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Preface

The purpose of this book is to provide a theory of Digital Power Electronics and its
applications. It is well organized in 400 pages and over 300 diagrams. Traditionally,
Power Electronics is analyzed by the analog control theory. For over a century, peo-
ple have enjoyed analog control in Power Electronics, and good results in the analog
control and its applications in Power Electronics mislead people into an incorrect con-
clusion that Power Electronics must be in analog control scheme. The mature control
results allowed people to think that Power Electronics is a sunset knowledge. We would
like to change these incorrect conclusions, and confer new life onto the traditional
Power Electronics. In this book the authors initially introduce the digital control theory
applied to Power Electronics, which is completely different from the traditional control
scheme.

Power Electronics supplies electrical energy from its source to its users. It is of vital
importance to all of industry as well as the general public – just as the air that we breathe
and water that we drink are taken for granted, until they are no longer available, so it is
with Power Electronics. Therefore, we have to carefully investigate Power Electronics.
Energy conversion technique is the main focus of Power Electronics. DC and AC
motor drive systems convert the electrical energy to mechanical energy and vice versa.
The corresponding equipment that drives DC and AC motors can be divided into four
groups:

• AC/DC rectifiers;
• DC/AC inverters;
• DC/DC converters;
• AC/AC (AC/DC/AC) converters.

All of the above equipment are called power supplies. They are switching circuits
working in a discrete state. High-frequency switch-on and switch-off semiconductor
devices allow switching circuits to have the advantage of high power rate and efficiency,
low cost, small size and high power density. The size of a flat-transformer working in
250 kHz is much less than 1% of the volume of a normal transformer working in 50 Hz
with the same power rating. Switching circuits perform in switching-on and switching-
off states periodically. The switching period, T , is the sampling interval (T = 1/f ),
where f is the switching frequency. Switching circuits, including all converters, transfer
energy from a source to the end-users in discontinuous manner; i.e. the energy is
not continuously flowing from a source to load. The energy is pumped by energy-
quantization via certain energy-storage elements to load in a sampling interval.

ix
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In order to apply digital control theory to Power Electronics, the authors define
new parameters such as the energy factor (EF), pumping energy (PE), stored energy
(SE), time constant, τ, and damping time constant, τd. These parameters are totally
different from the traditional parameters such as the power factor (PF), power transfer
efficiency (η), ripple factor (RF) and total harmonic distortion (THD). Using the new
parameters we successfully describe the characteristics of the converters’ systems.
Correspondingly, new mathematical modeling has been defined:

• A zero-order-hold (ZOH) is used to simulate all AC/DC rectifiers.
• A first-order-hold (FOH) is used to simulate all DC/AC inverters.
• A second-order-hold (SOH) is used to simulate all DC/DC converters.
• A first-order-hold (FOH) is used to simulate all AC/AC (AC/DC/AC) converters.

The authors had successfully applied the digital control theory in the AC/DC recti-
fiers in 1980s. The ZOH was discussed in digitally-controlled AC/DC current sources.
Afterwards, the FOH was discussed in digitally-controlled DC/AC inverters andAC/AC
converters. Finally, the SOH has been discussed in digitally-controlled DC/DC convert-
ers. The energy storage in power DC/DC converters have carefully been paid attention
to and the system’s characteristics have been discussed, including the fundamental
features: system stability, unit-step response and impulse-response for disturbance.

These research results are available not only for all types of the converters, but for
other branches in Power Electronics as well. We describe the digital control scheme in
all types of the converters in this book, and some applications in other branches such
as power factor correction (PFC) and power system synchronous static compensation
(STATCOM). Digital Power Electronics is a fresh theory and novel research method.

We hope that our book attracts considerable attention from experts, engineers and
university professors and students working in Power Electronics. This new control
scheme could be described as fresh blood injected into the traditional Power Electron-
ics field, and hopefully may generate new development. Therefore, this book is useful
for both engineering students and research workers.

Fang Lin Luo
Hong Ye

Muhammad Rashid
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Chapter 1

Introduction

Power electronics and conversion technology are exciting and challenging professions
for anyone who has a genuine interest in, and aptitude for, applied science and math-
ematics. Actually, the existing knowledge in power electronics is not completed. All
switching power circuits including the power DC/DC converters and switched DC/AC
pulse-width-modulation (PWM) inverters (DC: direct current; AC: alternative current)
perform in high-frequency switching state. Traditional knowledge did not fully consider
the pumping–filtering process, resonant process and voltage-lift operation. Therefore,
the existing knowledge cannot well describe the characteristics of switching power cir-
cuits including the power DC/DC converters. To reveal the disadvantages of the existing
knowledge, we have to review the traditional analog Power Electronics in this Chapter.

1.1 HISTORICAL REVIEW

Power Electronics and conversion technology are concerned to systems that produce,
transmit, control and measure electric power and energy. To describe the characteristics
of power systems, various measuring parameters so-called the factors are applied.
These important concepts are the power factor (PF), power-transfer efficiency (η),
ripple factor (RF) and total harmonic distortion (THD). For long-time education and
engineering practice, we know that the traditional power systems have been successfully
described by these parameters.

These important concepts will be introduced in the following sections.

1.1.1 Work, Energy and Heat

Work, W , and energy, E, are measured by the unit “joule”. We usually call the kinetic
energy “work”, and the stored or static energy potential “energy”. Work and energy
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can be transferred to heat, which is measured by “calorie”. Here is the relationship
(Joule–Lenz law):

1 joule = 0.24 calorie

or

1 calorie = 4.18 joules

In this mechanism, there is a relationship between power, P, and work, W, and/or
energy, E:

W =
∫

P dt E =
∫

P dt

and

P = d

dt
W P = d

dt
E

Power P is measured by the unit “watt”, and

1 joule = 1 watt × 1 second

or

1 watt = 1 joule/1 second

1.1.2 DC and AC Equipment

Power supplies are sorted into two main groups: DC andAC. Corresponding equipment
are sorted into DC andAC kinds as well, e.g. DC generators, AC generators, DC motors,
AC motors, etc.

DC Power Supply

A DC power supply has parameters: voltage (amplitude) Vdc and ripple factor (RF). A
DC power supply can be a battery, DC generator or DC/DC converter.

AC Power Supply

An AC power supply has parameters: voltage (amplitude, root-mean-square (rms or
RMS) value and average value), frequency ( f or ω), phase angle (φ or θ) and total
harmonic distortion (THD). An AC power supply can be an AC generator, transformer
or DC/AC inverter. An AC voltage can be presented as follows:

v(t) = Vp sin (ωt − θ) = √
2 Vrms sin (ωt − θ) (1.1)

where v(t) is the measured AC instantaneous voltage; Vp, the peak value of the voltage;
Vrms, the rms value of the voltage; ω, the angular frequency, ω = 2πf ; f , the supply
frequency, e.g. f = 50 Hz and θ, the delayed phase angle.
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1.1.3 Loads

Power supply source transfers energy to load. If the characteristics of a load can be
described by a linear differential equation, we call the load a linear load. Otherwise,
we call the load a non-linear load (i.e. the diodes, relays and hysteresis-elements that
cannot be described by a linear differential equation). Typical linear loads are sorted
into two categories: passive and dynamic loads.

Linear Passive Loads

Linear passive loads are resistance (R), inductance (L) and capacitance (C). All these
components satisfy linear differential equations. If the circuit current is I as shown in
Figure 1.1, from Ohm’s law we have:

VR = RI (1.2)

VL = L
dI

dt
(1.3)

VC = 1

C

∫
I dt (1.4)

V = VR + VL + VC = RI + L
dI

dt
+ 1

C

∫
I dt (1.5)

Equations (1.2)–(1.5) are all linear differential equations.

Linear Dynamic Loads

Linear dynamic loads are DC and AC back electromagnetic force (EMF). All these
components satisfy differential equation operation.

The back EMF of a DC motor is DC back EMF with DC voltage that is proportional
to the field flux and armature running speed:

EMF = k�ω (1.6)

where k is the DC machine constant; �, the field flux and ω, the machine running
speed in rad/s.

L

RV

I

VR

C

VC
VL

Figure 1.1 An L–R–C circuit.
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The back EMF of an AC motor is AC back EMF with AC voltage that is proportional
to the field flux and rotor running speed.

1.1.4 Impedance

If an R–L–C circuit supplied by a voltage source with mono-frequency (ω = 2πf )
sinusoidal waveform as shown in Figure 1.1, we can simplify the differential equation
(1.5) into an algebraic equation using the concept “impedance”, Z :

V = ZI (1.7)

We define impedance Z as follows:

Z = R + jωL − j
1

ωC
= R + jX = |Z |∠θ (1.8)

where

X = ωL − 1

ωC

|Z | =
√

R2 +
(

ωL − 1

ωC

)2

(1.9)

θ = tan−1

(
ωL − 1

ωC

R

)
(1.10)

in which θ is the conjugation phase angle. The real part of an impedance Z is defined as
resistance R, and the imaginary part of an impedance Z is defined as reactance X . The
reactance has two components: the positive part is called inductive reactance jωL and
the negative part is called capacitive reactance −j/ωC. The power delivery has been
completed only across resistance. The reactance can only store energy and shift phase
angle. No power is consumed on reactance, which produces reactive power and spoils
power delivery.

From Ohm’s law, we can get the vector current (I) from vector voltage (V) and
impedance (Z):

I = V

Z
= V

R + jωL − j 1
ωC

= |I |∠θ (1.11)

Most industrial application equipment are of inductive load. For example, an R–L cir-
cuit is supplied by a sinusoidal voltage V , and it is shown in Figure 1.2. The impedance
Z obtained is:

Z = R + jωL = R + jX = |Z |∠θ (1.12)
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L

RV

I

VL

VR

Figure 1.2 An L–R circuit.

V � IZR

ωL

θ

�θ

Z � R � jωL

I � V/Z

Figure 1.3 The vector diagram of an L–R circuit.

with

|Z | =
√

R2 + (ωL)2 and θ = tan−1
(

ωL

R

)

The conjugation angle (θ) is a positive value. The corresponding vector diagram is
shown in Figure 1.3.

We also get the current as follows:

I = V

Z
= V

R + jωL
= |I |∠ −θ (1.13)

Select the supply voltage V as reference vector with phase angle zero. The current
vector is delayed than the voltage by the conjugation angle θ. The corresponding vector
diagram is also shown in Figure 1.3. The voltage and current waveforms are shown in
Figure 1.4.

1.1.5 Powers

There are various powers such as apparent power (or complex power), S, power (or real
power), P, and reactive power, Q.



6 Digital power electronics and applications

20.00

V
O

I O

10.00

0.00

20.00 25.00 30.00 35.00 40.00 45.00 50.00
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�10.00

�20.00

Figure 1.4 The corresponding voltage and current waveforms.

P

jQS � P � jQ

θ

Figure 1.5 The power vector diagram of an L–R circuit.

Apparent Power S

We define the apparent power S as follows:

S = VI∗ = P + jQ (1.14)

Power P

Power or real power P is the real part of the apparent power S:

P = S cos θ = I 2R (1.15)

Reactive Power Q

Reactive power Q is the imaginary part of the apparent power S:

Q = S sin θ = I 2X (1.16)

Referring to the R–L circuit in Figure 1.2, we can show the corresponding power vectors
in Figure 1.5.
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1.2 TRADITIONAL PARAMETERS

Traditional parameters used in power electronics are the power factor (PF), power-
transfer efficiency (η), total harmonic distortion (THD) and ripple factor (RF). Using
these parameters has successfully described the characteristics of power (generation,
transmission, distribution, protection and harmonic analysis) systems and most drive
(AC and DC motor drives) systems.

1.2.1 Power Factor (PF)

Power factor is defined by the ratio of real power P over the apparent power S:

PF = P

S
= cos θ = I 2R

VI∗ = IR

V
(1.17)

Figure 1.5 is used to illustrate the power factor (PF).

1.2.2 Power-Transfer Efficiency (η)

Power-transfer efficiency (η) is defined by the ratio of output power PO over the input
power Pin:

η = PO

Pin
(1.18)

The output power PO is received by the load, end user. The input power Pin is usually
generated by the power supply source. Both the input power Pin and output power PO
are real power.

1.2.3 Total Harmonic Distortion (THD)

A periodicalAC waveform usually possesses various order harmonics. Since the instan-
taneous value is periodically repeating in fundamental frequency f (or ω = 2πf ), the
corresponding spectrum in the frequency domain consists of discrete peaks at the fre-
quencies nf (or nω = 2nπf ), where n = 1, 2, 3, … ∞. The first-order component (n = 1)
corresponds to the fundamental component V1. The total harmonic distortion (THD)
is defined by the ratio of the sum of all higher-order harmonics over the fundamental
harmonic V1:

THD =

√
∞∑

n=2
V 2

n

V1
(1.19)

where all Vn (n = 1, 2, 3, … ∞) are the corresponding rms values.
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1.2.4 Ripple Factor (RF)

A DC waveform usually possesses DC component Vdc and various high-order har-
monics. These harmonics make the variation (ripple) of the DC waveform. Since the
instantaneous value is periodically repeating in fundamental frequency f (or ω = 2πf ),
the corresponding spectrum in the frequency domain consists of discrete peaks at the
frequencies nf (or nω = 2nπf ), where n = 0, 1, 2, 3, … ∞. The zeroth-order compo-
nent (n = 0) corresponds to the DC component Vdc. The ripple factor (RF) is defined
by the ratio of the sum of all higher-order harmonics over the DC component Vdc:

RF =

√
∞∑

n=1
V 2

n

Vdc
(1.20)

where all Vn (n = 1, 2, 3, … ∞) are the corresponding rms values.

1.2.5 Application Examples

In order to describe the fundamental parameters better, we provide some examples as
the application of these parameters in this section.

Power and Efficiency (η)

A pure resistive load R supplied by a DC voltage source V with internal resistance RO
is shown in Figure 1.6. The current I is obtained by the calculation expression:

I = V

R + RO
(1.21)

The output voltage VO is:

VO = R

R + RO
V (1.22)

RV

IRO

VO
�

�

Figure 1.6 A pure resistive load supplied by a DC source with internal resistance.
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The output power PO is:

PO = I 2R = R

(R + RO)2 V 2 (1.23)

The power-transfer efficiency (η) is:

η = PO

Pin
= I 2R

IV
= R

R + RO
(1.24)

In order to obtain maximum output power, we can determine the condition by
differentiating Equation (1.23):

d

dR
PO = d

dR

[
R

(R + RO)2 V 2
]

= 0 (1.25)

1

(R + RO)2 − 2R

(R + RO)3 = 0

Hence,

R = RO (1.26)

When R = RO, we obtain the maximum output power:

PO-max = V 2

4RO
(1.27)

and the corresponding efficiency:

η = R

R + RO
|R=RO = 0.5 (1.28)

This example shows that the power and efficiency are different concepts. When load
R is equal to the internal resistance RO, maximum output power is obtained with the
efficiency η = 50%. Vice versa, if we would like to obtain maximum efficiency η = 1
or 100%, it requires load R is equal to infinite (if the internal resistance RO cannot
be equal to zero). It causes the output power, which is equal to zero. The interesting
relation is listed below:

Maximum output power η = 50%
Output power = 0 η = 100%

The second case corresponds to the open circuit. Although the theoretical calculation
illustrates the efficiency η = 1 or 100%, no power is delivered from source to load.

Another situation is R = 0 that causes the output current is its maximum value
Imax = V /RO as (1.21) and:

Output power = 0 η = 0%
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An R–L Circuit Calculation

Figure 1.7 shows a single-phase sinusoidal power supply source with the internal resis-
tance RO = 0.2 �, supplying an R–L circuit with R = 1 � and L = 3 mH. The source
voltage is a sinusoidal waveform with the voltage 16V (rms voltage) and frequency
f = 50 Hz:

V = 16
√

2 sin 100πt V (1.29)

The internal impedance is:

ZO = RO = 0.2 � (1.30)

The impedance of load is:

Z = 1 + j100π × 3m = 1 + j0.94 = 1.3724∠43.23◦� (1.31)

Z + ZO = 1.2 + j0.94 = 1.524∠38.073◦� (1.32)

The current is:

I = V

Z + ZO
= 10.5

√
2 sin(100πt − 38.073◦) A (1.33)

The output voltage across the R–L circuit is:

VO = ZI = 14.4
√

2 sin(100πt − 5.16◦) A (1.34)

The apparent power S across the load is:

S = VOI∗ = 14.4 × 10.5 = 151.3 VA (1.35)

The real output power PO across the load is:

PO = PR = I 2R = 10.52 × 1 = 110.25 W (1.36)

L

RV

I

VL

RO

VO VR

Figure 1.7 An R–L circuit supplied by an AC source with internal resistance.



Introduction 11

The real input power Pin is:

Pin = I 2(R + RO) = 10.52 × 1.2 = 132.3 W (1.37)

Therefore, the power factor PF of the load is:

PF = PO

S
= cos θ = cos 43.23 = 0.73 (lagging) (1.38)

The corresponding reactive power Q is:

Q = S × sin θ = 151.3 × sin 43.23 = 103.63 VAR (1.39)

Thus, the power-transfer efficiency (η) is:

η = PR

Pin
= 110.25

132.3
= 0.833 (1.40)

Other way to calculate the efficiency (η) is:

η = R

R + RO
= 1

1.2
= 0.833

To obtain the maximum output power we have to choose same condition as in
Equation (1.26),

R = RO = 0.2 � (1.41)

The maximum output power PO is:

PO-max = V 2

4RO
= 162

4 × 0.2
= 320 W (1.42)

with the efficiency (η) is:

η = 0.5 (1.43)

A Three-Phase Circuit Calculation

Figure 1.8 shows a balanced three-phase sinusoidal power supply source supplying a
full-wave diode-bridge rectifier to an R–L load. Each single-phase source is a sinusoidal
voltage source with the internal impedance 10 k�plus 10 mH.The load is an R–L circuit
with R = 240 � and L = 50 mH. The source phase voltage has the amplitude 16V (its
rms value is 16/

√
2 = 11.3V) and frequency f = 50 Hz. It is presented as:

V = 16 sin 100πt V (1.44)
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Figure 1.8 A three-phase source supplies a diode full-wave rectifier to an R–L load.

The internal impedance is:

ZO = 10,000

j100π × 10 m
= 10,000 × j3.1416

10,000 + j3.1416
≈ j3.1416 � (1.45)

The impedance of the load is:

Z = 240 + j100π × 50 m = 240 + j15.708 = 240.5∠3.74◦� (1.46)

The bridge input AC line-to-line voltage is measured and shown in Figure 1.9. It can be
seen that the input AC line voltage is distorted. After the fast Fourier transform (FFT)
analysis, the corresponding spectrums can be obtained as shown in Figure 1.10 for the
bridge input AC line voltage waveforms.

The input line–line voltage fundamental value and the harmonic peak voltages for
THD calculation are listed in Table 1.1.

Using formula (1.19) to calculate the THD, we have,

THD =

√
∞∑

n=2
v2

AB-n

vAB-1
=

√
0.7372 + 0.4642 + 0.5662 + 0.4222 + · · ·

27.62
×100% = 4.86%

(1.47)
We measured the output DC voltage in Figure 1.11. It can be seen that the DC voltage
has ripple. After FFT analysis, we obtain the corresponding spectrums as shown in
Figure 1.12 for the output DC voltage waveforms.
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Figure 1.9 The input line AC voltage waveform.
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Figure 1.10 The FFT spectrum of the input line AC voltage waveform.

Table 1.1

The harmonic peak voltages of the distorted the input line–line voltage

Order no. Fundamental 5 7 11 13 17 19
Volts 27.62 0.737 0.464 0.566 0.422 0.426 0.34

Order no. 23 25 29 31 35 37 THD
Volts 0.297 0.245 0.196 0.164 0.143 0.119 4.86%
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Figure 1.11 The output DC voltage waveform.
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Figure 1.12 The FFT spectrum of the output DC voltage waveform.

The output DC load voltage and the harmonic peak voltages for RF calculation are
listed in Table 1.2.

Using formula (1.20) to calculate the RF, we have,

RF =

√
∞∑

n=1
v2

O-n

vO-dc
=

√
1.8412 + 0.52 + 0.2122 + 0.1562 + · · ·

26.15 × √
2

× 100% = 5.24%

(1.48)

From input phase voltage and current, the partial power factor (PFp) is obtained,

PFp = cos θ = 0.9926 (1.49)
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Table 1.2

The harmonic peak voltages of the DC output voltage with ripple

Order no. DC 6 12 18 24 30 36 RF
Volts 26.15 1.841 0.500 0.212 0.156 0.151 0.134 5.24%

Table 1.3

The harmonic peak voltages of the input phase current

Order no. Fundamental 5 7 11 13 17 19
Amperes 0.12024 2.7001e–2 1.2176e–2 9.3972e–3 5.9472e–3 4.5805e–3 3.2942e–3

Order no. 23 25 29 31 35 37 Total PF
Amperes 2.3524e–3 1.8161e–3 1.2234e–3 9.7928e–4 7.3822e–4 5.9850e–4 0.959

Table 1.4

The harmonic peak voltages of the output DC current

Order no. DC (0) 6 12 18 24 30 36 η

Amperes 0.109 7.14e–3 1.64e–3 5.72e–4 3.49e–4 2.85e–4 2.19e–4 0.993

The input phase current peak value and the higher-order harmonic current peak values
are listed in Table 1.3.

Ia-1 = 0.12024√
2

= 0.085 A Ia-rms =
√√√√ ∞∑

n=0

i2
n = 0.088 A

Total power factor

PFtotal = Ia-1

Ia-rms
cos θ = 0.085

0.088
× 0.9926 = 0.959

The average DC output load current and the higher-order harmonic current peak values
are listed in Table 1.4.

VO-rms =
√√√√ ∞∑

n=0

v2
n = 26.186 V IO-rms =

√√√√ ∞∑
n=0

i2
n = 0.1096 A

The efficiency (η) is:

η = Pdc

Pac
= VO-dcIO-dc

VO-rmsIO-rms
× 100% = 26.15 × 0.10896

26.186 × 0.1096
× 100% = 99.28% (1.50)
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From this example, we fully demonstrated the four important parameters: power factor
(PF), power-transfer efficiency (η), total harmonic distortion (THD) and ripple factor
(RF). Usually, these four parameters are enough to describe the characteristics of a
power supply system.

1.3 MULTIPLE-QUADRANT OPERATIONS AND CHOPPERS

Multiple-quadrant operation is required in industrial applications. For example, a DC
motor can perform forward running or reverse running. The motor armature voltage and
armature current are both positive during forward starting process. We usually call it the
forward motoring operation or “Quadrant I” operation. The motor armature voltage is
still positive and its armature current is negative during forward braking process. This
state is called the forward regenerative braking operation or “Quadrant II” operation.

Analogously, the motor armature voltage and current are both negative dur-
ing reverse starting process. We usually call it the reverse motoring operation or
“Quadrant III” operation. The motor armature voltage is still negative and its arma-
ture current is positive during reverse braking process. This state is called the reverse
regenerative braking operation or “Quadrant IV” operation.

Referring to the DC motor operation states, we can define the multiple-quadrant
operation as below:

Quadrant I operation: Forward motoring; voltage and current are positive;
Quadrant II operation: Forward regenerative braking; voltage is positive and

current is negative;
Quadrant III operation: Reverse motoring; voltage and current are negative;
Quadrant IV operation: Reverse regenerative braking; voltage is negative and

current is positive.

The operation status is shown in the Figure 1.13. Choppers can convert a fixed DC
voltage into various other voltages. The corresponding chopper is usually called which
quadrant operation chopper, e.g. the first-quadrant chopper or “A”-type chopper. In the

Quadrant II
Forward regenerating

Quadrant III
Reverse motoring

Quadrant IV
Reverse regenerating

Quadrant I
Forward motoring

V

I

Figure 1.13 The four-quadrant operation.
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following description we use the symbols Vin for fixed voltage, Vp for chopped voltage
and VO for output voltage.

1.3.1 The First-Quadrant Chopper

The first-quadrant chopper is also called “A”-type chopper and its circuit diagram is
shown in Figure 1.14(a) and the corresponding waveforms are shown in Figure 1.14(b).
The switch S can be some semiconductor devices such as BJT, integrated gate bipolar
transistors (IGBT) and power MOS field effected transistors (MOSFET). Assuming all
parts are ideal components, the output voltage is calculated by the formula:

VO = ton

T
Vin = kVin (1.51)
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�

�

�

�

�

�

VP

Vin

(a)

Vin

ton T

VP

t

t

t

kT T

VO

(b)

Figure 1.14 The first-quadrant chopper. (a) Circuit diagram and (b) voltage waveforms.
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where T is the repeating period (T = 1/f ), in which f is the chopping frequency; ton
is the switch-on time and k is the conduction duty cycle (k = ton/T ).

1.3.2 The Second-Quadrant Chopper

The second-quadrant chopper is also called “B”-type chopper and its circuit diagram is
shown in Figure 1.15(a) and the corresponding waveforms are shown in Figure 1.15(b).
The output voltage can be calculated by the formula:

VO = toff

T
Vin = (1 − k)Vin (1.52)

where T is the repeating period (T = 1/f ), in which f is the chopping frequency; toff
is the switch-off time (toff = T – ton) and k is the conduction duty cycle (k = ton/T ).
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(b)

S

D
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I

Figure 1.15 The second-quadrant chopper. (a) Circuit diagram and (b) voltage waveforms.
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1.3.3 The Third-Quadrant Chopper

The third-quadrant chopper is shown in Figure 1.16(a) and the corresponding wave-
forms are shown in Figure 1.16(b). All voltage polarities are defined in the figure. The
output voltage (absolute value) can be calculated by the formula:

VO = ton

T
Vin = kVin (1.53)

where ton is the switch-on time and k is the conduction duty cycle (k = ton/T ).

1.3.4 The Fourth-Quadrant Chopper

The fourth-quadrant chopper is shown in Figure 1.17(a) and the corresponding wave-
forms are shown in Figure 1.17(b). All voltage polarities are defined in the figure.
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Figure 1.16 The third-quadrant chopper. (a) Circuit diagram and (b) voltage waveforms.
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Figure 1.17 The fourth-quadrant chopper. (a) Circuit diagram and (b) voltage waveforms.

The output voltage (absolute value) can be calculated by the formula:

VO = toff

T
Vin = (1 − k)Vin (1.54)

where toff is the switch-off time (toff = T − ton) and k is the conduction duty cycle
(k = ton/T ).

1.3.5 The First–Second-Quadrant Chopper

The first–second-quadrant chopper is shown in Figure 1.18. Dual-quadrant operation
is usually requested in the system with two voltage sources V1 and V2. Assume the
condition V1 > V2, the inductor L is the ideal component. During Quadrant I operation,
S1 and D2 work, and S2 and D1 are idle. Vice versa, during Quadrant II operation, S2
and D1 work, and S1 and D2 are idle. The relation between the two voltage sources can
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Figure 1.18 The first–second quadrant chopper.
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Figure 1.19 The third–fourth quadrant chopper.

be calculated by the formula:

V2 =
{

kV1 Quadrant I operation
(1 − k)V1 Quadrant II operation

(1.55)

where k is the conduction duty cycle (k = ton/T ).

1.3.6 The Third–Fourth-Quadrant Chopper

The third–fourth-quadrant chopper is shown in Figure 1.19. Dual-quadrant operation
is usually requested in the system with two voltage sources V1 and V2. Both the voltage
polarities are defined in the figure, we just concentrate on their absolute values in
analysis and calculation. Assume the condition V1 > V2, the inductor L is the ideal
component. During Quadrant III operation, S1 and D2 work, and S2 and D1 are idle.
Vice versa, during Quadrant IV operation, S2 and D1 work, and S1 and D2 are idle.
The relation between the two voltage sources can be calculated by the formula:

V2 =
{

kV1 Quadrant III operation
(1 − k)V1 Quadrant IV operation

(1.56)

where k is the conduction duty cycle (k = ton/T ).



22 Digital power electronics and applications

V2L

S1

V1

S2D2

D1 S3

S4
D4

D3

�

�

�
�

Figure 1.20 The four-quadrant chopper.

Table 1.5

The switches’ and diodes’ status for four-quadrant operation

Switch or diode Quadrant I Quadrant II Quadrant III Quadrant IV

S1 Works Idle Idle Works
D1 Idle Works Works Idle
S2 Idle Works Works Idle
D2 Works Idle Idle Works
S3 Idle Idle On Idle
D3 Idle Idle Idle On
S4 On Idle Idle Idle
D4 Idle On Idle Idle
Output V2+, I2+ V2+, I2− V2−, I2− V2−, I2+

1.3.7 The Four-Quadrant Chopper

The four-quadrant chopper is shown in Figure 1.20. The input voltage is positive, output
voltage can be either positive or negative. The status of switches and diodes for the
operation are given in Table 1.5. The output voltage can be calculated by the formula:

V2 =




kV1 Quadrant I operation
(1 − k)V1 Quadrant II operation

−kV1 Quadrant III operation
−(1 − k)V1 Quadrant IV operation

(1.57)

1.4 DIGITAL POWER ELECTRONICS: PUMP CIRCUITS
AND CONVERSION TECHNOLOGY

Besides choppers there are more and more switching circuits applied in industrial
applications. These switching circuits work in discrete-time state. Since high-frequency
switching circuits can transfer the energy in high power density and high efficiency,
they have been applied on more and more branches of power electronics. The energy
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Figure 1.21 Pumping circuits: (a) buck pump, (b) boost pump, (c) buck–boost pump,
(d) positive Luo-pump, (e) negative Luo-pump, (f) positive super Luo-pump and (g) negative
super Luo-pump.

and power delivery from source to the users are not in continuous mode. Therefore,
digital control theory has to be applied in this area.

All conversion technologies (such as pumping circuits, AC/DC rectifiers, DC/AC
inverters, DC/DC converters and AC/AC (and/or AC/DC/AC) converters) are theo-
retically based on the switching circuit. It is urgent to investigate the digital power
electronics rather than the traditional analog control applied in analog power electronics.
The following typical circuits are examples of switching circuits working in the
discrete-time mode.

1.4.1 Fundamental Pump Circuits

All power DC/DC converters have pumping circuit. Pumping circuits are typical switch-
ing circuits to convert the energy from an energy source to energy-storage components
in discrete state. Each pump has a switch S and an energy-storage component that can
be an inductor L. The switch S turns on once in a period T = 1/f , where f is the switch-
ing frequency. Therefore, the energy transferred in a period is a certain value that can
be called energy quantum. Figure 1.21 shows seven (buck, boost, buck–boost, positive
Luo, negative Luo, positive super Luo and negative super Luo) pumping circuits, which
are used in the corresponding DC/DC converters.
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All pumping circuits are switching circuits that convert the energy from source to
load or certain energy-storage component in discrete state. Each pumping circuit has
at least one switch and one energy-store element, for example an inductor. The switch
is controlled by a PWM signal with the period T (T = 1/f , where f is the switching
frequency) and the conduction duty cycle k . The energy was absorbed from the energy
source to the inductor during switching-on period kT. The energy stored in the inductor
will be delivered to next stage during switching-off period (1 − k)T . Therefore, the
energy from the source to users is transferred in discrete-time mode.

1.4.2 AC/DC Rectifiers

All AC/DC controlled rectifiers are switching circuits. Figure 1.22 shows few rec-
tifier circuits (namely single-phase half-wave, single-phase full-wave, three-phase
half-wave, and three-phase half-wave controlled rectifier), which are used in the
corresponding AC/DC converters.

AllAC/DC rectifier circuits are switching circuits that convert the energy from anAC
source to load in discrete state. Each AC/DC controlled rectifier has at least one switch.
For example, a half-wave controlled thyristor (silicon controlled rectifier, SCR) rectifier
has one SCR switch. The switch is controlled by a firing pulse signal with the repeating
period T (T = 1/f , where f is the switching frequency for the single-phase rectifiers)
and the conduction period. The energy was delivered from the energy source to the
load during switching-on period. The energy is blocked during switching-off period.
Therefore, the energy from the source to loads is transferred in discrete-time mode.

1.4.3 DC/AC PWM Inverters

All DC/AC inverters are switching circuits. Figure 1.23 shows three (single-phase,
three-phase, three-level three-phase) DC/AC PWM inverter circuits, which are used in
the corresponding DC/AC inverters.

All DC/AC PWM inverter circuits are switching circuits that convert the energy
from a DC source to load in discrete state. Each DC/AC inverter has multiple switches.
The switches are controlled by PWM signals with the repeating period T (T = 1/f ,
where f is the switching frequency for the single-phase rectifiers) and the modulation
ratio m. The energy was delivered from the energy source to the load during switching-
on period. The energy is blocked during switching-off period. Therefore, the energy
from the source to loads is transferred in discrete-time mode.

1.4.4 DC/DC Converters

All DC/DC converters are switching circuits. Figure 1.24 shows seven (buck, boost,
buck–boost, positive output Luo, negative output Luo, positive output super-lift Luo
and negative output super-lift Luo converters) DC/DC converter circuits.
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All DC/DC converters’ circuits are switching circuits that convert the energy from
a DC source to load in discrete state. Each power DC/DC converter has at least one
pumping circuit and filter. The switch is controlled by a PWM signal with the repeating
period T (T = 1/f , f is the switching frequency) and the conduction duty cycle k . The
energy was delivered from the energy source to the load via the pumping circuit during
switching-on period kT. The energy is blocked during switching-off period (1 – k)T .
Therefore, the energy from the source to loads is transferred in discrete-time mode.

1.4.5 AC/AC Converters

All AC/AC converters are switching circuits. Figure 1.25 shows three (single-phase
amplitude regulation, single-phase and three-phase) AC/AC converter circuits.

All AC/AC converter circuits are switching circuits that convert the energy from an
AC source to load in discrete state. Each AC/AC converter has multiple switches. The
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switches are controlled by PWM signals with the repeating period T (T = 1/f , where
f is the switching frequency for the single-phase rectifiers) and the modulation factor.
The energy was delivered from the energy AC source to the load during switching-on
period. The energy is blocked during switching-off period. Therefore, the energy from
the source to loads is transferred in discrete-time mode.

1.5 SHORTAGE OF ANALOG POWER ELECTRONICS AND
CONVERSION TECHNOLOGY

Analog power electronics use the traditional parameters: power factor (PF), effi-
ciency (η), total harmonic distortion (THD) and ripple factor (RF) to describe the
characteristics of a power system or drive system. It is successfully applied for
more than a century. Unfortunately, all these factors are not available to be used to
describe the characteristics of switching circuits: power DC/DC converters and other
high-frequency switching circuits.

Power DC/DC converters have been usually equipped by a DC power supply source,
pump circuit, filter and load. The load can be of any type, but most investigations are
concerned to resistive load R and back EMF or battery. It means that the input and
output voltages are nearly pure DC voltages with very small ripple, e.g. output voltage
variation ratio is usually less than 1%. In this case, the corresponding RF is less than
0.001, which is always ignored.

Since all powers are real power without reactive power jQ, we cannot use power
factor (PF) to describe the energy-transferring process.

As only DC components exists without harmonics in input and output voltage, THD
is not available to be used to describe the energy-transferring process and waveform
distortion.

To simplify the research and analysis, we usually assume the condition without
power losses during power-transferring process to investigate power DC/DC converters.
Consequently, the efficiency η = 1 or 100% for most of description of power DC/DC
investigation. Otherwise, efficiency (η) must be considered for special investigations
regarding the power losses.

In general conditions, all four factors are not available to apply in the analysis of
power DC/DC converters. This situation lets the designers of power DC/DC converters
confusing for very long time. People would like to find other new parameters to describe
the characteristics of power DC/DC converters.

There is no correct theory and the corresponding parameters to be used for all
switching circuits till 2004. Dr. Fang Lin Luo and Dr. Hong Ye firstly created new
theory and parameters to describe the characteristics of all switching circuits in 2004.

Energy storage in power DC/DC converters has been paid attention long time ago.
Unfortunately, there is no clear concept to describe the phenomena and reveal the rela-
tionship between the stored energy and the characteristics of power DC/DC converters.
We have theoretically defined a new concept, energy factor (EF), and researched the
relations between EF and the mathematical modeling of power DC/DC converters.
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EF is a new concept in power electronics and conversion technology, which thor-
oughly differs from the traditional concepts such as power factor (PF), power-transfer
efficiency (η), total harmonic distortion (THD) and ripple factor (RF). EF and the sub-
sequential other parameters can illustrate the system stability, reference response and
interference recovery. This investigation is very helpful for system design and DC/DC
converters characteristics foreseeing.

1.6 POWER SEMICONDUCTOR DEVICES APPLIED IN
DIGITAL POWER ELECTRONICS

High-frequency switching equipment can convert high power, and its power density is
proportional to the applying frequency. For example, the volume of a 1-kW transformer
working in 50 Hz has the size 4 in. × 3 in. × 2.5 in. = 30 in.3 The volume of a 2.2-kW
flat-transformer working in 50 kHz has the size 1.5 in. × 0.3 in. × 0.2 in. = 0.09 in.3

The difference between them is about 1000 times.
To be required by the industrial applications, power semiconductor devices applied

in digital power electronics have been improved in recent decades. Their power, voltage
and current rates increase in many times, the applying frequency is greatly enlarged.
For example, the working frequency of an IGBT increases from 50 to 200 kHz, and the
working frequency of a MOSFET increases from 5 to 20 MHz.

The power semiconductor devices usually applied in industrial applications are as
follows:

• diodes;
• SCRs (thyristors);
• GTOs (gate turn-off thyristors);
• BTs (power bipolar transistors);
• IGBTs (insulated gate bipolar transistors);
• MOSFETs (power MOS field effected transistors);
• MSCs (MOS controlled thyristors).

All devices except diode are working in switching state. Therefore, the circuits consists
them to be called switching circuits and work in discrete state.
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Chapter 2

Energy Factor (EF) and
Sub-sequential Parameters

Switching power circuits, such as power DC/DC converters, power pulse-width-
modulation (PWM) DC/AC inverters, soft-switching converters, resonant rectifiers
and soft-switchingAC/AC matrix converters, have pumping–filtering process, resonant
process and/or voltage-lift operation. These circuits consist of several energy-storage
elements. They are likely an energy container to store certain energy during perfor-
mance. The stored energy will vary if the working condition changes. For example,
once the power supply is on, the output voltage starts from zero since the container is
not filled. The transient process from one steady state to another depends on the pump-
ing energy and stored energy. Same reason affects the interference discovery process
since the stored energy, similar to inertia, affects the impulse response.

All switching power circuits work under the switching condition with high fre-
quency f . It is thoroughly different from traditional continuous work condition. The
obvious technical feature is that all parameters perform in a period T = 1/f , then grad-
ually change period-by-period. The switching period T is the clue to investigate all
switching power circuits. Catching the clue, we can define many brand new concepts
(parameters) to describe the characteristics of switching power circuits. These new fac-
tors fill in the blanks of the knowledge in power electronics and conversion technology.
We will carefully discuss the new concepts and their applications in this chapter.

2.1 INTRODUCTION

From the introduction in previous chapter, we have got the impression of the four
important factors: power factor (PF), power transfer efficiency (η), total harmonic
distortion (THD) and ripple factor (RF) that well describe the characteristics of power
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systems. Unfortunately, all these factors are not available to be used to describe the
characteristics of power DC/DC converters and other high-frequency switching circuits.

Power DC/DC converters have usually equipped by a DC power supply source, pump
circuit, filter and load. The load can be of any type, but most of the investigations are
concerned with resistive load, R, and back electromagnetic force (EMF) or battery. It
means that the input and output voltages are nearly pure DC voltages with very small
ripple (e.g. output voltage variation ratio is usually less than 1%). In this case, the
corresponding RF is less than 0.001, which is always ignored.

Since all power is real power without reactive power jQ, we cannot use power factor
PF to describe the energy-transferring process.

Since DC components exist without harmonics in input and output voltage, THD
is not available to be used to describe the energy-transferring process and waveform
distortion.

To simplify the research and analysis, we usually assume the condition without
power losses during power-transferring process to investigate power DC/DC converters.
Consequently, the efficiency η = 1 is 100% for most of the description of power DC/DC
investigation. Otherwise, efficiency η must be considered for special investigations
regarding the power losses.

In general conditions, all four factors are not available to apply in the analysis
of power DC/DC converters. This situation makes the designers of power DC/DC
converters confusing for very long time. People would like to find other new parameters
to describe the characteristics of power DC/DC converters.

Energy storage in power DC/DC converters has been paid attention long time ago.
Unfortunately, there is no clear concept to describe the phenomena and reveal the rela-
tionship between the stored energy and the characteristics of power DC/DC converters.
We have theoretically defined a new concept, “energy factor (EF)”, and researched the
relationship between EF and the mathematical modeling of power DC/DC converters.
EF is a new concept in power electronics and conversion technology, which thoroughly
differs from the traditional concepts such as power factor (PF), power transfer efficiency
(η), total harmonic distortion (THD) and ripple factor (RF). EF and the sub-sequential
other parameters can illustrate the system stability, reference response and interference
recovery. This investigation is very helpful for system design and DC/DC converters
characteristics foreseeing.

Assuming the instantaneous input voltage and current of a DC/DC converter are,
v1(t) and i1(t), and their average values are V1 and I1, respectively. The instantaneous
output voltage and current of a DC/DC converter are, respectively, v2(t) and i2(t),
and their average values are V2 and I2, respectively. The switching frequency is f , the
switching period is T = 1/f , the conduction duty cycle is k and the voltage transfer
gain is M = V2/V1.

2.2 PUMPING ENERGY (PE)

All power DC/DC converters have pumping circuit to transfer the energy from the
source to some energy-storage passive elements, e.g. inductors and capacitors. The
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pumping energy (PE) is used to count the input energy in a switching period T . Its
calculation formula is:

PE =
∫ T

0
Pin(t)dt =

∫ T

0
V1i1(t)dt = V1I1T (2.1)

where I1 = ∫ T
0 i1(t)dt is the average value of the input current if the input voltage

V1 is constant. Usually, the input average current I1 depends on the conduction duty
cycle.

2.2.1 Energy Quantization

In switching power circuits the energy is not continuously flowing from source to
actuator. The energy delivered in a switching period T from source to actuator is likely
an energy quantum. Its value is the PE.

2.2.2 Energy Quantization Function

From Equation (2.1) it can be seen that the energy quantum (PE) is the function of
switching frequency f or period T , conduction duty cycle k , input voltage v1 and
current i1. Since the variables T , k , v1 and i1 can vary on time, PE is the time function.
Usually, in a steady state the variables T , k , v1 and i1 cannot vary, consequently PE is
a constant value in a steady state.

2.3 STORED ENERGY (SE)

Energy storage in power DC/DC converters has been paid attention long time ago.
Unfortunately, there is no clear concept to describe the phenomena and reveal the
relationship between the stored energy and the characteristics of power DC/DC
converters.

2.3.1 Stored Energy in Continuous Conduction Mode

If a power DC/DC converter works in the continuous conduction mode (CCM), then
all inductor’s currents and capacitor’s voltages are continuous (not to be equal to zero).

Stored Energy (SE)

The stored energy in an inductor is:

WL = 1

2
LI 2

L (2.2)



Energy factor (EF) and sub-sequential parameters 37

The stored energy across a capacitor is.

WC = 1

2
CV 2

C (2.3)

Therefore, if there are nL inductors and nC capacitors, the total stored energy in a
DC/DC converter is:

SE =
nL∑

j=1

WLj +
nC∑

j=1

WCj (2.4)

Usually, the stored energy (SE) is independent from the switching frequency f (as well
as the switching period T ). Since the inductor currents and the capacitor voltages rely
on the conduction duty cycle k , the stored energy does also rely on the conduction duty
cycle k . We use the stored energy (SE) as a new parameter in further description.

Capacitor–Inductor Stored Energy Ratio (CIR)

Most power DC/DC converters consist of inductors and capacitors. Therefore, we can
define the capacitor–inductor stored energy ratio (CIR) as follows:

CIR =

nC∑
j=1

WCj

nL∑
j=1

WLj

(2.5)

Energy Losses (EL)

Usually, most analyses applied in DC/DC converters are assuming no power losses, i.e.
the input power is equal to the output power, Pin = Po or V1I1 = V2I2, so that pumping
energy is equal to output energy in a period PE = V1I1T = V2I2T . It corresponds to
the efficiency η = V2I2T/PE = 100%.

Particularly, power losses always exist during the conversion process. They are
caused by the resistance of the connection cables, resistance of the inductor and
capacitor wire, and power losses across the semiconductor devices (diode, integrated
gate bipolar transistors (IGBT), power metal-oxide semiconductor field effected tran-
sistors (MOSFET) and so on). We can sort them as the resistance power losses
Pr , passive element power losses Pe and device power losses Pd. The total power
losses are:

Ploss = Pr + Pe + Pd

and

Pin = PO + Ploss = PO + Pr + Pe + Pd = V2I2 + Pr + Pe + Pd
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Therefore,

EL = Ploss × T = (Pr + Pe + Pd)T

The energy losses (EL) is in a period T :

EL =
∫ T

0
Ploss dt = PlossT (2.6)

Since the output energy in a period T is (PE – EL)T , we can define the efficiency η

to be:

η = PO

Pin
= Pin − Ploss

Pin
= PE − EL

PE
(2.7)

If there are some energy losses (EL > 0), then the efficiency η is smaller than unity. If
there are no energy losses during conversion process (EL = 0), then the efficiency η is
equal to unity.

Stored Energy Variation on Inductors and Capacitors (VE)

The current flowing through an inductor has variation (ripple) 	iL, the variation of
stored energy in an inductor is:

	WL = 1

2
L(I 2

max − I 2
min) = LIL	iL (2.8)

where

Imax = (IL + 	iL)/2 and Imin = (IL − 	iL)/2.

The voltage across a capacitor has variation (ripple) 	vC, the variation of stored energy
across a capacitor is:

	WC = 1

2
C(V 2

max − V 2
min) = CVC	vC (2.9)

where

Vmax = (VC + 	vC)/2 and Vmin = (VC − 	vC)/2

In the steady state of CCM, the total variation of the stored energy (VE) is:

VE =
nL∑

j=1

	WLj +
nC∑

j=1

	WCj (2.10)
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2.3.2 Stored Energy in Discontinuous Conduction
Mode (DCM)

If a power DC/DC converter works in the CCM, some component’s voltage and current
are discontinuous. In the steady state of the discontinuous conduction situation (DCM),
some minimum currents through inductors and/or some minimum voltages across
capacitors become zero. We define the filling coefficients mL and mC to describe
the performance in DCM.

Usually, if the switching frequency f is high enough, the inductor’s current is a
triangle waveform. It increases and reaches Imax during the switching-on period kT, and
it decreases and reaches Imin during the switching-off period (1 – k)T . If it becomes zero
at t = t1 before next switching-on, we call the converter works in DCM. The waveform
of the inductor’s current is shown in Figure 2.1. The time t1 should be in the range
kT < t1 < T , and the filling coefficient mL is:

mL = t1 − kT

(1 − k)T
(2.11)

where 0 < mL < 1. It means the inductor’s current only can fill the time period
mL(1 − k)T during switch-off period. In this case, Imin is equal to zero and the average
current IL is:

IL = 1

2
Imax[mL + (1 − mL)/k] (2.12)

and

	iL = Imax (2.13)

Therefore,

	WL = LIL	iL = 1

2
LI 2

max[mL + (1 − mL)/k] (2.14)

Analogously, we define the filling coefficient mC to describe the capacitor voltage
discontinuity. The waveform is shown in Figure 2.2. Time t2 should be kT < t2 < T ,
and the filling coefficient mC is:

mC = t2 − kT

(1 − k)T
(2.15)

kT Tt1

IL

Imax

t
0

Figure 2.1 Discontinuous inductor current.
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kT Tt2

VC

Vmax

t
0

Figure 2.2 Discontinuous capacitor voltage.

where 0 < mC < 1. It means that the capacitor’s voltage only can fill the time period
mC(1 − k)T during the switch-off period. In this case, Vmin is equal to zero and the
average voltage VC is:

VC = 1

2
Vmax[mC + (1 − mC)/k] (2.16)

and

	vC = Vmax (2.17)

Therefore,

	WC = CVC	vC = 1

2
CV 2

max[mC + (1 − mC)/k] (2.18)

We consider a converter working in DCM; it usually means only one or two energy-
storage elements’ voltage/current are discontinuous, and not all elements. We use the
parameter VED to present the total variation of the stored energy:

VED =
nL−d∑
j=1

	WLj +
nL∑

j=nL−d+1

	WLj +
nC−d∑
j=1

	WCj +
nC∑

j=nC−d+1

	WCj (2.19)

where nL−d is the number of discontinuous inductor currents, and nC−d is the number
of discontinuous capacitor voltages. We have other chapters to discuss these cases. This
formula form is very similar to Equation (2.10). For convenience, if there is no special
necessity, we use Equation (2.10) to cover both CCM and CDM.

2.4 ENERGY FACTOR (EF)

As described in previous section the input energy in a period T is the pumping energy
PE = Pin × T = VinIin × T . We now define that the energy factor (EF) is the ratio of
the stored energy (SE) over the pumping energy (PE):

EF = SE

PE
= SE

V1I1T
=

m∑
j=1

WLj +
n∑

j=1
WCj

V1I1T
(2.20)
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Energy factor (EF) is a very important factor of a power DC/DC converter. It is usu-
ally independent from the conduction duty cycle k , and proportional to the switching
frequency f (inversely proportional to the) since the pumping energy (PE) is
proportional to the switching period T .

2.5 VARIATION ENERGY FACTOR (EFV)

We also define that the energy factor for the variation of stored energy (EFV) is the
ratio of the variation of stored energy over the pumping energy:

EFV = VE

PE
= VE

V1I1T
=

m∑
j=1

	WLj +
n∑

j=1
	WCj

V1I1T
(2.21)

Energy factor (EF) and variation energy factor (EFV) are available to be used to
describe the characteristics of power DC/DC converters. The applications are listed in
Section 2.7.

2.6 TIME CONSTANT, τ ,AND DAMPING TIME CONSTANT, τd

We define the time constant, τ, and damping time constant, τd, of a power DC/DC
converter in this section for the applications in Section 2.7.

2.6.1 Time Constant, τ

The time constant, τ, of a power DC/DC converter is a new concept to describe the
transient process of a DC/DC converter. If there are no power losses in the converter,
it is defined as:

τ = 2T × EF

1 + CIR
(2.22)

This time constant (τ) is independent from switching frequency f (or period T = 1/f ).
It is available to estimate the converter responses for a unit-step function and impulse
interference.

If there are power losses and η < 1, it is defined as:

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
(2.23)

The time constant (τ) is still independent from switching frequency f (or period
T = 1/f ) and conduction duty cycle k . If there is no power loss and η = 1, then Equa-
tion (2.23) becomes Equation (2.22). Usually, the higher the power losses (the lower
efficiency η), the larger the time constant τ since usually CIR > 1.
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2.6.2 Damping Time Constant, τd

The damping time constant, τd, of a power DC/DC converter is a new concept to
describe the transient process of a DC/DC converter. If there are no power losses, it is
defined as:

τd = 2T × EF

1 + CIR
CIR (2.24)

This damping time constant (τd) is independent from switching frequency f (or period
T = 1/f ). It is available to estimate the oscillation responses for a unit-step function
and impulse interference.

If there are power losses and η < 1, then it is defined as:

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
(2.25)

The damping time constant (τd) is also independent from switching frequency f (or
period T = 1/f ) and conduction duty cycle k . If there is no power loss and η = 1, then
Equation (2.25) becomes Equation (2.24). Usually, the higher the power losses (the
lower efficiency η), the smaller the damping time constant (τd) since usually CIR > 1.

2.6.3 Time Constant Ratio, ξ

The time constant ratio, ξ, of a power DC/DC converter is a new concept to
describe the transient process of a DC/DC converter. If there are no power losses, it is
defined as:

ξ = τd

τ
= CIR (2.26)

This time constant ratio is independent from switching frequency f (or period T = 1/f ).
It is available to estimate the oscillation responses for a unit-step function and impulse
interference.

If there are power losses and η < 1, it is defined as:

ξ = τd

τ
= CIR

η
(

1 + CIR 1−η
η

)2 (2.27)

The time constant ratio is still independent from switching frequency f (or period
T = 1/f ) and conduction duty cycle k . If there is no power loss and η = 1, then Equa-
tion (2.27) becomes Equation (2.26). Usually, the higher the power losses (the lower
efficiency η), the smaller the time constant ratio (ξ) since usually CIR > 1. From this
analysis, most power DC/DC converters with lower power losses possess the output
voltage oscillation when the converter operation state changed. Vice versa, power
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DC/DC converters with high power losses will possess the output voltage smoothening
when the converter operation state changed.

By cybernetic theory, we can estimate the unit-step function response using the ratio
ξ. If the ratio ξ is equal to or smaller that 0.25 the corresponding unit-step function
response has no oscillation and overshot. Vice versa, if the ratio ξ is greater that 0.25
the corresponding unit-step function response has oscillation and overshot. The higher
the value of ratio ξ, the heavier the oscillation with higher overshot.

2.6.4 Mathematical Modeling for Power DC/DC
Converters

The mathematical modeling for all power DC/DC converters is:

G(s) = M

1 + sτ + s2ττd
(2.28)

where M is the voltage transfer gain (M = V2/V1); τ, the time constant in Equation
(2.23); τd, the damping time constant in Equation (2.25) (τd = ξτ) and s, the Laplace
operator in the s-domain.

Using this mathematical model of power DC/DC converters, it is significantly easy to
describe the characteristics of power DC/DC converters. In order to verify this theory,
few converters are investigated to demonstrate the characteristics of power DC/DC
converters and applications of the theory.

2.7 EXAMPLES OF APPLICATIONS

In order to demonstrate the parameters’ calculation some examples are presented in
this section. A buck converter, super-lift Luo-converter, boost converter, buck–boost
converter and positive-output Luo-converter are used for this purpose.

2.7.1 A Buck Converter in CCM

We will carefully discuss the mathematical model for buck converter in various
conditions in this sub-section.

Buck Converter without Energy Losses (rL = 0 �)

A buck converter shown in Figure 2.3 has the components values: V1 = 40V,
L = 250 µH with resistance rL = 0 �, C = 60 µF, R = 10 �, the switching frequency
f = 20 kHz (T = 1/f = 50 µs) and conduction duty cycle k = 0.4. This converter is
stable and works in CCM.
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Figure 2.3 Buck converter.

Therefore, we have got the voltage transfer gain M = 0.4, i.e. V2 = VC = MV1 = 0.4 ×
40 = 16V, IL = I2 = 1.6A, Ploss = 0 W and I1 = 0.64 A. The parameter EF and others
are listed below:

PE = V1I1T = 40 × 0.64 × 50µ = 1.28 mJ

WC = 1

2
CV 2

C = 0.5 × 60µ × 162 = 7.68 mJ

WL = 1

2
LI 2

L = 0.5 × 250µ × 1.62 = 0.32 mJ

SE = WL + WC = 0.32 + 7.68 = 8 mJ

CIR = WC

WL
= 7.68

0.32
= 24

EF = SE

PE
= 8

1.28
= 6.25

EL = Ploss × T = 0 mJ

η = PO

PO + Ploss
= 1

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 25 µs

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 625 µs

ξ = τd

τ
= CIR

η
(

1 + CIR 1−η
η

)2 = 25 � 0.25

By cybernetic theory, since the damping time constant (τd) is much larger than the time
constant (τ), the corresponding ratio (ξ) is 25 � 0.25. The output voltage has heavy
oscillation with high overshot. The corresponding transfer function is:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + s1)(s + s2)
(2.29)
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Figure 2.4 Buck converter unit-step function response.

where

s1 = σ + jω and s2 = σ − jω

with

σ = 1

2τd
= 1

1200µs
= 833 Hz and ω =

√
4ττd − τ2

2ττd
=

√
60,000 − 625

30,000µ

= 243.67

30,000µ
= 8122 rad/s

The unit-step function response is:

v2(t) = 16[1 − e(−t/0.0012)( cos 8122t − 0.1026 sin 8122t)] V (2.30)

The unit-step function response (transient process) has oscillation progress with
damping factor (σ) and frequency (ω). The simulation is shown in Figure 2.4.

The impulse interference response is:

	v2(t) = 0.205Ue−t/0.0012 sin 8122t (2.31)

where U is the interference signal. The impulse response (interference recovery
process) has oscillation progress with damping factor (σ) and frequency (ω). The
simulation is shown in Figure 2.5.

In order to verify the analysis, calculation and simulation results, we constructed a
test rig with same conditions. The corresponding test results are shown in Figures 2.6
and 2.7.
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Figure 2.5 Buck converter impulse response.
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Figure 2.6 Unit-step function responses of buck converter (experiment).

Buck Converter with Small Energy Losses (rL = 1.5�)

A buck converter shown in Figure 2.3 has the components values: V1 = 40V,
L = 250 µH with resistance rL = 1.5 �, C = 60 µF, R = 10 �, the switching frequency
f = 20 kHz (T = 1/f = 50 µs) and conduction duty cycle k = 0.4. This converter is
stable and works in CCM.
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Figure 2.7 Impulse responses of buck converter (experiment).

Therefore, we have got the voltage transfer gain M = 0.35, i.e. V2 = VC =
MV1 = 0.35 × 40 = 14V, IL = I2 = 1.4A, Ploss = I 2

L × rL = 1.42 × 1.5 = 2.94 W and
I1 = 0.564A. The parameter EF and others are listed below:

PE = V1I1T = 40 × 0.564 × 50µ = 1.128 mJ

WC = 1

2
CV 2

C = 0.5 × 60µ × 142 = 5.88 mJ

WL = 1

2
LI 2

L = 0.5 × 250µ × 1.42 = 0.245 mJ

SE = WL + WC = 0.245 + 5.88 = 6.125 mJ

CIR = WC

WL
= 5.88

0.245
= 24

EF = SE

PE
= 6.125

1.128
= 5.43

EL = Ploss × T = 2.94 × 50 = 0.147 mJ

η = PO

PO + Ploss
= 0.87

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 99.6 µs

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 130.6 µs

ξ = τd

τ
= CIR

η
(

1 + CIR 1−η
η

)2 = 1.31 � 0.25



48 Digital power electronics and applications

4.003.002.00

Time (ms)

1.000.00
0.00

3.00

6.00

9.00

12.00

15.00

18.00

v 2

Figure 2.8 Buck converter unit-step function response (rL = 1.5 �).

By cybernetic theory, since the damping time constant (τd) is much larger than the time
constant (τ), the corresponding ratio (ξ) is 1.31 >> 0.25. The output voltage has heavy
oscillation with high overshot. The corresponding transfer function is:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + s1)(s + s2)
(2.32)

where

s1 = σ + jω and s2 = σ − jω

with

σ = 1

2τd
= 1

261.2 µs
= 3833 Hz and ω =

√
4ττd − τ2

2ττd
=

√
52,031 − 9920

26,015.5

= 205.2

26,015.5µ
= 7888 rad/s

The unit-step function response is:

v2(t) = 14[1 − e−t/0.000261(cos 7888t − 0.486 sin 7888t)] V (2.33)

The unit-step function response (transient process) has oscillation progress with
damping factor (σ) and frequency (ω). The simulation is shown in Figure 2.8.

The impulse interference response is:

	v2(t) = 0.975Ue−t/0.000261 sin 7888t (2.34)
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Figure 2.9 Buck converter impulse response (rL = 1.5 �).
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Figure 2.10 Unit-step function responses of buck converter (rL = 1.5 � experiment).

where U is the interference signal. The impulse response (interference recovery
process) has oscillation progress with damping factor (σ) and frequency (ω). The
simulation is shown in Figure 2.9.

In order to verify the analysis, calculation and simulation results, we constructed a
test rig with same conditions. The corresponding test results are shown in Figures 2.10
and 2.11.

Buck Converter with Energy Losses (rL = 4.5 �)

A buck converter shown in Figure 2.3 has the components values: V1 = 40V,
L = 250 µH with resistance rL = 4.5 �, C = 60 µF, R = 10 �, the switching frequency
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Figure 2.11 Impulse responses of buck converter (rL = 1.5 � experiment).

f = 20 kHz (T = 1/f = 50 µs) and conduction duty cycle k = 0.4. This converter is
stable and works in CCM.

Therefore, we have got the voltage transfer gain M = 0.2756, i.e. V2 = VC = MV 1 =
0.2756 × 40 = 11V, IL = I2 = 1.1A, Ploss = I 2

L × rL = 1.12 × 4.5 = 5.445 W and I1 =
0.4386A. The parameter EF and others are listed below:

PE = V1I1T = 40 × 0.4386 × 50µ = 0.877 mJ

WC = 1

2
CV 2

C = 0.5 × 60µ × 112 = 3.63 mJ

WL = 1

2
LI 2

L = 0.5 × 250µ × 1.12 = 0.151 mJ

SE = WL + WC = 0.151 + 3.63 = 3.781 mJ

CIR = WC

WL
= 3.63

0.151
= 24

EF = SE

PE
= 3.781

0.877
= 4.31

EL = Ploss × T = 5.445 × 50 = 0.2722 mJ

η = PO

PO + Ploss
= 0.689

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 203.2 µs

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 50.8 µs

ξ = τd

τ
= CIR

η
(

1 + CIR 1−η
η

)2 = 0.25
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Figure 2.12 Buck converter unit-step function response (rL = 4.5 �).

By cybernetic theory, since the damping time constant (τd) is the critical value, the
corresponding ratio (ξ) is equal to 0.25. The output voltage has no oscillation. The
corresponding transfer function is:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + σ)2 (2.35)

where

σ = 1

2τd
= 1

101.6µ
= 9843 Hz

The unit-step function response is:

v2(t) = 11
[

1 −
(

1 + t

0.0001016

)
e−t/0.0001016

]
V (2.36)

The unit-step function response (transient process) has no oscillation progress with
damping factor (σ). The simulation is shown in Figure 2.12.

The impulse interference response is:

	v2(t) = t

0.0000508
Ue−t/0.0001016 (2.37)

where U is the interference signal. The impulse response (interference recovery
process) has no oscillation progress with damping factor (σ). The simulation is shown
in Figure 2.13.
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Figure 2.13 Buck converter impulse response (rL = 4.5 �).

Buck Converter with Large Energy Losses (rL = 6 �)

A buck converter shown in Figure 2.3 has the components values: V1 = 40V,
L = 250 µH with resistance rL = 6 �, C = 60 µF, R = 10 �, the switching frequency
f = 20 kHz (T = 1/f = 50 µs) and conduction duty cycle k = 0.4. This converter is
stable and works in CCM.

Therefore, we have got the voltage transfer gain M = 0.25, i.e. V2 = VC = MV1 =
0.25 × 40 = 10V, IL = I2 = 1A, Ploss = I 2

L × rL = 12 × 6 = 6 W and I1 = 0.4A. The
parameter EF and others are listed below:

PE = V1I1T = 40 × 0.4 × 50µ = 0.8 mJ

WC = 1

2
CV 2

C = 0.5 × 60µ × 102 = 3 mJ

WL = 1

2
LI 2

L = 0.5 × 250µ × 12 = 0.125 mJ

SE = WL + WC = 0.125 + 3 = 3.125 mJ

CIR = WC

WL
= 3

0.125
= 24

EF = SE

PE
= 3.125

0.8
= 3.9

EL = Ploss × T = 6 × 50 = 0.3 mJ

η = PO

PO + Ploss
= 0.625
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Figure 2.14 Buck converter unit-step function response (rL = 6 �).

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 240.3 µs

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 38.9 µs

ξ = τd

τ
= CIR

η
(

1 + CIR 1−η
η

)2 = 0.162 < 0.25

By cybernetic theory, since the damping time constant (τd) is smaller than the time
constant (τ), the corresponding ratio (ξ) is 0.162 < 0.25. The output voltage has no
oscillation. The corresponding transfer function is:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + σ1)(s + σ2)
(2.38)

with

σ1 = τ +√4ττd − τ2

2ττd
= 240.3 + 142.66

18695.3µ
= 20,500 Hz

σ2 = τ −√4ττd − τ2

2ττd
= 240.3 − 142.66

18695.3µ
= 5200 Hz

The unit-step function response is:

v2(t) = 10(1 + 0.342e−20500t − 1.342e−5200t) V (2.39)

The unit-step function response (transient process) has no oscillation progress with
damping factor (σ2). The simulation is shown in Figure 2.14.
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Figure 2.15 Buck converter impulse response (rL = 6 �).

The impulse interference response is:

	v2(t) = 1.684U (e−20500t − e−5200t) (2.40)

where U is the interference signal. The impulse response (interference recovery
process) has no oscillation progress with damping factor (σ2). The simulation is shown
in Figure 2.15.

2.7.2 A Super-Lift Luo-Converter in CCM

Figure 2.16 shows a super-lift Luo-converter with the conduction duty k = 0.5. The
components values are V1 = 20V, f = 50 kHz (T = 20 µs), L = 100 µH with resistance
rL = 0.12 �, C1 = 2500 µF, C2 = 800 µF and R = 10 �. This converter is stable and
works in CCM.

Therefore, we have got the voltage transfer gain M = 2.863, i.e. the output volt-
age V2 = VC2 = 57.25V, VC1 = V1 = 20V, I1 = 17.175A, I2 = 5.725A, IL = 11.45A
and Ploss = I 2

L × rL = 11.452 × 0.12 = 15.73 W. The parameter EF and others are listed
below:

PE = V1I1T = 20 × 17.175 × 20µ = 6.87 mJ

WL = 1

2
LI 2

L = 0.5 × 100µ × 11.452 = 6.555 mJ
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Figure 2.16 Super-lift Luo-converter.

WC1 = 1

2
C1V 2

C1
= 0.5 × 2500µ × 202 = 500 mJ

WC2 = 1

2
C2V 2

C2
= 0.5 × 800µ × 57.252 = 1311 mJ

SE = WL + WC1 + WC2 = 6.555 + 500 + 1311 = 1817.6 mJ

EF = SE

PE
= 1817.6

6.87
= 264.6

EL = PlossT = 15.73 × 20 = 0.3146 mJ

CIR = WC1 + WC2

WL
= 1811

6.555
= 276.3

η = PO

PO + Ploss
= 327.76

343.49
= 0.9542

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 40µ × 264.6 × 13.26

277.3
= 506 µs

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 40 × 264.6 × 20.3

277.3
= 775 µs

By cybernetic theory, since the damping time constant (τd) is much larger than the
time constant (τ), the corresponding ratio (ξ) = 775/506 = 1.53 >> 0.25. The out-
put voltage has heavy oscillation with high overshot. The transfer function of this
converter has two poles (−s1 and −s2) that are located in the left-hand half plane
(LHHP):

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + s1)(s + s2)
(2.41)

where
s1 = σ + jω and s2 = σ − jω
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Figure 2.17 Super-lift Luo-converter unit-step responses.

with

σ = 1

2τd
= 1

1.55 ms
= 645 Hz and ω =

√
4ττd − τ2

2ττd
=

√
1,686,400 − 295,936

843,200

= 1197.2

843,200µ
= 1398 rad/s

The unit-step function response is:

v2(t) = 57.25[1 − e−t/0.00155( cos 1398t − 0.461 sin 1398t)] V (2.42)

The unit-step function response (transient process) has oscillation progress with
damping factor (σ) and frequency (ω) the simulation is shown in Figure 2.17.

The impulse interference response is:

	v2(t) = 0.923Ue−t/0.00155 sin 1398t (2.43)

where U is the interference signal. The impulse response (interference recovery pro-
cess) has oscillation progress with damping factor (σ) and frequency (ω), and is shown
in Figure 2.18.

In order to verify the analysis, calculation and simulation results, we constructed a
test rig with same conditions. The corresponding test results are shown in Figures 2.19
and 2.20.
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Figure 2.18 Super-lift Luo-converter impulse responses.

10.0 V 1.00 ms 1 RUN1

1

Figure 2.19 Unit-step function responses of super-lift Luo-converter (experiment).

2.7.3 A Boost Converter in CCM (no Power Losses)

A boost converter shown in Figure 2.21 has the components values: V1 = 40V,
L = 250 µH, C = 60 µF, R = 10 �, the switching frequency f = 20 kHz (T =
1/f = 50 µs) and conduction duty cycle k = 0.6. This converter is stable and works
in CCM.

Therefore, we have got the voltage transfer gain M = 1/(1 − k) = 2.5, i.e.
V2 = VC = V1/(1 − k) = 100V, I2 = 10A, and I1 = IL = 25A. The parameter EF and
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Figure 2.20 Impulse responses of super-lift Luo-converter (experiment).
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Figure 2.21 Boost converter.

others are listed below:

PE = V1I1T = 40 × 25 × 50µ = 50 mJ

WL = 1

2
LI 2

L = 0.5 × 250µ×252 = 78.125 mJ

WC = 1

2
CV 2

C = 0.5 × 60µ × 1002 = 300 mJ

SE = WL + WC = 78.125 + 300 = 378.125 mJ

EF = SE

PE
= 378.125

50
= 7.5625

CIR = WC

WL
= 300

78.125
= 3.84

Since there are no power losses in the converter, EL = 0 and η = 1:

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 100µ×7.5625

1 + 3.84
= 156.25 µs
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τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 100 × 7.5625 × 3.84

4.84
= 600 µs

ξ = τd

τ
= CIR

η
(

1 + CIR 1−η
η

)2 = 3.84 > 0.25

By cybernetic theory, since the damping time constant (τd) is much larger than the time
constant (τ), the corresponding ratio (ξ) is 3.84 > 0.25. The output voltage has heavy
oscillation with high overshot. The transfer function of this converter has two poles
(–s1 and –s2) that are located in the LHHP:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + s1)(s + s2)
(2.44)

where

s1 = σ + jω and s2 = σ − jω

with

σ = 1

2τd
= 1

1.2 ms
= 833 Hz and ω =

√
4ττd − τ2

2ττd
=

√
375,000 − 24,414

187,500

= 592.1

187,500µ
= 3158 rad/s

The unit-step function response is:

v2(t) = 100[1 − e−t/0.0012(cos 3158t − 0.264 sin 3158t)] V (2.45)

The unit-step function response (transient process) has oscillation progress with
damping factor (σ) and frequency (ω). The simulation is shown in Figure 2.22.

The impulse interference response is:

	v2(t) = 0.528Ue−t/0.0012 sin 3158t (2.46)

where U is the interference signal. The impulse response (interference recovery pro-
cess) has oscillation progress with damping factor (σ) and frequency (ω), and is shown
in Figure 2.23.

2.7.4 A Buck–Boost Converter in CCM (No Power Losses)

A boost converter shown in Figure 2.24 has the components values: V1 = 40V,
L = 250 µH, C = 60 µF, R = 10 �, the switching frequency f = 20 kHz (T =
1/f = 50 µs) and conduction duty cycle k = 0.6. This converter is stable and works
in CCM.
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Figure 2.22 Boost converter unit-step responses.
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Figure 2.23 Boost converter impulse responses.
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Therefore, we have got the voltage transfer gain M = k/(1 − k) = 1.5, i.e.
V2 = VC = kV1/(1 − k) = 60V, I2 = 6A, I1 = 9A and IL = 15A. The parameter EF and
others are listed below:

PE = V1I1T = 40 × 9 × 50µ = 18 mJ

WL = 1

2
LI 2

L = 0.5 × 250µ × 152 = 28.125 mJ

WC = 1

2
CV 2

C = 0.5 × 60µ × 602 = 108 mJ

SE = WL + WC = 28.125 + 108 = 136.125 mJ

CIR = WC

WL
= 108

28.125
= 3.84

EF = SE

PE
= 136.125

18
= 7.5625

Since there are no power losses in the converter, EL = 0 and η = 1:

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 100µ × 7.5625

1 + 3.84
= 156.25 µs

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 100 × 7.5625 × 3.84

4.84
= 600 µs

ξ = τd

τ
= CIR

η
(

1 + CIR 1−η
η

)2 = 3.84 > 0.25

By cybernetic theory, since the damping time constant (τd) is much larger than the time
constant (τ), the corresponding ratio (ξ) is 3.84 > 0.25. The output voltage has heavy
oscillation with high overshot. The transfer function of this converter has two poles
(–s1 and –s2) that are located in the LHHP:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + s1)(s + s2)
(2.47)

where

s1 = σ + jω and s2 = σ − jω

with

σ = 1

2τd
= 1

1.2 ms
= 833 Hz and ω =

√
4ττd − τ2

2ττd
=

√
375,000 − 24,414

187,500

= 592.1

187,500µ
= 3158 rad/s
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The unit-step function response is:

v2(t) = 60[1 − e−t/0.0012( cos 3158t − 0.264 sin 3158t)] V (2.48)

The unit-step function response (transient process) has oscillation progress with
damping factor (σ) and frequency (ω). The simulation is shown in Figure 2.25.

The impulse interference response is:

	v2(t) = 0.528Ue−t/0.0012 sin 3158t (2.49)

where U is the interference signal. The impulse response (interference recovery pro-
cess) has oscillation progress with damping factor (σ) and frequency (ω), and is shown
in Figure 2.26.

2.00 4.00 6.00

Time (ms)

8.00 10.000.00
�100.00

�80.00

�60.00

�40.00

�20.00

20.00

V
ou

t

0.00

Figure 2.25 Buck–boost converter unit-step responses.
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Figure 2.26 Buck–boost converter impulse responses.
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2.7.5 Positive-Output Luo-Converter in CCM
(No Power Losses)

Figure 2.27 shows a positive-output Luo-converter with the conduction duty k . The
components values are V1 = 20V, f = 50 kHz (T = 20 µs), L1 = L2 = 1 mH, k = 0.5,
C1 = C2 = 20 µF and R = 10 �. This converter is stable and works in CCM.

Therefore, we have got the voltage transfer gain M = k/(1 − k) = 1, i.e. the out-
put voltage V2 = VC2 = kV 1/(1 − k) = 40V, VC1 = V1 = 40V, I1 = 4A, I2 = 4 A and
IL1 = IL2 = 4A. The parameter EF and others are listed below:

PE = V1I1T = 40 × 4 × 20µ = 3.2 mJ

WC1 = 1

2
C1V 2

C1
= 0.5 × 20µ × 402 = 16 mJ

WC2 = 1

2
C2V 2

C2
= 0.5 × 20µ × 402 = 16 mJ

WL1 = 1

2
L1I 2

L1
= 0.5 × 1m × 42 = 8 mJ

WL2 = 1

2
L2I 2

L2
= 0.5 × 1m × 42 = 8 mJ

SE = WL1 + WL2 + WC1 + WC2 = 16 + 32 = 48 mJ

EF = SE

PE
= 48

3.2
= 15

CIR = WC1 + WC2

WL1 + WL2

= 32

16
= 2

Since there are no power losses in the converter, EL = 0 and η = 1:

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 40µ × 15

3
= 200 µs
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Figure 2.27 Positive-output Luo-converter.
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Figure 2.28 Positive-output Luo-converter unit-step responses.

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 40µ × 15 × 2

3
= 400 µs

ξ = τd

τ
= CIR

η
(

1 + CIR 1−η
η

)2 = 2 > 0.25

By cybernetic theory, since the damping time constant (τd) is much larger than the
time constant (τ), the corresponding ratio (ξ) is 2 > 0.25. The output voltage has no
oscillation and overshot. The transfer function of this converter has two real poles (–s1
and –s2) that are located in the LHHP:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + s1)(s + s2)
(2.50)

where

s1 = σ + jω and s2 = σ − jω

with

σ = 1

2τd
= 1

0.8 ms
= 1250 Hz and ω =

√
4ττd − τ2

2ττd
=

√
320,000 − 40,000

160,000

= 529.2

160,000µ
= 3307 rad/s

The unit-step function response is:

v2(t) = 40[1 − e−t/0.0008(cos 3307t − 0.378 sin 3307t)] V (2.51)

The unit-step function response (transient process) has oscillation progress with
damping factor (σ) and frequency (ω). The simulation is shown in Figure 2.28.
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Figure 2.29 Positive-output Luo-converter impulse responses.

The impulse interference response is:

	v2(t) = 0.756Ue−t/0.0008 sin 3307t (2.52)

where U is the interference signal. The impulse response (interference recovery pro-
cess) has oscillation progress with damping factor (σ) and frequency (ω), and is shown
in Figure 2.29.

2.8 SMALL SIGNAL ANALYSIS

We analyzed the characteristics of power DC/DC converters in large signal opera-
tion in Section 2.6.4. We analyze the characteristics of power DC/DC converters in
small signal operation in this section. It will verify that the transfer function (2.28) is
generally correct for both large and small signal analyses, and it describes the native
characteristics of a power DC/DC converter.

If the conduction duty cycle (k) changes from k1 to k2 (	k = k2 − k1) in a small
increment to the new value (k2 = k1 + 	k), the pumping energy PE has to change cor-
respondingly in an increment to the new value (PE + 	PE). Analogously, the inductor
currents and capacitor voltages have to change correspondingly, and the stored energy
SE changes to (SE + 	SE):

	PE =
∫ T

0
V1i1(t)|k=k2 dt −

∫ T

0
V1i1(t)|k=k1 dt = V1(I1−k2 − I1−k1 )T = V1	I1T

(2.53)
The stored energy in an inductor is:

	WL = 1

2
L(I 2

L−k2
− I 2

L−k1
) (2.54)
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The stored energy across a capacitor is

	WC = 1

2
C(V 2

C−k2
− V 2

C−k1
) (2.55)

Therefore, if there are nL inductors and nC capacitors the total stored energy in a DC/DC
converter is:

	SE =
nL∑

j=1

	WLj +
nC∑

j=1

	WCj (2.56)

We define the energy factor EF in small signal operation as:

EF = 	SE

	PE
=

m∑
j=1

	WLj +
n∑

j=1
	WCj

V1	I1T
(2.57)

Correspondingly, the capacitor/inductor stored energy ratio (CIR) is:

CIR =

nC∑
j=1

	WCj

nL∑
j=1

	WLj

(2.58)

The energy losses increment (	EL) in a period T is defined as:

	EL = 	Ploss × T (2.59)

so that the efficiency η is:

η = 	PE − 	EL

	PE
(2.60)

Although the time constant (τ), damping time constant (τd) and time constant ratio
(ξ) are not changed, they are still defined in the same forms as:

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
(2.61)

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
(2.62)

ξ = τd

τ
= CIR

η
(

1 + CIR 1−η
η

)2 (2.63)
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The transfer function is not changed:

G(s) = M

1 + sτ + s2ττd
= M

1 + sτ + ξs2τ2 (2.64)

In order to verify this theory and offer examples to readers, we prepare two converters: a
buck converter and super-lift Luo-converter to demonstrate the characteristics of power
DC/DC converters and applications of the theory.

2.8.1 A Buck Converter in CCM without
Energy Losses (rL = 0)

A buck converter shown in Figure 2.3 has the components values: V1 = 40V, L = 250 µH
with resistance rL = 0 �, C = 60 µF, R = 10 �, the switching frequency f = 20 kHz
(T = 1/f = 50 µs) and conduction duty cycle (k) changing from 0.4 to 0.5. This
converter is stable and works in CCM.

Therefore, we have got the voltage transfer gain M = 0.5, i.e. V2 = VC = MV1 = 0.5 ×
40 = 20V, IL = I2 = 2A, Ploss = 0 W and I1 = 1A. The increments are 	V2 = 4V,
	I2 = 	IL = 0.4A, 	I1 = 0.34A. The parameter EF and others are listed below:

	PE = V1	I1T = 40 × 0.36 × 50µ = 0.72 mJ

	WC = 1

2
C(V 2

C−0.5 − V 2
C−0.4) = 4.32 mJ

	WL = 1

2
L(I 2

L−0.5 − I 2
L−0.4) = 0.5 × 250µ × (22 − 1.62) = 0.18 mJ

	SE = 	WL + 	WC = 4.5 mJ

	EL = 0 mJ

η = 	PE − 	EL

	PE
= 1

EF = 	SE

	PE
= 4.5

0.72
= 6.25

CIR = 	WC

	WL
= 4.32

0.18
= 24

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 25 µs

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 600 µs

From the above calculation and analysis we found out that the time constants are not
changed. Therefore, the transfer function for small signal operation should not be
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Figure 2.30 Unit-step responses of buck converter without power loss (simulation).
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Figure 2.31 Impulse responses of buck converter without power loss (small signal).

changed, which is still Equation (2.29). Correspondingly, the unit-step response is:

v2(t) = 16 + 4[1 − e−t/0.0012(cos 8122t − 0.1026 sin 8122t)] V (2.65)

The unit-step function response for large signal (k = 0–0.4) and small signal (k = 0.4–
0.5) operation is shown in Figure 2.30 for comparison with each other.

The impulse response for small signal is described as:

	v2(t) = 0.205Ue−t/0.0012 sin 8122t (2.66)

where U is the interference signal. The small-signal impulse response is shown in
Figure 2.31.
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Figure 2.32 Unit-step responses of buck converter without power losses (experiment, small
signal).
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Figure 2.33 Small signal impulse responses of buck converter without power losses
(experiment).

In order to verify this analysis and compare the simulation results to experimental
results, a test rig was constructed. The conduction duty cycle (k) changes from 0.4 to 0.5.
The experimental results for unit-step response (k = 0.4–0.5) and impulse interference
response (k = 0.5–0.4) are shown in Figures 2.32 and 2.33. We can see that both the
simulation and experimental results are identical.

2.8.2 Buck-Converter with Small Energy Losses
(rL = 1.5�)

A buck converter shown in Figure 2.3 has the components values: V1 = 40V,
L = 250 µH with resistance rL = 1.5 �, C = 60 µF, R = 10 �, the switching frequency
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f = 20 kHz (T = 1/f = 50 µs) and conduction duty cycle (k) changing from 0.4 to 0.5.
This converter is stable and works in CCM.

We have got the voltage transfer gain M = 0.435, i.e. V2 = VC = MV1 = 0.435 × 40 =
17.4V, IL = I2 = 17.4A, Ploss = I 2

LrL = 1.742 × 1.5 = 4.54 W, I1 = 0.871A, and
	V2 = 3.4V, 	I2 = 	IL = 0.34A, 	Ploss = (I 2

L−0.5 − I 2
L−0.4) rL = (1.742 − 1.42)1.5 =

1.6 W and 	I1 = 0.313A. The parameters are listed below:

	PE = V1	I1T = 40 × 0.313 × 50µ = 0.626 mJ

	WC = 1

2
C(V 2

C−0.5 − V 2
C−0.5) = 3.284 mJ

	WL = 1

2
L(I 2

L−0.5 − I 2
L−0.4) = 0.136 mJ

	SE = 	WL + 	WC = 3.42 mJ

	EL = 	Ploss × T = 1.6 × 50 = 0.08 mJ

η = 	PE − 	EL

	PE
= 0.546

0.626
= 0.87

EF = 	SE

	PE
= 3.42

0.626
= 5.43

CIR = 	WC

	WL
= 3.284

0.136
= 24

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 100 µs

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 130.6 µs

From the above calculation and analysis we found out that the time constants are not
changed. Therefore, the transfer function for small signal operation should not be
changed, which is still Equation (2.32). Correspondingly, the unit-step response is:

v2(t) = 14 + 3.4[1 − e−t/0.000261(cos 7888t − 0.486 sin 7888t)] V (2.67)

The unit-step function response for large (k = 0–0.4) and small signal (k = 0.4–0.5)
operation is shown in Figure 2.34 for comparison with each other. The impulse response
for small signal is described as:

	v2(t) = 0.973Ue−t/0.000261 sin 7888t (2.68)

where U is the interference signal. The small-signal impulse response is shown in
Figure 2.35.

In order to verify this analysis and compare the simulation results to experimental
results, a test rig was constructed. The conduction duty cycle (k) changes from 0.4 to 0.5.
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Figure 2.34 Unit-step responses (simulation) of buck converter with power loss (rL = 1.5 �).
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Figure 2.35 Impulse responses (simulation) of buck converter with power loss (rL = 1.5 �,
small signal).

The experimental results for unit-step response (k = 0.4–0.5) and impulse interference
response (k = 0.5–0.4) are shown in Figures 2.36 and 2.37.

We can see that both the simulation and experimental results are identical.

2.8.3 Super-Lift Luo-Converter with Energy Losses
(rL = 0.12 �)

Figure 2.16 shows a super-lift Luo-converter with the conduction duty (k) chang-
ing from 0.5 to 0.6. The components values are V1 = 20V, f = 50 kHz (T = 20 µs),
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Figure 2.36 Unit-step function responses (experiment, small signal) of buck converter with
power loss (rL = 1.5 �).
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Figure 2.37 Impulse responses (experiment, small signal) of buck converter with power loss
(rL = 1.5 �).

L = 100 µH with resistance rL = 0.12 �, C1 = 2500 µF, C2 = 800 µF and R = 10 �.
This converter is stable and works in CCM.

We then obtain V2 = 65.09V, I2 = 6.509A, I1 = 22A, IL = 14.91A, Ploss = I 2
L × rL =

14.912 × 0.12 = 26.67 W, VC1 = V1 = 20V, VC2 = V2 = 65.09V, and 	V2 = 7.74V,
	I2 = 0.784A, 	I1 = 4.825A, 	IL = 3.46A, 	Ploss = (I 2

L−0.6 − I 2
L−0.5) rL = 7.4 W,

	VC1 = 	V1 = 0V and 	VC2 = 	V2 = 7.84V. The parameters are:

	PE = V1	I1T = 1.93 mJ

	WL = 1.385 mJ

	WC1 = 0 mJ
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Figure 2.38 Unit-step responses (simulation) of super-lift Luo-converter (rL = 0.12 �).

	WC2 = 383.68 mJ

	SE = 	WL + 	WC1 + 	WC2 = 385.06 mJ

EF = 	SE

	PE
= 385.06

1.9
= 203

	EL = 	Ploss × T = 7.4 × 20 = 0.148 mJ

η = 	PE − 	EL

	PE
= 1.93 − 0.148

1.93
= 0.923

CIR = 	WC

	WL
= 383.68

1.38
= 277

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 543 µs

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 768 µs

From the above calculation and analysis we found out that the time constants are not
changed. Therefore, the transfer function (2.33) for small signal operation should not
be changed. Correspondingly, the unit-step response is:

v2(t) = 57.25 + 7.8[1 − e−t/1.55(cos 1398t − 0.461 sin 1398t)] V (2.69)

The unit-step function response for large signal (k = 0–0.5) and small signal (k = 0.5–
0.6) operation are shown in Figure 2.38. The impulse response for small signal is
described as:

	v2(t) = 0.923Ue−t/0.00155 sin 1398t (2.70)
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Figure 2.39 Impulse responses (simulation) of super-lift Luo-converter (rL = 0.12 �, small
signal).
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Figure 2.40 Unit-step function responses (experiment, small signal) of super-lift Luo-converter
(rL = 0.12 �).

where U is the interference signal. The small signal impulse response is shown in
Figure 2.39.

In order to verify this analysis and compare the simulation results to experimental
results, a test rig was constructed. The components values are V1 = 20V, f = 50 kHz
(T = 20 µs), k = 0.5, L = 100 µH (with rL = 0.12 �), C1 = 750 µF, C2 = 200 µF and
R = 10 �.

The experimental results for unit-step (small signal: k = 0.5–0.6) response and
impulse interference (small signal: k = 0.6–0.5) responses are shown in Figures 2.40
and 2.41. We can see that both the simulation and experimental results are identical.



Energy factor (EF) and sub-sequential parameters 75

10.0 V 1.00 ms 1 RUN1

1

Figure 2.41 Impulse responses (experiment, small signal) of super-lift Luo-converter
(rL = 0.12 �).
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APPENDIX A – A SECOND-ORDER TRANSFER FUNCTION

A typical second-order transfer function in the s-domain is shown below:

G(s) = M

1 + sτ + s2ττd
= M

1 + sτ + ξs2τ2 (2A.1)

where M is the voltage transfer gain; τ, The time constant; τd, The damping time
constant (τd = ξτ) and s, The Laplace operator in the s-domain.

We now discuss various situations for the transfer function in detail.

A.1 Very Small Damping Time Constant

If the damping time constant is very small (i.e. τd � τ, ξ � 1) and it can be ignored,
the value of the damping time constant (τd) is omitted (i.e. τd = 0, ξ = 0). The transfer
function (2A.1) is downgraded to the first order as:

G(s) = M

1 + sτ
(2A.2)

The unit-step function response in the time domain is:

g(t) = M (1 − e−t/τ) (2A.3)

The transient process (settling time) is nearly 3 times of the time constant, i.e. 3τ, to
produce g(t) = g(3τ) = 0.95 M. The response in time domain is shown in Figure 2A.1
with τd = 0.

The impulse interference response is:

	g(t) = Ue−t/τ (2A.4)

where U is the interference signal. The interference recovering progress is nearly 3 times
of the time constant, 3τ, and shown in Figure 2A.2 with τd = 0.

A.2 Small Damping Time Constant

If the damping time constant is small (i.e. τd < τ/4, ξ < 0.25) and it cannot be ignored,
the value of the damping time constant (τd) is not omitted. The transfer function (2A.1)
retained the second-order function with two real poles –σ1 and –σ2 as:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + σ1)(s + σ2)
(2A.5)

where

σ1 = τ +√τ2 − 4ττd

2ττd
and σ2 = τ −√τ2 − 4ττd

2ττd
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Figure 2A.1 Unit-step function responses (τd = 0, 0.1τ, 0.25τ and 0.5τ).
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Figure 2A.2 Impulse responses (τd = 0, 0.1τ, 0.25τ and 0.5τ).

There are two real poles in the transfer function, and assuming σ1 > σ2. The unit-step
function response in the time domain is:

g(t) = M (1 + K1e−σ1t + K2e−σ2t) (2A.6)
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where

K1 = −1

2
+ τ

2
√

τ2 − 4ττd

and K2 = −1

2
− τ

2
√

τ2 − 4ττd

The transient process is nearly 3 times of the time value 1/σ1, 3/σ1 < 3τ. The response
process is quick without oscillation. The corresponding waveform in time domain is
shown in Figure 2A.1 with τd = 0.1τ.

The impulse interference response is:

	g(t) = U√
1 − 4τd/τ

(e−σ2t − e−σ1t) (2A.7)

where U is the interference signal. The transient process is nearly 3 times of the time
value 1/σ1, 3/σ1 < 3τ. The response waveform in time domain is shown in Figure 2A.2
with τd = 0.1τ.

A.3 Critical Damping Time Constant

If the damping time constant is equal to the critical value (i.e. τd = τ/4), the trans-
fer function (2A.1) retained the second-order function with two equaled real poles
σ1 = σ2 = σ as:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + σ)2 (2A.8)

where

σ = 1

2τd
= 2

τ

There are two-folded real poles in the transfer function. This expression describes the
characteristics of the DC/DC converter. The unit-step function response in the time
domain is:

g(t) = M

[
1 −

(
1 + 2t

τ

)
e−2t/τ

]
(2A.9)

The transient process is nearly 2.4 times of the time constant τ(2.4τ). The response
process is quick without oscillation. The response waveform in time domain is shown
in Figure 2A.1 with τd = 0.25τ.

The impulse interference response is:

	g(t) = 4U

τ
t e−2t/τ (2A.10)

where U is the interference signal. The transient process is still nearly 2.4 times of the
time constant, 2.4τ. The response waveform in time domain is shown in Figure 2A.2
with τd = 0.25τ.
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A.4 Large Damping Time Constant

If the damping time constant is large (i.e. τd > τ/4, ξ > 0.25), the transfer function
(2A.1) is a second-order function with a couple of conjugated complex poles –s1
and –s2 in the LHHP in s-domain:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + s1)(s + s2)
(2A.11)

where

s1 = σ + jω and s2 = σ − jω

with

σ = 1

2τd
and ω =

√
4ττd − τ2

2ττd

There is a couple of conjugated complex poles –s1 and –s2 in the transfer function.
This expression describes the characteristics of the DC/DC converter. The unit-step
function response in the time domain is:

g(t) = M

[
1 − e−t/2τd

(
cos ωt − 1√

4τd/τ − 1
sin ωt

)]
(2A.12)

The transient response has oscillation progress with damping factor (σ) and frequency
(ω). The corresponding waveform in time domain is shown in Figure 2A.1 with
τd = 0.5τ and in Figure 2A.3 with τ, 2τ, 5τ and 10τ.
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Figure 2A.3 Unit-step function responses (τd = τ, 2τ, 5τ and 10τ).
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Figure 2A.4 Impulse responses (τd = τ, 2τ, 5τ and 10τ).

The impulse interference response is:

	g(t) = U√
τd
τ

− 1
4

e−t/2τd sin (ωt) (2A.13)

where U is the interference signal. The recovery process is a curve with damping factor
(σ) and frequency (ω). The response waveform in time domain is shown in Figure 2A.2
with τd = 0.5τ and in Figure 2A.4 with τ, 2τ, 5τ and 10τ.
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APPENDIX B – SOME CALCULATION FORMULAE
DERIVATIONS

B.1 Transfer Function of Buck Converter

With reference to Figure 2.3, we obtain the output voltage v2(t) from input source
voltage v1(t) = V1 using the voltage division formula:

v1(t) =
{

V1 0 ≤ t < kT
0 kT ≤ t < T

Correspondingly, the transfer function in the s-domain is:

G(s) = v2(s)

v1(s)
= M

R(1/sC)
R+(1/sC)

sL + R(1/sC)
R+(1/sC)

= M

1 + s L
R + s2LC

(2B.1)

where M is the voltage transfer gain in the steady state.
This transfer function is in the second-order form. It is available for other fundamen-

tal converters which consist of two passive energy-storage elements (one inductor L
and one capacitor C) and load R such as boost converter and buck–boost converter. The
voltage transfer gain is M = k for buck converter, M = 1/(1 − k) for boost converter,
M = k/(1 − k) for buck–boost converter.

B.2 Transfer Function of Super-Lift Luo-converter

With reference to Figure 2.16, we obtain the output voltage v2(t) from input source
voltage v1(t) = V1 (0 ≤ t < kT ) using the voltage division formula. Correspondingly,
the transfer function in the s-domain is:

G(s) = v2(s)

v1(s)
= M

R(1/sC2)
R+(1/sC2)

sL + 1
sC1

+ R(1/sC2)
R+(1/sC2)

= MsRC1

1 + sR(C1 + C2) + s2LC1 + s3RLC1C2

(2B.2)

where M is the voltage transfer gain in the steady state. M = (2 − k)/(1 − k) for the
elementary circuit of positive-output super-lift Luo-converter. This is a third-order
transfer function in the s-domain.

B.3 Simplified Transfer function of Super-Lift Luo-converter

With reference to Figure 2.16, we obtain the output voltage v2(t) from input source
voltage v1(t) = V1 using the voltage division formula. Correspondingly, the transfer
function in the s-domain is shown in Equation (2B.2). If the capacitance C2 is very
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small it can be ignored, the item involving the C2 can be deleted in Equation (2B.2).
Therefore, we obtain the simplified transfer function (2B.3) as given below:

G(s) = MsRC1

1 + sRC1 + s2LC1
(2B.3)

This is a second-order transfer function in the s-domain with two “poles” and one
“zero”, which means that there is offset from beginning.

In the other case, if C1 is very large and 1/SC1 = 0, we may obtain in other form as:

G(s) = M

1 + s L
R + s2LC2

(2B.4)

This is a second-order transfer function in the s-domain with two “poles”. There is no
offset from beginning.

B.4 Time Constants τ and τd, and Ratio ξ

The deviation of time constants τ and τd, and ratio ξ can be referred to the transfer
function of buck converter with power losses (rL 	= 0).

G(s) = M

1 + r
R + s

(
Cr + L

R

)+ s2LC
= Mη

1 + s
(
Cr + L

R

)
η + s2LCη

(2B.5)

τ = η

(
Cr + L

R

)
= CRr

R + r
+ η

L

R
= (1 − η)

2WC

PO
+ η

2WL

PO

= 2T (1 − η)EF × CIR

η(1 + CIR)
+ 2T × EF

1 + CIR
= 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
(2B.6)

τd = CLη

η
(
Cr + L

R

) = CLη

2T×EF
1+CIR

(
1 + CIR 1−η

η

) =
(

2T×EF
1+CIR

)2
CIR
η

2T×EF
1+CIR

(
1 + CIR 1−η

η

)
= 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
(2B.7)

ξ = τd

τ
= CIR

η
(

1 + CIR 1−η
η

)2 (2B.8)
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From Equation (2.23)

τ = 2T × EF

1 + CIR

(
1 + CIR

1 − η

η

)
= 2T (SE/PE)

1 + CIR

(
1 + CIR

1 − η

η

)

= 2 × SE/Pin

1 + CIR

(
1 + CIR

1 − η

η

)

Since the stored energy (SE), CIR, input power (Pin) and the efficiency (η) are dependent
on the working state, but independent from the switching frequency ( f ) and conduction
duty cycle (k), the time constant (τ) is independent from the switching frequency ( f )
and conduction duty cycle (k).

From Equation (2.25)

τd = 2T × EF

1 + CIR

CIR

η + CIR(1 − η)
= 2T (SE/PE)

1 + CIR

CIR

η + CIR(1 − η)

= 2 × SE/Pin

1 + CIR

CIR

η + CIR(1 − η)

Analogously, the time constant ratio (ξ) is independent from the switching frequency
( f ) and conduction duty cycle (k).

Usually the stored energy is proportional to the input power. Therefore, when
the working state changes from one steady state to a new one, the time constant (τ),
the damping time constant (τd) and the time constant ratio (ξ) are not changed. They
are the parameters to rely on the circuit structure and power losses. Readers can try
changing the k and/or f to repeat the exercises in Section 2.5. You can find the time
constant (τ), the damping time constant (τd) and the time constant ratio (ξ) are not
changed.



Chapter 3

Basic Mathematics of Digital
Control Systems

Digital control systems are described by digital control theory. Some necessary
fundamental knowledge on digital control theory is introduced in this Chapter as
mathematical tools, which are used in further Chapters.

3.1 INTRODUCTION

Today, computers are more advanced and are almost inevitable in many industries.
As computers operate on digital signals, the need for handling digital signals also
increased proportionally. High-speed processing capabilities of modern computers
attracted applications that make use of digital signals, which further accelerate the
development of the use of digital signals. Hence, digital control systems have gradu-
ally become more prominent in today’s industries. Accompanying the growth of digital
signals, the use of switching circuits also increases tremendously for industrial applica-
tions. These switching circuits transfer energy from the source to the load in switching
status. For example, the energy from the source is transferred to the load in discrete
format. In the 1980’s Dr. F. L. Luo paid attention to this phenomenon, which differs
from the traditional analog control methods. Note that any system that involves the
switching circuits must be in the discrete-data control system and the sampling interval
is the switching period T , where T = 1/fC in which fC is the switching frequency.

Signals are variations that “transport” information from one place to another. There
are two main types of signals: the analog signals and the digital signals. Analog
signals, also known as continuous-time signals can take any value and are defined at
every instant of time. Whereas digital signals, also known as discrete-data signals, are
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only defined at finite number of levels and points in time. Real-time signals are analog
in nature and have to be converted to digital signals for further processing and storage
purposes.

Digital control systems have many advantages over analog control systems. Analog
control systems are based on circuitries, whose hardware components’ properties are
affected by manufacturers’ tolerance and external factors such as temperature. As dig-
ital control systems are mainly software based, they are almost completely unaffected
by these problems. Digital control systems are smaller in size and consume less power
than their analog control counterparts. Digital control systems are also highly repro-
ducible and have virtually unlimited programmability. The greatest advantage of digital
technology is the flexibility that allows modification to be done.

Digital computers are used for simulation and computation of control systems
dynamics for analysis and design of complex control systems. This eased the has-
sle of laboratory work that is tedious and expensive. Computer simulations also allow
the designers to check or present the results obtained by analytical means. In addition,
digital computers can also be used as controllers or processors.

3.1.1 Basic Modulation Methods

A signal in discrete-time state is not a continuous function. It is a pulse-train corre-
sponding to certain parameters. The pulse-train usually has certain repeating period
T called sampling period, and amplitude. There are two typical modulation meth-
ods applied for the discrete signals. They are pulse-amplitude modulation (PAM) and
pulse-width modulation (PWM) methods.

Pulse-Amplitude Modulation

Figure 3.1 shows the continuous-data (analog) signal f (t) to be sampled, and the corre-
sponding sampled output signal f ∗

p (t) is a train of finite-width pulses whose amplitude
are modulated by the input f (t). The carrier signal p(t) is the sampling control signal
which is a train of periodic pulses, each with unity amplitude and the sampling (switch-
ing) frequency fC, and the sampling period (or sampling interval) T = 1/fC. The p is
the sample time (or sample width) that is assumed p < T . This sampler is called the
uniform-rate sampler.

f (t )

Carrier signal p (t )
f � fC

*fp(t ) � fC(t )p (t )Pulse-amplitude
modulator

Figure 3.1 Pulse-amplitude modulator.
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Typical input and output waveforms of a uniform-rate sampler are shown in Fig-
ure 3.2. This sampling method is called the pulse-amplitude modulation (PAM). The
corresponding output pulse-train has the pulses with same width p and different
amplitudes:

f ∗
p (t) = f (t)p(t) (3.1)

This modulation method will be discussed in the next section in detail.

Pulse-Width Modulation

Another typical sampling is the pulse-width modulation (PWM). The corresponding
modulator is called the pulse-width modulator. Typical input and output waveforms
of a pulse-width modulator are shown in Figure 3.3. The output pulse-train has the
pulses with same amplitude and different widths, which correspond to the input signal
at the sampling instants. This modulation method is very popular in most industrial
applications.

The amplitude modulation ratio ma is arranged in certain area, which is usually
yielded by a uniformed-amplitude triangle (carrier) signal with the amplitude Vtri-m.
The maximum amplitude of input signal is assumed Vin-m. We define the amplitude

t

p

p (t ) 1

(b) T

(a)

f (t )

t

T
t

fp(t )

p

(c)

Figure 3.2 Typical input and output waveforms of a uniform-rate sampler: (a) input, (b) carrier
and (c) output signals.
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t

fw(t )

(b)

T

f (t )

t
(a)

Figure 3.3 Typical input and output waveforms of a pulse-width modulator: (a) input and
(b) output signals.

1.0 3.24
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Square
wave

1

4
π

Linear
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Over-
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Figure 3.4 Voltage control by varying ma.

modulation ratio ma as follows:

ma = Vin-m

Vtri-m
(3.2)

The input signal at most time points is smaller than its amplitude. The modulation ratio
is defined as

m = Vin

Vtri-m

We also define the frequency modulation ratio mf as follows:

mf = ftri-m
fin-m

(3.3)

Since the value of the input signal is always smaller than or equal to the maximum
amplitude Vin-m, the modulation ratio m is always smaller than or equal to the amplitude
modulation ratio ma. The voltage control by varying ma is shown in Figure 3.4.
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Linear Range (ma ≤ 1.0)

The condition (V̂Ao)1 = ma(Vd/2) determines the linear region. It is a sinusoidal PWM
where the amplitude of the fundamental frequency voltage varies linearly with the
amplitude modulation ratio ma. The PWM pushes the harmonics into a high-frequency
range around the switching frequency and its multiples. However, the maximum avail-
able amplitude of the fundamental frequency component may not be as high as the
desired.

Overmodulation ( 3.24 > ma > 1.0)

The condition Vd
2 < (V̂Ao)1 < 4

π
Vd
2 determines the overmodulation region. When the

amplitude of the fundamental frequency component in the output voltage is increased
beyond 1.0, it reaches overmodulation. In overmodulation range, the amplitude of the
fundamental frequency voltage no longer varies linearly with ma.

Overmodulation causes the output voltage to contain many more harmonics in the
sidebands as compared with the linear range. The harmonics with dominant amplitudes
in the linear range may not be dominant during overmodulation.

Square Wave (Sufficiently Large ma > 3.24)

The inverter voltage waveform degenerates from a pulse-width-modulated waveform
into a square wave.

3.1.2 Basic Elements of a Discrete-Data Control System

For convenience, only the mathematical modeling of the uniform-rate sampling oper-
ation is discussed in this section. Once we have established the input–output relation
of the uniform-rate sampler, the analysis can be easily extended to some of the other
types of non-uniform-rate sampling.

The carrier signal p(t) is expressed as follows:

p(t) =
∞∑

k=−∞
[u(t − kT ) − u(t − kT − p)] p < T (3.4)

where u(t) is the unit-step function. We assumed that the sampling operation begins
from t = −∞ and the leading edge of the pulse at t = 0. The output of the sampler is
written as:

f ∗
p (t) = f (t)p(t) (3.5)

where

p(t) =
{

1 kT ≤ t < kT + p
0 kT + p ≤ t < (k + 1)T

(3.6)
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or

p(t) =
∞∑

k=−∞
[u(t − kT ) − u(t − kT − p)] where p < T (3.7)

Substituting Equation (3.7) in Equation (3.5), we get,

f ∗
p (t) = f (t)

∞∑
k=−∞

[u(t − kT ) − u(t − kT − p)] p < T (3.8)

Equation (3.8) gives a time domain description of the input–output relation of the
uniform-rate finite-pulse-width sampler. Since the unit-pulse-train p(t) is a periodic
function with period T , it can be represented by a Fourier series,

p(t) =
∞∑

k=−∞
Cn ejnωCt (3.9)

where ωC is the sampling angular frequency in rad/s, and is equal to 2πfC or 2π/T ; Cn

denotes the complex series coefficients and is given by:

Cn = 1

T

∫ T

0
p(t) e−jnωCt dt (3.10)

Considering p(t) = 1 for 0 ≤ t ≤ p, Equation (3.10) becomes:

Cn = 1

T

∫ p

0
e−jnωCtdt = 1 − e−jnωCp

jnωCT
(3.11)

Using well-known trigonometric identities, Cn is written as:

Cn = p

T

sin(nωCp/2)

nωCp/2
e−jnωCp/2 (3.12)

Substituting Equation (3.12) in Equation (3.9), we get,

p(t) =
∞∑

n=−∞

p

T

sin(nωCp/2)

nωCp/2
e−jnωCp/2ejnωCt (3.13)

Considering Equation (3.9), we rewrite Equation (3.5) as follows:

f ∗
p (t) =

∞∑
n=−∞

Cn f (t) ejnωCt (3.14)
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The Fourier transform of f ∗
p (t) is obtained as:

f ∗
p ( jω) = 


[
f ∗
p (t)

]
=
∫ ∞

−∞
f ∗
p (t) e−jωt dt (3.15)

Using the complex shifting theorem of the Fourier transform which states that:



[
e jnωCt f (t)

]
= F( jω − jnωC) (3.16)

the Fourier transform of f ∗
p (t) is written as:

F∗
p (jω) =

∞∑
n=−∞

CnF( jω − jnωC) (3.17)

Since n changes from −∞ to ∞, the sign minus (−) can be written in plus (+).
So that:

|F∗
p ( jω)| =

∣∣∣∣∣
∞∑

n=−∞
CnF( jω + jnωC)

∣∣∣∣∣ ≤
∞∑

n=−∞
|Cn||F( jω + jnωC)| (3.18)

or ∣∣∣F∗
p ( jω)

∣∣∣ ≤ ∞∑
n=−∞

p

T

∣∣∣∣ sin(nωCp/2)

nωCp/2

∣∣∣∣ |F( jω + jnωC)| (3.19)

and

C0 = lim
n→0

Cn = p

T
(3.20)

Then we get the amplitude spectra of input and output signals of a finite-pulse-width
sampler shown in Figure 3.5.

3.2 DIGITAL SIGNALS AND CODING

Examining the waveform conjectured as |F∗
p ( jω)| in Figure 3.5(c), we can see that

the sampling operation retains the fundamental component of F( jω), but in addi-
tion, the sampler output also contains the harmonics components, F( jω + jnωC), for
n = ±1, ±2, . . .. The frequency ωC/2 is called folding frequency, and the frequency
ωN in Figure 3.5(b) and (c) is called Nyquist frequency. The conditions below must be
satisfied:

ωC

2
< ωN

and/or

T >
TN

2
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Figure 3.5 Amplitude spectra of input/output signals of a finite-pulse-width sampler.
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Figure 3.6 Normal sampling and aliasing.

It means that the folded frequency must be smaller than the Nyquist frequency. Fig-
ure 3.6 shows the input signal and the sampling signal. In Figure 3.6(a) the sampling
interval T = 1/fC is smaller than the half-cycle of the input signal. The output sig-
nal of the sampler is described by the theoretical analysis in Section 3.1. Vice versa,
if the sampling interval T = 1/fC is greater than the half-cycle of the input signal
as shown in Figure 3.6(b), the output signal will have a different frequency from
the input frequency (the phenomenon is called aliasing), and the output signal fre-
quency is called the alias frequency. The period of the output is called the alias
period.

The requirement that the sampling frequency ωC be at least twice as large as the
highest frequency (Nyquist frequency) contained in the signal f (t) is formally known
as the Shannon’s sampling theorem.
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3.3 SHANNON’S SAMPLING THEOREM

Sampling is of great practical importance as it has many applications in engineering
and physics. Many people have discovered or rediscovered the sampling theorem in
the recent centuries.

3.3.1 Brief Introduction to Nyquist Sampling Theory

Nyquist sampling theorem states that an analog signal can be perfectly re-created from
its sample values if the sampling interval is chosen correctly. For example, a signal
with a maximum frequency of ω Hz must be sampled at least 2ω times per second to
reconstruct the original signal from the samples.

3.3.2 Shannon Sampling Theorem

The Shannon sampling theorem was discovered by Claude E. Shannon, and is also
known as the Nyquist criterion. Shannon formalized the Nyquist sampling theory by
stating that any band-limited signal can be reconstructed from its samples provided
the sampling frequency is at least twice the highest frequency in the signal. When-
ever this condition is not fulfilled, aliasing occurs. This theory was described in a
manuscript in 1940, but it was not published until 1949, that too after the end of
World War II.

In depth, Shannon’s sampling theorem states that a function of time f (t) which
contains no frequency components greater than ωC in rad/s (band limited) can be
reconstructed by the values of f (t) at any set of sampling points that are spaced apart
by T < π/ωC seconds. The continuous-time frequency band-limited signal f (t) can be
reconstructed from the sampled signal by using:

f (t) =
+∞∑

k=−∞
e(kT )

sin v(t, kT )

v(t, kT )

where v(t, kT ) ≡ (ωS − ωSkT )/2.
The Shannon sampling theorem is stated below:

If a signal contains no frequency higher than ωC in rad/s, it is completely char-
acterized by the values of the signal measured at instants of time separated by
T = π/ωN in second.

It means that the sampling frequency ωC must be greater than twice of the input signal
frequency, the output signal can be successfully sampled. The sampling frequency
condition is ωS > 2ωC, where ωC = ωS/2 is called the Nyquist frequency. Below the
Nyquist sampling frequency, signal frequency information is lost. At Nyquist sampling
frequency, amplitude data are lost.
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The principal impact of the Shannon sampling theorem on information theory is that
it allows the replacement of a continuous band-limited signal by a discrete sequence of
its samples without loss of any information. Also it specifies the lowest rate of sampling
to reproduce the original signal.

3.4 SAMPLE-AND-HOLD DEVICES

Sample-and-hold (S/H) device is the important equipment (device) for the sampling and
holding process of the digitized operation. We introduce some devices for this operation.

3.4.1 Digital Words and Codes

Digital words and codes are normally used to represent digital signals. The information
carried by the digital codes is generally in the form of discrete bits. The numerical
value of the digital word or code then represents the magnitude of the information in
the variable the word represents.

The digital signal stored in a digital computer is made up of binary number of zeros
and ones. Each binary digit is referred to as a bit. One bit itself is too small to carry the
full information needed. Hence, the bits are strung together to form larger and more
useful information units.

The accuracy of a digital computer depends on the ability to store and manipulate
digital signals as indicated by its word length.

3.4.2 Sampling Process

The S/H device makes a fast acquisition (sample) of an analog signal and then holds
the signal at a constant value until the next acquisition is made. This device converts
an analog or continuous-time signal into a digital or pulse-modulated signal.

S/H device is an important component in the digital and sampled-data control sys-
tems. Its fundamental block diagram is shown in Figure 3.7. Hence, it is important to
ensure that the system is realistic and is mathematically simple for analytical purposes.
Normally, S/H is performed by a single unit normally known as sample-and-hold. How-
ever, it is better to treat the sampling and holding operations separately when doing
analysis.

S/H devices are commonly used in digital systems. They are normally used to
maintain fast-moving signals during conversion operations. It is also used to store
multiplexer outputs while the signal is being converted and to detect signal’s peak.

Input es(t ) S/H Output eo(t )

Figure 3.7 Functional block diagram of an S/H unit.
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Figure 3.8 Circuit illustration of S/H.
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Figure 3.9 Ideal output waveform of an S/H device.

Figure 3.8 illustrates the simplest form of an S/H application. The opening and
closing of the switch is controlled by a sample command. When the switch is closed,
the S/H output samples and tracks the input signal es(t). When the switch is opened,
the output is held at the voltage that the capacitor is charged to. The time interval where
the switch is closed is known as the sampling duration. The resistance is non-zero in
practice. The capacitor will charge toward the sampled input signal with a time constant
RSC. The operation of the sampler is not instantaneous as it needs time to respond to
the S/H command. Figure 3.9 shows the ideal output waveform of an S/H device.

A hold device maintains the value of the pulse for a prescribed time duration. During
the hold mode, a typical output signal of an S/H is characterized by several sources of
time delays and imperfect holding. Figure 3.10 shows the input signal and correspond-
ing output of a practical S/H with finite time delay. The following terms used in Figure
3.10 can be briefed as follows:

Ta: Acquisition time
The duration from the instant when SAMPLE command is given to the time when the
output of the S/H enters and remains within a specified error band around the input
signal.
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Figure 3.10 Input signal and corresponding output of a practical S/H with finite time delay.

Tp: Aperture time
The time between the start of the HOLD command and the time the switch or sampler
is opened.

Ts: Settling time
The time needed for the transient oscillation to settle to within a certain percent of error
band.

In digital systems, the S/H operation is often controlled by a periodic clock. The
input and output signals of S/H with a uniform-periodic sampling rate are shown in
Figure 3.11. The time duration between the sample commands is called the sampling
period T . Usually, the S/H is available in one unit. However, it is better to treat the
sampling and holding operations separately when doing analysis.

Figure 3.12 shows the block diagram approximation of the S/H with output filter.
This equivalent block diagram isolates the S/H functions and the effects of all the
delay times and transient operations, where Td is the pure time delay, the time which
approximates the acquisition time and the aperture time delays. The filter represents
the finite time constant and dynamics of the buffer application.

The sampler can be regarded as a pulse-amplitude modulator which has a pulse or
sampling duration of p. The hold device simply holds the sampled signal during the
holding periods. Usually, the time-delay element and filter are equipped in the S/Hs,
and the ideal S/H is shown in Figure 3.13.
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Figure 3.11 Input and output signals of S/H with a uniform-periodic sampling rate.
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Figure 3.12 Block diagram of the S/H with output filter.
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Figure 3.13 Ideal S/H.
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Figure 3.14 Input and output signals of an ideal S/H.

In practice, majority of the S/H operations have very small sampling duration p as
compared with the sampling period T and the significant time constant of the input
analog signal. The time delay of the S/H is also comparatively small so that it is
negligible. If p � T , the time delay due to S/H is small. It has zero sampling duration
when p = 0. In this case, the sampler is called an ideal sampler. The input and output
signals of an ideal S/H is shown in Figure 3.14.

The most common type of modulation in the S/H operation (shown in Figure 3.15)
is the PAM. In the figure, p is the sampling pulse duration and T is the sampling period.
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Figure 3.15 Block diagram representation of a periodic/uniform-rate sampler with finite
sampling duration.
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Figure 3.16 Block diagram for A/D conversion.

3.5 ANALOG-TO-DIGITAL CONVERSION

Analog-to-digital (A/D) conversion is an important operation to convert the particular
physical parameter into a digital control system. Real-world signals are analog in nature
and have to be converted to digital signals for signal processing and storage purposes.

3.5.1 A/D Conversion Process

A/D conversion occurs in two steps as shown in Figure 3.16.

Step 1: Sample and hold

Sampling normally occurs at regular time intervals known as sampling periods. At each
sampling point, the analog signal is sampled and the sampled value is held steady until
the next sampling point. This process is called sample-and-hold (S/H). Sampling must
be fast enough to capture the most rapid changes in the signal being sampled. If the
sampling is too slow, important signal information may be lost. This problem is known
as aliasing.

Step 2: Quantization and digitization

This second step can begin at the completion of sample acquisition. The hold interval
normally gives enough time for this step to be completed. As soon as possible after each
sampling instant, the converter selects a quantization level that approximates the S/H
value as closely as possible and then assign a binary code that identifies the quantization
level.

A/D conversion may cause quantization errors. The larger the number of bits used, the
smaller the errors will be. The accuracy of a digital computer depends on the ability to
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Figure 3.18 Typical A/D signal. (a) Analog signal: continuous in magnitude and time, and
(b) digital signal: discrete in magnitude and time n (means nT ).

store and manipulate digital signals as indicated by its word length. The sampling and
holding signal from an analog signal to digital signal is shown in Figure 3.17.

If an analog signal x(t) (shown in Figure 3.18(a)) is converted to the corresponding
digital signal x(n) (shown in Figure 3.18(b)), then the instantaneous value of x(n) is
not exactly equal to the instantaneous value of x(t). The digital signal is quantized
in discrete values after digitization. The quantization and digitization are shown in
Figure 3.19.

3.5.2 A/D Converters

An A/D converter is generally more expensive and has slower response for the same
conversion accuracy. There are a large number of A/D circuits available in the market.
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Figure 3.19 Quantization and digitization.

However, they may be classified into three categories based on their architectures and
performance:

1. Serial A/D converters: They convert analog input to the equivalent digital output
1 LSB (least-significant bit) at a time (i.e. from MSB (most-significant bit)
to LSB) or 1 bit at a time (per clock). Examples: single slope, dual slope
(integrating), successive approximation, delta-sigma.

2. Flash A/D converter: All the bits are determined simultaneously in a single step
or in one clock cycle.

3. Subranging A/D converter: They combine both serial and parallel techniques as a
compromise between the serial and parallel A/D converters. Example: two-step,
multistep, pipeline.

Resolutions: serial > flash > Subranging
Speed: subranging > flash > serial

3.6 DIGITAL-TO-ANALOG CONVERSION

Digital-to-analog (D/A) conversion is an important operation to convert the calculated
output signal in a digital control system to the particular physical actuator.

3.6.1 D/A Conversion Process

A D/A conversion occurs in two steps as shown in Figure 3.20:

Step 1: Convert to analog level

The D/A conversion process is to convert each digital code into analog voltage level
that is proportional to the size of the digital number.
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Figure 3.21 Basic elements of a D/A converter.

Step 2: Hold the signal

The height at each sample corresponds to the analog voltage obtained from the digital
codes. A holder is used to maintain the analog voltage level for the duration of a
sampling period.

3.6.2 D/A Converters

The basic elements of a D/A converter are shown in Figure 3.21. The function of the
logic circuit is to control the switching of the precision reference voltage or current
source to the proper input terminals of the resistor network as a function of the digital
value of each digital input bit.

D/A converters may be classified into serial and parallel types. The output of a serial
D/A converter is obtained serially and the full output is either obtained in N clocks or
in 2N − 1 clocks for an N -bit D/A converter. The output of a parallel D/A converter is
obtained in one clock cycle.

The structures of D/A converter are relatively simpler compared to A/D con-
verter. Most state-of-the-art D/A converter are based on complementary metal-oxide
semiconductor (CMOS). There are a large number of architectures for D/A converter.

Since D/A converter converts a digital signal into an analog signal of corresponding
magnitude, it is regarded as a device consisting of a decoding and an S/H unit.

A decoder decodes the digital word into a number of an amplitude-modulated pulse.
The transfer relation of the decoder is simply a constant gain, which ideally equals to
unity. The block diagram representation of a D/A converter is shown in Figure 3.22.
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Figure 3.22 Block diagram representation of a D/A converter: (a) block diagram and (b) typical
mark of a D/A converter.
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Figure 3.23 Relationship between digital binary fractional code and decimal numbers.

3.6.3 A/D and D/A Conversion Errors

Digital computers are used for simulation and computation of control systems dynamics
for analysis and design of complex control systems. This eased the hassle of laboratory
work that is tedious and expensive. Computer simulations also allow the designer to
check or present the results obtained by analytical means. In addition, digital computers
can also be used as controllers or processors.

The accuracy of a digital computer depends on the ability to store and manipulate
digital signals indicated by its word length. Figure 3.23 shows the relationship between
digital binary fractional code and decimal numbers. Real-time signals are analog in
nature and have to be converted to digital signals for further processing and storage
purposes. Hence, it is important to study their conversion processes.

The conversion error depends on the sampling operation. Figure 3.24 shows the max-
imum error by full step sampling. The digital-coded signal is shown in Figure 3.24(a).
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Figure 3.24 Maximum error (full step): (a) full-step sampling and (b) conversion error.

This sampling operation introduces the error to be equal to +q or −q in Figure 3.24(b).
Another sampling operation, half-step sampling method, is shown in Figure 3.25. It
shows the minimum error. The digital-coded signal is shown in Figure 3.25(a). This
sampling operation introduces the error to be equal to +q/2 or −q/2 in Figure 3.25(b).

3.7 ENERGY QUANTIZATION

Computers use groups of bits to represent numbers. The number of bits used limits the
number of values that can be represented by the computer. An analog sample is coded
by choosing the closest quantization level available.

When N bits are used, 2N possible values can be represented by the computer. The
larger the number of bits used, the more closely the digital signal corresponds to the
analog signal, but the more time consuming the calculations will be.

When an analog signal with a certain range of values is coded using N bits, each sam-
ple must be coded to one of the 2N levels. The gap between levels is called quantization
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Figure 3.25 Minimum error (half step): (a) half-step sampling and (b) conversion error.

step:

Quantization step

Resolution of a quantizer Q
= R

2N
(3.21)

where R is the full-scale analog range and N is the number of bits. The quantization
step grows smaller as the number of bits increases. Quantization error that occurs is
the difference between the quantized value and the actual value of sample:

Quantization error = quantized value – actual value (3.22)

The possible maximum error is one full quantization step. The errors can be reduced if
the quantization levels are shifted to lie symmetrically around the diagonal. When this
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Figure 3.26 Reconstruction of continuous data from digital data using an ideal low pass filter.

occurs, the quantization errors will be reduced by half. Quantization of unipolar data
varies from negative minimum to positive maximum.

Quantization error affects bipolar, the same way it affects unipolar. For bipolar,
symmetry around zero is maintained to keep errors small. Since the quantization errors
are proportional to the quantization step, errors can be reduced by increasing the number
of bits used to represent each sample.

In D/A and A/D conversions, it is important to understand the MSB and the LSB,
and the weight of each in a digitally coded word in the conversion process. The practical
D/A and D/A converters based on the natural binary codes make use of the fractional
codes.

3.8 INTRODUCTION TO RECONSTRUCTION OF
SAMPLED SIGNALS

A data-reconstruction device also known as a filter is often used to interface between
digital and analog components. The hold circuit in the S/H device is the most common
filtering device in the discrete-data systems. Filtering devices or data-reconstruction
devices are used to sieve out high-frequency harmonic components in a signal resulted
from the sampling operation. Although the S/H device comes in a single unit, for
mathematical simplification, only the hold device is modeled.

Firstly, assume that an ideal sampler is sampling at a sampling frequency ωC, which
is at least twice as large as the maximum frequency component of the continuous input
signal being sampled. Figure 3.26 shows the reconstruction of continuous data from
digital data using an ideal low-pass filter.

The amplitude characteristics of an ideal filter are shown in Figure 3.27. The
amplitude gain is unity.

Perfect reconstruction of the continuous signal is based on the assumption that f (t)
is band limited. Hence, it is impossible to recover a totally perfect continuous signal
once it is sampled. The best way to reconstruct a signal is to approximate the original
time function as closely as possible.

The hold device is the simplest form of a general data-reconstruction problem. The
problem of data reconstruction can be regarded as a given sequence of numbers f (0),



Basic mathematics of digital control systems 107

�ωC ωC
ω

1

Amplitude gain

Figure 3.27 Amplitude characteristic of an ideal filter.

f (T ), f (2T ), . . . , f (kT ), . . .. An analog signal f (t), where t > 0 is to be reconstructed
from the information contained in the sequence. This data-reconstruction process may
be regarded as an extrapolation process, since the analog signal is to be constructed
based on information available only at past sampling instants.

Power series expansion of f (t) in the interval between the sampling instants kT and
(k + 1)T is used to generate a desired approximation.

The approximation is:

fk (t) = f (kT ) + f (1)(kT )(t − kT ) + f (2)(kT )

2! (t − kT )2 + · · · (3.23)

or

fk (t) =
∞∑

n=0

f (n)(kT )

n! (t − kT )n (3.24)

The higher the order of the derivation, the larger will be the number of delayed pulses
required. In general, the number of delayed pulse data required to approximate the
value of f (n)(kT ) is n + 1. Thus, the extrapolating device consists of a series of time
delays, and the number of delays depends on the accuracy of the estimate of the time
function f (t) during the time interval from kT to (k + 1)T .

Although utilizing a higher-order derivative produces a more accurate extrapolation,
it causes a reduction on the stability of the closed-loop control systems and it also makes
the circuitry more complicated and expensive.

3.9 DATA CONVERSION: THE ZERO-ORDER HOLD

The most widely used holding device is the zero-order hold (ZOH). This is because it
is less complicated and less expensive. A simple ZOH is shown in Figure 3.28.

It is called zero-order extrapolator as its polynomial used is of the zeroth order. It
holds the value of the sampled value f (kT ) for kT ≤ t < (k + 1)T until the next sample
f [(k + 1)T ] arrives:

fk (t) = f (kT ) (3.25)
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Figure 3.29 Responses of a ZOH: (a) unit-impulse input to and (b) impulse response
of ZOH.

This equation is used for approximation of f (t) during the time interval kT ≤ t <

(k + 1)T . If a unit impulse input signal is applied to a ZOH, the impulse response
is shown in Figure 3.29.

The ZOH is a linear device as it satisfies the principle of superposition. The impulse
response of a ZOH is expressed as:

gh0(t) = us(t) − us(t − T ) (3.26)
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Figure 3.30 Input and output waveforms of a ZOH in the time domain: (a) input signal f (t)
and sampled signal f ∗(t), and (b) output waveform of ZOH.

where us(t) is the unit-step function. The response of the ZOH to the unit-impulse input
is equivalent to the difference between two unit-step function. By taking a Laplace
transform, the transfer function is obtained as:

Gh0(s) = 1 − e−Ts

s
(3.27)

Figure 3.30 shows the output waveform of a ZOH with a pulse sequence input. The
output waveforms clearly indicate that the accuracy of the ZOH greatly depends on
the magnitude of the sampling frequency ωS. As the sampling frequency increases to
infinity or sampling period T approaches zero, the output of the ZOH h(t) approaches
the analog signal f (t).

The ZOH is a data-reconstruction or data-filtering device. Hence it is useful to
examine its frequency domain characteristics. By replacing s by jω in the transfer
function, we get,

Gh0( jω) = 1 − e−T jω

jω
(3.28)

It can be conditioned as:

Gh0( jω) = 2e−jωT/2(e jωT/2 − e−jωT/2)

j2ω
= 2 sin(ωT/2)

ω
e−jωT/2 (3.29)



110 Digital power electronics and applications

or

Gh0( jω) = T
sin(ωT/2)

ωT/2
e−jωT/2 = 2π

ωS

sin(πω/ωS)

πω/ωS
e−j(πω/ωS) (3.30)

Since T is the sampling period in seconds, and T = 2π/ωS where ωS is the sampling
frequency in rad/s.

The magnitude of Gh0( jω) is:

|Gh0( jω)| = 2π

ωS

∣∣∣∣ sin(πω/ωS)

πω/ωS

∣∣∣∣ (3.31)

The phase of Gh0( jω) is:

∠G( jωS) = ∠ sin(πω/ωS) − πω/ωS (3.32)

The change of sign from + to − can be regarded as a phase change of −180◦.

3.10 THE FIRST-ORDER HOLD

The first-order hold (FOH) uses the first two terms of the power series to extrapolate
the time function f (t) over the time interval kT ≤ t < (k + 1)T . The equation for the
FOH is:

fk (t) = f (kT ) + f (1)(kT )(t − kT ) (3.33)

where the first-order derivative of f (t) at t = kT is approximated as:

f (1)(kT ) = f (kT ) − f [(k − 1)T ]

T
(3.34)

Substituting Equation (3.34) in Equation (3.33) gives:

fk (t) = f (kT ) + f (kT ) − f [(k − 1)T ]

T
(t − kT ) (3.35)

The output of the FOH between two consecutive sampling instants is a ramp function.
The slope of the ramp is equal to the difference of f (kT ) and f [(k + 1)T ].

By applying a unit impulse at t = 0 as input, an impulse response of the FOH is
obtained. The corresponding output is obtained by setting k = 0, 1, 2, . . . for the
various time intervals. For k = 0,

f0(t) = f (0) + f (0) − f (−T )

T
t 0 ≤ t ≤ T (3.36)

For a unit-impulse input, f (0) = 1 and f (−T ) = 0, the impulse response of the FOH for
0 ≤ t ≤ T is:

gh1(t) = 1 + t

T
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Figure 3.31 Responses of an FOH: (a) unit-impulse input signal and (b) impulse response of
the FOH.

For k = 1,

f1(t) = f (T ) + f (T ) − f (0)

T
(t − T ) (3.37)

The impulse response of the FOH over time interval T ≤ t ≤ 2T is:

gh1(t) = − t − T

T

If a unit-impulse input signal applied to a FOH, the impulse response is shown in
Figure 3.31.

The impulse response of the FOH for t > 2T is zero, since f (t) = 0 for t > 2T .
Functionally, the impulse response in Figure 3.31(b) can be written as:

gh1(t) = uS(t) + t

T
uS(t − T ) − 2(t − T )

T
uS(t − T )

+ (t − 2T )

T
uS(t − 2T )uS(t − 2T ) + uS(t − 2T ) (3.38)

The transfer function of the FOH is obtained by taking the Laplace transform of the
last equation:

Gh1(s) = 1 + Ts

T

[
1 − e−Ts

s

]2

(3.39)

or simply,

Gh1(s) = 1 + Ts

T
[Gh0(s)]2 (3.40)



112 Digital power electronics and applications

0 6T5T4T3T2T1T
t

Output signal of FOH

Output of ZOH

Continuous-time signal f (t )

Figure 3.32 Reconstruction of a continuous-time signal by means of an FOH.

The frequency response of the FOH:

Gh1( jω) = 1 + T jω

T

[
1 − eT jω

jω

]2

(3.41)

The magnitude and phase response of Gh1( jω) are obtained as:

|Gh0( jω)| = 2π

ωs

√
1 + 4π2ω2

ω2
s

[
sin πω/ωs

πω/ωs

]2

(3.42)

∠Gh1( jω) = tan−1
(

2πω

ωs

)
− 2πω

ωs
(3.43)

The reconstruction of a continuous-time signal by means of an FOH is shown in
Figure 3.32.

3.11 THE SECOND-ORDER HOLD

The Second-order hold(SOH) uses the first three terms of the power series to extrapolate
the time function f (t) over the time interval kT ≤ t < (k + 1)T . The equation for the
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Figure 3.33 Responses of an SOH: (a) unit-impulse input to and (b) impulse response of SOH.

SOH is:

fk (t) = f (kT ) + f (1)(kT )(t − kT ) + f (2)(kT )

2! (T − kT )2 (3.44)

The output of the second order hold between two consecutive sampling instants may
be a parabola function. The simplest of the curve is a square-law to the difference of
f (kT ) and f [(k + 1)T ].

By applying a unit impulse at t = 0 as input, an impulse response of the second-order
hold is obtained. The corresponding output is obtained by setting k = 0, 1, 2…. for the
various time intervals. For k = 0, a unit impulse input, f (0) = 1 and f (−T ) = 0, the
impulse response of the second order hold for 0 ≤ t ≤ T is

gh2 (t) = 2 −
(

1 + t

T

)2

.

For k = 1, the impulse response of the second order hold over time interval
T ≤ t ≤ 2T is

gh2 (t) = −1 +
(

t

T
− 2
)2

.

If a unit impulse input signal is applied to an SOH, the impulse response is shown
in Figure 3.33.

Although using a higher-order derivative produces a more accurate extrapolation, it
causes a reduction on the stability of the closed-loop control systems and it also makes
the circuitry more complicated and expensive. Generally, say that the impulse response
of an SOH is a parabola function as shown in Figure 3.33.

The reconstruction of a continuous-time signal by means of an SOH is shown in
Figure 3.34.
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Figure 3.34 Reconstruction of a continuous-time signal by means of an SOH.

The typical second-order transfer function in the s-domain is shown as follows:

G(s) = M

1 + sτ + s2ττd
= M

1 + sτ + ξs2τ2 (3.45)

where M is the voltage-transfer gain; τ, the time constant; τd, the damping time constant
(in which τd = ξτ) and s is the Laplace operator in s-domain.

In order for the typical second-order transfer function to be applicable to the digital
modeling for power DC/DC converters, a z-transformation is necessary. The second-
order transfer function undergoes a transformation based on Table 3.1. There are a total
of four transfer functions that will be derived to describe the SOH as an analysis in
Chapter 2.

3.11.1 Very Small Damping Time Constant τd

For a very small damping time constant (i.e. τd � τ, ξ � 1) that can be ignored, the value
of the damping time constant is omitted (i.e. τd = 0, ξ = 0). The typical second-order
transfer function (6.1) is then reduced to first order,

G(s) = M

1 + sτ
(3.46)

To transform Equation (3.46) in order to describe the digital modeling for power DC/DC
converters, the transformation from the z-transform table (see Table 3.1) is used:

F(s) = 1

s + a
⇔ F(z) = z

z + e−aT
(3.47)
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Equation (3.46) is rearranged so as to apply the transformation,

G(s) = M
1/τ

s + 1/τ
= M

τ

1

s + 1/τ
(3.48)

Applying the transformation, the mathematical modeling for the SOH for very small
damping time constant is:

G(z) = M

τ

z

z + e−aT

where

a = 1

τ
(3.49)

Simplifying,

G(z) = M

τ

z

z + e−T/τ
= Mz

τ(z + e−T/τ)
(3.50)

3.11.2 Small Damping Time Constant τd < τ /4

If the damping time constant is small (i.e. τd < τ/4, ξ < 0.25) and cannot be ignored,
then the value of the damping time constant is not omitted. The typical transfer function
(3.45) is retained as second order with two real poles −σ1 and −σ2:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + σ1)(s + σ2)
(3.51)

where σ1 = (τ −√τ2 − 4ττd
)
/2ττd and σ2 = (τ +√τ2 − 4ττd

)
/2ττd.

To transform Equation (3.51) in order to describe the digital modeling for power
DC/DC converters, the transformation from the z-transform table (see Table 3.1) is
used:

F(s) = 1

(s + a)(s + b)
⇔ F(z) = 1

(b − a)

[
z

z − e−aT
− z

z − e−bT

]
(3.52)

Equation (3.52) is rearranged so as to apply the transformation,

G(s) = M

ττd

1

(s + σ1)(s + σ2)
(3.53)

Applying the transformation, the mathematical modeling for the SOH for small
damping time constant is:

G(z) = M

ττd(σ2 − σ1)

[
z

z − e−σ1T
− z

z − e−σ2T

]
(3.54)
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Expanding and simplifying Equation (3.54), we get,

G(z) = M√
τ2 − 4ττd

[
z

z − e−σ1T
− z

z − e−σ2T

]

= Mz√
τ2 − 4ττd

[
e−σ1T − e−σ2T

(z − e−σ1T )(z − e−σ2T )

]

=
Mz


e

−
(

τ−
√

τ2−4ττd
2ττd

)
T

− e
−
(

τ+
√

τ2−4ττd
2ττd

)
T




√
τ2 − 4ττd


z − e

−
(

τ−
√

τ2−4ττd
2ττd

)
T




z − e

−
(

τ+
√

τ2−4ττd
2ττd

)
T




(3.55)

as σ2 − σ1 = (√τ2 − 4ττd
)
/ττd.

3.11.3 Critical Damping Time Constant τd = τ /4

For a damping time constant that is equal to the critical value (i.e. τd = τ/4), the typical
second-order transfer function (3.45) is then retained as second order with two equal
real poles −σ1 = −σ2 = −σ,

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + σ)2 (3.56)

where σ = 1/2τd = 2/τ.
To transform Equation (3.56) in order to describe the digital modeling for power

DC/DC converters, the transformation from the z-transform table (see Table 3.1) is
used:

F(s) = 1

(s + a)2 ⇔ F(z) = Tz e−aT

(z − e−aT )2 (3.57)

Equation (3.56) is rearranged so as to apply the transformation,

G(s) = M

ττd

1

(s + σ)2 (3.58)

Applying the transformation, the mathematical modeling for the SOH for critical
damping time constant is:

G(z) = M

ττd

Tz e−σT

(z − e−σT )2 (3.59)
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Simplifying Equation (3.59),

G(z) = M

ττd

Tz e−(2/τ)T

(z − e−(2/τ)T )2
(3.60)

3.11.4 Large Damping Time Constant τd > τ /4

If the damping time constant is large (i.e. τd > τ/4, ξ > 0.25), the typical transfer
function (3.45) is retained as second order with a couple of conjugated complex poles
s1 and s2 in the left-hand half-plane in s-domain as:

G(s) = M

1 + sτ + s2ττd
= M/ττd

(s + s1)(s + s2)
(3.61)

where s1 = σ + jω and s2 = σ − jω, in which σ = 1/2τd and ω = (√4ττd − τ2
)
/2ττd.

To transform Equation (3.61) in order to describe the digital modeling for power
DC/DC converters, the transformation from the z-transform table (see Table 3.1) is
used:

F(s) = ω

(s + a)2 + ω2 ⇔ F(z) = z e−aT sin ωT

z2 − 2z e−aT cos ωT + e−2aT
(3.62)

Equation (3.61) is rearranged so as to apply the transformation,

G(s) = M/ττd

(s + σ + jω)(s + σ − jω)
= M/ττd

(s + σ)2 + ω2 = M

ττdω

ω

(s + σ)2 + ω2

= 2M√
4ττd − τ2

ω

(s + σ)2 + ω2 (3.63)

Applying the transformation, the mathematical modeling for the SOH for large damping
time constant is:

G(z) = 2M√
4ττd − τ2

z e−aT sin ωT

z2 − 2z e−aT cos ωT + e−2aT
(3.64)

where σ = a = 1/2τd. Expanding and simplifying Equation (3.64), we get,

G(z) = 2Mz e−aT sin ωT√
4ττd − τ2(z2 − 2z e−aT cos ωT + e−2aT )

=
2Mz e−T/2τd sin

(√
4ττd − τ2

2ττd
T

)

√
4ττd − τ2

(
z2 − 2z e−T/2τd cos

(√
4ττd − τ2

2ττd
T

)
+ e−T/τd

) (3.65)
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Strictly speaking there are only three SOH mathematical modeling as the modeling for
the very small damping SOH is reduced to first order.

3.12 THE LAPLACE TRANSFORM (THE s-DOMAIN)

The Laplace transform is useful to engineers in modeling a linear time-invariant analog
system as a transfer function. The Laplace transform may also be used to find the time
response of the system through simulations. The Laplace transform of a function f (t)
is defined as:

F(s) = L[ f (t)] =
∫ ∞

0
f (t) e−st dt (3.66)

Therefore, the Laplace transform of the unit-step function is:

F(s) = L[ f (t)] =
∫ ∞

0
1(t) e−st dt = 1

s
(3.67)

The inverse Laplace transform of F(s) is given as:

f (t) = 1

2πj

∫ σ+j∞

σ−j∞
F(s) est ds j = √−1 (3.68)

σ is determined by the singularities of F(s). Normally, the inverse transformation is
done using a table.

3.13 THE z-TRANSFORM (THE z-DOMAIN)

The z-transform is a useful mathematical tool to analyze and design discrete-data
systems. A transformation from complex variable s to variable z:

z = eTs ⇒ s = 1

T
ln z (3.69)

where T is the sampling period in seconds and z is the complex variable whose real
and imaginary parts are related to those of s through

Rez = eTσ cos ωT (3.70)

Imz = eTσ sin ωT (3.71)

with

s = σ + jω (3.72)
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The relation between s and z may be defined as the z-transformation.

F∗
[

s = 1

T
ln z

]
= F(z) =

∞∑
k=0

f (kT )z−k (3.73)

Hence F(z) is the z-transform of f (t):

F(z) = z-transform of f (t) = Z[ f (t)]

Since z-transform of f (t) is obtained from the Laplace transform of f ∗(t) by performing
the transformation z = eTs. Hence, any function f (t) that is Laplace transformable also
has a z-transform.

In short, the operation of taking the z-transform of a continuous-data function f (t)
involves three steps:

1. f (t) is sampled by an ideal sampler to produce f ∗(t).
2. The Laplace transform of f ∗(t) gives,

F∗(s) = L[ f ∗(t)] =
∞∑

k=0

f (kT )e−kTs (3.74)

3. Replace eTs by z in F∗(s) to get,

F(z) =
∞∑

k=0

f (kT )z−k (infinite series) (3.75)

By replacing e−Ts = z−1, we get,

F(z) =
k∑

n=1

N (ξn)

D′(ξn)

1

1 − eξnT z−1 (3.76)

where F(s) = N (s)/D(s) (finite number of simple poles).
If F(s) has multiple poles s1, s2, . . . , sk with multiplicity m1, m2, . . . , mk ,

respectively, the z-transform becomes:

F(z) =
k∑

n=1

mn∑
i=1

(−1)mn−ikni

mn − i

[
dmn−i

dmn−i
s

1

1 − e−Ts

] ∣∣s=s−sn

∣∣
z=eTs (3.77)

where

Kni = 1

(i − 1)!
[

di−1

di−1
s

(s − sn)mn F(s)
] ∣∣s=sn

The Laplace transform and z-transform is shown in Table 3.1.
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Table 3.1

Laplace Transforms and z-Transforms

S/N Laplace transform F(s) z-transform F(z)

1 1 1
2 e−kTs z−k

3
1

s

z

z − 1

4
1

s2

Tz

(z − 1)2

5
2

s3

T 2z(z + 1)

(z − 1)3

6
(k − 1)!

sk
lima→0 (−1)k−1 ∂k−1

∂ak−1

[ z

z e−aT

]
7

1

s + a

z

z − e−aT

8
1

(s + a)2

Tz e−aT

(z − e−aT )2

9
(k − 1)!
(s + a)k

(−1)k ∂k

∂k
a

z

z − e−aT

10
a

s(s + a)

z(1 − e−aT )

(z − 1)(z − e−aT )

11
1

(s + a)(s + b)

1

(b − a)

[
z

z − e−aT
− z

z − e−bT

]

12
a

s2(s + a)

Tz

(z − 1)2
− (1 − e−aT )z

a(z − 1)(z − e−aT )

13
a

s3(s + a)

T 2z

(z − 1)3
+ (aT − 2)Tz

2a(z − 1)2
+ z

a2(z − 1)
− z

a2(z − e−aT )

14
a2

s(s + a)2

z

z − 1
− z

z − e−aT
− aT e−aTZ

(z − e−aT )2

15
a2

s2(s + a)2

1

a

[
(aT + 2)z2z2

(z − 1)2
+ 2z

z − e−aT
+ aT e−aTz

(z − e−aT )2

]

16
ω

s2 + ω2
z sin ωT

17
s

s2 + ω2

z(z − cos ωT )

z2 − 2z cos ωT + 1

18
ω

s2 − ω2

z sinh ωT

z2 − 2z cosh ωT + 1

19
s

s2 − ω2

z(z − cosh ωT )

z2 − 2z cosh ωT + 1

(Continued)
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Table 3.1

(Continued)

S/N Laplace transform F(s) z-transform F(z)

20
ω

(s + a)2 + ω2

z e−aT sin ωT

z2 − 2z e−aT cos ωT + e−2aT

21
a2 + ω2

s[(s + a)2 + ω2]

z

z − 1
− z2 − z e−aT sec φ cos (ωT − φ)

z2 − 2z e−aT cos ωT + e−2aT

22
s + a

(s + a)2 + ω2

z2 − z e−aT cos ωT

z2 − 2z e−aT cos ωT + e−2aT

Brief theory on mapping between s- and z-domains:

z = eTs (3.78)

The mapping of the s-plane into the z-plane can be done by using z = eTs.
The one-sided Laplace transform of a sampled function e∗(t) is:

E∗(s) = L[e∗(t)] =
∞∑

k=0

e(kT )ε−kTs (3.79)

where e∗(t) = 0 for t < 0 (one-sided) and k = 0, 1, 2, . . . . Substitute s + jlωS for s
where l is an integer.

E∗(s + jlωS) =
∞∑

k=0

e(kT )ε−kT (s+jlω) =
∞∑

k=0

e(kT )ε−kTsε−jklωST (3.80)

since ωS = 2π/T then ε−jklωST = ε−j2πkl = 1

E∗(s + jlωS) =
∞∑

k=0

e(kT )ε−kTs = E∗(s) (3.81)

If E(s) has a pole (or zero) at s = s1, then E∗(s) has poles (zeros) at s = s1 ± jlωS, where
l = 0, ± 1, ± 2, . . . ± ∞.

This means that given any pole (or zero) s = s1 in the s-plane, the sampled function
E∗(s) has the same value at all periodic frequency points s1 ± jlωS.

Note that the primary poles (or zero) s1 and its associated complementary poles (or
zeros) are mapped onto the same point in the z-plane (aliasing effect).
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Chapter 4

Mathematical Modeling of
Digital Power Electronics

All switching circuits including all AC/DC rectifiers, DC/AC inverters, DC/DC con-
verters and AC/AC (AC/DC/AC) converters are working in the discrete-time state.
Therefore, they have to be described by digital control theory rather than analog con-
trol. This chapter mainly describes the mathematical modeling for these four types of
converters in digital control.

4.1 INTRODUCTION

Analog control theory and cybernetics describe the systems working in the continuous
time process. All parameters in these systems vary from time to time continuously.
The dynamic process can be described by differential equations and Laplace transform
operations. If there is any element in a control system that is discrete-time circuit, then
the whole system has to be treated as a discrete-time system since the signal transferring
is no longer continuously varying.

All switching circuits are working in the discrete-time mode. They have not
responded to the signal change in the continuous state. Therefore, any system involved
in a switching circuit has to be treated as a discrete system.

Most digital control systems have the analog output functions. For example, digitally
controlled variable-speed motor drive systems have analog output speed in continuous-
time mode although their controllers are digital signal processor (DSP).The differences
between analog and digital control systems are in the following aspects:

• transfer function’s form,
• stability characteristics,
• unit-step responses and impulse responses.
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Figure 4.1 Stability boundary in the s-plane.

The transfer function of all analog control systems is described by the Laplace
transform in the s-domain. The stability characteristics and criteria sates that if all
poles of the transfer function are located in the left-hand half-plane (LHHP) of the
s-plane, the system is stable. If any pole is located in the right-hand half-plane (RHHP)
of the s-plane, the system is unstable. The stability boundary is shown in Figure 4.1. If
any pole is located on the stability boundary, it means that the system performs at the
critical stability state. Usually the system is considered unstable.

A stable analog control system has stable unit-step response with or without oscilla-
tion. Correspondingly, the impulse responses are also stable with or without oscillation.
The system stability can be modified and improved by a closed-loop control and an
optimization operation. A good analog control system has the following step response
with the typical characteristics:

• fast response, i.e. the settling time is less than 4.7 times of the time constants;
• oscillation cycle number is not more than 2;
• the overshoot is not more than 5%.

These technical features are available for the impulse responses.
The transfer function of all digital control systems is described by either the Laplace

transform in the s-domain and/or the z-transform in the z-domain. The stability char-
acteristics and criteria sates that if all poles of the transfer function are located inside
the unity-cycle of the z-plane, the system is stable. If any pole of the transfer function
is located outside the unity-cycle of the z-plane, the system is unstable. The stability
boundary (the unity-cycle in the z-plane) is shown in Figure 4.2. If any pole is located
on the stability boundary, it means that the system performs at the critical stability
state. Usually the system is considered unstable.

A stable digital control system has stable unit-step response with or without oscilla-
tion. Correspondingly, the impulse responses are also stable with or without oscillation.
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Figure 4.2 Stability boundary in the z-plane.

The system stability can be modified and improved by a closed-loop control and an
optimization operation. A good analog control system has the following step response
with the typical characteristics:

• fast response, i.e. the settling time can be only one-step delay;
• oscillation cycle number is not more than 2;
• the overshoot is not more than 5%.

These technical features are available for the impulse responses.

4.2 A ZERO-ORDER HOLD (ZOH) FOR AC/DC
CONTROLLED RECTIFIERS

AC/DC rectifiers have many forms which are listed below:

1. single-phase half-wave controlled rectifier;
2. single-phase full-wave controlled rectifier;
3. three-phase half-wave controlled rectifier;
4. three-phase full-wave controlled rectifier;
5. double anti-star half-wave controlled rectifier with balanced inductor;
6. delta-star three-phase full-wave controlled rectifier;
7. four-quadrant operation controlled rectifiers:

(a) four-quadrant operation controlled rectifiers with cycling current,
(b) four-quadrant operation controlled rectifiers without cycling current.

The devices of all types of the AC/DC controlled rectifiers can be thyristors (silicon
controlled rectifiers, SCRs), transistors, bipolar transistors (BTs), gate turn-off thyris-
tors (GTOs) and Triacs. They are controlled by the corresponding firing pulse with
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Figure 4.3 A single-phase fully controlled AC/DC rectifier.

certain firing angle α. In a sampling interval, usually in the commutation period the
firing angle can be changed only once, i.e. the output voltage of an AC/DC controlled
rectifier is changed period-by-period. Therefore, all types of the AC/DC controlled
rectifiers are working in the discrete state.

In general situation, the load of the rectifiers is an L–R circuit with the time constant
τ = L/R. If the output current is continuous, then the average value of the output DC
voltage is:

Vd = Vd-max cos α (4.1)

where α is the firing angle of the applied firing pulse. Vd is the output DC average
voltage of the rectifier. Vd-max is the maximum output DC average voltage of the
rectifier corresponding to the firing angle α = 0.

Refer to the single-phase fully controlled AC/DC rectifier with an R–L load shown
in Figure 4.3. The corresponding input and output voltage and current waveforms
are shown in Figure 4.4. If the AC input power supply with the frequency f = 50 Hz
(T = 1/f = 20 ms), then each device is conducted in half a cycle, i.e. the conduction
angle is 180◦ (or π rad) or in the interval of 10 ms. The current commutation happens
twice a cycle.

The output voltage is out of control in a half-cycle once the firing pulse is applied.
Therefore, it is the element to keep the output voltage in a period of T/2 = 1/2f . By per-
unit system, the voltage transfer gain is unity (1) in a sampling interval T/2 = 10 ms.
That is:

G(t) = VO

Vin
|per-unit = 1 (4.2)

Analogously, a single-phase half-wave AC/DC rectifier has the sampling interval to be
20 ms. A three-phase half-wave AC/DC rectifier has the sampling interval to be 6.67 ms
(i.e. T/3) and a three-phase full-wave AC/DC rectifier has the sampling interval to be
3.33 ms (i.e. T /6). No matter how the multi-phase rectifier is, the output voltage is
expressed by Equation (4.1), its voltage transfer gain in per-unit system is unity (1) as
described in Equation (4.2).
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Figure 4.4 The input and output voltage and current waveforms.

4.2.1 Traditional Modeling for AC/DC
Controlled Rectifiers

Traditional modeling for AC/DC controlled rectifiers is a time-delay element in the
s-domain. The delayed time is statistically as the sampling interval T or commutation
period σ. For example, if the power supply frequency f = 50 Hz, a single-phase half-
wave controlled rectifier has the time delay T = σ = 20 ms. The corresponding transfer
function of this rectifier in per-unit system is:

G(s) = e−Ts = e−σs (4.3)

If the rectifier is used in a current control system or speed control system, and the
current/speed responses are in the stage 0.1–1 s, we can consider the variable in a
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sampling interval of 20 ms is comparably small, i.e.Ts = σs → 0. Hence, Equation (4.3)
can be rewritten as:

G(s) = e−σs = 1 − σs = 1

1 + σs
(4.4)

This mathematical modeling is widely used in industrial applications.

4.2.2 A Zero-Order Hold for AC/DC Controlled
Rectifiers in Digital Control

The mathematical modeling given in Equation (4.4) was very popular since 1960s
to 1980s. Many large machinery systems have slow-time responses and use analog
proportional-plus-integral (PI) controllers. This modeling is good enough to describe
the system characteristics. Since 1980s the digital processors were applied in research
and industrial application, where the systems performed faster. The rectifiers cannot
be considered only a time-delayed element. Since its output voltage is out of control
once the firing pulse was applied, it should be looked as a sample-and-hold element.
Therefore, its mathematical modeling in per-unit digital control system should be a
zero-order hold (ZOH) in both the s- and z-domains:

G(s) = 1 − e−Ts

s
(4.5)

G(z) = Z[G(s)] = Z

[
1 − e−Ts

s

]
= z

z − 1
− z

(z − 1)

1

z
= 1 (4.6)

It means that the AC/DC controlled rectifier performs a sampling time delay in the
s-domain and one-step delay (T ) in a digital control system.

4.3 A FIRST-ORDER TRANSFER FUNCTION FOR DC/AC
PULSE-WIDTH-MODULATION INVERTERS

Pulse-width-modulation (PWM) DC/AC inverters have many forms which are listed
below:

1. DC/AC PWM inverter,
2. DC/AC single-phase PWM inverter,
3. multi-level PWM inverter,
4. multi-level single-phase PWM inverter,
5. vector multi-level PWM inverter,
6. space vector modulation (SVM) multi-level SPWM inverter.
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The devices of all types of the DC/AC inverters can be a transistor, BT, GTO and
power metal-oxide semiconductor field effected transistors (MOSFET). They are con-
trolled by the PWM scheme with the certain carrier (chopping) frequency fC. In a
sampling interval T = 1/fC, the pulse-width angle can be changed only once, i.e. the
output voltage of an DC/AC PWM inverter is changed period by period. Therefore, all
types of the DC/AC PWM inverters are working in discrete state.

In general situation, the input reference signal vin(t) is a sinusoidal waveform:

vin(t) = Vm sin ωt (4.7)

The load of the inverters is an R–L circuit with time constant τ = L/R, or the delayed
angle is:

φ = tan−1 ωL

R
(4.8)

If the output current is continuous, the output AC voltage instantaneous value after
the filter should be:

vO(t) = Vm sin(ωt − φ) (4.9)

where φ is the delay angle of the output voltage with reference to the input signal. vO(t)
is the inverter outputAC voltage instantaneous value after the filter. Vm is the amplitude
of the output AC voltage of the inverter corresponding to the angle (ωt − φ) = π/2.

Refer to the single-phase PWM DC/AC inverter with an R–L load shown in
Figure 4.5. The corresponding output voltage and current waveforms are shown in
Figure 4.6 with the carrier frequency fC = 400 Hz for indication although particular
fC may be very higher. If the input reference AC voltage signal with the frequency
f = 50 Hz (T = 1/f = 20 ms) and the triangle waveform with carrier frequency fC =
400 Hz (TC = 2.5 ms), each device is conducted in a conduction period = mTC, where
m is the modulation ratio. The conduction period is less than a cycle TC (sampling
interval) since the modulation ratio m is usually smaller than unity (1) for linear modu-
lation. The conduction angle is smaller than 360◦ (or 2π rad), or <2.5 ms. The current
commutation happens once a chopping cycle.

The output voltage is out of control in a half-chopping cycle once the PWM pulse
is applied. Therefore, it is the element to keep the output voltage in a sampling period
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Figure 4.5 The single-phase PWM DC/AC inverter with an L–R circuit.
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Figure 4.6 The output (a) voltage and (b) current waveforms.

of TC = 1/fC. By per-unit system, the voltage transfer gain is a linear element in a
sampling interval TC = 2.5 ms. That is,

G(t) = VO

Vin
|per-unit = 1 − e−t/TC (4.10)

Analogously, different chopping frequency only changes the sampling interval. The
mathematical modeling is not changed. No matter how high or low the carrier frequency
is, the output voltage is expressed by Equation (4.9), its voltage transfer gain per-unit
system is a linear element as described in Equation (4.10).

4.3.1 Traditional Modeling for DC/AC PWM Inverters

Traditional modeling for DC/AC PWM inverters is a first-order element in the s-domain.
The output voltage of a DC/AC PWM inverter is naturally a periodic pulse train with
the repeating frequency fO as requested. This output periodic pulse train has plenty of
harmonics corresponding to both the requested frequency fO and the carrier frequency
fC. Usually, the carrier frequency fC must be much higher than the requested output
frequency fO to avoid yielding high total harmonic distortion (THD). Actually, no
matter how higher the applied carrier frequency fC is, THD cannot be zero.

A low-pass filter must be set to filter the higher-order harmonics in order to obtain
pure output sinusoidal waveform. The low-pass filter is usually an R–C circuit with
the time constant τ = R–C or an R–L circuit with the time constant τ = L/R. Normally,
the time constant τ is much larger than the pulse width (τ � T = 1/fC) to avoid the
parasitic power losses and additional distortion. The relations between them should be:

1

fO
� τ � 1

fC
(4.11)

For example, if the requested output frequency fO = 50 Hz, a modulation (chopping)
frequency fC = 10 kHz, usually the filter time constant τ will set in the range of
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500 µs to 4 ms (typically 2 ms). The purpose to set the filter is to retain the funda-
mental harmonics in 50 Hz and filter the higher-order harmonics out, and then obtain
very lowTHD. Sometimes, the time constant τ of the low-pass filter is not small to cause
the fundamental harmonic in 50 Hz attenuated. The corresponding transfer function of
this rectifier in per-unit system is:

G(s) = 1

1 + τs
(4.12)

From this point of view, the first-order transfer function is the feature of the first-order
filter, but the characteristics of the DC/AC PWM inverters. The transfer function of the
DC/AC PWM inverters is ignored. It is treated as a proportional element. Therefore,
the traditional mathematical modeling is not really used to describe the DC/AC PWM
inverters although it is generally agreed by most experts.

4.3.2 A First-Order Hold for DC/AC PWM Inverters in
Digital Control

The mathematical modeling seen in Equation (4.11) was very popular since 1960s to
1990s. Many large machinery systems have slow time responses and use analog PI
controllers. This modeling is good enough to describe the system characteristics. On
the other hand, if the inverters used to drive an induction motor, the stator circuit is
a natural first-order filter with time constant τ = L/R, which is usually lower than the
power supply cycle T = 1/fO. Carefully selecting the inverter carrier frequency fC, the
relation (4.11) is easily satisfied.

Since 1980s the digital processors have been applied in research and industrial
application, and the systems perform faster. The DC/AC PWM inverters cannot be
considered as only a proportional element. Since its output voltage is out of control
once the pulse width is applied, it should be looked as a sample and linear-varying
element. Therefore, its mathematical modeling in per-unit digital control system should
be a first-order hold (FOH) in both s- and z-domains:

G(s) = 1

1 + Ts
(4.13)

G(z) = Z[G(s)] = Z

[
1

1 + Ts

]
= z

z − 1/e
(4.14)

where T is the sampling interval T = 1/fC. It means that the DC/AC PWM inverter
performs a first-order inertial element with time constant T in the s-domain and a linear
element in one step (T ) in a digital control system in the z-domain. From Equation
(4.14) the transfer function has one zero and one pole z = 1/e inside the unit-cycle.
Therefore, a DC/AC inverter is always a stable element.
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4.4 A SECOND-ORDER TRANSFER FUNCTION FOR
DC/DC CONVERTERS

DC/DC converters have many forms which are listed below:

1. fundamental converters such as buck, boost and buck–boost converters;
2. voltage-lift converters;
3. super-lift converters;
4. transformer-type converters;
5. other converters.

The devices of all types of the DC/DC converters can be transistor, BT, GTO and
MOSFET. They are controlled by the PWM pulse with certain conduction duty cycle k .
In a sampling interval/period T , the conduction duty cycle k can be changed only once,
i.e. the output voltage of a DC/DC converter is changed period by period. Therefore,
all types of the DC/DC converters are working in a discrete state.

In general situation, the load of the power DC/DC converters is a resistive load R. If
the output current is continuous, the output DC voltage average value in a steady state is:

VO = MVI (4.15)

or

M = VO

VI

where VI and VO are the input and output DC voltages, and M is the voltage transfer
gain. If the switching frequency is f (the switching period T = 1/f ) and the conduction
duty cycle is k , the switching-on period is kT and switching-off period is (1 − k)T . The
voltage transfer gain M is usually dependent to the conduction duty cycle k , and inde-
pendent from the switching frequency f . For example, buck converter has the voltage
transfer gain M = k , boost converter has the voltage transfer gain M = 1/(1 − k) and
buck–boost converter has the voltage transfer gain M = k/(1 − k).

Refer to the single-ended primary inductance converter (SEPIC) shown in
Figure 4.7. The inductor current iL1 increases with slope +VC/L1 during switching
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Figure 4.7 SEPIC.
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on and decreases with slope −VO/L1 during switching off. Thus:

VC

L1
kT = VO

L1
(1 − k)T

VC = 1 − k

k
VO (4.16)

The inductor current iL increases with slope +VI/L during switching on and decreases
with slope −(VC + VO − VI)/L during switching off. Thus:

VI

L
kT = VC + VO − VI

L
(1 − k)T

VO = k

1 − k
VI (4.17)

i.e.

M = VO

VI
= k

1 − k

Since the inductor L is in series connected to the source voltage, the inductor average
current IL is:

IL = II

Since the inductor L1 is in parallel connected to the capacitor C during switching off,
the inductor average current IL1 is (ICO-on = IO and ICO-off = II):

IL1 = IO

The variation of the current iL is:

	iL = VI

L
kT

Therefore, the variation ratio of the current iL is:

ξ = 	iL/2

IL
= VI

2IIL
kT = k

2M 2

R

f L
(4.18)

The variation of the current iL1 is:

	iL1 = VC

L1
kT
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Therefore, the variation ratio of the current iL1 is:

ξ1 = 	iL1/2

IL1

= VC

2IOL1
kT = 1 − k

2

R

f L1
(4.19)

The variation of the diode current iD is:

	iD = 	iL + 	iL1 =
(

VO

L
+ VO

L1

)
(1 − k)T

We can define L// = L // L1:

	iD = 	iL + 	iL1 = VO

L//

(1 − k)T

and

ID = IL + ILO = II + IO = (M + 1)IO = 1

1 − k
IO

Therefore, the variation ratio of the diode current iD is:

ζ = 	iD/2

ID
= VO

2IOL//

(1 − k)2T = (1 − k)2

2

R

f L//

(4.20)

The variation of the voltage vC is:

	vC = 	Q

C
= II

C
(1 − k)T

Therefore, the variation ratio of the voltage vC is:

ρ = 	vC/2

VC
= II

2CVC
(1 − k)T = kM

2

1

f RC
(4.21)

The variation of the voltage vCO is:

	vCO = 	QO

CO
= kTIO

CO
= kIO

fCO

Therefore, the variation ratio of the voltage vCO is:

ε = 	vCO/2

VO
= kIO

2fCOVO
= k

2fRCO
(4.22)

The output voltage is out of control in a period T once the duty cycle k is applied. There-
fore, it is the element to keep the output voltage in a period T = 1/f . By per-unit system,
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the voltage transfer gain is unity (1) in a sampling interval. As discussed in Chapter 2,
a power DC/DC converter is a second-order element, and its transfer function is:

G(s) = VO

VI
|per-unit = 1

1 + sτ + s2ττd
(4.23)

where τ is the time constant and τd is the damping time constant.

4.4.1 Traditional Modeling for DC/DC Converters

Traditional modeling for DC/DC converters is a complex element in the s-domain.
The main method is the voltage division formula. Therefore, the transfer function with
the orders is equal to the number of the passive energy-storage parts: inductors and
capacitors. The simplest fundamental converters, such as buck, boost and buck–boost
converters which have one inductor and one capacitor, possess a second-order transfer
function. Other converters with multiple inductors and capacitors must have high-order
transfer function. This problem has been discussed in Chapter 2. For example, a buck
converter shown in Figure 2.1 has the transfer function as:

G(s) = M

1 + s L
R + s2LC

= M

1 + sτ + s2ττd
(4.24)

where M is the voltage transfer gain, τ is the time constant L/R and τd is the damping
time constant RC.

For the DC/DC converters with two inductors plus two capacitors, their transfer func-
tion is in the fourth order. For example, the negative output Luo-converter elementary
circuit shown in Figure 4.8 has the transfer function:

G(s) = M

1 + s L1+L2
R + s2(L1C1 + L1C2 + L2C2) + s3 L1L2C1

R + s4L1L2C1C2
(4.25)

This mathematical modeling is very complex for industrial applications.
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Figure 4.8 Elementary circuit of N/O Luo-converter.
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4.4.2 A Second-Order Hold for DC/DC Converters
in Digital Control

The traditional mathematical modeling was popular since 1940s till now. It is very
difficult for the higher-order converters such as Luo-converters, super-lift converters,
Cúk converter and SEPIC, and so on. In the period 2001–2004 Dr F. L. Luo and Dr H.Ye
proposed a new method to model the power DC/DC converters. This new methodology
was carefully described in Chapter 2. A second-order transfer function simulated all
power DC/DC converters, the mathematical modeling in per-unit digital control system
should be a second-order transfer function in the s-domain:

G(s) = 1

1 + sτ + s2ττd
(4.26)

where τ is the time constant (Equation (2.27)) and τd is the damping time constant
(Equation (2.29)). In general situation if τd is greater than the critical value τ/4, then
there is a couple of conjugated complex poles s1 and s2. Equation (4.11) is rewritten as:

G(s) = 1

1 + sτ + s2ττd
= 1

(s + s1)(s + s2)
(4.27)

where

s1 = σ + jω and s2 = σ − jω

σ = 1

2τd
and ω =

√
4ττd − τ2

2ττd

Correspondingly, a power DC/DC converter is a second-order hold (SOH) in the
z-domain:

G(z) = Z[G(s)] = Z

[
1

(s + s1)(s + s2)

]
= 1

s1 − s2

(
z

z − e−Ts2
− z

z − e−Ts1

)
(4.28)

It means that the DC/DC converter performs a second-order response with oscillation
in the s-domain and one-step delay (T ) in a digital control system.

4.5 A FIRST-ORDER TRANSFER FUNCTION FOR AC/AC
(AC/DC/AC) CONVERTERS

AC/AC (AC/DC/AC) converters have many forms which are listed below:

1. single phase-input single phase-output (SISO) amplitude modulated AC/AC
converter,
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2. multiphase-input multiphase-output (MIMO) amplitude modulated AC/AC
converter,

3. SISO cycloconverter,
4. MIMO cycloconverter,
5. matrix AC/AC converter,
6. AC/DC/AC converters,
7. PWM converters.

The devices of all types of the AC/DC converters can be thyristor (SRC), transistor,
BT, GTO and Triac. They are controlled by the corresponding firing pulse with certain
firing angle α or the PWM scheme with the certain carrier (chopping) frequency fc. In
a sampling interval T = 1/fc, the pulse-width angle can be changed only once, i.e. the
output voltage of a DC/AC PWM inverter is changed period by period. Therefore, all
types of the AC/AC PWM inverters are working in discrete state.

In general situation, the input reference signal vin(t) is a sinusoidal waveform:

vin(t) = Vm sin ωt (4.29)

The load of the inverters is an L–R circuit with time constant τ = L/R, or the delayed
angle is:

φ = tan−1 ωL

R
(4.30)

If the output current is continuous, the output AC voltage instantaneous value after the
filter should be:

vO(t) = Vm sin(ωt − φ) (4.31)

where φ is the delay angle of the output voltage with reference to the input signal, which
is calculated by Equation (4.30). vO(t) is the converter output AC voltage instantaneous
value after the filter. Vm is the amplitude of the output AC voltage of the inverter
corresponding to the angle (ωt − φ) = π/2.

Refer to the SISOAC/AC cycloconverter shown in Figure 4.9. The sourceAC voltage
with frequency fS is a sinusoidal waveform, and the output voltage should follow the
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Figure 4.9 An SISO AC/AC cycloconverter.
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Figure 4.10 Waveforms of an SISO AC/AC cycloconverter (50–10 Hz) with R load. (a) Load
voltage and load current; and (b) input supply current.

input reference voltage with frequency f . The corresponding input and output voltage
and current waveforms are shown in Figure 4.10. If the input reference AC voltage
signal with the frequency f = 10 Hz (T = 1/f = 100 ms), each bridge is conducted in
a conduction period = T/2 = 50 ms.

The output voltage is out of control in a half-chopping cycle once the PWM pulse
is applied. Therefore, it is the element to keep the output voltage in a period of
TS/2 = 1/2fS. By per-unit system, the voltage transfer gain is a linear element in a
sampling interval TS/2 = 10 ms. That is,

G(t) = VO

Vin
|per-unit = 1 − e−t/τ (4.32)

Analogously, different chopping frequency only changes the sampling interval. The
mathematical modeling is not changed. No matter how high or low the carrier frequency
is, the output voltage is expressed by Equation (4.31), its voltage transfer gain in per-unit
system is a linear element as described in Equation (4.32).

4.5.1 Traditional Modeling for AC/DC
Controlled Rectifiers

Traditional modeling for AC/AC converters is a first-order element in the s-domain.
The output voltage of a AC/AC converter is naturally a periodic pulse train with the
repeating frequency fO as requested. This output periodic pulse train has plenty of
harmonics corresponding to both the requested frequency fO and the carrier frequency
fC. Usually, the carrier frequency fC must be much higher than the requested output
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frequency fO to avoid yielding high THD. Actually, no matter how higher the carrier
frequency fC applied is, THD cannot be zero.

A low-pass filter must be set to filter the higher-order harmonics in order to obtain
pure output sinusoidal waveform. The low-pass filter is usually an R–C circuit with
the time constant τ = RC or an R–L circuit with the time constant τ = L/R. Normally,
the time constant τ is much larger than the pulse width (τ � T = 1/fC) to avoid the
parasitic power losses and additional distortion. The relations between them should be:

1

fO
� τ � 1

fC
(4.33)

For example, if the output requested frequency fO = 50 Hz, a modulation (chopping)
frequency fC = 10 kHz, usually then the filter time constant τ sets in the range of
500 µs to 4 ms (typically 2 ms). The purpose to set the filter is to retain the fundamental
harmonic in 50 Hz and filter the higher-order harmonics out, and then obtain very low
THD. Sometimes, the time constant τ of the low-pass filter is not small to cause the
fundamental harmonic in 50 Hz attenuated. The corresponding transfer function of this
rectifier in per-unit system is:

G(s) = 1

1 + τs
(4.34)

From this point of view, the first-order transfer function is the feature of the first-order
filter, but the characteristics of the AC/AC PWM inverters. The transfer function of the
AC/AC PWM inverters is ignored. It is treated as a proportional element. Therefore,
the traditional mathematical modeling is not really used to describe the AC/AC PWM
inverters, although it is generally agreed by most experts and it is widely used in
industrial applications.

4.5.2 A FOH for AC/AC Converters in Digital Control

The mathematical modeling given in Equation (4.14) was very popular since 1960s
to 1980s. Many large machinery systems have slow time responses and use analog PI
controllers. This modeling is good enough to describe the system characteristics. On
the other hands, if the converters used to drive an induction motor, the stator circuit is
a natural first-order filter with time constant τ = L/R, which is usually lower than the
power supply cycle T = 1/fO. Carefully selecting the inverter carrier frequency fC, the
relation (4.33) is easily satisfied.

Since 1980s the digital processors were applied in research and industrial applica-
tion, where the systems perform faster. The AC/AC converters cannot be considered
only as a proportional element. Since its output voltage is out of control once the pulse
width is applied, it should be looked as a sample and linear-varying element. Therefore,
its mathematical modeling in per-unit digital control system should be a FOH in both
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the s- and z-domains:

G(s) = 1

1 + Ts
(4.35)

G(z) = Z[G(s)] = Z

[
1

1 + Ts

]
= z/T

z − 1/e
(4.36)

where T is the sampling interval T = 1/fC. It means that the DC/AC PWM inverter
performs a first-order inertial element with time constant T in the s-domain and a linear
rising/falling element in one step (T ) in a digital control system.
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Chapter 5

Digitally Controlled AC/DC
Rectifiers

As described in Chapter 3, all AC/DC rectifiers are treated as a zero-order-hold (ZOH)
element in digital control systems. We will discuss this model in various circuits in this
Chapter.

5.1 INTRODUCTION

AC/DC rectifiers are the first group of the power switching circuits applied in industrial
applications. In the 1940s, Mercury-arc rectifiers were very popular in DC power
supply. In 1960s, semiconductor manufacture development brought power devices,
such as power diode, thyristor (or silicon controlled rectifier, SCR), gate turn-off (GTO),
Triac, bipolar transistor (BT), insulated gate bipolar transistors (IGBT) and metal-
oxide semiconductor field effected transistor (MOSFET) and so on, into the DC power
supply. The DC power supply equipment is totally changed. The corresponding control
circuit is gradually changed from analog-to-digital control system since 1980s. The
mathematical modeling for all AC/DC rectifiers is discussed widely in worldwide.
Finally, a ZOH is generally accepted to be used to simulate the AC/DC rectifiers used.

In this Chapter we assume that the input voltage is a sinusoidal wave with the
frequency f = 50 Hz. The transformer is used in the rectifiers with the following turn’s
ratio: 1:1 for Y/Y connection,

√
3 : 1 for 	/Y connection, 1 :

√
3 for Y/	 connection

and 1:1 (or using
√

3 :
√

3) for 	/	 connection in convenient analysis. The parameters
used to describe the characteristics are listed below:

• v(t): instantaneous phase voltage:

v(t) = √
2Vrms sin(ωt) (5.1)
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• Vrms: root-mean-square (rms) voltage
• Vm: maximum (amplitude) voltage:

Vm = √
2Vrms (5.2)

• VO: average output voltage
• FF : form factor (FF):

FF = Vrms

Vd
(5.3)

• RF : ripple factor (RF):

RF =

√
∞∑

n=1
Vn

Vd
≈ FF − 1 (5.4)

• Vd: zeroth-order (DC) voltage component
• V1: first-order (fundamental) harmonic voltage
• Vn: nth-order harmonic voltage
• PF : power factor (PF):

PF = cos φ = P

S
(5.5)

• P: real power
• Q: reactive power
• S: apparent power:

S = P + jQ (5.6)

• THD: total harmonic distortion (THD):

THD =

√
∞∑

n=2
Vn

V1
(5.7)

The generally used AC/DC diode rectifiers are introduced below:

1. Single-phase half-wave rectifiers
2. Single-phase full-wave rectifiers
3. Three-phase half-wave rectifiers
4. Three-phase full-wave rectifiers
5. Six-phase half-wave rectifiers
6. Six-phase full-wave rectifiers
7. Other circuits
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Since the diode rectifiers have constant output voltages, their applications are lim-
ited. Replacing the diodes by thyristors or other switching devices, such as GTO, Triac
and IGBT, we obtain the corresponding controlled AC/DC rectifiers. Our investigation
objects are the controlledAC/DC rectifiers. The output voltage of the controlledAC/DC
rectifiers relies on the firing angle of the firing pulse. When the firing angle α = 0, we
obtain the maximum output voltage of all controlled AC/DC rectifiers, which are equal
to those of the diode AC/DC rectifiers. Well understanding the characteristics of the
diode rectifiers is very helpful for our further discussion.

5.1.1 Single-Phase Half-Wave Diode Rectifier

The simplest AC/DC diode rectifier is the single-phase half-wave diode rectifier shown
in Figure 5.1. The only diode is conducted in the duration of 180◦ (or π rad) a cycle.
Since the load is an R–L circuit with freewheel diode, the output voltage average
value is:

VO = 1

2π

2π∫
0

Vm sin(ωt) d(ωt) =
√

2Vrms

2π

π∫
0

sin(ωt) d(ωt) =
√

2

π
Vrms = 0.45Vrms

(5.8)

FF = π

2
= 1.57 (5.9)

RF = 0.57 (5.10)

PF = 1√
2

= 0.707 (5.11)

Va

Va

Vd0 Id
LR

Figure 5.1 Single-phase half-wave diode rectifier with L–R load.
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5.1.2 Single-Phase Full-Wave Diode Rectifier

The single-phase full-wave diode rectifier has two configurations. The first circuit is
called center-tap (midpoint) circuit shown in Figure 5.2(a) consisting of two diodes,
and the second circuit is called bridge (Graetz) circuit shown in Figure 5.2(b) consisting
of four diodes. Each diode is conducted in a cycle in 180◦.

Parameters

Since the load is an R–L circuit, the output voltage average value is:

VO = 1

2π

2π∫
0

Vm sin(ωt) d(ωt) = 2
√

2

π
Vrms = 0.9Vrms (5.12)

FF = π

2
√

2
= 1.11 (5.13)

RF = 0.11 (5.14)

Power Factor

The power factor (PF) of the center-tap (midpoint) circuit shown in Figure 5.2(a) is:

PF = 1√
2

= 0.707 (5.15)

The power factor of the bridge (Graetz) circuit shown in Figure 5.2(b) is:

PF = 1 (5.16)

Va

Va

IdVd0

LR
(b)

Va

Va

IdVd0

LR
(a)

Figure 5.2 Single-phase full-wave diode rectifier with L–R load. (a) Center-tap (midpoint)
circuit and (b) bridge (Graetz) circuit.



146 Digital power electronics and applications

5.1.3 Three-Phase Half-Wave Diode Rectifier

The three-phase half-wave diode rectifier shown in Figure 5.3 has four configurations,
all consisting of three diodes.

Va

Vd0 Id

Va

LR
(a)

Vd0
Id

Va

LR

3Va

(b)

Va

Vd0 Id

Va

LR

3Va/

3Va/

(c)

3Va

Vd0 Id

Va

LR

3Va/

3Va/

(d)

Figure 5.3 Three-phase half-wave diode rectifier. (a) Y/Y circuit, (b) 	/Y circuit, (c) Y/Y
bending circuit and (d) 	/Y bending circuit.
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The first circuit is called Y/Y circuit shown in Figure 5.3(a), the second circuit is
called 	/Y circuit shown in Figure 5.3(b), the third circuit is calledY/Y bending circuit
shown in Figure 5.3(c) and the fourth circuit is called 	/Y bending circuit shown in
Figure 5.3(d). Each diode is conducted in 120◦-cycle. Since the load is an R–L circuit,
the output voltage average value is:

VO = 1

2π/3

5π/6∫
π/6

Vm sin(ωt) d(ωt) = 3
√

6

2π
Vrms = 1.17Vrms (5.17)

FF = 1.01615 (5.18)

RF = 0.01615 (5.19)

PF = 0.686 (5.20)

5.1.4 Three-Phase Full-Wave Diode Rectifier

The three-phase full-wave diode rectifier shown in Figure 5.4 has four configurations,
all consisting of six diodes. The first circuit is called Y/Y circuit (Figure 5.6(a)), the
second circuit is called 	/Y circuit shown in Figure 5.4(b), the third circuit is called
Y/	 circuit shown in Figure 5.4(c) and the fourth circuit is called 	/	 circuit shown
in Figure 5.4(d). Each diode is conducted in a cycle in 120◦. Since the load is an R–L
circuit, the output voltage average value is:

VO = 2

2π/3

5π/6∫
π/6

Vm sin (ωt) d(ωt) = 3
√

6

π
Vrms = 2.34Vrms (5.21)

FF = 1.00088 (5.22)

RF = 0.00088 (5.23)

PF = 0.956 (5.24)

5.1.5 Three-Phase Double-Anti-Star with
Interphase-Transformer Rectifier

The three-phase double-anti-star with interphase-transformer diode rectifier shown
in Figure 5.5 is three-phase half-wave diode rectifier, it has two configurations all
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3Va
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(d)

Vd0 Id

Figure 5.4 Three-phase full-wave diode rectifier. (a) Y/Y circuit, (b) 	/Y circuit, (c) Y/	
circuit and (d) 	/	 circuit.
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(b)

Va

IdVd0

LR

3Va

(a)

Va

IdVd0

LR

Va

Figure 5.5 Three-phase double-anti-star with interphase-transformer diode rectifier. (a)Y/Y–Y
circuit and (b) 	/Y–Y circuit.

consisting of six diodes. The first circuit is calledY/Y–Y circuit shown in Figure 5.5(a)
and the second circuit is called 	/Y–Y circuit shown in Figure 5.5(b). Each diode is
conducted in a cycle in 120◦. Since the load is an R–L circuit, the output voltage average
value is:

VO = 1

2π/3

5π/6∫
π/6

Vm sin(ωt) d(ωt) = 3
√

6

2π
Vrms = 1.17Vrms (5.25)

FF = 1.01615 (5.26)

RF = 0.01615 (5.27)

PF = 0.686 (5.28)

5.1.6 Six-Phase Half-Wave Diode Rectifier

The six-phase half-wave diode rectifier shown in Figure 5.6 has four configurations,
all consisting of six diodes.

The first circuit is called Y/star circuit shown in Figure 5.6(a), the second circuit is
called 	/star circuit shown in Figure 5.6(b), the third circuit is called Y/star bending
circuit shown in Figure 5.6(c) and the fourth circuit is called 	/star bending circuit
shown in Figure 5.6(d). Each diode is conducted in a cycle in 60◦. Since the load is an
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Figure 5.6 Six-phase half-wave diode rectifier. (a) Y/star circuit, (b) 	/star circuit, (c) Y/star
bending circuit and (d) 	/star bending circuit.
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R–L circuit, the output voltage average value is:

VO = 1

π/3

2π/3∫
π/3

Vm sin(ωt) d(ωt) = 3
√

2

π
Vrms = 1.35Vrms (5.29)

FF = 1.00088 (5.30)

RF = 0.00088 (5.31)

PF = 0.552 (5.32)

5.1.7 Six-Phase Full-Wave Diode Rectifier

The six-phase full-wave diode rectifier shown in Figure 5.7 has two configurations,
all consisting of 12 diodes. The first circuit is called six-phase bridge circuit shown
in Figure 5.7(a) and the second circuit is called hexagon bridge circuit shown in Fig-
ure 5.7(b). Each diode is conducted in a cycle in 60◦. Since the load is an R–L circuit,
the output voltage average value is:

VO = 2

π/3

2π/3∫
π/3

Vm sin(ωt) d(ωt) = 6
√

2

π
Vrms = 2.7Vrms (5.33)

FF = 1.00088 (5.34)

RF = 0.00088 (5.35)

PF = 0.956 (5.36)

5.2 MATHEMATICAL MODELING FOR AC/DC RECTIFIERS

Replacing the diodes by any controlled devices, such as thyristors, GTO, Triac and
IGBT, we obtain the corresponding controlled AC/DC rectifiers. The output voltage of
the controlled AC/DC rectifiers relies on the firing angle α of the firing pulse. When
the firing angle α = 0, we obtain the maximum output voltage of all controlled AC/DC
rectifiers, which are equal to those of the diode AC/DC rectifiers. In general condition
the load is an R–L circuit with the time constant τ = L/R, which is usually larger than
the sampling interval T . Therefore, the output current is continuous and the output
average voltage is generally equal to:

Vd = Vd-max cos α (5.37)

where Vd is the output average voltage and Vd-max is the maximum output DC voltage
corresponding to the firing angle α = 0.
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Figure 5.7 Six-phase full-wave diode rectifier. (a) Six-phase bridge circuit and (b) hexagon
bridge circuit.

By per-unit system the voltage transfer gain is unity. The transfer function in the
time domain is a constant value (unit-step function) u(t), and it has the following form
in the s-domain:

G(s) = 1

s
(5.38)

In digital control system, all AC/DC rectifiers are treated as a ZOH, which has the
transfer function:

G(z) = z

z − 1
(5.39)
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z-plane
j Im z
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Figure 5.8 The zero and pole in the z-plane.

Va

Va

Vd0 Id
LR

Figure 5.9 Single-phase half-wave controlled AC/DC rectifier with L–R load.

It means the rectifier is the element that possesses one zero at z = 0 and one pole at
z = 1, which is located on the unit-cycle. The zero and pole in the z-plane are shown in
Figure 5.8. Therefore, a rectifier is a critical stable element. In industrial applications,
closed-loop control is required to increase the stability margin.

5.3 SINGLE-PHASE HALF-WAVE CONTROLLED
AC/DC RECTIFIER

The single-phase half-wave controlled AC/DC rectifier is shown in Figure 5.9. The load
is an R–L circuit with a freewheeling diode. The SCR is conducted in the period from
α to π, i.e. the conduction angle is π – α.

The open-loop control block diagram is shown in Figure 5.10. The sampling inter-
val is T = 1/f , where f is the AC power supply source frequency. If f = 50 Hz, then
T = 20 ms. This control can be implemented by a digital computer, which offers a firing
pulse a cycle in 20 ms. The actuator is usually an R–L load. The final output parameter
is the current IO shown in Figure 5.10.
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Figure 5.10 Open-loop control block diagram.
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Figure 5.11 Closed-loop control block diagram.
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Figure 5.12 Single-phase full-wave controlled AC/DC rectifier with L–R load. (a) Center-tap
(midpoint) circuit and (b) bridge (Graetz) circuit.

The closed-loop control block diagram is shown in Figure 5.11. The sampling inter-
val is T = 1/f . A current controller is always requested in a closed-loop control system.
It can be a proportional-plus-integral (PI) controller in digital form. This control can
be implemented by a digital computer, which offers a firing pulse a cycle in 20 ms. The
actuator is usually an R–L load. The final output parameter is the current IO shown in
Figure 5.11.

5.4 SINGLE-PHASE FULL-WAVE AC/DC RECTIFIER

The single-phase full-wave controlled AC/DC rectifier is shown in Figures 5.12(a) and
(b). The load is an R–L circuit with continuous load current. Each SCR is conducted
in the period of conduction angle π, from α to (π + α).

The open-loop control block diagram is still shown in Figure 5.10. The sampling
interval is T = 1/2f , where f is the AC power supply source frequency. If f = 50 Hz,
then T = 10 ms. This control can be implemented by a digital computer, which offers
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a firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.10.

The closed-loop control block diagram is shown in Figure 5.11. The sampling inter-
val is T = 1/2f , where f is the AC power supply source frequency. If f = 50 Hz, then
T = 10 ms. This control can be implemented by a digital computer, which offers a
firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.11.

5.5 THREE-PHASE HALF-WAVE CONTROLLED
AC/DC RECTIFIER

The three-phase half-wave controlled AC/DC rectifier is shown in Figures 5.13(a)–(d).
The load is an R–L circuit with continuous load current. Each SCR is conducted in the
period of conduction angle, 2π/3, from α to (2π/3 + α).

The open-loop control block diagram is still shown in Figure 5.10. The sampling
interval is T = 1/3f , where f is the AC power supply source frequency. If f = 50 Hz,
then T = 6.67 ms. This control can be implemented by a digital computer, which offers
a firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.10.

The closed-loop control block diagram is shown in Figure 5.11. The sampling inter-
val is T = 1/3f , where f is the AC power supply source frequency. If f = 50 Hz, then
T = 6.67 ms. This control can be implemented by a digital computer, which offers a
firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.11.

5.6 THREE-PHASE FULL-WAVE CONTROLLED
AC/DC RECTIFIER

The three-phase full-wave controlled AC/DC rectifier is shown in Figures 5.14(a)–(d).
The load is an R–L circuit with continuous load current. Each SCR is conducted in the
period of conduction angle 2π/3, from α to (2π/3 + α).

The open-loop control block diagram is still shown in Figure 5.10. The sampling
interval is T = 1/3f , where f is the AC power supply source frequency. If f = 50 Hz,
then T = 6.67 ms. This control can be implemented by a digital computer, which offers
a firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.10.

The closed-loop control block diagram is shown in Figure 5.11. The sampling inter-
val is T = 1/3f , where f is the AC power supply source frequency. If f = 50 Hz, then
T = 6.67 ms. This control can be implemented by a digital computer, which offers a
firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.11.
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Figure 5.13 Thee-phase half-wave controlled AC/DC rectifier. (a)Y/Y circuit, (b) 	/Y circuit,
(c) Y/Y bending circuit and (d) 	/Y bending circuit.

5.7 THREE-PHASE DOUBLE-ANTI-STAR WITH
INTERPHASE-TRANSFORMER CONTROLLED
AC/DC RECTIFIER

The three-phase double-anti-star with interphase-transformer controlled AC/DC rec-
tifier is shown in Figure 5.15(a) and (b). The load is an R–L circuit with continuous
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Figure 5.14 Three-phase full-wave controlled AC/DC rectifier. (a)Y/Y circuit, (b) 	/Y circuit,
(c) Y/	 circuit and (d) 	/	 circuit.

load current. Each SCR is conducted in the period of conduction angle 2π/3, from α

to (2π/3 + α).
The open-loop control block diagram is still shown in Figure 5.10. The sampling

interval is T = 1/3f , where f is the AC power supply source frequency. If f = 50 Hz,
then T = 6.67 ms. This control can be implemented by a digital computer, which offers
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Figure 5.15 Three-phase double-anti-star with interphase-transformer controlled rectifier.
(a) Y/Y–Y circuit and (b) 	/Y–Y circuit.

a firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.10.

The closed-loop control block diagram is shown in Figure 5.11. The sampling inter-
val is T = 1/3f , where f is the AC power supply source frequency. If f = 50 Hz, then
T = 6.67 ms. This control can be implemented by a digital computer, which offers a
firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.11.

5.8 SIX-PHASE HALF-WAVE CONTROLLED
AC/DC RECTIFIER

The three-phase half-wave controlled AC/DC rectifier is shown in Figure 5.16(a) and
(b). The load is an R–L circuit with continuous load current. Each SCR is conducted
in the period of conduction angle 2π/3, from α to (2π/3 + α).

The open-loop control block diagram is still shown in Figure 5.10. The sampling
interval is T = 1/3f , where f is the AC power supply source frequency. If f = 50 Hz,
then T = 6.67 ms. This control can be implemented by a digital computer, which offers
a firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.10.

The closed-loop control block diagram is shown in Figure 5.11. The sampling inter-
val is T = 1/3f , where f is the AC power supply source frequency. If f = 50 Hz, then
T = 6.67 ms. This control can be implemented by a digital computer, which offers a
firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.11.
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Figure 5.16 Six-phase half-wave controlled AC/DC rectifier. (a) Y/star circuit, (b) 	/star
circuit, (c) Y/star bending circuit and (d) 	/star bending circuit.

5.9 SIX-PHASE FULL-WAVE CONTROLLED
AC/DC RECTIFIER

The three-phase full-wave controlled AC/DC rectifier is shown in Figure 5.17(a) and
(b). The load is an R–L circuit with continuous load current. Each SCR is conducted
in the period of conduction angle π/3, from α to (π/3 + α).
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Figure 5.17 Six-phase full-wave controlled rectifier. (a) Six-phase bridge circuit and
(b) hexagon bridge circuit.

The open-loop control block diagram is still shown in Figure 5.10. The sampling
interval is T = 1/6f , where f is the AC power supply source frequency. If f = 50 Hz,
then T = 3.33 ms. This control can be implemented by a digital computer, which offers
a firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.10.

The closed-loop control block diagram is shown in Figure 5.11. The sampling inter-
val is T = 1/6f , where f is the AC power supply source frequency. If f = 50 Hz, then
T = 3.33 ms. This control can be implemented by a digital computer, which offers a
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firing pulse to each SCR a cycle in 20 ms. The actuator is usually an R–L load. The
final output parameter is the current IO shown in Figure 5.11.
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Chapter 6

Digitally Controlled DC/AC
Inverters

As described in Chapter 3, all DC/AC pulse-width-modulation (PWM) inverters are
treated as a first-order-hold (FOH) element in digital control systems. We will discuss
this model in various circuits in this Chapter.

6.1 INTRODUCTION

DC/AC inverters are a newly developed group of the power switching circuits applied
in industrial applications in comparison with other power switching circuits. Although
choppers were popular in DC/AC power supply long time ago, power DC/AC invert-
ers were used in industrial application since later 1980s. Semiconductor manufacture
development brought power devices, such as gate turn-off thyristor, Triac, bipolar tran-
sistor, insulated gate bipolar transistor and metal-oxide semiconductor field effected
transistor (GTO, Triac, BT, IGBT, MOSFET, respectively) and so on, in higher switch-
ing frequency (say from thousands Hz upon few MHz) into the DC/AC power supply
since 1980s. Due to the devices such as thyristor (silicon controlled rectifier, SCR)
with low switching frequency, the corresponding equipment is low power rate.

Square-waveform DC/AC inverters were used in early ages before 1980s. In those
equipment thyristors, GTOs andTriacs could be used in low-frequency switching opera-
tion. High-frequency/high-power devices such as power BTs and IGBTs were produced
in the 1980s. The corresponding equipment implementing the PWM technique has
large range of the output voltage and frequency, and low total harmonic distortion
(THD). Nowadays, most DC/AC inverters are DC/AC PWM inverters in different
prototypes.
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DC/AC inverters are used for inverting DC power source intoAC power applications.
They are generally used in following applications:

1. Variable voltage/frequency AC supplies in adjustable speed drives (ASDs), such
as induction motor drives, synchronous machine drives and so on.

2. Constant regulated voltage AC power supplies, such as uninterruptible power
supplies (UPSs).

3. Static var compensations.
4. Active filters.
5. Flexible AC transmission systems (FACTSs).
6. Voltage compensations.

Adjustable speed induction motor drive systems are widely applied in industrial
applications. These systems requested the DC/AC power supply with variable frequency
usually from 0 to 400 Hz in fractional horsepower (HP) to hundreds of HP. A large
number of the DC/AC inverters were in the world market. The typical block circuit is
shown in Figure 6.1.

From this block diagram we can see that the power DC/AC inverter produces
variable frequency and voltage to implement the ASD.

The power devices used for ASD can be thyristors, Triacs and GTOs in the 1970s
and early 1980s. Power IGBT was popular in the 1990s, and greatly changed the
manufacturing of DC/AC inverters. The DC/AC power supply equipment is totally
changed. The corresponding control circuit is gradually changed from analog control
to digital control system since late 1980s. The mathematical modeling for all AC/DC
rectifiers is well discussed widely in worldwide. Finally, an FOH is generally accepted
to be used for simulation of all DC/AC inverters.

The generally used DC/AC inverters are introduced below:

1. Single-phase half-bridge voltage source inverter (VSI)
2. Single-phase full-bridge VSI
3. Three-phase full-bridge VSI
4. Three-phase full-bridge current source inverter (CSI)
5. Multistage PWM inverters

Vi

C

Rectifier Inverter
DC link

ASD

IM

Figure 6.1 A standard ASD scheme.
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6. Multilevel PWM inverters
7. Soft-switching inverters.

As mentioned in Chapter 3, we list some parameters as follows:

• The modulation index ma (also known as the amplitude-modulation ratio in
Chapter 3):

ma = VC

V	

(6.1)

where VC is the amplitude of the control or the preliminary reference signal, and
V	 is the amplitude of the triangle signal. Generally, linear-modulation operation
is considered, so that ma is usually smaller than unity (e.g. ma = 0.8).

• The normalized carrier frequency index mf (also known as the frequency-
modulation ratio in Chapter 3):

mf = f	
fC

(6.2)

where f	 is the frequency of the triangle signal, and fC is the frequency of the
control signal or the preliminary reference signal. Generally, in order to obtain
low THD, the mf has usually taken large number (e.g. mf = 9).

In order to well understand each inverter, we have shown some typical circuits below.

6.1.1 Single-Phase Half-Bridge VSI

A single-phase half-bridge VSI is shown in Figure 6.2. The carrier-based PWM tech-
nique is applied in this single-phase half-bridge VSI. Two large capacitors are required
to provide a neutral point N, therefore, each capacitor keep the half of the input DC
voltage. Two switches S+ and S− are switched by the PWM signal.

Figure 6.3 shows the ideal waveforms associated with the half-bridge VSI. We can
find out the output of the phase delayed between the output current and voltage.
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Figure 6.2 Single-phase half-bridge VSI.
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Figure 6.3 Ideal waveforms associated with the single-phase half-bridge VSI (ma = 0.8,
mf = 9). (a) Carrier and modulating signals, (b) switch S+ state, (c) switch S− state, (d) AC
output voltage and (e) AC output current.

6.1.2 Single-Phase Full-Bridge VSI

A single-phase full-bridge VSI is shown in Figure 6.4.
The carrier-based PWM technique is applied in this single-phase full-bridge VSI.

Two large capacitors may be used to provide a neutral point N, therefore, each capacitor
keep the half of the input DC voltage. Four switches S1+ and S1− plus S2+ and S2−
are applied and switched by the PWM signal. Figure 6.5 shows the ideal waveforms
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output voltage and (e) AC output current.
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Figure 6.6 Three-phase full-bridge VSI.

associated with the full-bridge VSI. We can find out the output of the phase delayed
between the output current and voltage.

6.1.3 Three-Phase Full-Bridge VSI

A three-phase full-bridge VSI is shown in Figure 6.6.
The carrier-based PWM technique is applied in this single-phase full-bridge VSI.

Two large capacitors may be used to provide a neutral point N, therefore, each capacitor
keep the half of the input DC voltage. Six switches S1–S6 are applied and switched by
the PWM signal. Figure 6.7 shows the ideal waveforms associated with the full-bridge
VSI. We can find out the output of the phase delayed between the output current and
voltage.

6.1.4 Three-Phase Full-Bridge CSI

A three-phase full-bridge CSI is shown in Figure 6.8.
The carrier-based PWM technique is applied in this single-phase full-bridge CSI.

The main objective of these static power converters is to produce AC output current
waveforms from a DC current power supply. Six switches S1–S6 are applied and
switched by the PWM signal. Figure 6.9 shows the ideal waveforms associated with
the full-bridge CSI.

We can find out the output of the phase ahead between the output voltage and current.

6.1.5 Multistage PWM Inverter

Multistage PWM inverter consists of many cells. Each cell can be a single- or three-
phase input plus single-phase output VSI, which is shown in Figure 6.10. If the
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three-phase AC supply is a secondary winding of a main transformer, it is floating
and isolated from other cells and common ground point. Therefore, all cells can be
linked in series or parallel manner.

A three-stage PWM inverter is shown in Figure 6.11. Each phase consist of three
cells with difference phase-angle shift by 20◦ each other.

The carrier-based PWM technique is applied in this three-phase multistage PWM
inverter. Figure 6.12 shows the ideal waveforms associated with the full-bridge VSI.
We can find out the output of the phase delayed between the output current and voltage.

6.1.6 Multilevel PWM Inverter

A three-level PWM inverter is shown in Figure 6.13. The carrier-based PWM technique
is applied in this multilevel PWM inverter. Figure 6.14 shows the ideal waveforms
associated with the multilevel PWM inverter. We can find out the output of the phase
delayed between the output current and voltage.
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6.2 MATHEMATICAL MODELING FOR
DC/AC PWM INVERTERS

By carefully investigating the PWM inversion process, we can see that in each pulse
width T = 1/f	, and the modulation ratio ma is proportional to the control signal vC(t).
If the frequency ratio mf is large enough, the value of the control signal vC(t) in a
sampling period T can be considered a constant value. The output voltage value of a
VSI is proportional to the input control signal. The corresponding output current value
of a VSI is an increasing or decreasing wave. The corresponding waveforms have been
shown in Figures 6.3 and 6.5. In general condition, the load is an R–L circuit with the
time constant τ = L/R, which is usually larger than the sampling interval T . Therefore,
the output current is continuous and is generally accumulated interval by interval. The
expression in per-unit system can be written as:

iO-k = iO-(k−1)(1 ± e−t/T ) (6.3)

where iO-k is the kth-step output current and iO-(k−1) is the previous step output
current.

By per-unit system the voltage transfer gain is unity. The transfer function in the
time domain is an exponential function, and it has the following form in the s-domain:

G(s) = 1

1 + sT
(6.4)
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Figure 6.15 Zero and pole of the FOH in the z-plane.

In digital control system, all DC/AC PWM inverters are treated as an FOH has the
transfer function in the z-domain:

G(z) = z

z − 1/e
(6.5)

It means the DC/AC PWM inverter is the first-order-element that possesses one zero
at z = 0 and one pole at z = 1/e, which is located on the unit-cycle. The zero and pole
in the z-plane are shown in Figure 6.15. Therefore, a rectifier is a critical stable ele-
ment. In industrial applications, closed-loop control is required to increase the stability
margin.

6.3 SINGLE-PHASE HALF-WAVE VSI

The single-phase half-wave VSI is shown in Figure 6.2. The load is an R–L circuit.
The open-loop control block diagram is shown in Figure 6.16. The sampling interval
is T = 1/f	, where f	 is the triangle frequency. If f = 400 Hz, then T = 2.5 ms. This
control can be implemented by a digital computer, which offers a pulse cycle in 2.5 ms.
The actuator is usually an R–L load. The final output parameter is the current IO shown
in Figure 6.16.

The closed-loop control block diagram is shown in Figure 6.17. The sampling inter-
val is T = 1/f	. A current controller is always requested in a closed-loop control system.
It can be a proportional-plus-integral (PI) controller in digital form. This control can
be implemented by a digital computer, which offers a firing pulse cycle in 2.5 ms. The
actuator is usually an R–L load. The final output parameter is the current IO shown in
Figure 6.17.
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Figure 6.17 Closed-loop control of the DC/AC PWM inverters.

6.4 SINGLE-PHASE FULL-BRIDGE PWM VSI

The single-phase full-wave VSI is shown in Figure 6.4. The load is an R–L circuit.
The open-loop control block diagram is shown in Figure 6.16. The sampling interval
is T = 1/f	, where f	 is the triangle frequency. If f = 400 Hz, then T = 2.5 ms. This
control can be implemented by a digital computer, which offers a pulse cycle in 2.5 ms.
The actuator is usually an R–L load. The final output parameter is the current IO shown
in Figure 6.16.

The closed-loop control block diagram is shown in Figure 6.17. The sampling inter-
val is T = 1/f	. A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implemented by a digital
computer, which offers a firing pulse cycle in 2.5 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 6.17.

6.5 THREE-PHASE FULL-BRIDGE PWM VSI

The three-phase full-bridge PWM VSI is shown in Figure 6.6. The open-loop con-
trol block diagram is still shown in Figure 6.16. The sampling interval is T = 1/f	,
where f	 is the triangle frequency. If f = 400 Hz, then T = 2.5 ms. This control can
be implemented by a digital computer, which offers a pulse cycle in 2.5 ms. The actu-
ator is usually an R–L load. The final output parameter is the current IO shown in
Figure 6.16.

The closed-loop control block diagram is shown in Figure 6.17. The sampling inter-
val is T = 1/f	. A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implemented by a digital
computer, which offers a firing pulse cycle in 2.5 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 6.17.
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6.6 THREE-PHASE FULL-BRIDGE PWM CSI

The three-phase full-bridge PWM CSI is shown in Figure 6.8. The open-loop con-
trol block diagram is still shown in Figure 6.16. The sampling interval is T = 1/f	,
where f	 is the triangle frequency. If f = 400 Hz, then T = 2.5 ms. This control can
be implemented by a digital computer, which offers a pulse cycle in 2.5 ms. The actu-
ator is usually an R–L load. The final output parameter is the current IO shown in
Figure 6.16.

The closed-loop control block diagram is shown in Figure 6.17. The sampling inter-
val is T = 1/f	. A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implemented by a digital
computer, which offers a firing pulse cycle in 2.5 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 6.17.

6.7 MULTISTAGE PWM INVERTER

The multistage PWM inverter based on a multicell arrangement is shown in Figure 6.11.
The open-loop control block diagram is still shown in Figure 6.16. The sampling interval
is T = 1/f	, where f	 is the triangle frequency. If f = 400 Hz, then T = 2.5 ms. This
control can be implemented by a digital computer, which offers a pulse cycle in 2.5 ms.
The actuator is usually an R–L load. The final output parameter is the current IO shown
in Figure 6.16.

The closed-loop control block diagram is shown in Figure 6.17. The sampling inter-
val is T = 1/f	. A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implemented by a digital
computer, which offers a firing pulse cycle in 2.5 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 6.17.

6.8 MULTILEVEL PWM INVERTER

The multistage PWM inverter based on a multicell arrangement is shown in Figure 6.13.
The open-loop control block diagram is still shown in Figure 6.16. The sampling interval
is T = 1/f	, where f	 is the triangle frequency. If f = 400 Hz, then T = 2.5 ms. This
control can be implemented by a digital computer, which offers a pulse cycle in 2.5 ms.
The actuator is usually an R–L load. The final output parameter is the current IO shown
in Figure 6.16.

The closed-loop control block diagram is shown in Figure 6.17. The sampling inter-
val is T = 1/f	. A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implemented by a digital
computer, which offers a firing pulse cycle in 2.5 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 6.17.
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Chapter 7

Digitally Controlled DC/DC
Converters

As described in Chapter 3, all power DC/DC converters are treated as a second-
order-hold (SOH) element in digital control systems. We will discuss this model in
various circuits in this chapter.

7.1 INTRODUCTION

Power DC/DC converters have plenty of topologies, and the corresponding conversion
technique is a big research topic. By an uncompleted statistics, there are more than 500
topologies of power DC/DC converters existing. Dr. F. L. Luo and Dr. H.Ye have firstly
categorized all existing prototypes of the power DC/DC converters into six generations
theoretically and evolutionarily since 2001. Their work is an outstanding contribution
in the development of DC/DC conversion technology, and has been recognized and
assessed by experts worldwide.

• First-generation (classical/traditional) converters
• Second-generation (multi-quadrant) converters
• Third-generation (switched-component, SI/SC) converters
• Fourth-generation (soft-switching: ZCS/ZVS/ZT) converters
• Fifth-generation (synchronous rectifier, SR) converters
• Sixth-generation (multiple energy-storage elements resonant, MER) converters

7.1.1 The First-Generation Converters

The first-generation converters perform in a single-quadrant mode and in low-
power range (up to around 100 W). Since its development lasts a long time, it has
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briefly five categories:

• Fundamental converters
• Transformer-type converters
• Developed converters
• Voltage-lift converters
• Super-lift converters

Fundamental converters

Three types of fundamental DC/DC topologies were constructed, which are Buck
converter, Boost converter and Buck–Boost converter. They can be derived from
single-quadrant operation choppers. For example, buck converter was derived from
A-type chopper. These converters have two main problems: linkage between input and
output, and very large output voltage ripple.

Buck converter

Buck converter is a step-down DC/DC converter. It works in the first-quadrant opera-
tion. It can be derived from Quadrant I chopper. Its circuit diagram, and switch-on and
switch-off equivalent circuit are shown in Figure 7.1. The output voltage is calculated
by the formula:

VO = ton

T
Vin = kVin (7.1)
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Figure 7.1 Buck converter. (a) Circuit diagram, (b) switch-on and (c) switch-off.
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Figure 7.2 Boost converter. (a) Circuit diagram, (b) switch-on and (c) switch-off.

where T is the repeating period (T = 1/f ), in which f is the chopping frequency; ton is
the switch-on time and k is the conduction duty cycle (k = ton/T ).

Boost converter

Boost converter is a step-up DC/DC converter. It works in the second-quadrant opera-
tion. It can be derived from Quadrant II chopper. Its circuit diagram, and switch-on and
switch-off equivalent circuit are shown in Figure 7.2. The output voltage is calculated
by the formula:

VO = T

T − ton
Vin = 1

1 − k
Vin (7.2)

where T is the repeating period (T = 1/f ), in which f is the chopping frequency; ton is
the switch-on time and k is the conduction duty cycle (k = ton/T ).

Buck–Boost converter

Buck–boost converter is a step-down/up DC/DC converter. It works in the third-
quadrant operation. Its circuit diagram and switch-on and switch-off equivalent circuit,
and waveforms are shown in Figure 7.3. The output voltage is calculated by the formula:

VO = ton

T − ton
Vin = k

1 − k
Vin (7.3)

where T is the repeating period (T = 1/f ), in which f is the chopping frequency; ton
is the switch-on time and k is the conduction duty cycle (k = ton/T ).
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Figure 7.3 Buck–boost converter. (a) Circuit diagram, (b) switch-on and (c) switch-off.

Using this converter is easy to obtain the random output voltage, which can be
a higher or lower input voltage. It provides very great convenience for industrial
applications.

Transformer-Type Converters

Since all fundamental DC/DC converters keep the linkage from input side to output
side and the voltage transfer gain is low, transformer-type converters were developed
during 1960s to 1980s. These are a large number of converters such as Forward
converter, Push–Pull converter, Fly-back converter, Half-Bridge converter, Bridge
converter and zeta (or ZETA) converter. Usually, these converters have high transfer
voltage gain and high insulation between both sides. Their gain usually depends on the
transformer’s turns ratio N , which can be several thousand times.

Forward converter

Forward converter is a transformer-type buck converter with the turns ratio, N . It works
in the first-quadrant operation. Its circuit diagram is shown in Figure 7.4. The output
voltage is calculated by the formula:

VO = kNVin (7.4)

where N is the transformer turns ratio and k is the conduction duty cycle (k = ton/T ).
In order to exploit the transformer iron core magnetic ability a tertiary winding

can be employed in the transformer. Its corresponding circuit diagram is shown in
Figure 7.5.



182 Digital power electronics and applications

C

L

R VO

�

�

1:N

T1Control

Vin

� D1

D2

Figure 7.4 Forward converter.

C

L

R VO

�

�

1:1:N

T1

� D1

D2

D3

Vin

Figure 7.5 Forward converter with tertiary winding.

C

L

R VO

�

�

1:N
�

�

D1

D2

T1

T2

V �

�

�

Figure 7.6 Push–pull converter.

Push–Pull Converter

Boost converter works in push–pull state, which effectively avoids the iron core satu-
ration. Its circuit diagram is shown in Figure 7.6. Since there are two switches, which
work alternatively, the output voltage is doubled. The output voltage is calculated by
the formula:

VO = 2kNVin (7.5)

where N is the transformer turns ratio and k is the conduction duty cycle (k = ton/T ).
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Fly-back Converter

Fly-back converter is a transformer-type converter using the demagnetizing effect. Its
circuit diagram is shown in Figure 7.7. The output voltage is calculated by the formula:

VO = k

1 − k
NVin (7.6)

where N is the transformer turns ratio and k is the conduction duty cycle (k = ton/T ).

Half-bridge converter

In order to reduce the primary side in one winding, half-bridge converter was con-
structed. Its circuit diagram is shown in Figure 7.8. The output voltage is calculated by
the formula:

VO = kNVin (7.7)

where N is the transformer turns ratio and k is the conduction duty cycle (k = ton/T ).
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Bridge Converter

Bridge converter employs more switches and gains double output (D/O) voltage. Its
circuit diagram is shown in Figure 7.9. The output voltage is calculated by the formula:

VO = 2kNVin (7.8)

where N is the transformer turns ratio and k is the conduction duty cycle (k = ton/T ).

Zeta Converter

Zeta converter is a transformer-type converter with a low-pass filter. Its output voltage
ripple is small. Its circuit diagram is shown in Figure 7.10. The output voltage is
calculated by the formula:

VO = k

1 − k
NVin (7.9)

where N is the transformer turns ratio and k is the conduction duty cycle (k = ton/T ).
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Forward Converter with Tertiary Winding and Multiple Outputs

Some industrial applications require multiple outputs. This requirement is easily real-
ized by constructing multiple secondary windings and the corresponding conversion
circuit. For example, a forward converter with tertiary winding and three outputs is
shown in Figure 7.11. The output voltage is calculated by the formula:

VO = kNiVin (7.10)

where Ni is the transformer turns ratio to the secondary winding, i = 1, 2 and 3,
respectively, and k is the conduction duty cycle (k = ton/T ). In principle, this structure is
available for all transformer-type DC/DC converters for multiple outputs applications.

Developed Converters

Developed-type converters overcome the second fault of the fundamental DC/DC con-
verters. They are derived from fundamental converters with adding a low-pass filter.
Preliminary idea was published in a conference paper in 1977. The author formed
three types of converters that derived from fundamental DC/DC converters plus a low-
pass filter. This conversion technique was very popular during 1970s to 1990s. Typical
prototypes converters are positive output (P/O) Luo-converter, negative output (N/O)
Luo-converter, double output (D/O) Luo-converter, Cúk-converter, single-ended pri-
mary inductance converter (SEPIC) and Watkins–Johnson converters. The output
voltage ripple of all developed-type converters is usually small, which can be lower
than 2%.

In order to obtain the random output voltage, which can be higher or lower input
voltage, all developed converters provide very great convenience for industrial appli-
cations. Therefore, the output voltage gain of all developed converters is:

VO = k

1 − k
Vin (7.11)
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Figure 7.11 Forward converter with tertiary winding and three outputs.
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P/O Luo-Converter

P/O Luo-converter is the elementary circuit of the series “P/O Luo-converters”. It can
be derived from buck–boost converter. Its circuit diagram is shown in Figure 7.12. The
output voltage is calculated by the formula (7.11).

N/O Luo-Converter

N/O Luo-converter is the elementary circuit of the series “N/O Luo-converters”. It can
also be derived from buck–boost converter. Its circuit diagram is shown in Figure 7.13.
The output voltage is calculated by the formula (7.11).

D/O Luo-Converter

In order to obtain mirror symmetrical P/O and N/O voltage D/O Luo-converter was
constructed. D/O Luo-converter is the elementary circuit of the series “D/O Luo-
converters”. It can also be derived from buck–boost converter. Its circuit diagram is
shown in Figure 7.14. The output voltage is calculated by the formula (7.11).

Cúk-Converter

Cúk-converter is derived from boost converter. Its circuit diagram is shown in
Figure 7.15. The output voltage is calculated by the formula (7.11).
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SEPIC

The SEPIC is derived from boost converter. Its circuit diagram is shown in Figure 7.16.
The output voltage is calculated by the formula (7.11).
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Voltage-Lift Converters

Voltage-lift (VL) technique is a good method to lift the output voltage in high level.
This technique is widely applied in electronic circuit design. After long-term industrial
application and research this method had been successfully used in DC/DC conversion
technique. Using this method the output voltage can be easily lifted by tens to hundreds
times. VL converters can be sorted in self -lift, re-lift, triple-lift, quadruple-lift and
high-stage-lift converters. The main contributors in this area are Dr. F. L. Luo and
Dr. H. Ye.

Figure 7.17 shows the re-lift circuit of the N/O Luo-converters. The voltage transfer
gain of the re-lift circuit of the N/O Luo-converter is:

G = VO

Vin
= 2

1 − k
(7.12)
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Figure 7.18 Re-lift circuit of P/O SL Luo-converter. (a) Circuit diagram, (b) equivalent circuit
during switching-on and (c) equivalent circuit during switching-off.

Super-Lift Converters

VL technique is a popular method widely used in electronic circuit design. It has
been successfully employed in DC/DC converter applications in recent years, and
opened a way to design high-voltage gain converters. Three series Luo-converters
[1–9] are the examples of VL technique implementations. However, the output voltage
increases in stage by stage just along the arithmetic progression [10]. A novel approach –
super-lift (SL) technique has been developed, which implements the output voltage
increasing in stage by stage along the geometric progression. It effectively enhances
the voltage transfer gain in power-law. The typical circuits are sorted into four series:
P/O SL Luo-converters, N/O SL Luo-converters, P/O cascade boost converters and
N/O cascade boost converters. All series have many sub-series such as main series,
additional series and so on. Each sub-series have many circuits such as elementary
circuit, re-lift circuits and so on.
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Figure 7.19 Re-lift circuit of N/O SL Luo-converters. (a) Circuit diagram, (b) equivalent circuit
during switching-on and (c) equivalent circuit during switching-off.

Figure 7.18 shows the re-lift circuit of the main series of the P/O SL Luo-converters.
The voltage transfer gain of the re-lift circuit of the P/O SL Luo-converter is:

G = VO

Vin
=
(

2 − k

1 − k

)2

(7.13)

Figure 7.19 shows the re-lift circuit of the main series of N/O SL Luo-converters.
The voltage transfer gain of the re-lift circuit of the N/O SL Luo-converter is:

G = VO

Vin
=
(

2 − k

1 − k

)2

− 1 (7.14)
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Figure 7.20 Re-lift circuit of P/O cascade boost converter. (a) Circuit diagram, (b) equivalent
circuit during switching-on and (c) equivalent circuit during switching-off.

Figure 7.20 shows the re-lift circuit of the main series of P/O cascade boost converter.
The voltage transfer gain of the re-lift circuit of the P/O cascade boost converter is:

G = VO

Vin
=
(

1

1 − k

)2

(7.15)

Figure 7.21 shows the re-lift circuit of the main series of N/O cascade boost con-
verter. The voltage transfer gain of the re-lift circuit of the N/O cascade boost
converter is:

G = VO

Vin
=
(

1

1 − k

)2

− 1 (7.16)
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Figure 7.21 Re-lift circuit of N/O cascade boost converter. (a) Circuit diagram, (b) equivalent
circuit during switching-on and (c) equivalent circuit during switching-off.

7.1.2 The Second-Generation Converters

The second-generation converters are called multiple-quadrant operation converters.
These converters perform in two- and four-quadrant operation with medium output
power range (say 100 W or higher). The topologies can be sorted into two main cate-
gories: The first ones are the converters derived from the multiple-quadrant choppers
and/or from the first-generation converters. The second ones are constructed with
transformers. Usually, one-quadrant operation requires at least one switch. There-
fore, a two-quadrant operation converter has at least two switches, and a four-quadrant
operation converter has at least four switches.

Multiple-quadrant choppers were employed in industrial applications for a long
time. It can be used to implement the DC motor multiple-quadrant operation. As the
choppers titles, there are:

• Class-A converter (one-quadrant operation)
• Class-B converter (two-quadrant operation)
• Class-C converter
• Class-D converter
• Class-E (four-quadrant operation) converter

These converters are derived from multi-quadrant choppers, such as Class-B converter
is derived from B-type chopper and Class-E converter is derived from E-type chopper.
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Figure 7.22 Multi-quadrant operation Luo-converter.

Class-A converter works in Quadrant I, corresponding to the forward-motoring oper-
ation of a DC motor drive. Class-B converter works in Quadrants I and II operation,
corresponding to the forward-running motoring and regenerative braking operation of a
DC motor drive. Class-C converter works in Quadrant I and VI operation. Class-D con-
verter works in Quadrants III and VI operation, corresponding to the reverse-running
motoring and regenerative braking operation of a DC motor drive. Class-E converter
works in four-quadrant operation, corresponding to the four-quadrant operation of a
DC motor drive. In recent years many papers investigate the Class-E converters for
industrial applications.

Multi-quadrant operation converters can be derived from the first-generation con-
verters. For example, multi-quadrant operation Luo-converters are derived from P/O
and N/O Luo-converter. Figure 7.22 shows the multi-quadrant operation Luo-converter.
The energy can be converted from the source V1 to the load +V2 (Quadrant I operation)
and from the source V1 to the load −V2 (Quadrant III operation). Vice versa, the energy
can be converted from the load +V2 to the source V1 (Quadrant II operation) and from
the load −V2 to the source V1 (Quadrant IV operation).

The transformer-type multi-quadrant converters easily change the current direction
by transformer polarity and diode rectifier. The main types of such converters can be
derived from Forward converter, Half-Bridge converter and Bridge converter.

7.1.3 The Third-Generation Converters

The third-generation converters are called switched component converters, and made
of either inductor or capacitors, which are so-called switched-inductor and switched-
capacitors. They can perform in two- or four-quadrant operation with high-output power
range (say 1000 W). Since they are made of only inductor or capacitors, they are small.
Consequently, the power density and efficiency are high.
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Switched-Capacitor Converters

Switched-capacitor DC/DC converters consist of only capacitors. As there is no induc-
tor in the circuit, their size is small. They have outstanding advantages such as
low-power losses, low electromagnetic interference (EMI). Since its electromagnetic
radiation is low, switched-capacitor DC/DC converters are specially required in certain
equipment. Switched-capacitor can be integrated into integrated-chip. Hence, its size is
largely reduced. Once switched-capacitor converter was developed, it has drawn much
attention. Hundreds of papers published to discuss its characteristics and advantages.
However, most of these converters in the literature perform single-quadrant operation.
Some of them work in the push–pull status. In addition, their control circuit and topolo-
gies are very complex, especially, for the large difference between input and output
voltages.

Figure 7.23 shows a two-quadrant operation switched-capacitor DC/DC converter.
This circuit performs both VL technique and current-amplification technique. The
input source voltage is 48V and output load voltage is 14V. The size of this converter
is the volume in 24 in.3 and the transfer power can be 400–515 W. Therefore, the power
density can be transferred is up to 16.7–21 W/in.3

Switched-Inductor Converters

Switched-capacitors have many advantages, but its circuit is not simple. If the differ-
ence between the input and output voltages is large, many capacitors must be required.
Switched-inductor has the outstanding advantage that only one inductor is required
for any one switched-inductor converter no matter how large the difference between
the input and output voltages. Eventually, only one inductor is required for any one
switched-inductor converter working in multiple-quadrant operation. These character-
istics are very important for large power conversion. In the present time, large power
conversion equipment almost uses switched-inductor converter. For example, the MIT
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Figure 7.23 Two-quadrant operation switched-capacitor DC/DC converter.
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DC/DC converter designed by Prof. John G. Kassakian for his new system in the 2005
automobiles is a two-quadrant switched-inductor DC/DC converter.

Figure 7.24 shows a four-quadrant operation switched-inductor DC/DC converter.
The operation state and switch/diode status are shown in Table 7.1.

The input source voltage is 14V and output load voltage is 42V. The size of this
converter is the volume in 275 in.3 and the transfer power can be 4.5–7.2 kW. Therefore,
the power density that can be transferred is up to 16.3–26.2 W/in.3

7.1.4 The Fourth-Generation Converters

The fourth-generation DC/DC converters are called soft-switching converters. There
are four types of soft-switching methods:

• Resonant-switch converters
• Load-resonant converters
• Resonant-DC-link converters
• High-frequency-link integral-half-cycle converters
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Figure 7.24 Four-quadrant operation switched-inductor DC/DC converter.

Table 7.1

Switch’s status (not mentioned switches are off)

Quadrant number State S1 D1 S2 D2 S3 Source Load

QI, Mode A ON ON ON 1/2 V1 + I1+ V2 + I2+
Forward motoring OFF ON ON 1/2
QII, Mode B ON ON ON 1/2 V1 + I1− V2 + I2−
Forward regenerative OFF ON ON 1/2
QIII, Mode C ON ON ON 3/4 V1 + I1+ V2 − I2−
Reverse motoring OFF ON ON 3/4
QIV , Mode D ON ON ON 3/4 V1 + I1− V2 − I2+
Reverse regenerative OFF ON ON 3/4
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Till now only resonant-switch conversion method has been paid more attention. This
resonance method is available for working independently to load. There are three main
categories, which are zero-current-switching (ZCS), zero-voltage-switching (ZVS) and
zero-transition (ZT) converters. Most topologies usually perform in single-quadrant
operation in the literature. Actually, these converters can perform in two- and four-
quadrant operation with high-output power range (say several thousand watts (w)).

According to the transferred power becomes large, the power losses increase largely.
Main power losses are produced during the switch-on and switch-off period. How to
reduce the power losses across the switches is the clue to increase the power transfer
efficiency. Soft-switching technique successfully solved this problem. Prof. Fred C. Lee
is the pioneer of the soft-switching technique. He established a research center and
manufacturing base to realize the ZCS and ZVS DC/DC converters. His first paper
induced his outstanding research fruits in 1984. ZCS and ZVS converters have three
resonant states: over resonance (completed resonance); optimum resonance (critical
resonance) and quasi-resonance (sub-resonance). Only quasi-resonance state has two
clear cross-zero points as a repeating period. Many papers (since 1984) have been
published to develop the ZCS quasi-resonant-converters (QRCs) and ZVS-QRCs.

Zero-Current-Switching Quasi-Resonant Converters

ZCS-QRC equips resonant circuit in the switch side to keep the switch-on and switch-
off at zero-current condition. There are two states: full- and half-wave state. Most of the
engineers enjoy the half-wave state. This technique has half-wave current resonance
waveform with two zero-cross points.

Figure 7.25 shows a ZCS quasi-resonant (QR) DC/DC converter. The input source
voltage V1 = 50V and output load voltage V2 = 30V. The load R = 3 � and load current
I2 = 10A. The circuit diagram is shown in Figure 7.25(a).

To simplify the analysis and calculation, the load current is assumed as a constant
value. Therefore, the equivalent circuit is shown in Figure 2.25(b), and the correspond-
ing waveforms of the resonant current iLr (t) and resonant voltage vCr (t) are shown in
Figure 2.25(c). Since the power losses are very low, the energy transfer efficiency (η)
can be very high. The transferred power is 300 W, and the power density is about
15 W/in.3 with the converter’s volume (size: 2 × 2.5 × 4 in.3) to be 20 in.3

Zero-Voltage-Switching Quasi-Resonant Converters

ZVS-QRC equips resonant circuit in the switch side to keep the switch-on and switch-
off at zero-voltage condition. There are two states: full- and half-wave state. Most of
engineers enjoy the half-wave state. This technique has half-wave voltage resonance
waveform with two zero-cross points.

Figure 7.26 shows a two-quadrant operation ZVS QR DC/DC converter. The input
source voltage is 14V and output load voltage is 42V. The size of this converter has
the volume in 40 in.3 and the transfer power is 700 W. Therefore, the power density is
up to 17.6 W/in.3
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Figure 7.26 Two-quadrant operation ZVS QR DC/DC converter.
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Figure 7.27 Two-quadrant operation ZT DC/DC converter.

Table 7.2

Switches (S) and diodes’ (D) status (the blank status means off).

S&D Mode A (QI) Mode B (QII)

	t1 	t2 	t3 	t4 	t5 	t6 	t7 	t8 	t1 	t2 	t3 	t4 	t5 	t6 	t7 	t8

S1 ON ON ON
D1 ON ON
Sa ON ON ON
Da ON ON
S2 ON ON ON
D2 ON ON
Sb ON ON ON
Db ON ON

Zero-Transition Converters

Using ZCS-QRC and ZVS-QRC largely reduce the power losses across the switches.
Consequently, the switch device power rates become lower and converter power effi-
ciency is increased. However, ZCS-QRC and ZVS-QRC have large current and voltage
stresses. Therefore the device’s current and voltage peak rates usually are 3–5 times
higher than the working current and voltage. It is not only costly, but also ineffectively.
ZT technique overcomes this fault. It implements zero-voltage plus ZCS (ZV-ZCS)
technique without significant current and voltage stresses.

Figure 7.27 shows a two-quadrant operation ZT DC/DC converter. The input source
voltage is 14V and output load voltage is 42V. The operation state and switch/diode
status are shown in Table 7.2.

The waveforms of Quadrant I operation of the ZT DC/DC converter are shown in
Figure 7.28 and the waveforms of Quadrant II operation of the ZT DC/DC converter
are shown in Figure 7.29. The size of this converter is the volume in 40 in.3 and the
transfer power is 700 W. Therefore, the power density is up to 17.6 W/in.3
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Figure 7.28 Waveforms of Quadrant I operation of the ZT DC/DC converter.
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Figure 7.29 Waveforms of Quadrant II operation of the ZT DC/DC converter.

7.1.5 The Fifth-Generation Converters

The fifth-generation converters are called SR DC/DC converters. This type converter
was required by the development of computing technology progress. Corresponding
to the development of the micro-power consumption technique and high-density IC
manufacture, the power supplies with low output voltage and strong current are widely
required in communications, computer equipment and other industrial applications.
Intel company developed Zelog-type computers governed the world market for a long
time. Inter-80 computers used 5V power supply. In order to increase the memory size
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Figure 7.30 Double-current SR Luo-converter.

and operation speed, LSIC technique has been quickly developed. Along the density
of IC manufacture increased, the gaps between the layers become narrow and narrow.
Correspondingly the micro-power-consumption technique was completed. Therefore
the new type computers Pentium I, II, III and IV use the power supply of 3.3V. The
future computers have larger memory and require lower power supply voltage, e.g.
2.5, 1.8, and 1.5V, even if 1.1V. Such low power supply voltage cannot be obtained
by the traditional diode rectifier bridge because the diode voltage drop is too large.
Since this requirement, new types of metal-oxide semiconductor field effect transistor
(MOSFET) were developed. They have very low conduction resistance (6–8 m�) and
forward voltage drop (0.05–0.2V).

Many papers have been published since 1990s and many prototypes were developed.
The fundamental topology is derived from the forward converter. Active-clamped cir-
cuit, flat-transformers, double current circuit, soft-switching methods and multiple
current methods can be used in SR DC/DC converters.

Figure 7.30 shows double-current SR Luo-converter. The flash transformer turn’s
ratio is N = 1:12. The input source voltage is 30V, and output load voltage is 1.8V and
output current can be 30–36A. Power transfer efficiency can be 82–90%.

7.1.6 The Sixth-Generation Converters

The sixth-generation converters are called multiple energy-storage (MER) elements
resonant power converters (RPC). Current source resonant inverters (CSRIs) are the
heart of many systems and equipment, e.g. uninterruptible power supply (UPS) and
high-frequency annealing (HFA) apparatus. Many topologies shown in open literature
are the series resonant converters (SRC) and parallel resonant converters (PRC) that
consist of two, three or four energy-storage elements. However, they have a lot of the
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Figure 7.31 Cascade double �–CL current source resonant inverter. (a) Circuit diagram and
(b) equivalent circuit.

limitations. These limitations of two-, three- or/and four-element resonant topologies
can be overcome by special design. These converters have sorted into three main
categories:

• Two energy-storage elements resonant DC/AC and DC/AC/DC converters;
• Three energy-storage elements resonant DC/AC and DC/AC/DC converters;
• Four energy-storage elements (2L–2C) resonant DC/AC and DC/AC/DC

converters.

By mathematical calculation there are 8 prototypes of 2-element converters,
38 prototypes of 3-element converters and 98 prototypes of 4-element (2L–2C) con-
verters. Carefully analyzing these prototypes we can find out that not so many circuits
can be realized. If we keep the output in low-pass bandwidth, the series components
must be inductors and shunt components must be capacitors. Furthermore analysis,
the first component of the resonant-filter network can be an inductor in series, or a
capacitor in shunt. In the first case, only alternative (square wave) voltage source can
be applied to the network. In the second case, only alternative (square wave) current
source can be applied to the network.

Figure 7.31(a) shows a cascade double �–CL current source resonant inverter. It
consists of four energy-storage elements, the double �–CL: C1–L1 and C2–L2. Its
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Figure 7.32 Output current waveform of the cascade double �–CL CSRI.
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Figure 7.33 The FFT spectrum of the output current of the cascade double �–CL CSRI.

equivalent diagram is shown in Figure 7.31(b). The energy source is a DC voltage Vin
chopped by two main switches S1 and S2 to construct a bipolar current source, ii = ±Ii.
The pump inductors L10 and L20 are equal to each other, and are large enough to keep
the source current nearly constant during operation. The real load absorbs the delivered
energy, its equivalent load should be proposed resistive, Req. The input source voltage
is Vin = 30V, L10 = L20 = 20 mH, Iin = ±1 A, Req = 10 �, C1 = C2 = C = 0.22 µF, and
L1 = L2 = L = 100 µH. The output current waveform is nearly pure sinusoidal function
shown in Figure 7.32. The corresponding fast Fourier transformation (FFT) spectrum
is shown in Figure 7.33 and the total harmonic distortion (THD) is mostly a 0.

7.1.7 All Prototypes and DC/DC Converter Family Tree

As we know that there are more than 500 topologies of DC/DC converters existing.
In order to manage and sort them it is urgently necessary to categorize all prototypes.
From all accumulated knowledge we can build all DC/DC converters altogether. The
family tree is shown in Figure 7.34.

7.2 MATHEMATICAL MODELING FOR POWER
DC/DC CONVERTERS

Since the output voltage of a power DC/DC converter is out of control in a period T
once the duty cycle k is applied, therefore, it is the element to keep the output voltage
in a period T = 1/f . By per-unit system, the voltage transfer gain is unity (1) in a
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Figure 7.34 DC/DC converter family tree.

sampling interval. As discussed in Chapter 2, a power DC/DC converter is a second-
order element, and its transfer function is:

G(s) = VO

VI
|per-unit = 1

1 + sτ + s2ττd
(7.17)

where τ is the time constant and τd is the damping time constant.
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The mathematical modeling for the power DC/DC converters was proposed by
Dr. F. L. Luo and Dr. H. Ye in the period 2001–2004. This new methodology was
carefully described in Chapter 2. As the second-order transfer function simulated all
power DC/DC converters, the mathematical modeling in per-unit digital control system
should be a second-order transfer function in the s-domain:

G(s) = 1

1 + sτ + s2ττd
(7.18)

where τ is the time constant (2.23) and τd is the damping time constant (2.25). In
general situation, τd is smaller than the critical value τ/4, there are two real poles −σ1
and −σ2 located in the left-hand half-plane in the s-plane. As discussed in Chapter 2,
Equation (7.18) is rewritten as:

G(s) = 1

1 + sτ + s2ττd
= 1/ττd

(s + σ1)(s + σ2)
(7.19)

where

σ1 = τ +√τ2 − 4ττd

2ττd
and σ2 = τ −√τ2 − 4ττd

2ττd

Correspondingly, a power DC/DC converter is an single-order hold (SOH) in the
z-domain.

G(z) = Z[G(s)] = Z

[
1/ττd

(s + σ1)(s + σ2)

]
= 1

ττd(σ2 − σ1)

(
z

z − e−Tσ1
− z

z − e−Tσ2

)
(7.20)

Expanding and simplifying Equation (7.20),

G(z) = M√
τ2 − 4ττd

[
z

z − e−σ1T
− z

z − e−σ2T

]

= Mz√
τ2 − 4ττd

[
e−σ1T − e−σ2T

(z − e−σ1T )(z − e−σ2T )

]

=
Mz


e

−
(

τ−
√

τ2−4ττd
2ττd

)
T

− e
−
(

τ+
√

τ2−4ττd
2ττd

)
T




√
τ2 − 4ττd


z − e

−
(

τ−
√

τ2−4ττd
2ττd

)
T




z − e

−
(

τ+
√

τ2−4ττd
2ττd

)
T




(7.21)

As

σ1 − σ2 =
√

τ2 − 4ττd

ττd
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It means that the DC/DC converter performs a second-order response without
oscillation.

In some applications, τd is greater than the critical value τ/4, there are a couple of
conjugating poles −s1 and −s2 located in the left-hand half-plane in the s-plane. As
discussed in Chapter 2, Equation (7.18) is rewritten as:

G(s) = 1

1 + sτ + s2ττd
= 1/ττd

(s + s1)(s + s2)
(7.22)

where s1 = σ + jω and s2 = σ − jω

σ = 1

2τd
and ω =

√
4ττd − τ2

2ττd

Correspondingly, the power DC/DC converter is an SOH in the s-domain and is
rewritten as:

G(s) = M/ττd

(s + σ + jω)(s + σ − jω)
= M/ττd

(s + σ)2 + ω2 = M

ττdω
× ω

(s + σ)2 + ω2

= 2M√
4ττd − τ2

× ω

(s + σ)2 + ω2 (7.23)

Applying the transformation, the mathematical modeling for the SOH for large damping
time constant is:

G(z) = 2M√
4ττd − τ2

ze−aT sin ωT

z2 − 2ze−aT cos ωT + e−2aT
(7.24)

where σ = a = 1/2τd. Expanding and simplifying Equation (7.24):

G(z) = 2Mze−aT sin ωT√
4ττd − τ2(z2 − 2ze−aT cos ωT + e−2aT )

=
2Mze−T/2τd sin

(√
4ττd−τ2

2ττd
× T

)
√

4ττd − τ2

(
z2 − 2ze−T/2τd cos

(√
4ττd−τ2

2ττd

)
+ e−T/τd

) (7.25)

It means that the DC/DC converter performs a second-order response with oscillation
in one-step delay (T ) in a digital control system.

7.3 FUNDAMENTAL DC/DC CONVERTER

Fundamental DC/DC converters such as buck, boost and buck–boost converters consist
of one capacitor and one inductor; therefore, the modeling is simple. The treatment
process was introduced in Chapter 2 in detail.
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In most industrial applications, power DC/DC converters work in the continuous
conduction mode (CCM), and perform in the case with small damping time constant.
For example, the inductor L is in mH and capacitor C is in µF. Usually, the time constant
τ is large enough, and damping time constant τd is smaller than the critical value τ/4.
Refer to the buck converter shown in Figure 7.1. Assume the following conditions.

V1 = 40V, L = 1 mH, C = 40 µF, f = 20 kHz (T = 50 µs), k = 0.4 and R = 1� power
losses are ignored. We get V2 = 16V, I2 = IL = 16A, I1 = 6.4A. The mathematical
model components are:

PE = V1I1T = 40 × 6.4 × 50µ = 12.8 mJ

WL = 1

2
LI 2

L = 1

2
1m × 162 = 128 mJ

WC = 1

2
CV 2

C = 1

2
40µ × 162 = 5.12 mJ

SE = WL + WC = 128 + 5.12 = 133.12 mJ

EF = SE

PE
= 133.12

12.8
= 10.4

CIR = WC

WL
= 5.12

128
= 0.04

since EL = 0, efficiency (η) = 1.

τ = 2T × EF

1 + CIR
= 100µ × 10.4

1.04
= 1 ms

τd = 2T × EF

1 + CIR
CIR = 100µ × 10.4 × 0.04

1.04
= 40 µs

ξ = τd

τ
= CIR = 0.04 < 0.25

The corresponding transfer function in per-unit system is:

G(s) = 1

1 + sτ + s2ττd
= 1/ττd

(s + σ1)(s + σ2)
(7.26)

with

σ1 = τ +√τ2 − 4ττd

2ττd
= 1m + √

1µ − 160n

80n
= 1 + 0.9165

80µ

= 1

0.0000417
= 23.96 kHz
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σ2 = τ −√τ2 − 4ττd

2ττd
= 1m − √

1µ − 160n

80n
= 1 − 0.9165

80µ

= 1

0.000958
= 1.044 kHz

We know that σ1 is much larger than σ2, so that the term e−σ1t is much smaller than
the term e−σ2t . It is reasonable to ignore the expression involving the term e−σ1t .

The unit-step response is:

v2(t) = 16(1 + K1e−σ1t + K2e−σ2t) = 16(1 + 0.0455e− t
0.0000417 − 1.0455e− t

0.000958 )
(7.27)

where:

K1 = −1

2
+ τ

2
√

τ2 − 4ττd

= −0.5 + 1

2
√

12 − 0.16
= −0.5 + 0.5455 = 0.0455

K1 = −1

2
+ τ

2
√

τ2 − 4ττd

= −0.5 − 1

2
√

12 − 0.16
= −0.5 − 0.5455 = −1.0455

or

v2(t) ≈ 16(1 − e− t
0.000958 ) (7.28)

The impulse response is:

	v2(t) = U√
1 − 4τd/τ

(e−σ2t − e−σ1t) = 1.0911U (e− t
0.000958 − e− t

0.0000417 ) (7.29)

or

	v2(t) ≈ Ue− t
0.000958 (7.30)

where U is the interference. From the above analysis and calculation, the corresponding
transfer function in per-unit system in the s-domain can be approximately written as:

G(s) ≈ 1

1 + sτe
(7.31)

where τe is the equivalent time constant τe = 0.000958 s ≈ 1 ms = τ.
The corresponding transfer function in per-unit system in the z-domain can be

approximately written as:

G(z) ≈ z

z − e−T/τe
(7.32)

where T is the sampling interval (T = 50 µs). Since T /τe is very small nearly 0.05,
so that:

G(z) ≈ z

z − e−T/τe
≈ z

z − 1 + T/τe
≈ z

z − 0.95
(7.33)
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Figure 7.35 The zero’s and pole’s locations of a buck converter.

The transfer function has one pole and one zero. The pole is at z = 0.95 inside the
unity-cycle, the zero is at z = 0 at the original point. Therefore, this converter is stable
element. The zero’s and pole’s locations of this buck converter are shown in Figure 7.35.

7.4 DEVELOPED DC/DC CONVERTERS

Most power DC/DC converters consist of multiple (more than two) passive energy-
stored components. In traditional method, they have higher-order transfer function.
For example, the developed DC/DC converters such as positive/negative output Luo-
converters in Figures 7.12 and 7.13, Cúk converter and SEPIC in Figures 7.15 and 7.16,
consist of two capacitors and two inductors. In most industrial applications, power
DC/DC converters work in the CCM, and perform in the case with small damping time
constant. For example, the inductor, L, is in mH and capacitor, C, is in µF. Usually,
the time constant τ is large enough, and damping time constant τd is smaller than the
critical value τ/4.

Refer to the N/O Luo-converter shown in Figure 7.13. Assume the following
conditions.

V1 = 40V, L = LO = 5 mH, C = CO = 20 µF, f = 20 kHz (T = 50 µs), k = 0.5 and
R = 2 � power losses are ignored. We get VO = 40V, VC = VCO = 40V, IO = ILO = 20A,
I1 = IL = 20A. The mathematical model components are:

PE = V1I1T = 40 × 20 × 50µ = 40 mJ

WL = 1

2
LI 2

L + 1

2
LOI 2

LO = 5m × 202 = 2 J

WC = 1

2
COV 2

CO + 1

2
CV 2

C = 20µ × 402 = 32 mJ

SE = WL + WC = 2000 + 32 = 2032 mJ
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EF = SE

PE
= 2032

40
= 50.8

CIR = WC

WL
= 32

2000
= 0.016

since EL = 0, efficiency (η) = 1.

τ = 2T × EF

1 + CIR
= 100µ × 50.8

1.016
= 5 ms

τd = 2T × EF

1 + CIR
CIR = 100µ × 50.8 × 0.016

1.016
= 80 µs

ξ = τd

τ
= CIR = 0.016 << 0.25

Since the damping time constant τd is much smaller than time constant τ, the
corresponding transfer function in per-unit system is considered as:

G(s) = 1

1 + sτ + s2ττd
≈ 1

1 + sτ
= 1

1 + 0.005s
(7.34)

The unit-step response is:

vO(t) = 40(1 − e− t
τ ) = 40(1 − e− t

0.005 ) (7.35)

The impulse response is:

	vO(t) = Ue− t
τ = Ue− t

0.005 (7.36)

where U is the interference. The corresponding transfer function in per-unit system in
the z-domain can be approximately written as:

G(z) ≈ z

z − e−T/τ
= z

z − e−50µ/5m
= z

z − e−0.01 = z

z − 0.99
(7.37)

where T is the sampling interval (T = 50 µs) and τ is the time constant (τ = 5 ms), so
that T /τ is very small to be equal to 0.01. The transfer function has one pole and one
zero. The pole is at z = 0.99 inside the unity-cycle; therefore, this converter is stable
circuit. The zero’s and pole’s locations of this Cúk converter are shown in Figure 7.36.

7.5 SOFT-SWITCHING CONVERTERS

In order to reduce the power losses soft-switching technique has been applied in both
research and industrial application since 1984. Soft-switching converters are sorted
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Figure 7.36 The zero’s and pole’s locations of a N/O Luo-converter.

in three categories:

• ZCS converters,
• ZVS converters,
• ZT converters.

All soft-switching converters have resonant circuit to implement the soft-switching
process: ZCS or/and ZVS, and ZT operations. Usually, the resonant circuit consists of
the components with small values of inductance and capacitance. The stored energy in
the resonant circuit is very small. An Lr–Cr resonant circuit is shown in Figure 7.25. For
high-accuracy consideration we can estimate the energy stored in a resonant circuit is:

Eres = WLr + WCr = 1

2

∫
tres

[
Lri

2
Lr

(t) + Crv
2
Cr

(t)
]
dt (7.38)

where tres is the resonant process time-length, iLr (t) is the resonant inductor instanta-
neous current in the resent process and vCr (t) is the resonant capacitor instantaneous
voltage in the resent process. For a pure resonance period the functions iLr (t) and vCr (t)
should be sinusoidal function. The energy stored in the inductor and capacitor is fully
transferred to each other in a quarter cycles:

iLr (t) = IO sin ωrt (7.39)

vCr (t) = V sin
(
ωrt − π

2

)
(7.40)

with

IO = V√
Lr/Cr

and ωr = 1√
LrCr
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The average energy stored in the inductor is:

WLr = 1

2

∫
tres

Lri
2
Lr

(t)dt = 1

2
Lr

(
IO√

2

)2

= Cr

4
V 2 (7.41)

The average energy stored in the capacitor is:

WCr = 1

2

∫
tres

Crv
2
Cr

(t)dt = 1

2
Cr

(
V√

2

)2

= Cr

4
V 2 (7.42)

Therefore the average energy stored in whole resonant circuit is:

Er = WLr + WCr = 1

2
CrV

2 (7.43)

The resonant inductor Lr is usually in µH that is much lower than the main inductor, and
the capacitor Cr is usually in µF that maybe lower than the main capacitor. Therefore
the stored energy in the resonant circuit can be ignored in brief calculation.

For example, a ZCS buck converter is shown in Figure 7.25. The components are:
V1 = 50V, I1 = 6A, L = 10 mH, C = 60 µF, Lr = 4 µH, Cr = 1 µF, output voltage

V2 = 30V the load R = 3 � and I2 = 10A. Therefore, we have:

ω = 1√
LrCr

= 1√
4µ × 1µ

= 500000 rad (7.44)

Z =
√

Lr

Cr
=
√

4µ

1µ
= 2 � (7.45)

α = sin−1 ZI2

V1
= sin−1 2 × 10

50
= sin−1 0.4 = 0.41 rad (7.46)

t1 = LrI2

V1
= 4 × 10

50
= 0.8 µs (7.47)

t2 = π + α

ω
= 3.552

500000
= 7.1 µs (7.48)

t3 = V1(1 + cos α)Cr

I2
= 50 × 1.9165 × 1µ

10
= 4.58 µs (7.49)

t4 = V1(t1 + t2)

V2I2

(
I2 + V1

Z

2 cos α

α + π/2

)
− (t1 + t2 + t3) = 5.05 µs (7.50)

T = t1 + t2 + t3 + t4 = 17.53 µs (7.51)
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f = 1/T = 1

17.528
= 57 kHz (7.52)

k = t1 + t2
T

= 7.9

17.53
= 0.45 µs (7.53)

The resonant stored energy is:

Er = WLr + WCr = 1

2
CrV

2
1 = 0.5µ × 502 = 1.25 mJ (7.54)

Other parameters are:

PE = V1I1T = 50 × 6 × 17.53µ = 5.26 mJ

WL = 1

2
LI 2

L = 5m × 102 = 500 mJ

WC = 1

2
CV 2

C = 30µ × 302 = 27 mJ

SE = WL + WC + Er = 500 + 27 + 1.25 = 528.25 mJ

EF = SE

PE
= 528.25

5.26
= 100.43

CIR = WC

WL
= 27

500
= 0.054

since EL = 0, efficiency η = 1.

τ = 2T × EF

1 + CIR
= 2 × 17.53µ × 100.43

1.054
= 3.34 ms

τd = 2T × EF

1 + CIR
CIR = 2 × 17.53µ × 100.43 × 0.054

1.054
= 180 µs

ξ = τd

τ
= CIR = 0.054 � 0.25

Since the damping time constant τd is much smaller than time constant τ, the corre-
sponding transfer function in per-unit system is considered as:

G(s) = 1

1 + sτ + s2ττd
≈ 1

1 + sτ
= 1

1 + 0.00334s
(7.55)

The unit-step response is:

vO(t) = 30(1 − e− t
τ ) = 30(1 − e− t

0.00334 ) (7.56)

The impulse response is:

	vO(t) = Ue− t
τ = Ue− t

0.00334 (7.57)
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Figure 7.37 The zero’s and pole’s locations of a ZCS QR DC/DC converter.

where U is the interference. The corresponding transfer function in per-unit system in
the z-domain can be approximately written as:

G(z) ≈ z

z − e−T/τ
= z

z − e−17.53µ/3.34m
= z

z − e−0.00525 = z

z − 0.995
(7.58)

where T is the sampling interval (T = 17.53 µs) and τ is the time constant (τ = 3.34 ms),
so that T /τ is very small to be equal to 0.00525. The transfer function has one pole
and one zero. The pole is at z = 0.995 inside the unity-cycle; therefore, this converter
is stable circuit. The zero’s and pole’s locations of this ZCS QR DC/DC converter are
shown in Figure 7.37.

7.6 MULTI-ELEMENT RESONANT POWER CONVERTERS

The sixth-generation converters work in the resonant state to reduce the power losses.
This technique was created in 1980s and used to be popular in 1990s. Depending on
the number of the passive components there are few categories:

• Two-element RPC;
• Three-element RPC;
• Four-element (2L–2C) RPC.

All RPCs work in forced resonant state. It means that the applied frequency may
not be equal to the natural circuit resonant frequency. The stored energy in the resonant
circuit is AC form. A cascade double �–LC current source resonant inverter is shown
in Figure 7.31. From the equivalent circuit, the input current ii(t) is:

ii(t) =
{

1 A nT ≤ t < (n + 0.5)T

−1 A (n + 0.5)T ≤ t < (n + 1)T
(7.59)
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The input impedance is given by:

Z(ω) = Req(1 − ω2L1C2) + jω(L1 + L2 − ω2L1L2C2)

1 − ω2(L1C1 + L2C1 + L2C2) + ω4L1L2C1C2 + jωReq(C1 + C2 − ω2L1C1C2)
(7.60)

or

Z(ω) = Req(1 − ω2L1C2) + jω(L1 + L2 − ω2L1L2C2)

B(ω)
(7.61)

where

B(ω) = 1 −ω2(L1C1 + L2C1 + L2C2) +ω4L1L2C1C2 + jωReq(C1 + C2 −ω2L1C1C2)
(7.62)

Voltage and current on capacitor C1:

VC1 (ω)

Ii(ω)
= Req(1 − ω2L1C2) + jω(L1 + L2 − ω2L1L2C2)

B(ω)
(7.63)

IC1 (ω)

Ii(ω)
= Req(1 − ω2L1C2) + jω(L1 + L2 − ω2L1L2C2)

B(ω)/jωC1
(7.64)

Voltage and current on inductor L1:

VL1 (ω)

Ii(ω)
= −Reqω

2L1C2 + jωL1(1 − ω2L2C2)

B(ω)
(7.65)

IL1 (ω)

Ii(ω)
= (1 − ω2L2C2) + jReqωC2

B(ω)
(7.66)

Voltage and current on capacitor C2:

VC2 (ω)

Ii(ω)
= Req + jωL2

B(ω)
(7.67)

IC2 (ω)

Ii(ω)
= −ω2L2C2 + jReqωC2

B(ω)
(7.68)

Voltage and current on inductor L2:

VL2 (ω)

Ii(ω)
= jωL2

B(ω)
(7.69)

IL2 (ω)

Ii(ω)
= 1

B(ω)
(7.70)

The output voltage and current on the resistor Req:

VO(ω)

Ii(ω)
= Req

B(ω)
(7.71)
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The current transfer gain is given by:

g(ω) = IO(ω)

Ii(ω)
= 1

B(ω)
(7.72)

Usually, the input impedance and output current gain draw more attention rather than
all transfer functions listed in previous section. To simplify the operation, select:

L1 = L2 = L; C1 = C2 = C; ω0 = 1√
LC

Z0 =
√

L

C
; Q = Z0

Req
= ω0L

Req
= 1

ω0CReq
; β = ω

ω0

Obtain

B(β) = 1 − 3β2 + β4 + j
2 − β2

Q
β (7.73)

Therefore:

Z(β) = (1 − β2) + jQ(2 − β2)

1 − 3β2 + β4 + j 2−β2

Q β
Req = |Z |∠φ (7.74)

where

|Z | =
√

(1 − β2)2 + Q2(2 − β2)2√
(1 − 3β2 + β4)2 + β2

(
2−β2

Q

)2
Req and

φ = tan−1 2 − β2

1 − β2 Q − tan−1 (2 − β2)β

(1 − 3β2 + β4)Q

The current transfer gain becomes:

g(β) = 1

1 − 3β2 + β4 + j 2−β2

Q β
= |g|∠θ (7.75)

where

|g| = 1√
(1 − 3β2 + β4)2 + β2

(
2−β2

Q

)2
(7.76)

and

θ = − tan−1 (2 − β2)β

(1 − 3β2 + β4)Q
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Therefore, the voltage and current on capacitor C1:

VC1 (β)

Ii(β)
= (1 − β2) + jβQ(2 − β2)

B(β)
Req (7.77)

IC1 (β)

Ii(β)
= j

(1 − β2) + jβQ(2 − β2)

B(β)Q
(7.78)

Voltage and current on inductor L1:

VL1 (β)

Ii(β)
= −β2 + jβQ(1 − β2)

B(β)
Req (7.79)

IL1 (β)

Ii(β)
= (1 − β2) + jβ/Q

B(β)
(7.80)

Voltage and current on capacitor C2:

VC2 (β)

Ii(β)
= 1 + jβQ

B(β)
Req (7.81)

IC2 (β)

Ii(β)
= −β2 + jβ/Q

B(β)
(7.82)

Voltage and current on inductor L2:

VL2 (β)

Ii(β)
= jβQ

B(β)
Req (7.83)

IL2 (ω)

Ii(ω)
= 1

B(ω)
(7.84)

The output voltage and current on the resistor Req:

Vo(ω)

Ii(ω)
= Req

B(ω)
(7.85)

The current transfer gain is given by:

g(β) = Io(β)

Ii(β)
= 1

B(β)
(7.86)

We can calculate the energy stored in this resonant circuit as:

Eres = WLr + WCr = 1

2

∫
tres

[
L1i2

L1
(t) + L2i2

L2
(t) + C1v2

C2
(t) + C2v2

C2
(t)
]
dt (7.87)
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where tres is the forced resonant process time-length T = 1/f , iL1 (t) and iL2 (t) are the
resonant inductor instantaneous currents in the resent process, and vC1 (t) and vC2 (t) are
the resonant capacitor instantaneous voltages in the resent process. The energy stored
in the inductor and capacitor is fully transferred to each other in a quarter cycles:

iL(t) = IO sin ωt (7.88)

vC(t) = V sin
(
ωt − π

2

)
(7.89)

where the natural resonant angular frequency is:

ωO = 1√
LC

The applied frequency is f = ω/2π. Usually, the applied frequency ω is
not equal to the natural resonant angular frequency ωO. The relevant fre-
quency β is selected as β = 1.59 in this example. Vin = 30V, L10 = L20 = 20 mH,
Iin = ±1A, Req = 10 �, C1 = C2 = C = 0.22 µF and L1 = L2 = L = 100 µH. There-
fore, Z0 = 21.32 �, Q = Z0/Req = 2.132. The output current is nearly pure sinusoidal
function shown in Figure 7.32. The applied frequency f = 54 kHz, i.e. T = 18.5 µs.
Therefore, we have the parameters below:

B(β) = 1 − 3β2 +β4 + j
2 − β2

Q
β = 1 − 3 × 1.592 + 1.594 + j

2 − 1.592

2.132
1.59 (7.90)

|B(β)| = 0.4386 or |g| = 1

|B(β)| = 2.28

VC1 = (1 − β2) + jβQ(2 − β2)

B(β)
Req (7.91)

= (1 − 1.592) + j × 1.59 × 2.132(2 − 1.592)

0.4386
× 10 = 75.66 V (7.92)

IL1 = (1 − β2) + jβ/Q

B(β)
= (1 − 1.592) + j(1.59/2.132)

0.4386
= 3.88 A (7.93)

VC2 = 1 + jβQ

B(β)
Req = 1 + j × 1.59 × 2.132

0.4386
× 10 = 80.6 V (7.94)

IL2 = 1

B(β)
= 2.28 A (7.95)
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The stored energy as:

WL = 1

2
LI 2

L1
+ 1

2
LI 2

L2
= 50µ × (3.882 + 2.282) = 1012.6 µJ (7.96)

WC = 1

2
CV 2

C1
+ 1

2
CV 2

C2
= 0.11µ × (75.662 + 80.62) = 1344.3 µJ (7.97)

Other parameters are:

PE = V1I1T = 30 × 1 × 18.5µ = 555 µJ

SE = WL + WC = 1012.6 + 1344.3 = 2356.9 µJ

EF = SE

PE
= 2356.9

555
= 4.25

CIR = WC

WL
= 1344.3

1012.6
= 1.33

since EL = 0, efficiency η = 1.

τ = 2T × EF

1 + CIR
= 2 × 18.5µ × 4.25

2.33
= 67.5 µs

τd = 2T × EF

1 + CIR
CIR = 2 × 18.5µ × 4.25 × 1.33

2.33
= 90 µs

ξ = τd

τ
= CIR = 1.33 > 0.25

Since the damping time constant τd is greater than time constant τ, the corresponding
transfer function in per-unit system is considered as:

G(s) = 1

1 + sτ + s2ττd
= 1/ττd

(s + s1)(s + s2)
(7.98)

where

s1 = σ + jω and s2 = σ − jω

σ = 1

2τd
= 1

0.00018
Hz and ω =

√
4ττd − τ2

2ττd
=

√
24.3n − 4.556n

12.15n

= 140.5µ

12.15n
= 11, 565 rad/s
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Figure 7.38 The zero’s and pole’s locations of a cascade double �–CL CSRI.

The transfer function is rewritten as:

G(s) = 1/ττd

(s + σ)2 + ω2 = 2√
4τd/τ − 1

ω

(s + σ)2 + ω2 (7.99)

The unit-step response is:

vO(t) = 21.32 [1 − e− t
0.00018 (cos 11565t − 0.48 sin 11565t)] V

The impulse response is:

	vO(t) = 0.96Ue− t
0.00018 sin 11565t (7.100)

where U is the interference. The corresponding transfer function in per-unit system in
the z-domain can be approximately written as:

G(z) = 2√
4τd/τ − 1

ze−aT sin ωT

z2 − 2ze−aT cos ωT + e−2aT
(7.101)

where a = σ = 1

2τd
= 1

180 µs
, ω = 11, 565 rad/s and T = 18.5 µs

G(z) = 2√
4τd/τ − 1

ze−aT sin ωT

z2 − 2ze−aT cos ωT + e−2aT

= 0.96 × ze−0.103 sin 0.214

z2 − 2ze−0.103 cos 0.214 + e−0.206

or G(z) = 0.96 × z × 0.902 × 0.2124

z2 − 2z × 0.902 × 0.9772 + 0.814
= 0.039065z

z2 − 1.763z + 0.814

The transfer function has one zero and two poles. The poles are at z = 0.8815 ± j 0.3845
inside the unity-cycle; therefore, this converter is stable circuit. The zero’s and pole’s
locations of this cascade double �–LC CSRI are shown in Figure 7.38.
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Chapter 8

Digitally Controlled AC/AC
Converters

As described in Chapter 3, all AC/AC (AC/DC/AC) converters are treated as a first-
order-hold (FOH) element in digital control systems. We will discuss this model in
various circuits in this Chapter.

8.1 INTRODUCTION

AC/AC and/orAC/DC/AC converters are newly developed group of the power switching
circuits applied in industrial applications in comparison with other power switching
circuits. Although choppers were popular in AC/DC/AC power supply long time ago,
power AC/DC/AC converters were used in industrial application since later 1980s.
Semiconductor manufacture development brought Power devices such as gate turn-
off thyristors (GTO), Triac, bipolar transistors (BT), insulated gate bipolar transistors
(IGBT) and power MOS field effected transistors (MOSFET) and so on into the DC/AC
power supply since 1980s. Due to the low switching frequency devices the equipment
power rate is not very high.

The DC power supply equipment was totally changed since 1960s because of the
thyristor (SCR) produced. The corresponding control circuit is gradually changed from
analog control to digital control system since 1980s. The mathematical modeling for all
AC/DC/AC converters is discussed widely in worldwide. Finally, a FOH is generally
accepted to be used for simulate the AC/AC and AC/DC/AC converters.

AC/AC converters are used for converting one AC power source into another AC
power application. They are generally used in following applications:

1. single-phase AC/AC voltage controllers;
2. three-phase AC/AC voltage controllers;
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3. single-phase input single-phase output (SISO) cycloconverters;
4. three-phase input single-phase output (TISO) cycloconverters;
5. three-phase input three-phase output (TITO) cycloconverters;
6. AC/DC/AC pulse width modulation (PWM) converters;
7. matrix converters.

All AC/AC voltage converters convert the voltage from an AC source with high
voltage and frequency to the lower output voltage and frequency with little phase angle
delayed.

AllAC/AC cycloconverters convert the voltage from anAC source with high voltage
and frequency to the lower output voltage and frequency with little phase angle delayed.

All AC/DC/AC converters convert the voltage from an AC source via DC link, then
invert to the output load with lower voltage and variable (higher or lower) frequency.

All AC/AC matrix converters directly convert the voltage from an AC source to the
output load with lower voltage and variable (higher or lower) frequency.

We discuss some typical AC/DC converters in this Chapter.

8.1.1 Single-Phase AC/AC Voltage Controller

Single-phase AC/AC voltage controllers have three typical control methods:

• phase angle control,
• on/off control,
• PWM AC chopper control.

All control methodologies have lower output voltage with same or lower frequency
respecting to the input voltage and frequency.

Phase Angle Control

The basic power circuit of a single-phase AC–AC voltage controllers with phase-angle
control as shown in Figure 8.1(a), is composed of a pair of SCRs connected back-to-
back (also known as inverse-parallel or antiparallel) between theAC supply and the load.
This connection provides a bidirectional full-wave symmetrical control and the SCR
pair can be replaced by a Triac in Figure 8.1(b) for low-power applications. Alternate
arrangements are as shown in Figure 8.1(c) with two diodes and two SCRs to provide
a common cathode connection for simplifying the gating circuit without needing iso-
lation, and in Figure 8.1(d) with one SCR and four diodes to reduce the device cost but
with increased device conduction loss. An SCR and diode combination, known as a thy-
rode controller, as shown in Figure 8.1(e), provides a unidirectional half-wave asym-
metrical voltage control with device economy but introduces a DC component and more
harmonics, and thus is not very practical to use except for a very low power heating load.

With phase control, the switches conduct the load current for a chosen period of
each input cycle of voltage and with on/off control the switches connect the load either



Digitally controlled AC/AC converters 223

(c)

�

�

L
o
a
d

�

�

VO

iOis

(b)

�

�

�

�

L
o
a
d

VO

iOis
Triac

(a)

�

�

�

�

L
o
a
d

T1

T2

VO

iOis

ig1

ig2

VT1

vs � √2Vs sin ωt

vs � √2Vs sin ωt vs � √2Vs sin ωt

vs � √2Vs sin ωt

vs � √2Vs sin ωt

iOis

�

�

L
o
a
d

�

�

VO

D1 D2

D4D3

T1

(d)

iOis

�

�

L
o
a
d

�

�

VO

D1

T1

(e)

Figure 8.1 Single-phase AC/AC voltage controllers: (a) full-wave, two SCRs in inverse par-
allel; (b) full-wave with Triac; (c) full wave with two SCRs and two diodes; (d) full wave with
four diodes and one SCR and (e) half wave with one SCR and one diode in antiparallel.

for a few cycles of input voltage and disconnect it for the next few cycles (integral cycle
control) or the switches are turned on and off several times within alternate half-cycles
of input voltage (AC chopper or PWM AC voltage controller).

For a full-wave, symmetrical phase control, the SCRs T1 and T2 in Figure 8.1(a)
are gated at α and π + α, respectively, from the zero crossing of the input voltage and
by varying α, the power flow to the load is controlled through voltage control in alter-
nate half-cycles. As long as one SCR is carrying current, the other SCR remains
reverse-biased by the voltage drop across the conducting SCR. The principle of
operation in each half-cycle is similar to that of the controlled half-wave rectifier and
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Figure 8.2 Waveforms for single-phase AC full-wave voltage controller with R-load.

one can use the same approach for analysis of the circuit. Figure 8.2 shows the typical
voltage and current waveforms for the single-phase bidirectional phase controlled AC
voltage controller of Figure 8.1(a) with resistive load. The output voltage and current
waveforms have half-wave symmetry and thus no DC component.

Figure 8.3 shows the voltage and current waveforms for the controller in
Figure 8.1(a) with R–L load. Due to the inductance, the current carried by the SCR T1
may not fall to zero at ωt = π when the input voltage goes negative and may continue
until ωt = β, the extinction angle, as shown.
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Figure 8.3 Typical waveforms of single-phase AC voltage controller with an L–R circuit.

On/Off Control

As an alternative to the phase control, the method of integral cycle, control or burst-
firing is used for heating loads. Here, the switch is turned on for a time tn with n integral
cycles and turned off for a time tm with m integral cycles shown in Figure 8.4. As the
SCRs or Triacs used here are turned on at the zero-crossing of the input voltage and
turn-off occurs at zero current, supply harmonics and radio frequency interference are
very low.

However, sub-harmonic frequency components may be generated that are undesir-
able as they may set up sub-harmonic resonance in the power supply system, cause
lamp flicker, and may interfere with the natural frequencies of motor loads causing
shaft oscillations.
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Figure 8.4 Single-phaseAC/AC voltage controllers with on/off control: (a) typical load-voltage
waveforms and (b) power factor with the duty cycle k .

For sinusoidal input voltage:

v = √
2Vs sin ωt (8.1)

and the rms output voltage is:

VO = Vs
√

k (8.2)

where k = n/(n + m) = duty cycle and Vs = rms phase voltage. The power factor is:

PF = √
k (8.3)

which is poorer for lower values of the duty cycle k .

PWM AC Chopper Control

As in the case of controlled rectifier, the performance of AC voltage controllers can be
improved in terms of harmonics, quality of output current and input power factor by
PWM control in PWMAC choppers. The circuit configuration of one such single-phase
unit is shown in Figure 8.5.

Here, fully controlled switches S1 and S2 connected in antiparallel are turned on
and off many times during the positive and negative half-cycles of the input voltage,
respectively; S′

1 and S′
2 provide the freewheeling paths for the load current when S1

and S2 are off. An input capacitor filter may be provided to attenuate the high switching
frequency current drawn from the supply and also to improve the input power factor.
Figure 8.6 shows the typical output voltage and load-current waveform for a single-
phase PWM AC chopper. It can be shown that the control characteristics of an AC
chopper depend on the modulation index m, which theoretically varies from zero to
unity.



Digitally controlled AC/AC converters 227

L
o
a
d

vO

iOii

S1

vi

S2

S�1 S�2

Figure 8.5 Single-phase PWM as chopper circuit.

iO

vO

0
2p 4p

vt

Figure 8.6 Typical output voltage and current waveforms of a single-phase PWM AC chopper.

8.1.2 Three-Phase AC/AC Voltage Controller

In generally, all methods applied in single-phase AC/AC voltage controllers are
available to apply in three-phase AC/AC voltage controllers.

Phase Angle Control

Several possible circuit configurations for three-phase phase controlled AC regulators
with star- or delta-connected loads are shown in Figures 8.7(a)–(h). The configurations
in Figures 8.7(a) and (b) can be realized by three single-phase AC regulators operating
independently of each other and they are easy to analyze. In Figure 8.7(a), the SCRs are
to be rated to carry line currents and withstand phase voltages, whereas in Figure 8.7(b)
they should be capable of carrying phase currents and withstand the line voltages. Also,
in Figure 8.7(b) the line currents are free from triplen harmonics while these are present
in the closed delta. The power factor in Figure 8.7(b) is slightly higher. The firing angle
control range for both these circuits is 0–180◦ for R-load.

The circuits in Figure 8.7(c) and (d) are three-phase three-wire circuits and are
difficult to analyze. In both these circuits, at least two SCRs – one in each phase –
must be gated simultaneously to get the controller started by establishing a current
path between the supply lines. This necessitates two firing pulses spaced at 60◦ apart
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Figure 8.7 Three-phase AC voltage-controller circuit configurations.
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per cycle for firing each SCR. The operation modes are defined by the number of SCRs
conducting in these modes. The firing control range is 0–150◦. The triplen harmonics
are absent in both these configurations.

Another configuration is shown in Figure 8.7(e) when the controllers are delta con-
nected and the load is connected between the supply and the converter. Here, current
can flow between two lines even if one SCR is conducting, so each SCR requires one
firing pulse per cycle. The voltage and current ratings of SCRs are nearly the same as
those of the circuit in Figure 8.7(b). It is also possible to reduce the number of devices
to three SCRs in delta as shown in Figure 8.7(f) connecting one source terminal directly
to one load circuit terminal. Each SCR is provided with gate pulses in each cycle spaced
120◦ apart. In both Figures 8.7(e) and (f) each end of each phase must be accessible.
The number of devices in Figure 8.7(f) is fewer but their current ratings must be higher.

As in the case of the single-phase phase controlled voltage regulator, the total reg-
ulator cost can be reduced by replacing six SCRs by three SCRs and three diodes,
resulting in three-phase half-wave controlled unidirectional AC regulators as shown in
Figure 8.7(g) and (h) for star- and delta-connected loads. The main drawback of these
circuits is the large harmonic content in the output voltage, particularly the second
harmonic because of the asymmetry. However, the DC components are absent in the
line. The maximum firing angle in the half-wave controlled regulator is 210◦.

On/Off Control

Similarly, there is on/off control method applied in three-phase AC/AC voltage con-
trollers. Each phase has nc cycles conducted with interrupted cycle. All interrupted
cycle in three phases can be or cannot be synchronized.

PWM AC/AC Control

Similarly, there is PWM control method applied in three-phase AC/AC voltage
controllers. Each phase may have same or different modulation rules.

8.1.3 SISO Cycloconverters

In contrast to the AC voltage controllers operating at constant frequency discussed so
far, a cycloconverter operates as a direct AC/AC frequency changer with an inherent
voltage control feature. The basic principle of this converter to construct an alternating
voltage wave of lower frequency from successive segments of voltage waves of higher
frequency AC supply by a switching arrangement was conceived and patented in the
1920s. Grid controlled mercury-arc rectifiers were used in these converters installed
in Germany in the 1930s to obtain 16 2

3 Hz single-phase supply for AC series traction
motors from a three-phase 50 Hz system while at the same time a cycloconverter using
18 thyratrons supplying a 400-hp synchronous motor was in operation for some years
as a power station auxiliary drive in the USA. However, the practical and commercial
utilization of these schemes waited until the SCRs became available in the 1960s.
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Figure 8.8 Single-phase AC/AC cycloconverter circuit configuration: (a) power circuit for a
single-phase bridge cycloconverter and (b) simplified equivalent circuit of a cycloconverter.

With the development of large power SCRs and microprocessor-based control, the
cycloconverter today is a matured practical converter for application in large-power
low-speed variable-voltage variable-frequency (VVVF) AC drives in cement and steel
rolling mills as well as in variable-speed constant-frequency (VSCF) systems in aircraft
and naval ships.

A cycloconverter is a naturally commuted converter with the inherent capability
of bidirectional power flow and there is no real limitation on its size unlike an SCR
inverter with commutation elements. Here, the switching losses are considerably low,
the regenerative operation at full power over complete speed range is inherent, and
it delivers a nearly sinusoidal waveform resulting in minimum torque pulsation and
harmonic heating effects. It is capable of operating even with the blowing out of an
individual SCR fuse (unlike the inverter), and the requirements regarding turn-off
time, current rise time and dv/dt sensitivity of SCRs are low. The main limitations
of a naturally commutated cycloconverter are: (i) limited frequency range for
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sub-harmonic-free and efficient operation; and (ii) poor input displacement/power
factor, particularly at low output voltages.

Though rarely used, the operation of an SISO cycloconverter is useful to demonstrate
the basic principle involved. Figure 8.8(a) shows the power circuit of a single-phase
bridge-type cycloconverter, which is the same arrangement as that of the dual converter.
Figure 8.8(b) shows the simplified control scheme.

Figure 8.9 shows the typical waveforms for a 50–16 2
3 Hz single-phase supply.

The output voltage has the frequency to be one-third of the input voltage frequency.
Figure 8.10 shows the typical waveforms for a 50–10 Hz single-phase supply. The
output voltage has the frequency to be one-fifth of the input voltage frequency.
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Figure 8.12 Waveforms of a three-pulse cycloconverter with circulating current.



Digitally controlled AC/AC converters 233

8.1.4 TISO Cycloconverters

Figure 8.11 shows a schematic diagram of a three-phase half-wave (three-pulse) cyclo-
converter feeding a single-phase load. The control principle is same to the single-phase
control.

Figure 8.12 shows typical waveforms of a three-pulse cycloconverter operating with
circulating current. Each converter conducts continuously with rectifying and inverting
modes as shown and the load is supplied with an average voltage of two converters
reducing some of the ripple in the process, with the inter-group reactor behaving as
a potential divider. The reactor limits the circulating current, with the value of its
inductance to the flow of load current being one-fourth of its value to the flow of
circulating current, as the inductance is proportional to the square of the number of
turns. The fundamental waves produced by both the converters are the same. The
reactor voltage is the instantaneous difference between the converter voltages, and
the time integral of this voltage divided by the inductance (assuming negligible circuit
resistance) is the circulating current. For a three-pulse cycloconverter, it can be observed
that this current reaches its peak when αP = 60◦ and αN = 120◦.

8.1.5 TITO Cycloconverters

Figure 8.13 shows the configuration of a three-phase half-wave (three-pulse) cyclocon-
verter feeding a three-phase load. The basic process of a three-phase cycloconversion
is illustrated in Figure 8.14 at 15 Hz, 0.6 power factor lagging load from a 50-Hz sup-
ply. As the firing angle α is cycled from 0 at “a” to 180◦ at “j” half a cycle of output
frequency is produced (the gating circuit is to be suitably designed to introduce this
oscillation of the firing angle). For this load, it can be seen that, although the mean
output voltage reverses at X , the mean output current (assumed sinusoidal) remains
positive until Y . During XY, the SCRs A, B and C in the P-converter are “inverting”.
A similar period exists at the end of the negative half-cycle of the output voltage when
D, E and F, SCRs in the N-converter are “inverting”. Thus, the operation of the con-
verter follows in the order of “rectification” and “inversion” in a cyclic manner, with
the relative durations being dependent on the load power factor. The output frequency
is that of the firing angle oscillation about a quiescent point of 90◦ (condition when the
mean output voltage, given by Vo = Vdo cos α is zero).

For obtaining the positive half-cycle of the voltage, firing angle α is varied from
90◦ to 0◦ and then to 90◦, and for the negative half-cycle, from 90◦ to 180◦ and back
to 90◦. Variation of α within the limits of 180◦ automatically provides for “natural”
line commutation of the SCRs. It is shown that a complete cycle of low-frequency out-
put voltage is fabricated from the segments of the three-phase input voltage by using
the phase controlled converters. The P- or N-converter SCRs receive firing pulses
that are timed such that each converter delivers the same mean output voltage. This
is achieved, as in the case of the single-phase cycloconverter or the dual converter,
by maintaining the firing angle constraints of the two groups as αP = (180◦ − αN).



234 Digital power electronics and applications

Variable voltage
Variable frequency
Output to three-phase
load

3PH, 50 Hz Supply
AB C

N-Group

P-Group

L /2

L /2

L /2

L /2

L /2

L /2

a

b

c

ThpA
ThpB

ThpC

ThnA

ThnB
ThnC

Figure 8.13 Three-pulse cycloconverter supplying a three-phase load.

1 2 3

Fundamental
output voltage

Fundamental output current

Inversion Rectification Inversion Rectification

a b d e

X

f g h

Y

i j kc

Figure 8.14 Output voltage waveform for one phase of a three-pulse cycloconverter operating
at 15 Hz from a 50-Hz supply and 0.6 power factor lagging load.

However, the instantaneous voltages of two converters are not identical and a large
circulating current may result unless limited by an inter-group reactor as shown
(circulating-current cycloconverter) or completely suppressed by removing the gate
pulses from the non-conducting converter by an inter-group blanking logic (circulating-
current-free cycloconverter).
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Figure 8.15 Three-phase six-pulse cycloconverter with isolated loads.

A six-pulse cycloconverter circuit configuration is shown in Figure 8.15.
Typical load-voltage waveforms for six-pulse (with 36 SCRs) are shown in

Figure 8.16.
It is possible applying a 12-pulse converter which is obtained by connecting two

6-pulse configurations in series and appropriate transformer connections for the
required phase-shifted. It may be seen that the higher pulse numbers will generate
waveforms closer to the desired sinusoidal form and thus permit higher frequency out-
put. The phase loads may be isolated from each other as shown or interconnected with
suitable secondary winding connections.

8.1.6 AC/DC/AC Converters

AC/DC/AC converters are likely an adjustable speed drive (ASD) in Figure 6.1. The
technology is based on the AC/DC rectifier and DC/AC inversion technique, we do not
sped long time to repeat its control. Since DC/AC inverters have no restriction on the
frequency, therefore, AC/DC/AC converters can convert an AC source into an AC load
with lower voltage and variable frequency.

8.1.7 Matrix Converters

The matrix converter shown in Figure 8.17 is a development of the force-commutated
cycloconverter based on bidirectional fully controlled switches, incorporating PWM
voltage control, as mentioned earlier. With the initial progress reported, it has received
considerable attention as it provides a good alterative to the double-sided PWM voltage-
source rectifier-inverters having the advantages of being a single-stage converter with
only nine switches for three-phase to three-phase conversion and inherent bidirectional
power flow, sinusoidal input/output waveforms with moderate switching frequency,
the possibility of compact design due to the absence of DC link reactive components
and controllable input power factor independent of the output load current. The main
disadvantages of the matrix converters developed so far are the inherent restriction of
the voltage transfer ratio (0.866), a more complex control and protection strategy, and
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Figure 8.16 Six-pulse cycloconverter load-voltage waveforms with lagging power factor.

above all the non-availability of a fully controlled bidirectional high-frequency switch
integrated in a silicon chip (Triac, though bilateral, cannot be fully controlled).

The power circuit diagram of the most practical three-phase to three-phase (3φ–3φ)
matrix converter is shown in Figure 8.17(a), which uses nine bidirectional switches
so arranged that any of three input phases can be connected to any output phase as
shown in the switching matrix symbol in Figure 8.17(b). Thus, the voltage at any
input terminal may be made to appear at any output terminal or terminals while the
current in any phase of the load may be drawn from any phase or phases of the input
supply. For the switches, the inverse-parallel combination of reverse-blocking self-
controlled devices such as power MOSFETs or IGBTs or transistor-embedded diode
bridge as shown, have been used so far. The circuit is called a matrix converter as it
provides exactly one switch for each of the possible connections between the input



Digitally controlled AC/AC converters 237

vAO

vBO

vCO

iA

iB

iC

0

3-f input Input filter

A

B

C

SAa SAb SAc

SBa SBb SBc

SCa SCb SCc

Bidirectional switches

ia ib ic

a b c

3-f inductive load van vbn vcn

M

Matrix converter

(a)

vAo

vBo

vCo

van

vbn

vcn

SAa

SAb
SBa

SAc
SCa

SBb

SCb SBc

SCc
(b)

Figure 8.17 AC/AC matrix converter: (a) the 3φ–3φ matrix converter (forced-commutated
cycloconverter) circuit with input filter and (b) switching matrix symbol for converter.

and the output. The switches should be controlled in such a way that, at any time, one
and only one of the three switches connected to an output phase must be closed to
prevent “short-circuiting” of the supply lines or interrupting the load-current flow in
an inductive load. With these constraints, it can be visualized that from the possible
512 (=29) states of the converter, only 27 switch combinations are allowed as given in
Table 8.1, which includes the resulting output line voltages and input phase currents.
These combinations are divided into three groups. Group I consists of six combinations
when each output phase is connected to a different input phase. In Group II, there are
three subgroups, each having six combinations with two output phases short-circuited
(connected to the same input phase). Group III includes three combinations with all
output phases short-circuited.
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Table 8.1

Three-phase/three-phase matrix converter switching combinations

Group A B C vab vbc vca iA iB iC SAa SAb SAc SBa SBb SBc SCa SCb SCc

A B C vAB vBC vCA ia ib ic 1 0 0 0 1 0 0 0 1
A C B −vCA −vBC −vAB ia ic ib 1 0 0 0 0 1 0 1 0
B A C −vAB −vCA −vBC ib ia ic 0 1 0 1 0 0 0 0 1

I B C A vBC nuCA vAB ic ia ib 0 1 0 0 0 1 0 1 0
C A B vCA vAB vBC ib ic ia 0 0 1 1 0 0 0 1 0
C B A −vBC −vAB −vCA ic ib ia 0 0 1 0 1 0 1 0 0
A C C −vCA 0 vCA ia 0 −ia 1 0 0 0 0 1 0 0 1
B C C vBC 0 −vBC 0 ia −ia 0 1 0 0 0 1 0 0 1
B A A −vAB 0 −vAB −ia ia 0 0 1 0 1 0 0 1 0 0

II-A C A A vCA 0 −vCA −ia 0 ia 0 0 1 1 0 0 1 0 0
C B B −vBC 0 vBC 0 −ia ia 0 0 1 0 1 0 0 1 0
A B B vAB 0 −vAB ia −ia 0 1 0 0 0 1 0 0 1 0
C A C −vCA −vCA 0 ib 0 −ib 0 0 1 1 0 0 0 0 1
C B C −vBC vBC 0 0 ib −ib 0 0 1 0 1 0 0 0 1
A B A vAB −vAB 0 −ib ib 0 1 0 0 0 1 0 1 0 0

II-B A C A −vCA vCA 0 −ib 0 ib 1 0 0 0 0 1 1 0 0
B C B vBC −vBC 0 0 −ib ib 0 1 0 0 0 1 0 1 0
B A B −vAB vAB 0 ib −ib 0 0 1 0 1 0 0 0 1 0
C C A 0 vCA −vCA ic 0 −ic 0 0 1 0 0 1 1 0 0
C C B 0 −vBC vBC 0 ic −ic 0 0 1 0 0 1 0 1 0
A A B 0 vAB −vAB −ic ic 0 1 0 1 0 1 0 0 1 0

II-C A A C 0 −vCA vCA −ic 0 ic 1 0 1 0 0 0 0 0 1
B B C 0 vBC −vBC 0 −ic ic 0 1 0 0 1 0 0 0 1
B B A 0 −vAB vAB ic −ic 0 0 1 0 0 1 0 1 0 0
A A A 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

III B B B 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
C C C 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

With a given set of input three-phase voltages, any desired set of three-phase output
voltages can be synthesized by adopting a suitable switching strategy. However, it has
been shown that regardless of the switching strategy there are physical limits on the
achievable output voltage with these converters as the maximum peak-to-peak output
voltage cannot be greater than the minimum voltage difference between two phases of
the input.

To have complete control of the synthesized output voltage, the envelope of the
three-phase reference or target voltages must be fully contained within the continuous
envelope of the three-phase input voltages. Initial strategy with the output frequency
voltages as references reported the limit as 0.5 of the input as shown in Figure 8.18(a).
This value can be increased to 0.866 by adding a third harmonic voltage of input fre-
quency (Vi/4)cos 3ωit, to all target output voltages and subtracting from them a third
harmonic voltage of output frequency (VO/6)cos 3ωOt as shown in Figure 8.18(b).
However, this process involves a considerable amount of additional computations
in synthesizing the output voltages. The other alternative is to use the space vector



Digitally controlled AC/AC converters 239

1.0

0.5

�1.0
(a)

(b)

�0.5

0.0 0.5 Vin

180 36027090

van vbn vcn

1.0

0.5

�1.0

�0.5

0.0

180 36027090

V �cnV �bnV �an

0.866 Vin
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modulation (SVM) strategy as used in PWM inverters without adding third harmonic
components but it also yields the maximum voltage transfer ratio as 0.866.

An AC input LC filter is used to eliminate the switching ripples generated in the
converter and the load is assumed to be sufficiently inductive to maintain continuity of
the output currents.

The converter in Figure 8.17 connects any input phase (A, B and C) to any output
phase (a, b and c) at any instant. When connected, the voltages van, vbn, vcn at the output
terminals are related to the input voltages vAo, vBo, vCo as follows:

van
vbn
vcn


 =


SAa SBa SCa

SAb SBb SCb
SAc SBc SCc




vAO

vBO
vCO


 (8.4)

where SAa through SCc are the switching variables of the corresponding switches shown
in Figure 8.17. For a balanced linear star-connected load at the output terminals, the
input phase currents are related to the output phase current phase currents by:

iA
iB
iC


 =


SAa SAb SAc

SBa SBb SBc
SCa SCb SCc
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ib
ic


 (8.5)
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Note that the matrix of the switching variables in Equation (8.5) is a transpose of the
respective matrix in Equation (8.4). The matrix converter should be controlled using
a specific and appropriately timed sequence of the values of the switching variables,
which will result in balanced output voltages having the desired frequency and ampli-
tude, while the input currents are balanced and in phase (for unity IDF) or at an arbitrary
angle (for controllable IDF) with respect to the input voltages. As the matrix converter,
in theory, can operate at any frequency, at the output or input, including zero, it can be
employed as a three-phase AC/DC converter, DC/three-phase AC converter, or even a
buck/boost DC chopper and thus as a universal power converter.

The switches should be controlled in such a way that, at any time, one and only one
of the three switches connected to an output phase must be closed to prevent “short-
circuiting” of the supply lines or interrupting the load-current flow in an inductive load.
With these constraints, it can be visualized that from the possible 512 (=29) states of
the converter, only 27 switch combinations are allowed as given in Table 8.1.

These combinations are divided into three groups. Group I consists of six combi-
nations when each output phase is connected to a different input phase. In Group II,
there are three subgroups, each having six combinations with two output phases short-
circuited (connected to the same input phase). Group III includes three combinations
with all output phases short-circuited.

To have complete control of the synthesized output voltage, the envelope of the
three-phase reference or target voltages must be fully contained within the continuous
envelope of the three-phase input voltages. Initial strategy with the output frequency
voltages as references reported the limit as 0.5 of the input as shown in Figure 8.18(a).
This value can be increased to 0.866 by adding a third harmonic voltage of input
frequency (Vi/4)cos 3ωit, to all target output voltages and subtracting from them a
third harmonic voltage of output frequency (VO/6)cos 3ωOt as shown in Figure 8.18(b).
However, this process involves a considerable amount of additional computations in
synthesizing the output voltages. The other alternative is to use the SVM strategy as
used in PWM inverters without adding third harmonic components, but it also yields
the maximum voltage transfer ratio as 0.866.

The control methods adopted so far for the matrix converter are quite complex and
are subjects of continuing research. On the methods proposed for independent control
of the output voltages and input currents, two methods are of wide use and will be
reviewed briefly here: (i) the Venturini method based on a mathematical approach of
transfer function analysis; and (ii) the space vector modulation (SVM) approach (as has
been standardized now in the case of PWM control of the DC link inverter).

Venturini Method

Given a set of three-phase input voltages with constant amplitude Vi and frequency
fi = ωi/2π, this method calculates a switching function involving the duty cycles of
each of the nine bidirectional switches and generates the three-phase output voltages by
sequential piecewise sampling of the input waveforms. These output voltages follow
a predetermined set of reference or target voltage waveforms and with a three-phase
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load connected, a set of input currents Ii, and angular frequency ωi, should be in phase
for unity IDF or at a specific angle for controlled IDF.

A transfer function approach is employed to achieve the previously mentioned
features by relating the input and output voltages and the output and input currents as:


VO1(t)

VO2(t)
VO3(t)


 =


m11(t) m12(t) m13(t)

m21(t) m22(t) m23(t)
m31(t) m32(t) m33(t)




Vi1(t)

Vi2(t)
Vi3(t)


 (8.6)
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 (8.7)

where the elements of the modulation matrix mij(t) (i, j = 1, 2, 3) represent the duty
cycles of a switch connecting output phase i to input phase j within a sample switching
interval. The elements of mij(t) are limited by the constraints:

0 ≤ mij(t) ≤ 1 and
3∑

j=1

mij(t) = 1 (i = 1, 2, 3) (8.8)

The set of three-phase target or reference voltages to achieve the maximum voltage
transfer ratio for unity IDF is:
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 = VOm


 cos ωOt
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cos(ωOt − 240◦)


+ Vim
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− VOm
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cos 3ωOt

cos 3ωOt
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where VOm and Vim are the magnitudes of output and input fundamental voltages of
angular frequencies ωO and ωi, respectively. With VOm ≤ 0.866 Vim, a general formula
for the duty cycles mij(t) is derived. For unity IDF condition, a simplified formula is:

mij = 1

3

{
1 + 2q cos(ωit − 2(j − 1)60◦)

×
[

cos(ωOt − 2(i − 1)60◦) + 1

2
√

3
cos(3ωit) − 1

6
cos(3ωOt)

]

− 2q

3
√

3

[
cos(4ωit − 2(j − 1)60◦) − cos(2ωit − 2(1 − j)60◦)

]}
(8.10)

where i, j = 1, 2, 3 and q = VOm/Vim.
The method developed as in the preceding is based on a Direct Transfer Func-

tion (DTF) approach using a single modulation matrix for the matrix converter,
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employing the switching combinations of all three groups in Table 8.1. Another
approach called Indirect Transfer Function (ITF) approach considers the matrix con-
verter as a combination of PWM voltage source rectifier-PWM voltage source inverter
(VSR-VSI) and employs the already well-established VSR and VSI PWM techniques
for MC control utilizing the switching combinations of Groups II and III only of Table
8.1. The drawback of this approach is that the IDF is limited to unity and the method
also generates higher and fractional harmonic components in the input and the output
waveforms.

SVM Method

The SVM is now a well-documented inverter PWM control technique that yields high
voltage gain and less harmonic distortion compared to the other modulation techniques
as discussed. Here, the three-phase input currents and output voltages are represented as
space vectors and SVM is applied simultaneously to the output voltage and input current
space vectors. Applications of the SVM algorithm to control of matrix converters have
appeared in the literature and shown to have inherent capability to achieve full control
of the instantaneous output voltage vector and the instantaneous current displacement
angle even under supply voltage disturbances. The algorithm is based on the concept
that the MC output line voltages for each switching combination can be represented as
a voltage space vector denned by:

VO = 2

3
[vab + vbc exp(jl20◦) + vca exp(−jl20◦)] (8.11)

Of the three groups in Table 8.1, only the switching combinations of Groups II and
III are employed for the SVM method. Group II consists of switching state voltage
vectors having constant angular positions and are called active or stationary vectors.
Each subgroup of Group II determines the position of the resulting output voltage
space vector, and the six-state space voltage vectors form a six-sextant hexagon used
to synthesize the desired output voltage vector. Group III comprises the zero vectors
positioned at the center of the output voltage hexagon and these are suitably combined
with the active vectors for the output voltage synthesis.

The modulation method involves selection of the vectors and their on-time compu-
tation. At each sampling period Ts, the algorithm selects four active vectors related to
any possible combinations of output voltage and input current vectors in addition to
the zero vector to construct a desired reference voltage. The amplitude and the phase
angle of the reference voltage vector are calculated and the desired phase angle of the
input current vector is determined in advance. For computation of the on-time periods
of the chosen vectors, these are combined into two sets leading to two new vectors
adjacent to the reference voltage vector in the sextant and having the same direction as
the reference voltage vector. Applying the standard SVM theory, the general formulas
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derived for the vector on-times, which satisfy, at the same time, the reference output
voltage and input current displacement angle are as follows:

t1 = 2qTs√
3 cos φi

sin(60◦ − θO) sin(60◦ − θi)

t2 = 2qTs√
3 cos φi

sin(60◦ − θO) sin θi

t3 = 2qTs√
3 cos φi

sin θO sin θ(60◦ − θi)

t4 = 2qTs√
3 cos φi

sin θO sin θi (8.12)

where q is the voltage transfer ratio, φi is the input displacement angle chosen to
achieve the desired input power factor (with φi = 0, a. maximum value of q = 0.866
is obtained), θO and θi are the phase displacement angles of the output voltage and
input current vectors, respectively, whose values are limited within the 0–60◦ range.
The on-time of the zero vector is:

to = Ts −
4∑

i=1

ti (8.13)

The integral value of the reference vector is calculated over one sample time interval
as the sum of the products of the two adjacent vectors and their on-time ratios. The
process is repeated at every sample instant.

Control Implementation and Comparison of the Two Methods

Both methods need a digital signal processor (DSP)-based system for their implemen-
tation. In one scheme for the Venturini method, the programmable timers, as available,
are used to time out the PWM gating signals. The processor calculates the six-switch
duty cycles in each sampling interval, converts them to integer counts, and stores
them in the memory for the next sampling period. In the SVM method, an EPROM
is used to store the selected sets of active and zero vectors and the DSP calculates
the on-times of the vectors. Then with an identical procedure as in the other method,
the timers are loaded with the vector on-times to generate PWM waveforms through
suitable output ports. The total computation time of the DSP for the SVM method
has been found to be much less than that of the Venturini method. Comparison of the
two schemes shows that while in the SVM method the switching losses are lower, the
Venturini method shows better performance in terms of input current and output voltage
harmonics.
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8.2 TRADITIONAL MODELING FOR AC/AC
(AC/DC/AC) CONVERTERS

Carefully investigating AC/AC (AC/DC/AC) converters in PWM inversion process, we
can see that in each pulse-width T = 1/f	 the modulation ratio ma is proportional to the
control signal vC(t). If the frequency ratio mf is large enough, the value of the control
signal vC(t) in a sampling period T can be considered a constant value. The output
voltage value is proportional to the input control signal. The corresponding output
current value is an increasing or decreasing wave. The corresponding waveforms have
been shown in Figure 8.3. In general condition the load is an R–L circuit with the time
constant τ = L/R, which is usually larger than the sampling interval T . Therefore, the
output current is continuous and is generally accumulated interval by interval. The
expression in per-unit system can be written as:

iO-k = iO-(k−1)(1 ± e−t/T ) (8.14)

where iO-k is the kth-step output current and iO-(k−1) is the previous step output current.
By per-unit system the voltage transfer gain is unity. The transfer function in the

time domain is an exponential function, and it has the following form in the s-domain:

G(s) = 1

1 + sT
(8.15)

In digital control system, all DC/AC PWM inverter is treated as an FOH has the transfer
function in the z-domain:

G(z) = z

z − 1/e
(8.16)

It means the DC/AC PWM inverter is the first-order-element that possesses one zero at
z = 0 and one pole at z = 1/e, which is located on the unit-cycle. The zero and pole in
the z-plane are shown in Figure 8.19. Therefore, a rectifier is a critical stable element. In
industrial applications, closed-loop control is required to increase the stability margin.

z-planej Im z

Re z

10

Figure 8.19 Zero and pole of the FOH.
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8.3 SINGLE-PHASE AC/AC CONVERTER

The single-phase AC/AC converters are shown in Figure 8.1. The load is an R–L
circuit. The open-loop control block diagram is shown in Figure 8.20. The sampling
interval is T = 1/f , f is the input frequency. If f = 50 Hz, T = 20 ms. This control can
be implementing by a digital computer, which offers a pulse a cycle in 20 ms. The
actuator is usually an R–L load. The final output parameter is the current IO shown in
Figure 8.20.

The closed-loop control block diagram is shown in Figure 8.21. The sampling inter-
val is T = 1/f . A current controller is always requested in a closed-loop control system.
It can be a proportional-plus-integral (PI) controller in digital form. This control can
be implementing by a digital computer, which offers a firing pulse a cycle in 20 ms.
The actuator is usually an R–L load. The final output parameter is the current IO shown
in Figure 8.21.

8.4 THREE-PHASE AC/AC VOLTAGE CONTROLLERS

Three-phase AC/AC converters are shown in Figure 8.7. The load is an R–L circuit.
The open-loop control block diagram is shown in Figure 8.20. The sampling interval
is T = 1/3f , f is the input frequency. If f = 50 Hz, T = 6.67 ms. This control can
be implementing by a digital computer, which offers a pulse a cycle in 6.67 ms. The
actuator is usually an R–L load. The final output parameter is the current IO shown in
Figure 8.20.

The closed-loop control block diagram is shown in Figure 8.21. The sampling inter-
val is T = 1/3f . A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implementing by a digital
computer, which offers a firing pulse a cycle in 6.67 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 8.21.

FOH
R–L

circuit
T

Iref IOVd

Figure 8.20 Open-loop control of the AC/AC PWM inverters.

FOH
R–L

circuit
T

Iref IOVd�

�

Ifeedback

Current
controller

T

Figure 8.21 Closed-loop control of the AC/AC PWM inverters.
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8.5 SISO CYCLOCONVERTERS

The SISO cycloconverter is shown in Figure 8.8. The load is an R–L circuit. The open-
loop control block diagram is shown in Figure 8.20. The sampling interval is T = 1/f ,
f is the input frequency. If f = 50 Hz, T = 20 ms. This control can be implementing
by a digital computer, which offers a pulse a cycle in 20 ms. The actuator is usually an
R–L load. The final output parameter is the current IO shown in Figure 8.20.

The closed-loop control block diagram is shown in Figure 8.21. The sampling inter-
val is T = 1/f . A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implementing by a digital
computer, which offers a firing pulse a cycle in 20 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 8.21.

8.6 TISO CYCLOCONVERTERS

TISO cycloconverter is shown in Figure 8.11. The load is an R–L circuit. The open-loop
control block diagram is shown in Figure 8.20. The sampling interval is T = 1/3f , f is
the input frequency. If f = 50 Hz, T = 6.67 ms. This control can be implementing by
a digital computer, which offers a pulse a cycle in 6.67 ms. The actuator is usually an
R–L load. The final output parameter is the current IO shown in Figure 8.20.

The closed-loop control block diagram is shown in Figure 8.21. The sampling inter-
val is T = 1/3f . A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implementing by a digital
computer, which offers a firing pulse a cycle in 6.67 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 8.21.

8.7 TITO CYCLOCONVERTERS

TITO cycloconverter is shown in Figure 8.13. The load is an R–L circuit. The open-loop
control block diagram is shown in Figure 8.20. The sampling interval is T = 1/3f , f is
the input frequency. If f = 50 Hz, T = 6.67 ms. This control can be implementing by
a digital computer, which offers a pulse a cycle in 6.67 ms. The actuator is usually an
R–L load. The final output parameter is the current IO shown in Figure 8.20.

The closed-loop control block diagram is shown in Figure 8.21. The sampling inter-
val is T = 1/3f . A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implementing by a digital
computer, which offers a firing pulse a cycle in 6.67 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 8.21.

8.8 AC/DC/AC PWM CONVERTERS

AC/DC/AC PWM converters are based on the AC/DC rectifiers and DC/AC inverters
as an ASD shown in Figure 6.1. The load is an R–L circuit. The open-loop control
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block diagram is shown in Figure 8.20. The sampling interval is T = 1/f	, f	 is the
triangle frequency. If the frequency f = 400 Hz, T = 1/f = 2.5 ms. This control can
be implementing by a digital computer, which offers a pulse a cycle in 2.5 ms. The
actuator is usually an R–L load. The final output parameter is the current IO shown in
Figure 8.20.

The closed-loop control block diagram is shown in Figure 8.21. The sampling inter-
val is T = 1/f	. A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implementing by a digital
computer, which offers a firing pulse a cycle in 2.5 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 8.21.

8.9 MATRIX CONVERTERS

Matrix converters are based on the AC/DC/AC converters shown in Figure 8.17. The
load is an R–L circuit. The open-loop control block diagram is shown in Figure 8.20. The
sampling interval is T = 1/f	, f	 is the triangle frequency. If f = 400 Hz, T = 2.5 ms.
This control can be implementing by a digital computer, which offers a pulse a cycle in
2.5 ms. The actuator is usually an R–L load. The final output parameter is the current
IO shown in Figure 8.20.

The closed-loop control block diagram is shown in Figure 8.21. The sampling inter-
val is T = 1/f	. A current controller is always requested in a closed-loop control system.
It can be a PI controller in digital form. This control can be implementing by a digital
computer, which offers a firing pulse a cycle in 2.5 ms. The actuator is usually an R–L
load. The final output parameter is the current IO shown in Figure 8.21.
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Chapter 9

Open-Loop Control for Digital
Power Electronics

Open-loop control is the main control scheme for all digital control systems. Actually,
a large number of the industrial applications of the converters are open-loop control
systems. We have to carefully discuss these problems in this chapter.

9.1 INTRODUCTION

Digital control for the power electronics, especially for the switching circuits control,
is the purpose of this book. We will discuss the fundamental problems in four main
converters: AC/DC rectifiers, DC/AC inverters, DC/DC converters and AC/AC (and
AC/DC/AC) converters. These problems are:

• Stability analysis
• Unity-step responses
• Impulse (interference) responses

These three main basic problems are the general characteristics of all control systems,
including all digital control systems.

9.1.1 Stability Analysis

Stability is one of the most important problems of the digital control systems. The
fundamental stability criterion is zero-pole location adjustment. If a digital control
system has all poles inside the unity-cycle in the z-plane, the system is stable. This
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Figure 9.1 Stable/unstable region in the z-plane.

stability criterion is demonstrated in Figure 9.1. The stable region is inside the unity-
cycle and the unstable region is outside the unity-cycle. If the pole is located on the
cycle, it is the critical state of the stability.

Other stability criteria such as the Jury criterion are based on the theory. We will
concentrate the fundamental method to judge our systems.

Stability of the digital control systems is also possibly adjusted in the s-domain.
Considering the relation:

z = eTs (9.1)

Solving for s in Equation (9.1), we obtain:

s = 1

T
ln z (9.2)

where T is the sampling interval. The fundamental stability criterion is zero-pole loca-
tion adjustment. If a digital control system has all poles in the left-hand half plane
(LHHP) on the s-plane, the system is stable. This stability criterion is demonstrated in
Figure 9.2. The stable region is in LHHP and the unstable region is in the right-hand
half plane (RHHP) on the s-plane. If the pole is located on the imaginary (vertical)
axes, it is the critical state of the stability.

Converters Open-Loop Analysis

We discussed the four typical converters in previous chapters. Their mathematical
models are the typical elements:

• A zero-order-hold (ZOH) for AC/DC rectifiers.
• A first-order-hold (FOH) for DC/AC inverters andAC/AC (includingAC/DC/AC)

converters.
• A second-order-hold (SOH) for DC/DC converters.
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Figure 9.2 Stable/unstable region in the s-plane.

Usually, the existing individual converters are stable. All unstable converter topologies
have been washed out by elimination process before published although some unstable
converters can be used with closed-loop control.

By digital control theory, the ZOH, FOH and SOH are considered stable in open-loop
control although the ZOH has a pole at z = 1 on the stability boundary.

Analysis of Converters with a First-Order Load

The existing converters are stable and applied in industrial applications. Converters
are available to be used since they can provide power/energy to load. The load can be
pure resistive load or be other forms such as inductive load, capacitive load and back
electromagnetic force (EMF) load. In general, a first-order load is usually considered
to be supplied by all types of converters. Therefore we have to discuss the stability
change when the converters with a first-order load. Typical first-order load can be an
R–L circuit or an R–C circuit. Its transfer function in per-unit system in the s-domain is:

G1(s) = 1

1 + sτ1
(9.3)

where τ1 is the time constant of the first-order load. That is, τ1 = L/R for an R–L circuit
or τ1 = RC for an R–C circuit.

Its transfer function in per-unit system in the z-domain is:

G1(z) = z

z − e−T/τ1
(9.4)

where T is the sampling interval. Definitely, e−T/τ1 < 1 since T > 0.
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Analysis of Converters with a First-Order Load Plus an Integral Element

Furthermore, the industrial applications of all converters have always required the
converters to provide the power/energy to a first-order load plus an integral element
such as a DC motor drive system. In the case we have to consider the extra integral
element added in the system.

Its transfer function in per-unit system in the s-domain is:

Gm(s) = 1

sτm
(9.5)

where τm is the integral time constant, i.e. τm = J = GD2/375 which is the rotor’s inertia
of a DC motor mechanical time constant. G is the rotor equivalent weight (G = mg), g
is the gravitation acceleration (g = 9.81 m/s2) and D is the rotor diameter.

Its transfer function in per-unit system in the z-domain is:

Gm(z) = z

z − T/τm
(9.6)

where T is the sampling interval. Usually, the sampling interval T is smaller than the
integral time constant τm, hence T /τm < 1.

9.1.2 Unit-Step Responses

Unit-step response is one of the most important problems of the digital control systems.
An operation process that a digital control system operates from one steady state to
another can be treated as the process with unit-step response. If a digital control system
is stable unusually the corresponding unity-step response is stable and the transient
process is completed in certain period. The control scheme is shown in Figure 9.3
with the output parameter vO(t) and input step signal vin(t). The unit-step response is
presented in the s-domain by the Laplace transform:

VO(s) = G(s)Vin(s) = G(s)
1

s
(9.7)

where G(s) is the converter transfer function and Vin(s) is the Laplace transform
function of the input unit-step function Vin(s) = 1/s.

Its response in the z-domain is:

VO(z) = G(z)Vin(z) = G(z)
z

z − 1
(9.8)

T
G(s)

Vin(.) VO(.)

Figure 9.3 Open-loop control scheme.
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where G(z) is the converter transfer function and Vin(z) is the Laplace transform
function of the unit-step function Vin(z) = z/(z − 1).

Analysis of Converters with a First-Order Load

Unit-step response of the system consisting of converter with a first-order load is
usually stable because the output from converter is stable. The control scheme is shown
in Figure 9.4 with the output parameter vO(t) and input step signal vin(t). The unit-step
response is presented in the s-domain by Laplace transform:

VO(s) = G(s)G1(s)Vin(s) = G(s)
1

1 + sτ1

1

s
(9.9)

where G(s) is the converter transfer function, G1(s) is the first-order circuit transfer
function and Vin(s) is the Laplace transform function of the unit-step input signal
Vin(s) = 1/s.

Its response in the z-domain is:

VO(z) = G(z)G1(z)Vin(z) = G(z)
z

z − e−T/τ1

z

z − 1
(9.10)

where G(z) is the converter transfer function, G1(z) is the first-order circuit trans-
fer function and Vin(z) is the Laplace transform function of the unit-step function
Vin(z) = z/(z − 1).

Analysis of Converters with a First-Order Load Plus an Integral Element

Unit-step response of the system consisting of converter with a first-order load plus
an integral element is usually unstable because of the integral element. The control
scheme is shown in Figure 9.5 with the output parameter vO(t) and input step signal
vin(t). The unit-step response is presented in the s-domain by Laplace transform:

VO(s) = G(s)G1(s)Gm(s)Vin(s) = G(s)
1

1 + sτ1

1

sτm

1

s
(9.11)

T

Vin(.)
G(s) G1(s)

VO(.)

Figure 9.4 Open-loop control of converter with a first-order load.

T

Vin(.) VO(.)
G(s) G1(s) Gm(s)

Figure 9.5 Open-loop control of converter with a first-order load plus an integral element.
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where G(s) is the converter transfer function, G1(s) is the first-order circuit transfer
function, Gm(s) is the integral element transfer function and Vin(s) is the Laplace
transform function of the unit-step function Vin(s) = 1/s.

Its response in the z-domain is:

VO(z) = G(z)G1(z)Gm(z)Vin(z) = G(z)
z

z − e−T/τ1

z

z − T/τm

z

z − 1
(9.12)

where G(z) is the converter transfer function, G1(z) is the first-order circuit transfer
function, Gm(z) is the integral element transfer function and Vin(z) is the Laplace
transform function of the unit-step function Vin(z) = z/(z − 1).

9.1.3 Impulse Responses

Interference response usually called the impulse response is one of the most important
problems of the digital control systems. The interference signal randomly perturbs
to the system as an impulse signal disturb system output parameter. Generally, the
interference signal is added in the output point of the converter just likely the load
suddenly vibrated. The system scheme is shown in Figure 9.6 with the output parameter
VO(t) and interference signal Vint(t) = Uδ(t). The impulse response is presented in the
s-domain by Laplace transform:

VO(s) = Vint(s) = U (9.13)

where U is the interference signal. Its response in the z-domain is:

VO(z) = Vint(z) = U (9.14)

Analysis of Converters with a First-Order Load

Impulse response of the system consisting of converter with a first-order load is usually
stable because the first-order circuit is stable. The control scheme is shown in Figure 9.7
with the output parameter is VO(t) and interference signal Vint(t) = Uδ(t). The impulse
response is presented in the s-domain by Laplace transform:

VO(s) = G1(s)Vint(s) = U

1 + sτ1
(9.15)

T

�

�

T

Vin(.)

Vint(.)

VO(.)
G(s)

Figure 9.6 Open-loop control of converter (with interference signal).
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where G1(s) is the first-order circuit transfer function, Vint(s) is the Laplace transform
function of the interference signal Vint(s) = U .

Its response in the z-domain is:

VO(z) = G1(z)Vint(z) = z

z − e−T/τ1
U (9.16)

where G1(z) is the first-order circuit transfer function and Vin(z) is the Laplace transform
function of the interference signal Vint(z) = U .

Analysis of Converters with a First-Order Load Plus an Integral Element

Impulse response of the system consisting of converter with a first-order load plus
an integral element is usually unstable because of the integral element. The control
scheme is shown in Figure 9.8 with the output parameter vO(t) and interference
signal vint(t) = Uδ(t). The impulse response is presented in the s-domain by Laplace
transform:

VO(s) = G1(s)Gm(s)Vint(s) = U

1 + sτ1

1

sτm
(9.17)

where G1(s) is the first-order circuit transfer function, Gm(s) is the integral element
transfer function and Vint(s) is the Laplace transform function of the interference signal
Vint(s) = U .

Its response in the z-domain is:

VO(z) = G1(z)Gm(z)Vint(z) = z

z − e−T/τ1

z

z − T/τm
U (9.18)
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Figure 9.7 Open-loop control of converter with a first-order load (with interference signal).
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Figure 9.8 Open-loop control of converter with a first-order load plus an integral element (with
interference signal).
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where G1(z) is the first-order circuit transfer function and Gm(z) is the integral element
transfer function of the interference signal Vint(z) = U .

9.2 STABILITY ANALYSIS

The stability analysis of the open-loop systems with the four converters is discussed in
detail as follows.

9.2.1 AC/DC Rectifiers

The mathematical model for power AC/DC Rectifiers is a ZOH. Its transfer function is
assumed u(t) in the time-domain, and that in the s-domain is:

G(s) = 1

s
(9.19)

Its transfer function in the z-domain is:

G(z) = z

z − 1
(9.20)

AC/DC Rectifiers Open-Loop Analysis

Naturally, all existing AC/DC rectifiers applied in industrial applications are stable
although they have the pole located on the stability boundary. The block diagram is
shown in Figure 9.3 with G(·) to be a ZOH. From Equation (9.20), we have got the
location of the zero and pole of a ZOH, which are shown in Figure 9.9.

10

j Im z z-plane

Re z

Figure 9.9 Open-loop control of power AC/DC rectifiers.
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Analysis of AC/DC Rectifiers with a First-Order Load

The mathematical model for power AC/DC rectifiers is a ZOH. The open-loop control
scheme for a ZOH with a first-order load is shown in Figure 9.4. The system transfer
function in the s-domain is:

G(s)G1(s) = 1

s

1

1 + sτ1
(9.21)

Its transfer function in the z-domain is:

G(z)G1(z) = z

z − 1

z

z − e−T/τ1
(9.22)

From Equation (9.22), we have got two zeros at original point and two poles, one
is inside the unity-cycle and another on the unity-cycle. Therefore, this open-loop
control system is considered stable. The locations of the zeros and poles of a ZOH with
a first-order circuit are shown in Figure 9.10.

Analysis of Rectifiers with a First-Order Load Plus an Integral Element

The mathematical model for power AC/DC rectifiers is a ZOH. The open-loop control
scheme for a ZOH with a first-order circuit plus an integral element is shown in Figure
9.5. The system transfer function in the s-domain is:

G(s)G1(s)Gm(s) = 1

s

1

1 + sτ1

1

sτm
= 1

s2τm(1 + sτ1)
(9.23)

Its transfer function in the z-domain is:

G(z)G1(z)Gm(z) = z

z − 1

z

z − T/τm

z

z − e−T/τ1
(9.24)

10
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Figure 9.10 Open-loop control of power AC/DC rectifiers with a first-order load.
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Figure 9.11 Open-loop control of powerAC/DC rectifiers with a first-order load plus an integral
element.

From Equation (9.24), we have got three zeros at original point and three poles. One
pole is inside the unity-cycle and one on the unity-cycle, and another is uncertain.
Therefore, this open-loop control system may be considered unstable. The locations of
the zeros and poles of a ZOH with a first-order circuit are shown in Figure 9.11.

9.2.2 DC/AC Inverters and AC/AC (AC/DC/AC) Converters

We discussed the mathematical model for power DC/AC inverters and AC/AC
(AC/DC/AC) converters to be an FOH in Chapters 4, 6 and 8. Its transfer function
in the s-domain is:

G(s) = 1

1 + sT
(9.25)

Its transfer function in the z-domain is:

G(z) = z

z − 1/e
(9.26)

Open-Loop Stability Analysis for DC/AC Inverters and AC/AC
(AC/DC/AC) Converters

Naturally, all existing DC/AC inverters and AC/AC (AC/DC/AC) converters applied in
industrial applications are stable. The block diagram is shown in Figure 9.3 with G(·)
to be an FOH. From Equation (9.26), we have got the location of the zero and pole of
an FOH, which are shown in Figure 9.12.
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Figure 9.12 Open-loop control of DC/AC inverters.

Open-Loop Stability Analysis for DC/AC Inverters and AC/AC (AC/DC/AC)
Converters with a First-Order Load

The open-loop control scheme for an FOH with a first-order load is shown in Figure 9.4.
The system transfer function in the s-domain is:

G(s)G1(s) = 1

1 + sT

1

1 + sτ1
(9.27)

Its transfer function in the z-domain is:

G(z)G1(z) = z

z − 1/e

z

z − e−T/τ1
(9.28)

From Equation (9.28), we have got two zeros at original point z = 0, and two poles at
z = 1/e and z = e−T/τ1 inside the unity-cycle. Therefore, this open-loop control system
is considered stable. The locations of the zeros and poles of an FOH with a first-order
circuit are shown in Figure 9.13.

Open-Loop Stability Analysis for DC/AC Inverters and AC/AC (AC/DC/AC)
Converters with a First-Order Load Plus an Integral Element

The open-loop control scheme for an FOH with a first-order circuit plus an integral
element is shown in Figure 9.5. The system transfer function in the s-domain is:

G(s)G1(s)Gm(s) = 1

1 + sT

1

1 + sτ1

1

sτm
(9.29)

Its transfer function in the z-domain is:

G(z)G1(z)Gm(z) = z

z − 1/e

z

z − T/τm

z

z − e−T/τ1
(9.30)
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Figure 9.13 Open-loop control of DC/AC inverters with a first-order load.
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Figure 9.14 Open-loop control of DC/AC inverters with a first-order load plus an integral
element.

From Equation (9.30), we have got three zeros at original point and three poles. One
pole is inside the unity-cycle and others are uncertain. Therefore, this open-loop control
system may be considered unstable. The locations of the zeros and poles of an FOH
with a first-order circuit are shown in Figure 9.14.

9.2.3 DC/DC Converters

The mathematical model for power DC/DC converters is an SOH. Its transfer function
in the s-domain is:

G(s) = 1

1 + sτ + s2ττd
(9.31)
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There are four conditions of the damping time constant τd related to the time constant τ:

• τd = 0
• τd < 0.25τ
• τd = 0.25τ
• τd > 0.25τ

Its transfer functions in the s-domain and in the z-domain are:

G(s) = 1

1 + sτ
for τd = 0 (9.32)

G(z) = z

z − e−T/τ
for τd = 0 (9.33)

with one zero at z = 0 and one pole at z = e−T/τ in the z-plane. Definitely, the pole is
inside the unity-cycle, e−T/τ < 1 since T > 0.

G(s) = 1/ττd

(s + σ1)(s + σ2)
for τd < 0.25τ (9.34)

G(z) = 1/ττd

(σ2 − σ1)

(
z

z − e−σ1T
− z

z − e−σ2T

)
for τd < 0.25τ (9.35)

where σ1,2 = 1/2τd(1 ± √
4 − τd/τ). There are one zero at z = 0 and two poles at

z1 = e−σ1T and z2 = e−σ2T . Both poles are inside the unit-cycle since T > 0.

G(s) = 1/ττd

(s + σ)2 for τd = 0.25τ (9.36)

G(z) = 4Tze−(2/τ)T

(z − e−(2/τ)T )2
for τd = 0.25τ (9.37)

where σ = 1/2τd = 2/τ. There are one zero at z = 0 and one double-folded pole at
z1 = e−2T/τ . The double-folded pole is inside the unit-cycle since T > 0.

G(s) = 1/ττd

(s + σ)2 + ω2 for τd > 0.25τ (9.38)

G(z) = 2√
4τd/τ − 1

ze−aT sin ωT

z2 − 2ze−aT cos ωT + e−2aT
for τd > 0.25τ (9.39)

where a = σ = 1/2τd and ω =√4ττd − τ2/2ττd. There are one zero at z = 0
and one couple of conjugated complex poles at z1 = e−aT ( cos ωT + j sin ωT ) and
z2 = e−aT ( cos ωT − j sin ωT ). Both poles are inside the unit-cycle since T > 0.
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Figure 9.15 Open-loop control of DC/DC converters with τd = 0.
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Figure 9.16 Open-loop control of DC/DC converters with τd < 0.25τ.

Converters Open-Loop Analysis

Naturally, all existing DC/DC converters applied in industrial applications are stable.
The block diagram is shown in Figure 9.3 with G(·) to be an SOH. From Equation
(9.33) for the condition of τd = 0, we have got the location of the zero and pole of an
SOH, which are shown in Figure 9.15.

From Equation (9.35) for the condition of τd < 0.25τ, we have got the location of
the zero and pole of an SOH, which are shown in Figure 9.16.

From Equation (9.37) for the condition of τd = 0.25τ, we have got the location of
the zero and pole of an SOH, which are shown in Figure 9.17.

From Equation (9.39) for the condition of τd > 0.25τ, we have got the location of
the zero and pole of an SOH, which are shown in Figure 9.18.
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Figure 9.17 Open-loop control of DC/DC converters with τd = 0.25τ.
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Figure 9.18 Open-loop control of DC/DC converters with τd > 0.25τ.

Analysis of Converters with a First-Order Load

The open-loop control scheme for an SOH with a first-order load is shown in Figure 9.4.
The system transfer function in the s-domain is:

G(s)G1(s) = 1

1 + sτ + s2ττd

1

1 + sτ1
(9.40)

where τ1 is the time constant of the first-order load. Its transfer functions in the s-domain
and in the z-domain are:

G(s)G1(s) = 1

1 + sτ

1

1 + sτ1
for τd = 0 (9.41)

G(z)G1(z) = z

z − e−T/τ

z

z − e−T/τ1
for τd = 0 (9.42)
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Figure 9.19 Open-loop control of DC/DC converters (τd = 0) with a first-order load.

From Equation (9.42), we have got one double-folded zeros at the original point z = 0,
and two poles at z = e−T/τ and z = e−T/τ1 inside the unity-cycle since T > 0. Therefore,
this open-loop control system is considered stable. The locations of the zeros and poles
of an SOH (τd = 0) with a first-order circuit are shown in Figure 9.19.

The corresponding transfer functions (τd < 0.25τ) in the s-domain and in the
z-domain are:

G(s)G1(s) = 1/ττd

(s + σ1)(s + σ2)

1

1 + sτ1
for τd < 0.25τ (9.43)

G(z)G1(z) = 1/ττd

(σ2 − σ1)

(
z

z − e−σ1T
− z

z − e−σ2T

)
z

z − e−T/τ1
for τd < 0.25τ

(9.44)

From Equation (9.44), we have got one double-folded zeros at the original point z = 0
and three poles at z = e−σ1T , z = e−σ2T and z = e−T/τ1 inside the unity-cycle since
T > 0. Therefore, this open-loop control system is considered stable. The locations
of the zeros and poles of an SOH (τd < 0.25τ) with a first-order circuit are shown in
Figure 9.20.

The corresponding transfer functions (τd = 0.25τ) in the s-domain and in the
z-domain are:

G(s)G1(s) = 4/τ2

(s + σ)2

1

1 + sτ1
for τd = 0.25τ (9.45)

G(z)G1(z) = 4Tze−2T/τ

(z − e−2T/τ)2

z

z − e−T/τ1
for τd = 0.25τ (9.46)

From Equation (9.46), we have got one double-folded zeros at the original point z = 0
and three poles at z = e−2T/τ in double-folded and z = e−T/τ1 inside the unity-cycle
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Figure 9.20 Open-loop control of DC/DC converters (τd < 0.25τ) with a first-order load.
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Figure 9.21 Open-loop control of DC/DC converters (τd = 0.25τ) with a first-order load.

since T > 0. Therefore, this open-loop control system is considered stable. The loca-
tions of the zeros and poles of an SOH (τd = 0.25τ) with a first-order circuit are shown
in Figure 9.21.

The corresponding transfer functions (τd > 0.25τ) in the s-domain and in the
z-domain are:

G(s)G1(s) = 1/ττd

(s + σ)2 + ω2

1

1 + sτ1
for τd > 0.25τ (9.47)

G(z)G1(z) = 2√
4τd/τ − 1

ze−aT sin ωT

z2 − 2ze−aT cos ωT + e−2aT

z

z − e−T/τ1
for τd > 0.25τ

(9.48)
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Figure 9.22 Open-loop control of DC/DC converters (τd > 0.25τ) with a first-order load.

where a = σ = 1/2τd and ω =√4ττd − τ2/2ττd. From Equation (9.48), we have got
one double-folded zeros at the original point z = 0 and three poles at z = e−T/τ1

and one couple of conjugated complex poles z1 = e−aT (cos ωT + j sin ωT ) and
z2 = e−aT (cos ωT − j sin ωT ) inside the unity-cycle since T > 0. Therefore, this open-
loop control system is considered stable. The locations of the zeros and poles of an
SOH (τd > 0.25τ) with a first-order circuit are shown in Figure 9.22.

Analysis of DC/DC Converters with a First-Order Load Plus an
Integral Element

The open-loop control scheme for an SOH with a first-order circuit plus an integral
element is shown in Figure 9.5. The system transfer function in the s-domain is:

G(s)G1(s)Gm(s) = 1

1 + sτ + s2ττd

1

1 + sτ1

1

sτm
(9.49)

Its transfer functions in the s-domain and in the z-domain are:

G(s)G1(s)Gm(s) = 1

1 + sτ

1

1 + sτ1

1

sτm
for τd = 0 (9.50)

G(z)G1(z)Gm(z) = z

z − e−T/τ

z

z − e−T/τ1

z

z − T/τm
for τd = 0 (9.51)

From Equation (9.51), we have got one triple-folded zeros at the original point
z = 0 and three poles at z = e−T/τ , z = e−T/τ1 and z = T /τm inside the unity-cycle
since τm > T > 0. Therefore, this open-loop control system is considered stable. The
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Figure 9.23 Open-loop control of DC/DC converters (τd = 0) with a first-order load plus an
integral element.

locations of the zeros and poles of an SOH (τd = 0) with a first-order circuit are shown
in Figure 9.23.

G(s)G1(s)Gm(s) = 1/ττd

(s + σ1)(s + σ2)

1

1 + sτ1

1

sτm
for τd < 0.25τ (9.52)

G(z)G1(z)Gm(z) = 1/ττd

(σ2 − σ1)

(
z

z − e−σ1T
− z

z − e−σ2T

)

× z

z − e−T/τ1

z

z − T/τm
for τd < 0.25τ (9.53)

From Equation (9.53), we have got one triple-folded zeros at the original point z = 0
and four poles at z = e−σ1T , z = e−σ2T , and e−T/τ1 and z = T /τm inside the unity-cycle
since τm > T > 0. Therefore, this open-loop control system is considered stable. The
locations of the zeros and poles of an SOH (τd < 0.25 τ) with a first-order circuit are
shown in Figure 9.24:

G(s)G1(s)Gm(s) = 4/τ2

(s + σ)2

1

1 + sτ1

1

sτm
for τd = 0.25τ (9.54)

G(z)G1(z)Gm(z) = 4Tze−2T/τ

(z − e−2T/τ)2

z

z − e−T/τ1

z

z − T/τm
for τd = 0.25τ (9.55)

From Equation (9.55), we have got one triple-folded zeros at the original point z = 0
and four poles at z = e−2T/τ in double-folded, z = e−T/τ1 and z = T /τm inside the
unity-cycle since τm > T > 0. Therefore, this open-loop control system is considered
stable. The locations of the zeros and poles of an SOH (τd = 0.25τ) with a first-order
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Figure 9.24 Open-loop control of DC/DC converters (τd < 0.25τ) with a first-order load plus
an integral element.
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Figure 9.25 Open-loop control of DC/DC converters (τd = 0.25τ) with a first-order load plus
an integral element.

circuit are shown in Figure 9.25:

G(s)G1(s)Gm(s) = 1/ττd

(s + σ)2 + ω2

1

1 + sτ1

1

sτm
for τd > 0.25τ (9.56)

G(z)G1(z)Gm(z) = 2√
4τd/τ − 1

ze−aT sin ωT

z2 − 2ze−aT cos ωT + e−2aT

z

z − e−T/τ1

× z

z − T/τm
for τd > 0.25τ (9.57)

where a = σ = 1/2τd and ω =√4ττd − τ2/2ττd.
From Equation (9.57), we have got one triple-folded zeros at the original point

z = 0 and four poles at z = e−T/τ1 and one couple of conjugated complex poles at
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Figure 9.26 Open-loop control of DC/DC converters (τd > 0.25τ) with a first-order load plus
an integral element.

z1 = e−aT (cos ωT +j sin ωT ) and z2 = e−aT (cos ωT −j sin ωT ), and z = T /τm inside the
unity-cycle since τm > T > 0. Therefore, this open-loop control system is considered
stable. The locations of the zeros and poles of an SOH (τd > 0.25τ) with a first-order
circuit are shown in Figure 9.26.

9.3 UNIT-STEP FUNCTION RESPONSES

The unit-step function response analysis of the open-loop systems with the four convert-
ers is discussed in detail as follows. The input signal is a unit-step function Vin(s) = 1/s
for Figures 9.3–9.5.

9.3.1 AC/DC Rectifiers

The mathematical model for power AC/DC rectifiers is a ZOH. Its transfer function in
the s-domain is:

G(s) = 1

s
(9.19)

Its transfer function in the z-domain is:

G(z) = z

z − 1
(9.20)

AC/DC Rectifiers Open-Loop Analysis

The block diagram is shown in Figure 9.3 with G(s) to be a ZOH. The unit-step function
response in the s-domain is:

VO(s) = G(s)Vin(s) = 1

s2 (9.58)
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The unit-step function response in the time domain is:

vO(t) = t (9.59)

It is a linear rising line, so that it is not stable. The unit-step function response in the
z-domain:

VO(z) = G(z)Vin(z) = Tz

(z − 1)2 (9.60)

This unit-step function response is not stable.

Analysis of AC/DC Rectifiers with a First-Order Load

The open-loop control scheme for a ZOH with a first-order load is shown in Figure 9.4.
The unit-step function response in the s-domain is:

VO(s) = G(s)G1(s)Vin(s) = 1

s2

1

1 + sτ1
(9.61)

The unit-step function response in the time domain is:

vO(t) = t − τ1(1 − e−t/τ1 ) (9.62)

It is nearly a linear rising line, so that it is not stable. The unit-step function response
in the z-domain:

VO(z) = G(z)G1(z)Vin(z) = Tz

(z − 1)2 − (1 − e−T/τ1 )z/τ1

(z − 1)(z − e−T/τ1 )
(9.63)

This unit-step function response is not stable.

Analysis of Rectifiers with a First-Order Load Plus an Integral Element

The open-loop control scheme for a ZOH with a first-order circuit plus an integral
element is shown in Figure 9.5. The unit-step function response in the s-domain is:

VO(s) = G(s)G1(s)Gm(s)Vin(s) = 1

s2

1

1 + sτ1

1

sτm
(9.64)

The unit-step function response in the time domain is:

vO(t) = 1

2τm
(t2 − 2τ1t + 2τ2

1 − 2τ2
1e−t/τ1 ) (9.65)

It is nearly a linear rising line, so that it is not stable. The unit-step function response
in the z-domain:

VO(z) = G(z)G1(z)Gm(z)Vin(z) = Tz

τm(z − 1)2

(
T

z − 1
+ T − 2τ1

2

)
(9.66)

This unit-step function response is not stable.
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9.3.2 DC/AC Inverters and AC/AC (AC/DC/AC) Converters

The mathematical model for power DC/AC inverters and AC/AC (AC/DC/AC)
converters is an FOH. Its transfer function in the s-domain is:

G(s) = 1

1 + sT
(9.25)

Its transfer function in the z-domain is:

G(z) = z

z − 1/e
(9.26)

Open-Loop Unit-Step Response Analysis

The block diagram is shown in Figure 9.3 with G(·) to be an FOH.The unit-step function
response in the s-domain is:

VO(s) = G(s)Vin(s) = 1

s(1 + Ts)
(9.67)

The unit-step function response in the time domain is:

vO(t) = 1 − e−t/T (9.68)

It is an exponential function (first-inertial element function), so that it is stable. The
unit-step function response in the z-domain:

VO(z) = G(z)Vin(z) = z(1 − 1/e)

(z − 1)(z − 1/e)
= 0.632z

(z − 1)(z − 0.368)
(9.69)

This unit-step function response is stable.

Analysis of an FOH with a First-Order Load

The open-loop control scheme for an FOH with a first-order load is shown in Figure
9.4. The unit-step function response in the s-domain is:

VO(s) = G(s)G1(s)Vin(s) = 1

s(1 + sT )

1

1 + sτ1
(9.70)

The unit-step function response in the time domain is:

vO(t) = 1 + Te−t/T − τ1e−t/τ1

τ1 − T
(9.71)
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It is nearly an exponential function, so that it is stable. The unit-step function response
in the z-domain:

VO(z) = G(z)G1(z)Vin(z) = z

(z − 1)
+ z

τ1 − T

(
T

z − 1/e
− τ1

z − e−T/τ1

)
(9.72)

This unit-step function response is stable.

Analysis of an FOH with a First-Order Load Plus an Integral Element

The open-loop control scheme for an FOH with a first-order circuit plus an integral
element is shown in Figure 9.5. The unit-step function response in the s-domain is:

VO(s) = G(s)G1(s)Gm(s)Vin(s) = 1

s(1 + sT )

1

1 + sτ1

1

sτm
(9.73)

The unit-step function response in the time domain is:

vO(t) = 1

τm

[
t − (τ1 + T ) − (τ1 − T )e−t/T

τ2
1

+ (τ1 − T )e−t/τ1

T 2

]
(9.74)

It is nearly a linear rising line, so that it is not stable. The unit-step function response
in the z-domain:

VO(z) = G(z)G1(z)Gm(z)Vin(z)

= 1

τm

[
− (τ1 + T )z

z − 1
+ Tz

(z − 1)2 − T 2z

(τ1 − T )(z − 1/e)
+ τ2

1z

(τ1 − T )(z − e−T/τ1 )

]

(9.75)

This unit-step function response is not stable.

9.3.3 DC/DC Converters

The mathematical model for power DC/DC converters is an SOH. Its transfer function
in the s-domain is:

G(s) = 1

1 + sτ + s2ττd
(9.31)

There are four conditions of the damping time constant τd related to the time constant τ:

• τd = 0
• τd < 0.25τ
• τd = 0.25τ
• τd > 0.25τ
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We list its transfer functions in the s-domain and in the z-domain below:

G(s) = 1

1 + τs
for τd = 0 (9.32)

G(z) = z

z − e−T/τ
for τd = 0 (9.33)

G(s) = 1/ττd

(s + σ1)(s + σ2)
for τd < 0.25τ (9.34)

G(z) = 1/ττd

(σ2 − σ1)

(
z

z − e−σ1T
− z

z − e−σ2T

)
for τd < 0.25τ (9.35)

G(s) = 1/ττd

(s + σ)2 for τd = 0.25τ (9.36)

G(z) = 4Tze(−2/τ)T

(z − e(−2/τ)T )2
for τd = 0.25τ (9.37)

G(s) = 1/ττd

(s + σ)2 + ω2 for τd > 0.25τ (9.38)

G(z) = 2√
4τd/τ − 1

ze−aT sin ωT

z2 − 2ze−aT cos ωT + e−2aT
for τd > 0.25τ (9.39)

Converters Open-Loop Analysis

The block diagram is shown in Figure 9.3 with G(·) to be an SOH. Since there are four
conditions, we analyze them one by one.

The Condition of τd = 0

The unit-step function responses in the s-domain and in the z-domain for the condition
of τd = 0 are:

VO(s) = G(s)Vin(s) = 1

s(1 + sτ)
for τd = 0 (9.76)

VO(z) = G(z)Vin(z) = z(1 − e−T/τ)

(z − 1)(z − e−T/τ)
for τd = 0 (9.77)

The unit-step response in the time domain is:

vO(t) = 1 − e−t/τ (9.78)

This is an exponential function, which is stable.
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The Condition of τd < 0.25τ

The unit-step function response in the s-domain and in the z-domain for the condition
of τd < 0.25τ are:

VO(s) = G(s)Vin(s) = 1/ττd

s(s + σ1)(s + σ2)
for τd < 0.25τ (9.79)

VO(z) = G(z)Vin(z)

= z

(z − 1)
+ σ2z

(σ1 − σ2)(z − e−σ1T )
− σ1z

(σ1 − σ2)(z − e−σ2T )
for τd < 0.25τ

(9.80)

The unit-step response in the time domain is:

vO(t) = 1 + σ2e−σ1t

σ1 − σ2
− σ1e−σ2t

σ1 − σ2
(9.81)

This is an exponential function, which is stable.

The Condition of τd = 0.25τ

The unit-step function response in the s-domain and in the z-domain for the condition
of τd = 0.25τ are:

VO(s) = G(s)Vin(s) = 4/τ2

s(s + τ/2)2 for τd = 0.25τ (9.82)

VO(z) = G(z)Vin(z) = z

z − 1
− z

z − e−2T/τ
− (2T/τ)e−2T/τz

(z − e−2T/τ)2 for τd = 0.25τ

(9.83)

The unit-step response in the time domain is:

vO(t) = 1 −
(

1 + 2t

τ

)
e−2t/τ (9.84)

The Condition of τd > 0.25τ

The unit-step function response in the s-domain and in the z-domain for the condition
of τd > 0.25τ are:

VO(s) = G(s)Vin(s) = 1/ττd

s[(s + σ)2 + ω2]
for τd > 0.25τ (9.85)

VO(z) = G(z)Vin(z) = z

z − 1
− z2 − ze−aT sec φ cos (ωT + φ)

z2 − 2ze−aT cos ωT + e−2aT
for τd > 0.25τ

(9.86)
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where φ = tan−1 (−a/ω). The unit-step response in the time domain is:

vO(t) = 1 − e−at sec φ cos (ωt − φ) (9.87)

This is an exponential function, which is stable.

Analysis of DC/DC Converters with a First-Order Load

The open-loop control scheme for an SOH with a first-order load is shown in Figure 9.4.

The Condition of τd = 0

The unit-step function responses in the s-domain and in the z-domain for the condition
of τd = 0 are:

VO(s) = G(s)G1(s)Vin(s) = 1

s(1 + sτ)(1 + sτ1)
for τd = 0 (9.88)

VO(z) = G(z)G1(z)Vin(z) = z

(z − 1)
+ τz

(τ1 − τ)(z − e−T/τ)

− τ1z

(τ1 − τ)(z − e−T/τ1 )
for τd = 0 (9.89)

The unit-step response in the time domain is:

vO(t) = 1 − e−t/τvO(t) = 1 + τe−t/τ

τ1 − τ
− τ1e−t/τ1

τ1 − τ
(9.90)

This is an exponential function, which is stable.

The Condition of τd < 0.25τ

The unit-step function response in the s-domain and in the z-domain for the condition
of τd < 0.25τ are:

VO(s) = G(s)G1(s)Vin(s) = 1/ττd

s(s + σ1)(s + σ2)(1 + sτ1)
for τd < 0.25τ (9.91)

VO(z) = G(z)G1(z)Vin(z) = z

(z − 1)
− K1z

z − e−σ1T
− K2z

z − e−σ2T
− K3z

z − e−T/τ1

for τd < 0.25τ (9.92)
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where K1 = σ2/τ1

σ2
1 − σ1σ2 + σ2 − σ1

τ1

K2 = σ1/τ1

σ2
2 − σ1σ2 + σ1 − σ2

τ1

K3 = σ1σ2
1
τ2

1
− σ1

τ1
− σ2

τ1
+ σ2σ1

The unit-step response in the time domain is:

vO(t) = 1 − K1e−σ1t − K2e−σ2t − K3e−t/τ1 (9.93)

This is an exponential function, which is stable.

The Condition of τd = 0.25τ

The unit-step function response in the s-domain and in the z-domain for the condition
of τd = 0.25τ are:

VO(s) = G(s)G1(s)Vin(s) = 4/τ2

s(s + 2/τ)2(1 + sτ1)
for τd = 0.25τ (9.94)

VO(z) = G(z)G1(z)Vin(z) = z

(z − 1)
+ K1z

z − e−2T/τ
+ K2Tz e−2T/τ

(z − e−2T/τ)2 − K3z

z − e−T/τ1

for τd = 0.25τ (9.95)

where K1 = τ(4τ1 − τ)

(2τ1 − τ)2

K2 = 2

2τ1 − τ

K3 = 4τ1/τ

2τ1 − τ

The unit-step response in the time domain is:

vO(t) = 1 + K1e−2t/τ + K2te−2t/τ − K3e−t/τ1 (9.96)
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The Condition of τd > 0.25τ

The unit-step function response in the s-domain and in the z-domain for the condition
of τd > 0.25τ are:

VO(s) = G(s)G1(s)Vin(s) = 1/ττd

s
[
(s + σ)2 + ω2

]
(1 + sτ1)

for τd > 0.25τ (9.97)

VO(z) = G(z)G1(z)Vin(z) = z

z − 1
− K1z

z − e−T/τ1
+ K2z2 − K3ze−aT cos (ωT − φ)

z2 − 2ze−σT cos ωT + e−2σT

for τd > 0.25τ (9.98)

where φ = tan−1
[
σ2 − ω2 − σ/τ1

(2σ − 1/τ1)ω

]

K1 = σ2 + ω2

σ2 + ω2 + 1/τ2
1 − 2σ/τ1

K2 = (2σ − 1/τ1)/τ1

σ2 + ω2 + 1/τ2
1 − 2σ/τ1

K3 =
√

(σ2 + (−2σ/τ1))2 + (ω/τ1)2 × 1/ωτ1

σ2 + ω2 + 1/τ2
1 − 2σ/τ1

The unit-step response in the time domain is:

vO(t) = 1 − K2e−σt + K3 cos (ωt + φ) (9.99)

This is an exponential function, which is stable.

Analysis of DC/DC Converters with a First-Order Load Plus an Integral Element

The open-loop control scheme for an SOH with a first-order circuit plus an integral
element is shown in Figure 9.5.

The Condition of τd = 0

The unit-step function responses in the s-domain and in the z-domain for the condition
of τd = 0 are:

VO(s) = G(s)G1(s)Gm(s)Vin(s) = 1

s2τm(1 + sτ)(1 + sτ1)
for τd > 0.25τ (9.100)

VO(z) = G(z)G1(z)Gm(z)Vin(z) = − z

z − 1
+ K1Tz

(z − 1)2 − K2z

z − e−T/τ
+ K3z

z − e−T/τ1

for τd > 0.25τ (9.101)
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where K1 = τ + τ1

τm

K2 = τ2

(τ2
1 − τ2)τm

K3 = τ2
1

(τ2
1 − τ2)τm

The unit-step response in the time domain is:

vO(t) = 1 − e−t/τvO(t) = −1 + K1t − K2e−t/τ + K3e−t/τ1 (9.102)

This is nearly a linear rising function, which is not stable.

The Condition of τd < 0.25τ

The unit-step function response in the s-domain and in the z-domain for the condition
of τd < 0.25τ are:

VO(s) = G(s)G1(s)Gm(s)Vin(s) = 1/ττd

s2τm(s + σ1)(s + σ2)(1 + sτ1)
for τd < 0.25τ

(9.103)

VO(z) = G(z)G1(z)Vin(z) = − z

z − 1
+ K1Tz

(z − 1)2 + K2z

z − e−σ1T
+ K3z

z − e−σ2T

+ K4z

z − e−T/τ1
for τd < 0.25τ (9.104)

where K1 = 1/τm

σ1 + σ2 + 1
τ1

K2 = 1/τm(
σ2τ1
σ2

1
− τ1

σ1
− σ2

σ1
+ 1
) (

τ1
σ1

+ 1 + σ2
σ1

)

K3 = 1/τm(
σ1τ1
σ2

2
− τ1

σ2
− σ1

σ2
+ 1
) (

τ1
σ2

+ 1 + σ1
σ2

)

K4 = 1/τm(
σ1σ2
τ2

1
− σ2

τ1
− σ1

τ1
+ 1
) (

σ1
τ1

+ 1 + σ2
τ1

)
The unit-step response in the time domain is:

vO(t) = −1 + K1t + K2e−σ1t + K3e−σ2t + K4e−t/τ1 (9.105)

This is nearly a linear rising function, which is not stable.
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The Condition of τd = 0.25τ

The unit-step function response in the s-domain and in the z-domain for the condition
of τd = 0.25τ are:

VO(s) = G(s)G1(s)Gm(s)Vin(s) = 4/τ2

s2τm(s + 2/τ)2(1 + sτ1)
for τd = 0.25τ

(9.106)

VO(z) = G(z)G1(z)Vin(z)Gm(z) = z

(z − 1)
+ K1Tz

(z − 1)2 − K2z

z − e−2T/τ
− K3Tz e−2T/τ

(z − e−2T/τ)2

+ K4z

z − e−T/τ1
for τd = 0.25τ (9.107)

where K1 = 1

(τ + τ1)τm

K2 = τ2τ1

2(τ + τ1)(2τ1 − τ)

K3 = ττ2
1

(τ + τ1)(2τ1 − τ)τm

K4 = 4τ2
1/τ

(τ + τ1)(2τ1 − τ)2τm

The unit-step response in the time domain is:

vO(t) = 1 + K1t − K2e−2t/τ − K3te−2t/τ + K4e−t/τ1 (9.108)

This is nearly a linear rising function, which is not stable.

The Condition of τd > 0.25τ

The unit-step function response in the s-domain and in the z-domain for the condition
of τd = 0.25τ are:

VO(s) = G(s)G1(s)Gm(s)Vin(s) = 1/ττd

s2τm[(s + σ)2 + ω2](1 + sτ1)
for τd > 0.25τ

(9.109)

VO(z) = G(z)G1(z)Gm(z)Vin(z) = − z

z − 1
+ K1Tz

(z − 1)2 + K2z

z − e−T/τ1

− K3z2 − K4ze−aT cos (ωT + φ)

z2 − 2ze−σT cos ωT + e−2σT
for τd > 0.25τ

(9.110)
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where φ = tan−1
[
σ3 − 3σω2 − σ2/τ1 + ω2/τ1

(2σ2 − ω2 − 2σ/τ1)ω

]

K1 = σ2 + ω2

τ1τm

K2 =
(
σ2 + ω2

)2
/τm

1/τ2
1 − 2σ/τ1 + σ2 + ω2

K3 = (σ2 + ω2)2(2σ2 − ω2 − 2σ/τ1) × 1/τ2
1τm

σ6 − 2σ5

τ1
+ σ4

τ2
1

+ 3σ4ω2 − 4σ3ω2

τ1
+ 2σ2ω2

τ2
1

+ 3σ2ω4 − 2σω4

τ1
+ ω4

τ2
1

+ ω6

K4 =
(σ2 + ω2)2

√
(2σ2 − ω2 − 2σ

τ1
)2ω2 + (σ3 − 3σω2 − σ2

τ1
+ ω2

τ1
)2 × 1

ωτ2
1τm

σ6 − 2σ5

τ1
+ σ4

τ2
1

+ 3σ4ω2 − 4σ3ω2

τ1
+ 2σ2ω2

τ2
1

+ 3σ2ω4 − 2σω4

τ1
+ ω4

τ2
1

+ ω6

The unit-step response in the time domain is:

vO(t) = −1 + K1t + K2e−σt + K3e−t/τ1 + K4 cos (ωt − φ) (9.111)

This is nearly a linear rising function, which is not stable.

9.4 IMPULSE RESPONSES

The impulse responses analysis of the open-loop systems with the four converters is
discussed in this section. The interference signal is a unit-delta function Vint(s) = Uδ(t)
for Figures 9.6–9.8. To simplify the problem and concentrate the impulse response
analysis, the input signal is assumed a constant Vin(s) = 0. Therefore, the converters
cannot improve the impulse responses in the open-loop control since the interference
signal is added in the output of the DC/DC converters.

9.4.1 Impulse Response of the Converter
Open-Loop Systems

Refer to Figure 9.6 the impulse responses in the s-domain and in the z-domain are:

VO(s) = Vint(s) = U (9.112)

VO(z) = Vint(z) = U (9.113)

Its transfer function in the time domain is:

vO(t) = Uδ(t) (9.114)



Open-loop control for digital power electronics 281

9.4.2 Impulse Response of the Converter with a
First-Order Circuit

Refer to Figure 9.7 the impulse responses in the s-domain and in the z-domain are:

VO(s) = Vint(s)G1(s) = U

1 + sτ1
(9.115)

VO(z) = Vint(z)G1(z) = Uz

z − e−T/τ1
(9.116)

Its transfer function in the time domain is:

vO(t) = Ue−t/τ1 (9.117)

9.4.3 Impulse Response of the Converter with a
First-Order Circuit Plus an Integral Element

Refer to Figure 9.8 the impulse responses in the s-domain and in the z-domain are:

VO(s) = Vint(s)G1(s)Gm(s) = U

(1 + sτ1)sτm
(9.118)

VO(z) = G1(z)Gm(z)Vint(z) = Uz(1 − e−T/τ1 )

τm(z − 1)(z − e−T/τ1 )
(9.119)

Its transfer function in the time domain is:

vO(t) = U

τm
(1 − e−t/τ1 ) (9.120)

9.5 SUMMARY

From the analysis in this chapter, we understood the open-loop control systems have
many drawbacks in the aspects: stability, unit-step response and impulse response.
Closed-loop control can overcome these problems, and obtain good performances in
all aspects.

We use various controllers in the closed-loop control systems. The controllers func-
tion not only enhancing the converters’ characteristics, but also improving the load’s
technical features. Therefore, good system qualification can be achieved.
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Chapter 10

Closed-Loop Control for Digital
Power Electronics

After the discussion of open-loop control in Chapter 9, we will carefully discuss the
closed-loop control in this chapter.

Although all existing converters applied in industrial applications are stable, they
have been working in variable state (stable but shifted) because of the interferences.
Particularly, some loads, such as the motor inertia in motor drive systems, are naturally
unstable elements. Closed-loop control is necessary to keep converters working in
steady state to satisfy the industrial requirements.

10.1 INTRODUCTION

Closed-loop control is applied in most industrial applications to keep converters
working in steady state to satisfy the industrial requirements. Traditionally, the
proportional-plus-integral (PI) control and proportional-plus-integral-plus-differential
(PID) control are very popular in closed-loop control systems.

10.1.1 PI Controller

A PI controller can be constructed by analog form using operational amplifier (OA) as
shown in Figure 10.1. The input signal is vin(t), which inputs into the OA via a resistor
R0, and the OA output signal is vO(t). The feedback circuit of the OA is an R–C circuit.
Its transfer function in time domain is:

vO(t)

vin(t)
= R + 1

jωC

R0
= R

R0

(
1 + 1

jωRC

)
= R

R0

1 + jωRC

jωRC
(10.1)
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Vin

VO

RO

R C

OA

�

�

Figure 10.1 Analog PI controller using OA.

Its transfer function in the s-domain is:

Gpi(s) = VO(s)

Vin(s)
= R

R0

1 + sRC

sRC
= p

1 + sτ

sτ
(10.2)

where p is the proportional transfer gain, p = R/R0, and τ is the integral time constant,
τi = RC.

The transfer function in the s-domain can be written in two items as:

Gpi(s) = p + p

sτi
= p + pi

s
(10.3)

where pi = p/τi. The first item corresponds to the proportional operation and the second
item corresponds to the integral operation with the integral gain, pi = p/τi.

The transfer function in the z-domain can be written in two items as well:

Gpi(z) = p + pi
z

z − 1
(10.4)

Stability Analysis

From the transfer functions (10.3) and (10.4), we can recognize that the PI controller
is an unstable element with the pole on the stability boundary in the s-plane, and on
the unity-cycle in the z-plane. Usually, the pole on the stability boundary in the s-plane
can be treated as in the right-hand-half-plane (RHHP) in the s-domain.

Unit-Step-Function Responses

The PI controller has the step-function response in the time domain and is shown in
Figure 10.2. We can split the waveform in two parts: proportional part and integral part.
The proportional part is a constant value which is equal to p at any time. The integral
part is a linear line proportional to the time.
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p
Vin
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Figure 10.2 Input and output signals of PI controller in the time domain.
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controller

Figure 10.3 Closed-loop control system with a PI controller.

Closed-Loop Control

The PI controller has the main role in a closed-loop control system. The block diagram
is shown in Figure 10.3. The regulated converter has its transfer function G(·) and the
feedback element with transfer function F(·). The closed-loop transfer function of the
whole system is:

GC(s) = Gpi(s)G(s)

1 + Gpi(s)G(s)F(s)
(10.5)

This is very popular form for all closed-loop control systems. If the condition

Gpi(s)G(s)F(s) � 1 (10.6)

is satisfied. The closed-loop transfer function is determined by the feedback network:

GC(s) = Gpi(s)G(s)

1 + Gpi(s)G(s)F(s)
≈ 1

F(s)
(10.7)

10.1.2 Proportional-Plus-Integral-Plus-Differential
Controller

A proportional-plus-integral-plus-differential (PID) controller can be constructed by
analog form using OA as shown in Figure 10.4. The input signal is vin(t), which inputs
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C
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RRd
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RO

Vin
VO

Figure 10.4 Analog PID controller using OA.

into the OA via a resistor R0, and the OA output signal is vO(t). The feedback circuit
of the OA is an R–C–Rd–Cd circuit. Its transfer function in time domain is:

Gpid(t) = vO(t)

vin(t)
= R

R0

(1 + jωRC)(1 + jωRdCd) + jωRdC

jωRC
(10.8)

If the differential resistant Rd is small, i.e. Rd � R, we can have following expression:

Gpid(t) = vO(t)

vin(t)
= R

R0

(1 + jωRC)(1 + jωRdCd)

jωRC
(10.9)

Its transfer function in the s-domain is:

Gpid(s) = VO(s)

Vin(s)
= R

R0

(1 + sRC)(1 + sRdCd)

sRC
= p

(1 + sτi)(1 + sτd)

sτi
(10.10)

where p is the proportional transfer gain, p = R/R0, τi is the integral time constant
τi = RC and τd is the differential (off-set) time constant τd = RdCd. Usually, the integral
time constant τi = RC is greater than the differential (off-set) time constant τd = RdCd,
i.e. τi = τd. We can rewrite the transfer function in the s-domain in three items as:

Gpid(s) = p
1 + sτi + s2τiτd

sτi
(10.11)

We can write it in three items as well:

Gpid(s) = p + pi

s
+ pds (10.12)

where pd = pτd. The first item corresponds to the proportional operation, the second
item corresponds to the integral operation with the integral gain pi and the third item
corresponds to the differential operation with the differential gain pd = pτd.
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Figure 10.5 Input and output signals of PID controller in the time domain.
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Figure 10.6 Closed-loop control system with a PID controller.

The transfer function in the z-domain can be written in two items as well:

G(z) = p + pi
z

z − 1
+ pd

z − 1

z
(10.13)

Stability Analysis

From the transfer functions (10.11)–(10.13) we can recognize that the PID controller
is an unstable element with the pole is on the stability boundary in the s-domain and is
on the unity-cycle in the z-domain.

Unit-Step-Function Responses

The PID controller has the step-function response in the time domain and is shown in
Figure 10.5. We can split the waveform into three parts: proportional part, integral part
and differential part. The proportional part is a constant value which is equal to p at
any time. The integral part is a linear line proportional to the time. The differential part
is a delta function in the time response.

Closed-Loop Control

The PID controller has the main role in a closed-loop control system. The block diagram
is shown in Figure 10.6. The regulated converter has its transfer function G(s) and the
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feedback element with transfer function F(s). The closed-loop transfer function of the
whole system is:

GC(s) = Gpid(s)G(s)

1 + Gpid(s)G(s)F(s)
(10.14)

This is very popular form for all closed-loop control systems. If the condition

Gpid(s)G(s)F(s) � 1

is satisfied, the closed-loop transfer function is determined by the feedback network:

GC(s) = Gpid(s)G(s)

1 + Gpid(s)G(s)F(s)
≈ 1

F(s)
(10.15)

Particularly the closed transfer function is much different from open-loop transfer
function. Most closed-loop control system use PI controller rather than PID controller
since PID controller has two forward items to cause unstable.

10.2 PI CONTROL FOR AC/DC RECTIFIERS

PI control is a typical method to improve system characteristics.Applying a PI controller
to AC/DC rectifiers can obtain good characteristics. We now discuss the closed-loop
control system of the AC/DC rectifiers with a PI controller in this section. The feed-
back network is assumed as a unity element (i.e. it is not very large). Therefore, the
characteristics of the closed-loop system are still depending on the AC/DC rectifiers.

10.2.1 Stability Analysis

Figure 10.7 shows the closed-loop control system block diagram of the converter G(s)
with a PI controller. The converter G(s) is a zero-order hold (ZOH) simulating AC/DC
rectifiers. The feedback network is assumed as a unity element. The system closed-loop
transfer function in the s-domain is:

GC(s) = Gpi(s)G(s)

1 + Gpi(s)G(s)
= p 1+sτi

sτi

1 + p 1+sτi
sτi

= 1 + sτi

1 + pCsτi
(10.16)

T

Vref VO�

� T

G(s)
converter

Vfeedback

PI or PID
controller

Figure 10.7 PI/PID controlled closed-loop control system of a converter.
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where pC is the closed-loop equivalent proportional gain, pC = (p + 1)/p. The closed-
loop transfer function is stable. The pole (−1/pCτi) is further away from the
boundary with the comparison to the original PI controller’s pole (−1/τi) since
pC = (p + 1)/p > 1. There is a zero and is the closed-loop transfer function (−1/τi).
Therefore, the closed-loop control system has higher stable margin to be stable, and
quick response for the step response, since there is an off-set item. The stable state
output voltage is still the same since the gain is unity in per-unit system.

The system closed-loop transfer function in the z-domain is:

GC(z) = Z[GC(s)] = Z
[

1 + sτi

1 + pCsτi

]
= 1

pC
+
(

1 − 1

pC

)
z

z − e−T/pCτi
(10.17)

The poles of this system are in the unity-cycle. Therefore, this system is stable. The
location of the zero and pole is shown in Figure 10.8.

Analysis of Rectifiers with a First-Order Load

The closed-loop PI control system of the converter G(s) with a first-order load is
shown in Figure 10.9. The converter G(s) is a ZOH simulating AC/DC rectifiers. The

z-planej Im z

Re z

10 e�T/pcτi

Figure 10.8 The locations of the zero and pole of the PI control closed-loop control system in
the z-plane.

T

Iref IOVd�

� T

G(s)
converter

G1(s)

Ifeedback

PI or PID
controller

Figure 10.9 PI/PID controlled closed-loop control system of a converter with a first-order load.
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closed-loop PI control transfer function of the AC/DC rectifiers with a first-order load
in the s-domain is:

GC(s) = Gpi(s)G(s)G1(s)

1 + Gpi(s)G(s)G1(s)
= p 1+sτi

sτi

1
1+sτ1

1 + p 1+sτi
sτi

1
1+sτ1

= p(1 + sτi)

sτi(1 + sτ1) + p(1 + sτi)
(10.18)

This is a second-order transfer function with two poles in the left-hand half-plane
(LHHP), so that this system is stable. If we carefully select the integral time constant
τi = τ = L/R, the items (1 + sτi) in the numerator and the items (1 + sτ1) in the denom-
inator can be eliminated each other. Therefore, the closed-loop transfer function can
be rewritten as:

GC(s) = p 1
sτi

1 + p 1
sτi

= p

sτi + p
= 1

1 + s τi
p

= 1

1 + sτe
(10.19)

where τe = τi/p is the equivalent time constant. It means that the closed-loop transfer
function is a transfer function of an equivalent first-order element with a smaller time
constant τe = τi/p (usually p >1). The transfer function in the z-domain is:

GC(z) = Z[GC(s)] = Z

[
1

1 + s τi
p

]
= z

z − e−T/τe
(10.20)

The system has a pole (e−T/τe ) located inside the unity-cycle further away from the
unity-cycle with comparison to the original pole (e−T/τi ). The location of the zero and
pole is shown in Figure 10.10.

z-planej Im z

Re z

10 e�T/τe

Figure 10.10 The locations of the zero and pole of the PI/PID controlled closed-loop control
system of a converter with a first-order load in the z-plane.
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Analysis of Rectifiers with a First-Order Load Plus an Integral Element

The closed-loop PI control system of the converter G(s) with a first-order load plus
an integral element is shown in Figure 10.11. The converter G(s) is a ZOH simulating
AC/DC rectifiers. The closed-loop PI control transfer function of the AC/DC rectifiers
with a first-order load plus an integral element in the s-domain is:

GC(s) = Gpi(s)G(s)G1(s)Gm(s)

1 + Gpi(s)G(s)G1(s)Gm(s)
= p 1+sτi

sτi

1
1+sτ1

1
sτm

1 + p 1+sτi
sτi

1
1+sτ1

1
sτm

= p(1 + sτi)

s2τiτm(1 + sτ1) + p(1 + sτi)
(10.21)

This is a third-order transfer function with three poles, so that normally this system
is unstable. If we carefully select the integral time constant τi = τ1 = L/R, the items
(1 + sτi) in the numerator and the items (1 + sτ1) in the denominator can be eliminated
each other. Therefore, the closed-loop transfer function can be rewritten as:

GC(s) = p 1
sτi

1
sτm

1 + p 1
sτi

1
sτm

= p

s2τiτm + p
= 1

1 + s2 τiτm
p

= 1

1 + s2τ2
a

(10.22)

where τa is the auxiliary time constant, τa = √
τiτm/p. It means that the closed-loop

transfer function is an equivalent second-order element with a pair of complex poles
located on the stability boundary. Usually, this system is considered unstable.

The transfer function in the z-domain is:

GC(z) = Z[GC(s)] = Z

[
1

1 + s τiτm
p

]
= Tze−T/τa

(z − e−T/τa )2 (10.23)

where τa is the auxiliary time constant, τa = √
τiτm/p. This system has double-folded

poles at the location (e−T/τa ) inside the stability boundary, the unity-cycle and further
away from the unity-cycle with comparison to the original pole (e−T/τi ). It means that
the system in analog control is unstable, but it is stable in digital control. The location
of the zero and pole is shown in Figure 10.12.

T

Wref Ia WOVd�

� T

G(s)
converter

G1(s) Gm(s)

Wfeedback

PI or PID
controller

Figure 10.11 PI control closed-loop control system of a converter with a first-order load plus
an integral element.
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This system is a DC motor variable speed-control system. In order to keep it stable
in analog control, usually set double closed-loop control in industrial applications.
Considering the motor back electromagnetic force (EMF), we can redraw the system
block diagram is shown in Figure 10.13.

The inner-loop control can yields the transfer function Ginner(s) in a first-order
circuit. The out-loop control can finally yields the whole system transfer function
GC(s) as a first-order circuit. Therefore, this system becomes stable:

Ginner(s) = p 1
sτi

1 + p 1
sτi

= p

sτi + p
= 1

1 + s τi
p

(10.24)

The whole closed-loop transfer function is:

GC(s) = Gpi(s)Ginner(s)G′
i(s)

1 + Gpi(s)Ginner(s)G′
i(s)

=
p 1+sτi

sτi

1
1+s

τi
p

1
1+sτm

1 + p 1+sτi
sτi

1
1+s

τi
p

1
1+sτm

= p

sτm + p
= 1

1 + sτ′
m

(10.25)

where the equivalent time constant τ′
m is equal to τm/p. Therefore, the closed-loop

transfer function is stable with only one pole at −1/τ′
m in the LHHP.

z-plane

j Im z

Re z

10 e�T/τa

Figure 10.12 The locations of the zero and pole of the PI control closed-loop control system
of a converter with a first-order load plus an integral element in the z-plane.
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Figure 10.13 Double PI/PID controlled closed-loop control system of AC/DC rectifiers with
a first-order load plus an integral element.
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10.2.2 Unity-Step Responses

Refer to Figure 10.7 showing the closed-loop control system block diagram of the
converter G(s) with a PI controller. The converter G(s) is a ZOH simulating AC/DC
rectifiers. The feedback network is assumed as a unity element. The input signal is a
unity-step function, Vin(s) = 1/s. Referring to (10.16), the output signal of the closed-
loop system in the s-domain is:

VO(s) = GC(s)Vin(s) = 1

s

Gpi(s)G(s)

1 + Gpi(s)G(s)
= 1

s

1 + sτi

1 + pCsτi
(10.26)

The unit-step response of the closed-loop transfer function is stable. The pole (−1/pCτi)
is further away from the boundary with the comparison to the original PI controller’s
pole (−1/τi) since pC = ( p + 1)/p > 1. There is a zero and is the closed-loop transfer
function (−1/τi). Therefore, the closed-loop control system has higher stable margin
to be stable, and quick response for the step response, since there is an off-set item.
The unit-step response in the time domain is:

vO(t) = 1

pC
+
(

1 − 1

pC

)
(1 − e−t/pC τi ) (10.27)

The output signal of the closed-loop system is a constant plus an exponential function,
so that it is stable.

The output signal of the closed-loop system in the z-domain is:

GC(z) = Z
[

1

s
GC(s)

]
= Z

[
1

s

1 + sτi

1 + pCsτi

]
= z

z − 1

[
1

pC
+
(

1 − 1

pC

)
1 − e−T/pCτi

z − e−T/pCτi

]
(10.28)

The poles of this system are in the unity-cycle. Therefore, this system is stable.

Analysis of Rectifiers with a First-Order Load

The closed-loop PI control system of the converter G(s) with a first-order load is
shown in Figure 10.9. The converter G(s) is a ZOH simulating AC/DC rectifiers. The
input signal is a unit-step function Iin(s) = 1/s. We still select the integral time constant
τi = τ1 = L/R. Referring to (10.19), the unit-step response of the closed-loop PI control
transfer function of the AC/DC rectifiers with a first-order load in the s-domain is:

IO(s) = GC(s)Iin(s) = 1

s

Gpi(s)G(s)G1(s)

1 + Gpi(s)G(s)G1(s)
= 1

s

1/(1 + sτe)

1 + 1/(1 + sτe)
= 1

s

0.5

1 + 0.5sτe

(10.29)

This is a second-order transfer function, and it is stable. Therefore, the unit-step
response of the closed-loop control system in the time domain is:

iO(t) = 0.5(1 − e−2t/τe ) (10.30)
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It means that the unit-step response of the closed-loop control system is an exponential
function, so that it is stable. The unit-step response will have quicker settling process
since it has a smaller time constant.

The transfer function in the z-domain is:

IO(z) = Z
[

1

s

0.5

1 + 0.5sτe

]
= 0.5z(1 − e−2T/τe )

(z − 1)(z − e−2T/τe )
(10.31)

The system has a pole (e−2T/τe ) located inside the unity-cycle further away from the
unity-cycle with comparison to the original pole (e−2T/τi ).

Analysis of Rectifiers with a First-Order Load Plus an Integral Element

The closed-loop PI control system of the converter G(s) with a first-order load plus
an integral element is shown in Figure 10.11. The converter G(s) is a ZOH simulating
AC/DC rectifiers. The input signal is a unit-step function �in(s) = 1/s. We still select
the integral time constant τi = τ1 = L/R. Referring to (10.22), the unit-step response of
the closed-loop PI control system of the AC/DC rectifiers with a first-order load plus
an integral element in the s-domain is:

�O(s) = GC(s)�in(s) = 1

s

p 1+sτi
sτi

1
1+sτ1

1
sτm

1 + p 1+sτi
sτi

1
1+sτ1

1
sτm

= 1

s

p

s2τiτm + p
= 1

s

1

1 + s2τ2
a

(10.32)

This is a third-order transfer function with three poles, so that normally this sys-
tem is unstable. The unit-step response of the closed-loop control system in the time
domain is:

ωO(t) = 1 − cos
t

τa
(10.33)

where τa is the auxiliary time constant, τa = √
τiτm/p. It means that the unit-step

response of the closed-loop control system is unstable with constant amplitude
oscillation.

The transfer function in the z-domain is:

�O(z) = Z
[

1

s

1

1 + s2τ2
a

]
= z

z − 1

z2 − z cos T
τa

z2 − 2z cos T
τa

+ 1
(10.34)

where τa is the auxiliary time constant, τa = √
τiτm/p. The system response in the

z-domain has three poles inside the unity-cycle. It means that the system in analog
control is unstable, but it is stable in digital control.

This system is a DC motor variable speed-control system. In order to keep it stable
in analog control, usually set double closed-loop control in industrial applications. The
considering the motor back EMF, we can redraw the system block diagram is shown
in Figure 10.13.
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The inner-loop control can yields the transfer function Ginner(s) in a first-order
circuit. The out-loop control can finally yields the whole system transfer function GC(s)
as a first-order circuit. Therefore, this system becomes stable. The inner-closed-loop
transfer function is (10.24) and the whole closed-loop transfer function is (10.25). The
unit-step response of the closed-loop control system in the s-domain is:

�O(s) = 1

s

1

1 + s τm
p

= 1

s

1

1 + sτ′
m

(10.35)

The unit-step response of the double closed-loop control system in the time domain is:

ωO(t) = 1 − e−t/τ′
m (10.36)

where the equivalent time constant τ′
m is equal to τm/p. Therefore, the unit-step response

of the closed-loop control system is stable.
The transfer function in the z-domain is:

�O(z) = Z
[

1

s

1

1 + sτ′
m

]
= z

z − 1

1 − e−T/τ′
m

z − e−T/τ′
m

(10.37)

The system response in the z-domain has two poles inside the unity-cycle. It means
that the system is stable in digital control.

10.2.3 Impulse Responses

Refer to Figure 10.14 showing the closed-loop control system block diagram of the
converter G(s) with a PI controller. The converter G(s) is a ZOH simulating AC/DC
rectifiers. The feedback network is assumed as a unity element. The interference signal
Vint(s) = U is a unit delta function. To simplify the analysis, the input signal is assumed
Vin(s) = 0. Therefore, the equivalent block diagram is shown in Figure 10.15 for the

T

Vin(s)

Vint(s)

VO(s)�

T
G(s)PI/PID

�
�

T

Figure 10.14 PI control closed-loop control system of a converter applying an impulse
response.
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T

VO(s )
1

G(s) PI/PID

Vint(s ) �

Figure 10.15 Equivalent block diagram of the PI/PID controlled closed-loop control system
of a converter applying an impulse response.
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IO(s )�
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Figure 10.16 PI/PID controlled closed-loop control system of a converter with a first-order
load applying an impulse response.

analysis of the impulse response. The output signal of the closed-loop system in the
s-domain is:

VO(s) = Vint(s)

1 + Gpi(s)G(s)
= U

1 + p 1+sτi
sτi

= U
sτi

p + (1 + p)sτi
(10.38)

The impulse response in the time domain is:

vO(t) = Uδ(t)
[

1

1 + p
− p

1 + p
(1 − e−t/(1+p)τi )

]
(10.39)

The impulse response is stable and that of the closed-loop system in the z-domain is:

VO(z) = Z
[

Usτi

1 + psτi

]
= U

p

(
1 − z

z − e−T/pτi

)
(10.40)

The pole of this system is in the unity-cycle. Therefore, this impulse response is stable.

Analysis of Rectifiers with a First-Order Load

Refer to Figure 10.16 showing the closed-loop control system block diagram of the PI
controlled converter G(s) with a first-order circuit. The converter G(s) is a ZOH
simulating AC/DC rectifiers. The feedback network is assumed as a unity element.
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T
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G(s)

IO(s )
1

PI/PIDG1(s)

Figure 10.17 Equivalent block diagram of the PI control closed-loop control system of a
converter with a first-order load applying an impulse response.
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Figure 10.18 PI control closed-loop control system of a converter with a first-order load plus
an integral element applying an impulse response.

The interference signal Iint(s) = U as a unit delta function. To simplify the analysis,
the input signal is assumed Iin(s) = 0. We still select the PI controller’s integral time
constant τi = τ1. Therefore, the equivalent block diagram is shown in Figure 10.17 for
the analysis of the impulse response. The output signal of the closed-loop system in
the s-domain is:

IO(s) = U

1 + Gpi(s)G(s)G1(s)
= U

1 + p 1
sτi

= Usτi

p + sτi
(10.41)

The impulse response in the time domain is:

iO(t) = Uδ(t)(1 − e−t/pτi ) (10.42)

The impulse response is stable and that of the closed-loop system in the z-domain is:

IO(z) = Z
[

Usτi

p + sτi

]
= U

(
1 − z

z − e−pT/τi

)
(10.43)

The pole of this system is in the unity-cycle. Therefore, this impulse response is stable.

Analysis of Rectifiers with a First-Order Load Plus an Integral Element

Refer to Figure 10.18 showing the closed-loop control system block diagram of the PI
controlled converter G(s) with a first-order circuit plus an integral element. The con-
verter G(s) is a ZOH simulating AC/DC rectifiers. The feedback network is assumed as
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T
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G1(s)
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Figure 10.19 Equivalent block diagram of the PI control closed-loop control system of a
converter with a first-order load plus an integral element applying an impulse response.

a unity element. The interference signal �int(s) = U as a unit delta function. To simplify
the analysis, the input signal is assumed �in(s) = 0. We still select the PI controller’s
integral time constant τi = τ1. Therefore, the equivalent block diagram is shown in
Figure 10.19 for the analysis of the impulse response. The output signal of the closed-
loop system in the s-domain is:

�O(s) = U

1 + Gpi(s)G(s)G1(s)Gm(s)
= U

1 + p 1
s2τiτm

= Us2τiτm

p + s2τiτm

= U

(
1 − 1

1 + s2τ2
a

)
(10.44)

where τ2
a = τiτm/p. The impulse response in the time domain is:

ωO(t) = Uδ(t)
(

1 + sin
t

τa

)
(10.45)

The impulse response is unstable. The impulse response of the closed-loop system in
the z-domain is:

�O(z) = Z
[

Usτiτm

p + sτiτm

]
= U

(
1 − z sin T/τa

z2 − 2z cos T/τa + 1

)
(10.46)

The poles of this system are in the unity-cycle. Therefore, this impulse response is
stable.

10.3 PI CONTROL FOR DC/AC INVERTERS AND AC/AC
(AC/DC/AC) CONVERTERS

PI control is a typical method to improve the system characteristics. Applying a PI
controller to DC/AC inverters and AC/AC (AC/DC/AC) converters can obtain good
characteristics. We now discuss the closed-loop control system of the DC/AC inverters
and AC/AC (AC/DC/AC) converters with a PI controller in this section. The feedback
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Figure 10.20 The locations of the zero and pole of the PI control closed-loop control system
(FOH) in the z-plane.

network is assumed as a unity element (i.e. it is not very large). Therefore, the char-
acteristics of the closed-loop system are still depending on the DC/AC inverters and
AC/AC (AC/DC/AC) converters.

10.3.1 Stability Analysis

Refer to Figure 10.7 showing the closed-loop control system block diagram of the
converter G(s) with a PI controller. The converter G(s) is a first-order hold (FOH) with
the sampling interval T to simulate the DC/AC inverters and AC/AC (AC/DC/AC)
converters. The feedback network is assumed as a unity element. We still select the PI
controller’s integral time constant τi = T . The system closed-loop transfer function in
the s-domain is:

GC(s) = Gpi(s)G(s)

1 + Gpi(s)G(s)
= p 1+sτi

sτi

1
1+sT

1 + p 1+sτi
sτi

1
1+sT

= 1

1 + s T
p

(10.47)

The closed-loop transfer function is stable. The pole (−p/T ) is further away from the
boundary with the comparison to the original PI controller’s pole (−1/τi) since p > 1.
Therefore, the closed-loop control system has higher stable margin to be stable, and
quick response for the step response. The stable state output voltage is still the same
since the gain is unity in per-unit system.

The system closed-loop transfer function in the z-domain is:

GC(z) = Z[GC(s)] = Z

[
1

1 + s T
p

]
= z

z − e−p
(10.48)

The pole of this system is inside the unity-cycle. Therefore, this system is stable. The
location of the zero and pole is shown in Figure 10.20.
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Analysis of Rectifiers with a First-Order Load

The closed-loop PI control system of the converter G(s) with a first-order load is shown
in Figure 10.9. The converter G(s) is an FOH simulating DC/AC inverters and AC/AC
(AC/DC/AC) converters. The feedback network is assumed as a unity element. We still
select the PI controller’s integral time constant τi = τ1. The system closed-loop transfer
function in the s-domain is:

GC(s) = Gpi(s)G(s)G1(s)

1 + Gpi(s)G(s)G1(s)
= p 1+sτi

sτi

1
1+sτ1

1
1+sT

1 + p 1
sτi

1
1+sτ1

1
1+sT

= p

sτ1(1 + sT ) + p
(10.49)

This is a second-order transfer function with two poles in the LHHP, so that this system
is stable. Since the time constant τ1 of the first-order circuit is usually much greater
than the sampling interval T (i.e. τ1 � T ), we can ignore the item s2τ1T in (10.49).
Therefore, it can be rewritten as:

GC(s) = Gpi(s)G(s)G1(s)

1 + Gpi(s)G(s)G1(s)
= p

p + sτ1
= 1

1 + sτ1/p
(10.50)

It is likely a first-order element. It means that the closed-loop transfer function is a
transfer function of an equivalent first-order element with a smaller time constant τ1/p
(usually p > 1). The transfer function in the z-domain is:

GC(z) = Z[GC(s)] = Z

[
1

1 + s τ1
p

]
= z

z − e−pT/τ1
(10.51)

The system has a pole (e−pT/τ1 ) located inside the unity-cycle further away from the
unity-cycle with comparison to the original pole (e−T/τi ). The location of the zero and
pole is shown in Figure 10.21.

z-planej Im z

Re z

10 e�pT/τ1

Figure 10.21 The locations of the zero and pole of the PI control closed-loop control system
(FOH with a first-order circuit) in the z-plane.
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Analysis of Rectifiers with a First-Order Load Plus an Integral Element

The closed-loop PI control system of the converter G(s) with a first-order load plus
an integral element is shown in Figure 10.11. The converter G(s) is an FOH simulat-
ing DC/AC inverters and AC/AC (AC/DC/AC) converters. The feedback network is
assumed as a unity element. We still select the PI controller’s integral time constant
τi = τ1. The system closed-loop transfer function in the s-domain is:

GC(s) = Gpi(s)G(s)G1(s)Gm(s)

1 + Gpi(s)G(s)G1(s)Gm(s)
= p 1+sτi

sτi

1
1+sτ1

1
1+sT

1
sτm

1 + p 1+sτi
sτi

1
1+sτ1

1
1+sT

1
sτm

= p

s2τ1τm(1 + sT ) + p
(10.52)

This is a third-order transfer function with three poles, so that normally this system is
unstable. Since the time constant τ1 of the first-order circuit is usually much greater than
the sampling interval T (i.e. τ1 � T ), we can ignore the item sT in (10.52). Therefore,
it can be rewritten as:

GC(s) = p

s2τ1τm + p
= 1

1 + s2 τ1τm
p

= 1

1 + s2τ2
a

(10.53)

where τa is the auxiliary time constant, τa = √
τ1τm/p. It means that the closed-loop

transfer function is an equivalent second-order element with a pair of complex poles
located on the stability boundary.

The transfer function in the z-domain is:

GC(z) = Z[GC(s)] = Z

[
1

1 + s τiτm
p

]
= Tze−T/τa

(z − e−T/τa )2 (10.54)

This system has double-folded poles at the location (e−T/τa ) inside the unity-cycle. It
means that the system in analog control is unstable, but it is stable in digital control.
The location of the zero and pole is shown in Figure 10.22.

z-planej Im z

Re z

10 e�T/τa

Figure 10.22 The locations of the zero and pole of the PI control closed-loop control system
(FOH with a first-order circuit plus an integral element) in the z-plane.
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10.3.2 Unit-Step Response for PI Controlled DC/AC
Inverters and AC/AC (AC/DC/AC) Converters

Refer to Figure 10.7 showing the closed-loop control system block diagram of the
converter G(s) with a PI controller. The converter G(s) is an FOH simulating DC/AC
inverters and AC/AC (AC/DC/AC) converters. The feedback network is assumed as
a unity element. The input signal is a unity-step function, Vin(s) = 1/s. Referring to
(10.47), we still select τi = T and obtain the output signal of the closed-loop system in
the s-domain:

VO(s) = GC(s)Vin(s) = 1

s

Gpi(s)G(s)

1 + Gpi(s)G(s)
= 1

s

1

1 + s T
p

(10.55)

The unit-step response of the closed-loop transfer function is stable. The pole (−p/T )
is further away from the boundary with the comparison to the original PI controller’s
pole (−1/τi). The unit-step response in the time domain is:

vO(t) = 1 − e−pt/T (10.56)

The output signal of the closed-loop system is an exponential function, so that it is
stable.

The unit-step response of the closed-loop system in the z-domain is:

GC(z) = Z
[

1

s
GC(s)

]
= Z

[
1

s

1

1 + s T
p

]
= z

z − 1

1 − e−p

z − e−p
(10.57)

The pole of this system is in the unity-cycle. Therefore, this system is stable.

Analysis of an FOH with a First-Order Load

The closed-loop PI control system of the converter G(s) with a first-order load is shown
in Figure 10.9. The converter G(s) is an FOH simulating DC/AC inverters and AC/AC
(AC/DC/AC) converters. The input signal is a unit-step function Iin(s) = 1/s. We still
select the integral time constant τi = τ1 = L/R. Referring to (10.50) and considering
τ1 � T , the unit-step response of the closed-loop PI control transfer function of the
FOH with a first-order load in the s-domain is:

IO(s) = GC(s)Iin(s) = 1

s

Gpi(s)G(s)G1(s)

1 + Gpi(s)G(s)G1(s)
= 1

s

1

1 + sτ1/p
(10.58)

This unit-step response is stable. Therefore, the unit-step response of the closed-loop
control system in the time domain is:

iO(t) = 1 − e−pt/τ1 (10.59)
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It means that the unit-step response of the closed-loop control system is an exponential
function, so that it is stable. The unit-step response will have quicker settling process
since it has a smaller time constant, τ1/p.

The transfer function in the z-domain is:

IO(z) = Z
[

1

s

1

1 + sτ1/p

]
= z(1 − e−pT/τ1 )

(z − 1)(z − e−pT/τ1 )
(10.60)

The system has a pole (e−pT/τ1 ) located inside the unity-cycle further away from the
unity-cycle with comparison to the original pole (e−T/τ1 ).

Analysis of the FOH with a First-Order Load Plus an Integral Element

The closed-loop PI control system of the converter G(s) with a first-order load plus an
integral element is shown in Figure 10.11. The converter G(s) is an FOH simulating
DC/AC inverters and AC/AC (AC/DC/AC) converters. The input signal is a unit-step
function �in(s) = 1/s. We still select the integral time constant τi = τ1 = L/R. Referring
to (10.53) and considering τ1 � T , the unit-step response of the closed-loop PI control
system of the FOH with a first-order load plus an integral element in the s-domain is:

�O(s) = GC(s)�in(s) = 1

s

1

1 + s2τ2
a

(10.61)

This is a third-order transfer function with three poles, so that normally this unit-step
response is unstable. The unit-step response of the closed-loop control system in the
time domain is:

ωO(t) = 1 − cos
t

τa
(10.62)

where τa is the auxiliary time constant, τa = √
τ1τm/p. It means that the unit-step

response of the closed-loop control system is unstable with constant amplitude
oscillation.

The transfer function in the z-domain is:

�O(z) = Z
[

1

s

1

1 + s2τ2
a

]
= z

z − 1

z2 − z cos T
τa

z2 − 2z cos T
τa

+ 1
(10.63)

The system response in the z-domain has three poles inside the unity-cycle. It means
that the system in analog control is unstable, but it is stable in digital control.

10.3.3 Impulse Response for PI Controlled DC/AC
Inverters and AC/AC (AC/DC/AC) Converters

Refer to Figure 10.14 showing the closed-loop control system block diagram of the
converter G(s) with a PI controller. The converter G(s) is an FOH simulating DC/AC
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inverters and AC/AC (AC/DC/AC) converters. The feedback network is assumed as a
unity element. The interference signal Vint(s) = U is a unit delta function. To simplify
the analysis, the input signal is assumed Vin(s) = 0. Therefore, the equivalent block
diagram is shown in Figure 10.15 for the analysis of the impulse response. We still
select the integral time constant τi = T . The output signal of the closed-loop system in
the s-domain is:

VO(s) = Vint(s)

1 + Gpi(s)G(s)
= U

1 + p 1+sτi
sτi

1
1+sT

= U
sT

p + sT
= U

(
1 − 1

1 + sT/p

)
(10.64)

The impulse response in the time domain is:

vO(t) = Uδ(t)(1 − e−pt/T ) (10.65)

The impulse response is stable and that of the closed-loop system in the z-domain is:

VO(z) = Z
[

U

(
1 − 1

1 + sT/p

)]
= U

(
1 − z

z − e−p

)
(10.66)

The pole of this system is in the unity-cycle. Therefore, this impulse response is stable.

Analysis of the FOH with a First-Order Load

Refer to Figure 10.16 showing the closed-loop control system block diagram of the
PI controlled converter G(s) with a first-order circuit. The converter G(s) is an FOH
simulating DC/AC inverters and AC/AC (AC/DC/AC) converters. The feedback net-
work is assumed as a unity element. The interference signal Iint(s) = U as a unit delta
function. To simplify the analysis, the input signal is assumed Iin(s) = 0. We still select
the PI controller’s integral time constant τi = τ1 with the condition τ1 � T . Therefore,
the equivalent block diagram is shown in Figure 10.17 for the analysis of the impulse
response. Using the closed-loop transfer function (10.50), we obtain the output signal
of the closed-loop system in the s-domain:

IO(s) = U

1 + Gpi(s)G(s)G1(s)
= U

1 + p 1
sτ1

1
1+sT

≈ Usτ1

p + sτ1
= U

(
1 − 1

1 + sτ1/p

)
(10.67)

The impulse response in the time domain is:

iO(t) = Uδ(t)(1 − e−pt/τ1 ) (10.68)

The impulse response is stable and that of the closed-loop system in the z-domain is:

IO(z) = Z
[

U

(
1 − 1

1 + sτ1/p

)]
= U

(
1 − z

z − e−pT/τ1

)
(10.69)

The pole of this system is in the unity-cycle. Therefore, this impulse response is stable.
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Analysis of the FOH with a First-Order Load Plus an Integral Element

Refer to Figure 10.18 showing the closed-loop control system block diagram of the
PI controlled converter G(s) with a first-order circuit plus an integral element. The
converter G(s) is an FOH simulating DC/AC inverters and AC/AC (AC/DC/AC) con-
verters. The feedback network is assumed as a unity element. The interference signal
�int(s) = U as a unit delta function. To simplify the analysis, the input signal is assumed
�in(s) = 0. We still select the PI controller’s integral time constant τi = τ1 with the con-
dition τ1 � T . Therefore, the equivalent block diagram is shown in Figure 10.19 for
the analysis of the impulse response. Using the closed-loop transfer function (10.53),
we obtain the output signal of the closed-loop system in the s-domain:

�O(s) = U

1 + Gpi(s)G(s)G1(s)Gm(s)
= U

1 + p 1
s2τ1τm

1
1+sT

≈ Us2τ1τm

p + s2τ1τm

= U

(
1 − 1

1 + s2τ2
a

)
(10.70)

where τ2
a = τ1τm/p. The impulse response in the time domain is:

ωO(t) = Uδ(t)
(

1 + sin
t

τa

)
(10.71)

The impulse response is unstable. The impulse response of the closed-loop system in
the z-domain is:

�O(z) = Z
[

Usτiτm

p + sτiτm

]
= U

(
1 − z sin T/τa

z2 − 2z cos T/τa + 1

)
(10.72)

The poles of this system are in the unity-cycle. Therefore, this impulse response is
stable.

10.4 PID CONTROL FOR DC/DC CONVERTERS

PID control is a typical method to improve system characteristics. Applying a PID
controller to DC/DC converters can obtain good characteristics. We now discuss the
closed-loop control system of the DC/DC converters with a PID controller in this
section. The feedback network is assumed as a unity element (i.e. it is not very large).
Therefore, the characteristics of the closed-loop system are still depending on the
DC/DC converters.

10.4.1 Stability Analysis of PID Controlled DC/DC
Converters

Refer to Figure 10.7 showing the closed-loop control system block diagram of the
converter G(s) with a PID controller. The converter G(s) is a second-order hold (SOH)
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with the sampling interval T to simulate the DC/DC converters. The feedback network
is assumed as a unity element. We still select the PID controller’s integral time constant
τi = τ and differential time constant τd to be equal to the damping time constant τd of
the converter G(s). The system closed-loop transfer function in the s-domain is:

GC(s) = Gpid(s)G(s)

1 + Gpid(s)G(s)
=

p 1+sτi+s2τiτd
sτi

1
1+sτ+s2ττd

1 + p 1+sτi+s2τiτd
sτi

1
1+sτ+s2ττd

= 1

1 + s τ
p

(10.73)

The closed-loop transfer function is stable. The pole (−p/τ) is further away from the
boundary with the comparison to the original PID controller’s pole (−1/τ) since p > 1.
Therefore, the closed-loop control system has higher stable margin, and quick response
for the step response. The stable state output voltage is still the same since the gain is
unity in per-unit system.

The system closed-loop transfer function in the z-domain is:

GC(z) = Z[GC(s)] = Z

[
1

1 + s τ
p

]
= z

z − e−pT/τ
(10.74)

The pole of this system is inside the unity-cycle. Therefore, this system is stable. The
location of the zero and pole is shown in Figure 10.23.

Analysis of DC/DC Converters with a First-Order Load

The closed-loop PID control system of the converter G(s) with a first-order load is
shown in Figure 10.9. The converter G(s) is an SOH simulating DC/DC converters.
The feedback network is assumed as a unity element. We still select the PID controller’s
integral time constant τi to be equal to the time constant τ, and the differential time

z-planej Im z

Re z

10 e�pT/τ

Figure 10.23 The locations of the zero and pole of the PI controlled closed-loop control system
(SOH) in the z-plane.
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constant τd to be equal to the damping time constant τd of the converter G(s). The
system closed-loop transfer function in the s-domain is:

GC(s) = Gpid(s)G(s)G1(s)

1 + Gpid(s)G(s)G1(s)
=

p 1+sτi+s2τiτd
sτi

1
1+sτ+s2ττd

1
1+sτ1

1 + p 1+sτi+s2τiτd
sτi

1
1+sτ+s2ττd

1
1+sτ1

= p

sτ(1 + sτ1) + p
(10.75)

This is a second-order transfer function with two poles in the LHHP, so that this system
is stable. Since the time constant τ of the converter G(s) is usually greater than the time
constant τ1 of the first-order circuit (i.e. τ > τ1), we can ignore the item sτ1 in (10.75).
Therefore, it can be rewritten as:

GC(s) = Gpid(s)G(s)G1(s)

1 + Gpid(s)G(s)G1(s)
≈ 1

1 + sτ/p
(10.76)

It is likely a first-order element. It means that the closed-loop transfer function is a
transfer function of an equivalent first-order element with a smaller time constant τ/p
(usually p > 1). The transfer function in the z-domain is:

GC(z) = Z[GC(s)] = Z

[
1

1 + s τ
p

]
= z

z − e−pT/τ
(10.77)

This system has a pole (e−pT/τ) located inside the unity-cycle further away from the
unity-cycle. The location of the zero and pole is shown in Figure 10.24.
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Figure 10.24 The locations of the zero and pole of the PI control closed-loop control system
(SOH with a first-order circuit) in the z-plane.
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Analysis of DC/DC Converters with a First-Order Load Plus an
Integral Element

The closed-loop PID control system of the converter G(s) with a first-order load plus
an integral element is shown in Figure 10.11. The converter G(s) is an SOH simulating
DC/DC converters. The feedback network is assumed as a unity element. We still select
the PI controller’s integral time constant τi = τ and the differential time constant τd to
be equal to the time constant τ of converter G(s). The system closed-loop transfer
function in the s-domain is:

GC(s) = Gpi(s)G(s)G1(s)Gm(s)

1 + Gpi(s)G(s)G1(s)Gm(s)
= p 1

sτ
1

1+sτ1

1
sτm

1 + p 1
sτ

1
1+sτ1

1
sτm

= p

s2ττm(1 + sτ1) + p
(10.78)

This is a third-order transfer function with three poles, so that normally this system
is unstable. Since the time constant τ of the converter G(s) is usually greater than the
time constant τ1 of the first-order circuit (i.e. τ > τ1), we can ignore the item sτ1 in
(10.78). Therefore, it can be rewritten as:

GC(s) = p

s2ττm + p
= 1

1 + s2 ττm
p

= 1

1 + s2τ2
a

(10.79)

where τa is the auxiliary time constant, τa = √
ττm/p. It means that the closed-loop

transfer function is an equivalent second-order element with a pair of complex poles
located on the stability boundary.

The transfer function in the z-domain is:

GC(z) = Z[GC(s)] = Z

[
1

1 + s ττm
p

]
= Tze−T/τa

(z − e−T/τa )2 (10.80)

This system has double-folded poles at the location (e−T/τa ) inside the unity-cycle. It
means that the system in analog control is unstable, but it is stable in digital control.
The location of the zero and pole is shown in Figure 10.25.

10.4.2 Unit-Step Response for PID Controlled
DC/DC Converters

Refer to Figure 10.7 showing the closed-loop control system block diagram of the
converter G(s) with a PID controller. The converter G(s) is an SOH simulating DC/DC
converters. The feedback network is assumed as a unity element. The input signal is a
unity-step function, Vin(s) =1/s. Referring to (10.73), we still select the PID controller’s
integral time constant τi = τ and differential time constant τd to be equal to the damping
time constant τd of the converter G(s). We then obtain the unit-step response of the
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z-planej Im z

Re z

10 e�T/τa

Figure 10.25 The locations of the zero and pole of the PI control closed-loop control system
(SOH with a first-order circuit plus an integral element) in the z-plane.

closed-loop system in the s-domain:

VO(s) = GC(s)Vin(s) = 1

s

Gpid(s)G(s)

1 + Gpid(s)G(s)
= 1

s

1

1 + s τ
p

(10.81)

Since,

Gpid(s) = p
1 + sτi + s2τiτ

′
d

sτi

G(s) = 1

1 + sτ + s2ττd

where τi is the integral time constant and τ′
d is the differential time constant of the PID

controller, τ is the time constant and τd is the damping time constant of the DC/DC
converter. We select τi = τ and τ′

d = τd, and then obtain

Gpid(s)G(s) = p
1 + sτi + s2τiτ

′
d

sτi

1

1 + sτ + s2ττd
= p

sτ

The unit-step response of the closed-loop transfer function is stable. The pole (−p/τ)
is further away from the boundary with the comparison to the original PI controller’s
pole (−1/τ). The unit-step response in the time domain is:

vO(t) = 1 − e−pt/τ (10.82)

The output signal of the closed-loop system is an exponential function, so that it is
stable.
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The unit-step response of the closed-loop system in the z-domain is:

GC(z) = Z
[

1

s
GC(s)

]
= Z

[
1

s

1

1 + s τ
p

]
= z

z − 1

1 − e−pT/τ

z − e−pT/τ
(10.83)

The pole of this system is in the unity-cycle. Therefore, this system is stable.

Analysis of an SOH with a First-Order Load

The closed-loop PID control system of the converter G(s) with a first-order load is
shown in Figure 10.9. The converter G(s) is an SOH simulating DC/DC converters.
The input signal is a unit-step function Iin(s) = 1/s. We still select the PID controller’s
integral time constant τi = τ and differential time constant τd to be equal to the damping
time constant τd of the converter G(s). Referring to (10.76) and considering τ > τ1, the
unit-step response of the closed-loop PID control transfer function of the SOH with a
first-order load in the s-domain is:

IO(s) = GC(s)Iin(s) = 1

s

Gpid(s)G(s)G1(s)

1 + Gpid(s)G(s)G1(s)
= 1

s

1

1 + sτ/p
(10.84)

This unit-step response is stable. Therefore, the unit-step response of the closed-loop
control system in the time domain is:

iO(t) = 1 − e−pt/τ (10.85)

It means that the unit-step response of the closed-loop control system is an exponential
function, so that it is stable. The unit-step response will have quicker settling process
since it has a smaller time constant, τ/p.

The transfer function in the z-domain is:

IO(z) = Z
[

1

s

1

1 + sτ/p

]
= z(1 − e−pT/τ)

(z − 1)(z − e−pT/τ)
(10.86)

The system has a pole (e−pT/τ) located inside the unity-cycle further away from the
unity-cycle with comparison to the original pole (e−T/τ).

Analysis of the SOH with a First-Order Load Plus an Integral Element

The closed-loop PI control system of the converter G(s) with a first-order load plus an
integral element is shown in Figure 10.11. The converter G(s) is an SOH simulating
DC/DC converters. The input signal is a unit-step function �in(s) = 1/s. We still select
the PID controller’s integral time constant τi to be equal to the time constant τ, and
the differential time constant τd to be equal to the dampling time constant τd of the
converter G(s). Referring to (10.79) and considering τ > τ1, the unit-step response of
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the closed-loop PID control system of the SOH with a first-order load plus an integral
element in the s-domain is:

�O(s) = GC(s)�in(s) = 1

s

1

1 + s2τ2
a

(10.87)

This is a third-order transfer function with three poles, so that normally this unit-step
response is unstable. The unit-step response of the closed-loop control system in the
time domain is:

ωO(t) = 1 − cos
t

τa
(10.88)

where τa is the auxiliary time constant, τa = √
ττm/p. It means that the unit-step

response of the closed-loop control system is unstable with constant amplitude
oscillation.

The transfer function in the z-domain is:

�O(z) = Z
[

1

s

1

1 + s2τ2
a

]
= z

z − 1

z2 − z cos T
τa

z2 − 2z cos T
τa

+ 1
(10.89)

The system response in the z-domain has three poles inside the unity-cycle. It means
that the system in analog control is unstable, but it is stable in digital control.

10.4.3 Impulse Response for PID Controlled
DC/DC Converters

Refer to Figure 10.14 showing the closed-loop control system block diagram of the
converter G(s) with a PID controller. The converter G(s) is an SOH simulating DC/DC
converters. The feedback network is assumed as a unity element. The interference
signal Vint(s) = U is a unit delta function. To simplify the analysis, the input signal is
assumed Vin(s) = 0. Therefore, the equivalent block diagram is shown in Figure 10.15
for the analysis of the impulse response. We still select the PID controller’s integral
time constant τi = τ and differential time constant τd to be equal to the damping time
constant τd of the converter G(s). The impulse response output signal of the closed-loop
system in the s-domain is:

VO(s) = Vint(s)

1 + Gpid(s)G(s)
= U

1 + p 1+sτi+s2τiτd
sτi

1
1+sτ+s2ττd

= U
sτ

p + sτ

= U

(
1 − 1

1 + sτ/p

)
(10.90)

The impulse response in the time domain is:

vO(t) = Uδ(t)(1 − e−pt/τ) (10.91)
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The impulse response is stable and that of the closed-loop system in the z-domain is:

VO(z) = Z
[

U

(
1 − 1

1 + sτ/p

)]
= U

(
1 − z

z − e−pT/τ

)
(10.92)

The pole of this system is in the unity-cycle. Therefore, this impulse response is stable.

Analysis of the SOH with a First-Order Load

Refer to Figure 10.16 showing the closed-loop control system block diagram of the
PID controlled converter G(s) with a first-order circuit. The converter G(s) is an SOH
simulating DC/DC converters. The feedback network is assumed as a unity element. The
interference signal Iint(s) = U as a unit delta function. To simplify the analysis, the input
signal is assumed Iin(s) = 0. We still select the PID controller’s integral time constant
τi = τ and differential time constant τd to be equal to the damping time constant τd of
the converter G(s) with the condition τ > τ1. Therefore, the equivalent block diagram is
shown in Figure 10.17 for the analysis of the impulse response. Using the closed-loop
transfer function (10.76), we obtain the output signal of the closed-loop system in the
s-domain:

IO(s) = U

1 + Gpi(s)G(s)G1(s)
= U

1 + p 1
sτ

1
1+sτ1

≈ Usτ

p + sτ
= U

(
1 − 1

1 + sτ/p

)
(10.93)

The impulse response in the time domain is:

iO(t) = Uδ(t)(1 − e−pt/τ) (10.94)

The impulse response is stable and that of the closed-loop system in the z-domain is:

IO(z) = Z
[

U

(
1 − 1

1 + sτ/p

)]
= U

(
1 − z

z − e−pT/τ

)
(10.95)

The pole of this system is in the unity-cycle. Therefore, this impulse response is stable.

Analysis of the SOH with a First-Order Load Plus an Integral Element

Refer to Figure 10.18 showing the closed-loop control system block diagram of the
PI controlled converter G(s) with a first-order circuit plus an integral element. The
converter G(s) is an SOH simulating DC/DC converters. The feedback network is
assumed as a unity element. The interference signal �int(s) = U as a unit delta function.
To simplify the analysis, the input signal is assumed �in(s) = 0. We still select the PI
controller’s integral time constant τi = τ and the differential time constant τd to be
equal to the time constant τ of converter G(s) with the condition τ > τ1. Therefore,
the equivalent block diagram is shown in Figure 10.19 for the analysis of the impulse
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response. Using the closed-loop transfer function (10.78), we obtain the output signal
of the closed-loop system in the s-domain is:

�O(s) = U

1 + Gpi(s)G(s)G1(s)Gm(s)
= U

1 + p 1
s2ττm

1
1+sτ1

≈ Us2ττm

p + s2ττm

= U

(
1 − 1

1 + s2τ2
a

)
(10.96)

where τ2
a = ττm/p. The impulse response in the time domain is:

ωO(t) = Uδ(t)
(

1 + sin
t

τa

)
(10.97)

The impulse response is unstable. The impulse response of the closed-loop system in
the z-domain is:

�O(z) = Z
[

Usττm

p + sττm

]
= U

(
1 − z sin T/τa

z2 − 2z cos T/τa + 1

)
(10.98)

The poles of this system are in the unity-cycle. Therefore, this impulse response is
stable.
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Chapter 11

Energy Factor Application
in AC and DC Motor Drives

AC and DC motor variable-speed drive systems are the main projects of the “power
electronics”. Energy storage in AC and DC motors has recently been investigated and
discussed.

AC motors can be supplied by fixed frequency (e.g. f = 50 or 60 Hz) power supply,
but its speed cannot be changed. An AC motor variable-speed drive system performs in
adjustable speed, so that its power supply frequency is changeable. AC motors working
in variable-speed drive system are supplied by choppers, DC/AC pulse-width modu-
lated (PWM) inverters and AC/AC (AC/DC/AC) converters. Therefore, this system is
working in discrete state. We can call these AC motor power supplies as discrete AC
power supply sources.

DC motors can be supplied by fixed DC voltage power supply, but its speed cannot
be changed (under the condition of fixed field flux). A DC motor variable-speed drive
system performs in adjustable speed, so that its power supply voltage is changeable.
DC motors working in variable-speed drive system are usually supplied by choppers,
AC/DC rectifiers and DC/DC converters. Therefore, this system is working in discrete
state. We can call these DC motor power supplies as discrete DC power supply sources.

11.1 INTRODUCTION

AC and DC motors are an important equipment to convert the electrical energy to
mechanical energy. Variable-speed drive system is the main project of the “power
electronics”. Energy storage in motors has recently been investigated and discussed. We
can apply the energy factor (EF) to demonstrate the motor drive system’s characteristics.
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Although there are many AC motors, we choose the three-phase induction motor
as the example in the next text. A three-phase induction motor is power supplied by
a three-phase AC power supply source. The energy is supplied to the stator, and then
transferred to the rotor. The main parts of the stored energy in an induction motor are
kinetic energy since the stator inductance is comparably small.

Traditionally, the system characteristics of AC motor drive systems have been ana-
lyzed by cybernetics and analog control theory since the operation of AC motor drive
systems was treated as a continuous process. If an induction motor working in a variable-
speed AC motor drive system is supplied by discrete AC power supply sources, the
stored energy in the induction motor is accumulated in period by period with the
energy quantization.

As convenience we choose a permanent magnet (PM) DC motor as the example
in the next text. A PM brushed DC is power supplied by a DC power supply source.
The energy is supplied to the armature circuit via brushes and commutators, and then
transferred to the rotor. The main parts of the stored energy in a DC motor are kinetic
energy since the armature inductance is comparably small.

Traditionally, the system characteristics of DC motor drive systems have been ana-
lyzed by cybernetics and analog control theory since the operation of DC motor drive
systems was treated as a continuous process. If a PM DC motor working in a variable-
speed DC motor drive system is supplied by discrete DC power supply sources, the
stored energy in the PM DC motor is accumulated in period by period with the energy
quantization.

Although digital control theory has been applied in all motor drive systems for a long
time, unfortunately the converters were not treated as correct models. We can think that
all these systems are digital control systems and we have to apply the digital control
theory to these systems. We will discuss these topics in this chapter. Most discussions
are novel approaches of the development in digital power electronics.

11.2 ENERGY STORAGE IN MOTORS

Energy storage in motors was well discussed long time ago by the electromechanical
theory. If a motor is supplied by a converter or other switching circuit the energy transfer
from the source to the motor is by the quantization manner. The energy is pumped to
the motor by energy quantum in each sampling interval, although the sampling interval
T is small.

11.2.1 Energy Storage in AC Motor

Energy storage in AC motor has two parts: mechanical stored energy (MSE) and
electrical stored energy (ESE). Total stored energy (SE) is defined as:

SE = MSE + ESE (11.1)
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Mechanical Energy Storage

Usually the mechanical stored energy of an AC motor includes few parts:

• The mechanical stored energy in the rotor.
• The mechanical stored energy in the joint and gear-box.
• The mechanical stored energy in the further equipment.

The first stored energy will respond to the motor inertia, J , and motor running speed,
ω. The second and third parts of the stored energy will respond to the equivalent inertia,
J ′, and motor running speed, ω′. Usually, we combine all inertia of whole mechanical
system together and symbolize as Je. We can consider all the mechanical stored energy
as kinetic energy which is measured by:

MSE = 1

2
Jeω

2 (11.2)

where Je is the equivalent inertia including motor rotor, jointer and gear-box, and the
further mechanical equipment. It is measured in kg m2, ω is the motor running speed
and measured in rad/s.

To simplify the investigation we may ignore the other energy losses/storage in the
motor such as hit, frictional and windage energy losses, which will affect the transient
process.

Electrical Energy Storage

The electrical stored energy in an AC motor is considered in the stator circuit. Back
electromagnetic force (EMF) is corresponding to the motor running speed. Assume
the stator inductance is L and the stator current is Is, the electrical stored energy is
measured by:

ESE = 1

2
LI 2

s (11.3)

where Ls is the stator inductance including the cable’s inductance in H, Is is the AC
motor stator current in A.

11.2.2 Energy Storage in DC Motor

Energy storage in a DC motor has two parts: mechanical stored energy (MSE) and
electrical stored energy (ESE). Total stored energy is defined as:

SE = MSE + ESE (11.4)

Mechanical Energy Storage

Usually the mechanical stored energy of a DC motor includes few parts:

• The mechanical stored energy in the rotor.
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• The mechanical stored energy in the joint and gear-box.
• The mechanical stored energy in the further equipment.

The first stored energy will respond to the DC motor inertia, J , and motor running
speed, ω. The second and third parts of the stored energy will respond to the equivalent
inertia, J ′, and motor running speed, ω′. Usually, we combine all inertia of whole
mechanical system together and symbolize as Je. We can consider all the mechanical
stored energy is kinetic energy measured by:

MSE = 1

2
Jeω

2 (11.5)

where Je is the equivalent inertia including motor rotor, jointer and gear-box, and
the further mechanical equipment. It is measured in kg m2, ω is the DC motor running
speed and measured in rad/s.

To simplify the investigation we may ignore the other energy losses/storage in the
motor such as hit, frictional and windage energy losses, which will affect the transient
process.

Electrical Energy Storage

The electrical stored energy in a DC motor is considered in the armature circuit and the
back EMF. Assume the armature inductance is La and the armature current is Ia, and
the field inductance is Lf and the field current is If , then the electrical stored energy is
measured by:

ESE = 1

2
(LaI 2

a + Lf I 2
f ) + EIa (11.6)

where E is the DC motor back EMF, La is the armature inductance including the cable’s
inductance in H, Ia is the motor armature current in A. Lf is the field inductance in H,
If is the motor field current in A. A PM DC motor has no field winding, so the equation
can be simplified as:

ESE = 1

2
LaI 2

a + EIa (11.7)

11.3 A DC/AC VOLTAGE SOURCE

We introduce an application of DC/AC PWM inverter in this section. It is called
“zero-phase odd-harmonic repetitive controller for a single-phase PWM inverter”. The
proposed repetitive controller combines an odd-harmonic periodic generator with a
non-casual phase lead compensation filter. It occupies less data memory than a conven-
tional repetitive controller does. Moreover, it offers faster convergence of the tracking
error, and yields very low-total harmonic distortion (THD) and low-tracking error.
Analysis and design of the proposed system are presented. Experimental results with
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the proposed repetitive controller are presented to validate the approach. The drawback
of the proposed controller is discussed and experimentally demonstrated.

High-performance constant-voltage-constant-frequency (CVCF) PWM inverters
should accurately regulate the output AC voltage/current to the reference sinusoidal
input with low THD and fast dynamic response. Nonlinear loads such as the recti-
fier loads that cause periodic distortion are major sources of THD. According to the
internal model principle [1], repetitive control (RC) [2–5] provides an effective solu-
tion for tracking periodic reference signals, or eliminating periodic disturbances. In
Ref. [6–10], RC found its promising usage in CVCF PWM converters for waveform
compensation. In a conventional RC system, any reference signal with a fundamental
period N can be exactly tracked by including a periodic signal generator 1/(zN − 1) in
the closed-loop system. Such a periodic signal generator needs at least N memory cells.
A usual repetitive controller introduces infinite gain at both even and odd-harmonic
frequencies. However, AC references and disturbances mainly contain odd-harmonic
frequencies in the CVCF PWM inverters. In order to improve the convergence perfor-
mance of RC systems, a new odd-harmonic periodic signal generator is proposed to
update control output every N /2 sampling intervals [11]. On the other hand, although
RC mathematically assures that the tracking errors asymptotically converge to zero
when repetition goes to infinity, poor tracking accuracy and transient may be caused
by poor design of the filter of repetitive controller in practical applications [14].

A discrete-time zero-phase odd-harmonic repetitive control scheme is proposed for
a CVCF PWM inverter to achieve high tracking accuracy (low-THD and low-tracking
error) and good dynamic response (fast monotonic convergence) in the presence of
linear and nonlinear loads, and parameter uncertainties. The analysis and design of the
proposed controller are discussed. Experimental results are presented to validate the
proposed approach. Moreover, the drawback of the proposed controller is discussed.

11.3.1 Zero-Phase Odd-Harmonic Repetitive Control

Zero-phase odd-harmonic repetitive control is a novel approach of digital control
methods. We assume that all harmonics are in odd orders.

Odd-Harmonic Periodic Signal Generator

In the discrete time domain, a conventional periodic signal generator can be written as:

Gr(z) = z−N

1 − z−N
= 1

zN − 1
(11.8)

where N = Ts/T , Ts and T being the signal period and the sampling time, respectively.
The generator in Equation (11.8) can eliminate the harmonics that are below the Nyquist
frequency, ω (= π/T ), by introducing infinite gain at both even and odd-harmonic
frequencies [3]. For systems such as the CVCF PWM inverters, the references and
disturbances mainly contain odd-harmonic frequencies. When a conventional repetitive
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controller is used, it updates the control output every N sampling intervals with at least
N memory cells. In the following, we investigate a new odd-harmonic periodic signal
generator, which occupies N /2 data memory cells and updates control output every
N /2 sampling intervals.

In general, a discrete-time signal x(n) with period N × T can be written as:

x(n + N ) = x(n), ∀ n ∈ Z (11.9)

Its Fourier series is as follows:




x(n) =
N−1∑
k=0

ck ej2πkn/(NT )

ck = 1

N

N−1∑
n=0

x(n)e−j2πkn/(NT )

(11.10)

In Equation (11.10), if the coefficients ck are zero for even index (k mod 2 = 0)
(including k = 0), then the signal is an odd-harmonic periodic signal. Moreover, if
the period N is even, the discrete-time signal, x(n), is an odd-harmonic signal if and
only if x(n + (N/2)) = x(n).

A discrete time odd-harmonic periodic signal generator has the following transfer
function:

Gr(z) = − 1

zN/2 + 1
(11.11)

From Equation (11.11), the generator has its poles at:

z = e j(2k+1) 2π
NT k = 0, 1, ... ,

N

2
− 1 (11.12)

Equation (11.12) means that Equation (11.11) has infinite gain at frequency
ωk = (2k + 1)2π/(NT ) of all odd harmonics. Furthermore, if the odd-harmonic sig-
nal generator as in Equation (11.11) is incorporated in a system, it will achieve perfect
asymptotic tracking or disturbance rejection for this class of periodic signals. As com-
pared to traditional periodic signal generator as in Equation (11.8), all even harmonic
poles ωk = 4kπ/(NT ) are removed.

Odd-Harmonic Repetitive Control

Figure 11.1 shows the proposed discrete-time odd-harmonic repetitive control system
under consideration, where R(z) is the reference input, Y (z) is the output, E(z) =
R(z) − Y (z) is the tracking error, D(z) is the disturbance, Gc(z) is the conventional
controller, Gs(z) is the plant, Gr(z) is a feedforward plug-in odd-harmonic repetitive
controller, kr is the repetitive control gain, Ur(z) is the output of the repetitive controller,
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Figure 11.1 Plug-in discrete-time odd-harmonic repetitive control system.

Gf (z) is a filter to obtain a stable overall closed-loop system, and Q(z) is a low-pass
filter to enhance the robustness of the overall system.

As shown in Figure 11.1, the proposed plug-in odd-harmonic repetitive control law
can be expressed as:

Ur(z) = −Q(z)(z−N/2Ur(z) + krz
−N/2Gf (z)E(z)) (11.13)

From Figure 11.1, the transfer functions from R(z) and D(z) to Y (z) in the overall
closed-loop control system can be derived as:

Y (z)

R(z)
= (1 + Gr(z))Gc(z)Gs(z)

1 + (1 + Gr(z))Gc(z)Gs(z)
= (1 + z−N/2Q(z)(1 − krGf (z)))H (z)

1 + z−N/2Q(z)(1 − krGf (z)H (z))
(11.14)

Y (z)

D(z)
= 1 + z−N/2

1 + Gc(z)Gs(z)

1

1 + z−N/2Q(z)(1 − krGf (z)H (z))
(11.15)

where

H (z) = Gc(z)Gs(z)

1 + Gc(z)Gs(z)

From Equations (11.14) and (11.15), the overall closed-loop system is stable if the
following conditions hold:

1. the roots of 1 + Gc(z)Gs(z) = 0 are located inside the unit circle;

2. ‖Q(z)(1 − krGf (z)H (z))‖ < 1 ∀ z = e jω, 0 < ω <
π

T
(11.16)

It should be pointed out that the above stability conditions for an odd-harmonic RC
system are the same as those for a conventional RC one [8]. It means that, if Q(z),
Gf (z) and H (z) are identical in both an odd-harmonic RC system and a conventional
RC system, the stability range of repetitive control gain kr are identical too. An odd-
harmonic RC updates its output every N /2 sampling intervals; while a conventional
RC renews its output every N sampling intervals. Therefore, if Q(z), Gf (z), H (z) and
kr are identical for both two RC systems, the tracking error convergence rate of an
odd-harmonic RC is about two times as fast as that of a conventional one.
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The error transfer function of the overall system is:

Ge(z) = E(z)

R(z) − D(z)
= 1 + z−N/2

1 + Gc(z)Gs(z)

1

1 + z−N/2Q(z)(1 − krGf (z)H (z))
(11.17)

Thus, if the overall closed-loop system is asymptotically stable and the angu-
lar frequency, ω, of the reference input R(t) and disturbance D(t) approaches to
ωm = (2m + 1)2π/(NT ), m = 0, 1, 2, . . . , (N/2) − 1, then z−N/2 → 1, thus:

lim
ω→ωm

‖e( jω)‖ = 0 (11.18)

According to Equation (11.18), if the frequencies of odd-harmonic references and/or
disturbances are less than half of the sampling frequency (Nyquist frequency), steady-
state zero-tracking error can be ensured by using the odd-harmonic repetitive controller
Gr(z). Theoretically, for CVCF PWM inverters, the odd-harmonic repetitive controller
Equation (11.13) is a zero-tracking error control law, if there are no even-harmonics
disturbances.

Phase Cancellation Compensation

From Equations (11.13) and (11.16), we observe that the performance of the repetitive
controller Gr(z) is determined by the design of Gf (z), kr and Q(z). Within its stability
range determined by Equation (11.16), larger kr leads to smaller damping ratio with
faster transients. In many cases, it is very difficult for all frequencies up to Nyquist
frequency to satisfy the inequality in Equation (11.16), if Q(z) = 1. To enhance the
robustness, a low-pass FIR filter Q(z) [5] with ‖Q(z)‖ ≤ 1 and zero phase shift, e.g.
Q(z) = α1z + α0 + α1z−1 with 2α1 + α0 = 1 and α0 > 0, α1 ≥ 0, can be introduced to
cut out the frequencies which are not able to satisfy Equation (11.16), and relax the
stability range for kr . However, some high-frequency periodic disturbances cannot be
eliminated exactly due to Q(z). Hence Q(z) will bring a trade-off between tracking
accuracy and the system robustness. A well-designed Gf (z) could make all frequencies
up to Nyquist frequency to satisfy Equation (11.16) with Q(z) = 1, then yields high
tracking accuracy with good transients.

Suppose H (z) has frequency characteristics H ( jω) = Nh(ω)exp( jθh(ω)) with Nh(ω)
and θh(ω) being its magnitude and phase; and Gf (z) has frequency characteristics
Gf ( jω) = Nf (ω)exp( jθf (ω)) with Nf (ω) and θf (ω) being its magnitude and phase. Using
these characteristics, Equation (11.16) leads to [12–14]:

krNh(ω)Nf (ω) < 2 cos(θh + θf ) (11.19)

Since kr , Nh(ω) and Nf (ω) are positive, Equation (11.19) necessarily yields:

−90◦< θh(ω) + θf (ω) < 90◦ (11.20)
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If θh(ω) = −θf (ω) (i.e. “zero phase”), for all frequencies up to Nyquist frequency,
Equation (11.16) will be satisfied with kr ∈ (0, 2/(Nh(ω)Nf (ω))). Since a CVCF PWM
inverter is a minimal phase system with phase lag θh(ω) > 0, a phase lead compensation
filter Gf (z) with θf (ω) < 0 is needed. To obtain exact phase lead compensation, the
poles-zeros cancellation [15] is the most direct approach, i.e. Gf (z) = 1/H (z). Equation
(11.16) will lead to:

0 < kr < 2 (11.21)

In practice, since H (z) is only approximately known, our design effort is to cancel
the phase lag as close as possible. Since the periodic signal generator in the repetitive
controller brings a delay z−N/2 or z−N , the above non-casual phase lead filter Gf (z)
is realizable. Due to uncertainties and disturbances, Q(z) will still be needed in the
repetitive controllers in practice.

11.3.2 Zero-Phase Odd-Harmonic Repetitive
Controlled PWM Inverter

In order to apply this theory, we offer a particular zero-phase odd-harmonic repetitive
controlled PWM inverter in this section.

Modeling of the System

Figure 11.2 shows the setup of the odd-harmonic repetitive controlled inverter. The
dynamics of the inverter can be described as follows:

(
v̇c
v̈c

)
=
(

0 1
− 1

LnCn
− 1

CnRn

)(
vc
v̇c

)
+
(

0
1

LnCn

)
vin

vin =
{−vdc, if S2 & S3 are on; S1 & S4 are off
+vdc, if S1 & S4 are on; S2 & S3 are off

(11.22)

where vc is the output voltage; iO is the output current; vdc is the DC bus voltage; the
control input vin is a PWM pulse; Ln, Cn, and Rn are the nominal component values of
the inductor, the capacitor and the load, respectively.

For a linear system ẋ = Ax + Bu, its sampled-data equation can be expressed as:

x(k + 1) = eAT x(k) +
∫

eA(T−τ)Bu(τ)dτ

Therefore, the sampled-data form for Equation (11.22) can be approximately
expressed as:

(
vc(k + 1)
v̇c(k + 1)

)
=
(

ϕ11 ϕ12
ϕ21 ϕ22

)(
vc(k)
v̇c(k)

)
+
(

g1
g2

)
u(k) (11.23)
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Figure 11.2 Repetitive controlled single-phase PWM inverter.

where the coefficients

ϕ11 = 1 − T 2

2LnCn

ϕ21 = − T

LnCn
+ T 2

2LnC2
n Rn

ϕ12 = T − T 2

2CnRn

ϕ22 = 1 − T

CnRn
− T 2

2LnCn
+ T 2

2C2
n R2

n

g1 = T

2LnCn

g2 = 1

LnCn
− T

2LnC2
n Rn

and the average active input

u(k) = vin(k) ≈
(

2	T (k)

T
− 1
)

vdcn
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with nominal DC bus voltage vdcn. The two-level PWM switching waveform for vin is
shown in Figure 11.3.

The output equation can be expressed as:

y(k) = vc(k) (11.24)

Zero-Phase Odd-Harmonic Control

Based on nominal values, the autoregressive-moving-average (ARMA) equation for
the Equations (11.23) and (11.24) can be expressed as follows:

y(k + 1) = −p1y(k) − p2y(k − 1) + m1u(k) + m2u(k − 1) (11.25)

where p1 = −(ϕ11 + ϕ22), p2 = ϕ11ϕ22 − ϕ21ϕ12, m1 = g1, m2 = g2ϕ12 − g1ϕ22.
In practice, the inverter parameters are L = Ln + 	L, C = Cn + 	C, R = Rn + 	R

and vdc = vdcn + 	v. Therefore, the ARMA equation for the actual plant should be:

y(k + 1) = −a1y(k) − a2y(k − 1) + b1u(k) + b2u(k − 1) (11.26)

where a1 = p1 + 	p1, a2 = p2 + 	p2, b1 = m1 + 	m1 and b2 = m2 + 	m2.
If a one-sampling-ahead-preview (OSAP) control law [6]

u(k) = 1

m1
[ yref (k) − m2u(k − 1) + p1y(k) + p2y(k − 1)] (11.27)

is applied to the plant, then H (z) without repetitive controller becomes [9]:

H (z) = b1 + b2z−1

(z + a1 + a2z−1)(m1 + m2z−1) − (p1 + p2z−1)(b1 + b2z−1)
(11.28)

Obviously, if vdc = vdcn, L = Ln, C = Cn and R = Rn, a deadbeat response
H (z) = z−1 is achieved.

In practice, there are uncertainties in model parameters, such as 	v = vdc − vdcn,
	L = L − Ln, 	C = C − Cn, load disturbance 	R = R − Rn, and even un-modeled

T

0

t �kTt �(k � 1)T t �(k � 1)T

�T(k) �T(k � 1)

vdc

�vdc

T

Figure 11.3 Two-level PWM switching waveform for vin.
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uncertainties. Hence, zero-tracking error cannot be achieved by OSAP controller. To
overcome the uncertainties and disturbances, an odd-harmonic repetitive controller
Gr(z) = −(krz−N/2Q(z))/(1 + z−N/2Q(z)Gf (z)) is plugged into the prior OSAP con-
trolled inverter, where N = f /fs (even); fs is the frequency of yref ; f = 1/T is
the sampling frequency; Gf (z) = 1/H (z) is the phase lead compensation filter;
Q(z) = α1z + α0 + α1z−1 with 2α1 + α0 = 1 and α1 ≥ 0, α0 > 0. If α1 = 0, α0 = 1, then
Q(z) = 1. Of course, since it is impossible to get accurate H (z) in practice, “zero phase”
can be only roughly obtained. Furthermore, in case of compensating the un-modeled
pure delays in the plant, a pure lead zm can be added into the compensation filter as:

Gf (z) = zm/H (z)

11.3.3 Experimental Verification

To validate the theoretical study, we have setup an experimental system in our lab-
oratory. DSPACE DS1102 and Matlab/Simulink have been used in fast prototyping
the experimental platform and collecting experimental data. For the odd-harmonic
and/or conventional repetitive controlled PWM inverter shown in Figure 11.2, the
sinverter parameters in our laboratory are setup as follows: Ln = 20 mH; L = 30 mH;
Cn = 45 µF; C = 50 µF; Rn = 15 �; vdc = 70V; vdcn = 80V; yref = vCref is ( fs = 50 Hz)
50V (peak) sinusoidal voltage; f = 1/T = 10 kHz; N = f /fs = 200; resistive load R =
22 �; uncontrolled rectifier Lr = 1 mH; Cr = 500 µF and Rr = 22 �.

As shown in Figure 11.4, based on above parameters, all three poles of H (z)
are located inside the unit circle when load R > 6 �. Hence, for the resistance load
R ∈ (6, ∞)�, the OSAP controlled inverter H (z) is stable. To compensate the phase
lag of H (z) and un-modeled delay in the range of (6, ∞)�, the filter Gf (z) is chosen as
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Gf (z) = z3/(H (z)|R=30 �). In our experiments, repetitive control gain kr = 0.8 ∈ (0, 2);
Q(z) = (z + 2 + z−1)/4.

Steady-State Response

Figures 11.5–11.7 show the steady-state responses of the output voltage vC(t), load
current iO(t) of the OSAP controlled inverter with no load, resistive load and rectifier
load, respectively. The results indicate that, OSAP offers lowTHD (up to 2.06%) output
voltage under linear load (resistor and no load), but yields worse THD (7.91%) output
voltage under nonlinear rectifier load. Note that, in the diagrams of output voltage
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harmonics spectrum, the fundamental frequency components (50 Hz, with normalized
amplitude) are removed.

Figures 11.8–11.10 show the steady-state responses of the output voltage vc(t), load
current iO(t) of the conventional RC controlled inverter with no load, resistive load
and rectifier load, respectively. The results indicate that conventional RC control offers
very low THD (<1%) output voltage under both linear load (resistor and no load) and
nonlinear rectifier load.

Figures 11.11–11.13 show the steady-state responses of the output voltage vc(t),
load current iO(t) of the odd-harmonic RC controlled inverter with no load, resistive
load and rectifier load, respectively. The results indicate that odd-harmonic RC control
also offers very low THD (up to 1.23%) output voltage under both linear load (resistor
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Figure 11.7 OSAP controlled steady-state response with under rectifier load. (a) Voltage vC

(12V/div) and iO (7.12A/div) and (b) output voltage harmonics spectrum.
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(12V/div) and (b) output voltage harmonics spectrum.
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and no load) and nonlinear rectifier load. Therefore, in terms of eliminating THD,
odd-harmonic RC as well as conventional RC are efficient control schemes.

Transient Response

Figure 11.14 shows the transient responses of the tracking error e = vcref (t) − vc(t)
with conventional RC and odd-harmonic RC being, respectively, plugged into OSAP
controlled inverter with different load at t ≈ 0 s. Figure 11.14(a) shows that conventional
RC controller successfully force the OSAP controlled tracking error (peak) from 4V
(under no load), 6V (under resistor load), 10V (under rectifier load) to about 0.5V (no
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Figure 11.9 Conventional RC controlled steady-state response under resistor load. (a) Voltage
vC (12V/div) and iO (2.85A/div) and (b) output voltage harmonics spectrum.
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load), 0.5V (resistor load) and 1V (rectifier load) within about 0.2–0.25 s, respectively;
whereas, Figure 11.14(b) shows that odd-harmonic RC controller successfully force the
tracking error (peak) from 4V (under no load), 6V (under resistor load), 10V (under
rectifier load) to about 0.5V (no load), 0.5V (resistor load) and 1V (rectifier load)
within about 0.1–0.13 s, respectively. It is clear from the diagram that, under identical
conditions, the tracking error convergence rate of an odd-harmonic RC is about two
times as fast as that of a conventional one.

It should be pointed out that, as shown in Figure 11.14(b), there are minor DC voltage
bias residues (even-harmonic components) in the odd-harmonic controlled steady-state
tracking errors. Figure 11.15 shows the zoomed in steady-state tracking errors under
different loads. In Figure 11.15(a), there are no obvious DC voltage bias residues in
conventional RC controlled steady-state tracking errors; whereas, as shown in Figure
11.15(b), for odd-harmonic RC controller, there are about 0.2–0.25V DC voltage bias
residues in the tracking error under no load and resistor load, and about 0.5 V bias
residue under rectifier load.

Sudden Step Load Change

Figures 11.16 and 11.17 show the odd-harmonic repetitive controller operates with sud-
den step load changes. It is clear from the diagrams that, odd-harmonic RC controlled
output voltages do not vary too much (3–4V), and recover from the sudden step load
changes (between no load and resistor load, and between no load and rectifier load)
within about 4–5 cycles (i.e. 80–100 ms).

11.3.4 Summary

In summary, the results shown in Figures 11.14–11.17 indicate that an odd-harmonic
RC offers significantly faster convergence rate than a conventional RC under different
loads (linear load – resistor, and nonlinear load – rectifier) and parameter uncertainties.
And our designed odd-harmonic RC controlled inverter provides very low THD output
voltage, and is robust to sudden step load changes, too. However, odd-harmonic RC
is not immune from even-harmonic disturbances. DC voltage bias residues in the
odd-harmonic controlled converter may have a bad impact upon magnetic components,
such as transformers and inductors. In case of high-power applications, we should pay
much attention to the impact from the phenomena of DC voltage bias residues in
odd-harmonic RC controlled converters.

In this section, a zero-phase odd-harmonic repetitive control scheme is proposed for
the CVCF PWM inverters. The data memory occupied by the odd-harmonic periodic
signal generator is only half of the conventional repetitive controller. It simplifies the
implementation and offers faster convergence of the tracking error with shorter control
update period. The well-design phase lead compensation filter Gf (z) helps repetitive
controller achieve high tracking accuracy by well phase lead compensation. Experi-
mental results show that the proposed approach effectively eliminated odd-harmonic
distortion under different loads (linear and nonlinear loads), as compared with a
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conventional controller. And the proposed odd-harmonic RC is robust to sudden step
load changes too. It is the drawback of an odd-harmonic RC system that even-harmonic
residues may occur in the tracking error. The phenomena of even-harmonic residues is
pointed out and experimentally demonstrated.

11.4 AN AC/DC CURRENT SOURCE

We introduce an application of AC/DC silicon controlled rectifier (SCR) rectifying
current source in this section. It is called “digitally controlled AC/DC SCR rectifying
current source”. The proposed system is shown in Figure 11.18. The system combines
a proportional integral (PI)-controller, an erasable programmable read-only memory
(EPROM) look-up table stored the arccosine operation to offer the SCR firing angle,
an SCR firing angle generator to yield firing pulse, a three-phase full-bridge SCR to
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analysis.

be simulated by a zero-order-hold (ZOH) and an L–R load (R = 54 �, L = 200 mH for
the experiments).

The block diagram of the SCR current source with PI-controller is shown in Fig-
ure 11.19. The input signal is Iin(s), the output current is IO(s) and the interference signal
is Iint(s) in Figure 11.19(a). Usually, when we analyze the disturbance response, the
input signal is assumed no change. The equivalent block diagram for disturbance analy-
sis is shown in Figure 11.19(b). The PI-controller is effective to keep the current source
to have satisfied system stability, unit-step response and interference impulse response.
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11.4.1 System Arrangement

In order to simplify the analysis, we assume the system to be analyzed in per unit system
with unity feedback. Therefore, there are three important elements in this system:

• PI-controller,
• ZOH,
• the first-order load.

We will describe them in detail one by one.

PI-Controller

The PI-controller is designed in digital form, its transfer function in the s-domain is:

Gpi(s) = Kp + Ki

s
(11.29)

The transfer function of the PI-controller in the z-domain is:

Gpi(z) = Kp + z

z − 1
Ki (11.30)

where Kp is the proportional gain, and Ki is the integral gain. The PI-control algorithm
has been implemented by a digital signal processor (DSP).The input of the PI-controller
is the error between the input current reference and the current feedback signals. The
output signal of the PI-controller is formed by a difference equation. For an output Yk
and an error Ek in kth step, we have the step operation:

Yk = KpEk +
k∑

j=0

KiEj (11.31)

or

Yk = KpδEk + KiEk + Yk−1 (11.32)

where Yk−1 is the output signal of the PI-controller in the (k − 1)th step.

ZOH to Simulate the SCR

The AC/DC SCR is a three-phase thyristor bridge with six devices. The output DC
voltage of the AC/DC SCR is determined by the firing angle α.

Vd = VdOcos α (11.33)

where VdO is the maximum DC output voltage corresponding to the firing angle α = 0.
Since the thyristor is out of control once it starts conducting in a period until the current
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through it reduces to zero, the AC/DC thyristor bridge rectifier is inherently a sample-
and-hold element in the control system. The system may, therefore, be implemented
by a latch so the thyristor bridge rectifier is considered a ZOH in the algorithm. We
use the ZOH to simulate the AC/DC SCR in the per-unit system. Its transfer function
in the s-domain is:

G(s) = 1 − e−Ts

s
(11.34)

where T is the sampling interval, T = 1/6f . In a power supply network with the
frequency of 50 Hz, the frequency is f = 50 Hz. So that T = 1/300 s = 3.33 ms.

The ZOH’s transfer function in the z-domain is:

G(z) = z

z − 1
(11.35)

It means that the output value of the ZOH will keep a constant in a sampling interval T .

The First-Order Load

There is an R–L circuit with the time constant τ1 = L/R. Considering the given values:
R = 54 � and L = 200 mH, the time constant of the first-order load τ1 = L/R = 3.7 ms.
Its transfer function in the s-domain is:

G1(s) = 1

1 + sτ1
(11.36)

Its transfer function in the z-domain is:

G1(z) = z

z − e−T/τ1
(11.37)

Considering the setting values:

G1(z) = z

z − e−3.33/3.7 = z

z − 0.4
(11.38)

Disturbance Signal

In most situations the interference signal is a unit-delta function. It means that the
signal disappears in a short time. If the interference is kept such as the load resistance
R changed. The disturbance signal Iint(s) is assumed as a unit-step function. Its transfer
function in the s-domain is:

Iint(s) = 1

s
(11.39)

The corresponding transfer function in the z-domain is:

Iint(z) = z

z − 1
(11.40)
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11.4.2 System Stability Analysis

Referring to Figure 11.19(a), we have got the system closed-loop transfer function as:

GC(s) = Gpi(s)G(s)G1(s)

1 + Gpi(s)G(s)G1(s)
=

(
Kp + Ki

s

)
1 − e−Ts

s
1

1 + sτ1

1 +
(

Kp + Ki
s

)
1 − e−Ts

s
1

1 + sτ1

(11.41)

This is stable system if we carefully select the proportional gain Kp and the integral gain
Ki to keep all poles are in the LHHP in the s-plane. We will concentrate our analysis
in digital control. Therefore, the closed-loop transfer function in the z-domain is:

GC(z) = Gpi(z)G(z)G1(z)

1 + Gpi(z)G(z)G1(z)
=

(
Kp + z

z − 1 Ki

)
z

z − 1
z

z−e−T/τ1

1 +
(

Kp + z
z − 1 Ki

)
z

z − 1
z

z − e−T/τ1

(11.42)

This is a stable system if we carefully select the proportional gain Kp and the integral
gain Ki to keep all poles inside the unit-cycle in the z-plane. The good digital control
system can implement optimization according to the restriction [16–18]:

GC(z) = 1

z
(11.43)

Therefore, the open-loop transfer function in the z-domain is:

GO(z) = Gpi(z)G(z)G1(z) = 1

z − 1
(11.44)

We know the transfer functions of a ZOH and a first-order load is:

G(z)G1(z) = 1 − a

z − a
(11.45)

where a = e−T/τ1 = 0.4. After optimization we got the proportional gain, Kp, and
integral gain, Ki, to be:

Kp = a

1 − a
= 0.66 and Ki = 1 (11.46)

11.4.3 Unit-Step Response Analysis

Referring to Figure 11.19(a), we obtain the unit-step response with the input signal to
be a unit-step function:

IO(z) = GC(z)Iin(z) = 1

z

z

z − 1
= 1

z − 1
=

∞∑
k=1

z−k (11.47)

The unit-step response is shown in Figure 11.20(a).
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Figure 11.20 System responses. (a) Input unit-step response and (b) disturbance response.

11.4.4 Impulse Response Analysis

Referring to Figure 11.19(b), we obtain the impulse response with the disturbance
signal to be a unit-step function:

IO−d(z) = Iint(z)

1 + GO(z)
= (1 − GC(z))Iint(z) = z − 1

z

z

z − 1
= 1 (11.48)

The unit-step response is shown in Figure 11.20(b).

11.5 AC MOTOR DRIVES

AC motor drive is the one main method to transfer AC electrical energy to mechanical
energy.

11.5.1 AC Motor Supplied by a Chopper

Figure 11.21 shows a single-phase AC motor supplied by a chopper. The power supply
is a DC voltage source with DC link voltage Vd and the copping frequency is f , and the
sampling period is T = 1/f . The stored energy is calculated by Equation (11.1). The
pumping energy (PE) is:

PE = VdIdT (11.49)
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Figure 11.21 A single-phase AC motor supplied by a chopper.

where Vd is the DC link source voltage, Id is the DC source current, T is the chopping
period (T = 1/f , where f is the switching frequency). We can define the EF as:

EF = SE

PE
= MSE + ESE

PE
(11.50)

We can estimate the transient process from motor stop to a certain speed. The settling
time is about:

tsettling = EF × T = MSE + ESE

VdId
(11.51)

The settling time from one running speed to another speed is approximately esti-
mated as:

	tsettling = 	EF × T = 	MSE + 	ESE

VdId
(11.52)

where 	tsettling is the transient settling time from one running speed to another, 	EF
is the EF variation between the two running states, 	MSE is the mechanical stored
energy variation between the two running states and 	ESE is the electrical stored
energy variation between the two running states. This calculation is similar to the small
signal analysis and calculation in Chapter 2.

11.5.2 AC Motor Supplied by a DC/AC Inverter or
AC/AC Converter

Figure 11.22 shows a three-phase AC motor supplied by a DC/AC inverter or AC/AC
converter. This power supply system is likely a chopper supplying an AC motor.
Therefore, the settling time is still estimated by Equations (11.51) and (11.52).
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Figure 11.22 A three-phase AC motor supplied by a DC/AC inverter or AC/AC converter.
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Figure 11.23 The system block diagram of the AC motor supplied by a FOH.

11.5.3 Variable-Speed AC Motor Drive System
Supplied by a FOH

Usually, AC motor variable-speed drive system has closed-loop control. The block
diagram of the system is shown in Figure 11.23, which is a three-phase AC motor
supplied by a DC/AC inverter or AC/AC converter. The system consists of a PI speed-
controller Gpi1(s), a PI current-controller Gpi2(s), an first-order-hold (FOH) simulating
a DC/AC inverter orAC/AC converter, AC motor stator circuit (a first-order circuit with
the time constant τ1 = L/R) and an integral element with the integral time constant τm.
The PI speed-controller Gpi1(s) has the proportional gain p1 and the integral time
constant τi1, and the PI current-controller Gpi2(s) has the proportional gain p2 and the
integral time constant τi2. The inner current closed-loop control transfer function is:

GC−i(s) = Gpi2(s)G(s)G1(s)

1 + Gpi2(s)G(s)G1(s)
= p2

1+sτi2
sτi2

1
1+sT

1
1+sτ1

1 + p2
1+sτi2

sτi2

1
1+sT

1
1+sτ1

(11.53)

We select the PI-control integral time constant τi2 to be equal to the time constant
τ1 of the first-order circuit. Considering that the sampling interval T is very small, we
obtain the closed-loop transfer function in the s-domain of the inner current loop as:

GC−i(s) = p2
1

sτ1

1
1+sT

1 + p2
1

sτ1

1
1+sT

≈ 1

1 + s τ1
p2

(11.54)

We can see that the inner current closed-loop transfer function is likely a first-order
circuit with small time constant τ1/p2 (usually p2 > 1). The corresponding transfer
function in the z-domain is:

GC−i(z) = z

z − e−p2T/τ1
(11.55)
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Figure 11.24 The outer system block diagram of the AC motor supplied by a FOH.

The simplified system block diagram is shown in Figure 11.24. The transfer function
of the outer closed-loop transfer function in the s-domain is:

GC−s(s) = Gpi(s)GC−i(s) Gm(s)
1 + G1(s)Gm(s)

1 + Gpi(s)GC−i(s) Gm(s)
1 + G1(s)Gm(s)

=
p1

1 + sτi1
sτi1

1
1 + sτ1/p2

1/sτm

1+ 1/sτm
1 + sτ1

1 + p1
1 + sτi1

sτi1

1
1 + sτ1/p2

1/sτm

1 + 1/sτm
1+sτ1

(11.56)

Usually, the integral element has very large time constant, τm, which is much greater
than the time constant of the first-order circuit, i.e. τm � τ1. We select the PI speed-
control integral time constant, τi1, to be equal to the time constant, τm, of the integral
element. We obtain the closed-loop transfer function in the s-domain of the outer speed
loop as:

GC−s(s) ≈ p1
1 + sτi1

sτi1

1
1 + sτ1/p2

1
1 + sτm

1 + p1
1 + sτi1

sτi1

1
1 + sτ1/p2

1
1 + sτm

= p1
1

sτm

1
1 + sτ1/p2

1 + p1
1

sτm

1
1 + sτ1/p2

≈ 1

1 + sτm/p1

(11.57)

We can see that the outer speed closed-loop transfer function is likely a first-order
circuit with much small time constant τm/p1 (usually p1 � 1). It means that the AC
motor has smaller time constant and quick response under the closed-loop control. The
corresponding transfer function in the z-domain is:

GC−s(z) = z

z − e−p1T/τm
(11.58)

This closed-loop control system is stable since the pole is inside the unity cycle in
the z-plane. If the PWM DC/AC inverter with carrier frequency is fC = 4 kHz, the
sampling interval is T = 1/fC = 0.25 ms. The AC induction motor has a mechanical
integral time constant τm is 300 ms. The proportional gain p1 of the PI speed-controller
can be p1 = 20. Therefore, the closed-loop transfer function is:

GC−s(z) = z

z − e−p1T/τm
= z

z − e−20×0.25/300 = z

z − 0.98
(11.59)
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The unit-step response is:

�O(z) = GC−s(z)
z

z − 1
= z

z − 0.98

z

z − 1
(11.60)

This response in the time domain is:

ωO(t) = 50(e−t − e−1.02t) (11.61)

We can see that the digital control system has very quick response.
The interference impulse response in the s-domain is:

�O(s) = GC−s(s)
1

s
= 1/s

1 + sτm/p1
(11.62)

The corresponding interference impulse response in the z-domain is:

�O(z) = GC−s(z)
z

z − 1
= z

z − 1

1 − e−p1T/τm

z − e−p1T/τm
(11.63)

The corresponding interference impulse response in the time domain is:

ωO(t) = 1 − e−p1t/τm (11.64)

It is clearly to illustrate that the AC motor speed response can be very quick if the pro-
portional gain of the PI speed-controller p1 is large. Normally, in industrial applications
the proportional gain of the PI speed-controller p1 is selected in the range of 10–30.
In the mean time the integral time constant τi1 of the PI speed-controller is selected to
be equal to the motor integral time constant τm, i.e. τi1 = τm. The optimization control
can be completed.

11.6 DC MOTOR DRIVES

DC motor drive is the one main method to transfer DC electrical energy to mechanical
energy.

11.6.1 DC Motor Supplied by a Chopper

Figure 11.25 shows a DC motor supplied by a chopper (assuming the field is a permanent
magnet). The power supply is a DC voltage source with DC link voltage Vd and the
copping frequency is f , and the sampling period is T = 1/f . The stored energy is a DC
calculated by Equation (11.4). The pumping energy (PE) is:

PE = VdIdT (11.65)
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Figure 11.25 A PM DC motor supplied by a chopper.

where Vd is the DC link source voltage, Id is the DC source current, T is the chopping
period (T = 1/f , where f is the switching frequency). We can define the energy factor
(EF) as:

EF = SE

PE
= MSE + ESE

PE
(11.66)

We can estimate the transient process from motor stop to a certain speed. The settling
time is about:

tsettling = EF × T = MSE + ESE

VdId
(11.67)

The settling time from one running speed to another speed is approximately esti-
mated as:

	tsettling = 	EF × T = 	MSE + 	ESE

VdId
(11.68)

where 	tsettling is the transient settling time from one running speed to another, 	EF
is the energy factor variation between the two running states, 	MSE is the energy
mechanical stored energy variation between the two running states and 	ESE is the
electrical stored energy variation between the two running states. This calculation is
similar to the small signal analysis and calculation in Chapter 2.

11.6.2 DC Motor Supplied by an AC/DC Rectifier

Figure 11.26 shows a PM DC motor supplied by an AC/DC rectifier. This power supply
system is likely a chopper supplying an AC motor. Therefore, the settling time is still
estimated by Equations (11.67) and (11.68).

Usually, DC motor variable-speed drive system with an AC/DC rectifier has closed-
loop control. This problem has been well discussed in literature. Therefore, we will
discuss the DC motor variable-speed drive system with a DC/DC converter in Section
11.6.3.
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Figure 11.27 A PM DC motor supplied by a power DC/DC converter.
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Figure 11.28 The system block diagram of a PM DC motor supplied by a SOH.

11.6.3 Variable-Speed DC PM Motor Drive System
Supplied by a SOH

Figure 11.27 shows a PM DC motor supplied by a DC/DC converter. This power supply
system is likely a chopper supplying a DC motor. Therefore, the settling time is still
estimated by Equations (11.67) and (11.68).

Usually, DC motor variable-speed drive system has closed-loop control. The block
diagram of the system is shown in Figure 11.28, which is a PM DC motor supplied by a
DC/DC converter. The system consists of a PI speed-controller Gpi1(s), a PID current-
controller Gpid2(s), an second-order-hold (SOH) simulating a DC/DC converter, DC
motor armature circuit (a first-order circuit with the time constant τ1 = La/Ra) and
an integral element with the integral time constant τm. The PI speed-controller Gpi1(s)
has the proportional gain p1 and the integral time constant τi1, and the PID current-
controller Gpid2(s) has the proportional gain p2, the integral time constant τi2 and the
differential time constant τd2. The inner current closed-loop control transfer function is:

GC−i(s) = Gpid2(s)G(s)G1(s)

1 + Gpid2(s)G(s)G1(s)
=

p2
1 + sτi2 + s2τi2τd2

sτi2

1
1 + sτ + s2ττd

1
1 + sτ1

1 + p2
1 + sτi2 + s2τi2τd2

sτi2

1
1 + sτ + s2ττd

1
1 + sτ1

(11.69)
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We select the PID current-control integral time constant τi2 and the differential time
constant τd2 to be equal to the time constant τ and damping time constant τd of the
DC/DC converter, respectively. We obtain the closed-loop transfer function in the
s-domain of the inner current loop as:

GC−i(s) = p2
1
sτ

1
1+sτ1

1 + p2
1
sτ

1
1+sτ1

= 1

1 + s τ
p2

+ s2 τ
p2

τ1
(11.70)

We can see that the inner current closed-loop transfer function is likely a second-order
circuit with small time constant τ/p2 (usually we can select p2 < 1) and an equivalent
damping time constant τ1. Usually the equivalent damping time constant τ1 is smaller
than the time constant τ/p2. So that this inner closed-loop transfer function can be
rewritten as:

GC−i(s) = 1

1 + s τ
p2

(11.71)

The corresponding transfer function in the z-domain is:

GC−i(z) = z

z − e−p2T/τ
(11.72)

The simplified system block diagram is shown in Figure 11.29. The transfer function
of the outer closed-loop transfer function in the s-domain is:

GC−s(s) = Gpi(s)GC−i(s) Gm(s)
1+G1(s)Gm(s)

1 + Gpi(s)GC−i(s) Gm(s)
1+G1(s)Gm(s)

=
p1

1+sτi1
sτi1

1
1+sτ/p2

1/sτm

1+ 1/sτm
1+sτ1

1 + p1
1+sτi1

sτi1

1
1+sτ/p2

1/sτm

1+ 1/sτm
1+sτ1

(11.73)

Usually, the integral element has very large time constant τm, which is much greater
than the time constant of the first-order circuit, i.e. τm � τ1. We select the PI speed-
control integral time constant τi1 to be equal to the time constant τm of the integral
element. We obtain the closed-loop transfer function in the s-domain of the outer speed
loop as:

GC−s(s) ≈ p1
1+sτi1

sτi1

1
1+sτ/p2

1
1+sτm

1 + p1
1+sτi1

sτi1

1
1+sτ/p2

1
1+sτm

= p1
1

sτm

1
1+sτ/p2

1 + p1
1

sτm

1
1+sτ/p2

≈ 1

1 + sτm
p1

(11.74)

We can see that the outer speed closed-loop transfer function is likely a second-order
circuit with much small time constant τm/p1 (usually p1 � 1). It means that the PM
DC motor has smaller time constant and quick response under the closed-loop control.
The corresponding transfer function in the z-domain is:

GC−s(z) = z

z − e−p1T/τm
(11.75)
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Figure 11.29 The outer system block diagram of the PM DC motor supplied by a SOH.

This closed-loop control system is stable since the pole is inside the unity cycle in the
z-plane. If the power DC/DC converter with the switching frequency is f = 20 kHz,
the sampling interval is T = 1/f = 50 µs. The PM DC motor has a mechanical integral
time constant τm is 300 ms. The proportional gain p1 of the PI speed-controller can be
p1 = 20. Therefore, the closed-loop transfer function is:

GC−s(z) = z

z − e−p1T/τm
= z

z − e−20×0.05/300 = z

z − 0.996
(11.76)

The unit-step response is:

�O(z) = GC−s(z)
z

z − 1
= z

z − 0.996

z

z − 1
(11.77)

This response in the time domain is:

ωO(t) = 250(e−t − e−1.004t) (11.78)

We can see that the digital control system has very quick response.
The interference impulse response in the s-domain is:

�O(s) = GC−s(s)
1

s
=

1
s

1 + sτm
p1

(11.79)

The corresponding interference impulse response in the z-domain is:

�O(z) = GC−s(z)
z

z − 1
= − z

z − 1

1 − e−p1T/τm

z − e−p1T/τm
(11.80)

The corresponding interference impulse response in the time domain is:

ωO(t) = 1 − e−p1t/τm (11.81)

It is clearly to illustrate that the AC motor speed response can be very quick if the pro-
portional gain of the PI speed-controller p1 is large. Normally, in industrial applications
the proportional gain of the PI speed-controller p1 is selected in the range of 10–30.
In the mean time the integral time constant τi1 of the PI speed-controller is selected to
be equal to the motor integral time constant τm, i.e. τi1 = τm. The optimization control
can be completed.
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Chapter 12

Applications in Other Branches
of Power Electronics

In general, digital control theory is available to be applied in other branches of power
electronics such as power factor correction (PFC), static compensation (STATCOM)
and flexible AC transmission system (FACTS), reactive power (VAr) compensation,
and power quality control (PQC). We will describe digital control theory applying in
some branches of power electronics in this chapter.

12.1 INTRODUCTION

Reactive power has no real physical meaning, but is recognized as an essential fac-
tor in the design and good operation of power systems. Real and reactive power on
a transmission line in an integrated network is governed by the line impedance, volt-
age magnitudes, the angle difference at the line ends, and the role the line plays in
maintaining the network stability under dynamic contingencies. Power transfer in most
integrated transmission systems is constrained by transient stability, voltage stability
and/or power stability. Reactive power (VAr) compensation or control is an essential
part in a power system to minimize power transmission losses, to maximize power
transmission capability and to maintain the supply voltage.

It is increasingly becoming one of the most economic and effective solutions to both
traditional and new problems in power transmission systems. It is a well-established
practice to use reactive at a particular bus bar in any electric power system. In the
past, synchronous condensers, mechanically switched capacitors and inductors, and
saturated reactors have been applied to control the system voltage in this manner.
Since the late 1960s, thyristor controlled reactor (TCR) devices together with fixed
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capacitors (FCs) or thyristor switched capacitors (TSCs) have been used to inject or
absorb reactive power.

Other compensators such as the thyristor controlled series compensator (TCSC) and
gate turn-off thyristors (GTO) static VAr compensator (commonly known as advanced
static VAr compensator, ASVC) have been applied in power transmission system since
1980s.

12.2 POWER SYSTEMS ANALYSIS

In an ideal electroenergetic system, the voltage and frequency in the various points of
power distribution must be constant, presenting only the fundamental component (with
no harmonics contents) and a near-unity power factor. In particular, these parameters
must be independent of the size and characteristics of the consumer loads; this can be
obtained only if these loads are equipped with reactive power compensators to make
the network independent from probable changes that appear in the distribution points.

Compensation of the loads is one of the techniques for controlling reactive power;
hence to improve the quality of the energy in the AC transmission lines, this technique
is generally used for the compensation of individual or a group of loads. This has three
essential objectives, namely:

1. power factor correction (PFC);
2. improvement of the voltage regulation;
3. load balancing.

It is noted that PFC and load balancing are desired even when the supply voltage is
virtually constant and independent of the load.

12.3 POWER FACTOR CORRECTION

PFC is the capacity of generating or absorbing the reactive power to a load without
the use of the supply. The major industrial loads have an inductive power factor (they
absorb reactive power); hence the current tends to go beyond the power is usually
used for the power conversion, and an excessive load current represents a loss for
the consumer, who not only pays for the over-dimensioning of the cable, but also for
the excess power loss in the cables. The electric companies do not want to transport the
useless reactive power of the alternators toward the loads; these and the distribution
network cannot be used at high efficiency, and the voltage regulation in the various
points becomes complicated. The principle used by these electric companies almost
always penalizes the low-power factor of the clients; hence the great development of
systems for power-factor improvement for industrial processes.

PFC technique has the following methods:

• Single-phase active power factor correctors
• Three-phase active power factor correctors
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Figure 12.1 Proposed single-stage PFC double-current SR Luo-converter.

• Soft-switching active power factor correctors
• Pulse-width-modulation (PWM) active power factor correctors
• Passive power factor correctors
• Single-stage AC/DC converters.

We take a single-stage high-PFC AC/DC converter as an example for digital control
application in this section. The system consists of an AC/DC diode rectifier and a
double-current synchronous rectifier (DC-SR) Luo-converter as shown in Figure 7.30
[1]. Although SR DC/DC converters are generally used for low-voltage high-current
(LVHC) applications, they are available to perform in normal output voltage level like
forward converters.

Figure 12.1 shows the single-stage PFC DC-SR Luo-converter. Suppose that the
output inductors L1 and L2 are equal to each other, then L1 = L2 = LO is called an
output inductor. There are three switches: main switch S, two auxiliary synchronous
switches S1 and S2. It inherently exhibits high-power factor because the PFC cell
operates in continuous conduction mode (CCM). In addition, it is also free to suffer
from high-voltage stress across the bulk capacitor at light loads. In order to investigate
the dynamical behaviors, the averaging method is used to drive the DC operating
point and the small-signal model. Based on the experimental results, the dynamical
behavior is verified by the illustration of Bode plots. A proportional-plus-integral-plus-
differential (PID) controller is designed to achieve output voltage regulation despite
variations in line voltage and load resistance. Finally, a prototype is built and tested to
successfully verify the dynamics and performances of the proposed converter.

In power electronic equipments, the PFC circuits are usually added between the
bridge rectifier and the loads to eliminate high-harmonics distortion of the line current.
In general, they can be divided into two categories: the two-stage approach and the
single-stage approach. In the two-stage approach, it includes a PFC stage and a DC/DC
regulation stage. It has good PFC and fast output regulations, but the size and cost
increase. To overcome the drawbacks, the graft scheme is proposed in Ref. [2]. Many
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single-stage approaches have been proposed in the literature [3]. It integrates a PFC
cell and a DC/DC conversion cell to form a single stage with a common switch. There-
fore, the sinusoidal input current waveform and the output voltage regulation can be
simultaneously achieved. It thereby meets the requirements of performances and costs.

However, there exists a high-voltage stress across the bulk capacitor CB at light
loads if DC/DC cell operates in discontinuous current mode (DCM). To overcome
this drawback, a negative magnetic feedback technique was proposed in literature.
However, the dead band exists in the input current and the power factor is thereby
degraded. To deal with this problem, the DC/DC cell will operate in DCM. The voltage
that crosses the bulk capacitor is independent of loads and the voltage stress is reduced
effectively.

In this work, the buck–boost and forward converters are combined to create a
single-stage high-PFC converter. The proposed converter inherently exhibits high-
power factor because the PFC cell operates in DCM. In addition, it is also free to suffer
from high-voltage stress across the bulk capacitor at light loads because the DC/DC cell
operates in DCM. The operating principle, steady-state analysis and controller design
of the proposed converter are presented in this work. The accuracy of analysis results
is verified by experiment and simulation. The output voltage is well regulated despite
variations in line voltage and load resistance.

12.3.1 Operating Principles

Figure 12.1 depicts the proposed forward single-stage high-PFC converter topology.
A physical three-winding transformer has turns ratio 1:n:m. A tertiary transformer
winding, in series with diode D4, is added to the converter for transformer flux resetting.
The magnetizing inductance Lm is parallel to the ideal transformer. In the proposed
converter, both PFC cell and DC/DC conversion cell are operating in CCM. To simplify
the analysis of the circuit, the following assumptions are made:

1. The large-valued bulk capacitor CB and output capacitor CO are sufficiently
large so that the voltages across the bulk capacitor and output capacitor are
approximately constant during one switching period TS.

2. All switch and diodes of the converter are ideal. The switching time of the switch
and the reverse recovery time of the diodes are negligible.

3. The inductors and the capacitors of the converter are considered to be ideal
without parasitic components.

Based on the switching-off of the switches and diodes, the proposed converter oper-
ating in one switching period TS can be divided into five linear stages described as
follows.

Stage 1 [0, t1] (S: on, D1: on, D2: off, D3: off, D4: off, D5: on, D6: on): In the first
stage, the switch S is turned on. The diodes (D1, D5, D6) are turned on and the diodes
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(D2, D3, D4) are turned off. Power is transferred from bulk capacitor CB to the output
via the transformer.

Stage 2 [t1, t2] (S: off, D1: off, D2: on, D3: on, D4: on, D5: off, D6: off): The stage
begins when the switch S is turned off. The diodes (D2, D3, D4) are turned on and
the diodes (D1, D5, D6) are turned off. The current iLi flows through the diode D3 and
charges the bulk capacitor CB. The diode D4 is turned on for transformer flux resetting.
In this stage, the output power is provided by the inductor LO.

Stage 3 [t2, t3] (S: off, D1: off, D2: on, D3: off, D4: on, D5: off, D6: off): The stage
begins at t2 when the input current iLi falls to zero and thus diode D3 is turned off.
The switch S is still off. All diodes, except D3, maintain their states as shown in the
previous stage. During this stage, the voltages (−vCB/m) and (−vO) are applied across
the inductors Lm and LO, and thus the inductor currents continue to linearly decrease.
The output power is also provided by the output inductor LO.

Stage 4 [t3, t4] (S: off, D1: off, D2: off, D3: off, D4: on, D5: off, D6: off): The
stage begins when the current iLO decreases to zero and thus diode D2 is turned off.
The switch S is still off. The diode D4 is still turned on and the other diodes (D1, D3,
D5, D6) are still turned off. During this stage, the voltage (−vCB/m) is applied across
inductor Lm. The inductor current continues to linearly decrease. The output power is
provided by the output capacitor CO in this stage.

Stage 5 [t4, t5] (S: off, D1: off, D2: off, D3: off, D4: off, D5: off, D6: off): The stage
begins when the current iLm falls to zero and thus diode D4 becomes off. The switch S
is still off and all diodes are also off. The output power is also provided by the output
capacitor CO. The operation of the converter returns back to the first stage when the
switch S is turned on again.

According to the analysis of the proposed converter, the key waveforms over one
switching period TS are schematically depicted in Figure 12.2. The slopes of the
waveforms iCO (t) and iCB (t) are defined as:

mCO1 = nvCB − vCO

LO
, mCO2 = −vCO

LO
, mCB1 = −

[
vCB

Lm
+ n(nvCB − vCO )

LO

]
,

mCB2 = −
(

vCB

Li
+ vCB

m2Lm

)
, mCB2 = − vCB

m2Lm
(12.1)

12.3.2 Mathematical Model Derivation

In this section, the small-signal model of the proposed converter can be derived by
the averaging method. The moving average of a variable, voltage or current, over one
switching period TS is defined as the area, encompassed by its waveform and the time
axis, divided by TS.
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Figure 12.2 Typical waveforms of the proposed converter.

Averaged Model over One Switching Period TS

There are six storage elements in the proposed converter as shown in Figure 12.1.
The state variables of the converter are chosen as the current through the inductor and
voltage across the capacitor. Since both PFC cell and DC/DC cells operate in DCM, the
initial and final values of the inductor currents vanish in each switching period TS. From
a system point of view, the inductor currents iLi , iLO and iL should not be considered
as state variables. Only the bulk capacitor voltage vCB and the output capacitor voltage
vCO are considered as the state variables of the proposed converter.

For notational brevity, a variable with an upper bar denotes its moving average over
one switching period TS. With the aid of this definition, the averaged state-variable
description of the converter is given by

CB
dv̄CB

dt
= īCB (12.2)

CO
dv̄CO

dt
= īCO (12.3)
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Moreover, in discontinuous conduction, the averaged voltage across each inductor over
one switching period is zero. Hence we have three constraints of the form:

Li
dīLi

dt
= v̄Li = 0 (12.4)

LO
dīLO

dt
= v̄LO = 0 (12.5)

Lm
dīLm

dt
= v̄Lm = 0 (12.6)

The output equation is expressed as:

v̄O = v̄CO (12.7)

Based on the typical waveforms depicted in Figure 12.2, the averaged variables in
Equations (12.2) and (12.3) are given by:

īCB = 1

TS

5∑
j=1

area[iCB(j)]

= 1

TS

{
d2

1 T 2
S mCB1 + 1

2
d2T 2

S [d2mCB2 + 2(d3 + d4)mCB2 ] + 1

2
(d3 + d4)2T 2

S mCB3

}

īCO = 1

TS

5∑
j=1

area[iCO(j)]

= 1

TS

[
d1T 2

S (d1 + d2 + d3)
(nv̄CB − v̄CO )

2LO
− TS

v̄CO

R

]
(12.8)

where the notation area [iCB(j)] denotes the area, encompassed by the waveform iCB (t)
and time axis, during the stage j. Similarly, we have:

v̄Li = 1

TS

5∑
j=1

area [vLi(j)] = 1

TS

[
d1TSv̄g(t) + d2TS(−v̄CB )

]

v̄Lm = 1

TS

5∑
j=1

area [vLm(j)] = 1

TS

[
d1TSv̄CB + (d2 + d3 + d4)TS

(
− v̄CB

m

)]

v̄LO = 1

TS

5∑
j=1

area [vLO(j)] = 1

TS

[
d1TS(nv̄CB − v̄CO ) + (d2 + d3)TS(−v̄CO )

]
(12.9)



Applications in other branches of power electronics 355

Substituting Equation (12.9) into the constraints (12.4)–(12.6), and performing
mathematical manipulations gives:

d2 = v̄g(t)

v̄CB

d1 (12.10)

d3 =
(

nv̄CB

v̄CO

− 1 − v̄g(t)

v̄CB

)
d1 (12.11)

d4 =
(

m + 1 − nv̄CB

v̄CO

)
d1 (12.12)

Now, substituting Equations (12.1) and (12.10)–(12.12) to Equation (12.8), the
averaged state equations in Equations (12.2) and (12.3) can be rewritten as:

CB
dv̄CB

dt
= −d2

1 TS
n(nv̄CB − v̄CO )

2LO
+ d2

1 TSv̄2
g(t)

2Liv̄CB

CO
dv̄CO

dt
= − v̄CO

R
+ d2

1 TS
n(nv̄CB − v̄CO )

2LOv̄CO

(12.13)

The averaged rectified line current is given by

īg(t) = 1

TS
{area[iLi(1)]} = 1

TS

[
1

2
(d1TS)2 v̄g(t)

Li

]
(12.14)

It reveals from Equation (12.14) that īg(t) is proportional to v̄g(t). Thus, the proposed
converter is provided with unity power factor.

Averaged Model over One Half Line Period TL

Based on the derived averaged model described by Equation (12.13) over one switching
period TS, we now proceed to develop the averaged model over one half line period
TL. Since the bulk capacitance and the output capacitance are sufficiently large, both
the capacitor voltages can be considered as constants over TL. Therefore, the state
equations of the averaged model over one half line period TL can be given by:

CB

d
〈
v̄CB

〉
TL

dt
=
〈

d2
1 TS

2

[
−n2v̄CB + nv̄CO

LO
+ v̄2

g(t)

Liv̄CB

]〉
TL

= 1

π

∫ π

0

d2
1 TS

2

[
−n2v̄CB + nv̄CO

LO
+ v2

m sin2(ωt)

Liv̄CB

]
d(ωt)

= d2
1 TS

2

[−n2〈v̄CB〉TL + n〈v̄CO〉TL

LO
+ v2

m

2Li〈v̄CB〉TL

]
(12.15)
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CO
d〈v̄CO〉TL

dt
=
〈
− v̄CO

R
+ d2

1 TS
(n2v̄2

CB
− nv̄CB v̄CO )

2LOv̄CO

〉
TL

= 1

π

∫ π

0

[
− v̄CO

R
+ d2

1 TS
(n2v̄2

CB
− nv̄CB v̄CO )

LOv̄CO

]
d(ωt)

= 〈v̄CO〉TL

R
+ d2

1 TS[−n2〈v̄CB〉2
TL

− n〈v̄CB〉TL〈v̄CO〉TL ]

2LO〈v̄CO〉TL

(12.16)

and the output equation is given by:

〈v̄O〉TL
= 〈v̄CO

〉
TL

(12.17)

Notably, Equations (12.15) and (12.16) are non-linear state equations which can be
linearized around the DC operating point. The DC operating point can be determined
by setting d

〈
v̄CB

〉
TL

/dt = 0 and d
〈
v̄CO

〉
TL

/dt = 0 in Equations (12.15) and (12.16).
Mathematically, we then successively compute the bulk capacitor voltage VCB and
output voltage VO as:

VCB = 1

2n



√

D2
1RTS

4Li
+ 2LO

Li
+
√

D2
1RTS

4Li


 (12.18)

VO = D1

√
RTS

4Li
Vm (12.19)

The design specifications and component values of the proposed converter are listed
in Table 12.1.

According to Table 12.1, it follows directly from Equations (12.18) and (12.19) that
VCB = 146.6V and VO = 108V. Therefore, the proposed converter exhibits low-voltage
stress across the bulk capacitor for a voltage of AC (VAC) 110 input voltage.

Table 12.1

Design Specifications and Component Values of the Proposed Converter

Input peak voltage (Vm) 156V Duty ratio (D1) 0.26
Input inductor (Li) 75 µH Switching period (TS) 20 µsec
Magnetizing inductor (Lm) 3.73 mH Switching frequency (fs) 50 kHz
Output inductor (LO) 340 µH Load resistance (R) 108 �

Bulk capacitor (CB) 330 µF Turns ratio (1:n:m) 1:2:1
Output capacitor (CO) 1000 µF PWM gain (kpwm) 1/12V−1

Bulk capacitor voltage (VCB ) 146.6V Output voltage (VO) 108V
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After determining the DC operating point, we proceed to derive the small-signal
model which is linearized around the operating point. To proceed small perturbations:

vm = Vm + ṽm, d1 = D1 + d̃1,
〈
v̄CB

〉
TL

= VCB + ṽCB〈
v̄CO

〉
TL

= VCO + ṽCO , 〈v̄O〉TL
= VO + ṽO

(12.20)

with

Vm � ṽm, D1 � d̃1, VCB � ṽCB , VCO � ṽCO , VO � ṽO (12.21)

are introduced in Equations (12.15) and (12.16), and high-order terms are neglected,
yielding the dynamical equations of the form:

CB
dṽCB

dt
= D2

1TS

2

(
− n2

LO
− V 2

m

2LiV 2
CB

)
ṽCB + D2

1TS

2

(
n

LO

)
ṽCO + D2

1TS

2

(
Vm

LiVCB

)
ṽm

+ D1TS

(−n2VCB + nVCO

LO
+ V 2

m

2LiVCB

)
d̃1

= a11ṽCB + a12ṽCO + b11ṽm + b12d̃1 (12.22)

CO
dṽCO

dt
= D2

1TS

2

(
2n2VCB

LOVCO

− n

LO

)
ṽCB +

(
− 1

R
− D2

1TS

2

n2V 2
CB

LOV 2
CO

)
ṽCO

+ 0ṽm + D1TS

(
n2V 2

CB

LOVCO

− nVCB

LO

)
d̃1

= a21ṽCB + a22ṽCO + b21ṽm + b22d̃1 (12.23)

The parameters are defined as:

a11 = −D2
1TS

2

(
n2

LO
+ V 2

m

2LiV 2
CB

)
, a12 = D2

1TS

2

(
n

LO

)

a21 = D2
1TS

2

(
2n2VCB

LOVCO

− n

LO

)
, a22 = −

(
1

R
+ D2

1TS

2

n2V 2
CB

LOV 2
CO

)

b11 = D2
1TS

2

(
Vm

LiVCB

)
, b12 = D1TS

(−n2VCB + nVCO

LO
+ V 2

m

2LiVCB

)

b21 = 0, b22 = D1TS

(
n2V 2

CB

LOVCO

− nVCB

LO

)
(12.24)
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Mathematically, the dynamical equations (12.22) and (12.23) can be expressed in matrix
form as: [ ˙̃vCB˙̃vCO

]
=
[ a11

CB

a12
CBa21

CO

a22
CO

] [
ṽCB

ṽCO

]
+
[

b11
CB

b12
CB

b21
CO

b22
CO

][
ṽm

d̃1

]
(12.25)

ṽO = [0 1
] [ṽCB

ṽCO

]
(12.26)

Now taking Laplace transform for the dynamical equation, the resulting transfer
functions from line to output and duty ratio to output are given by:

ṽO(s)

ṽm(s)
=

b11a21
CBCO

s2 +
(
− a11

CB
− a22

CO

)
s + a11a22 − a12a21

CBCO

(12.27)

ṽO(s)

d̃1(s)
=

b22
CO

s + a21b12 − a11b22
CBCO

s2 +
(
− a11

CB
− a22

CO

)
s + a11a22 − a12a21

CBCO

(12.28)

12.3.3 Model Validation

One 108 W prototype based on the topology presented in Figure 12.1, with the design
specifications and component values listed in Table 12.1, is implemented to verify its
operating principle. Substituting the specifications in Table 12.1 into Equation (12.24)
gives:

a11 = −1.31 × 10−2 a12 = 3.98 × 10−3

a21 = 1.76 × 10−2 a22 = −2.39 × 10−2

b11 = 9.59 × 10−3 b12 = 8.98 × 10−2

b21 = 0 b22 = 7.69

(12.29)

From Equations (12.27) and (12.28), the transfer functions from line to output and
duty ratio to output are given by:

ṽO(s)

ṽm(s)
= 511.95

s2 + 63.48s + 733.84
(12.30)

ṽO(s)

d̃1(s)
= 7689.63(s + 40.19)

s2 + 63.48s + 733.84
(12.31)

The Bode plots of the transfer function ṽO(s)/d̃1(s) are presented in Figure 12.3. The
curve (1) is the measurement result and curve (2) is the theoretical plot of Equation
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Figure 12.3 Bode plots of ṽO(s)/d̃1(s).

(12.31) of the implemented converter. It reveals that the theoretical analysis predicts
the dynamical behavior of the proposed converter.

12.3.4 Simulation Results

The PSpice simulation results presented in Figure 12.4 demonstrate that both PFC
and DC/DC cells are operating in DCM. The input inductor current iLi (t) and output
inductor current iLO (t) both reach zero for the remainder of the switching period.
Figure 12.5(a) presents the bulk capacitor voltage VCB = 149V and Figure 12.5 (b)
presents the output capacitor voltage VCO = 110V. They are close to the theoretical
results VCB = 146.6V and VCO = 1080V. Figure 12.5 presents the rectified line voltage
and current in (a), and the line voltage and current in (b). It reveals that the proposed
converter has high-power factor. According to the total harmonic distortion (THD)
obtained in the simulation results, the power factor is calculated to be PF = 0.999.

12.3.5 Experimental Results

One prototype based on the topology depicted in Figure 12.1 is built and tested to
verify its operating principle of the proposed converter. The experimental results are
depicted in the following figures. Figure 12.6 presents the waveform of the input
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Figure 12.4 Current waveforms: (a) input inductor current iLi (t) (horizontal: 10 µs/div) and
(b) output inductor current iLO (t) (horizontal: 10 µs/div).
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Figure 12.5 (a) Bulk capacitor voltage VCB (t) (vertical: 5V/div, horizontal: 5 ms/div) and
(b) output capacitor voltage VCO (t) (vertical: 0.5V/div, horizontal: 5 ms/div).

voltage and current. Figure 12.7 presents the waveform of the input inductor current
iLi (t) and output inductor current iLO (t). Figure 12.8 presents the voltage ripples of
the bulk capacitor voltage VCB (t) and output capacitor voltage VCO (t). Figure 12.9
presents the rectified line voltage and current, and line voltage and current. The pro-
posed converter exhibits low-voltage stress and high-power factor. The measured power
factor of the converter is PF = 0.998. The efficiency of the proposed converter is
about 72%.

12.3.6 Controller Design

In this section, a PID controller will be employed to regulate output voltage despite
variations in the line voltage and load resistance. From a digital control point of view,
a DC/DC converter is needed to eliminate the steady-state error. As a result, a PID
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Figure 12.6 The line voltages and currents: (a) rectified line voltage and current (horizontal:
5 ms/div) and (b) input line voltage and current (horizontal: 5 ms/div).

controller is designed with the transfer function:

Gpid(s) = p
1 + sτi + s2τiτd

sτi
(12.32)

We select the integral time constant (τi) and differential time constant (τd) to elim-
inate the time constant (τ) and the damping time constant (τd). We finally obtain the
closed-loop transfer function as:

GC(s) = 1

1 + s τi
p
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(a) (b)

Figure 12.7 The inductor currents (horizontal: 10 µs/div): (a) input inductor currents iLi (t)
(vertical: 5A/div) and (b) output inductor current iLO (t) (vertical: 2A/div).

(a) (b)

Figure 12.8 Ripples of (a) bulk capacitor voltage VCB (t) (vertical: 5V/div, horizontal: 5 ms/div)
and (b) output capacitor voltage VCO (t) (vertical: 0.5V/div, horizontal: 5 ms/div).

(a) (b)

Figure 12.9 The line voltages and currents (horizontal: 5 ms/div): (a) rectified line voltage and
current (vertical: 50V/div, 10A/div) and (b) input line voltage and current (vertical: 50V/div,
2A/div).
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Figure 12.10 The block diagram of the control system.

Figure 12.10 presents the block diagram of the overall system with reference input
voltage Vref = 9.8V and regulated output voltage VO = 108V, as shown in Table 12.1.

The load R is initially set to 218 � and the line peak voltage Vm is set to 156V at
t = 0 s, then changed to a heavy load R = 162 � at t = 0.2 s and R = 108 � at t = 0.3 s,
and then changed to a lower-line peak voltage Vm = 142V at t = 0.4 s. From an energy
conservation point of view, the average output power 〈PO〉TS

= V 2
O/R is equal to the

average input power 〈Pi〉TS
= ViIi. If the output voltage VO is fixed, the average output

power 〈PO〉TS
increases as the load R decreases. The average input Ii thereby increases

for a fixed input voltage Vi. Hence the duty ratio D must increase, and thus the control
voltage vctrl increases necessarily. On the other hand, if VO and R are fixed and Vi
decreases, then average input current Ii will increase to maintain the constant average
power. As mentioned before, the control voltage vctrl thereby increases.

In this work, the buck–boost and forward converters are combined to create a single-
stage high-PFC converter. The proposed converter exhibits high-power factor, low-
voltage stress and output voltage regulation. The operating principle, the operating
point and the small-signal model of the proposed converter are also studied in this
work. Based on the classical control theory, a PID controller is designed to achieve fast
output voltage regulation. An AC/DC prototype with output power 108 W is built and
tested to verify its operating principle of the proposed converter. It reveals from the
simulation and experimental results that the designed controller can be used, without
degrading the power factor of the converter, to achieve output voltage regulation despite
variations in line voltage and load resistance.

12.4 STATIC COMPENSATION (STATCOM)

We investigate the topic of STATCOM, titled Trinary Hybrid Multilevel Inverter Used
in STATCOM with Unbalanced Voltages, in this section. A trinary hybrid multilevel
inverter is applied Synchronous STATCOM with unbalanced voltages. Benefiting from
trinary hybrid topology of the inverter, the cost of STATCOM is reduced because of
not only fewer switching components but also of reduced cost of DC capacitors. The
combination of vector control based on synchronous frame and staircase modulation is
used in presented STATCOM system to regulate reactive power or balance bus voltages
under balanced or unbalanced conditions. To achieve this control aim, a new method
based on the comparison of reference amplitudes and reference signals is presented
in this chapter. The performance of the proposed control strategy is confirmed by
simulation and experiment.
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Synchronous STATCOM is a FACTS device, which is connected as a shunt to the
network, for generating or absorbing reactive power. STATCOM can be utilized to regu-
late voltage, control power factor and stabilize power flow [12]. Many inherent benefits
of multilevel inverter have led to their increased interest in STATCOM. In Refs [13,14],
cascade multilevel inverters have been used in STATCOM. Furthermore, the application
of binary hybrid multilevel inverters in STATCOM has also been investigated because
the binary hybrid multilevel inverter can generate more voltage levels than the cascade
multilevel inverter with the same number of switches [15–17]. Recently, trinary hybrid
multilevel inverter have been presented and attracted more interest since it is said that
it can generate most voltage levels among existing multilevel inverters [18,19].

The application of trinary hybrid multilevel inverter in STATCOM is investigated
in this section. In this topology, not only fewer switches are required, but also the cost
of DC capacitors is decreased. Moreover, the problem of regenerative power in trinary
hybrid multilevel inverters mentioned in Ref. [20] is avoided because the STATCOM
mainly generates or absorbs reactive power.

Voltage imbalance is a problem that STATCOM must deal with in the distribution
system. Steady-state voltage imbalance can arise from unequal loading on each phase
or from unbalanced faults on the power system, which cause single-phase voltage sags.
These sags are detrimental since they cause heating in motors and affect sensitive single-
phase loads. The presented STATCOM can balance bus voltages under unbalanced
conditions.

The staircase PWM is widely used in STATCOM [23,24] since GTOs with lower-
switching frequency are employed as switches in such applications of high power
and high voltage [25–27]. The vector control based on synchronous frame transform
has been used successfully in STATCOM to regulate reactive power [13,21] and reduce
negative sequence component of the bus voltage [22]. In this chapter, the vector control
and staircase modulation are combined to reach the control aims. The challenge here is
that the conventional method based on the comparison of switching angles and phase
angles [13,23,24] to generate the switching signals cannot work well in such control
system. A new method based on the comparison of reference amplitudes and reference
signals is proposed in this chapter. Furthermore, dead-zone control is used to improve
the performance of the inverter. The performance of the proposed control system is
confirmed by simulation and experiment.

12.4.1 System Configuration

System configuration is described in this section.

Configuration of STATCOM System

Figure 12.11 shows one line diagram of a distribution system with STATCOM and
Figure 12.12 shows a simplified model of Figure 12.11. The STATCOM that is based
on a three-phase 9-level trinary hybrid multilevel inverter is connected to bus B through
the interface impedance ZI. ZS is the equivalent impedance of the source and ZL is the
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Figure 12.12 Simplified model of the distribution system with the STATCOM.

equivalent impedance of the load. In steady states and balanced conditions, voltages and
currents can be expressed as phasors. In Figure 12.12, VS is the source voltage, VB is the
bus voltage, VC is the generated voltage of the STATCOM, IC is the current generated
by the STATCOM, IS is the source current and IL is the load current. Parameters of
the compensator and the distribution system are shown in Table 12.2. The STATCOM
in steady states will generate a leading reactive current when the amplitude of VC is
larger than that of VB, and vice verse, it will draw a lagging current from the source.

Three-Phase 9-Level Trinary Hybrid Multilevel Inverter

Figure 12.13 shows a three-phaseY-configured 9-level trinary hybrid multilevel inverter
used in the STATCOM. The inverter has separate DC capacitors for each H-bridge unit
of each phase. To get maximum output voltage levels of the inverter, the ratio of DC
capacitor voltages is arranged as 1:3, so that the inverter can output 9V levels for each
phase. With two H-bridges per phase, however, a cascade multilevel inverter only can
output 5V levels for each phase and a binary hybrid multilevel inverter only can output
7V levels for each phase. The more the output voltage levels a multilevel inverter
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Table 12.2

Parameters of the Compensator and the Distribution System for Simulations and Experiments

Simulations Experiments

Operating frequency 50 Hz 50 Hz
Rating of source voltage 13.5 kV 196V

(line-to-line rms value)
Rating of reactive power 10 MVAr 2000VAr
Rating of STATCOM current 428A 6A

(phase rms value)
Interface impedance per phase ωLI = 3.64 �, RI = 0.3 � ωLI = 3.64 �, RI = 0.3 �

Source impedance per phase ωLS = 2.2 �, RS = 0.3 � ωLS = 2.2 �, RS = 0.3 �

Unit voltage of DC capacitors (UD) 3.3 kV 48V
DC capacitor in the H-bridge with 2933 µF 3300 µF

DC voltage UD

DC capacitor in the H-bridge with 1114 µF 1100 µF
DC voltage 3UD
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HBaII HBbII HBcII
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Figure 12.13 Three-phase 9-level trinary hybrid multilevel inverter.

has, the more the similar sinusoid waveform can be synthesized. Thereby, more lower-
order harmonics can be eliminated and total harmonic distortion (THD) can be reduced
greatly. Since the ratio of DC capacitor voltages of the inverter is trinary, this kind of
inverter can be called trinary hybrid multilevel inverter.

Three phases of the inverter are controlled separately and the operation principle of
each phase is identical. In the following, the A-phase of the inverter is analyzed. HBak



Applications in other branches of power electronics 367

Table 12.3

Values of Switching Functions for Different Values of va
C

va
C 4UD 3UD 2UD UD 0 −UD −2UD −3UD −4UD

SFaI 1 0 −1 1 0 −1 1 0 −1
SFaII 1 1 1 0 0 0 −1 −1 −1

represents the kth H-bridge in the A-phase leg of the inverter, where superscript “a”
means A-phase and k can be I or II. vak

H and vak
D represent the output voltage and the

DC capacitor voltage of the HBak , respectively. A switching function, SFak , is used to
relate vak

H and vak
D as:

vak
H = SFak · vak

D k = I, II (12.33)

The value of SFak can be either 1, or −1 or 0. For the value 1, switching components
SC1 and SC4 need to be turned on. For the value −1, switches SC2 and SC3 need to be
turned on. For the value 0, switches SC1 and SC3, or SC2 and SC4 need to be turned
on. The A-phase voltage of the inverter, va

C, is represented as:

va
C =

II∑
k=I

(SFak · vak
D ) (12.34)

The unit voltage of DC capacitors is UD, i.e. vaI
D and vaII

D are UD and 3UD, respectively.
So va

C has nine levels totally. Table 12.3 shows the values of switching functions for
different values of va

C.
Two types of modulation for multilevel inverters have been presented in power appli-

cations: carried-based PWM strategies and optimal programmed PWM strategies [0].
With much lower-switching frequency, the optimal programmed PWM strategies can
eliminate the same number of lower-order harmonics as the carried-based PWM strate-
gies. In this distribution system, the proposed STATCOM works under high voltages,
so GTOs are selected as the switching components that cannot switch at high fre-
quency. The staircase PWM, the most popular one among optimal programmed PWM
strategies, is used in the proposed STATCOM.

Figure 12.14 shows the A-phase waveforms of the inverter (only waveforms with
solid lines are considered). By applying the Fourier transform to va

C, the amplitude
of any odd nth harmonic of va

C can be expressed as Equation (12.35), whereas the
amplitudes of all even harmonics are zero:

∣∣va
C

∣∣
n = 4UD

nπ

4∑
j=1

cos(nφj) n = 1, 3, 5, . . . (12.35)

The switching angles, φ1, φ2, φ3 and φ4, are chosen so as to cancel predominant
lower-frequency harmonics. For the 9-level case in Figure 12.14, the 5th, 7th and 11th
harmonics can be eliminated with the appropriate choice of the switching angles. One
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Figure 12.14 Waveforms of the output voltage of A-phase inverter, the A-phase current and
the output voltages of H-bridges of A-phase inverter.

degree of freedom is used so that the magnitude of the output waveform corresponds
to the modulation index of A-phase, M a, which is expressed as:

M a = π · ∣∣va
C

∣∣
1

16UD
(12.36)

where
∣∣va

C

∣∣
1 is the amplitude of the fundamental component of va

C. Let the equations
from Equation (12.35) be as follows:

cos(φ1) + cos(φ2) + cos(φ3) + cos(φ4) = 4M a

cos(5φ1) + cos(5φ2) + cos(5φ3) + cos(5φ4) = 0

cos(7φ1) + cos(7φ2) + cos(7φ3) + cos(7φ4) = 0

cos(11φ1) + cos(11φ2) + cos(11φ3) + cos(11φ4) = 0

(12.37)
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Table 12.4

Table of Theoretical Switching Angles for Different
Modulation Index

Modulation φ1(rad) φ2(rad) φ3(rad) φ4(rad)
index (M a)

0.56 0.59438 0.85477 1.0383 1.3207
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0.78 0.17641 0.39873 0.726 1.086
0.79 0.17371 0.37637 0.6986 1.0709
0.8 0.17175 0.35575 0.6703 1.0545
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0.85 0.078667 0.35911 0.48161 0.95097

Table 12.5

Comparison of GTO Counts

Trinary hybrid 9-level Cascade 9-level
multilevel inverter multilevel inverter

GTOs in series per valve in the H-bridge 3 (1 redundant) 3 (1 redundant)
with DC voltage UD

GTOs in series per valve in the H-bridge 6 (1 redundant)
with DC voltage 3UD

Total number of GTOs 108 144

Table 12.4 shows the off-line calculated switching angles, which are stored in a
look-up table.

Counts of GTOs

GTOs are selected as switching components in the STATCOM. A readily available
GTO (MITSUBISHI GTO FG1000BV-90DA) has a typical repetitive peak off-state
voltage of 4.5 kV and repetitive controlled on-state current of 1 kA [29]. Normally,
the GTO repetitive peak off-state voltage and repetitive controlled on-state current are
chosen to be 2–3 times of the system nominal ratings. In each H-bridge module, GTOs
are connected in series to make up rated DC source voltage to satisfy the redundancy
requirement. The redundancy requirement is that if any single GTO fails (such as short
circuit) in one inverter arm, the remaining functional GTOs can sustain continuous
operation until the next planned maintenance outage. The number of GTOs required
in trinary hybrid 9-level inverter and common cascade 9-level inverter are given in
Table 12.5, where unit voltage of DC capacitors, UD, is 3.3 kV. The comparison shows
the trinary hybrid multilevel inverter which uses fewer GTOs since the fewer redundant
switches are needed in trinary hybrid topology.
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Series Connection of GTOs

One of the advantages of a multilevel inverter is to achieve high voltage without having
to connect switching devices in series directly. But with the increase of power and
voltage of the applications, the series connection of switching devices is inevitable. The
total DC link voltages in each phase is 13.2 kV in this chapter and in Ref. [30], 16 kV in
Ref. [31] and 38.4 kV in Ref. [32]. If the cascade multilevel inverters are used in these
systems and each valve contains only one GTO specified in the chapter, each phase of
inverter will contain 8 H-bridges in this chapter and Ref. [30], 10 H-bridge in Ref. [31]
and 23 H-bridges in Ref. [32]. Too many H-bridges result in very complicated power
circuits, too many control signals and bulky system. Therefore, in very high-power and
high-voltage application, the series connection of power semiconductors is necessary.

Early, a large snubber is used to limit the dv/dt of the switching component during
the turn-off period [33], and a variable inductor is to be placed between each gate drive
circuit and the corresponding switching component in order to control the rising/falling
time and to adjust the transient voltage [30,35]. These modifications will increase the
losses and reduce the dynamic performance, so a system with fewer GTOs connected
in series provides better voltage sharing, and improves efficiency and dynamic per-
formance [15]. Recently, however, the technology that allows the robust, reliable and
cost-efficient series connection of GTOs is industrially mature [30]. Especially, in Ref.
[32], with a digital control circuit for extremely accurate adjustment of gate turn-off
timing in units of 0.1 µs, up to 16 GTOs connected in series shared the voltage uni-
formly in the turn-off period. This technology of adjustment can be available even if
the number of GTOs is further increased for a higher-voltage converter in the future.
And with such technology, a system with more GTOs connected in series has almost
the same voltage sharing, dynamic performance and efficiency as a system with fewer
GTOs connected in series. Thanks to the precise gate turn-off timing adjustment, pre-
sented in Ref. [32], the trinary inverter in which up to six GTOs connected in series are
not only feasible, but also have almost the same performances as the cascade multilevel
inverter in which three GTOs are connected in series.

Device Power Loss and the Cost of Cooling Systems

Figures 12.15 and 12.16 show waveforms of the currents flowing through arms of
the HBaI and the HBaII, respectively. iaij

A (i = I, II, j = 1, … , 4) is the current flowing

through the jth arm of the HBai. The positive value of iaij
A means that the current flows

through GTOs, while the negative value of iaij
A implies that the current flows through

antiparallel diodes. As mentioned previously, if the output voltage of a H-bridge is
zero, the switches SC1 and SC3 will be turned on or the switches SC2 and SC4 will
be turned on. For the purpose of balancing the current stresses and power losses of
switches, both of these two switching states for the zero output voltage of a H-bridge
are used and each switching state is used in an alternative cycle. In Figure 12.5, if vaII

H
is 0, the SC1 and SC3 of the HBaII are turned on when ωt is from φ2 to φ2 + 2π, but
the SC2 and SC4 of the HBaII are turned on when ωt is from 0 to φ2 or from φ2 + 2π
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Figure 12.15 Waveforms of the currents flowing through arms of the HBaII of the inverter.

to 2π. In Figure 12.6, if vaI
H is 0, the SC1 and SC3 of the HBaI are turned on when ωt is

from φ1 to φ1 + 2π, but the SC2 and SC4 of the HBaI are turned on when ωt is from 0
to φ1 or from φ1 + 2π to 2π.

From Figures 12.15 and 12.16, we can find out that the combination of waveforms of
the non-zero current that flows through an arm during two periods is just the waveform
of ia

C in a complete period. So the on-state power losses of GTO, PG,ON, and the on-state
power losses of antiparallel diode, PD,ON, can be expressed as:

PG,ON = VG

2T

∫ 3π/2

π/2
ia
C d(ωt) (12.38)

PD,ON = VD

2T

∫ 3π/2

π/2
ia
C d(ωt) (12.39)
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Figure 12.16 Waveforms of the currents flowing through arms of the HBaI of the inverter.

where VG and VD are the voltage drops of a GTO and a diode, respectively, if they are
in on-state. T is the period of ia

C. VG is 2.8V approximately according to the data sheet
of the GTO and VD is 1.3V approximately. So, from Equations (12.38), (12.39) and
Table 12.2, we can get PG,ON as 269 W and PD,ON as 125 W for the worst cases.

As shown in Figure 12.15, the current that flows through a GTO in the HBaII is∣∣ia
C

∣∣
1 sin φ2 before the GTO is turned off, where

∣∣ia
C

∣∣
1 is the amplitude of the A-phase

STATCOM current. For the worst case, the current is 454A. Figure 12.17 shows the
data sheet of turn-on and turn-off switching energy of the GTO (MITSUBISHI GTO
FG1000BV-90DA) when the DC off-state voltage is 2250V. Based on Figure 12.17,
the turn-off switching energy is 1.6 J when DC off-state voltage is 2250V. As shown in
Table 12.5, there are five GTOs (not including redundant one) connected in series in an
arm of the HBaII, so the GTOs endure the off-state voltage, 3UD/5 (1980V), after they
are turned off. The turn-off switching energy of the GTO in the HBaII can be calculated
as 1.6 × 1980/2250 = 1.4 J. From Figure 12.15, one can find out the switching losses
of the GTO in the HBaII are due to a switching-off process of the GTO in a period. So,
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Figure 12.17 Turn-on and turn-off switching energy of the GTO (MITSUBISHI GTO
FG1000BV-90DA).

Table 12.6

Comparison of Device Power Losses and Cost of Cooling Systems

Worst cases considered Cost of Total

(redundant GTOs excluded) cooling cost of
system cooling

GTO GTO Antiparallel for a systems
on-state switching diode on-state GTO and in three-

H-bridge power losses power an antiparallel phase
(DC voltage) losses (W) (W) losses (W) diode ($) inverter ($)

Trinary HB (UD) 269 194 125 588kcooling 54,576kcooling

hybrid HB (3UD) 269 70 125 464kcooling

multilevel
inverter

Cascade HB (UD) 269 51 125 445kcooling 65,644kcooling

multilevel HB (UD) 269 62 125 456kcooling

inverter HB (UD) 269 66 125 460kcooling

HB (UD) 269 69 125 463kcooling

this switching losses can be calculated as PaII
G,SW = 1.4 × 50 = 70 W for the worst case.

The switching losses of the GTO in the HBaI are due to three switching-off processes
and two switching-on processes in a period. By the same method, the switching losses
of the GTO in the HBaI are calculated as PaI

G,SW = 194 W for the worst case.
If a 9-level cascade multilevel inverter is used in such a STATCOM system, the

on-state losses and switching losses of the GTOs for the worst cases can be calculated
by the same method above and the calculating results are shown in Table 12.6.
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Suppose the cost of cooling system is proportional to the power losses, i.e.:

Ccooling = kcoolingPloss (12.40)

where Ccooling is the cost of cooling system, Ploss is power losses and kcooling is the
coefficient whose unit is $/W. As shown in Table 12.6, the cost of the cooling system
for a GTO and an antiparallel diode in the H-bridge with 3UD DC voltage in the trinary
hybrid multilevel inverter is almost the same as that in the cascade multilevel inverter.
Comparatively, the cost of the cooling system for a GTO and an antiparallel diode in
the H-bridge with UD DC voltage in the trinary hybrid multilevel inverter are a little
higher, since the GTO switches are at higher frequency. However, the total cost of
cooling systems for the trinary hybrid multilevel inverter are lower than that for the
cascade multilevel inverter as shown in Table 12.6 since fewer GTOs are used in trinary
hybrid multilevel inverters.

Cost of DC Capacitors

The trinary hybrid inverter not only need fewer GTOs than the cascade multilevel
inverter, but also has less cost of DC capacitors. Firstly the required capacitances of
DC capacitors of the trinary hybrid multilevel inverter are analyzed. Figure 12.14 shows
A-phase waveforms of the inverter (only waveforms with solid lines are considered).
The STATCOM supplies reactive power, so the output voltage and output current of the
inverter is orthogonal. Suppose the current generated by the STACOM is sinusoidal
and

∣∣ia
C

∣∣
1 is the amplitude of A-phase current. The A-phase current of the STATCOM

in Figure 12.14 can be expressed as:

ia
C = ∣∣ia

C

∣∣
1 sin(ωt − π/2) (12.41)

where ω is radian frequency. Assuming initial voltages of A-phase DC capacitors are
UD and 3UD, respectively.

Table 12.7 shows capacitor voltages during first half cycle in Figure 12.14, where

m1 =
∣∣ia

C

∣∣
1

ωCaI , m2 =
∣∣ia

C

∣∣
1

ωCaII (12.42)

The ε, DC voltage regulation factor, is selected as 5%, which means the DC capacitor
voltages fluctuate within 0.95–1.05 times of the normal value. To keep the DC capacitor
voltages within this range, the capacitances of DC capacitors are expressed as:

CaI =
|ia

C|1MAX[ABS( sin φ1 − sin φ2), ABS(sin φ1 − 2 sin φ2 + sin φ3),
ABS(sin φ1 − 2 sin φ2 + sin φ3 + sin φ4 − 1)]

2ωεUD
(12.43)

CaII = |ia
C|1(1 − sin φ2)

6ωεUD
(12.44)
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Table 12.7

A-Phase DC Capacitor Voltages During Half Cycle

Instant vaI
D vaII

D

0 UD 3UD

φ1/(ωt) UD 3UD

φ2/(ωt) UD − m1(sinφ1 − sin φ2) 3UD

φ3/(ωt) UD − m1(sinφ1 − 2 sin φ2 + sin φ3) 3UD − m2(sinφ2 − sin φ3)
φ4/(ωt) UD − m1(sinφ1 − 2 sin φ2 + sin φ3) 3UD − m2(sinφ2 − sin φ4)
π/(2ωt) UD − m1(sinφ1 − 2 sin φ2 + sin φ3 + sin φ4 − 1) 3UD − m2(sinφ2 − 1)
(π − φ4)/(ωt) UD − m1(sinφ1 − 2 sin φ2 + sin φ3) 3UD − m2(sinφ2 − sin φ4)
(π − φ3)/(ωt) UD − m1(sinφ1 − 2 sin φ2 + sin φ3) 3UD − m2(sinφ2 − sin φ3)
(π − φ2)/(ωt) UD − m1(sinφ1 − sin φ2) 3UD

(π − φ1)/(ωt) UD 3UD

π/(ωt) UD 3UD

Table 12.8

Prices of Capacitors with High Voltage and High Capacitance

Capacitors Series Prices (Europe $)

A GMKPg 3.6 kV/1114 µF 1873
B GMKPg 2.6 kV/4400 µF 2565
C GMKPg 1.9 kV/4000 µF 1248
D GMKPg 1 kV/9000 µF 943
E GMKPg 0.9 kV/12,000 µF 1598

where ABS is the function of absolute value, MAX is the function of selecting one with
the maximum value. Based on the consideration of the worst case from Table 12.4, the
required capacitances CaI and CaII are 2580 µF and 1050 µF, respectively.

If a 9-level cascade multilevel inverter is used in such STATCOM system, the
required capacitances are calculated by Equation (12.45) below for comparison. From
Equation (12.45) and Table 12.4, for the worst cases, the required capacitances are
5380, 3960, 3130 and 1060 µF:

Cak = |ia
C|1(1 − sin φk )

2ωεUD
(12.45)

Table 12.8 shows the prices of high-voltage high-capacitance capacitors [36], and
Table 12.9 shows the counts and cost of capacitors. Capacitors are connected to form
an array of capacitors to satisfy required capacitance and rating voltage. The array has
n rows in parallel and each row includes m capacitors connected in series. Moreover,
an additional row is used to satisfy the redundancy requirement. Normally, the peak
voltage and current rating of the capacitor array are chosen to be 2–3 times of the
system nominal voltage. The comparison results show the cost of DC capacitors in
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Table 12.9

Comparison of Counts and Costs of Capacitors

Capacitance
H-bridge (mF)/rating
(DC voltage) voltage (kV) n + 1 Total price
per phase of DC capacitor Capacitor m series parallel (Europe $)

Trinary HB (UD) 2.58/3.3 B 3 2 + 1 305,253
hybrid HB (3UD) 1.05/9.9 A 6 6 + 1
multilevel
inverter

Cascade HB (UD) 5.38/3.3 B 3 4 + 1 333,816
multilevel HB (UD) 3.96/3.3 B 3 3 + 1
inverter (without HB (UD) 3.13/3.3 B 3 3 + 1
balancing HB (UD) 1.06/3.3 A 2 2 + 1
stresses)

Cascade Four HBs (UD) 5.38/3.3 B 3 4 + 1 461,700
multilevel
inverter
(with balancing
stresses)

trinary hybrid inverters which is less than that in cascade multilevel inverters in which
the current and voltage stresses of switches are balanced [23] or not balanced [13].
There are two reasons why the trinary hybrid inverter has less cost of DC capacitors.
Firstly, it needs less redundancy capacitors. Secondly, the capacitor CAPaI was both
charged and discharged in quarter cycles (0 ∼ π/2, π/2 ∼ π, π ∼ 3π/2 or 3π/2 ∼ 2π)
as shown in Figure 12.14, so the required CaI is smaller.

12.4.2 Control System of the STATCOM

Figure 12.18 shows the control system of STATCOM. The power control module not
only controls the reactive power but also the active power which compensates the
power losses of the inverter and interface impedance. The input signals of the power
control module are positive sequence components of bus voltages and inverter output
currents. The function of unbalanced voltage control module is to eliminate the negative
sequence components of the bus voltages, so that the bus voltages can be balanced.
The reference output voltage of inverter vabc∗

C is the addition of the output of power
control module vabc∗

P and the output of unbalanced voltage control module vabc∗
U . Each

phase of the inverter is controlled separately by the inverter control module A, B or C.
Inverter control modules not only control the output voltage waveform of the inverter,
vabc

C , but also are responsible for the balancing of each DC capacitor voltage. In the
following, we first introduce vector representation and transformation of instantaneous
three-phase quantities, and then specify these modules one by one.
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Figure 12.18 Control system of the STATCOM.

Vector Representation and Transformation of Instantaneous
Three-Phase Quantities

A set of three instantaneous phase variables γa, γb and γc that sum to be zero can
be uniquely represented in the αβ-phase frame through the abc → αβ transformation
[Tabc→αβ] as follows:

[Tabc→αβ] = 2

3




1 − 1
2 − 1

2

0
√

3
2 −

√
3

2
1√
2

1√
2

1√
2


 (12.46)

The αβ → abc transformation [Tαβ→abc] is the inverse of [Tabc→αβ], which is defined
as follows:

[Tαβ→abc] = [Tabc→αβ]−1 = 3

2
[Tabc→αβ]T (12.47)
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Thus, 
γα

γβ

0


 =

[
Tαβ→abc

]
γ abc, γ abc =

[
Tabc→αβ

]γα

γβ

0


 (12.48)

where

γ abc =

γa

γb

γc


 (12.49)

Furthermore, one can get dq+ or dq− co-ordinate expressions by using the posi-
tive or negative sequence synchronous reference frame transformations

[
Tαβ→dq+] or[

Tαβ→dq−], respectively:

γ dq+ =
[
Tαβ→dq+] γ αβ, γ αβ =

[
Tdq+→αβ

]
γ dq+ (12.50)

γ dq− =
[
Tαβ→dq−] γ αβ, γ αβ =

[
Tdq−→αβ

]
γ dq− (12.51)

where

γ αβ =
[
γα

γβ

]
, γ dq+ =

[
γd+
γq+

]
, γ dq− =

[
γd−
γq−

]
(12.52)

[
Tαβ→dq+] =

[
cos θ sin θ

−sin θ cos θ

]
,

[
Tdq+→αβ

]
=
[
Tαβ→dq+]T

(12.53)

[
Tαβ→dq−] =

[
cos θ −sin θ

−sin θ −cos θ

]
,

[
Tdq−→αβ

]
=
[
Tαβ→dq−]T

(12.54)

θ =
∫

ωt + θ0 (12.55)

where θ0 is determined by the definition of the dq+ co-ordinate frame.

Power Control Module

The power control module regulates the positive sequence reactive power and active
power injected into the bus. Three-phase bus voltages vabc

B and three-phase inverter

output currents iabc
C can be transformed into vαβ

B and iαβ
C in αβ-phase frame by Equation

(12.48). The reactive power and active power can be shown as:

P = 3

2
(vα

BiαC + vβ
BiβC), Q = 3

2
(vα

BiβC − vβ
BiαC) (12.56)



Applications in other branches of power electronics 379

The vαβ
B and iαβ

C can be transformed into vdq+
B and idq+

C in dq+ frame by Equation
(12.50). The dq+ co-ordinate frame is defined where d+ axis is always coincident with
the instantaneous voltage vector and the q+ axis is in quadrature with it, i.e.:

θ = a tan

(
vβ

B

vα
B

)
(12.57)

Under balanced steady-state conditions:

vdq+
B =

[|vabc
B |

0

]
(12.58)

where |vabc
B | is the amplitude of phase voltage of the bus.

Therefore, the reactive power and active power can be expressed as:

P = 3

2
|vabc

B |i+Cd , Q = 3

2
|vabc

B |i+Cq (12.59)

In Figure 12.12, the resistance and inductance of interface impedance are expressed
as RI and LI. From Figure 12.12, we have:

LI
diabc

C

dt
+ RIiabc

C = vabc
C − vabc

B (12.60)

From Equations (12.48) and (12.60), we have:

LI
diαβ

C

dt
+ RIi

αβ
C = vαβ

C − vαβ
B (12.61)

From Equations (12.50), (12.57) and (12.61), we have:

LI
d

dt

[
id+
C

iq+
C

]
+ ωLI

[−iq+
C

id+
C

]
+ RI

[
id+
C

iq+
C

]
=
[

vd+
C −vd+

B
vq+

C −vq+
B

]
(12.62)

Thus, under balanced conditions, the plant of the STATCOM system can be expressed
as Equation (12.63) below in the s-domain, as shown in Figure 12.19:[

vd+
C −vd+

B +ωLIi
q+
C −RIi

d+
C

vq+
C − vq+

B −ωLIi
d+
C −RIi

q+
C

]
=
[

sLIi
d+
C

sLIi
q+
C

]
(12.63)

A PI controller is used for both active and reactive current control loop as shown
in Figure 12.20. Under balanced conditions, the inverter can be regarded as a unit
function. vd+

C and vq+
C in Figure 12.19 are equal to vd+∗

C and vq+∗
C in Figure 12.20, i.e.,

vd+
C = vd+∗

C
vq+

C = vq+∗
C

(12.64)
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Figure 12.19 The plant of the STATCOM system in the s-domain.
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Figure 12.21 shows the equivalent control diagrams for id+
C and iq+

C , which is derived
from Figures 12.19 and 12.20, and Equation (12.64). The controlled system is reduced
to a first-order transfer function [24].

Active power flowing into STATCOM will regulate DC capacitor voltages of the
inverter. U ∗

D is the reference value of unit voltage of DC capacitors. UD is the unit
voltage of DC capacitors and can be calculated as follows:

UD = 1

12

(
vaI

D + vaII
D + vbI

D + vbII
D + vcI

D + vcII
D

)
(12.65)

The active current reference, id+∗
C , is generated from a PI controller, which controls

UD. The reactive current reference, iq+∗
C , is given according to different compensation
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aims. For example, for an STATCOM to compensate the reactive power of a load, it will
be the load reactive current. Under balanced conditions, the dq+ component of the bus
voltages is shown in Equation (12.58). The output of this module, vabc∗

P , is obtained from
vd+∗

C and vq+∗
C through Tdq+→αβ and Tαβ→abc, respectively, as previously mentioned.

Unbalanced Voltage Control Module

Assuming that the sequence components are not coupled, Figure 12.12 can be thought
as separately representing either the positive or negative sequence. Considering the
case of the negative sequence components and using the phasors, V −

C represents the
negative sequence component of compensator voltage generated by the STATCOM
and V −

B means the negative sequence component of bus voltage. Setting V −
C equal to

k times of V −
B , it can be expressed as:

V −
B = V −

S
ZIZL

ZSZI + ZIZL + (1 − k)ZSZL
(12.66)

A P controller in the synchronous reference dq− frame is used to produce the
amplitude of v−

C from the amplitude of v−
B as shown in Figure 12.22. A large P can
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reduce the negative sequence component of the bus voltage greatly, which is derived
from Equation (12.66). The output of transform Tαβ→dq− contains second harmonic
components with frequency 100 Hz in addition to DC components. A mean function
that generates the average value of input during last 0.01 s is used to eliminate the
second harmonic components. Thus, in the dq− frame, the regulated quantities appear
as DC. When the STATCOM is used to balance the bus voltages, there is a problem
that the inverter current may be over rating. Under unbalanced conditions, the output
of the P controller in Figure 12.22 is a signal corresponding to the voltage drop across
the STATCOM interface impedance. By limiting the value of this voltage drop, the
inverter current is limited.

When the STATCOM balances the bus voltages, the negative sequence power that
the inverter sends can be expressed as:

P− = V −
C (V −

C − V −
B )RI

R2
I + (ωLI)2

(12.67)

Since RI � ωLI, the P− is quite small. This small deviation of DC capacitor voltages
that is caused by the P− can be balanced by ejecting or absorbing additional positive
sequence power.

Inverter Control Modules

Figure 12.23 shows the inverter control module A. The operation and principle of the
inverter control modules B and C are the same as that of the inverter control module A.
The inverter control moduleA can be divided as partsA and B as shown in Figure 12.23.

The part A of Figure 12.23 addresses the issue of balancing individual capacitor
voltages vaI

D and vaII
D . Without additional control for balancing the individual capacitor

voltages, the capacitor voltages will become unequal under unbalanced conditions or
during transient process. Additionally, each DC capacitor voltage may not exactly be
balanced even under steady balanced conditions since inverter devices are not ideal and
have different tolerance errors. Figure 12.14 shows the waveforms when the STATCOM
supplied reactive power to the system.

Firstly, the second H-bridge of A-phase, HBaII, is analyzed. When the output
voltage of HBaII, vaII

H , has the same direction as ia
C, the capacitor CAPaII is discharged

and vice versa. If the vaII
H is shown as real line in Figure 12.14, the average charge into

the capacitor CAPaII over each half cycle is zero. However, if vaII
H is shifted to 	δ2 by

the dark dashed line, the charge over each half cycle can be expressed as:

QaII =
∫ π−φ2+	δ2

φ2+	δ2

3UD|ia
C|1 cos θ dθ = −6UD|ia

C|1 cos φ2 sin 	δ2 (12.68)

where ia
C is sinusoidal and |ia

C|1 is amplitude of ia
C. QaII is proportional to 	δ2 when

	δ2 is small. So approximately QaII can be written as:

QaII = −6UD|ia
C|1cos φ2 · 	δ2 (12.69)
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Therefore, the capacitor voltage vaII
D can be controlled by slightly shifting the switching

pattern. For high-power high-voltage applications, the total power loss of the inverter is
less than 1%, and hence 	δ2 � 0.1 rad [13]. The shifted switching angles about HBaII

during 0 to 2π are φ2 + 	δ2, π − (φ2 − 	δ2), π + (φ2 + 	δ2) and 2π − (φ2 − 	δ2).
Suppose

δ2 = φ2 − Bb(va
Cia

C)	δ2 (12.70)

where Bb(·) is bi-polar binary function and can be expressed as:

Bb(τ) =



1 τ > 0
0 τ = 0
−1 τ < 0

(12.71)

Therefore, the shifted switching angles about HBaII during 0 to 2π are δ2, π − δ2,
π + δ2 and 2π − δ2.

The average charge current for CAPaII can be expressed as:

iaII
D = 100QaII (12.72)

The relationship between the current of CAPaII, iaII
D , and the voltage of CAPaII, vaII

D ,
can be expressed as:

iaII
D = CaII dvaII

D

dt
(12.73)

From Equations (12.69), (12.72) and (12.73), the transfer function from 	δ2 to vaII
D

in s-domain can be written as:

vaII
D

	δ2
= k1

s

(
k1 = −600UD|ia

C|1cos φ2

CaII

)
(12.74)

Once the switching angles of HBaII is decided, the switching angles of HBaI will
be regulated for controlling the DC capacitor voltage of HBaI, vaI

D . As shown in Figure
12.14, the switching angles of HBaII over the first quarter cycle is φ2 + 	δ2, so the
second switching angles of HBaI over the first quarter cycle must be φ2 + 	δ2, other-
wise the inverter will generate voltage spikes. If the switching angles of HBaI over the
first half cycle are φ1, φ2 + 	δ2, φ3, φ4, π − φ4, π − φ3, π − φ2 + 	δ2 and π − φ1, the
charge to CAPaI during the first half cycle can be expressed as:

QaI′ = 4UD|ia
C|1 cos φ2 sin 	δ2 (12.75)
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For balancing the CAPaI, other switching angles will shift slightly as shown in Figure
12.14. Then the charge to the CAPaI during half cycle can be expressed as:

QaI = −2UD|ia
C|1(−2 cos φ2 sin 	δ2 + cos φ1 sin 	δ1 + cos φ3 sin 	δ3

+ cos φ4 sin 	δ4) (12.76)

To shift switching angles in average, 	δ1, 	δ3 and 	δ4 are set equal to 	δ. So Equation
(12.76) can be rewritten as:

QaI = −2UD|ia
C|1[−2 cos φ2 sin	δ2 + (cos φ1 + cos φ3 + cos φ4) sin 	δ] (12.77)

In s-domain, the vaI
D can be expressed as:

vaI
D = k2

s
	δ2 + k3

s
	δ (12.78)

where

k2 = 200UD|ia
C|1 cos φ2

CaI , k3 = −200UD|ia
C|1(cos φ1 + cos φ3 + cos φ4)

CaI (12.79)

PI controllers are used to regulate the DC capacitor voltages as shown in Figure 12.24.
In the control loop, additional feed forward path (bold part) can enhance dynamic
response. The relationship between −k2/k3 and modulation index is shown in Fig-
ure 12.25. In general, the inverter runs at the modulation index higher than 0.7. So
−k2/k3 is selected as 0.81 approximately.
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Figure 12.24 Control scheme for individual DC capacitor voltages.
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The part B of Figure 12.23 shows the main control scheme to generate desired
switching signals from the reference voltages of the inverter. In this chapter and Refs
[13,24], the staircase PWM is used. In Refs [13,24], only the balanced condition is
considered and the control aim is just to regulate the reactive power, so the amplitude
of inverter voltage can be controlled by control loop for reactive power and the phase
angle of inverter voltage can be controlled by the control loop for active power. The
above method cannot be applied in the STATCOM control system presented in this
chapter since, in addition to regulation of reactive power, balance of bus voltages
during unbalanced conditions is involved in the control aims. To achieve these aims,
the reference voltages of the inverters, vabc∗

C , are the addition of the resulting signals
of the power control module vabc∗

P and vabc∗
U as shown in Figure 12.18. Based on the

reference voltages of the inverter, the switching signals are produced to control the
inverter.

Under balanced conditions, the reference voltages of the inverter are quite close to
pure sinusoidal waveforms since they only contain higher-order harmonic components
whose amplitudes are very low. The 5th-, 7th- and 11th-order harmonics of the output
voltage of the A-phase (B-phase or C-phase) inverter are nearly eliminated by the
staircase modulation, so these harmonic components of the STATCOM currents and
bus voltages are very small. The output voltage of the A-phase (B-phase or C-phase)
inverter contains triple-order harmonic components. Under balanced conditions, the
amplitudes of triple-order harmonic components of the output voltage of the A-phase
inverter are the same as those of the B-phase inverter and the C-phase inverter, so triple-
order harmonic components of the STATCOM currents and bus voltages do not exist
with the proper connection of the STATCOM system. Amplitudes of other higher-order
harmonic components of the STATCOM currents and bus voltages are very low. As
stated above, the reference voltages of the inverter are the addition of resulting signals
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of the power control module and the unbalanced voltage control module that are fed by
the STATCOM currents and the bus voltages as shown in Figure 12.18. As shown in
Figure 12.22, the unbalanced voltage control module contains the mean functions that
eliminate the effect of harmonic components of the STATCOM currents and the bus
voltages. But the power control module does not contain them to keep high-dynamic
performance. So the reference voltages of the inverter contain higher-order harmonic
components whose amplitudes are very low.

Under unbalanced conditions, the reference voltages of the inverters are far from
pure sinusoidal waveforms since they contain lower-order harmonic components whose
amplitudes are high. Under unbalanced conditions, the amplitudes of output voltages
of A-phase inverter, B-phase inverter and C-phase inverter are not identical, so the
amplitudes of triple-harmonic components of these output voltages are not identical.
It causes that the STATCOM currents and the bus voltages contain high triple-order
harmonic components, especially the third-order harmonic components. The refer-
ence voltages of the inverter also contain high triple-order harmonic components that
passed from the STATCOM currents and the bus voltages through the power control
module. So the reference voltages of the inverter are far from pure sinusoidal wave-
forms. Without good sinusoidal reference voltages of the inverter, the 5th-, 7th- and
11th-order harmonic components of the output voltages of the A-phase, B-phase and
C-phase inverters cannot be eliminated effectively by the staircase modulation. Thus,
the STATCOM currents and the bus voltages under unbalanced conditions contain
higher 5th-, 7th- and 11th-order harmonic components than those under balanced con-
ditions. Therefore, the reference voltages of the inverter are far from pure sinusoidal
waveforms because of not only high triple-order harmonic components but also 5th-,
7th- and 11th- order harmonic components. If mean functions or filters are added into
the power control module to eliminate the lower-order harmonic components of the
reference voltages of the inverter, the dynamic performance of the reactive and active
power control will be worse. It is undesirable since the main purpose of STATCOM is
to regulate reactive power quickly and the STATCOM works under balanced conditions
at most of the time.

Therefore, a robust control method is needed in this STATCOM system, which must
satisfy the following two items. Firstly, under balanced conditions, reactive power can
be regulated rapidly and va

C do not contain 5th-, 7th- and 11th-harmonics. Secondly,
under unbalanced conditions, the STATCOM can work steadily and the bus voltages
can be balanced. To achieve the above aims, a new control method is proposed in this
chapter. By this method, va

C is synthesized and satisfies the following two items. Firstly,
under balanced conditions, the amplitude and phase angle of fundamental component
of va

C are the same as those of va∗
C . Moreover, va

C do not contain 5th, 7th and 11th
harmonics. Secondly, under unbalanced conditions, va

C can follow the track of va∗
C .

The method by which va
C is synthesized is shown in the part B of Figure 12.23.

ABS(va∗
C ) is the absolute value of va∗

C . The reference signal Sa equal toABS(va∗
C )/(4U ∗

D).
|Sa|1 is the amplitude of fundamental component of Sa. From Equation (12.36), one
can get modulation index M a that is just |Sa|1π/4. From the table of switching angles
(TSA) shown in Table 12.3, the theoretical switching angles, φ1 to φ4, can be gained.
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Figure 12.26 Demonstration of comparing reference amplitudes with the reference signal in
the inverter control model A.

The theoretical switching angles are shifted slightly to balance individual capacitor
voltages by the control loop as shown in the part A of Figure 12.23. Thus, the final
switching angles are δ1 to δ4.

The following is the key part of the new method. The conventional method used in
Refs [13,23,24] is to compare the phase angle ωt with switching angles to determine
the switching states. The new method is to compare the reference signal (Sa/|Sa|1)
with a series of reference amplitudes (sin δ1 to sin δ4) as shown in Figure 12.26.

Firstly, the case in which va∗
C is a perfect sinusoidal waveform is considered. In the

first quarter cycle, Sa is a perfect sinusoidal waveform and can be expressed as

Sa = |Sa|1 sin(ωt) (12.80)

In the first quarter cycle,

Sa

|Sa|1 > sin δi ⇔ ωt > δi (i = 1, 2, 3, 4) (12.81)

The Equation (12.81) shows, as va∗
C is perfect sinusoidal, that the new method has the

same function as the conventional method by which the lower-order harmonics can be
eliminated. In practice, under balanced conditions, va∗

C is quite close to a sinusoidal
waveform. So, under balanced conditions, the new method can also eliminate lower-
order harmonics just like the conventional method.
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Secondly, under unbalanced conditions, va∗
C is far from a sinusoidal waveform

because of lower-order harmonics. With the new method as shown in Figure 12.26,
one can get va

C whose waveform is quite similar to that of va∗
C . Moreover, the new

method is more robust than the method in which the switching angles are compared
with ωt that is gotten by Phase Lock Loop (PLL). Under unbalanced condition and
during transient process, the increasing rate of the value of ωt gotten by PLL is not
very stable, so a small deviation of this rate will result in a large deviation of com-
parison result. Therefore, the new method based on the comparison of amplitudes is
more robust than the conventional method based on the comparison of angles under
unbalanced conditions and during transient processes.

Thus, with the new method, the two aims mentioned previously are achieved. More-
over, the dead zone control is used to avoid high-frequency switching-off of switches in a
short interval. In Figure 12.26, WB is the width of dead zone. The control system of dead
zone is shown in Figure 12.23. The values of (Sa/|Sa|1 + WB) and (Sa/|Sa|1 − WB)
are compared with sin δ1 and sin δ4, respectively. The comparison results are the inputs
of Bu(·), which is a uni-polar binary function shown as follows:

Bu(τ) =
{

1 τ ≥ 0
0 τ < 0

(12.82)

The addition results of Bu(·) are compared in the function of comparing and keeping,
FC, as shown in Figure 12.27. Suppose NL is the expected level number of va

C and
ABS(NL) is the absolute value of NL. If the two addition results are different, the FC
outputs the ABS(NLlast) (the last values of ABS(NL)). If the two addition results are
identical, the FC outputs this addition result. The NL is gotten from ABS(NL) and the
polar of va∗

c . Finally, based on Table 12.2 and definition of the switching function, the
switching signals for the A-phase inverter can be gotten from NL. From Figure 12.26,
one can see that the waveform of ABS(NL) will slightly shift to the right because of the
dead zone, which will result in additional charge or discharge of DC capacitors. But,
with the control loop shown in the part A of Figure 12.23, the DC capacitor voltages
can be balanced.

12.4.3 Simulation Results

The performance of the STATCOM system presented above has been verified under
balanced and unbalance conditions by simulation. The simulation investigations
were performed with MATLAB Simulink. The parameters of the distribution sys-
tem and STATCOM are shown in Table 12.2. In Table 12.2, the capacitance of DC
capacitors used in simulation is calculated based on Table 12.8 and Table 12.9 (redun-
dancy capacitors are not considered). The parameters of the GTOs are shown in
Table 12.10.

Figure 12.27 shows simulated waveforms under balanced conditions. The step
changes of the reference signal of the reactive power, Q∗, is from 0 to 7 MVAr at
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Figure 12.27 Simulation waveforms of the STATCOM under balanced condition: (a) P, Q
and Q*: active power, reactive power and reference value of reactive power; (b) va∗
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reference voltages of the inverter; (c) va

C, vb
C and vc

C: the output voltage of A-phase, B-phase and
C-phase inverter; (d) phase current of the STATCOM and (e) line neutral voltages of the bus.

0.12 s and from 7 to −7 MVAr at 0.18 s. It is seen that the reactive power Q rapidly
tracks the step-changing reference while the active power maintains zero. Complete
decoupled control is achieved. As maximum rms value of output voltage of one phase
of the inverter is bounded at 2

√
2π(4U ∗

D), the respond speed of this system is only
constrained by a practical DC voltage. Figure 12.28 shows simulated frequency spec-
trums of the A-phase STATCOM current, the A-phase line-neutral voltage of the bus
and the reference voltage of the A-phase inverter when Q∗ is −7 MVAr. In them, the
triple-order harmonic components are nearly zero and the 5th-, 7th- and 11th-order
harmonic components are low. The reference voltages of the inverter still contain
13th- and higher-order harmonics which may result in additional switching-off of the
switches. Two methods are used to avoid the additional switching. Firstly, smaller P
in PI controller as shown in Figure 12.29 will reduce the amplitude of harmonics of
vabc∗

C . P and I are adjusted to 9 and 500, respectively, so that the inverter has enough
dynamic response and the amplitude of harmonics of vabc∗

C is limited in appropriate
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Table 12.10

Parameter of the GTO (MITSUBISHI GTO
FG1000BV-90DA)

Forward voltage 2.3V
Turn-on resistance 0.002 �

Turn-on inductance 10 µH
Current falling time 10 µs
Current tail time 20 µs
Diode forward voltage 1.2V
Diode turn-on resistance 0.0005 �

Snubber resistance 10 �

Snubber capacitor 0.7 µF

range. Furthermore, the dead zone control as shown in the part B of Figure 12.23
eliminates the effect of the harmonics. The width of dead zone, WB, is selected as
0.008. From Figure 12.27, one can see that voltage levels of the inverter is identical,
which means the DC capacitor voltages are balanced by the control loops as shown in
the part A of Figure 12.23 in which P and I are selected as 0.001 and 0.01, respectively.

Figure 12.29 shows simulated waveforms of the STATCOM during unbalanced
conditions. Before 0.2 s and after 0.4 s, the source voltage is balanced. From 0.2 to
0.3 s, the source voltages are unbalanced with 0.25 per-unit negative sequence voltage
components. Figure 12.29(a) and (b) shows the bus voltages without compensation
and with compensation. With compensation, the bus voltage is balanced. By limiting
the value of P controller in Figure 12.26, the current sent by the STATCOM is limited
within the rating values as shown Figure 12.29(d).

When compensator is active, the negative sequence component of the bus volt-
age is reduced. The amount of compensation is subjected to the limitation of the
inverter current. In the unbalanced voltage control module as shown in Figure 12.26,
the P is selected as 10 and limitation of P controller is from –7000 to 7000. Fig-
ure 12.30 shows simulated frequency spectrums of the STATCOM currents, the bus
voltages and the reference voltages of the inverter during the unbalanced conditions
with compensation. The inverter is controlled well to compensate the bus voltages
in spite of high lower-order harmonic components in the reference voltages of the
inverter, which proves that the new method as shown in the part B of Figure 12.23
is effective. The dominant lower-order harmonic components in the STATCOM cur-
rents are the third-order harmonics, whose amplitudes are lower than 15% of the
rating value of the STATCOM currents. In the worst case, the voltage ripple of a
DC capacitor caused by the third-order harmonic component of the STATCOM cur-
rent is less than 0.5% of the normal voltage of a DC capacitor. The effect of other
harmonic components on the voltage ripple of a DC capacitor is much lower than
that of the third-order harmonic. And the durations of unbalanced conditions are gen-
erally short. So the effect of harmonic components of the STATCOM currents on
the voltage ripples of DC capacitors are small and transitory. The determination of
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Figure 12.28 Simulated frequency spectrums under balanced conditions: (a) A-phase current of the STATCOM, (b) A-phase line-neutral voltage
of the bus and (c) reference voltage of the A-phase inverter.
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Figure 12.29 Simulated waveform of the STATCOM under unbalanced conditions: (a)
line-neutral voltages of the bus without compensation, (b) line-neutral voltages of the bus with
compensation, (c) negative component of the bus voltages with and without compensation and
(d) phase currents of the STATCOM with compensation.

DC capacitance can still be based on the assumption of a sinusoidal current from
the STATCOM.

12.4.4 Experimental Results

To verify the performance of the proposed compensator experimentally, a hardware
prototype has been built in the laboratory using the scaled system parameters as shown
inTable 12.2. For the experimental system, a programmed ac source is used to represent
the voltage source of the system. The STATCOM consists of a three-phase 9-level
MOSFET inverter which is controlled using a TMS320F240 controlled card, and three
inductances.

Figure 12.31 shows the output voltages of A-phase, B-phase and C-phase inverters
and the phase currents. From 0 to 20 ms, the reference value of reactive power that
the STATCOM sends is set as zero. At 20 ms, there is a step change of the reference
value of reactive power from 0 to 850VAr. At 60 ms, there is a step change of the
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Figure 12.30 Simulated frequency spectrums under unbalanced conditions: (a) A-phase cur-
rent of the STATCOM, (b) A-phase line-neutral voltage of the bus, (c) reference voltage of the
A-phase inverter, (d) B-phase current of the STATCOM, (e) B-phase line-neutral voltage of
the bus, (f) reference voltage of the B-phase inverter.
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Figure 12.30(Continued) (g) C-phase current of the STATCOM, (h) C-phase line-neutral
voltage of the bus and (i) reference voltage of the C-phase inverter.

reference value from 850 to −850VAr. The results show excellent dynamic response
to the step changes.

Figure 12.32 shows the line-to-line bus voltages without compensating unbalanced
voltages. Figure 12.33 shows the line-to-line bus voltages and phase currents of the
STATCOM with compensation of unbalanced voltages. From 0 to 40 ms and from 120
to 200 ms, the source voltages are balanced. From 40 to 120 ms, the source voltages
are unbalanced with 0.25 per-unit negative sequence voltage components added. With
compensation, the bus voltages are balanced partially. The extent of compensation is
constrained by the current of the STATCOM which is limited within the normal value
as shown in Figure 12.33.
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Figure 12.31 Experimental waveforms of the STATCOM under balanced conditions: from 0 to
20 ms, the reference value of reactive power that the STATCOM sends is zero; from 20 to 60 ms,
the reference value is 850VAr; from 60 to 100 ms, the reference value is −850VAr. (a) CH1:
output voltage of the A-phase inverter (200V/div); CH2: A-phase current of the STATCOM
(1A/div). (b) CH1: output voltage of the B-phase inverter (200V/div); CH2: B-phase current
of the STATCOM (1A/div). (c) CH1: output voltage of the C-phase inverter (200V/div); CH2:
C-phase current of the STATCOM (1A/div).
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Figure 12.32 Experimental waveforms of the STATCOM under unbalanced conditions without
compensation: from 0 to 40 ms and from 120 to 200 ms, the source voltages are balanced; from
40 to 120 ms, the source voltages are unbalanced. (a) CH1: AB line-to-line voltage of the bus
(200V/div); CH2: BC line-to-line voltage of the bus (200V/div). (b) CH1: CA line-to-line
voltage of the bus (200V/div).

12.4.5 Summary

This chapter investigates the application of trinary hybrid multilevel inverter in
STATCOM with unbalanced voltages, which is cost-effective because of reduced cost
of switching components, cooling systems and DC capacitors. The staircase modula-
tion permits the inverter run at lower frequency. Vector control based on synchronous
frame transform lead to high-dynamic performance of STATCOM. Moreover, the bus
voltages are rebalanced during the unbalanced conditions and the compensation cur-
rent is limited within normal values. The new method by which the switching signals
are generated from the reference inverter voltages are based on the comparison of
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Figure 12.33 Experimental waveforms of the STATCOM under unbalanced conditions with
compensation: from 0 to 40 ms and from 120 to 200 ms, the source voltages are balanced;
from 40 to 120 ms, the source voltages are unbalanced (a) CH1: AB line-to-line voltage of the
bus (200V/div); CH2: A-phase current of the STATCOM (1A/div). (b) CH1: BC line-to-line
voltage of the bus (200V/div); CH2: B-phase current of the STATCOM (1A/div). (c) CH1: CA
line-to-line voltage of the bus (200V/div); CH2: C-phase current of the STATCOM (1A/div).
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amplitudes instead of angles. By this method, the output voltage of the inverter does
not contain lower-order harmonics under stable balanced conditions and the inverter can
keep high-dynamic performance under unbalanced conditions or transient processes.
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operational amplifier (OA), 283
amplitude, 2
analog, 85
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analog control method, 85
analog control system, 86
analog control theory, 123
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Bode plot, 358
Boost converter, 24
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Buck-Boost converter, 24
Buck-Boost pump, 23
Buck converter, 24
Buck pump, 23
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digital control, 123
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Boost converter, 24
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Buck converter, 24
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conversion technology, 1
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cybernetics theory, 51
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D
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D/A conversion, 101, 102
D/A conversion process, 101

D/A conversion error, 103
D/A converter, 102

data, 106
data conversion, 107
data reconstruction, 106, 107

data reconstruction process, 107
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damping, 42, 45
damping factor, 45
damping time constant, 42

DC = direct current, 1
DC generator, 2
DC motor, 2
DC power supply, 2

DC/AC PWM inverters, 24, 128, 130
DC/DC converters, 24, 132

boost converter, 24
buck converter, 24
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device, 106
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extrapolating device, 107
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S/H device, 106
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digital code, 95
digital computer, 86
digital signal, 85
digital technology, 86
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digital control, 85
digital control systems, 85, 86
digital control theory, 85, 123

Digital power electronics, 22, 123
digital signal processor (DSP), 123
digital-to-analog (D/A), 101, see D/A

digital-to-analog conversion, 101
digitization, 99
Diode, 32
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discrete-data control system, 85
discrete-data signal, 85
discrete-time, 29, 86, 123

discrete-time mode, 29
discrete-time state, 86, 123
s-domain, 114, 117
z-domain, 118

double current SR Luo-converter, 200
domain, 114, 117, 118
dynamics, 86

control system dynamics, 86

E
efficiency, 1, 7

power transfer efficiency (η), 1, 7
electromotive force, 3, see EMF
EMF, 3, see also electromotive force

back EMF, 3
energy, 1, 2

energy losses (EL), 37
energy quantization, 36

energy quantization function, 36
energy storage, 34

energy storage element, 34
pumping energy (PE), 34, 35
stored energy (SE), 34, 36
stored energy variation (VE), 38

Energy Factor (EF), 34, 35
variation energy factor (EFV), 41

equation, 4
algebraic equation, 4
differential equation, 4

linear differential equation, 4
extrapolating device, 107
extrapolator, 107

F
Family tree, 202, 203
Fast Fourier Transform, 12, 13, see FFT
FF, 143, see also form factor
FFT, 12, 13, see also Fast Fourier Transform

FFT analysis, 12, 13
FFT spectrum, 13, 14

Field flux (�), 3
filling coefficient, 39
filter, 29, 97

ideal filter, 106
low-pass filter, 106
output filter, 97

first-order-hold (FOH), 110
first-order load, 251, 335
firing, 151

firing angle, 151
firing pulse, 151

flexible AC transmission system (FACTS),
163, 348

flexibility, 86
form factor, 143, see FF
frequency, 2, 4, 7

alias frequency, 93
angular frequency, 2
folding frequency, 91
fundamental frequency, 7
mono-frequency, 4
Nyquist frequency, 91
supply frequency, 2
switching frequency, 24

function, 44, 89, 90
periodic function, 90
transfer function, 44
unit-step function, 89

G
Gain, 43, 132, 284

current transfer gain, 215
differential gain, 286
integral gain, 284, 286
proportional (transfer) gain, 284
voltage transfer gain, 43, 132

geometric progression, 189
Graetz circuit, 145

H
harmonics, 1, 7

fundamental harmonic, 7
higher order harmonics, 7

horsepower (HP), 163
fractional horsepower (HP), 163

I
ideal, 97

ideal sampler, 98
ideal S/H, 97
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imaginary, 250
imaginary axis, 250

impedance, 4, 10
internal impedance, 10

inertia, 316, 317
instantaneous value, 103, 129

instantaneous voltage, 103, 129
integral, 257, 259, 266
interference signal (U), 45
inverter, 163, 164

current source inverter (CSI), 163
multilevel PWM inverter, 164
multistage PWM inverter, 167
voltage source inverter (VSI), 163

J
j = √−1, imaginary unit, 90

K
k, conduction duty cycle/ratio, 29, 36, 132

L
L-R circuit, 5, 6
L-R-C circuit, 3
Laplace operator s, 43
Laplace transform, 109
left hand half plane/left-hand half-plane, 55,

250, see LHHP
lift, 34

super lift, 23
voltage lift, 34

load, 3
capacitive load, 251
first-order load, 251
inductive load, 4, 251
linear load, 3

linear dynamic load, 3
linear passive load, 3

resistive load, 35, 251
LHHP, 55, 250, see also left-hand half-plane
look-up table, 333
LSB = least significant bit, 106
Luo-converter, 185

Double output Luo-converter(s), 185

Negative output Luo-converter(s), 185
Negative output Super-lift Luo-converter(s),

189
Positive output Luo-converter, 185
Positive output Super-lift Luo-converter(s),

189
Luo-pump, 23

Negative Luo pump, 23
Negative Super Luo-Pump, 23
Positive Luo pump, 23
Positive Super Luo-Pump, 23

M
Mathematical model, 43, 123
Mathematical modeling, 43, 123
matrix converter, 30, 235
MIMO = multiphase input multiphase

output, 137
mode, 29

continuous conduction mode (CCM), 36
discontinuous conduction mode (DCM),

39
discrete-time mode, 29

modulation, 86, 87
modulation ratio, 87

amplitude modulation ratio, 87
frequency modulation ratio, 88

over modulation, 89
modulator, 86, 87
moduling, 43 127

mathematical moduling, 43, 127
traditional moduling, 127, 130

MSB = most significant bit, 106
Multiple Energy-Storage Elements Resonant

Power Converters (x-Element RPC),
178, 200

2-element RPC, 201
3-element RPC, 201
4-element (2L-2C) RPC, 201

N
Nyquist criterion, 94
Nyquist sampling theory, 94

Nyquist sampling frequency, 94
Nyquist sampling theorem, 94
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O
Ohm’s Law, 2
open-loop, 256

open-loop analysis, 256
open-loop control, 154, 294

operation, 284
differential operation, 286
integral operation, 284, 286
proportional operation, 284, 286

operational amplifier (OA), 283
oscillation, 44

oscillation progress, 45
overshot, 44

P
PAM, 86, see also pulse-amplitude modulation
per-unit system, 126
period, 24, 29

conduction period, 24
repeating period, 24
switch-on period, 29, 132
switch-off period, 29, 132

periodic, 97
periodic clock, 97
periodic sampling rate, 97

Permanent magnet, 315, see PM
PF, 1, 7, see also power factor
PFC, 348, 349, see also power factor

correction
PI, 283, see also proportional-plus-integral

PI control, 283
PI controller, 283

PID, 283, 285, see also proportional-plus-
integral-plus-differential

PID control, 283
PID controller, 285, 287

PM, 315, see also permanent magnet
pole, 77, 79, 124

conjugate complex poles, 80
a pair of conjugate complex poles, 80

real pole, 77, 79
power, 2, 5, 6

apparent power (S), 5, 6
complex power (S), 5, 6
input power, 7
output power, 7, 9

maximum output power, 9

power factor (PF), 2, 7
real power (P), 5, 6
reactive power (Q), 5, 6

Power electronics, 1
Digital Power electronics, 123

Power factor, 1, 2, 7, see PF
Power factor correction, 348, see PFC
power losses, 37
Power quality control (PQC), 348
Power supply, 2

AC power supply, 2
DC power supply, 2

Power transfer efficiency (η), 7
proportional-plus-integral, 283, see PI
proportional-plus-integral-plus-differential,

283, see PID
pulse, 1, 86

pulse-amplitude modulation, 86, see PAM
pulse-amplitude modulator, 86
pulse-width modulation, 1, 86, 87, see PWM
pulse-width modulator, 87

pulse-train,86
pump, 22, 23

Boost pump, 23
Buck pump, 23
Buck-Boost pump, 23
negative Luo pump, 23
negative super Luo-Pump, 23
positive Luo pump, 23
positive Super Luo-Pump, 23

pumping, 29
pump circuit, 29
pump energy (PE), 35

PWM, 1, see also Pulse-Width-Modulation/
Modulated

Q
quantization, 99, 104

energy quantization, 104
quantization error, 99, 104, 105
quantization level, 99
quantization step, 105

R
R-L circuit, 10
L-R-C circuit, 3
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ratio, 37
Capacitor-Inductor stored energy ratio

(CIR), 37
reactive power (VAr) compensation, 348
Real-time signal, 86
Rectifier, 24

AC/DC controlled rectifier, 125, 127
diode rectifier, 143

Single-phase half-wave (diode) rectifier,
24, 125, 144

Single-phase full-wave (diode) rectifier,
24, 125, 145

Three-phase half-wave (diode) rectifier,
24, 125, 146

Three-phase full-wave (diode) rectifier,
24, 125, 147

Thyristor rectifier, 24
region, 124

stable region, 124
unstable region, 124

repeating period T, 24
response, 45

impulse interference response, 45
impulse response, 45, 108
step response, 45
unit-step (function) response,

45, 252
RF, 1, 2, 8, see also ripple factor
RHHP, 250, see also right-hand

half-plane
right-hand half-plane, 250, see RHHP
ripple factor, 1, 2, 8, see RF
root-mean-square, 10, see rms/RMS
RMS = rms, 10, see also Root-mean-square

RMS value, 10

S
s-domain, 43, 117, 124
s-plane, 124
sample, 86

sample time, 86
sample width, 86

sample-and-hold (S/H), 95
sampling-and-holding process, 95

sampled, 86
sampled output signal, 86
sampled signal, 93

sampler, 86, 91
uniform-rate sampler, 86, 87

uniform-rate finite-pulse-width sampler,
86, 87

sampling, 86
sampling controlled signal, 86
sampling frequency, 86
sampling instant, 107
sampling interval, 86
sampling method, 87
sampling period, 86, 97
sampling signal, 93

second-order hold (SOH), 112
Shannon’s sampling theorem, 93, 94
signal, 254, 336

disturbance signal, 336
interference signal, 254

silicon controlled rectifier, 24, see SCR
simulation, 103
SISO = single-phase input single-phase

output, 136
single ended primary inductor converter

(SEPIC), 132
sinusoidal, 4

sinusoidal waveform, 4
sinusoidal voltage, 4

SL = Super-Lift, 136
slope, 133
soft-switching, 34

soft-switching converters, 34
space vector modulation (SVM) method, 240,

242
Spectrum, 202

FFT Spectrum, 202
speed, 3

running speed, 3
SRC, 24, also see silicon controlled rectifier
stability, 124

stability analysis, 249, 288
stability boundary, 124
stability characteristics, 124
stability criteria, 124

static compensation (STATCOM), 348, 363
steady state, 34
stored energy (SE), 36, 315

electrical stored energy (ESE), 315
mechanical stored energy (MSE), 315
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super-lift (SL), 24, 136, 179
super-lift converter, 136, 179, 189

negative output cascade boost converters,
189

negative output super-lift Luo-converter,
24, 189

positive output cascade boost converters,
189

positive output super-lift Luo-converter,
24, 189

switched-capacitor (SC), 194
switched-capacitor (SC) converter, 194
switched-inductor (SI), 194
switched-inductor (SI) converter, 194
switching, 22, 23, 39

switching circuit, 22, 85
switching frequency, 23
switching-on, 39
switching-off, 39

synchronous rectifier (SR), 178, 200
Double current Synchronous Rectifier

Luo-Converter, 200
synchronous rectifier DC/DC converters,

178

T
THD, 1, 2, 7, see also total harmonic

distortion
thyristor, 32

MOS controlled thyristor (MSC), 32
thyristor controlled reactor (TCR), 348
thyristor switched capacitor (TSC),

349
time, 96

acquisition time, 96, 97
aperture time, 97
finite time delay, 97
setting time, 97
time delay, 97, 98

time constant, 41, 42
damping time constant τd, 42
differential time constant τd, 286
integral time constant τi, 284, 286
time constant τ, 41
time constant ratio ξ, 42

total harmonic distortion, 1, 2, 7, see THD
transfer function, 44

transform, 12, 91, 109, 114, 118
Fourier transform, 91

Fast Fourier transform, 12, 13
Laplace transform, 109
z-transform, 114, 117, 118

transient, 45, 97
transient operation, 97
transient process, 45

transistor, 32
insulated gate bipolar transistor

(IGBT), 32
power bipolar transistor (BT), 32
power MOS field effected transistor

(MOSFET), 32
trigonometric identities, 90
trinary, 365

trinary hybrid multilevel inverter, 365
turn’s ratio/turns ratio/turn ratio, 142, 181,

182–185
transformer turns ratio, 181, 182–185

U
uniform-rate, 86, 87, 89

non-uniform-rate sampling, 89
uniform-rate sampler, 86, 87, 89

uniform-rate finite-pulse-width
sampler, 90

uniform-rate sampling operation, 89
uninterruptible power supply (UPS), 163
unipolar, 106
unit-cycle, 124
unit-pulse-train, 90
unit-step function, 89

V
value, 2,

average value, 2
root-mean-square value, 2

vector, 4
reference vector, 5
vector current, 4
vector voltage, 4

Venturini method, 240
voltage-lift (VL), 188

voltage-lift converter, 179
voltage-lift (VL) technique, 188

Voltage transfer gain, 43, 132
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W
waveform, 5,

current waveform, 5
voltage waveform, 5

width, 86, 87
pulse-width modulation (PWM), 86,87

word, 95
word length, 95

work, 1, 2

Y
Y/Y-connection, 142
Y/	-connection, 142

Z
z-domain, 118
z-transform, 114, 117, 118
z-transformation, 114
zero, 153, 174, 208
zero-current-switching (ZCS), 196
zero-order-hold (ZOH), 107
Zero-transition (ZT), 198
Zero-voltage-switching (ZVS), 196


