonstrated

explicitly [368] using the random phase approximation3 for Π.

14.3.2 Particle-particle and hole-hole propagators

As discussed above the Π describes particle-hole excitations without changing the number

of particles in the system. For the treatment of processes that involve the propagation of

two particles or holes different type of Green’s functions are needed. These are obtained

3The RPA for Π is obtained by considering the free ph propagator Π0(ω), which couples two excitations of a
particle and a hole type that do not interact with each other. In the language of Feynman diagrams this corresponds
to two dressed sp lines propagating in time in opposite directions, i.e.

Π0(αβ, γδ, ω) =
i

2π

Z
dω′ig(α, γ, ω + ω′)ig(δ, β, ω′).

Interaction between the hole and the particle lines can then be included by means of an integral equation of the
algebraic form Π = Π0 + Π0V Π. g entering the definition of Π0 stands for the (dressed) single particle propagator.
If the uncorrelated sp Green’s function is used g ≈ g0 one obtains the random-phase approximation as well as the
Tamm-Dancoff approximation [52].
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from g2(βt1, β
′t′1, γt2, γ

′t′2) (14.46) using certain time ordering, e.g. the (two-time) particle-

particle propagator gII(α, β, γ, δ, t, t′ = 0) is obtained in the limit

gII(α, β, γ, δ, t, t′ = 0) = g2(αt, βt+, γ0+, δ0). (14.50)

The non-interacting part of g2 (14.47) results in a similar contribution gII
f to gII consisting

of products of dressed sp propagators. Using the spectral representation of the sp Green’s

function is it readily deduced that

gII
f (αβ, γδ; Ω) =

i
2π

∫
dω [g(α, γ; ω) g(β, δ; Ω− ω)− g(α, δ; ω) g(β, γ; Ω− ω)]

=
∑
mm′

〈Ψ(N)
0 |aα|Ψ(N+1)

m 〉〈Ψ(N+1)
m |a†

γ |Ψ
(N)
0 〉〈Ψ(N)

0 |aβ|Ψ(N+1)
m′ 〉〈Ψ(N+1)

m′ |a†
δ|Ψ

(N)
0 〉

Ω− {[E(N+1)
m − E

(N)
0 ] + [E(N+1)

m′ − E
(N)
0 ]}+ iη

−
∑
nn′

〈Ψ(N)
0 |a†

γ |Ψ
(N−1)
n 〉〈Ψ(N−1)

n |aα|Ψ(N)
0 〉〈Ψ(N)

0 |a†
δ|Ψ

(N−1)
n′ 〉〈Ψ(N−1)

n′ |aβ|Ψ(N)
0 〉

Ω− {[E(N)
0 − E

(N−1)
n ] + [E(N)

0 − E
(N−1)
n′ ]}+ iη

− (γ ←→ δ).

(14.51)

Proceeding along the same lines, followed for the derivation of the Lehmann-representation

of the sp GF, one obtains the Lehmann representation of the (full) particle-particle Green’s

function in terms of energies and states of the systems with N and N±2 particles [the (N−2)

particle state of the system is achieved upon a (γ,2e) reaction], i.e.

gII(αβ, γδ; Ω) =
∑

n

〈Ψ(N)
0 |aβaα|Ψ(N+2)

n 〉〈Ψ(N+2)
n |a†

γa†
δ|Ψ

(N)
0 〉

Ω− [E(N+2)
n − E

(N)
0 ] + iη

−
∑
m

〈Ψ(N)
0 |a†

γa†
δ|Ψ

(N−2)
m 〉〈Ψ(N−2)

m |aβaα|Ψ(N)
0 〉

Ω− [E(N)
0 − E

(N−2)
m ]− iη

.

(14.52)

Eqs. (14.47, 14.50) indicate the possibility of expressing gII in terms of gII
f and the vertex

function. This is achieved via the ladder approximation to the particle-particle propagator

which states that

gII
L (αβ, γδ; Ω) = gII

f (αβ, γδ; Ω) +
1
4

∑
εηθζ

gII
f (αβ, εη; Ω)〈εη|V |θζ〉gII

L (θζ, γδ; Ω).

(14.53)

V stands for the naked two-body interaction. The integral equation (14.53) can be iterated

yielding a set of ladder diagrams. The corresponding ladder sum for the effective interaction Γ,
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as it appears in [cf. Eq. (14.47)], can be deduced from this result as

〈α1β2|ΓL(Ω)|α′
1β

′
2〉 = 〈α1 β2|V |α′

1 β′
2〉

+
1
4

∑
εηθζ

〈α1 β2|V |ε η〉gII
f (ε η, θ ζ; Ω)〈θζ|ΓL(Ω)|α′

1β
′
2〉.

(14.54)

From this relation it is evident that Γ plays the role of the T matrix in the single particle case.

The ladder approximation (14.53) for the two-particle Green’s function can be employed to

define the self-energy Σ [85,107] which can then be used to obtain the single-particle Green’s

function via Eq. (14.32). On the other hand, this Green’s function enters in the definition of

the two-particle Green’s function, as clear, e. g. from Eqs. (14.51, 14.53). Thus, in principle,

the Dyson Eqs. (14.32) and (14.53) for the one-body and two-body Green’s functions have to

be solved in a self-consistent manner.

For the single particle Green’s function we discussed the relation between the (hole) spec-

tral representation to the high-energy (e,2e) experiments. Similarly one can relate gII to the

(γ,2e) measurements by means of Eq. (14.52): gII shows poles at energies (relative to the

ground state) corresponding to adding (the part containing [E(N+2)
n −E

(N)
0 ]) two particles to

the excited two-particle state n. gII also describes the process of removing (the part involving

[E(N)
0 − E

(N−2)
n ]) two particles from the unperturbed ground state leaving the system in the

excited state n. The residua of these poles are related to the measurable spectroscopic fac-

tors for the addition or removal of the two particles, e. g., as done in (γ,2e) experiment. For

the independent particle part of gII one can establish [113] an exact relation between these

spectroscopic factors and the single particle spectral functions.

Utilizing the above GF formalism calculations have been performed [115,373] for the two-

particle photocurrent generated from surfaces in a (γ, 2e) experiments [112]. The next section

provides the basic formulas for the calculations of the photocurrent and contrasts with the

Fermi golden rule (5.10), which is widely applied for photoexcitation processes in few-body

systems (see Ref. [239] for a review and further references).

In the context of comparing theory with experiment it should be noted that the GF formal-

ism outlined above is valid at absolute zero temperature. The finite temperature case poses

no obstacle due to the formal equivalence of the statistical operator and the analytically con-

tinued evolution operator [277] (see appendix A.4 for some details on the finite temperature

(Matsubara) Green’s function).
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In contrast, the treatment of non-equilibrium processes, such as the influence of a strong

time-dependent external perturbation, requires the use of the non-equilibrium (Keldysh) Green’s

function approach [278,374,375] (a brief summary of the basic elements of the non-equilibrium

(Keldysh) GF is provided in appendix A.5). As shown below the results for the (single and

many-particle) photocurrent can be expressed [113, 376] in terms of GFs that we can handle

formally and computationally.

14.3.3 Single and many-particle photoelectron currents

In a seminal work Caroli et al. [376] showed how the Keldysh non-equilibrium Green’s func-

tion formalism can be applied to the process of photoelectron emission from extended systems.

Subsequently, based on Caroli’s ideas efficient schemes have been developed for the calcula-

tions of the single particle photocurrent (see Refs. [100, 111, 377–379] for more details and

further references). Here we sketch the main steps of the theory for a monochromatic photon

field described by the vector potential introduced in chapter 5 by Eq. (5.1) (on page 49). At

first let us re-consider the case of chapter 5 for a system consisting of a single electron sub-

ject to the confining potential V (r), i.e. Eq. (5.4) reduces to H = H + W (r, t), where (cf.

Eq. (5.6))

H|i〉 =
[
p2

2
+ V (r)

]
|i〉 = εi|i〉,

and the time-dependent perturbation potential has the form

W (r, t) =
1
2c

[p ·A(r, t) + A(r, t) · p] +
A(r, t)2

2c2
. (14.55)

The properties of H and W have been discussed at length in chapter 5.

Upon the photoabsorption process a photoelectron is generated which is collected by a

detector positioned at a distance r0 from the specimen, and it resolves the wave vector k of

the photoelectron. The quantity of interest for the calculation of the photoelectron spectra is

the current density j generated by the photo-excited state |Ψ〉 at the position r0. For a particle

described by the state |Ψ 〉 the current density is generally evaluated using the formula

〈Ψ| j(r0) |Ψ〉 =
i
2

(Ψ�∇Ψ−Ψ∇Ψ�)
∣∣∣∣
r=r0

. (14.56)

Now one proceeds as discussed in the appendix A.3 (in the context of the adiabatic hypothesis)

by switching on adiabatically the time-dependent perturbation W (r, t). The unperturbed state
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|i〉 at the t = −∞ develops in time to the state |Ψi(t)〉 under the action of the perturbation W .

To a first order in the perturbation W the time-development of the state |Ψi(t)〉 is given by

|ΨiI(t)〉 = |i〉 − i
∫ t

−∞
dt′WI(t′) |i〉 . (14.57)

The current density at r0 associated with the state that had developed from |i〉, is

〈ji(r0)〉 = 〈ΨiI(t) jI(r0, t) ΨiI(t)〉 . (14.58)

Neglecting the diamagnetic term (A2/2) and going over into the Schrödinger picture one

obtains the current in terms of GFs as

〈ji(r0)〉 = 〈i Oga
1(ωi + ω)j(r0)gr

1(ωi + ω)O i〉 . (14.59)

The operator O is defined as O = (p ·A0 + A0 · p) /2c, where A0 has already been in-

troduced in Eq. (5.1). The retarded and the advanced single-particle GFs are defined by

Eqs. (11.6, 14.4). Recalling that the non-local spectral density operator
∑

n |n〉 δ(ω−ωn) 〈n|
is derived from the retarded GF according to (11.11) and inserting Eq. (14.56) into Eq. (14.59)

one obtains the following expression for the photocurrent

r2
0 〈j(r0)〉 = − k

32π2c2

〈
Φ(ωk + ω) Δ [� gr

1(ωk)]Δ† Φ(ωk + ω)
〉
. (14.60)

Here the dipole operator is denoted by Δ, whereas the magnitude of the momentum k of the

photoelectron is k =
√

2(ωk + ω), i.e. the initial particle distribution at the energy ωk is

elevated upon the photoabsorption by the photon energy ω. The state vector |Φ〉 is the final

state of the photoelectron obtained by back-propagating in time the asymptotic (detector) state

|Φ0〉, i.e.

|Φ〉 = gr
1(ωk + ω) |Φ0〉 .

Using this relation we can re-write Eq. (14.60) to obtain the well-known expression for the

photocurrent

j ∼ −
〈
Φ0 ga

1(ωk + ω)Δ [� gr
1(ωk)] Δ†gr

1(ωk + ω) Φ0

〉
. (14.61)

According to this equation the single photoelectron current can be evaluated along the fol-

lowing lines: At first, beginning at the time when the photoelectron reaches the detector (we

may refer to this time instance as t = −∞), the known detector state |Φ0(ωk + ω)〉 is back
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propagated using the retarded Green’s function gr
1 to the instance of the photoabsorption (one

may refer to this time as t = +∞). During the back-propagation the external perturbation

(dipole operator) is switched on adiabatically. The adjunct dipole photon operator Δ† causes

the de-excitation to an initial distribution of states that is described by the non-local spec-

tral density operator � gr
1(ωk). The de-excited state is then re-propagated by means of ga

1 to

t = −∞, where the detector state is reached. This final state forms the conventional outgoing

photo-electron state. This (time) path propagation is to be contrasted with the time-loop con-

tour used for the definition of the Keldysh GF, as discussed in appendix A.5. In fact, in case of

a many-body target the (non-equilibrium) photoemission process can be described by means

of the non-equilibrium Green’s function method [376]. In this case the same formula (14.61)

for the photoelectron current is derived with the exception that the retarded and the advanced

Green’s function gr and ga are employed. These GF’s have been introduced by respectively

Eq. (A.38) and Eq. (A.39). On the other hand, for the single particle case one concludes [113]

that Eq. (14.61) reduces to the Fermi-golden rule (5.10) established in chapter 5.

For the one-photon induced two-particle emission the photocurrent jII can be evaluated

using the relation [113]

jII ∝ −
〈
ΦII0 gIIa(ωk1,k2 + ω)ΔII

[
� grII(ωk1,k2)

]
Δ†

IIg
IIr(ωk1,k2 + ω) ΦII0

〉
.

(14.62)

Here ΔII = Δ1 + Δ2 is the two-particle dipole operator, where Δj is the dipole operator

acting on the particle j. The (quasi) two-particle energy ωk1,k2 , before the photon has been

observed, is generally a complex quantity (due to the finite life time of the quasi particles).

This fact distinguishes the present photocurrent approach from the methods relying on the

Fermi golden rule (where ωk1,k2 is real). The state |ΦII0〉 is the detector two-particle state that

can be constructed from two single particle detector states. The GF gII is the particle-particle

Green’s function (14.50). Its first order approximation (14.51) and its ladder expansion terms

(14.53) can be constructed from the (dressed) single particle Green’s function. The latter

sp GF is needed for the calculation of the single particle photocurrent (14.61). Thus, the

single and the two-particle photocurrents should be (if tractable) calculated simultaneously.

This has been done in Ref. [373] using an approximate model for (14.50). The details of the

calculations and an analysis of the theoretical and experimental results will be presented in

the second volume of this work.
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A.1 Tensor Operators

A spherical tensor TJM of rank J and components M is defined according to its transforma-

tion properties under rotations generated by the angular momentum operator J. A rotation can

be specified by a rotation angle ψ with respect to an axis n̂. Generally, the state vectors are

rotated upon the action of the unitary operator Un̂(ψ) = e−iψn̂·J. The rotated angular mo-

mentum state U |jm〉 is an eigenstate of J2 with the same eigenvalue, because J2 commutes

with any function of its components Jl. The transform O′ of the operator O is obtained via

the unitary transformation

O′ = U†OU = e−iψn̂·JOeiψn̂·J

= lim
N→∞

{[
1 + i

ψ

N
n̂ · J

]N

O

[
1− i

ψ

N
n̂ · J

]N
}

=
∞∑

N=0

1
N !

[iψ n̂ · J, O]N . (A.1)

The commutator [A, B]N is defined as

[A, B]0 = B, [A, B]1 = AB −BA, · · · , [A, B]ν =
[
A, [A, B]ν−1

]
.

Spherical tensors TJM are defined according to the special transformation properties

[Jμ, TJM ] =
√

J(J + 1) 〈JM1μ | JM + μ〉TJ,M+μ, (A.2)

where Jμ are the spherical components of the operator J, i.e.

Jμ =

⎧⎨ − 1√
2
(Jx + iJy) for μ = 1,

Jz for μ = 0,
1√
2
(Jx − iJy) for μ = −1.

(A.3)
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Here Jx, Jy and Jz are the cartesian components of J. The relation (A.2) can also be formu-

lated as

[Jμ, TJM ] =
∑
M ′

TJM ′ 〈JM ′ |Jμ| JM〉 , (A.4)

which means that the relation

[iψ n̂ · J, TJM ] =
∑
M ′

TJM ′ 〈JM ′ |iψ n̂ · J|JM〉 (A.5)

applies and we can furthermore write for the N fold commutator

[iψ n̂ · J, TJM ]N =
∑
M ′

TJM ′
〈
JM ′ ∣∣(iψ n̂ · J)N

∣∣ JM
〉
. (A.6)

Combining this relation with Eq. (A.1) we conclude that spherical tensors transform under U

as follows

UTJMU† = e−iψ n̂·JTJMe+iψ n̂·J =
∑
M ′

TJM ′〈JM ′ |U | JM〉 =
∑
M ′

TJM ′DJ
M ′M .

(A.7)

The matrix elements DJ
M ′M := 〈JM ′ |U | JM〉 are the called the Wigner functions [227].

Employing the Euler angles (αe, βe, γe) to characterize the most general rotation, one finds

DJ
M ′M (αe, βe, γe) = 〈JM ′ |Uz(αe)Uy(βe)Uz(γe)| JM〉 = e−i(M ′αe+Mγe)

〈
JM ′ ∣∣e−iβeJy

∣∣ JM
〉

=

e−i(M ′αe+Mγe)dJ
M ′M (βe).

A.1.1 Wigner-Eckart theorem

The Wigner-Eckart theorem is indispensable for the evaluation and the analysis of the matrix

elements 〈j′m′ |TKQ| jm〉 of the spherical tensor operators TKQ in an angular momentum

basis. Some examples we encountered in chapter (5). The Wigner-Eckart theorem states that

〈j′m′ |TKQ| jm〉 = 〈jmKQ | j′m′〉 〈j′ ‖TK‖ j〉 (A.8)

with the reduced matrix elements being given by the relation

〈j′ ‖TK‖ j〉 =
∑
mQ

〈jmKQ | j′m′〉 〈j′m′ |TKQ| jm〉 . (A.9)

The proof of this theorem can be found in standard books on angular momentum theory,

e.g. [144, 236].
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A.1.2 Tensor products of spherical tensors

For two spherical tensors Sk1 and Tk2 we define the tensor product Pk as

Pkq = [Sk1 ⊗ Tk2 ]kq =
∑

q1q2
〈k1q1k2q2 | kq〉Sk1q1Tk2q2 . (A.10)

The quantity Pk is as well a spherical tensor. This can be seen as follows.

At first we note that

USk1q1U
† =

∑
q′
1

Sk1q′
1
Dk1

q′
1q1

,

UTk2q2U
† =

∑
q′
2

Tk2q′
2
Dk2

q′
2q2

. (A.11)

Furthermore, since Sk1q1 and Tk2q2 are both spherical tensors the transformation applies

USk1q1Tk2q2U
† = USk1q1U U†Tk2q2U

†

=
∑
q′
1q′

2

Sk1q′
1
Tk2q′

2
Dk1

q′
1q1

Dk2
q′
2q2

=
∑
q′
1q′

2

Sk1q′
1
Tk2q′

2

∑
k

〈k1q
′
1k2q

′
2 | kq′1 + q′2〉 〈k1q1k2q2 | kq1 + q2〉Dk

q′
1+q′

2,q1+q2

(A.12)

Multiplying this expression with 〈k1q1k2q2 | kq〉 and summing over q1, q2 we find

∑
q1q2

〈k1q1k2q2 | kq〉USk1q1Tk2q2U
†

=
∑
q′

⎧⎨⎩∑
q′
1q′

2

〈k1q
′
1k2q

′
2 | kq′〉Sk1q′

1
Tk2q′

2

⎫⎬⎭Dk
q′q. (A.13)

With this finding we deduce the tensorial transformation behaviour of the product Pkq (A.10)

as

U [Sk1 ⊗ Tk2 ]kq U† =
∑
q′

[Sk1 ⊗ Tk2 ]kq′ Dk
q′q. (A.14)
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A.2 Time ordering and perturbation expansion

The Green’s function of a many body system is defined as the expectation value of a time-

ordered product with respect to the exact correlated ground state |Ψ0〉 which is generally

unknown. In fact, the computation of |Ψ0〉 is one of the purposes of the Green’s function

theory. Thus, it is imperative for any progress in practical application to express the GF in

terms of known quantities, such as the ground state of a non-interacting system. Also, it is of

great advantage to develop a systematic scheme for obtaining approximate expressions. This

appendix sketches the main steps to achieve this goal, more extensive details can be found in

the standard books on many-body theory, e.g. [52, 84, 85].

Let us consider a system described by the Hamiltonian

H = H0 + V,

where H0 is a reference (non-interacting) Hamiltonian and V is the interacting part of H .

The time evolution of the system is described within the Schrödinger picture via the time-

dependence of the state vector

|Ψ(t)〉 = e−iHt|Ψ(0)〉 = U(t, 0)|Ψ(0)〉,

whereas any observable O is time-independent. In the Heisenberg picture the wave functions

do not change in time (|ΨH(t)〉 = |ΨH(0)〉), whereas the time dependence of the operator O
is given by

OH = eiHtOe−iHt.

In the interaction picture the operators evolve in time under the influence of H0, i.e.

OI(t) = eiH0tOe−iH0t, i∂tOI(t) = [OI(t), H0].

The time development of the state vectors in the interaction picture is given by

|ΨI(t)〉 = e−iH0t|Ψ(t)〉 = e−iH0te−iHt|Ψ(0)〉 = UI(t, t0)|ΨI(t0)〉.

Using this equation and noting that H and H0 do not commute it is straightforward to show
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that the time-evolution operator1 in the interaction picture satisfies

UI(t, t0) = eiH0te−iH(t−t0)e−iH0t0 .

Further important (group) properties of the evolution operator are

U†
I (t, t0)UI(t, t0) = UI(t, t0)U

†
I (t, t0) = , U−1

I (t, t0) = U†
I (t, t0), (A.16)

UI(t1, t2)UI(t2, t3) = UI(t1, t3), UI(t1, t2)UI(t2, t1) = , (A.17)

i∂tUI(t, t′) = VI(t)UI(t, t′). (A.18)

Since UI(t, t) = one obtains thus

UI(t, t0) = − i

∫ t

t0

dt′VI(t′)UI(t′, t0).

Iterating this integral equation one obtains the perturbative expansion in powers of VI:

UI(t, t0) = + (−i)
∫ t

t0

dt1 VI(t1) +

+(−i)2
∫ t

t0

dt1 VI(t1)
∫ t1

t0

dt2 VI(t2) + . . . . (A.19)

This relation can be rearranged [84] using the time ordering operator T as follows

UI(t, t0) =
∞∑

n=0

(−i)n

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtn T [VI(t1) . . . VI(tn)] . (A.20)

The time ordering operator T moves the operators with the latest time farthest to the left.

A.3 Adiabatic switching of interactions

Adiabatically switching the interaction V is the decisive step in making use of the uniqueness

of the ground state to obtain quantities related to the exact correlated ground state from those

associated with the non-interacting Hamiltonian using a perturbative expansion in V .

Operating within the Schrödinger picture the perturbation V is “switched off” at times

t = −∞ and t = +∞, in which case H reduces to H0. As the time t = 0 is approached, the

1The following steps can as well be formulated in terms of the scattering (S) operator which is defined as

S(t, t′) = U(t)U†(t′). (A.15)
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interaction V is turned on adiabatically. This is can be formulated mathematically by writing

the time-dependent Hamiltonian H in the form

Hε(t) = H0 + e−ε|t|H1, (A.21)

where ε is an infinitesimally small positive real number. Thus, the eigenstates of the hamil-

tonian Hε coincide with the eigenstates of the unperturbed hamiltonian H0 at |t| = ∞ and

evolve to the fully correlated eigenstates of the total H as t approaches zero. Since the ex-

plicit time-dependence introduced through the definition (A.21) commutes with all relevant

terms occurring in the expansion (A.20) one finds for the time evolution operator UIε(t, t′)

associated with the hamiltonian Hε the corresponding equation

UIε(t, t0) =
∞∑

n=0

(−i)n

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtne−ε(|t1|+|t1|+···+|tn|) T [VI(t1) . . . VI(tn)] .

(A.22)

Denoting the time-independent (non-degenerate) ground state of H0 by Φ0 one obtains by

means of (A.22) the exact fully correlated ground state of H at time t = 0 according to

|Ψ0(t = 0)〉 = lim
ε→0
|Ψ0ε〉 = lim

ε→0
UIε(0,−∞)|Φ0〉 , (A.23)

where |Ψ0ε(t = 0)〉 is an eigenstate of Hε(t). The Gell-Mann and Low theorem [361] states

that if the limit

|Ψ0〉
〈Φ0|Ψ0〉

= lim
ε→0

|Ψ0ε〉
〈Φ0|Ψ0ε〉

= lim
ε→0

UIε(0,−∞)|Φ0〉
〈Φ0|UIε(∞, 0)UIε(0,−∞)|Φ0〉

(A.24)

exists for all orders in the perturbation theory then the state |Ψ0〉/(〈Φ0|Ψ0 〉) is an eigenstate of

H . This result is in so far important as in general the numerator and denominator of Eq. (A.24)

do not exist separately. The practical importance of the Gell-Mann Low theorem is that the

expectation value of any observable with respect to the correlated ground state can now be

expressed in terms of the uncorrelated (asymptotic) state |Φ0〉. In particular one employs the

expansion (A.22) for the time evolution operator to prove that the matrix elements for any
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time-ordered product of two Heisenberg operators aH and bH are evaluated using |Φ0〉

〈 Ψ0|T (aH(t)bH(t′)) |Ψ0 〉
〈 Ψ0|Ψ0 〉

= lim
ε→0

[
1

〈 Ψ0|Ψ0 〉

∞∑
n=0

(−i)n

n!

×
∫ ∞

−∞
dt1 . . .

∫ ∞

−∞
dtn e−ε(|t1|+...|tn|)

×〈 Φ0|T [VI(t1) . . . VI(tn)aI(t)bI(t′)] |Φ0 〉
]

.

(A.25)

This reduces the problem of evaluating |Ψ0〉 and then the matrix elements of the operators

to the calculations of matrix elements of time-ordered products with respect to the ground

state |Φ0〉 of the known reference hamiltonian H0. For the evaluation of the matrix elements

of time-ordered products of field operators one utilizes the Wick’s theorem [84, 362] and

visualizes the various contributions using Feynman diagrams. Wick [362] showed that the

time-ordered product of any set of operators aI1, · · · , aIn is equal to the sum of their normal

products with all possible contractions. The normal product (symbolized by : aI1, · · · , aIn :)

means all destruction operators are ordered to the right of the construction operators2. The

contraction (also called pairing and symbolized by
︷ ︸︸ ︷
aImaIn) is the difference between the time

and the normal-ordered product, i.e.3

︷ ︸︸ ︷
aImaIn = T [aImaIn]− : aImaIn : .

A particularly important example for (A.25) is the single-particle Green’s function

g(αt, βt′) = −i〈 Ψ0|T
[
aHα(t)a†

Hβ(t′)
]
|Ψ0 〉 , (A.26)

which is the expectation value for the time-ordered product of two operators calculated for the

exact ground-state and can thus be expressed according to Eq. (A.25).

2Destruction operators are those operators that yield zero when acting on the unperturbed ground state; their
conjugates are the construction operators. Therefore, as a matter of definition, the ground state average of the normal
product of the operators aI1, · · · , aIn vanishes, i.e.

〈 Φ0| : aI1, · · · , aIn : |Φ0 〉 = 0.

3If aIm and aIn are both annihilation or both creation operators the contraction of aIm and aIn vanishes. In
addition, due to the simple time-dependence of the Heisenberg operators, the contraction of an operator with its
conjugate is a number.
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A.4 Finite-temperature equilibrium (Matsubara) Green’s
function

Originally, the Green’s function theory has been developed for equilibrium systems at zero

temperatures taking advantage of the uniqueness of the ground state. When attempting to

apply this technique to excited states one is faced with the problem of how to average over

the highly degenerate excited states. This question is addressed in the next section for non-

equilibrium systems.

For systems in thermal equilibrium and at a finite temperature T Matsubara [277] pointed

out that the formal equivalence of the statistical operator and the analytically continued evolu-

tion operator can be exploited to develop a Green’s function theory valid at finite temperatures

and has the desirable properties of the zero-temperature GF. Here we sketch briefly the main

ideas of this approach.

The normalized, equilibrium statistical operator is given by ρ = e−H/T (T is the temper-

ature), whereas the time evolution operator has the form U(t′, t′′ = 0) = e−iHt′ (t′ is the

time). ρ satisfies the Bloch equation

∂τρ(τ ) = −Hρ(τ ), (A.27)

where the formal variable τ has been introduced and its range is restricted to

0 < τ < 1/T. (A.28)

Using the (Wick) complex rotation t↔ −iτ the Bloch equation (A.27) can be mapped onto a

Schrödinger-type equation, i.e.

i∂tρ(it) = Hρ(it), 0 > t > −iτ,

which explicitly shows the formal equivalence between the structure of the evolution operator

U and the analytically continued ρ. Considering the time as a complex variable and rotating

by 90◦ (t→ it = τ ) the Heisenberg creation and annihilation operators become

a†
Hα(τ ) = eHτa†

αe−Hτ =: a†
Mα(τ ), aHα(τ ) = eHτaαe−Hτ =: aMα(τ ).
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The finite temperature sp (Matsubara) Green’s function [277] is then defined as 4

gM (ατ, βτ ′) = −
〈
Tτ

[
aMα(τ )a†

Mβ(τ ′)
]〉

= − tr
{

e−(H−Ω)/T
(
Tτ

[
aMα(τ )a†

Mβ(τ ′)
])}

, (A.29)

where Tτ is the (inverse) temperature ordering operator. It orders the field operators depend-

ing on τ in the same way as T acts in the time space. In Eq. (A.29) Ω refers to the grand

potential. Higher order (two-particle, three-particle,. . .) finite temperature GFs can be defined

in a similar manner as done for the case T = 0.

As for the zero temperature case, the Matsubara GF (A.29) depends only on the difference

τ̄ = τ−τ ′ [84]. On the other hand, due to (A.28), τ̄ can change only from−1/T to 1/T which

means that the Matsubara GF is a periodic function in τ̄ with a 2/T period. Consequently,

in frequency-space, the Matsubara GF can be expressed in terms of discrete frequencies, the

Matsubara frequencies

ωn = nπ/(1/T ), (A.30)

as the Fourier sum

gM (α, β, τ̄) = T
∞∑
−∞

gM (α, β, ωn)e−iωnτ̄ .

For fermions (bosons) the integer number n in (A.30) takes on odd (even) values only, i. e.

n = 1 + 2ν; (n = 2ν), n, ν ∈ Z.

As for the zero-temperature GF, for the Matsubara GF an efficient diagrammatic technique

based on perturbation theory has been developed [84].

A.5 Non-equilibrium Green’s function: The Keldysh
formalism

The Gell-Mann and Low theorem (A.24), which is of a central importance for the evaluation

of the GF, requires that at long times (t = +∞) the system will return to its (known) initial

state (at t = −∞). This assumption, however does not hold true for a variety of important

physical non-equilibrium processes. For example, an ion impinging on the surface may well

be neutralized and the resulting atom can be detected at large times. Thus, the initial (t = −∞)

4We recall that the statistical average < O > of any observable O is given by < O >= tr(e−(H−Ω)/TO).

For the zero temperature sp GF this means < g(αt, βt′) >= −i tr
n

e−(H−Ω)/T
“
T

h
aIα(t)a†

Iβ(t′)
i”o

.
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and the final states (t = +∞) are very different. To circumvent this difficulties one avoids

the use of the final state |Ψ(+∞)〉 reached at t = +∞ by propagating back [374] to the

initial time t = −∞ where the state is well defined. This time-loop method introduces several

Green’s functions that are briefly mentioned in this appendix, further details can be found in

Ref. [84] and references therein.

The single-particle casual non-equilibrium GF is defined as (for simplicity, statistical av-

eraging is suppressed)

g−−(αt, βt′) = −i〈Ψ|T [aHα(t) a†
Hβ(t′)]|Ψ〉, (A.31)

which is in complete formal analogy to the equilibrium case (A.26), except for the fact that

the expectation value is taken with respect to an arbitrary fully correlated (unknown) state

|Ψ〉, which may differ substantially from the ground state, e.g. due to the presence of external

sources. The main consequence of this difference to the equilibrium case is that the Gell-Mann

and Low theorem (A.24) does not apply and a diagrammatic perturbation expansion in terms

of an uncorrelated (known) state |Φ0 〉 is not possible. Nevertheless, one can propagate the

initial state |Φ0〉 specified at t = −∞ (in absence of the interactions) to obtain

g−−(αt, βt′) = −i〈Ψ(t = +∞)|T S(∞,−∞)[aHα(t) a†
Hβ(t′)]|Φ0(t = −∞)〉,

(A.32)

where 〈Ψ(t = +∞)| �= 〈 Φ0(t = −∞)| and Eqs. (A.32, A.24) are thus different. Therefore,

considering Ψ(t = +∞)|, one reverses the time propagation from +∞ back to t = −∞,

where the state of the system is well defined, i.e. one utilizes the relation |Ψ(t = +∞)〉 =

SI(+∞,−∞)|Φ0〉 (S is the S operator given by Eq. (A.15)). This introduces a time ordering

along a (single) contour running from t = −∞ to enclose t = +∞ (this part is called the

− branch) and back to t = −∞ (this part is referred to as the + branch of the contour).

The mapping of the state |Ψ(t = +∞) 〉 onto the known state |Φ0〉 renders possible the use

of the Wick theorem. The time-ordering operator Tt orders the field operators on the entire

time-loop with earliest times occurring first. More specifically, let us consider the operators

aHα(t) and a†
Hβ(t′). If t and t′ belong both to the + branch, where the time direction and the

contour direction coincide, the action of Tt is identical to the conventional time-ordering T .

On the other hand if t and t′ are on the − branch, the operator Tt acts as a conventional anti-

time-ordering operator T̃ . In the case t and t′ are on different branches then the operators are

automatically ordered.
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Therefore, we obtain four Green’s functions g−−, g−+, g+− and g++ defined depending

on the pairing of the operators on the + and − branches, i.e.

g−−(αt, βt′) = 〈 T
[
aHα(t) a†

Hβ(t′)
]
〉 =: gc(αt, βt′), called casual GF,

(A.33)

g−+(αt, βt′) = −i〈 aHα(t) a†
Hβ(t′) 〉 =: g>(αt, βt′), greater function,

(A.34)

g+−(αt, βt′) = i〈 a†
Hβ(t′) aHα(t) 〉 =: g<(αt, βt′), lesser function,

(A.35)

g++(αt, βt′) = 〈 T̃
[
aHα(t) a†

Hβ(t′)
]
〉, (A.36)[

g++(βt′, αt)
]∗ = −g−−(αt, βt′). (A.37)

The brackets indicate average with respect to the ground state of the interacting system in-

cluding, if necessary, statistical average. The Keldysh GF is then defined as

gK(αt, βt′) = g−+(αt, βt′) + g+−(αt, βt′) = g−−(αt, βt′) + g++(αt, βt′).

Furthermore, the retarded gr and the advanced ga GF are obtained as

gr = g−− − g−+ = −(g++ − g+−), (A.38)

ga = g−− − g+− = −(g++ − g−+), (A.39)

gr − ga = g> − g<. (A.40)

These quantities are of direct relevance to physical observables and processes, e. g. the parti-

cle density is given by −ig<, whereas the spectral density A(1, 2) is described by (note the

analogy to Eq. (14.12) for the single particle case )

A(1, 2) = i
[
g>(1, 2)− g<(1, 2)

]
= i [gr(1, 2)− ga(1, 2)] . (A.41)
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3C approximation 120, 128
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adiabatic approximation 141
adiabatic approximations 122
adiabatic energy contribution 34
adiabatic hyperspherical approach 72
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adiabatic hypothesis 254
adiabatic local density approximation 48
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adiabatic potential surface 34
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adiabatic treatments 141
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algebraic approach 75

alignment tensors 58
Alt-Grassberger-Sandhas equations 207, 209
amplitude functions 17
analytic continuation 192
analytical continuation 13, 15, 16, 198
analytically continued evolution operator 253,

264
angle-integrated total intensity 58
angular correlation parameters 152
angular momentum 1, 73
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complex eigenvalue 77
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DS3C approach 131
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electron gas 170, 172
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electronic angular momentum 54
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elliptic integrals 9
elliptic orbits 87
elliptical closed orbit 3
elliptical partial differential equation 109
ellipticity 56
energy-density 50
energy-flux density 50
equations of motion 81, 86
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Hartree approximation 42
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Hartree-Fock equations 35
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interaction picture 261
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ions dynamics 34
irreducible representations 5
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Lagrange function 81, 85
Lagrange multipliers 41, 42, 92
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linear rotor 87
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local wave vectors 134
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momentum operator 257
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N -body Green’s operators 212
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non-unitary representation 7
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N -particle propagator 250
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parabolic eigenstates 13
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parabolic-hyperspherical approach 141
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partial wave representation 155
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particle excitations 245
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particle-hole excitations 249–251
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particle-particle excitations 250
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partition function 218, 227, 228
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path-integral Monte-Carlo method 173, 227,
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self-interaction corrections, 46
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periodic orbit trace formulas 73
perturbation expansion 260
perturbation theory 34, 224, 262
perturbative expansion 261
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phase distortion 150, 151
phase equation 22
phase function 19, 21, 23, 151
phase shift 66
phase transitions 217
phase-amplitude equations 18
phase-amplitude method 17
phonon spectrum 32
photoabsorption 55, 76, 254, 255
photoabsorption cross section 77
photocurrent 254, 255
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photoexcitation processes 253
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photoionization 62, 71
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photon field 254
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polar vector operators 55
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polarization 151
polarization function 151, 248, 251
polarization propagator 248, 251
polarization term 125
polarized targets 53
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power expansion 93
power series 97, 102, 141
power series expansion 95
power series representation 14
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prolate spheroidal coordinates 75
propagation of the hole 244
propensity rules 62, 64, 76
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quantum Monte Carlo calculations 43
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quasi-separability 73
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radial correlation 74
random process 38
random-phase approximation 31, 248, 249,
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Rayleigh-Ritz principle 34
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recurrence scheme 217
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resonance computations 76
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resonance wave function 76
resonant state 65, 66, 68, 70
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response functions 31
response of the system 248
retarded Green’s function 256
retarded response 240
Riccati-Bessel functions 18, 19, 23, 24
rigid-body solution 87
rotation group 95
rotation group O(3) 5
rotation matrices 114
rotational angle 77
rotational coupling 143
rotational invariance 5
rotational invariants 64
rotational mixing 144
RPA see random-phase approximation
Rutherford formula 202
Rutherford scattering 198
Rydberg series 75, 76

saddle point 83, 86, 91, 93, 94, 96, 108, 136
scalar product 53
scalar projection operator 55
scaled Jacobi coordinates 142
scaled potential 189, 212
scaling behaviour 91
scaling transformation 82
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scattering amplitude 15, 17, 23, 27, 155, 198
scattering amplitude function 23, 26, 27
scattering amplitude representation 23
scattering matrix elements 132
scattering operator 189
scattering path operators 233
scattering phase 19
scattering phase shifts 17
scattering processes 71
scattering-path formalism 231
scattering (S) operator 188

Schwinger expression
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screened interaction 248, 249
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second quantization 171
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self-energy 246, 248, 249, 253
self-interaction 35, 45, 46
self-interaction corrections 45
semi-classical concepts 72
series representation 14
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shape parameters 68, 69
short-range interactions 169
short-range screened Coulomb potentials 170
short-range three-body interactions 134
SI see self-interaction
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similarity principle 82
single channel 65
single ionization 60
single ionization channel 82
single particle equation 247
single particle spectral functions 253
single photoelectron current 255
single photoemission 246
single site operators 233
single site transition operator 236
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single-particle density matrix 245
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245–247, 253, 263
single-particle orbitals 41, 42
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singular factors 198
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Sommerfeld model 172
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spherical tensors 8, 9, 53, 257–259
spherical vectors 53, 55
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spin degrees of freedom 99
Stark effect 13
Stark-like behaviour 116
state multipoles 53
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statistical tensors 53
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super fluids 245
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theory
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tions 184
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thermodynamic many-body systems 107
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three-body breakup threshold 205
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three-body collision point 141
three-body continuum state 108
three-body correlation 128
three-body Coulomb continuum 122
three-body Coulomb problem 169
three-body Coulomb scattering 108
three-body coupling strength 122
three-body Green’s operator 210
three-body Hamiltonian 208, 224
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three-body states 118
three-body system 34, 152, 180
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three-dimensional unit sphere 193
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threshold behaviour 91, 135, 138, 139
threshold fragmentation 91
threshold law 79, 91, 100
time evolution 260
time evolution operator 262
time ordering 250, 260
time ordering operator 243, 261
time slices 228
time-dependent density functional theory 47
time-dependent external perturbation 254
time-dependent Hamiltonian 262
time-dependent HF theory 47
time-dependent perturbation 254
time-dependent perturbation potential 254
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time-development 255
time-development operator 240
time-evolution operator 261
time-independent Green’s function 240
time-loop 266
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time-loop method 266
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operator, 110
total cross section 90
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total wave function 174
trajectory 82, 85
transition amplitude 64
transition matrix elements 190, 209
transition operator 187, 212, 214
transition probability 190, 208
transition rate 191
trial many-body function 38
triple excitations 247
triple ionization threshold 90
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two-body Coulomb scattering 202
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two-body Green’s function 250
two-body Green’s operators 224
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two-channel operators 209
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two-particle collision points 103
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two-particle correlations 246
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two-particle emission 256
two-particle Green’s function 253
two-particle photocurrent 253, 256
two-particle spectroscopy 250
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unitary transformation 257
universal energy dependence 86
universal functional 39
universal threshold behaviour 98
unpolarized targets 52
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van-der-Waals forces 44
van-der-Waals interaction 44
variable-phase method 17
variational approaches 31
variational configuration interaction 32
variational Monte Carlo techniques 38
variational principle 38, 40
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vector potential 254
velocity form 51
vertex function 248, 250
vibrational states 75
vibrational structure 74
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Wannier theory 79, 91
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Wannier threshold law 85, 86, 99, 132, 134,

135, 139
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Wick’s theorem 263, 266
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