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Preface

A lot of efforts have been devoted in the last five-ten years to the growth of organic
crystalline layered structures (including organic quantum wells and superlattices).
Improvement in the technique of molecular beam deposition has led to a variety of
good quality organic thin films, multilayered structures and heterostructures based
on molecular solids, as well as combinations of organic and inorganic semicon-
ductors. The possibility of growing tailor-made systems incorporating different
organic crystalline materials with even more flexibility than for multiple quan-
tum wells based on inorganic semiconductors alone, opens a promising field of
research from the point of view of fundamental as well as applied physics. The
advent of such a new class of organic crystalline materials prompted scientists to
investigate their nonlinear and electro-optical properties, in order to understand
their possible advantages in comparison with the usual organic or inorganic ma-
terials.

This volume, written by recognized experts in the field, is the first book devoted
to a systematic discussion of the properties of organic crystalline multilayers and
organic based nano- and multilayer heterostructures. It has been demonstrated that
for such structures we can expect many new interesting optical effects and phe-
nomena which can be important also for applications. Some of these predictions
have already prompted experimental investigations (see, for example, Chapter 8,
devoted to the observation of a strong Frenkel exciton-cavity photon coupling
and giant Rabi splitting for Frenkel excitons in microcavities) and, no doubt, in
the nearest future the experimental study of effects described in the book will
continue.

We hope that this volume will come into use not only among physicists but also
chemists and biologists. To help the nonspecialist reader we have included in the
book three chapters (Chapters 1, 2, 3) which contain a tutorial introduction to the
physics of electronic excitations in organic and inorganic solids.

All the chapters in the book are self-contained, and each concerns a specific
aspect of the up-dated developments in the field. The list of contents will provide
the reader with a detailed account of all the material included in the present book,
in the following we limit ourselves to a few general remarks.

The optical and electro-optical effects are discussed in two classes of materials:
(a) multilayer organic structures, (b) organic based heterostructures in the region
of excitonic resonances.

xi



xii PREFACE

Multilayer structures are systems with “condensed” interfaces, and under this
conditions the specific surface and quasi two-dimensional effects at interfaces
may play an important role in determining the sample properties. This contribu-
tion is particularly important in the cases where new excited states arise along the
interfaces. In the study of nonlinear dynamics of interfaces we show in Chapter 4
that intermolecular anharmonicity across the interface produces new states: “the
Fermi Resonance Interface modes”, and leads to bistability and multistability in
the energy transmission through the interface.

In Chapter 5 we describe the electronic excitations in quasi one-dimensional
organic crystals with strong orbital overlap between neighboring molecules. In
such crystals, the energy difference between the lowest Frenkel exciton and the
nearest-neighbor charge-transfer excitons becomes small and their strong mix-
ing determines the nature of the lowest energy states. The theory is used for un-
derstanding the optical properties of crystalline thin films of PTCDA(3,4,9,10-
perylenetetra-carboxylic dianhydride) and MePTCDI(N-N′′-dimethylperylene-
3,4,9,10-dicarbiximide). We discuss also the new surface exciton states which
arise due to mixing of Frenkel and charge-transfer excitons. These states can be
important for the investigation of quantum confinement of exciton states in very
thin layers of quasi-one-dimensional organic crystals. Since the synthetic tailor-
ing of new organic compounds has endless possibilities because the growth of
organic multilayer structures is not limited by lattice matching restrictions, such
systems are expected to demonstrate a variety of potentially useful properties.

In the case of donor-acceptor multilayer structures described in Chapter 6,
the peculiar resonant optical nonlinearities and the photo-voltaic effect associ-
ated with the interface charge-transfer excitons characteristic of such systems at
moderate excitation densities are discussed. We also consider, at higher excita-
tion densities, the ionization instability leading to photoconductivity even at low
temperature (cold photoconductivity).

We consider the properties of electronic excitations in hetero-nano-structures
based on combinations of organic materials and inorganic semiconductors, having
respectively Frenkel excitons and Wannier–Mott excitons with nearly equal ener-
gies. We show that in this case the resonant coupling between them in quantum
wells (or wires or dots) may lead to novel striking effects, such as a splitting of the
excitonic spectrum and an enhancement of the resonant optical nonlinearities. We
describe the properties of hybrid Frenkel–Wannier–Mott excitons, which appear
when the energy splitting of the excitonic spectrum is large compared to the width
of the exciton resonances (Chapter 7, the strong resonant coupling). Such peculiar
excitations share at the same time the properties of the Wannier excitons (e.g., the
large radius) and of the Frenkel excitons (e.g., the large oscillator strength). For
this reason hybrid excitons are expected to have resonant optical nonlinearities
significantly enhanced with respect to traditional inorganic or organic systems.
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The structures mentioned above depend on the technologically challenging
problem of growing high quality organic-inorganic heterojunctions only a few
nanometers apart. A simpler way of realizing a hybrid exciton system is to cou-
ple Frenkel and Wannier excitons through a microcavity (MC) electromagnetic
field. Strong exciton-radiation interactions are observed in microcavities, because
the hybridization is not due to the Coulomb short-range interaction, but to strong
long-range interaction stemming from cavity photons. For cavity embedded quan-
tum wells, the fabrication would be much easier as their separation can be of the
order of an optical wavelength. This situation is qualitatively equivalent to that of
two coupled microcavities for which the growth conditions could be separately
optimized for the organic and inorganic well. Planar microcavity structures pro-
vide a versatile mean to control the optical properties of semiconductors and to
enhance the performance of opto-electronic devices. In Chapter 8, following the
main results of the theory of polaritons in planar microcavity given in the intro-
ductory Chapter 3, and in Chapter 7, we describe experiments which demonstrate
the giant Rabi splitting of Frenkel excitons. This giant Rabi splitting (which can
be of the order of 100 meV) opens a new channels of cavity polariton relaxation
and strongly affects absorption, transmission and photoluminescence. The results
of these experiments represent a further step towards new exciton controlled de-
vices.

In Chapter 9 the case of weak resonant coupling between Frenkel excitons in or-
ganics and Wannier–Mott excitons in inorganic semiconductors is considered. For
this case the Foerster mechanism of energy transfer from an inorganic quantum
well to an organic overlayer is of great interest. Such an effect may be especially
useful for applications: the electrical pumping of excitons in the semiconductor
quantum well can be used to efficiently turn on the organic material luminescence.
Using this effect we propose a new concept for light emitting devices.

The strategy of combining organic and inorganic materials in the same nano-
structures, as shown by the above examples, may lead to many novel devices
which take advantage of the good properties of both classes of materials, over-
coming the basic limitations of each individual class.

In the concluding Chapter 10 the electronic energy transfer in a microcavity is
discussed. It is well known that the retarded interaction, along with the Coulomb
interaction, contributes to the energy transfer between donors and acceptors. In a
planar microcavity, whose thickness is of the order of the light wavelength, we
can expect the retarded interaction to be enhanced due to the cavity photon con-
tribution. The cavity enhancement of the energy transfer is expected to stimulate
experimental investigations of energy transfer in microcavity. In this chapter a mi-
crocavity whose optical properties may be modified by the presence of absorbing
acceptors (the donors are assumed not to affect the optical properties strongly) is
considered. It is shown that different situations may be realized depending on the
acceptor absorption: in the case of strong and broad absorption the cavity mode
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is practically destroyed; in the regime of weak absorption, the cavity mode is still
well defined and just acquires some additional broadening. We also consider the
strong coupling regime, when the acceptor absorption has the shape of a strong
and narrow peak and two polariton branches appear due to coherent mixing of
the acceptor excitations and the cavity mode. For all these cases the retarded in-
teraction is responsible for the energy transfer. The role of different dissipative
processes which may compete with the energy transfer, is also analyzed in detail.
The comparison of the theory with the results of recent experiments is given.

In organising the material presented in this book we greatly enjoyed the col-
laboration with the authors of the various chapters and with other experts in this
field. To all of them we wish to express our thanks.

VLADIMIR AGRANOVICH

FRANCO BASSANI
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1. Introduction

Excitons are electronic excitations of dielectric solids and clusters that play a
crucial rule in the optical response of these materials. They represent bound
electron–hole pairs, that may be generated by absorption of light or by relax-
ation of free electrons and holes after optical or electrical pumping. Among the
optical properties of exciton systems that have aroused much interest, are coop-
erative spontaneous emission [1,2] (including application in light-emitting diodes
[3] and lasers [4]), strong optical nonlinearities [5–7], and optical bistability [8].
Also the possibility to optically create Bose–Einstein condensates of (pairs of)
excitons has attracted much attention [9,10].

Being electron–hole pairs, excitons carry no charge, which means that they do
not contribute to electrical conduction. They do carry excitation energy, however,
and their mobility therefore is responsible for energy transport processes. This
transport not only is of much interest in solids, like semiconductors and insu-
lating organic crystals, but also in mesoscopic and nanoscopic systems, such as
the molecular cyanine aggregates that are responsible for light sensitization of
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silver-halide crystals in color photography [11,12] and molecular light-harvesting
complexes in the photosynthetic systems of bacteria and higher plants [13].

Excitons are usually distinguished in two classes: Frenkel excitons and
Wannier–Mott excitons [14]. The distinction lies in the typical separation be-
tween electron and hole. For Frenkel excitons, this separation is essentially zero
(electron and hole occur on the same molecule or atom) and their binding en-
ergy is large (∼1 eV). For the Wannier–Mott exciton the electron–hole separation
is much larger than a single molecule or atom and the binding energy is small
(∼1 meV). Physically, the distinction originates from the competition between
two energy scales: the electron–hole coupling and the rates for electron and hole
hopping between different molecules or atoms [15]. The hopping rates allow the
electrons and holes to move individually between different molecules in the solid
or aggregate. This charge hopping arises from the overlap between the electron
and hole orbitals on neighboring molecules. If the Coulomb coupling between
electrons and holes can be neglected, this leads to freely moving electrons and
holes, that may conduct electricity. The Coulomb interaction between electron
and hole competes with their possibility to move independently through the sys-
tem and if the interaction is strong enough it gives rise to bound electron–hole
states, which appear as discrete levels below the continuum of “ionized” states in
which electron and hole are essentially free. In fact, if the Coulomb attraction by
far exceeds the hopping rates, the binding between electron and hole becomes too
strong for them to separate and they always occupy the same molecule or atom.
This is the Frenkel exciton limit, in which the exciton essentially is a molecular
(or atomic) excitation, with an electron in the lowest unoccupied molecular or-
bital (LUMO) and a hole in the highest occupied molecular orbital (HOMO), that
propagates through the crystal driven by electrostatic interactions.

From the above, it is clear that systems in which the charge overlap between
neighboring molecules or atoms is small, typically carry Frenkel excitons. Exam-
ples are Van der Waals solids (molecular crystals and their self-assembled meso-
scopic analogues, molecular aggregates), but also alkali-halide crystals and noble-
gas crystals, such as argon. It should be noted that in general only the lowest mole-
cular singlet excited state gives rise to real Frenkel excitons; higher excited states
in general have sufficient charge overlap to allow for a finite electron–hole separa-
tion. Although the electron and hole in a Frenkel exciton reside on the same mole-
cule, they do have the ability to move through the crystal as a pair. This center-
of-mass motion of the pair arises from electrostatic interactions between the elec-
trons on different molecules. Generally the strongest contribution to this propaga-
tion derives from the interactions between the transition dipoles of the individual
molecular transitions. This gives rise to a long-range (1/r3) excitation transfer
interaction between molecules, which in turn is responsible for the formation of
an exciton band. We stress that this interaction does not involve charge overlap.
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In systems with a stronger charge overlap between neighboring molecules or
atoms, the relative motion of electron and hole introduces extra degrees of free-
dom. For Wannier–Mott excitons, the electron–hole separation is of the order of
hundreds to thousands of Ångstroms, so that one may regard the underlying sys-
tem essentially as a continuum characterized by a dielectric constant. This gives
rise to a series of hydrogen-like states for the relative motion of electron and hole.
The smallness of the binding energy and the appreciable size of the radius of these
orbitals as opposed to the real hydrogen orbitals, originates from the small effec-
tive mass of the electron and hole in semiconductors and the typically large value
of the dielectric constant.

While the names Frenkel and Wannier–Mott excitons refer to two extreme cases
with regards to the length scale of relative electron–hole motion (the internal exci-
ton structure), this scale in practice does allow for all the intermediate cases. The
intermediate case that has acquired a special status is the charge-transfer exciton
(CTE), which in its lowest-energy variation has an electron–hole separation of one
molecule. Thus, the hole is located at one molecule and the electron on the neigh-
boring one. This is often referred to as a “donor–acceptor (D-A) complex”. CTEs
may occur in systems with an alternating structure of two types of molecules [16],
but also in crystals with just one type of molecule (such as anthracene, naphtha-
lene, and many others). In the latter case, any molecule in the crystal can play the
role of donor or acceptor. CTEs currently are considered important intermediate
states in the photo-conductivity of organic crystals [17]. In this process, they are
essential in the creation of free carriers from photo-generated Frenkel excitons.

In organic crystals and aggregates, we typically deal with Frenkel and charge-
transfer excitons as the important optically accessible excitations. In some cases,
for example, in quasi-one-dimensional organic solids with very small intermole-
cular distances within the stacks, the mixing of these two types of excitations is
important (see the chapter by M. Hoffmann in this book). It is worth mentioning
here that the low-temperature spectroscopy of organic molecular crystals grew out
of classical experiments carried out in the late 1920s by Pringsheim and Kronen-
berger [18], and Obreimov and de Haas [19,20]. At that time only the Bloch band
scheme for electronic states in crystals was known. This concept predicted very
broad absorption bands, in contradiction to the narrow lines observed in the cited
experiments. It is known that I.V. Obreimov attracted the attention of Ya.I. Frenkel
to this problem and in the first 1931 paper of Frenkel [21], where the concept of
excitons in a molecular crystal was formulated for the first time, the reader may
find the corresponding acknowledgment. The name “exciton” was introduced by
Frenkel in 1936 [22]. After these first steps, a growing list of important exper-
imental observations have been reported by Obreimov and Prikhotko [23] and
many others. A classical review of experiments on excitons in organic crystals
is the book by Broude, Rashba, and Sheka [24]. More recently, Frenkel excitons
and their associated optical and energy transport properties have attracted much
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attention in mesoscopic and nanoscopic organic systems, such as (bio-)molecular
aggregates [13,25].

In this chapter, we give an introduction into the properties of electronic exci-
tations in organic solids, with an emphasis on Frenkel excitons. We explain the
basic theory and discuss its implication for and relation to experiments. A similar
introduction into the properties of Wannier–Mott excitons, which are typical for
inorganic semiconductors, will be given in the chapter by G.C. La Rocca in this
book. Both chapters together serve as basis for the following chapters, which are
concerned with the photo-physics of organic multi-layers and hetero- and nano-
structures involving organic components.

The outline of this chapter is as follows. In Section 2, we describe in some
detail the microscopic theory of excitons in molecular systems. We start by con-
sidering the tutorial example of the molecular dimer, then introduce a second-
quantized notation, and make the step to multi-molecular systems. After the ba-
sic properties of the corresponding Hamiltonian have been studied, we special-
ize to crystal structures, for which we deal with the topics of Davydov splitting,
microscopic calculation of the dielectric function, exciton-polaritons, nonlinear
optics, and exciton–phonon interaction. In Section 3, we describe the dielectric
theory of Frenkel excitons and demonstrate that this microscopic classical the-
ory of excitons in many respects is very powerful and easier to deal with than a
fully quantum mechanical microscopic theory. The diffusive motion of Frenkel
excitons in molecular crystals is dealt with in Section 4, with special distinction
between coherent and incoherent excitons. Related to the topic of exciton mo-
tion is exciton self-trapping, which occurs in the case of strong exciton–phonon
interaction. This phenomenon is discussed in Section 5. In Section 6, we briefly
address charge-transfer excitons. Most of the material in Sections 2–6 deals ex-
plicitly with bulk crystals. In Section 7 we consider special properties of exci-
tons in lower-dimensional structure, with particular attention to the recently much
studied examples of one-dimensional aggregates of organic molecules. Here the
role of disorder will get special attention. The most recent applications of Frenkel
exciton theory to bio-molecular aggregates, such as those that occur in photosyn-
thetic antenna complexes, will be the topic of Section 8. Finally, we conclude in
Section 9.

2. Microscopic Theory of Frenkel Excitons

2.1. SINGLE MOLECULE: EIGENSTATES AND TWO-LEVEL APPROXIMATION

As Frenkel excitons are essentially molecular excitations, the best way to intro-
duce them is by starting out from a single molecule in the gas phase. The mole-
cule is described by a Hamiltonian Ĥmol, which contains the kinetic energy of all
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electrons and nuclei and all Coulomb couplings between these charged particles.
We will assume that the (adiabatic) eigenstates are known. In particular, we will
assume that the ground state is nondegenerate; it is denoted |g〉 and has energy
h̄ωg . The excited states will be denoted |f 〉, with energy h̄ωf . We will be particu-
larly interested in the vibrationally relaxed electronic states, although the exciton
theory which we are about to describe is also valid for vibronic states (i.e., an
electronic excitation which is strongly coupled to a local vibrational mode). The
coupling of the electronic states to phonons in general will be discussed at a later
stage (Section 2.9).

The linear optical (electromagnetic) response of the molecule has contributions
from all possible transitions between the ground state and the excited states. The
strength of each contribution is determined by the oscillator strength (basically
the squared transition dipole element) of the transition and the detuning (ωf −
ωg) − ω, where ω is the frequency of the exciting light pulse. If one of these
transitions, say the one from |g〉 to the particular state |e〉, dominates the others,
it is useful to restrict all considerations just to the pair of states |g〉 and |e〉. We
will make this reduction to a “two-level molecule” in most of the microscopic
theory in this chapter, as this suffices to explain the essential properties of Frenkel
excitons. The effects of going beyond this approximation will be addressed in
Sections 2.5.4 and 3.4.

On the subspace of the two selected levels, the Hamiltonian may now be writ-
ten:

(1)Ĥmol = h̄ωg|g〉〈g| + h̄ωe|e〉〈e| = h̄ωg + h̄ω0|e〉〈e|,
where ω0 = ωe−ωg , the transition frequency. Within the same subspace, we may
write the dipole operator µ̂ of the molecule as

(2)µ̂= µ(|e〉〈g| + |g〉〈e|)+µg |g〉〈g| +µe|e〉〈e|.
Here, µ is the transition dipole between both states, i.e., the matrix element
〈e|µ̂|g〉. Throughout this chapter, we will assume that the molecular wave func-
tions are real, so that also this matrix element is real. For nondegenerate excited
states (in particular for singlet states), this choice may always be made. Further-
more, µg and µe are the permanent dipoles in the ground and excited states,
respectively. Note that for molecules with inversion symmetry, such permanent
dipoles vanish.

The optical absorption spectrum of this two-level molecule, which may be cal-
culated using Fermi’s golden rule, is a delta peak at ω = ω0 with a total area
proportional to µ2, the so-called (oscillator) strength of the transition. In practice,
this delta-peak will be broadened for two reasons [26]. First, the optical transition
is homogeneously broadened due to the finite lifetime of the excited level and due
to dephasing processes resulting from interactions with a heat bath. Second, one
usually measures on an inhomogeneous ensemble of molecules, i.e., an ensemble
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in which the value of ω0 varies from molecule to molecule. In the gas phase, such
inhomogeneity may be due to different Doppler shifts of the absorption lines,
arising from the fact that the velocities of the molecules differ from each other.
In condensed phases (solutions or disordered solids) inhomogeneity derives from
the fact that each molecule has a (slightly) different environment, leading to ran-
dom shifts of the molecular transition frequencies. The probability distribution
of molecular frequencies is referred to as the inhomogeneous distribution and is
often taken to be Gaussian. The resulting total absorption lineshape is the convo-
lution of the homogeneous lineshape and the inhomogeneous distribution.

2.2. DIMER OF TWO-LEVEL MOLECULES

We now turn to a dimer of two identical molecules. The molecules are close
enough to allow the electrons and nuclei to interact with each other, but at the
same time, we will assume that the separation is large enough to neglect overlap
of the electronic orbitals of interest. As mentioned already in the Introduction, in
molecular crystals this generally holds to a good approximation for the ground
state and the lowest (few) excited state(s). Excitons in crystals with strong or-
bital overlap will be considered in the chapter by M. Hoffman in this book. The
Hamiltonian of the dimer now reads:

(3)Ĥdim = Ĥmol,1 + Ĥmol,2 + V̂1,2,

where Ĥmol,n denotes the Hamiltonian for molecule n (compare previous sec-
tion), containing the kinetic energy of electrons and nuclei within molecule n

(= 1,2) and all Coulomb interactions between these electrons and nuclei. The
operator V̂1,2 contains all Coulomb interactions between pairs of charged parti-
cles of which one belongs to molecule 1 and the other to molecule 2. Note that
this distinction of terms can only be made if it is clear to which molecule a given
electron belongs, which means that charge transfer effects (orbital overlap) should
be negligible.

We will restrict ourselves again to the two-level picture of the molecules. For
the dimer, this yields a basis of four states: |g1g2〉 in which both molecules reside
in their ground state, |e1g2〉, in which molecule 1 is in the excited state |e〉 and
molecule 2 is in its ground state; |g1e2〉 (vice versa), and finally |e1e2〉, in which
both molecules are in their respective excited states. On this basis, the Hamil-
tonian reads:

(4)Ĥdim =
∑
u,v

Hu,v|u〉〈v|,

with Hu,v = 〈u|Ĥdim|v〉 and |u〉 and |v〉 running over the four basis states. Of the
16 matrix elements only 10 are independent. We will not calculate all of these
matrix elements explicitly, but limit ourselves to those that conserve the number
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of excitation quanta within the dimer. Thus, we will neglect at this moment the
coupling between |g1g2〉 and the singly and doubly excited states, etc. The reason
is that such states differ by an energy of the order of a molecular transition energy
(typically 10,000–30,000 cm−1), while for molecular systems the coupling matrix
elements are typically of the order of 100–1000 cm−1 for singlet excitations and
even smaller for triplet ones. Thus, the mixing between states with a different
number of excitation quanta will be very small. We will come back to this in
the context of the Heitler–London approximation (Section 2.4.4) and nonlinear
optical response (Section 2.8).

The Hamiltonian of the dimer may now be written:

Ĥdim = (2h̄ωg + Vgg,gg)

+ (h̄ω0 +D1,2)|e1g2〉〈e1g2| + (h̄ω0 +D2,1)|g1e2〉〈g1e2|
+ J1,2

(|e1g2〉〈g1e2| + |g1e2〉〈e1g2|
)

(5)+ (
2h̄ω0 +D′

)|e1e2〉〈e1e2|.
Here, the first line represents the energy of the dimer’s ground state, which in
the current approximation is simply the state |g1g2〉. Its energy consists of twice
the molecular ground state energy plus the electromagnetic interactions between
the molecules in each of their ground states: Vgg,gg = 〈g1g2|V̂1,2|g1g2〉. To low-
est order in the inverse intermolecular distance, this is the interaction between
the permanent ground state dipoles of each of the molecules. For centrosymmet-
ric molecules this matrix element is determined by quadrupolar and higher-order
interactions.

The second and third lines in Eq. (5) describe the Hamiltonian in the sub-
space of singly excited states (the so-called one-exciton space). The second line
contains the single-molecule terms, whose energies above the ground state are
shifted away from h̄ω0. For molecule 1, this shift is D1,2 = 〈e1g2|V̂1,2|e1g2〉 −
〈g1g2|V̂1,2|g1g2〉, which is the difference in the Coulomb interaction between the
ground state molecule 2 and the excited and unexcited molecule 1, respectively.
D2,1 has a similar meaning, with the role of molecules 1 and 2 interchanged. In
molecular crystals, these shifts are referred to as the gas-condensed matter shifts.
For centrosymmetric molecules, the lowest-order contributions to this shift are of
quadrupolar nature. The third line is the crucial one for Frenkel exciton systems:
it describes the transfer of the excitation from one molecule to the other due to
the Coulomb interactions (Figure 1). The corresponding matrix element is defined
through J1,2 = 〈e1g2|V̂1,2|g1e2〉 = 〈g1e2|V̂1,2|e1g2〉, where the equality holds, be-
cause we assume the wave functions to be real. This term is also often referred to
as the “resonant” interaction. For dipole allowed transitions it is dominated by the
interaction between the molecular transition dipoles,

(6)J
dip
1,2 =

(
(µ1 ·µ2)|r12|2 − 3(µ1 · r12)(µ2 · r12)

)
/|r12|5
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(a) (b)

Fig. 1. Resonant (excitation transfer) interactions (a) and off-resonant interactions (b) within a dimer
of two-level molecules. |g〉 is the molecular ground state, |e〉 the excited state.

where r12 is the position vector between molecules 1 and 2, and µn denotes the
transition dipole of molecule n.

Finally, the fourth line of Eq. (5) describes the two-exciton subspace, which
for a dimer only contains one basis state. Naturally, its energy above the overall
ground state energy is twice the molecular excitation energy plus a contribution
due to the difference between the Coulomb interactions in the doubly excited state
and the dimer’s ground state: D′ = 〈e1e2|V̂1,2|e1e2〉 − 〈g1g2|V̂1,2|g1g2〉. Again,
for centrosymmetric molecules, this shift depends on quadrupolar and higher-
order interactions.

To end this section, we consider the one-exciton subspace in more detail. These
singly excited states are the ones that are traditionally understood to be the Frenkel
excitons. To get the actual exciton states for the dimer, we have to diagonalize
the second and third lines of Eq. (5). Let us assume that the molecules are po-
sitioned in such a symmetric way that D1,2 = D2,1 = D. Then the one-exciton
eigenstates are the symmetric and antisymmetric combinations of the molecular
excited states:

(7)|±〉 = (|e1g2〉 ± |g1e2〉
)
/
√

2,

with energies (relative to the overall ground state)

(8)E± = h̄ω0 +D ± J1,2,

i.e., the originally degenerate pair of molecular excited states mixes and splits
into a pair of states delocalized over the dimer with an energy splitting 2|J1,2|.
The transition dipoles are given by

(9)µ± = (µ1 ±µ2)/
√

2.

As both molecules are identical, their transition dipoles may only differ in orienta-
tion, from which it is easily derived that µ+ and µ− are oriented perpendicular to
each other. We thus find that the coupling V̂ of both molecules in the dimer gives
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(a) (b)

Fig. 2. (a) Transition dipoles of the individual molecules 1 and 2 in a dimer and of the dimer eigen-
states |+〉 and |−〉. (b) One-exciton level diagram of a homogeneous dimer before (left) and after
(right) taking the intermolecular interactions into account.

rise to an absorption spectrum in which the molecular peak at h̄ω0 is split into
two perpendicularly polarized absorption bands, with strength |µ+|2 and |µ−|2,
centered around h̄ω0+D and separated by 2|J1,2| (Figure 2). This splitting is the
dimer analog of the Davydov splitting in a bulk crystal which we will encounter
in Section 2.5.3.

2.3. SECOND QUANTIZATION

So far, we have used state vectors, like |g1g2〉, |e1g2〉, etc., to describe the states
and the interaction operators, like Eq. (5). For a system consisting of many mole-
cules and with possibly many excitations, such a notation is not very convenient.
Instead, it is easier to work with creation and annihilation operators (second quan-
tization). At a fundamental level, the operators of interest to describe the elec-
tronic states, are the electron creation and annihilation operators, which add or
take away an electron from a certain electronic orbital (single-electron state) in
a particular molecule. As electrons are fermions, these operators obey Fermi an-
ticommutation relations. Since in most of this chapter, we will be dealing with
two-level molecules and we will neglect the possibility of charge transfer between
molecules, we can work with a simpler set of operators, however. Each molecule
can be in only two states: the ground state |g〉 and the excited state |e〉. Within a
single-electron picture (Hartree–Fock approximation) the excited state is formed
by annihilating an electron from a particular one of the electron orbitals that is
occupied in the ground state and creating an electron in a particular unoccupied
orbital. Thus, the excitation of a molecule is a product of an annihilation and a cre-
ation of an electron [27,28] (of course, many different occupied and unoccupied
orbitals could be combined like this, but remember that we assumed a situation
where we can limit ourselves to one dominant molecular transition). Neglecting
intermolecular charge transfer, implies that we do not need to account for exci-
tations in which after annihilation an electron is created in an excited orbital of
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Fig. 3. Action of Pauli creation (B†
n ) and annihilation (Bn) operators in a two-level molecule.

a different molecule. As mentioned in the Introduction, this type of excitation,
in which the ground state hole and the excited state electron are always on the
same molecule, is called the Frenkel exciton [21]. From the point of view of book
keeping, it is a simple excitation, as we only need one coordinate to describe it
(position of electron and hole are the same). In the case of possible charge transfer
(like in charge transfer excitons or in Wannier excitons), the position of electron
and hole should be considered as two separate degrees of freedom, complicat-
ing the description, as the exciton acquires internal degrees of freedom through
the relative motion of electron and hole. In the Introduction, we have already de-
scribed the physics underlying the distinction between Frenkel and Wannier–Mott
excitons.

The creation and annihilation of an excitation on a two-level molecule are de-
scribed by so-called Pauli creation and annihilation operators B†

n and Bn, respec-
tively (see Figure 3) [27,28]. Here, n labels the molecule (for instance, n = 1 or
n = 2 if we deal with a dimer). The operator B†

n changes the state of molecule
n from the ground state to its excited state, while Bn does the reverse. The name
Pauli operator comes from the algebra of spin 1/2 operators; our two-level mole-
cule (or in fact any two-level system) is formally equivalent to a spin 1/2 [29,30].
When working in second quantization, it is important that we define the commu-
tation relations of the various operators. For our Pauli operators, the rules are that
any two operators working on different molecules commute:

(10)
[
Bn,B

†
m

]= 0, [Bn,Bm] = 0 (n �=m).

In plain words this means that the operation of B†
n and Bn only depends on the

state of molecule n and not on the state of any of the other molecules. However,
the operators working on one and the same molecule, behave like Fermi operators,
i.e., they obey anti-commutation relations. This means that

(11)B†
nBn +BnB

†
n = 1, B†

nB
†
n = BnBn = 0.

These relations reflect the fact that a two-level molecule can at most hold one ex-
citation. Trying to double excite it gives zero; similarly, trying to take two excita-
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tions away from a two-level molecule is impossible. This exclusion of the double
excitation of a molecule is also referred to as the Pauli exclusion for the Frenkel
exciton; it is important in the description of nonlinear optical response, where one
in fact deals with multiple excitations of the system (Section 2.8). For later use,
we note that the first relation in Eq. (11) may also be written as the commutation
relation:

(12)
[
Bn,B

†
n

]= 1− 2N̂n,

where N̂n = B
†
nBn is the operator for the number of excitations on molecule n.

From Eqs. (10) and (12), we observe that excitons almost behave like bosons, if
in some sense the term 2N̂n may be considered small. We will come back to this
in Section 2.4.3.

From now on, we will use the Pauli operators to denote all states and operators
in a system of in interacting two-level molecules. For the states, this is simply
done by operating with the creation operators on the overall ground state an ap-
propriate number of times. If we go back to the example of the dimer, then the
one-exciton state |e1g2〉 may be written B

†
1 |g1g2〉, while |e1e2〉 = B

†
1B

†
2 |g1g2〉 =

B
†
2B

†
1 |g1g2〉. Important examples of operators are the internal energy operator of

an isolated molecule n above its ground state, which reads h̄ω0B
†
nBn. The generic

operator describing the excitation transfer interaction from molecule n to m is
JnmB

†
mBn, where Jnm is the strength of the interaction.

Using this language, the dimer Hamiltonian, Eq. (5), is written

Ĥdim =
∑
n=1,2

(h̄ω0 +Dn)B
†
nBn + J1,2

(
B

†
1B2 +B

†
2B1

)
(13)+U1,2B

†
2B

†
1B2B1,

where we introduced D1 = D1,2, D2 = D2,1, and U1,2 = D′ − D1,2 − D2,1 =
〈e1e2|V̂1,2|e1e2〉 + 〈g1g2|V̂1,2|g1g2〉 − 〈e1g2|V̂1,2|e1g2〉 − 〈g1e2|V̂1,2|g1e2〉. The
resulting expression is very compact, not only because we omitted the overall
ground state energy (which will be set to zero from here on), but also because part
of the two-exciton term in Eq. (5) is now automatically included in the first term
of Eq. (13). As a consequence, terms that may really be considered two-exciton
terms, namely those in which two excitations are annihilated and two are created,
stand out very clearly in the current notation. Such interactions, of which the last
term in Eq. (13) is a simple example, are also known as dynamic exciton–exciton
interactions, in contrast to the kinematic interactions that derive from the Pauli
exclusion (also see Section 2.4). We note that within the dipole approximation,
the dynamic exciton–exciton interaction vanishes, unless the molecular excited
states have permanent dipoles (or more accurately: the permanent dipoles of the
molecular ground and excited states differ).



12 J. KNOESTER AND V.M. AGRANOVICH

2.4. GENERAL N MOLECULE SYSTEM

2.4.1. Hamiltonian

It is now a simple matter to generalize the foregoing to a system of N two-level
molecules. As before, we will neglect overlap between the relevant electronic
orbitals of the different molecules. Because in this section we will be interested
in general aspects of such a multi-molecule Frenkel exciton system, we will not
impose any particular symmetry in their spatial arrangement. We will specialize
to the case of crystalline arrangements in Section 2.5.

In second quantization, the N -molecule Frenkel exciton Hamiltonian reads (cf.
Eq. (13)):

Ĥex =
∑
n

(h̄ω0 +Dn)B
†
nBn +

∑
n,m

JnmB
†
nBm

(14)+ 1

2

∑
n,m

UnmB
†
nB

†
mBnBm.

As before, we have restricted ourselves to terms that conserve the total number
of molecular excitations. Furthermore, we have defined the gas-condensed matter
shifts as Dn =∑

mDnm, with

(15)Dnm =
(〈engm|V̂nm|engm〉 − 〈gngm|V̂nm|gngm〉).

Here, V̂nm (n �=m) denotes the total Coulomb interaction between the constituents
of molecule n and m (cf. V̂1,2 above), and the notation of states follows a straight-
forward generalization of the dimer basis states. We emphasize that, since we
are only dealing with pair interactions, there is no need to explicitly describe the
states of all the other molecules ( �= n,m) in the above matrix elements, as these
state are not affected by V̂nm.

Returning to Eq. (14), the other two relevant coupling parameters are defined
by:

(16)Jnm = 〈engm|V̂nm|gnem〉 = 〈gnem|V̂nm|engm〉
for the excitation transfer interaction and

Unm =
(〈enem|V̂nm|enem〉 + 〈gngm|V̂nm|gngm〉)− 〈engm|V̂nm|engm〉

(17)− 〈gnem|V̂n,m|gnem〉
for the dynamic exciton–exciton interaction. It should be stressed that in organic
materials, which often contain large molecules at relatively short distances, the
point-dipole approximation (Eq. (6)) generally does not suffice to calculate the
above interaction matrix elements. For the transfer interactions, a good alterna-
tive to a further multipole expansion is to use extended dipoles, i.e., the dipole
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is replaced by a pair of charges at a finite distance [31]. A yet better approach
is to use the full electronic charge distributions of the molecular states, which
should be calculated using first-principles methods [32]. For the exciton–exciton
interactions, the dipole approximation often fails even qualitatively, as the per-
manent dipoles in the ground and the excited states vanish for centrosymmetric
molecules.

2.4.2. Multi-Exciton Bands

The Hamiltonian equation (14) describes the excitons in the 2N dimensional
Hilbert space spanned by the N two-level molecules. Hence, a full diagonaliza-
tion in principle requires a 2N × 2N matrix to be diagonalized. The complexity
is reduced, however, as all interactions that we consider conserve the number of
excitations, so that the eigenstates may be classified with respect to this number
(cf. Figure 4). Thus, the overall ground state, denoted |g〉, is the state in which
all molecules are in their ground state (the zero-exciton state). It should be real-
ized that this is only true, because the typical interaction matrix elements |Jnm|
and |Unm| are small compared to the single-molecule excitation energy h̄ω0 (vide

Fig. 4. Schematic energy level diagram of a system consisting of interacting two-level molecules.
The excited states occur in bands, classified according to the number of excitation quanta shared by
the molecules. Only transitions between adjacent exciton bands are dipole-allowed (indicated by the
arrows). As a consequence, the one-exciton states suffice to describe the linear optics of the system,
while its nonlinear optical response involves multi-exciton bands. Exciton–exciton interactions may
give rise to bound bi-exciton states that split off below or above the continuous two-exciton band that
exists for infinite systems.
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infra), the same circumstance that allows us to neglect interactions that do not
conserve the number of excitations.

The lowest set of excited states are linear combinations of singly excited states:

(18)|σ 〉 =
∑
n

ϕσnB
†
n |g〉.

These states are found by diagonalizing the N ×N one-exciton Hamiltonian ma-
trix Hnm = (h̄ω0 +Dn)δnm + Jnm and in the above notation, ϕσn is the nth com-
ponent of the (normalized) σ th eigenvector. The corresponding eigenvalue h̄�σ

gives the energy of state |σ 〉. Obviously, the one-exciton states are not affected by
the exciton–exciton interactions |Unm|. In general, the one-exciton band contains
N states, spread in energy over a range (the band width) of the order of the typical
transfer interaction |J | and centered around the energy h̄ω0. In thermal equilib-
rium, the one-exciton states suffice to calculate the linear absorption spectrum.
We will consider this observable more explicitly in the situation of bulk crystals
and J-aggregates.

The next higher set of excited states are the two-excitons states, in which the
N molecules share two molecular excitation quanta. These eigenstates require
an N(N − 1)/2 × N(N − 1)/2 matrix to be diagonalized, which also contains
the exciton–exciton interactions. This band is centered around twice the typi-
cal molecular excitation energy. Two-exciton states cannot be excited from the
ground state through one interaction with electromagnetic fields and therefore are
not visible in the linear absorption spectrum. They can be excited from the one-
exciton band and, hence, they play an important role in nonlinear optical experi-
ments (Sections 2.8 and 7.3). It should be realized that even in the absence of dy-
namic exciton–exciton interactions, it is in general not possible to simply express
the two-exciton eigenstates in terms of the eigenvectors of the one-exciton sub-
space ϕσn obtained above. The reason is the Pauli nature of the excitons, which
does not allow them to share the same site. This leads to an effective exciton–
exciton interaction which is also known as the “kinematic” interaction. On the
level of two-exciton states, these kinematic interactions may be dealt with by
simply considering the excitons bosons and invoking a hard-core exciton–exciton
repulsion, i.e., an infinitely strong repulsion for two excitations to share the same
site. As the scattering matrix of such a hard-core potential can be calculated an-
alytically, this allows one to express the two-exciton Green functions in terms
of one-exciton eigenfunctions and energies [33,34]. Traditionally, approximating
excitons as bosons has been common practice when dealing with Frenkel excitons
in bulk crystals [27,28,35,36] and we will therefore address this approach in more
detail in the next section. We note that, alternatively, for one-dimensional sys-
tems in the absence of dynamic exciton–exciton interactions, the Jordan–Wigner
transformation to noninteracting fermions is very useful [37–39] (Section 7.3).
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Above the two-exciton states, yet higher bands occur: three-excitons, four-
excitons, etc. The actual calculation of these states gets increasingly more com-
plicated, as they require larger and larger matrices to be diagonalized. The clas-
sification in terms of the multi-exciton bands is depicted in Figure 4. In practice,
there will be a limitation to its use, as under normal conditions higher multi-
exciton states (for which the average excitation density per molecule is high),
will inevitably be strongly mixed with the high density of high lying molecu-
lar excited states that we neglected in our two-level picture. However, the exis-
tence of (bound) two-exciton states in semiconductor crystals [40] and molecular
J-aggregates [41] has clearly been demonstrated.

2.4.3. Bosonization

In Section 2.3 we have seen that the Pauli operators obey the commutation rela-
tions:

(19)
[
Bn,B

†
m

]= δnm
(
1− 2N̂n

)
, [Bn,Bm] = 0.

We note that the only difference with bosons is the term−2δnmN̂n. For excitations
spread over many molecules, as is appropriate for crystals and strongly coupled
aggregates of molecules, the deviation from bosonic behavior is thus expected to
be proportional to the expectation value of the excitation density of the molecules,
which will generally be low if low-intensity light sources are used. In particular,
one expects this to hold in the regime of linear optics. This circumstance moti-
vates the traditional treatment of excitons as bosons [27,28,35,36]. We can make
this argument more rigorous by transforming the Pauli operators from the site
representation to a delocalized representation:

(20)B†
σ =

∑
n

ϕσnB
†
n

where ϕσn denote the eigenvector components also introduced in Section 2.4.2.
From Eq. (19), the commutation relations for these new operators are found to be

(21)
[
Bσ ,B

†
τ

]= δστ − 2
∑
n

ϕ∗σnϕτnN̂n, [Bσ ,Bτ ] = 0.

As we have seen, the ϕσn denote the excitation amplitude of the σ th one-exciton.
If the excitations are spread over all N molecules, as is the case in highly sym-
metric systems such as perfect crystals, the typical amplitude scales like 1/

√
N

(normalization) and we thus find that for the new operators the correction to Bose
behavior is of the order

∑
n N̂n/N , which is the average density of excitations

in the system. This confirms our above expectation that at low excitation density,
excitons may be treated as bosons. Similar arguments can be made in less sym-
metric systems, where the excitons are not spread over all molecules, but rather
over a certain delocalization range Ndel.
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After the transformation to the σ basis, the Hamiltonian equation (14) reads

(22)Ĥex =
∑
σ

h̄�σB
†
σBσ + 1

2

∑
σ,σ ′,τ,τ ′

Uσσ ′ττ ′B
†
σB

†
τ Bσ ′Bτ ′ ,

where Uσσ ′ττ ′ represents the dynamic exciton–exciton interaction in the σ basis,
which is easily expressed in terms of the Unm and the transformation coefficients
ϕσn. Let us now first assume that dynamic interactions are absent:

(23)Ĥex =
∑
σ

h̄�σB
†
σBσ ,

which is the situation considered in many traditional texts on Frenkel excitons.
The Hamiltonian then looks like it is already in diagonal form. Generally speak-
ing, however, this is not the case, as the kinematic interactions hidden in the
general commutation relations spoil this simple picture. Only at sufficiently low
excitation density we may neglect these interactions and treat the excitons as
bosons. Then, indeed, Eq. (23) is in diagonal form and the multi-excitons of
interest are simply described by giving the occupation number of each boson
state σ . The explicit expression for such multi-boson states in the site repre-
sentation is obtained by operating with the corresponding Bose creation opera-
tors an appropriate number of times on the ground state |g〉 and transforming
these operators back to site representation. For instance, for a one-boson state we
have |σ 〉 = B†

σ |g〉 =
∑

n ϕσnB
†
n |g〉. This is exactly the one-exciton state equa-

tion (18); this exact agreement stems from the fact that for one-exciton states
the commutation relations are irrelevant, in other words the kinematic inter-
actions do not play a role. As second example, consider the two-boson state
|σ, τ 〉 = B†

σB
†
τ |g〉 =

∑
n,m ϕσnϕτmB

†
nB

†
m|g〉. It is immediately clear that this will

not yield the exact two-exciton state, as this expression inevitably gives contribu-
tions where a single molecule is doubly excited. As long as the number of excited
bosons per molecule is low, however, these unphysical contributions will have a
small amplitude and the generated two-boson state is expected to look very much
like the actual two-exciton state.

It is to be noted that for many applications, it is not necessary to go back to the
explicit state representation, because most observables may be expressed in terms
of correlation functions of the exciton creation and annihilation operators. For in-
stance, the linear absorption spectrum may be expressed as a two-time correlation
function of the total dipole operator [42,43], which may be re-expressed in terms
of two-point correlation functions of the creation and annihilation operators. If
these operators are considered Bose operators and the Hamiltonian is quadratic,
the evaluation of these correlators (Green functions) is simple. Nonlinear spec-
troscopies require multi-time correlation functions [43] (which will vanish if the
excitons are treated as bosons and the Hamiltonian contains no dynamic interac-
tions). At this level of treatment, one takes full advantage of the power of second
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quantization and the machinery of Green functions, as the transformation back to
explicit states is totally avoided.

In the general situation of Eq. (22), where dynamic interactions are present, it
is, apart from exceptional cases, not possible to diagonalize the Hamiltonian, even
if one considers the excitons to be bosons. One then has to resort to approximate
techniques known from general solid state theory to treat particle–particle inter-
actions. The most familiar technique is the mean-field approximation, of which
the well-known local-field approximation of optics is an example. In this approx-
imation, one factorizes the quartic term into forms like 〈B†

σBσ ′ 〉B†
τ Bτ ′ , where the

brackets denote the expectation value (other factorization contributions are pos-
sible). The Hamiltonian is now quadratic again and may always be diagonalized.
As it contains some operator expectation value as parameter, the solution of the
ground and excited states gives rise to a self-consistency condition containing
this expectation value. This condition may be nonlinear, leading to nontrivial so-
lutions, in which, e.g., the ground state expectation value 〈B†

σBσ ′ 〉 is nonzero, i.e.,
a finite density of excitons has condensed into the ground state. This may happen
only if the relevant coupling constant (the dynamic interaction matrix element) is
large enough, which explains why in the introduction of Section 2.4.2 we stressed
that the typical Unm should be sufficiently small in order for the ground state to
contain no excitations. We finally note that at the level of Green functions, similar
results are obtained by factorizing, for instance, a four-point correlator into two
two-point ones.

Thus, the treatment of Hamiltonians like Eq. (22) is a well-known problem in
solid-state physics as long as the B operators are considered Bose operators (or
fermions). As we have seen, however, the approximation of excitons by bosons
leads to unphysical contributions which, no matter how small, make the ad hoc
approximation hard to control. As was shown by Agranovich and Toschich [44],
however, a rigorous transformation exists from the Pauli operators B†

n to Bose op-
erators B̃†

n . This transformation, which has also been used for investigating mag-
netic systems [45], can be written in various forms, the most compact of which
reads:

(24)B†
n = B̃†

n

(∑
ν

aνB̃
†ν
n B̃ν

n

)1/2

,

where aν = (−2)ν/(1+ ν)!. Invoking this transformation and its hermitian con-
jugate into Eq. (22), gives to lowest order in powers of B̃†ν

n B̃ν
n exactly the same

Hamiltonian with the Pauli operators replaced by Bose operators, which is the ad
hoc Bose approximation considered above. The advantage of the rigorous trans-
formation, however, is that corrections terms to this approximation can be gen-
erated in a systematic way. For instance, the first, quadratic, term in Eq. (22)
will give rise to quartic correction terms in the Hamiltonian for the bosons,
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which reflect the kinematic interaction at the two-particle level. It has been shown
that this correction may be used to rigorously justify the hard-core boson ap-
proach for dealing with two-exciton states in the third-order nonlinear optical
response functions [34]. At the same time, both the quadratic and quartic terms
in Eq. (22) generate 6-boson interactions, 8-boson interactions, etc. In practice,
these many-boson interactions considerably complicate working with the trans-
formation equation (24); like any many-particle term, they can only be treated
approximately, for instance in a mean-field approximation. Thus, while the trans-
formation is formally exact, it unfortunately does not allow for exact solutions of
the multi-exciton states or Green functions.1

As mentioned already, for one-dimensional systems an alternative to bosoniza-
tion is to transform to fermions by using the Jordan–Wigner approximation. We
will return to this in Section 7.

2.4.4. Beyond the Heitler–London Approximation

Thus far, we have only considered terms in the Hamiltonian that conserve the
number of excitations. The justification of this approximation has been discussed
in Section 2.2. Nevertheless, for systems of two-level molecules one type of con-
tribution that does not obey this conservation rule is often included in the Hamil-
tonian. This is the contribution deriving from the two-molecule matrix elements
〈enem|V̂nm|gngm〉 = 〈gngm|V̂nm|enem〉 = Jnm. The first equality holds because
the molecular wave functions are assumed to be real, while the equality to the
transfer matrix equation (16) element holds strictly in the absence of charge trans-
fer between molecules m and n. Neglecting this type of matrix elements, as we
have done so far, is referred to as the Heitler–London approximation. Relaxing
this approximation, the Hamiltonian in second quantization reads:

Ĥex =
∑
n

(h̄ω0 +Dn)B
†
nBn + 1

2

∑
n,m

Jnm
(
B†
n +Bn

)(
B†
m +Bm

)
(25)+ 1

2

∑
n,m

UnmB
†
nB

†
mBnBm.

The new terms describe the double excitation or de-excitation of a pair of mole-
cules caused by their Coulomb interaction (Figure 1(b)). As is seen, incorporat-
ing these extra terms can be done in a very compact way, due to the fact that
their coupling constants are identical to those for the transfer interactions. This

1A generalization of the Agranovich–Toschich transformation and a constraint free bosonic repre-
sentation for a system of truncated oscillators was given by A.V. Ilinskaia and K.N. Ilinski, J. Phys. A
29 (1996) L23.
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does not mean, however, that their effect is equally large. While the transfer inter-
actions couple states that are degenerate, the new terms couple states that differ
by the order of twice an optical transition energy, 2h̄ω0, as they mix states that
differ by two excitation quanta. For most molecular systems h̄ω0/Jnm is small
(order 0.01–0.1) and the mixing of the multi-exciton bands may be treated pertur-
batively. Yet, it should be realized that with these extra interactions, the ground
state has a finite density of molecular excitations, due to the fact that two-exciton
states, four-exciton states, etc. mix into the ground state. This renders finding the
eigenstates, even if we neglect dynamic exciton–exciton interactions, a very hard
task. Only for one-dimensional systems without dynamic exciton–exciton inter-
actions and with transfer interactions of the nearest-neighbor form, have exact
results been obtained for ground state energies and first- and third-order optical
response functions [46]. This was done by using techniques borrowed from spin
chains, particularly the Jordan–Wigner transformation from paulions to fermions,
followed by a Bogoliubov–Tyablikov transformation. The latter is a canonical
transformation that mixes creation and annihilation operators,

(26)an =
∑
m

(
unmBm + vnmB

†
m

)
,

and which is such that double-annihilation (anam) and double-excitation (a†
na

†
m)

terms do not occur in the Hamiltonian after the transformation. The reader is
referred to the literature for details [30].

In higher-dimensional systems, exact results when relaxing the Heitler–London
approximation are not known. The generic approach used in the literature is to ap-
ply the Bose approximation, which, in case dynamic exciton–exciton interactions
are neglected, gives rise to a Hamiltonian that is quadratic in the Bose opera-
tors. This may always be diagonalized by using a Bogoliubov–Tyablikov trans-
formation [27,28,35,36]. For a low density of excitations (in particular in the limit
where the optical response is linear), the Bose approximation is expected to be a
good approximation (cf. Section 2.4.3). We will give some explicit results in Sec-
tion 2.5.2. At the same time, it should be realized that the Bose approximation
does not give exact expressions for the exciton eigenstates, not even those with a
few excitation quanta [46].

To end this section, we make two remarks. The first calls for caution: in restrict-
ing ourselves to one molecular transition (two-level molecule), we have neglected
off-resonant contributions in the Hamiltonian. By relaxing the Heitler–London ap-
proximation, we do incorporate certain off-resonant contributions, namely many-
particle ones. This may be considered inconsistent. The interest in relaxing the
Heitler–London approximation in two-level molecules therefore must generally
be seen in the light of calculating typical corrections due to off-resonant terms.
Only if the transition dipole of the selected molecular transition by far exceeds all
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other molecular transition dipoles, should one expect the results to have quantita-
tive significance as well.

Finally, the physical meaning of including double (de-)excitation terms is worth
mentioning. Let is assume that Jnm is given by the interaction between the transi-
tion dipoles of molecules m and n (cf. Eq. (6)), then the correction to the ground
state energy of a pair of molecules derives from a virtual double excitation of the
pair from its ground state due to the dipolar interactions, followed by its falling
back to the ground state. This is the origin of the Van der Waals interaction. In-
deed, in second-order perturbation theory, the correction to the ground state en-
ergy thus obtained is −J 2

nm/2h̄ω0, which has the correct attractive and 1/r6
nm

nature and is also seen to scale as µ2/h̄ω0, i.e., as the molecular polarizability.

2.5. FRENKEL EXCITONS IN A BULK CRYSTAL

2.5.1. General Hamiltonian and One-Exciton States

We now turn to the special case of excitons in a molecular crystal, occupying an
arbitrary Bravais lattice. Each unit cell of the crystal contains S molecules. In
practice, these molecules often are chemically identical and only differ in their
orientations within the crystal. This is for instance the case for aromatic crystals,
such as napthalene and anthracene. We will focus on linear optics and one-exciton
states, and therefore neglect exciton–exciton interactions. The Hamiltonian equa-
tion (14) then reduces to

(27)Ĥex =
∑
n,s

(h̄ωs +Ds)B
†
nsBns +

∑
n,m,s,s ′

Jss ′(n−m)B†
nsBms ′ .

Here n (m) labels the unit cell by giving its position, while s, s′ = 1, . . . , S label
the molecules within each unit cell. Molecules with the same label s are trans-
lationally equivalent. We have used the lattice symmetry by setting the transition
frequencies and dispersion shifts equal for all translationally equivalent molecules
and by recognizing that the transfer interactions only depend on the separation
n −m of the two unit cells involved. Similarly, the molecular transition dipole
only depends on the label s:

µns = µs .

Diagonalizing the Hamiltonian, i.e., bringing it in the form of Eq. (23), is
greatly simplified by the lattice symmetry. We first make the transformation to
the intermediate set of operators

(28)B
†
ks =N−1/2

∑
n

exp(ik · n)B†
ns ,

with N the number of unit cells in the quantization volume on which periodic
boundary conditions are imposed and k one of the N allowed wave vectors in
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the first Brillouin zone. This unitary transformation brings the Hamiltonian in the
form

(29)Ĥex =
∑

k,s,s ′
Hss ′(k)B

†
ksBks ′ ,

with

(30)Hss ′(k)= (h̄ωs +Ds)δss ′ +
∑

n

′
Jss ′(n) exp(−ik · n).

The last term will also be denoted Jss ′(k), and the prime on its summation ex-
cludes the situation with n = 0 and simultaneously s = s′. The resulting Hamil-
tonian equation (29) is already diagonal in k space. Getting a totally diagonal
form only requires the S × S matrix Hss ′(k) to be diagonalized. Denoting the sth
component of the αth normalized eigenvector of this matrix by φαs(k) and the
corresponding eigenvector by Ekα we arrive at

(31)Ĥex =
∑
k,α

EkαB
†
kαBkα,

with

(32)B
†
kα =

∑
s

φαs(k)B
†
ks =N−1/2

∑
n,s

φαs(k) exp(ik · n)B†
ns .

When operating on the ground state of the crystal, the operator B
†
kα cre-

ates a one-exciton eigenstate with amplitude on the molecule (n, s) given by
N−1/2φαs exp(ik · n) and with energy Ekα . The eigenenergies lie on S different
dispersion curves, labeled by α and known as exciton or Davydov bands. In the
next two sections, we will discuss explicitly the dispersion curves for the cases
of one and two molecules per unit cell. If the molecular operators B†

ns are ap-
proximated by Bose operators, the exciton operators B†

kα have Bose commutation
relations as well. For one-exciton states, this is exact (within the Heitler–London
approximation).

2.5.2. One Molecule per Unit Cell

In case we have only one molecule per unit cell (frequency ω0), the labels s and
α are suppressed and the transformation equation (28) already diagonalizes the
one-exciton subspace. The only problem in determining the exciton band structure
then lies in performing the lattice sum of the dipole–dipole interaction occurring
in Eq. (30), J (k)=∑

n�=0 J (n) exp(−ik · n). For three-dimensional lattices, this
is not a simple task, due to the long-range nature of the interaction. This holds
in particular for small wave vectors k, which is the region that is of most interest
for the optical absorption (see Section 2.6). A large body of literature consists
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Fig. 5. Dispersion curves for the two exciton branches of the 0-0 component of the 3800 Å transi-
tion in anthracene crystals for k normal to the faces (001), (010), and (100). (Figure reprinted from
Ref. [51] with permission from the American Institute of Physics.)

concerning this problem [47–50], the overview of which lies outside the scope
of this chapter. An important property of these dipole sums is their nonanalytical
dependence of J (k) on k at small |k|. In particular, J (k) then strongly depends
on the direction of k and only weakly on |k| (see Figure 5). Once the result for
the summation is known, the energy of the exciton with wave vector k is simply
given by Ek = ω0 +D + J (k).

Before turning our attention to the case of two molecules per unit cell, we
briefly comment on generalizing the dispersion relation to include the non-
Heitler–London terms

∑
n J (n)(B

†
nB

†
n+BnBn) of the dipole–dipole interactions.

Within the Bose approximation, this is easy to do by replacing the transformation
equation (28) by a Bogoliubov–Tyablikov transformation that allows for the mix-
ing of creation and annihilation operators. Requiring this transformation to be
canonical and to bring the Hamiltonian in diagonal form, one arrives at the dis-
persion relation [28,35]

(33)Ek =
[(
h̄ω0 +D + J (k)

)2 − J 2(k)
]1/2

.

If J (k) � ω0, as is typically the case, the correction relative to the Heitler–
London approximation is of the order J 2(k)/(ω0 +D), as we already anticipated
in Section 2.4.4. We stress again that Eq. (33) is not an exact result, as it relies
on the Bose approximation. Moreover, the exciton amplitude on each molecule is,
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even in this approximation, not easy to calculate, as the ground state no longer is
the state with all molecules of the crystal in their ground state.

2.5.3. Two Molecules per Unit Cell: Davydov Splitting

We consider a crystal with two molecules per unit cell. We will assume that they
are chemically identical, implying that they have identical transition frequencies
ω0 and dispersion shifts D. The transition dipoles are given by µ1 and µ2, for
the two types of molecules s = 1 and 2, respectively. They only differ in ori-
entation and have equal magnitude µ. As mentioned earlier, this simple situa-
tion is relevant to aromatic crystals. To attain maximal simplicity, we will as-
sume that the symmetry of the situation is such that J1,1(k) = J2,2(k) and that
J1,2(k)= J2,1(k). For the aromatic crystals, this only holds for certain important
directions of k, like those perpendicular or parallel to the plane of symmetry of
the crystal [35, p. 43]. The diagonalization of the two-dimensional matrix Hss ′(k)
is easily performed in this case and leads to

(34)Ek,± = h̄ω0 +D + J1,1(k)±
∣∣J1,2(k)

∣∣,
with eigenvector components φ±,s = (±1)s+1/

√
2. Here the band label α has

been replaced by + and −. Clearly, the interaction J1,2(k) between the two types
of molecules causes the exciton band of the individual sublattices for s = 1 and
s = 2 to mix and split by the amount 2|J1,2(k)|. The mixing is very strong, as
the bands for the sublattices have been taken degenerate. As we will see in Sec-
tion 2.6, the absorption spectrum of the exciton system peaks at h̄ω = Ek≈0,α .
This implies that the absorption spectrum of the system described here has two
absorption bands, that are separated by 2|J1,2(k ≈ 0)|. This splitting is referred
to as the Davydov splitting. In the + band, the molecules within each unit cell
are excited exactly in phase, a collective state that is associated with a dipole per
unit cell given by (µ1 +µ2)/

√
2. In the − state, the molecules are excited in an-

tiphase and the associated dipole per unit cell is (µ1 − µ2)/
√

2. Note that these
two linear combinations are oriented perpendicular to each other, which implies
that the two Davydov components in the absorption spectrum of aromatic type
crystals have mutually perpendicular polarization. We draw attention to the fact
that the above results are completely analogous to what we have seen for a simple
dimer of molecules in Section 2.2. This is a natural consequence of the fact that
after the transformation equation (28) to k space, we have in fact a dimer (2× 2
problem) for each wave vector.

2.5.4. Multi-Level Molecules

Thus far, we have limited ourselves to the inclusion of only one excited state
per molecule. If various molecular excited states have similar energies or if one
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considers nonlinear optical response in a situation where the multiple of a cer-
tain transition frequency is close to one of the other transition frequencies, this
restriction is not justified.

The above microscopic theory can be generalized to allow for more molecular
levels. The new effect that will occur, is mixing of molecular configurations: due
to the excitation transfer interaction between a level |f 〉 of molecule (n, s) and
level |e〉 of molecule (m, s′), a mixing of the exciton bands associated with the in-
dividual molecular levels occurs [52,28]. This mixing will only be important if the
corresponding transfer interaction is of the same order as or larger than the energy
difference between the molecular states considered. Mixing gives rise to transfer
of oscillator strength from one state to the other. Examples where the mixing plays
an important role are the weak transition at 3200 Å in napthalene [53], the polar-
ization ratios in the vibronic components of the p band in anthracene [54], and
the Davydov splittings in various aromatic crystals [55]. The formal set-up of the
theory in second quantization, as well as consequences for the oscillator strength
and the dielectric tensor, have been derived by Agranovich [28]. For the spe-
cial situation of three-level molecules, several explicit results have been obtained
within the context of Frenkel excitons in molecular aggregates. Thus, Knoester
and Spano [56] have studied the interference of various molecular transitions in
the nonlinear optical response of one-dimensional aggregates. Mukamel and co-
workers [57] have reformulated the theory of excitons in three-level molecules in
terms of the scattering of excitons on anharmonic potentials, which account for
the energy difference between the molecular transitions considered. Juzeliūnas
and Reineker [58] have calculated nonlinear spectra for a continuous density of
higher excited states. Here, these results will not be described in more detail. We
will come back to some important consequences of configuration mixing in the
context of the dielectric theory described in Section 3.

2.6. DIELECTRIC RESPONSE OF MOLECULAR CRYSTALS

In this section, we will address the microscopic calculation of the linear dielectric
response of a molecular crystal. This may be done by calculating the crystal’s
electric susceptibility and (or) dielectric tensor. Consider an electromagnetic wave
in the crystal, with macroscopic (Maxwell) electric field given by

(35)E(n, t)= E(k,ω) exp[ik · n− iωt] + c.c.,

where k and ω are the wave vector and the angular frequency of the wave, respec-
tively, and c.c. denotes the complex conjugate. We used the position of the unit
cell to indicate the position in space. The error that we make in doing so is very
small, as we are typically interested in optical fields, which vary over distances of
hundreds to thousands of lattice constants, allowing us to discard variations of the
field inside crystal unit cells.
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The electric field polarizes the crystal. As long as the response is linear, the
polarization field (dipole per unit volume) takes the form

(36)P(n, t)= P(k,ω) exp[ik · n− iωt] + c.c.

The electric susceptibility tensor, χ(k,ω), of the crystal is now defined through

(37)P(k,ω)= χ(k,ω) ·E(k,ω).
Similarly, the dielectric tensor is defined through

(38)D(k,ω)= ε(k,ω) · E(k,ω),
where D = E + 4πP is the displacement field in the crystal. Thus, ε(k,ω) =
1+ 4πχ(k,ω).

In principle, the dielectric tensor contains all information about the linear opti-
cal response of the crystal. Its real part is related to the index of refraction, while
the absorption spectrum is basically proportional to its imaginary part (see Sec-
tion 3.2).

Above, we related the polarization and the displacement to the total Maxwell
electric field. Alternatively, one may choose to relate these quantities to only
the transverse part of this field, which in Fourier space is given by E⊥(k,ω) =
E(k,ω) − E‖(k,ω) = (1 − k̂k̂) · E(k,ω), where k̂ is the unit vector in the di-
rection of k. In isotropic crystals E⊥ is usually associated with electromag-
netic waves, while the longitudinal part, E‖, is associated with intermolecu-
lar Coulomb interactions. One now defines the transverse susceptibility through
P(k,ω) = χ⊥(k,ω) · E⊥(k,ω) and the transverse dielectric function through
D(k,ω)= ε⊥(k,ω) ·E⊥(k,ω). Again, the latter may be expressed in terms of the
former. To this end, we should realize that the displacement in a system without
external charges is a transverse field (∇ ·D= 0), so that D= D⊥ = E⊥ + 4πP⊥.
Using this, one arrives at ε⊥(k,ω)= 1+ 4πχ⊥(k,ω)− 4π k̂k̂ · χ⊥(k,ω). In this
section, we will calculate the transverse susceptibility, which has as advantage
that the local-field problem need not be addressed. We come back to the local
field in Section 3.1.

To calculate the electric susceptibility from microscopic principles, we need
the interaction Ĥint between the electromagnetic field and the crystal. One may
then use standard expressions from linear response theory (time-dependent first-
order perturbation theory in Ĥint), which give the susceptibility χ(k,ω) in terms
of sums over crystal eigenstates (excitons). In the Heitler–London approximation,
only the one-exciton states can be reached using one interaction with the fields,
so that only these states need to be calculated. The sum-over-states approach is
carried out in the Schrödinger picture. An alternative method, which is very direct
and elegant for our case, works via the Heisenberg picture. We will follow this
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approach. First, we define the interaction

(39)Ĥint =−
∑
n,s

µs ·E⊥(n, t)
(
B†

ns +Bns
)
,

which is of the so-called multipolar form [59,60] and just sums the potential en-
ergies of the individual dipoles in the electric field. This form may be used for
molecular systems, in which the electrons can be associated with a particular
molecule. We have discarded the interaction with the possible permanent dipoles
of the molecules, as these do not give rise to a response at optical frequencies.

We now need to calculate the polarization field in the presence of the electric
field. Its definition as the dipole moment per unit volume allows us to write it in
terms of the expectation value for the molecular dipole operators

(40)P(n, t)= 1

vc

∑
s

µs

(〈
B†

ns (t)
〉+ 〈

Bns (t)
〉)
,

where vc is the volume of a unit cell. Using the inverse of the transformation
equation (32), we also have

(41)P(n, t)= 1

vc
√
N

∑
k,s,α

µsφ
∗
αs(k) exp[−ik · n]〈B†

kα(t)
〉+ c.c.

The expectation values 〈B†
kα(t)〉 may be calculated by first considering the

Heisenberg equation of motion for the B†
kα(t),

(42)
d

dt
B

†
kα(t)=

i

h̄

[
Ĥex + Ĥint(t),B

†
kα(t)

]
.

If we treat the excitons as bosons, we have [Bkα(t),B
†
k′β(t)] = δkk′δαβ and all

other commutators vanish. Using this, Eqs. (31) and (39), we arrive at

d

dt
B

†
kα(t)=

i

h̄
EkαB

†
kα(t)−

∑
s

√
Nµs · E∗(k,ω)φαs(k)eiωt

(43)−
∑
s

√
Nµs ·E(k,ω)φαs(−k)e−iωt .

This is a linear equation, owing to the fact that we made the Bose approximation.
By taking expectation values to the left and the right, we find a linear equation
for 〈B†

kα(t)〉 in terms of the driving field. The first driving term in this equation
(∼ exp[iωt]) may result in a resonance, because the eigenfrequency Ekα is pos-
itive. The second driving term is associated with a negative frequency and is so
far off-resonant that we may safely neglect it. This is referred to as the rotating
wave approximation [26]. After this step, straightforward solution for 〈B†

kα(t)〉,
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substitution into Eq. (41), and use of Eq. (37) gives

(44)χ⊥(k,ω)=− 1

vc

∑
α

µα(k)µ
∗
α(k)

h̄ω−Ekα + ih̄γ
,

where γ is a small positive damping constant (which may be thought of to reflect
the finite lifetime of the excitons), µα(k)≡

∑
s µsφαs(k), and the vector product

in the denominator is a dyadic product.
This result is identical to the one that we would have obtained by using the

sum-over-states expression of standard linear response theory, independent of the
Bose approximation. The Bose approximation is exact in this case, because we
work in the Heitler–London approximation, where the ground state is the real
vacuum state, without excitons. A similar approach may be used to account for
the non-Heitler–London terms (though the Bose approximation is then no longer
exact) and for more molecular levels [27,35]. We will return to some aspects of
these problems in Section 3, in the context of the dielectric theory of excitons.
We will there calculate the dielectric function of the crystal by starting from the
linear polarizability of a single molecule and taking into account the local fields
that the dipoles of the molecules in a crystal exert on each other. For linear op-
tical response that approach is exact, as long as we work in the Heitler–London
approximation.

To end this section we make a few observations concerning Eq. (44). First,
as expected, we see that the transverse susceptibility has resonances at the fre-
quencies of the excitons with the same wave vector as the exciting field. If we
have S different exciton bands, this implies S different resonances, which will be
reflected as S peaks in the absorption spectrum of the crystal. The fact that the res-
onance frequencies are k-dependent is referred to as spatial dispersion. It should
be realized that the structure of the dispersion curves Ekα occurs on the scale of

|k| ∼ (Å)
−1

, which is much larger than the scale of an optical wave vector. It is for
this reason that in practice one may often neglect the spatial dispersion and simply
take the exciton frequencies Ek=0,α as the resonances. This is referred to as the
k = 0 selection rule, which we used when introducing the Davydov splitting in
Section 2.5.3. We note that accounting for spatial dispersion in the wave propa-
gation, reflection, and absorption of crystals in general is a complicated problem,
whose careful discussion requires more space than is available here [61].

2.7. EXCITON-POLARITONS

The translational symmetry of a perfect bulk crystal implies that excitons of wave
vector k can only couple to electromagnetic waves of the same wave vector. This
is the reason why the field equation (35) in linear response only gives rise to
polarization fields with the same wave vector. Rigorously speaking, an exciton can
couple to all field components whose wave vectors differ from the exciton’s by a
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Fig. 6. Schematic dispersion diagram of exciton-polaritons in bulk crystals. The spatial dispersion
of the excitons has been neglected, as has been the change of the background index of refraction
when going from low to high frequencies. The frequency region between ωex and ω‖ is the stopgap,
in which no electromagnetic waves propagate in the crystal. In reality, the slope of the photon-like
exciton-polaritons at small k is smaller than at high k, due to the larger value of the background index
of refraction at small frequencies.

reciprocal lattice vector, but these additional field components have frequencies in
the X-ray region and beyond, which makes it energetically impossible to couple
efficiently. Hence, these Umklapp processes are usually neglected.

Let us now consider the situation where we have one exciton branch, in inter-
action with the electromagnetic field in the crystal. Quantum mechanically, the
field may be considered a collection of harmonic oscillators, with a dispersion
relation ωk = |k|c, with c the velocity of light. If we apply the Bose approxima-
tion, also the excitons may be considered harmonic oscillators, with dispersion
relation Ek. Both dispersion diagrams are depicted in Figure 6, where we ne-
glected the spatial dispersion of the excitons Ek = h̄ωex = const. The coupling
of the electromagnetic field and the excitons may thus be viewed as the cou-
pling of two harmonic oscillators at each wave vector k. This leads to two new
harmonic oscillators that are mixed exciton–photon states, or in a more classi-
cal language, mixed polarization-radiation field waves. These quasi-particles are
known as exciton-polaritons, in analogy to the polaritons that arise as the mixed
states of optical phonons and the electromagnetic field in ionic crystals [47,62].
The microscopic theory of exciton-polaritons has been formulated independently
by Hopfield [63] and Agranovich [27], and involves the mixing of exciton cre-
ation and annihilation operators and photon creation and annihilation operators
into new polariton operators.

The coupling of excitons and photons leads to an avoided band crossing in
the dispersion diagram, giving rise to two polariton branches (Figure 6). On the
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lower one, the polaritons behave like photons at small wave vector and gradu-
ally become more exciton like with increasing wave vector. For the upper branch,
the situation is reversed. At the crossing point k = ωex/c, the polaritons have
equal amount of exciton and photon character and they are then quasi-particles
with a very high group velocity (in the order of c). The separation between both
branches at the crossing point is determined by the coupling between the exci-
tons and the radiation field, which occurs through the dipoles of the individual
molecules. More precisely, the resonant splitting is proportional to the density of
oscillator strength in the crystal [64]. It should also be kept in mind that the cou-
pling is only sensitive to the projection of the dipole on the direction of the electric
field. This makes the resonant splitting dependent on the direction of propagation
of the polaritons through the crystal. For atomic crystals, where the excited state
is three-fold degenerate with polarization in the three lattice directions, the situa-
tion is much more symmetric, though even there the crystal structure breaks the
spherical symmetry.

Probably the most characteristic property of the polariton dispersion diagram
is the polariton stopgap. The splitting between upper and lower branches leads to
a finite splitting between the frequency ω‖ of the upper branch at k= 0 and ωex.
As a consequence, no polariton modes exist in the interval ωex <ω <ω‖. As po-
laritons are just the quanta of electromagnetic waves dressed with the polarization
field of the crystals, this implies that in this frequency region no electromagnetic
waves can propagate in the crystal. Light with a frequency within this region that
is incident on the crystal will be totally reflected. This explains the name “stop-
gap”. The stopgap is indeed observed in reflection experiments [65]. In practice
the reflection is not 100% throughout the stopgap region, because (i) the exci-
ton dispersion curves have a finite width and (ii) spatial dispersion, causing the
exciton dispersion to curve upward for large wave vectors, may close the stopgap.

In classical dielectric theory, the stopgap region corresponds to the frequency
interval in which the dielectric function is negative. This makes the wave number
|k| = ω

√
ε⊥(ω)/c of the associated plane wave complex, leading to a damped

wave that carries no energy into the crystal. In fact, the dispersion diagram of
exciton-polaritons is easily obtained in a classical way by setting

(45)|k|2c2 = ω2ε⊥(ω)

and using for ε⊥(ω) the generic form found in the previous section, i.e., with a
pole at the exciton frequency.

Obviously, ωex, the lower boundary of the stopgap, is the frequency at which
the dielectric function has a singularity. On the other hand, the upper boundary
of the stopgap, ω‖, gives the frequency at which the dielectric function vanishes,
ε(ω‖)= 0. It can be shown quite generally that this condition defines longitudinal
waves [61].
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It is noteworthy that the occurrence of stopgaps has recently resurfaced in the
context of photonic crystals, where stopgaps may actually be created in the trans-
parency region of a crystal that exists of a three-dimensional packing of dielectric
units (for instance spheres) with a periodicity of the order of the wavelength of
visible light. In these materials, the Umklapp processes may not be neglected
and the multiple scattering involving the radiation field in various Brillouin zones
gives rise to the opening of a stopgap [66].

An other interesting aspect of polaritons in infinite crystals is that they do not
decay through spontaneous emission of photons, because they already fully ac-
count for the interaction between the excitons and the electromagnetic field. In
large but finite crystals, polaritons decay spontaneously through emission at the
crystal boundaries, in other words, the size of the crystal becomes an important
factor in the spontaneous emission rate [67,68].

We finally note that, though the microscopic treatment of polaritons is based on
perfect and infinite crystals, the classical definition of electromagnetic modes in a
dielectric medium also allows for their introduction in quantum wells, on surfaces,
and in amorphous media and liquids [69]. Their occurrence in nanostructures is
discussed in the chapter by F. Bassani of this book.

2.8. NONLINEAR SPECTROSCOPY

In Section 2.6, we have considered the linear optical response of a bulk crystal.
This is the response that arises when the intensity of the exciting fields is low
enough to neglect situations where two or more excitations influence each other.
Then the polarization field is linear in the amplitude of the electric field. Upon
increasing the intensity of the light, nonlinear components may arise, and the
polarization field may be expanded in terms of the electric field as [70]

(46)P= χ(1) ·E+ χ(2) : EE+ χ(3) ...EEE+ · · · ,
where χ(n) is the nth order optical susceptibility, which depends on the frequen-
cies and wave vectors of the exciting fields. χ(n) is a tensor of rank n+ 1. Famil-
iar nonlinear optical phenomena are second harmonic generation and nonlinear
absorption. In the former, an electric field of frequency ω generates a polariza-
tion of frequency 2ω. This second-order nonlinear effect is described by χ(2) and
may only occur in crystals without inversion symmetry. Nonlinear absorption is a
third-order (χ(3)) effect and refers to the change of the absorption spectrum with
increasing intensity, more specifically the change that is linear in the laser inten-
sity. Nonlinear effects are interesting from a fundamental point of view, as they
allow for a large variety of spectroscopic tools [71]. They are also of interest from
a technological point of view, as they provide a means to manipulate light pulses
by other light pulses (optical switching and computation [8]).
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The calculation of the susceptibilities χ(n) for the case of a general (multi-level)
single molecule in an electric field follows standard time-dependent perturbation
theory in the field–molecule interaction [70,71], also known as nonlinear response
theory. This leads to sum-over-states expressions, where for the single molecule
this sum runs over all molecular excited states. A well-known approach to calcu-
late from these molecular susceptibilities the susceptibilities of the crystal, is the
local-field method. In this approach one solves in a self-consistent way the polar-
ization field in the system by allowing the individual molecular dipoles to respond
to both the exciting external field and the local fields created by the surrounding
dipoles [70]. This approach will be used in Section 3 to consider the linear opti-
cal response of crystals. As we mentioned in Section 2.6, the local-field approach
is exact in the linear optical regime, provided we work in the Heitler–London
approximation. In the nonlinear regime, however, this approach fails if multiple
resonances with (multi-)exciton levels occur, i.e., when the collective excitations
created by the intermolecular interactions are crucial [72–74].

In order to go beyond the local-field approximation, one should apply nonlinear
response theory directly to the exciton system, i.e., use the (multi-)exciton states
as basis to perform the time-dependent perturbation theory. Within the Heitler–
London approximation the one-exciton states then suffice to calculate the linear
response, while the one- and two-exciton states together suffice to calculate χ(2)

and χ(3). As a consequence, to correctly describe the second- and third-order non-
linear optical response of crystals, exciton–exciton interactions should be taken
into account. Here, two main types of interactions can be distinguished: dynamic
and kinematic ones. Dynamic interactions are terms in the Hamiltonian in which
a product of three or more exciton creation and (or) annihilation operators occurs.
A simple example is the last term in Eq. (14). Even in the absence of dynamic
interactions, the kinematic interactions resulting from the Pauli nature of the ex-
citons gives rise to an intrinsic nonlinearity. Within the Heitler–London approx-
imation it can be taken into account by making the transformation equation (24)
from Pauli to Bose operators [44] and keeping the resulting effective interaction
terms up to the order of interest. To describe third-order optical effects, we only
need to keep terms of the form B

†
nB

†
nBnBm and their hermitian conjugates [34].

These terms give rise to scattering of excitons on each other, just like the dynamic
interactions do. The kinematic interactions have been studied in much detail in
one-dimensional J-aggregates (Section 7), where they give rise to an energy shift
of the two-exciton band-edge state relative to twice the one-exciton band-edge
energy. This shift shows up as a dispersive feature in the nonlinear absorption
spectrum and the pump-probe spectrum and contains information about the exci-
ton delocalization size [38,41,75].

Dynamic exciton–exciton interactions of the form that appears in Eq. (14) are of
much interest, as they may give rise to the formation of bound two-exciton states,
so-called biexcitons. This only happens if the dynamic couplingUnm in Eq. (14) is
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large enough compared to the exciton band width [76,77]. Bi-excitons will show
up in the nonlinear spectra as resonances at frequencies below (in the case of
attraction) or above (for repulsion) twice the frequency of the linear absorption
band [78–80]. Bi-exciton resonances are well-known in semiconductor crystals
[40,81]. We note that in crystals with several molecules per unit cell, the kinematic
interaction may also give rise to the formation of bi-excitons [82]. Finally, in
charge-transfer crystals, so-called exciton strings may occur, in which a train of n
excitons forms a collective bound state [83].

Other types of dynamic interaction terms that are of interest for nonlinear opti-
cal response are exciton fusion and fission terms. Such terms arise from interac-
tions involving more than one molecular transition. For instance, consider mole-
cules with two relevant excited states, labeled |e〉 and |f 〉, respectively. Then, in-
termolecular Coulomb interactions may give rise to terms of the form B

†
nf BmeBle ,

which takes away two excitations of type |e〉 and recreates one of type |f 〉. Earlier
we neglected such interactions, as they do not conserve the number of excitations.
It is clear, however, that if the energy of state |f 〉 is close to twice the energy of
state |e〉, these exciton fusion terms may become important and have a noticeable
effect on the nonlinear optical response. The complex conjugate of the above in-
teraction term would be an exciton fission term in which one exciton splits up in
two lower-energy ones. For one-dimensional J-aggregates, it has been shown that
these type of terms give rise to three fundamentally different types of nonlinear
absorption spectra, depending on the values of the parameters involved (frequency
detuning between first and second molecular transition and the ratio of their tran-
sition dipoles) [56]. It should also be mentioned that exciton fusion terms are an
important gateway in the process of exciton–exciton annihilation. The physics
underlying this is that the higher exciton state |f 〉 in practice often suffers from
fast decay into the state |e〉 due to internal conversion, thereby effectively loosing
one excitation quantum [84–86]. This energy loss process is an important limiting
factor for the efficiency of opto-electronic devices [87]. A related loss process is
the fission of the lowest singlet exciton in tetracene, which decays with a lifetime
of 2 · 10−10 s into two singlet excitons with an energy of 1.25 eV [88].

As an alternative to the calculation of the nonlinear susceptibilities through
the sum-over-states expressions of standard nonlinear response theory, one may
also apply equation of motion techniques, in analogy to the one we used to cal-
culate the linear susceptibility in Section 2.6. In the case of nonlinear optics,
one should explicitly include the quartic terms deriving from the kinematic and
dynamic exciton–exciton interactions, as well as possible cubic exciton fusion
and fission terms. In the right-hand side of Eq. (43), the quartic interactions give
rise to additional contributions of the form B

†
kαB

†
k′α′Bk′′α′′ . When taking the ex-

pectation value of the resulting equation to extract the equation of motion for
〈B†

kα(t)〉, these nonlinear terms should be factorized in a certain way to close
the set of equations of motion. Various factorization schemes exist, for instance
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〈B†
kαB

†
k′α′ 〉〈Bk′′α′′ 〉 [89], which stresses the role of the two-exciton states, but ne-

glects pure dephasing contributions, 〈B†
kα〉〈B†

k′α′Bk′′α′′ 〉 [60], which does include
these dephasing processes, but does not properly treat the two-exciton resonances,
and 〈B†

kα〉〈B†
k′α′ 〉〈Bk′′α′′ 〉 [60], which is equivalent to the local-field approxima-

tion. The advantages of the first two factorization schemes can be combined into
an equation of motion approach, known as the nonlinear exciton equations [90],
that only neglects certain relaxation terms in variables like 〈B†

kαB
†
k′α′Bk′′α′′ 〉 and

leads to an accurate description of the third-order response.
To end this section, it should be noted that the proper formulation of nonlinear

optical response of bulk crystals is complicated by the strong coupling between
the polarization and the electromagnetic field that exists, owing to the transla-
tional symmetry. As a result of this strong coupling, the electromagnetic field
really should be considered an intrinsic part of the system and not an external
influence that weakly perturbs the exciton system. In other words, in order to de-
scribe nonlinear response of pure bulk crystals, one should account for the polari-
ton modes. The classical way to include polaritons in the description of the non-
linear response, is to calculate the nonlinear susceptibilities and to substitute the
polarization field equation (46) into the Maxwell equations. This automatically
takes into account the proper coupling between the polarization and the electro-
magnetic field. The microscopic approach to take into account polariton effects
re-expresses the exciton–exciton interactions in terms of polariton–polariton in-
teractions by using the transformation between excitons and polaritons [60,91].
The nonlinear response is then described as scattering of polaritons on each other.
For instance, exciton fusion terms translate into polariton fusion terms. In this
approach, nonlinear optical processes in a bulk crystal are characterized by the
excitation of polariton states at the boundary of the crystal and the possible mix-
ing of these polaritons through their mutual interaction [60,91]. The advantage of
the microscopic treatment over the classical one, is that in the former the scatter-
ing rates of the polaritons on imperfections and phonons may be calculated from
first principles, while in the classical approach they have to be incorporated in
an ad hoc fashion. In Section 4.5, we will discuss an example of the observation
of polariton effects, namely the high diffusion coefficient measured in anthracene
crystals using low-temperature transient grating experiments (a third-order tech-
nique). This diffusion coefficient arises from the fact that not excitons but rather
polaritons (with a much higher group velocity) diffuse in the crystal.

2.9. EXCITON–PHONON INTERACTION

Thus far, we have only considered electronic excitations. Of course, lattice ex-
citations in the form of vibrations or phonons may occur as well. Even if these
excitations are not directly excited by electromagnetic fields of optical frequen-
cies, they often do play an important role in exciton systems, as they couple to the
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excitons and thereby change their optical response and dynamics considerably.
A simple example is the formation of exciton side bands in the optical spectra,
arising from the fact that the light may excite an exciton state dressed with sev-
eral phonon quanta. In the case of a large collection of low-frequency phonons,
this effect is seen as (homogeneous) broadening of the exciton absorption bands.
The scattering of the excitons on the phonons is of crucial importance in relax-
ation and transport processes. We will expand upon this topic in Section 4. The
effect on transport may lead to an extreme situation where the excitons, due to
strong coupling to the lattice, loose their mobility. This self-trapping, also known
as exciton-polaron formation, will be the topic of Section 5.

Here, we only briefly indicate what type of interaction terms may occur. The
coupling of excitons and phonons arises from the fact that the various matrix
elements, Dn, Jnm, and Unm, in the generic Hamiltonian equation (14) depend
on the distances between the molecules. As the presence of phonons alter these
distances, this leads to exciton–phonon coupling. The coupling induced by the
position dependence of the two-exciton interaction, Unm, is usually not consid-
ered. The other two gives rise to what is known, respectively, as the on-site and
intermolecular exciton–phonon coupling [35]. They may be written in more ex-
plicit form by expanding the matrix elements to first order in the displacements
of the molecules from their equilibrium positions. Expressing the displacements
in terms of phonon creation and annihilation operators, this gives rise to the fol-
lowing generic form of the exciton–phonon coupling in bulk crystals [35]

(47)Hex−ph =
∑
k,q,r

F (k− q;k;qr)B†
k−qBkb

†
qr + h.c.,

where b
†
qr denotes the creation operator for a phonon of wave vector q in the

branch labeled r . The coupling constant F(k−q;k;qr) is different for the on-site
and the intermolecular mechanism of coupling. It contains the first-order deriv-
atives of the Dn or the Jnm with respect to the molecular positions [35]. The
form of the interaction equation (47) reflects the conservation of quasi-momentum
in the crystal, as is clear from the combinations of the wave vectors that oc-
cur. We finally notice that for certain applications it may not suffice to consider
only the first-order contribution in the displacements. The next order gives the
quadratic exciton–phonon coupling, which is important to describe pure dephas-
ing processes [92].

3. Dielectric Theory of Frenkel Excitons

3.1. GENERALIZED LORENTZ LOCAL FIELD

The most general approach to the study of the optical properties of condensed
media is the macroscopic electrodynamics approach making use of the concept of
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the dielectric tensor εij (k,ω), introduced in Section 2.6. Here, i and j label the
Cartesian components of the tensor. Using this tensor we can calculate the refrac-
tive indexes of the normal waves. The poles of the refractive index determine the
positions of absorption lines and for propagation directions for which the normal
wave is transverse, these poles coincide with the poles of the dielectric tensor. The
poles of the refractive index that corresponds to other (not transverse) waves can
be found from the equation:

(48)
∑
i,j

εij (k,ω)kikj = 0.

It is known [61] that all mentioned poles corresponding to transverse and other
normal waves coincide with the frequencies of so-called Coulomb excitons. These
excitons are the solutions of the coupled equations for matter (polarization) and
electromagnetic fields in the limit c→∞. In the language of microscopic theory
we can say that in this approximation the retarded interaction is neglected and only
the non-retarded Coulomb interaction is taken into account. It is important to note
that this approximation is the basis of the microscopic theory of excitons (see,
for example, [35] and [93]). The finite velocity of light and retardation effects
only need to be included in the microscopic theory when polariton effects are
important.

Calculating the dielectric tensor for a specific medium is a problem of micro-
scopic theory and for the exciton region of the spectrum is based on the various
types of exciton states of the crystal (Coulomb or mechanical excitons, see [61]),
which are treated as zero-order states when applying standard linear response
theory. We have used this procedure in Section 2.6 to calculate ε⊥ij (k,ω) for a
crystal of two-level molecules. However, it should be stressed that we need not
always know the exciton states in order to calculate the dielectric tensor of a crys-
tal. We shall expand on this below, by considering the spectra of Frenkel singlet
excited states (no charge transfer). The intermolecular interaction in this case is
determined by dipoles, quadrupoles, and higher-order multipoles. It changes the
frequencies of optical resonances and results in the mixing of molecular configu-
rations.

Numerous theoretical and experimental studies have been carried out in this
field, so that a whole branch of molecular optics – the optics of molecular crystals
and molecular liquids – has been established. Even before Frenkel put forward
his exciton concept, researchers in this branch of optics had developed a vari-
ety of exact and approximate methods for the theoretical description of optical
phenomena. However, after the discovery of excitons the use of these methods
became increasingly rare and many of the results obtained with them have not
been sufficiently understood in the framework of exciton theory. Therefore, fur-
ther development and generalization of these methods were impeded. On the other
hand, since the results of pre-excitonic molecular optics were underestimated, the
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optical properties of crystals were treated in terms of only the exciton theory,
even in those cases where this could be done much easier by using the earlier,
simpler, and equally or even more clear physical concepts. The resulting situa-
tion is discussed by Agranovich [94] (also see [36, Chapter 3]). It was shown in
Ref. [94] that many important results of Frenkel exciton theory, such as the Davy-
dov splitting and the dependence of the absorption intensity on polarization, can
be obtained (even in more general form) by using the local-field approach dating
back to Lorentz, who used it to derive the well-known formula for the optical
refractive index in isotropic media (the Lorentz–Lorenz formula).

Let us recall the derivation of this formula. According to Lorentz, the electric
field E′ acting on a molecule in an isotropic medium and causing its polarization,
is not equal to the mean (macroscopic) field E that satisfies the phenomenological
Maxwell equations, but rather is determined by

(49)E′ = E+ 4π

3
P= ε+ 2

3
E.

Here, P is the polarization field (cf. Section 2.6) and ε is the dielectric constant
of the medium. The factor (ε+ 2)/3 is known as the Lorentz factor. On the other
hand, if we denote the polarizability of the molecule by a and the number of mole-
cules per unit volume by N0, we also have P=N0aE′. Hence, the displacement
vector D may be written

(50)D= E+ 4πP=
[

1+ 4π

3
N0a(ε+ 2)

]
E.

Since by definition the relation D= εE holds as well, Eq. (50) immediately gives
the Lorentz–Lorenz formula,

(51)
ε− 1

ε+ 2
= 4π

3
N0a.

It should be noted that this formula, which expresses the dielectric constant
of the medium in terms of the polarizability of an individual molecule, is only
an approximation, even for cubic crystals. For instance, the formula does not
take into account spatial dispersion. Moreover, it does not account for the con-
tributions of higher-order multipoles to the intermolecular interactions. These ad-
ditional contributions were identified in Section 2.2 as the ones responsible for
the gas-condensed matter shifts Dn of the molecular levels. It has been shown,
however, that the Lorentz–Lorenz formula can be generalized to include these
effects [94]. Following Ref. [94], we will in this section employ the local-field
method to discuss the effect of mixing of molecular configurations and the spec-
tra of impurities. In addition, we will apply it to calculate the dielectric tensor of
anisotropic molecular crystals of complex structure.

Consider a crystal of which the unit cell contains S identical molecules, labeled
s = 1,2, . . . , S. The only difference between the S molecules is their orientation
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with respect to the crystallographic axes. According to Born and Huang [47, Sec-
tion 30], when a plane electromagnetic wave of amplitude E(k,ω) propagates in
the crystal, the electric field Es acting on a molecule of type s is not equal to the
mean field E, but has Cartesian components given by:

(52)Es
i =Ei +

∑
j,s ′

Qss ′
ij (k)µ

s ′
j .

Here, µs
i is the ith Cartesian component of the amplitude of the dipole moment

induced in the molecules of type s and the coefficientsQss ′
ij (k) (the local-field ten-

sor) are determined by the lattice structure only and are analytical functions of k.
For simplicity, we will assume that the molecules have no static dipole moments.
If asij denotes the polarizability tensor of the molecules of type s, we have

(53)µs
i =

∑
j

asijE
s
j .

At the same time, of course, the molecules may have higher-order static mul-
tipole moments. Generally speaking, these moments are different in the ground
and in the excited states, which causes the interactions between the molecule and
its environment to depend on the state it is in. This leads to the gas-condensed
phase shifts, Dn, of the molecular transitions, which we already introduced in
Section 2.2 for the special case of two-level molecules. We shall assume below
that the only difference between the tensor aij (ω) and the respective tensor for a
molecule in vacuum is determined by this frequency shift. Substitution of Eq. (53)
into Eq. (52) yields:

(54)Es
i =Ei +

∑
j,k,s ′

Qss ′
ik (k)a

s ′
kjE

s ′
j .

This equation allows one to solve for the local fields Es in terms of the mean
(Maxwell) field E:

(55)Es
i (k,ω)=

∑
j,s ′

Ass ′
ij (k,ω)Ej (k,ω),

where the tensor Ass ′
ij is the inverse of the tensor δss ′δij −∑

k Q
ss ′
ik (k)a

s ′
kj . Using

the fact that the polarization is given by

(56)Pi = 1

vc

∑
s

µs
i ,

with vc the volume of the unit cell, the dielectric tensor may be expressed in terms
of the tensor Ass ′

ij ,

(57)εij = δij + 4π

vc

∑
k,s,s ′

asikA
ss ′
kj .
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3.2. CUBIC CRYSTALS WITH ONE MOLECULE PER UNIT CELL

If we ignore spatial dispersion, the tensor Qss ′
ij for cubic crystals with one mole-

cule per unit cell (S = 1) reduces to the scalar [47]

(58)Qij = 4π

3vc
δij .

Here, the indices s and s′ have been dropped, because S = 1. If we also assume
that the response of the molecules is isotropic, i.e., aij = aδij , we find Aij =Aδij ,
with A= [1− 4πa/3vc]−1. Substituting this result into Eq. (57), we obtain εij =
εδij , with

(59)ε = 1+ 4π

vc
a

(
1− 4π

3vc
a

)−1

,

which implies that A = (ε + 2)/3. Eq. (59) directly yields the Lorentz–Lorenz
relation equation (51), with N0 replaced by 1/vc.

Let us now consider the frequency dispersion of ε by taking into account only
one of the resonances of the molecular polarizability. In this approximation we
have:

(60)a(ω)= F1

ω2
1 −ω2

with F1 = 2µ2
1ω1/h̄ = (e2/m)f1. Here, ω1, µ1, and f1 are the frequency, the

dipole, and the oscillator strength, respectively, of the selected transition of the
isolated molecule. Substituting Eq. (60) into Eq. (59) or the Lorentz–Lorenz rela-
tion yields:

(61)ε(ω)= 1+ (4π/vc)F1

ω2⊥ −ω2
,

where ω⊥ ≈ ω1 − (4π/3vch̄)µ2
1 denotes the frequency of the transverse exciton.

Eq. (61) shows that if we take into account the local-field correction, i.e., the fact
that A �= 1, the oscillator strength for the transition is not changed and only the
resonance frequency is shifted. Explicitly, the resonance of ε(ω) is red-shifted
compared to the transition of an isolated molecule over the amount

(62)7ω= 4π

3vch̄
µ2

1.

Dissipation can be taken into account by adding the imaginary term iγ to the
frequency ω in the denominator of Eq. (60). Since ε = (n+ iκ)2, with n and κ

the real and imaginary parts of the refractive index, respectively, we obtain for
γ →+0

(63)
∫ +∞

−∞
2n(ω)κ(ω) dω= 2π2F1

vcω1
.
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In this case we have for the absorption spectrum of the crystal,

(64)κ(ω)= 1

n(ω)

(2π/vc)F1γ (ω)

(ω2⊥ −ω2)2 + γ 2(ω)
.

Here, γ (ω) is given by 2ωγ . The main difference between Eqs. (64) and (44)
obtained through microscopic derivation, is the inclusion of antiresonant contri-
butions, as is seen in the combination ω2⊥ − ω2 = (ω⊥ − ω)(ω⊥ + ω) appearing
in the denominator above.

3.3. LOCAL-FIELD CORRECTIONS FOR IMPURITIES

Let us now consider the same crystal with a certain number of substitutional im-
purity molecules (the treatment can be readily modified for the case of interstitial
impurities). Now the local field depends on the spatial distribution of the impuri-
ties. If we ignore fluctuations of this distribution and replace the local field by its
mean value, we obtain

(65)ε(ω)= 1+ 4πN0a(ω)
ε+ 2

3
+ 4πN1

[
ã(ω)− a(ω)

]ε+ 2

3

where ã(ω) is the polarizability of the impurity molecules, N0 = 1/vc (as before),
and N1 is the concentration of impurity molecules. At small impurity concentra-
tion (ρ ≡ N1vc � 1), the difference δε between the dielectric function of the
crystal with impurities and the pure crystal is found from Eq. (65) to be

(66)δε(ω)=
(

1− 4πN0a

3

)−1

4πN1
(
ã − a

)ε0 + 2

3
,

where ε0 denotes the dielectric function for the pure crystal. Using the relation
(1− 4πN0a/3)−1 = (ε0(ω)+ 2)/3 (cf. Section 3.1), we thus arrive at

(67)ε(ω)= ε0(ω)+ 4πN1
(
ã − a

)(ε0 + 2

3

)2

,

which using the Lorentz–Lorenz relation may be rewritten as

(68)ε(ω)= ε0(ω)− ρ
ε0 + 2

3
(ε0 − 1)+ 4πN1ã

(
ε0 + 2

3

)2

.

In analogy to Eq. (60) we write the polarizability of the impurity molecules as,

(69)ã(ω)= F̃1

ω̃2
1 −ω2 − iγ̃ (ω)

,

where we took into account dissipation and F̃1 = 2µ̃2
1ω̃1/h̄. Assuming that the im-

purity resonance frequency ω̃1 is in the region of transparency of the host medium,
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we obtain for the frequencies ω � ω̃1:

(70)2n(ω)κ(ω)= 8πN1

(
ε0(ω)+ 2

3

)2

µ2
1

ω̃1γ̃ /h̄

[ω̃2
1 −ω2]2 + γ̃ 2

.

Hence, integration in the region of the impurity absorption band yields:

(71)
∫

2n(ω)κ(ω) dω= 4π2N1

(
ε0(ω)+ 2

3

)2 µ̃2
1

h̄
.

Thus, we have found that the absorption coefficient of light due to impurities in
a medium with dielectric constant ε0(ω), as well as the integral on the left-hand
side of Eq. (71) (known as the Kravets integral), are proportional to the squared
Lorentz factor. This reflects a change of the observed oscillator strength of the
impurities. The influence of the medium is to replace the dipole moment µ̃1 of
the impurity’s transition by the effective dipole moment µ̃eff = µ̃1(ε0(ω̃1)+2)/3.
The same enhancement factor occurs in the spontaneous emission constant of the
impurity molecules [95].

If the impurity’s resonance frequency ω̃1 is close to the crystal’s resonance
frequency ω0 and ε0(ω̃1)� 1, the integrated intensity I of absorption by the im-
purities as a function of ω̃1 increases as (ω̃1 − ω0)

−2. If we properly take into
account the dependence of the exciton frequency on the wave vector, ω0 = ω0(k),
we obtain, as shown by Rashba [96], that I ∼ (ω̃1 − ω0)

−3/2. A similar effect
takes place, for instance, for excitons localized at the impurity. Since the experi-
mentally measured quantity in Eq. (71) is its left-hand side, a correct introduction
of the local-field correction (the Lorentz factor in this case) makes it possible to
find the oscillator strength for the isolated molecule from measuring the disper-
sion and absorption for the molecules in solution. Of course, this can be done only
if no chemical bonds arise between the molecules of the solute and the solvent,
no aggregates of the impurity molecules are formed, and so on.

3.4. IMPURITY-FREE CRYSTALS: MIXING OF MOLECULAR

CONFIGURATIONS

Now let us return to the impurity-free crystal and assume that the molecules of
the crystal have the polarizability,

(72)a(ω)= a0 + a1(ω),

where the function a1(ω) is given by Eq. (60), while a0 reflects the contributions
to the molecular polarizability from transitions far from the resonance ω1, which
can be assumed to be independent of ω in the frequency range ω� ω1. Substitut-
ing Eq. (72) into Eq. (59), we obtain

(73)ε(ω)= εb + (4π/vc)F1[(εb + 2)/3]2
ω2⊥ −ω2

,



FRENKEL AND CHARGE-TRANSFER EXCITONS IN ORGANIC SOLIDS 41

where

(74)εb = 1+ 4π

vc
a0

(
1− 4π

3vc
a0

)−1

,

which may be considered the background dielectric constant of the crystal far
from resonance (calculated under the assumption that the resonance part of mole-
cular polarizability a1(ω)= 0)). The resonance frequency ω⊥ is given by

(75)ω⊥ = ω1 − 2πF1

vcω1

εb + 2

3
.

If we introduce a weak dissipation into Eq. (72), then Eq. (63) is replaced by

(76)
∫

2n(ω)κ(ω) dω= 2π2F1

vcω⊥

(
εb + 2

3

)2

.

Eqs. (75) and (76) demonstrate how the mixing of molecular configurations due to
intermolecular (resonance dipole–dipole) interactions, leading to εb > 1, affects
the frequencies and oscillator strengths of the dipole transitions.

It is important to note the difference between these equations and similar rela-
tionships, like Eq. (71), for impurity molecules in a solution or a matrix. When
we consider impurity molecules in a solution the Lorentz factor on the right-hand
side of Eq. (71) contains the dielectric constant of the solvent at the transition
frequency of the impurity. For the impurity-free crystal and in the region of the
exciton resonance, we see from Eq. (76) that this quantity in the Lorentz factor
is replaced by the background dielectric constant, which is not at all equal to the
squared index of refraction of light in the crystal at the resonance frequency.

Within the framework of microscopic theory, the mixing of molecular config-
urations of Frenkel excitons arises only if we go beyond the two-level model for
the molecules. Within the two-level model this effect is absent. In this case εb = 1
and then Eq. (73) is transformed into Eq. (59), and Eq. (76) into Eq. (63).

In an alternative approach [97], it has been proposed that the background di-
electric constant in the microscopic theory of Frenkel excitons can be taken into
account by dividing the intermolecular resonance interaction by εb . This may be
considered a renormalization of the molecular transition dipole moment and os-
cillator strength µ1 → µ1/

√
εb and F1 → F1/εb . However, this approach does

not even correctly account for the local-field corrections due to the long-range
dipole–dipole interactions (see [36, Section 3.6]). For example, Eq. (75) shows
that the shift of the frequency ω⊥ of the transverse Frenkel exciton relative to
the molecular frequency, is affected by εb through the Lorentz factor (εb + 2)/3,
which increases with εb. In the renormalization approach, this shift would de-
crease with εb , as the effective interaction decreases. The frequency of the longi-



42 J. KNOESTER AND V.M. AGRANOVICH

tudinal Frenkel exciton, which obeys ε(ω‖)= 0, reads

(77)ω‖ = ω1 − 2πF1

3vcω1

εb + 2

3
+ 2πF1

vcω1εb

(
εb + 2

3

)2

,

and depends on εb in an even more complicated way.

3.5. ANISOTROPIC CRYSTALS: ABSORPTION INTENSITIES AND DAVYDOV

SPLITTING

We finally consider crystals with several molecules in the unit cell. We will show
how the dielectric theory allows us to calculate the dielectric tensor of anisotropic
crystals and to recover the results of the Frenkel exciton theory for the exciton
energies and polarization intensity relations obtained in Section 2.5.3.

Let’s consider a molecular crystal with S � 1 molecules in the unit cell. If we
are interested in the optical properties of the crystal in the frequency rangeω� ω1
where ω1 is the nondegenerate frequency of one of the dipole transitions of the
isolated molecule, then its polarizability tensor can be written as

(78)aij (ω)= F1li lj

ω2
1 −ω2

,

where li is the ith Cartesian component of the unit vector (l) parallel to the mole-
cular transition dipole moment. Since the different molecules in the unit cell have
different orientations, their polarizability tensors are

(79)asij (ω)=
F1l

s
i l
s
j

ω2
1 −ω2

,

with s = 1,2, . . . , S. Using Eqs. (52), (53), and (79), we obtain the following set
of equations for the quantities Es · ls , i.e., the projections of the local fields on the
directions of the molecular transition dipoles

(80)Es · ls −
∑
s ′

Mss ′(k,ω)E
s ′ · ls ′ = E · ls,

with

(81)Mss ′(k,ω)= F1

ω2
1 −ω2

∑
ij

Qss ′
ij (k)l

s
i l
s ′
j .

Let us apply these general equations to crystals with the symmetry of the an-
thracene crystal, containing two molecules per unit cell. The optical properties of
molecular crystals of this type were the subject of many experimental studies. For
such crystals symmetry operations exist that transform molecules with s = 1 into
molecules with s = 2. As a result, when k= 0 or even when k �= 0 provided that
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the wave vector is parallel or perpendicular to the monoclinic axis of the crystal,
we have

(82)M11(k,ω)=M22(k,ω), M12(k,ω)=M21(k,ω)

which makes the solution of Eq. (80) less cumbersome. It can be easily seen that
in this case we have

(83)

Es · ls = 1

2

[
L+j

1−M11(k,ω)−M12(k,ω)

− (−1)sL−j
1−M11(k,ω)+M12(k,ω)

]
Ej ,

with

(84)L± = l1 ± l2.

In analogy to Eq. (57), this solution leads to the dielectric tensor

(85)εij (k,ω)= δij + 2πF1

vc

[
L+i L

+
j

�2+(k)−ω2
+ L−i L

−
j

�2−(k)−ω2

]
,

where

(86)�2+(k)= ω2
1 − F1

∑
i,j

(
Q11

ij (k)l
1
i l

1
j −Q12

ij (k)l
1
i l

2
j

)
,

(87)�2−(k)= ω2
1 − F1

∑
i,j

(
Q22

ij (k)l
2
i l

2
j −Q21

ij (k)l
2
i l

1
j

)
.

Since the quantities Qss ′
ij (k) are analytic functions of k, the same is true for the

frequencies �2±(k). This is not surprising because the resonance frequencies of
the tensor εij (k,ω) are the frequencies of the so-called mechanical excitons [61],
which are analytic functions of k, regardless of the model being used.

As the vectors L1 and L2 are orthogonal, their directions may be chosen as
the x and y axes directions, respectively. In this coordinate system, the tensor
εij (k,ω) obtains a diagonal form with the non-zero components:

εxx(ω,k)= 1+ 2π

vc

F1,xx

�2+(k)−ω2
, εyy(ω,k)= 1+ 2π

vc

F1,yy

�2−(k)−ω2
,

(88)εzz(ω,k)= 1,

with

(89)F1,xx = F1
∣∣L+∣∣2

, F1,yy = F1
∣∣L−∣∣2

,
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so that

(90)F1,xx/F1,yy = cot2(θ/2),

where θ is the angle between the direction of the two molecular dipoles, l1 and l2.
These relationships show that the absorption of light propagating along the z-axis
and with the electric vector E parallel to L+ (L−) has a resonance at the fre-
quency �+(k) (�−(k)). Thus, though we assumed that the transition of the iso-
lated molecule at the frequency ω1 is nondegenerate, the absorption spectrum
of a crystal with two molecules per unit cell should have two absorption lines,
which have mutually perpendicular polarizations. The results obtained here co-
incide with those obtained in Section 2.5.3 within the framework of microscopic
exciton theory.

The effect of mixing of molecular configurations can be considered along the
same lines as was done in Section 3.4 for cubic crystals. One adds a frequency
independent tensor (a0)ij to the resonant part of the molecular polarizability equa-
tion (78). Mixing effects are particularly important for excitonic transitions with
a small oscillator strength and also for the calculation of intensity ratios, such as
the above ratio F1,xx/F1,yy [53].

If we know the tensor εij (k,ω) we can find the position of the absorption line
for arbitrary polarizations and directions of propagation of the light and also take
into account spatial dispersion effects in molecular crystals of arbitrary shape. As
we demonstrated, to calculate this tensor we need to know the local-field tensor
Qss ′

ij (k), which depends only on the lattice structure, and the polarizability tensor
of a single molecule. Our calculations only accounted for the dipolar terms in
the local-field tensor. It is noteworthy that taking into account the higher-order
multipoles only leads to changes of the resonance frequencies in the dielectric
tensor [94].

The importance of the local-field method presented in this section lies in its
simplicity and the possibility to generalize it to include effects of mixing of mole-
cular configurations. Thus, while the Davydov splitting has been studied for many
different crystals and was first analyzed by extending the microscopic Frenkel ex-
citon theory to include several molecules per unit cell [35], the phenomenon can
be well-understood and described in terms of a local-field analysis. It should be
stressed that excitonic spectra in semiconductors cannot be understood on the ba-
sis of simple local-field arguments. The large-radius excitons in these systems,
require a microscopic treatment that starts from electron band structure theory
(see, for example, [93,98]).

The above should not be considered a depreciation of the microscopic theory of
small-radius (Frenkel) excitons. Only within the framework of a microscopic the-
ory can we calculate the exciton energies over the entire range of allowable values
of the wave vector and consistently study effects of exciton–phonon and exciton–
exciton interaction and scattering of excitons in crystals with static disorder. This
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is exactly what makes it possible, within the scope of small-radius exciton the-
ory, to understand such phenomena as transfer of electronic excitation energy in
crystals, the optical properties of molecular crystals with high excitation levels,
nonlinear optical effects, fine-structure in absorption and luminescence spectra,
and many other optical phenomena.

4. Diffusion of Frenkel Excitons

4.1. EXCITON MOTION AND DIFFUSION

The transfer interaction Jnm in Eq. (14) causes an excitation to migrate between
different molecules. As mobility of excitons causes transport of the excitation
energy through the system, this mobility has been in the focus of interest for many
years. This interest concerns excitation energy transport in bulk crystals, but also
in smaller molecular aggregates, such as the chlorophyll aggregates that occur in
the photosynthetic systems of bacteria and higher plants [13].

If a molecular system is excited in one of its exciton eigenstates and no in-
teractions occur with other degrees of freedom, the only evolution in the system
will be a periodic phase change of the exciton wave function as a whole, which
is not associated with spatial motion. In a more realistic situation, certainly if one
deals with large systems (crystals), one excites a wave packet of excitons, which
will propagate through the crystal with the group velocity. The wave packet (with
some mean value of the wave vector) will scatter on static disorder (e.g., in the
gas-crystal shifts Dn), on lattice vibrations, and on other excitons. At low exci-
tation densities, we may neglect the latter scattering event. The scattering leads
to a finite exciton mean free path. If the scattering is weak, the mean free path
may be very large compared to the lattice constant and a description in terms of
weakly perturbed wave packets is appropriate. This situation is referred to as the
case of coherent excitons and may be described using the Boltzmann equation. In
the other extreme case, the scattering is so strong and the coherence length is so
short that basically the exciton loses it phase information already when propagat-
ing from one molecule to the next. This situation is referred to as the incoherent
case (Förster energy transfer [99]) and is mostly described using a set of coupled
rate equations for the excitation probabilities of the individual molecules.

Various methods have been developed that interpolate between the coherent and
incoherent regimes (for reviews see, e.g., [100–102]). Well-known approaches
use the stochastic Liouville equation, of which the Haken–Strobl–Reineker [100]
model is an example, and the generalized master equation [101]. A powerful
technique, which in principle deals with all aspects of the problem, uses the
reduced density matrix of the exciton subsystem, which is obtained by project-
ing out all other degrees of freedom (the bath) from the total statistical opera-
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tor [103]. This reduced density operator obeys a closed non-Markovian (integro-
differential) equation with a memory kernel that includes the effects of (multiple)
interactions between the excitons and the bath. In practice, one is often forced to
truncate this kernel at the level of two interactions. In the Markov approximation,
the resulting description is known as Redfield theory [104].

It should be realized that, independent of whether the system is in the coher-
ent, incoherent, or intermediate regime, the motion at distances larger than the
mean free path is always diffusive. Alternatively stated, on time scales large com-
pared to the typical scattering time, the exciton motion is described by a diffusion
equation. In this section, we will restrict ourselves to this diffusive regime, which
presumes that the exciton life time is long compared to the scattering time, so that
enough scattering events may occur before the exciton decays through sponta-
neous emission, internal conversion, trapping by an impurity, or any other decay
channel.

In the diffusive regime, the quantity of interest is the exciton concentration
c(r, t) as a function of position r and time t . It obeys the diffusion equation

(91)
∂c

∂t
=D∇2c− 1

τ0
c+ I0(t)κe

−κz,

whereD is the exciton diffusion coefficient (considered isotropic here), τ0 denotes
the exciton life time, I0(t) is the intensity of the pumping light incident on the
sample, and κ is the absorption coefficient in the crystal. Thus, the last term in
Eq. (91) gives the number of excitons generated by the external radiation per unit
volume and per unit time. We assume here that the sample is a parallel-sided slab
with boundaries at z = 0 and z = d and that the incident radiation propagates
from the region z < 0 along the normal to the plane z = 0. The slab thickness d
should be large compared to the exciton mean free path in order for the diffusion
equation to be of any use. To solve the diffusion equation we must define boundary
conditions. In the steady state, the number of excitons that arrive at the boundary
surface per second and per unit area is given by D[dc/dz]z=0. In the steady state,
this should equal the rate of surface annihilation, which we may write vac(z= 0),
with va a characteristic surface annihilation velocity. The boundary condition at
z= 0 is then written

(92)D

[
dc

dz

]
z=0

= vac(0),

which may also be formulated as [dc/dz]z=0 = c(0)/ l0, with l0 = va/D. It should
be kept in mind that this boundary condition only determines the asymptotic be-
havior of the exciton concentration, i.e., for z large compared to the exciton mean
free path. The parameters D, τ0, κ , and v may be taken from experiments or cal-
culated in the framework of some microscopic theory (see, for example, Refs. [36,
102]).
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A useful measure for exciton migration is the diffusion length L = (Dτ0)
1/2.

Experimental data show that for Frenkel excitons in molecular crystals at room
temperature the diffusion coefficient D ≈ 10−3 cm2/s and the lifetime of sin-
glet excitons τ0 ≈ 10−8 s. This gives a typical diffusion length L≈ 10−6 cm (for
anthracene crystals L≈ 5.10−6 cm). For triplet excitons, the lifetime may be ap-
preciably longer (10−3–10−4 s) and the diffusion length may be larger than for
singlet excitons by more than two orders of magnitude.

In the remainder of this section, we will focus on various ways to calculate the
diffusion constant from microscopic principles. We will start by considering the
formal definition for quantum particles, first given by Kubo (Section 4.2). We will
then consider the actual calculation in more detail for the case of coherent excitons
(Section 4.3) and incoherent ones (Section 4.4). Finally, we briefly address the
measurement of exciton transport properties and the effect of exciton-polariton
formation on transport in molecular crystals (Section 4.5).

4.2. THE DIFFUSION TENSOR

According to Kubo [105], the general quantum mechanical expression for the
diffusion tensor is

(93)Dij = 1

β

∫ +∞

0
dt e−ηt

∫ β

0
dλ

〈
v̂i (−ih̄λ)v̂j (t)

〉
,

where β = 1/kBT , η denotes an infinitesimal positive constant, v̂i (t) is the ith
component of the velocity operator of the migrating particle in the Heisenberg
representation, and the brackets 〈· · ·〉 denote taking the statistical equilibrium av-
erage. For classical particles (h̄= 0) in an isotropic medium and using a relaxation
time approximation, vi(t) = vi(0) exp(−t/τ ), Eq. (93) leads to the well-known
expression Dij = 1

3 〈v2τ 〉δij .
Let us consider the Kubo expression in somewhat more detail for the case of

excitons in a molecular crystal. We will restrict ourselves to the presence of one
exciton. The position of its “center of gravity” then reads

(94)R=
∑
n

RnB
†
nBn,

where n labels the molecules. In a crystal, n is short for (n, s), the position of
the unit cell and the index of the molecule within the unit cell. Furthermore, Rn

denotes the position of the nth molecule. The velocity operator of the exciton may
now be defined through

(95)v̂= i

h̄

[
Ĥ ,R

]
,
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where Ĥ is the system’s total Hamiltonian, including the interactions with
phonons and disorder. As we deal with one exciton only, we may neglect exciton–
exciton interactions, and we have

(96)Ĥ =
∑
n

ĤnB
†
nBn +

∑
n,m

ĴnmB
†
nBm +

∑
κ

ωqb
†
qbq.

Here, b†
q and bq are the creation and annihilation operators, respectively, for

phonons in mode q = (q, r), where q denotes the wave vector of the phonon
and r is the branch label. The energy of these phonon modes is given by ωq . Fur-
thermore, the single-molecule Hamiltonian as well as the intermolecular transfer
interaction are still considered to be operators in the phonon space. The physics
of the dependence of the molecular transition energy and the interactions on the
phonon coordinates was introduced in Section 2.9 already, where also the lin-
earization of these operators in the phonon coordinates was discussed.

From Eqs. (94)–(96), the velocity operator is found to be

(97)v̂= i

h̄

∑
n,m

RnmĴnmB
†
nBm,

with Rnm = Rn − Rm. In Eq. (97) we shall ignore the dependence of Ĵnm on
the phonon operators. If the exciton–phonon interaction is weak, it is sufficient to
include the dependence on the phonon operators only in the propagation of the co-
herences B†

nBm through the phonon dependencies in the operator Ĥn. Accounting
for the phonon dependence of the Ĵnm in Eq. (97) only yields small corrections to
the expression for Dij . Thus, in Eq. (97) we shall replace the operator Ĵnm by the
scalar Jnm. Then, integration of Eq. (93) over t and λ yields [106]

(98)

Dij = 1

2h̄2

∑
n,m,n′,m′

(Rnm)iJnm(Rn′m′)j Jn′m′

×
∫ +∞

−∞
dt

〈
B†
n(t)Bm(t)B

†
n′ (0)Bm′(0)

〉
.

As can be seen from Eq. (98), the calculation of the tensor Dij reduces to the
calculation of two-particle correlation functions. The lack of sufficiently detailed
data on the exciton band structure and the exciton–phonon coupling constants
considerably complicates the accurate calculation of the exciton diffusion coef-
ficients in molecular crystals. However, the temperature dependence of this co-
efficient differs significantly for coherent and incoherent excitons (see below).
Therefore, studying the temperature dependence of diffusion has always been an
important tool to analyze the character of the energy transfer in molecular crys-
tals. In the remainder of this section, we will focus on the main characteristics of
the diffusion constant and its temperature dependence.
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4.3. WEAK EXCITON–PHONON COUPLING: COHERENT EXCITONS

4.3.1. General Expressions

If the exciton–phonon coupling is sufficiently weak, the solution of the equation
for the correlation function 〈B†

n(t)Bm(t)B
†
n′ (0)Bm′(0)〉 is equivalent to the solu-

tion of the Boltzmann equation [106]. In this coherent limit, the exciton states of
the ideal lattice serve as good zeroth-order states. In other words, the wave vector
still proves to be a good quantum number and the notion of excitons propagating
in between scattering events as wave packets with a well-defined group velocity
is useful. The kinetics of such coherent excitons under the influence of the weak
exciton–phonon coupling is described by the Boltzmann equation. One may show
that this equation reduces to the diffusion equation (91), if the exciton concentra-
tion changes little over lengths of the order of magnitude of the exciton mean free
path.

In this case the exciton–phonon interaction can be taken into account perturba-
tively. The influence of this interaction on the shape and the position of the exciton
band(s) is insignificant and usually can be ignored. Then, the only remaining ef-
fect of the interaction is the scattering of the excitons, as is, for instance, clear
from Eq. (47). This scattering results in a change of the wave vector and the en-
ergy of the excitons. Therefore, if δEk is the width of the energy level of the
exciton with the wave vector k determined by the exciton–phonon interaction, the
related uncertainty δk of the wave vector is given by

(99)δEk = h̄v(k) · δk

where v= (1/h̄)(dE/dk) is the exciton group velocity. The uncertainty δk indi-
cates that the exciton state in the crystal is realized as a wave packet rather than a
plane wave. The dimensions of the wave packet, δx , δy , and δz can be estimated
from the uncertainty relations δxδkx � 1, etc.

The motion of the exciton wave packet causes the transport of energy. In order
to find the appropriate energy diffusion coefficient we must estimate the mean free
path and the mean free time of the wave packets. This situation is quite similar to
that of phonon heat conductivity (see, for example, Ref. [107]).

In analogy to the mobility of electrons and holes in crystals, the diffusion coef-
ficient for coherent excitons is determined by the relaxation time τ . According to
Fröhlich [108], we have

(100)
1

τ
=−

∑
q,r

7kz(qr)
kz

[
Wk

a (qr)+Wk
e (qr)

]
,

where k is the exciton wave vector before the collision, 7kz(qr) is the change
of the exciton wave vector in the z-direction due to the collision with the phonon
qr , and Wk

a (qr) and Wk
e (qr) are the probability per unit time of absorption and
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emission, respectively, of the phonon qr by the exciton system. After absorption
or emission, the new exciton wave vectors, accurate to an integral reciprocal lat-
tice vector, are k′ = k± q. According to Eq. (100), we can write

(101)1/τ = 1/τ ac + 1/τ op,

where 1/τ ac and 1/τ op are the scattering rates of the excitons on acoustic and
optical phonons, respectively. As is the case for electrons in semiconductors, τ is
approximately equal to the mean free time of the excitons with respect to colli-
sions with phonons. Typically, a few collisions are sufficient to reach a thermo-
dynamic equilibrium between phonons and band excitons. Thus, if the exciton
lifetime τ0 is considerably longer than the relaxation time τ , as is typically the
case at elevated temperatures, we can assume that the excitons are in thermo-
dynamic equilibrium with the lattice prior to their decay. The exciton diffusion
coefficient is then related to the relaxation time by

(102)D = 1

3

〈
τv2〉≈ 1

3
〈τ 〉〈v2〉,

where 〈v2〉 is the (equilibrium) mean squared group velocity of the excitons, and
〈τ 〉 is the mean relaxation time. Strictly speaking, explicit expressions for wave
packets should be used when calculating the quantities in Eq. (100). However,
usually the absorption and emission rates vary only slightly with the exciton wave
vector over the k interval spanned by the wave packet. Therefore, the transition
probabilities can be calculated by using exciton wave functions in the form of
plane waves both before and after the scattering process. We will not discuss the
details of such calculations, but rather address some typical and frequently used
results.

4.3.2. Isotropic Exciton Effective Mass and Scattering by Acoustic Phonons

Using the Fermi golden rule, the probabilities of absorption and emission of a
phonon by the exciton system read

(103)

Wk
e (qr)=

2π

h̄

∣∣F(k− q;k;qr)∣∣2
× (nqr + 1)δ

[
E(k)−E(k− q)−ωr(q)

]
,

(104)Wk
a (qr)=

2π

h̄

∣∣F(k+ q;k;qr)∣∣2nqr δ
[
E(k)−E(k+ q)+ωr(q)

]
,

where nqr = [exp h̄ωr (q)
kBT

− 1]−1 is the thermal occupation of the phonon mode qr
and F(k± q;k;qr) is the exciton–phonon coupling constant.
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At sufficiently low temperatures, when the thermal energy kBT is much smaller
than the exciton band width, most excitons at thermodynamic equilibrium are con-
centrated in the vicinity of the exciton band minimum in the wave vector space. If
this minimum corresponds to k= 0 and we assume for simplicity that the excitons
have an isotropic effective mass m, we have

(105)Ek =E0 + h̄2k2/2m.

Moreover, under these conditions the relation |k|a� 1 (a is the lattice constant)
is satisfied for the overwhelming majority of the excitons.

The conservation of energy for the absorption and emission processes can now
be written

(106)h̄2|k|2/2m± h̄ωr (q)= h̄2(k± q)2/2m.

Since we are dealing with relatively low temperatures, let us focus on the case
of acoustic phonons. We then have ωr(q) = v0|q| (r = 1,2,3), where v0 is the
sound velocity. For the sake of simplicity we ignore the dependence of v0 on the
polarization r and the direction of q. Using Eq. (106), we obtain

(107)q =∓2k cosϑ ± 2mv0/h̄,

where ϑ is the angle between the vectors k and q. From the Boltzmann statistics
h̄2〈|k|2〉/2m= 3

2kBT , we obtain for the typical value of |k| at a given tempera-
ture T :

(108)
〈|k|2〉1/2 = 1

h̄
[3mkBT ]1/2.

Hence, we can ignore the second right-hand side term in Eq. (107) relative to the
first if

(109)kBT � 1

3
mv2

0 .

This criterion defines the temperature region where the scattering of excitons by
phonons is almost elastic. We may make this estimate more quantitative by using
v0 ≈ 105 cm/s as typical velocity of sound for solids, leading to

(110)T � 0.025m

m0
K,

with m0 the electron mass in vacuum.
Below we shall assume that the criterion equation (110) is satisfied and, there-

fore, we shall neglect the phonon energy in the argument of the delta functions
in Eqs. (103) and (104), and, likewise, we shall neglect the second term on the
right-hand side of Eq. (107).

Now we observe from Eq. (107) that in our model for a given value of |k| the
exciton can interact to first approximation with the phonons with wave vectors in
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the range 0� |q|� 2|k|, implying that, like |k|, the phonon wave vector is small:
|q|a� 1. Using the smallness of |k| and |q|, we can expand |F(k+q,k;qr)|2 in
powers of these wave vectors. Keeping only the lowest-order nonzero contribu-
tion, |F(k+q,k;qr)|2 is then a linear function of |q| for acoustic phonons [109].
Moreover, if we ignore the generally weak dependence of this quantity on the
directions of the vectors q and k and neglect the dependence of the phonon fre-
quency on the direction of q and the phonon polarization, we obtain

(111)
∣∣F ac(k+ q,k;qr)∣∣2 ≈ ∣∣F ac

0

∣∣2a|q|,
where F ac

0 is a constant. Using Eq. (111), we find that (in a three-dimensional
medium) the relaxation time for the exciton with wave vector k due to the scatter-
ing by acoustic phonons is given by

(112)
1

τ ac =
3|F ac

0 |2a4m

4πh̄3|k|3
(
kBT

h̄v0

)5 ∫ ξ

0
x4 e−x − ex

(ex − 1)(e−x − 1)
dx,

with ξ = 2|k|h̄v0/kBT .

4.3.3. Temperature Dependence of the Diffusion Constant

If ξ < 1, the integrand in Eq. (112) can be replaced with its value for small x .
Using Eq. (108) for the typical value for |k|, this condition translates into

(113)T > T0 ≡ 12mv2
0/kB.

If we now replace |k| with its mean value 〈|k|2〉1/2 and perform the integration in
Eq. (112) using the small-x expansion, we obtain

(114)
1

τ ac =
|F ac

0 |2a4m

πh̄3

(
kBT

h̄v0

)〈|k|2〉1/2
.

Thus, for T > T0, we find τ ac ∼ 1/T 3/2 which using Eq. (102) for the diffusion
constant leads to

(115)D ∼ 1/T 1/2.

This relationship for Frenkel excitons was derived by Agranovich and Konobeev
[109]; it can be seen from its derivation that it is independent of the model and,
therefore, is valid also for ground state large-radius excitons as well as for elec-
trons and holes in semiconductors.

In the region of very low temperatures when ξ � 1, that is, when the condition
opposite to Eq. (113) is satisfied but the inequality (109) still holds, the main con-
tribution to the integral in Eq. (112) comes from large x . Replacing the integrand
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with its asymptotic large-x value and performing the integration then yields

(116)
1

τ ac =
24|F ac

0 |2a4m

5πh̄3

〈|k|2〉,
which implies (Eq. (102)) that the diffusion coefficient due to scattering by
acoustic phonons ceases to be temperature dependent in the region of low temper-
atures. Thus, with decreasing temperature the relationship D ∼ 1/

√
T for the dif-

fusion coefficient reduces to D = const. The exciton scattering by optical phonons
becomes important only at sufficiently high temperatures. The discussion of the
influence of such processes on the diffusion constant can be found in Refs. [36]
and [102].

To end this section, we make a few remarks. First it should be noted that the ap-
plicability of the above D(T ) relationships is limited by the condition of applica-
bility of the Boltzmann equation. This condition reads l� λ where l = 〈v〉τ and
λ is the thermal de-Broglie wavelength of the excitons. Therefore, we should ex-
pect that this condition may be satisfied only for sufficiently low temperatures. Of
course, the size of the corresponding temperature range depends on the exciton–
phonon interaction constants and can be found only from experimental data.

The second remark concerns the role of crystal anisotropy. The majority of the
well-studied molecular crystals, such as anthracene, naphthalene, pyrene, etc., are
not cubic, but very anisotropic. It is therefore natural to consider to what extent the
above qualitative results for the temperature dependence of the exciton diffusion
coefficient in cubic crystals are valid for anisotropic crystals. It is clear, of course,
that in anisotropic crystals the exciton diffusion coefficient can exhibit anisotropy
owing, for instance, to anisotropy of the exciton’s effective mass. However, as
long as the effective masses in various directions are of the same order of magni-
tude (which seems to be just the case for naphthalene crystals), the temperature
dependence of the diffusion coefficient maintains the same D ∼ 1/

√
T charac-

ter (with the exclusion of the region of low temperatures). More interesting are
the class of anisotropic crystals in which the lowest exciton band corresponds to
high oscillator strengths. Then the exciton energy Ek is known to be a nonana-
lytic function of k for small |k| values and this has to be taken into account when
calculating the diffusion tensor. Katalnikov [110] calculated the exciton diffusion
tensor in uniaxial crystals taking into account the nonanalytic energy term and
found, as could be expected, that in those crystals different components of the
diffusion tensor have different temperature dependence. Strong anisotropy of Dij

in molecular crystals can lead to one- or two-dimensional exciton motion [111].

4.4. STRONG EXCITON–PHONON COUPLING: INCOHERENT EXCITONS

If the exciton–phonon coupling is strong, it results in the localization of the ex-
citon at a lattice site, so that the exciton behaves as a classical particle that can
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hop from cell to cell. The hopping particle is in fact a self-trapped exciton, which,
due to interactions with the phonon bath, looses its phase memory on a time scale
short compared to the time it takes to hop between unit cells (see Section 5.2).
The resulting hopping process is known as incoherent energy transfer and, if the
relevant excitation transfer interaction Jnm is of the dipole–dipole type, it is often
referred to as Förster energy transfer. To lowest order in the excitation transfer
interaction, the exciton motion is then a series of uncorrelated hops (forming a
Markov process), described by a random walk over the lattice sites. If P(m, t) is
the probability that an exciton is at the lattice site m at the moment t , then the
random-walk equation for P(m, t) has the form

(117)
dP(m, t)

dt
=

∑
n

[
W(n,m)P (n)−W(m,n)P (m)

]
,

where W(n,m) is the probability of hopping from the site n to the site m per unit
time. In the next order of approximation the hopping process is not Markovian.
We then have the following integro-differential equation for P(m, t)

(118)

dP(m, t)

dt
=

∫ t

0

[
W̃ (n,m, τ )P (n, t − τ )

− W̃ (m,n, τ )P (m, t − τ )
]
dτ,

i.e., the hopping process acquires a “memory”. For molecular crystals, this prob-
lem has been discussed by Kenkre and Knox [112,101]. The excellent review by
Silbey [102] deals with the problem in a more general way, including exciton scat-
tering by impurities, dispersive transport, and the Haken–Strobl–Reineker model
of exciton–phonon scattering [113,100]. We also point out the recent book on
transport by May and Kühn, where the problem of memory kernels is addressed
in detail [103].

If we assume that the variation of the function P(m, t) over distances of the
order of the lattice constant is small, then Eq. (117) reduces to the diffusion equa-
tion. Indeed, assuming that the vector m varies continuously, we obtain

P(n)= P(m)+
∑
i

(n−m)i
dP (m)

dmi

(119)+ 1

2

∑
i,j

(n−m)i(n−m)j
d2P(m)

dmidmj
.

If W(m,n) =W(n,m) (which holds if there is no static disorder in the crystal),
substitution of the above expression into Eq. (117) yields

(120)
∂P (r, t)

∂t
=Dij

∂2P(r, t)
∂xi∂xj

,
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where the diffusion coefficient tensor is

(121)Dij = 1

2

∑
m

(n−m)i (n−m)jW(n,m).

For crystals with several molecules (labeled by s) per unit cell, which have sym-
metry operations exchanging molecules with different s values, as holds for an-
thracene crystals, a similar procedure yields

(122)Dij = 1

2

∑
m,s ′

(rns − rms ′)i(rns − rms ′)jW
(
ns,ms′

)
.

Thus, under the given conditions, the calculation of the diffusion tensor reduces
to determination of the hopping rates W(ns,ms′).

For singlet excitons the probability W(ns,ms′) can be estimated using the
results of strong exciton–phonon coupling theory, as has been done by Trli-
faj [114]. The intermolecular dipole–dipole interaction leads to W(ns,ms′) ∼
1/|rns − rms ′ |6, as is characteristic for Förster energy transfer [99], and in the
summation equation (121) it suffices to take into account only nearest neighbors.
The temperature dependence of this probability may be presented by the relation

(123)Dij (T )≈D0
ij exp

(−Ua/kBT
)
,

where Ua is the activation energy for hopping, T is a constant for T � TD (TD is
the Debye temperature), and T = T for T � TD . It follows from these qualitative
considerations that in the strong coupling regime the exciton diffusion constant,
in contrast to the case of weak exciton–phonon coupling, increases with growing
temperature.

In some molecular crystals a crossover from coherent excitons (exciton mean
free path l� λ) to incoherent ones (l ≈ λ, Ioffe–Regel criterion) takes place with
increasing temperature. We then expect that upon increasing the temperature from
very low values, at some threshold temperature the decreasing behavior of the
diffusion constant for coherent excitons goes over into an increasing behavior.

A similar crossover phenomenon may be observed in heavily doped isotopi-
cally mixed crystals at low temperatures. In such crystals the impurity molecules
are responsible for the scattering of excitons and at low temperature this scattering
is almost elastic. When increasing the impurity concentration, a crossover occurs
between so-called weak (at l � λ) and strong (at l ≈ λ) Anderson localization.
This crossover is analogous to the change of the electron mobility in metals upon
increasing the impurity concentration and should be expected to have a strong in-
fluence on the exciton transport. A different situation arises when the electronic
excitation energy of the isotopic impurity is lower than the energy of the exciton
in the crystalline host. The isotopic impurities enter the lattice substitutionally
and they are randomly distributed in the matrix. The electronic excitation energy
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transfer from one impurity to another when decreasing the impurity concentration
may be used to investigate the transition from impurity band to impurity hopping
transfer. Such a transition is similar to the Anderson conductor–insulator transi-
tion in semiconductors.

An extensive discussion of experiments on exciton transport in isotopically dis-
ordered crystals and numerical simulations of this phenomenon in the framework
of a percolation model, may be found in the review paper by Kopelman [115].
A more recent review of this field, including the discussion of the Anderson
model, may be found in the book by Pope and Swenberg [17].

4.5. TRANSPORT MEASUREMENTS AND DIFFUSION OF POLARITONS

Many papers have been devoted to the experimental determination of the exciton
diffusion constant D. In most of these studies, D was determined by observing
how the diffusion of excitons results in their capture by impurities (sensitized flu-
orescence) or in bimolecular quenching of excitons (reviews of these experiments
may be found in Refs. [36,17]). The interpretation of such experiments requires
that not only the diffusion of the excitons to the acceptor is taken into account, but
also the character of the exciton interaction with the acceptor (i.e., with the im-
purity molecule or with another exciton). An alternative experimental technique
that does not suffer from these problems, is the picosecond transient grating (TG)
method. This third-order nonlinear optical technique has been used abundantly
for the study of various kinetic parameters of condensed media (liquids, semi-
conductors, etc.). Fayer and collaborators were the first to propose the use of TG
experiments for the study of exciton transport in molecular crystals [116]. They
applied the method to anthracene thin films [117,118].

In order to determine the exciton diffusion constant, one studies the decay ki-
netics of excitonic gratings, i.e., a spatially periodic variation in the exciton den-
sity, formed in a molecular crystal as a result of the interference of two coherent
picosecond laser pulses. The periodic spatial distribution of the excitons, as well
as its evolution, can be investigated by observing the diffraction of a short probe
pulse sent into the crystal some delay time t after creating the grating. As a result
of the finite exciton lifetime and exciton diffusion, the grating amplitude decreases
in time, so that the intensity S(t) of the diffracted signal decreases with growing t .
Thus, measuring S(t) allows one to obtain information on the diffusion coefficient
D and the exciton lifetime τ0. In fact, it is easy to show that

(124)S(t)= S(0)e−Kt ,

with

(125)K = 2

(
1

τ0
+D72

)
.
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Fig. 7. The decay rate of the transient grating signal versus θ2 (θ the angle between the pump
pulses) for anthracene crystals at 10 and 20 K [117]. The magnitude of the slope is proportional to the
diffusion constant of the excitations in the crystal. With increasing temperature, the diffusion constant
decreases. The average diffusion constant obtained from these data is about 10 times larger than the
value expected for incoherent exciton motion [119]. (Figure reprinted from Ref. [117] with permission
from Elsevier.)

Here, 7 = 2π/L, where L is the fringe spacing of the grating, which is given
by L = λe/(2n sin[θ/2]) (n is the crystal’s refractive index, λe the wavelength
of the two excitation pulses, and θ the angle between them). By measuring the
diffracted-signal decay for various values of θ and plotting the observed value
of K versus 72, the diffusion constant D can be obtained from the slope, while
the 7 = 0 intercept is 2/τ0. As the life time τ0 can also be found from other
experiments (for example, from photoluminescence measurements) this provides
a rigorous test of the assumption of diffusive propagation of the excitons as well.

In the above-mentioned TG experiments by the Fayer group [117,118], it was
found that the diffusion constant D in anthracene films at low temperature (T =
1.8, 10, 20 K) can reach values of the order of 1–10 cm2/s (Figure 7). Such
very large values of the diffusion constant too strongly contradicted the typical
room temperature value of D ∼ 10−3 cm2/s and attracted the attention of many
investigators. It was argued [119,120] that in the interpretation of the experiments
on anthracene it is necessary to take into account the fact that the lowest electronic
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transition in anthracene has a rather large oscillator strength, leading to a strong
exciton-polariton formation. As a consequence, polaritons rather than excitons are
the lowest-energy elementary excitations at low temperatures and the theoretical
analysis of the decay time of the excitonic gratings should be associated with
diffusion of polaritons rather than excitons.

At low temperature the polaritons are concentrated in the “bottle neck” region.
Their diffusion constant in this case can be estimated as D ≈ 1

3vplp , where vp
is the group velocity of the polaritons in this region and lp is their mean free
path. Since lp = c/(ωκ), where κ is the imaginary part of the refractive index
((2ω/c)κ ≈ 104–105 cm−1), and vp ≈ 105 cm/s, one obtains for the diffusion
constant D � 1 cm2/s, which agrees by the order of magnitude with the value
obtained in the TG experiments. The discussion of the influence of bimolecular
quenching and reabsorption of exciton fluorescence on the decay of the exciton
gratings in organic crystals may be found in Ref. [120]. The microscopic formu-
lation of TG and four-wave mixing experiments in molecular crystals in terms of
polaritons may be found in Ref. [60].

5. Self-Trapping of Excitons: Spectra and Transport

5.1. INTRODUCTORY REMARKS

In Section 4 we have seen that the interaction of excitons with phonons gov-
erns the nature of the exciton motion. Coherent motion occurs for weak exciton–
phonon coupling, while incoherent transport takes place for strong coupling. In
the limit of strong interaction, the phonons not only affect the motion of the ex-
citons, but they may also alter the exciton state itself considerably, to a so-called
self-trapped exciton. The self-trapping (ST) of excitons is analogous to the ST of
electrons and holes in ionic crystals, which also arises from the interaction of the
quasi-particles with the lattice vibrations. For electrons in ionic crystals the possi-
bility of ST was first pointed out by Landau in 1933 [121]. He showed that due to
the electron–ion interaction the states of the electron “trapped by the lattice” (i.e.,
the states in which the lattice around an electron is strongly deformed) have an
energy smaller than that of the Bloch band states in the regular lattice. The word
“polaron” was later introduced by Pekar to denote such trapped states; he also de-
veloped the first consistent theoretical treatment of the self-trapped electron state
by considering the model of a large-radius local state [122].

The physics of exciton ST has many features in common with electron (hole)
ST. Therefore, the methods and results of the theory of electron ST have been
widely used in the development of the theory of exciton ST. The effects of strong
exciton–phonon coupling in organic crystals and the possibility of exciton ST
were discussed in the papers by Peierls [123], Frenkel [22], and Davydov [124].
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More recent discussions of exciton ST and the synthesis of almost all available ap-
proaches may be found in the reviews published as Refs. [125–128]. The reader is
referred to this literature for a detailed account of exciton ST. In this section, we
will restrict ourselves to a qualitative description of the most general and charac-
teristic features of this phenomenon.

5.2. SELF-TRAPPING OF FRENKEL EXCITONS

First of all, let us explain why the ST of Frenkel excitons, which in contrast to
electrons (holes) have no charge, may arise. It is useful to start from the limit
of a narrow exciton band and strong exciton–phonon coupling. If 7 denotes the
exciton band width in the regular lattice, then τ1 ≈ h̄/7 is the time scale for the
transfer of the excitation from one molecule to another. The second relevant time
scale is τd , which denotes the time necessary for molecules to be displaced to
new equilibrium positions upon a change in the electronic state. Such changes
into a new, locally deformed, lattice configuration arise from the fact that the
intermolecular interactions (like the Van der Waals interaction) are changed upon
excitation of one of the molecules. In the limit of a narrow exciton band and
strong exciton–lattice interaction, we have τ1 � τd . If Ed is the energy of the local
deformation (the analog of the polaron energy shift), then τd ≈ h̄/Ed . It is also
clear that τd is longer than the characteristic period of a lattice vibration 2π/ωv ,
where ωv is a typical phonon frequency (in organic solids, ωv ≈ 100 cm−1). We
thus have in the limit considered the condition τ1 � τd � 2π/ωv . It follows that
in this limit (7� h̄ωv) the phonons (displacements) are relatively fast, which
allows them to follow the slowly moving excitons.

Thus, in the limit of narrow exciton bandwidth, the local deformation travels
through the crystal following the molecular excitation. In other words, as has been
metaphorically described by Frenkel, the exciton while moving through the lat-
tice “drags with itself the entire load of atomic displacements”. Thus, the already
narrow exciton band is transformed into an even narrower band of “dressed” ex-
citons. However, since the dissipative width of such states in most cases is large
compared to the narrow band width, the wave vector cannot be consider a “good”
quantum number. The band picture of “dressed” excitons is destroyed and lo-
calized molecular excited states (dressed with a deformation) propagate by hops
from one molecule to another. It is clear that here we meet the case of incoherent
excitons, with energies that, in contrast to the case of coherent excitons, do not de-
pend on the wave vector. The diffusion constant of such excitons was addressed
already in Section 4.4 [114]. It is useful to note that triplet excitons in organic
solids have a rather small band width (of the order of 10 cm−1), implying that the
occurrence of low-energy ST triplet states is very likely.

We now turn to crystals with a wide exciton band, 7� h̄ωv . Under this condi-
tion, the exciton system is fast and, thus, the usual adiabatic approximation may
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be used in the ST theory. This situation was first analyzed by Deigen and Pekar
[129], who showed that in this case ST states of small radius RST ≈ a may be
formed (a is the lattice constant). For localization on a scale 7x ≈ a, the un-
certainty of the wave vector is 7k ≈ 1/a, which is of the order of magnitude of
the Brillouin zone. This means that when localizing, the energy of the exciton
becomes of the order of the exciton band width 7. Thus, if the localization (de-
formation) energy Ed > 7 (strong exciton–phonon coupling), a ST state will be
formed and its energy will lie below the bottom of exciton band. On the other
hand, if Ed <7, the excitons in the lowest-energy states remain coherent and ST
states (if they arise at all) may appear only in the region of higher energies. More
information on ST of wide-band excitons may be found in the review paper by
Rashba [125].

5.3. SELF-TRAPPING BARRIER

In his seminal paper on self-trapping [121], Landau already noticed that to make
the transition from the coherent (free) state to the ST state, the particle has to
overcome a barrier. In the case of small-radius excitons (Frenkel excitons) the
existence of a barrier in crystals composed of large molecules may be stipulated
by purely spatial limitations. The excited molecule tries to pass into a ST state
with lower energy, but the surrounding molecules, having no “wish” to be dis-
placed or change their orientation, may prevent such passage. Thus, the coherent
states are protected by a barrier, which makes them meta-stable and gives them
the opportunity to exist during a finite time, even if the passage into the ST state
is accompanied by a considerable energy gain. One then speaks of the coexis-
tence of coherent and ST excitons. It should be stressed that this coexistence is
not a general phenomenon and occurs only for three-dimensional (3D) systems.
As was shown by Rashba [125], no barrier exists for excitons in 1D systems. In
this case after initial excitation of a coherent exciton, a monotonous lowering of
the total energy takes place towards the energy of the ST state. Thus, the coherent
exciton states are absolutely unstable and the creation of ST states occurs without
any restrictions. For polarons in 3D ionic crystals, the same physical picture was
found earlier by Pekar [122].

5.4. SELF-TRAPPING OF CHARGE-TRANSFER EXCITONS

As a brief intermezzo, we mention some peculiarities of ST of charge-transfer
excitons. The electron–hole interaction energy in a charge-transfer exciton is of
the order of e2/a, where a is the distance between electron and hole. This energy
may be a few eV. The change of this energy under the influence of lattice vibra-
tions may compete with the interaction of the free electron and hole with phonons
and may even be the dominant mechanism of exciton–phonon interaction. Such
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a situation is expected to take place for many organic crystals (see Ref. [16] and
the chapter by M. Hoffman in this book). The theory of ST of charge-transfer
excitons in such crystals can be found in Refs. [16,130].

Another interesting situation arises in the ST of excitons in which the electron
and hole are spatially separated and are localized on different filaments (polymers
or quantum wires) or on different planes (or quantum wells). In such structures
the electron–hole Coulomb interaction changes when these filaments or planes are
deformed. As a result a strong exciton–phonon interaction may exist, even if the
individual quasi-particles (electron and hole) have very small interaction with the
phonons. The theory of ST of this type of excitations may be found in Ref. [131].

5.5. SPECTRA AND MOBILITY OF ST EXCITONS

We return to the ST of Frenkel excitons in 3D organic structures. As a result of
the Franck–Condon principle, photo-exciting a crystal from its ground state, with
a regular lattice, leads to the initial creation of a coherent exciton. In order to pass
into a ST state, the latter has to overcome a barrier (in a 3D lattice), which may
be done either by thermoactivated tunneling or by a thermoactivated transition.
A review of the relevant theory is given in Ref. [132]. It was shown that the rate
of ST of thermalized excitons can be represented as

(126)W(T )= ωvB(T ) exp
[−S(T )],

where ωv is the characteristic phonon frequency, the pre-exponential factor B(T )
is always large in comparison with unity, and S(T ) is the temperature-dependent
Hamiltonian action. At temperatures with kBT > h̄ωv , we have

(127)S(T )= U

kBT
,

where U is the height of the barrier. Thus, as could be expected, the ST rate then
follows an Arrhenius law.

The experimental investigations of ST in organic crystals mainly concern op-
tical spectra, in particular time-resolved spectra. Good examples are the experi-
ments by Matsui and co-workers reported in Ref. [133]. To discuss these spectra,
let us consider the energy Ec(η) of the crystal in its ground and excited states as
functions of the coordinate η that undergoes a strong displacement upon ST. We
assume that the ground state energy has its minimum at η = 0 and that this also
represents the local minimum in the excited state. As is shown in Figure 8, when
the exciton–phonon interaction is taken into account, η= 0 indeed only represents
a local minimum. The absolute minimum corresponds to the ST state, so that the
dependence of the total energy on η is described by an asymmetric double-well
potential. As mentioned above, the coherent states are protected by a barrier; their
optical spectra have to be analogous to the spectra in a regular crystal with weak
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Fig. 8. Ground state potential and asymmetric double-well potential associated with the phenomenon
of exciton self-trapping, as a function of the coordinate η that undergoes a strong displacement upon
self-trapping. F is the bottom of the free-exciton band, in which the lattice is not distorted (η = 0),
S denotes the lowest self-trapped exciton state, and U is the barrier height. The luminescence from
the self-trapped state is red-shifted relative to the free-exciton luminescence. Upon photo-excitation of
the system, two pathways towards the self-trapped state occur. The first possibility is that the created
excitons first relax towards the bottom of the free-exciton well, after which they may further relax to
the self-trapped state through tunneling or a thermoactivated process. This pathway is indicated by the
filled arrows. The second possibility is that high-energy (hot) excitons relax directly to the self-trapped
state, as indicated by the open arrow.

exciton–phonon coupling. We then expect the existence of narrow zero-phonon
lines in the absorption and fluorescence spectra and a Davydov splitting may be
observed. The existence of ST states leads to the appearance of additional broad
and red shifted bands in the fluorescence spectra. As discussed already in Sec-
tion 4.4, upon ST the movement of wave packets is replaced by hops. At high
temperature these hops are thermoactivated leading to the Arrhenius law equa-
tion (123) for the diffusion constant. At low temperature quantum tunneling oc-
curs, in analogy to quantum diffusion of impurities in solids (see Ref. [134] for a
review).

Numerous picosecond experiments have been performed on exciton ST in or-
ganic crystals [133]. Such experiments give the possibility to study the dynamics
of the ST process and allow one to determine the height of the ST barrier and the
rate of the transient free-exciton luminescence. For some crystals these investiga-
tions also gave the possibility to trace the pathways of self-trapping (cf. Figure 8).
An example is pyrene, which is a crystal with a rather strong exciton–phonon
interaction and a barrier height U ≈ 262 cm−1. It was demonstrated that upon
photo-generation of excitons in this crystal, even at low temperature, the process
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of self-trapping not always requires relaxation to the bottom of free exciton band
(with k = 0; black arrows in Figure 8), but sometimes takes place directly from
the states with large k (hot excitons) avoiding the ST barrier, as is shown by the
open arrow in Figure 8.

6. Charge-Transfer Excitons in Organic Solids

6.1. GENERAL CONSIDERATIONS

As we have discussed in Section 1, excitons are distinguished in two main groups:
small-radius Frenkel excitons, which basically are delocalized molecular excita-
tions, and large-radius Wannier–Mott excitons, in which electron and hole have
a hydrogen-like relative motion with a radius much larger than a lattice constant.
The charge-transfer exciton (CTE) occupies an intermediate place in this classifi-
cation [36,135,136]. The lowest-energy CTE usually extends over two nearest-
neighbor molecules and creates a so-called “donor–acceptor (D-A) complex”.
This is currently considered as an important intermediate state in the creation
of free carriers in the photoconductivity of organic crystals, a process in which
the first step is the photo-generation of a Frenkel exciton. In a CTE, the electron
is localized on the acceptor and the hole on the donor. In organic crystals, such
CTE localization over nearest-neighbor molecules is usually stable, because the
electron–hole attraction energy is large compared to the widths of the conduction
and valence bands. The localization is further stabilized by the strong tendency
of the CTE to undergo self-trapping [130]. Nevertheless, such an ionic pair as a
whole can be mobile; the corresponding band theory of CTEs has been discussed
in many papers (see, e.g., Refs. [16,130]).

Due to the electron–hole separation in a CTE, the static dipole moment created
by the positive and negative ions can assume values as large as 10–25 D. This is re-
sponsible for some of the most characteristic properties of the CTE. For example,
due to its large dipole moment, the CTE contributes a large second-order nonlin-
ear polarizability χ(2) [137]. It has also been shown that the same feature can be
responsible for a new type of photovoltaic effect in organic asymmetric D-A su-
perlattices [138], for unusual intensity dependencies of nonlinear polarizabilities
of D-A superlattices [139], and also for phase transitions to conducting states in a
system of two-dimensional interacting CTEs [140] (see Chapter 5 below for more
details). In all of these cases, it was assumed that CTEs at D-A interfaces be-
tween alternating layers of donors and acceptors are the lowest-energy electronic
excited states of such an organic multi-layer structure. These states are usually
populated after lattice relaxation from higher-energy Frenkel-type electronic or
vibronic states.

To explain in the simplest way the structure and excitation energy of CTEs it
suffices to consider a donor–acceptor pair of molecules that are neutral in their
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ground states. When exciting a CTE, an electron leaves the donor and transfers to
the acceptor. The energy of this excited state can be estimated from the relation
E = I −A+C +P , where I , A, C, and P are the donor’s ionization energy, the
acceptor’s electron affinity, the electrostatic Coulomb attraction between the elec-
tron and hole, and the polarization energy of the crystal by an infinitely separated
positive and negative ion pair.

An excellent review of the optical and photoconductive properties of organic
solids composed of different donor and acceptor molecules arranged in an alter-
nating way in quasi-one-dimensional arrays, has been published by Haarer and
Philpott [16]. They discussed molecular crystals with neutral ground states and
with rather small ionization potentials (I < 7 eV) and large electron affinities
(A > 2 eV). In such crystals the CTEs are the lowest-energy electronic excita-
tions. As a rule these excitations are self-trapped, have very broad absorption
bands, and their optical properties can be understood in the framework of a local
picture, ignoring the dispersion of states in a CT exciton band. Typical examples
of such crystals are anthracene-PMDA, which has the crystal structure of a mixed
stack of different molecules (D-A-D-A-), and the crystal of TTF-TCNQ, which
has the structure of segregated stacks of identical molecules, A-A-A-A- and D-D-
D-D-.

The situation is different for molecular crystals composed of identical mole-
cules. An excellent review of the state of the art in this field has recently been
published by Petelenz [141]. Usually, the energy of CTE states in such crys-
tals is larger than the energy of the lowest Frenkel exciton sate. However, for
some quasi-one-dimensional crystals with a small distance between the nearest-
neighbor molecules, like the crystal of 3,4,9,10-perylenetetracarboxylic dianhy-
dride (PTCDA), the energy separation between the lowest-energy Frenkel and
CTE states can be very small. For such crystals the nature of the lowest-energy
electronic excitations is determined by the mixing of Frenkel exciton and CTE
states and strongly depends on the orbital overlap between the molecules (see the
chapter by M. Hoffmann in this book). This mixing occurs due to the possible
virtual transformation of a Frenkel exciton into a CTE and vice versa. More ex-
plicitly, the Frenkel exciton localized at molecule n can dissociate by electron
transfer to molecule m to give the CT state n+m− or by hole transfer to give
n−m+. The CT state can recombine by subsequent hole or electron transfer to
give a Frenkel exciton located on molecule n or m.

6.2. STARK EFFECT AND ELECTRO-ABSORPTION OF CTES

An externally applied static electric field F shifts the exciton levels and these
shifts are reflected in the absorption spectra. In the case of CTEs the shift is linear
in the field:

(128)ECT− = I −A+C + P −µp · F,
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where µp is the static dipole moment of the CTE. If the crystal has inversion sym-
metry, a CTE state with opposite direction of µp exists as well and this exciton
acquires the energy

(129)ECT+ = I −A+C + P +µp · F.
In these expressions we neglected the corrections quadratic in the field F. For the
Frenkel exciton, which has no permanent dipole moment, such quadratic contri-
butions are the lowest-order ones and the energy reads

(130)E(F)=E(0)+ 1

2

∑
i,j

aij FiFj ,

where aij = aexc
ij −a

g
ij is the excess polarizability tensor, i.e., the difference of the

molecular excited state and ground state static polarizability tensors.
The dielectric constant in the frequency region of the CT transition can be ex-

pressed by the formula

(131)ε(ω,F)= ε0,0 + A

ECT+ −ω− iγ
+ A

ECT− −ω− iγ
,

where A is a constant proportional to the oscillator strength and γ is the dissipa-
tive width. It follows from this relation that up to second order in the field

(132)ε(ω,F)= ε(ω,0)+ δε(ω,F),

with

(133)δε(ω,F)= 1

2
[µp · F]2

d2ε(ω,0)
dω2

.

Thus, for CTEs the leading effect of a static electric field on ε(ω) is seen to be
quadratic in the field and proportional to the second derivative of ε(ω,0).

In the frequency region of the Frenkel exciton, we have

(134)ε(ω,F)= ε0,0 + A

E(F)−ω− iγ
= ε(ω,0)+ δε(ω,F),

with

(135)δε(ω,F)=−1

2

∑
i,j

aij FiFj
dε(ω,0)

dω
.

Thus, δε(ω,F) is proportional to
∑

i,j aijFiFj and to the first derivative of
ε(ω,0).

For the interpretation of experiments it is important to know the corrections to
the real and imaginary parts of the refractive index, n and κ , respectively, where
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κ measured as a function of frequency gives the absorption spectrum. These cor-
rections can be found easily from the relation ε = (n+ iκ)2. Thus, the corrections
to n and κ , which we denote as δn and δκ , read

(136)δκ = n0(δε)
′′ − κ0(δε)

′

2(n2
0 + κ2

0 )
,

and

(137)δn= κ0(δε)
′′ + n0(δε)

′

2(n2
0 + κ2

0 )
,

where (δε)′ and (δε)′′ are the real and imaginary parts of δε, respectively (δε =
(δε)′ + i(δε)′′), while n0(ω) and κ0(ω) are the real and imaginary parts, respec-
tively, of the refractive index in the absence of the static electric field.

If in the spectral region under consideration the absorption is not very strong,
so that n0(ω)� κ0(ω), the expressions for δκ and δn are reduced to

(138)δκ = (δε)′′

2n0
, δn= (δε)′

2n0
.

The formula for δκ forms the basis of electro-absorption spectroscopy, which
is an experimental technique in which one measures the change of the absorp-
tion spectrum induced by a slowly varying external electric field. (Using a slowly
varying field, as opposed to a static field, makes it experimentally simpler to ex-
tract the change of the absorption spectrum by focusing on the component of
the spectrum that varies in time according to the applied slow frequency.) As we
demonstrated, for Frenkel excitons the change of the absorption spectrum is pro-
portional to the first-derivative signal, which is an antisymmetric function of ω
relative to the resonance frequency. On the other hand, a second-derivative signal,
which is symmetric around the resonance frequency, is commonly associated with
CTEs (see, for example, [142–144]). This may be made explicit by considering
the simple generic form for ε′′(ω,0) close to a resonance frequency ω0:

(139)ε′′(ω,0)= g

(ω−ω0)2 + γ 2 .

Using this expression and Eqs. (135) and (138), we find for a Frenkel exciton
resonance

(140)δε(ω,F)= 1

2

∑
i,j

aijFiFj
2g(ω−ω0)

[(ω−ω0)2 + γ 2]2 ,

which indeed is seen to be an antisymmetric function relative to the resonance
frequency. On the other hand, if ω0 is a CTE resonance, we find from Eqs. (133)
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and (138)

(141)δκ(ω,F)= 1

2
[µp · F]2

[
− 2g

[(ω−ω0)2 + γ 2]2 +
4g(ω−ω0)

2

[(ω−ω0)2 + γ 2]3
]
,

which is symmetric relative to the resonance frequency.
It should be noted that the above classification of the electro-absorption spec-

trum is valid only approximately, because first of all Eq. (138) is correct only
in the case of weak absorption and, second, the Frenkel and CT exciton states
usually mix. We finally mention that the change of the refractive index δn is of
the same order as δκ ; new experimental techniques are required to measure this
change, however. Good candidates for such methods have been proposed by War-
man and coworkers [145]. The success of such measurements could be the basis of
electro-refraction spectroscopy, complimentary to the existing electro-absorption
spectroscopy.

7. Molecular Aggregates: Low-Dimensional Exciton Systems

7.1. INTRODUCTORY REMARKS

In 1936, Jelley [146] and Scheibe [147] independently discovered that upon in-
creasing the concentration of a solution of the dye pseudo-isocyanine (PIC, Fig-
ure 9), the absorption spectrum strongly changed. The relatively broad absorp-
tion band of PIC monomers at 525 nm disappeared and was replaced by a much
narrower absorption band around 570 nm. It was soon realized that this narrow
band, which is now generally known as the J (Jelley) band (sometimes also as
the S (Scheibe) band), was a manifestation of Frenkel exciton states that ex-
isted on large groups of aggregated PIC molecules [148]. Polarized experiments
in streaming solutions, performed by Scheibe, suggested that these aggregates
have a thread-like structure [149]. Ever since these initial discoveries, a strong
interest in the optical properties of molecular aggregates of these and other so-
called polymethine cyanine dyes has persisted. The class of molecular aggregates
with a red-shifted absorption band are referred to as J-aggregates. The narrow
absorption band with a large intensity (oscillator strength) is the most charac-
teristic property of these systems. A good example of the growing of the ag-
gregate J band at the expense of the single-molecule absorption band is given
in Figure 10 for the dye 5,5′,6,6′-tetrachloro-1,1′-diethyl-3,3′-di(4-sulfobutyl)-
benzimidazolocarbocyanine (TDBC).

One of the driving forces to study cyanine dyes and their aggregates, is their
abundant application as photosensitizers in photographic emulsions. Even to date,
this remains a topic of much study [12]. However, also on a more fundamental
level, J-aggregates have aroused much interest. In particular the collective optical
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Fig. 9. Three examples of cyanine dyes that are known to form quasi-one-dimensional
molecular J-aggregates. Shown are (a) 1,1′-diethyl-2,2′ -cyanine (PIC), (b) 5,5′,6,6′-tetrachlo-
ro-1,1′-diethyl-3,3′ -di(4-sulfobutyl)-benzimidazolo-carbocyanine (TDBC), and (c) 3,3′-bis(sulfo-
propyl)-5,5′ -dichloro-9-ethylthiacarbocyanine (THIATS).

and nonlinear optical response of the molecules that form the aggregate, caused
by the delocalized Frenkel excitons, has been the key word in this research. The
above mentioned red-shift of the absorption spectrum and the narrowness of the
J-band are examples of such collective properties. The narrowness is ascribed to
exchange narrowing (or motional narrowing) of disorder by the delocalized exci-
ton states [150,151]. Other collective properties that have attracted attention more
recently are the ultrafast cooperative spontaneous emission (“exciton superradi-
ance”) [1,2,152] and the possibility of size-enhanced nonlinear optical response
[6,7,153–157]. During the past 15 years, these optical properties have been stud-
ied with a growing number of optical techniques, including fluorescence excita-
tion, hole burning, photon-echoes, and pump-probe experiments (see, e.g., [25,
41]). The motivation in performing these experiments is the intrinsic interest in
the collective properties and the interest in unraveling the static and dynamic prop-
erties of the exciton states underlying them. Finally, the field of molecular aggre-
gates recently has received a renewed interest, following the discovery that the
photosynthetic systems of bacteria and higher plants often contain highly orga-
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Fig. 10. Changing of the absorption spectrum of a solution of TDBC molecules (Figure 9(b)) upon
increasing the solute concentration (from curve 1 to 6). Clearly is demonstrated that the absorp-
tion peak changes from the broad monomeric absorption peak at about 520 nm to the narrow and
red-shifted J-band resulting from aggregated molecules. (Figure reprinted from Ref. [11] with permis-
sion from Elsevier.)

nized light-harvesting (LH) systems that are basically aggregates of chlorophyll
molecules [13]. We will address these types of aggregates in Section 8.

Molecular aggregates differ from bulk crystals in several respects. Most im-
portant is the difference in structure. Aggregates generally do not have a three-
dimensional structure, but instead the electrostatic forces that favor their self-
assembly may lead to one-dimensional geometries (molecular chains or bundles),
two-dimensional ones (molecular monolayers, such as may be formed using the
Langmuir–Boldgett technique or by adsorption on silver-halide microcrystals in
photographic applications), or even more complex, curved, geometries, such as
rings or cylinders. The latter in particular occur as natural LH complexes, but
may also be produced synthetically. Sometimes, the finite dimensions of these
aggregates, such as the diameter of rings or cylinders, plays an important role.
Finally, aggregates often occur in strongly disordered host media, such as liquid
solutions, glasses, or protein scaffolds. The configurational randomness in this en-
vironment leads to disorder in the electronic Hamiltonian of the aggregate, which
causes localization of the exciton states and has important consequences for the
optical properties of the aggregates.
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It is of interest to note that bulk crystals and aggregates traditionally belong to
different communities. Crystal properties are part of condensed matter physics,
in which delocalized electronic states are the rule and a limitation of the extent
of these states, due to disorder, is referred to as localization. On the other hand,
the field of molecular aggregates has developed within the physical chemistry of
dye molecules, where one takes a different point of view, emphasizing the delo-
calizing effect of the intermolecular interactions on the electronic states. Thus,
the simultaneous occurrence of the terms localization length and delocalization
length is explained from the fact that two different fields meet.

In this section, we will address the optical and nonlinear optical response of
Frenkel excitons in molecular aggregates. The role of disorder and multi-exciton
states (see Figure 4) will be stressed. For explicitness, we will mostly restrict
ourselves to one-dimensional aggregates. There is abundant evidence that upon
self-assembly in solution, many cyanine J-aggregates, in particular those of PIC,
are indeed (quasi-)linear [149,158,159]. As a consequence most of the theory has
been developed using one-dimensional models. It has appeared that these models
suffice to understand the salient optical properties the aggregates.

7.2. LINEAR OPTICS OF ONE-DIMENSIONAL J-AGGREGATES

7.2.1. Homogeneous Aggregates

We consider a linear aggregate, i.e., a chain of N equidistant two-level molecules,
with their transition dipoles of magnitude µ all oriented parallel to each other
(Figure 11). Now the Frenkel exciton Hamiltonian in the Heitler–London approx-
imation takes the form (cf. Eq. (14))

(142)H =
N∑
n=1

ωnB
†
nBn +

N∑
n,m=1

JnmB
†
nBm,

where we have included the gas-condensed phase shift in the molecular transition
frequency ωn (this also includes all interactions with the host molecules) and we

Fig. 11. Schematic picture of a linear aggregate of N equidistant two-level molecules with parallel
transition dipoles of magnitude µ. The angle between the dipoles and the chain is β. For β < 54.7◦ ,
the intermolecular dipole–dipole interaction is negative and the aggregate is a J-aggregate. Otherwise
it is an H-aggregate.
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have neglected dynamic exciton–exciton interactions. The latter may safely be
done, as such interactions do not influence the linear optical response. We will
impose open boundary conditions on the chain.

We will assume that the total aggregate is short compared to an optical wave-
length. This is not necessarily true for cyanine J-aggregates, but the relevant opti-
cal length scale, imposed by the localization length of the excitons, usually does
obey this condition. We may then write the (transition) dipole operator of the
aggregate as

(143)M= µ
∑
n

(
B†
n +Bn

)
,

where µ is the transition dipole of the individual molecules. From the form of this
dipole operator, it is clear that in linear optics one can only probe properties of
one-exciton states (cf. Section 2.4.2).

It is useful to start our discussion of collective linear optical properties by con-
sidering homogeneous aggregates, in which all transition frequencies are taken
equal, ωn = ω0, and the transfer interaction Jnm is just a function of the dis-
tance between the molecules n and m. To maximize the simplicity, we will first
assume that we only have transfer interactions between neighboring molecules
and we will denote the interaction strength by J . In one-dimensional systems,
approximating the long-range dipole–dipole interaction equation (6) by a nearest-
neighbor one is not too bad an approximation, certainly if one is mostly interested
in the essential physics. For quantitative fits to experiment, the long-range nature
may even in linear systems be of importance [160].

Keeping only the nearest-neighbor interactions, one finds for the one-exciton
eigenstates:

(144)|k〉 =
√

2

N + 1
sin

(
πkn

N + 1

)
B†
n |g〉,

with the energy

(145)�k = ω0 + 2J cos

(
πk

N + 1

)
.

Here, k = 1,2, . . . ,N denotes the quantum number of the state. Clearly, all states
are delocalized standing waves of excitation on the chain, with the kth state having
k− 1 nodes. For N = 2, the above solution reduces to the states |±〉 of the dimer,
separated by 2|J |. With growing N , the one-exciton band obtains a width 4|J |,
centered around the molecular frequency ω0. The oscillator strength between the
ground state and the one-exciton k state is given by [161]

(146)µ2
k,g =

∣∣〈k|M|g〉∣∣2 = 1− (−1)k

2

2µ2

N + 1
cot2

πk

2(N + 1)
.
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Analysis of this result shows that almost the entire oscillator strength between the
ground state and the one-exciton band resides in the transition to the k = 1 state:
µ2
k=1,g = 0.81(N+1)µ2 for N � 1, which is 81% of the total. This is not strange,

as the k = 1 state is the only state in which the wave function contains no nodes,
so that the dipoles of the individual molecules oscillate maximally in phase in this
state. All states with k = even have no oscillator strength, as their wave functions
are odd with respect to the chain center. The k = 3 state contains, for N � 1, 9%
of the oscillator strength to the one-exciton band. The oscillator strength of the
k = 1 state, being of the order of Nµ2, is generally referred to as a “giant” oscil-
lator strength. States having giant oscillator strengths, proportional to the volume,
also occur in other exciton systems with dimensions small compared to an optical
wavelength, e.g., in semiconductor microcrystallites [153,162]. Obviously, such
states dominate the optical response.

Thus, the absorption spectrum of the ordered chain is dominated by a peak at
the position of the k = 1 state, which for N � 1 occurs to a good approximation
at ω0+2J . For J > 0, one thus expects that the absorption spectrum of the aggre-
gate is blue-shifted relative to the monomer absorption spectrum, while for J < 0
we expect a red-shift. The former case is referred to as an H-aggregate, while
the latter case is called a J-aggregate. The optical properties of H-aggregates are
often harder to describe, as the state with most oscillator strength lies at the top
of the exciton band, allowing for very fast relaxation to lower exciton states after
its excitation. This makes the H absorption bands very broad and exciton–phonon
coupling is an essential ingredient in the proper description of its properties [163].
By contrast, the absorption of J-aggregates occurs at the bottom of the band, giv-
ing sharp absorption peaks (also see Section 7.2.2), that allow for a more detailed
study and description. We will be mostly interested in J-aggregates, i.e., J < 0.
The sharp absorption band of J-aggregates is known as the J-band.

The frequency shift 2J of the J-band relative to the monomer absorption spec-
trum (in the same solution), gives the magnitude J of the transfer interaction.
For J-aggregates of cyanine dyes, this interaction strength is typically of the order
J ≈−1000 cm−1. Some caution is in place here, as this way of estimating J does
not account for the gas-condensed phase shifts induced by the surrounding aggre-
gate molecules. Still, independent calculation of the transfer interactions, using
extended dipole models, confirms the typical magnitude of the interactions for
cyanine dyes to be of the order quoted above [164].

Next, we address the radiative emission of J-aggregates. It turns out that this
process can be considerably faster than the single-molecule spontaneous emis-
sion [2,152]. From the above, the explanation is clear. In a typical fluorescence
experiment, used to measure the radiative emission, one excites off-resonantly in
the blue wing of the J-band. If the excitation rapidly relaxes to the lowest (k = 1)
one-exciton state, the spontaneous emission will occur with a rate that is of the
order of N times the single-molecule spontaneous emission rate. This is due to
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Fig. 12. Temperature dependence of the inverse fluorescence lifetime of PIC J-aggregates for the red
absorption site (solid symbols) and the blue site (open symbols). The straight lines are guides to the
eye, not theoretical fits. (Figure reprinted from Ref. [152] with permission from Elsevier.)

the fact that the oscillator strength of the k = 1 state according to Eq. (146) is of
the order of N times the oscillator strength of a single molecule. For this reason,
the k = 1 state is often called a superradiant state and the process of fast emis-
sion is also referred to as “exciton superradiance” or “cooperative spontaneous
emission”. Physically, the effect results from the fact that the k = 1 state has the
dipoles of the individual molecules oscillating almost perfectly in phase.

The cooperative spontaneous emission is only observed at low temperatures.
With increasing temperature, excitons will not necessarily all relax to the bottom
of the band, leading to an, on the average, lower oscillator strength per excited
state [165,166]. This lowers the observed emission rate, as is indeed seen in ex-
periment [152,165,167] (Figure 12). It should be stressed that, even at low temper-
atures, the interpretation of fluorescence experiments in terms of a superradiant
rate generally is more complicated than sketched above, due to the fact that the
kinetics of the populations of the various k states depends sensitively on the com-
petition between the relaxation and emission processes [168]. It also is of interest
to note that the superradiant enhancement of the oscillator strength of the k = 1
state starts to break down when the chain length approaches the relevant optical
wavelength λ, simply due to the fact that the dipole approximation for the entire
aggregate breaks down. For perfectly ordered chains that are very large compared
to the wavelength, we have to introduce the polariton concept, which for this one-
dimensional case reveals one radiatively stable branch and one branch that decays
very fast, with a rate of the order λ/a times the single-molecule emission rate



74 J. KNOESTER AND V.M. AGRANOVICH

(a the lattice constant) [169]. In practice, however, J-aggregates suffer from too
much disorder to enter this regime.

Finally, we briefly address the effect of going beyond the nearest-neighbor ap-
proximation for the transfer interactions. If we assume point-dipole interactions,
we have Jnm = J/|n−m|3, where J still parametrizes the nearest-neighbor inter-
actions. Obviously, the existence of long-range interactions tends to delocalize the
one-exciton states even more. It turns out, however, that for chains with N � 1,
the wave functions of these one-exciton states are still very well described by
Eq. (144), thus preserving the essential features, like the existence of the domi-
nant k = 1 state. This has been found using numerical simulations [160] as well as
analytical estimates [170]. The oscillator strength of the dominant state increases
even somewhat (to 83% of the total). The long-range interactions cause the total
exciton band to take an asymmetric position around ω0. In particular, the bottom
of the band, i.e., the frequency of the k = 1 state, moves to ω0 + 2.4J , while the
top lies at ω0 − 1.8J (remember that J < 0).

7.2.2. Disordered Aggregates: Exchange Narrowing and Localization

As stated already, disorder, induced by, for instance, configurational randomness
in the host medium has important effects on the electronic states of the aggregate.
A frequently used method to include such effects, uses in Eq. (142) ωn = ω0 +
δωn, where the δωn are taken randomly and without correlation from the Gaussian
distribution

(147)P(δω)= 1√
2πσ

exp

(
− (δω)2

2σ 2

)
.

This is referred to as static diagonal or frequency disorder. The parameter σ is
a measure of the strength of this disorder. The effect of intermolecular correla-
tions in the disorder can also be included, but we will not address this problem
here [151,171–173]. Also, we will not discuss the effect of off-diagonal disorder
(interaction disorder) [160,174].

The addition of the disorder contribution, Hdis =∑
n δωnB

†
nBn leads to shifts

of the homogeneous exciton states found in Section 7.2.1. In addition, the disorder
will mix those states. To lowest order in the disorder, the shifts are given by

(148)δ�k = 〈k|Hdis|k〉 = 2

N + 1

∑
n

sin2
(

πkn

N + 1

)
δωn.

Using the Gaussian and uncorrelated nature of the δωn, one finds that each of
these shifts is a Gaussian random variable as well, with a standard deviation, i.e.,
a typical value, given by [151,175,171]

(149)σkk = σ

√
3

2(N + 1)
.
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In this result, we see reflected the effect of “exchange narrowing”: the delocalized
exciton states average over N uncorrelated Gaussian variables, which reduces the
fluctuations in their energy by a factor of the order of

√
N . The disorder-induced

coupling between the different k states, 〈k|Hdis|k′〉, can be calculated in a similar
way [171,175]. It turns out that its typical magnitude is also exchange narrowed
and is given by (k �= k′):

(150)σkk′ = σ

√
1

N + 1
.

As long as the mixing of the exciton states due to their disorder-induced
coupling is negligible, it is easy to account for the disorder. This is the case
if the typical size of the coupling is small compared to the energy difference
between the homogeneous states. Using Eq. (150) and the fact that the small-
est energy separation occurs at the bottom of the exciton band and is given by
�k=2 −�k=1 ≈ 3π2|J |/N2 (Eq. (145) with N � 1), this yields the criterion

(151)σ � 3π2|J |/N3/2

which clearly is seen to strongly depend on the size of the chain. This limit, in
which the exciton states all maintain their delocalized homogeneous wave func-
tion, is referred to as the exchange narrowing (or motional narrowing) limit. In
this limit of weak disorder, the absorption spectrum of an ensemble of aggregates
is dominated by a Gaussian peak centered at �k=1 and with a standard deviation

σ

√
3

2(N+1) . Thus, the tendency of the delocalized exciton states to average over

the disorder offsets of the individual molecules, leads to the narrow absorption
lines of J-aggregates observed in experiment.

From Eq. (151), we see that the size of the chain plays in important role
when neglecting mixing between the homogeneous exciton states. In fact, as
J-aggregates of cyanine dyes may be thousands of molecules long, Eq. (151)
should never be expected to hold for these systems (the typical value of σ is
in the order of 10’s to 100’s of cm−1 while J is in the order of 1000 cm−1). Thus,
the excitons are expected to strongly mix and this mixing leads to new eigenstates
that are localized on a relatively small part of the chain. This effect of localiza-
tion of one-particle states in a disordered system is well-known in the field of
disordered conductors (Anderson localization [176]) and is particularly strong in
one-dimensional systems. The typical localization length depends on the energy
of the state (stronger localization at the exciton band edges) and on the ratio σ/|J |:
J tends to delocalize the excitons, while σ tends to localize them.

If the excitons are localized, one cannot expect the absorption line width to
scale like σ/

√
N anymore, and similarly, one cannot expect the low-temperature

spontaneous emission rate to scale proportional to N . Instead, one should expect
N in these expressions to be replaced by the typical exciton delocalization length
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Ndel at the bottom of the exciton band (where the optically dominant states reside).
The reason is that only Ndel molecules are coherently coupled and have dipoles
that can oscillate in phase. The effective replacement of N by Ndel was noted by
Knapp already in his seminal paper on exchange narrowing [151].

It has turned out that in the case of weak localization (N � Ndel � 1), it is
possible to understand the low-lying exciton states, i.e., the ones that dominate
the optical response, from a simple self-consistent picture [175]. The idea is that
the chain segment on which an exciton state is localized, may be considered a
weakly disordered chain of effective length Ndel, on which the effect of disorder
on the exciton state may be treated as in the exchange narrowing limit. Using this
picture in a self-consistent way, leads to a simple derivation of various scaling
relations [175,170,177,178], as we will demonstrate in the following.

Consider a segment with effective chain length Ndel, which is determined by
the disorder and is as yet unknown. On this segment, the typical disorder-induced
coupling between the effective exciton states scales like σkk′ = σ/

√
Ndel + 1. The

typical energy difference between the effective states at the bottom of the band, is
given by 7= 3π2|J |/(Ndel+1)2. If the coupling is larger than the energy separa-
tion, the states will mix and the delocalization length will further decrease. Thus,
in order for the segment length to be self-consistent, Ndel should be determined
by equating σkk′ =7. This leads to the scaling relation

(152)Ndel + 1= (
3π2)2/3

(
σ

|J |
)−2/3

≈ 9.6

(
σ

|J |
)−2/3

.

Similarly, the half-width at half maximum W of the absorption line (the J-band)
is given by the effective exchange narrowed value

(153)W = σ

√
3

2(Ndel + 1)
.

Substituting Eq. (152) into Eq. (153), leads to

(154)W =
√

3

2

1

(3π2)1/3 |J |
(

σ

|J |
)4/3

≈ 0.4|J |
(
σ

|J |
)4/3

.

This scaling relation for W is in fact well-known and may be derived by various
other methods [179,180]. It has also been confirmed by numerical simulations
[160,179,181]. The power 4/3 is not affected by adding long-range dipole–dipole
interactions, while even the prefactor 0.4 is only slightly changed [160] (note that
we use the half-width for W , where some other authors use the full width).

The scaling relation equation (152) is less well-known. As the low-temperature
spontaneous emission rate is expected to scale proportional to Ndel + 1, this rela-
tion should describe the scaling of this rate with σ/|J | [175]. Indeed, the power
−2/3 and even the prefactor 9.6 agrees rather well with numerical simulations of
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this quantity [160]. It turns out that this prefactor is sensitive to the inclusion of
long-range interactions [160], implying that a quantitative fit to experiment does
require such interactions to be considered.

The fact that the scaling relations, obtained using the above self-consistent ar-
guments, agree well with those obtained by other techniques, means that the pic-
ture of effective chain segments of length Ndel works well for the low-energy
exciton states. Indeed, it has been confirmed by numerical simulations that the
lowest exciton states of a disordered chain have a structure that resembles the
homogeneous states on small segments of the chain [170,178]. It should be kept
in mind, however, that the thus obtained segment length Ndel is a typical value,
which in practice undergoes rather big fluctuations [178].

The above scaling relations may and have been used to extract information
concerning the exciton delocalization length and (or) the disorder strength from
experimental observables. For instance, the low-temperature spontaneous emis-
sion rate, Ndelγmol, with γmol the single-molecule emission rate, has been used
by Wiersma and co-workers to find Ndel ≈ 50 for the case of PIC aggregates in a
1.5 K glassy host [152,158,165]. It should be noted that application of this method
requires an accurate measurement of the fluorescence quantum yield [182] and
also requires that the vibration assisted intraband exciton relaxation is fast com-
pared to the superradiant emission rate [168].

The second observable that has been used to measure the delocalization length,
is the absorption line width, in combination with the exchange narrowing relation
equation (153). A problem with this method is that, generally, one does not have
independent information on the microscopic parameter σ . By lack of better in-
formation, one then takes this parameter from the inhomogeneous width of dilute
solutions, in which aggregation does not occur. This is a crude procedure, as a
molecule in a chain has quite a different environment than an isolated molecule
in solution. For PIC aggregates at cryogenic temperatures, this approach yields
values of Ndel of hundreds of molecules, up to 1600 [2], which is a big overesti-
mation of the above quoted (and now generally accepted as correct) value of 50.

If one chooses to use W to estimate Ndel, it is better to do this without relying
on σ . The self-consistent arguments given above allow one to extractNdel from W

if J is known. This may be done by using Eqs. (154) and (152), or alternatively, by
directly equatingW to the splitting 3π2|J |/(Ndel+1)2. Both methods in principle
work well [177]. Although also the experimental determination of J meets with
some uncertainties (Section 7.2.1), it is generally better known than σ , making
these methods more reliable.

So far, we have only discussed the emission rate and the absorption line width.
Of course, the absorption spectrum contains more information, in particular its
detailed shape and position. In order to determine these aspects, more extensive
calculations are necessary. Approximate semi-analytical techniques may and have
been used to calculate the absorption spectrum in detail. An example is the co-
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Fig. 13. Measured (solid) and simulated (dashed) absorption spectrum of the 570 nm J-band of PIC
aggregates at 1.5 K. All dipole–dipole interactions are included in the simulations and the energy
is measured relative to the monomer energy ω0. The bars give the positions and oscillator strengths
for a homogeneous aggregate of the same length (250 molecules) with the same interactions. (Figure
courtesy of H. Fidder, also cf. Ref. [184].)

herent potential approximation [180]. The most popular technique, however, is
straightforward numerical simulation of the line shape [179,160], in which the
N × N one-exciton Hamiltonian is numerically diagonalized for many random
realizations of the disorder (both diagonal and off-diagonal disorder may be con-
sidered [160]). In practice, the length of the chain should be much larger than the
typical exciton delocalization length in order for the results to be reliable.

As an example, we show in Figure 13 the simulation of the J-band shape of
PIC aggregates at T = 1.5 K, using 500 chains of 250 molecules with long-range
dipole–dipole interactions. The solid line is the experiment, the dotted line the
numerical fit. The only fitting parameter is σ/|J |, which was obtained to be 0.11
from these simulations. The value of J for PIC is −600 cm−1, implying a value
of σ ≈ 65 cm−1. The typical delocalization length at the position of the top of
the J-band, calculated using the participation ratio [179,160], is in the order of 50
molecules, which agrees with the observed enhancement of the spontaneous emis-
sion rate. The calculated line shape is seen to nicely fit the observed one. In par-
ticular the asymmetry of having a more pronounced high-energy than low-energy
tail, which is characteristic for J-aggregates, is well-reproduced. This asymme-
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try can be understood in a perturbative picture from the fact that higher k states
obtain oscillator strength as a consequence of their disorder-induced mixing with
the superradiant k = 1 state. Such mixing does not occur at the low-energy side
of the k = 1 state, as this is the lowest state in the homogeneous chain.

We observe that, although the simulated spectrum obviously fits the observed
one well, it is still quite noisy. This may be improved by simulating more disorder
realizations, which is a time-consuming solution. A better way to considerably
improve the statistics of the simulated spectra, is to use a rigorous smoothing
technique, in which one performs the average over the mean value of the mole-
cular frequencies within each chain analytically [183]. Since fluctuations in this
average value for the simulated (finite) chains are the main source of noise, this
smoothing technique is very powerful.

7.3. NONLINEAR OPTICS OF ONE-DIMENSIONAL J-AGGREGATES

7.3.1. Interest

The nonlinear optical response of J-aggregates has drawn considerable attention
since the late 1980s. Initially, most interest was aroused by the fact that the
occurrence of superradiant transitions could give rise to strong, so-called size-
enhanced, nonlinear optical susceptibilities. This would be of great interest for
the creation of nonlinear optical devices, like all-optical switches. To understand
the effect of size-enhancement, let us consider the nonlinear absorption spectrum,
which is the imaginary part of the third-order susceptibility χ(3)(ω;ω,ω,−ω)
[70,71]. Any third-order response function contains a product of four transition
dipoles, three to account for the interactions with the exciting fields and one to
generate the signal. In the case of exciton systems, these dipoles either connect
the ground state with the one-exciton band, or the one-exciton band with the two-
exciton band. We have seen already that one transition from the ground state to
the one-exciton band exists (the k = 1 transition) which has a dipole squared of
the order of Nµ2 whereµ is the single-molecule transition dipole and N the num-
ber of molecules in the chain. Thus, the contribution to χ(3) where all transitions
occur between the ground state and the k = 1 one-exciton state, has a magnitude
that scales proportional to N2, which is factor of N stronger than the nonlinear
response of N noninteracting molecules. This contribution – which comes with
a minus sign – reflects the saturation of the one-exciton absorption. In addition,
positive two-photon absorption contributions to the two-exciton band exist that in-
volve two transition dipoles between the ground state and the one-exciton band as
well as two between the one-exciton band and the two-exciton band. Also among
the latter dipoles, superradiant ones occur (see Section 7.3.2), so that these con-
tributions also scale proportional to N2.

There are a number of limitations to the applicability of this size-enhanced scal-
ing. First, it is a purely resonant phenomenon. Out of resonance with the J-band
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(i.e., the absorption band), χ(3) simply scales propertional to N [154,74]. Sec-
ond, as in the case of exchange narrowing and spontaneous emission, one does
not expect these size scaling relations to be valid under realistic conditions, as the
exciton delocalization size will generally be limited by disorder, in stead of by the
system size. Handwaving replacement of N by Ndel would yield an enhancement
by a factor N2

del. Numerical simulations have shown that the peak value of the
absorption saturation per molecule in the sample, scales like Nδ

del, with δ = 2.36
[156]. Thus, the delocalization may indeed lead to strong nonlinear response. Ex-
periments on PIC J-aggregates have confirmed that they do exhibit large nonlinear
absorption coefficients [6,7,157]. A direct check of the size scaling has recently
been performed by creating cyanine dyes with different substituents and in differ-
ent solutions, which enables one to vary the disorder, and thus the delocalization
length, in a controlled way [185].

In addition to the application driven interest of size-enhancement, the nonlin-
ear optical response of J-aggregates also has aroused much interest as spectro-
scopic technique for studying the dynamics of the exciton states and for prob-
ing two-exciton (and higher) states. The latter may, for instance, be done using
the two-photon contribution to the nonlinear absorption mentioned above or the
pump-probe (transient absorption) spectrum. In general, any third-order optical
technique is sensitive to the two-exciton states. In the remainder of this section,
we will address the calculation of the two-exciton states in our aggregate model,
their role in the pump-probe spectrum, and the possibility which probing the two-
exciton states gives to determine the exciton delocalization length.

7.3.2. Incorporating the Two-Exciton States

Calculating the two-exciton states in general requires the diagonalization of the
Hamiltonian in the two-exciton subspace, which is a matrix of size N(N −1)/2×
N(N−1)/2. In the case of disorder, where one has to consider many random real-
izations, this is almost prohibitively time-consuming for any realistic value of N .
It should be realized that the problem in calculating the multi-exciton states for the
Frenkel exciton Hamiltonian in the absence of dynamic exciton–exciton interac-
tions, like Eq. (142), resides in properly accounting for the Pauli exclusion (kine-
matic interaction – cf. Section 2.4.2), which forbids two excitations to occupy the
same molecule. Although in general dynamic exciton–exciton interactions affect
the two-exciton Hamiltonian and may lead to the formation of bi-excitons, such
bound states have thus far not been unambiguously observed in J-aggregates. This
motivates us to focus on the kinematic interactions only.

Two methods exist to account for this interaction without diagonalizing such
big matrices. The first method is the hard-core boson approach [33,34,44], which
has already been explained in Sections 2.4.2 and 2.4.3. It may be used for sys-
tems of any dimension and with arbitrary long-range excitation transfer interac-
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tions. It is limited to the inclusion of two-exciton states and relies on the Heitler–
London approximation. In fact, this method does not directly calculate these
states, but rather calculates the Green’s function of the scattering of two bosonic
one-excitons on an imposed hard-core potential that mimics the Pauli exclusion.
Third-order optical observables can be formulated in terms of this Green’s func-
tion, whose calculation requires the diagonalization and inversion of N ×N ma-
trices. For more detail on this method, we refer to the literature [33,34].

The second method relies on the so-called Jordan–Wigner transformation
[37–39], which only works for one-dimensional systems, but has the advantage
that it allows for the calculation of all 2N multi-exciton states (even if one re-
laxes the Heitler–London approximation [46]). Another advantage is that it gives
simple expressions for these states, which allows for direct physical insight. This
method has been used in many simulations [39,74,75,156], and we will briefly
explain it below.

The Jordan–Wigner transformation transforms the Pauli excitations to non-
interacting fermions. This works for one-dimensional systems, if only nearest-
neighbor interactions are included. Adding long-range interactions, gives rise to
weakly interacting fermions. For excitons, the transformation was first used by
Chesnut and Suna [37]. It reads

(155)c†
n = B†

n exp

(
−πi

n−1∑
m=1

B†
mBm

)
, cn = exp

(
πi

n−1∑
m=1

B†
mBm

)
Bn.

It can be checked in a straightforward way that the new creation and annihilation
operators indeed obey Fermi anti-commutation relations. Moreover, it follows that
the Frenkel exciton Hamiltonian equation (142) (keeping only nearest-neighbor
interactions J ), transforms to:

(156)H =
N∑
n=1

ωnc
†
ncn + J

N−1∑
n=1

(
c†
ncn+1 + c

†
n+1cn

)≡ N∑
n=1

Anmc
†
ncm.

The advantage of the new Hamiltonian is not so much the nearest-neighbor in-
teraction, that we have restricted ourselves to, but rather the fact that it reflects
a system of non-interacting fermions, as is recognized from the fact that only
terms that are quadratic in the operators occur. All multi-fermion states can now
be obtained by diagonalizing the tridiagonal N ×N matrix A implicitly defined
in Eq. (156). Let the eigenvalues of this matrix be denoted �p and the normalized
eigenvectors φpn, then the diagonalized Hamiltonian reads

(157)H =
N∑

p=1

�pη
†
pηp,

where the new fermion eigen-operators are given by η
†
p =∑

n φpnc
†
n.
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An arbitrary ν-exciton state may now be created by operating on the ground
state |g〉 (still the state with all molecules in the ground state), with ν η†

p operators.
As the latter are Fermi operators, each mode p only can be excited once. Thus the
energy of a ν-exciton state is given by the sum of ν different one-fermion (or sim-
ply: one-exciton) energies �p. The wave function in the molecular representation

is obtained by translating the η
†
p operators, via the c

†
n back to the operators B†

n .
This yields Slater determinants of the eigenvectors φpn as the expansion coeffi-
cients in the molecular representation [39]. It should be stressed that all this holds
in the presence of arbitrary disorder in the molecular energies (and the nearest-
neighbor interactions).

The N×N matrix A which is to be diagonalized, is identical to the one-exciton
Hamiltonian in the molecular representation. Thus, one immediately finds that the
one-exciton states calculated via the Jordan–Wigner transformation are identical
to the ones obtained directly within the paulion picture. The advantage lies in the
fact that the same diagonalization now suffices to also obtain all multi-exciton
states.

It is useful to briefly consider the special case of the homogeneous chain. Then,
the eigenvalues of the matrix A are the one-exciton frequencies �k given in
Eq. (145) (the fermion label p is now replaced by k) and the φkn are given by
the sin(πkn/(N + 1)) one-exciton eigenfunctions. Using these results, we find
that the dominant transition from the superradiant k = 1 one-exciton state to the
two-exciton band occurs to the state η†

k=1η
†
k=2|g〉, in which the fermion states of

quantum label k = 1 and k = 2 are occupied. This transition is superradiant as
well, with an oscillator strength equal to 1.27(N + 1)µ2 (which is 70% of the
total oscillator strength from the k = 1 state to the two-exciton band) [74]. Thus,
for third-order experiments carried out resonantly with the J-band, one expects an
effective three-level picture, in which one only accounts for the ground state |g〉,
the one-exciton state η†

k=1|g〉, and the two-exciton state η†
k=1η

†
k=2|g〉, to describe

the essential results.

7.3.3. Pump-Probe Spectrum of J-Aggregates

In the pump-probe technique, one measures the linear absorption spectrum of a
weak probe beam after the system has been optically excited by a pump-pulse.
The pump-probe spectrum is defined as the difference of this absorption spec-
trum and the normal linear absorption spectrum, obtained without pumping the
system [71].

For molecular aggregates, the pump pulse (if weak enough) can only excite the
system into one of its one-exciton states. Three different effects now contribute to
the pump-probe spectrum. (i) After pumping, less aggregates reside in the ground
state, causing the probe absorption into the one-exciton states to diminish. This
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effect, known as bleaching, gives negative contributions to the pump-probe spec-
trum at all allowed one-exciton frequencies. (ii) The probe pulse will lead to stim-
ulated emission of the one-exciton state excited by the pump-pulse. This, too,
gives a negative contribution. (iii) The probe pulse gives rise to extra absorption
contributions from the excited one-exciton state into the two-exciton band. These
so-called induced absorption contributions are positive and their spectral posi-
tions reflect the frequencies of dipole-allowed transitions between the pumped
one-exciton state and the two-exciton band.

Based on the effective three-level picture found at the end of Section 7.3.2
for the third-order response, one expects that for homogeneous aggregates only
two transitions dominate if the experiment is performed in resonance with the
center of the J-band. The k = 1 one-exciton state dominates the bleaching and
the stimulated emission. On the other hand, the two-exciton state that dominates
the induced absorption from the k = 1 state, is the state η

†
k=1η

†
k=2|g〉. Thus, the

dominant negative peak in the pump-probe spectrum is expected to occur at ω =
�k=1, while the dominant positive peak occurs at ω =�k=2 (here ω denotes the
frequency of the probe pulse). As was first pointed out by Juzeliūnas [38], within
the fermion picture for the excitons one finds that the positive contribution is
shifted relative to the negative one over a frequency difference

(158)7ω=�k=2 −�k=1 ≈− 3π2J

(N + 1)2 ,

which follows from Eq. (145) with N � 1. For J-aggregates (J < 0), 7ω is
positive, i.e., the induced absorption is blue shifted compared to the one-exciton
bleaching and stimulated emission dip (see Figure 14). This shift is simply a con-
sequence of the Pauli exclusion of the double excitation of a single molecule and
may be referred to as the Pauli exclusion gap. In simple terms, the second exciton
effectively has less space than the first one, as it may not reside on the same mole-

Fig. 14. Schematic picture of the pump-probe spectrum for a J-aggregate pumped in the center of
the J-band, with ω the frequency of the probe beam. The negative peak reflects the bleaching and
stimulated emission of the dominant one-exciton transition, while the positive peak is the induced
absorption resulting from the dominant one- to two-exciton transition.
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cule. For J-aggregates, this forces the second exciton into a higher-energy state
than the first exciton. Although the transformation to non-interacting fermions
can only be made in one dimension, the above rationale holds in all dimensions,
and one generally expects for J-aggregates the induced absorption peak to be blue
shifted relative to the bleaching and stimulated emission dip.

The blue-shifted induced absorption peak has been seen in many types of
J-aggregates [41,186–190], including also the ring-shaped aggregates of chloro-
phyll molecules occurring in bacterial light-harvesting systems [191]. It seems
to be an almost generic feature for J-aggregates, implying that often the Pauli
exclusion shift dominates the nonlinear effects. The first strong evidence that in-
deed the unbound two-exciton state may be observed in J-aggregates, was found
for PIC aggregates at 1.5 K [41]. The experiment clearly yielded a blue-shifted
induced absorption and the theoretical description of the spectrum based on the
Pauli exclusion effect, perfectly agreed with the experimental data, without using
free parameters (Figure 15).

Mostly, the pump-probe spectrum has been used not so much to confirm the
existence of the two-exciton state, but rather to extract information on the delo-
calization length [172,188–191]. From Eq. (158) we see that the blue shift 7ω

in the pump-probe spectrum is related to the size N of the chain. As before, it is
not reasonable to expect that the physical chain size will show up in the optical
spectra. Rather, one expects Eq. (158) to hold with N replaced by the typical de-
localization length at the position of the J-band, Ndel. In other words, one expects
the length scale obtained from the pump-probe spectrum through

(159)N
pp
del =

√
3π2|J |
7ω

− 1

to be a good measure of the actual exciton delocalization length. This expecta-
tion is supported by the hidden structure of the exciton states mentioned in Sec-
tion 7.2.2 [170,178]. Knoester and Bakalis have assessed the validity of this ex-
pectation by performing numerical simulations of pump-probe spectra for chains
of 250 molecules over a range of the degree of disorder σ/|J | [75]. This study
showed that as long as static disorder dominates the line width, an almost per-
fect linear scaling exists between Npp

del and the delocalization length Ndel obtained
from the participation ratio at the center of the J-band: Npp

del = 1.3Ndel+ 1.7 (Fig-
ure 16). This confirms that at low temperature, the pump-probe spectrum indeed
serves as a useful tool to measure the exciton delocalization length. The scal-
ing breaks down when the homogeneous linewidth of the exciton transitions ap-
proaches the detuning 7ω [75,192], as is also demonstrated in Figure 16.

It is quite remarkable that the simple Hamiltonian equation (142), without dy-
namic exciton–exciton interactions and accounting for only one molecular ex-
cited state, has been so successful in describing the pump-probe spectrum of J-
aggregates. Theoretical work on the inclusion of dynamic interactions in linear
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Fig. 15. Measured pump-probe spectrum (solid line) of PIC aggregates in an ethylene glycol/water
glass at 1.5 K after pumping at 576 nm. The dotted line is the theoretical curve, based on the effec-
tive three-level picture discussed at the end of Section 7.3.2. Apart from the vertical scale, no free
parameters were used in the theory; all parameters were taken from linear optical experiments. The
insert shows the linear absorption spectrum. (Figure reprinted from Ref. [41] with permission from
the American Institute of Physics.)

aggregates and the associated possible formation of bound bi-exciton states has
been reported in Refs. [77,80,58]. Yet, we know of very few experimental reports
where such bound states have been suggested in J-aggregates [157,193]. Spano
has shown that only for a small range of exciton–exciton coupling strengths, the
pump-probe spectrum in the frequency region of the J-band is appreciably af-
fected by the extra interaction [80]. These coupling strengths may in practice
rarely be realized. Also the inclusion of a second molecular excited state |f 〉,
dipole-allowed from the first exited state |e〉, has been studied theoretically in the
context of linear aggregates. A most interesting phenomenon in this model, which
includes a fusion interaction of the form B

†
nf BmeBne , is the possible interference

between single-molecule and collective nonlinear optical response, with the ap-
pearance and disappearance of two-photon absorption (or induced absorption)
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Fig. 16. The exciton delocalization length as obtained from the simulated pump-probe spectrum
through Eq. (159), in comparison with the real delocalization length as calculated from the partici-
pation ratio at the center of the simulated J-band. In the simulations, chains of N = 250 molecules
were used, with a diagonal disorder strength varying between σ = 0.001|J | and 0.3|J |. Data points
represent homogeneous line widths of 0 (♦), 5× 10−4|J | (+), and 8 × 10−4|J | (�). The solid line
is the best fit through the data with vanishing homogeneous line width and has a slope of 1.3. (Figure
reprinted from Ref. [75] with permission from the American Chemical Society.)

peaks as a function of the detuning and the relative dipole strengths of the two
intra-molecular levels [56]. The same three-level model has been used to model
exciton–exciton annihilation [85], an effect that plays a crucial role in molecular
aggregates at high laser intensities, limiting the effective exciton life time [194,
195] and affecting the nonlinear optical response [196].

7.4. AGGREGATES OF OTHER GEOMETRIES

Above, we have considered the optical properties of linear J-aggregates. Two-
dimensional cyanine aggregates are also well-known. They are formed by ad-
sorption on silver-halide microcrystals in photographic emulsions [11,12]. The
properties of such aggregates have been studied with similar techniques and mod-
els as we used above for the one-dimensional case. In general, the J-band is
broader than for the one-dimensional J-aggregates formed in solution (see, e.g.,
Refs. [197,198]). This also holds for two-dimensional cyanine aggregates formed
via the Langmuir–Blodgett technique [199–201]. In such two-dimensional aggre-
gates the nearest-neighbor approximation for the excitation transfer interactions
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can generally not be made and often the point-dipole approximation is very poor
as well. Better results may be obtained by using extended dipoles [31,198]. Fi-
nally, the end-surface of a molecular crystal may be considered a two-dimensional
aggregate, because the frequency of the molecules in this layer is detuned from
the inner layers, as a result of different gas-condensed phase shifts for molecules
on the surface layer [202]. Observing the fluorescence from the end-surface of
anthracene crystals, this has allowed for the first observation of superradiance of
two-dimensional exciton-polaritons [203].

Recently, the Daehne group has succeeded in preparing self-assembled cyna-
nine aggregates with interesting geometries, by making use of the special interac-
tions between amphiphilic side groups and the solvent. This has for instance re-
sulted in the preparation of cylindrical cyanine aggregates [204], which mimic the
cylindrical light-harvesting systems that occur in green bacteria [205,206] (Sec-
tion 8). As a result of the circular geometry, a mono-wall cylindrical aggregate
has three superradiant transitions, two of which are degenerate [207,208]. As has
been confirmed by experiment [209], this leads to the formation of two perpendic-
ularly polarized absorption bands, as opposed to the single J-band observed for
linear J-aggregates. Finally, an interesting class of aggregates are the columnar
H-aggregates prepared from discotic molecules, with an absorption peak that is
blue-shifted relative to the monomer transition [210].

8. Excitons in Biological Systems

Molecular electronic excitations play an important role in the photosynthetic sys-
tems of bacteria and higher plants. In such organisms, light-harvesting (LH) sys-
tems occur, whose task it is to absorb the light of the sun and to transport the
excitation energy to the photosynthetic reaction center [13]. Chlorophyll mole-
cules are the main building blocks of these LH systems. They play the role of
both absorber and transport medium. Various types of (bacterio)chlorophyll mole-
cules exist, which may absorb in different parts of the electromagnetic spectrum.
The efficiency of these systems is extremely high: more than 90% of the excita-
tions created by the sun light lead to a charge separation in the reaction center.
As chlorophyll molecules have a spontaneous emission time of the order of 1 ns,
this implies that the transport has to take less than 100 ps. Over the past decades,
much work has been devoted to understanding the mechanism of this efficient
transport. Here the main question is whether the transport should be described as
incoherent, i.e., Förster transport from molecule to molecule, or whether coherent
excitons, delocalized over several or many molecules play a role (cf. Section 4).
As biological systems generally have a complicated and not very regular config-
uration, one might expect that coherence plays only a minor role. It is of interest,
however, that during the past decade the structure of several LH systems has been
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Fig. 17. Side and top views of the pigment structure of the light-harvesting complex LH2 of the
purple bacterium Rhodopseudomonas acidophola. Two rings of bacteriochlorophyll molecules exist.
The upper one contains 18 molecules, the lower one 9. The linear molecules are carotenoids. (Figure
courtesy of R.J. Cogdell.)

unraveled in detail and that some of these systems, especially those occurring in
bacteria, exhibit a surprising amount of symmetry.

Probably best known are the circular light-harvesting systems LH1 and LH2 of
purple bacteria, which are systems with a 16-fold and 8- or 9-fold symmetry, re-
spectively [211,212]. For Rhodopseudomonas acidophila, LH2 has a 9-fold sym-
metry (Figure 17). It contains two rings stacked on top of each other, both with a
diameter of about 5 nm, one of which (the B800 ring, absorbing at about 800 nm)
contains 9 bacteriochlorophyll molecules and the other (the B850 ring, absorbing
at about 850 nm) contains 18 [211]. The transition dipoles of all molecules lie (al-
most) in the plane of the rings and rotate around the ring with the position of the
molecule. If the rings have no electronic disorder, this situation would give rise to
Frenkel exciton states of the Bloch form, with only the states with wavenumber
±2π/N (N the number of molecules in the ring) being dipole allowed [213–215].
The random conformations of the surrounding protein scaffold, however, breaks
the electronic symmetry and may lead to localization. It is generally accepted that
the transfer interactions between the molecules in the B800 ring are too weak to
overcome the disorder strength and to delocalize the excitations in it. This has
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indeed nicely been demonstrated by fluorescence excitation experiments carried
out on single LH2 complexes [216]. For the B850 ring, the situation is different,
as the intermolecular distances between neighboring molecules are small (about
9 Å), leading to interactions of the order of a few hundred wave numbers. Similar
single-complex experiments have indicated that the absorption spectrum of each
of these rings is typically dominated by two perpendicularly polarized transitions,
which are separated by about 100 cm−1 [215]. These transitions may be under-
stood as originating from the ±2π/N transitions, with the splitting being caused
by disorder and (or) a deformation of the ring [215,217]. This strongly suggests
that the primary excitations, created immediately after the absorption of light, are
strongly delocalized (over almost the entire ring). At the same time, pump-probe
[191] and superradiant emission [218] experiments indicate that the excitations
after vibronic relaxation extend over only a few molecules. Much work has also
been done on the energy transfer from the B800 ring to the B850 ring [219,220],
which occurs through rather weak interactions and may be understood in terms of
incoherent hopping transport. It has been demonstrated by Sumi and coworkers
that the involvement of many molecules requires an adaption of the usual Förster
method to calculate the relevant transfer rate [221,222].

A second type of highly symmetric LH system are the rod elements in the
chlorosomes of green bacteria [205]. For Chloroflexus aurantiacus, these are
cylindrical aggregates of bacteriochlorophyll molecules, with a diameter of about
5 nm and a length of up to a few hundred nm [206]. These aggregates may be
thought of as 6 helices of chlorophyll molecules intertwined on the cylinder sur-
face. In the limit of long homogeneous cylinders, such aggregates exhibit three
superradiant states, two of which are degenerate [208,223]. These transitions are
too broad to separate in ensemble absorption experiments. Additional informa-
tion may be obtained using polarized spectroscopic techniques, such as linear and
circular dichroism. It is of interest that such helical molecular aggregates con-
tain a circular dichroism (CD) signal, even if the individual molecules have no
rotational activity [208,223]. This is yet another interesting example of collective
optical response in molecular aggregates. For the possible development of bio-
mimicking synthetic complexes, it is of much interest that cylindrical aggregates
have also been prepared synthetically, through self-assembly from TDBC cyanine
dyes with amphiphilic substituents [204] (cf. Section 7.4). As cyanine dyes have
stronger transition dipoles than chlorophyll molecules, such synthetic complexes
may at some time surpass the natural ones in performance.

We finally note that other LH complexes in bacteria (for instance, the FMO
protein [224]) and higher plants (photosystems I and II [225,226]) have a much
lower degree of symmetry. Although the exciton delocalization is not very strong
in these systems, effects of several molecules participating in the excitation can
still be observed in some of these systems [227].
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9. Concluding Remarks

In this chapter we have described the basic theory and several key experiments
of Frenkel and charge-transfer excitons in organic solids. While in some respects,
this field may be considered classical in the sense that it has gone through a his-
tory of almost three-quarters of a century, it still constitutes an extremely impor-
tant field to date. Most of the optical properties as well as the energy transport
properties in molecular solids result from the static and dynamic properties of
these neutral excitations. Moreover, the scope of this field has undergone a strong
development from the study of three-dimensional organic bulk solids, such as
the classical aromatic crystals, to include nanoscale systems, such as molecular
J-aggregates and biological light-harvesting systems. The increasing interest in
energy transport, storage, and manipulation on molecular length scales, both in
synthetic and in natural systems, should be expected to further strengthen this
development.
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1. Introduction

In this second introductory chapter, the concept of Wannier–Mott exciton in bulk
and low-dimensional semiconductors will be reviewed, including non-linear ef-
fects in quantum wells, with all the emphasis on a physically motivated discussion
rather than on formal derivations. With no pretense of completeness, the presen-
tation is tailored to the needs of readers not already familiar with semiconductor
physics [1] and the choice of material has a bias towards the general topic of
this volume. The impressive achievements in inorganic semiconductor quantum
confined structures [2], and in exciton based optoelectronics in particular, are an
omen of success for the rapidly developing field of optically active organic based
low-dimensional structures.

The low temperature optical properties of pure semiconductor crystals and of
their heterostructures are dominated, just below the band edge, by exciton absorp-
tion lines typically arranged in a hydrogenic series. The excitons in semiconduc-
tors have a Bohr radius a0, related to the relative motion of electron and hole,
which is much larger than the lattice constant. Thus, they are well described as
Wannier–Mott, or weak binding, excitons [3], as opposed to tightly bound Frenkel
excitons [4]. Apart from a small reduced mass, the electron–hole attraction is
screened by the large dielectric constant ε ≈ 10 and the exciton binding energy
Eb , i.e., the difference between the 1S exciton line and the electronic band struc-
ture gap, is only a tiny fraction of the Rydberg, not more than a few tens of meV.

The envelope function approach is well suited to describe Wannier–Mott exci-
tons, as discussed in Section 2 for the bulk and in Section 3 for quantum confined
structures [5]. In the most relevant case of a quantum well thicknessL of the order
of the Bohr radius, the motion of the electron and of the hole along the growth
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direction are separately quantized and the binding energy and oscillator strength
of the quantum well exciton are significantly increased compared to the bulk.

At high excitation density, non-linear effects come into play and the picture of
excitons as ideal bosons is to be abandoned [6]. In Section 4, the most simple
and basic considerations are discussed in the complex and still rapidly developing
field of many-body and correlation effects in semiconductor optics [7]. In the in-
termediate density regime where the excitonic resonances still persist, the nonlin-
earities scale as n/nS where n is the two-dimensional exciton density and nS the
corresponding saturation density nS ≈ 1/(πa2

2D), being a2D the two-dimensional
exciton radius. Moreover, for appropriate conditions, biexcitons, i.e., molecular
states of two excitons bound together, may form and affect the optical proper-
ties [8]. Finally, the possibility of Bose–Einstein condensation of excitons will be
considered [9].

2. Wannier–Mott Excitons in Bulk Semiconductors

2.1. BAND STRUCTURE OF DIRECT GAP SEMICONDUCTORS

The electronic states of inorganic semiconductor crystals are well described by a
band structure calculated assuming an appropriate crystal potential V in a rigid
lattice in the one-electron approximation, i.e., including electron–electron inter-
actions only on average with no correlation effects. The corresponding single par-
ticle Hamiltonian is

(1)H = p2

2m0
+ V (r)

where m0 is the electron mass, p the momentum operator, and V the mean field
potential having the full symmetry of the crystal, in particular the translational
symmetry.

The single particle eigenstates have energies Enk and are Bloch states charac-
terized by a wavevector k within the first Brillouin zone and by a band index n

(2)ψnk(r)= 1√
N
eik·r unk(r),

where unk(r) is periodic on the unit cell of volume � and the total volume of
the crystal is V = N�. As an example, the band structure of GaAs is shown in
Figure 1. The highest occupied valence band and the lowest empty conduction
band have each large bandwidths and small effective masses, corresponding to
well delocalized electronic states.

The energy band gap Eg between the bottom of the conduction band and the
top of the valence band falls in the visible or near infrared spectral region. As
the wavevector of light 2π/λ is much smaller than the size of the Brillouin zone
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Fig. 1. The band structure of GaAs (from J.R. Chelikowsky and M.L. Cohen, Phys. Rev. B 14 (1976)
556). The top of the valence band (�8) and the bottom of the conduction band (�6) occur at �k = 0 (�
point).

π/l, being l the lattice constant, only “vertical” transitions are allowed between
electronic states having the same k. A direct gap semiconductor has the top of
the valence band and the bottom of the conduction band at the same point of
the Brillouin zone (typically the � point at k = 0), and, if the symmetry of the
Bloch functions correspond to an allowed transition, it exhibits a well pronounced
absorption edge at the band gap, becoming opaque at frequencies h̄ω > Eg with
an absorption coefficient α ≈ 104 cm−1. As an example, the absorption edge of
InSb is shown in Figure 2 [10].

2.2. INTERBAND TRANSITIONS AND OPTICAL CONSTANTS

The quantum mechanical transition probability from an initial valence band state
to a final conduction band state under an electromagnetic field described by the
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Fig. 2. The absorption edge of InSb (from G.W. Gobeli, H.Y. Fan, in: Semiconductor Research,
Purdue University, 1956).

vector potential A=A0ê(e
−iωt + c.c.) is given by the Fermi Golden rule

(3)P = 2π

h̄

∣∣∣∣ eA0

m0c
〈ψck|ê · p|ψvk〉

∣∣∣∣2

δ(Eck −Evk − h̄ω).

In the above expression, contrary to the case of localized molecular excita-
tions [4], the electromagnetic field responsible for the interband transition is just
the macroscopic Maxwell field, because for the case of delocalized electronic
states local field effects are negligible. The same holds true for the large radius
Wannier–Mott excitons discussed later on.
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The imaginary part ε2(ω) of the optical dielectric constant can be directly cal-
culated summing on all possible transitions from an occupied to an empty state
(then, via Kramers–Kronig analysis ε1(ω), and all other optical constants can be
obtained) [3]

(4)ε2(ω)=
(

2πe

m0ω

)2 ∑
c,v

∫
2dk
(2π)3

∣∣ê ·Mcv(k)
∣∣2
δ(Eck −Evk− h̄ω),

where the integral is over the Brillouin zone and a factor 2 for spin has been
included; the transition matrix element is

Mcv(k)= 〈ψck|p|ψvk〉 = 〈ψck| im0

h̄
[H, r]|ψvk〉

= im0

h̄
(Eck −Evk)〈ψck|r|ψvk〉

(5)= im0

e h̄
(Eck −Evk)dcv(k),

and the corresponding dimensionless oscillator strength f is

(6)f = 2

m0h̄ω

∣∣ê ·M∣∣2
.

For a direct gap semiconductor with an allowed transition at the absorption
edge, it is a good approximation for h̄ω ≈ Eg to consider the transition dipole
matrix element M as a constant. Then, the integral in Eq. (4) reduces to the joint
density of states (JDOS) which vanishes for h̄ω < Eg and for h̄ω � Eg can be
evaluated near the absorption edge assuming a parabolic dispersion of the con-
duction and valence band states

(7)JDOS(ω)=
∫

2 dk
(2π)3

δ(Eck −Evk − h̄ω)∝
√
h̄ω−Eg.

This result correctly describes the gross features of the absorption edge for al-
lowed interband transitions in bulk semiconductors.

2.3. ELECTRON–HOLE CORRELATION

The discussion above neglects the attractive interaction between the electron pro-
moted into the conduction band and the hole left behind in the valence band.
However, their motion is correlated and, in particular, they can be bound into
Wannier–Mott excitonic states with an energy below that of the single particle en-
ergy gap. The exciton radius a0 is large and the binding energy correspondingly
small, therefore the exciton absorption lines are typically prominent only at low
temperatures, as shown for example in Figure 3.
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Fig. 3. Excitonic absorption in bulk GaAs: at room temperature (open circles) the 1S exciton peak
is no longer observed (from M.D. Sturge, Phys. Rev. 127 (1962) 768).

The basic exciton physics can be discussed considering the case of non-degen-
erate conduction and valence bands with extrema at k = 0 and a dipole allowed
interband transition matrix element. Spin degrees of freedom will be neglected,
for the time being, and the exciton state written as

(8)|)jQ〉 =
∫
V dk
(2π)3

Aj(k) c+k+meQ/M vk−mhQ/M |G〉,

where |G〉 is the semiconductor ground state, c+ creates an electron in the con-
duction band while v destructs one in the valence band. The exciton center of
mass wavevector Q for resonantly generated excitons is given by the wavevector
of light, and even in other cases is typically much smaller than the size of the Bril-
louin zone. The function Aj(k) describes the correlated relative motion, labelled
by j (e.g., j = 1S,2S,2P . . .); Aj(k) has a range around k = 0 of the order of
π/a0, much smaller than the size of the Brillouin zone. Thus, in the above equa-
tion the parabolic approximation is used for the electron and hole dispersion, with
effective masses, respectively, me and mh, being M =me +mh the total mass of
the exciton.

2.4. EFFECTIVE MASS APPROXIMATION

Using the hole representation for the valence band, the exciton state can also be
described by a two particle wavefunction)(re, rh)

(9))jQ(re, rh)=
√
�

N
Fj(re − rh) eiQ·(mere+mhrh)/(me+mh) uc0(re)u∗v0(rh),
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where the cell periodic functions u are approximated by those at k= 0. The en-
velope function Fj (r= re − rh) of the relative motion is

(10)Fj (r)=
√
V

∫
dk
(2π)3

eik·rAj(k),

and, within the effective mass approximation [3], it satisfies the hydrogen-like
Schrödinger equation

(11)

(
− h̄

2∇2

2µ
− e2

ε r

)
FnL(r)=EnFnL(r),

where the reduced mass given by µ= (me mh)/(me +mh) is usually only a frac-
tion of m0, and the dielectric constant ε screening the electron–hole Coulomb
attraction is typically large (ε ≈ 10), its choice being discussed below.

On the basis of the above equation, the Wannier–Mott exciton turns out to be a
“rescaled hydrogen atom” with binding energies depending only on the principal
quantum number n

(12)En =−R
∗

n2 , R∗ = µe4

2ε2h̄2 =
h̄2

2µa2
0

= e2

2εa0
,

the effective Rydberg R∗ being typically of the order of 10 meV and the exciton
Bohr radius a0 larger than 1 nm, which justifies a posteriori the effective mass
approximation. The exciton energy levels are given by

(13)EnQ =Eg + h̄
2Q2

2M
− R

∗

n2
;

and, e.g., the lowest bound state n= 1 has the 1S envelope function

(14)F1S(r)= 1√
πa3

0

e−r/a0.

2.5. EFFECTIVE SCREENING

As for the dielectric constant ε screening the electron–hole attraction, it takes
into account both the background contribution of electronic origin and the lattice
contribution. The latter, however, is fully effective only when the binding energy
is smaller than the longitudinal optical phonon energy (and, correspondingly, the
exciton radius larger than the polaron radius); in this case, that applies for instance
to weakly polar semiconductors as GaAs, the static dielectric constant should be
used, together with effective masses and band gap values including the electron–
phonon interaction, i.e., the experimentally measured ones.

In other cases, for instance, for ionic semiconductors with comparatively small
radius excitons like ZnSe, a potential interpolating from the full static screening
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at large electron–hole distances to the high frequency electronic screening only
at small distances could be used [11], or the phonons and the electron–phonon
interaction should be explicitly included in the dynamics.

2.6. ELECTRON–HOLE EXCHANGE INTERACTION

So far, spin degrees of freedom have been ignored. In the case of negligible spin
orbit coupling, it is convenient to consider separately spin triplet and spin singlet
excitons, only the latter being optically active. Then, for spin singlet excitons only,
the electron–hole exchange interaction is also present and adds to the effective
mass Hamiltonian of Eq. (11) for the envelope function a term of the form

(15)
(
J an

exch + J nan
exch

(
Q̂

))
δ(r);

the exchange interaction comprises an analytical part (independent of Q̂) that
gives the tiny splitting between the singlet and triplet excitons, and a non-analyt-
ical part. In isotropic media, such as most semiconductors of interest, the latter
contribution splits the longitudinal from the transverse excitons [3], having polar-
ization along Q̂ or perpendicular to it, respectively. This contribution to the energy
of a longitudinal Wannier–Mott S excitons is J nan

exch|FnS(r= 0)|2 ≈ d2/(na0)
3, be-

ing d the interband transition electric dipole, and is much smaller than that of the
electron–hole Coulomb attraction. Moreover, the non-analytical part of the ex-
change interaction corresponds to the long range unretarded dipole–dipole inter-
action, and should not be included in the exciton energy appearing in the dielectric
function given below (Eq. (17)) [12].

2.7. OSCILLATOR STRENGTH

Optical transitions are only allowed to Q� 0 spin singlet excitons, and, when the
interband dipole matrix element at the band edge does not vanish, only to S states.

The dimensionless oscillator strength is obtained as

fn = 2
2

m0h̄ω

∣∣〈)nS,Q=0|ê · p|G〉
∣∣2

= 2
2

m0h̄ω

∣∣〈ψc0|ê · p|ψv0〉
∣∣2

∣∣∣∣∫ V dk
(2π)3

AnS(k)

∣∣∣∣2

(16)= 2
2

m0h̄ω

∣∣〈ψc0|ê · p|ψv0〉
∣∣2
V

∣∣FnS(r= 0)
∣∣2
,

the factor |FnS(r= 0)|2 tells that the transition rate is proportional to the probabil-
ity to find electron and hole in the same place, in particular f ∝ (l/a0)

3, and the
oscillator strength per unit volume scales as fn/V ∼ (na0)

−3 (e.g., f2/f1 = 1/8).
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In Eq. (16) the factor 2 appropriate for pure singlet states in the absence of spin–
orbit interaction is included. In the presence of spin orbit coupling, the appropriate
factor is twice the spin singlet component in the exciton state (and the same factor
should also appear in the exchange interaction of Eq. (15)) [15].

The bound state optical resonances can be described by the following complex
dielectric constant

(17)ε(ω)= εb + 4πe2

m0 V

∑
n

fn

(EnQ=0/h̄)2 −ω2 − iγnω ,

where EnQ=0 is the energy of the transverse exciton, εb is a background dielec-
tric constant and γn a phenomenological linewidth due, e.g., to phonon scattering.
Such dielectric constant can be used in Maxwell equations to obtain the corre-
sponding polaritons [13].

2.8. SOMMERFELD ENHANCEMENT

Apart from the hydrogenic series of lines appearing below the band gap energy
and corresponding to the optical transitions to the nS bound exciton states, the
electron–hole Coulomb attraction also modifies the absorption band for energies
just above the absorption edge as also unbound electron–hole pairs are not uncor-
related. Such effect leads to an enhanced value of ε2(ω) for h̄ω�Eg given by the

Fig. 4. Sketch of excitonic effects on the absorption edge, the dashed line showing the uncorrelated
interband absorption.
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Sommerfeld factor [3]

(18)S(ω)= πxeπx

sinh(πx)
, x(ω)=

√
R∗

h̄ω−Eg ,

as sketched in Figure 4.

2.9. VALENCE BAND DEGENERACY

The description of the bulk exciton properties given above is based on the effec-
tive mass equation of Eq. (11), appropriate for non-degenerate valence and con-
duction bands. In most semiconductors of interest, the uppermost valence band is
degenerate (as described by the Luttinger matrix [1]) and the exciton wavefunc-
tion is a linear superposition containing the various degenerate bands, as a con-
sequence the kinetic energy term becomes a matrix and the single equation (11)
a set of coupled equations [3]. Yet, due to the smallness of the reduced mass the
diagonal terms are dominant and the resulting exciton spectrum is again nearly
hydrogenic [14].

3. Quantum Confined Wannier–Mott Excitons

The Wannier–Mott exciton resonances in an intrinsic bulk semiconductor have
properties determined by the electronic band structure as discussed above, and
thus they can only be changed with stringent limitations by choosing a different
material. Starting from the seminal work of Esaki and Tsu around 1970, however,
the possibility of tailoring the electronic properties of man-made layered mate-
rials has led to the impressive development of the field of semiconductor nanos-
tructures [2]. Band structure engineering allows to change with great flexibility
the electronic and optical properties of quantum confined semiconductor systems.

3.1. QUANTUM WELL CONFINEMENT

The basic example of an artificial low-dimensional structure is an epitaxially
grown quantum well in which a central semiconductor layer (the well) is sand-
wiched between semiconductors having a larger band gap (the barriers) in such a
way that the profile of the bottom of the conduction band along the growth direc-
tion confines the electrons within the well layer, and similarly for the holes in the
valence band (i.e., a type I quantum well). If the coherence length of the electrons
(and holes) is larger than the quantum well thickness Lw , the regime of quantum
confinement is realized in which their motion along the growth axis is discretized,
while the one along the well plane remains free, giving rise to a two-dimensional
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Fig. 5. Schematic quantum well band profile and confined wavefunctions.

subband structure as sketched in Figure 5. As the size of a quantum well is typi-
cally much larger than the lattice constant l, an effective mass description of the
quantum confined electronic states is valid, taking into account the appropriate
boundary conditions at the well/barrier interfaces [3].

The confined electron wave function is written as

(19)ψc,mk‖ (r‖, z)=
1√
N2D

eik‖·r‖ Fc,m(z)
√
l uc0(r),

where m is the subband index, z is along the growth direction and r‖ = (x, y)
along the quantum well plane, k‖ is the wavevector of the two-dimensional free
motion, N2D the number of unit cells along the plane and Fc,m(z) the quantum
confinement envelope function. Assuming infinite barriers, the confinement ener-
gies and envelope functions are

(20)Ec,mk‖ =
h̄2 k2‖
2me

+ h̄2

2me

(
πm

Lw

)2

, Fc,m(z)=
√

2

Lw
sin

(
mπz

Lw

)
,

and similarly for hole states. Thus, for me � 0.1m0 and Lw � 5 nm, the scale of
the confinement energy is Em=1,k‖=0 � 140 meV.
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In the realistic case of finite barriers, the envelope function leaks out of the well
into the barrier region and can be obtained matching at the interfaces the values of
F(z) and 1

me(z)
∂
∂z
F (z), where the discontinuity of the effective mass is accounted

for and probability current conservation ensured [3]. At least one bound state is
always obtained, and for sufficiently wide or deep wells the lowest bound states
are qualitatively similar to the infinite barrier ones of Eq. (20).

3.2. INTERSUBBAND TRANSITIONS

In such a quantum well, undoped and made of a semiconductor with an optically
allowed direct gap Eg , the absorption edge (disregarding excitonic effects) corre-
sponds to the promotion of an electron from the highest confined valence subband
to the lowest confined conduction subband at an energy given by

(21)Eg2D �Eg + h̄2

2µ

(
π

Lw

)2

,

being µ the reduced mass in the well.
In the case of a single quantum well for light propagating along the growth

direction, the quantity of direct physical meaning to describe the optical properties
is the dimensionless absorption probability [15] defined as

(22)w(ω)= absorbed energy per unit time and unit surface

incident energy per unit time and unit surface
,

which, similarly to Eq. (4), is calculated summing over all possible transitions

(23)

w(ω)= (2πe)
2

nm2
0ωc

∑
c,v,m

∫
2 dk‖
(2π)2

∣∣ê ·Mcv,m(k‖)
∣∣2
δ(Ec,mk‖ −Ev,mk‖ − h̄ω)

where n is the index of refraction, the integral is over the two-dimensional Bril-
louin zone, and the transition matrix element is

Mcv,m = 〈ψc,mk‖ |p|ψv,mk‖〉

�
∫
�

dru∗c0(r)puv0(r)
∫
dzF ∗c,m(z)Fv,m(z)

(24)� im0Eg2D

e h̄
dcv,

approximately independent of k‖; in the above equations, the selection rule
:m= 0 appropriate for the infinite barrier case has been taken into account. Then,
at the two-dimensional absorption edge given by Eq. (21) (and similarly at each
higher subband edge corresponding to m> 1) the integral in Eq. (23) reduces to
the two-dimensional joint density of states which vanishes for h̄ω < Eg2D and for
h̄ω�Eg2D is a constant, i.e., it is a step function as sketched in Figure 6.
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Fig. 6. Sketch of a quantum well absorption edge, the dashed line showing the uncorrelated inter-
subband absorption.

3.3. QUANTUM WELL EXCITON STATES

When excitonic effects are considered, two different regimes may be realized.
In very large quantum wells (Lw � a0), the single particle confinement energies
(Eq. (20)) are small compared to the effective Rydberg R∗ (Eq. (12)), the electron
and hole relative motion is unchanged with respect to the bulk case, while the
exciton center of mass motion itself is confined along the growth direction. In
narrow wells (Lw � a0), the electron and hole motion along the growth direction
is separately quantized (Eq. (20)) with a confinement energy large compared to
R∗, and mainly the dynamics along the quantum well plane is affected by the
electron hole attraction giving rise to quasi two-dimensional excitons.

The latter case is more interesting as quantum confinement can be used to tailor
the exciton properties, and in particular to enhance its binding energy and oscil-
lator strength. The lowest optically active quantum well exciton can be described
by the two particle wavefunction

(25))j(re, rh)= l2√
N2D

F 2D
j (re‖ − rh‖)Fc,1(ze)F ∗v,1(zh) uc0(re) u∗v0(rh),

where F 2D
j is the two-dimensional exciton envelope function, the quantum num-

ber j refers to the in plane relative motion and only the lowest pair (i.e., m= 1 in
Eq. (20)) of electron and hole subbands has been included.
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The effective mass equation [5] satisfied by F 2D can be written as

(26)

(
− h̄

2∇2‖
2µ
− e

2

ε

∫
dze

∫
dzh
|Fc,1(ze)Fv,1(zh)|2√

r2‖ + (ze − zh)2

)
FnL(r)=En FnL(r),

the electron and hole confinement along z tending to increase their attraction with
respect to the bulk case.

In the strictly two-dimensional limit (i.e., for infinite barriers with Lw→ 0, and
|Fc,1(z)|2 = |Fv,1(z)|2 = δ(z)), the effective mass equation satisfied by F 2D can
be solved exactly [16] giving

(27)E2D
n =−

R∗

(n− 1/2)2
,

the binding energy of the lowest exciton in the strictly two-dimensional limit is
therefore R∗2D = 4R∗ (see also discussion below). The exciton energy levels, in-
cluding also the in plane center of mass translational energy, are given by

(28)EnQ‖ =Eg2D +
h̄2 Q2‖
2M

− R∗

(n− 1/2)2
,

and, e.g., the lowest bound state n= 1 has the 1S envelope function

(29)F 2D
1S (r)=

2
√

2

a0
√
π
e−2r/a0,

where the two-dimensional exciton radius is a2D = a0/2.

3.4. QUANTUM WELL EXCITON ABSORPTION

The dimensionless oscillator strength is obtained from Eq. (25) as

(30)f 2D
n = 2

2

m0h̄ω

∣∣ê ·Mcv,1
∣∣2(
N2Dl

2)∣∣F 2D
nS (r= 0)

∣∣2,
where Mcv,m=1 is given in Eq. (24) and, in the strictly two-dimensional limit, the
oscillator strength per unit area scales as f 2D

n /(N2Dl
2)∼ (n− 1/2)−3a−2

0 .
Also for quantum wells, the electron–hole interaction leads to an enhancement

of the absorption probability even for unbound electron–hole pairs at energies
h̄ω�Eg2D, by an amount given by the two-dimensional Sommerfeld factor [16]

(31)S2D(ω)= 2

1+ e−πx , x(ω)=
√

4R∗
h̄ω−Eg2D

,

as sketched in Figure 6.
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The dimensionless absorption probability of Eq. (22) integrated over a quan-
tum well exciton line is directly related to the oscillator strength per unit area of
Eq. (30)

(32)
∫
w(ω)dω= 2π2e2

nm0c

f 2D
n

N2Dl2
,

and, for a multiple quantum well system of period Lw +Lb , being Lb the barrier
width, the absorption coefficient is α(ω)=w(ω)/(Lw +Lb).

A single quantum well, because of the broken translational symmetry along
the growth axis, should in general be described by a non-local dielectric re-
sponse [15], it is however useful the introduction of an effective complex dielec-
tric constant for a quantum well exciton resonance given by

(33)εn(ω)= εb + 4πe2

m0N2D l2L

f 2D
n

(EnQ‖=0/h̄)2 −ω2 − iγnω ,

where the characteristic length L is the well thickness Lw (for a multiple quan-
tum well, instead, d = Lw + Lb), εb the background dielectric constant and
γn the quantum well exciton phenomenological linewidth discussed below. The
above expression can replace the non-local theory provided that the width of
the structure L is small compared to the wavelength inside the structure (i.e.,√
εn(ω)(ω/c)L� 1), condition that reduces to [20]

(34)
∣∣εn(ω)− εb∣∣2

(
Lω

2πc

)2

� 1,

which is usually satisfied even near resonance for typical thicknessesL and broad-
enings γ . The expression given by Eq. (33) is useful, for instance, to calculate the
normal incidence reflection and transmission coefficients of a multilayered struc-
ture via a standard transfer matrix approach in which each layer is considered as
a homogeneous medium. In the case of oblique incidence, due account of the po-
larization dependence should also be taken (the effective medium being uniaxial).

3.5. EXCITON LINEWIDTH

Differently than for the bulk case, the linewidth of a quantum well exciton is sig-
nificantly affected by inhomogeneous broadening due to structural imperfections,
in particular well width fluctuations, which are more severe in narrow wells, the
contribution γinhom of thickness fluctuations scaling as L−3

w . The disorder is the
dominant broadening mechanism at low temperatures, and much care has been
devoted to the growth of high quality quantum narrow wells in which the residual
inhomogeneous broadening is of the order of 1 meV or less.
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With increasing temperature, the linewidth is affected by phonon scattering
according to

(35)γphon(T )= a T + b

eh̄ωLO/(KBT ) − 1
,

where both the acoustic and longitudinal optic phonon scattering are included,
typical values for GaAs, e.g., being a � 5 µeV/K and b� 10 meV, the LO phonon
scattering (h̄ωLO = 36 meV) being the dominant source of broadening at room
temperature [21].

3.6. THEORETICAL REFINEMENTS

For a more detailed and realistic description of quantum well excitons a number of
additional effects should be considered. First of all, the valence band degeneracy
of typical semiconductors such as GaAs is split by the confinement potential giv-
ing rise to two sets of hole states, the “heavy” hole and “light” hole states [2,5],
corresponding to larger and smaller effective masses for the motion along the
growth direction, respectively. In a first approximation, they may be separately
considered, the heavy hole ones having a lower confinement energy and being
typically the lowest available hole states. From the symmetry of the electronic
bands, it follows that the heavy hole states have a transition dipole matrix element
polarized in the quantum well plane, whereas light hole states are optically active
also for a polarization along the growth direction.

The second important effect is barrier penetration because the confining poten-
tial is not infinitely high: electron and hole wavefunctions extend into the barrier
regions and, thus, the strictly two-dimensional limit is only approximately real-
ized. As a consequence, both the exciton binding energy and oscillator strength
depend on the quantum well thickness. For narrow wells, they tend to increase
with decreasing well thickness until barrier penetration becomes large and they
decrease again. In Figure 7 the dependence of the binding energy on well thick-
ness for a GaAs quantum well is shown, in which case the optimal thickness is
around 5 nm [17].

An extreme case that goes beyond the validity of the usual envelope function
description of quantum confinement is that of excitons bound to a monolayer
impurity plane (e.g., InAs in GaAs) [18]; such two-dimensional excitons have a
large oscillator strength.

More refined calculations [19] for quantum well excitons also consider the ef-
fects of valence band mixing (i.e., between heavy and light holes), Coulomb cou-
pling among different subbands and dielectric constant discontinuities; the ob-
tained binding energies may even exceed 4R∗ and the oscillator strength per unit
area is typically f 2D

n /(N2D l
2)≈ 5 · 10−2 nm−2, as shown in Figure 8. In general,

quantum confinement strengthens the effects of the electron–hole attraction and
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Fig. 7. Well thickness dependence of the 1S exciton binding energy in a GaAs/AlxGa1−xAs quan-
tum well (from Ref. [17]).

the excitonic features in quantum wells are more prominent than in the bulk, and
clearly visible even at room temperature as shown in Figure 9.

3.7. QUANTUM WIRES AND DOTS

Quantum confined structures with lower dimensionality than quantum wells, i.e.,
one-dimensional quantum wires [22] and zero-dimensional quantum dots [23]
have also been realized. In the latter case, atomic like spectra are obtained which
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Fig. 8. Well thickness dependence of the lowest heavy hole and light hole exciton oscillator strength
in a GaAs/AlxGa1−xAs quantum well (from Ref. [19]).

do depend on the electron–hole interaction; however, the exciton concept as a
travelling excitation is no longer applicable.

In the case of quantum wires, there still is one degree of translational motion
and quasi-one-dimensional excitons play a significant role. For their analysis, it is
important a realistic description of the wire transversal dimensions as the strictly
one-dimensional limit (differently from the two-dimensional one) is unphysical
as it predicts an infinitely bound fundamental exciton state.

Both for the case of quantum dots and quantum wires, the effects of structural
imperfections are very severe and give rise to a typically large inhomogeneous
linewidth for the optical excitations of ensembles of wires or dots. In view of
the study of organic multilayers and heterostructures, the case of quantum well
excitons is more relevant and we will concentrate here on two-dimensional con-
finement.
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Fig. 9. Multiple quantum well exciton lines at room temperature, at the first intersubband edge
(n= 1) both heavy and light hole 1S excitons are resolved (from Ref. [6]).

4. Quantum Well Exciton Optical Nonlinearities

At low excitation densities, the optical response of Wannier–Mott excitons is
linear, as considered above, and they can be approximately described as ideal
bosons. At very high excitation densities, the exciton gas gives way to an electron–
hole plasma showing a different phenomenology, such as band gap renormaliza-
tion and gain [24]. In the present section, we discuss the intermediate density
regime in which excitonic resonances are still dominating the near edge optical
response, but nonlinear effects play a significant role. The most relevant case of
two-dimensional excitons will be considered in the density regime n � nS , the
saturation density being nS ≈ 1/(πa2

2D).

4.1. REAL AND VIRTUAL EXCITATIONS

A useful distinction among different nonlinear optical regimes can be made ac-
cording to the excitation energy [6,21], in a typical pump and probe configuration.

For a pump laser frequency well below the exciton line, i.e., in the transparency
region, only virtual excitations can be driven by the laser field; the corresponding
nonlinearities are comparatively weak, but very fast as the induced excitation di-
rectly follows the laser pulse. In such a case, excitons are totally coherent having
a well defined wavevector and phase.
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For the opposite case of a pump laser frequency well above the exciton line
in the electron–hole continuum, large excitonic nonlinearities turn on after the
generated electrons and holes have relaxed via inelastic scattering dissipating the
excess energy and have reached the bottom of their bands, this process taking
typically a few hundred femtoseconds, to eventually form incoherent excitons.

In the case in which the excitons are resonantly pumped, the initial coherence
is lost after the exciton dephasing time, which at low temperatures and low ex-
citon densities is of the order of a picosecond, and the exciton nonlinearities are
then due to an incoherent population of excitons with a lifetime of the order of a
nanosecond.

The excitonic nonlinearities will be discussed in the following on the basis of
the semiconductor Bloch equations [25] with a phenomenological dephasing rate,
while the ultrafast dynamics during which coherence is destroyed is very involved
and would require a quantum kinetic approach [7,26].

4.2. EXCITON STATISTICS

Strictly speaking, excitons are not bosons, they are composite objects made of
two fermionic particles: one electron and one hole. For the sake of simplicity, we
neglect for the time being spin degrees of freedom and consider only 1S excitons
with a vanishing center of mass wavevector. Then, similarly to Eq. (8), the two-
dimensional exciton creation operator can be written as

(36)B† =
∑

k

A2D(k) c+k h
+
−k with

∑
k

∣∣A2D(k)
∣∣2 = 1,

where the hole creation operator is introduced (h+−k = vk) and the summation is
over theN2D wavevectors within the two-dimensional Brillouin zone (here, and in
the following, all wave vectors are two-dimensional and only the lowest confined
subbands are considered).

Similarly to Eq. (10), the function A2D(k) is given according to Eq. (29) by

(37)A2D(k)= 1√
N2D l2

∫
dr e−ik·rF 2D

1S (r)=
a0
l

√
2π
N2D

[1+ (a0k/2)2]3/2 .

Thus, from the fermionic commutation rules of the electron and hole operators it
follows

(38)
[
B,B†]=∑

k

∣∣A2D(k)
∣∣2(1− n̂e(k)− n̂h(−k)

)
,

where the electron and hole number operators are n̂e(k)= c+(k)c(k) and n̂h(k)=
h+(k)h(k)= 1− v+(−k)v(−k). Evaluating on a state containingN excitons the
expectation values of the operators appearing in Eq. (38), it follows to the lowest
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order in N

(39)
[
B,B†]= 1− 2N

∑
k

∣∣A2D(k)
∣∣4 = 1− 8π

5
a2

0n,

where n is the two-dimensional exciton density n=N/(N2Dl
2).

The equation above shows how the commutation rules for excitons depart from
the bosonic ones with an increasing exciton density, and it should be compared
with the analogous results for Frenkel excitons given by Eq. (21) of the chapter
by J. Knoester and V.M. Agranovich in this book; in the case of Wannier–Mott
excitons, as soon as the density n is of the order of the saturation density nS =
1/(πa2

2D) the ideal boson approximation fails completely.

4.3. COULOMB INTERACTION AND FERMIONIC HAMILTONIAN

The density dependent modification of the bosonic commutation rules described
by Eq. (39) is only due to the composite nature of the excitons and to the under-
lying fermionic statistics of electrons and holes. Such “kinematic” nonlinearities
correspond to the phase space filling effects common to atom-like two-level sys-
tems, however exciton nonlinearities are also due to dynamical effects stemming
from the Coulomb interaction.

A theoretical description of both kinds of nonlinearities can be given in terms
of electron and hole fermionic operators starting from the Hamiltonian

(40)HT =HSP +HCoul+HL,

where the single particle Hamiltonian describing parabolic electron and hole sub-
bands is

(41)HSP =Eg2D+
∑

q

h̄2q2

2me
c+q cq +

∑
q

h̄2q2

2mh
h+q hq.

The Coulomb interaction, i.e., electron–electron and hole–hole repulsion plus
electron–hole attraction, is given by

(42)

HCoul = 1

2

∑
q�=0,k,k′

Vq
(
c+k+qc

+
k′−qck′ck + h+k+qh

+
k′−qhk′hk

− 2c+k+qh
+
k′−qhk′ck

)
,

with

(43)Vq = 2πe2

εq

1

N2Dl2
,
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being ε the static dielectric constant. Finally, the interaction of the interband po-
larization with the laser electric field is written as

(44)HL =−
(
E(t) · dcv

)∑
q

c+q h+−q + h.c.

4.4. MEAN FIELD OPTICAL RESPONSE

On the basis of the Hamiltonian of Eq. (40), the Heisenberg equations of mo-
tion of the electron and hole populations (ne(k) = 〈c+(k)c(k)〉 and nh(k) =
〈h+(k)h(k)〉) and of the interband polarization (P(q) = 〈h(−q)c(q)〉) are eas-
ily written, however they do not form a closed system because the Coulomb in-
teraction couples them to those of four-particle terms and the hierarchy of such
equations must be somehow truncated [25]. In the first approximation, all expec-
tation values of four-particle operators are factorized and expressed as products of
population and polarization terms (“random phase” approximation), the resulting
equations of motion corresponding to a Hartree–Fock treatment.

Screening and correlation effects are here neglected as they are less important
in the two-dimensional case [6], and excitation induced dephasing, as discussed
later on, will be included along with electron–phonon scattering in the phenom-
enological linewidth.

The optical response will be obtained from the interband polarization, which in
this meanfield approximation obeys the equation of motion

ih̄
∂

∂t
P (k, t)=H0P(k, t)+H1P(k, t)

(45)− (
1− ne(k)− nh(−k)

)
E(t) · dcv,

with

(46)H0P(k, t)=
(
Eg2D+ h̄

2k2

2µ

)
P(k, t)−

∑
k′ �=k

Vk−k′P
(
k′, t

)
,

and

H1P(k, t)=−P(k, t)
∑
k′ �=k

Vk−k′
(
ne

(
k′

)+ nh(−k′
))

(47)+ (
ne(k)+ nh(−k)

) ∑
k′ �=k

Vk−k′ P
(
k′, t

)
.

Equations of motion for the populations can be similarly derived and together
with Eq. (45) amount to the so-called semiconductor Bloch equations: their nu-
merical solutions describe well a variety of nonlinear effects, including wave mix-
ing [25,7].
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In the totally coherent case of virtual excitations, the population and po-
larization values satisfy the relations ne(k) = nh(−k) = n(k) and |P(k)|2 =
n(k)(1− n(k)).

However, we here assume that electron and hole populations are given parame-
ters, whereas the driving electric field appearing in Eq. (45) is that of the probe
laser. In particular, we consider present a given density n of incoherent 1S exci-
tons at the bottom of their band (“cold” excitons), for which case one has [6]

(48)ne(k)= nh(−k)= n∣∣A2D(k)
∣∣2
N2Dl

2,

which corresponds to an occupation of the fermionic electron and hole states given
by their weight in the exciton wavefunction of Eq. (36).

The interband polarization equation of motion comprises the homogeneous
termsH0P , the linear one which corresponds to the strictly two-dimensional limit
of the exciton effective mass equation (Eq. (26)) written in k space, and H1P , the
nonlinear one proportional to the excitation density n, plus the inhomogeneous
driving term diminished by Pauli blocking.

We will solve Eq. (45) perturbatively to the lowest order in the excitation den-
sity, expanding the solution of the inhomogeneous equation in terms of those of
the homogeneous one [7], i.e., the bound and unbound exciton.

Assuming a monochromatic probe laser E(t)= E e−iωt + c.c. nearly resonant
with the lowest exciton state, one can simply write the solution in terms of the 1S
exciton wavefunction given by Eq. (37) slightly perturbed by H1

(49)P(k, t)= P(k) e−iωt � α(
A2D(k)+ δA2D(k)

)
e−iωt .

Before analysing the nonlinear perturbative effects, we recall that the optical
susceptibility χ(ω) is related to the driven Maxwell polarization

(50)P(ω)= 1

N2D l2L

∑
k

d∗cvP (k),

simply by Pi (ω) = χij (ω)Ej . In the linear regime, projecting the equation of
motion Eq. (45) on the 1S exciton state, it follows

(51)α = dcv ·E
E1S − h̄ω

∑
k

A2D(k)∗ = dcv · E
E1S − h̄ω

√
N2D l2F

2D
1S (0)

∗,

thus, in the isotropic case, including the phenomenological linewidth γ , the linear
susceptibility is

(52)χ0(ω)= |F
2D
1S (0)|2
L

|dcv |2
E1S − h̄ω− ih̄γ ,

which agrees with Eq. (33) for h̄ω�E1S =E1Q‖=0 and gives the same oscillator
strength f 2D

1 of the 1S two-dimensional exciton.
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4.5. EXCITONIC OPTICAL NONLINEARITIES

The nonlinear changes of resonant frequency and oscillator strength can be eval-
uated from Eqs. (45), (48) to first order in the excitation density n as follows [6].

The correction to the 1S exciton energy is simply the expectation value of H1
(Eq. (47)) on the zeroth order wavefunction A2D(k) (Eq. (37)) which gives

(53)δE1S � 1.93π(a0/2)2(4R∗)n,

this blue-shift is a manifestation of the short range hard-core repulsion among
excitons (in the three-dimensional case, it is compensated by screening and cor-
relation effects).

The correction to the oscillator strength comprises two contributions: the first
from the Pauli blocking in the inhomogeneous term of the driving electric field
(last term in Eq. (45)), the second from the first order perturbation of the exci-
ton wavefunction δA2D. As a matter of fact, the corrected oscillator strength is
proportional to

δf 2D
1 ∝

∑
q

(
A2D(q)+ δA2D(q)

)
(54)×

∑
k

(
1− ne(k)− nh(−k)

)(
A2D(k)+ δA2D(k)

)∗
,

and to first order in the excitation density n, it follows

(55)
δf 2D

1

f 2D
1

=−
∑

k(ne(k)− nh(−k))A2D(k)∗∑
kA

2D(k)∗
+

(∑
k δA

2D(k)∑
kA

2D(k)
+ c.c.

)
,

with

(56)δA2D(k)=
∑
n�=1S

〈n|H1|1S〉
E1S −En A

2D
n (k),

where the sum is over all zeroth order bound and unbound exciton states, i.e.,
the eigenstates of H0, with wavefunctions A2D

n and energies En. Finally, using
Eq. (48), the correction of the oscillator strength is [6,27]

(57)
δf 2D

1

f 2D
1

=− n
nS
�−(2.29+ 1.70)π(a0/2)2n;

the corresponding saturation density at which exciton bleaching takes place be-
ing nS ≈ 1/(πa2

2D), as anticipated (the first term 2.29 is the contribution of the
Pauli blocking). In fact, the above perturbative results substantiate the intuitive
picture of “hard disc” excitons, the Coulomb interaction contribution being of the
same order as that of phase space filling [28]. Of course, the numerical factors
appearing in Eqs. (53) and (57) are only a rough estimate because the strictly
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Fig. 10. Quantum well exciton blue shift and bleaching with increasing excitation density (from
Ref. [29]).

two-dimensional limit has been used to describe the quantum well confinement
and no account has been taken of the spin degrees of freedom and of the exciton
fine structure (e.g., heavy hole excitons in III–V quantum wells have four nearly
degenerate states, of which only two are optically active) [21].

The exciton blue-shift and the reduction of the oscillator strength with increas-
ing excitation density as determined experimentally are in good agreement with
the theoretical predictions scaling as na2

0 [6]. As an example [29], the 1S heavy
hole exciton absorption in a narrow GaAs quantum well as a function of increas-
ing excitation density is shown in Figure 10, while Figure 11 illustrates the pre-
dicted behaviour (δE1s/E1s) = C δf 2D

1 /f 2D
1 , the proportionality constant from

the simple estimates above being C � 0.5.
Considering the excitonic optical resonance described by Eq. (52), an addi-

tional, important, nonlinear effect concerns the increase of the linewidth γ with
growing excitation density n, i.e., collisional broadening. Its theoretical descrip-
tion goes beyond the unscreened Hartree–Fock meanfield formalism described
above and calls for a higher order truncation scheme of the infinite hierarchy of
many-body equations of motion. The following simple expression to lowest or-
der in n has been found to describe well the experimental observations [30,31] as
shown in Figure 12

(58)γ (n)� γ0 + 0.48π(a0/2)2
(
4R∗

)
n.

Significantly larger values of such excitation induced dephasing have also been
reported [32]. In any case, this broadening can be seen as an imaginary self-energy
contribution accompanying the energy shift of Eq. (53) and being of the same



122 G.C. LA ROCCA

Fig. 11. Experimentally observed proportionality between the blue shift and the oscillator strength
reduction: (δE1s/E1s )= C δf 2D

1 /f 2D
1 (from Ref. [29]).

Fig. 12. Density dependence of the homogeneous linewidth of quantum well excitons due to colli-
sional broadening (from Ref. [30]).

order of magnitude. Such a simple description of excitation induced dephasing
has limitations, especially in the context of coherent optical processes [7].
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4.6. BIEXCITONS

In this section so far, spin degrees of freedom have been ignored: when they are
included, in most semiconductors of interest, it is useful to make a distinction be-
tween optically active excitons generated by right and by left circularly polarized
light. While the interaction between excitons having the same polarization is re-
pulsive, that between excitons of opposite polarization is attractive and may lead
to the formation of bound states of two excitons (i.e., biexcitons) [8], in analogy
to the formation of hydrogen molecules. In a simple adiabatic picture, the internal
structure of each exciton is not modified, but only their relative motion is corre-
lated and described by a molecular wavefunction having typically a radius am a
few times larger than the exciton one a0. The energy of a biexciton formed by two
excitons each of energy Ex is written as Exx = 2Ex − B∗, where the biexciton
binding energy B∗ is small compared to the exciton one R∗. However, their ratio
is significantly enhanced in the quantum well case with respect to the bulk: vari-
ational calculations predict a value of (B∗2D/R

∗
2D)≈ 0.2, in good agreement with

experiments [8,33–35].
Biexcitons are involved in three basic optical processes [36]: two-photon ab-

sorption from the ground state (one-photon absorption from the ground state be-
ing forbidden), one-photon absorption induced by the presence of excitons and
radiative decay into one-photon plus one exciton. All of them are enhanced by
the so-called giant oscillator strength of the exciton–biexciton transition which,
in the two-dimensional case, is proportional to a2

m. In the two-photon transition
the sum of the energies of the two absorbed photons must equal the biexciton en-
ergy Exx , and the transition rate is resonantly enhanced when the energy of one
photon matches the exciton energy Ex . The induced absorption and the biexciton
luminescence are reverse processes of each other, in which the photon absorbed
or emitted, respectively, has an energy equal to Exx −Ex = Ex −B∗, i.e., lower
than the exciton energy by an amount corresponding to the biexciton binding en-
ergy [24].

From the theoretical standpoint of Eq. (40), the description of biexciton related
nonlinearities would require a proper treatment of higher order correlations in-
cluding at least the four-particle terms [7]. Many experiments have proved the im-
portance of biexcitonic contributions in coherent nonlinear optical processes [21],
a particularly striking example being the observation of exciton–biexciton oscilla-
tions in pump and probe or four-wave-mixing experiments with a beating period
corresponding to the biexciton binding energy, as shown in Figure 13.

4.7. BOSE–EINSTEIN CONDENSATION AND INDIRECT EXCITONS

As discussed above, at densities well below the saturation regime excitons (and
similarly biexcitons) behave as weakly interacting bosons, the question therefore
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Fig. 13. Transient differential transmission signal for pump and probe of opposite circular polariza-
tions showing beatings corresponding to the quantum well biexciton binding energy (from S. Bar-Ad,
I. Bar-Joseph, Phys. Rev. Lett. 68 (1992) 349).

Fig. 14. Potential profile and confined wavefunctions in a coupled quantum well under an electric
field, the indirect exciton corresponds to the e1h1 transition (from Ref. [43]).
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Fig. 15. Spectrally and spatially resolved luminescence from indirect excitons condensed in a trap
and temperature dependence of the size of the exciton cloud and of the peak intensity of its lumines-
cence (from Ref. [44]).

arises of their quantum statistical properties and, in particular, the possibility of
their Bose–Einstein condensation (BEC) [8,37,38,9]. A short lifetime is detrimen-
tal to the realization of large concentrations and low temperatures, thus long-lived
forbidden exciton states like the “yellow” paraexciton of Cu2O have been consid-
ered as good candidates for BEC [39,40].

As for quantum well excitons, a very interesting configuration is that of two
coupled wells in which electrons and holes are spatially separated under the action
of an external static electric field along the growth direction (quantum confined
Stark effect [41]). This system is very promising for achieving quantum degener-
acy and, possibly, a phase transition to a macroscopically coherent state [42–45].
The main advantage in using such “indirect” excitons is the fact that the electron–
hole separation (see Figure 14) leads to a suppressed oscillator strength and, thus,
an enhanced lifetime by a few orders of magnitude; moreover, the cooling of
excitons due to acoustic phonon emission is also enhanced by a few orders of
magnitude compared to the bulk case due to the relaxation of the momentum
conservation law along the growth direction. The indirect excitons may in addi-
tion be confined laterally in the potential fluctuations due, e.g., to variations of
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the quantum well thickness; in such traps a large concentration of excitons can
indeed be collected as shown by spatially resolved luminescence measurements
(see Figure 15) [44].

Indirect excitons are also characterized by a repulsive interaction due to their
static electric dipoles all oriented along the growth direction: at low densities this
repulsion is beneficial to BEC, while at higher densities gives rise to a strong blue-
shift and a screening of the external static electric field [46]. Such a blue shift is
analogous to the one experienced by charge transfer excitons at a donor–acceptor
interface [47]. As indirect excitons have a low oscillator strength, their large den-
sity dependent blue-shift does not lead directly to large all-optical nonlinearities;
however, more complicated schemes of coupled inorganic quantum wells are con-
ceivable [48] in which direct and indirect excitons are hybridized to take advan-
tage of the charge transfer character of the indirect ones and of the large oscillator
strength of the direct ones, in analogy to the case of hybrid Frenkel–Wannier–Mott
excitons in organic-inorganic heterostructures [49].
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We review the theory of polaritons, referring in particular to excitonic polaritons,
and also mention some experimental evidence. The semiclassical theory, which
makes use of a model dielectric function incorporated in Maxwell’s equations, is
developed and compared with the full quantum theory, which implies the quanti-
zation of the electromagnetic field and of the polarization field.

The polariton concept is extended to the case of surfaces and interfaces, where
localized exciton modes are present.

The case of reduced dimensionality nanostructures, such as Quantum Wells
(Q.W.) and Quantum Well Wires (Q.W.W.), is also considered, and resonant and
surface-like polariton modes are described.

The extension of the polariton concept to the case of microcavities is finally
discussed.

1. Introduction and General Concepts

We consider the electronic excitation in solids, due to the electron bound to its
hole and forming an exciton, as described in the chapter by G.C. La Rocca. The
electron–hole interaction is responsible for the relative motion and produces states
characterized by their binding energies. In addition, since the total momentum of
the excitation h̄�kex is a good quantum number, the exciton energies also depend on
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h̄�kex. We recall that in the case of inorganic semiconductors one obtains Wannier–
Mott excitons, characterized by a large effective Bohr radius (compared with the
lattice constant), while in the case of organic materials or large gap insulators one
obtains Frenkel–Peierls excitons, characterized by a small Bohr radius [1].

The excitons always carry a transition dipole moment �µex, related to the dy-
namic polarization of the medium, so that we can have longitudinal excitons
( �µex ‖ �E) and transverse excitons ( �µex ⊥ �E), always separated in cubic crystals.
We recall that the energy separation between longitudinal and transverse modes at
�kex = 0 (�LT ) is related to the oscillator strength per unit volume fex/V by [1,2]

(1)�LT �
2π

ε∞
h̄e2

mωT

fex

V
,

where ε∞ is the value of the dielectric function for ω � ωT , and the oscillator
strength is related to the transition dipole moment �µex by

(2)
fex

V
� 2mωT

e2h̄
|µex|2.

The transition dipole moment �µex, expressed in terms of the conduction and va-
lence band extrema Bloch functions ue and uv and of the exciton radius a0, is in
the case of Wannier–Mott excitons

(3)�µex = 〈ψex|e�r|0〉 � 〈uv |e�r|uc〉
∣∣Fex(0)

∣∣� �µvc

(
1

πa3
0

)1/2

,

where |Fex(0)| is the value of the envelope function at null distance between elec-
tron and hole. The last expression (3) holds also for Frenkel excitons, with the
lattice constant d instead of the Bohr radius a0, so that the ratio of the oscillator
strengths f W.M.

ex /f F
ex is generally of order 10−2.

The dependence of the exciton energy on �kex is quite different for Wannier–
Mott excitons and for Frenkel–Peierls excitons. In the former case it is mostly
given by the exciton center of mass motion, and is about the same for longitu-
dinal and transverse excitons, while in the latter case a relevant contribution is
given by the long range electron–hole exchange term, which in cubic crystals in
the dipole approximation has positive (negative) sign for transverse (longitudi-
nal) excitons [2]. The higher multipoles in some crystals may also significantly
contribute to the dependence of the exciton energy on �kex.

The polaritonic concept originates from considering the electromagnetic radia-
tion of frequency close to that of a transverse exciton. In a medium the radiation is
associated to a pseudomomentum h̄ω

c
n, where n = √

ε is the refractive index. The

total momentum is defined modulus h̄�h, �h being a reciprocal lattice vector, but in
the case of the optical properties the relevant momentum is confined to the first
Brillouin Zone in correspondence to �h = 0 [3]. Since in proximity of an exciton
mode the index of refraction has a strong dependence on frequency, one can see
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immediately that frequency and wave vector are not linearly related, but an anom-
alous dispersion occurs, which produces radiation modes strongly influenced by
the excitonic polarization modes.

Such dressed electromagnetic modes can be obtained directly by including the
polarization �P (ω, �k) in Maxwell equations, with �D = ε �E = �E + 4π �P , and solv-
ing the eigenvalue equations. For the transverse modes (polaritons) we have

(4)ωT (k) = c√
ε(ωT , k)

∣∣�k∣∣,
while for the longitudinal modes the eigenvalue equation is

(5)ε(ωL, k) = 0.

The polariton modes have then a mixed character because they contain a polar-
ization and an electric field contribution. They were first introduced by K. Huang
and K.B. Tolpygo [4] to account for the polarization associated to the optical vi-
brational modes in dipolar lattices.

In the late fifties U. Fano [6], J.J. Hopfield [7], and V.M. Agranovich [8] demon-
strated that the polariton modes can be expressed as quantum field particles in
crystal media, analogous to the photons of the electromagnetic field in vacuum.
The name “polaritons” was introduced by Hopfield and Agranovich to stress their
polarization origin (optical phonons or excitons), and is commonly used to de-
note such mixed modes and the related field particles. Hopfield and Agranovich
also proved that the eigenvalue equation obtained from the quantum theory is the
same as that obtained from the classical theory with the appropriate expression
for ε(ω,0). Such proof was later extended to include spatial dispersion [9], and
the quantum mechanical exact eigenfunctions were also obtained [10].

In the sixties, the polariton idea has become basic in linear and nonlinear op-
tics [5]. Experimental evidence of the “polariton” concept described above is
abundant [11], and also the prediction of an “additional optical wave”, intro-
duced by Pekar [12] as a consequence of spatial dispersion, has been amply con-
firmed [11].

The polariton concept has been extended to the specific optical modes bound to
surfaces and interfaces [13]. In this case the polariton modes are travelling waves
depending on the wave vector in the direction parallel to the surface plane �k‖, and
are evanescent waves in the direction perpendicular to the surface.

The recent study of the optical properties of reduced dimension nanostructures
has required the introduction of polaritons in quantum wells (Q.W.) and in quan-
tum well wires (Q.W.W.), with the derivation of resonant modes and surface-like
modes as functions of the appropriate in-plane wave vector �k‖ or of the linear
wave vector k [14,15].

The recent developments with semiconductor microcavities have also led to the
introduction of specific polariton modes appropriate to microcavities [16]. In this
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case one can consider the specific nature of the relevant material contained in the
microcavities.

In the following sections we will present the concepts described above, giving
the general theory and referring to some relevant experiments.

2. Classical Theory of Polaritons

To obtain the transverse optical modes in a medium we must solve Eq. (4), with
an appropriate expression for the dielectric function ε(ω, �k) in the vicinity of an
excitonic transverse resonance frequency ωex. Using the expression obtained with
the Lorentz oscillator model, which is, for a cubic crystal, in terms of the plasma
frequency ωp and of the oscillator strength fex

(6)ε(k,ω) = ε∞ + ω2
pfex

ω2
ex(k) − ω2 − iωγex

,

where ε∞ is a constant, we obtain the following equation for the polariton disper-
sion modes

(7)
c2k2

ω2 = ε∞ + ω2
pfex

ω2
ex(�k) − ω2 − iωγex

.

In the above equations the plasma frequency is expressed in terms of the elec-

tron density N/V as ωp =
√

4πe2

m
N
V

, ωex(�k) is the exciton transverse mode fre-
quency, fex is the oscillator strength, ε∞ is the background dielectric constant
corresponding to ω � ωex, and γex(ω) is a damping frequency which accounts
for dissipation, mostly due to exciton–phonon interaction and to disorder, with a
small contribution due to electron–hole recombination.

The solution of Eq. (7) gives two modes for every �k value, a lower polariton
branch (L.P.) and an upper polariton branch (U.P.). The upper polariton starts at
a frequency which coincides with the longitudinal exciton value ωL at k = 0, and
at high frequency goes asymptotically to the linear optical behavior ω = c√

ε∞ k.

The value of the longitudinal mode at k = 0 can be obtained immediately from
Eqs. (5) and (6) with ω = ωL, ω0 = ωex(k = 0) and γex = 0,

(8)ωL = ω0

(
1 + ω2

pfex

ω2
0ε∞

)1/2

.

The lower polariton branch frequency goes asymptotically to ωex(�k) for large k

values, and linearly to zero as k → 0, with velocity
c√

ε∞ + ω2
pfex

ω2
0

.
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Fig. 1. Schematic dispersive behavior of excitons and related L. and U. polaritons, neglecting spatial
dispersion. The dashed lines give the independent dispersion of electromagnetic waves and excitons.
The value k0 corresponds to their crossing point. Only transverse excitons interact with the radiation
field.

The polariton modes so defined are analogous to the electromagnetic modes
in vacuum, but the presence of the electronic excitations in the medium changes
their dispersive behavior. They contain both crystal polarization and crystal elec-
tromagnetic waves. Their schematic behavior is displayed in Figure 1 when the �k
dependence in ω(k) is not considered, and in Figure 2 in the case of Wannier–Mott
excitons with �k dependence. In the case of Frenkel–Peierls excitons the dispersive
behavior is usually less pronounced because of the larger values of the effective
mass and is rather different for lower polariton and longitudinal exciton because
of the larger value of the electron–hole exchange [9].

In the former case the strong dispersive behavior of the exciton energy ( h̄2k2

2M
)

makes the lower polariton branch bend strongly upwards so that for ω > ωL an
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Fig. 2. Schematic dispersive behavior of Upper and Lower Polaritons from Wannier–Mott excitons,

including spatial dispersion. The T –L splitting is �LT = 4πe2

h̄
X2

0n
N
V

(from Ref. [9]).

additional propagating wave must exist, as first pointed out by Pekar [17]. The
simultaneous propagation of two waves at the same frequency poses a problem
about their relative amplitudes because Maxwell boundary conditions are not suf-
ficient, and the problem of additional boundary conditions (A.B.C.) arises.

In the case of those Frenkel excitons, where one can consider the total mass
to be infinite (M � ∞), the wave vector dependence is much less important. It
can be obtained in the dipole approximation from the long range electron–hole
exchange contribution, and it has opposite sign for transverse and longitudinal
excitons; it was computed by Heller and Marcus [18] for cubic crystals and by
L. Pirozzi et al. [2] for anisotropic materials. In layered molecular crystals with
strong exciton dipole moment the exciton band width can be rather large. In these
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cases the approximation of infinite exciton effective mass is not fulfilled at least
in layer directions where the distance between molecules is small and where the
resonance intermolecular interaction is large [19].

3. Quantum Theory of Polaritons

It has been shown that the polariton modes can be interpreted as quantum parti-
cles of the electromagnetic fields, analogous to the “photons” in vacuum [6–10].
This is obtained from the quantum treatment of radiation and excitons. The radi-
ation can be expressed in terms of creation (a+

k ) and destruction operators (ak)
of photons of energy h̄vk (with v = c/

√
ε∞ in the medium). Also the excitons,

as shown by G. La Rocca in Chapter 2 of this book, can be expressed in terms
of creation (b+

k ) and destruction (bk) operators for excitation particles (electron–
hole pairs), which obey the boson commutation rules for small exciton densities.
Their mutual interaction can be expressed in terms of the dipole matrix elements
from the ground to the exciton states (3) or, equivalently, in terms of the oscillator
strength (2), through the parameter

β = fex
ω2

p

4πω2
ex

.

The resulting Hamiltonian consists of free photons and free excitons, and of the
photon–exciton interaction. For cubic crystals it is [9]:

(9a)

H =
∑

k

[
h̄vk

(
a+

k ak + 1

2

)
+ h̄ωk

(
b+

k bk + 1

2

)
.

+
∑

k

[
iCk

(
a+

k + a−k

)(
bk − b+

−k

)
+ Dk

(
a+

k + a−k

)(
ak + a+

−k

)]]
,

where the coupling constants are:

(9b)Ck = h̄ω0

(
πβωk

vkε∞

)1/2

,

and

(9c)Dk = h̄ω0
πβω0

vkε∞
.

The first interaction term originates from the contribution − e
mc

�A · �p and the sec-

ond from the e2

2mc2
�A · �A interaction. If we neglect spatial dispersion (ωk � ω0) in

the exciton frequencies, they are related because Dk = C2
k /h̄ω0. In general Dk and
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Ck are much smaller than h̄ω0 for large values of k, but they diverge as k → 0
(infrared divergence of quantum electrodynamics). This makes it impossible to
treat the interaction perturbatively when k < βω0/v.

The above Hamiltonian (9) is quadratic and it couples only photons and exci-
tons of momentum �k and −�k, so that it can be made diagonal by a Bogoliubov–
Tyablikov-like linear transformation, introducing new creation α+

k1
, α+

k2
, and de-

struction operators αk1 , αk2 , linearly related to the previous ones. The new diago-
nal Hamiltonian for the two polariton modes i = 1,2 becomes [9]

(10)H =
∑
k,i

α+
kiαki h̄-k,

and -k turns out to be given by the same equation (7) as in the classical case,
with γex = 0. The explicit expressions of the transformations are obtained from
the Bose commutation rules of the α operators and from

(11)[αki,H ] = h̄-ikαki , i = 1,2.

They turn out to be [7,9,11]:

(12)


αk1

αk2

α+
−k1

α+
−k2

=


W1 X1 Y1 Z1
W2 X2 Y2 Z2
Y ∗

1 Z∗
1 W∗

1 X∗
1

Y ∗
2 Z∗

2 W∗
2 X∗

2




ak

bk

a+
−k

b+
−k

 ,

with

W1 = X2 = (ω2
k − -2

1k)(vk + -ik)

2(vk-1k)1/2{(ω2
k − -2

1k)
2 + 4πβω2

kω2
0/ε∞}1/2

,

X1 = W2 = −2iCkvk/h̄

(ωk − -1k)(vk + -1k)
W1,

Y1 = Z2 = -1k − vk

-1k + vk
W1,

(13)Z1 = Y2 = ωk − -1k

ωk + -1k
X1.

The fact that the quantum theory gives the same results for the -ik as the classi-
cal theory is not surprising, but the quantum theory describes the polariton modes
as particles, so that polariton statistics can be made and polariton squeezing ob-
tained [20]. The quantum theory is also appropriate for all values of �k, even out-
side the first Brillouin Zone, which is important for investigating linear and non-
linear dynamical processes.

With the quantum theory one can also find the eigenfunctions, provided the
new vacuum is determined, because the ground state of Hamiltonian (10) with
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interaction does not coincide with the ground state of the Hamiltonian without
interaction (zero photons and excitons). The new vacuum of the polaritons |0′〉 is
defined from

(14)αki

∣∣0′〉= 0,

and turns out to be given by [10,11]:

(15a)
∣∣0′〉=∏

k

1

Nk

exp

[
1

2

∑
i,j

Gi,j (k)α+
ikα+

j,−k

]
|0〉,

with

G11(k) = G22(k) = −-1k + -2k − ωk − vk

-1k + -2k − ωk + vk
,

(15b)G12(k) = G21(k) = −i

(
vkωkε∞
πβω2

0

)1/2

G11(k),

and the normalization constant

(15c)N2
k = |W1|2 + |X1|2,

with W1 and X1 given by (13).
The polariton vacuum |0′〉 is quite different from the independent particle vac-

uum |0〉. The polariton states are obtained by applying to the polariton vacuum
|0′〉 powers of the operator α+

ik , which create a number of polariton states. Even in
a one-polariton state any number of photons and excitons are contained. The lin-
ear combination of a one-photon and one-exciton state often used is a very crude
approximation, which is valid only for large values of k. As an example we report
in Figure 3 the one-photon and one-exciton component, the two-photon and one-
exciton component, and the three-photon components for the lower polariton of
CuCl.

4. Real Space Density Matrix Approach

Polariton states and the excitation spectra can be also discussed when more ex-
citon states are involved and may influence one another, and when coherence
effects between the electric field and electron and hole need to be taken into ac-
count. In these cases an alternative approach to the one described above can be
used, particularly appropriate for studying the dynamics of polaritons and nonlin-
ear properties. It consists in extending the density matrix method and the Bloch
equations of atomic physics to solid state problems. This approach has been de-
veloped by Stahl and Baslev [21], who consider the Heisenberg equation for the
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Fig. 3. Components of the lower polariton state, computed for the 1s exciton-polariton of CuCl (from
Ref. [10]): (a) one-photon (− · − ·− · −) and one-exciton (− − −−) components; (b) two-photon and
one-exciton component; (c) three-photon component.



POLARITONS 139

density matrix

(16)ih̄
∂ρ

∂t
= [H,ρ] + ih̄

(
∂ρ

∂t

)
irr.

,

with inclusion of an irreversible decay contribution, due to electron–electron and
electron–phonon interaction. In the case of two bands this leads to a Schrödinger-
like equation for a coherent wave function Y (�r, �R), which gives the probability
amplitude of an electron–hole pair, including the coupling to the electric field, and
a broadening value 7 to account for irreversible decay processes, i.e.,

(17)

[
Eg − h̄ω − i7 − h̄2

2M
∇2

R − h̄2

2µ
∇2

r + V (r)

]
Y
(�r, �R)= M

(�r)E( �R),
where �r is the relative coordinate and �R the center of mass coordinate; �E denotes
the electric field and V (r) the electron–hole attraction. This couples the exciton to
the electric field E( �R) through the transition dipole density M(�r) (Fourier trans-
form of the dipole matrix element between Bloch functions at the same k). When
more bands are considered coupled equations of type (17) result. The polarization
is obtained from the coherent wave function as

(18)P(R) =
∫

d�r M
(�r)Y (�r, �R).

This can be computed from the simultaneous resolution of (17) and of Maxwell
equations to obtain the electric field. In this approach the polariton spectrum is
obtained from the peaks in the imaginary part of the susceptibility. As an example,
the results of such calculations are given in Figure 4 for GaAs, where we have
separated Heavy Hole and Light Hole exciton states [21,22].

Fig. 4. Calculated dispersive behavior of polaritons in GaAs (from Ref. [22]).
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An essentially equivalent procedure is given by K. Cho in terms of the current
densities [21].

5. Experiments on Polaritons

Experimental investigation of the “polaritons” described above is abundant. As an
example we give in Figure 5 the lowest excitation of CuCl, with the dispersive be-
havior obtained from nonlinear optical experiments (two-photon absorption and
hyper-Raman scattering) [23]. As a further indication of the polariton nature of
the excitation in CuCl we can find the dispersive behavior of Longitudinal exciton
and of the Lower and Upper Polariton in CuCl, from the two-photon transition to
biexciton states [23]. In Figure 6 we show the reabsorption dips in the biexciton
luminescence produced by resonant two-photon absorption from the ground state
to the biexcitonic state with an external laser. We also plot the intensity minima

Fig. 5. Polariton dispersion of the 1s exciton-polaritons in CuCl for small values of k, as obtained
from (a) two-photon absorption at different angles and (b) hyper-Raman scattering (from Ref. [23]).
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Fig. 6. Resonant two-photon transitions to biexciton states in CuCl (from Pribram et al. [23]):
(a) dips in the luminescence from biexciton states due to the reabsorption in the presence of laser
light; (b) plot of the two-photon absorption with respect to laser energy.

with respect to laser energy, which give the dispersion of the three intermediate
states, L.P., longitudinal exciton, and U.P. We also report in Figure 7 the polariton
dispersive behavior of the lowest exciton in GaAs, as obtained from the reflec-
tivity of a thin slab (6000 Å) grown by molecular beam epitaxy (M.B.E.), where
the additional wave due to the k-dispersion of the polaritons produces additional
interference dips [24]. We also present in Figure 8 the comparison of the experi-
mental reflectance spectrum with that calculated [25] using the Stahl and Baslev
real-space density matrix approach described above [21]. In Figure 9 we finally
show the direct observation of the additional wave in CdS obtained by Lebedev
et al. [26]. Other experimental evidence is reviewed in Ref. [11]. The polariton
concept is therefore amply demonstrated in bulk crystals and thin films.

6. Surface Polaritons

The crystal boundaries lead to surface states in the spectra of all excitations, and
therefore also surface excitons interacting with photons must result in surface
polaritons [13]. These are mixed modes, localized at the surface, with frequencies
in the region between ωT and ωL, where no bulk polaritons exist in the absence
of spatial dispersion. They do not couple directly to free electromagnetic waves
because in their frequency range it is not possible to satisfy simultaneously the
energy and momentum conservation laws, as is generally true for independent
eigenmodes.
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Fig. 7. (a) Reflectance of a thin film (6000 Å) of GaAs, with evidence of the dips produced by
lower polariton interference (capital letters), and those with the additional waves (from Ref. [24]).
(b) Corresponding dispersive behavior of exciton polaritons in GaAs. Observe the double L.P. curves
due to the heavy and light hole mass (from Ref. [24]).
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Fig. 8. Comparison of (a) theoretical and (b) experimental reflectance spectra in a GaAs thin film of
about 600 nm thickness (from Ref. [25]).

Fig. 9. (a) Dispersion of the real part of the index of refraction in a CdS crystal with the electric field
polarized in the laser plane. (b) Real part of the index of refraction and transmitted intensities of the
LP(I+) and UP(I−). From Ref. [26].
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To understand in a simple way how all this happens one can use the phenom-
enological classical approach, as described in Section 2 for bulk polaritons.

One considers the dielectric function near an exciton state in the form

(19)ε(ω, k) = ε∞
(

1 + ω2
L − ω2

T

ω2
T + αk2 − ω2 − iγ ω

)
,

which includes spatial dispersion (α � h̄ωT /M for Wannier excitons), and damp-
ing (γ �= 0).

The concept of surface polaritons can be presented in the simplest way by ne-
glecting spatial dispersion and damping [27]. Considering the surface plane x–y ,
where periodic translation symmetry is preserved, the good quantum number is
the two-dimensional wave vector �q(qx, qy) in the surface plane. Let us direct �q
along the x-axis (qx,0), and consider the Maxwell equation for the y component
of the magnetic field (T.M. mode). We obtain

(20)
∂2Hy

∂z2 −
(

q2
x − εω2

c2

)
Hy = 0,

which gives a z-dependence which decays exponentially away from the surface,
for z < 0 as

ek2z = exp

(
z

√
q2

x − ω2

c2 ε

)
,

and for z > 0, in vacuum, as

e−k1z = exp

(
−z

√
q2

x − ω2

c2

)
.

Such a z-dependence also holds for the electric field. The electric field is in the
xz-plane, and for z > 0 (in vacuum), we obtain E

(1)
z = iqx

k1
E

(1)
x , while for z < 0

(in the medium) we obtain E
(2)
z = −iqx

k2
E

(2)
x .

The eigenvalue dispersive equation for the surface polaritons is obtained by im-
posing the boundary conditions at the surface (E(1)

x = E
(2)
x and E

(1)
z=0 = εE

(2)
z=0),

which gives

(21)
iqx√

q2
x − ω2

c2

= −iqxε√
q2

x − ω2

c2 ε

.

The above equation gives the dispersion relation of surface polaritons

(22)ω = cqx

√
ε(ω) + 1

ε(ω)
.
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Fig. 10. Schematic behavior of the surface polariton dispersion ω(qx) when spatial dispersion and
damping are neglected. The dash-dotted line gives the surface state as a function of qx . The continuous
lines denote upper and lower bulk polaritons.

From Eq. (21) it follows that the only acceptable solutions require ε(ω) to be
negative, which implies, from expression (19), that ω be in the interval between
ωT and ωL, where no bulk solutions exist in the absence of spatial dispersion.
Substituting expression (19) into (22) we obtain the surface polariton dispersion
dependence. This gives for ω a monotonically increasing function of qx , which
is schematically shown in Figure 10 in the limit γ → 0, α → 0. The frequency
range of the surface polariton ωS is above ωT (the lowest state is in correspon-
dence to ε(ω) = −∞) and below ωL (the highest state is in correspondence to
ε(ω) = −1).

The surface polariton is therefore incompatible with all polariton modes of the
crystal or of the vacuum, and consequently cannot decay into them. All surface
polaritons are therefore nonradiative, and cannot be excited by shining light into
the surface. A similar situation occurs in the case of an interface, with the di-
electric constant ε1 used instead of 1 in expressions (21) and (22). When ε1 ap-
proaches ε∞, ωS → ωL.

To consider spatial dispersion in the dielectric function, α �= 0 in Eq. (19),
makes the calculation of surface polaritons more complicated; in this case the
usual boundary conditions are not sufficient to determine eigenvalues analogous
to (22) because of the additional ray. Consequently additional boundary condi-
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Fig. 11. Schematic behavior of surface polariton modes with consideration of spatial dispersion
(from Ref. [27]). Symbols as in Figure 10.

tions (A.B.C.) are required, as shown by Agranovich in a specific chapter of the
book dedicated to surface polaritons [28]. The surface polariton modes have a be-
havior which is schematically indicated in Figure 11. In this case Maradudin and
Mills [29] have shown that the admixture of bulk modes and surface modes of the
same energy but different �q values results in an additional damping mechanism.

To observe surface exciton polaritons is an experimentally difficult task even in
the case when spatial dispersion is considered, because, though their energy can
overlap that of bulk polaritons or vacuum photons, the corresponding in-plane
wave vector �q is always larger. One must use techniques which generate suffi-
ciently large wave vectors parallel to the surface. We can mention the method of
attenuated total reflection (A.T.R.), the use of periodic surface structures (grat-
ings), or inelastic scattering of light or electrons.

The most effective technique is A.T.R., which is obtained when light is totally
reflected inside a prism of larger index of refraction np , applied to the surface. If
α is the angle of incidence, larger than the angle of total reflection, an evanescent
wave with wave vector

(23)q = k‖ = npω

c
sinα

enters the crystal. If the prism is close to the surface, and the value given by (23)
is sufficiently large, this evanescent wave can couple to the surface mode and ex-
cite it. This effect decreases the reflectance in correspondence to the appropriate
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Fig. 12. Schematic view of the experimental set-up for observing A.T.R. The top scheme shows the
experimental setup. The bottom scheme indicates the condition for exciting the surface polaritons.
From Ref. [27].

value of ω and �q , and produces a dip in the reflected intensity at the appropriate
frequency and angle. The scheme is shown in Figure 12, and experimental results
for the Z3 exciton of CuCl (1s exciton of Figures 5 and 6) at 77 K are reported in
Figure 13 [30]. One can notice the dip in the reflected intensity for light polarized
parallel to the plane of incidence at a frequency between ωT and ωL, and ob-
serve how its energy increases with increasing angle of incidence, thus allowing
to measure the dispersion of surface polaritons.

7. Quantum Well Polaritons

The polariton concept also applies to electromagnetic waves and electronic excita-
tions in nanostructures, provided the translational symmetry is preserved in some
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Fig. 13. A.T.R. due to surface polariton excitation in the Z3 exciton of CuCl (from Ref. [30]). The
dashed line refers to reflection with light polarized perpendicular to the plane of incidence and the
continuous line to parallel polarization. The surface polariton dip is clearly visible.

directions. We show in Figure 14 the scheme of how this can be obtained. The
simplest of such nanostructures is the Quantum Well (Q.W.), consisting of a layer
which contains a number of planes of a material, confined by a different material
chosen to have a larger energy gap. As the surface, it has a two-dimensional trans-
lational symmetry, but is limited by potential barriers in both directions, which
produces discrete localized states, with a two-dimensional subband associated to
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Fig. 14. Schematic view of bulk material, Q.W. with two-dimensional translational symmetry,
Q.W.W. with one-dimensional symmetry. The different densities of states are also indicated.

each of them. The electron–hole interaction produces excitons associated to each
couple of subbands [31].

The typical material for inorganic Q.W. is GaAs in Ga1−xAlxAs, because GaAs
and AlAs have different energy gaps (1.42 eV and 2.4 eV, respectively, at room
temperature), and they have the same lattice parameter so that internal strains are
not produced. The aluminium concentration fixes the value of the gap in the mixed
crystal and hence the value of the potential barriers. Other types of inorganic
Q.W. have been obtained, including the nitrates GaN/Ga1−xAlxN, which have
excitons in the ultraviolet spectral region. Organic Quantum Wells have also been
produced [32]. Typical are the T.C.N.Q., but all organic materials can be grown
to form nanostructures, with the advantage that lattice matching is not required
because the molecular binding in this case is long range, being mostly due to van
der Waals interaction.
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Table I. Symmetry classification of excitons in Q.W. (groups D2d ). We consider only the lowest
exciton states originating from the lowest H.H., L.H., or from the split off (S.O.) valence subbands.

Other states can be found in Ref. [33]

VB CB 7V 7c Exciton One photon g factor

71
HH1 CB1 76 76 72

275 x,y 1

73
LH1 CB1 77 76 74 z 4/3

275 x,y 1/3

73
SO1 CB1 77 76 74 z 2/3

275 x,y 2/3

The excitons in Q.W. have a larger binding energy than in the bulk because the
electron–hole attraction has a stronger effect (the purely two-dimensional binding
energy of the lowest exciton is 4 Ry∗) [31]. However, the excitation energy is
larger than in the bulk because the confinement lowers the valence subbands and
increases the energy of the conduction subbands. The reduced symmetry splits the
top valence band (7(4)

8 in zincblend material), into two bands 76 and 77, called
for convenience Heavy Hole and Light Hole bands. Consequently the excitons are
subdivided into Heavy Hole (H.H.) and Light Hole (L.H.) excitons, and so are the
polaritons.

The calculations of the exciton energies and wave functions with their �k‖-
dependence, as functions of the materials and of the Q.W. thickness have been
carried out in great detail and are described in the chapter by G.L. La Rocca of
this book. The reduced symmetry produces an internal structure of the exciton,
depending on the direction of the dipole moment with respect to the growth axis.
One has a longitudinal exciton (L.) and a transverse exciton (T.) with dipoles in
the plane, and a Z exciton with dipole moment oriented in the growth axis. The
exciton symmetries are reported in Table I, where it can be observed that the T
and Z excitons can be excited in the case of the L.H. lowest exciton, while only
the T excitons are excited in the case of the H.H. lowest exciton [33].

We wish here to show how the mixing of the electromagnetic waves produces
also in this case exciton polaritons, as we have seen for surface polaritons. How-
ever, in this case, as first pointed out by V. Agranovich and O. Dubovsky for
the purely two-dimensional limiting case [34], all possible values of �k‖, includ-
ing zero, are allowed, and for all values with |�k‖| < ω

n
c = k0, the polaritons are

degenerate with the photons in the barrier and can decay into them. Only the po-
laritons with |�k‖| > k0 behave as surface-like waves outside the Q.W., due to the
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conservation of the parallel component of �k on the border, which gives outside
the well

(24)
∣∣�k∣∣= k0 =

√
k2‖ + k2

z ,

i.e., evanescent waves in the z direction for k‖ > k0. This explains the fact that
excitons in Q.W. are excited by the impinging radiation, and photoluminescence is
observed in Q.W. polaritons, while it is absent for surface polaritons. In the above
mentioned paper [34], also the 1D case (quantum wire) has been considered. It
was shown that in 1D the lifetime τ is of the order of (2πa/λ)τ0, where τ0 is the
molecular lifetime and a the lattice constant (for Wannier–Mott excitons it would
correspond to the Bohr radius), while in 2D, τ ≈ (2πa/λ)2 τ0. In 1D the effect is
weaker, in the 2D case the “superradiant” decay has been observed for the first
time in anthracene [35].

7.1. ELECTRON–HOLE EXCHANGE EFFECTS

We first wish to consider the electron–hole exchange contribution, which is gen-
erally neglected in the calculation of Q.W. excitons, but is essential to compute
the internal structure of the excitons. Since the electron–hole exchange origi-
nates from the Coulomb interaction between electrons, this corresponds to solving
Maxwell equation with electron–electron interaction but in the limit of c → ∞,
i.e., without retardation.

The k-dependent electron–hole exchange term appearing in the effective mass
equation is

(25)J
(�k)= g(7)〈ψckc ψvk′

v
| e2

r12
|ψvkvψck′

c
〉,

where �k = �kc − �kv = �k′
c − �k′

v , and g(7) is a numerical factor which gives the
singlet component in every specific symmetry determined state (g = 4/3 for 78
valence band excitons, and g = 2/3 for the 77 split off valence band). Expanding
the term 1/r12 of Eq. (25) we can separate J (�k) into a short range contribution,
which is independent of �k, and a long range contribution, which depends on �k. The
short range contribution gives the oscillator strength and the T −L splitting, while
the long range contribution gives a spatial dispersive behavior which amounts to
the total �k dependence in the case of Frenkel excitons with total mass M‖ → ∞.
In the case of Q.W. the symmetry is D2d and the values of g(7) can be obtained
for all exciton states (see Table I). A separation occurs between the transverse
excitons with dipole on the plane (T excitons) and those with dipole along the
growth axis (Z excitons). One can observe in Table I relevant exciton symmetries
and selection rules for the point groups D2d , appropriate to Q.W. originating from
materials with cubic symmetry, when one neglects the lack of inversion of the
zincblend symmetry on the well plane.
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Fig. 15. Internal structure of the LH-CB exciton of a Q.W. of GaAs/AlGaAs (60 Å wide), computed
from the calculation of the electron–hole exchange (from Ref. [36]).

All the above considerations are implemented by carrying out the calculations
of the exchange contribution (25) in Q.W.s of different thicknesses. In this case
one can use the expansions at the band extrema in terms of the bulk Bloch func-
tions uc(�r) and uv(�r), with envelope confining functions c(z) and v(z). For the
conduction subband we have

(26)ψc

(�k‖, �r)=
(

V

S

)1/2

ei�k‖· �ρuc

(
0, �r)c(z),

where V denotes the volume and S the surface. A similar expression holds for
the valence subband. The resulting contributions from Eq. (25) give a short range
exchange and a long range exchange greatly increased with respect to those of
the bulk, due to the larger exciton envelope function value at the origin Fex(0)

and to the large overlap of the confining functions in the z direction [36]. The
short range exchange gives a local field correction, while the long range contribu-
tion is obtained by screening the electron–hole interaction with the ε∞ dielectric
constant [37].

We report in Figure 15 the computed splittings of the T, L, and Z modes in the
L.H. exciton of a GaAs/GaAlAs Q.W, as a function of �k‖. The computed value
of the splitting at �k‖ = 0 between the Z exciton and the T exciton is 1.2 meV,
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Fig. 16. Experimental absorption on the Q.W. polariton for an angle of incidence of 66◦, with polar-
ization parallel and perpendicular to the plane of incidence. The shift of the parallel polarized peak is
observed for LH excitons as expected (from Ref. [38] and private communication by D. Frölich).

in agreement with the experimental observation obtained by Fröhlich et al. [38],
who measured the transparency for perpendicular and for oblique impinging light,
polarized in the plane of incidence. Their experimental results are reported in
Figure 16, and show for oblique impinging light, with polarization parallel to the
plane of incidence, the presence of the Z Light-Hole exciton peak, displaced by
about 1.2 meV with respect to the T Light-Hole exciton peak. This occurs only for
L.H. exciton polaritons, where the Z polariton is optically active, and not in the
H.H. exciton polariton case, where the Z polariton is not coupled to the radiation,
as can be seen in Table I.

7.2. RETARDATION EFFECTS AND Q.W. POLARITONS

To obtain the polaritons one can use the quantum picture of Section 3 or the semi-
classical approach of Section 2. We follow the latter scheme and solve Maxwell
equations including retardation [36,39]. The susceptibility near any exciton reso-
nance is non-local and can be expressed as follows

χQ.W.

(�k‖,ω, z, z′)= χQ.W.

(
ω, �k‖

)
ρ(z)ρ

(
z′)
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= µ2
cv

h̄

∣∣F Q.W.
ex (0)

∣∣2ρ(z)ρ
(
z′)

(27)×
[

1

ωex(�k‖) − ω + iε
+ 1

−ωex(�k‖) − ω + iε

]
,

where ρ = c(z)v∗(z) is the product of the confinement functions of electron and
hole. We observe that ωex(�k‖) does not include the long range exchange described
above because its effects appear in the solution of Maxwell equations, while the
short range exchange appears in the form of a local field effect, as shown by
Cho [37].

The susceptibility (27), substituted into Maxwell equations, originates the fol-
lowing integro-differential equation for the electric field �E(ω,k‖, z):

�∇ ∧ �∇ ∧ �E − ω2

c2

[
ε∞ �E(ω,k‖, z) + 4π

∫ +∞

−∞
dz′χ

(
ω, �k‖, z, z′) �E(ω,k‖, z′)]

(28)= 0.

The solutions of the above equation (28) in the inhomogeneous system are ob-
tained by matching at the boundaries the solutions inside the Q.W. with the free
electromagnetic waves in the barriers. As mentioned before, two types of so-
lutions can be found: the resonant polaritons when k‖ < k0 = ω

c

√
ε∞ and the

surface-like polaritons when k‖ > k0 = ω
c

√
ε∞.

To find the resonances, we look for the general solutions for k‖ < k0, consider-
ing the scattering of waves by the Q.W. and expressing the scattering coefficients
in the Breit–Wigner form

(29)α = ω − ω̄ − i7

ω − ω̄ + i7
exp(ikzL),

where the condition ω = ω̄(�k‖,ω) gives the values of the resonances of the optical
modes and the corresponding 7(�k‖,ω) gives the linewidths. We obtain for the
three optically active modes [36,39]:

(30)ω̄T

(�k‖,ω
)= ω(k‖) − 4πµ2

cv|Fex(0)|2
ε∞h̄

k2
0P(k‖),

(31)7T

(�k‖,ω
)= 2πµ2

cv|Fex(0)|2Q2(kz)

ε∞h̄

k2
0

kz

,

(32)ω̄L

(�k‖,ω
)= ω

(�k‖
)− 4πµ2

cv|Fex(0)|2
ε∞h̄

k2
zP (kz),

(33)7L

(�k‖,ω
)= 2πµ2

cv|Fex(0)|2Q2(kz)kz

ε∞h̄
,
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(34)ω̄Z

(�k‖,ω
)= ω

(�k‖
)+ 4πµ2

cv |Fex(0)|2
ε∞h̄

(∫
dzρ2(z) − k2‖P(kz)

)

(35)7Z

(�k‖,ω
)= 2πµ2

cv|Fex(0)|2Q2(kz)

ε∞h̄

k2‖
kz

.

In the above expressions

(36)Q(kz) =
∫ +L/2

−L/2
ρ(z) cos(kzz) dz,

and

(37)P(kz) = −
∫ +L/2

−L/2
dz

∫ +L/2

−L/2
dz′ 1

2kz

sin
(
kz

∣∣z − z′∣∣)ρ(z)ρ
(
z′).

For �k‖ > k0 surface-like modes are found by matching at the boundaries the
evanescent waves of the barriers with the solutions inside the Q.W. The surface-
like modes are stationary, with zero radiative linewidths, and propagate only in
the quantum well plane. They are given by the same expressions (30), (32), and
(34) of the previous case, with 7 = 0, provided the quantity P(kz) is replaced by
�P (kz), obtained by using the imaginary wave vector ikz, instead of kz, i.e.,

(38)P̄ (kz) =
∫ +L/2

−L/2
dz

∫ +L/2

−L/2
dz′ 1

2kz

exp
[−kz

(
z − z′)]ρ(z)ρ

(
z′).

The modes described above are the polaritons in the quantum wells, totally
analogous to bulk polaritons and surface polaritons, except for their radiative
linewidths for �k‖ < k0. For the purpose of illustration we show in Figure 17 the
dispersion of polaritons, computed for a typical quantum well GaAs/GaAlAs. In
Figure 18 we show the computed dispersive behavior and the lifetime broadening
of the Z3 exciton polariton in a Q.W. CuCl/Ca2F for small values of the in plane k

vector, and in Figure 19 the computed dispersive behavior as k‖ greatly increases.
A more extended discussion of Q.W. polaritons can be found in a recent review

article by L.C. Andreani [40].

7.3. Q.W. POLARITON LIFETIMES

While in bulk material polaritons would have an infinite radiative lifetime in an
unlimited crystal, in confined structures we have seen that polaritons have a ra-
diative broadening when �k‖ < k0. When light impinges on a Q.W. only resonant
modes are produced because this condition holds (the radiation is close to normal
incidence because of the large refractive index of the barrier material). Photolumi-
nescence therefore results, with the decay lifetime 1/7 given above in Eqs. (31),
(33), (35). As pointed out by Agranovich and Dubovsky for the two-dimensional



156 F. BASSANI

Fig. 17. Polariton modes for a Q.W. of GaAs/AlGaAs (from Ref. [39]).

limit [34] such a lifetime at k‖ = 0 is orders of magnitude smaller than in bulk
crystals.

An equivalent alternative way of considering lifetimes is to compute the decay
rates of the quantum well polaritons into the photons of the barrier with the same
�k‖ and all possible values of kz, characterized by the one-dimensional density of
states

(39)ρ
(�k‖,ω

)= V

πS

(
n

h̄c

)2
h̄ω√

k2
0 − k2‖

θ(k0 − k‖),

where θ(x) is the step function (0 for x < 0, 1 for x > 0), and n the refractive in-
dex. From Fermi’s golden rule one obtains the decay rates. They can be expressed
for any polarization direction �ε in terms of the exciton oscillator strengths per unit
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(a)

(b)

Fig. 18. (a) Dispersive behavior of polaritons in the lowest exciton resonance (Z3) of CuCl/Ca2F
Q.W. (from Ref. [39]). The lower curves (b) give the computed radiative linewidths for k‖ < k0.



158 F. BASSANI

Fig. 19. Dispersive behavior of CuCl/Ca2F Q.W. polaritons for large values of the in-plane wave
vector k (from Ref. [39]).

area

(40)fε = 1

S

2

m0h̄ω0

∣∣〈ψ0|�ε · �p|ψex〉
∣∣2,

and for k‖ = 0, one obtains [41]

(41)70 =
(

2π

n

)
e2

m0c
fε.

For the H.H. polaritons the L and T modes have the same decay rates and the
Z-mode does not decay because fz = 0, as shown in Table I. For L.H. polaritons
fz = 4fxy and also the Z-mode decays. An estimate has been obtained for Q.W.
of the type GaAs/AlGaAs of about 100 Å width. From a computed oscillator
strength fxy � 5 · 10−4 Å−2 a radiative lifetime τ0 of about 12 picoseconds has
been obtained [15,41].

The experimental data usually give a larger lifetime, with a linear temperature
dependence at low temperature [42]. This is due to the fast thermalization of the
polariton modes produced by inelastic scattering with the acoustic phonons, with
only a fraction of the polaritons occupying the sates with k < k0, which can decay
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Fig. 20. P.L. decay times as functions of temperature for GaAs/AlGaAs L.H. polaritons in Q.W.
of various thicknesses (from Ref. [42]). Observe the linear dependence and the increase with Q.W.
thickness.

radiatively with lifetime τ0. Such a thermalization gives for the lifetime of the
H.H. exciton polariton [41]

(42)τ (T ) = 3MkBT

h̄2k2
0

τ0,

in fair agreement with experimental results [42], as shown in Figure 20.
Experimentally, one can also distinguish between the “fast” lifetimes for k < k0

[43] at very low temperatures, and the “slow” lifetimes, linear with T for thermal-
ized polaritons, according to Eq. (42) [42].

Another evidence of the radiative lifetime is obtained from its influence on the
normal-incidence reflectivity, which has been computed with the procedure sug-
gested by K. Cho [44], using linear response theory with the appropriate nonlocal
susceptibility. For a Q.W. with a barrier of infinite length on one side and a barrier
of thickness D on the side where one measures the reflectivity, one finds [41]:

R(ω) =
(

n − 1

n + 1

)2

(43)− 8n(n − 1)

(n + 1)2
· (γ + 70) cosk0F + (ω0 − ω) sink0F

(ω0 − ω)2 + (γ + 70)2
70,

where F = L+2D, ω0 is the resonance frequency and γ is the nonradiative width.
We observe that the correction to the background reflectivity strongly depends on
the radiative decay width 70.
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(a)

(b)

Fig. 21. (a) Absorption of an A.Q.W. at normal incidence (continuous line) and polarized along the
z axis (dashed line). In the inset the electron and hole confining potentials. (b) Dispersion curves of
the L.H. polaritons for the A.Q.W. of (a) (from Ref. [46]).
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7.4. ASYMMETRIC AND DOUBLE QUANTUM WELLS

Polariton states can be computed also in more complicated two-dimensional struc-
tures, such as Asymmetric Quantum Wells (A.Q.W.) or Double Quantum Wells
(D.Q.W.), with a confining potential of different depth in different parts of the well
or two coupled wells of different thicknesses respectively. In this case it is conve-
nient to use a simplified procedure suggested by V.M. Agranovich [45], based on
the fact that the wavelength of the radiation is large compared to the width of the
well, and consequently one can use for all fields inside the Q.W. the expansion

(44)F(z) = F(0) +
(

∂F

∂z

)
0
z,

and

(45)F
(�r, t

)= F(z)ei�k‖· �ρe−iωt .

The phase conservation imposes a constant k‖ at all the boundaries, and all other
boundary conditions give eigenvalue equations for the parallel and perpendicu-
lar components of the fields in terms of the perpendicular and parallel dielectric
functions ε⊥ and ε‖, and of the background dielectric function εb [46]. The re-
flected and transmitted fields can be found in terms of the incident ones, and the
reflection coefficients RS and RP for polarization perpendicular and parallel to
the plane of incidence can be computed when the material parameters are known.
The complex poles of RS and RP give the values and the dispersions of the polari-
ton states and their radiative linewidths. Also in this case the results for k‖ > k0
are obtained from those at k‖ < k0 by replacing kz with ikz, the linewidths being
equal to zero [46,47]. We give in Figure 21 the computed absorption spectra of
an A.Q.W. of GaAs/GaAlAs and the computed dispersion curves of the polariton
states.

7.5. DETECTION OF Q.W. AND A.Q.W. POLARITONS

While the resonant Q.W. polaritons (k‖ < k0) can be observed from the peaks in
the absorption and in the reflectivity, as shown by Fröhlich et al. [23] and by Berz
et al. [47], the surface-like Q.W. polaritons can be excited only by producing high
values of k‖ with surface gratings or with total reflection as shown in Figure 12.
As in the case of surface polaritons, one expects dips corresponding to attenuated
total reflections, an example of which is shown in Figure 22, based on a detailed
calculation on a CuCl Q.W. polariton [48].

8. Quantum Wire Polaritons

The exciton polariton concept can be extended to the Quantum Well Wires
(Q.W.W.), where the translational symmetry is preserved only in one direction.
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Fig. 22. Attenuated total reflectivity of a Q.W. of CuCl at nearly grazing incidence, with light po-
larized in the plane of incidence (− − − Rp), and perpendicular to it (— Rs ). One can observe the
appearence of the L.H. polariton in the former case. From Ref. [48].

This of course is also true for those organic crystals (like polyacetylene) that are
linear molecular chains, so separated one from another that one can neglect the
interaction among them. In this case the �k vector is also one-dimensional, and one
obtains one-dimensional polariton modes.

As in the Q.W. case, we can find the polariton modes by solving Maxwell equa-
tions with the appropriate boundary conditions and with the appropriate nonlocal
susceptibility. One starts with the exciton energies and wave functions, which are
computed by introducing a confining potential in two directions and the Coulom-
bic electron–hole attraction in three dimensions (or an effective attraction in one
dimension, since the Coulombic attraction in one dimension would give a diver-
gent binding energy) [49]. Also in this case the cylindrical symmetry separates
the degeneracy of the valence band, so that one can use a two-band model, and a
trial envelope function of the form
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ψexc.
k,Me,Mh

( �ρe, �ρh, xe, xh

)
(46)=

∑
me,ne

fne,Mek/2(ρe, xe)fnh,Mh,k/2(ρh, xh)F ex
ne,nh,Me,Mh

(xe − xh),

where fn denote the wire confinement functions and M the angular momenta
(total momentum M = Me + Mh). The trial wave function F ex(xe − xh) requires
a rather complicated calculation [50], but in the approximation of an infinitely
large confining potential the confinement functions in (46) take the simple form

(47)fn,M,k(ρ, x) = NeiMHeikxJM(κnρ)θ(R − ρ),

where N is the normalization, R is the wire radius and κn = ρ0n/R, ρ0n being the
nth zero of the Bessel function. The oscillator strength of the optical transition
(per unit length) is

(48)
f0

L
= 2mω0

h̄e2
µ2

vc

∣∣∣∣∫ dρe dxe ψexM(ρe = ρh, xe = xh)

∣∣∣∣2,
so that only M = 0 excitons are allowed in the dipole approximation because the
others have null exciton wave function at the origin of the relative coordinates.
Other selection rules can be obtained from symmetry, as in the case of quantum
wells. An enhancement of the binding energy and of the oscillator strength with
respect to the case of quantum wells of comparable widths arises because con-
finement is increased and electrons and holes are forced to stay closer.

The nonlocal susceptibility of the Q.W.W. can be expressed in a form analogous
to (27) as

χ
(
ω,k,M,ρ,ρ′)= 1

h̄

∑
c,v

µ2
cv

[
1

ωex,n − ω + iε
+ 1

−ωex,n − ω + iε

]

(49)× fex(ρ)fex
(
ρ′)∣∣Fex(0)

∣∣2,

where fex(ρ) is the product of the confinement functions of electron and hole
fex(ρe)fex(ρh) in the wire, and Fex(0) is the relative motion envelop wave func-
tion at the origin. This can be inserted into Maxwell equations, as in the case of
quantum wells, and an analogous integro-differential equation of the Fredholm
type is obtained, whose solutions inside the wire can be matched at the border
with the travelling waves in the barrier, using for the ratio of outgoing to incom-
ing waves the scattering coefficients of the Breit–Wigner form (29). As shown by
Tassone and Bassani [50], one can take advantage of the cylindrical symmetry by
expressing the electromagnetic fields in terms of the angular momentum M and
the wave vector in the wire direction k as

(50)�E(k, x) = �EM(k,ρ)eiMφeikx,
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and solving the coupled integral equations for the components inside the wire.
Only electromagnetic waves of angular momentum 0 or ±1 are optically active,
i.e., have nonvanishing polarization.

For M = 0 the excitonic polarization lies along the wire axis and the cor-
responding mode is longitudinal (L), while for M = ±1 the excitonic polar-
ization lies in the orthogonal plane and the two degenerate modes are trans-
verse (W modes). Also in this case one obtains for M = 0 resonant modes for
k < k0 = ω

c

√
εb, and surface-like modes for k > k0 = ω

c

√
εb. We give the expres-

sions for the longitudinal mode for the case k < k0:

(51)ω̄L(k,ω) = ωex(k) − 4π
µ2

cv|Fex(0)|2
ε∞h̄

k2P,

and its radiative broadening

(52)7L = 2π2µ2
cv |Fex(0)|2Q2k2

ε∞h̄
,

where

(53)P =
∫ ∫

dρ dρ′ ρρ′ G
(
ρ,ρ′)fex(ρ)fex

(
ρ′),

and

(54)Q =
∫

ρ dρ J0(kρ)fex(ρ),

the Green function being expressed in terms of the regular Bessel function J0 and
of the singular Bessel function Y0 as:

(55)G
(
ρ,ρ′)=

{−π/2J0(kρ<), for ρ< = min(ρ,ρ′);
−π/2Y0(kρ>), for ρ> = max(ρ,ρ′).

In the case of k > k0 the expressions (51) are the same, but the Bessel functions J0

and Y0 in the Green’s function (55) are replaced by the modified Bessel functions
and 7L = 0 because asymptotically decaying fields in the barrier must be matched
to the solutions inside the wires.

For the M = ±1 case the same approach gives [50]:

(56)ω̄W (k,ω) = ωex(k) − 2πµ2
cv|Fex(0)|2k2

0 − P1

ε∞h̄
,

and

(57)7W (k‖,ω) = π2µ2
cv|Fex(0)|2Q2(k2

0 + k2)

ε∞h̄
,
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Fig. 23. Polariton dispersion curves in a cylindrical Q.W.W. of 40 Å in GaAs/GaAlAs. The broken
line indicates the photon dispersion ω = vk. The difference between the longitudinal and the wire
mode is due to the radiative correction with retardation (from Ref. [50]).

where

P1 =
∫ ∫

ρρ′ dρ dρ′(G(0)
H − iG

(0)
H

)
fex(ρ)fex

(
ρ′)

(58)− 1

k2
0

∫
ρ dρ f 2

ex(ρ),

where the last term produces a resonance shift. The broadening in this case never
vanishes and the mode can decay for all values of k.

The dispersion character of W and L polariton modes of a typical Q.W.W. is
exemplified in Figure 23.

8.1. Q.W.W. POLARITON LIFETIMES

The radiative lifetimes of quantum wire polaritons can be inferred from the broad-
enings (52) and (57). They can also be computed, as in the case of quantum
wells, from the transition probability rate of one-dimensional excitons to the two-
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dimensional photons of the barrier with the same k and with all possible �kρ in
the plane perpendicular to the wire direction. Considering the higher value of the
oscillator strength in quantum wire excitons compared to quantum well excitons
one would expect a shorter radiative lifetime, but the photon density of states
is also different, so that the lifetime is usually larger in quantum wires. Also,
the temperature-dependence due to thermalization is in this case proportional to√

T [51].
An additional effect to be considered in the study of lifetimes is the loss of co-

herence, when scattering by phonons and disorder reduces the coherence length
Fc , with a spread in wavevectors δk � F−1

c and an additional homogeneous broad-
ening [51]. A full discussion of radiative lifetimes can be found in the review
articles by L.C. Andreani [15,40].

9. Exciton-Polaritons in Microcavities

In recent years a new type of heterostructure has been considered, which appears
very promising for enhancing optical effects through increased coupling between
excitons and photons. It is the microcavity, typically constituted by a material of
length comparable to the wavelength of light in the medium, with totally reflecting
barriers in specific directions [16]. The scheme is shown in Figure 24, where
the optical barriers on two sides of the cavity are indicated as Distributed Bragg
Reflectors (D.B.R.), multiple repeats of alternating layers of high and low index of
refraction, each of thickness λ/4, where λ = λvacuum/n is the chosen wavelength

Fig. 24. Scheme of a planar microcavity, where the light is confined by Distributed Bragg Reflectors
(D.B.R.).
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Fig. 25. Schematic behavior of the resonant modes in a planar cavity (from Ref. [52]).

of the layer material. Such D.B.R. are preferred to metal coated surfaces mainly
because surface quality allows coherence to be better preserved in the reflections.
A comparison of the properties of cavities with metallic mirrors and with D.B.R.
is given by V. Savona [52].

The cavity resonant modes, in the ideal situation of perfectly reflecting mirrors,
are obtained from the Fabry–Perot condition

(59)kzLc = Lc

√
ω2εc

c2 − k2‖ = nπ,

where εc is the constant dielectric function of the medium and k‖ is the in-plane
wave vector. A schematic behavior of the lowest Fabry–Perot cavity modes is
shown in Figure 25. We can observe that such modes, which are free propagating

waves in the plane, can exist only for ω2 >
c2k2‖
εc

, otherwise kz is imaginary and in
the z direction we have evanescent waves.

In realistic situations the reflectance of the D.B.R. and the cavity resonant
modes are not the ideal ones; they must be found from the solutions of Maxwell
equations with the appropriate boundary conditions. In our case we can express
the space-dependence of monochromatic fields as

(60)�Ek‖
( �ρ, z

)= �ek‖Uk‖,ω(z)ei�k‖· �ρ,

which gives for the mode function Uk‖,ω(z)
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(61)
d2Uk‖,ω(z)

dz2 +
(

ω2

c2 ε(z) − k2‖
)

Uk‖,ω(z) = 0.

In each layer with constant ε the above equation gives two waves propagating in

opposite directions, with kz = (ω2

c2 ε − k2‖)1/2,

(62)Uk‖,ω(z) = EF(k‖)e−ikzz + Er(k‖)eikzz.

Their complex amplitudes have to be determined by imposing the boundary con-
ditions at each interface. This task is made very simple, also for complicated sys-
tems, by the transfer matrix approach [53], which consists in connecting the two
amplitudes of incoming waves to those of outgoing waves with a matrix of order
two, whose elements are determined from the Maxwell boundary conditions at
each interface, and considering the products of such matrices at each layer. One
obtains in this way the reflectivity of the D.B.R. and the values of the electric field
in the microcavity (M.C.) spacer and out of it. Typical of the D.B.R. is a stop band
of nearly total reflectance centered around the frequency ωs = vk0, where v is the
light velocity in the medium and k0 the vacuum wave vector of light. At normal
incidence the reflectance R = |r|2 is about constant in the stop band; and for N

layer pairs is given by [52]

(63)R � 1 − 4next

ncav

(
n2

n1

)2N

(n2 < n1),

with the phase given by

(64)H = n1LDBR

c
(ω − ωS),

where ωS is the frequency at the center of the stop band, and

(65)LDBR = λ

2

n1n2

ncav(n1 − n2)
,

is an effective penetration thickness ( λ
4 = layer thickness). For the purpose of

exemplification we show in Figure 26 the computed reflectivity of a D.B.R. of 20
layer pairs.

The penetration length (65) and the subsequent phase (64) modify the cavity
mode frequency ωm with respect to the Fabry–Perot frequency ωc of Eq. (59) in
the following way [49]:

(66)ωm = Lcωc + LDBRωS

Lc + LDBR
.

This means that when the cavity is designed in a way that ωS = ωc , the cavity
mode coincides with the Fabry–Perot condition (59) and its frequency is at the
center of the stop band. For the purpose of exemplification we show in Figure 27
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Fig. 26. Reflectivity at normal incidence of a D.B.R. of 20 layer pairs with n1 = 3.6 and n2 = 3.
One can observe the oscillating behavior about the stop band (from Ref. [52]).

Fig. 27. Reflectivity of a λ M.C. with the cavity resonance mode at the center of the stop band (from
Ref. [52]).
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the reflectance of a microcavity, with the dip due to the cavity resonance at ω =
ωc . The width of the cavity mode has also been computed and, for R close to 1,
is given by [54]

(67)γc � (1 − R)c

nc(Lc + LDBR)
.

The calculations can be performed for all values of k‖, and the linewidth can
be made much smaller than for metallic reflectors, which gives a good value for
the finess (ratio of the separation between cavity modes and linewidths).

9.1. POLARITONS IN Q.W. IMPLANTED M.C.

The material inside the cavity spacer contains excitons and, if the optical mode
frequency of the cavity is tuned to an exciton resonance frequency (n = 1 exci-
ton in particular) the two states interact. The splitting at resonance, in analogy
with the case of atoms in a microwave cavity, is called the Rabi splitting. When
the Rabi splitting is large in comparison to the natural linewidths of the cavity
mode and of the exciton, the strong coupling regime holds and two separate
modes are produced. In the opposite case of weak coupling regime the damp-
ing prevails over the light-matter interaction, so that only the radiative decay rates
are modified. A detailed experimental and theoretical study of the strong cou-
pling regime can be found in the review article by Skolnick, Fisher and Whit-
taker [55], and a general analysis of cavity polaritons is in the review article of
Savona et al. [16].

The simplest way to consider the coupling between the cavity mode and the
excitonic state to obtain the cavity polaritons is to vary the separation between the
two frequencies and obtain the two modes as a mixture of cavity mode and exci-
ton. A simple Hamiltonian treatment can be made at k‖ = 0, with a coupling char-
acterized by an energy which gives the vacuum Rabi splitting h̄- at resonance.
This is related to the oscillator strength, and in the case of a Q.W. embedded in
the M.C. is given by [54]

(68)- � 2

(
2π

e2fex

εcmc(Lc + LDBR)

)1/2

.

The matrix Hamiltonian is

(69)H =
∣∣∣∣Ee

h̄-
2

h̄-
2 Ec

∣∣∣∣ ,
and its eigenvalues give the energies of upper and lower cavity polaritons:

(70)E± = Ee + Ec

2
± 1

2

√
(Ee − Ec)2 + (h̄-)2.
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The Hamiltonian treatment cannot consider the linewidths. To take this into ac-
count the master equation for the density matrix, with an irreversible contribution,
must be considered, using Eq. (16) of Section 4. Close to resonance one can sim-
plify the procedure by modifying the Hamiltonian (69), with the addition of an
imaginary contribution −ih̄γ to Ee and Ec in order to account for the linewidths
of exciton and cavity modes, the latter given by (67). At resonance one obtains:

(71)ω± = ωex − i

2
(γex + γm) ± 1

2

√
-2 − (γex − γm)2,

which shows that the condition for strong coupling is |-| > |γex − γm|. One can
visualize in Figure 28 the dependence of the frequency and linewidth of the po-
lariton microcavity at resonance on the reflectance of the D.B.R. The weak and

Fig. 28. Microcavity polariton frequencies and linewidths at resonance, in the weak and strong cou-
pling regimes, as functions of the reflectance. The upper and lower polariton modes separate in strong
coupling, while the linewidths decrease. In strong coupling at resonance the linewidths of U.P. and
L.P. coincide (from Ref. [54]).
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Fig. 29. Calculated polariton dispersion as function of k‖. The broken curves show the uncoupled
exciton and photon dispersion curves (taken to be degenerate at k‖ = 0). The broken vertical line
separates resonant and surface-like polaritons (from Ref. [55]).

strong coupling regimes are indicated, and the vacuum Rabi splitting corresponds
to R = 1, in which case the broadening is given by the exciton linewidth.

In a similar way one can compute the cavity polariton dispersion, taking into
account the fact that the cavity modes and the exciton modes interact only for
the same value of the in-plane wave vector �k‖ [56,57]. Since the dispersions of
excitons and photons are very different, the coupling decreases as k‖ increases
and the upper polariton becomes more photon-like while the lower polariton is
more exciton-like, as in the case of bulk polaritons. An example of such Q.W.
exciton-cavity polaritons has been computed in the strong coupling regime and
is shown in Figure 29 [55,56]. Such calculations have been extended to the case
when more Q.W. are present in one cavity or more cavities are coupled [58].

The polariton dispersion described above can be measured in angle tuning ex-
periments, as in the case of surface polaritons, by observing the dips in total re-
flectance. As an example, we show in Figure 30 the results of experimental data
of Baxter et al. [59]. One can notice the strong shift of the cavity mode with k‖
and a large Rabi splitting, corresponding to an anticrossing at k‖ � 4 · 106 m−1.
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Fig. 30. Energy positions of reflectivity dips for a quantum well embedded microcavity as a function
of the angle of incidence (or of k‖) (from Ref. [59]). The symbols denote experimental points.
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9.2. BULK MICROCAVITY POLARITONS

The problem of calculating exciton-polaritons in bulk microcavities can be better
handled in linear response theory by the transfer matrix model [60]. At the border
of each layer of thickness Fj the transfer matrix is simply given by the classical
optics expression:

(72)

(
cos(ω

c
nj Fj ) − i

nj
sin(ω

c
nj Fj )

−inj sin(ω
c
nj Fj ) cos(ω

c
nj Fj )

)
.

Inside the microcavity, close to the exciton resonance, we use n = √
ε and the

dielectric function in k-space

(73)ε(ω, k) = ε∞ + 4πβω2
0

ω2
0 + h̄k2

M∗
ex

− ω2 − iγ ω
,

where M∗
ex is the total exciton mass, to obtain the electric fields E(z) and the

polarization fields

(74)�P (z) =
2∑

α=1

ñ2
α

(
E+

α eikαz + E−
α e−ikαz

)
,

where ñ2
α = c2k2

α

ω2 − ε∞, and α denotes the two different �k vectors for each fre-
quency. Using the Pekar A.B.C. condition (P = 0 at |z| = Lc/2), one finds re-
lations between the four field amplitude variables E±

α and obtains the transfer
matrix for the microcavity. The total transfer matrix M can be obtained as the
product of the individual matrices of the microcavity spacer and of the layers of
the D.B.R. mirrors [60]. The total reflectivity and the related optical properties
can be calculated in the usual way [53] to obtain:

(75)r = M21 + nsubM22 − M11 − nsubM12

M21 + nsubM22 + M11 + nsubM12
,

nsub being the refractive index of the substrate which supports the microstructure
on one side.

The confinement by D.B.R. can be on one side only (open cavity) or on both
sides (closed cavity). The D.B.R. can produce a null phase shift on reflection (r+)
or a π phase shift (r−) according to the relative magnitude of the first and second
layer of the D.B.R. This can be used to control the exciton–photon interaction,
which is more relevant for the r+ type M.C. [60], as can be intuitively understood
by the greater average field intensities in this case.

The observation of bulk exciton polaritons in microcavities also reveals the
existence of a satellite structure due to the quantization of the center of mass
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Fig. 31. Reflectivity of M.C.s in the frequency region near the bulk exciton. The thickness Lc de-
creases from top to bottom (the seventh curve corresponds to degeneracy). The satellite structure due
to exciton confinement is clearly visible when one approaches resonance (from Ref. [62]).

motion of the exciton in the growth direction:

(76)En = h̄ω0 + n2h̄2π2

2 M∗
ex L2

c

.

This quantization has been theoretically predicted by D’Andrea and Del Sole [61]
and experimentally observed in thin layers of GaAs [60]. In the case of fully
closed microcavities the strong coupling between bulk excitons and photons pro-
duces the two cavity polaritons described above with a very large Rabi splitting, as
in the Q.W. implanted M.C., but with a satellite structure due to the exciton con-
fined motion (76). We show in Figure 31 the experimental evidence of the above
described effects in the reflectivity of a λ/2 GaAs/AlGaAs M.C., with the satellite
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structure clearly observed when the two polariton modes are strongly mixed [62].
Also the increase of the interaction with r+ reflecting mirrors has been observed.

Another observation to be made concerns the larger value of the polariton
splitting at the cross point in microcavities, compared to the usual longitudinal-
transverse splitting in bulk material, due to the increased electron-photon cou-
pling. A comparison of the Rabi polariton splittings of Q.W. implanted and bulk
microcavities can also be made. They depend on the exciton oscillator strengths,
which favors the former, but also on the active layer thickness, which favors the
latter.

The analysis described above has been extended by Vladimirova et al. [56] to
study the in-plane spatial dispersion of the two-dimensional exciton-polaritons,
as in the case of Q.W. implanted cavities. Polariton waves having electric field
components normal to the interface (Z or L polaritons described in the case of
Q.W.) can be excited only with oblique incidence geometry and polarization in
the plane of incidence. This also allows the determination of spatial dependence
by varying the angle of incidence, as shown for surface and Q.W. polaritons.

9.3. QUANTUM THEORY OF POLARITONS IN M.C.

As shown in detail for the case of bulk polaritons, also in the case of M.C. polari-
tons one can develop a full quantum theory by considering the electromagnetic
radiation in the cavity and the exciton states as field particles with interaction
only between states with the same |�k‖|. The interacting Hamiltonian can be made
diagonal recovering the results of the semiclassical approach and obtaining the
appropriate wave functions. Such a program has been carried out by Savona et
al. [63,64]. It has the advantage, as in the general case of the quantum theory of
light, of allowing calculations of the statistical properties of the radiation and of
the luminescence spectrum. For a general analysis we recommend the lectures by
A. Quattropani [65].

As an example we show the simple case of the interaction of an exciton with the
cavity mode, with the Hamiltonian expressed in terms of creation and destruction
operators for the exciton (b†, b) and for the cavity mode (a†, a) as

(77)H = h̄ωexb+b + h̄ωca
+a + h̄C

(
b+ − b

)(
a+ + a

)+ h̄D
(
a+ + a

)2
,

with C and D coupling constants analogous to (9b) and (9c) for the case of the
bulk. Introducing the polariton operators:

(78)αi = Wia + Xib + Yia
+ + Zib

+,

with i = 1,2 for lower and upper polariton, and requiring

(79)
[
αi,α+

j

]= δi,j ,
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we can reduce the Hamiltonian to the diagonal form:

(80)Hdiag. = h̄-1 α+
1 α1 + h̄-2 α+

2 α2,

where the eigenfrequencies -1 and -2 can be determined from the condition

(81)[αi,H ] = [αi,Hdiag.] = h̄-iαi,

which gives for - the compatibility equation

(82)
(
ω2

ex − -2)(ω2
c − -2)+ 4Dω

(
ω2

ex − -2)− 4C2ωexωc = 0.

This, for - close to ωc and ωex, and with D = C2/ωex as in the bulk case, gives
for the upper and lower polariton the approximate solutions

(83)-± = ωc + ωex

2
± 1

2

√
(ωc − ωex)2 + C2,

in agreement with expression (70) of the semiclassical approach.
This does not include the linewidth effects, which can be considered by using

the Stahl–Baslev approach or the Cho approach described in Section 4.
One can also consider the quantum mechanical treatment of the coupling of

the polariton cavity modes with the continuum of the radiation modes outside
the cavity, thus obtaining the radiative broadening, as in the case of Q.W., and
the microcavity polariton luminescence. For this and other related problems we
recommend Ref. [16] and more specifically [64].

9.4. APPLICATIONS

The field of semiconductor microcavities is of interest also for new photonic ap-
plications related to the specific nature of the exciton polaritons described above.
In this case, particularly appropriate are three-dimensional microcavities, where
lateral confinement is obtained by cutting the M.C. along the plane to form a cylin-
der (pillar microcavities). For this development we refer to a recent review paper
by L.C. Andreani [65]. One must also consider the relevance of spatial disorder in
localizing the microcavity polaritons, for which the reader can consult Ref. [66].

As examples of possible applications one can consider the optical bistability,
the enhancement of photoluminescence, and polariton M.C. lasers.

It has been demonstrated that the large increase in the radiation intensities in
microcavity produces saturation effects which decrease the oscillator strength,
with a behavior of the type

(84)f = f0

1 + n/nS

,

where nS is a saturation density which reduces the oscillator strength to half its
original value. This consequently bleaches the Rabi splitting, and this is expected
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Fig. 32. Computed transmitted power of a M.C. with a GaAs Q.W. as a function of the radiation
intensity (referred to saturation) for two values of the polariton linewidth (from Ref. [67]).

to produce an optical bistability when the optical constants of the microcavity are
computed as functions of the light intensity. We report in Figure 32 the results
of detailed calculations of the transmitted power as a function of the incoming
power, performed on the basis of rate equations related to the oscillator strengths
(84). We can see a clear evidence of a bistability effect in the transmitted power
with a relatively small light intensity [67].

Another interesting possibility is to greatly enhance the photoluminescence by
inserting in bulk or in Q.W. implanted M.C. some organic material to which the
excitation can be transferred by Forster effect (dipole–dipole interaction at close
distance) or by radiation coupling. The organic material can be in the form of or-
dered bulk material or of a Q.W., in which case cavity polaritons result as shown
above, or in the form of disordered organic semiconductors, for which the lower
polariton branch only exists for small values of the k‖-vector (λc � mean distance
between molecules) [68]. In both cases a very large Rabi splitting occurs in M.C.
containing organic material as a result of the large oscillator strength of Frenkel
excitons. The energy of Q.W. or bulk cavity polaritons can then be transferred to
the upper polariton branch of the organic polariton and from this decay by fast
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Fig. 33. Energy loss of a M.C. containing an organic material as acceptor and a Q.W. as donor (from
Ref. [69]). The large decay is due to energy transfer. Comparison of DBR and silver reflectors is also
shown.

phonon emission to the lower incoherent branch and produce a strong photolu-
minescence typical of the organic material. To show that the presence of organic
material increases the optical energy loss of the cavity we report in Figure 33 the
result of a specific calculation on an organic implanted microcavity [69].

Another feature of microcavity polaritons which is attracting great interest is
the possibility of obtaining a very large density of polaritons at �k‖ = 0, the mini-
mum energy state, due to their boson-like nature. This has suggested the enticing
possibility of Bose–Einstein condensation of polaritons in microcavities. A very
promising feature related to large density polaritons in microcavities is the pos-
sibility of polariton lasers. In this case the amplification of light is not related to
population inversion, but to “stimulated scattering” by which pairs of polaritons
collide with one another and produce a minimum energy and momentum polari-
ton and a higher energy and momentum polariton, as shown in Figure 34. Since
the scattering rate is proportional to the number of initial and final states the exis-
tence of a reservoir of final states at k‖ = 0 exponentially increases their number
and consequently the photoluminescence normal to the planes. This is a microde-
vice which converts pump photons into the output beams of different frequency
as an optical parametric oscillator [70]. The efficiency of the process is of course
dependent on the density at which polaritons are destroyed, and promising results
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Fig. 34. (a) Experimental apparatus for stimulated photoemission from a microcavity. (b) Polariton
collision which produces an excited polariton at large k‖ and a polariton at k‖ = 0. Gain in lumines-
cence occurs when the pump laser enters the sample at an angle of 17◦ . From Ref. [70].

have been obtained [70]. Very recently, possible evidence for cavity polariton
Bose–Einstein condensation has been inferred from the second-order coherence
of the emitted light [71].
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1. Introduction

Recent advances in molecular beam deposition methods allowed one to prepare
molecular multilayered structures analogous to inorganic superlattices and quan-
tum well structure. These molecular structures are held together by weak van der
Waals forces rather than the valence or ionic forces, giving greater freedom and
flexibility in preparing structures of high optical quality. In contrast to bulk mate-
rials, one can tailor these nanoscale structures in order to change physical parame-
ters of interest. These novel engineered materials open up a new field of research,
which is very promising from the technological as well as scientific point of view.

In particular, superlattices are of great interest for the study of phenomena
which arise at interfaces between different media. These artificial layered crys-
tals may be considered as systems with “condensed” interfaces since the total
area of their interfaces is proportional to the volume of the system. Under these
conditions some specific surface and quasi-two-dimensional effects must make an
important contribution into the bulk crystal optics. For example, their macroscopic
electrodynamics corresponds to uniaxial rather than isotropic crystal optics.

Different interactions taking place at the interfaces are of great importance and
can be responsible for the appearance of new linear and nonlinear optical effects.
Thus, it can be shown that in such crystalline layered molecular structures ex-
citations can be concentrated near interfaces between different layers. Various
types of Fermi resonances can be used as a universal mean for achieving optical
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bi-stability and multi-stability. New states, Fermi resonance interface modes and
Fermi resonance interface solitons were also predicted.

In this chapter we shall present elementary treatment of some effects mentioned
above.

2. Dielectric Constant Tensor of Long Period Organic
Superlattices with Isotropic Layers

First we shall consider the simplest case of superlattice formed by two types of
alternating layers with thicknesses l1 and l2 whose electromagnetic properties are
characterized by isotropic dielectric constants ε1 and ε2, respectively. This means
that l1 and l2 are greater than the crystal lattice constants so that macroscopic
electrodynamics can be applied to such layers. If the superlattice interacts with
electromagnetic wave with wavelength λ = 2π/k much greater than l1 and l2,
then its electromagnetic properties can also be described by some averaged di-
electric constant tensor which components can be expressed in terms of ε1, ε2
and l1, l2 [1]. To this end, we use the relation

(1)D(1) = ε1(ω)E(1), D(2) = ε2(ω)E(2),

and the boundary conditions which read that tangential component Et of E and
normal component Dn of D are continuous at the interfaces [2]. Let us take tan-
gential components of (1) and average them over period of the superlattice,

Dt ≡ 1

l1 + l2
(
l1D(1)

t + l2D(2)
t

)= 1

l1 + l2
(
l1ε1(ω)E

(1)
t + l2ε2(ω)E

(2)
t

)
.

Since Et is continuous at the interfaces and variation of Et inside each layer at
l1, l2� λ can be neglected, then E(1)t ∼= E(2)t ∼= Et , where Et is the value of the
electric field strength averaged over the superlattice. Hence we obtain

(2)Dt = ε⊥(ω)Et ,
where

(3)ε⊥(ω)= l1ε1(ω)+ l2ε2(ω)

l1 + l2 .

In a similar way, averaging of normal components of Eqs. (1) gives

En ≡ 1

l1 + l2
(
l1E(1)n + l2E(2)n

)= 1

l1 + l2
(

l1

ε1(ω)
D(1)
n +

l2

ε2(ω)
D(2)
n

)
,

and since Dn is continuous at the interfaces and change little inside the layers, we
obtain

(4)En = 1

ε‖(ω)
Dn,
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where

(5)ε‖(ω)= 1

l1 + l2
(

l1

ε1(ω)
+ l2

ε2(ω)

)
.

This means that the dielectric constant tensor of the superlattice consisting of
optically isotropic layers has the form characteristic for uniaxial crystal. If the
layers are parallel to the (x, y) plane and normal to the axis z, then the dielectric
tensor of the superlattice has the components

(6)εij = εiδij ,
where

(7)εx = εy = ε⊥(ω), εz = ε‖(ω).
Let us consider several simple problems typical for optics of superlattices.

2.1. PLANE WAVE IN THE BULK

First let us find plane wave solution in the bulk of the superlattice. For monochro-
matic wave with frequency ω the Maxwell equations take the form [2]

(8)iωH= c(∇ ×E), iωD=−c(∇ ×H),

and since in the plane wave all quantities are proportional to exp(ikr), these equa-
tions reduce to

(9)ωH= c(k×E), ωD=−c(k×H).

Exclusion of H from these equations gives

(10)
(
ω2/c2)D= k2(E− k(kE)/k2).

In our uniaxial case we may assume that the wavevector k lies in the (x, z) plane,

(11)k= (k sin θ,0, k cosθ),

where θ is the angle between k and the z axis. By definition of εij (Eqs. (6), (7))
we have

(12)Dx = ε⊥Ex, Dy = ε⊥Ey, Dz = ε‖Ez.
Hence, the y-component of Eq. (10) gives the dispersion relation

(13)k2 = (
ω2/c2)ε⊥

for ordinary wave with polarization E= (0,Ey,0), and x- and z-components give
the system for Ex and Ez which has a nontrivial solution, if

(14)
cos2 θ

ε⊥
+ sin2 θ

ε‖
= ω2

c2k2 =
1

n2 ,
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where n is the refraction index for the extraordinary wave with vector E lying
in the same plane as the wavevector k and the optical axis of the superlattice
“crystal”.

2.2. SURFACE WAVE PROPAGATING ALONG SUPERLATTICE LAYERS

Now let semi-space z > 0 be occupied by a superlattice with effective optical axis
directed along z, and semi-space z < 0 is occupied by isotropic medium with di-
electric constant ε =−|ε|< 0. We shall look for the solution for electromagnetic
wave localized near the interface between the two media and propagating along
the x axis with magnetic field H= (0,H,0) directed along the y axis. Then from
the second equation (8) we have

Dx =− ic
ω

∂H

∂z
, Dy = 0, Dz = ic

ω

∂H

∂x
,

and hence at z > 0 (medium I ) the electric field components are equal to

(15)EIx =−
ic

ωε⊥
∂HI

∂z
, EIy = 0, EIz =

ic

ωε‖
∂HI

∂x
.

Substitution of these formulas into the first equation (8) with taking into account
that all field variables do not depend on y yields the equation for HI :

(16)
1

ε‖
∂2HI

∂x2
+ 1

ε⊥
∂2HI

∂z2
=−ω

2

c2
HI .

In a similar way we obtain for the medium II (z < 0)

(17)
1

ε

(
∂2HII

∂x2
+ ∂

2HII

∂z2

)
=−ω

2

c2
HII .

We look for the solution of these equations in the localized near interface form

(18)H(x, z)=
{
H0 exp(ikx − κ1z), z > 0,
H0 exp(ikx + κ2z), z < 0,

where continuity of Hy at the interface is already taken into account. Substitution
of Eq. (18) into (16) gives expressions for κ1 and κ2:

(19)κ1 =
√
ε⊥
ε‖
k2 − ε⊥ω

2

c2 , κ2 =
√
k2 + |ε|ω

2

c2 .

One more boundary condition of continuity of Ex at the interface between media
I and II ,

(20)
1

ε⊥
∂HI

∂z
= 1

ε

∂HII

∂z
,
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yields the equation

(21)− κ1

ε⊥
= κ2

ε
.

It is clear that for existence of such surface mode either ε⊥ or ε must be negative
and we supposed above that ε =−|ε|< 0. Now substitution of (19) into (21) and
simple transformations give the dispersion relation for this surface wave:

(22)k2 = ω
2

c2
· |ε|ε‖(|ε| + ε⊥)|ε|2 − ε⊥ε‖ .

If ε⊥ = ε‖ = ε1, ε = ε2, then we return to the well-known formula

(23)k2 = ω
2

c2 ·
|ε2|ε1

|ε2| − ε1

for surface wave at the interface between two media with homogeneous dielectric
properties.

Now let lower media have a dielectric constant equal to that of one of the layers,
say, ε = ε2. Then with the use of Eqs. (3) and (5), Eq. (22) transforms again to the
form (23), but the value of the parameter κ1 which determines decay of the surface
wave in the upper superlattice (see (19)) differs from that for the homogeneous
medium.

2.3. SURFACE WAVE ALONG INTERFACE PERPENDICULAR TO LAYERS

Now let the interface between the superlattice and homogeneous medium with
dielectric constant ε be situated at the (y, z) plane and z axis be directed perpen-
dicular to the layers. We suppose that the surface wave propagates along z axis
and H is directed along y axis:

(24)H= (
0,H(x, z),0

);
then from the Maxwell equations we find that in the superlattice x < 0 the electric
field has components

(25)EI =
(
− ic

ωε⊥
∂HI

∂z
,0,

ic

ωε‖
∂HI

∂x

)
,

and in the homogeneous medium x > 0 it has components

(26)EII =
(
− ic
ωε

∂HII

∂z
,0,

ic

ωε

∂HII

∂x

)
.

Looking for the solution in the form

(27)H(x, z)=
{
H0 exp(ikz− κ1x), x > 0,
H0 exp(ikz+ κ2x), x < 0,
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and satisfying the condition of continuity of Ez at x = 0,

(28)
1

ε‖
∂HI

∂x

∣∣∣∣
x=0
= 1

ε

∂HII

∂x

∣∣∣∣
x=0

,

we arrive at the dispersion relation

(29)k2 = ω
2

c2 ·
|ε|ε⊥(|ε| + ε⊥)
|ε|2 − ε⊥ε‖ .

If ε = ε2, then this formula reduces to

(30)k2 = ω
2

c2 ·
|ε2|ε1

|ε2| − ε1
· ε⊥
ε‖
.

3. Dielectric Constant Tensor of Long Period Organic
Superlattices with Anisotropic Layers

3.1. DIELECTRIC TENSOR OF A SUPERLATTICE

The formulas (3) and (5) can be generalized to the case of anisotropic dielectric
constants in the layers [3].

Let us assume that dielectric properties of the layers are determined by tensors
ε
µ
ij (ω), µ is the layer number,µ= 1,2, . . . , σ , σ being the number of the layers in

a unit cell; the lattice period is L=∑
µ lµ is the thickness of the µth layer. Again

we assume that the layers are parallel to the (x, y) plane and perpendicular to the
z axis. As before, at interfaces of the layers the field components Eµ1 , Eµ2 , D

µ
3

are continuous, and therefore it is convenient to express the field componentsDµ
1 ,

D
µ
2 , E

µ
3 in terms of Eµ1 , Eµ2 , D

µ
3 . To this end we write anisotropic generalization

of Eqs. (1):

D
µ
1 = εµ11E

µ
1 + εµ12E

µ
2 + εµ13E

µ
3 ,

(31)D
µ
2 = εµ21E

µ
1 + εµ22E

µ
2 + εµ23E

µ
3 ,

D
µ
3 = εµ31E

µ
1 + εµ32E

µ
2 + εµ33E

µ
3 ,

and from the last equation obtain

(32)E
µ
3 =

1

ε
µ
3

D
µ
3 −

ε
µ
31

ε
µ
33

E
µ
1 −

ε
µ
32

ε
µ
33

E
µ
2 .

Then substitution of this equation into the first two equations (31) gives

D
µ
1 =

(
ε
µ
11 −

ε
µ
13ε

µ
31

ε
µ
33

)
E
µ
1 +

(
ε
µ
12 −

ε
µ
13ε

µ
32

ε
µ
33

)
E
µ
2 +

ε
µ
13

ε
µ
33

D
µ
3 ,
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(33)D
µ
2 =

(
ε
µ
21 −

ε
µ
23ε

µ
31

ε
µ
33

)
E
µ
1 +

(
ε
µ
22 −

ε
µ
23ε

µ
32

ε
µ
33

)
E
µ
2 +

ε
µ
23

ε
µ
33

D
µ
3 .

Eqs. (32) and (33) provide a starting point for averaging procedure similar to one
used above. With the accuracy of order ∼ L/λ� 1 the fields Eµ and Dµ inside
the layers can be considered as constant and due to continuity of Eµ1 , Eµ2 , Dµ

3 we
have

(34)E1 =Eµ1 , Eµ2 , D3 =Dµ
3 , µ= 1,2, . . . , σ.

Then averaging over the superlattice period according to the rules

(35)Ei = 1

L

∑
µ

E
µ
i lµ, Di = 1

L

∑
µ

D
µ
i lµ

yields at once

D1 = a11E1 + a12E2 + a13D3,

(36)D2 = a21E1 + a22E2 + a23D3,

E3 = b31E1 + b32E2 + b33D3,

where

a11 = 1

L

∑
µ

(
ε
µ
11 −

ε
µ
13ε

µ
31

ε
µ
33

)
lµ ≡ 〈ε11 − ε13ε31/ε33〉,

(37)a12 = 〈ε12 − ε13ε32/ε33〉, a13 = 〈ε13/ε33〉,
a21 = 〈ε21 − ε23ε32/ε33〉, a22 = 〈ε22 − ε23ε32/ε33〉, a23 = 〈ε23/ε33〉,
b31 =−〈ε31/ε33〉, b32 =−〈ε32/ε33〉, b33 = 〈1/ε33〉.

The angle brackets denote an arithmetic average over the superlattice period. It is
clear that this average is equivalent to averaging of the fields over the thickness
d� λ, where d� L.

Thus we find that

(38)Di = εSLij Ej ,
where the superlattice dielectric tensor is determined as follows:

εSL11 = 〈ε11 − ε13ε31/ε33〉 + 〈ε13/ε33〉〈ε31/ε33〉/〈1/ε33〉,
εSL12 = 〈ε12 − ε13ε32/ε33〉 + 〈ε23/ε33〉 〈ε31/ε33〉/〈1/ε33〉,
εSL13 = 〈ε13/ε33〉/〈1/ε33〉,
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εSL21 = 〈ε11 − ε23ε31/ε33〉 + 〈ε23/ε33〉〈ε31/ε33〉/〈1/ε33〉,
εSL22 = 〈ε22 − ε23ε32/ε33〉 + 〈ε23/ε33〉〈ε32/ε33〉/〈1/ε33〉,
εSL23 = 〈ε23/ε33〉/〈1/ε33〉,

εSL13 = 〈ε31/ε33〉/〈1/ε33〉, εSL32 = 〈ε32/ε33〉/〈1/ε33〉,
(39)εSL33 = 〈1/ε33〉−1.

It follows from the above relations that the tensor εSLij is symmetric with respect

to interchange of the indices i and j only if the tensors εµij are symmetric (i.e., in
the absence of the external magnetic field). Moreover, these relations allow one
to investigate the decrease of symmetry of the tensor εSLij that can occur in some
cases.

In a previously studied case with εµij = εµδij , the tensor εSLij acquires the sym-
metry of a uniaxial crystal (see relations (6), (7)). However, no decrease in sym-
metry occurs if the layers have a uniaxial crystal symmetry with the optical axis
perpendicular to the interfaces of the layers. If in at least one of the layers the op-
tical axis is directed in a different way, the superlattice symmetry decreases. Thus
if this axis in one of the layers is parallel to the interface of the layers, the super-
lattice has an orthorhombic symmetry. Eqs. (39) can also be used for treatment of
other cases.

3.2. MAGNETOOPTICAL EFFECTS IN SUPERLATTICES

Let us discuss the influence of a static magnetic field assuming that the dielectric
constant in the layers is a scalar εµ0 . In the presence of a static magnetic field and
up to terms linear in this field the dielectric constant in the layers is

(40)ε
µ
ij = εµ0 δij + iγ µij lH 0

l ,

where H 0 is the static magnetic field, and the pseudotensor γ µijl can be written as

(41)γ
µ
ijl = γ µeijl ,

eij l being the totally antisymmetric tensor of the third rank. It is clear that the
dielectric tensor of a superlattice in the approximation linear in the field H0 must
have the form:

(42)εSLij = εSLii δij + ieijmγ SLml H 0
l ,

where the gyration tensor γ SLml is yet unknown. In a uniaxial crystal we have γml =
γmmδml , γ11 = γ22 ≡ γ⊥, γ33 ≡ γ ‖, so that the problem is that of finding the
quantities γ⊥ and γ ‖. In order to find these quantities it is sufficient to consider
two particular cases of orientation of the magnetic field H0:
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(1) Assume that the magnetic field H0 is directed along the z axis. Then the
nondiagonal nonzero elements of the tensor εµij are

ε
µ
12 =−εµ21 = iγ µH 0,

so that according to (39) we obtain

εSLij = εSLii δii + iγ ‖eij3H
0,

where

(43)εSL11 = εSL22 ≡ ε⊥ = 〈ε〉, εSL33 ≡ ε‖ = 〈1/ε〉−1,

and

(44)γ ‖ = 1

L

∑
µ

lµγ
µ ≡ 〈γ 〉.

(2) If the magnetic field is parallel to the interfaces of layers and is directed, for
example, along the y axis, then the only nondiagonal nonzero components of the
tensor are:

ε
µ
31 =−εµ13 = iγ µH 0.

In this case, according to (39), the tensor εSLij is determined by the relation

(45)εSLij = εSLii δij + iγ⊥eij lH 0,

where

(46)γ⊥ = 〈γ /ε〉/〈1/ε〉.
It is clear that at arbitrary orientation

(47)εSLij = εSLii δij + ieij lgl,
where the gyration vector g is determined by the relation

(48)gl = γllH 0
l .

3.3. INFLUENCE OF STATIC ELECTRIC FIELD

In derivation of (39) we assumed that the medium was nonmagnetic. Only in
this case one can consider the field H0 to be independent of µ and thus having the
same value in all layers of the superlattice. In the case of applied electric field such
approximation cannot be justified. Therefore, in the presence of a static electric
field instead of (40) we have to use the following relation:

(49)ε
µ
ij = εµ0 δij + χµijlE0µ

l ,
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where χijl is the tensor of the third rank symmetric with respect to interchange of
indices i and j . Let us assume that the superlattice is formed by layers with cubic
crystal symmetry, so that the components of the tensor χijl can be written in the
form

(50)χ
µ
ijl = χµ|eij l |,

where χµ is some constant and |eij l | is the absolute value of the component of
the totally antisymmetric tensor eij l . Since nondiagonal components of the tensor
ε
µ
ij are linear in the field E0µ, according to (39) all diagonal tensor components

acquire only quadratic in the field E0 corrections which in our approximation
have to be neglected. For nondiagonal components of the tensor εSLij in linear in

the field E0 approximation we find from (39)

εSL12 = εSL21 =
〈
χE0

3

〉
,

(51)εSL13 = εSL31 =
〈
χE0

2/ε
〉
/〈1/ε〉,

εSL23 = εSL32 =
〈
χE0

1/ε
〉
/〈1/ε〉.

Since for a static electric field we may take for any µ that E0µ
1 =E0

1 , E
0µ
1 =E0

2 ,

E
0µ
3 = (1/εµ)εSL33 E

0
3 , where E0 is the static field averaged over the superlattice

period and εµ ≡ εµ0 (ω= 0), we find that the tensor εSLij can be written as

(52)εSLij = εSLii δij + χSLijl E0
l ,

where the tensor χSLijl is determined as follows:

χSLijl = |eij l |χSLll ,
(53)χSL11 = χSL22 = 〈χ/ε〉/〈1/ε〉, χSL33 = 〈χ/ε〉/〈1/ε〉.

The above relations can turn useful in all situations when the influence of an ex-
ternal electric field static field on the dielectric tensor has to be taken into account,
e.g., in the theory of Raman scattering by polaritons.

4. Optical Nonlinearities in Organic Multilayers

Let us turn now to nonlinear optical properties of superlattices. We shall use the
method of the preceding sections which reproduces very simply the results of
Ref. [4] under natural assumption of smallness of nonlinear effects.

Now each layer is described by dielectric tensor εµ (which is taken for simplic-
ity scalar) and by the nonlinear susceptibility. For example, in case of the third
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order (Kerr) nonlinearity we have for the layer µ

(54)Dµ = εµEµ + χ(3)µ |Eµ|2Eµ,

where again we suppose that the bulk nonlinear susceptibility χ(3)µ corresponds to
isotropic medium.

It is easy to see that the nonlinear properties of the superlattice depend crucially
on the direction of polarization of the light wave. Since the nonlinear expression
(54) cannot be split into tangential and normal components, we shall consider
these two cases separately.

The problem is very simple for the case of tangential polarization, when the
electric field Eµ is polarized in the plane of the layers and the wave vector can
be directed as perpendicular to the layers, so along them. Due to continuity of
tangential components of Eµ at interfaces we have Eµ = E and averaging of (54)
yields at once

(55)D= ε⊥Eµ + χ(3)⊥ |E|2E,

where ε⊥ is given by the usual expression

(56)ε⊥ = 1

L

∑
µ

lµεµ

and

(57)χ
(3)
⊥ =

1

L

∑
µ

lµχ
(3)
µ .

Thus, for this polarization the nonlinear susceptibility is averaged in the same way
as linear one.

The situation changes drastically for the case of normal polarization of Eµ
when the electric field vector is directed perpendicular to the layers and wave
vector is directed along them. In this case Dµ is continuous at interfaces so that
Dµ =D. Now averaging of Eq. (54) yields

(58)E≡ 1

L

∑
µ

lµEµ = 1

ε‖
D− 1

L

∑
µ

lµ
χ
(3)
µ

εµ
|Eµ|2Eµ,

where

(59)
1

ε‖
= 1

L

∑
µ

lµ

εµ

is the usual linear expression for this component of the averaged dielectric tensor.
Since nonlinear effects are small compared with linear ones, we can consider
the second term in (58) as a small correction and replace here Eµ by Dµ/εµ =
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D/εµ = (ε‖/εµ)E so that (58) takes the form

(60)D= ε‖E+ χ(3)‖ |E|2E,

where

(61)χ
(3)
‖ =

1

L

∑
µ

lµ

(
ε‖
εµ

)4

χ(3)µ .

Note that effective nonlinear susceptibility χ(3)‖ can be enhanced in the multilay-
ered structure compared with its bulk value [4]. To show this, let us consider a
simple example of superlattice with two kinds of layers (µ= 1,2) in elementary
cell where only one layer (µ= 1) is nonlinear. Then Eq. (61) takes the form

(62)χ
(3)
‖ =

l1

L

(
ε‖
ε1

)4

χ
(3)
1 =

L3l1

[l1 + (L− l1)(ε1/ε2)]4χ
(3)
1 .

The depending on l1 factor has maximum at

l1 = L
3

ε1

ε2 − ε1
<L

for ε2 > 4ε1/3 equal to

(63)

(
χ
(3)
‖
χ
(3)
1

)
max
= 1

3

ε1

ε2 − ε1

(
3

4

ε2

ε1

)4

which is greater than unity and grows fast with increase of the ratio (3ε2/4ε1) > 1.
This enhancement of nonlinear susceptibility in layered structures was confirmed
experimentally [5].

In the case of quadratic nonlinearity we shall consider simple example of in-
teraction of two waves with frequencies ω and 2ω, so that in each layer there are
two material relations

(64)
Dµ(2ω)= εµ(2ω)Eµ(2ω)+ χ(2)µ

(
Eµ(ω)

)2
,

Dµ(ω)= εµ(ω)Eµ(ω)+ χ(2)µ Eµ(2ω)E∗µ(ω),

where all field variables have the same direction. Again for the case of tangen-
tial polarization we obtain simple average of the nonlinear susceptibility for both
frequencies,

(65)χ
(2)
‖ =

1

L

∑
µ

lµχ
(2)
µ .
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For normal polarization of fields a calculation similar to the considered above for
the third order nonlinearity case yields

(66)
D(2ω)= ε‖(2ω)E(2ω)+ χ(2)‖

(
E(ω)

)2
,

D(ω)= ε‖(ω)E(ω)+ χ(2)‖ E(2ω)E∗(ω),

where

(67)χ
(2)
‖ =

1

L

∑
µ

lµ
ε‖(2ω)
εµ(2ω)

(
ε‖(ω)
εµ(ω)

)2

χ(2)µ .

This formula was obtained in [4] by a different method.

5. Dielectric Tensor for Short Period Organic Superlattices

The above treatment assumes that electromagnetic properties of each layer can
be described by macroscopic dielectric tensor εij . Comparison with experiment
shows that this approach is accurate enough even for layers thickness about a
few lattice constants. However, for such layers the microscopic approach is also
of considerable interest and it becomes inevitable for superlattices consisting of
monolayers. In this approach molecules are assumed to be characterized by an ef-
fective polarizability appropriate to the crystal environment which could in prin-
ciple be calculated quantum mechanically but in practice is deduced from experi-
mental quantities and used to interrelate them.

From microscopic point of view, it is necessary to treat the variation of electric
field on an atomic scale and to recognize that the field responsible for polarizing a
molecule is neither the applied field nor the macroscopic field but rather the local
field given by the sum of the applied field and the field due to the surrounding
polarized molecules. Since the polarization of the molecules depends on the lo-
cal field, we have to calculate the local field in a self-consistent manner. In our
treatment we shall follow [6].

Let the superlattice consist of molecular multilayers and each multilayer consist
of monolayers labelled µ, where µ ranges from 1 to the number of layers N in
the repeating unit of the superlattice. The layers are assumed to be subjected to
a uniform applied field E0, which could be of an electromagnetic wave provided
its wavelength greatly exceeds the thickness of the repeating unit. Then the local
polarizing electric field at a molecule in monolayer µ is

(68)Elocal
µ = E0 +

∑
µ′

tµµ′ · pµ′ .
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Here tµµ′ is the sum of dipole tensors

(69)tµµ′ =
∑
n,n′
∇∇ 1

r

∣∣∣∣
r=rµn−rµ′n′

between a molecule in layer µ and all molecules in layer µ′, which is defined to
be zero for µ,n= µ′, n′, where n,n′ label locations of molecules in layers µ and
µ′, respectively. Here pµ′ is the induced dipole moment of molecules in layers µ′.
If it is assumed that interactions between adjacent layers are negligible, then

(70)tµµ′ = tµδµµ′

with tµ the dipole sum within layer µ.
Experimental observables are related to the macroscopic electric field E which

in layerµ in case of plane geometry of superlattice structure may be defined by [6]

(71)Eµ = E0 − 4πn(n · Pµ),
where Pµ is the layer polarization pµ/vµ, with vµ the volume per molecule in
layer µ, and n is the unit vector normal to the layers. This definition agrees
with the usual condition of continuity of tangential component Etµ of Eµ at an
interface. Indeed, Etµ is the difference between Eµ and the normal component
n(n ·Eµ), i.e.,

(72)Etµ = Eµ − n(n ·Eµ).
Then substitution for Eµ from Eq. (71) yields

(73)Etµ = E0 − 4πn
(
n · E0)

which is the tangential component of E0 and is a constant, independent of µ. The
electric displacement is defined by

(74)Dµ = Eµ + 4πPµ.

Its normal component Dn
µ is n(n ·Dµ), which on substitution from Eq. (71) yields

(75)Dn
µ = n

(
n · E0).

This is the normal component of E0, which is the normal component of the elec-
tric displacement outside the superlattice and is constant independent of µ. Thus
Eq. (71) agrees with the condition that the normal component of the electric dis-
placement is constant across an interface.

In what follows we shall confine ourselves to the case (70), that is assume that
interactions between adjacent layers are negligible. Then from Eqs. (68) and (71)
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we find that the local field is related to the macroscopic field by

(76)Elocal
µ = Eµ + 1

vµ
Lµ · pµ.

Here Lµ is the layer Lorentz-factor tensor

(77)Lµ = vµtµ + 4π nn.

The induced dipole moment is related to the local field by

(78)pµ = αµ ·Elocal
µ ,

where αµ is the polarizability tensor for molecules in layer µ. Substitution in
Eq. (76) yields

(79)Elocal
µ = Eµ + 1

vµ
Lµ · αµ ·Elocal

µ ,

and this equation at once gives

(80)Elocal
µ =

(
1− 1

vµ
Lµ · αµ

)−1

Eµ ≡ dµ · Eµ,

where dµ is the local-field tensor. From Eq. (78) we have

(81)Pµ = αµ · dµEµ,

so that the linear susceptibility χ(1)µ defined via

(82)Pµ = χ(1)µ ·Eµ
is obtained as

(83)χ(1)µ = αµ · dµ.
Now we can relate the macroscopic fields to the applied fields. From Eqs. (82)
and (71) we obtain

(84)Eµ = E0 − 4π
(
n · χ(1)µ Eµ

)
.

This relation can be inverted to give

(85)Eµ =
[

1− 4π n · (n · χ(1)µ )

1+ 4π n · χ(1)µ · n

]
·E0 ≡ Sµ ·E0.

To obtain the total polarization, we have to sum over monolayers µ,

(86)P= 1

L

∑
µ

lµPµ,
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where lµ is the thickness of the layer µ and L =∑
µ lµ is the thickness of the

repeating assembly of monolayers. Substitution for Pµ from (82) yields

(87)P= 1

L

∑
µ

lµχ
(1)
µ ·Eµ,

and hence from Eq. (85) the total polarization is related to the applied field by

(88)P= 1

L

∑
µ

lµχ
(1)
µ · SµE0.

To obtain the multilayer susceptibility, we need the average macroscopic field
over N layers defined by

(89)E= 1

L

∑
µ

lµEµ,

whence

(90)E= 1

L

∑
µ

lµSµ · Eµ ≡ S ·E0.

The multilayer susceptibility χ(1)µ relates P to E according to

(91)P= χ(1) ·E.
Comparison of Eqs. (88) and (90) then yields

(92)χ(1) =
∑
µ

lµ

L
χ(1)µ · Sµ · S−1.

Thus the multilayers susceptibility is a sum of the individual layers susceptibil-
ities weighted by two factors. The first lµ/L gives the layer contribution to the
polarization, and the second Sµ · S−1 gives the layer contribution to the macro-
scopic field. When susceptibility χ(1) is known, the dielectric tensor can be found
from the relation

(93)ε = 1+ 4πχ.

Let us show that for macroscopic layers these formulas reduce to those derived
in the preceding section. To return to index notation, we assume that n has com-
ponents (0,0,1) in a Cartesian system, where axes 1 and 2 lie in the layers and 3
is the direction of the normal to them. Then from Eqs. (85) and (93) we find

(94)Sµ =
( 1 0 0

0 1 0
−ε(µ)13 /ε

(µ)
33 −ε(µ)23 /ε

(µ)
33 1/ε(µ)33

)
,
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where ε(µ)ij is the ij component of the dielectric tensor for layer µ. Averaging of
Sµ according to Eq. (85) and inversion of the result gives

(95)S−1 =
( 1 0 0

0 1 0
〈ε13/ε33〉〈1/ε33〉

〈ε23/ε33〉〈1/ε33〉
1

〈1/ε33〉

)
.

At last, Eq. (92) yields for averaged dielectric tensor the equation

(96)ε =
∑
µ

lµ

L
εµ · Sµ · S−1 = 〈ε · S〉 · S−1.

Performing the averages and matrix multiplication yields expressions for the com-
ponents of ε equivalent to Eqs. (39).

The present treatment is capable in principle of treating variations in the di-
electric response in the interface region. However, the assumption that interac-
tions between layers are negligible (see Eq. (70)) precludes any discrimination
between the dielectric response in the bulk and interface regions, and moreover
gives only an approximation to the bulk dielectric tensor. Only in this way can
the macroscopic and microscopic treatments be compared. Microscopic approach
admits also extension to interacting layers [6,7].

6. Gas-Condensed Matter Shift and Possibility to Govern Spectra
of Frenkel Excitons

Now we turn to discussion of properties of excitons in layered structures. Su-
perlattices are systems with “condensed” interfaces, since in these artificial lay-
ered crystals the total area of interfaces is proportional to the volume. In these
conditions the specific surface and quasi-two-dimensional effects must make an
important contribution to the bulk crystal properties [8].

First we consider the properties and the role of interfaces with the boundary
of anthracene crystal with vacuum. Of course, it is a particular case of boundary.
However, this case has been investigated in many experiments and therefore can
be considered as some kind of experimental foundation of the approach we will
use.

It can be considered now as well-established that 2D exciton state—the lowest
electronic excitation of external monolayer of anthracene crystal—is blue shifted
by 204 cm−1 with respect to the bottom of exciton band in the bulk. The elec-
tronic transition of the first monolayer lies between the bulk value and the iso-
lated molecule value which is blue shifted by 2000 cm−1 with respect to the bulk.
The excited electronic state of the surface molecular monolayer is clearly seen in
emission at low temperature. The monolayer next to the surface is blue shifted
by 10 cm−1 and the following one by 2 cm−1. The nature of these blue shifts is
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Fig. 1. The levels near the boundary of a molecular crystal.

now well understood and is related with the absence of neighbors for molecules
in the external monolayer from vacuum side. Therefore, for these molecules the
gas-condensed matter (G-CM) shift of electronic transition frequency is smaller
than the G-CM shift in the bulk (see Figure 1; we assume that the surface cor-
responds to (a, b) plane of anthracene crystal). For temperatures low compared
with the blue shift, the surface layer acts as an isolated monolayer and is an ideal
system for investigation of two-dimensional excitons. Such excitons at weak de-
phasing should exhibit a superradiant radiative decay [9]. This ultrafast decay of
anthracene films was first observed in picosecond measurements conducted by
Aaviksoo et al. [10]. Relative quantum yield measurements of the bulk and the
surface emission indicate that the decay of the monolayer is purely radiative with
a very small contribution of relaxation to the bulk. The picosecond timescales ob-
served in these experiments were a first, and a beautiful example of superradiance
in two-dimensional excitons.

After these short remarks let us return again to the first monolayers of the an-
thracene crystal. As the width of the exciton band in this crystal for wave vectors
directed along axis C′ (i.e., along the normal to the (a, b) plane) is very small
(∼ 5 cm−1), we can state that on the exciton’s approaching the surface its en-
ergy increases (Figure 2), interaction of exciton with surface is repulsive and we
have here some type of dead layer for bulk exciton. To go ahead it is necessary to
recollect how the gas-condensed matter shift can be calculated. It is known from
the theory of molecular (Frenkel) excitons1 [11] that this shift appears due to the
difference between the energies of interaction of the excited molecule (molecu-
lar state f ) and the unexcited molecule (molecular ground state 0) with all other
molecules of the crystals in ground state:

(97)DAA =
∑
m

DAA
nm ,
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Fig. 2. The dependence E(z) at the boundary with vacuum.

where

DAA
nm =

〈
φ
fA
n φ0A

m

∣∣Vnm∣∣φfAn φ0A
m

〉− 〈
φ0A
n φ0A

m

∣∣Vnm∣∣φ0A
n φ0A

m

〉
,

φrn (r = 0A,fA) denotes the wave functions of molecule A in ground (0A) and
in excited (fA) state, Vnm is the operator of the Coulomb interaction between the
molecules n and m determined by the coordinates of their electrons and nuclei
m ≡m ≡ (m1,m2,m3); usually the values Dnm < 0 are negative for molecules
with inversion symmetry (anthracene, naphthalene, etc.). For molecules n lying on
the boundary with vacuum (to which corresponds, for example, spacem3 < 0) the
summation over molecules m with m3 < 0 is excluded. Therefore, the respective
value D ≡D0A

S (S denotes a surface, A a molecule, 0 a vacuum) can be written
as

(98)D0A =
∑
m3>0

DAA
nm ,

where n= (0,0,1) (here, for simplicity, we consider crystals with one molecule
per unit cell), |DS | < |D| and we obtain the case represented in Figures 1, 2. In
this particular case the blue shift value is equal to

(99)3D ≡D0A
S −D =−

∑
m3�0

DAA
nm > 0.

Now let us consider what will occur if the crystal under consideration has a bound-
ary with another molecular crystal B . Obviously, the value of G-CM shift will
change. The shift in this case can be written as

(100)DS ≡DBA
S =

∑
m3>0

DAA
nm +

∑
b3<0

DAB
nm ,
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Fig. 3. The dependence E(z) in the case SB > SA.

where

DAB
nm =

〈
φ
fA
n φ0B

m

∣∣Vnm∣∣φfAn φ0B
m

〉− 〈
φ0A
n φ0B

m

∣∣Vnm∣∣φ0A
n φ0B

m

〉
.

Therefore, the shift of level for molecules in the first monolayer in comparison to
the bulk value is equal to

(101)3D =DBA
S −DAA =

∑
m3<0

(
DAB
nm −DAA

nm

)
.

Although each of the values DAA
nm and DAB

nm for the lowest electronic molecu-
lar excitations is negative, as a rule, we no longer have the possibility to do the
definite statement with respect to the sign of the molecular level shift 3D: this
shift can be for different pairs of molecules A and B either positive or negative.
Thus, if the molecules B possess in ground state relatively small static multipoles
(let us denote their value conditionally by SB ) the shift 3D should be positive,
as happens for anthracene at the boundary with vacuum (by definition SB � S0)
(Figures 1, 2). If we have the opposite case and respective multipoles of type B
molecules are large enough (SB � SA) the shift 3D can become negative. In
this case instead of the situation expressed in Figure 2 we obtain attraction of
excitons to the surface (Figure 3). Let us recall now that we are interested in or-
ganic superlattices and assume that we have under discussion the superlattice of
type BABAB . Then we have the case shown in Figure 4 for the exciton energy
E(z) at SA > SB and for the case SA < SB the dependence E(z) is different (see
Figure 5; for definiteness Figures 4 and 5 correspond to five lattice constants in
A-layer).

Let us stress an important circumstance now. The molecule and crystal of an-
thracene which we have used above as a well-investigated example, possess an
inversion center. The dipole moment operator for such molecules can have only
nondiagonal nonzero matrix elements so that the quantities Dnm depend only on
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Fig. 4. The dependence E(z) for A layer in the case SA > SB .

Fig. 5. The dependence E(z) for A layer in the case SB > SA.

the quadrupole moment and higher moments. Therefore, the quantities Dnm in
this case containing only diagonal matrix elements of the operator of intermolec-
ular interaction decrease rapidly with increasing n−m and it proves sufficient to
take into account the interaction between nearest neighbors in order to calculate
their contribution to the exciton energy. That is why the shift of molecular levels
in comparison to the bulk value for anthracene molecules is important only for
the first and probably for the second external monolayers in anthracene crystal.

For the crystals without an inversion center the long-range dipole–dipole in-
teraction becomes very important, while the special role of external monolayers
(together with the dependence of exciton spectra on the layer thickness) becomes
weaker.

Let us consider now the conditions under which the dependencies of the type
expressed in Figures 4, 5 have physical sense. It is useful here to return again to the
case of anthracene crystal in the vacuum-crystal contact region. The homogeneous
width γ of the lowest exciton transition in anthracene crystal at low temperature
is, as was mentioned, of the order of 10–20 cm−1, i.e., of the order of the width of
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exciton band 3 (for wave vectors k which are parallel to the axis C′). Therefore,
in layers of anthracene type in which the inequalities

|3D| � γ,3,

are fulfilled, the curvature of the bottom of exciton zone like shown in Figures 4, 5
can be very important and it is necessary to take it into account in the discussion of
optical or electro-optical processes in organic multilayer structures. In this case
we have a system with large inhomogeneous broadening and this effect can be
important even in the cases where the homogeneous width is of the order of the
inhomogeneous width. Clearly, in the crystals to which Figure 4 corresponds the
excitons created as a result of absorption of the high energy photons (h̄ω > E(z))
should be concentrated after energy relaxation in the region of the minimum of
the functionE(z), that is in one of the middle monolayers (the monolayerm3 = 3
in Figure 4). In the structures of another type to which Figure 5 corresponds the
excitons should be concentrated in the interface region.

Let us now consider organic multilayer systems in which molecules possess in
their stationary states the static dipole moments. If in this case the dipole–dipole
interaction dominates, the relations for G-CM shift take a more definite form. In
this case the quantity DAB

nm can be written in the following way:

DAB
nm =

(
p
fA

i − p0A
i

)
tij (n,m)

(
p0B
j

)
,

where pfA and p0A are static dipole moments of molecule A in the ground (0)
and excited (f ) state, p0B the static dipole moment of molecule B in the ground
state, tij (n,m) the tensor determining the interaction of dipoles situated at points
n and m. Therefore, according to Eq. (101) we obtain

(102)3D =
∑

m,m3<0

µ
A(0,f )
i tij (n,m)µ

B(0)
j ,

where

µ
A(0,f )
i = (

p
fA
i −p0A

i

)
, µ

B(0)
j = (

p0B
j − p0A

j

)
.

Thus, in this case the shift 3D is equal to the energy of interaction of the differ-
ence dipole moment µA(0,f ) at the site n with the set of dipoles µB(0) located on
the lattice sites m with negative componentm3. Note again that in dependence on
the directions of µA(0,f ) and µB(0) the shift 3D can be either positive or nega-
tive. Let µA(0,f ) � µB(0) � 5 Debye, lattice constant a � 5 Å, then equation for
3D gives an order-of-magnitude estimate 3D � 1000 cm−1. This very crude es-
timation indicates nevertheless that for molecules without inverse symmetry the
shifts 3D will be determined by dipole–dipole interaction.
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7. Fermi Resonance Interface Modes in Organic Superlattices

7.1. FERMI RESONANCE IN MOLECULES

Fermi resonance is a phenomenon which takes place in vibrational or electronic
spectra of molecules. For example, let a molecule have two vibrational modes
with frequencies ωa and ωb . If the second order resonance condition 2ωa � ωb is
fulfilled, then the h̄ωb transition in infrared spectrum can be split into two lines
of comparable intensity and the second line cannot be explained as a result of
interaction of light with the vibrational a mode because the transitions with exci-
tation of two h̄ωa quanta are forbidden due to well-known n→ n± 1 selection
rule for harmonic oscillator. E. Fermi explained [12] this experimental observa-
tion as a result of nonlinear resonance interaction of two vibrational modes with
each other. Since that time the notion of Fermi resonance has been generalized to
the processes with participation of different types of quanta (e.g., ω1 + ω2 � ω3,
ω1 + ω2 � ω3 − ω4, and so on) and to electronic types of excitations as well.
Further generalizations were suggested for Fermi resonance interactions of col-
lective modes in molecular crystals and other macroscopic systems, so that Fermi
resonance phenomenon became part of not only molecular physics but solid state
physics also. In case of multilayer crystalline organic structures their spectrum
is created by the “overlapping” of the spectra of different crystalline compounds
and new Fermi resonances arise due to the anharmonicity across the interface,
which may be quite interesting from various point of view. For example, one may
suppose that Fermi resonance interaction between different molecules composing
the layered structure can play an important role in its optical properties.

At first, we shall consider the Fermi resonance theory in molecules from classi-
cal mechanics point of view. Let qa and qb be two normal coordinates correspond-
ing to the vibrational degrees of freedom of the molecule with eigenfrequencies
ωa and ωb (we neglect all other degrees of freedom of the molecule). Then the
Lagrangian of the vibrational motion can be written as follows,

(103)L= Maq̇
2
a

2
+ Mbq̇

2
b

2
−U(qa, qb),

where the overdot stands for the derivative with respect to time t , Ma and Mb

are “mass” coefficients, and the potential energy U(qa, qb) can be expanded into
series with respect to powers of variables qa and qb,

(104)U(qa, qb)=U2(qa, qb)+U3(qa, qb)+ · · · .
Since qa and qb are normal coordinates, in harmonic approximation we have a
diagonal form of the potential energy:

(105)U2(qa, qb)= Maω
2
a

2
q2
a +

Mbω
2
b

2
q2
b .
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The next nonlinear term in (104) corresponds to the third degrees of q’s:

(106)U3(qa, qb)=
∑

m+n=3

αmnq
m
a q

n
b

(the sum over cubic terms α03q
3
b + α12qaq

2
b + · · ·). It is clear that not all terms in

the sum (106) are equally important under the Fermi resonance condition

(107)2ωa � ωb.
Indeed, in the equations of motion

(108)
Ma

(
q̈a +ω2

aqa
)=−∂U3/∂qa =−3α30q

2
a − 2α21qaqb − α12q

2
b ,

Mb

(
q̈b +ω2

bqb
)=−∂U3/∂qb =−α21q

2
a − 2α12qaqb − 3α03q

2
b ,

the different terms on the right-hand side have different physical sense. For exam-
ple, the terms

−3α30q
2
a and − 3α03q

2
b

describe a weak nonlinearity of separate eigenmodes and are not responsible for
their interaction at all; hence we can omit them from the sum (106). The other
terms differ from each other by their time dependence. In harmonic approximation
we have

(109)qa = q0
a cos(ωat + φa), qb = q0

b cos(ωbt + φb),
and the potential (106) is a small perturbation leading to slow variation of q0

a and
q0
b . Substitution of (109) into the right-hand sides of (108) leads to resonant and

non-resonant terms. For example, in the first equation (108) the left-hand side
oscillates with approximately harmonic frequency ωa whereas the term

q2
b ∝ cos2ωbt = (1+ cos 2ωbt)/2

does not contain such a harmonic and describes a non-resonant interaction of
modes qa and qb. Hence we must hold in this equation only the term

qaqb ∝ cosωa cosωb =
[
cos(ωb +ωa)t + cos(ωb −ωa)t

]
/2

which according to the condition (107) contains the resonant “force” oscillating
with frequency ωb − ωa � ωa . Analogously, in the second equation (108) we
must hold only the term α21q

2
a which contains the resonant “force” oscillating ap-

proximately with the frequency 2ωa � ωb of the mode qb. Both these terms arise
from the potential energy α21q

2
aqb, which includes in addition some non-resonant

terms which must be removed in the so-called rotating wave approximation we
use here. To this end, it is convenient to introduce into the classical equations of
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motion

(110)Ma

(
q̈a +ω2

aqa
)+ 2α21qaqb = 0, Mb

(
q̈b +ω2

bqb
)+ α21q

2
a = 0,

where we took into account the relevant α21q
2
aqb interaction term only, the com-

plex variables

(111)A=
√
Ma

2ωa
(ωaqa + iq̇a), B =

√
Mb

2ωb
(ωbqb + iq̇b),

and their complex conjugate A∗ and B∗, so that

(112)qa = 1√
2Maωa

(
A+A∗), qb = 1√

2Mbωb

(
B +B∗),

(113)q̇a = i
√
ωa

2Ma

(
A∗ −A)

, q̇b = i
√
ωb

2Mb

(
B∗ −B)

.

Simple transformation yields the following equations for complex amplitudes A
and B:

(114)Ȧ=−iωaA− 2 · α21i

2Maωa
√

2Mbωb

(
A+A∗)(B +B∗),

(115)Ḃ =−iωbB − α21i

2Maωa
√

2Mbωb

(
A+A∗)2

.

In harmonic approximation the last terms in these equations can be omitted, so in
this case we get

(116)A(t)=A(0) exp(−iωat), B(t)= B(0) exp(−iωbt).
As we stressed above, the rotating wave approximation consists of taking into ac-
count only the terms varying with time with approximately the same frequencies,
that is, according to the resonance condition (107) we neglect in Eq. (114) all in-
teraction terms except A∗B ∝ exp[−i(ωb −ωa)t] and in Eq. (115) all interaction
terms except A2 ∝ exp(−2iωat). As a result, we arrive at the following simple
system of equations

(117)iȦ= ωaA+ 2:A∗B, iḂ = ωbB + :A2,

where the notation for the interaction constant

(118): = α21

2Maωa
√

2Mbωb

is introduced.
Eqs. (117) arise in various physical contexts. In particular, they describe the

process of second harmonic generation in nonlinear optics (see, e.g., [13]). In
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fact, they can be applied to any process in which two classical oscillating modes
(waves) transform one into the other under the resonance condition 2ωa � ωb.

It is important that Eqs. (117) can be derived from the Lagrangian

L= i

2

(
Ȧ∗A−A∗Ȧ+ Ḃ∗B −B∗Ḃ)+ωaA∗A+ωbB∗B

(119)+ :(
A∗2B +A2B∗

)
,

where A, A∗, B, B∗ are considered as independent variables. Then the Lagrange
equations

d

dt

∂L

∂Ȧ∗
− ∂L

∂A∗
= 0,

d

dt

∂L

∂Ḃ∗
− ∂L

∂B∗
= 0

reproduce Eq. (117). The classical Hamiltonian has the form

(120)H = ωaA∗A+ωbB∗B + :
(
A2B∗ +A∗2B)

,

where pairs of canonically conjugate variables areA, A∗ and B, B∗, respectively.
Then the Hamiltonian form of the equations of motion is as follows:

(121)
iȦ= ∂H/∂A∗, iȦ∗ = −∂H/∂A,
iḂ = ∂H/∂B∗, iḂ∗ = −∂H/∂B.

Having the Hamiltonian treatment, it is easy to proceed to quantum mechanical
formulation of the Fermi resonance problem. The classical variables (111) and
their complex conjugates correspond to the “annihilation” and “creation” opera-
tors of quantum oscillator:

(122)A→ h̄1/2â, A∗ → h̄1/2â†, B→ h̄1/2b̂, B∗ → h̄1/2b̂†,

where “dagger” denotes the Hermitian conjugation and the operators â, â†, and
b̂, b̂† obey the usual commutation relations

(123)
[
â, â†]= 1,

[
b̂, b̂†]= 1,

[
â, b̂

]= [
â†, b̂†]= 0.

The classical Hamiltonian (120) converts into quantum mechanical one in the
following way

(124)Ĥ = h̄ωaâ†â + h̄ωbb̂†b̂+ h̄3/2:
(
â2b̂† + â†2b̂

)
,

where the product of non-commuting variables is replaced by their mean value:

A∗A→ h̄

2

(
â†â + ââ†)= h̄(â†â + 1

2

)
,

and zero oscillation terms are dropped.
Now we are ready to discuss the energy splitting of molecular Fermi resonance

states. From classical point of view, the stationary states correspond to a purely
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periodic dependence of the amplitudes A and B on time:

(125)A=A0 exp

(
− i;

2
t

)
, B = B0 exp(−i;t).

So we seek the solution of Eqs. (117) in the form (125) which leads to the system

(126)
(ωa −;/2)A0 + 2:A∗0B0 = 0,

(ωb −;)B0 + :A2
0 = 0.

We multiply the first equation by A0, introduce the “intensity” of vibration

(127)I = |A0|2,
analogous to the number of quanta, and eliminate A2

0 and B0 from this system,
which gives the equation

(128)(ωa −;/2)(ωb −;)= 2:2I

for calculation of the frequency;. This equation has two roots

(129);1,2 = ωa +ωb/2±
√
(ωa −ωb/2)2 + 4:2I .

We see that our classical system has two “eigenfrequencies” depending on inten-
sity I of A-mode. In quantum terms, the intensity I is proportional to the number
of a quanta, na = â†â = I/h̄, nb = b̂†b̂= I/(2h̄), which in the classical limit are
much greater than unity, na = 2nb � 1. However in usual infrared experiments
the lines observed correspond to the excitation of the state with na = 2, nb = 1.
Let us try to apply our classical formula (129) to this quantum region, i.e., we sub-
stitute in it I =A∗A= 2h̄ (two a-quanta). As a result we obtain that the energies
of these two states are equal to

(130)E1,2 = h̄;1,2 = h̄ωa + h̄ωb/2±
√
(h̄ωa − h̄ωb/2)2 + 8h̄3:2.

It is interesting that this semiclassical formula almost reproduces the exact
quantum result. Indeed, the interaction term in quantum Hamiltonian (124) cou-
ples the states

(131)|ψ1〉 = |2a0b〉 and |ψ2〉 = |0a1b〉,
where |namb〉 = |n〉a |m〉b is the oscillators’ state with n a-quanta andm b-quanta.
Using the well-known relations

(132)
â|n〉a =√n|n− 1〉a, â†|n〉a =

√
n+ 1|n+ 1〉a,

b̂|m〉b =√m|m− 1〉b, b̂†|m〉b =
√
m+ 1|m+ 1〉b,
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we obtain the matrix elements of the Hamiltonian in the basis (131):

(133)H =
(

2h̄ωa
√

2 h̄3/2:√
2 h̄3/2: h̄ωa

)
.

The eigenstates’ energies are determined by the secular equation

(2h̄ωa −E)(h̄ωb −E)= 2h̄3:2

and differs by factor 2 from the semiclassical result (128) with I = 2h̄. Thus,
we see that such a molecule has two energy levels E1,2 each connected with the
ground state by one-quantum transition due to large b-component in both eigen-
functions. This leads to the observed splitting of the infrared and Raman spectra
lines. Just such splitting of the Raman spectra was explained by E. Fermi in his
pioneering article [12].

7.2. FERMI-RESONANCE WAVE IN A TWO-LAYER SYSTEM

The next natural step is discussion of Fermi resonance effects in molecular crys-
tals. Let molecules having Fermi resonance between intramolecular vibrations
form a molecular crystal due to weak (van der Waals) forces. Then the individual
molecular vibrational excitations discussed above become coupled to each other
and form collective Fermi resonance bands. We shall consider here a simple two-
layer 1D model with intermolecular interaction between only nearest neighbors
(see Figure 6).

The quantum mechanical Hamiltonian can be written in the form

Ĥ =
∑
m

[
h̄ωaâ

†
mâm + h̄ωbb̂†

mb̂m + h̄3/2:
(
â2
mb̂

†
m + â†2

m b̂m
)]

(134)+
∑
m

[
h̄Va

(
â

†
m+1âm + â†

mâm+1
)+ h̄Vb(b̂†

m+1b̂m + b̂†
mb̂m+1

)]
,

Fig. 6. Two-layer one-dimensional model of a crystal with one molecule in elementary cell of each
layer. Vibrational modes in a and b molecules satisfy the Fermi resonance condition 2ωa � ωb and
interact with excitations in neighboring cells with constants Va and Vb , respectively. Constant : de-
scribes the nonlinear interaction between molecules in adjacent layers.
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where m is the index of the lattice site, the first sum represents molecular Hamil-
tonians in each site (see Eq. (124)), and the second sum corresponds to the inter-
molecular interaction of vibrations—the term h̄Vaâ

†
m+1âm describes a transition

of one a-quantum from the site m to the site m+ 1, and analogous interpretation
have the other terms. In classical approximation we obtain the Hamiltonian

H =
∑
m

[
ωaA

∗
mAm +ωbB∗mBm + :

(
A2
mB
∗
m +A∗2m Bm

)]
+

∑
m

[
Va

(
A∗m+1Am +A∗mAm+1

)
(135)+ Vb

(
B∗m+1Bm +B∗mBm+1

)]
,

and the following equations of motion for complex amplitudes Am and Bm:

(136)
i∂Am/∂t = ∂H/∂A∗m = ωaAm + Va (Am−1 +Am+1)+ 2:A∗mBm,

i∂Bm/∂t = ∂H/∂B∗m = ωbBm + Vb (Bm−1 +Bm+1)+ :A2
m.

Let us look for the solution in the form of plane wave

(137)Am =A exp
[−i(;t −Km)/2]

, Bm = B exp
[−i(;t −Km)]

(we assume that the lattice constant is equal to unity). Then the infinite system
reduces to a simple system of two algebraic equations

(138)

(
ωa −;/2+ 2Va cos(K/2)

)
A+ 2:A∗B = 0,

(ωb −;+ 2Vb cosK)B + :A2 = 0,

which actually coincides with the system (126). If there were no Fermi resonance
interaction (: = 0), then we would have two linear modes with well-known dis-
persion laws

(139);1(K)= 2ωa + 4Va cos(K/2), ;2(K)= ωb + 2Vb cosK.

Fermi resonance coupling between molecular vibrations leads to interaction of
these linear modes with each other which gives rise to mixed waves. To obtain
their dispersion law, we again introduce the intensity

I = |A|2
and reduce the system to the equation

(140)
(
ωa −;/2+ 2Va cos(K/2)

)
(ωb −;+ 2Vb cosK)= 2:2I

with the solutions

;1,2(K)= ωa +ωb/2+ 2Va cos(K/2)+ Vb cosK

± [(
ωa −ωb/2+ 2Va cos(K/2)− Vb cosK

)2 + 8:2I
]1/2

.
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These expressions define the dispersion laws of normal modes arising from linear
plane waves due to nonlinear Fermi resonance interaction. It is important that the
nonlinearity leads to the dependence of the dispersion laws on the intensity I of
vibrations. Such a dependence gives rise to the soliton solutions discussed in the
following sections.

The relations (140) can be considered as a good enough approximation only in
the limit of large intensity

(141)I � h̄.

Nevertheless, as we saw in the preceding section, semiclassical formulas give
exact enough results even in the quantum region I � h̄. More exact relations can
be easily derived by means of quantum mechanical treatment [14–16].

7.3. FERMI RESONANCE INTERFACE WAVES

Now we shall consider the case when one interface separates two simple cubic
2D crystals composed of different molecules of a and b types interacting across
the interface. In two dimensions with line interface (3D generalization is straight-
forward) the equations of motion for the amplitudes Amn and Bmn read (compare
with Eqs. (136))

...
...

n= 2: iȦ2,m = ωaA2,m +Va(A2,m−1 +A2,m+1 +A1,m+A3,m),

n= 1: iȦ1,m = ωaA1,m +Va(A1,m−1 +A1,m+1 +A2,m)+ 2:A∗1,mB0,m,

n= 0: iḂ0,m = ωbB0,m +Vb(B0,m−1 +B0,m+1 +B−1,m)+ :A2
1,m,

n=−1: iḂ−1,m = ωbB −1,m + Vb(B−1,m−1 +B−1,m+1 +B−2,m +B0,m),

(142)
...

...

where the equations with n > 2 and n <−1 have the same structure as at n = 2
and n = −1, respectively. They describe the propagation of excitations in bulk
a and b crystals above and below the interface. New interface (“surface”) modes
arise due to Fermi resonance interaction across the interface [17–19]. We look for
the solution in the form

(143)
An,m =Ae−κa(n−1) exp

[−i(;t −Km)/2]
, for n� 1,

Bn,m = Beκbn exp
[−i(;t −Km)], for n� 0,

where the amplitudes of vibrations exponentially decay as we go away from the
interface. Then Eqs. (142) with n� 2 and n�−1 are solved by these functions
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provided

(144)
;/2= ωa + 2Va cos(K/2)+ 2Va coshκa,

;= ωb + 2Vb cosK + 2Vb coshκb.

These equations give us the values of κa and κb as functions of K and ;. Then
Eqs. (142) reduce to

(145)Va exp(κa)A= 2:A∗B,

(146)Vb exp(κb)B = :A2.

We multiply (145) by A and introduce the intensity of vibrations

(147)I = |A|2,
so that Eqs. (145), (146) give

(148)VaVb exp(κa + κb)= 2:2I.

Elimination of Vaeκa and Vbeκb from this equation can be done with the use of
Eqs. (144), and yields the relation defining implicitly the dependence of ; on K ,
i.e., the dispersion laws of the Fermi resonance modes{

;/2−ωa − 2Va cos(K/2)+ sgn
(
;/2−ωa − 2Va cos(K/2)

)
×

√
(;/2−ωa − 2Va cos(K/2))2 − 4V 2

a

}
×

{
;−ωb − 2Vb cosK + sgn(;−ωb − 2Vb cosK)

(149)×
√
(;−ωb − 2Vb cosK)2 − 4V 2

b

}
= 8:2I.

We see that they are modified compared to the case of Fermi resonance waves
(140), (141) in infinite 1D cubic crystal. At I = 0 (or : = 0), when interaction
across the interface disappears, Eq. (149) reproduces two dispersion relations for
surface waves in half-infinite crystals.

Note that addition of a new dimension to 1D cubic crystal with “point” interface
leads to the replacements

(150)ωa→ ωa + 2Va cos
K

2
, ωb→ ωb + 2Vb cosK,

which are a result of translational invariance along the interface following from
the interaction terms in the Hamiltonian (we omit index n numbering sites along
the axis perpendicular to the interface)∑

m

[
Va

(
a†
mam−1 + a†

m−1am
)+ Vb(b†

mbm−1 + b†
m−1bm

)]
.
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If we add the third dimension (labelled by index l) along the interface, we can
take it into account by means of the following replacements in the formulas for
1D case

(151)
ωa→ ωa + 2Va

(
cos

Km

2
+ cos

Kl

2

)
,

ωb→ ωb + 2Vb(cosKm + cosKl),

Km and Kl being the wave vectors along m and l axes, respectively. Thus, we
conclude that in calculations of dispersion laws of waves propagating in super-
lattices with plane interfaces, it is sufficient to consider first the one-dimensional
models with the axis directed perpendicular to the interfaces. Then the general
formulas for dispersion laws can be obtained by means of replacements (150) or
(151). So we reduce 2D or 3D problems to 1D problem with only one coordinate
directed perpendicular to interfaces.

7.4. BISTABLE ENERGY TRANSMISSION THROUGH THE INTERFACE WITH

FERMI RESONANCE INTERACTION

Interesting phenomena can take place in systems with Fermi resonance under in-
fluence of external electromagnetic field. Here we consider one example of such
behavior—bistable energy transmission through the interface with Fermi reso-
nance interaction [18]. To make calculations easier, we shall consider the follow-
ing simplified model. Let monomolecular layer of a molecules be deposited on
the plane surface of a crystal made of b molecules. For 1D case such a system is
shown in Figure 7.

Let a molecules interact with electromagnetic field

(152)E(t)=E +E∗, E =E0 exp(−iωLt).
in resonance with ωa vibrations, ωL ≈ ωa � ωb/2, so that we can neglect the
direct pumping of ωb excitations. We take the dipole moment of a molecules to
be linear in their coordinates qa so that the electromagnetic interaction term in
Lagrangian is proportional to (see Eqs. (112))

qaE(t)= 1√
2Maωa

(
A+A∗)(E +E∗)� 1√

2Maωa

(
AE∗ +A∗E)

,

Fig. 7. The sketch of 1D interface structure under influence of electromagnetic field.
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where we have omitted the fast oscillating termsAE ∝ exp(−2iωLt) andA∗E∗ ∝
exp(2iωLt) according to our rotating wave approximation. Thus we have

(153)Lint = µ
(
AE∗ +A∗E)

,

where µ up to a constant factor is the dipole moment of a molecules. Correspond-
ingly, the equation of motion of a molecule in our 1D model reads

(154)i∂A/∂t = ωaA+ 2:A∗B +µE(t).
The b molecules do not interact with electromagnetic field and their equations

of motion have usual form

(155)

i∂B/∂t = ωbB + :A2 + VbB1,

i∂B1/∂t = ωbB1 + Vb(B +B2), . . . .

Now we have driving force E(t) = E0 exp(−iωLt) so that the a molecule oscil-
lates with this laser field frequency ωL and due to Fermi resonance interaction
across the interface this leads to oscillations of b molecules with frequency 2ωL.
As a result, we obtain an algebraic system for amplitudes A, B, B1, . . .:

(156)

(ωa −ωL)A+ 2:A∗B +µE0 = 0,

(ωb − 2ωL)B + :A2 + VbB1 = 0,

(ωb − 2ωL)B1 + Vb(B +B2)= 0, . . . .

Equations for amplitudes B1, B2, . . . are linear and solved by

(157)Bn = exp(ipn)Bn−1, B1 = exp(ip)B,

where the wave vector p is determined by the equation

(158)2ωL = ωb + 2Vb cosp.

Then we get from the first two equations of the system (156)

B = exp(ip):A2

Vb

(159)= 2:A2

2ωL −ωb + sgn(2ωL −ωb)
√
(2ωL −ωb)2 − 4V 2

b

,

and

A

[
ωL −ωa − 4:2|A|2

2ωL −ωb + sgn(2ωL −ωb)
√
(2ωL −ωb)2 − 4V 2

b

]
(160)= µE.
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Now we introduce the “pumping” intensity

(161)Ipump = |µE|2/(ωa −ωL)2
and arrive at the following equation

(162)I (1−DI)2 = Ipump

which determines implicitly the intensity of vibrations

(163)I = |A|2
as a function of the pumping intensity Ipump, where

(164)D = 4:2

(ωL −ωa)
[

2ωL −ωb + sgn(2ωL −ωb)
√
(2ωL −ωb)2 − 4V 2

b

] .
The cubic equation (162) can have three roots which indicates on bistability—
two values of I correspond to one pumping intensity (third root corresponds to an
unstable state). The plot of the function I (Ipump) is shown in Figure 8, where one
can see the bistability region 0 � Ipump � 0.15Ic (with Ic = 1/D = 1).

Fig. 8. Dependence of intensity I of a vibrations on pumping intensity: (a) without damping;
(b) with damping.
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More details can be found in [18]. Here we note only that there exists nonzero
solution of (162) even at vanishing pumping:

(165)I = 1/D,

i.e., when the oscillation frequency of b molecules; satisfies the following equa-
tion

(166)(;/2−ωa)
[
;−ωb + sgn(;−ωb)

√
(;−ωb)2 − 4V 2

b

]
= 4:2I.

This vibrational state existing without pumping is just the Fermi resonance inter-
face state.

In conclusion we note that interfaces introduce many new phenomena in
physics of multilayer structures which can find numerous applications to science
and technology.
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1. Introduction

For opto-electronic applications of organic semiconductors, a microscopic under-
standing of the lowest excited states is essential for further developments. This
chapter reviews a minimum set of phenomena that are relevant for one particular
class of organic semiconductors: quasi-one-dimensional molecular crystals. It is
based on the concepts of exciton theory for molecular crystals and it therefore
excludes polymers and amorphous molecular solids.

Within a one-dimensional theory, the major effects of Frenkel exciton trans-
fer, mixing of Frenkel and charge-transfer (CT) excitons and coupling to one in-
tramolecular vibrational mode are described within a common framework. This
framework was developed to model the exciton states of PTCDA (3,4,9,10-
perylenetetracarboxylic dianhydride, see Figure 1) and related perylene pigment
dyes.

Fig. 1. Chemical structures of the investigated molecules and definition of the molecular axes.
MePTCDI = N-N′-dimethylperylene-3,4,9,10-dicarboximide, PTCDA = 3,4,9,10-perylenetetracar-
boxylic dianhydride.
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ISSN 1079-4050 All rights reserved
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To understand the optical properties of a semiconductor crystal, one can use two
different approaches: One approach is to start from the viewpoint of one-particle
states for charge carriers (valence and conduction bands) and then to refine this
picture by introducing correlation effect. The correlated many-particle states (e.g.,
Wannier–Mott excitons) are called large-radius excitons. This approach is useful
if the exciton formation is a small energetic effect compared to the formation of
the one-particle bands. For example, in GaAs, the one-particle bandwidths are in
the order of 2 eV, whereas the binding energy of the Wannier–Mott exciton is only
4.2 meV (cf., e.g., [1]).

The alternative approach starts from the correlated many-particle states of iso-
lated molecules and then introduces intermolecular interactions (small radius ex-
citon theories). This approach is useful if the exciton binding energy is large com-
pared to the one-particle bandwidths and the optical spectra are more closely re-
lated to the molecular states than to one-particle crystal states. Such a situation
is typical for molecular crystals, which are characterized by small Van der Waals
interactions between the molecules. Even for crystals with coplanar stacking and
relatively strong interactions, e.g., PTCDA, the binding energy of the lowest ex-
citons is on the order of 1 eV,1 compared to estimated one-particle bandwidths on
the order of 0.2 eV (see Section 4.1).

The most basic small radius exciton theory considers only Frenkel excitons,
i.e., crystal states are described as superpositions of neutral molecular states. That
means, all states in which electrons would be transferred from one molecule to
another one are excluded, and the exciton radius defined as the mean separation
between the excited electron and the remaining hole is necessarily smaller than
one lattice constant. Frenkel exciton theory is now a standard tool described in
many reviews and monographs (e.g., [3–5]). It was extensively applied in the
third quarter of the 20th century to describe optical properties of naphthalene and
anthracene crystals. In its mature versions, it tries to include as many interactions
as possible to obtain quantitative predictions, in particular for the well defined
phenomenon of Davydov splitting (see, e.g., [6]).

Current interest in molecular crystals concentrates on materials with promis-
ing properties for opto-electronics. Especially the demand for reasonably high
charge-carrier mobilities leads to materials with strong intermolecular interac-
tions. In connection with the demand for exciton energies in the visible range,
this draws attention to aromatic dyes in which the molecules form stacks with
a close coplanar arrangement of the aromatic system. Prominent examples are
derivatives of the perylene tetracarboxylic acid or phthalocyanines. We will use
two perylene derivatives as model compounds for this situation: MePTCDI (N-N′-

1Binding energy of the lowest CT state in PTCDA from Ref. [2]. The lowest Frenkel exciton lies
even 0.1 eV below, see Section 4.1.
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Fig. 2. Crystal structure of MePTCDI from data of Ref. [85]. We show the projections of 2× 2 unit
cells onto the b–c-plane (100), the a–b-plane (001) and onto the a–c-plane (010). The crystal struc-
ture is monoclinic, space group P 21/c, Z = 2 molecules per unit cell, a = 3.874 Å, b = 15.580 Å,
c= 14.597 Å, β = 97.65◦ .

dimethylperylene-3,4,9,10-dicarboximide) and PTCDA (3,4,9,10-perylenetetra-
carboxylic dianhydride, see Figure 1).

PTCDA has become a paradigm because it readily forms highly ordered films
[7,8], while related perylene derivatives have solar cells applications [9–11]. Sev-
eral works have sought to understand the PTCDA absorption spectrum and re-
lated properties of its electronic excitations [12–18]. A whole class of PTCDA-
derivatives is provided by various substituents in place of the methyl group in
MePTCDI. The crystal structures of such PTCDA-derivatives are always charac-
terized by molecular stacks, as shown for MePTCDI in Figure 2. The geomet-
rical arrangement suggests that the interactions within the stacks will be much
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stronger than inter-stack interactions. Therefore, we call such materials quasi-
one-dimensional. An experimental evidence of the quasi-one-dimensional nature
is given by the value of the Davydov splitting, which characterizes the inter-stack
interaction between the translationally non-equivalent molecules of the unit cell.
In MePTCDI, this Davydov splitting was observed, and it is indeed much smaller
than the effects related to interactions within the stacks [16].

A major advantage of PTCDA-derivatives is simple and accessible molecular
behavior. The lowest electronic excitation is a dipole allowed π–π∗ transition
with a strong transition dipole along the long molecular axis (e.g., [19,20]). It
couples predominantly to one effective vibrational mode of the carbon-backbone
(cf. Section 3.1), which causes the vibronic progression seen in the absorption
spectrum in Figure 3(a) between 2.2 and 3.3 eV. The next higher allowed elec-
tronic transition is the small feature at 3.4 eV in Figure 3(a), which is related to
an M-axis polarized transition [19,20].

Since the optical spectra of the isolated molecule are determined by the con-
jugated system they are almost independent of the outer substituents [21]. How-
ever, the changes upon crystal formation depend sensitively on the actual crystal
structure. Klebe et al. [21] discuss empirically the relation between the crystal
absorption spectra and the crystal geometry for a large set of PTCDA-derivatives.
Because of the quasi-one-dimensional nature of the crystals, and because of the
nearly constant distance between the molecular planes in the stacks, the crucial
parameter is the lateral displacement of neighboring molecules. We illustrate this
dependence for our two model compounds MePTCDI and PTCDA in Figures 3(b)
and 3(c).

On a very rough scale, the crystal spectra in Figures 3(b) and 3(c) still show
similarities with the monomer spectrum, which corresponds to the nature of a
molecular crystal and motivates the approach by small radius exciton theories.
However, on the scale of the vibronic progression (0.17 eV), the differences be-
tween the monomer and the crystal spectrum are pronounced. This effect of the
intermolecular interactions is much stronger than for the lowest transition in the
early model compound anthracene. These strong interactions require the inclusion
of charge-transfer states in the small radius exciton description.

This chapter will present the basic models that are needed to describe the low-
est exciton states in such quasi-one-dimensional systems. In Section 2, we de-
scribe the purely electronic problem for a small radius exciton theory in a one-
dimensional molecular crystal. We emphasize the relation between the general
Merrifield Hamiltonian and minimum models involving just Frenkel and nearest-
neighbor charge-transfer states. In Section 3, the tools for the inclusion of inter-
nal phonons are discussed. Section 4 demonstrates the path to quantitative ap-
plications of these models. In Section 4.1, it is shown that the electronic Hamil-
tonian for Frenkel and CT excitons, together with coupling to internal phonons,
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Fig. 3. Absorption and emission spectra of the monomer unit compared to crystal spectra. (a) cw
spectra of MePTCDI dissolved in chloroform at room temperature, absorption spectrum (at concen-
tration 0.5 µM) from [16], emission spectrum at concentration 0.3 µM. (b) and (c): absorption spectra
of thin polycrystalline films at 10 K, from [16], emission spectra of small single crystals, MePTCDI
from [106], PTCDA from [88]. The insets in (b) and (c) show the arrangement of nearest stack neigh-
bors projected onto the molecular planes.
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can give a realistic description of absorption spectra of the model compounds. In
Section 4.2, the implications of such models for finite systems are discussed.

2. Electronic Frenkel and Charge-Transfer Excitons in Rigid
One-Dimensional Crystals

2.1. LOCALIZED BASIS STATES IN REAL AND MOMENTUM SPACE

Let us first consider the purely electronic states of a one-dimensional molecular
crystal. That means, we presume that the positions of all nuclei are fixed in space.
In a molecular crystal the constituting molecules retain their individuality to a
high degree. This molecular structure provides the basis for small radius exciton
theories, in which the changes of the electronic structure relative to a reference
system of non-interacting molecules are considered.

In many cases, the problem can be conveniently posed in form of empirical
model Hamiltonians. That means, one defines the system by introducing a basis
set of localized excited states and by choosing the matrix elements between them.
Then, the properties of the model can be studied and compared to experiments.
On this level, an explicit microscopic definition of the basis states and matrix
elements is not necessary.

Let |ϕf
n 〉 denote such an excited basis state localized at the lattice position n

in the one-dimensional crystal. In simple cases, this might be a localized neutral
excitation (Frenkel exciton) or an ionized molecule (charge carrier). Generally, it
might be a state with an arbitrary internal structure, which has to be specified by
further variables (e.g., the radius of a charge-transfer state). This set of internal
variables shall be denoted by f . These states are assumed to form an orthonormal
basis:

(1)
〈
ϕ

g
m

∣∣ϕf
n

〉= δmnδgf .

We denote the electronic ground state of the crystal by |o〉 and introduce creation
and annihilation operators as

(2)X
†
nf |o〉 =

∣∣ϕf
n

〉
,

(3)Xnf

∣∣ϕf
n

〉= |o〉.
The Hamiltonian in the representation of these localized basis states consists of

on-site energies

(4)εf =
〈
ϕ

f
n

∣∣H ∣∣ϕf
n

〉
and transfer integrals

(5)Jnf,mg =
〈
ϕ

g
m

∣∣H ∣∣ϕf
n

〉
(n �=m).
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Because of the translational symmetry in the crystal, the on-site energies do not
depend on the site-index n and the transfer integrals only depend on the distance
between the site indices:

(6)Jnf,mg = J(n−m)f,0g.

In second quantization, the Hamiltonian can be written as

(7)H = εf

∑
nf

X
†
nf Xnf +

∑
nf
mg

′
Jnf,mgX

†
nf Xmg.

The prime at the summation symbol indicates that the terms for n=m are to be
omitted. In this notation, the transfer terms can be visualized as a transfer of the
exciton of type g at site m into an exciton of type f at site n (“mg⇒ nf ”).

The translational symmetry of the crystal can be readily used to split the com-
plete Hilbert space of basis states |ϕnf 〉 into nonmixing subspaces of definite total
momentum. We assume a periodicity length of N and transform all operators into
their momentum space representation:

(8)Xkf = 1√
N

∑
n

e−iknXnf .

Here, the coordinate k of the quasi-momentum takes the values

(9)k = 2π

N
l with l = . . . ,−1, 0,+1, . . . and − N

2
< l �+N

2
.

The back-transformation is given by

(10)Xnf = 1√
N

∑
k

eiknXkf .

In this momentum space representation, operators with different k do not mix
anymore:

(11)X
†
kf Xk′g = δkk′X

†
kf Xkg.

This can be proven by inserting the momentum space representation (8) into (11)

X
†
kf Xk′g = 1

N

∑
nn′

ei(kn−k′n′)X†
nf Xn′g

and introducing a new summation index m = n′ − n. Because of the trans-
lational symmetry and the periodic boundary conditions, we can substitute
X

†
nf X(n+m)g⇒X

†
0f Xmg and obtain

X
†
kf Xk′g = 1

N

∑
n

e−i(k−k′)n ∑
m

e−ikmX
†
0f Xmg.
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Using the identity

(12)
∑

n

e−i(k−k′)n =Nδkk′ for all k, k′ from Eq. (9),

Eq. (11) is obtained.
Now, the back-transformation (10) can be inserted into the real space represen-

tation of H from Eq. (7). If the relation (11) as well as the arguments for its proof
are used, the Hamiltonian takes the form:2

(13)H =
∑

k

Hk,

(14)Hk =
∑

f

εf X
†
kf Xkf +

∑
fg

L
fg

k X
†
kf Xkg.

Here, the symbol L
fg
k is used to abbreviate the lattice sum

(15)L
fg
k =

∑
m�=0

eikmJ0f,mg.

Eq. (14) describes the mixing of the various momentum space basis states (8)
within the subspace of a given total momentum k. The dimension of this k-
subspaces is determined by the number F of localized basis states at a fixed posi-
tion. The aim of an empirical small-radius exciton model is the identification of a
small number of relevant basis states.

2.2. MODEL HAMILTONIANS FOR FRENKEL AND CHARGE-TRANSFER

STATES

One of the simplest examples is the following Frenkel exciton Hamiltonian. As
localized basis states one considers states |n〉 in which molecule number n is in
the first excited state whereas all other molecules are in the electronic ground
state. A nearest-neighbor hopping model for Frenkel excitons can now be written
as

(16)H FE
NN = εFE

∑
n

a†
nan + J

∑
n

(
a†

nan+1 + a
†
n+1an

)
.

Here, εFE denotes the on-site energy of a localized Frenkel exciton and J the
nearest-neighbor exciton transfer integral (hopping integral). If introduced as an
empirical model, Hamiltonian (16) reflects no more than heuristic assumptions

2Cf. Ref. [4, p. 123] or [22] for the case of Frenkel excitons.
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about the physical situation. One assumes that only one excited state of the mole-
cule is important, one assumes that localized basis states can be introduced cor-
responding to this excited molecular state and one assumes that only the nearest-
neighbor matrix elements are important. A strict microscopic justification and
a derivation of the precise meaning of the model parameters is another task on
which we will not focus here.

In the case of the Frenkel exciton Hamiltonian (16), the connection to micro-
scopic theory is well established (a widely available review is given in Ref. [4]).
In this case, the localized functions |n〉 are strictly identified with the eigenfunc-
tions of the noninteracting case, and their orthogonality has to be introduced as an
approximation. From the analysis of the Schrödinger equation with the complete
interaction Hamiltonian, the model parameters can be related to exact expressions
using molecular wave functions. For example, it is seen that the on-site energy εFE
deviates from the excitation energy of the noninteracting molecule by a solvent
shift term. Furthermore, the nature of the involved approximations becomes clear.
In this case, one is working in the Heitler–London approximation, which is valid
only for |J | 
 εFE.

Using the representation in momentum space, k-states according to Eq. (8) can
be introduced:

(17)ak = 1√
N

∑
n

e−iknan.

Then, the Frenkel exciton Hamiltonian (16) takes the diagonal form

(18)H FE
NN =

∑
k

Hk,

(19)Hk = (εf + 2J cosk)a
†
kak.

Thus, the momentum space Frenkel excitons a
†
k |o〉 are already eigenstates of the

Hamiltonian H FE
NN. They form an energy band

(20)E(k)= εf + 2J cos k, k ∈ [0,π].
The Frenkel exciton model from Eq. (16) can be directly extended to the case

of a three-dimensional crystal with inclusion of arbitrary exciton transfer integrals
Jn,m. Then, it reads

(21)H FE
3D = εFE

∑
n

a†
nan +

∑
n,m

′
Jn,ma†

nam.

Here, the site indices n, m are three-dimensional vectors. The second sum runs
over all pairs n, m with n �= m, which is symbolized by the prime at the sum-
mation index. Such a type of exciton model was already suggested by Frenkel in
1931 [23,24] and first applied to molecular crystals by Davydov in 1948 [25].
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One way to extend the two-level model (21) is to include higher excited states of
the molecule. For the one-dimensional crystal, this leads to model Hamiltonians
of the form

(22)H =
∑
nf

εf a
†
nf anf +

∑
nf
mg

′
Jnf,mga

†
nf amg,

where a
†
nf now creates a localized Frenkel exciton in level f at molecule n with

on-site energy εf and Jnf,mg denotes the hopping integrals between the various
localized states. The prime at the summation excludes the terms with n=m.

The interaction of various molecular excited states (mixing of molecular con-
figurations) as in Eq. (22) was extensively investigated. It was first considered
by Craig [26] to explain the experimentally observed polarization ratios of the
Davydov components in anthracene crystals. A general treatment in second quan-
tization was given by Agranovich [27]. Reviews are available in Refs. [4,5,28].

Another extension of the two-level model (21) is the inclusion of charge-
transfer (CT) states. In the one-dimensional crystal, a localized CT state can be
written as

(23)|n,f 〉 = c
†
n,f |o〉,

meaning that an electron is transferred from molecule n, where it leaves a hole, to
molecule n+ f . If arbitrary electron–hole distances f are allowed, the complete
set of the CT basis states |n,f 〉 can describe not only bound CT states but also
unbound states corresponding to free charge carriers.

CT states are the lowest electronic excitations in so-called charge-transfer crys-
tals, which are mixed crystals containing donor and acceptor type molecules.
Prominent example are anthracene-PMDA (anthracene as donor and pyromel-
litic dianhydride as acceptor) or TTF-TCNQ (tetrathiafulvalene as donor and
tetracyano-p-quinodimethane as acceptor). The fundamental optical properties of
such crystals are reviewed, e.g., in Ref. [29], and electronic model Hamiltonians
in second quantization are reviewed, e.g., in Ref. [30]. In such charge-transfer
crystals, the lowest electronic excitations are pure CT states and Frenkel excitons
can be neglected. We are interested, however, in one-component molecular crys-
tals. In this case, CT excitons are expected to lie energetically above—but maybe
close—to the lowest Frenkel excitons. Then, both types of states have to be in-
cluded in model Hamiltonians, and the true eigenstates can be of mixed character.
The possibility of such mixed states was first pointed out in 1957 by Lyons [31].
A detailed theoretical investigation of this general case was presented 1961 in the
work of Merrifield [32]. This model was extended for a description of absorption
by Hernandez and Choi [33] and for the inclusion of several Frenkel excitons by
Pollans and Choi [34]. In anthracene crystals, CT states are essential to describe
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electro-absorption spectra [35–39] and charge-generation mechanisms [40]. How-
ever, their effect on the low energy optical absorption and emission spectra is still
very small. In quasi-one-dimensional crystals with close coplanar arrangement of
the molecules, Frenkel and CT states are considered to be strongly mixed even in
the lowest energy region [15–17,41] and thus this mixing is an essential feature
even for the description of the linear absorption spectra.

The general one-dimensional Merrifield model for Frenkel–CT mixing [32]
considers one electron (position ne) and one hole (position nh), which can perform
nearest neighbor hops independently of each other. The corresponding transfer
integrals are te and th, respectively. Electron–hole correlation is introduced by
a Coulombic attraction potential V (ne − nh). The special situation ne = nh is
considered as a Frenkel exciton with an on-site energy εFE. This Frenkel exciton
can perform arbitrary hops with hopping integrals Jn,m as in the Frenkel exciton
Hamiltonian (22).

In Merrifield’s work, the localized basis states are expressed by electron and
hole positions and the Frenkel exciton occurs just as a special position. Now,
we will write down his Hamiltonian in our notation of Frenkel and CT excitons.
For Merrifield’s general case, our notation becomes much less convenient but it
reveals the path towards simplified small radius exciton Hamiltonians. First, we
explicitly split the Merrifield Hamiltonian into a Frenkel part H FE, a CT part H CT

and a term that mixes Frenkel and CT states H FE−CT:

(24)HMerri =H FE
Merri +H CT

Merri +H FE−CT
Merri .

The Frenkel part corresponds to the Frenkel exciton Hamiltonian (22) with just
one molecular configuration:

(25)H FE
Merri = εFE

∑
n

a†
nan +

∑
nm

′
Jn,ma†

nam.

The CT part treats the nearest-neighbor hopping of electrons and holes, which
always means the transfer of a CT state with separation f into a CT state with
separation f ± 1. Since f can be arbitrarily large, these CT basis states can also
describe the motion of an unbound (free) electron–hole pair. However, all Frenkel
states (which correspond to an electron–hole separation f = 0) have to be ex-
cluded now, which we denote by primes at the summation symbols:

H CT
Merri =

∑
nf

′
V (f )c

†
n,f cn,f

+
∑
nf

′[
th c

†
n+1,f−1cn,f︸ ︷︷ ︸

n
h→n+1

+ th c
†
n−1,f+1cn,f︸ ︷︷ ︸

n
h→n−1

+h.c.
]



232 M. HOFFMANN

(26)+
∑
nf

′[
te c

†
n,f+1cn,f︸ ︷︷ ︸

n+f
e→n+f+1

+ te c
†
n,f−1cn,f︸ ︷︷ ︸

n+f
e→n+f−1

+h.c.
]
.

The first sum in this notation covers the on-site energies of the CT states, which
only depend on the separation f . The second sum includes all nearest-neighbor

hops of a hole (“n
h→ n ± 1”), and the third sum the corresponding hops of an

electron (“n+ f
e→ n+ f ± 1”).

Finally, the Frenkel–CT mixing part in Merrifield’s Hamiltonian can be ex-
pressed as:

H FE−CT
Merri =

∑
n

[
te a†

ncn,+1︸ ︷︷ ︸
n+1

e→n

+ te a†
ncn,−1︸ ︷︷ ︸

n−1
e→n

+h.c.
]

(27)+
∑

n

[
th a†

ncn+1,−1︸ ︷︷ ︸
n+1

h→n

+ th a†
ncn−1,+1︸ ︷︷ ︸
n−1

h→n

+h.c.
]
.

Here, the first sum describes the processes in which a nearest neighbor CT state
(separation |f | = 1) is transferred into a Frenkel exciton by a hop of the electron

to the position of the hole (“n± 1
e→ n”). The reverse transfer of a Frenkel into a

CT state is included in the Hermitian conjugated part. The second sum describes

the analogous process for the jump of the hole (“n± 1
h→ n”).

At this stage, the separation of the charge hopping processes into H CT
Merri and

H FE−CT
Merri seems like an unnecessary complication. However, this separation makes

an important point obvious: The charge hops in H CT
Merri and in H FE−CT

Merri are not
identical, since they connect different kinds of states. Only in an uncorrelated one-
particle picture, it would not make a difference for the hopping integrals whether
the final position is neutral or occupied by an opposite charge. Strictly speaking,
even the hopping integrals that connect the various CT states in H CT

Merri might be
different from each other. Using one value for all one-particle hopping integrals is
a clearly definable approximation in the model. An explicit distinction of the var-
ious hops becomes more important with the rising availability of computational
methods that allow microscopic calculations of both dissociation integrals and
one-particle hopping integrals on highly correlated levels.

As a second important point, the separation into H CT
Merri and H FE−CT

Merri allows the
approximate separation of low-lying small radius excitons. Let us first consider
H CT

Merri. The basis states that are mixed by this CT Hamiltonian have on-site en-
ergies V (f ). In the simplest approximation, which was also used by Merrifield,
the on-site energies follow Coulomb’s law V (f )= V1/|f |. Then, the separation
between the lowest CT states (|f | = 1) and the second lowest ones (|f | = 2) is
V1/2. In our model compound PTCDA, the lowest CT states lie at approximately
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2.3 eV (cf. Section 4.1) giving a separation of 1.2 eV. Detailed microscopic mod-
els predict a separation of 0.5 eV [2].

The mixing of this states with the higher states is determined by the charge
carrier hopping integrals t . In molecular crystals, these hopping integrals are small
and even for quasi-one-dimensional materials such as PTCDA, values on the order
of 0.05 eV are typically discussed (cf. Section 4.1). These values are much smaller
than the separation from higher CT states. Thus, the lowest CT states will mix
only weakly with the higher CT states. In contrast, the separation of the higher
CT states becomes smaller and tends to zero for f →∞. Thus, these higher
states will strongly mix with each other.

From this discussion we can derive the qualitative structure of the eigenstates
of H CT

Merri. The lowest eigenstates will be dominated by the two lowest CT basis
states (f =−1,+1). In the momentum space representation, the CT Hamiltonian
for the lowest states becomes

(28)H CT
Merri(k)= V (1)

(
c

†
k,−1ck,−1 + c

†
k,+1ck,+1

)
.

Thus, the two lowest CT basis states |k,+1〉 and |k,−1〉 are two degenerate eigen-
states. However, these states do not yet represent the symmetry of the Hamiltonian
for inversion about any site n. Therefore, one can introduce symmetry adapted ba-
sis states

|k,+1〉 ± |k,−1〉√
2

.

These symmetry adapted states are the simplest version of small radius CT states
in a crystal with translational and inversion symmetry. The mixing of such states
with Frenkel excitons will be the main topic of the following sections.

For the higher CT states, the matrix elements between CT states with different
separation f will be in the same order or larger than their decreasing energetic
separation. Therefore, it is not possible anymore to isolate weakly interacting sub-
spaces in the Hamiltonian that correspond to CT states of a certain radius f . In
Merrifield’s analytical solution [32], this situation is treated exactly. Qualitatively,
the situation now becomes similar to a Wannier–Mott exciton since for large ex-
citon radii the discrete lattice structure of the molecular crystal can be replaced
by a continuum model with effective masses for the charge carriers.3

Now, we will consider the situation that only the lowest CT states |k,±1〉 can
mix with the Frenkel states |k, 0〉. If we neglect all higher CT states in the Mer-
rifield Hamiltonian (24), we arrive at a much simpler Hamiltonian that includes

3The equivalence between both models can be directly seen in the difference equations (18) of
Ref. [32] for the expansion coefficients α(n). For large radii n, (α(n−1)+α(n+1))/2 can be approx-
imated by the second derivative ∂2α/∂n2 and the difference equation transforms into the Schrödinger
equation for the relative coordinate of an electron–hole pair in a Coulomb potential.
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only nearest-neighbor CT states and mixing of these states with Frenkel excitons
at the site of either the electron or the hole. If, as a further simplification, we also
reduce the Frenkel exciton hopping to nearest neighbors, we arrive at a nearest-
neighbor Hamiltonian of the form

(29)HNN =H FE
NN+H CT

NN +H FE−CT
NN ,

H FE
NN = εFE

∑
n

a†
nan + J

∑
n

(
a†

nan+1 + a
†
n+1an

)
,

H CT
NN = εCT

∑
nf

c
†
nf cnf ,

H FE−CT
NN =

∑
n

{
te
(
a†

ncn,+1︸ ︷︷ ︸
n+1

e→n

+a†
ncn,−1︸ ︷︷ ︸

n−1
e→n

)+ th
(
a†

ncn+1,−1︸ ︷︷ ︸
n+1

h→n

+a†
ncn−1,+1︸ ︷︷ ︸
n−1

h→n

)+ h.c.

}
.

In this nearest-neighbor version of the Merrifield Hamiltonian, the FE–CT mixing
term is identical with the original equation (27).

After Fourier transformation an → ak and cn → ck according to Eq. (8), the
Hamiltonian becomes:

(30)HNN =
∑

k

(
H FE

NN(k)+H CT
NN(k)+H FE−CT

NN (k)
)
,

H FE
NN(k)= (εFE + 2J cosk)a

†
kak,

H CT
NN(k)= εCT

(
c

†
k,+1ck,+1 + c

†
k,−1ck,−1

)
,

H FE−CT
NN (k)= a

†
k

[(
te + the−ik)ck,+1 +

(
te + theik)ck,−1

]+ h.c.

Now, the Frenkel–CT mixing part in H FE−CT
NN (k) can be further simplified by

introducing symmetry adapted CT operators with even or odd symmetry with
respect to change of the direction of the charge-transfer:4

(31)c̃k± ≡ 1√
2tk

[(
te + the−ik)ck,+1 ±

(
te + the+ik)ck,−1

]
,

where

(32)tk ≡
√

t2+ cos2 k

2
+ t2− sin2 k

2

4 c̃k+ is directly chosen as the term [. . .] multiplied with an—at first unknown—normalization con-
stant. The normalization constant 1/(

√
2tk) is then obtained by demanding the correct expression of

H CT
NN(k) in Eq. (34).
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with

(33)t± ≡ te ± th.

The Hamiltonian for the CT states then simplifies to:

(34)H CT
NN(k)= εCT

{
c̃

†
k+c̃k+ + c̃

†
k−c̃k−

}
,

(35)H FE−CT
NN (k)=√2 tka

†
k c̃k+ + h.c.

Now, the odd operator c̃k− does not mix with the Frenkel operators ak anymore.
The odd CT state c̃

†
k−|o〉 = |k, 1〉− is a nonmixing eigenstate of H CT

NN(k) and
thereby of the complete Frenkel–CT Hamiltonian (30). It lies at the energy εCT of
the localized CT states.

The remaining even part of the k-dependent Hamiltonian can be represented by
the two even basis states |k, 0〉 = a

†
k |o〉 and |k, 1〉+ = c̃

†
k+|o〉. In this representa-

tion, it has the form of a 2× 2 matrix:

(36)H NN+(k)=
(

εFE + 2J cosk
√

2 tk√
2 tk εCT

)
.

The two eigenstates |$j (k)〉 (j = 1, 2) of this problem are linear combinations

(37)
∣∣$j (k)

〉= uFEj (k)|k, 0〉 + uCTj (k)|k, 1〉+.

The composition of the states is characterized by the squared coefficients |u|2 in
terms of a Frenkel exciton character

(38)FFEj (k)≡ ∣∣uFEj (k)
∣∣2 = ∣∣〈$j (k)|a†

k |o〉
∣∣2

and a CT character

(39)FCTj (k)≡ ∣∣uCTj (k)
∣∣2 = ∣∣〈$j (k)|c̃†

k+|o〉
∣∣2.

From the matrix representation (36), one can directly see that the off-diagonal
term between Frenkel and CT states is entirely given by tk . This term depends in
a characteristically k-dependent way on the combination of the electron and hole
transfer integrals. In particular, one has at the boundaries of the Brillouin zone:

tk=0 = t+ = te + th,

tk=π = t− = te − th.

If one looks, e.g., only at absorption spectra (k = 0), the two parameters te and th
are reduced to one effective parameter t+.

For illustration, we show several concrete exciton band structures of this Hamil-
tonian in Figures 4 and 5. Since an additive constant in the on-site energies has no
physical meaning in this model, we always take εFE = 0. An example without FE–
CT mixing is shown in Figure 4(a) (te = th = 0). All other pictures demonstrate
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Fig. 4. Exciton bands for increasing charge-transfer parameters te, th and constant εFE, εCT, J . The
FE character FFEj of each band is indicated by the upper stripe, the CT character FCTj by the lower
one (cf. Eqs. (38), (39)). (a) With te = 0 and th = 0, all interactions between the FE and CT states are
turned off. The pure CT excitons form a dispersionless band at εCT, the Frenkel excitons form a pure
FE band with bandwidth 4J . (b) With one charge-transfer integral (te) nonzero, FE and CT excitons
can mix. Both bands have a mixed character and their crossing is avoided. The composition of the
bands varies with k. For th > 0 and te = 0, the picture would be the same. (c) Now, both CT integrals
are nonzero, which increases the overall mixing and repulsion of the bands. In the shown special case
te = th, the bands are not mixed at k = π .

the situation for various mixing situations, as explained in the figure captions. The
characters of the bands (FE or CT) are always indicated by the upper and lower
stripes. The vertical height of each stripe is always proportional to the character
F(k).

The visualization scheme of Figures 4 and 5 easily allows to realize the two
main features that determine the exciton band structure. The first important feature
is the overall dispersion of the contributing Frenkel exciton. The pure Frenkel
exciton band is a simple cosine function as seen in Figure 4(a). If this band is
mixed with other bands, also the FE character is distributed over all mixed bands.
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Fig. 5. Exciton bands for varying CT on-site energy εCT and constant εFE, J , te = th. The FE
character FFEj of each band is indicated by the upper stripe, the CT character FCTj by the lower one
(cf. Eqs. (38), (39)). Because of te = th, the FE band and the CT band mix strongly at k = 0 but do
not mix at k = π (cf. Figure 4). (a) With εCT = −0.1 eV, the CT state is energetically well below
the FE band at k = 0 (cf. Figure 4(a)) and strong mixing occurs only for intermediate k. (b) With
εCT = 0.1 eV, both bands are strongly mixed at k = 0. (c) With εCT = 0.3 eV, the CT band lies above
the pure FE band and both states are weakly mixed.

However, the center of mass of the FE character

(40)�EFE(k)≡
∑

j

FFEj (k)Ej (k)

exactly follows the dispersion of the pure FE band:

(41)�EFE(k)= εFE + 2J cosk.

The same holds for the center of mass of the CT character:

(42)�ECT(k)≡
∑

j

FCTj (k)Ej(k),
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and

(43)�ECT(k)= εCT.

Both identities (41) and (43) follow directly from the theory of unitary trans-
formations: If U = (uij ) is the transformation matrix that diagonalizes H by
diag(Ej )=U†HU , then

(44)
∑

j

u2
ij Ej =Hii.

The physical meaning of Eqs. (41) and (43) is very intuitive: No matter in which
way the FE and CT states mix, the original dispersion of these states remains as
a center of mass dispersion of the corresponding characters. Therefore, the upper
stripes of the FE character will always disperse to lower energies and thus keep
on average their original dispersion. This average dispersion can easily be tracked
by the eye. By the same token, the average position of the lower stripes represents
the dispersion-less band of the pure CT state.

2.3. CHARACTERS AND TRANSITION DIPOLES OF THE EIGENSTATES

With knowledge of the eigenstates (37) of our considered Frenkel–CT Hamil-

tonian (29), we can investigate the transition dipoles of these states. Let �̂P be
the total transition dipole operator, which is a one-electron operator acting on all
electrons in the system:

(45)�̂P =
∑

i

e�ri .

First, we decompose the transition dipole into a Frenkel and CT component by
means of Eq. (37):

�Pj = 〈$j (k)| �̂P |o〉

(46)= uFEj (k)〈k, 0| �̂P |o〉︸ ︷︷ ︸
≡ �PFEj

+uCTj (k)+〈k, 1| �̂P |o〉︸ ︷︷ ︸
≡ �PCTj

.

The FE component �PFEj becomes

�PFEj = uFEj (k)
1√
N

∑
n

eikn 〈n, 0| �̂P |o〉︸ ︷︷ ︸
= �pFE

(47)= uFEj (k) �pFE
1√
N

∑
n

eikn

︸ ︷︷ ︸
(12)= Nδk,0

= uFEj (k)δk,0
√

N �pFE.
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Here, we have introduced the transition dipole �pFE of a localized Frenkel exciton
basis state:

(48)�pFE ≡ 〈n, 0| �̂P |o〉.
This local Frenkel exciton transition dipole represents the transition from the
ground state of the crystal to a localized Frenkel excitation at any position n.
It corresponds to the transition dipole of an isolated molecule, although it is not
strictly identical with it due to the formal difference between the localized crystal
functions and the wave functions of an isolated molecule.

The CT component in Eq. (46) becomes by means of Eq. (31)

�PCTj = uCTj (k)
1√
2tk

{(
te + theik)〈k,+1| �̂P |o〉 + (

te + the−ik)〈k,−1| �̂P |o〉}

(49)

= uCTj (k)
1√
2tk

{(
te + theik) 1√

N

∑
n

eikn 〈n,+1| �̂P |o〉︸ ︷︷ ︸
= �pCT/

√
2

+ (
te + the−ik) 1√

N

∑
n

eikn 〈n,−1| �̂P |o〉︸ ︷︷ ︸
= �pCT/

√
2

}

= uCTj (k)δk,0
√

N
�pCT√

2

1√
2tk

{(
te + theik)+ (

te + the−ik)}︸ ︷︷ ︸
=√2 for k=0

(50)= uCTj (k)δk,0
√

N �pCT.

In analogy to Eq. (48), we have used the transition dipole of a localized CT basis
state, which will be discussed again in Eq. (71):

(51)�pCT/
√

2≡ 〈n,+1| �̂P |o〉 = 〈n,−1| �̂P |o〉.
Both in Eq. (47) for the Frenkel transition dipole and in Eq. (50) for the CT transi-
tion dipole, the k selection rule follows mathematically from identity (12). Com-
bination of Eqs. (47) and (50) in Eq. (46) gives the final expression

(52)�Pj = δk,0
√

N
[
uFEj (k) �pFE + uCTj (k) �pCT

]
.

The oscillator strength fj of a transition |o〉 → |$j 〉 with transition dipole �Pj

is defined as

(53)fj = 2mEj

e2h̄2
�P 2
j ,
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with m being the free electron mass and Ej the transition energy. In simple cases,
e.g., for molecules in vacuum, fj directly determines the peak area in an absorp-
tion spectrum.

Typically, the CT transition dipole is very small compared to the Frenkel tran-
sition dipole. If we neglect the CT transition dipole, the FE part of the oscillator
strength becomes:

(54)fFEj = 2mEj

e2h̄2 N �p 2
FE × FFEj (0).

In our case, we are always interested in a group of transitions that span an en-
ergy region given by the order of magnitude of the interaction parameters and
by the variation in the on-site energies. This relevant energy region is typically
small compared to the total on-site energies εFE and εCT. Furthermore, an arbi-
trary offset in the on-site energies would only appear as an additive constant in
our model Hamiltonians. Therefore, the factor Ej in Eq. (54) can be seen as a
mere proportionality constant and the relation simplifies to

(55)fFEj ∝ FFEj (0).

In this way, the Frenkel character introduced in Eq. (38) as the FE contents in the
eigenstate obtains an additional meaning: The FE character at k = 0 directly gives
the FE part of the oscillator strength of the corresponding state. This statement is
very obvious for the case of purely electronic states, but it remains valid and be-
comes more valuable for vibronic states (exciton–phonon mixtures) in Section 3.

If Frenkel and CT basis-states are strongly mixed, both resulting eigenstates can
have a significant Frenkel character (see, e.g., Figures 4 and 5). This redistribution
of the oscillator strength from the Frenkel state to all eigenstates is depicted by
the notion that the CT states borrow oscillator strength from the Frenkel states.

If the CT transition dipole has a significant size, it can contribute to the total
transition dipole (52) of the Frenkel–CT mixed eigenstates. Since the coefficients
uCTj (k) vary for the different eigenstates, not only the size but even the direction
of the total transition dipole can be different for the different eigenstates. The pure
CT contribution to the oscillator strength is proportional to the CT character:

(56)fCTj = 2mEj

e2h̄2
N �p 2

CT × FCTj (0).

Typically, this CT contribution cannot be directly observed since it is masked
by the much stronger Frenkel contribution. But if �pCT/‖ �pFE, this CT oscillator
strength could be directly probed by light with polarization perpendicular to �pFE.

As for the Frenkel part, the CT part of the oscillator strength is essentially given
by the CT character at k = 0:

(57)fCTj ∝ FCTj (0).
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Because of the proportionality of the oscillator strengths to the corresponding
character, the characters are also named spectral weights.

2.4. DIRECTION OF CHARGE-TRANSFER TRANSITION DIPOLES

Let us now discuss the small CT transition dipole �pCT from Eq. (51) in more
detail. For this, we consider as the simplest model system a dimer of two iden-
tical closed-shell molecules A and B. Let us assume that the molecules them-
selves have inversion symmetry and that there is an additional center of inversion
between the molecules, which always holds if the dimer corresponds to trans-
lationally equivalent nearest-neighbor molecules from a crystal with inversion
symmetry. The inversion symmetry is fulfilled in many typical examples of one-
component molecular crystals, and it simplifies the situation considerably.

Let us further assume that the electronic structure of the isolated molecules
can be represented by just two molecular orbitals, the HOMO (highest occupied
molecular orbital) and the LUMO (lowest unoccupied molecular orbital). Thus,
we have a one-particle basis set of four monomer orbitals (HA, HB, LA, LB) and
we can construct many-particle configurations by distributing the four electrons
on these orbitals. Note that this monomer orbital set is not completely orthogonal
since 〈HA|HB〉 and 〈LA|LB〉 can be nonzero. We only have

(58)〈HA|LA〉 = 〈HB|LB〉 = 0

since the orbitals from each molecule are orthogonal by definition. Furthermore,
from the inversion symmetry and the orthogonality (58), one can show that

(59)〈HA|LB〉 = 〈HB|LA〉 = 0.

From the monomer orbitals HA/B, LA/B, we can directly construct the follow-
ing localized basis states:5

|MEA〉 = |HA→LA〉

(60)= 1√
2

{∣∣LAH̄AHBH̄B
〉(−) + ∣∣HAL̄AHBH̄B

〉(−)}
,

|MEB〉 = |HB→ LB〉

(61)= 1√
2

{∣∣HAH̄ALBH̄B
〉(−) + ∣∣HAH̄AHBL̄B

〉(−)}
,

|CTA→B〉 = |HA→LB〉

(62)= 1√
2

{∣∣LBH̄AHBH̄B
〉(−) + ∣∣HAL̄BHBH̄B

〉(−)}
,

5We use a quantum chemical notation for spin orbitals as, e.g., in Ref. [42].
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Fig. 6. Scheme of the localized configurations for an idealized dimer with four monomer orbitals.
All configurations represent excited singlet states and therefore no spin is indicated for the electrons.

|CTB→A〉 = |HB→LA〉

(63)= 1√
2

{∣∣HAH̄ALAH̄B
〉(−) + ∣∣HAH̄AHBL̄A

〉(−)}
.

The two molecular excitations |MEA/B〉 represent excited states of the isolated
molecules. Furthermore, there are two charge-transfer excitations |CTA→B〉 and
|CTB→A〉, which represent the transfer of an electron to the other molecule. These
configurations are depicted in Figure 6. They are all strictly orthogonal to the
ground state, which is obvious for the molecular excitations and which also fol-
lows from Eq. (59) for the CT excitations.6

However, there is no strict orthogonality between the molecular and the CT ex-
citations, since the scalar products 〈MEA|CTA→B〉 and 〈MEB|CTB→A〉 include
the overlap 〈LA|LB〉. This means, the CT states |CTA→B〉 and |CTB→A〉 con-
structed from orbitals of isolated molecules are only approximations for the CT
basis states needed in the crystal Hamiltonian HNN in Eqs. (29). For a strict mi-
croscopic description of the CT crystal basis states, a further orthogonalization
of either the molecular orbitals (leading to Wannier orbitals) or of the localized
many-electron configurations would be necessary.

For a qualitative discussion of the CT transition dipole, we will now ignore
the difference between the true orthogonal crystal basis and the localized basis
states derived from monomer orbitals. Then, the transition dipole of the CT state

6In order to calculate the overlap (−)〈HAH̄AHBH̄B|CTA→B〉 of the localized CT state with the
ground state, one has to represent the CT state in an orthogonal orbital basis, since for the nonorthog-
onal basis HA,B,LA,B the standard rules for Slater determinants cannot be applied. A suitable orthog-
onalized orbital basis is given by symmetric and antisymmetric linear combinations of the monomer
orbitals.
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�pB→A = 〈CTB→A| �̂P |o〉 can be related to the molecular monomer orbitals. This
problem was already discussed in detail by Mulliken [43], and we can use his
expression7

(64)�pB→A =−e〈LA|�r|HB〉.
Thus far, this result is very intuitive: The CT transition dipole is given as the
dipole moment of the transition density

(65)/AB
(�r)= LA

(�r)HB
(�r)

by

(66)�pB→A =−e

∫
d3r �r × /AB

(�r).
The structure of the transition density cloud /AB(�r), however, cannot be easily
predicted for complicated molecules.

Mulliken and Person [44, pp. 23ff] give a qualitative discussion for the case of a
σ -type overlap between atomic orbitals. In this case, the transition density forms
a small cloud without nodes and is localized between the two molecules. Then,∫

d3r �r/AB can be approximated by

(67)
∫

d3r �r/AB ≈ �RAB

∫
d3r /AB = �RABSAB,

where SAB is the overlap 〈LA|HB〉 and �RAB is the average position of the tran-
sition density cloud. Based on this approximation, the CT transition dipole in a
donor–acceptor complex is derived as8

(68)�pB→A =−e
√

2
SAB√

1+ S2
AB

( �RAB − �RB
)
.

This result is very intuitive: The CT transition dipole can be visualized as the
transfer of an electron from the donor (position �RB) to the overlap region be-
tween donor and acceptor (position �RAB). The direction of �pB→A is along the
connection line between donor and acceptor.

We want to emphasize that this intuitive picture completely breaks down in
our case of a dimer with inversion symmetry. All effects included in Eq. (68)

7Mulliken actually considered a dimer of an electron donor B and a chemically different acceptor
A, without inversion symmetry. Then, Eq. (59) does not hold and Mulliken had to consider the mixing
with the ground state as well as terms arising from the overlap 〈LA|HB〉. Eq. (64) is accordingly a
simplified version for his expression for µ01.

8See [43], Eqs. (18) and (19). We give only the leading term for strong CT character of the excited
state.
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result from the nonzero overlap SAB between the donor HOMO and the accep-
tor LUMO, and they vanish for the symmetric dimer. The next nonzero term
(Eq. (66)) in the symmetric dimer results not from the average position �RAB of
the transition density cloud /AB(�r) but from its internal structure.

As another consequence of the inversion symmetry, the true eigenstates within
the CT manifold will also obey the symmetry. These symmetry adapted CT states
are:

(69)|CT±〉 ≡ |CTA→B〉 ± |CTB→A〉√
2

.

The transition dipoles of these symmetry-adapted CT states are

(70)�pCT± = �pB→A ± �pA→B√
2

.

The two CT-transition dipoles �pB→A and �pA→B in Eq. (70) are equal because of
the inversion symmetry, which can also be seen from Eq. (64):

(71)�pB→A = �pA→B ≡ �pCT/
√

2.

Thus, Eq. (70) becomes:

(72)�pCT+ = �pCT,

(73)�pCT− = 0.

In the case of coplanar stacked aromatic molecules, the structure of the tran-
sition density cloud cannot be easily approximated. /AB is formed by two com-
plicated π orbitals, which overlap in the region between the molecules. There
it forms a flat, quasi-two-dimensional cloud with dimensions of the molecular
size. Furthermore, like the contributing monomer orbitals, it has a complicated
nodal structure with lobes of alternating sign. Therefore, it can be expected that
the transition dipole �pB→A will lie approximately in the plane of this quasi-two-
dimensional transition density cloud, i.e., parallel to the molecular planes. If there
are no additional symmetries, the actual direction cannot be estimated. As an il-
lustration, we show the monomer orbitals LA and HB and the resulting transition
density for a MePTCDI dimer in Figure 7. There, it is clearly visible how the
transition density is formed in the plane between the molecules. In conclusion,
the direction the CT transition dipole and the underlying leading terms are very
different for a symmetric dimer compared to the classical donor–acceptor com-
plexes studied by Mulliken [43].
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(a) LA(�r)

(b) HB(�r)

(c) ρAB(�r)

Fig. 7. Formation of the transition density cloud in a dimer of MePTCDI molecules. (a) LUMO
LA. (b) HOMO HB. (c) Illustration of the transition density /AB =HB(�r)× LA(�r). The molecular
structure corresponds to nearest-neighbors along the stacking direction (a-axis) from the experimen-
tal crystal structure [85], see Figure 2. The molecular orbitals were calculated with the ZINDO/S
method as implemented by HyperChem [107], the transition density was calculated from these or-
bitals. Its precise structure is not very accurate since the orthogonality relations are not exact in the
ZINDO/S scheme, but the location between the molecules can be illustrated. Calculations and pictures
by K. Schmidt.

3. Strong Coupling of the Electronic Excitations with Internal
Phonon Modes

3.1. EXCITON–PHONON COUPLING IN THE ISOLATED MOLECULE

In Section 2, we have considered exciton states in a rigid lattice, which is a
purely electronic problem. Now, we want to include exciton–phonon coupling,
i.e., coupling of the electronic states to lattice vibrations. In this work, we consider
only one type of exciton–phonon coupling, namely coupling to internal phonon
modes (vibrations along intramolecular nuclear coordinates). These vibrations oc-
cur already in the isolated molecule, and their effect is usually demonstrated by a



246 M. HOFFMANN

Franck–Condon picture as in Figure 8. If the exciton–phonon coupling constant
(see below) is on the order of one, the internal exciton–phonon coupling leads to
a pronounced “vibronic progression” in the absorption and emission spectra of
the isolated molecules. Such a progression is very conspicuous in the monomer
spectra of our model compounds MePTCDI and PTCDA, as can be seen in Fig-
ure 3(a). In this section, we summarize the notation for exciton–phonon coupling
in the isolated molecule, and in Sections 3.2–3.8 we deal with exciton–phonon
coupling in one-dimensional systems.

Let us for simplicity assume that the isolated molecule has just one nuclear co-
ordinate q . In Born–Oppenheimer approximation, the molecular wave functions
can be split into an electronic and a vibrational part:

(74)ψf ν

(�r, q
)= ϕf

(�r, q
)× χf ν(q),

Fig. 8. Schematic energy diagram for the vibrational potentials of ground (V0) and excited (V1)
state along the dimensionless coordinate λ. The excited state potential is displaced on the λ-axis by
the exciton–phonon coupling constant g, which corresponds to a vibrational reorganization energy
EFC = h̄ωg2. The vibrational wave functions χf ν (λ) are shown for the lowest three levels. The oper-

ators b† create phonons in the ground state potential, the displaced operators (b− g)† create phonons
in the excited state potential.
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where f numbers the electronic and ν the vibrational levels; ϕf (�r, q) is the elec-
tronic wave function, which depends explicitly on all electron coordinates �r and
parametrically on the nuclear coordinate q ; χf ν(q) are the vibrational wave func-
tions in the electronic state f and vibrational level ν. They depend only on the nu-
clear coordinate q . In Born–Oppenheimer approximation, the Schrödinger equa-
tion for the molecule separates into an electronic problem at a fixed nuclear coor-
dinate q and a vibrational problem for the nuclear coordinate q .

From the electronic problem, the total energy of the molecule in electronic state
f is given as a function Vf (q) of the nuclear coordinate. Therefore, the vibrational
Hamiltonian in state f becomes:

(75)H vib
f =− h̄2

2Meff
∇2 + Vf (q).

For small elongations from the equilibrium position, the vibrational potential be-
comes a harmonic potential

(76)Vf (q)= 1

2
Meffω

2
f (q − q0f )2 + vf ,

with effective mass Meff, angular frequency ωf and a total energy offset vf .
Since the potential V1(q) in the excited state depends on all electrons but only a

few electrons take part in the excitation, the curvature of V1(q) differs not strongly
from that of the potential V0(q) in the ground-state. Hence, the vibronic spacing is
very similar. For example, in the case of MePTCDI in chloroform, the difference
of h̄ω derived from the absorption and emission spectra amounts to 3 meV com-
pared to h̄ω = 170 meV (values from Figure 3). We therefore make the further
approximation that the vibrational spacings h̄ωf are identical for the ground and
excited state.

As an abbreviation, we introduce the dimensionless nuclear coordinate9

(77)λ≡
√

Meffω

2h̄
(q − q00),

which is centered around the equilibrium position q00 of the electronic ground
state f = 0. Now, the vibrational potentials are in the electronic ground state

(78)V0(λ)= h̄ωλ2 + v0

and in the excited state

(79)V1(λ)= h̄ω(λ− g)2 + v1.

9In the literature, several ways are common to introduce dimensionless coordinates and exciton–
phonon coupling constants.



248 M. HOFFMANN

The exciton–phonon coupling constant g introduced here is the displacement of
the exited state potential V1 with respect to the ground state potential V0 along
the dimensionless coordinate λ. Both potentials are illustrated in Figure 8. If one
introduces the vertical excitation energy

(80)Evert ≡ V1(0)− V0(0)

for the excitation energy in a rigid molecule (λ
!= 0), the excited state potential

can be written as

(81)V1(λ)= h̄ω(λ− g)2 + v0 +Evert −EFC.

Here, the vibrational reorganization energy (Franck–Condon energy) EFC gives
the energy gain for the geometry relaxation of the electronically excited molecule
after a “vertical excitation” into the new equilibrium geometry. The reorganization
energy is trivially connected with the exciton–phonon coupling constant by

(82)EFC = h̄ωg2.

Optical absorption corresponds to the transitions |ψ00〉 → |ψ1ν〉, since for
h̄ω = 0.17 eV kT only the lowest vibrational level of the electronic ground
state is occupied. The transition dipole moment is given by the matrix element

with the dipole moment operator �̂P :

(83)�p ν = 〈ψ1ν | �̂P |ψ00〉.
This matrix element refers to integration over all electron and nucleus coordi-
nates. In the product representation (74), the vibrational part χf ν only depends
on the nucleus coordinates, whereas the electronic part ϕf contains these nucleus
coordinates as a variable that varies slowly compared to the electron coordinates.
Therefore, the integration can be split into an electronic and a vibrational matrix
element (e.g., [45, p. 305]):

(84)�p ν = 〈ϕ1| �̂P |ϕ0〉︸ ︷︷ ︸
�pFE

×〈χ1ν |χ00〉︸ ︷︷ ︸
S(ν

0)

.

Here, we have introduced the electronic transition dipole moment of the lowest
molecular excitation �pFE and the vibronic overlap factors S

(
ν
0

)
. The oscillator

strength f for a transition with energy E is defined as f = 2mE| �p|2/(e2h̄2) (cf.
Eq. (53)), where �p is the transition dipole moment. Thus, the oscillator strength
(corresponding to the absorption peak area) of the νth transition is

(85)fν = 2m

e2h̄2
·Eν

∣∣ �pFE
∣∣2× S2

(
ν

0

)
.
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The squared values S2
(
ν
0

)
are called the Franck–Condon factors. They deter-

mine the intensity distribution in the vibronic progression. In the considered case
of a single vibrational coordinate λ and two harmonic potentials displaced by g,
the Franck–Condon factors can be analytically expressed as (e.g., [46]):

(86)S2
(

ν

0

)
= ∣∣〈χ1ν |χ00〉

∣∣2 = g2ν

ν! e−g2
.

For large coupling constants g, the maximum intensity occurs at high vibra-
tional levels, whereas for g = 0 exclusively the lowest vibrational level is excited
(fν = δ0ν). For a coupling constant of g = 1, which is visualized in Figure 8
and represents the order of magnitude in PTCDA-derivatives, the lowest and sec-
ond lowest vibrational level obtain approximately the same oscillator strengths
(f1 ≈ f0). This leads to the characteristic spectrum in Figure 3(a), where the ar-
eas of the 0–0 peak and of the 0–1 peak are on the same order of magnitude.

In order to extend the molecular vibrational Hamiltonian (75) to an aggregate
Hamiltonian, the introduction of phonon creation and annihilation operators is
very helpful:10

(87)b† ≡ λ− 1

2

∂

∂λ
,

(88)b≡ λ+ 1

2

∂

∂λ
.

Then, the vibrational Hamiltonian in the electronic ground state becomes:

(89)H vib
0 = h̄ω

(
b†b+ 1

2

)
+ v0.

For the vibrational Hamiltonian in the excited state, it is more convenient to
introduce displaced operators because of the potential displacement in Eq. (81):

(90)b̃† ≡ b† − g,

(91)b̃ ≡ b− g.

Then, from comparison with Eq. (89), the Hamiltonian in the excited state can be
written as

(92)H vib
1 = h̄ω

(
b̃†b̃+ 1

2

)
+ v0 +Evert −EFC.

10A good summary can be found in Ref. [47, pp. 248–252]; a comprehensive introduction is given,
e.g., in Ref. [48].
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After inserting relations (90), (91) and (82) for EFC, we can express the excited
state Hamiltonian with the undisplaced operators b†, b:

(93)H vib
1 = h̄ω

(
b†b− g

(
b† + b

)+ 1

2

)
+ v0 +Evert.

Now, it is possible to combine the vibrational Hamiltonians for the ground and
excited state by introducing electronic operators. For this, we assume that the
electronic problem is a strict two-level problem with the electronic ground state
|φ0〉 and the exited state |φ1〉. We define electronic operators a† and a by

(94)
a†|φ0〉 ≡ |φ1〉, a|φ0〉 ≡ 0,

a†|φ1〉 ≡ 0, a|φ1〉 ≡ |φ0〉.
That means, a† creates an exciton at the molecule, a destroys it and a†a is the
exciton number operator.

Now, both operators H vib
0 and H vib

1 can be combined by multiplying the addi-
tional terms in H vib

1 with a†a. We obtain the monomer Hamiltonian

(95)Hmono = h̄ω

(
b†b+ 1

2

)
+ v0 + a†a× (−h̄ωg

(
b† + b

)+Evert
)
.

Here, the first term is the familiar Hamiltonian of the harmonic oscillator, which
describes the internal phonons in the molecule. The constant offset v0 for the
total ground state energy of the molecule is not relevant here. a†a is zero for
the electronic ground state but one for the excited state. In the excited state, the
linear exciton–phonon coupling −h̄ωg(b† + b) and the vertical excitation energy
Evert are added. The exciton–phonon coupling, which is the most interesting term,
entirely results from the displacement of the exited state vibrational potential.

3.2. THE HOLSTEIN HAMILTONIAN FOR EXCITON–PHONON COUPLING

Now, we can extend the monomer Hamiltonian (95) to a one-dimensional chain.
In the first step, we neglect intermolecular interactions and formally add the
monomer Hamiltonians Hmono(n) of the molecules, which are numbered by the
index n= 1, . . . ,N :

(96)

∑
n

Hmono(n)=
∑

n

[
h̄ω

(
b†

nbn + 1

2

)
+ v0

+ a†
nan

(−h̄ωg
(
b†

n + bn

)+Evert
)]

.

We are exclusively interested in the one-exciton subspace of this problem
(
∑

n a
†
nan = 1). The energy of the lowest state in this one-exciton subspace is
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given by the lowest vibrational level of N − 1 molecules in the electronic ground
state and the lowest vibrational level of one molecule in the excited state:

(N − 1)×
[
h̄ω

(
0+ 1

2

)
+ v0

]
+

[
h̄ω

(
0+ 1

2

)
+ v0 +Evert −EFC

]
=N ×

[
1

2
h̄ω+ v0

]
+Evert −EFC.

We want to use this state as the reference state and set the zero of the energy
axis to its energy. Then, the Hamiltonian (96) in the non-interacting case becomes
(with using EFC = g2h̄ω)

(97)Hnon-inter =H ph +H FE−ph,

with the phonon part

(98)H ph = h̄ω
∑

n

b†
nbn

and the (Frenkel) exciton–phonon coupling part

(99)H FE−ph = h̄ω
∑

n

a†
nan

(−g
(
b†

n + bn

)+ g2).
We call this non-interacting case the molecular limit.

Now, we add to the non-interaction Hamiltonian (97) one of the simplest elec-
tronic interaction terms, namely a nearest-neighbor Frenkel exciton hopping H FE

elec
as introduced in Eq. (16):

(100)H FE
elec = J

∑
n

(
a†

nan+1 + a
†
n+1an

)
,

where J is the Frenkel exciton transfer integral. With this term, we obtain the
classical Holstein Hamiltonian

(101)H FE
Hol =H FE

elec+H ph +H FE−ph.

This Hamiltonian is one of the simplest model systems for exciton–phonon cou-
pling. H FE

elec is a purely electronic operator for Frenkel-exciton hopping, H ph is a
purely vibrational operator for internal phonons and H FE−ph is a linear coupling
term, which couples excitons and phonons locally (i.e., if they occupy the same
molecule).

The Hamiltonian (101) is commonly called Holstein Hamiltonian because of
two fundamental works [49,50] by Holstein on transport properties in this model
system. The ground state of this Hamiltonian describes the states of free charge
carriers or excitons that are responsible for electric conduction or exciton diffu-
sion. Therefore, the ground state has been extensively studied by approximate
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analytical methods (reviews, e.g., in Refs. [5,51–54]). Currently, much effort is
also spent in obtaining numerical solutions for the full parameter range by varia-
tional approaches [55–61], direct diagonalization [62–66], quantum Monte-Carlo
calculations [67–70], and density-matrix renormalization-group techniques [71].
Compared to this, the properties of higher states have been much less investi-
gated. These excited vibronic states, however, are essential for an understanding
of optical absorption spectra. The relevant issues were identified in the initial
studies of molecular crystals and limiting cases were analyzed (see, e.g., [3,72]).
For intermediate cases, however, only a few quantitative studies have been pub-
lished. These include direct diagonalization studies of dimers [15,73], variational
and direct-diagonalization studies of aggregates [74–78], and a discussion of the
second lowest vibronic state in an infinite chain [66]. Here, we will present the
numerical approach described in Ref. [41], which was specifically developed in
the context of our work on PTCDA-related quasi-one-dimensional crystals.

3.3. BASIS FUNCTIONS FOR NUMERICAL DIAGONALIZATION

Our aim is to find the low energy eigenstates of the Holstein Hamiltonian (101)
within the one-exciton manifold. For this, we use a numerical approach based on
direct diagonalization. At first, we define a set of basis functions for the Hilbert
space on which the Hamiltonian acts. The basis functions should be close to the
final solution. Then, already a small and finite subset of functions can reasonably
represent the solution.

In our case, we obtain the basis functions from the reference system given by
the non-interacting case (J = 0, molecular limit). In a localized picture, the eigen-
states in the molecular limit are simple product functions of molecular vibronic
states. One exciton is localized at site n is and the vibrational wave functions at
this site are given by oscillator functions in the displaced potential V1. At all other
sites, which we count relative to the position of the exciton, the vibrational wave
functions are oscillator functions in the ground state potential V0. These local-
ized eigenstates can be used as basis functions for representing the solution of the
complete Hamiltonian.

Thus, the basis functions can be written as

(102)|nν〉 ≡ |n〉 × ∣∣. . . ν−1ν̃0ν1 . . .
〉≡ a†

n|oel〉 × B̃†
nν |ovib〉.

Here, the first factor describes the electronic part of a localized Frenkel exciton at
site n. The second factor describes the vibrational wave function of the chain. It
is created by the action of the vibrational operator B̃

†
nν on the vibrational ground

state:

(103)B̃†
nν =

1√
ν0!

(
b̃†

n

)ν0 · e− g2

2 egb
†
n︸ ︷︷ ︸

displaced on n

×
∏
m�=0

1√
νm!

(
b

†
n+m

)νm

︸ ︷︷ ︸
undisplaced otherwise

.
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Here, the first factor (“displaced”) describes internal phonons in the displaced

potential at the site n of the exciton, where the factor e−g2/2 egb
†
n transforms the

undisplaced vibrational ground state |on〉 into the displaced ground state |õn〉 (e.g.,
[47, p. 249]). The second factor (“undisplaced”) describes internal phonons at all
sites different from n in the undisplaced potential.

The phonon-cloud state |ν〉 contains the phonon occupation numbers νm around
the exciton for all lattice sites. In the long notation | . . .ν−1ν̃0ν1 . . .〉, the special
position of the exciton (m= 0) is denoted by the tilde. A complete phonon-cloud
basis for a chain of N molecules consists of N -boson states and leads to huge
basis sets even for small occupation numbers. But a far smaller basis is sufficient
to calculate the absorption spectrum.

In the molecular limit, optical absorption from the electronic and vibrational
ground state only creates phonons at the site of the electronic excitation, i.e., only
phonon clouds of the form | . . .00ν̃000 . . .〉. We call such clouds joint configu-
rations. In contrast, excited states with any νm �= 0 for m �= 0 cannot be reached
optically. We call these clouds separated configurations, since there is at least one
phonon excitation separated from the exciton position. An example of a joint and
of a separated configuration is illustrated in Figures 9 and 10, respectively. In the

Fig. 9. Illustration of a joint configuration (here: |ν〉 = | . . . 002̃00 . . .〉).

Fig. 10. Illustration of a separated configuration (here: |ν〉 = | . . . 010̃00 . . .〉).
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molecular limit, the absorption spectrum can be explained by considering exclu-
sively the joint configurations since the separated configurations would not mix
with the joint ones and they have no transition dipole moment with the ground
state on their own.

For |J |> 0, the separated configurations can mix with the joint configurations.
That means, optical absorption creates a state in which phonons are excited at
arbitrary distance from the exciton site. However, the contribution of separated
configurations decreases with increasing exciton–phonon separation. Thus, the
photo-excited exciton will be surrounded by a localized phonon cloud. The local-
ized nature of phonon clouds is the motivation for our choice of basis functions.
Instead of N -dimensional cloud states |ν〉, a finite range |ν−M . . . ν̃0 . . . νM〉, with
M denoting the extension of the phonon cloud, will be sufficient. Numerically, M

can be increased until convergence is reached. Important qualitative insight can
already be obtained from the inclusion of just nearest-neighbor phonon clouds
(M = 1).

The choice of the displaced basis functions in Eq. (102) corresponds to apply-
ing the polaron canonical transformation (Lang–Firsov transformation) to a set of
basis functions, in which all vibrational functions (including the site n of the ex-
citon) are oscillator functions in the ground state potential ([79] or see also, e.g.,
[5, p. 98], [53, p. 25]).

With the restriction to local phonon clouds around the exciton, we Fourier trans-
form the basis states (102):

(104)|kν〉 ≡ 1√
N

∑
n

eikn|nν〉.

These states represent an exciton “dressed” with a local phonon cloud. The index
k gives the quasi-momentum of the whole object, i.e., the dressed exciton, and k

is a good quantum number due to translational symmetry. Thus, for any given k

the basis set consists only of a set of phonon cloud configurations. We emphasize
that in contrast to the real-space basis (102), the momentum-space basis functions
(104) are not Born–Oppenheimer separable into a product of a purely electronic
and a purely vibrational part.

Having specified the basis states, the Hamiltonian can be represented as a ma-
trix. Application of H FE

Hol to the real space states from (102) yields the matrix
elements:

〈mµ|H FE
Hol|nν〉 = δm,n〈µ|ν〉

∑
i

νi

(105)+ J

[
δm,n−1F−1

(
µ

ν

)
+ δm,n+1F+1

(
µ

ν

)]
.
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The first term in this compact notation results from the operators H ph and
H FE−ph. They contain no interactions between different sites and thus simply
count the phonons in the Lang–Firsov basis. The overlap factor 〈µ|ν〉 stands
for the total overlap of two phonon clouds centered at the same lattice site. It is
nonzero only for identical clouds due to the orthogonality of the oscillator func-
tions:

(106)〈µ|ν〉 =
∏

i

δµi ,νi .

The second term in Eq. (105) results from the purely electronic Frenkel transfer
process H FE

elec. The vibrational part of the basis functions factors out and leads to
the Franck–Condon overlaps F±1 for the total vibronic overlap of the phonon
cloud ν centered at n and the phonon cloud µ centered at m= n± 1:

(107)F−1 = S

(
µ0

ν−1

)
· S

(
ν0

µ+1

)
·
∏

i �=0,1

〈µi |νi−1〉,

(108)F+1 = S

(
ν0

µ−1

)
· S

(
µ0

ν+1

)
·

∏
i �=−1,0

〈µi |νi+1〉.

Here, S
(

ν
µ

)
is the overlap between a displaced oscillator function with quantum

number ν and an undisplaced function with quantum number µ [80]

S

(
ν

µ

)
≡

〈
1√
µ!

(
b†)µ

o

∣∣∣∣ 1√
ν!

(
b̃†)ν

õ

〉

(109)= e
−g2

2√
µ!ν!

min(µ,ν)∑
i=0

(−1)ν−igµ+ν−2iµ!ν!
i!(µ− i)!(ν − i)! .

It is obvious that in the Lang–Firsov basis the strength g of the exciton–phonon
coupling enters only through the magnitude of the factors F±1 in the inter-site
hopping term.

In the momentum space representation (104), the Hamiltonian matrix becomes

〈kµ|H FE
Hol|kν〉 = 〈µ|ν〉h̄ω

∑
i

νi

(110)+ J

[
e−ikF−1

(
µ

ν

)
+ e+ikF+1

(
µ

ν

)]
.

For general momenta k, these matrix elements are complex numbers. For our
intended application to spectroscopy, the values at the Brillouin-zone edges (k =
0,π ) are of interest, and there the matrix elements are real. Representing the final
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eigenstates as

(111)
∣∣$j (k)

〉=∑
ν

uν j (k)|kν〉,

we obtain the eigenvalue problem

(112)
∑

µ

〈kµ|H FE
Hol|kν〉 · uµj =Ej · uν j

for the real matrix 〈kµ|H FE
Hol|kν〉. Its eigenvalues Ej and eigenstates |$j (k)〉 are

the stationary solutions of the Holstein Hamiltonian (101).

3.4. TRANSITION DIPOLES AND PHONON CLOUDS OF THE EIGENSTATES

The properties of the eigenstates (111) are easily computed. We start with the
Frenkel exciton (FE) character defined as in Eq. (38) by the projection onto a
purely electronic Frenkel exciton state a

†
k |o〉:

(113)FFEj (k)≡ ∣∣〈$j (k)
∣∣a†

k |o〉
∣∣2.

By use of the explicit expression (111) and the inverse Fourier transformations,
one obtains:

(114)FFEj (k)=
∣∣∣∣∑

ν

u∗ν j (k)〈nν|a†
n|o〉

∣∣∣∣2.

The matrix element 〈nν|a†
n|o〉 can be split into its electronic and vibrational com-

ponents according to Eq. (102):

〈nν|a†
n|o〉 =

〈
a†

nB̃†
nνo

∣∣a†
n|o〉

= 〈a†
noel|a†

n|oel〉︸ ︷︷ ︸
=1

×〈
B̃†

nνovib
∣∣ovib

〉
.

The vibrational overlap factor in this equation can be formally evaluated by use of
Eq. (103). Very obviously, it gives a factor S from position n, where the displaced
vibrational wave function of level ν0 overlaps with the undisplaced vibrational
ground state. At all other lattice positions n+ r , we have the Kronecker symbol
for the orthogonality of the wave functions in the same undisplaced potential:

(115)〈nν|a†
n|o〉 =

〈
B̃†

nνovib
∣∣ovib

〉= S

(
ν0

0

)∏
r �=0

δνr ,0.
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Thus, the Frenkel exciton character becomes:

(116)FFEj (k)=
∣∣∣∣∑

ν

u∗ν j (k)S

(
ν0

0

)∏
r �=0

δνr ,0

∣∣∣∣2.

The characters obey the sum rule

(117)
∑

j

F 2
FEj (k)= 1.

since ∑
j

F 2
FEj (k)=

∑
j

∣∣〈$j (k)|a†
k |o〉

∣∣2
=

∑
j

〈o|ak|$j (k)〉〈$j (k)|a†
k |o〉

= 〈o|ak

∑
j

|$j (k)〉〈$j (k)|
︸ ︷︷ ︸

=1

a
†
k |o〉

= 1.

As in the electronic problem, the exciton character determines the oscillator
strength of a k = 0 state. The transition dipole of state |$j (k)〉 is

�Pj = 〈$j (k)| �̂P |o〉

=
∑

ν

u∗ν j (k)〈kν| �̂P |o〉

(118)=
∑

ν

u∗ν j (k)
1√
N

∑
n

eikn〈nν| �̂P |o〉.

For the transition dipole of the basis state |nν〉, we have to use the approximate
separability of the transition dipole moment into an electronic part and a vibra-
tional overlap factor as in Eq. (84) for the isolated molecule. Then, the transition
dipole of each basis state |nν〉 becomes

(119)〈nν| �̂P |o〉=〈
a†

nB̃†
nνo

∣∣ �̂P |o〉
(120)=〈a†

noel| �̂P |oel〉︸ ︷︷ ︸
�pFE

×〈B̃†
nνovib|ovib〉︸ ︷︷ ︸
Eq. (115)
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(121)= �pFE × S

(
ν0

0

)∏
r �=0

δνr ,0.

Thus, with identity (12) the transition dipole becomes

�Pj = δk,0
√

N �pFE ×
∑

ν

u∗ν j (k)S

(
ν0

0

)∏
r �=0

δνr ,0.

Comparison of this equation with the expression (116) for the Frenkel exciton
character shows that the squared transition dipole is given by the character

(122)| �Pj |2 = δk,0N �p 2
FEFFEj (k),

and the oscillator strength (see Eq. (53)) of a k = 0 state is proportional to the
Frenkel character:

(123)fj = 2mEj

e2h̄2 N �p 2
FE × FFEj (0).

This equation is identical to the corresponding expression (54) for the FE oscil-
lator strength in the electronic problem, since the transition dipole is a purely
electronic operator and its action on a vibronic state is only determined by the
electronic character of this state.

As an illustration, we show in Figure 11 the results of such a calculation for
k = 0 and the parameters J = 0.5h̄ω and g = 1. The energy levels Ej of the
eigenstates are arranged at a vertical energy axis in the left part. Their FE char-
acter FFEj is indicated by the horizontal length of each stick. The lowest state
appears as a solitary stick at E1 = 0.0074h̄ω. At higher energies, the spectrum
consists of many densely packed lines resulting from the mixture of the various
phonon cloud configurations in the basis set. The numerical spectrum remains
discrete only since the basis is finite. To illustrate the dense vibronic manifold,
we always convolve stick spectra with a Gaussian of constant standard deriva-
tion (σ = 0.15h̄ω) and show the broadened spectrum using a convenient scaling
factor.

Another important property of a vibronic state |$j (k)〉 is the internal structure
of its phonon cloud. One measure to characterize it is the set of expectation values
〈N̂m〉 for the occupation number operators:

(124)
〈
N̂m

〉≡ 〈∑
n

a†
nanb

†
n+mbn+m

〉
.

These occupation numbers show how many phonons are excited at the oscillator
that is m lattice spacings apart from the exciton. Note that they depend on the dis-
placement chosen for the oscillator functions in the basis set. Thus, they are no ob-
servable quantities. They are mainly important for choosing a reasonable basis set:
Since numerically for each relative site m, only states up to a predefined number
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Fig. 11. Illustration of the eigenstates and their properties for a numerical solution of the Holstein
model (101) with parameters J = 0.5h̄ω and g = 1 at total momentum k = 0. In the left panel, the
optically active eigenstates are shown at a vertical energy axis. The sticks indicate the FE character
FFEj of each state according to Eq. (116). For a visualization of the resulting spectrum, the stick
spectrum is convolved with a Gaussian (standard derivation σ = 0.15h̄ω) and the broadened spectrum
is scaled for easy superposition (here: area

∫
f (E)dE = 0.5h̄ω). In the right panels, the occupation

number clouds 〈N̂m〉 and displacement clouds 〈λ̂m〉 are shown for two particular eigenstates (cf.
comments to Eqs. (124) and (125)).

νmax
m can be included in the basis set, it must be assured that 〈N̂m〉
 νmax

m . These
phonon occupation numbers are again illustrated in Figure 11 for two representa-
tive eigenstates of high spectral weight. For the lowest state at E1 = 0.0074h̄ω,
there are 0.16 phonons at the exciton site (m= 0), and the total phonon number
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is
∑

m〈Nm〉 = 0.34. In the molecular limit, this state would be the zero-phonon
state, but the hopping term J leads to a nonzero phonon occupation number. At a
higher state E41 = 2.28h̄ω, the total phonon number is 2.12 with a peak value of
〈N̂0〉 = 1.05. This state originates from the 2-phonon state in the molecular limit.
Electronic delocalization leads to broad phonon clouds.

A description of the phonon cloud that is independent of the basis set can be
provided by the expectation values of the displacement operators:

(125)〈λm〉 ≡
〈∑

n

a†
nan

b
†
n+m + bn+m

2

〉
.

This displacement cloud 〈λm〉 gives the average distortion from equilibrium
(along the dimensionless normal coordinate λ) at a molecule which is m sites
from the exciton. Note that the exciton itself is completely delocalized in real
space and so is its displacement cloud. This delocalization follows directly from
the assumed perfect translational symmetry. The values 〈λm〉 as a function of the
distance m only show the spatial correlation between the electronic excitation and
the lattice distortion.

With respect to the basis representation (102), the displacement cloud of a state
|$j (k)〉 (111) is obtained as:

〈λm〉 =
∑
µν

u∗µj uν j ×
(∏

r �=m

δµr,νr

)

(126)×
(√

νm + 1

2
δµm,νm+1 +

√
νm

2
δµm,νm−1 + gδm,0δµ0,ν0

)
.

Again, Figure 11 may serve as an illustration. There, the displacement clouds are
shown for the same representative states that were analyzed in terms of occupation
number clouds. The narrow clouds show that the actual lattice distortion is much
more localized around the exciton than the broad occupation number clouds might
suggest. This difference results from the fact that the vibronic wavefunction in the
actual eigenstates cannot be accurately represented by single oscillator functions
of the special Lang–Firsov basis.

3.5. TRUNCATED PHONON BASIS AND SYMMETRY ADAPTATION

By now, the formal tools for calculating and analyzing the eigenstates of the Hol-
stein Hamiltonian (101) have been collected. The only remaining issue is how to
truncate the infinite phonon-cloud basis to a number that allows numerical diago-
nalization. For this, we first restrict the basis to cloud states of the form

(127)|νM 〉 =
∣∣ν−M . . . ν̃0 . . . ν+M

〉
,
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as motivated below Eq. (103). That means, only phonon clouds localized at the
2M + 1 molecules around the exciton are included. Strongly delocalized or even
free phonons can only be approximated using large M .

Second, for each position in the phonon-cloud we restrict the maximum occu-
pation number:

(128)νm � νmax
m .

In this way, the localized nature of the phonon cloud can better be taken into
account by considering only small occupation numbers νmax

m at sites far away
from the exciton. A typical cut-off vector as used for the calculation in Figure 11
has M = 5 and looks like |123456̃54321〉.

Third, among these states we include only those for which the total number of
phonons does not exceed a given maximum:

(129)
∑
m

νm � νmax
tot .

In this way, high energy basis states are excluded. Since the overlap factors for
states with high vibrational excitation decrease rapidly, these states do not appear
in the absorption spectrum. Condition (129) is only effective for νmax

tot <
∑

m νmax
m ,

but typically it can be used as a strong restriction (e.g., νmax
tot = 6 in Figure 11).

Now, we have arrived at a fairly complex description for the cut-off conditions
of the basis set, given by the numbers M , νmax, νmax

tot . However, this complex
scheme allows to choose a basis just large enough to represent the optically active
eigenstates of the Hamiltonian.

The minimum radius, M = 0, is an important special case of the phonon basis
in which electronic and vibrational excitations are always at the same site, just as
in the J = 0 limit. These joint exciton–phonon configurations (see illustration in
Figure 9) can be considered as distinct molecular excited states and treated within
the standard framework of Frenkel exciton theory. Following Broude, Rashba and
Sheka [47, p. 185], we call this the molecular vibron model:

(130)M = 0.

The molecular vibron model follows naturally from the exciton concept and was
successfully applied to early interpretations of crystal spectra [26]. The approx-
imation is additionally justified if—beyond the simplest Holstein Hamiltonian
(101)—the phonon energy differs between the electronic ground and excited state
of the molecule (cf. Ref. [3, p. 87ff] or Ref. [47, p. 198f]).

To find a suitable phonon basis for concrete calculations, we start with
the molecular vibron model and gradually increase the phonon basis until the
obtained absorption spectrum converges. This procedure is demonstrated in
Ref. [41].
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In addition to the general truncation scheme, in some cases the dimension of
the phonon basis can be reduced by symmetry. For the Frenkel exciton problem
in this section, we have inversion symmetry about the exciton’s site. So we can
introduce symmetry adapted basis states |kν〉± in which the phonon cloud is either
symmetric (+) or antisymmetric (−) with respect to inversion about its center.
Inversion of the phonon cloud in the non-adapted basis (104) shall be denoted by
a bar:

(131)
∣∣ν̄〉: ν̄n = ν−n.

Even the non-adapted basis contains some symmetric phonon-clouds (ν̄ = ν).
For all other states, a symmetry adaption has to be chosen. Thus, the symmetry
adapted states can be obtained as:

(132)

|kν〉+ =
{ |kν〉 for ν̄ = ν,

1√
2
(|kν〉 + |kν̄〉) for ν̄ �= ν,

|kν〉− = 1√
2

(|kν〉 − |kν̄〉) for ν̄ �= ν.

Now, the symmetric subspace spanned by the |kν〉+ states does not mix with the
antisymmetric subspace spanned by the |kν〉− states and the diagonalization can
be done separately for both subspaces. For a large cut-off radius of the phonon
cloud, the dimension of the two subspaces is roughly one half of the original basis.
Furthermore, the transition dipoles of all antisymmetric states vanish exactly and
only the symmetric space is needed for the absorption spectrum.

3.6. THE LIMIT FOR WEAK INTERMOLECULAR ELECTRONIC COUPLING

In order to illustrate the qualitative effects that arise from exciton transfer, we
will now apply perturbation theory for the limit of weak electronic coupling
(J 
 gh̄ω). The reference system is given by the molecular limit (J = 0). Then,
the molecular vibron model (130) gives an exact description of the optically ac-
tive states, which form an equally spaced vibronic progression (cf. Figure 11(a)).
We consider the lowest (zero-phonon) and second lowest (one-phonon) molecular
vibronic states.

The lowest state of the unperturbed system is |kν〉 with |ν〉 = | . . .00̃0 . . .〉. This
state at E

(0)
1 = 0 is non-degenerate, and application of first order perturbation

theory gives immediately

(133)E
(1)
1 = 〈kν|H FE

Hol|kν〉 = 2J cos(k)× S2
(

0

0

)
= 2J cos(k)× e−g2

.

This result is well known from small polaron theory for zero temperature. The
width 4J of the purely electronic band is renormalized by the overlap factor e−g2

since the exciton moves together with its displacement cloud.
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The second lowest state of the unperturbed system is, in the molecular vibron
model, |kν〉 with |ν〉 = | . . .01̃0 . . .〉. This is the molecular one-phonon state. Con-
sidering a complete phonon basis, the molecular one-phonon state is degenerate
with all other dark basis states that contain one phonon excitation at an arbitrary
exciton–phonon separation n. A perturbation J > 0 will mix all these states and
lift their degeneracy.

This can be analyzed by writing down the matrix elements (110) for the states
of the one-phonon manifold. We define the state |kν(n)〉 by a phonon cloud with
the structure νi = δi,n and analogously for |kµ(m)〉: µi = δi,m. The matrix repre-
sentation (110) then becomes

Hmn = 〈kµ(m)|H FE
Hol|kν(n)〉

(134)= δm,nh̄ω+ J e−g2(
Wmn + g2Vmn

)
,

where

(135)Wmn = δm,n+1 × e−ik + δm,n−1 × e+ik

=



. . .

· · · 0 eik 0 0 0 · · ·
· · · e−ik 0 eik 0 0 · · ·
· · · 0 e−ik 0 eik 0 · · ·
· · · 0 0 e−ik 0 eik · · ·
· · · 0 0 0 e−ik 0 · · ·

. . .


,

and Vmn is a matrix that has nonzero-elements only for |m|, |n|� 1:

(136)Vmn =



. . .

· · · 0 0 0 0 0 · · ·
· · · 0 0 −eik eik 0 · · ·
· · · 0 −e−ik 2 cosk −eik 0 · · ·
· · · 0 e−ik −e−ik 0 0 · · ·
· · · 0 0 0 0 0 · · ·

. . .


.

The non-diagonal contributions in Wmn and Vmn mix the joint configuration from
the molecular vibron model with separated configurations. However, Vmn only
mixes the states where the phonon is located either at the exciton site or at its
nearest neighbor. Therefore, Wmn and Vmn act in completely different ways.

Let us first discuss the case of g
 1 and neglect Vmn in Eq. (134). For k = 0
or k = π , Wmn is the Hamiltonian of a nearest-neighbor hopping particle on an
infinite chain with open boundary. This gives a wave-like solution. In contrast to
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the ordinary hopping problem, the exact consideration of the specific boundary
conditions is essential now. Only then, the correct amplitude at the special site
n= 0 can be obtained; and this amplitude alone determines the exciton character.
Thus, one obtains the eigenstates

(137)|$j 〉 = 1√
M + 1

M∑
n=−M

sin

(
n j π

2M + 2

)∣∣kν(n)
〉

with

(138)j = 1, 2, . . . , 2M + 1.

Their energies are

(139)E
(1ph,g
1)

j = h̄ω± 2J e−g2
cos

(
j π

M + 1

)
,

where ± refers to k = 0 and k = π , respectively. The FE character of state j at
k = 0 follows from Eq. (116). It has only two values depending on the index j :

(140)FFEj =
{

1
M+1 · g2e−g2

for odd j,

0 for even j.

The M states with even j and zero FE character belong to the subspace of the
antisymmetric states in the symmetry adapted basis (132). The M + 1 optically
active states with odd j are the symmetric states. These active states form a band
of equally absorbing states with a total width of 4J e−g2

. The total FE character
of these active states sums up to g2e−g2

representing the value of the molecular
limit. In all these states, the phonon cloud is not localized around the exciton but
consists of a standing phonon wave. We emphasize that this behavior is the limit
for small g. In this limit, the total FE character of the considered one-phonon band
gives only a small feature in the overall absorption spectrum since the major part
of the FE character is concentrated in the zero-phonon state.

Complementary, the Vmn part in the perturbation expression (134) mixes only
the cloud states with phonon excitations at or next to the exciton site. Therefore,
in the limit of large g, the basis set can be reduced to include only local phonon
cloud configurations up the nearest neighbor (M = 1). Using the symmetry
adapted basis functions (132), the symmetric one-phonon subspace consists only
of two phonon configurations: |@1(k)〉 = |k〉|01̃0〉+ and |@2(k)〉 = |k〉|10̃0〉+.
The Hamiltonian in the representation of these two states takes the form

(141)Hmn = δmnh̄ω+ 2J e−g2
cos(k)×

(
g2 1−g2√

2
1−g2√

2
1
2g2

)
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with eigenvalues

(142)E
(1ph,g 1)
± = h̄ω+ 2J cos(k) · g2e−g2 · 3

4

(
1±

√
1− 16

9g2
+ 8

9g4

)
.

Thus, the zero-order energy E = h̄ω splits into two bands E±(k). Similarly to the
perturbation-in-J treatment of the lowest state (133), the electronic bandwidth 4J

is multiplied by an overlap factor g2e−g2
which corresponds to the interaction of

the transition-dipole moments of the molecular one-phonon state. However, there
are two states now. In the limit g→∞, their energies tend to:

(143)E
(1ph,g→∞)
+ → h̄ω+ 2J cos k · g2e−g2 · 3

4
,

(144)E
(1ph,g→∞)
− → h̄ω.

In this limit, both states still have an FE character of FFE+ → 2
3 and FFE− → 1

3 .
This splitting into two states which both carry spectral weight is entirely caused

by the delocalization of the phonon cloud. Such a delocalization is neglected in
the simplest approach of the molecular vibron model (130), which would mean
the neglect of state |@2(k)〉 in Hamiltonian (141). Looking at the non-diagonal
term in Hamiltonian (141) suggests, and closer inspection of the full one-phonon
subspace Hamiltonian (134) confirms: For the special value g = 1, the molecular
vibron state |kν(n = 0)〉 decouples from all other phonon cloud configurations.
Only in this case, the molecular vibron model becomes exact (in the one-phonon
subspace) and yields one energy band at

(145)E(1ph,g=1) = h̄ω+ 2J cosk · g2e−g2

which includes the complete FE character of the one-phonon state (g2e−g2
).

To give an illustration of the phenomena in the one-phonon subspace and to
show the relevance of the described limiting cases, we show a numerical solution
in Figure 12. For this, we solved the Hamiltonian (134) numerically for a phonon
cloud of radius M = 20 at the total momentum k = 0. For k = π , the spectra only
have to be mirrored with respect to E = h̄ω.

In Figure 12(a), the “exact” numerical results (graph 1) are shown for a rela-
tively small g = 0.5. The tendency of a broad band with constant FE character
is clearly visible. This bandwidth is compared to the width the free phonon part
Wmn from Eq. (139) in graph 2. Both agree very well. The molecular vibron
model (M = 0) would give a single active sate at (E − h̄ω)/J = 0.389 (position
indicated by graph 3). This state would represent the weighted center of the exact
band but it would veil the large splitting (AE/J ≈ 1.55).

In Figure 12(c), the numerical solution is shown for a rather large g = 1.5
(graph 1). It clearly approaches the two active states from the nearest neighbor
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Fig. 12. Perturbative treatment J → 0 of the one-phonon subspace for three coupling parame-
ters g. The “exact” stick spectra are numerical solutions of the one-phonon Hamiltonian (134) for
a phonon-cloud radius of M = 20. The envelopes are convolutions of the stick spectra with Gaussians
of appropriate width. Figure 12(a) represents the small-g case, where a broad one-phonon sideband is
formed. The “exact” solution in graph 1 is compared to the bandwidth of the free-phonon part (Wmn

from Eq. (139)) in graph 2 and to the position of the single active state from the molecular vibron
model (130) in graph 3. Figure 12(b) represents the g = 1 case, where the molecular vibron model
becomes exact. Figure 12(c) represents the large-g case, in which the exciton interacts mainly with a
nearest neighbor phonon cloud. The “exact” numerical solution in graph 1 resembles the approximate
solution (141) for a nearest neighbor cloud (M = 1) in graph 2. The single state from the molecular
vibron model (M = 0) is shown in graph 3.

cloud (radius M = 1) given by Eq. (142), which is shown in graph 2. For compar-
ison, the result of the molecular vibron model (M = 0) is also shown in graph 3.
As for g < 1, the molecular vibron model can only represent the weighted center
of the one-phonon states but not their qualitative splitting. Note that for both cases
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g < 1 and g > 1 the correct splittings of the one-phonon states are on the same
order as the perturbation parameter J .

The situation for energies above the one-phonon subspace becomes more com-
plex and will not be considered here. Already in the two-phonon subspace, which
is spanned by all zero-order basis states with a total phonon number 2, there oc-
curs a high degeneracy of various cloud configurations. The numerical calcula-

tions in Ref. [41] confirm that for not too strong electronic coupling (J
<≈ 0.5h̄ω)

and g in the order of 1, the approximation of highly localized phonon clouds or
even the molecular vibron model yields a good description of the full absorption
spectrum.

3.7. NUMERICAL SOLUTIONS FOR VARIOUS ELECTRONIC COUPLING

STRENGTHS

In this section, we want to give an impression of absorption spectra for var-
ious conditions. We always consider an electron–phonon coupling constant of
g = 1, which is a typical order of magnitude for the strongly coupled modes in
π -conjugated systems. The numerical spectra were calculated with phonon cloud
radius M = 5, a maximum total phonon number νmax

tot = 6 (cf. Eq. (129)) and
a phonon cloud cut-off vector of |νmax〉 = |123456̃54321〉 (cf. Eq. (128)) corre-
sponding to 4485 symmetric basis states in the symmetry adapted basis (132).
This ensures a sufficient accuracy for all shown spectra (on the order of the
graphic resolution) except for the numerically demanding case J = 1h̄ω, k = 0.
In this case, deviations on the order of about 10% might occur on the high energy
side (E > 3h̄ω).

As discussed in the previous section, for g = 1 the molecular vibron model
(cf. Eq. (130)) is a good approximation for weak electronic coupling (J 
 gh̄ω).
At first, we illustrate the quality of this approximation for intermediate positive
J at k = 0 (top of the band). In Figure 13, we compare the discrete vibronic
states resulting from the molecular vibron model with the complete numerical
solutions. For J = 0.5h̄ω, the molecular vibron model still gives a qualitatively
reasonable description of the spectrum. The main effect of the delocalized cloud
basis in the high energy region is a broadening of the spectra. The lowest state,
however, moves considerably from E1 = 0.229h̄ω in the molecular vibron model
to E1 = 0.0074h̄ω in the largest basis set. For J = 1h̄ω, the deviations between
the molecular vibron model and the exact solution are already on the same order
as all structures in the spectrum.

To give an overview about general trends, we show characters and electronic
bands for g = 1 and various J in Figure 14. The electronic bands Eelec(k) in this
figure are the solutions of the electronic Hamiltonian H FE

elec+g2h̄ω (cf. Eq. (100)).
The molecular Franck–Condon relaxation energy g2h̄ω has to be added to com-
ply with our energy axis definition, in which the relaxed molecular zero-phonon
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Fig. 13. Comparison of the molecular vibron model (left panels) and the numerical solution for
the complete Holstein problem (right panels) for two exciton transfer integrals: (a) J = 0.5h̄ω,
(b) J = 1h̄ω. Exciton–phonon coupling is g = 1 and quasi-momentum is k = 0.

state lies at E = 0. The states and spectra resulting from the complete Holstein
Hamiltonian H FE

Hol (Eq. (101)) are shown at k = 0 and k = π .
In the noninteracting case J = 0 (Figure 14(a)), the electronic dispersion is zero

and the spectra are the vibronic states of the isolated molecule. The molecular zero
phonon state lies below the electronic band by the amount of the Franck–Condon
relaxation energy g2h̄ω.

For a moderately small interaction J = 0.5h̄ω (Figure 14(b)), the spectrum
still shows distinct peaks reminding of the molecular vibronic states. However,
the shape of the spectrum is changed. In particular, the spectrum loses one finger-
print of a vibronic progression in the molecular case, namely the constant energy
spacing between the peaks. The centers of mass of the spectra are shifted up-
wards at the top of the band (k = 0) and downwards at the bottom of the band
(k = π ), corresponding to the dispersion of the electronic band. The bandwidth
of the lowest dressed exciton state is AE = 0.62h̄ω, which is still similar to the
weak-electronic coupling limit of 4J e−g2 = 0.74h̄ω.

For stronger interaction, J = 1h̄ω (Figure 14(c)), the spectra already show the
tendency towards the opposite limiting case. Instead of a number of vibronic
peaks, just one major peak close to the position of the electronic bands starts
to emerge. Furthermore, there remains a small one-phonon sideband approxi-
mately one vibrational quantum above the bottom of the band structure (at k = π ).
The one-phonon sideband at k = 0 corresponds to a mixture of the lowest k = π
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Fig. 14. Overview of band structures in the Holstein model for fixed exciton phonon coupling con-
stant g = 1 and various exciton hopping integrals J . The vibronic spectra at k = 0 and k = π were
calculated and represented as for Figure 11. For the limiting case J  h̄ω, we show only schematic
spectra at energy positions corresponding to the electronic bands for J = 2h̄ω.

dressed exciton and a k =−π phonon. For further increasing J , this one-phonon
sideband will more and more lose its spectral weight. Nevertheless, there remains
a low-lying k = 0 state which determines the overall dispersion of the lowest
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state to approximately one-vibrational quantum, independently of the stronger
and stronger electronic dispersion 4J .11

The limit of strong electronic coupling is schematically depicted in Fig-
ure 14(d). The electronic band is shown for the example of J = 2h̄ω. The given
absorption spectra, however, are not calculated but only serve as a schematic
illustration. In the strong coupling limit, the electronic bandwidth 4J is large
compared to the molecular Franck–Condon relaxation energy g2h̄ω, the exci-
ton hopping is “fast” compared to the exciton–phonon coupling and the Born–
Oppenheimer approximation should be applied to the whole crystal as one ob-
ject (cf. Ref. [81]). The total lattice displacement

∑〈λm〉 = g is now equally
distributed over the N →∞ molecules. Therefore, the total relaxation energy
EFC = g2h̄ω

∑〈λm〉2 tends to zero. Figuratively speaking, the very fast exci-
ton loses its phonon cloud. Compared to the molecular limit (lowest state at
E = 0), the lowest state will now be given by the purely electronic band at
E = 2J cos k+g2h̄ω. Because of the vanishing relaxation energy, higher vibronic
states have no spectral weight and the absorption spectrum consists of a narrow
line at the electronic energy. The position of the one-phonon side-bands is also in-
dicated, but these side-bands have vanishing spectral weight in the limit J →∞.

3.8. THE HOLSTEIN HAMILTONIAN WITH CHARGE-TRANSFER STATES

The Holstein Hamiltonian for Frenkel excitons (101) can be very naturally ex-
tended to include charge-transfer (CT) states. Let c

†
n,f be the creation operator for

a nearest-neighbor CT state in which an electron is transferred from lattice site n

to site n + f (f = ±1). The molecular limit is again defined as the case where
no transfer interactions (neither Frenkel exciton transfer nor charge transfer nor
Frenkel–CT interactions) are considered. Then, the electronic CT Hamiltonian is

(146)H CT =D
∑
n,f

c
†
n,f cn,f ,

with D being the on-site energy of a CT state in the molecular limit (relative to
the Frenkel exciton on-site energy at zero in our energy units).

The electron or hole excitation of the CT state are assumed to couple to the
same effective vibrational coordinate λ as the Frenkel exciton. With the electron–
phonon coupling constant ge and the hole–phonon coupling constant gh, the linear

11This behavior of the dispersion depends on the exciton–phonon coupling constant g. If the exciton–
phonon coupling energy g2h̄ω is large compared to the electronic bandwidth 4J , the bandwidth of

the lowest dressed sate takes the value of the weak-electronic coupling limit 4Je−g2
, which can be

smaller than h̄ω. For a detailed discussion, see, e.g., Ref. [60].
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coupling between CT states and phonons is described by the Hamiltonian

H CT−ph = h̄ω
∑
n,f

c
†
n,f cn,f

(147)× [−gh
(
b†

n + bn

)− ge
(
b

†
n+f + bn+f

)+ g2
h + g2

e

]
.

These expressions are analogous to the Frenkel-exciton–phonon coupling in
Eq. (99). The term (g2

h + g2
e )h̄ω is the vibrational relaxation energy of a CT state

in the molecular limit. As in Eq. (99), this term is added to align the on-site energy
D of the CT states to its value in the molecular limit.

For the electronic mixing between Frenkel and CT excitons, we use the corre-
sponding part from the Merrifield Hamiltonian (27):

H FE−CT =
∑

n

[
te
(
a†

ncn,+1 + a†
ncn,−1

)
(148)+ th

(
a†

ncn+1,−1 + a†
ncn−1,+1

)+ h.c.
]
.

Thus, the extended Holstein Hamiltonian for Frenkel and CT excitons becomes

(149)H FCT
Hol =H FE

Hol +H CT +H CT−ph +H FE−CT.

This Hamiltonian corresponds to the dimer Hamiltonian used in Ref. [15].
A natural extension of the basis states |nν〉 from Eq. (102) is obtained by in-

cluding the new electronic degree of freedom f . The value f = 0 shall denote the
former Frenkel exciton basis states:

(150)
[|nf ν〉]

f=0 ≡ |nν〉.
A Lang–Firsov-type basis for CT states (f =±1) follows in complete analogy

to Eqs. (102) and (103) for the Frenkel excitons:

(151)
[|nf ν〉]

f=±1 ≡ c
†
n,f |oel〉 ×B

†
nf ν |ovib〉,

with

B
†
nf ν ≡

1√
ν0!

(
b†

n − gh
)ν0 · e−

g2
h
2 eghb

†
n︸ ︷︷ ︸

gh-disp. on n

× 1√
νf !

(
b

†
n+f − ge

)νf · e− g2
e
2 egeb

†
n+f︸ ︷︷ ︸

ge-disp. on n+f

(152)×
∏

m�=0,f

1√
νm!

(
b

†
n+m

)νm

︸ ︷︷ ︸
undisp. otherwise

.
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Here, b
†
n − gh creates phonons in the gh displaced potential at the hole position n

and b
†
n − ge creates phonons in the ge-displaced potential at the electron position

n+ f . At all other sites, the vibrational potential is not displaced.
The real-space basis states from Eqs. (150), (151) can again be Fourier-

transformed to momentum-space basis states with total momentum k:

(153)|kf ν〉 ≡ 1√
N

∑
n

eikn|nf ν〉.

As for the Frenkel problem, the matrix elements of the Frenkel–CT Holstein
Hamiltonian (149) can be derived in a straightforward way. The final expressions
become lengthy due to various overlap factors and we omit them here. The basis
can be reduced to a manageable size by a truncation scheme as for the Frenkel
problem. Then, the eigenstates |$j (k)〉 at k = 0 or k = π can again be obtained
by standard diagonalization methods for real matrices in the form

(154)
∣∣$j (k)

〉=∑
f ν

uf νj (k)|kf ν〉.

As for the Frenkel exciton problem, the most important property for charac-
terizing an eigenstate |$j(k)〉 is its electronic character. Since the states are now
constructed from different electronic states (Frenkel and CT), we have to distin-
guish different electronic characters.

The Frenkel exciton character is given as in definition (113) by the projection
onto a Frenkel exciton:

(155)FFEj (k)= ∣∣〈$j (k)|a†
k |o〉

∣∣2.

Using the decomposition (154) into basis states, the FE character becomes:

(156)FFEj (k)=
∣∣∣∣∑

f ν

u∗f νj 〈kf ν|a†
k |o〉

∣∣∣∣2.

The matrix element 〈kf ν|a†
k |o〉 is nonzero only for Frenkel-type basis states (f =

0). Then, it reduces to the same expression as for the Frenkel-only problem (see
Eq. (116)) and we get:

(157)FFEj (k)=
∣∣∣∣∑

ν

u∗0νj S

(
ν0

0

)∏
r �=0

δνr ,0

∣∣∣∣2.

For describing the CT character of the states, we use a projection onto the
symmetric CT states

c̃
†
k+|o〉 =

1√
2tk

{(
te + the+ik)c†

k,+1 +
(
te + the−ik)c†

k,−1

}|o〉,
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which were introduced in Eq. (31) for the electronic problem. Then, the CT char-
acter becomes

(158)FCTj (k)≡∣∣〈$j (k)|c̃†
k+|o〉

∣∣2
(159)=

∣∣∣∣∑
f ν

u∗f νj 〈kf ν|c̃†
k+|o〉

∣∣∣∣2.

The matrix element can be decomposed into an electronic part and a vibrational
overlap factor:

〈kf ν|c̃†
k+|o〉 =

1√
2tk

{(
te + theik)δf,+1 +

(
te + the−ik)δf,−1

}
× 〈

B̃
†
nf νovib

∣∣ovib
〉
.

Naturally, the electronic part of the projection onto the symmetric CT state be-
comes zero for a pure FE basis state (f = 0). The vibrational overlap factor con-
tains two overlap terms for the electron and hole displaced lattice site:〈

B̃
†
nf νovib

∣∣ovib
〉= Sgh

(
ν0

0

)
× Sge

(
νf

0

)
×

∏
r �=0,f

δνr ,0.

At the important special points k = 0 and k = π , the electronic factor simplifies
greatly and the projection of the basis state becomes for both k:

(160)〈kf ν|c̃†
k+|o〉 =

1√
2
× Sgh

(
ν0

0

)
× Sge

(
νf

0

)
×

∏
r �=0,f

δνr ,0.

Inserting this matrix element into Eq. (159) gives the formula for the CT character
of a numerically obtained eigenstate.

The transition dipole can be discussed similarly to the Frenkel-only case (see
Eq. (118)), and one obtains a Frenkel and a CT transition dipole component as in
the electronic problem (see Eq. (46)). For the experimental interpretation, we will
later assume that the CT component is a negligible contribution (pCT
 pFE), and
then the squared transition dipole becomes proportional to the Frenkel character
at k = 0 as in Eq. (118):

(161)| �Pj |2 ≈
∣∣ �PFEj

∣∣2 = δk,0N �p 2
FEFFEj (k).

A representative calculation is shown in Figures 15 and 16 for the parameters
J = 0.5h̄ω, g = 1, D = 0, te = th = 0.5h̄ω. The Frenkel part of this parameter
set corresponds to the calculation in Figure 11. The basis cut-off vector for the
phonon-space was |ν〉max = |12345̃4321〉 with νmax

tot = 5, resulting in 4332 ba-
sis states. An additional CT state is assumed at resonance with the Frenkel state
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Fig. 15. Eigenstates of the extended Holstein model for Frenkel–CT mixing (149) at total momen-
tum k = 0. Parameters: J = 0.5h̄ω, g = 1, D = 0, te = th = 0.5h̄ω, ge = gh = 1/

√
2. The Frenkel

parameters and the illustration correspond to Figure 11. FFE shows the spectral weights (Frenkel char-
acter) of the Frenkel-part, FCT shows the spectral weights of the symmetric CT part. The broadened
spectra are both normalized to an area of 0.5h̄ω.

(D = 0). The charge-transfer integrals te and th are chosen equal to the Frenkel
hopping integral to give an illustration for strong Frenkel–CT mixing.

For the electron and hole coupling parameters, we used ge = gh = g/
√

2, which
corresponds to equal relaxation energy for the CT state and the Frenkel exci-
ton. In contrast to the Frenkel exciton–phonon coupling constant g, ge and gh

are not easily accessible since absorption spectra of the ions would be needed.
Alternatively, one might use quantum chemical calculations or at least quali-
tative arguments: Perylene’s π -system is alternant. Simple Hückel theory then
gives equal and opposite charges in the cation and anion, with half-filled HOMO
and LUMO, respectively, while both are half-filled in the excited state. We have
ge = gh = g/2 for noninteracting electrons. The Pariser–Parr–Pople model of in-
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Fig. 16. Eigenstates of the extended Holstein model for Frenkel–CT mixing (149) at total momentum
k = π . Parameters as in Figure 15. Because of te = th, the electronic FE and CT states do not mix and
all eigenstates have either pure FE or pure CT character.

teracting π -electrons yields ge = gh for systems with electron–hole symmetry.
The bond order changes and relaxation energy of the singlet excitation in an-
thracene or trans-stilbene are now approximately half that of the triplet, which in
turn is comparable to the relaxation energy of dication or dianion [82,83]. Our
initial choice of equal relaxation energy for the Frenkel and CT excitation fol-
lows the correlated case, although this is a guess and PTCDA does not have e–h
symmetry.

At the top of the band (k = 0, Figure 15), the energetic degeneracy and the
large charge-transfer integrals lead to a strong mixing of Frenkel and CT states
throughout the whole spectrum. The overall distribution of the spectral weights
gives more Frenkel character to the higher states as a result of the positive J .
The FE character in Figure 15 should be compared to the Frenkel-only problem
from Figure 11. In the Frenkel-only problem, the lowest state gave rise to a single
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peak in the broadened spectrum at E ≈ 0. This peak is now split into two well
separated peaks at E ≈ −1h̄ω and E ≈ 0. In such a way, strong mixing with
CT states can add new features to the absorption spectrum even if their intrinsic
transition dipoles are zero ( �pCT = 0) as it was discussed for the electronic problem
in Section 2.

At the bottom of the band (k = π , Figure 16), the symmetry of the CT inte-
grals (te = th) in this special case decouples the electronic Frenkel and CT states
(cf. discussion below Eq. (39)). Therefore, the electronic character of all states is
either purely Frenkel or purely CT. Only some indirect mixing is introduced by
the phonon part of the Hamiltonian, which mainly affects the vibronic structure
of the CT-character states.

4. Applications and Consequences for Quantum Confinement

4.1. DESCRIPTION OF PTCDA-DERIVATIVES

In Section 3.8, the energies Ej and transition dipoles Pj (Eq. (161)) of the eigen-
states of the one-dimensional Holstein problem for mixed Frenkel–CT states were
obtained. These quantities are essential but not yet sufficient for the description
of a real absorption spectrum of a quasi-one-dimensional molecular crystal.

We still assume that all inter-stack interactions are on a much smaller energy
scale than the in-stack interaction J . That means, the energy spectrum of the one-
dimensional model is in first approximation not affected. However, the direction
of the transition dipoles is determined by the complete three-dimensional crystal
structure. In PTCDA and MePTCDI and many other organic crystals, the unit
cell contains two non-equivalent molecules. Then, the transition dipoles of the
non-equivalent molecules A and B couple and form two Davydov components
(β = p, s) with orthogonal transition dipoles:

(162)�Pjβ =
�Pj (A)± �Pj (B)√

2
.

For the crystal structure of PTCDA and MePTCDI, the p-direction is given as
the crystallographic b axis. The s direction lies approximately in the (102) plane
since the molecular planes of both inequivalent molecules are roughly parallel to
the (102) plane (within 5◦ [84] for PTCDA and within 10◦ for MePTCDI, derived
from [85]).

Knowing the transition dipoles per unit cell, the transverse dielectric constant
for perturbation by an external light wave polarized along the β = p, s directions
can be expressed as a sum over the excited states (cf., e.g., [4,86]):

(163)ε0
β(E)= 1+ 8π

v

∑
j

�P 2
jβEj

E2
j −E2 − ih̄DE

.
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Here, v is the volume of the unit cell and D−1 the life time of the excited states.
Furthermore, the energies now have to be taken as the absolute energies with
respect to the total ground state. Thus, the excitation energy E00 of our reference
state (zero-phonon state of the molecular limit) has to be included.

Eq. (163) is rigorous for any quantum system if all excited states are included.
However, we are considering only the lowest electronic excitation. Therefore, we
include the contribution of the higher states (mixing of molecular configurations)
by using a phenomenologically modified formula for the dielectric function:

(164)εβ(E)= ε
bg
β +

8π

v

∑
j

(f
bg
β
�Pjβ)2Ej

E2
j −E2 − ih̄DE

.

Here, ε
bg
β is a background dielectric constant that represents the value of εβ(0)

corresponding to a crystal in which the considered lowest electronic excitation
would not exist. f

bg
β is a screening factor describing the modification of the act-

ing field by the higher transitions. Furthermore, the higher transitions will modify
the Frenkel exciton hopping integral J and thereby all the eigenstates of the sys-
tem. Since we treat J as an effective fitting parameter anyway, the effect of the
higher transitions onto J is not important here but should be remembered in any
microscopic interpretation of J . Such a background modification of the dielec-
tric function was discussed for a simple model system of one purely electronic
Frenkel exciton in a cubic crystal in Ref. [5]. In our general case, the effect of the
higher transitions represented in the background parameters is also anisotropic in
nature.

The dielectric function (164) includes a Lorentzian broadening of the individ-
ual eigenstates due to a finite lifetime D−1. In a typical situation, however, there
are several other sources of a much larger broadening: (i) coupling to further low
energy vibrations, (ii) splitting of the single effective vibrational mode, which
actually consists of several nearly degenerate modes, and (iii) inhomogeneous
broadening. To account for all these effects empirically, we replace each eigen-
state of the Holstein model |$j 〉 by a Gaussian distribution of states with stan-
dard deviation σj as, e.g., done in Ref. [87]. The individual broadenings σj have
no microscopic meaning and should be seen as no more than a convenient tool
to compare the spectrum from the eigenstates of the Holstein model to an exper-
imental spectrum. Practically, we assigned constant values of σj for 4 separate
regions of the spectrum in order to have only 4 different broadening parameters.
The individual Lorentzian linewidth is assumed to be much smaller than the σj

and does not contribute anymore.
From the complex dielectric function (164), the complex refractive index

(n + iκ)2 = ε and the absorption coefficient α = 2E/(h̄c)κ can be calculated
for the special light waves that propagate perpendicular to the p–s plane and are
polarized along the p or s direction. For general directions, the complex rules



278 M. HOFFMANN

of crystal optics would have to be considered. We note that the consideration of
the absolute absorption coefficient is essential for describing the shape of solid
state spectra. The microscopic models provide predictions only about the relative
spectral distribution of the transition dipoles, which determines the shape of the
imaginary part ε2(E) of the dielectric function. The shape of the absorption spec-
trum α(E) however, is strongly influenced by the variation of the refractive index
in the absorption region (α = Eε2/(h̄cn)) and the variation of n is again deter-
mined by the absolute absorption coefficient. Only if α is very small, as typically
for spectroscopy of solutions (“dilute limit”), n does not vary and the shape of the
absorption spectrum is directly given by the distribution of the spectral weights
(exciton characters).

For PTCDA and MePTCDI, it is possible to create vapor-deposited poly-
crystalline films with a high preferential orientation such that the (102) crystal
planes and thus approximately the p and s directions always lie parallel to the
substrate. Only the azimuthal orientation, i.e., the orientation of the p and s di-
rections within the substrate plane, is difficult to control.

In Ref. [41], low-temperature absorption spectra of such vapor deposited films
were used to obtain model parameters for the Holstein Hamiltonian by fitting.
The values for the monomer were taken from the solution spectra (see Figure 3):
h̄ω = 0.17 eV and g = 0.88 (for both PTCDA and MePTCDI). For the electron
and hole coupling parameters, ge = gh = g/

√
2 was used as in Section 3.8. Fur-

thermore, only one value was used for the charge-transfer integrals: t = te = th.
This simplification is motivated, since for absorption only the value t+ = te + th
enters the electronic problem (cf. the discussion below Eq. (39)) and since compa-
rable values are suggested by quantum chemical calculations (cf. Ref. [15]). Then,
there remain four essential parameters in the model Hamiltonian: Frenkel exciton
transfer integral J , CT separation D, charge-transfer integral t , and the zero-point
reference energy E00 of the molecular limit. It has to be noted that the electronic
Frenkel–CT mixing at a given quasi-momentum k is only determined by the ab-
solute value of the transfer integrals (cf. Eqs. (32), (36)) and thus only |t| can be
derived. The key-parameters obtained in Ref. [41] are for PTCDA: J = 42 meV,
D = 97 meV, |t| = 42 meV, E00 = 2.23 eV, and for MePTCDI: J = 46 meV,
D = 240 meV, |t| = 57 meV, and E00 = 2.13 eV.12

The structure of the corresponding eigenstate spectrum at k = 0 is best visual-
ized by the Frenkel and CT characters of the states. We illustrate these characters
in Figures 17(b) and 18(b) in the same scheme as in Figures 15 and 16. In these
fits, the composition of the optically active states at k = 0 shows a strong mix-
ing of Frenkel and CT excitons. The Frenkel character determines the absorption
coefficient α. The comparison of the experimental absorption coefficient and the

12In Ref. [41], the values of t+ were given.
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Fig. 17. Suggested exciton band structure in PTCDA and experimental spectra. (a) solid line: exper-
imental low temperature absorption spectrum of thin poly-crystalline film as reported in Ref. [41], α

in 105 cm−1; dotted line: α from model fit (plotted with offset +1× 105 cm−1). (b) Vibronic model
states at k = 0. The right side (dark shading) gives the Frenkel character FFEj of the states j from
Eq. (156), the left side the CT character FCT j from Eq. (158). Instead of the closely lying individual
states, we show a broadened spectrum that summarizes the net contribution. The Frenkel character
at k = 0 determines the oscillator strength and corresponds to the model absorption spectrum in (a).
(c) Electronic bands Ej (k) corresponding to Eq. (165). These bands show the overall dispersion and
the k-dependent Frenkel–CT mixing, which result from the electronic interaction parameters. (d) Vi-
bronic model states for k = π . (e) Emission energies for transitions from the lowest k = π state to the
vibrational levels of the electronic ground state. The highest transition (00) is strictly dipole-forbidden.
(f) transient emission spectrum of a PTCDA single crystal at 10 K (time window 0 . . . 200 ps), from
Ref. [88].
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Fig. 18. Suggested exciton band structure in MePTCDI and experimental spectra. For detailed ex-
planations see Figure 17. The experimental absorption spectrum in (a) is measured at 10 K at a highly
oriented poly-crystalline film with polarization parallel to the strong Davydov component (crystallo-
graphic b-axis), cf. Ref. [16]. The transient emission spectrum in (f) is measured at 4 K at a single
crystal, time window 0 . . . 200 ps, from Ref. [88].

model fit is given in the panels (a). The characteristic difference between the ab-
sorption coefficient spectrum in (a) and the distribution of the Frenkel characters
in (b) is entirely caused by the spectral shape of the refractive index n, which
becomes small at energies above the major absorption region.

It has to be emphasized that the fitting parameters contain many uncertainties.
In particular for PTCDA, the absorption spectrum alone is not specific enough to



MIXING OF FRENKEL AND CHARGE-TRANSFER EXCITONS 281

determine the situation uniquely. Similarly good fits of the experimental spectra
can be obtained for different parameter sets with varying degree of CT mixing.
Even total neglect of CT states would give a satisfactory fit with a Frenkel transfer
integral of 70 meV. Such a value corresponds to the three-dimensional Frenkel ex-
citon model for PTCDA in Ref. [18] with a nearest-neighbor hopping of 82 meV.
For MePTCDI, the absorption spectrum has a more characteristic shape with four
main peaks. This spectrum can only be fitted within this framework by assuming
a strong Frenkel–CT mixing.

The strongest support for the assumption of Frenkel–CT mixing is provided
by the interpretation of electro-absorption rather than by linear absorption spec-
tra [15,17], since a pure Frenkel exciton model would not explain the strong re-
sponse to electrical fields perpendicular to the molecular planes. In Ref. [17],
a three-dimensional version of a Frenkel–CT Hamiltonian (in the molecular vi-
bron approximation) was used to model electro-absorption spectra of PTCDA.
The strongest effects were confirmed to arise from the one-dimensional stacks.
Hamiltonian parameters could be obtained from fits and also confirmed by micro-
scopic calculations. The essential transfer parameters corresponding to our one-
dimensional version were obtained as J = 180 meV, D = 130 meV, t =−55 meV
[17]. These parameters from the electro-absorption model essentially agree with
our suggestion for the linear absorption spectra. The largest discrepancy is in the
Frenkel exciton transfer integral J , where our smaller value mainly results from
the use of a dielectric function.

Apart from the remaining uncertainty about the Frenkel–CT mixing, the ob-
tained charge-transfer integrals would imply single-particle bandwidths 4te, 4th
on the order of no more than 0.2 eV, which is still smaller than the total exciton
binding energy. Thus, the qualitative picture is consistent with the approach of a
small radius exciton theory (cf. discussion in Section 1).

We will now discuss following Ref. [88] what the proposed model for the ab-
sorbing states (k = 0) means for the complete exciton band structure. In order to
rationalize the k dependencies, we first concentrate on the purely electronic bands
shown in Figures 17(c) and 18(c). As in Section 3.7, the electronic bands are given
by the purely electronic parts of the Holstein Hamiltonian (149):

(165)Helec =H FE
elec+H CT

elec+H FE−CT
elec + g2h̄ω.

This electronic Hamiltonian corresponds to the electronic problem in Eq. (29),
were the resulting bands and characters were visualized in Figures 4 and 5. As for
the Frenkel exciton case in Section 3.7, the Franck–Condon relaxation energy of
the molecular zero-phonon state is added because this state defines the reference
energy. The electronic bands in the Holstein model proposed for PTCDA and
MePTCDI show that the electronic Frenkel character disperses to lower energies
as a result of the positive Frenkel exciton hopping integral J . The center of mass
of the CT character remains at a constant position since a CT dispersion is not
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considered in the model. Furthermore, for this special choice of charge-transfer
integrals te = th, the Frenkel and CT states do not mix at k = π (see discussion
below Eq. (39)).

The complete vibronic eigenstate structure at k = π is shown in Figures 17(d)
(PTCDA) and 18(d) (MePTCDI). As at k = 0, the inclusion of exciton–phonon
coupling at k = π transforms the two electronic states into a broad vibronic spec-
trum. With the model parameters from the absorption fit, the lowest k = π state
lies at E = 2.18 eV for PTCDA and at E = 2.06 eV for MePTCDI.

The band bottom of the exciton band structure is a starting point for the dis-
cussion of emission spectra since all photo-excited states will rapidly relax to
these lowest states. The transition from these k = π states to the total ground
state is strictly dipole-forbidden, at least in perfect crystals. However, transitions
to k = π phonons in the electronic ground state are allowed. We indicate the re-
sulting transition energies (including the forbidden 00-transition) in the panels
(e). For a qualitative comparison, these transition energies are compared to tran-
sient low-temperature photoluminescence spectra of single crystals in the panels
(f) of both figures. The comparison shows that the energetic positions of the 01
and 02 transition do approximately agree with the peaks in the emission spectra.
This supports the order of magnitude of the model parameters, especially the rel-
atively small value of the Frenkel hopping J . A larger J , as could be expected
from quantum chemical arguments and from models without dielectric function
[15,17], would give a larger separation between the lowest absorption peak and
the 01-emission peak.

The assignment of the emission spectra still is very tentative, since the spectra
do not show an exact vibronic progression and the decay times of the peaks are
slightly different, which becomes much more pronounced at higher temperatures.
Furthermore, the emission spectra sensitively depend on the concrete sample con-
figurations, on the considered time scale (up to cw) and on the temperature. This
leads to widely varying emission spectra and assignments. It is not clear at this
stage to what extent extrinsic defects or further intrinsic effects determine the
emission behavior. In particular, a strong coupling to external phonon modes,
corresponding to excimer emission, can be expected as an additional effect (cf.
the explicit treatment for perylene in Ref. [89]). Such effects might be reasons
for the discrepancies, which are particularly pronounced in the lowest PTCDA
emission peak. A detailed discussion of time-resolved PTCDA emission spectra
was recently given in Refs. [90,91]. These works are based on a pure Frenkel
exciton band structure model within the molecular vibron approximation [18].
The various spectral features and their temperature dependencies are explained
by including the small interactions between the non-equivalent molecules, which
leads to Davydov splitting of the exciton bands, and by considering vibrational
relaxation along several different coordinates.
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Since the fine details of the experimental emission spectra are very complex
there is a large number of conceivable models for their interpretation. At present,
there are not enough tests available that would allow independent confirmation of
many model aspects. In particular, the complexity of model assumptions seems
to be comparable to the complexity the explained observations. Therefore, it is
very desirable to identify basic and unique features in the excited state structure
of the considered class of materials. The exciton band structure within a Frenkel–
CT–Holstein model provides such a unified framework for the description of ab-
sorption spectra and it is a starting point for a discussion of emission spectra and
relaxation processes after photo-excitation.

4.2. INCLUSION OF FINITE SIZE AND QUANTUM CONFINEMENT EFFECTS

Up to here, the treatment of molecular crystals was presented for the case of an
infinite chain. Real systems are always finite, and many systems of current interest
cover the complete range of one-dimensional chain lengths starting from a single
molecule. For example, thin films consisting of one or just a few monolayers of
PTCDA can be prepared by organic molecular beam epitaxy (OMBE) and they
can be studied with spectroscopic methods (e.g., [7,92]). Thus, it is important to
know down to which chain length N the picture of an infinite chain is still correct.
It is even more important to investigate which qualitatively new effects can occur
in finite systems. We will discuss these questions in the framework of the one-
dimensional exciton models presented in the previous sections.

The existence of a finite system size N affects all model descriptions at the
very beginning. The starting point still is a model Hamiltonian expressed by on-
site energies and interaction terms for localized excitations. However, the site
index is restricted now (n= 1, . . . ,N ) and the boundary conditions play a major
role. Furthermore, the sites are not equivalent anymore and therefore the on-site
energies εFE and exciton transfer integrals J might have site-dependent values.

Let us illustrate the effects for the simplest example of the nearest-neighbor
Frenkel exciton model from Eq. (16). In a finite chain, it can be written as:

(166)H FE
NN(N)=

N∑
n=1

εFE(n)a†
nan +

N−1∑
n=1

J (n)
(
a†

nan+1 + a
†
n+1an

)
.

In this notation, the boundary conditions are expressed by the index range for
the hopping term: Transfer from site n = 1 is only possible towards higher in-
dices and transfer from site n = N only towards lower indices. Even if the site-
dependence of εFE(n) and J (n) is neglected, the boundary conditions in Hamil-
tonian (166) do not allow the separation into nonmixing subspaces with differ-
ent quasi-momentum (Eq. (11)). Thus, a general diagonalization scheme has to
work with basis states in real space. Even for a Frenkel–CT–Holstein model as
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in Eq. (149), a numerical diagonalization can be done in real-space along similar
lines as presented for the momentum-space basis states, and only the number of
basis states increases by a factor N .

The solutions of our example in Eq. (166) for constant εFE(n) = εFE and
J (n)= J are well known (e.g., [93]). The N eigenstates have energies

(167)Ej (N)= εFE + 2J cos
πj

N + 1
, j = 1, 2, . . . ,N.

The size dependence of the lowest and highest state energy is shown in Figure 19.
The difference between the highest and lowest state corresponds to the exciton
bandwidth in the infinite system and it approaches its value AE = 4J for the limit
N →∞. For the dimer (N = 2), the bandwidth has already half of its maximum
value. This size dependence results entirely from the effect that the exciton is
confined in its hopping motion by the system boundaries. Therefore, the effect
can be approximately described by the picture of a “particle in a box”.

Fig. 19. Size dependence of the highest and lowest Frenkel exciton state in a linear nearest-neighbor
hopping model (Eq. (166)) for constant εFE and J . The “exact solution” shows the state energies from
Eq. (167), the “effective mass approximation” shows the band edges from Eq. (171).
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We will illustrate this particle-in-a-box behavior by an alternative approach
based on the effective mass approximation (cf. also [94]): In the infinite system,
the exciton states for Hamiltonian (166) are entirely characterized by their dimen-
sionless quasi-momentum k and their dispersion relation is (cf. Eq. (20))

(168)Eeff
k = εFE + 2J cosk.

The effective mass of the exciton follows as

(169)m−1
eff =

a2

h̄2

∂2Eeff
k

∂k2 =−a2

h̄2 × 2J cosk,

where a is the lattice constant. We now treat this exciton as a real particle with
mass meff, which is confined within the chain. Thus, the wave function should be
zero at the non-available lattice positions n= 0 and n=N + 1. This corresponds
to a potential well of size L = (N + 1)a with infinitely high boundaries. The
ground state energy of the particle in such a well is π2h̄2/(2meffL

2). This ground
state energy corresponds to the energy shift AEeff that is induced by the finite
system size:

(170)AEeff = π2h̄2

2meffL2 .

From Eqs. (168) and (170), the energy Eeff
k (N) of the confined exciton follows as

Eeff
k (N)=Eeff

k +AEeff

(171)= εFE + 2J cos(k)×
(

1− 1

2

π2

(N + 1)2

)
.

We show this energy from the effective mass approximation for k = 0 and k = π

in comparison with the exact energies in Figure 19. The effective mass approxima-
tion works very good even down to a chain length of N = 2, where the deviation
is still only J (π2 − 9)/18= 0.048J .

The comparison in Figure 19 illustrates for the case of the one-dimensional
Frenkel exciton: The effect of the finite system size can approximately be de-
scribed by treating the exciton as a particle in a box, where the effective mass of
the particle is given by the dispersion relation. This approach can be extended for
the case that the exciton has a more complicated structure, i.e., if the localized
basis states have additional internal degrees of freedom (cf. Section 2.1). Even in
this case, the translational symmetry of the infinite system assures that the eigen-
states can be classified by their total momentum k and further quantum numbers
for their internal structure. The dispersion E(k) of a given state determines its
effective mass and can thereby cause a quantum size effect as given by Eq. (170).
However, this simple picture obviously breaks down if the internal structure of the
exciton state is affected by changes of the system size. Such a change must occur
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if the internal structure is related to a characteristic size (quantum length) of the
exciton and the system size becomes comparable to or smaller than this intrinsic
quantum length.

For the simple Frenkel exciton in Figure 19, there is no internal degree of free-
dom and therefore no intrinsic quantum length. For the Merrifield model (see
Eq. (24)) of one electron and one hole on a one-dimensional chain, the eigenstates
do have an internal structure and a characteristic length is given by the mean sep-
aration between electrons and holes. For the Holstein model (see Eq. (101)), an
internal structure is introduced by the structure of the phonon cloud and a char-
acteristic quantum length follows from the extension of the lattice distortion 〈λm〉
around the exciton (cf. Figure 11). In all such cases with internal structure, one can
therefore distinguish two finite size effects: (I) A quantum size effect according
to Eq. (170) that results from the confinement of the center-of-mass motion and
(II) a quantum confinement effect that results from a confinement of the internal
exciton structure.

A mathematically explicit version of the heuristic distinction between quan-
tum size and quantum confinement effects is shown by Kayanuma for three-
dimensional Wannier–Mott excitons [95]. In this case, the intrinsic quantum
length of the exciton is the electron–hole separation R. Kayanuma shows that for
a system size L R (“weak confinement” in the classification of Kayanuma),

the size dependence of the eigenstate energies is given by Eq. (170). For L
<≈ R

(“strong confinement”), the internal structure of the exciton is drastically changed,
and the eigenstates are rather characterized by the confinement of the single par-
ticles.

From this discussion we can conclude that the internal structure, more specif-
ically the intrinsic quantum length R, of exciton states is crucial for estimating
the effects of a finite system size. In the framework of the Frenkel-charge-transfer
Holstein model (Eq. (149)) from this chapter, there are three effects that give rise
to an intrinsic quantum length:

(I) Because of the CT states involved, one has a non-trivial electron–hole
separation. However, since only nearest-neighbor CT states are included, this
electron–hole separation has an upper limit of one lattice constant and quantum-
confinement is of very limited interest.

(II) In a finite system, the subtle boundary conditions for CT states can lead
to the appearance of Tamm-like surface states [96]. These surface states have a
decay length which is entirely given by the parameters in the Hamiltonian and
which can be in the order of many lattice constants. Thus, this decay length has
the nature of an intrinsic quantum length. If the finite chain becomes smaller than
the quantum length of the surface states, their internal structure is changed, i.e.,
quantum-confinement occurs [97,98].

(III) Exciton–phonon coupling leads to the appearance of phonon clouds, i.e.,
the exciton is surrounded by a lattice displacement 〈λm〉 (see Eq. (125)), which is
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illustrated for specific examples in Figures 11 and 13. For the scenario presented
in Section 4.1, i.e., for the strongly coupled internal vibrations in PTCDA deriva-
tives, the phonon clouds have extensions not much larger than one lattice constant.
However, one might also consider phonon modes which are not that strongly cou-
pled. With respect to such modes, one has the situation of strong electronic cou-
pling, and the approach of localized phonon clouds from Section 3 is not appro-
priate. Now, one can use the continuum model for large phonon clouds described
by Rashba [99]. This situation was studied for Frenkel excitons by Agranovich et
al. in Ref. [100]. The intrinsic quantum length (extension of the phonon cloud) in
this case is R = J a/(2g2h̄ω),13 and R can easily become large for small coupling
constants or small phonon energies. This results in quantum confinement effects,
which are quantitatively discussed in Ref. [100].

In a realistic finite system, not only the quantum-size effect according to
Eq. (170) and the quantum confinement effects (I)–(III) from above may occur,
but also the possibility of site-dependent on-site and interaction energies should
be considered as in Eq. (166). However, it is very difficult to predict trends for the
dependencies εFE(n), εCT(n), J (n), te/h(n).

A strong effect is expected for the variation of the on-site energy of the Frenkel
exciton. For this case, at least some knowledge is available for the lowest tran-
sition in anthracene. The total gas-to-crystal shift is on the order of 2500 cm−1

(0.3 eV),14 whereas surface states were experimentally identified with energy dif-
ferences to the bulk states of about 200 cm−1 (20 meV) [101]. In Ref. [101],
the energetic separation was interpreted as being mainly due to the gas-to-crystal
shift of the molecules from the outermost surface layer. The shift for the next
(sub-surface) layer was already considerably smaller. Thus, one can assume that
εFE(n) is almost constant for n > 1, and even that the change at n = 1 is by far
not as large as the upper limit given by the gas-to-crystal shift.

The on-site energy εCT of the CT states is strongly affected by the electronic po-
larization of the surrounding molecules. Thus, close to the surface, strong changes
of εCT(n) can be expected. Modern microscopic calculations of polarization ener-
gies seem to allow estimations for this effect using a methodology that has already
been applied for the polarization energy of ions in finite systems [102].

The Frenkel transfer integral J is also strongly influenced by dielectric screen-
ing from the surrounding molecules and therefore can be expected to change sig-
nificantly close to the surface. Thus, one has to cope with a variety of different ef-
fects and unknown parameters and it is not surprising that even for the experimen-
tally well investigated case of PTCDA a coherent picture has not been presented
yet. Shifts in the absorptions spectra of PTCDA/NTCDA multilayer structures

13This follows from Eq. (26) of Ref. [100]. Note that there the meaning of g is different.
14The shift is given as the difference of the vapor-phase transition (27688 cm−1 taken from [101])

and the center of the ‖ b and ⊥ b polarized crystal transitions (values taken from [4]).
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[103] were initially interpreted as quantum-confinement (in the strict sense dis-
cussed above) of Wannier–Mott excitons. However, a pure Wannier–Mott exciton
picture seems not to be adequate for PTCDA (see discussion in Section 4.1). An
alternative interpretation for the shifts is given in terms of a varying contribution
from the gas-to-crystal shift at the surface by Agranovich et al. in Ref. [104]. The
situation becomes even more complicated due the possible mixture of different
crystal phases in thin layers [105]. Thus, a clear identification of quantum size
and quantum confinement effects in PTCDA-related quasi-one-dimensional crys-
tals requires considerably more information than currently available. In particular,
one has to find ways in which the various contributing effects can be separately
estimated from independent theoretical or experimental methods.

5. Conclusion

In this chapter, we illustrated the application of basic exciton models for describ-
ing optical spectra of quasi-one-dimensional molecular crystals. We concentrated
on two essential effects: Mixing of electronic Frenkel and charge-transfer excita-
tions and strong coupling to one internal molecular vibration. For these models,
we gave a comprehensive and self-contained discussion with emphasis on illus-
trational examples.

In Section 2, the electronic states were described as one-dimensional collec-
tive excitations consisting of molecular excitations (Frenkel excitons) and nearest-
neighbor charge-transfer excitations. This special case of the more general Merri-
field model [32] seems to be suitable for molecular crystals that form stacks with
close coplanar arrangement of the molecular planes. The essential parameters are
given by the nearest-neighbor Frenkel transfer integral J , the separation of the CT
states from the molecular excitation D and the electron and hole transfer integrals
te and th. The interplay of these parameters is illustrated in terms of band structure
plots showing the two resulting bands and their mixed character. The mixing of
two electronic states can lead to two peaks in the absorption spectra—even if the
CT states have a vanishing intrinsic transition dipole moment. This effect is one
probable candidate for the explanation of broadening or peak-splitting in absorp-
tion spectra of quasi-one-dimensional crystals. An alternative explanation would
be Davydov splitting due to Frenkel-type interactions of non-equivalent mole-
cules. This Davydov splitting, however, is expected to be significantly smaller
[16]. We also discussed the qualitative nature of the intrinsic CT transition dipole.

Section 3 considers strong coupling of the electronic excitations to internal
molecular vibrations, which is a typical feature in many molecules of current
interest. This coupling is most obvious in the vibronic progression in absorp-
tion spectra of isolated molecules. In a one-dimensional crystal, even the sim-
plest model description for such exciton–phonon coupling (Holstein Hamiltonian)
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leads to a complicated many-particle problem that cannot be generally solved.
Here, we describe a numerical approach that is conceptually simple and allows
the calculation of optical spectra by standard numerical diagonalization tools.
This approach is appropriate for weak electronic coupling and exciton–phonon
coupling constants in the order of one. This means in other words: The isolated
molecules show a pronounced vibronic progression (0–0 and 0–1 peak of compa-
rable height) and the spectral changes in the crystal concern only an energy range
comparable to the range of the vibronic progression.

In Section 4, we outlined the application of the basic models to experimental
spectra of thin organic films. The first step is a realistic description of bulk optical
constants. The capabilities and limitations of the minimum models are illustrated
for spectra of two archetypal perylene derivatives. For very thin layers, a number
of additional finite size and quantum confinement effects can occur. We quali-
tatively discussed the nature of such effects in the framework of our minimum
model. A general distinction can be made on the basis of the internal exciton
structure. If, as in the pure electronic Frenkel case, the exciton has no internal
structure, the finite system size leads to a simple particle-in-a-box behavior. This
quantum size effect is still the leading effect if the system size is larger than any
intrinsic length scale of a more complicated exciton. As soon as the system size
affects the internal structure, we speak of quantum confinement. Intrinsic quantum
lengths responsible for quantum confinement can occur in the idealized problem
in two ways: (I) The electronic problem for Frenkel and CT states can lead to
surface states with a finite decay length. (II) Exciton–phonon coupling leads to
phonon clouds with finite extension around the electronic excitation. Further ef-
fects are expected to arise from a site dependent modification of the Hamiltonian
parameters.

At the present stage, there is still no general agreement about the specific inter-
pretation of experimental spectra in terms of microscopic exciton models. Even in
the case of bulk spectra, the available information is typically not sufficient for a
unique parameterization. Furthermore, a comparison between different interpre-
tations is often difficult since typically different aspects are explained by different
models. More certainty can be expected if not just single materials are studied but
general trends are investigated and described by a common framework.
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In the modern literature on collective and nonlinear properties of excitons (see,
for instance, [1–3]) one may find only investigations devoted to Wannier–Mott
or Frenkel excitons [4,5]. The studies of collective properties of charge transfer
excitons (CTEs) are only in the very beginning. On the other hand, such type
of excitons also play an important role in the understanding of the optical and
photoelectric properties of many organic materials, including nanostructures (see
[6] and also [7,8]).

In this chapter, we describe some unusual properties of CTEs. In particular,
the phenomena which may arise in organic multilayers at donor–acceptor in-
terfaces in the system of 2D charge-transfer excitons at high pumping. We dis-
cuss the dielectric-conductor phase transition at donor–acceptor interface, the
photo-voltaic effect in asymmetrical superlattices and the resonant as well as off-
resonant χ3 optical nonlinearity.

1. Phase Transition from Dielectric to Conducting State (Cold
Photoconductivity)

In this section, following the papers by Agranovich and Ilinskii [9] and Kiselev et
al. [10], we consider the stability of interacting CTEs at a (donor–acceptor) D-A
interface and the possibility of a transition to a conducting state.

The realistic possibility to consider such organic crystalline structures has only
recently appeared due to progress in the development of the organic molecular
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beam deposition (OMBD) and other related techniques [7]. Such progress has
led to the monolayer control over the growth of organic thin films and superlat-
tices with extremely high chemical purity and structural precision. This opens a
wide range of possibilities for creating new types of ordered organic multilayer
structures including ordered interfaces. It is well known that the necessity for lat-
tice matching places strong restrictions on the materials which can be employed to
produce high quality interfaces using inorganic semiconductor materials. This oc-
curs since inorganic semiconductor materials are bonded by short-range covalent
or ionic forces. On the contrary, the organic materials are bonded by weak van der
Waals forces. This fact relaxes the above described restrictions and broadens the
choice of materials that can be used to prepare organic crystalline layered struc-
tures with the required properties (for more details and many examples, see [7,
11,12]). Note, that the D-A interfaces can be created also in Langmuir–Blodgett
films [13,14]. We can mention the paper [15] where in order to study the nonlin-
ear optical properties of multilayers organic superlattices have been grown with
a structure of the type . . .AAA|DDD|AAA|DDD . . . , the vertical dashes indi-
cating the donor–acceptor interfaces. In this paper, the molecule C60 was used
as acceptor (A) and molecules perylene, coronene and others as donors of elec-
trons (D).

1.1. ANALYTICAL APPROACH

Consider the CTEs on a single D-A interface with a highly ordered structure. To
explain the main collective effects in the physics of CTEs at a D-A interface, we
assume that the static dipoles of the CTEs are aligned approximately normal to
the interface plane, resulting in mutual repulsion. For example, if the static CTE
dipole moment is equal to 20 D and the distance between them is 5 Å (the lattice
constant at the interface) the repulsion energy is near 1 eV. If the distance between
CTEs increases to 10 Å the repulsion energy decreases to about 0.1 eV. It is im-
portant to note that for crystals in which the lowest energy electronic excitations
are CTEs, these repulsion energies are of the order of the energy difference B

from the CTE level to the lowest conduction band (B < 0.5 eV, see [6]). Thus, at
high CTE concentrations we can expect that due to the repulsion energy the higher
energy states are populated with free carriers, thus producing photoconductivity
even at very low temperature (cold photoconductivity). Of course, for example,
multiphoton ionization or other optical nonlinear processes can produce photo-
conductivity at low temperature. However, such processes are universal, they take
place in condensed matter of any nature and they are not relevant to CTEs and
their interaction which we discuss in this paper.

We assume below that the lowest conductivity band, which is responsible for
the conductivity along the D-A interface, has a lower energy than the Frenkel ex-
citations in the donor and acceptor materials. In this particular case, the interface
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at low temperature provides the lowest energy site for the CTE and interface free
carriers. In [9] cold photoconductivity at the D-A interface was considered un-
der the assumption that the time required for a phase transition to the conducting
state is smaller than the CTE life time and a phase transition was obtained by min-
imizing the total energy of bond (CTE) and dissociated excitations (free carriers).
Following [9] let’s calculate at first the energy of a 2D array of self trapped CTEs
at T = 0.

The energy of CTEs (of concentration n1) and the energy of dissociated e–h
pairs (of concentration n2), can be calculated by assuming that the total number
of excitations determined by the optical pumping intensity is constant:

(1)n1 + n2 = n.

The energy of the CTE array is therefore:

(2)E1 = n1�+Eint,

where � is the energy of a single CTE and Eint is the total repulsion energy
of their interaction. This energy can be estimated from the average distance ρ

between CTEs and their dipole p1 as:

(3)Eint =A
p2

ρ3

n1

2
,

where A is a geometric constant depending on the CTE distribution in the inter-
face plane. For example, for a square lattice A≈ 10. Since the CTE concentration
by definition is n1 = 1/ρ2 the total electrostatic energy of the interaction between
the dipole moments is (see also the results of numerical simulation shown in Fig-
ure 4 below):

(4)Eint = Ap2n
5/2
1

2
.

We can approximate the energy of the dissociated pairs as E2 = (� + B)n2,
where the kinetic energy of the free carriers has been neglected (due to the self
trapping and narrow electronic bands). Assuming that we consider the region near
the threshold where the concentration n2� n1, we can also neglect the interaction
of the free carriers with the CTEs. The total energy of the system is then written
as

(5)E =E1(n1)+E2(n2)= n�+ Ap2(n− n2)
5/2

2
+Bn2.

1We notice that the dipole–dipole interaction between two molecules embedded in a medium of
dielectric constant ε is given by that in vacuum multiplied by the factor ((ε + 2)/3)2/ε [5], which
accounts for screening and local field effects when the distance between the molecules is larger than
the lattice constant. For a typical value of ε � 3, this correction is not important and will never be
included in this chapter.
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Fig. 1. The number of the dissociated pairs (n2) as a function of the total number of excitations
(n1+n2) at the donor–acceptor interface (according to the simplified analytical model of Eq. (6)) and
in units consistent with the numerical simulations discussed below.

Minimizing the above expression with respect to n2, gives:

(6)n2 = n−
(

4B

5Ap2

)2/3

.

It is clear from Eq. (6) that n2 is positive at n > ncr = [4B/(5Ap2)]2/3 (see
Figure 1). The appearance of free carriers at n > ncr is considered to be a phase
transition from the dielectric to conducting state. This transition corresponds to
photoconductivity at low temperatures (i.e., to cold photoconductivity) and is due
to long range dipole–dipole interactions between CTEs. In this simplified picture,
we neglect the randomness in the CTE distribution and the transient to establish
an equilibrium steady state. The establishment of a steady state depends on the
pump intensity and the CTE lifetime which above was considered as infinite.

The phase transition in the system of interacting CTEs at finite temperature was
considered in the paper [9] for a 1D donor–acceptor interface. Such 1D interfaces
can be found, for example, among CT crystals containing segregated stacks. In
such crystals, the 1D interfaces separate the columns of donors and acceptors.
However, all the segregated stacks organic solids have an ionic ground electronic
state and the excited CT state in this case corresponds to a transition of two neigh-
boring ions (positive donor and negative acceptor) to the neutral state [6].
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For 1D structures, the interaction between CTEs can be taken into account only
for nearest neighbors. Besides, as it follows from [6], due to strong self-trapping
of CTEs the band-width of CTEs can be neglected. Due to these assumptions an
exactly solvable model was obtained in [9].

As it could be expected, it follows from the results of this model that the phase
transition region broadens with increasing temperature and disappears at high
temperatures. The same picture was obtained for 2D structure in the paper [16] in
the Weiss molecular field approximation.

The transition from a dielectric to a conducting state can be also investigated
using computer simulations. Following [10] we describe below such numerical
results for a more realistic model where the random distribution in space and also
the finite lifetime of CTEs are explicitly taken into account.

1.2. NUMERICAL SIMULATIONS

To numerically simulate the time evolution of CTEs distributed over a two-
dimensional donor–acceptor interface the D-A sites were arranged in a square
lattice. It was assumed that the D-A interface is uniformly irradiated with a time
independent source of intensity, I . Only one CTE can be generated at any site, so
every D-A site can be either occupied or not. The CT exciton generated at a given
lattice site will stay there and it cannot move to another D-A sites because of self
trapping.

Once generated, there are two mechanisms for the CTE to disappear. First, re-
combination occurs because of the finite lifetime of the CTE, τ . The second mech-
anism is via dissociation. The CTE exciton dissociates when, due to the dipole–
dipole interaction, the energy of the particular exciton exceeds some threshold. If
there are n1 CTEs occupying the D-A interface, the electrostatic energy of the ith
exciton in the electric field of the other excitons surrounding this site is:

(7)Vi =
n1∑
j=1

p2

r3
ij

(j 
= i).

The ith CT exciton dissociates when the repulsion energy, Vi , is larger than the
energy B . This condition is satisfied and dissociation occurs when more CTEs ap-
pear on sites adjacent to that occupied by the ith exciton. The electrostatic poten-
tial energy of the exciton strongly increases when a few CTEs occupy the nearest
lattice sites. If this occurs, one or more CTEs will dissociate, thereby reducing
the total system energy. Such a mechanism should result in correlations between
exciton positions, and an ordering of the system of non-mobile CT excitons can
be expected. Such a spatial ordering suggests the existence of a critical pump light
intensity above which there is an onset of cold photoconductivity.

In contrast to the thermodynamical theory, in simulations the process of recom-
bination of free carriers which can results in the creation of CTEs was neglected.
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Near the threshold where the concentration of free carriers is small the contribu-
tion of this process to the number of CTEs indeed will be negligible. However,
even at higher concentration, the effect of free carrier recombination can be re-
duced by applying along the interface an electrical field. This field will separate
electrons and holes and thus will create the photocurrent which has to be mea-
sured (see also Section 1.4 below).

Computer simulations were performed for a two-dimensional square lattice
containing 600× 600 sites. Under continuous pumping of the sample with a con-
stant intensity, the CTEs are generated in the process described above. In order
to avoid the influence of boundary conditions, we simulate the evolution of only
the central part of the lattice. This square, central sublattice consists of 200× 200
D-A sites, Nsites = 40,000. Next, we replicate the central sublattice by adding 8
more square sublattices surrounding the central one. That is, the exciton positions
calculated for the central 200× 200 sites square lattice is reflected via a mirror
symmetry operation to the other surrounding 8 squares.

To simulate the time-evolution, we run the system through equally spaced time
steps separated by the interval, �t . The value of �t is chosen to be much shorter
than the CTE lifetime, i.e., (�t� τ ). Here, we choose �t = τ/50.

We start the simulations when there are no CTEs at the interface. Under the
influence of the pumping the excitons begin to appear. After the time ≈ τ , the
number of CT excitons occupying the lattice reaches the steady state value. In
our current work we take a time interval of 5τ to ensure that the steady state is
reached. From this time on the necessary statistical information is collected.

The time-evolution of the system is simulated as follows. At every time step a
few CTEs (depending on the pumping intensity, I ) are created at randomly chosen
positions at the central sublattice with Nsites = 40,000 sites. Then we go over the
central sublattice sites and check every D-A molecule. With some probability the
exciton at this site can recombine, as explained above. It also can dissociate if its
electrostatic energy is high enough. The rules for these events to happen at one
particular D-A site are:

1. If the site is empty the charge-transfer exciton can be created with the prob-
ability Pcreate = I�t/Nsites.

2. If a charge-transfer exciton already occupies this site it can recombinate with
the probability Prec =�t/τ .

Next, during the same time step, we calculate the energy of every CTE in the
electrostatic field produced by the dipole moments of all other excitons. The en-
ergy of the ith CT exciton can be found using Eq. (7). If this energy is greater than
the dissociation threshold, B , the CT exciton dissociates. Finally, we recalculate
the energies of all CT excitons that remain at the D-A interface.
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1.3. RESULTS OF NUMERICAL SIMULATIONS

All results reported below are collected after steady state is achieved. Figure 2
shows the dependence of the number of CTEs (n1) on the value S which is the
product of generation intensity of the CTEs I and the CTEs lifetime τ : S = Iτ .
The steady state number of dissociated pairs is determined by its own lifetime
but we do not estimate here the concentration of carriers and conductivity. Nev-
ertheless, on Figure 2 is plotted the value S2 which is equal to the number of
dissociation which take place at given S in steady state during time, τ . We find
qualitative agreement with the analytical theory that the CTEs populate the D-A
interface only up to some saturation concentration. Further increase of the pump-
ing S results mainly into the dissociation of CTEs into electron–hole pairs. When
the number of the CTEs (n1) reaches the saturation density the number of disso-
ciations during interval τ into electron–hole pairs S2 increases linearly with the
pumping S. It is interesting to compare the critical concentration of CTEs from
the analytical simplified model (see above) in which the CTEs are assumed to
be in thermal equilibrium and having a spatially ordered structure (square lattice)
with the results of the numerical simulations. In the simulations with a random

Fig. 2. The steady state number of the CTEs (n1) occupying the donor–acceptor interface and the
number of the dissociated pairs (S2) as a function of the pumping intensity. The pumping intensity S

is equal to the number of the charge-transfer excitons produced at the interface during a CTE lifetime
in the absence of dissociation processes. The results are from the numerical simulations of the CTE
system described in the text.
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CTE distribution, dissociated pairs appear even at low pumping. Nevertheless,
following qualitatively the results of the analytical model (Figure 1), as a critical
concentration of CTEs we can take the concentration corresponding to the satura-
tion of CTEs at interface or, what is nearly the same, the concentration of CTEs
which corresponds to intersection of the linear S2 asymptote with the horizontal
axis. In Figure 2 the value of n1 is approximately 200 and thus the correspond-
ing critical dimensionless concentration Ccr = 200/40000= 0.5%. The curve on
the Figure 1 corresponds to value M = Ba3/p2 = 0.01. From the analytical the-
ory it follows that for the same value M the critical dimensionless concentration
Ccr = (4Ba3/5Ap2)2/3 = (4M/5A)2/3 = 0.85%. Thus, a random CTE distribu-
tion decreases the critical concentration for the transition to the conducting state.
This effect could be expected, because, for a random distribution, in contrast to
the analytical model of ordered CTEs, the occurrence of small distances between
CTEs is allowed even at low CTE concentration. In both approaches, the critical
concentration strongly depends on the values of B , p and a and below we com-
pare the critical concentrations for different values of these parameters. For exam-
ple, for B = 0.2 eV, p = 20 D and a = 5 Å, correspond to M = 0.1, the analytical
model gives Ccr = 4%, computer simulations give Ccr = 2.5%. For M = 0.05,
analytical approach gives Ccr = 2.5%, computer simulations gives Ccr = 1.5%
and so on. Thus, for a random CTE distribution at the D-A interface, the critical
concentration is almost twice as small as that predicted by the analytical model of
ordered CTEs with infinite lifetime.

As we already mentioned above the dissociation of nearest CTEs results into
the change of the correlation function of their spatial distribution. This affects
the repulsion energy distribution of the CTEs. If the CTE dissociation is absent
their energy distribution would have a peak (associated with the average distance
between the excitons) and a tail extending to high energies (such a tail is associ-
ated with the CTEs occupying nearby lattice sites). The dissociation prevents the
creation of clusters of the closely placed CT excitons and, especially, it prohibits
CTEs from occupying adjacent sites at the D-A interface and it cuts off that high
energy tail. This is shown in Figure 3 which presents the distribution of the CTE
repulsion energies for different pumping intensities S. On this figure the dissoci-
ation threshold is represented by the energy B and the origin corresponds to the
situation when the CTEs occupy infinitely remote sites. It is seen from this figure
that the peak of the energy distribution increases with the number of CTE and so
does the width of the distribution. It is interesting to note also that the position of
the peak of the repulsion energy distribution (corresponding to the energy of high-
est probability) varies with the steady state number of CTEs approximately in the
way which the theoretical model of ordered CTEs lattice predicts. As it follows
from Eq. (5) the CTE energy as a function of the number of CTEs should vary as
n

3/2
1 . Figure 4 demonstrates that in computer simulations such dependence take

place with high accuracy. Figure 5 shows the distribution of the nearest-neighbor
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Fig. 3. Steady state distribution of the CTE electrostatic energies for different pumping intensities.
The pumping intensity S is the number of CTEs produced at the interface during a CTE lifetime in
the absence of dissociation processes. The values of S and the corresponding ones of n1 are given
by: (a) S = 50, n1 = 45; (b) S = 100, n1 = 82; (c) S = 200, n1 = 133; (d) S = 350, n1 = 177;
(e) S = 500, n1 = 202; (f) S = 1500, n1 = 247. The repulsion energy of the CTEs is given in units of
the dissociation energy B.

(n-n) distances between the CTEs in the steady state when the pumping intensity
S varies. We took B = 0.02 eV in Figure 5, with ccr = 0.5% as discussed above;
the closest approach of any two CTEs is then about five lattice spacings. At low
intensity [curve (a)] the CTE distribution is broad and there are isolated CTEs at
sites up to 20 a from any other CTE. At higher S the distribution sharpens. At
high S the CTE coverage of the D-A interface is roughly uniform (n-n distances
vary from 5 a to 16 a). For the parameters used, CTEs closer than 5 a dissociate
and there is always a lower limit on separations.

1.4. CONCLUDING REMARKS

In this section, we have considered a transition to a conducting state at T = 0
due to the CT exciton–exciton repulsion. Using computer simulations in which
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Fig. 4. Position of the energy distribution peak as a function of the number of the CT excitons, n1.
The position of the energy peak obtained from the numerical simulations appears to be proportional
to n1.5

1 .

the randomness of the CTE distribution and their finite lifetime were taken into
account, we have found how the repulsive interactions between CTEs populates
higher energy states of dissociated e–h pairs and thus creates free carriers. It is
clear that at a finite temperature, the repulsion can also be important because it
decreases the activation energy. This decrease of activation energy depends on the
concentration of CTEs.

The computer simulation demonstrates also that the critical concentration of
CTEs should depend on their mobility. If this mobility is small and the CTE dis-
tribution at a D-A interface is random, the critical concentration leading to a phase
transition to the conducting state will be smaller than in the case of mobile CTEs.
In the case in which their lifetime is long and their repulsion is strong an ordered
state is realized.

An interesting problem is how to observe the predicted photoconductivity. It is
evident that for crystalline D-A multilayers the conductivity along the interfaces
can be measured. Alternatively, the optical properties of the interface near the con-
ductivity transition can be observed. For such experiments, methods for observing
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Fig. 5. Distribution of the nearest-neighbor distances, in units of the lattice constant a, between
the charge-transfer excitons for three different pumping intensities. The pumping intensity S and the
corresponding number n1 are: (a) S = 100, n1 = 82; (b) S = 200, n1 = 133; (c) S = 1500, n1 = 247.

photoconductivity parallel to the plane of dipoles developed in the investigations
of Langmuir–Blodgett films can be used. However, for such measurements we
need to have nearly perfectly ordered crystalline D-A multilayers with a large
interface area.

The states and mobility of free carriers at D-A interfaces are also important
for the observation of photoconductivity. In the discussion of these problems, it is
tempting to use the analogy with Tamm states of electrons or holes at the crystal
interface. In the case of Tamm states, the wave vector is a good quantum num-
ber. The states are coherent and they form the conduction and valence bands of
surface states. This is typical for surface states of inorganic semiconductors or
metals, since the electron–phonon coupling is too weak to destroy the bands. On
the other hand, for D-A organic structures as well as for organic crystals in gen-
eral, the width of energy bands at room temperature is small (order 0.1 eV), and
electron–phonon coupling can be rather strong, giving rise to self trapping of free
carriers and hopping conductivity. We expect that the same is true for free carriers
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at an organic interface. In the discussion of carrier mobility at the D-A interface
we have to take into account not only self trapping, but also Coulomb interactions
between free carriers, and with CTEs and recombination processes. In semicon-
ductors the recombination of electron–hole pairs usually is slow due to spatial
delocalization. To suppress the recombination of free carriers at a D-A interface,
an electric field can be applied parallel to the interface. This electric field can also
be used for observation of photoconductivity along the D-A interface. Thus to
observe the phenomena considered here it is necessary to have high quality D-A
structure, as well as resolve many difficult technical problems usually connected
to this type of experiments.

2. Cumulative Photovoltage in Asymmetrical Donor–Acceptor
Organic Superlattices

2.1. INTRODUCTION

Photo-voltaic energy conversion is an important component of a future network of
renewable energy sources that could provide a sustainable energy supply without
greenhouse gas emission [17]. That is the reason behind the intensive investiga-
tions in the field of photo-voltaics which also demonstrate a very peculiar com-
petition between the use of inorganic and organic materials for the realization of
solar cells with increasing efficiency. No inorganic material matches the absorp-
tion coefficients of organic dyes, which are in the range of 105 cm−1, and give
rise to the hope of producing organic based very thin solar cells with low energy
and material consumption.

From the point of view of macroscopic electrodynamics the appearance of a
constant current under the influence of light (photo-voltaic effect) can be under-
stood in the framework of the theory of perturbation (for a small light intensity)
from the nonlinear relation (see also [18]):

Ji(0)= σ
(2)
ij l (0;ω,−ω)Ej(ω)El(−ω)
+ σ

(4)
ij lmn(0;ω1,−ω1,ω2,−ω2)Ej (ω1)El(−ω1)Em(ω2)En(−ω2)

(8)+ · · · ,
where �J is a constant electrical current, �E(ω) is the amplitude of the electrical
field of light with frequency ω and σ (2),(4) are the tensors of nonlinear conduc-
tivity. These tensors are constant in space for infinite homogeneous media and
are different from zero only for non-center-symmetrical structures. The calcula-
tion of these tensors is the problem of microscopical theory. Such theory needs
the analysis of the main mechanisms which can be responsible for the appearance
of the photo-voltaic effect. In the case considered below of asymmetrical organic
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donor–acceptor superlattices with periods of the order of 100 Å it is necessary to
carry out the analysis of possible mechanisms of photo-voltaics in organic nanos-
tructured materials. It is worth to mention also that in some cases the electronic
excitations which appear under the influence of light absorption may be respon-
sible for the structural and chemical rearrangement of organic materials. In this
case, of course, the theory of perturbation is not applicable and as a result the
tensors of nonlinear conductivity depend themselves on the light intensity.

Below in this section following [19], we discuss the electro-optical properties
of an asymmetrical stack of organic donor–acceptor (D-A) interfaces. As we men-
tioned, the technological progress in molecular organic beam deposition is very
fast and there is little doubt that a variety of such systems will be synthesized
in the near future. With this in mind, we discuss the properties of a superlattice
of the type . . .DDD|AAA|NNN |DDD|AAA|NNN . . . , where N stands for a
material which is neither a good donor nor a good acceptor, and all molecules
in the ground state are neutral. In such a non-center-symmetrical structure, when
CTEs are generated by the pumping light, all the interface CTE dipoles point in
the same direction and the potential differences due to the dipole layers at each
D-A interface add up to a macroscopic voltage across the superlattice creating a
macroscopic potential drop. The corresponding electric field will drive the free
electrons and holes produced by the absorption of light and, thus, will provide a
photo-voltaic current. It is interesting to mention that in the case of D-A inter-
faces with negative charge-transfer exciton energy or, in other words, in the case
of donor and acceptor for which the charge transfer exists already in ground state,
a macroscopic potential drop also has to appear in the asymmetrical structure
which we consider here but in this case it will be independent on the intensity of
incident light. For both cases the appearing electrical field will be directed from
donor side to acceptor side as we also will show below by direct calculations.

Before discussing the origin of electro-optical effects in organic asymmetri-
cal multilayer structures, it is worth to mention that in 1996 Professor Rolf Lan-
dauer called our attention to the fact that the photo-voltaic mechanism which we
proposed in [19] for organic D-A asymmetrical superlattices is similar to those
considered to generate cumulative photovoltages in some inorganic crystals. He
had in mind the papers by Cheroff and Keller [20], Pensak [21] and Goldstein
[22] which independently discovered the large photovoltages in ZnS and CdTe
crystals with periodic intrinsic inhomogeneities, and also the paper by Swanson
[23]. In the latter, it is theoretically demonstrated that the large photovoltages ob-
served in those crystals are plausible and can be due to structures without a center
of inversion by a wide class of different mechanisms. Conversely, the conditions
under which a photoconductor with periodic inhomogeneities does not show a
cumulative photovoltage are shown to be very restrictive and improbable. In the
Introduction of the paper [23] it was mentioned, that “the large photovoltages
observed in [20] in some insulators are due to numerous internal electrostatic bar-
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riers which under illumination act as p − n junctions connected in series. The
crystal structure of these materials does not exhibit inversion symmetry, and it
is conceivable that the directionality of the crystal induces directionality of the
internal barriers. Such an intrinsic directionality is necessary, since a structure
of randomly alternating conductivity type could provide no basis for a preferred
direction in which the voltage accumulates.” It follows from this remarks that, in-
deed, the structures which have been investigated in [20,21] and [22] have many
similar features with the asymmetrical D-A organic structure which is under dis-
cussion in this section, particularly in the case where charge transfer takes place
already in the ground state of a donor–acceptor pair. In our paper [19], we assume
that the charge transfer takes place only in the excited state of a D-A pair and
that the main role in the appearance of the photovoltage is not played by an in-
trinsic ground state asymmetry of the asymmetrical D-A multilayer structure, but
rather by the asymmetry of the sheets of dipoles at all donor–acceptor interfaces
which arise only due to the generation of CTEs via light absorption. The density
of CTEs on the sheets is dependent on the light intensity and this should transform
the photo-voltaic effect in asymmetrical organic donor–acceptor multi-layers into
a strongly nonlinear function of the light intensity.

It is known that a photocurrent may be measured from the response to exter-
nal voltages under illumination. In materials having a large enough photovoltage,
this voltage itself can be used without an external bias to measure a photocurrent
(short-circuit photocurrent). One is not only interested in measuring the short-
circuit photocurrent, but it is of interest to measure independently the open-circuit
photovoltage which is the other main characteristic of photo-voltaics (see, for ex-
ample, [20,21] and [22]). Both these characteristics of photo-voltaics, generally
speaking, are dependent on the concentration and mobility of charge carriers. We
will demonstrate below that in an asymmetrical stack of organic donor–acceptor
(D-A) interfaces the open-circuit photovoltage may arise even in the absence of
free carriers.

2.2. ON THE MECHANISMS OF THE PHOTO-VOLTAIC EFFECT IN ORGANICS

To discuss in more details the possible peculiarities of photo-voltaics in an asym-
metrical D-A multi-layer structure, we will make a few remarks concerning pos-
sible mechanisms of photo-voltaic effect in multilayered structures containing or-
ganic dyes (see also [29]).

One model (see, for example, [24]) is based on the assumption that the contact-
ing organic layers have dark n- or p-type conductivity and that the band structure
of the organic D-A interface is similar to that of a p–n junction between inor-
ganic semiconductors. In this case in the region near the interface between these
layers a depletion region is formed, where the internal electric field results in the
dissociation of an excited electron–hole pair into free carriers. In an alternative
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model [25–28], the photo-voltaic effect occurs exclusively at the interface of an
organic dye with a second dye, the charge separation takes place at the interface
and an extended region with an electrical field is not required and may be even
absent (see also [29]). Natural photosynthesis may be considered as the important
example of such type of carrier generation. Indeed, exciton are formed by light
absorption in the antenna pigments and diffuse to the reaction center where they
dissociate with almost unit quantum efficiency by injecting an electron and hole
in opposite spacial directions down a chain of acceptors and donors, respectively
(see [30,31]). It is important to mention that in this mechanism of photo-voltaics
the electrons and holes after the process of interface charge separation diffuse
away from the D-A interface in opposite directions as if driven by an effective
electric field directed from the acceptor A to the donor D, or in other words along
the same direction of the CTE dipole. This direction, as will be shown below, is
opposite to the direction of the electrical field created by a sheet of CTE dipoles
mentioned above.

In our discussion below, we assume that the binding energy of a CTE is large,
and the CTEs are rather stable and do not participate in the photo-generation of
free carriers. We will show that the asymmetrical stack of D-A interfaces under
pumping of CTEs provides a macroscopic potential drop that can be considered
as a cumulative photovoltage.

2.3. CUMULATIVE PHOTOVOLTAGE IN AN ASYMMETRICAL STACK OF D-A
INTERFACES

To estimate the potential profile determined by the interface CTEs, we consider
first a single D-A interface with a two-dimensional (2D) density of CTEs n of or-
der 1012 cm−2, each one having an electric dipole moment µ of about 20 Debye.
Such large dipole moments are not unusual for CTEs and the 2D density above,
taking a superlattice period of a few tens of monolayers, would correspond to a
bulk concentration of excited molecules of order 10−4, which is not problematic
in relation to the photochemical stability of the organic materials. In a first approx-
imation, this CTE configuration corresponds to a uniform static dipole moment
per unit area µn perpendicular to the D-A interface. As the CTEs repel each other
through the dipole–dipole interaction �H = µ2/ρ3 (ρ being the exciton–exciton
distance) and as their mobility is not negligible, they tend indeed to be uniformly
spaced along the interface; for instance, a similar system of dipoles moving clas-
sically along a plane and oriented perpendicular to it have been shown [32] to
order in a 2D lattice at low temperatures and to form a homogeneous liquid at
high temperatures. The CTE repulsive interaction here considered is, of course,
the same that at a higher concentration would give rise to the dielectric-conductor
transition as discussed in the previous section.
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If we assume that the dipole layer is uniform and that we can neglect its thick-
ness the corresponding polarization per unit volume is �P (z)= �p0 δ(z), where �p0
is the polarization per unit area and the z-axis is directed along the normal to
the interface planes from the donor to the acceptor side. In our case, the vec-
tor �p0 ≡ (0, 0 ,−p0), p0 = µn. Using the equation divD(�r)= 0 where D(�r) is
Maxwell displacement vector, �D = �E + 4π �P , and taking into account that all
these values depend only on z we have:

(9)
dDz(z)

dz
= 0, Ez(z)− 4π p0 δ(z)= 0, Ez =−d V

dz
,

where V (z) is the potential. It is follow from these equations that

(10)V (z)= V (−∞)−
∫ z

−∞
4π p0 δ(z) dz.

Thus, in the approximation of a uniform dipole layer, the resulting electrostatic
potential has the form of a sharp step of hight �V = 4πµn. This effect is well-
known and is used in the surface double layer model for the work function of
metals (see [33,34]). In our case the height of the step �V = 4πµn � 0.1 V
at the interface. Thus, the electrical field in the region of a step with an ef-
fective thickness a is equal to Ez = 4πµn/a, opposite to the direction of the
CTE dipole moment. Probably, it is impossible to create a density of CTEs much
larger than that used in our estimation above because the insulator to metal tran-
sition [9] leading to the ionization of the CTEs sets a limit on n, as discussed
above.

For a typical intermolecular spacing a of about 5 Å and the exciton densities
considered here, the average distance ρ0 between two excitons along the inter-
face plane (n � 1/ρ2

0 ) is much larger than the interface thickness; as a conse-
quence, the potential does not exhibit an abrupt jump and the electric field corre-
sponding to �V is not restricted to the interface, but extends on either side over
a layer of width comparable to ρ0, as shown in Figure 6. Taking for the sake
of simplicity the CTEs located at the sites of a square lattice, this figure shows
φ(z) = V (z)/(2πµn) where V (z) is the electrostatic potential along a direction
perpendicular to the D-A interface and passing through the center of a square unit
cell. Even in the case of a homogeneous disordered 2D distribution of CTEs, the
average electric field profile is not expected to be much different than for a 2D
square lattice of equal density. When considering an asymmetrical superlattice
in which all the interface voltage drops add up, the qualitative shape of the total
electrostatic potential profile will be determined by the ratio between the distance
between successive D-A interfaces, i.e., the superlattice period L and ρ0: if L is
larger than ρ0 (i.e., at a high density n) the potential will resemble a staircase as
shown in Figure 7, otherwise (i.e., at a low density n) it will have a rather uniform
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Fig. 6. Normalized potential profile across a D-A interface in the presence of a CTE density
n� 1/ρ2

0 .

Fig. 7. Electrostatic potential along a D-A-N superlattice in the presence of 2D CTEs at the D-A
interfaces with different densities: n � 1012 cm−2 (solid line) and n � 3.5 × 1011 cm−2 (dashed
line).
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slope. In either case, the average electric field in the direction of growth will be
given by E0 =�V/L and can be comparable to the electric field in the depletion
layer of a typical semiconductor p − n junction (for the values of µ estimated
above, L� 300 Å and n � 1012 cm−2, for instance, E0 is about 3 · 104 V/cm).
Of course, the uniformity along the superlattice planes will never be perfect in a
real structure and, in general, a rather complicated spatial pattern of electric field
force lines (and therefore current filaments) can be expected.

Under steady illumination, a condition of dynamical equilibrium will be
reached with a constant 2D density of interface CTEs. Free carriers will also be
present, either photogenerated directly or, for instance, as a result of the thermal
ionization of the CTEs (see, for example, [25–27]) at room temperature. The elec-
tric field above will effectively separate the electrons and holes and drive a current
along the superlattice crossing the D-A interfaces from the donor to the acceptor
side. We are here neglecting the effects of the periodic changes of the band edges
due to the superlattice compositional changes (such discontinuities could be min-
imized by a proper choice of materials) with respect to the additive effect of the
potential variations at the D-A interfaces. Of course, these effects would be im-
portant to estimate the electron and hole mobilities along the growth axis. In the
structures here considered, electrons could be effectively injected into the valence
band on the acceptor side through a contact with a large work function metal and
extracted from the conduction band on the donor side through a contact with a
small work function metal (as done in the reverse direction in LED devices); such
a current would deliver power to the external circuit load at the expense of the
light absorbed.

The expected efficiency of photo-voltaic conversion is strongly dependent on
the dark conductivity, on the processes of carrier photo-generation, on the kinetics
of excitons and charge carriers and can be estimated only in the framework of
a complete theory which properly takes into account also the structure of the
heterojunction.

However, the qualitative features of its dependence on the light intensity can be
established on the ground of more simple considerations. At low intensity of light
the steady state CTE concentration, which is dependent on the pumping intensity
I of CTEs and their lifetime, will be small and the macroscopical potential drop
will be negligible. The macroscopic potential drop V ∼ I will be important with
increasing CTE concentration. For a constant density of free carriers, the photo-
voltaic power will be proportional to I . At still higher pumping intensities, when
the presence of the CTE leads via their “cold” ionization to an increase in the den-
sity of free carriers as described above, the photovoltage will no longer increase,
but the photo-voltaic power dependence on I will still be approximately linear
due to the increase in free carrier density.
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3. Nonlinear Optical Response of Charge-Transfer Excitons at
Donor–Acceptor Interface

In this section following the paper [35], we discuss the resonant and off-resonant
optical nonlinearities of a system of charge-transfer excitons (CTEs) at a donor–
acceptor (D-A) interface. We continue to consider an interface between organic
materials (neutral in the ground state) for which the lowest electronic excitations
are CTEs corresponding to the displacement of an electron from the donor to the
acceptor side. We assume that the photogenerated CTEs have large static elec-
tric dipole moments perpendicular to the D-A interface plane. We show that this
system may exhibit strong resonant optical nonlinearities induced by the dipole–
dipole repulsion among the CTEs. We show that on account of this long range
interaction, the excitation intensity dependence of the Kerr nonlinearity is non-
analytic: it depends on the two-dimensional density n of CTEs as n3/2. There-
fore, the dependence of the CW nonlinear polarization on the laser electric field
is beyond the usual power expansion. We also point out that the static electric
field produced by the CTEs modifies the hyperpolarizabilities of nearby mole-
cules. Therefore, in media with CTEs the intensity dependence of the nonlinear
optical response can be stronger than usually expected, and this theoretical pre-
diction could be easily experimentally tested. First we consider the effects of the
dipole–dipole repulsion among CTEs on the nonlinear optical response and, then,
the influence on the nonlinear hyperpolarizabilities of nearby molecules exerted
by the large static field associated with a CTE.

3.1. RESONANT OPTICAL NONLINEARITY OF CTES: THE ROLE OF THE

EXCITON–EXCITON REPULSION

3.1.1. Exciton–exciton interaction at a D-A interface

We have already discussed some peculiarities of the exciton–exciton interaction at
a D-A interface above. Nevertheless, for the convenience of the readers we repeat
here some results of this discussion to make also this section self-contained.

The dipole–dipole interaction energy between two CTE having a dipole mo-
ment µ (which is typically 20 Debye) at a distance ρ along the D-A interface
plane is U = µ2/ρ3 and is rather large for small distances and decreases with
a long range as ρ−3; for instance, for ρ � 5 Å, U � 1 eV and for ρ � 10 Å,
U � 0.3 eV. As the number of excitons at a distance ρ along the interface also
scales as ρ the interaction energy of a given exciton with all other excitons which
are at a distance ρ decreases more slowly and scales as ρ−2, rather than as ρ−3.

The average exciton–exciton distance ρ0 is related to the two-dimensional (2D)
density of CTEs n by n� 1/ρ2

0 . The ensuing repulsion increases the energy of the
CTEs and the corresponding energy shift �ε is given by the average interaction of
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one exciton with all the others. We can expect that CTEs having a non-negligible
mobility will tend to order in such a way as to minimize the energy of repulsion.
As discussed above, we assume a simple 2D square lattice structure for the CTE
spatial distribution, then

(11)�ε � 10 µ2/ρ3
0 = 10 V0 (n/N)(3/2),

with V0 = µ2/a3 and N the total 2D density of molecules given by N = 1/a2

where a is the molecular crystal lattice constant along the interface (which is
typically 5 Å). It is clear that such an additional repulsion energy is required to
create a CTE at an empty site (i.e., at a vacancy in the CTE lattice).

To estimate the energy shift �ε we can use the expression

(12)�ε = 10 V0 (a/ρ)3.

Assuming that the mean distance between CTEs ρ � 10 a, e.g., that the concentra-
tion of CTEs is order of 10−2 we obtain that �ε � 150 cm−1, which is significant
on the scale of the homogeneous width of a CTE transition.

As discussed above, the scaling dependence �ε � n3/2 follows also from the
results of numerical simulations and, thus, the estimate made is expected to be
valid even for a disordered homogeneous distribution of CTEs of comparable 2D
density n. We wish to stress here the non-analytic dependence of �ε on n: a
perturbation theory expansion in terms of n, n2, n3, etc., would be inadequate as
the leading correction scales like n3/2.

3.1.2. Nonlinear D-A interface polarizability

The D-A interface polarizability due the CTE contribution can be written as
χ(ω) � A/((ε0 +�ε)2 − ω2), where ε0 is the CTE energy for n = 0 and A is
a constant proportional to the CTE oscillator strength. Expanding χ(ω) in series
of �ε/ε0 we find that χ(ω)= χ

(1)
0 (ω)(1−2ε0�ε(n)/(ε2

0−ω2))= χ
(1)
0 +�χ(n)

where χ
(1)
0 is the polarizability for n = 0. Thus, for the nonlinear correction

to the polarizability corresponding usually to the Kerr nonlinearity, we have
�χ/χ

(1)
0 = −2ε0�ε/(ε2

0 − ω2) � −�ε/(ε0 − ω), where for resonant pump-
ing |ε0 − ω| � δ, δ being the exciton linewidth. Assuming the concentration
n � N/100 and using the previous estimates, we have �ε � 150 cm−1 which,
even for δ � 500 cm−1 gives for the resonant nonlinearity �χ/χ

(1)
0 � 0.3. Such

a large change in polarizability is not due to the two-level-system-like anhar-
monicity which is the main nonlinear mechanism for Wannier–Mott excitons in
semiconductors (phase space filling [1,36–39]), but it is caused by the exciton–
exciton interaction which in the present case is particularly large; in fact, we have
that �χ/χ

(1)
0 is one order of magnitude larger than n/nS where the CTE satu-

ration density nS is given by N itself. A 2D concentration along each interface
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of 0.01 can hardly be dangerous for organic crystals as, taking into account the
thickness of the layer between successive interfaces, it may correspond to a 3D
concentration of order 10−3. We note again that the continuous wave (CW) opti-
cal nonlinearity of 2D CTEs here considered is also interesting as it goes beyond
the usual perturbation theory [40–42]. As a matter of fact, because in steady state
equilibrium conditions n ∝ I ∝ |E(ω)|2 (I being the pump light intensity), the
shift of the CTE energy �ε(n) and the nonlinear correction to the polarizability
turn out to be proportional to |E|3. Thus, the nonlinear part of the polarization is
� �P (ω) ∝ |E(ω)|3 �E(ω) and such a term cannot be found in the usual expansion
of the polarization �P in powers of the components of the electric field �E. This
peculiarity stems from the long-range exciton–exciton interaction that shifts the
CTE energy in a non-analytic way with respect to n. The unusual dependence
of � �P on �E here considered should be easily experimentally observed for CW
resonant pumping.

3.2. PHOTOGENERATED STATIC ELECTRIC FIELD: INFLUENCE ON THE

NONRESONANT OPTICAL RESPONSE

In the above discussion, we have only considered the effects due to the CTE–
CTE repulsion, which contribute to the resonant nonlinear absorption (as well as
to other resonant nonlinearities) by the CTEs themselves. Here, however, we want
to mention a more general mechanism by which the nonlinear optical properties
of media containing CTEs in the excited state can be enhanced. This influence is
due to the strong static electric field arising in the vicinity of an excited CTE. If,
for example, the CTE (or CT complex) static electric dipole moment is 20 De-
bye, at a distance of 5 Å it creates a field ECTE of order 107 V/cm. Such strong
electric fields have to be taken into account in the calculation of the nonlinear
susceptibilities, because they change the hyperpolarizabilities α,β, γ , etc., of all
molecules close to the CTE. For instance, in the presence of this CTE induced sta-
tic fields, the microscopic molecular hyperpolarizabilities are modified as follows
αij = α

(0)
ij + α

(1)
ij l E

CTE
l + α

(2)
ij lkE

CTE
l ECTE

k + · · · , βij l = β
(0)
ij l + β

(1)
ij lkE

CTE
k + · · ·,

etc. The changes in the molecular hyperpolarizabilities are reflected in all the
macroscopic nonlinear optical constants of a medium. As the CTE induced elec-
trical fields increase with the concentration of CTEs, a stronger dependence of
the nonlinear optical response on the intensity of light is obtained. For example,
χ(3) will include a contribution from χ(4) and the corresponding polarization will
be given by �Pi � χ

(3)
ij lmEjElEm + χ

(4)
ij lmqEjElEmE

CTE
q where E is the pump

light electric field, therefore, if the second term is not negligible, |�P |2 will de-
pend on the pump intensity I ∝ |E(ω)|2 more strongly than like I 3, through the
dependence of ECTE on I . Of course, the macroscopic susceptibilities will de-
pend on an average over the positions and orientations of the molecular species
involved with respect to the static electric dipoles of the CTEs photogenerated in
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the medium. For the 2D distribution of CTEs at a D-A interface considered above,
the presence of a static macroscopic electric field extending on either side of the
interface from the donor to the acceptor side may affect the molecular hyperpolar-
izabilities enough as to reduce the symmetry of the optical response tensors; for
instance, centrosymmetric molecules may acquire a second order polarizability
βijl = 0+ β

(1)
ij lkE

CTE
k + · · · . The influence of static electric fields on the molecu-

lar hyperpolarizabilities has long been know, but in our case the static field effects
are controlled by the pumping light as they are associated to the presence of the
CTEs: this can lead to a novel class of all optical nonlinearities. The calculation of
second harmonic generation induced by charge-transfer excitations in centrosym-
metric medium can be found in [43]. These calculations can be easily adapted to
the case of D-A interfaces.

All these considerations may also apply to noncrystalline polymeric media with
impurities having a CT complex in the excited state. If the polymers are approxi-
mately oriented in one direction and the structure is such that the CT complexes
along a polymer are nearly parallel to each other and perpendicular to the poly-
mer direction, we have a more or less ordered 1D system of CTEs having a strong
repulsive interaction and we expect again, as for 2D CTEs, a large enhancement
of the optical nonlinearities and a stronger intensity dependence of the nonlin-
ear optical response. Indeed, for a 1D system the correction to the energy is al-
ready proportional to n3 (�ε ∝ µ2/ρ3

0 , ρ0 � 1/n, n being the 1D density) and
the nonlinear contribution to the polarizability due to the CTE-CTE repulsion is
proportional to |E(ω)|6. Such a contribution corresponds to a nonlinear polariza-
tion � �P(ω) ∝ |E(ω)|6 �E(ω) and this effect, in contrast to what we had for the
2D case, can be formally included in the usual analytical expansion of the polar-
ization �P in powers of the components of the pumping light electric field �E(ω).
In any case, the appearance of CTEs under the influence of a strong illumination
can change drastically the intensity dependence of the nonlinear optical properties
and just this theoretical prediction could be checked easily by experiments. For
the 2D case and, particularly, the 1D case, this dependence becomes stronger: the
CTE contribution to the nonlinear absorption coefficient is proportional to I 3/2

for the 2D case and to I 3 for the 1D case, instead of the usual linear dependence
on I .

In conclusion, we have studied in this subsection the nonlinear optical response
of 2D CTEs at a D-A interface: such a structure belongs to a class of novel sys-
tems of current interest to material scientists [7]. The long range exciton–exciton
interaction leads to a large resonant nonlinear polarization exhibiting an unusual
dependence on the light electric field which goes beyond the standard perturbation
expansion. The static electric fields induced by the photogenerated CTEs affect
the off resonant hyperpolarizabilities of nearby molecules giving rise to new and
more strong all optical nonlinearities.
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1. Introduction

The need for systems having better opto-electronic properties to be used in appli-
cations has been driving researchers in materials science to develop novel com-
pounds and novel structures. The progress in the field has been impressive, mainly
due to the use of innovative growth techniques such as molecular beam epitaxy
(MBE) and the realization of systems in two-dimensional (2D), one-dimensional
(1D) and zero-dimensional (0D) confined geometries. We have now many newly
developed organic or inorganic structures with very interesting properties. We
mention here as a typical example the request for efficient second harmonic gen-
eration (SHG) where we can see a very peculiar “competition” in the use of or-
ganic or inorganic materials. Inorganic semiconductors (e.g., GaAlAs, ZnCdSe)
have been used to design MBE asymmetric quantum wells (QWs) having values
of χ(2) much larger than the corresponding bulk materials. Organic materials have
also been used for the same purpose: molecular charge transfer excitations lead
to a strong enhancement of SHG. From the theoretical point of view, scientists
working independently with covalent or molecular crystals have exploited actu-
ally the same basic idea, i.e., achieving a large change of static dipole moment
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upon excitation. In the following chapters of this book we discuss the possibility
of obtaining qualitatively new physical effects, potentially useful, as we expect,
also for technological applications. In our considerations we follow another strat-
egy by ingeniously combining organic with inorganic materials in one and the
same hybrid structure.

In this chapter as a first example of such a strategy we discuss the properties
of electronic excitations in nanostructures based on combinations of organic ma-
terials as well as inorganic semiconductors, having respectively Frenkel excitons
and Wannier–Mott excitons with nearly equal energies. We show that in this case
the resonant coupling between organic and inorganic quantum wells (or wires or
dots) may lead to several interesting effects of linear optics, such as splitting of
the excitonic spectrum and drastic change of exciton dispersion, but also to strong
enhancement of the resonant optical nonlinearities.

The electronic excitations known as excitons correspond to a bound state of
one electron and one hole and can be created by light or can appear as a result of
relaxation processes of free electrons and holes, which, for example, may be in-
jected electrically. As discussed in the first and second introductory chapters there
are two models conventionally used to classify excitons – the small radius Frenkel
exciton (FE) model and the large radius Wannier–Mott exciton (WE) model.

The internal structure of Wannier–Mott excitons [1] (see also the chapter by
G. La Rocca) can be represented by hydrogen-like wave functions. Such a repre-
sentation results from the two-particle, Coulombic electron–hole states in a crys-
talline periodic potential. The mean electron–hole distance for this type of exciton
is typically large (in comparison with the lattice constant). On the other hand, the
Frenkel exciton is represented as an electronic state of a crystal in which electrons
and holes are placed on the same molecule. We can say that Frenkel excitons in
organic crystals have radii aF , comparable to the lattice constant aF ∼ a ∼ 5 Å.
In contrast, weakly bound Wannier excitons in semiconductor QWs have large
Bohr radii (aB ∼ 100 Å in III–V materials and aB ∼ 30 Å in II–VI ones, in both
cases aB � a). The oscillator strength of a Frenkel exciton is close to a molecular
oscillator strength F and in some cases may be very large, whereas the oscilla-
tor strength f of a Wannier exciton is usually much weaker: in a quantum well

f ∼ Fa3

a2
BL

where L is the QW width (aB > L> a). Both types of excitons interact

with lattice vibrations through exciton–phonon coupling.
In high quality semiconductors as well as in organic crystalline materials, the

optical properties near and below the band gap are dominated by the exciton tran-
sitions and the same situation takes place also for organic and inorganic QWs (or
wires or dots). The excitonic optical nonlinearities in semiconductor QWs can
be large because the ideal bosonic approximation for Wannier excitons breaks
down as soon as they start to overlap with each other, i.e., when their 2D den-
sity n becomes comparable to the saturation density nS ∼ 1/(π a2

B) (due to large
Bohr radius nS is rather small and is, typically, 1012 cm−2). Then, due to phase
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space filling (PSF), exchange and collisional broadening, the exciton resonance
is bleached. However, for the χ(3) optical nonlinearities a generic figure of merit
scales (see also below) like I−1

P (�χ/χ) where �χ is the nonlinear change in the
susceptibility in the presence of the pump of intensity IP . As �χ/χ ∼ n/nS and
as n/nS ∼ na2

B and n∝ f IP ∝ a−2
B IP , such a figure of merit is nearly indepen-

dent of the exciton Bohr radius [2].
As for the Frenkel excitons in organic crystals, just because they have small

radii, they have a very large saturation density. Thus, pronounced PSF nonlinear-
ities of the exciton resonance in molecular crystals are practically impossible to
achieve as very high excitonic concentrations are needed. Of course, other mech-
anisms may effectively enhance the optical nonlinearities of organic materials
(the discussion of some of them can be found, for example, in the chapter by
G. La Rocca of this book) but as a rule the resonance χ(3) optical nonlinearity
in organics, in contrast to the χ(2) optical nonlinearity, is much smaller than in
inorganic semiconductors. In hybrid structure which we consider in this chapter
the optical nonlinearity of organics is neglected.

As mentioned above it was found in [2] that the figure of merit of resonance
χ(3) optical nonlinearity for semiconductor quantum well is independent of the
exciton Bohr radius. Within the rather good approximation of neglecting of optical
nonlinearities in organics we will show in this chapter that this independence does
not hold for the organic-inorganic hybrid structures. On the contrary, we show that
in hybrid structures the dependence of the resonance χ(3) optical nonlinearity on
exciton Bohr radius may be very strong.

In such a structure the Frenkel exciton in the organic material and the Wannier–
Mott exciton in the semiconductor can be coupled through their dipole–dipole
interaction at the interface. Due to this coupling one may expect (see also [3]) the
formation of new eigenstates given by appropriate coherent linear combinations
of large radius exciton states in the inorganic material and small radius exciton
states in the organic one. These hybrid electronic excitations will be characterized
by a radius dominated by their Wannier component and by an oscillator strength
dominated by their Frenkel component contribution. Thus, they can have at the
same time a small saturation density nS and a large oscillator strength F . In this
way, the desirable properties of both the inorganic and organic material conspire
to overcome the basic limitation mentioned above for the figure of merit of the
exciton resonance nonlinearities.

One of the most natural choices to implement this idea is a layered structure
with an interface between a covalent semiconductor and a crystalline molecu-
lar semiconductor. In such heterojunctions, there is obviously some cause for
concern about the detrimental effects that lack of material purity and structural
quality would have on the formation and the functional properties of the hy-
brid excitons. As we mentioned, the realistic possibility to consider such organic-
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inorganic crystalline structures has only recently appeared due to progress in the
development of the organic molecular beam deposition (OMBD) and other related
techniques.

This progress has led to a monolayer level control in the growth of organic
thin films and superlattices with extremely high chemical purity and structural
precision. This opens a wide range of possibilities for the creation of new types
of ordered organic multilayer structures including highly ordered interfaces. It
is well known that the requirement of lattice matching places strong restrictions
on the materials which can be employed to produce high quality interfaces us-
ing inorganic semiconductor materials. This is due to the fact that they are bound
by short-range covalent or ionic forces. On the contrary, organic materials are
bound by weak Van der Waals forces. This fact lifts such restrictions and broad-
ens the choice of materials that can be used to prepare organic crystalline layered
structures with the required properties (for more details and many examples, see
Ref. [4]). In the following sections, we will discuss in detail the electronic excita-
tion spectra arising from the Frenkel–Wannier exciton hybridization in different
geometrical configurations: quantum wells, quantum wires and quantum dots. At
the same time, the nonlinear optical properties of hybrid excitons will be also
considered in detail: we predict a strong dependence of the figure of merit of
the excitonic resonance optical nonlinearity on the Bohr radius and its strong en-
hancement, in some cases by two orders of magnitude as compared to traditional
systems. A few other results on the physics of hybrid excitons taken from the
current literature will also be presented.

In this chapter, first, we discuss the properties of hybrid Frenkel–Wannier–
Mott excitons in the case of strong coupling, which appear when the energy
splitting of the excitonic spectrum is large as compared to the width of the ex-
citon resonances. Just in this case the new and rather peculiar excitations share
at the same time both the properties of the Wannier excitons (e.g., the large ra-
dius) and of the Frenkel excitons (e.g., the large oscillator strength). We discuss
two-dimensional configurations (interfaces or coupled quantum wells) which are
studied most extensively and also one-dimensional (quantum wires ) and zero-
dimensional (quantum dots) configurations. In particular, we show that hybrid ex-
citons are expected to have resonant optical nonlinearities significantly enhanced
with respect to traditional inorganic or organic systems. We also consider analo-
gous phenomena in organic microcavities where the Frenkel exciton resonances
are close to the cavity photon mode resonance. The experimental observation of
different optical effects in such microcavities will be described in the chapter by
David Lidzey. The case of the weak coupling regime is discussed in the chapter
by Denis Basko.
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2. Hybrid 2D Frenkel Wannier–Mott Excitons at the Interface of
Organic and Inorganic Quantum Wells

2.1. CONFIGURATION OF HETEROSTRUCTURE AND GENERAL RELATIONS

Here we study the effects of resonant interaction between an organic quantum
well (OQW) and an inorganic one (IQW) and demonstrate how new hybrid states
arise [3]. The configuration we consider is the following. A plane semiconductor
IQW of thickness Lw occupies the region |z| < Lw/2, the z-axis being chosen
along the growth direction. All the space with z > Lw/2 is filled by the barrier
material and that with z <−Lw/2 by the organic material in which the OQW is
placed (Figure 1).

For simplicity, we treat the interaction of excitations IQW with organic mole-
cules in the dipole approximation, neglecting the contribution of higher multi-
poles to the interaction, and we consider the OQW as a single monolayer, i.e.,
as a 2D lattice of molecules at discrete sites �n, placed at z=−z0 <−Lw/2 (the

Fig. 1. The physical configuration under study.
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generalization to the case of several monolayers is easy). All the semiconductor
well-barrier structure (z >−Lw/2) is assumed to have the same background di-
electric constant ε, while the organic half-space (z < −Lw/2) has the dielectric
constant ε̃ (corresponding to the organic substrate). For example, the role of the
OQW can be played by the outermost monolayer of the organic crystal. Due to
gas-condensed matter shift (see the chapters by J. Knoester and V.M. Agranovich
and by V.M. Agranovich and A.M. Kamchatnov) the exciton transition in such a
monolayer can be blue-shifted with respect to the bulk excitonic transition (as, for
instance, this takes place for anthracene crystals), thus giving rise to 2D Frenkel
excitonic states [17]. In this case the difference Lw/2− z0 is of the order of the
organic crystal lattice constant.

Due to the different electronic structure of the two QWs under consideration
and the rather large organic crystal lattice constant, the OQW and the IQW states
are assumed to have zero wave function overlap. It is known that this is a rather
good approximation for organic crystals in the bulk for the ground and for the
lowest energy excited states. Thus, we assume that the same takes place also at the
interface between organic and inorganic QWs. Assuming perfect 2D translational
invariance of the system, we classify the excitons by their in-plane wave vector
�k. Supposing that for some bands of Frenkel excitons in the OQW and Wannier–
Mott excitons in the IQW the energy separation is much less than the distance
to other exciton bands we take into account only the hybridization between these
two bands. We choose as a basis set the “pure” Frenkel and Wannier states, i.e.,
the state (denoted by |F, �k〉) when the OQW is excited, while the IQW is in its
ground state, and vice versa (denoted by |W, �k〉), their energies being EF (�k) and
EW(�k). We seek the new hybrid states in the form

(1)
∣∣α, �k〉=Aα(�k)∣∣F, �k〉+Bα(�k)∣∣W, �k〉,

where α = “u”, “l” labels the two resulting states (upper and lower branches).
The Schrödinger equation for the coefficients A, B is then written as:(

EF
(�k)−E)

A
(�k)+ 〈

F, �k∣∣Ĥint
∣∣W, �k〉B(�k)= 0,

(2)
〈
W, �k∣∣Ĥint

∣∣F, �k〉A(�k)+ (
EW

(�k)−E)
B

(�k)= 0,

where Ĥint is the Hamiltonian of the interaction between the QWs. Solution of (2)
gives the energies of the upper and lower branches and the splitting �(�k):

Eu,l
(�k)= EF (�k)+EW(�k)±�(�k)

2
,

(3)�
(�k)≡√

(EF (�k)−EW(�k))2 + 4�2(�k),
where we use the notation �(�k)≡ |〈W, �k|Ĥint|F, �k〉| for the coupling matrix el-
ement. For the orthonormalized new states the weighting coefficients are given
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by

(4)
∣∣Au(�k)∣∣2 = ∣∣Bl(�k)∣∣2 = 1

2

(
1+ EF (�k)−EW(�k)

�(�k)
)
,

(5)
∣∣Al(�k)∣∣2 = ∣∣Bu(�k)∣∣2 = 1

2

(
1− EF (�k)−EW(�k)

�(�k)
)
.

2.2. THE COUPLING MATRIX ELEMENT

To evaluate the matrix element �(�k) determining the resonance interaction be-
tween Frenkel and Wannier–Mott excitons we write down the interaction Hamil-
tonian as

(6)Ĥint =−
∑
�n
�̂pF (�n) · �̂E(�n),

where �̂pF (�n) is the operator of the dipole moment of the organic molecule situ-

ated at the lattice site �n, and �̂E(�n) is the operator of the electric field at the point �n,
produced by the IQW exciton. If we introduce the operator of the IQW polariza-

tion �̂PW(�r), then the operators �̂E(�n) and �̂PW(�r) are related to each other exactly
in the same way as the corresponding classical quantities in electrostatics:

(7)Êi
(�r)= ∫

d3�r ′Dij
(�r‖ − �r ′‖, z, z′)P̂W

j

(�r ′),
where i, j = x, y, z, �r‖ ≡ (x, y) and Dij (�r, �r ′) is the Green’s function appearing
in the analogous problem of classical electrostatics. It is equal to the ith Cartesian
component of the classical static electric field at the point �r , produced by the j th
component of the classical point dipole, situated at the point �r ′ and is connected
to the Green’s function G of the Poisson equation in an inhomogeneous medium
with the dielectric constant εij (�r):

(8)Dij
(�r, �r ′)=− ∂

∂xi

∂

∂x ′j
G

(�r, �r ′),
(9)

∂

∂xi
εij

(�r) ∂

∂xj
G

(�r, �r ′)=−4π δ
(�r − �r ′).

Since our system is translationally invariant in two dimensions, it is convenient to
consider the Fourier transform:

(10)Dij
(�r‖ − �r ′‖, z, z′)= ∫

d2�k
(2π)2

Dij
(�k, z, z′) ei�k(�r‖−�r ′‖),
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and analogously for G(�r‖ − �r ′‖, z, z′). Then G(�k, z, z′)ei�k�r‖ is the potential, pro-

duced by a charge density wave ρ(�r)= δ(z− z′) ei�k �r‖ . In our case the dielectric
constant is a simple step function

(11)εij
(�r)= {

ε̃ δij , z <−Lw/2,
ε δij , z >−Lw/2,

and the potential may be readily found from Poisson’s equation

(12)

(
d2

dz2
− k2

)
G

(�k, z, z′)=− 4π δ(z− z′)
ε(z)

,

with the usual electrostatic boundary conditions at the interface z=−Lw/2 (con-
tinuity of the tangential component of the electric field −i�kG and the normal
component of the electric displacement −ε(z)∂G/∂z. The Green’s function Dij
for z <−Lw/2, z′ >−Lw/2 is then given by:

(13)Dij
(�k, z, z′)= 4π

ε+ ε̃ ke
k(z−z′)

(
iki

k
+ δi,z

)(
ikj

k
+ δj,z

)
.

Thus, the matrix element of Ĥint we are interested in can be written as〈
F, �k∣∣Ĥint

∣∣W, �k〉
(14)=−

∑
�n

∫
d3�r 〈

F, �k∣∣p̂i(�n)|0〉Dij (�n− �r‖,−z0, z
)〈0|P̂W

j (�r)∣∣W, �k〉.
The matrix element of the IQW polarization between the ground state |0〉 and
|W, �k〉 for 1s-exciton with the Bohr radius aB is equal to [5,6]

(15)〈0| �̂PW(�r)∣∣W, �k〉=√
2

π

�dvc
aB

ei
�k�r‖
√
S
χe(z)χh(z),

where
√

2/(πa2
B) is the value of the 1s-wave function of the relative motion of

the electron and hole, taken at r‖ = 0; χe(z), χh(z) are the envelope functions for
the electron and hole in the IQW confinement potential (we assume the IQW to
be thin, so that the transverse and the relative in-plane motion of the electron and
hole are decoupled) and S is the in-plane normalization area. Finally,

(16)�dvc =
∫
u.c.

u∗v
(�r) (−e�r)uc(�r)d3�r

is the matrix element of the electric dipole moment between the conduction and
valence bands ( �dvc is taken to be independent of �k, uc(v) are the Bloch func-
tions for the conduction (valence) band extremum and the integration in (16) is
performed over the unit cell). Its Cartesian components dvci (i = x, y, z) may be
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expressed in terms of the Kane’s energy E0 [5]:

(17)
∣∣dvci ∣∣2 = e2h̄2E0c

2
i

2m0E2
g

,

where m0 is the free electron mass, Eg is the energy gap between the conduction
and valence bands and ci is the appropriate symmetry coefficient. In semiconduc-
tors of the zinc-blende structure chhx = chhy = 1/

√
2, chhz = 0 (heavy holes) and

clhx = clhy = 1/
√

6, clhz =
√

2/3 (light holes). We see that only light holes can con-
tribute to the z-component of the IQW polarization. For the Frenkel exciton the
dipole moment matrix element, contributing to the matrix element (14), is given
by

(18)
〈
F, �k∣∣ p̂i(�n) |0〉 = e−i�k�n√

N
�dF∗ = e−i�k�n√

S
aF �dF∗,

where �dF is the transition dipole moment for a single organic molecule (analo-
gous to �dvc in the semiconductor), N is the total number of sites in the lattice,
aF is the lattice constant, which may be considered as the radius of the Frenkel
exciton.

Now we can write the final expression for the coupling matrix element:

(19)
〈
F, �k∣∣Ĥint

∣∣W, �k〉=−√
2

π

dF∗i
aF

dvcj

aB

∫
dzDij

(�k,−z0, z
)
χe(z)χh(z).

From Eqs. (13), (19) we see that the only contributing polarizations for the semi-
conductor are those along �k (L-modes) and along the growth direction z (Z-
modes, only for the light holes, according to Eq. (17)). For simplicity we take
the electron and hole confinement wave functions for the lowest subbands in the
approximation of an infinitely deep IQW:

(20)χe(z)χh(z)= 2

Lw
cos2

(
πz

Lw

)
,

and assume the transition dipole moment in the organics �dF to be real (which is
always possible with an appropriate choice of molecular wave functions). With-
out loss of generality we may take the vector �k along the x axis. Evaluating the
integral in (19), we obtain the interaction parameter �L,Z for the L- and Z-modes:

(21)�L(Z)(k)= 8
√

2π

ε+ ε̃
e−kz0 sinh(kLw/2)

1+ ( kLw2π )2

|dvcx(z)|
√
(dFx )

2 + (dFz )2
aFaBLw

.

It is seen that �(k) has a maximum �max at k = kmax. The value of kmax for
arbitrary z0 and Lw may be found numerically, for z0 −Lw/2> 0.1Lw it is well



326 V.M. AGRANOVICH ET AL.

Fig. 2. The interaction parameter �(k) for dvc = 12 Debye, dF = 5 Debye, aB = 25 Å, aF = 5 Å,
Lw = 10 Å, z0 = 10 Å, ε∞ = 6, ε̃∞ = 4.

described by the formula (see also Figure 2)

(22)kmax � 1

Lw
ln

(
2z0 +Lw
2z0 −Lw

)
,

while in the limit z0 � Lw/2 we have kmax � 2.4/Lw .

2.3. DISPERSION RELATIONS OF HYBRID STATES

To calculate the dispersion relation of the hybrid excitons we approximate the
WE energy by a parabola with the in-plane effective mass mW =me +mh, me(h)

being the electron (hole) mass, and neglect the FE dispersion since the typical
masses are (5–100)m0:

(23)EW
(�k)=EW(0)+ h̄2k2

2mW

, EF
(�k)= EF (0), EF (0)−EW(0)≡ δ.

We will measure all energies with respect to EW(0). The dispersion of the hybrid
states (3) can be written as

(24)Eu,l
(�k)−EW(0)= δ

2
+ h̄2k2

4mW
±

√(
δ

2
− h̄2k2

4mW

)2

+�2
(�k).

To perform numerical estimates we choose the following values of the parameters.
For the IQW those representative of II–VI semiconductor (e.g., ZnSe/ZnCdSe)
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Fig. 3. The dispersion Eu,l(k) of the upper and lower hybrid exciton branches (solid lines) and that
of the unperturbed Frenkel and Wannier excitons (dotted lines). The “weight” of the FE component in
the lower branch |Al(k)|2 is shown by the dashed line. The parameters are the same as on the Figure 2
(mW = 0.7m0), the detuning δ = 10 meV.

quantum wells are taken [7]: ε = ε∞ = 6, dvc/aB ≈ 0.1 e (which corresponds
to dvc � 12 Debye and a Bohr radius of 25 Å), the exciton mass mW = 0.7m0
and the well width Lw = 10 Å. For the organic part of the structure, we take
parameters typical for such media (e.g., see [4,8,9]): ε̃ = ε̃∞ = 4, the transition
dipole for the molecules in the monolayer dF = 5 Debye, aF = 5 Å and z0 =
10 Å. We plot �(k) for these values of parameters on Figure 2.

We see that �max � 11 meV. The dispersion curves Eu,l(k) along with the FE
weight in the lower branch |Al(k)|2 for three different detunings δ = 10 meV,
δ = 0 and δ =−10 meV are plotted on Figures 3–5.

For δ > 0 the properties of the excited states are changed drastically. In this case
the zero approximation dispersion curves for FE and WE cross at the point k =
k0 =

√
2mWδ/h̄

2. At k = 0 the upper states are purely F-like and the lower states
W-like, at k ∼ k0 they are strongly mixed and a large splitting of their dispersion
curves is present, �(k0) ∼ 2�(k0), and for large k (k� k0) they “interchange”:
the upper branch becomes W-like with the quadratic dispersion and excitations
of the lower branch tend to FE. If δ < 0 then EW(k) > EF (k) for all k and no
crossing occurs, Eu(k) closely follows the WE dispersion and |Au(k)|2� 1, the
lower state is FE-like.
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Fig. 4. The same as on Figure 3, but δ = 0.

Fig. 5. The same as on Figure 3, but δ =−10 meV.
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A nontrivial feature of the lower branch dispersion is a minimum away from
k = 0, which is always present for δ � 0 as well as for some positive values of δ,
0 < δ < δcr and is the deepest for δ = 0. The critical value of δ may be found if
one looks at the values of the derivatives of El(k) at k = 0. It turns out that

dEl(0)

dk
= 0 (δ �= 0),

d2El(0)

dk2 < 0 (δ < δcr),

(25)
d2El(0)

dk2
> 0 (δ > δcr),

and δcr when the minimum “splits” off k = 0 is given by

(26)δcr =
(
d�(0)

dk

)2 2mW

h̄2
.

For our parameters δcr � 16 meV. For large negative values of δ �−�max the

lower branch dispersion at k�
√

2mWδ/h̄
2 may be approximated by

(27)El(k)−EW(0)�−|δ| − �2(k)

|δ| .

So, the depth of the minimum for large |δ| is �2
max/|δ| while for small δ it is of the

order of �max and we see that the effective range of δ, when the minimum is the
most pronounced, is−�max � δ < δcr. As a consequence, at low temperatures and
under optical pumping at frequencies above the excitonic resonance excitons will
accumulate in this minimum, which can be detected, for example, by pump-probe
experiments. The fluorescence from these states should increase with temperature
since states with small k become populated.

2.4. LINEAR OPTICAL RESPONSE OF HYBRID STATES

If an incident electromagnetic wave with the electric field �E(�r) = �E0 e
i �Q�r is

present, then the interaction with the hybrid structure is described by the Hamil-
tonian (neglecting local field corrections)

(28)Ĥem =−�E0 ·
(∑
�n
�̂pF (�n)ei �Q‖�n + ∫

dz

∫
d2�r‖ �̂PW(�r) ei �Q‖�r‖

)
,

where we have neglected the z-dependence of the incident field since the thickness
of our structure is much less than the light wavelength. The corresponding matrix
element is different from zero only if �k = �Q‖ and in this case equal to

(29)
〈
α, �k∣∣Ĥem|0〉 ≡ − �E0 · �Mα

�k =−�E0 ·
(
A∗α

(�k) �MF +B∗α
(�k) �MW

�k
)
,
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where

(30)�MF =√N �dF∗ =
√
S

aF
�dF∗,

(31)�MW
�k =

√
2

π

√
S

aB
�dvc ∗

∫
χe ∗(z)χh∗(z) dz

are the optical matrix elements for the isolated OQW and IQW respectively, which
are independent of �k. Usually we have MF �MW since aF � aB , and in the
region of strong mixing the oscillator strengths f α of a hybrid state is determined
by its FE component:

(32)f α
(�k)� ∣∣Aα(�k)∣∣2

f F .

At the crossing point k = k0 (for δ > 0) we have |Aα(k0)|2 = 1/2 and the FE
oscillator strength is equally distributed between the two hybrid states. For the
hybrid exciton radii the opposite relation holds. Calculating the expectation value
of the exciton radius squared r̂2 in the state |α, �k〉 we obtain〈

α, �k∣∣r̂2
∣∣α, �k〉= ∣∣Aα(�k)∣∣2〈

F, �k∣∣r̂2
∣∣F, �k〉+ ∣∣Bα(�k)∣∣2〈

W, �k∣∣r̂2
∣∣W, �k〉

(33)� ∣∣Bα(�k)∣∣2
a2
B,

since aB � aF and we neglect the latter. Cross terms do not appear since we
neglect the single-particle wave function mixing between the two QWs. We see
that the new states can possess both large oscillator strengths and exciton radii.
This effect is especially pronounced if the crossing of the FE and WE dispersion
curves occurs for a value of the wave vector close to that of the maximum of the
coupling strength: k0 � kmax. Since k0 is determined by the detuning δ, and kmax,
in turn, depends on Lw and z0 (Eq. (22)), a special choice of these parameters
should be made for maximizing the effect. Also, in order to take advantage of the
hybrid states in optics, the wave vector of light in the medium q = n∞ω/c (n∞
being the background refraction index) should not be far from k0. Usually near
excitonic resonances, q < k0 and special care should be taken to overcome this
difficulty (e.g., using a coupled diffraction grating with period 2π/k0 [10] or a
prism). We mention, however, that even in the region of small wave vectors in
which the 2D excitons are radiative, the hybridization may be realized not due
to the instantaneous dipole–dipole interaction, but due to the retarded interaction
stemming from the exchange of photons. Such a situation has been analysed (even
in the nonlinear regime) with an appropriate transfer matrix approach, which is
equivalent to the solution of the full Maxwell equations [11].

Concerning the choice of materials for the implementation of the system con-
sidered here, examples of molecular substances having small radius (� 5 Å) ex-
citons with energies of a few eV, among those already successfully grown [4]
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as crystalline layers on a variety of inorganic (including semiconductor) crystals,
are the acenes, such as tetracene (2 eV) or pentacene (1.5 eV), the metal ph-
talocyanines, such as VOPc (1.6 eV) or CuPc (1.8 eV), and the tetracarboxilic
compounds, such as NTCDA (3.1 eV) or PTCDA (2.2 eV). Semiconductors hav-
ing large radius excitons with matching energies are, for instance, the III–V and
II–VI ternary solid solutions such as GaAlAs, ZnCdSe and ZnSe [12]; beside a
judicious choice of alloy composition and well thickness, a fine tuning of the reso-
nance condition could be achieved applying an external static electric field along
the growth direction (quantum confined Stark effect [13]; for hybrid excitons it
has been considered in Ref. [14]). A major experimental problem is the control
of the interface quality: the inhomogeneous broadening should remain small and
the in-plane wavevector �k a (sufficiently) good quantum number; organic super-
lattices with high quality interfaces have been demonstrated [4].

The necessary condition for the hybrid states to be observable is that the exciton
linewidths must be smaller then the splitting �(k). This is the case in the present
calculations, where for k0 = kmax we have �(k0) = 2�max � 20 meV, while in
inorganic QWs the homogeneous linewidth at low temperatures is ∼ 1 meV [15,
16]. The nonradiative linewidth of a 2D Frenkel exciton in an OQW can also
be small: in the case of a 2D-exciton in the outermost monolayer of anthracene
this linewidth at low temperatures is ∼ 2 meV [17]. In principle, apart from the
resonance condition and the large difference in excitonic radii, the present model
demands no specific requisite and the rapid progress in the growth of organic
crystalline multilayers justifies some optimism about its concrete realization.

We also mention here the work [18], where the effects of the exciton–phonon
interaction in hybrid systems were studied. In this work the resonant Raman spec-
troscopy is also suggested as a tool for studying hybrid organic-inorganic QWs.

3. Nonlinear Optics of 2D Hybrid Frenkel–Wannier–Mott Excitons

3.1. THE RESONANT χ(3) NONLINEARITY

From the results of the previous subsection we may expect that the exciton hy-
bridization should strongly modify the nonlinear optical properties of the structure
under consideration. Indeed, hybrid excitons can combine both a large oscillator
strength, which makes it easy to produce large populations, and a large radius,
which, in turn, leads to low saturation densities. In this subsection we analyze the
situation quantitatively [19], calculating the response of the interband polariza-
tion �P = �PW + �PF on the external driving electric field (corresponding to a cw
experiment)

(34)�E(�r, t)= �E0e
i �Q�r−iωt + c.c.
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in the presence of a large density of excitations using the standard technique of
semiconductor Bloch equations [13,20]. Since we are considering a cw exper-
iment, the populations are stationary and may be treated as parameters in the
equation for the time-dependent interband polarization.

First, we express the operator of the electron–hole interband polarization
�̂PW (�r) in terms of the electron and hole creation and annihilation operators in

the envelope function approximation, following the standard procedure [5,20]:

(35)�̂PW
(�r)= �dvc

S
χe(z)χh(z)

∑
�k,�q

ei
�k�r‖ ĥ−�q ĉ�k+�q + h.c.

Here χe(z), χh(z) are electron and hole wave functions in the given IQW sub-
bands (resonant with the FE), ĉ�k and ĥ�k are annihilation operators for an electron
and hole with the in-plane wave vector �k in the subbands under consideration, S
is the in-plane normalization area and �dvc is the matrix element (16). We do not
take into account the spin degeneracy, considering thus the polarization produced
by electrons and holes with a given spin (thus, the final expression for the sus-
ceptibility should be multiplied by two). An analogous expression for the OQW
polarization is

(36)�̂PF
(�r)= �dF

aF
√
S
δ(z+ z0)

∑
�k
ei
�k�r‖ B̂�k + h.c.,

where B̂�k is the annihilation operator for the Frenkel exciton, which is assumed to
be tightly bound. Besides the term of the Hamiltonian describing free Frenkel ex-
citons and free electron–hole pairs (with the single-particle energiesEF (�k), εe(�k)
and εh(�k), respectively) the Hamiltonian we consider here includes the following.

(i) The Coulomb interaction between electrons and holes

(37)

Ĥcoul = 1

2S

∑
�q �=0

v
(�q)

×
∑
�k,�k′

(
ĉ

†
�k+�q ĉ

†
�k′−�q ĉ�k′ ĉ�k + ĥ

†
�k+�q ĥ

†
�k′−�q ĥ�k′ ĥ�k − 2ĉ†

�k+�q ĥ
†
�k′−�q ĥ�k′ ĉ�k

)
,

(38)v
(�q)= 2πe2

ε0 q
,

ε0 being the static dielectric constant of the IQW.
(ii) The dipole–dipole interaction between the QWs, as follows from Eqs. (6), (7)

(39)Ĥhyb =
∑
�k
Vhyb

(�k) B̂†
�k
∑
�q
ĥ−�q ĉ�k+�q + h.c.,
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(40)Vhyb
(�k)=−dF∗i dvcj

aF
√
S

∫
dzDij

(�k,−z0, z
)
χe(z)χh(z),

which corresponds to (19) with
√

2/(πa2
B) is replaced by 1/

√
S since we use

plane waves as the basis for the semiconductor states. Of course, this interaction is
also of Coulomb nature, but since we treat the OQW and the IQW as completely
different systems and neglect all effects of electronic exchange between them,
these pieces of the Hamiltonian come separately.

(iii) The interaction with the driving electric field (34)

(41)Ĥdr =−
( �E0 · �MF

)
e−iωt B̂†

�Q‖ −
( �E0 · �Meh

)
e−iωt

∑
�q
ĉ

†
�Q‖+�q ĥ

†
−�q + h.c.,

(42)�Meh = �dvc ∗
∫
χe ∗(z)χh∗(z) dz, �MF =

√
S

aF
�dF∗,

where we again neglect the z-dependence of the field and the wave vector depen-
dence of �Meh.

Given the Hamiltonian, we can write the equations of motion for the Heisen-
berg operators. The polarization is obtained by averaging the expressions (35),
(36) over the equilibrium density matrix. The result is expressed in terms of the
polarization functions

(43)
〈
ĥ−�q(t) ĉ�k+�q(t)

〉=PW�k (�q), 〈
B̂�k(t)

〉=PF�k .
Average values of the four-operator terms are factorized in the Hartree–Fock ap-
proximation and are expressed in terms of the polarization functions and the pop-
ulations defined by

(44)
〈
ĉ

†
�q(t) ĉ�q ′(t)

〉= δ�q �q ′ ne�q , 〈
ĥ

†
�q(t) ĥ�q ′(t)

〉= δ�q �q ′ nh�q .
Here the averages with different wave vectors correspond to the intraband polar-
ization, which is far off resonance and may be neglected. Since the electric field
excites only states with the given total in-plane wave vector �Q‖, from now on we
set �k = �Q‖. As a result, we obtain the equations for the polarization functions:

(45)ih̄
dPF�k
dt
=EF

(�k)PF�k + Vhyb
(�k)∑

�q
PW�k

(�q)− ( �E0 · �MF
)
e−iωt ,

ih̄
dPW�k (�q)

dt
= Ĥ0PW�k

(�q)+ Ĥ1PW�k
(�q)

(46)+ (
1− ne�k+�q − nh−�q

)[
V ∗hyb

(�k)PF�k − ( �E0 · �Meh
)
e−iωt

]
,
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Ĥ0PW�k
(�q)≡ [

εe
(�k + �q)+ εh(−�q)]PW�k (�q)−∑

�q ′
v(�q − �q ′)

S
PW�k

(�q ′),
Ĥ1PW�k

(�q)≡−[∑
�q ′
v(�q − �q ′)

S

(
ne�k+�q ′ + nh−�q ′

)]
PW�k

(�q)
+ (

ne�k+�q + nh−�q
)∑
�q ′
v(�q − �q ′)

S
PW�k

(�q ′).
Here the “Hamiltonian” Ĥ0 describes the evolution of the polarization in an
isolated IQW in the absence of electron–hole populations and corresponds to
the Wannier equation [20]. The resonant Wannier exciton wave function in the
momentum space 9�k(�q) is its eigenfunction with the eigenvalue EW(�k). The

“Hamiltonian” Ĥ1 describes the nonlinear many-particle corrections. It is pro-
portional to the populations ne, nh and we treat it perturbatively, keeping only the
first-order corrections to the eigenfunction δ9�k(�q) and to the eigenvalue δEW(�k).
Since populations are proportional to the intensity of the applied field |E0|2, our
calculation describes a third-order nonlinearity.

We seek the solutions depending on time as e−iωt . The solution forPW�k (�q)may

be expressed in terms of the orthonormal basis of eigenfunctions of Ĥ0 + Ĥ1.
Picking up only the resonant term, we may write

(47)PW�k
(�q)= uW�k (

9�k
(�q)+ δ9�k(�q))

e−iωt ,

(48)uW�k e
−iωt =

∑
�q

(
9∗�k

(�q)+ δ9∗�k(�q))PW�k (�q)
,

(49)PF�k = uF�k e−iωt .
Then Eqs. (45), (46) are reduced to(

h̄ω−EF
(�k))uF�k = VFW (�k)uW�k − JF ,

(50)
(
h̄ω−EW

(�k)− δEW (�k))uW�k = β�kV ∗FW (�k)uF�k − β�kJW ,
where we have introduced the coupling matrix element

(51)VFW
(�k)+ δVFW (�k)= Vhyb

(�k)∑
�q

(
9�k

(�q)+ δ9�k(�q)),
the effective driving forces

(52)JF = �E0 · �MF , JW + δJW = �E0 · �Meh
∑
�q

(
9∗�k

(�q)+ δ9∗�k(�q))
,
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and the Pauli blocking factor which is given by

(53)β�k =
∑
�q(1− ne�k+�q − nh−�q )9∗�k(�q)∑

�q 9∗�k(�q)
.

In the low-density limit and with E0 = 0 these equations correspond to the eigen-
value equation (2) with the coupling matrix elements given by (19) since for 1s-
exciton

(54)9�k
(�q)=

√
8πa2

B

S

1

(q2a2
B + 1)3/2

,
∑
�q
9�k

(�q)=√
2S/(πa2

B).

Solving the system (50), we obtain for the polarization of the structure under
consideration (per unit area):

P s
i

(�r‖)≡ ∫ 〈
P̂ F
i

(�r)+ P̂W
i

(�r)〉dz� uF�k M
F ∗
i

S
e−itω+i�k�r‖ + c.c.

(55)= χij
(
ω, �k)E0j e

−iωt+i�k�r‖ + c.c.,

where we have retained only the term proportional to | �MF |2 since |JW | � |JF |.
Finally, we obtain for the susceptibility (not forgetting the factor of 2 originating
from spin degeneracy as mentioned in the beginning of this section):

χij
(
ω, �k)= 2

dF ∗i dFj

a2
F

(56)

× EW(�k)+ δEW(�k)− h̄ω
(EW(�k)+ δEW(�k)− h̄ω)(EF (�k)− h̄ω)− β�k |VFW(�k)+ δVFW(�k)|2

.

In Eq. (56) the nonlinearities appear through the blue shift δEW , the blocking
factor β and the modification of the hybridization δVFW due to the correction
δ9; all these effects are typical of Wannier excitons [13], but here they belong
to the hybrid excitons which also have a large oscillator strength characteristic of
Frenkel excitons. When only excitons are present (i.e., under resonant excitation
at low temperature), the nonlinear corrections can be calculated to first order in
the n’s with

(57)ne�k+�q = nh−�q �
nT S

4

∣∣9�k(�q)∣∣2
,

where nT is the total density of electron–hole pairs and the factor 1/4 takes into
account electron (and hole) spin degeneracy of two and an equal population of
resonant FE and WE. In terms of the previous subsection, this corresponds to the
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situation when k � k0, thus EF (�k)� EW(�k), |Aα|2 � |Bα|2 � 1/2, and |uF�k |2 �
|uW�k |2 � (nT S)/4. The blue shift δEW is given by the expectation value ofH1 on
9�k(�q) and reduces to

(58)δEW � 0.48Eb πa
2
B nT ,

where Eb is the binding energy of a 2D Wannier exciton. The blocking factor is
calculated from Eq. (53) and results as

(59)β�k � 1− 0.57πa2
BnT .

The effect of δVFW can be estimated [13] writing δ9�k(�q) as a sum over all con-
tinuous and discrete excitonic states which are then approximated by plane-waves
in the expression for |VFW + δVFW |2 obtaining

(60)|VFW + δVFW |2 �
(
1− 0.48πa2

BnT
)|VFW |2.

Close to resonance (denoting the detuning h̄ω−EW(�k) by �E) Eq. (56) can be
approximated by

χij
(
ω, �k)=−2

dF ∗i dFj

a2
F

�E

�E2 − |VFW |2

×
[

1− πa2
BnT

(
1.05 |VFW |2 − 0.48Eb�E

�E2 − |VFW |2 + 0.48Eb
�E

)]
(61)= χ(1)ij

(
ω, �k)(1− nT

nS

)
,

χ
(1)
ij (ω, �k) being the susceptibility of the hybrid structure at nT = 0 (the linear

susceptibility) and nS is the saturation density. The characteristic feature of the ex-
pression (61) is the presence of the factor (dF /aF )2 in χ(1) instead of (dvc/aB)2

in the analogous expression for an isolated IQW. This leads to the enhancement
of absorption, determined by �χ(1). Thus, while the saturation density is com-
parable to that of Wannier excitons (nS ∼ 1/a2

B), the density of photogenerated
electron–hole pairs, for a given light intensity, can be two orders of magnitude
larger (by a factor∼ (aB/aF )2); for the same reason, also the linear susceptibility
χ(1) can be two orders of magnitude larger. Therefore, the present theory substan-
tiates the intuitive expectation of very pronounced nonlinear optical properties of
the hybrid excitons.

While the range of validity of Eq. (61) (with respect to variations of �E and
nT ) is rather limited, the expression for χ given by Eq. (56) holds true as long
as the basic approximations of the present approach are tenable. These are, in
addition to the first-order perturbation theory with respect to the excitation den-
sity nT , the usual Hartree–Fock decoupling in the equations of motion adopted in
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Fig. 6. Real and imaginary parts of the 2D susceptibility χ near the hybrid exciton resonances in
the linear regime (solid lines), medium excitation density (nT = 3 · 1010 cm−2, dotted lines) and
high excitation density (nT = 1011 cm−2, long-dashed lines). Other parameters are dvc = 20 Debye,
aB = 60 Å Eb = 40 meV, ε∞ = 11, all the rest are the same as in the previous subsection. Line-widths
h̄γW = h̄γF = 2 meV.

Eqs. (45), (46), the subsistence of well defined individual excitons (valid only for
nT � nS ) and the neglect of screening due to the reduced screening efficiency of
a two-dimensional exciton gas [13,20]. Numerical examples of the predictions of
Eq. (56) have been obtained using the values of semiconductor parameters repre-
sentative of III–V semiconductor (e.g., GaAs/AlGaAs) quantum wells, since the
necessary information on homogeneous linewidths of excitons in II–VI QWs is
not presently available to the authors. Namely, we set ε∞ = 11, dvc = 20 Debye,
the Bohr radius aB = 60 Å and the binding energy is taken to be Eb � 20 meV, all
the rest are the same as in the previous subsection. This gives |VFW | � 4 meV at
k = 107 cm−1. Assuming a phenomenological linewidth h̄γW = h̄γF = 2 meV for
both excitons Figure 6 shows the split resonance of the hybrid excitons at different
excitation densities (linear regime, nT = 3 · 1010 cm−2, and nT = 1011 cm−2); it
is noticeable, in particular, that for vanishing excitation density the mixing is com-
plete and the oscillator strength is equally shared between the two peaks, whereas
for high excitation density, due to the small blue shift of the WE, the stronger line
corresponds to the lowest (more Frenkel-like) hybrid exciton. Figure 7 shows the
effect of a density dependent broadening of the Wannier exciton: h̄γW = 1 meV
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Fig. 7. Real and imaginary parts of χ in the linear regime (solid lines), and high excitation density
(n= 1011 cm−2, long-dashed lines), in the first case h̄γW = 1 meV, in the second case h̄γW = 3 meV.

at low excitation densities and h̄γW = 3 meV at high excitation density [21] (h̄γF
being fixed at 2 meV).

From numerical estimates such as those shown in Figures 6 and 7, we obtain
for the relative nonlinear change in the absorption coefficient close to resonance
|�α|/α ∼ 10−11 cm2 nT , which is analogous to the case of a semiconductor mul-
tiple quantum well. However, for a given pump intensity the 2D density of pho-
togenerated excitons nT in our case of hybrid excitons is about two orders of
magnitude larger because the oscillator strength of hybrid excitons is comparable
to the one of Frenkel excitons rather the one of Wannier excitons. A similar the-
oretical approach can be used to calculate the dynamical Stark effect for hybrid
excitons which shows qualitative and quantitative differences with respect to the
case of the usual inorganic semiconductor QWs [22].

3.2. SECOND-ORDER SUSCEPTIBILITY χ(2)

As was already mentioned, the calculations, performed here, correspond to the
third-order nonlinearity. But the hybrid system considered here has also a nonzero
second-order susceptibility χ(2). For such a structure χ(2) �= 0 even if the original
OQW and IQW are centro-symmetric and the second-order processes are for-
bidden by parity conservation. Such a phenomenon can take place because the
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resonant dipole–dipole coupling breaks the symmetry along the growth direction.
Of course, any interaction between the OQW and the IQW can be responsible
for symmetry breaking. However, the resonant dipole–dipole coupling considered
here is probably the strongest among others. In a geometrical sense, this system is
analogous to an asymmetric semiconductor QW. The calculation of χ(2) for such
a system can be found in Ref. [23] and the calculation of χ(2) for the hybrid sys-
tem may be performed following the lines of the latter work and here we restrict
ourselves only to some qualitative remarks.

The general microscopic expression for the nth-order susceptibility contains
n + 1 dipole moment matrix elements, involving n intermediate states. For the
linear susceptibility there is only one intermediate state, and if the latter is a hy-
brid one, the corresponding dipole matrix elements are determined mainly by the
Frenkel component of the hybrid state. Thus, the linear susceptibility of the hy-
brid structure contains the factor (dF /aF )2, as is seen from Eq. (61). For the
second-order nonlinear susceptibility χ(2) one must have two intermediate states
or three virtual transitions. One of them may be a hybrid one, and as long as the
materials under consideration have no static dipole moments, the other interme-
diate state has to be an excited state of the IQW, which is not resonant with the
Frenkel exciton. Hence, the result will be proportional to dF /aF , the other two
virtual transitions will give a factor, coinciding with that for an isolated IQW.
One may apply analogous arguments to the case of the third-order nonlinearity:
of three needed intermediate states one may be the hybrid one, the second may
be the ground state, and the third one—again the hybrid state (such a scheme cor-
responds to the Kerr nonlinearity). Thus, one should obtain a factor (dF /aF )4.
Indeed, in Eq. (61) we have (dF /aF )2 in χ(1) and another (dF /aF )2 comes from
nT when the latter is expressed in terms of the incident electric field. There exists
another mechanism for the second harmonic generation. It does not require the
parity breaking, since the optical quadratic nonlinearity appears due to the contri-
bution of spatial derivatives of the electric field to the nonlinear response [24,25].
It works also in the case of an isolated symmetric QW and corresponds to the
higher multipole contribution rather then the dipole one, which is usually consid-
ered. The hybrid system will again have an advantage here because of the increase
in the oscillator strength due to the Frenkel exciton component.

4. Hybrid Excitons in Parallel Organic and Inorganic
Semiconductor Quantum Wires

In this section (see also [26]) we study hybrid exciton states not in a two-
dimensional (2D) but in a one-dimensional (1D) system of parallel organic and
inorganic semiconductor quantum wires. In particular, we will show that the inter-
wire hybridization strength is nonzero even for small exciton wave vectors along
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the wires and decays rather slowly with increasing interwire spacing. This is in
contrast with 2D quantum wells considered in the preceding subsection, where
the dipole–dipole coupling decays fast with increasing interwell distance and is
nonzero only for nonzero exciton wave vectors.

Although there is already a considerable progress in the preparation of organic-
inorganic semiconductor nanostructures, the achievements are mostly connected
with the fabrication of planar heterostructures. As to laterally modulated compos-
ite organic-semiconductor heterostructures, we realize that the fabrication of such
systems is a more formidable task. However, the expected unique physical prop-
erties of such systems may justify the efforts. A motivation for studying laterally
modulated hybrid systems, such as a system of organic-inorganic wires, is the fol-
lowing. As has been shown in the preceding subsection for a 2D organic molecular
layer in contact with a neighboring semiconductor 2D quantum well, the electro-
static coupling of Frenkel and Wannier–Mott excitons vanishes in the range of
small two-dimensional exciton wave vectors (see Eq. (21)). This is a consequence
of the well-known fact that the electric field of a uniformly polarized layer van-
ishes outside the layer. Thus, in 2D systems, the conditions for the manifestation
of hybridization effects are not favorable just for the most interesting case of small
wave vector excitons which interact actively with light. To lift this restriction,
here we consider another organic semiconductor system where the hybridization
of Frenkel and Wannier–Mott excitons is especially effective just for excitons
with small wave vectors. Namely, we consider a system of parallel organic and
semiconductor quantum wires. The Frenkel |F,k, l〉 and Wannier–Mott |W,k, l〉
exciton states in the wires are characterized by a one-dimensional (1D) wave vec-
tor k along the wires and by the label l counting quantized states of the transverse
motion of excitons within the wires. To simplify the consideration, below we re-
strict our analysis to the lowest transverse state of excitons and omit the label l.

Our task is to calculate the hybridization parameter

(62)�(k)= 〈F,k|Hint|W,k〉,
that determines the resonance coupling of the Frenkel and Wannier–Mott exci-
tons, see Eqs. (1)–(5). The Hamiltonian Hint of the dipole–dipole interaction be-
tween the two systems is given by Eq. (6) which may be represented also in the
form

(63)Hint =−
∫
PF
i (r)Dij

(
r, r′

)
PW
j

(
r′

)
drdr′′,

where the integrations goes over the organic and semiconductor wires, Dij (r, r′)
is the Green’s function determined by Eqs. (8) and (9); indices i, j denote vector
components in Cartesian coordinates with the z-axis chosen along the wires, and
the x- and y-axes perpendicular to the wires; the y-axis is perpendicular to the
plane determined by the wires. The transition polarization operator PF for Frenkel



HYBRIDIZATION OF FRENKEL AND WANNIER–MOTT EXCITONS 341

excitons is given by

(64)PF
i (r)=

∑
n

µFi
(
A†

n +An
)
δ(r− rn),

where the summation runs over sites n (with the radius-vector rn) of the molecular
lattice, A†

n is the creation operator of the Frenkel exciton at the site n, and µF

is the transition dipole moment for Frenkel excitons. The transition polarization
operator PW for Wannier–Mott excitons is given by

(65)PW(r)= µW@e(r)@h(r)+ h.c.,

where @e(h)(r) is the electron (hole) annihilation operator and µW is the (intra-
cell) optical transition dipole moment.

The state corresponding to the Frenkel exciton is represented as

(66)|F,k〉 = 1√
NF

∑
n

exp (ikzn)A
†
n|0〉,

where NF is the total number of molecular sites and |0〉 is the exciton vacuum
state. For the state of the Wannier–Mott exciton we take the following represen-
tation:

(67)

|W,k〉 = 1√
L

∫
dze dzh exp

(
ik
meze +mhzh

me +mh

)
90(ze − zh)@†

e0(ze)@
†
h0(zh)|0〉.

Here L is the length of the wires, me and mh are effective electron and hole
masses, respectively; the function 90(ze − zh) describes the relative 1D motion
of the bound electron and the hole. The operators@†

e(h)0(z) in Eq. (67) correspond
to the lowest (l = 0) state of the transverse motion in the operator expansion over
transverse modes φl :

(68)@
†
e(h)(r)=

∑
l

@
†
e(h)l(z)φ

∗
e(h)l(ρ),

where r= (ρ, z).
In calculating the hybridization parameter � (see Eq. (62)) we meet the follow-

ing matrix elements of the polarization operators between the ground (|0〉) and
corresponding excited states (|F,k〉 or |W,k〉). With the use of Eqs. (64) and (66)
we obtain:

〈F,k|PF
i (r)|0〉 =

µFi√
NF

∑
n

exp(−ikzn)δ(r− rn)

(69)≈ µFi√
NF vF

exp(−ikz),
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where we have used the long-wavelength approximation (kaF � 1, aF is the or-
ganic lattice constant) and substituted the summation over lattice sites n by in-
tegration over drn/vF , where vF is the volume of the organic lattice elementary
cell. Similarly, with the use of Eqs. (65), (67), and (68) we find:

(70)〈0|PW
j

(
r′

)|W,k〉 = µWj√
L
φe0

(
ρ′

)
φh0

(
ρ′

)
90(0) exp

(
ikz′

)
.

Combining Eqs. (62), (69), and (70) we arrive at the following expression for the
hybridization parameter � from Eq. (62):

(71)�(k)=−µFi µWj 90(0)

√
NF

L

∫
d2ρ d2ρ′

SF
Dij

(
ρ,ρ′; k)φe0(ρ′)φh0(ρ

′),

where SF is the organic wire cross section area, Dij (ρ,ρ′; k) is the Fourier trans-
form of Dij (ρ, z;ρ′, z′) with respect to the difference z − z′ (the surrounding
medium is assumed to be homogeneous in the direction parallel to the wires).
Eq. (71) determines the hybridization parameter of interest for an arbitrary system
geometry and dielectric tensor of the surrounding medium. Below we consider in
more detail the particular case of thin wires (dw�R, dw� 1/k, where dw is the
thickness of wires, R is the distance between the wires) embedded into a medium
with an isotropic dielectric tensor εij = εδij . In this case the Green’s function
Dij (r; r′)= ε−1∂i∂jG0(r− r′), where G0(r− r′)= 1/|r− r′|. The Fourier trans-
form G0(ρ − ρ ′; k) of G0(r− r′) with respect to z− z′ is given by

(72)G0
(
ρ − ρ′; k)= 2K0

(
k
∣∣ρ − ρ′∣∣),

where K0 is the modified Bessel function of zeroth order [27]. For thin wires, we
may neglect the variation of the transverse coordinates ρ and ρ′ in the argument
of the functionDij (ρ−ρ′; k), substituting ρ−ρ′ by the vector (R,0) (of course,
this can be done only after taking spatial derivatives of G0(ρ − ρ′; k)).

As a result, Eq. (71) for the hybridization parameter �(k) takes the form:

(73)�(k)= feh90(0)

√
NF

L

µFi µ
W
j

ε
Cij ,

where

(74)feh =
∫
φe0(ρ)φh0(ρ) d

2ρ,

(75)Cij =−2
[(∇⊥i − ikδiz)(∇⊥j − ikδjz)K0(kρ)

]
(ρx,ρy )=(R,0).

Here ∇⊥i denotes the derivative with respect to the transverse variables (i = x, y).
The function K0 possesses the following limiting behavior [27]:

(76)K0(x)=
{√

π
2x exp(−x), x� 1,

− ln(x/2), x� 1.
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As follows from Eq. (76), the interwire coupling is suppressed exponentially for
excitons with wave vectors k � 1/R, i.e., for a major part of the Brillouin zone.
On the contrary, coupling of excitons with relatively small wave vectors k � 1/R
is quite efficient. This is in contrast to the case of a 2D system of quantum wells
where the coupling at small wave vectors is suppressed because the electric field
outside of a uniformly polarized layer vanishes.

The range of small wave vectors k ∼ 1/λ� 1/R is of special interest as exci-
tons with such wave vectors may be created straightforwardly by light of wave-
length λ. In the leading order in kR � 1, the hybridization parameter �(k) of
Eq. (73) has the following form

(77)�(k)= feh

εR2

√
2SF
a1BvF

(
µFy µ

W
y −µFx µWx

)
,

where SF and vF are the cross-section and the volume of an elementary lattice
cell for the molecular wire; the 1D exciton ground state wave function 90(0)=
1/
√

2a1B in the strong-confinement limit has been expressed in terms of the 1D
Bohr radius a1B = (a0/2)

√
E0/E1, with a0 and E0 being the Bohr radius and

the ground state energy of the bulk exciton, respectively; E1 is the ground state
energy of the 1D exciton, see [28,29].

Note that the excitonic polarization component along the wires does not con-
tribute to � in the leading order in kR. This is due to the obvious fact that a
uniform longitudinal polarization is not accompanied by the appearance of an
electric charge. To estimate the value of � we use the following parameter val-
ues: a1b = 30 Å, µF = 5 Debye, µW = 10 Debye, SF = (50 Å)2, vF = 100 (Å)3,
R = 50 Å, feh = 1, ε = 3, and we obtain � ≈ 5.4 meV. Similar to the 2D case,
the resonance coupling of 1D Frenkel and Wannier–Mott excitons results in the
appearance of hybrid states described by Eqs. (1)–(5).

The coupling is strong if the energies of Frenkel and Wannier–Mott excitons
are in resonance: |EF (k)− EW(k)| ∼ |�(k)|. In this case the size of the hybrid
state is comparable with that for Wannier–Mott excitons, i.e., it is much larger
than the radius of Frenkel excitons. This causes a high sensitivity of the hybrid
states to external fields. Outside the resonance range, the coupling is governed by
the parameter �2/(EF −EW) and is rather small. The condition of resonance is
rather strict for the considered range of parameters and requires a careful choice
of materials for both wires. Naturally, the exciton linewidth should be small as
compared to �. In general, the excitonic linewidth is determined by radiative and
nonradiative processes and by other dephasing processes.

At low temperatures, the nonradiative linewidth may be∼ 1 meV for Wannier–
Mott excitons, and in some cases rather small for Frenkel excitons. These
linewidths may be thus in some particular structures smaller than the resonant
splitting 2� ≈ 11 meV of the hybrid excitations. In perfect translationally invari-
ant wires there is no radiative decay of excitons with wave vectors k > 2π/λ (λ is
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the wavelength of the exciton luminescence in a medium with the refraction index
n=√ε ). The radiative decay channel opens for excitons with rather small wave
vectors k < 2π/λ. For the transition dipole moment oriented perpendicular to the
wire, the radiative decay rate γrad of Frenkel excitons in a 1D wire is given by

(78)γrad(k)= π |µF |2SF
εvF

[
k2 + (2π/λ)2], k � 2π/λ.

Using Eqs. (77) and (78) we obtain the following estimate (for small k range):

(79)
2�(k)

γrad(k)
∼ fehλ

2µW

2π3R2µF

√
vF

2SFa1B
.

For the above chosen parameters values and for the exciton radiation wavelength
to be of the order of 5000 Å in vacuum, we find 2�/γrad ∼ 3. This means that in
perfect wires the collective exciton radiative decay channel may be competitive
with the hybridization.

One of the ways of increasing the ratio (79) is to decrease the molecular wire
cross section SF . This is due to the square-root dependence of � on SF versus the
linear dependence of γrad. Another circumstance that is favorable for an increase
of the ratio �/γrad, is the fact that the expression (78) is valid for very perfect
wires with the exciton coherence length lcoh being longer than λ. On the contrary,
if lcoh� λ (that is more realistic situation), the radiative exciton decay rate will be
diminished by the factor lcoh/λ. In this case, the radiative decay would be much
smaller than the hybridization parameter �. The latter does not suffer from the
finite exciton coherence length as long as lcoh >R. This is due to the fact that the
leading contribution to the quantity Eq. (77) stems from the distances of the order
of R.

To summarize, we have demonstrated the possibility of strong resonance hy-
bridization of 1D Frenkel and Wannier–Mott excitons in parallel organic and
semiconductor wires. Like in 2D case, the new states possess the properties of
both types of excitons. They have a relatively large size (along the wires) like
Wannier–Mott excitons, but they have also a large transition dipole moment which
is typical for Frenkel excitons. Thus, one may expect strong nonlinear optical ef-
fects in such systems.

5. On the Hybridization of “Zero-Dimensional” Frenkel and
Wannier–Mott Excitons

In the previous sections we have considered the hybridization of Frenkel and
Wannier–Mott excitons in two-dimensional (quantum wells) and one-dimensional
(quantum wires) geometries. For the sake of completeness, in this subsection we
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shall briefly and qualitatively discuss the zero-dimensional (0D) case that corre-
sponds to a quantum dot (QD) geometry. We have in mind a configuration where
a semiconductor QD is located near a small size organic cluster or is just covered
by a thin shell of an organic material.

There are the following qualitative differences in the hybridization scenario in
the considered geometry as compared to those in 2D and 1D cases. The pres-
ence of a translational symmetry along planes or wires has resulted in a selection
rule restricting the hybridization to states |F,k〉 and |W,k〉 with the same wave
vectors. The absence of the translational symmetry in 0D case leads, generally
speaking, to the coupling of all exciton states. This circumstance is not favor-
able for the efficient hybridization: as was discussed earlier, the condition for the
strong hybridization is an energy resonance between the mixed exciton states.
Therefore, it is desirable to deal with a situation where there are only two res-
onant (Frenkel and Wannier–Mott) exciton states strongly coupled to each other
and only weakly connected with other states. This may be achieved in small size
QDs and clusters where the exciton motion is quantized. As soon as the resonance
between two (say, the lowest) exciton states |F 〉 and |W 〉 has been achieved, the
further description in terms of an effective two-level model is similar to what has
been done in the previous sections. The hybridization parameter 〈F |Hint|W 〉 is
determined by properties of the resonant states |F 〉 and |W 〉 for a concrete sys-
tem configuration, i.e., on the shape and symmetry of the semiconductor QD and
organic cluster, on the orientation of organic molecules, etc. Just as one example
of a great variety of possible geometries, we mention here the case of a spheri-
cal semiconductor QD covered with a thin shell of organic molecules (see [30a]
for more details; on the system of quantum dot array embedded in an organic host
see [30b] and on hybrid exciton state in a quantum dot-dendrite system see [30c]).

A feature of this situation is that in the case of a too symmetric orientation of
the transition dipole moments of organic molecules (for instance, if all of them
are oriented along the same direction) the hybridization parameter vanishes. This
is because the electric field that corresponds to an excitation of the organic shell,
coincides with the field inside a uniformly polarized shell, and is zero for a spher-
ical shell. To provide a nonzero hybridization one should allow for, e.g., a spatial
variation of the shell thickness or of the angular orientation of the molecular tran-
sition dipole moments.

6. Hybridization of Excitons in Microcavity Configurations

In the last decade planar semiconductor microcavities attract much attention,
since they provide the possibility to enhance and control the interaction between
light and electronic excitations. When the microcavity mode is resonant with the



346 V.M. AGRANOVICH ET AL.

excitonic transition, two different regimes of interaction can be distinguished, de-
pending on the ratio between the coupling strength and the damping in the system.
In the weak coupling regime, when the damping prevails over the light-matter in-
teraction, the interaction just modifies the radiative decay rate and the emission
angular pattern of the cavity mode. On the contrary, in the strong coupling regime,
the damping is small in comparison with the interaction, and the true eigenstates
of the system are the doublet of the cavity polaritons separated by the Rabi split-
ting [31]. The Rabi splitting is proportional to the square root of the oscillator
strength of the transition, and its typical value in inorganic materials is about
5–10 meV. In inorganic semiconductors, the strong coupling regime was exten-
sively investigated both experimentally and theoretically (see [31] for reviews),
and the dynamics of microcavity polaritons was well understood [32]. Recently,
high-quality crystalline organic nanostructures became available for the fabrica-
tion and inclusion into a microcavity. Their advantage is that they possess Frenkel
excitons, which may have an oscillator strength much stronger than the one in in-
organic structures. Thus, as it was noticed in [33], the strength of their interaction
with light (and, consequently, the resulting Rabi splitting) is expected to be much
larger (up to in dozens of times) than the one in the inorganic analogues. On the
other hand, for many known cases of disordered organics the relation between the
inhomogeneous broadening of the excitonic resonance and its oscillator strength
is such that the strong coupling between the molecular electronic excitation and
the cavity photon is washed out. That is why disordered organic materials are
usually associated with the weak coupling regime. Quite recently, however, the
strong coupling just in disordered organic semiconductor microcavities has been
observed using materials with large oscillator strength and relatively narrow (40–
90 meV) bare exciton absorption linewidths. First, porphyrin dyes with a single
narrow optical absorption line were used as a semiconductor material [34]. A gi-
ant Rabi splitting (160 meV at room temperature) was observed. Soon after, the
strong coupling in organic semiconductors was observed using another type of
a semiconductor material, namely, cyanine dyes [35,36]. The typical polaritonic
branches separated by a giant Rabi splitting (�= 80–300 meV at room tempera-
ture) were observed in these structures (Chapter 8 by D. Lidzey).

The possibility to create organic microcavities with large Rabi splitting is very
interesting for the problem of hybridization of Frenkel and Wannier–Mott ex-
citons which we discuss in this chapter. Indeed, the structure described in the
previous section raises the technologically challenging problem of growing high
quality organic-inorganicheterostructures only a few nanometers apart and a more
promising way of realizing a hybrid exciton system is to couple Frenkel and Wan-
nier excitons through a microcavity (MC) electromagnetic field [33]. We can ex-
pect hybridization in microcavities with the large Rabi splitting to arise not due to
the Coulombic short-range interaction, but due to the strong long range interaction
stemming from virtual cavity photon exchange. For cavity embedded QWs, the
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Fig. 8. Scheme of microcavity embedded organic and inorganic quantum wells. The mirrors are
simply described by a very high dielectric constant ε� ε.

fabrication problems would be much alleviated as their separation can be of the
order of an optical wavelength. For the sake of simplicity, however, in the follow-
ing discussion we assume that both QWs lie at the center (z� 0) of a single MC
at a distance d� λ from each other (see Figure 8). This situation is qualitatively
equivalent to that of two coupled microcavities for which the growth conditions
could be separately optimized for the organic and inorganic well [33].

Microcavity embedded organic QWs in the weak coupling regime have already
been realized [37] and effects such as spectral narrowing and increased direc-
tionality of light emission have been demonstrated. To achieve the strong cou-
pling regime with organic material, as observed for inorganic QWs [31], we need
molecular compounds combining a large oscillator strength of the lowest energy
electronic transition with an absorption linewidth smaller than the cavity mode
splitting. Good candidates for such structures are thin film crystals of aromatic
molecules like anthracene, tetracene, terrylene and many others. For example,
five monolayers of terrylene (d � 50 Å) exhibit an oscillator strength per unit
area as large as 1015 cm−2, more than a hundred times the one of a GaAs QW
exciton. Other possibilities to observe the hybridization of Frenkel and Wannier–
Mott excitons are opened by using the strong coupling regime in microcavities
with disordered organic material. These results we discuss below in Section 2.

6.1. ILLUSTRATIVE ESTIMATES

To illustrate the theoretical results derived for such a system [33], we use material
parameter data available from experiments or from realistic estimates. We assume
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that EF (k)=EC(k = 0) and EW(k = 0)=EC(k = 0) (1+ η), i.e., a Frenkel ex-
citon resonant with the cavity mode EC (we neglect the dispersion of the FE) and
a Wannier exciton with a fractional detuning of η at k = 0. Using the reduced vari-

able k = k/kcav with kcav = π/L, we have for this case EC(k)/EC(0)=
√

1+ k2

and EW(k)/EW(0)= 1+ η + a k2
with a = h̄2k2

cav/2MEC(0). For resonance at
EC(0) = 1.5 eV and ε � 10, we have kcav = 2.4 · 105 cm−1 and, using an ex-
citon mass M = 0.3m0 (m0 is the free electron mass), a = 10−5. The inorganic
QW Rabi splitting �1 is taken to be 3 meV, then, assuming a ratio of the or-
ganic to inorganic QW oscillator strength F/f � 60, we have for the organic
QW Rabi splitting �2 � 23 meV. The ratio �2/�1 � 8 is by no means unusu-
ally large and, as a matter of fact, even larger oscillator strengths can easily be
attained with many organic materials. For example, from the standard LT split-
tings of 0.08 meV in GaAs (ε � 12) and � 50 meV for the lowest singlet exciton
in tetracene (ε � 9) [38], their oscillator strength ratio is about 500. The large
splittings �2 ≈ 100 meV expected from such estimates give reasonable hope for
reaching the strong coupling regime even at room temperature since the absorp-
tion linewidth can be as low as a few tens of meV in selected organic systems.
We assume such a situation in our calculations and neglect dissipation for both
bare excitonic states. The dispersion of cavity polaritons Ej(k) and of weighting
coefficients NF,W,C

j (k) (analogous to A and B of Eq. (1)) are shown in Figure 9.
From Figure 9(c) it is seen that the branch 1 (which at large wave vectors turns

into a pure WE) contains a big part of the FE state (|NF
1 |2) for k < 0.1. As seen

from Figure 9(d) the branch 2 (which at large wave vectors turns into a pure FE)
for k < 0.25 also retains a large part of the FE state (|NF

1 |2) while exhibiting
a large cavity photon component. The FE component is crucial in assisting the
inelastic relaxation that will be considered whereas the cavity photon component
obviously has a large radiative width. For k� 1 even for high mirror reflection
(1−R= 10−3), the cavity mode radiative lifetime is of order τ � 1 ps. The better
mixing of branch 2 with the cavity photon means faster radiative decay in a larger
phase space. Such a short lifetime is only effective in a very narrow region of
phase space (k < 0.05 kcav) in the case of typical inorganic QW splittings; such a
region can only be reached in about 100 ps due to slowed-down relaxation [32]
in the flat part of the dispersion curve, poorly coupled to the cavity mode. In our
case, to populate the states of branch 2 with a large radiative width (i.e., those with
k < 0.2 kcav), we can assume that the parameters of the MC with two QWs are
such that for k, k′ < 0.2 kcav an inelastic resonance condition is realized, i.e., that
the energy differenceE1(k)−E2(k

′) is close to the energy of some intramolecular
optical phonon strongly coupled to excitons. For this case, the relaxation rate can
be of the order of 10 ps or less [33], i.e., at least one order of magnitude faster
than for MC with an inorganic QW.
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Fig. 9. (a) Bare dispersion curves of cavity photon, WE and FE normalized to the cavity mode at
k = 0. The FE exciton is resonant with the cavity mode and the WE has a positive detuning; (b) Cavity
polariton dispersion curves: for large wavevectors, branches 1, 2 and 3 turn into WE, FE and cavity
photon, respectively; (c) Weighting coefficients of branch 1; (d) Weighting coefficients of branch 2.

Summarizing, we have considered the new possibilities which may appear in
microcavities containing resonating organic and inorganic QWs. Although our es-
timates are preliminary and we, for example, did not take into account the dissipa-
tion of exciton states, we can expect in such structures a drastic shortening of the
relaxation time of excitons into states having a large radiative width and a short
fluorescence decay time. We can also expect that the combination of electrical
pumping of excitons in inorganic QWs with the fast relaxation and fluorescence
of excitons in organic QWs will open up a new scenario of excitonic processes in
microcavities, which is of interest for both basic science and device applications.

6.2. MICROCAVITIES WITH DISORDERED ORGANICS: COEXISTENCE OF

COHERENT AND INCOHERENT STATES

We already mentioned that in microcavities with disordered organic materials a
very large Rabi splitting can be achieved. This potentially opens an interesting
possibility to create the hybridization of Frenkel and Wannier excitons in such
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Fig. 10. A draft of a microcavity with J-aggregates formed from a cyanine dye suspended in a trans-
parent polymer matrix. The dipole moments of the J-aggregates are indicated for two particular chains.

structures. However, in microcavities with disordered organics some peculiar fea-
tures in the spectra of cavity polaritons arise which has to be taken into account.

The observation of Rabi splitting in microcavities with disordered organics,
the investigations of photoluminescence and resonance Raman scattering as well
as investigations of reflection of light convincingly demonstrate the existence in
such microcavities, at least for small in-plane wave vectors, of the coherent states
(polaritons) (see the chapter by D. Lidzey). For this region of the wave vectors
the situation is similar to what has been observed in microcavities with ordered
inorganic semiconductor. However, when we go to consideration of larger wave
vectors the picture changes drastically (more details can be found in the paper
[39]). Qualitatively this change can be understood on the basis of consideration
of polariton spectra with, for example, particular case of J-aggregates as active
material (see Figure 10).

However, such a consideration is applicable also for any organic or inorganic,
ordered or disordered material with weak intermolecular resonance interaction,
where the electronic excitations have negligible dispersion and strong damping.

Indeed, the cavity photons are coherent excited states of the microcavity, and
they all are characterized by a two-dimensional in-plane wave vector (q). The res-
onance between the cavity photon and the molecular electronic excitations occurs
at relatively small values of the cavity photon wave vector. Thus, in the region of
resonance the cavity photon wavelength is large in comparison with the mean dis-
tance R̄ between the J-aggregates, and the system of J-aggregates can be treated
as effectively homogeneous. The cavity photon creates a coherent polarization in
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Fig. 11. The dispersion curves for the coherent polaritonic states (solid lines) and for uncoupled
cavity photon and the molecular excitation (dashed lines). The cross shows the end-point of the lower
polariton dispersion curve. On the right, the inhomogeneously broadened exciton line is drafted. The

inset shows the excitonic weights for upper (|c(U)ex |2) and lower (|c(L)ex |2) polaritonic branches.

the organic medium and interacts strongly with the molecular resonance. If the
interaction is strong enough, it leads to the strong hybridization of the exciton and
cavity photon modes, which results in a Rabi-splitting and the formation of upper
and lower branches of coherent (polaritonic) states. In the case of ordered organic
material the number of states in the lower polariton branch is equal to the number
of electronic excited states. In the two-level model approximation for the organic
molecule this number is equal to the number of organic molecules. A key result
which we want to outline here is that the number of the lower branch coherent
states in the case of disordered organics is much smaller than the total number of
electronic excited states. The rest of organic excited states are incoherent, being
similar to the excited molecular states in a bulk (non-cavity) film. Qualitatively
the smallness of the number of lower polariton branch coherent states in such a
situation can be understood if we take into account the fact that cavity photons
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with large wave vectors are not resonant with the molecular excitations and a
strong dephasing of molecular excitations destroys any short wavelength coher-
ent polarization. Thus, for incoherent states, the exciton–photon coupling is not
important, and we can say that the system of these excited states is in the regime
of weak light-matter coupling. In the case of crystalline inorganic semiconduc-
tors, the interaction of small wavelength cavity photons with exciton states is also
negligible, however in this case the coherence of short wavelength excitons occurs
as a result of resonance Coulomb intermolecular interactions and not as a result
of exciton–photon interactions. Coulomb resonance interactions in disordered or-
ganic materials are responsible for the inhomogeneous broadening which has to
be taken into account. However, such interactions in organic materials with large
dissipative width of electronic transitions is too weak to create coherent exciton-
like states. Thus, in microcavities with such materials the coherent (polaritonic)
states and incoherent states (which are uncoupled to light) coexist (see Figure 11).

We may expect that the results of these consideration will be applicable for any
microcavity containing either disordered or even crystalline organic or inorganic
materials and this circumstance has to be taken into account in the discussion of
linear and nonlinear resonance optical properties of microcavities with optically
active material in the region of exciton resonances where the resonance intermole-
cular interaction is weak in comparison with the dissipative width.
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1. Introduction

A semiconductor microcavity is a structure in which a wavelength-thickness semi-
conductor layer is positioned between two closely separated mirrors. The cavity
mirrors quantize the local electromagnetic field into a set of discreet confined pho-
ton modes. If the energy of one of the modes is resonant with an optical transition
of the semiconductor, it is possible to modify both the semiconductor absorption
and emission characteristics. Such structures are of fundamental and practical in-
terest, with applications in lasers and other light-emitting devices [1–7].

There are two regimes into which the interactions between a semiconductor and
the electromagnetic field can be classified, namely the weak and strong-coupling
regimes. In the strong-coupling regime, a cavity photon couples to an exciton
having the same energy and in-plane momentum. The coherent coupled state thus
formed is termed a cavity-polariton, and can be considered as an admixture of
the exciton and cavity-photon modes. Strong-coupling in microcavities was first
observed in 1992 by Weisbuch and colleagues, who fabricated heterostructures
containing a series of inorganic (III–V) quantum-wells (QWs) [8]. Since then
strongly-coupled inorganic semiconductor microcavities have been extensively
studied both experimentally and theoretically by a large number of groups. The
reader who wishes to delve deeper into the subject of optical strong coupling in

THIN FILMS AND NANOSTRUCTURES, Vol. 31 Copyright © 2003 by Elsevier Inc.
ISSN 1079-4050 All rights reserved
DOI 10.1016/S1079-4050(03)31008-7

355



356 D.G. LIDZEY

microcavities, is encouraged to consult a number of comprehensive review papers
listed at the end of this chapter [9–13]. Even though the subject has now reached a
degree of maturity, the observation of new effects in strongly-coupled microcavi-
ties continues to surprise and delight researchers. One important advance that has
emerged within the past few years has been the observation that organic semicon-
ductors can also undergo strong-coupling in suitably designed optical resonators.
This advance is particularly important if strong-coupling is to find applications, as
the binding energy of organic (Frenkel) excitons in conjugated polymers is usually
between 0.1 and 0.5 eV [14] and in the range 0.5 to 1.0 eV in alkali halide crys-
tals [15]. This allows the direct observation and manipulation of Frenkel excitons
at room temperature. This is in contrast to inorganic (Mott–Wannier) quantum-
well excitons, whose binding energy is typically around 10 meV (dependent on
well-width and barrier composition), which thus requires the use of low tempera-
tures to facilitate their observation.

In this chapter, we review our research on strong-coupling in microcavities
using organic semiconductors. In Section 2 we discuss the optical properties of
microcavities both in the weak and strong-coupling regimes. In Section 3, we
summarise the requirements that a semiconductor material must possess to un-
dergo strong-coupling in a microcavity, and discuss the optical properties of a
number of organic materials that we have used to achieve strong coupling. In
Section 4 we summarise the experimental methods that we have used to study
such structures. Section 5 presents some of our observations made via white light
reflectivity measurements, whilst in Sections 6 and 7, the photon emission from
organic strongly-coupled microcavities is presented following both non-resonant
and then resonant excitation respectively. In Section 8, we present our results on
microcavities containing two different organic semiconductors, and demonstrate
how such structures support new types of hybridised and delocalised optical ex-
citations. Finally, in Section 9 we outline the possible future developments and
applications that may emerge from this exciting research area.

2. Organic Semiconductor Microcavities

2.1. THE OPTICAL PROPERTIES OF MICROCAVITIES

A microcavity is a planar Fabry–Perot cavity in which two mirrors are placed
either side of a dielectric medium. The presence of the two mirrors quantizes
the cavity photon modes, such that only photons having a certain energy and in-
plane momentum can be supported. Such photons are confined by the cavity until
they either escape from the cavity by penetration through one of the mirrors, or
until some optical loss mechanism occurs, such as scattering or absorption. For
the simplest case of two infinitely reflecting mirrors (Figure 1) a series of cavity
modes are supported having a wavelength λ measured outside the cavity given by
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Fig. 1. A schematic diagram of a microcavity, showing the two cavity mirrors and the confined
optical field. This particular cavity mode corresponds to an m= 2 mode. The internal cavity angle θint
is also defined.

the expression

(1)
mλ

2
= nL cosθint

where m is a mode number, n is the refractive index of the medium between the
mirrors and L is their physical separation. In this equation, we have the usual
definition of wavelength

(2)λ= 2πc

ω

where ω is the angular frequency of light, and c is the speed of light in vacuum.
The frequency of the cavity mode is dependent on its in-plane wavevector. The
in-plane wavevector of the cavity mode (|qcav

x |) determines the angle at which
it is detected from outside the cavity. The in-plane wavevector of a cavity mode
corresponding to an angle θint is given by

(3)qcav
x =

ωn

c
sin θint.

Light with a frequency ω escaping from the cavity will have the same in-plane
component of wavevector (qext

x ), where

(4)qext
x =

ω

c
sin θext.

From the equality q int
x = qext

x it follows

(5)θint = arcsin

{
sin θext

n

}
.
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For each cavity mode frequency, the component of the wavevector parallel to the
cavity growth direction (qz) is constant. For each frequency of a given cavity
mode, the z component of the wavevector is given by

(6)qcav
z =

2π

λ
cosθint

and is constant and this component is independent of frequency, and is given by
qcav
z = mπ

L
. At θint = 0, the wavelength of the cavity mode is defined as the cut-

off wavelength (λcutoff)—see the chapter by F. Bassani in this book. We can thus
relate the wavelength of a light measured outside a cavity to the external viewing
angle via

(7)λ= λcutoff cos

(
sin−1

{
sin θext

n

})
.

If the two mirrors are closely separated (i.e., a microcavity) it is possible to arrange
that there is only one optical mode present that can interact with any semiconduc-
tor material placed within the cavity. For example, a cavity fabricated from two
mirrors separated by 150 nm, containing a material having n= 1.5, the fundamen-
tal cavity mode (m = 1) will have a wavelength of 450 nm at normal incidence
(corresponding to the blue end of the visible spectrum). The next optical mode
(m= 2) will be positioned at 225 nm (in the deep ultra-violet). The energy sep-
aration between these optical modes is 2.75 eV, which is significantly larger than
the absorption or emission bandwidth of many organic and inorganic materials.

The structure shown in Figure 1 represents an ideal cavity consisting of two
completely reflecting surfaces. However such a structure cannot be easily realised
in practice (at least at visible wavelengths) as there are no materials available that
have unity reflectivity. Microcavities have been fabricated based on two metallic
mirrors [16–19] (which in the case of silver approximates a perfect reflector),
however there are limitations to this approach. To be able to usefully ‘use’ the
light emitted from a source inside the cavity, it must escape from the cavity by
penetration through one of the cavity mirrors. If the metallic mirrors are thick
compared to their optical skin depth, then light cannot escape from the cavity
and there is very weak output coupling. If one of the mirrors are thin, then some
light can escape from the cavity through the semi-transparent mirror. However
the reflectivity of a thin metallic film is significantly lower compared to a bulk
film, which results in a microcavity that has a rather low finesse, and only weakly
confines photons. In addition, the absorption of light passing through even a thin
(20 nm) metallic film is significant, resulting in a microcavity that has quite high
losses.

To achieve effective photon confinement within a microcavity, it is more com-
mon to utilise dielectric mirrors (distributed Bragg reflectors or DBRs) as the
cavity reflectors. Such dielectric reflectors can have a much higher reflectivity
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Fig. 2. A reflectivity spectrum of a dielectric mirror (DBR) composed of 12 repeat silicon ox-
ide/silicon nitride λ/4 pairs. The inset shows a schematic diagram of a DBR.

than a metallic surface, and have the significant advantage of very low absorption
loss. A DBR is a multilayer structure composed of a series of ‘pairs’ of dielectric
layers [20]. Each mirror pair is composed of two different dielectric materials,
having either a high, or a low refractive index, but with each layer having an op-
tical thickness of λ/4. DBRs can have a very high optical reflectivity (> 99%)
over a range of wavelengths (termed the ‘stop-band’). The high reflectivity of a
DBR results from in-phase optical reflections from each of the layers within the
dielectric stack. Figure 2 shows the measured reflectivity spectrum from a 12 pair
DBR composed of alternate layers of silicon oxide (n= 1.45) and silicon nitride
(n= 1.95), on a polished glass substrate. The mirror has a maximum reflectivity
of 99.8% at 525 nm, and a stop-band extending from 475 to 580 nm.

Inorganic semiconductor microcavities are usually composed of two DBRs de-
posited either side of the active semiconductor layer (which is often comprised
of a series of quantum wells). As the semiconductor mirrors are deposited using
the same molecular beam epitaxy (MBE) process as the quantum wells, the whole
structure can, in principal be grown in a single deposition run. This is usually not
possible when creating organic semiconductor microcavities, as the process used
to deposit the (usually inorganic) DBR is often very different from that used to
deposit the organic semiconductor. For example, the DBR shown in Figure 2 was
grown by plasma enhanced chemical vapour deposition, which involves reacting
two flowing gas streams above a glass substrate heated to 300 ◦C. Such a deposi-
tion process is not possible on top of an organic semiconductor, as most organic
materials suffer significant degradation at temperatures in excess of 250 ◦C. This
incompatibility between different processing techniques to some extent restricts
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Fig. 3. A schematic diagram of a microcavity, composed of a DBR, an organic layer and a silver mir-
ror. The optical field confined by the cavity (calculated using a TMR model) is shown superimposed
on the structure.

the type of structures that can be grown using organic materials. Because of this,
most of the organic semiconductor microcavities studied so far have comprised
of one DBR and one metallic mirror [21–27]. Metallic thin films can be success-
fully deposited onto an organic thin film by thermal evaporation, with the organic
substrate held at room temperature. This process causes little or no degradation to
the optical or electronic properties of the organic material.

Figure 3 shows a schematic figure of an organic semiconductor microcavity
based on a metallic mirror and a DBR along with the amplitude of the optical
field confined within the cavity as calculated using a transfer matrix reflectiv-
ity (TMR) model [20]. This type of structure has been used in all of the experi-
ments described in this chapter. Such microcavities support a λ/2 optical mode
between the two mirrors, whose wavelength can be adjusted by simply changing
the thickness of the organic film. It can be seen that the optical field penetrates
a significant distance into DBR. Because there is a finite amplitude of the op-
tical field at the DBR surface, light can couple out of the cavity to the outside
world. In contrast, light cannot penetrate through the ‘thick’ (> 100 nm) silver
mirror, and so all experiments on this structure to study the optical properties of
the cavity must be performed through the DBR. When fabricating microcavities
of this type, it must be remembered that if the reflectivity of the DBR is very
much greater than that of the metallic mirror, then the photons within the cavity
are more likely to be absorbed within the metallic mirror than escape through a
very high reflectivity DBR. Hence with single DBR cavities, there is a practical
limitation to the finesse that can be realised. In our work, we have used DBRs
consisting of 9 dielectric pairs, having a peak reflectivity of around 98%. Recent
reports have however highlighted new techniques used to grow DBR mirrors onto
organic semiconductors, and have realised very high finesse microcavities operat-
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ing in the weak-coupling limit [28,29]. It will be very interesting to create strongly
coupled organic semiconductor microcavities using such procedures.

The linear optical properties of a cavity can be determined by measuring its
reflectivity as a function of wavelength. We discuss the practicalities of cavity
reflectivity measurement in Section 4. Figure 4(a) shows a reflectivity spectrum
measured for a metal-DBR microcavity containing a single layer of a transparent
dielectric polymer (having a thickness of ∼ 220 nm and an average refractive
index of 1.6). It can be seen that a single sharp ‘dip’ is seen in the reflectivity
spectrum at 1.74 eV having a linewidth FWHM (full width a half maximum)
of 14 meV. The sharp dip in the reflectivity indicates the presence of an optical
mode within the cavity to which photons from the outside world can couple. The
dip in reflectivity apparently indicates that such photons do not reappear form the
cavity. This is because there are other ‘guided’ optical modes within the cavity
that cannot couple to the outside world. If a photon scatters into one of these
modes, then it cannot escape from the cavity and can become effectively ‘lost’.

The FWHM of the optical mode (�λ) is an important parameter in determining
the Q-factor of the cavity. The Q-factor is defined as

(8)Q= λ

�λ

where λ is the wavelength of the optical mode. The Q-factor relates the energy
stored by a (damped) oscillator to the energy dissipated per oscillation cycle, and
thus cavities with high Q-factors confine photons for many ‘round-trips’ of the
photon. As the linewidth of the cavity mode is homogeneous in nature, it can
be used to estimate the lifetime of the confined photons within the cavity via
the energy-time representation of the uncertainty principle. For example, a cavity
with an optical linewidth of 14 meV will trap photons for around 50 fs. Much
higher Q-factors can be realised using cavities based on two DBRs. The highest
finesse microcavities to date have been fabricated by Stanley et al. [30] and have
had linewidths of around 130 µeV (Q= 6000), corresponding to photon lifetimes
of approximately 5 ps. As we will show below, the lifetime of the photon within
a cavity is an important factor in determining whether strong coupling can occur.

The optical modes supported by microcavities have a strong angular dispersion
(see Eq. (7). This can be readily seen in Figure 4(b), which plots the energy of
a confined photon mode (determined from the reflectivity spectra), as a function
of external viewing angle. The measured photon energy is shown as solid points
and the line is a calculation of the photon energy using the analytical expression
given in Eq. (2). The best fit to the data is achieved using an average refractive
index of n= 1.6, with photon energy at normal incidence being E0 = 1.763 eV.
Figure 4(c) re-plots the data in terms of frequency (ω) versus in plane momentum
(qx). From this data we can deduce an effective photon mass of 10−5 of the mass
of an electron. We show in the following sections, that the dispersion in the photon
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Fig. 4. (a) A reflectivity spectrum measured from a microcavity composed of a DBR, an optically
transparent polymer polyvinyl alcohol (PVA), and a silver mirror. The linewidth of the cavity mode is
14 meV. (b) The energy dispersion of the cavity mode as a function of external viewing angle (solid
points). The solid line is a calculation of the cavity mode dispersion using Eq. (2).
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energy can be used to tune the energy of the photons with respect to an exciton
mode within the cavity and thus explore their mutual coupling.

In our discussion of the optical properties of microcavities, we have so-far only
considered ‘empty’ microcavities—i.e., structures that are composed of simple
dielectric materials that have no resonant interactions with the cavity photons. We
now consider a microcavity containing a semiconductor material, and the interac-
tions that can occur between optically active transitions in the semiconductor and
confined cavity photons. There are two distinct interaction regimes that can occur
within a microcavity; the weak and the strong coupling regimes. The subject of
this chapter is the strong-coupling regime, however for completeness we briefly
summarise the salient point of the weak coupling regime.

2.2. WEAK COUPLING

Within the weak coupling regime, the spontaneous emission of a dipole source
placed within a cavity can be described via Fermi’s Golden Rule:

(9)Wi→f ∝ 〈f |E.µ|i〉ρ
Here the transition rate (W) between initial (i) and final (f ) states is proportional
to the density of final optical states ρ. The Hamiltonian for the transition is given
by E.µ where E is the electric field experienced by an emitter having a transi-
tion dipole moment µ. In the weak coupling regime, the microcavity modifies
the density of optical states, enhancing them at the cavity mode wavelength, and
suppressing them elsewhere. The modification of the frequency dependent den-
sity of optical states in the cavity also changes the distribution of vacuum field
fluctuations that effectively ‘stimulate’ spontaneous emission: At the cavity mode
wavelength, the density of vacuum field fluctuations is enhanced, leading to an
increase in the spontaneous emission rate.

If a broad-band emitter is placed into a microcavity, the cavity enhances the
emission intensity at the cavity mode wavelength and suppresses it elsewhere,
producing a significantly spectrally narrowed source. A number of authors have
demonstrated that the intensity of emission can be enhanced at the cavity mode
wavelength, in some cavities by up to 60 times [25,31]. Fluorescence lifetime
emission measurements show however that the overall spontaneous emission rate
from an excited atom or exciton within a 1-dimensional microcavity is rather
small—of the order of 20% at most [5,32]. Such small changes occur because
there are a large number of ‘leaky’ modes in a 1D microcavity, including many
guided optical modes in a DBR. These leaky modes limit the overall effect of
the cavity on an exciton, with the result being that changes in the spontaneous
emission rate are small. A microcavity in the weak coupling regime can thus be
thought of a structure that redistributes the emission from a source placed between
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Fig. 5. (a) Schematic diagram of a resonant cavity LED (RCLED) containing a conjugated polymer
as the active charge transporting and emissive material. (b) Absorption (solid dots) and emission (dot-
ted line) from the polymer system used in the RCLED shown in part (a) in a non-cavity device. The
spectra shown using open circles is the electroluminescence emission from the RCLED.

the mirrors, allowing light to escape from the structure that would otherwise be
trapped by total internal reflection.

Such properties are in fact highly desirable as they can be used to enhance the
external quantum efficiency of light emitting devices. The strong spectral nar-
rowing that can be achieved is also very useful in display devices, where pure,
spectrally narrow emission colours are required to achieve a full colour palette.
Figure 5(a) shows a schematic diagram of a light emitting diode based on a con-
jugated polymer that has been engineered into a microcavity (a resonant-cavity
LED). The structure is based on a DBR, an indium tin-oxide anode (used to inject
holes into the conjugated polymer) and a top cathode-mirror, composed of a thin
(10 nm) layer of calcium to facilitate the injection of electrons into vacant states
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in the polymer. A thick layer of aluminium is deposited onto the calcium, to create
a reasonably highly reflective cavity mirror.

Figure 5(b) shows the emission from the cavity (open circles) along with the
absorption (full circles) and emission (dotted line) from the same conjugated poly-
mer in a non-cavity electroluminescent device. The spectral narrowing of emis-
sion from the cavity is very clear, with a strong emission peak visible at 535 nm,
having a linewidth of 12 nm. This compares to the electroluminescence emission
from a non-cavity LED that has a FWHM of around 90 nm. It can be seen that the
emission from the microcavity LED is not completely ‘pure’: there is also weak
emission from another feature at 635 nm. This emission comes from a second
cavity mode, whose wavelength coincides with the long wavelength emission tail
of the polymer. Such bi-modal emission can be easily eliminated by reducing the
overall length of the cavity [3,26].

2.3. STRONG COUPLING

In the strong-coupling regime, cavity photons and excitons can couple, forming
a coherent superposition of states termed a cavity polariton. Such quasi-particle
states can be thought of as being part-light and part-matter. In order to couple an
exciton and a photon to form a cavity polariton, both states must have the same en-
ergy and in-plane momentum (qcav

x ). In traditional inorganic semiconductors, the
semiconductor crystal lattice ensures that the system has translational symmetry,
and thus the exciton wavevector is considered a good quantum number. In our mi-
crocavities however, we have used organic semiconductors as the active medium.
Such organic materials (in all but a highly crystalline form) can be considered
as very disordered, and thus such systems do not have long-range translational
symmetry. This lack of symmetry does not mean that strong-coupling cannot be
achieved: If the mean distance (r) between the (organic semiconductor) chro-
mophores within the cavity is small in comparison with the wavelength of the
light (λ), then the medium can be considered as effectively optically homoge-
neous. In our molecular systems, r is typically between 1 and 20 nm, whilst λ is
around 600 to 700 nm, allowing us to satisfy the relation 1/k
 r . As resonance
between the cavity photon and the exciton occurs for k vectors of the order of
1/λ, the wavevector can be considered a good quantum number. This, we will
demonstrate, allows us to create the same type of cavity polaritons that are ob-
served in inorganic microcavities containing ordered semiconductors. However
as we couple the cavity photon to organic Frenkel excitons (rather than inorganic
Mott–Wannier excitons), we can explore a much larger exciton–photon coupling
strengths, due to the very large oscillator strength of Frenkel excitons.

In a microcavity, the strong-coupling regime is evidenced by an anticrossing be-
tween photon and exciton modes, and on resonance the appearance of two equal
intensity transitions, separated by the Rabi-splitting energy h̄�Rabi. Such a split-
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ting can only be realised when the interaction strength (expressed as an angular
frequency �Rabi) between a photon and an exciton is greater than (i) the inverse
cavity photon lifetime, and (ii) the inverse exciton dephasing time [13]. Condi-
tion (i) dictates that the photon is confined in the cavity for a time that is longer
than the period of the Rabi oscillations (2π/�Rabi). Condition (ii) ensures that an
ensemble of excitons retain their mutual coherence in their wavefunctions for a
time which is also longer than the Rabi oscillation period. If either of these condi-
tions is not met, then a coherent superposition of states cannot be formed because
either the photon leaks from the cavity, or the exciton undergoes dephasing be-
fore one period of oscillation between the exciton and photon modes can occur.
In this case, the system is in the weak coupling limit and the exciton decays by
spontaneous emission. It is common to express such inequalities in terms of the
homogeneous energy linewidths of both the exciton (�ex) and the photon modes
(�p); thus

(10)�ex < h̄�Rabi,

(11)�p < h̄�Rabi.

It is also important to consider the inhomogeneous linewidth when deciding
whether strong coupling can be achieved. To be able to resolve a splitting between
a photon and an inhomogeneously broadened semiconductor transition, the inho-
mogeneous linewidth also needs to be narrower than the Rabi-splitting energy. To
a first approximation, the Rabi-splitting energy can be expressed using

(12)h̄�Rabi ∝
√

f

n2
cLtot

where f is the oscillator strength of the semiconductor excitons per unit area, nc
is the average refractive index of the semiconductor and Ltot is the physical path
length of the cavity. The oscillator strength f per unit area of a thin film is given
by

(13)f ∝ αL
where L is the film thickness, and α is the optical attenuation coefficient (per
unit path length) at the peak of the absorption. If the inhomogeneous linewidth
of the semiconductor material is very broad, then the oscillator strength of the
transition is effectively spread over frequency space, and thus the peak value of
f that is achievable is relatively small. A reduced value of f results in a re-
duced Rabi-splitting, with a possible consequence being that the Rabi-splitting
becomes smaller than the inhomogeneous linewidth of the excitons. In this case
the broad inhomogeneous linewidth of the excitons (which encompasses a large
distribution of narrower homogeneous states), results in a distribution of reduced
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coupling strengths, effectively masking the anticrossing behaviour. The eventual
consequence of using states with very broad inhomogeneous linewidths is that the
system operates in the weak-coupling regime.

The operation of a material system in the weak coupling regime can be seen
in Figure 5(b). Here the organic semiconductor used has rather broad and fea-
tureless transitions, which are characterised by transition linewidths of the order
of 500 meV. Such a material system would not be anticipated to undergo strong-
coupling, as it effectively constitutes a continuum of states. In addition, in this
structure, the cavity mode has been deliberately positioned at a wavelength that
coincides with a region of high electroluminescence emission intensity from the
conjugated polymer. Because of the large Stokes shift in this material system,
there is a very low residual absorption (and thus no transition having significant
oscillator strength) at the cavity mode wavelength, again indicating that the sys-
tem operates in the weak coupling limit.

3. Organic Semiconductors for Strong Optical Coupling

3.1. BACKGROUND

Before we discuss strong coupling of organic semiconductors, it is useful to
briefly describe the magnitude of the Rabi-splitting observed in microcavities con-
taining inorganic (III–V) QW excitons. The inhomogeneous linewidth of a QW
exciton (which is often broadened by fluctuations in the alloy composition of the
inorganic crystal, and also by roughness in the thickness of the quantum well)
is typically around 1 meV. By utilising highly reflective semiconductor DBRs,
it is relatively straightforward to create microcavities supporting confined photon
states having linewidths of 1 meV. In microcavities based on III–V semiconductor
quantum wells (utilising GaAs/InGaAs), Rabi splittings of around 5 meV have
been observed (at 20 K) [9]. Therefore the homogeneous and inhomogeneous
linewidths of both the photon and exciton are smaller than the Rabi splitting, sat-
isfying the inequalities given in Eqs. (5) and (6).

3.2. MOLECULAR DYES

As we have discussed in Section 2.3, to achieve strong optical coupling, it is nec-
essary to use semiconductor materials whose absorption linewidths are narrow
compared to the Rabi-splitting energy. The materials we have used to achieve
strong-coupling have had inhomogeneous absorption linewidths between 40 and
90 meV. This linewidth is well over an order of magnitude larger than the Rabi-
splitting observed in III–V QW microcavities. However this relatively broad
linewidth has not precluded organic semiconductors from reaching the strong-
coupling regime; this is because the oscillator strength of a thin film of an organic
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semiconductor can be at least two orders of magnitude larger than that of a series
of inorganic QWs. It can be seen from Eq. (7), that the Rabi-splitting energy is
proportional to

√
f , and thus the Rabi-splittings that we observe can be signif-

icantly larger than the relatively broad linewidth of the organic semiconductors
that we have used in our microcavities.

In our microcavities, we have used organic materials that we have used have
the distinct advantage that they are relatively easy to fabricate into high-quality,
defect-free, thin films suitable for inclusion into a microcavity. In our first ob-
servation of strong coupling in a microcavity [21], we used a porphyrin dye hav-
ing a single narrow optical absorption. The dye used (tetra-(2,6-tert-butyl)phenol-
porphyrin zinc) which we term 4TBPPZn is one example of a large family of por-
phyrin macrocycles whose photophysical and photochemical properties have been
extensively studied [33]. The chemical structure, absorption spectrum and elec-
tronic energy-level scheme of the 4TBPPZn molecule are shown in Figure 6(a).
This molecule has an intense, narrow (90± 5 meV at room temperature) transi-
tion in the form of the so called “Soret band” absorption at 2.88 eV. The relatively
narrow linewidth of the optical absorption comes from the high structural rigidity
of the porphyrin molecule. The Q-band absorbance is seen as a weak double peak
structure between 2.0 and 2.26 eV.

To utilise the 4TBPPZn molecular dye in a microcavity, it was dissolved into
a solution of toluene containing the polymer polystyrene. The solution was then
spin-coated onto a quartz substrate. On spin-coating, the toluene solution rapidly
evaporates, leaving the 4TBPPZn molecules suspended in a solid polystyrene ma-
trix. This deposition method allows the creation of films having areas of up to sev-
eral cm2 with a thickness anywhere between 30 nm and 1 µm. The point-to-point
fluctuations in the film thickness over an area of around 1 cm2 can be relatively
small (of the order of 5–10 nm). By careful calibration of the viscosity of the so-
lution and spin-speed, the thickness of the film deposited can be controlled with a
precision of about 10 nm. The attainment of very smooth organic films is critical
for the fabrication of high-quality microcavities. Any surface roughness or scat-
tering within the film will lead to a significant broadening of the cavity optical
mode.

The absorption spectrum of the polystyrene film containing the 4TBPPZ mole-
cules is shown in Figure 6(a). The polystyrene matrix has an average refractive
index of approximately 1.5, and has a very high degree of optical transparency
over the whole of the visible spectrum. The use of a matrix polymer to suspend
the active molecules is an important feature of our approach. The matrix physi-
cally separates the molecules from one another by suspending them in a ‘solid so-
lution’. It is of course possible to create a ‘pure’ thin film of 4TBPPZn molecules
directly via spin-coating or by thermal evaporation without the use of a matrix
film, however the strong intermolecular interactions that occur in such molecular
films tend to significantly broaden the Soret-band absorption and reduce the pos-
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Fig. 6. (a) The absorption of a thin film of 4TBPPZn molecules in a polystyrene matrix. The in-
sets show the chemical structure of 4TBPPZn, and its energy level scheme. (b) The absorption of a
drop-cast film of 4TBPPZn on a quartz substrate.

sibility of achieving strong coupling. Figure 6(b) shows the absorption of a thin
film of ‘pure’ 4TBPPZn molecules that have been deposited by spin-coating. It
can be seen that the Soret-band absorption has now broadened, having a linewidth
of approximately 220 meV. There is also an absorption background visible in the
spectrum, whose origin comes from scattering. This scattering results from micro-
crystallinity within the film, again resulting from the strong intermolecular inter-
actions that occur when a matrix polymer is not used. Such scattering would sig-
nificantly reduce the finesse of the microcavity, and make strong-coupling much
more difficult to achieve.
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3.3. J-AGGREGATES AND OTHER SELF-ASSEMBLED MOLECULAR

SYSTEMS

A second type of organic semiconductor system that we have used for strong cou-
pling is based on J-aggregates of cyanine dyes, which are a class of material that
has found diverse uses in photography [34] and as laser dyes [35]. Cyanine dyes
carry a net charge, which drives a self-assembly of the molecules in a polar solu-
tion to form 1-dimensional aggregates termed J-aggregates [36–38]. Intermolec-
ular interactions in J-aggregates is responsible for the appearance of an excitonic
band. Due to the ‘head to tail’ packing of the molecules in the aggregate the lowest
energy state in the band has zero wavevector. To a first approximation we can say
that optical transitions are only permitted to the lowest energy point in the band.
For this reason and due to phenomena resulting from motional narrowing [39],
J-aggregate absorption spectra are often characterised by a single, relatively nar-
row and intense optical transition, significantly red-shifted from the absorption of
the un-aggregated monomer. Following optical excitation, the primary fundamen-
tal excitations that are created in the aggregate are singlet excitons. Such excitons
have relatively large binding energies, which allow them to be created and studied
at room temperature. In J-aggregates, the excitons are highly mobile and can be
viewed as being delocalised over a relatively large number of molecular units.

To process cyanine dyes into microcavities, the J-aggregates were suspended
in a polymer matrix. Cyanine dyes are usually soluble in polar solvents such as
water and methanol, and thus we have used the matrix material poly(vinyl alco-
hol) [PVA] which is also soluble in aqueous solvents. Strong-coupling has been
achieved with two different J-aggregate forming dyes (whose chemical structures
are shown in the insets in Figures 7(a) and 7(b) [22,23]). To fabricate a thin film
of J-aggregates, the cyanine dye is dissolved at a concentration of∼ 1 mg/ml into
a 50/50 water-methanol mix containing the PVA polymer. Thin films of the com-
posite organic film were formed by spin-coating. During the spin-coating process,
the water and methanol evaporate, which rapidly raises the concentration of the
cyanine dye. This drives an association of the molecules to form the J-aggregates.
Figure 7(a) and (a) shows the optical absorption and photoluminescence of two
different PVA/J-aggregate thin films. The J-aggregates shown in Figure 7(a) have
an absorption peaking at 1.84 eV, with a linewidth of 40 meV. The absorption is
slightly asymmetric, having a weak tail that extends to higher energies. The PL
is the mirror image of the absorption, and is Stokes shifted down in energy by
5 meV.

This solution based deposition method is critical for the formation of the J-
aggregates. If a thin film of the cyanine dye is deposited by a non-aqueous method
(for example by thermal evaporation), the molecules are unable to associate with
one another and the formation of the 1-dimensional aggregates is blocked. This
is highlighted by the absorption spectra shown in Figure 8. For ease of compari-
son, we plot the normalised absorption of an amorphous cyanine dye film formed
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Fig. 7. Absorption (solid dots) and photoluminescence emission (open circles) of a thin film of
J-aggregated cyanine dyes in a PVA matrix. Note, the chemical structure of each of the dyes are
shown as insets.

by vapour deposition along with the same material in a PVA matrix which has
self assembled in solution to form J-aggregates. However, the peak absorption of
J-aggregated film would be much more intense than that of an amorphous film
containing the same number of monomers per unit volume. To a good first ap-
proximation, the oscillator strength of each of the monomers is concentrated into
the J-aggregate transition band. It can be seen that the J-aggregate absorption is
located at the extreme low-energy end of the monomer absorption. Whilst the
aggregated molecules are a good candidate for strong-coupling, the amorphous
material clearly is not. There is thus a subtle difference in the use of J-aggregates
for strong coupling as apposed to the use of highly rigid molecular dyes as ex-
emplified by the material system shown in Figure 2: Here, we do not rely on the
structural rigidity of the molecule to create a narrow optical transition. Instead
the narrow transition arises because of the natural tendency of the molecules to
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Fig. 8. The absorption of an amorphous film (solid line) and a J-aggregated film (dotted line) of the
cyanine dye shown in Figure 7(b).

self organise into molecular superstructures which have delocalised and narrow
optical transitions, determined by the structure of the molecular packing.

One consequence of the self-assembly of the cyanine dye molecules during
the spin-coating process is a significant degree of inhomogeneity in their spatial
distribution. We have made preliminary investigations of such J-aggregate films
using a near-field optical microscope, and find strong variations in the density
of aggregates within the PVA film on length-scales of a few hundred nanometers
and below. We can in fact estimate the number of molecules within each aggregate
on the basis of the reduction in the linewidth of the J-aggregate absorption com-
pared to the monomer absorption. It has been shown [39], that the inhomogeneous
linewidth of an aggregate composed on N molecules scales with N−1/2. For the
material system shown in Figure 8, the linewidth of the J-aggregate is approxi-
mately 10 times smaller than that of the monomer, implying that each aggregate
is comprised of about 100 coupled-molecules. We estimate the length of a single
cyanine-dye molecule to be around 2 nm, and allowing for some overlap between
the neighbouring molecules in the aggregate, we calculate the average length of
a J-aggregate to approximately 100 to 150 nm. The cyanine dye molecules are
added to the PVA matrix at a concentration of approximately 4 × 1019 cm−3,
from which we calculate that there are approximately 2 × 1017 aggregates per
cubic centimetre, implying an average aggregate separation of 20 nm.

Strong-coupling effects have also been observed using perovskites. Perovskites
are self assembled systems, that form alternate nano-structured organic and in-
organic layers [40]. Such materials can be thought of as analogous to inorganic
quantum well heterostructures: in a perovskite, the organic component of the com-
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plex [C6H5C2H4NH3] acts as the barrier for the inorganic well material [a PBI4
salt]. The excitons are localised within the inorganic well and have absorption
linewidths of around 100 meV. Both synthetic opals [42] and distributed feedback
gratings (DFBs) [43] have been infiltrated with perovskites, and strong-coupling
behaviour has been evidenced.

4. Optical Measurement Techniques

One of the simplest techniques used to characterise microcavities is the measure-
ment of reflectivity as a function of angle. This allows the direct determination
of the energy and dispersion of the optically accessible states within the cavity.
‘Photon-like’ cavity modes can be readily identified by a sharp dip in the cavity
reflectivity spectra. Such photonic modes in microcavities have a strong angular
dispersion, with their wavelength at external viewing angle θ given by Eq. (2).

The angular dependent reflectivity spectra of our microcavities can be mea-
sured using the apparatus shown schematically in Figure 9. The microcavity (MC)
is mounted on a central stage, to which are fixed 3 optical rails, each having free
independent rotation around the central axis. Light from a tungsten projector lamp

Fig. 9. The apparatus used to measure both white light reflectivity, and photon emission from an
organic semiconductor microcavity. Abbreviations used in this figure: Microcavity (MC), lens (L),
Fibre bundle (FB), P (Polarizer).
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is imaged onto a 500 µm spot on the microcavity surface via lens L1. The spec-
ular reflection from the cavity is collected by a lens L2 and imaged into a fibre
bundle (FB) that is also mounted on the optical rail. The fibre-bundle is then used
to deliver the reflected light to a cooled CCD spectrograph. Using this equip-
ment, the white light reflectivity of the microcavity can be measured at angles
from 12◦ to 85◦. A polarizer (P) placed in front of lens L2 allows either TE or
TM polarisations of reflected light to be detected. By comparing the reflectivity
of a microcavity to that of an aluminium mirror (which is assumed to reflect light
with approximately equal efficiency over the whole visible range) the absolute
reflectivity of the cavity can be determined.

Using the system shown in Figure 9, we are also able to generate and detect
photoluminescence emission from the microcavity as a function of angle. Light
from a laser is focussed into a fibre bundle, one end of which is mounted on an
optical rail. The laser light delivered by the fibre is then focussed by lens L3 onto a
500 µm spot on the cavity surface. This system allows the photoluminescence and
reflectivity to be measured from exactly the same spot on the cavity surface. This
apparatus is designed to allow measurements to be made at room temperature
and in air. For most purposes this is sufficient, as the organic materials that we
use have reasonable photostability. However for some measurements (particularly
those involving the use of lasers with high excitation density) it is preferable to
mount the microcavity in a cryostat at low temperature. A second similar system
is available having a wide angular access cryostat mounted on a rotation stage.

5. Dispersion of Cavity Polaritons

5.1. REFLECTIVITY MEASUREMENTS OF STRONGLY-COUPLED CAVITIES

As discussed above, the energy of the cavity photon mode varies strongly as a
function of angle, shifting to higher energies at off axis viewing angles. This ef-
fect can be conveniently used to tune of the interaction between the exciton and
photon modes: the exciton transition energy is to a very good approximation an-
gle independent and hence changing the angle of incidence allows one to adjust
the relative separation of the photon with respect to the exciton. We illustrate
this point with measurements on microcavities containing a layer of polystyrene
doped with 4TBPPZn molecules (whose structure is shown in Figure 6(a)). Micro-
cavities were fabricated such that the cavity mode was at a lower energy than the
exciton at normal incidence by some 100 to 150 meV and became resonant with
it at approximately 35 to 40◦. The room temperature reflectivity of a microcavity
measured at normal incidence to the cavity axis is shown in Figure 10, curve A.
The cavity photon mode is visible as a sharp dip in the reflectivity at 2.68 eV.
The 4TBPPZn exciton absorption lies at 2.88 eV (marked by the dashed vertical
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Fig. 10. A series of reflectivity spectra measured at progressively larger viewing angles. The vertical
dotted line marks the resonance energy for the 4TBPPZn excitons within the cavity.

line). The exciton can only just be detected at normal incidence in the reflectivity
spectrum as there is very little coupling between the photon and exciton modes
as they are relatively far apart in energy. As the cavity mode is tuned closer to
the exciton energy, strong-coupling is observed (curve B). The two modes of the
system can now no longer be described as ‘pure photon’ or ‘pure exciton’; rather
each mode must be described as a linear superposition of photon and exciton. The
exciton-like mode thus becomes increasingly visible in reflectivity, as it contains
an increasing large cavity-photon like character. Such mixed modes are termed
cavity polaritons. On resonance (curve C) the expected pair of equal intensity
Rabi-split transitions are seen both containing equal admixtures of a photon and
an exciton. For larger angles, beyond resonance (curve D) the coupling reduces,
again in line with expectation. Such spectral features are entirely consistent with
other measurements made on strongly-coupled inorganic-semiconductor micro-
cavities [9].

The energies of the two transitions are plotted in Figure 11 as a function of
the angle of incidence. The horizontal dashed line at 2.88 eV is the 4TBPPZn
exciton energy in the polystyrene blend film. This energy is angle independent
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Fig. 11. Dispersion curve measured from a microcavity containing 4TBPPZn molecules. The hori-
zontal dashed line is the peak absorption energy of the 4TBPPZn molecules, about which anticrossing
occurs.

and hence defines the resonance energy for the coupled exciton–photon system.
The cavity photon and 4TBPPZn exciton modes exhibit a very clear anti-crossing
behaviour and the Rabi-splitting energy, of 110 meV between the two transitions
at the 40 ◦resonance angle is exceptionally large.

5.2. MACROSCOPIC AND MICROSCOPIC ANALYSIS OF DISPERSION

The structure that we consider is very disordered. However as the distance be-
tween the 4TBPPZn dye molecules in the microcavity is approximately 3 nm, it
is thus much smaller than the wavelength of the optical mode. This allows us to
use an equation of macroscopic electrodynamics, with some dielectric constant to
describe the optical properties of the cavity. We can write following Maxwell’s
equations for a light wave in a three dimensional isotropic medium as

(14)
k2c2

ω2 = ε(ω)
where ω and k are the frequency and wavevector of a light wave. This equation
determines the dispersion relation of the frequency to the wavevector. However
let us firstly consider a microcavity having a material that has an optical reso-
nance that is very far from the cavity cut-off frequency. In this case, the dielectric
constant ε0 can be considered a constant, thus

(15)
k2c2

ω2 = ε0
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For the mth cavity mode kz is fixed, and in this case

(16)k2 = k2
x +

(
mπ

L

)2

, m= 1,2, . . . ,

where kx is the in-plane component of the total wavevector. From Eqs. (14)
and (15), it is easy to show that for small kx , the dependence of the frequency
of the cavity mode on its in-plane wavevector is given by

(17)ωcav(kx)= ωcutoff+ h̄k2
x

2µ

where ωcutoff is given by

(18)ωcutoff = c√
ε0

(
πm

L

)
and µ is the effective mass given by

(19)µ= h̄ωcutoffε0

c2
.

In organic materials ε0 is of the order of 3, and as the cutoff energy in our cavity
is given by h̄ωcutoff ∼ 2 eV, we calculate the cavity photon effective mass to be of
10−5 of a free electron.

We assume that the material placed within the cavity, has an (excitonic) reso-
nance given by

(20)ε(ω)= ε0 + 2E0f

E2
0 −E2 − 2iγ (E)E

where f is some constant proportional to the oscillator strength, E0 is the reso-
nance energy of the exciton, and γ is the homogeneous broadening. In the case
where E ≈E0 the resonance term can be simplified and it can be shown that

(21)ε(ω)= ε0 + f

E0 −E
where we neglect the term accounting for homogeneous broadening. Substituting
Eq. (21) into Eq. (14), and using Eqs. (16) and (17), it can be shown that the
dispersion of the cavity polaritons is given by

(22)
[
Ec(kx)−E

]
(E0 −E)= V 2

where the energy of an optical mode in an bare cavity is given by

(23)Ec(kx)= h̄ωcav(kx)
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and V is given by

(24)V =
√
fE0

2ε0

and is half the Rabi-splitting energy. For the derivation of the above equations,
we used a phenomenological Maxwell equation. The results of this derivation,
summarised by Eq. (22) are identical to the results of microscopic theory, which
are usually used in the analysis of inorganic semiconductor microcavities. Our
derivation presents a straightforward approach to determine the main features of
the Rabi-splitting if the dielectric constant of the organic semiconductor within
the cavity is known. At the same time, it can be generalised to take account of
both homogeneous and inhomogeneous broadening.

However we now proceed in our analysis of the strongly coupled microcavity
using a microscopic theory. This method is widely used [9] in the description of
inorganic semiconductor microcavities. The cavity is described as a compound
oscillator consisting of the exciton and photon modes. The compound oscillator
is described with the matrix equation

(25)

(
Ecav(kx)−E V

V E0 −E
)(

α

β

)
= 0,

E0 and V are assumed to be constant at all angles. The matrix can be diagonal-
ized to obtain the eigenvalues of the system (E) that represent the energy of the
two polariton branches. The advantage of this approach is that the coefficients of
the bare photon and exciton which describe the weighting of each of the states
in the coupled modes (which are represented in Eq. (25) as α and β) can be di-
rectly determined. For the important case of the photon resonant with the exciton
(Ecav = E0 = ε), it is straightforward to show that the polariton branches have
energies given by

(26)E± = ε± V
where 2V = h̄�Rabi. Using the fact that α2 + β2 = 1, it is straightforward to
demonstrate that at resonance α = β = 1/

√
2. This simple analysis confirms that

at resonance, the two polariton branches are separated equally in energy around
the resonance energy of the system (ε), and that both branches contain equal
amplitude of the exciton and the photon modes.

To compare with the experimental data, the photon energy dispersion Eph(θ) is
calculated via a transfer matrix model in which the only free variables are the pho-
ton energy at 0◦ and the average (non-dispersive) refractive index of the cavity.
The solid line displayed in Figure 11 is the energy of the two polariton branches
calculated using Eq. (25). As it can be seen, the agreement between the data ob-
tained from experiment and the coupled oscillator model is excellent. Figure 12
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Fig. 12. Predicted exciton (open circles) and photon (filled circles) coefficients for the upper and
lower polariton branches of the cavity whose dispersion curve is shown in Figure 12.

plots the values of α2 and β2 for the upper and lower branches. At small angles the
upper branch only contains a small component of the cavity photon, and is thus
weak in reflectivity (see curve A, Figure 10). As the viewing angles increases,
the upper-branch photon component grows, and thus it becomes more visible in
reflectivity (curve B). At resonance (40◦), the cavity photon is contained equally
in both branches, and thus they are detected with equal intensity in reflectivity
(curve C). Beyond resonance, the cavity photon is largely contained within the
upper polariton branch, which thus becomes increasingly dominant in the reflec-
tivity spectrum (curve D).

The excitons within the cavity can be viewed as an ensemble being driven by
the confined optical field. The coupling between the exciton mode and the photon
mode necessarily implies a mutual coherence between the excitons in the micro-
cavity. The polarisability of the organic layer per unit area is therefore dependent
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Fig. 13. The measured Rabi splitting versus the square-root of the peak absorption coefficient mea-
sured from cavities containing a thin film of 4TBPPZn molecules in a polystyrene matrix. Note the
peak absorption coefficient was determined in each case from an absorption measurement made from
a control (non-cavity) film, which had the same thickness and number of 4TBPPZn molecules per cm3

as were used in the cavity.

on the sum of the oscillator strength of all the molecules within the cavity. By
adjusting the concentration of the 4TBPPZn dye in the blend film it is possible to
control oscillators strength of the organic layer, and thus adjust the energetic split-
ting between the two branches. This is summarised by Eqs. (12), (13) and (24),
which show that the Rabi-splitting varies as the square root of the absorbance.
Figure 13 shows the Rabi-splitting energy of a series of microcavities plotted as
a function of (αL)1/2: The observed proportionality is in good agreement with
expectation. The largest room temperature Rabi-splitting that we have measured,
is 160 meV; more than 30 times the typical splittings observed for III–V quan-
tum well microcavities, which are of the order of 5 meV [9]. In the appendix, we
show that the oscillator strength of the 4TBPPZn film that gave a Rabi-splitting
of 160 meV is approximately 100 times larger than that of a series of three III–V
QWs. This increase in oscillator strength enhances the Rabi-splitting by a fac-
tor of 10. Two important additional effects also contribute to the enhanced Rabi
splitting observed in the organic semiconductor microcavity compare to its inor-
ganic analogue. These are the low refractive index of the organic layer and the
use of a metallic reflector. We show in the appendix that these factors increase
the local optical field experienced by the semiconductor, and enhance the Rabi-
splitting (compared to a III–V QW microcavity) by a factor of approximately
3.3 times.
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6. Cavity Emission Following Non-Resonant Laser Excitation

In the previous section, it was demonstrated that organic semiconductor micro-
cavities can show giant Rabi-splittings due to the very large oscillator strength of
organic excitons. In this section we turn our attention to the photon emission from
an organic semiconductor microcavity following non-resonant optical excitation.
In our work [22,23,44,45], we have used J-aggregates of a cyanine dye instead of
the 4TBPPZn material discussed in the previous section. This change in molecu-
lar system does not result in any particularly different linear optical properties of
the cavity, apart from a change in the resonance energy of the system. However
as shown in Figure 7, the J-aggregates that we have studied can emit strong fluo-
rescence following optical excitation. This fluorescence emission is a convenient
probe by which to study the effect of strong-coupling on the excitons within the
cavity.

6.1. EXPERIMENTAL OBSERVATIONS

The apparatus shown in Figure 9 was used to excite and then detect emission from
the cavity following non-resonant excitation. In a non-resonant excitation exper-
iment, photons having an energy greater than that of the polariton branches are
shone into the cavity. The photons directly excite excitons in the cavity, which
relax in energy and populate the ‘exciton-reservoir’. The exciton reservoir de-
scribes the population of excitons within the microcavity, which have either an
energy or in-plane momentum that is greater than that of the polariton modes.
Such excitons cannot directly couple to a cavity photon. Instead, the population
of the polariton states can only occur once the excitons have lost an appropriate
amount of energy or momentum through phonon emission. A number of authors
have studied the emission from cavity polaritons following non-resonant excita-
tion [41,46–50]. We will show that our results are in accord with the observations
made in microcavities containing inorganic QWs, giving us further confidence of
the strong-coupling picture that we use to describe our microcavities.

To generate cw photoluminescence emission from the cavity, light from a red
HeNe laser (having an energy of 1.96 eV) was focussed into the cavity through
lens L3 (see Figure 9) at normal incidence (having a power density at the cavity
surface of 50 kW m−2). It can be seen from Figure 7(a), that the energy of the ex-
citation photons lie within the high energy tail of the J-aggregates. The excitation
is non-resonant, as the laser photons have an energy 110 meV greater than the
peak absorption energy of the excitons (1.84 eV). The photon emission from the
cavity was collected using lens L2, and was imaged into a fibre-bundle connected
to a CCD spectrograph.

Figure 14(a) shows the relative reflectivity of the cavity measured at a series of
increasing viewing angles. At 20◦, two modes are visible: a sharp dip at 1.72 eV



382 D.G. LIDZEY

Fig. 14. (a) Reflectivity spectra measured as a function of angle for a microcavity containing a thin
film of the cyanine dye J-aggregates in a PVA matrix, whose absorption and chemical structure are
shown in Figure 7(a). The dotted lines are a guide for the eye showing the dispersion of the po-
lariton branches. (b) Photoluminescence emission from the cavity as a function of angle following
non-resonant optical excitation. The dispersion of the upper polariton branch is shown by a dotted
line. In both figures, the peak absorption energy of the J-aggregates are shown by a vertical dashed
line.

(a photon-like mode), and a second weaker dip at 1.85 eV (an exciton-like mode).
Resonance between the exciton and photon occurs at 45◦ degrees, where two
equal intensity modes are visible, split around the peak absorption energy of the
excitons (which is marked with a vertical dashed line). At viewing angles greater
than 45◦, the higher-energy mode moves to higher energies. This behaviour is
consistent with absorption and reflectivity spectra measured from microcavities
containing 4TBPPZn described in the previous section.

Figure 14(b) shows the photon-emission from the cavity, recorded at a num-
ber of different viewing angles. The emission from the lower-branch is more in-
tense than the upper-branch at all angles. Very similar behaviour has been reported
from microcavities containing III–V semiconductor QWs [50]. The upper polari-
ton branch (located at 1.85 eV at 20◦), decreases in intensity as a function of



STRONG OPTICAL COUPLING IN ORGANIC SEMICONDUCTOR MICROCAVITIES 383

Fig. 15. Photoluminescence emission from the microcavity measured at a viewing angle of 35 de-
grees. Emission from the upper branch (UB), lower branch (LB) and exciton (X) are clearly identified.

increasing viewing angle. At angles of 35◦ and above, two features are detected
in emission in addition to that from the lower-branch. This point is further illus-
trated in Figure 15, which plots the emission measured at 35◦. The spectrum can
be well described using 3 Lorentzian functions as shown. The higher and lower
energy features can be positively identified as emission from the upper and lower
branches, as their energy coincides with the energy of the features recorded in re-
flectivity (see Figure 14(a)). The energy of the central feature appears to coincide
with the peak emission energy of the J-aggregates (see Figure 7(a)). It therefore
appears that some of the J-aggregates emission ‘escapes’ from the cavity without
coupling to a cavity-polariton mode. At present, the reason for such ‘uncoupled’
emission is not fully understood, however similar observations have been made
in inorganic semiconductor microcavities, and have been attributed to emission
from localised states [51] and inhomogeneous broadening [52].

Figure 16(a) shows a plot of the peak photon-emission energy from the two
branches as a function of angle (solid points). The open circles mark the energy
of the feature that we identify as uncoupled exciton emission. It can be seen, that
the polariton branches undergo anticrossing around an energy coinciding with
the peak of the J-aggregate absorption (which is marked by a dashed line). The
energy of the direct exciton emission remains approximately constant as a func-
tion of angle as expected. A Rabi-splitting of 80 meV is detected between the
polariton branches at an angle of 42.5◦. Figure 16(b) shows a plot of the pho-
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Fig. 16. Dispersion curve constructed from the measured photoluminescence emission energy of the
cavity shown whose reflectivity and emission spectra are shown in Figure 14(a) and (b). Solid points
indicate the measured emission energies, whilst the filled lines are predictions from a model that uses
a coupled oscillator model to describe the interaction between the exciton and photon modes. The
open circles are the energies of the uncoupled exciton emission (see text for details).

toluminescence emission intensity from a control film of J-aggregates. It can be
seen that the J-aggregate emission spectrum is approximately symmetrical with
respect to the energy at which anticrossing occurs (1.84 eV). This symmetry is not
however reflected in the emission intensity from the two polariton branches which
are strongly asymmetric (see Figure 14(b)). At resonance, the emission intensity
from lower branch is 14 times larger than that from the upper branch.

6.2. A MODEL FOR NON-RESONANT EXCITATION AND EMISSION

We now describe a model that we have used [44] to describe the angular depen-
dent emission intensity from the microcavity. The model considers the scattering
of excitons from the exciton reservoir into the upper and lower polariton branches,
followed by their radiative decay. Our model provides a good fit to the experimen-
tal data, provided that a term is included which allows a transfer of the polariton
population to occur from the upper to the lower branch. The model is summarised
schematically in Figure 17.

We first calculate the weight of the exciton and photon modes in the polariton
branches as a function of angle using Eq. (10). The best-fit theoretical dispersion
for the energy of the polariton branches is shown as a solid line in Figure 15(a)
and is in good agreement with the experimental data. We also introduce the labels
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Fig. 17. Schematic diagram showing the main components of the model used to describe the emis-
sion from the non-resonantly excited microcavity. Here the relative population of the exciton reservoir
is plotted as U(ω). The population of the upper and lower branches is labelled as P (see Eq. (27), the
emission from the branches is labelled as I (see Eq. (32)), and the transfer of population between the
branches is labelled as ρ (see Eq. (28)).

u and L to denote the upper and lower branches respectively. Unless stated, all
terms are expressed as function of viewing angle (θ).

We assume that the polariton branches are populated by direct scattering of
excitons from the reservoir. Furthermore we make the common assumption [53]
that the scattering rate of excitons from the reservoir to a polariton state is di-
rectly proportional to the relative exciton fraction (βu,L) of the polariton state.
The population rate of the branches P u,L

θ (ω) is thus given by

(27)P
u,L
θ (ω)=)Uu,L(ω)β

2
u,L

where Uu,L(ω) is the relative number of uncoupled excitons in the reservoir hav-
ing the appropriate energy to scatter into the state, and ) is a scaling constant,
dependent on the intensity of the excitation laser. We assume that the distribution
of U(ω) is the same as the photoluminescence emission spectra – i.e., the spectra
this provides a measure of the distribution of energetically relaxed excitonic states
within the J-aggregate. We assume that exciton scattering occurs from the reser-
voir to a polariton state, and there is no return path back to the reservoir. This is
because the radiative rate of polaritons from the cavity is likely to be much faster
than the relatively slow scattering process.

We introduce a population transfer term between the branches. We propose that
population-transfer occurs by the emission of energy in the form of vibrational
quanta. Such a transfer process will occur when Eu − EL = hνphonon. Figure 18
shows a resonance Raman spectrum recorded for the J-aggregate material used in
this experiment. It can be seen that there is a strong Raman-active mode having
an energy of 74 meV. In this particular cavity, the Rabi-splitting between the cav-
ity branches on resonance is 80 meV; an energy almost resonant with that of the
Raman mode. The slight difference between these two energies is smaller than
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Fig. 18. Resonant Raman spectrum recorded from the J-aggregated cyanine dye in a PVA matrix
used in the microcavity experiments.

the linewidth of each of the polariton branches, which have a FWHM of approx-
imately 30 meV. This broadening also means that phonon-mediated inter-branch
transitions are permitted over most of the detuning range studied in this experi-
ment.

In our model, we assume that polariton transitions between the branches occur
between initial and final states having the same in-plane momentum. We neglect
momentum transfer to the optical phonon, with only energy in the u→ L tran-
sition being conserved. This approximation would not be valid in high quality
crystals as the uncertainty of the polariton wave vector arising due to scattering
by defects or phonons is small in comparison with wave vector. The wave vec-
tor of such quasi-particles is a good quantum number and in a scattering process
we would have to take into account not only energy conservation, but also mo-
mentum conservation. In high quality inorganic single crystals or quantum well
systems, we meet just this case and the conservation of momentum for instance
in scattering of electrons, excitons and phonons plays just as an important role as
the conservation of energy.

Nevertheless, in some cases the conservation of momentum can be ne-
glected [54]. This can be done if at least one of the quasi-particles that partici-
pates in a collision has a very small energy band width (or very large effective
mass). In this case this the heavy quasi-particle can be considered as localized
and we can effectively neglect its movement in the interaction processes. Such
an adiabatical approximation only requires the conservation of energy. Such an
approximation can be used when considering intramolecular vibrations in organic
crystals. In organic crystals the band width of the optical phonons (which origi-
nate from high frequency intramolecular vibrations having an energy of the order
of 50–100 meV) is usually small, and of the order of 1 meV. This means that
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when we consider scattering of polaritons by intramolecular optical phonons, we
can neglect the bandwidth of optical phonons and just include the conservation of
energy of the quasi-particles that participate in the collision. This approximation
is rather good because the change of polariton energy in the region of Rabi split-
ting is strongly-dependent on wavevector, and is of the order 100 meV, which is
much larger than the bandwidth of intramolecular phonons.

The interaction with molecular vibrations is maximised when the polaritons in
both branches are exciton like, and thus the transition rate between the branches
ρ(θ) is given by

(28)ρ(θ)=Ku→Lβ
2
uβ

2
L

where Ku→L is a rate-constant, assumed to be constant at all angles and branch
separations. As the Rabi-splitting between the branches is much larger than kT ,
we assume that population transfer occurs from the upper to the lower branch
only, and that there are no back-transfer processes.

We now consider the radiative decay of the polariton states. The radiative decay
time of a polariton state τu,L(θ) is given by

(29)τu,L(θ)= τcav

α2
u,L(θ)

where τcav is the escape time of an uncoupled photon from the cavity.
The relative populations of the upper [Nu(θ)] and lower [NL(θ)] polariton

branches can be described with the two rate equations:

(30)ṄL(θ)=−NL(θ)

τL(θ)
+ ρ(θ)Nu(θ)+ P L

θ (ω),

(31)Ṅu(θ)=−Nu(θ)

τu(θ)
− ρ(θ)Nu(θ)+ P u

θ (ω).

Here, the first term on the right-hand-side describes the radiative depopulation
of the branches. The second term represents the population transfer from the up-
per to the lower branch, and the last term describes the filling of the upper and
lower branches from the exciton reservoir. As our experiments measure the cw
emission from microcavity, we set Ṅu = ṄL = 0. The emission intensity from the
cavity [Iu,L] can be expressed in terms of the relative polariton population and its
radiative decay time:

(32)Iu,L = Nu,L

τu,L
.

It can be shown that

(33)Iu(θ)= )Uu(ω)β
2
u

1+ ρ(θ)τcavα
−2
u
,
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Fig. 19. Measured photoluminescence emission intensity as a function of angle for the upper and
lower polariton branches. Note filled dots are the measured data, whilst the solid lines are the predic-
tions of the model, summarised in Eqs. (33) and (34).

(34)IL(θ)=)
[

ULβ
2
u

1+ α2
uρ
−1(θ)τ−1

cav
+UL(ω)β

2
L

]
.

Our model only includes population transfer between branches, it does not ac-
count for any redistribution along each polariton branch by intra-branch scat-
tering. Such intra-branch scattering processes have been shown to only become
significant at laser fluxes much larger than that used in this experiment (i.e.,
> 50 kW m−2) [49].

Figure 19 shows a fit of Eq. (18) and (19) to the measured angular depen-
dent intensity from the upper and lower branches. The only free variables used
in the fit was the product of Ku→L.τcav (which represents the relative compe-
tition between the inter-branch transition rate and radiative decay) and ). We
determine a best fit using a value of Ku→L.τcav = 4.5. The measured data points
are shown as solid circles, and the best fit to the data is shown as full lines. The
agreement between the data and the fit is quite reasonable and in particular it
replicates the strong asymmetry in emission intensity observed between the up-
per and lower branches. Using a bare cavity linewidth of 20 meV, we calculate a
photon escape-time from the cavity of τcav ∼ 35 fs. The transition rate between
the branches [ρ(θ)] is given by Eq. (13). This term takes its maximum value at
resonance, where both β2

u = β2
L = 0.5, with their product being equal to 0.25.

In this microcavity, resonance between the photon and exciton occurs at 42.5◦,
thus the maximum transition rate from the upper to the lower branch is given by
ρ(42.5◦) = 0.25Ku→L. From the best fit, we determine an inter-branch transfer
time at resonance to be τtrans ≈ 30 fs. The decay time of the cavity polaritons can
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be calculated using Eq. (14). Using a cavity escape time of τcav = 35 fs, we cal-
culate1 that at resonance, the upper or lower branch polariton states decay with a
lifetime of τu,L(42.5◦)≈ 70 fs. As the transfer time between branches is approx-
imately half that of the polariton decay time from either branch, it is apparent
that inter-branch transfer process will dominate over radiative decay. In fact, we
calculate that approximately 80% of all of the upper branch polaritons transfer to
lower branch states.

The time-scale for the inter-branch transition predicted by our model is∼ 30 fs.
In many molecular systems, both in solution and in the solid state, there are
intramolecular vibrational energy redistribution processes that occur over time
scales of a few tens of femtoseconds or less [55]. Thus the inter-branch popula-
tion transfer proposed here could be thought of being analogous to the ultra-fast
relaxation processes that occur through coupled vibrational states.

7. Photon Emission Following Resonant Excitation

We now review our work on studying the emission from a strongly-coupled
organic semiconductor microcavity that has been excited resonantly using a
laser [56]. Under resonant excitation, photons having energy and in-plane momen-
tum equal to one of the polariton modes are incident on the cavity. These photons
can then directly excite a cavity polariton state. In microcavities containing inor-
ganic quantum wells, a number of effects have been studied following resonant
excitation, including the temporal dynamics of polariton emission [57–59], po-
lariton mediated Raman scattering [60,61], polariton relaxation mechanisms [62]
and (bosonic) stimulated scattering [63,64].

7.1. RESONANT EXCITATION MEASUREMENTS

We have again explored the properties of strongly-coupled microcavities contain-
ing the J-aggregates shown in Figure 7(a). The resonant excitation of the micro-
cavities was achieved using a tunable cw Ti-sapphire laser. In these experiments,
the cavity was placed in a cryostat with wide angular access. Experiments were
carried out over the temperature range 60–300 K. The experimental setup is shown
schematically in the inset of Figure 20. Here, the laser is incident on the sample
surface at an angle 0. The energy of the incident laser photons is fixed to the en-
ergy of the polariton state at that angle. The photon emission is then collected at

1This time is twice the cavity escape time, as at resonance each polariton can be thought of as
‘spending’ half its time as a photon, and half its time as an exciton. As escape only occurs during its
photon-like part of its cycle, the polariton lifetime is approximately twice that of a cavity photon. This
of course assumes that exciton dephasing is not faster than the photon lifetime.
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Fig. 20. Photon emission from the microcavity following resonant excitation. In part (a), the excita-
tion angle and energy remains fixed whilst the angle of detection is varies. In part (b), the angles of
excitation and emission remain fixed, whilst the energy of excitation is varied. Part (c) shows the room
temperature analogue of the data shown in part (a), which were recorded at 120 K. The inset to part
(c) defines the angles of excitation and emission.

an angle ). Figure 20(a) shows a series of spectra recorded at T = 120 K for ex-
citation at 0= 34◦, and detection at a series of angles between )= 0◦ to 18◦. It
can be seen that each spectrum is composed of a relatively broad emission peak,
with additional sharp features superimposed at 1.698 and 1.699 eV. The broad
emission occurs from radiative-decay of polaritons that have scattered down in
energy along the lower branch. We find that the energy of the sharp features are
independent of collection angle, with the strongest sharp line occurring at an en-
ergy of 73.4 meV below the laser line. Figure 21 shows a schematic sketch of
the experimental methodology. The solid arrows indicate transitions to different
states that can be probed by angle-tuning.

To determine the origin of the sharp peaks, spectra were recorded for fixed
angles of excitation (0) and detection ()). However now, the energy of the laser
was varied, tuning it through resonance with the lower polariton branch. A series
of spectra recorded at T = 120 K are presented in Figure 20(b). As expected the
lower polariton branch emission energy is constant, as the angle of detection is
fixed. However, the energy of the sharp lines superimposed on the broader PL
peak depend strongly on the laser energy. The energy separation between these
peaks and the laser is constant with a separation of −73.4 meV below the laser
line being found for the strongest line. The laser tuning experiment is represented
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Fig. 21. Schematic diagram of the resonant excitation experiment, illustrating angle tuning. Only
when the ingoing (excitation) and outgoing (emission) channels both lie on the lower polariton branch
is the condition of exact double resonance achieved.

in the diagram of Figure 21 by the dashed arrows. The constant energy separation
from the laser energy, independent of laser energy and angle of detection, provides
strong evidence that the sharp features arise from an inelastic scattering process,
namely Raman scattering. It can be seen in the Raman spectra shown in Figure 17,
that there is indeed a strong Raman line (that originates from a vibrational mode
of the cyanine monomer) at 73 meV.

We present further evidence to support the assignment of Raman scattering to
the sharp features shown in Figures 20(a) and (b) in Figure 20(c). Here, polari-
ton emission spectra recorded at 300 K are presented, generated under conditions
of resonant excitation into the lower polariton branch at 0≈ 0◦ at an energy of
1.707 eV. The polariton emission is now observed at energies up to nearly 80 meV
above the excitation energy, due to the large thermal energy of equilibrium po-
laritons at 300 K. A relatively weak sharp feature is also observed at 1.781 eV,
corresponding to an energy of +73.4 meV above the laser energy. This sharp fea-
ture arises from anti-Stokes Raman scattering. This process occurs as the phonon
population at 300 K is sufficient to allow the anti-Stokes companion of the Stokes
features observed at lower temperature in Figures 20(a) and (b) to be detected.
It is important to note that in contrast to inorganic microcavities where strong
coupling effects are only easily observed at T < 100 K due to the small exciton
binding energies and Rabi splittings, the polaritons in organic structures are stable
at room temperature and above. This high temperature stability permits the obser-
vation of the anti-Stokes resonant Raman process for the first time in a strongly
coupled microcavity.
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7.2. THE GENERATION OF RAMAN EMISSION IN A MICROCAVITY

In can be seen from Figures 20(a) and (b), that the Raman intensities are max-
imised when they are in resonance with the polariton emission peaks. In Fig-
ure 21(a), the excitation is in resonance with the lower polariton branch at 34◦.
Thus for detection at 10.5◦ where the Raman intensity is maximum, both incident
and scattered photon energies coincide with lower polariton branch states. In this
case the double resonance condition is achieved (the thick arrow in the diagram
of Figure 21). Similarly in Figure 20(b), where the laser energy is tuned, the max-
imum in Raman intensity is found when both the laser and the scattered photons
are resonant with the polariton dispersion curves.

Raman scattering in a microcavity can be though of as the result of three steps:
(1) The transmission of a photon into the sample and conversion to a polariton,
(2) phonon-mediated scattering from one polariton state to another, (3) the subse-
quent propagation and transmission of the scattered polariton and conversion to
an external photon. The transmission of a photon into the cavity at any particular
angle (1) is maximised when its energy coincides with the energy of a photon-like
cavity mode. Similarly in process 3, the escape of a photon from the cavity at any
particular angle is also maximised when the energy of the photon coincides with
the energy of a photon-like cavity mode. On the basis of this, we can understand
the observed energy and angular dependence of the Raman signal: In angle tuning
experiments, the energy of the cavity mode (which can be identified by the po-
lariton emission) is tuned through the energy of the Raman scattered photon. The
escape of the Raman photons from the cavity is therefore maximised when their
energy coincides with the energy of the polariton emission (schematically shown
in Figure 21). In energy tuning experiments, both the efficiency of transmission of
the photons in and out of the cavity are varied. Again, the Raman scattering effi-
ciency is maximised when the energy of the incident laser and the Raman photon
coincide with points on the lower branch.

Control experiments have demonstrated that the Raman scattering efficiency in
the microcavities (characterised by a finesse of Q≈ 50) under double resonance
conditions is about 300 times larger than that for the a non-cavity control sample
of J-aggregates in PVA. It has been shown that the enhancement of the Raman ef-
ficiency is a strong function of the magnitude of the confined optical field within
the cavity, which is itself a function of cavity finesse. High finesse inorganic cav-
ities with Q ∼ 2000 have been reported to show enhancements up to 104 [65].
We therefore conclude that our measurements are in good accord with the optical
processes that occur in inorganic semiconductor microcavities.

The cavity-induced enhancement of Raman scattering is particularly interesting
for investigations of non-linear processes. Recent studies of resonant Raman scat-
tering in conjugated polymer thin films have exhibited non-linear character under
high power pulsed laser excitation [66]. The significant enhancements of Raman
scattering found in this work therefore suggest interesting opportunities for the
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investigation of non-linear processes in strongly coupled microcavities [67] using
high levels of resonant pulsed laser excitation.

8. Photon-Mediated Hybridisation between Frenkel Excitons

Recently a number of authors have studied the interaction between different opti-
cal and electronic excitations in a microcavity. In the weak-coupling regime, it has
been claimed that the optical structure of a microcavity can be used to enhance
dipole–dipole interactions [68–70]. These observations have not yet been vali-
dated theoretically [71], and it is clear that more research in this area is needed.
However it is clear that modifying electronic processes by control over optical
nanostructure would be an attractive and exciting prospect. Coupling between
different optical and electronic excitations has also been studied in the strong-
coupling regime. Here, the interactions between two inorganic QW exciton states
with a single photon state [53] two photon states with a single (inorganic) exciton
state [72], and two (inorganic) exciton states interacting with two photon states
[73] have been reported.

In this section, we review our recent work [23,45] on the fabrication of micro-
cavities containing two different types of organic semiconductor, both of which
are strongly coupled to the same cavity mode. As discussed in Section 6, strong-
coupling in a microcavity necessarily implies that the excitonic states within the
cavity are all driven coherently by the same optical field. As we will show, simul-
taneous strong coupling of the individual exciton species to a single cavity-photon
mode leads to new eigenmodes that can be described as exciton–photon–exciton
admixtures of the three states. One may think of this coupled system in terms
of a photon-mediated hybridisation of the two exciton states. This hybridisation
therefore coherently couples the two different organic semiconductor materials.
We will show that such systems are analogous with biological light-harvesting
complexes, which are able to mediate long-range energy transfer.

8.1. HYBRID SEMICONDUCTOR MICROCAVITIES

To achieve a photon mediated hybridisation between two organic semiconductors,
it is necessary to choose a combination of materials, whereby (i) each individual
material can strongly-couple to a cavity photon, and (ii) the energy separation
(�E) between the transitions of the two semiconductors must not be much greater
than the Rabi-splitting energy. To achieve these conditions, we have utilised the
two cyanine dyes shown in Figures 7(a) and (b). For simplicity, we label these
materials Ex1 and Ex2. The difference in their peak absorption energy is approxi-
mately 60 meV that is comfortably less than the Rabi-splittings of 80 meV that we
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Fig. 22. Schematic diagram of a microcavity containing two different cyanine dyes. Ex1 corresponds
to the dye shown in Figure 7(b), and Ex2 corresponds to the dye shown in Figure 7(a).

observe in single component microcavities. The generic structure of the microcav-
ities that we have fabricated is shown in Figure 22. The cavity medium between
the DBR and the metallic mirror is composed of two J-aggregate films separated
by a 100 nm thick layer of the transparent dielectric polymer polystyrene. This
ensures that the only coupling that can occur between the two exciton species is
that mediated by a cavity photon, as short-range dipole–dipole interactions are
characterised by Förster transfer radii of typically less than 10 nm.

Figure 23(a) shows a series of reflectivity spectra measured at increasing view-
ing angle (spectra are displaced vertically for the sake of clarity). The vertical
dotted lines correspond to the peak absorption energy of the Ex1 and Ex2 exci-
tons in a non-cavity control film. At 15◦, a strong dip can be seen at 1.72 eV,
which corresponds to the cavity photon. Two other features are also apparent at
1.79 and 1.87 eV, which correspond to the Ex1 and Ex2 exciton-like modes. The
energy of three modes as a function of angle is plotted in Figure 23(b) with the
solid dots being the measured data points. The energy of the uncoupled excitons is
shown as horizontal dotted lines. As in the single component cavity, the polariton
branches undergo anti-crossing around the absorption energy of the two different
exciton modes.
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Fig. 23. (a) A series of reflectivity spectra measured at different angles from a microcavity contain-
ing two different J-aggregated dyes. The peak absorption energies of the J-aggregates are marked with
vertical dashed lines. (b) A dispersion curve of the three polariton branches determined from the spec-
tra shown in part (a). The peak absorption energies of the two J-aggregates around which anticrossing
occurs are also shown as horizontal dotted lines.

We describe this system using a model based on the interaction of two excitons
and one photon mode, and we write the matrix equation

(35)

(
Ecav(kx)−E V1 V2

V1 EEx1 −E 0
V2 0 EEx2 −E

)(
α

β

γ

)
= 0

where Ecav, EEx1 and EEx2 are the energies of the non-interacting cavity photon
and the two excitons and E are the eigenvalues of the coupled system. V1 and V2

are the interaction potentials between the photon and each of the two excitons and
α,β and γ are the coefficients that correspond to the bare photon, and the Ex1
and Ex2 exciton modes respectively. The same result can be obtained using the
macroscopic approach (summarised by Eq. (20)) using a dielectric constant with
two different resonances. We therefore write

(36)ε(ω)= ε0 + f1

ω2
1 −ω2 + iγ +

f2

ω2
2 −ω2 + iγ

where ω1 and ω2 are the frequencies of the two resonances, and f1 and f2 are
their corresponding oscillator strengths.

However we proceed using Eq. (35) to describe the energy of the polariton
branches. This allows us to readily calculate the mixing between the cavity pho-
ton and the two exciton states in each of the polariton branches. The matrix is
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diagonalised, and then fit to the experimental data as was demonstrated for a sin-
gle component cavity. The solid lines in Figure 23(b) are the eigenvalues pre-
dicted using the coupled oscillator model. Our best fit used values for the exciton
energies of EEx1 = 1.762 eV, EEx2 = 1.857 eV, and predicts Rabi-splittings of
h̄�Ex1 = 77.5 meV, h̄�Ex2 = 78.9 meV. The exciton energy used in the model
varies slightly from the measured values (1.778 eV, 1.842 eV), however such
shifts can be explained by the asymmetric linewidths of the J-aggregate exci-
tons [74,75]. As the energy separation between the excitons (60 meV) is smaller
than the Rabi-splittings between the branches, it is possible for the photon to in-
teract with both exciton modes simultaneously, forming a coherent superposition
of particles.

Figure 24 shows the eigenvector coefficients used to describe the 3 cavity
branches. It can be seen, that the upper and lower polariton branches are mainly
composed of a superposition of the cavity photon (α), and either Ex1(β) or
Ex2(γ ). However, there is a mixing between all three modes in the central branch,
and at 30◦ the middle branch contains approximately equal amplitudes of the cav-
ity photon and the two exciton species. A hybrid state has thus been created,
delocalised throughout the cavity, which is composed of coherently coupled ex-
citons spatially separated by some 100 nm. It is interesting to consider whether
it will prove possible to utilise our system as the basis for efficient long-range
energy transfer. We can perhaps view the hybrid exciton state supported by this
cavity as linking two cavity-polariton states, each of whose excitonic components
are widely physically separated. In Section 6 we demonstrated that the emission
intensity from a microcavity containing a single organic semiconductor could be
explained using a phonon-mediated energy-transfer process between the upper
and lower polariton branches. In this hybrid semiconductor microcavity, a similar
energy transfer process between (for example) the upper polariton branch to the
lower branch would involve the movement of energy, as the excitonic components
associated with these branches are physically separated. If such a system could be
demonstrated, it could, in principle provide a method to move energy via a cav-
ity photon over distances much larger than is permitted by direct dipole–dipole
coupling.

It is intriguing to consider whether there are similarities between the phenom-
ena we have been studying and the processes that occur in natural photosynthesis.
The observed behaviour of the light-harvesting complex in funneling energy to the
reaction centre and the subsequent electron transfer that initiates the energy con-
version process pose many intriguing questions. These processes are extremely
fast and efficient and are believed to involve coherent excitations of several differ-
ent molecules [76]. In the light harvesting complex, there are expected to be many
energy transfer processes between closely separated and efficiently coupled chro-
mophores before trapping on the reaction centre, yet the overall efficiency is still
near unity. In this situation, the Förster dipole–dipole description of energy trans-
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Fig. 24. Predicted exciton and photon coefficients for the upper middle and lower polariton branches
of the cavity whose dispersion curve is shown in Figure 23(b). The coefficients α,β and γ correspond
to the bare photon, and the Ex1 and Ex2 exciton modes respectively. Note for the middle branch at 30
degrees, the state formed is composed of almost equal amplitudes of the photon and the two different
excitons.

fer is expected to be limited because the point dipole approximation breaks down
and transfer occurs from excited vibrational levels. In addition, the chromophore
units are considered to be strongly-coupled with exciton splittings of ≈ 25 meV
that are larger than the inhomogeneous linewidths. Short time energy transfer may
well then be akin to the scattering processes between coupled exciton levels that
are discussed, albeit in a different context, above.

9. Future Prospects

In this chapter, I hope that I have communicated some of the excitement of re-
search on strongly-coupled organic semiconductor microcavities. The interest and
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novelty comes in part from the significant difference between the properties of
Mott–Wannier excitons, (which have been studied in detail in microcavities), and
Frenkel excitons. It is already clear that such differences result in the forma-
tion of optical structures that have very different optical properties. So far, we
have shown that because of the large oscillator strength of Frenkel excitons, we
can achieve strong coupling at room temperature, and can observe significantly
enhanced Rabi-splittings. We have also shown that the large binding energy of
Frenkel excitons allows the observation of anti-stokes Raman scattering in a mi-
crocavity for the first time. We anticipate that there will almost certainly be more
new effects waiting to be discovered. Such experimental work will, by necessity,
have to be coupled with high-level theoretical investigation to allow a full picture
of the physics of organic semiconductor microcavities to developed.

One area that is likely to be particularly promising is the study of stimulated
scattering effects. At present, this area is generating considerable excitement in
the inorganic semiconductor microcavity community. It has been shown [4,62,
77–79] that under resonant pumping, highly non-linear processes occur. Such ef-
fects originate because of the bosonic character of cavity polaritons. At a certain
pump power, the number density of a particular polariton state (usually one with
zero in plane momentum) can stimulate the scattering of other polaritons into the
same state. The strong increase of final state population corresponds to a “conden-
sation” to a polariton mode with macroscopic occupancy, the phenomena possess-
ing a number of similarities to Bose–Einstein condensation. It has been shown [4]
that the maximum temperature at which such a process will occur is a function of
the binding energy of the excitons within the cavity, and thus strongly-coupled or-
ganic excitons are likely to display such scattering effects at room temperature. It
has been proposed that such structures could find applications as ultra-fast optical
switches and amplifiers.

Finally, recent theoretical work has discussed the optical properties of hybrid
organic-inorganic structures [80,81]. It is predicted that a microcavity which con-
tained strongly-coupled Mott–Wannier excitons and Frenkel excitons would allow
the creation of hybridised systems, where the characteristics of the organic and
inorganic excitons would both in some measure be present in a hybrid-polariton
state. Such structures may be of significant importance in creating new types of
semiconductor optoelectronic devices and in generating optical structures having
enhanced optical non-linearity.

Appendix

Our experimental measurements have demonstrated that organic semiconductor
microcavities can show Rabi-splittings at least an order of magnitude larger than
those typically found in organic semiconductor microcavities. Such enhancements
in splitting can be understood using Eq. (7). The total optical path length in a
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microcavity (Leff) is given by

(A.1)Leff = Lc +LTot
DBR

where Lc is the distance between the two cavity mirrors, and LTot
eff is the total

penetration of the optical field into the cavity DBRs. The optical penetration into
a single dielectric mirror LDBR is given by

(A.2)LDBR = λ

4nc

nLnH

nH − nL

where λ is the wavelength of the light in the cavity, nc is the refractive index of
the material within the cavity, and nH (nL) is the refractive index of the high (low)
layers which comprise the dielectric mirror.

In Table A.1 below, we compare numerically the optical properties of an inor-
ganic microcavity and the organic 4TBPPZn cavity that demonstrated a 160 meV
Rabi-splitting.

In Table A.1, the effective optical cavity length of the organic microcavity is
calculated assuming the penetration of the optical field into the metallic mirror
is negligible. The physical length of the cavity is then obtained by dividing the
optical cavity length by the cavity refractive index (nc). The effective oscillator
strength of the inorganic QWs used above takes into account that not all of the
QWs are located at an antinode of the confined optical field. This reduces the ef-
fective oscillator strength of the 3 QWs to 2.52 finorg, where finorg is the oscillator
strength of a single QW. The effective oscillator strength of the organic 4TBPPZn

Table A.1.

Parameter Inorganic III–V QW Cavity Organic 4TBPPZn Cavity

Cavity structure 20 pair DBR/cavity/18 pair DBR 9 pair DBR/cavity/Silver
DBR Mirror composition AlxGa1−xAs (nL = 3.08) SiO2 (nL = 1.45)

AlAs (nH = 3.66) SixNy (nH = 1.95)
Cavity material and ref. index GaAs, 3 InyGa1−yAs QWs 4TBPPZn in PS,

nc = 3.08 nc = 1.63
Penetration in each DBR (LDBR) 1.6 λ 0.87 λ
Cavity path-length (Lc) λ λ/2
Total optical path-length (Leff) 4.2 λ 1.37 λ
Cavity operational wavelength 855 nm 430 nm
Total physical cavity length 1165 nm 360 nm
Rabi-splitting energy 5 meV 160 meV
Oscillator strength per QW 4.2× 1012 cm−2 -N/A-
Effective oscillator strength 1.05× 1013 cm−2 ∼ 1015 cm−2
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layer within the cavity can then be estimated using

(A.3)forg = fInorg

(
n2

orgL
org
eff

n2
inorgL

inorg
eff

)(
�org

�inorg

)2

.

It can be seen from Table A.1, that the effective oscillator strength of the material
used in the cavity that had a 160 meV splitting is approximately 100 times larger
than the effective oscillator strength of 3 III–V QWs. This enhanced oscillator
strength is anticipated to increase the Rabi-splitting by a factor of 10 times. An
additional enhancement of the Rabi-splitting also arises because the optical field is
more effectively concentrated in the region of the organic semiconductor material.
In Eq. (A.3), the term describing the spatial extent of the optical field (n2Leff) is
11 times larger in the inorganic cavity compared to the organic cavity. This occurs
because of the low refractive index of the organic semiconductor and because the
cavity utilises a metallic mirror in the place of one of the DBRs. The effect of
the increase in the optical field in the region of the semiconductor increases the
Rabi-splitting by a factor of

√
11= 3.3.
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The role of microcavities in controlling the optical properties of different materi-
als and structures and their importance for nanoscience and nanotechnology has
already been addressed in the previous chapter by D. Lidzey. In particular, for the
present study the most important feature is that a microcavity changes the mode
structure of the electromagnetic field [1], and thus all the interactions mediated
by the electromagnetic field are also modified. In particular, the problem of the
dipole–dipole interaction, modified by the cavity, was addressed both theoreti-
cally [2,3] and experimentally [4–6]. Another manifestation of the cavity effect
on the electromagnetic interaction is the cavity-photon-mediated hybridization of
the excitations in two spatially separated layers, predicted in Ref. [7]. For organic
layers this was observed [8], as described in the previous chapter. An analogous
phenomenon was observed in semiconductor structures [9].

In the present chapter we focus on a different situation, assuming the electro-
magnetic coupling between the two species not to be strong enough to produce
a coherent superposition of states. Instead, we assume the dissipative processes
to destroy completely the quantum-mechanical coherence between the two sub-
systems. In such a situation the excitation, initially localized on one subsystem
(usually called donor), is incoherently transferred to the second subsystem (ac-
ceptor).

This problem may be viewed at a different angle. The phenomenon of the res-
onant electronic energy transfer has been studied for many decades [10]. Usually
one considers resonant donor and acceptor coupled electromagnetically. For ex-
ample, in the work by Förster [11], which has become one of the most important
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milestones in this field, energy transfer due to the Coulomb dipole–dipole inter-
action was considered. Now we ask ourselves: how will the picture of the transfer
be modified if the interaction is mediated by a third resonant entity, like a cavity
mode?

Below we discuss the physics of the energy transfer in a planar cavity, the role
of different dissipative processes in play. After the description of the theoretical
approach used to calculate the rates of different processes, we present some results
for a model structure [12]. The latter is chosen to illustrate the basic ideas and to
show possible important effects, rather than to reproduce a specific experimental
configuration. Finally, in the end of this chapter some relevant experiments are
discussed.

1. Energy Transfer: an Introductory Discussion

Three main characters are going to enter our play: (i) donor—a piece of matter,
something consisting of atoms and molecules, which may be, e.g., one or sev-
eral organic dye molecules, a molecular J-aggregate, a molecular crystalline or
inorganic semiconductor structure, etc.; (ii) electromagnetic field; (iii) acceptor—
again some material system, for which the same words, as for the donor, may be
repeated. Donor and acceptor may be identical, like two molecules of the same
dye, or may be completely different, like an inorganic semiconductor quantum
well and some amorphous organic substance. What is important, is that the ener-
gies of the electronic excitations in the donor and the acceptor are close enough.
How close is “enough” will become clear when we discuss various processes that
may occur in such a system.

Each of the three is a quantum-mechanical subsystem, and the second one
(field) interacts with the first (donor) and the third (acceptor). We assume the in-
teraction between the donor and the field to be weak compared to the dissipation
into the field or acceptor degrees of freedom. Quantitatively, this means that the
characteristic shifts of the donor energy levels due to the interaction are much less
than the characteristic spectral widths entering the problem. Note that we do not
make any assumptions on the strength of the coupling between the field and the
acceptors. As we shall see later on, different cases may arise, leading to different
behaviour of the whole system.

Now we can pose the problem as follows. Let at time t = 0 the donor be in an
excited state. As the system starts to evolve, the donor excitation will be trans-
ferred incoherently to the acceptor or to the field (in other words, dissipated into
the acceptor or the field degrees of freedom). The question is: what are the corre-
sponding rates for different decay channels? Which part of the donor energy will
end up in the acceptor?
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Fig. 1. A naive “Feynman diagram” for the energy transfer.

The relevant quantum mechanical picture of the energy transfer from the donor
to the acceptor is that of the decay of a discrete initial state into a continuum of
final states due to the electromagnetic interaction, which may be represented by a
naive “Feynman diagram”, as shown in Figure 1. Namely, this decay occurs via
a set of intermediate states, which are the excited states of the electromagnetic
field, i.e., photons, represented by the wavy line on the diagram. The simplest cal-
culational tool, describing this phenomenon, is basically the second-order Fermi
Golden Rule.

In this picture the initial state (excited donor) decays into final states (excita-
tions of electromagnetic field and acceptor) with the energies h̄ωf equal to the en-
ergy h̄ωi of the initial state, which is guaranteed by the presence of the δ-function
δ(h̄ωf − h̄ωi) in Fermi Golden Rule. The energies of the intermediate states, on
the other hand, may be arbitrary. If the energy of an intermediate state is different
from h̄ωi , then one speaks about virtual states or virtual photons. Intermediate
states whose energies coincide with h̄ωi , are called real photons and correspond
to usual propagating light. A virtual photon cannot participate in any dissipative
process, since it would violate the energy conservation law, and in particular, a
virtual photon cannot be detected. A real photon, on the contrary, may itself de-
cay somewhere, and thus it can carry the excitation away from both the donor and
the acceptor. The contribution of a real photon to the transfer is nothing else but
the emission of this photon by the donor and its subsequent reabsorption by the
acceptor.

The character of the intermediate states most contributing to the transfer de-
pends on the typical length scale of the problem. If the donor and the acceptor
are separated by a distance much shorter than the wavelength of the resonant light
λD ≡ 2πc/ωD (ωD being the donor frequency), then the intermediate states with
large wave vectors k� ωD/c contribute the most, and the transfer is dominated
by the scalar photons, responsible for the Coulomb interaction.1 Obviously, these

1Expanding the Coulomb interaction in multipoles [13], one obtains that the first term is the dipole–
dipole one (since the molecules are not charged), which gives the Förster formula [11]. At very small
distances higher multipole terms are also important for the transfer, as considered by Dexter [14].
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states are virtual since their energy h̄ck� h̄ωD . If the separation is much larger
than λD , then the dominant contribution comes from the transverse photons. In
this case both virtual and real states may contribute to the transfer.

The simple perturbative picture described in the previous two paragraphs refers
to the case when both the donor and the acceptor interact weakly with the field,
and all the states preserve most of their individuality. In a more general situation,
when the coupling between the field and the acceptor is arbitrarily strong, the ac-
ceptor and the photon states may become strongly mixed. Graphically, the wavy
line on the diagram in Figure 1 should now represent not just a bare photon, but
a photon, dressed by the interaction with the acceptors. An example of strongly
mixed photon-acceptor states are the well-known cavity polaritons, like those dis-
cussed by D. Lidzey in the previous chapter. Namely, if many acceptor molecules
with a sharp and narrow absorption line are placed in a high-quality microcavity,
the acceptor excitations get strongly mixed with the cavity photons, giving rise to
the cavity polaritons.

If the excited states of the acceptor and the field are strongly mixed, it only
makes sense to speak about the donor decay into the continuum of the mixed
states.2 One may ask, if the final states of the decay are mixed, can we in princi-
ple distinguish the transfer to the acceptor from other dissipative processes? This
issue will be discussed in more detail in Section 6, at this stage we can say the
following. Yes, different channels for the donor decay may be identified if one as-
sumes that each channel corresponds to a different dissipative bath, and the baths
are independent from each other. By the latter we mean that after a sufficiently
long time the baths may be considered non-interacting, like a photon that has es-
caped at infinity, or an excitation in the acceptor that has been brought to a lower
energy by the vibronic relaxation (the Stokes shift), or just the heat produced in
an absorbing metallic mirror.

2. Semiclassical Description of the Transfer

It has been known since long time ago that the quantum-mechanical problem of
the radiative decay of an excited atom or molecule is equivalent to a well-known
problem of an oscillating dipole in classical electrodynamics. In quantum elec-
trodynamics the discrete excited state of the atom decays into the continuum of
photon states, while a classical dipole emits electromagnetic waves and thus loses
energy, which leads to the damping of the oscillations. This analogy may also
be applied to the problem of the energy transfer if one calculates classically the

2Note that the interaction between the donor and the electromagnetic field is always assumed here
to be weak, otherwise the problem is no longer that of just the donor decay.
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power dissipated by the electromagnetic field in the absorbing acceptor, as con-
sidered by Galanin and Frank for a luminescent molecule transferring its energy
to the surrounding solution [15]. The case of transfer between two point mole-
cules was considered in Ref. [16] both in classical and quantum picture, and in
Ref. [17] the classical analogy was used to consider energy transfer in more com-
plex geometries. The deep reason for this classical analogy to be valid is that, on
one hand, in quantum electrodynamics the field operators for the quantized elec-
tromagnetic field satisfy the same Maxwell’s equations as their average values
participating in the classical electrodynamics, which is guaranteed by the linearity
of the Maxwell’s equations. On the other hand, the atomic and molecular suscep-
tibilities, introduced phenomenologically into the classical Maxwell’s equations,
are in fact quantum-mechanical Kubo averages.

This analogy turns out to be fruitful for the problems described in the previous
section, and will be used throughout this chapter. This way of calculation gives
exactly the same result as the quantum mechanical approach outlined in the previ-
ous section, while the language of the classical electrodynamics is more intuitive
and more illustrative.

2.1. CALCULATION OF THE TRANSFER RATE FROM MAXWELL’S

EQUATIONS

So, we are going to represent the donor by a classical oscillator. For non-magnetic
materials (the only ones we are going to consider) it is convenient to express the
oscillating charge density ρ(r, t) and the current density j(r, t) as

(2.1)ρ(r, t)=−div P(r, t), j(r, t)= ∂P(r, t)
∂t

,

in terms of the polarization P(r, t). The simplest example is a molecule in its
excited state |e〉, located in the point r0. If we adopt the dipole approximation, the
corresponding classical polarization is given by

(2.2)P(r, t)= dD δ(r− r0) e
−iωDt + c.c., dD ≡ 〈g|d̂|e〉,

where |g〉 is the molecular ground state, and d̂ is the operator of the molecular
dipole moment. Correspondingly, dD is the molecular transition dipole. Finally,
ωD is the donor transition frequency, and “c.c.” stands for the complex conju-
gate. If one wants to take into account the quadrupole polarization, which may be
relevant at short distances or for dipole-forbidden transitions, the corresponding
expression is

(2.3)Pi(r, t)=−
QD

ij

6

∂

∂xj
δ(r− r0) e

−iωDt + c.c.,

where QD
ij is the molecular quadrupole moment matrix element.
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If the wave function of the donor excitation is delocalized over a spatial region,
not small compared to the light wavelength or to the characteristic distance be-
tween donors and acceptors, one cannot already treat it as a point dipole. However,
one still can associate with it some classical polarization of the form

(2.4)P(r, t)= PD(r) e−iωDt + c.c.,

where PD(r) should be obtained from some microscopic model for the donor.
A simple example of such an excitation is an exciton in a planar layer (organic
or inorganic quantum well), for which the spatial profile of the polarization is a
plane wave.

Another possible complication is that instead of one donor one may have an
ensemble of excited donors with different transition frequencies. This may result
in a complicated kinetics; in particular, depending on how fast the energy redistri-
bution is within the ensemble, one may or may not average the transfer rate over
the donor frequencies. This as well as the previous issues will be addressed in
more detail in the next section, where specific cases will be discussed. Anyway,
the primary problem to solve is always the one for a given donor with a given
transition frequency.

The donor is always embedded into some dielectric structure. Neglecting the
spatial dispersion, we characterize the structure by a position and frequency de-
pendent dielectric function εij (r,ω). In the latter we include the absorbing ac-
ceptors, which give their contribution to the imaginary part3 of ε. The dielectric
function describes also the cavity mirrors: whether dielectric or metallic, they can
be included properly by choosing the correct value of ε in the corresponding re-
gions of space. Thus, εij (r,ω) contains all the information about the structure
except the donors.

Taking the classical Maxwell’s equations for monochromatic fields in an arbi-
trary dielectric structure, and eliminating the magnetic field from them, we ob-
tain that the Cartesian components Ei(r,ω) of the electric field vector satisfy the
equation

(2.5)

[
∂2

∂xi∂xj
− δij

∂2

∂xl∂xl
+ εij (r,ω)ω2

c2

]
Ej(r,ω)=−4πω2

c2 Pi(r,ω).

Here Pi(r,ω) is the source (donor) polarization, and the summation over the re-
peated indices is assumed.

Having found the electric field, we may find the power dissipated into different
channels. The rate of the pure radiative decay of the donor into the outgoing light

3By virtue of the Kramers–Krönig relations, the acceptors then necessarily contribute to the real part
as well.
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may be found calculating the energy flux of the irradiated field outside the struc-
ture, where the dissipation is absent. When calculating the energy-related quanti-
ties, which are bilinear in the fields, we should not forget to keep both complex
conjugate terms, which corresponds to the electric and magnetic fields

(2.6)E(r, t)= E(r,ω) e−iωt + c.c., B(r, t)= B(r,ω) e−iωt + c.c.

The value of the Pointing vector for a monochromatic component, averaged over
the period of the wave, is given by:

S(r,ω)+ S(r,−ω)≡ c

4π

[
E(r, t)× B(r, t)

]
(2.7)= c2

2πω
Im

[
E∗(r,ω)× rot E(r,ω)

]
.

Integrating the normal component of the Pointing vector over a remote surface,
we obtain the total power Qrad(ω) leaving the system in the form of light. Divided
by the oscillator energy, it gives the donor radiative decay rate:

(2.8)�
(rad)
D = Qrad(ωD)

h̄ωD

.

To find the transfer rate to the acceptor, we should calculate the corresponding
dissipated power. Suppose the acceptor is a molecule situated in the point r1, with
the polarizability αij (ω) which incorporates the local field effects. Than its dipole
moment, induced by the field from the donor, is given by

(2.9)di(t)= αij (ω)Ej (r1,ω) e−iωt + c.c.,

and the corresponding dissipated power, averaged over the period of the wave

Qacc(ω)= E(r1, t) · ḋ(t)= 2ω Im
[
E∗i (r1,ω)αij (ω)Ej (r1,ω)

]
(2.10)= 2ωE∗i (r1,ω) Imαij (ω)Ej (r1,ω),

where the in the last equation we have used the general symmetry property
αij (ω) = αji(ω), valid if the system is not placed into an external magnetic
field [18]. Again, the correct quantum mechanical transfer rate is nothing else
but this power divided by the donor energy:

(2.11)�
(acc)
D = Qacc(ωD)

h̄ωD

.

If the point-like donor and the acceptor are close to each other (compared to the
light wavelength), the transfer is mostly due to the Coulomb interaction (that is,
nonradiative), and the resulting expression for �(acc)

D is nothing else but the Förster
formula.



410 D.M. BASKO

Usually instead of a single acceptor molecule one deals with many mole-
cules distributed with some density in a host matrix. If the characteristic dis-
tance between the molecules is much smaller than the characteristic length scale
at which the donor field is varying, one can approximate them as a continuous
medium [10], whose dielectric constant has a contribution εacc

ij (r,ω) from the
resonance in the acceptor we are interested in. In this case the losses are given
by [19]:

(2.12)Qacc(ω)= ω

2π

∫
d3r Im

[
E∗i (r,ω)εacc

ij (ω)Ej (r,ω)
]
.

When calculating the electric field, one might use Eq. (2.5) with the dielectric
function not containing the contribution from the acceptors, and to recall about
the latter only when calculating the losses in (2.10) or (2.12). This is justified if
the acceptors are dilute enough or the corresponding transition is weak, so that the
contribution to the dielectric function is small. This brings us back to the discus-
sion of the previous section, since neglection of the acceptors when calculating
the electric field is nothing else than the perturbation theory with respect to the
interaction between the acceptors and the electromagnetic field, corresponding to
the diagram in Figure 1 with the bare photon line.

On the contrary, taking the full dielectric function in Eq. (2.5) means dealing
with the photons, “dressed” by the interaction with the acceptor. This becomes
crucial if one wants to see how the presence of the acceptor modifies the optical
properties of the structure. Again, the relevant example is that of the strong cou-
pling in a planar microcavity. If εij (r,ω) contains, besides well-reflecting mirrors,
a strong and sharp resonance in the acceptor, Eq. (2.5) gives the two polariton
modes, as we shall see below.

A question may arise: how can we speak about the transfer rate, i.e., the tran-
sition probability per unit time, when an acceptor, separated from the donor by
a distance ld−a, must not know anything about the donor at least within the time
interval ld−a/c? The thing is that the whole approach is valid only at distances
ld−a � c/�D , where �D is the total donor decay rate. Indeed, in the classical
electrodynamics we calculate the losses for a quasistationary oscillating dipole,
i.e., with the almost constant amplitude. Obviously, at the distances of the order
of c/�D one cannot ignore the fact that the donor oscillations are damped. Anal-
ogously, in the quantum mechanics, Fermi Golden Rule is derived looking at the
evolution of the wave function at times smaller than 1/�D , thus it cannot pick up
correctly the processes occurring at the characteristic distances exceeding c/�D .
But once the condition ld−a� c/�D is satisfied, what happens in the first inter-
val ld−a/c is not important, since it is only a small correction, and the most of the
transfer occurs afterwards.

The donor decay may be viewed in a different way: the electric field produced
by the donor acts on the donor itself, performing a negative work, thus damping
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the donor oscillations. From this we can find the total decay of the donor, given
by:

�
(tot)
D =− 1

h̄ωD

∫
d3r

[
E(r, t) · ∂P(r, t)

∂t

]
(2.13)= 2

h̄

∫
d3r Im

[
E(r) · P∗(r)],

where, as before, the overline means the average over the period of the wave.
Obviously, the total donor decay rate must be equal to the sum of the contributions
from all the decay channels, discussed above: the transfer to the acceptors, the
decay into the outgoing light (luminescence), dissipation in the mirrors (if there
is any), etc. Formally, it follows from the local energy conservation law

(2.14)−E · ∂P
∂t
= div S+ 1

4π

[
E · ∂D

∂t
+B · ∂B

∂t

]
,

obtained directly from the Maxwell’s equations. Here S is the Pointing vector,
D is the electric displacement vector, including the polarization of all the media
except donors. The latter are treated as the external source polarization on the left-
hand side of Eq. (2.14), which “pumps” the energy into the field and the media on
the right-hand side.

2.2. RESPONSE FUNCTION

As Eq. (2.5) is a linear one, the electric field may be expressed in terms of the
polarization as

(2.15)Ei(r,ω)=
∫

d3r′ χij

(
r, r′,ω

)
Pj

(
r′,ω

)
,

or in other words, Eq. (2.5) may be rewritten using the integral operator, inverse to
the differential one in the square brackets in Eq. (2.5). The kernel χij (r, r′,ω) de-
termines the response of the electric field to the external polarization and satisfies
the equation: [

∂2

∂xi∂xj
− δij

∂2

∂xl∂xl
+ εij (r,ω)ω2

c2

]
χjk

(
r, r′,ω

)
(2.16)=−4πω2

c2 δikδ
(
r− r′

)
.

This response function characterizes only the dielectric structure under consider-
ation, independently of the donors (which do not enter Eq. (2.16) at all). Its prop-
erties in different dielectric structures were extensively studied by Agarwal [20].
As a function of ω it may have poles in the complex plane, which correspond to
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the frequencies of excitations of the interacting system “field + acceptors”. The
total donor decay rate (2.13) may be written in terms of the response function as

(2.17)�
(tot)
D = 2

h̄

∫
d3rd3r′

(
PD
i (r)

)∗ Imχij

(
r, r′,ωD

)
PD
j

(
r′

)
.

As can be shown, using the arguments given in Ref. [21], the response func-
tion χ is closely related to the retarded propagator of the quantized electromag-
netic field:

χij

(
r, r′, t − t ′

)= i

h̄

〈[
Êi(r, t), Êj

(
r′, t ′

)]〉
θ
(
t − t ′

)
(2.18)− 4πδij δ

(
r− r′

)
δ
(
t − t ′

)
.

Its imaginary part is proportional to the spectral function of the quantized electro-
magnetic field in the given dielectric structure:

(2.19)

Imχij

(
r, r′,ω

)=∑
ν

〈0|Êi(r)|ν〉〈ν|Êj (r′)|0〉πδ(h̄ω− h̄ων), ω > 0,

where Êi(r) is the electric field operator, |0〉 is the ground state of the system, and
|ν〉 are the exact excited states. Looking at this expansion, one may notice that the
expression (2.17) indeed has the structure of Fermi Golden Rule, where the donor
polarization is coupled to the electric field.

If the contribution to the dielectric function of the structure from acceptors is
small, it may be convenient to represent it as

(2.20)εij (r,ω)= ε
(0)
ij (r,ω)+ δεij (r,ω),

where δεij (r,ω) is the contribution from the acceptor resonance. The term

ε
(0)
ij (r,ω) may often be considered independent of frequency, corresponding to

the background dielectric constant of the structure. Let us introduce the response
function χ

(0)
ij (r, r′,ω) for the structure without acceptors, satisfying Eq. (2.16)

with ε
(0)
ij (r,ω) instead of the full εij (r,ω). In Eq. (2.16) we split the term with εij

according to (2.20), move the part with δεij to the right-hand side, and apply the

integral operator with the kernel χ(0)
ij to both sides of the equation. Then Eq. (2.16)

is equivalently rewritten as

(2.21)

χij

(
r, r′,ω

)= χ
(0)
ij

(
r, r′,ω

)+ ∫
d3r′′ χ(0)

ik

(
r, r′′,ω

)δεkl(r′′,ω)

4π
χlj

(
r′′, r′,ω

)
,

from which the perturbative expansion in δε may be obtained. This equation has
the structure similar to that of the Dyson equation for the photon Green’s function
in a medium [21], obtained from the full quantum theory, which is a manifestation
of the fact that for linear macroscopic electrodynamics the classical and quantum
approaches actually give the same result.
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3. Modeling a Specific Structure

The general discussion of the previous two sections may be applied to the trans-
fer in a planar microcavity [12], like that schematically sketched in Figure 2.
The donor layer, placed at z = z′, is assumed to be spatially separated from the
acceptors by a distance l′. If this distance is comparable to the wavelength, the
contribution of the short-range Coulomb interaction to the energy transfer in this
system is negligible, in which case all the effects are due to the interaction with
the transverse electromagnetic field.

As we assume the structure to be translationally invariant in two dimensions, it
is convenient to separate the in-plane component r‖ ≡ (x, y) of the radius-vector r
and to make the corresponding 2D Fourier transform. In particular, it is convenient
to represent the response function χij , which depends on the difference r‖ − r′‖,
as:

(3.1)χij

(
r, r′,ω

)= ∫
d2k
(2π)2 χij

(
k, z, z′,ω

)
e
ik(r‖−r′‖).

In this situation a useful technical tool for calculations is the transfer-matrix for-
malism [22,23].

We assume the mirrors to be well-reflecting. Then in an empty cavity (with-
out donors and acceptors) well-defined cavity modes exist. When an absorbing
medium is placed into the cavity, the properties of the cavity may be strongly
modified. For example, the dipole emission from cavity may be changed in the
presence of an absorbing medium [24].

Fig. 2. The microcavity structure to be modeled.



414 D.M. BASKO

Depending on the parameters of the system we may identify three different
regimes. First, if the acceptor absorption is weak enough (i.e., Im ε̃� 1, ε̃ being
the acceptor medium dielectric function), cavity modes are preserved, correspond-
ingly the response function χ will have poles at ω= ω

s,p
k − iγ

s,p
k for each k for s-

and p-polarizations, with small imaginary parts γ
s,p
k . Second, if the acceptor ab-

sorption is strong, or Im ε̃ ∼ 1, and the absorption band is broad enough, the cavity
mode is destroyed by the absorption, i.e., one obtains a broad smooth density of
states with no sharp resonances. And third, if the acceptor absorption band is nar-
row, the cavity mode and the acceptor excitation may become strongly coupled,
giving rise to the split upper and lower cavity polariton branches (two distinct
peaks in the spectral function). Note that these three regimes are independent on
the assumption about the field–donor weak coupling.

Now we proceed to formal description of different elements of the structure.

3.1. MIRRORS

Let the cavity occupy the region 0 < z < L between two mirrors which are situ-
ated at z = 0 and z = L. At this stage we do not need to specify the structure of
the mirrors, knowing their reflection coefficients is sufficient. To be specific, we
define the amplitude reflection coefficients analogously to Ref. [19]: as the ratio of
the electric field amplitudes for the s-polarization, and of the magnetic field am-
plitudes for the p-polarization (in particular, for an ideal metallic surface they are
equal to −1 and 1 respectively). In the isotropic case each plane electromagnetic
wave is characterized by its 2D wave vector k lying in the plane of the cavity, its
frequency ω, the direction of propagation in z (left or right), and the polarization
(s or p). Correspondingly, the reflection coefficient of each mirror for the waves
incident from inside the cavity is a function of |k|, ω, and the polarization. We
denote the reflection coefficients of the left mirror by

(3.2)
rs(k,ω)≡√

Rs(k,ω)eiθ
s(k,ω), rp(k,ω)≡√

Rp(k,ω)eiθ
p(k,ω),

those of the right mirror—by

(3.3)
r̃ s(k,ω)≡

√
R̃s(k,ω)eiθ̃

s (k,ω), r̃p(k,ω)≡
√
R̃p(k,ω) eiθ̃

p(k,ω).

If one is not interested in the characteristics of the light outside the cavity, these
amplitude reflection coefficients provide all the necessary information about the
mirrors, since they determine completely the boundary conditions for the field
inside the cavity (in combination with the condition that outside the cavity only
outgoing waves are present). Now we make no assumptions about the mirrors,
which may be dissipative like metallic mirrors, or non-dissipative like distributed
Bragg reflectors (DBRs). We will keep the general form of the reflection coeffi-
cients up to the final stage.
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3.2. ACCEPTORS

The region L − l < z < L inside the cavity is assumed to be occupied by the
acceptor molecules. We assume the acceptor medium to be macroscopically ho-
mogeneous on the length scale of the order of the wavelength, and describe the
acceptor layer by a complex dielectric function, as discussed in the previous sec-
tion (continuous medium approximation). We also assume the acceptor medium
to be isotropic. This condition does not hold always in experiments, neverthe-
less we make this assumption since we are not intending to describe any specific
experiment, but the general trends. Anisotropy does not introduce any conceptual
difficulties and may be taken into account when needed, but it would lead to much
more bulky expressions.

The complex dielectric function ε̃(ω) of the acceptor medium contains two
parts: the off-resonant (background) contribution ε̃∞ whose dependence on the
frequency may be neglected, and the resonant contribution from the acceptor
molecules:

(3.4)ε̃(ω)= ε̃∞ + ,̃res
[
s̄(ξ)+ is(ξ)

]
, ξ ≡ h̄ω− h̄ωA

γA
,

where ωA and γA are the position and width of the acceptor absorption band,
,̃res determines the strength of the acceptor absorption at the maximum (it de-
pends on the transition dipole moment of the acceptor molecules, and on their
concentration), s(ξ) is the imaginary part of the normalized resonant contribution
to the ε̃(ω) (the shape of the acceptor absorption band), s̄(ξ) is the corresponding
real part. The latter may be expressed via the former using the Kramers–Krönig
relation:

(3.5)s̄(ξ)= 1

π

∫̄
s(η) dη

η− ξ
.

For homogeneously broadened molecules one would have the absorption with a
Lorentzian shape:

(3.6)s(ξ)= 1

ξ2 + 1
, s̄(ξ)=− ξ

ξ2 + 1
.

However, a more realistic picture is an inhomogeneously broadened ensemble,
which we model by a Gaussian absorption:

(3.7)s(ξ)= e−ξ2/2, s̄(ξ)=−
√

2

π
e−ξ2/2

∫ ξ

0
eη

2/2 dη.

If needed, one can include several peaks in (3.4).
The phenomenological expression (3.4) may be obtained from a simple mi-

croscopic model, following the general procedure of Ref. [25]. We assume the
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acceptor molecules with the transition dipole moment dA to be distributed con-
tinuously inside the cavity with the density nA and with chaotic orientation. Then
the microscopic expression for the dielectric function is

(3.8)ε̃(ω)= ε̃∞ − 4πnA

h̄

d2
A

3

∫
dω̄

2ω̄ ρA(ω̄)

ω2 − ω̄2 + iωδ
, δ→+0.

Formally the quantity ρA(ω) is given by the true density of states for a single
acceptor convoluted with the probability for an acceptor to have a given transition
frequency, but only the convolution ρA(ω) enters the final results and is related to
the absorption spectrum measured experimentally. It is normalized according to

(3.9)
∫

dωρA(ω)= 1.

If we choose ρA(ω) to be Gaussian, which is the case when the inhomogeneous
broadening dominates over the homogeneous one, we obtain the expressions
(3.4), (3.7) with ,̃res related to the microscopic quantities:

(3.10),̃res = 4π2nA

h̄

d2
A

3

1√
2π γA

.

If the inhomogeneous broadening dominates over the homogeneous one γ hom
A , the

effective density of the acceptor molecules “seen” by the donor is given by neff
A ∼

nAγ
hom
A /γA. The description of the medium in terms of the dielectric constant is

valid at characteristic distances much larger than (neff
A )−1/3.

3.3. DONORS

The donors are supposed to be situated somewhere in the region 0 < z < L− l,
whose background dielectric constant is denoted by ε. We make several assump-
tions about donors. First, we assume that the donor absorption does not play
any significant role in the frequency region of interest. This implies that either
(i) donor absorption spectrum lies high above, which is the case for organics
with large Stokes shift, or (ii) the donors are dilute enough. Correspondingly,
the donors are assumed to have no effect on the optical properties of the cav-
ity. Second, the donors are assumed to be incoherent between themselves, and
their excitation density to be low enough for the acceptors to absorb in the linear
regime, which means that the problem is reduced to that for a single donor with
the subsequent averaging.

In practice, we intend to study two cases. The first one is the case when the
donor is a single molecule (or a cluster of coupled molecules) with the size much
smaller than the light wavelength. Such a donor may be treated as a point di-
pole dD , oscillating as given by Eq. (2.2). We assume that the transition dipole
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moment dD includes also the local field effects. For the Lorentz model it is given
by the molecular dipole, multiplied by the factor (ε + 2)/3.

The other case is when the donor is a thin layer, parallel to the cavity plane,
whose excited states may be characterized by a definite in-plane wave vector k.
If it is much thinner than the light wavelength, its polarization may be considered
to be proportional to δ(z) and may be written as

(3.11)PD(r)= dD

aeh

eikr‖
√
S

δ
(
z− z′

)
,

where z′ is the position of the donor layer, S is the normalization area, dD and aeh
are the relevant transition dipole moment, and the effective “Bohr radius”, char-
acterizing the electron and hole relative motion. Their precise definitions depend
on the specific structure. For a monolayer of organic molecules with Coulomb
coupling (a 2D molecular crystal) dD is the monomer transition dipole (corrected
for the local field effects), aeh is the square root of the unit cell area.

We consider in more detail the situation when the donor layer is a thin semi-
conductor quantum well with the background dielectric constant εsem, which may
be different from ε. Then aeh may be identified as the 2D Bohr radius aB2, while
the dipole moment is given by

(3.12)dD‖ = φ(0)aeh 〈e|h〉z〈v|(−er‖)|c〉,
(3.13)dDz = εsem

ε
φ(0)aeh 〈e|h〉z〈v|(−ez)|c〉,

where 〈v|(−er‖)|c〉 and 〈v|(−ez)|c〉 are the corresponding components of matrix
element of the electron dipole moment between the valence and conduction band
extrema Bloch functions, φ(0) is the wave function of the in-plane relative motion
of the electron and the hole when they are at the same point [for 1s-state of the

purely 2D hydrogen problem φ(0)=
√

2/(πa2
B2)], and 〈e|h〉z is the z-overlap of

the electron and hole confinement wave functions in the quantum well. The factor
εsem/ε takes into account the boundary condition for the normal component of
the electric field at the interface and plays the role of the local field correction.

Applying the general considerations of the previous section to these specific
systems, we obtain the decay rate of an excited state in a plane quantum well:

(3.14)�QW

(
k, z′,ωD

)= 2

h̄

dD,id
∗
D,j

a2
eh

Imχij

(
k, z′, z′,ωD

)
for a state with the wave vector k and the energy h̄ωD , and in the case of a point
donor molecule one should integrate over the wave vectors:

(3.15)�mol
(
z′,ωD

)= 2dD,id
∗
D,j

h̄

∫
Imχij

(
k, z′, z′,ωD

) d2k
(2π)2

.
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The expressions (3.14) and (3.15) give the decay rate for a single donor. However,
in experiments some averaged quantities are measured. If the orientations of the
donor molecules are random, the relevant average is

(3.16)dD,id
∗
D,j = δij |dD|2/3.

Correspondingly, in the expression (3.15) the sum of the diagonal components χii

appears. The expression (3.15) may be also averaged over the spatial den-
sity nD(z′) of the excited donors, and over the inhomogeneous distribution of the
donor frequencies ωD (corresponding to the luminescence spectrum at a given
temperature T ).

For a semiconductor quantum well, placed at a certain position z′, and with
a narrow excitonic resonance at the frequency ωD , it is reasonable to average
the decay rate over the momentum distribution nk of the excitons. The simplest
approximation would be to assume the excitons with the 2D spatial density nexc
to be thermalized at some temperature T , which gives the Boltzmann occupation
numbers:

(3.17)nk = 2πh̄2nexc

mT
exp

(
− h̄2k2

2mT

)
,

as it was done in Ref. [26] where Wannier–Mott exciton radiative decay in a bare
semiconductor quantum well (without a cavity) was studied. As a matter of fact,
the exciton intraband relaxation processes are not fast enough to maintain the
Boltzmann distribution in the radiative region k <

√
εωD/c, as shown by simu-

lations for a bare semiconductor quantum well [27], as well as for one in a micro-
cavity [28]. As a result, the formula (3.17) overestimates the exciton population in
the radiative region (and hence the radiative decay rate) by several times. Since at
large donor–acceptor separations the transfer is dominated by the transverse pho-
tons, the main contribution to the energy transfer is also limited to the radiative k,
and we encounter the same problem. We shall use (3.17) as an estimate because of
its simplicity. Neglecting the exciton dispersion in the radiative region, we obtain

�QW

(
T , z′,ωD

)
(3.18)= 2πh̄2

ma2
ehT

2dD,id
∗
D,j

h̄

∫
Imχij

(
k, z′, z′,ωD

) d2k
(2π)2

,

with the integral formally coinciding with that in (3.15).
The direction of the Wannier exciton dipole moment is determined by the crys-

tal structure. In quantum wells, made of materials with zinc-blende structure, the
heavy-hole (hh) excitons may be polarized along L- and T -directions, the light-
hole (lh) excitons – along L-, T -, and Z-directions, where we use the standard
notation L, T , and Z for the three basis vectors

(3.19)eL ≡ k/|k|, eT ≡ ez × eL, eZ ≡ ez
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at a given k. The decay rate (3.14) or (3.18) is then given by the corresponding
diagonal component χii .

3.4. EXPLICIT EXPRESSIONS

In this subsection we solve Eqs. (2.5), (2.16), giving the explicit analytical ex-
pressions for the components of χ for the structure, shown in Figure 2, and the
expressions for the normal component of the Pointing vector at the mirrors and
for the losses in the acceptor for the classical oscillating polarization.

The nonzero components of the response function are χT T , which corresponds
to the s-polarization, and χLL, χZZ, χLZ , χZL, corresponding to p-polarization.
In all the subsequent calculations we assume the donor dipole moment either
to be oriented chaotically (for point donor molecules), or to be directed along
T , L, or Z (for T -, L-, and Z- excitons in a quantum well). Then, according to
the above-said, we need only the diagonal components of the response function.
For a point z′ <L− l (outside the acceptor layer) they are given by

(3.20)χT T

(
k, z′, z′,ω

)= 2πi

q

ω2

c2

(1+ rse2iqz′)(1+ r̃ sinte
2iql′)

1− rs r̃sinte
2iq(L−l) ,

(3.21)χLL

(
k, z′, z′,ω

)= 2πiq

ε

(1− rpe2iqz′)(1− r̃
p

inte
2iql′)

1− rpr̃
p

inte
2iq(L−l) ,

(3.22)χZZ

(
k, z′, z′,ω

)= 2πik2

εq

(1+ rpe2iqz′)(1+ r̃
p

inte
2iql′)

1− rpr̃
p

inte
2iq(L−l) ,

where l′ ≡ L− l − z′, and r̃
s,p

int (k,ω) are the reflection coefficients at the inter-
face z= L− l for the s- and p-polarizations respectively:

r̃ sint =
(q + q̃) r̃se2iq̃l + q − q̃

q + q̃ + (q − q̃) r̃se2iq̃l
,

(3.23)r̃
p

int =
(q/ε+ q̃/ε̃) r̃pe2iq̃l + q/ε− q̃/ε̃

q/ε+ q̃/ε̃ + (q/ε− q̃/ε̃) r̃pe2iq̃l
,

and we denote the z-component of the wave vector in the two media by

(3.24)q(k,ω)≡
√
εω2/c2 − k2 , q̃(k,ω)≡

√
ε̃(ω)ω2/c2 − k2.

The sign of the square root should be chosen to give non-negative real and imag-
inary parts of q , q̃ for ω > 0, and for complex ω the square root should be un-
derstood as the analytical continuation from the real positive ω through the upper
half-plane (according to the general analytical properties of response functions).
Note that even in the case of a semiconductor quantum well with εsem different
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from ε the above expressions for χ are still valid, as long as the quantum well
is much thinner than the light wavelength, since all the effect of the dielectric
discontinuity are included in the definition of the dipole moment (3.12), (3.13).

To calculate the classical losses, we assume the external (donor) polarization
be given by

(3.25)Pext(r, t)= p δ(z− z′) e
ikr‖−iωt

√
S
+ c.c.,

where p is dD/
√
S for a point molecule and dD/aeh for a quantum well (the

Fourier components of the polarization (2.2) or (3.11)).
First we consider the field in the region L − l < z < L, from which both the

losses in the acceptors and the leakage through the right mirror can be obtained.
The electric field, produced by the polarization (3.25) in the region L− l < z < L

may be represented as

(3.26)E(r‖, z, t)=
(
Er e

iq̃(z−L) +Ele
−iq̃(z−L)

)eikr‖−iωt

√
S
+ c.c.,

(3.27)Er = Ãs eT − cq̃

ε̃ω
Ãp eL + ck

ε̃ω
Ãp eZ,

(3.28)El = r̃ sÃs eT + cq̃

ε̃ω
r̃pÃp eL + ck

ε̃ω
r̃pÃp eZ,

where Ãs is the electric field amplitude at z= L− 0 for the s-polarization, −Ãp

is the magnetic field amplitude at z= L− 0 for the p-polarization (this parame-
trization of the fields corresponds to the definition of the reflection coefficients,
given in the beginning of Section 3) for the right-travelling waves, and q̃(k,ω) is
defined by (3.24). The amplitudes Ãs,p are given by

(3.29)Ãs = 2πi

q

ω2

c2

pT (1+ rse2iqz′)t̃ sinte
iql′

1− rs r̃sinte
2iq(L−l) ,

(3.30)

Ãp = 2πiω

c

[
−pL

(
1− rpe2iqz′)+ kpZ

q

(
1+ rpe2iqz′)]

× t̃
p

inte
iql′

1− rpr̃
p

inte
2iq(L−l) ,

where the reflection coefficients at the interface z = L− l are defined by (3.23),
and the transmission coefficients are given by

t̃ sint =
2q eiq̃l

q + q̃ + (q − q̃) r̃se2iq̃l
,
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(3.31)t̃
p
int =

2(q/ε) eiq̃l

q/ε+ q̃/ε̃+ (q/ε− q̃/ε̃) r̃pe2iq̃l
.

The net power absorbed in the unit area of the acceptor layer is given by

Wabs = ω|Ãs |2 Im ε̃

2πS

[(
1+ ∣∣r̃ s∣∣2

e−2q̃ ′′l)e2q̃ ′′l − 1

2q̃ ′′
+ 2 Im

(
r̃ s

e2iq̃ ′l − 1

2q̃ ′

)]

(3.32)

+ ω|Ãp|2 Im ε̃

2πS

[(
1+ ∣∣r̃p∣∣2

e−2q̃ ′′l)e2q̃ ′′l − 1

2q̃ ′′
Re(q̃/ε̃)

Re q̃

+ 2 Im

(
r̃p

e2iq̃ ′l − 1

2q̃ ′

)
Im(q̃/ε̃)

Im q̃

]
,

where we denote q̃ ′ ≡ Re q̃ , q̃ ′′ ≡ Im q̃ .
The net power, leaving the cavity through the unit area of the right mirror is

given by the z-component of the Pointing vector:

Wr = c2|Ãs |2
2πSω

[(
1− ∣∣r̃ s ∣∣2)Re q̃ + 2 Im r̃ s Im q̃

]
(3.33)+ c2|Ãp|2

2πSω
[(

1− ∣∣r̃p∣∣2)Re
(
q̃/ε̃

)+ 2 Im r̃p Im
(
q̃/ε̃

)]
.

Near the left mirror (0 < z < z′) the electric field is represented as

(3.34)E(r‖, z, t)=
(
Er e

iqz +El e
−iqz)eikr‖−iωt

√
S
+ c.c.,

(3.35)Er = rsAs eT + cq

εω
rpAp eL + ck

εω
rpAp eZ,

(3.36)El =As eT − cq

εω
Ap eL + ck

εω
Ap eZ,

with the amplitudes As,p corresponding to the left-travelling wave and given by

(3.37)As = 2πi

q

ω2

c2

pT (1+ r̃ sinte
2iql′)eiqz

′

1− rs r̃sinte
2iq(L−l) ,

(3.38)

Ap = 2πiω

c

[
pL

(
1− r̃

p

inte
2iql′)+ kpZ

q

ε

ε0

(
1+ r̃

p

inte
2iql′)]

× eiqz
′

1− rpr̃
p

inte
2iq(L−l) .
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Analogously, we obtain the net power, leaving the cavity through the unit area of
the left mirror:

Wr = c2|As |2
2πSω

[(
1− ∣∣rs ∣∣2)

Req + 2 Imrs Imq
]

(3.39)+ c2|Ap|2
2πSω

[(
1− ∣∣rp∣∣2)Re(q/ε)+ 2 Im rp Im(q/ε)

]
.

For a quantum well exciton with the wave vector k the expressions (3.32), (3.33),
(3.39) give the final result for the energy loss per unit time and divided by h̄ω

give the quantum mechanical probabilities. One may check that the sum of the
decay rates obtained from (3.32), (3.33), (3.39) for each polarization is equal to
the total decay rates found using (3.20), (3.21), (3.22). For a point molecule these
expressions should be summed over k:

(3.40)
∑

k

→ S
∫

d2k
(2π)2

,

where the factor S in front of the integral will cancel 1/
√
S in p.

4. Weak Absorption Regime

In this section we consider a special case, which, on one hand, is rather relevant
from the experimental point of view, and on the other hand, allows a more com-
plete analytical treatment. Imagine a cavity with good mirrors (not necessarily the
one described in the previous section), where one or several well-defined modes
are present. Suppose that placing the donors and the acceptors inside does not
have any dramatic effect on the cavity mode(s): they are not enormously broad-
ened, no strong-coupling phenomena occur, the spectral function of the electro-
magnetic field still has distinct narrow peaks. More specifically, we assume the
mode spectral width to be small compared to other characteristic frequency scales:
those determined by the mirrors, by the dielectric media inside the cavity, like ac-
ceptor absorption band width, it etc. What can one say about the energy transfer
in such situation?

In formal terms, the cavity modes correspond to poles in the response function.
The latter may be represented near one of the poles as

(4.1)χij

(
k, z, z′,ω

)≈−ui(k, z) u∗j (k, z′)
ω−ωk + iγk

,
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where ui(k, z) is proportional to the profile of the electric field of the mode.4

The mode damping γk is small compared to other frequency scales, as discussed
above. It has several contributions from different sources of damping: transmis-
sion of the mirrors, absorption in the acceptors, etc. Below we shall see how these
contributions may be separated. If there are several modes, the response function
will be represented by a sum of several terms analogous to (4.1).

What consequences does it have for the donor, and for the energy transfer to the
acceptors? Substituting (4.1) into (2.17), we see that the donor decay occurs only
if the donor frequency coincides with the mode frequency (within the width γk).
This brings us back to the discussion of real and virtual photons in Section 1.
Namely, we can conclude that as long as it makes sense to speak about cavity
photons as well-defined quasiparticles (weakly damped), their contribution to the
donor decay and to the energy transfer is purely real: the donor emits a cavity
photon, and then the latter may finish its life in several ways, corresponding to
different contributions to γk . If it is absorbed in the acceptor, this corresponds to
the energy transfer. Thus in the weak absorption regime the transfer is reduced
to a somewhat trivial process of emission and reabsorption of real cavity photons
(although one should not forget some important issues – see the discussion at the
end of this section).

For the structure, described in the previous section, the weak absorption regime
is realized if we consider ,̃res, determining the resonant part of the acceptor di-
electric constant (3.4), a small parameter: ,̃res � 1. We also assume the back-
ground dielectric constant to be the same across the cavity: ε̃∞ = ε. In these con-
ditions one may neglect the reflection at the interface ε|ε̃, and set r̃ s,pint = r̃ s,pe2iq̃l

in (3.20)–(3.22). The spectral function Imχ has a sharp peak corresponding to
a cavity mode. The mode dispersion and damping are different for s- and p-
polarizations, thus in the denominator of (4.1) one has ωs

k , γ s
k for χT T , and ω

p

k , γ p

k

for χLL, χZZ.
Focusing on the denominators of (3.20)–(3.22), we represent them as

(4.2)Zs,p ≡ 1− rs,pr̃
s,p

int e2iq(L−l) = 1−Rs,p ei;s,p ,

(4.3)Rs,p ≡
√
Rs,p R̃s,p e−2 Im q̃l ,

(4.4);s,p ≡ 2q(L− l)+ 2 Re q̃l + θs,p + θ̃ s,p,

where R and θ were defined in (3.2), (3.3). All the quantities, appearing in (4.2)–
(4.4) depend on k and ω. We assume that the quantities Rs,p(k,ω) are (i) close

4The normalization of ui(k, z) as it appears in Eq. (4.1), and its dimensionality in particular, may
seem somewhat strange. To make it correspond to the electric field one has to introduce h̄, thus invok-
ing the quantum theory. Within the classical theory ui(k, z) is just an eigenfunction of the differential
operator in Eqs. (2.5), (2.16), whose normalization is what it is, as χ is obtained from the Maxwell’s
equations. The minus sign in (4.1) is necessary to ensure the positiveness of Imχii (k, z′, z′,ω)
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to 1 (which means that the mirrors are well-reflecting and the absorption is small),
and (ii) vary slowly with k and ω. The latter condition implies also that the cavity
mode width should be small compared to the acceptor absorption band width:
γk� γA. We make no assumptions about the phase ;s,p(k,ω), whose behaviour
may be complicated.

The frequencies ωs
k , ωp

k and the dampings γ s
k , γ p

k of the cavity modes for s-
and p-polarizations (the real and imaginary parts of the complex zeroes of the
corresponding denominators Zs , Zp) may be found from

(4.5);s,p

(
k,ω

s,p
k

)= 2π,

(4.6)

∂;s,p(k,ω
s,p

k )

∂ω
γ
s,p

k = ln
1

Rs,p(k,ω
s,p
k )

≈ 1

2

(
1−R

s,p
k R̃

s,p
k

)+ 2 Im q̃
s,p
k l,

where in the first equation all the dissipation has been neglected and we set
Rs,p = 1, while in the second equation −iγ s,p

k are considered small imaginary
corrections to the solutions of the first one. We denote then

(4.7)

R
s,p
k ≡Rs,p

(
k,ω

s,p
k

)
, R̃

s,p
k ≡ R̃s,p

(
k,ω

s,p
k

)
, q̃

s,p
k ≡ q̃

(
k,ωs,p

k

)
.

The two contributions to the mode damping from the acceptor absorption and
from the mirrors are clearly distinguishable in (4.6), and their ratio is given by

(4.8)
4 Im q̃

s,p
k l

1−R
s,p

k R̃
s,p

k

≡ η
s,p
k

1− η
s,p

k

,

where we introduce η
s,p
k – the probability for the cavity photon to end up in the

acceptor medium (correspondingly, 1 − η
s,p
k is the probability to go outside the

cavity). The denominators may be expanded around their zeroes as

Zs,p(k,ω)≈ ∂Zs,p(k,ω
s,p
k )

∂ω

(
ω−ω

s,p
k + iγ

s,p
k

)
≈−i ∂;s,p(k,ω

s,p
k )

∂ω

(
ω−ω

s,p

k + iγ
s,p

k

)
(4.9)≈ 1−R

s,p
k R̃

s,p
k + 4 Im q̃

s,p
k l

2iγ s,p

k

(
ω−ω

s,p
k + iγ

s,p
k

)
,

by virtue of Eq. (4.6). One may also approximate

(4.10)Re q̃(k,ω)≈ q(k,ω), Im q̃(k,ω)≈ Im ε̃(ω)

2

ω2

c2q(k,ω)
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with the same degree of precision (neglecting higher order terms in ,̃res).
When calculating the numerator of (4.1) one may neglect the difference be-

tween ε and ε̃ at all and set

(4.11)q̃(k,ω)= q
(
k,ωs,p

k

)≡ q
s,p
k ,

and the reflectances R
s,p
k , R̃s,p

k equal to 1. The phases, on the contrary, are not
negligible and should be kept. Using (4.5), we arrive at

χT T

(
k, z, z′,ω

)≈−4π

qs
k

(ωs
k)

2

c2

γ s
k

ω−ωs
k + iγ s

k

(4.12)× (e−iqs
kz + eiq

s
kz+iθsk )(eiqs

kz
′ + e−iqs

kz
′−iθsk )

1−Rs
kR̃

s
k + 4 Im q̃s

k l
,

χLL

(
k, z, z′,ω

)≈−4πq
p

k

ε

γ
p

k

ω−ω
p
k + iγ

p
k

(4.13)× (e−iq
p
k z − eiq

p
k z+iθpk )(eiq

p
k z
′ − e−iq

p
k z
′−iθpk )

1−R
p
k R̃

p
k + 4 Im q̃

p
k l

,

χZZ

(
k, z, z′,ω

)≈−4πk2

εq
p
k

γ
p
k

ω−ω
p
k + iγ

p
k

(4.14)× (e−iq
p
k z + eiq

p
k z+iθpk )(eiq

p
k z
′ + e−iq

p
k z
′−iθpk )

1−R
p

k R̃
p

k + 4 Im q̃
p

k l
.

Now we can outline the main qualitative features. If the donor frequency is
below the cavity mode cutoff frequency ωk=0 (which is obviously the same for
the s- and p-polarizations), the emission process is basically switched off. If it
is above ωk=0, then a point molecule emits the cavity photons with |k| deter-
mined by the energy conservation ωD = ωs

k , ωD = ω
p

k (within the corresponding
widths γ s,p

k ). For a quantum well exciton also the momentum conservation should
hold, which means that only excitons in a small region of k around the crossing
of the exciton and photon dispersion curves can decay via photon emission. The
dominant role of the real processes over the virtual processes means also that the
presence of the acceptors should not modify the donor kinetics in the first ap-
proximation, since the kinetics is governed purely by the cavity photon emission,
and the acceptors themselves do not represent an additional decay channel for
the donors. A fraction ηk of the emitted photons is subsequently absorbed by the
acceptors, and the remaining fraction 1− ηk eventually leaves the cavity through
the mirrors (or is absorbed, if the mirrors are dissipative).

In principle, the donor decay rate into the cavity photons may be affected if
the homogeneous broadening of the donor emission line is small compared to
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the cavity mode width: since the cavity mode acquires additional broadening, the
photonic density of states is decreased, which changes the decay rate accordingly.
However, if the cavity mode resonance peak is still sharp, the integration over k
will cancel this effect in the first approximation.

Several other remarks should be added. In Section 3 it was assumed that the
donors and the acceptors are spatially separated (z′ <L− l). However, under the
conditions of this section (ε̃∞ = ε, ,̃res � 1) the expressions (4.12)–(4.14) are
valid for L− l < z′ < L also, i.e., if the donors are mixed with the acceptors. In
particular, one may set l = L, which would correspond to the whole cavity, filled
by the material, doped with donors and acceptors, and the expressions (4.12)–
(4.14) will describe the cavity mode contribution to the donor decay rate (or, if
multiplied by ηk , to the energy transfer to the acceptors). Of course, in such a
situation the short-range Coulomb contribution, not picked up by (4.12)–(4.14),
as it corresponds to χij (k, z, z′,ω) with k�√ε ω/c, should be taken into account
properly (since it may actually be the dominant mechanism of the donor decay).

Another remark should be made about an important case when one of the mir-
rors (or both) is a DBR. A characteristic feature of DBRs is the finite width of
their stop band, that is the region in the (k,ω) space, where the reflectance is
close to unity [23,29]. The behavior of the reflection coefficient outside this re-
gion is complicated, and actually the probability of the excitation decay into light
with a wave vector outside the DBR stop band (the so-called leaky modes) is quite
large [30]. To take into account this effect, as well as the Coulomb contribution,
one should return to the general discussion of the previous section.

5. Numerical Results

To illustrate the results of the previous sections we consider a λ/2-cavity consist-
ing of a metallic mirror at z < 0 and a distributed Bragg reflector (DBR) at z > L.
As an example of such a cavity we take that described in Ref. [31], and stick to
the parameters given there. The metallic mirror is assumed to be a silver layer
thick enough to suppress any transmission. The dispersion of the silver complex
refractive index is taken into account, approximated by

nAg(ω)+ iκAg(ω)≈ (0.060+ 0.35 i)

(
h̄ω

eV
− 2.6

)2

+ (0.055− 1.70 i)

(
h̄ω

eV
− 2.6

)
+ 0.137+ 2.72 i,

which works with the absolute error of less than 0.007 for nAg and 0.02 for κAg
in the range 2 eV< h̄ω < 3.2 eV with respect to the data of Ref. [32]. The DBR
was assumed to consist of 9 periods of alternating λ/4 layers with n1 = 1.95 (sil-
icon nitride) and n2 = 1.45 (silicon dioxide). We take

√
ε =√ε̃∞ ≡ ncav = 1.63
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Fig. 3. The empty cavity absorbance (solid line), imaginary part of the acceptor medium dielectric
function for h̄ωA = 2.6 eV, γA = 0.2 eV, ,̃res = 1.0 (short-dashed line) and the DBR reflectance at
normal incidence (long-dashed line).

(polystyrene). The substrate refraction index is nsub = 1.55 (quartz). These num-
bers yield the mirror reflectances at k = 0, h̄ω = 2.6 eV to be R = 0.915,
R̃ = 0.980. The cavity thickness was chosen to be L= 121 nm to give the cavity
mode cutoff frequency h̄ωk=0 = 2.6 eV in the absence of the acceptors. The cor-
responding effective cavity length is Leff = 386 nm, and the cavity mode FWHM
is 2γk=0 = 17 meV.

One of the experimentally measured quantities, characterizing the cavity, is its
reflectance spectrum. Since the transmission of the metallic mirror is zero, the
light, sent from the right, is either reflected back or absorbed in the metal (in the
absence of acceptors it is the only dissipative channel, present in the system).
In Figure 3 we plot the cavity absorbance in the absence of acceptors (solid line)
together with the DBR reflectance (long-dashed line) and the imaginary part of the
acceptor medium dielectric function for h̄ωA = 2.6 eV, γA = 0.2 eV, ,̃res = 1.0
(short-dashed line).

5.1. TRANSFER AT FIXED k

Let the donor be placed at z′ = 0.5L, the acceptor layer thickness is chosen
to be l = 0.3L. At such separation between donor and acceptors the effect of
the Coulomb interaction is negligible, and the main contribution to the donor–
acceptor interaction comes from the transverse part. The imaginary part of the re-
sponse function ImχT T at k= 0 is plotted in Figure 4 for three values of ,̃res: 3.0
(solid line), 1.0 (long-dashed line), and 0.1 (short-dashed line). The dimensional-
ity of χ is the inverse length, so the natural units are nm−1, which are used on the
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Fig. 4. The imaginary part of the transverse–transverse component of the response function ImχT T

at k= 0 for ,̃res = 3.0 (solid line), ,̃res = 1.0 (long-dashed line), and ,̃res = 0.1 (short-dashed line)
in nm−1 (left axis) and rescaled to the exciton broadening (right axis, see the text for details).

left axis. However, more illustrative is to rescale the plot using the formula (3.14)
for the exciton damping (broadening). We take dD/aeh = 0.1 e (e being the elec-
tron charge), which is representative of II–VI semiconductors, such as ZnSe, and
put the corresponding broadening in meV (the broadening of 1 meV corresponds
to the lifetime of 0.658 ps).

For ,̃res = 0.1 the cavity mode FWHM is equal to 20 meV, which is close
to the value of 17 meV for the cavity without acceptors, which means that this
case falls into the category, described in the previous section: the regime of
weak absorption. If one takes the acceptor transition dipole moment dA = 5 D,
then the corresponding density from Eq. (3.10) is 1.0 nm−3. The peak value of
ImχT T is 2.90 nm−1 (out of scale), which corresponds to the exciton damping
�QW = 84 meV. This value is larger then the mode FWHM, which means that
the coupling of the semiconductor quantum well to the cavity mode is not weak,
the formula (3.14) (Fermi Golden Rule) is inapplicable, and one has to solve the
full polariton problem. However, the expression (3.15) for a point donor molecule
decay rate may be still valid (the dependence of Imχ on the wave vector will be
discussed below). For ,̃res = 1.0 the cavity mode FWHM is equal to 54 meV,
for ,̃res = 3.0 the spectral function is spread over several hundred meV and its
shape is strongly asymmetric. This asymmetry is due to the dispersion: Re ε̃(ω)

is smaller on the high-frequency side of the resonance.
Next, we fix h̄ω = 2.7 eV (above the mode cutoff frequency), and study the

exciton decay for different k. It is relevant for Wannier excitons in semiconduc-
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tor quantum wells, since at k ∼ ω/c the exciton dispersion may be neglected. We
separate different contributions to the donor decay rate, as explained in Section 2
(the explicit expressions for the Pointing vector at the cavity boundaries and the
losses in the acceptor medium are given in Section 3.4). Setting ,̃res = 3.0, we
plot in Figure 5(a) different contributions to the exciton decay rate – acceptor ab-
sorption (solid line), leakage through the right mirror (DBR, long-dashed line)
and absorption in the left mirror (silver, short-dashed line) – as a function of the
wave vector (h̄ck in eV). The units for Imχ are the same as on the previous plot
– nm−1 and meV. The whole range of k may be divided into several regions.
First, for h̄ck < 2.75 eV (the DBR stop band boundary) the major part of the
donor energy is transferred to the acceptor – when the mirrors are good, the light
bounces back and forth, at each pass loosing some part of the energy in the ac-
ceptor layer. The decay rate is peaked around the “cavity mode” (somewhat broad
and asymmetric): this peak in the spectral function follows the mode dispersion
in the (k,ω)-plane. The dominant contribution of the metallic mirror with respect
to that of the DBR is consistent with the relation between their reflectances. At
larger k the dissipation in the metallic mirror decreases strongly, which is the
consequence of the oblique incidence. The probability for the excitation to decay
into the acceptor decreases drastically, and simultaneously the leakage through
the DBR increases, becoming of the same order. The simple explanation is that
in the region where the DBR reflectance is poor, the light manages to make just
several passes across the cavity before escaping through the DBR, not having the
possibility to lose a large part of its energy in the acceptor medium. At ck > nsubω

the wave in the substrate becomes evanescent, and the leakage through the DBR
is completely suppressed, the acceptors remain the only dissipative channel for
the donors. At ck > ncavω the wave cannot propagate inside the cavity either, and
one observes the exponentially decreasing tail in the transfer rate. Sharp features
in the transfer rate correspond to the guided modes, propagating inside the DBR.
An analogous plot for the case of weak absorption is shown in Figure 5(b), and
the same qualitative arguments explain the main features.

Other components of the response function χ , corresponding to the p-polarized
light, behave in a similar way, except for one additional feature. Since the di-
electric function of silver is mostly real and negative (−6.48+ 0.73 i for h̄ω =
2.7 eV), a surface wave may propagate at the dielectric/metal interface [25],
broadened due to absorption in the metal. The dispersion law for this wave is
determined by

(5.1)
ω2

c2k2 =
1

εAg(ω)
+ 1

ε
.

For our parameters at h̄ω = 2.7 eV one obtains h̄ck ≈ (5.7+ 0.2 i) eV, or h̄ω =
(2.7− 0.10 i) eV at h̄ck = 5.7 eV. Resonant excitation of the surface wave results
in increasing losses in the metallic mirror. This loss mechanism becomes more
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Fig. 5. Different contributions to the imaginary part of the transverse–transverse component of the
response function ImχT T at h̄ω= 2.7 eV: from the acceptor (solid line), the DBR (long-dashed line),
and the metallic mirror (short-dashed line) in nm−1 (left axis) and rescaled to the exciton broadening
(right axis) (a) for ,̃res = 3.0, (b) for ,̃res = 0.1. The thin vertical lines mark ck = nsubω (solid line)
and ck = ncavω (dashed line).
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Fig. 6. The imaginary part of the sum of the diagonal components of the response function Imχii in
nm−1 as a function of k and ω for ,̃res = 3.0.

efficient as the donor gets closer to the metallic mirror, since the excitation occurs
via an evanescent electromagnetic wave. In Figure 6 we plot the sum of all the
diagonal components Imχii in nm−1 as a function of k and ω for ,̃res = 3.0. The
cavity mode is strongly broadened at small k, but as the frequency goes out of the
acceptor absorption band, the peak gets sharper. The peak corresponding to the
surface wave is seen at large k.

5.2. TRANSFER, INTEGRATED OVER k

Next, we integrate the decay rate over k, as in Eq. (3.15) for the decay rate �

of a point donor. We average (3.15) over the donor molecule orientations accord-
ing to (3.16), however, keeping the donor position z′ and frequency ωD as para-
meters. Taking the dipole moment to be dD = 5 D, which is typical for organic
molecules, we study different contributions to the donor damping �, as before, for
different regimes of the acceptor–light coupling. The donor position is assumed
to be z′ = 0.5L. If one is interested in the decay rate of thermalized Wannier ex-
citons in a quantum well, as given by Eq. (3.18), the result for organic molecules
(� or the contribution from a given decay channel) should be simply multiplied
by (7300 K)/T (calculated using dD/aeh = 0.1 e for the semiconductor dipole
moment and m= 0.7m0 for the exciton mass, m0 being the free electron mass).
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First, we plot in Figures 7(a), (b) different contributions to the donor damping—
acceptor absorption (solid line), leakage through the right mirror (DBR, long-
dashed line) and absorption in the left mirror (silver, short-dashed line) for the
same acceptor parameters as before (h̄ωA = 2.6 eV, γA = 0.2 eV), corresponding
to the strong/weak absorption regime: ,̃res = 3.0 and 0.1. First of all, we see that
the damping never exceeds 1 µeV, which means that Fermi Golden Rule works
perfectly in all cases. The difference between Figures 7(a) and (b) is the charac-
teristic width of the transition region around the cavity mode cutoff frequency,
determined by the width of the cavity mode. While for the weak absorption (the
second plot) it is several ten meV and the losses depend on the donor frequency in
a clear step-like manner (at higher frequencies the cavity mode is “switched on”),
for the strong absorption case the transition region is washed out over several
hundred meV.

The characteristic value of the differences in the donor damping � for different
donor frequencies is 0.1 µeV, corresponding to the lifetime of 6.6 ns. The differ-
ence in the donor relaxation kinetics may be observed if the change in � is not
negligible compared to the probability of nonradiative processes. Generally, if the
donor is a luminescent substance, the corresponding quantum yield of the usual
luminescence in the bulk typically is not very small (say, 10%). The radiative life-
time of the donor molecule in a bulk matrix with the dielectric constant ε = 6 for
dD = 5 D, h̄ωD = 2.6 eV is evaluated as

4

3h̄

d2
D

ε

(
ω
√
ε

c

)3

≈ 8.4 ns.

Thus, the expected difference in the donor kinetics may be 10–20%, which should
be observable.

In agreement with Savona et al. [30], the contribution of the leaky modes to
the emission through the DBR is dominant: as the donor frequency passes the
cavity mode cutoff frequency (2.6 eV), the amount of energy, leaving the cavity
through the DBR, does not change significantly. The same can be said about the
energy, transferred to the acceptor: the change is by a factor of the order of 1
and the leaky modes contribute significantly. As for the silver mirror, the detailed
analysis shows that the losses at frequencies below the mode cutoff are almost
exclusively due to the surface wave, discussed above. At larger ωD also the cavity
mode contributes to the losses in the metal. In Figures 8(a), (b) we plot the same
quantities as in the previous figure, but with the mirrors removed (the half-spaces
at z < 0 and z > L filled with the cavity material), intentionally preserving the
axes scales. For the strong absorption case in Figure 8(a) the change is merely
quantitative, which might be expected: if a substantial fraction of the light is ab-
sorbed in just one pass of the acceptor layer, the mirrors do not have a dramatic
effect. On the other hand, in the weak absorption limit the step-like behaviour of
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Fig. 7. Different contributions to the donor excitation damping 2γD (µeV) as a function of the
donor frequency: from the acceptor (solid line), the DBR (long-dashed line), and the metallic mir-
ror (short-dashed line) in µeV (a) for ,̃res = 3.0, (b) for ,̃res = 0.1.
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Fig. 8. Different contributions to the donor excitation damping 2γD (µeV) as a function of the
donor frequency in the absence of the mirrors: acceptor absorption (solid line), emission to the right
(long-dashed line), and emission to the left (short-dashed line) in µeV (a) for ,̃res = 3.0, (b) for
,̃res = 0.1.
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the losses as a function of the donor frequency clearly distinguishes the situations
with and without the cavity.

5.3. STRONG COUPLING REGIME

An interesting case, which we have not considered yet, is that of the strong cou-
pling between the acceptor and the cavity mode. This situation occurs when the
acceptor absorption band width is sufficiently small and the acceptor–light cou-
pling (in our model governed by the parameter ,̃res) is sufficiently strong. In Fig-
ure 9 we plot the imaginary part of the response function ImχT T (in nm−1 and
meV, analogously to Figure 4) at k = 0 as a function of frequency for ,̃res = 3.0,
γA = 20 meV. It exhibits two distinct peaks, corresponding to the upper and lower
polariton branches, formed by the cavity mode and the spatially coherent wave of
the acceptor excitations. Integrating over k, we make a plot, analogous to those in
Figure 7, which shows the point donor decay rate as a function of the donor fre-
quency (Figure 10). As we see from the main plot, the transfer rate to the acceptors
does not have the two-peaked shape, since the strong coupling is realized only in
the narrow region of wave vectors around k = 0, and the splitting is washed out
by the contributions from larger k. However, the maximum is shifted to higher
frequencies due to the contribution of the upper polariton.

An interesting feature seen in Figure 10 is the suppression of the losses due to
the mirrors around the acceptor resonance, especially pronounced for the metal-
lic mirror. As it was already mentioned, below the mode cutoff frequency the
dominant contribution comes from the surface wave at the metallic interface. It

Fig. 9. The imaginary part of the transverse–transverse component of the response function ImχT T

at k = 0 in nm−1 (left axis) and rescaled to the exciton broadening (right axis), for ,̃res = 3.0,
γA = 20 meV (the strong-coupling regime).
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Fig. 10. Different contributions to the donor excitation damping 2γD (µeV) as a function of the
donor frequency: from the acceptor (solid line), the DBR (long-dashed line), and the metallic mirror
(short-dashed line) in nm−1 µeV for ,̃res = 3.0, γA = 20 meV. The inset shows the spectral function
of the electromagnetic field Imχii /3 in nm−1 at k = 0, as a function of ω (eV).

Fig. 11. The imaginary part of the zz-component of the response function ImχZZ at h̄ck = 5.45 eV
in nm−1 (left axis) and rescaled to the exciton broadening (right axis), for ,̃res = 3.0, γA = 20 meV.
The two peaks correspond to the coupled surface wave and acceptor excitations.

turns out that when the frequency of the surface wave is close to the narrow ac-
ceptor resonance, they become strongly coupled and the anticrossing-like behav-
iour is observed. This is demonstrated by Figure 11, where we plot ImχZZ (the
component, on which the projection of the surface excitation is the largest) at
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Fig. 12. The imaginary part of the sum of the diagonal components of the response function Imχii

at h̄ck = 5.45 eV in nm−1 (a), and the contour plot of ln Imχii (b). ,̃res = 3.0, γA = 20 meV.



438 D.M. BASKO

h̄ck = 5.45 eV as a function of frequency. The dip in the short-dashed curve in
Figure 10 is nothing else than the gap between the two excitations, seen in the Fig-
ure 11 for a specific value of k. Note that the gap is shifted by about 20 meV above
the acceptor energy h̄ωA = 2.6 eV. We explain this feature by the fact that the sur-
face excitation and acceptor excitation are coupled via an evanescent wave, whose
spatial decrement decreases at larger ω, thus increasing the coupling strength. An
analogous suppression takes place for the losses via the leaky modes of the DBR:
even though these modes are strongly damped, nonetheless some anticrossing-
like decrease in the spectral function is observed at the energies slightly higher
than the bare acceptor level h̄ωA. This shift is due to the interaction of the accep-
tor with the electromagnetic field (i.e., the leaky modes are coupled to the bulk
polaritons in the acceptor slab, which arise due to the poor reflection of the DBR).
All these features may be seen in Figure 12, where we plot the sum of the diagonal
components Imχii as a function of k and ω [a surface plot in Figure 12(a) and a
contour plot for the logarithm of Imχii in Figure 12(b)]. The sharp spikes around
h̄ck = 4 eV correspond to the guided modes of the DBR (see Figure 5 and the
related discussion), which are not resolved by the grid in the (k,ω)-plane, used
for plotting.

5.4. SUMMARY

Summarizing the results of this lengthy section, we have considered the prob-
lem of energy transfer via the transverse electromagnetic field in a planar micro-
cavity for a plane-wave-like donor (which may be a Wannier–Mott exciton in a
semiconductor quantum well) and a point-like donor (a single molecule), treat-
ing acceptors as a continuous absorbing medium. Depending on the strength and
shape of the acceptor absorption, one may identify three regimes: the regime of
strong and broad absorption, the regime of weak absorption, and the regime of
strong coupling between the field and the acceptors, when the acceptor absorp-
tion has the shape of a strong and narrow peak. In the first case, the cavity mode
is practically destroyed, and instead of a sharp peak one obtains a broad asym-
metric maximum in the spectral function of the electromagnetic field for a given
in-plane wave vector k. In the case of the weak absorption, the cavity mode is still
well-defined and the absorption introduces just some additional broadening of the
peak in the spectral function. In the strong coupling regime, the spectral function
has two sharp peaks, corresponding to the upper and lower polaritons, formed by
the cavity mode and the excitations in the acceptor layer.

We have shown that taking into account the realistic structure of the mirrors is
important. In particular, if the mirror is a DBR, then much of the energy is emitted
outside the cavity through the leaky modes, in agreement with results previously
known for semiconductor microcavities. If the mirror is metallic, an important
process turns out to be the excitation of a surface wave at the metallic interface
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(which is subsequently absorbed in the metal). The decay rate of a point-like
donor (i.e., integrated over k) has been studied as a function of the donor fre-
quency. If the acceptor absorption band is broad, then all the decay rates for all
channels exhibit a step-like feature around the cavity mode cutoff frequency, cor-
responding to “switching on” the mode contribution, with the characteristic width
of the step determined by the width of the cavity mode. The step is practically
washed out if the absorption is strong, and is more pronounced in the case of
weak absorption, which may be detected by studying the total decay rate of the
donor, or the luminescence from the acceptor. For the case of the acceptor-field
strong coupling, the leakage through the mirrors turns out to be suppressed at the
acceptor frequency due to the anticrossing of the acceptor excitations with leaky
and surface modes, which may be observed if one looks at the light emitted from
the cavity at the donor frequency.

6. Discussion

This section is dedicated to the discussion of some physical aspects of the results
presented above and of some relevant experiments.

6.1. DECAY: NOT THE END OF THE STORY

The spectral function of the electromagnetic field for a given wave vector k (or
integrated over k) determines the probability per unit time � of the donor excita-
tion decay into the states of the system “electromagnetic field + acceptors” for a
plane-wave-like (or a localized point-like) donor, as prescribed by Fermi Golden
Rule. If some other nonradiative decay processes are also present (with the corre-
sponding rate �′), then the final states are those with energies close to h̄ωD within
an interval of the characteristic width � + �′. If these nonradiative processes are
not strongly dominating, then the changes in the total donor lifetime, calculated
here, may be observed, for example, measuring the decay kinetics, or the satura-
tion behaviour (if the donor is pumped optically). The actual state of excitation
after the donor decay may be different, depending on the specific conditions: it
may be localized on an acceptor molecule, may be a cavity photon for the weak
absorption case, it may also be a cavity polariton if the acceptor-light coupling
is strong. Now we ask ourselves a question: what will happen to this excitation
afterwards?

We have separated different contributions to the spectral function, namely, from
the continuum of states leaking through the mirrors, and the contribution from
the states in the acceptor, interacting with its own reservoir (intramolecular vi-
brations, phonons in the matrix, etc.). These two contributions correspond to the
probabilities of different dissipation processes the donor may be involved in. The
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rate �(mirr) of escape through the mirrors speaks for itself – it corresponds to the
outgoing light for the DBR, and to the absorption in the metal for the thick metal-
lic mirror. Thus the outgoing light at the donor luminescence frequency carries the
information about the donor population (provided that some additional condition
holds – see below the discussion of the role of dephasing in the acceptor).

The situation with the decay into the acceptors is more complicated. To under-
stand what happens to the excitation afterwards, we should specify the dissipative
mechanisms, contributing to the homogeneous broadening of each acceptor mole-
cule. The nonradiative decay is the simplest possibility, however, of little interest.
Another possibility is the vibronic relaxation, important for materials with large
Stokes shift. From the formal point of view it is fully analogous to the case of
the nonradiative decay, since the excitation effectively “disappears” from the fre-
quency region of interest. The important point is that it “reappears” in a different
frequency region, and the information about the transfer to the acceptors may be
obtained by measuring the acceptor luminescence, especially if the acceptor lu-
minescence spectrum is below the DBR stop band (as, e.g., in Ref. [4]). But even
if it is inside the stop band, some light may still come out at oblique angles (the
leaky modes).

A nontrivial case is when the dominant dissipative process in the acceptor is de-
phasing, not followed by any significant energy relaxation, however, contributing
to the homogeneous broadening of the acceptor level. Then, after the dephasing
has occurred, the excitation is still there, at an energy close to the donor fre-
quency h̄ωD , “waiting” for its chance to decay. If the material has strong Stokes
shift, then usually the dominant mechanism is the vibronic relaxation, and we re-
turn to the previous case. However, if the Stokes shift is negligible (as it was in
the work of Ref. [33]) and the nonradiative recombination does not play any sig-
nificant role, the excitation in the acceptor may decay radiatively through the mir-
rors. We stress that this radiative decay is not included into the �(mirr), calculated
above. Clearly, if one considers an ideal limiting case when all the dissipation in
the acceptor is pure dephasing, then at the end all 100% of the donor energy will
leave the cavity through the mirrors at the same frequency ωD . Separating this
light from that originating directly from the donor, requires a proper experimental
arrangement (possible signatures may be a change in the polarization or a differ-
ent kinetics). Strictly speaking, in such a situation the excited acceptor should be
treated as a new donor, and we find ourselves at the beginning of the same story.
However, in this situation one cannot “get rid” of the Coulomb transfer, sepa-
rating spatially donors and acceptors, since the new donor is situated inside the
acceptor medium itself. The situation becomes even more complicated when the
resulting state is a substantially mixed state of the system “acceptors+ field”, like
a cavity polariton. Generally, we should conclude that the calculations performed
above, are directly related to observable quantities only if the dominant broaden-
ing process in the acceptors is decay-like (including the vibronic relaxation).
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6.2. REVIEW OF RELEVANT EXPERIMENTS

At the time when this chapter was being written the author was aware of three
experimental works where the microcavity effect on the energy transfer was stud-
ied.

The first one is the paper by Hopmeier et al. [4]. A planar cavity with one
aluminum mirror and a DBR as the second mirror, was filled with polycar-
bonate homogeneously doped with poly(phenyl-p-phenylene vinylene) (PPPV)
which served as the donor, and 4-dicyanmethilene-2-methyl-6-(p-dimethylami-
nostyryl)-4H -pyran (DCM) as the acceptor. The donor was excited by a laser
pulse through the DBR at a frequency above the DBR stop band. The subsequent
luminescence was observed in two spectral regions: a sharp peak corresponding
to the donor emission into the cavity mode (the acceptor did not emit at this fre-
quency), and broad luminescence at frequencies below the DBR stop band, to
which both donor and acceptor could contribute. The intensity of the total lumi-
nescence in this second spectral region was measured for different cavity mode
frequencies ωk=0 (several cavities with different lengths were made).

What the authors observed was the enhancement of the detected luminescence
with respect to that of a reference sample without mirrors. On increasing the cav-
ity mode frequency the enhancement factor changed from 1 to 4, which was at-
tributed to the enhancement of the transfer due to the cavity. However, this result
seems strange if one recalls our considerations about the transfer in the weak ab-
sorption case (clearly identifiable from the presence of the narrow cavity mode)
in Section 4. Indeed, as the mode cutoff frequency ωk=0 sweeps the region of the
donor–acceptor spectral overlap from lower to higher frequencies, the enhance-
ment factor should decrease, since the cavity mode can contribute to the transfer
at ω > ωk=0 (the transfer is mediated by the photons with k > 0), but not to
the transfer at ω < ωk=0. Another objection to the interpretation of Hopmeier et
al. is that in their structure, when donors and acceptors are mixed together in a
random manner, the short-range Förster transfer due to the Coulomb interaction
should dominate over the cavity mode contribution, the latter not being competi-
tive enough to produce such a large enhancement factor as 4.

Of course it does not make much sense to speculate about the reasons of such
disagreement (both quantitative and qualitative) between the experiment and our
simple theory without knowing the details of the experiment. However, one of
possible effects that could affect the measured luminescence, is the change in the
efficiency of the excitation as the cavity thickness is varied. Recalling that the
excitation frequency was only slightly above the DBR stop band, and that at this
frequency the DBR reflectance still is not small and behaves in a complicated
way, the penetration of the exciting light into the cavity may depend on the cavity
thickness. Then this might affect the acceptor luminescence since the acceptor
absorption at the excitation frequency was not small, as mentioned in Ref. [4],
and the direct excitation of the acceptor was not avoided.
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Fig. 13. The cavity samples used in the work of Ref. [5]. (Reprinted with permission from Ref. [5].
Copyright (2000) American Association for the Advancement of Science.)

A neat experimental work was reported by Andrew and Barnes [5]. They pre-
pared several planar microcavity structures where the donors [N -hexadecyl pyri-
dinium tetrakis (1,3-diphenyl-1,3-propandionato) europium (III) complexes with
narrow luminescence spectrum and high quantum yield] and acceptors (1,1′-
dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine) were confined to 2D mono-
layers, whose separation l′ was controlled at nm scale (Figure 13). The qual-
ity of the cavities varied strongly: from open structures without any mirrors at
all to complete cavities with two silver mirrors. Combined with different cavity
lengths L, it provided a wide range of photonic mode densities at the positions
of donor and acceptor layers. The main object of measurement was the donor
luminescence decay rate �(l′) in different cavities for l′ = 0–25 nm.

At such distances the energy transfer is dominated by the Coulomb contribu-
tion, and in the absence of the cavity the decay rate behaves as [17]:

(6.1)�(l′)= �(r) + �(nr) = �(r)
[

1+
(
l0

l′

)4]
,

where �(r) is the radiative rate of the donor, �(nr) is the nonradiative decay rate
(associated with the Förster transfer), and l0 is called the critical distance. In
the experiment each cavity was characterized by the donor pure radiative decay
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Fig. 14. Dependence of the donor nonradiative decay rate �(nr) on the radiative decay rate, as mea-
sured by the authors of Ref. [5] (our notations are different from the original ones). The three sets of
data with the corresponding linear fits correspond to different donor–acceptor separations – 10.4 nm
(circles), 15.6 nm (up triangles), 20.8 nm (down triangles). (Reprinted with permission from Ref. [5].
Copyright (2000) American Association for the Advancement of Science.)

rate �(r), identified with �(l′ →∞), i.e., measured at large donor–acceptor sepa-
ration. This is correct if the presence of the acceptor layer does not affect the mode
structure strongly, which is a reasonable assumption. Thus �(r) is a measure of the
photonic mode density at the donor position for a given cavity. Then, subtracting
the measured radiative rate from the total one, the authors obtained the transfer
rate �(nr) for different cavities. The key result, obtained by Andrew and Barnes
was that at fixed l′ the transfer rate �(nr) depended on �(r), the dependence being
well described by a linear on (Figure 14). This, according to the authors, was an
evidence that the Förster transfer rate depends on the photonic mode density, and
was interpreted in terms of Eq. (6.1).

This conclusion is hard to accept, since we know that the short-range transfer
via the longitudinal Coulomb field cannot depend on the density of the trans-
verse photonic modes, and �(nr) should not depend on �(r) since these quantities
are determined by contributions from different photons: large k scalar photons
in the first case, and the small k ∼ ω/c transverse photons in the second case.
The question, however, remains: if not what they claim, then what effect have
Andrew and Barnes actually observed? Again, here we can only speculate about
possible things that may have occurred. First, the dependence �(nr)(�(r)) obtained
experimentally, is much weaker than if one assumes Eq. (6.1) to hold in a cavity:
extrapolating the experimental straight lines �(nr)(�(r)) to �(r)→ 0, we see that
�(nr) tends to some constant, strongly dependent on l′. Second, the slope of these
straight lines decreases with increasing l′. This may happen if the proximity of the
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acceptor layer induces some changes in the emitting properties of the donor, thus
leading to some dependence �(r)(l′). In this case the difference �(l′) − �(∞)

does not give the purely nonradiative transfer rate, as assumed by Andrew and
Barnes, but contains some part of the radiative rate �(r)(l′) as well, thus leading
to some dependence on the photonic mode density. The nature of this proximity
effect remains yet to be understood.

In the third experimental work [6] a 200 nm layer of donors (CdSe nanocrystals
in polystyrene matrix) and a 40 nm layer of acceptors (1-ethyl-2-[(1-ethyl-2(1H)-
quinolinylidene)methyl] quinolinium bromide) were placed into a high-quality
cavity with one silver mirror and one DBR. The cavity had many modes due to
the complicated behaviour of the DBR reflectivity. The authors have seen (i) en-
hancement of the acceptor luminescence with respect to the reference sample with
the mirrors removed, and (ii) suppression of the acceptor luminescence with re-
spect to the bilayer cavity when an additional spacer (20 nm SiO) layer is inserted
between the donor and the acceptor layers to eliminate the Förster transfer. Again,
the authors claim to have observed the enhancement of the Förster transfer due to
the cavity effects.

The effect of the cavity in this case, however, should be reduced to the emis-
sion and reabsorption of the cavity photons, as the acceptor absorption is weak,
and this experiment also falls in the category, described in Section 4. The sup-
pression of the transfer after the insertion of the spacer may be due to the change
in the cavity length, since this leads to the change in the frequencies of the cavity
modes. The position of the cavity modes with respect to the donor and acceptor
spectra is especially important in this experiment since the acceptor absorption
spectrum was not smooth, having pronounced vibronic structure. In this case a
small change in the cavity modes’ frequencies may change the transfer strongly.
This is a possible explanation of the results of Ref. [6].

7. Concluding Remarks

In this chapter we have discussed the problem of the energy transfer via electro-
magnetic field in a microcavity, focusing mainly on the theoretical aspects of the
problem. We have studied different cases that may be realized depending on the
optical properties of acceptor molecules and analyzed the distribution of energy
between different possible decay channels for the donor excitation.

Having reviewed the relevant experimental results reported so far, we have seen
that their interpretation is not so straightforward as it was presented in the corre-
sponding works. Thus, this problem continues to be interesting and important,
and more studies are needed to improve our understanding of the phenomenon.
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1. Introduction

In the chapter by V.M. Agranovich, V.I. Yudson and P. Reineker of the present
book the authors studied hybridization of Wannier–Mott excitons in an inorganic
semiconductor and Frenkel excitons in an organic material. Namely, they consid-
ered a high-quality hybrid nanostructure consisting of a semiconductor part and
an organic part. If the two excitonic states belonging to the corresponding parts of
the nanostructure, which are spatially separated, have close energies and are cou-
pled (e.g., via Coulomb interaction), the eigenstates of the system may no longer
be purely Frenkel or Wannier excitons, but rather coherent superpositions of the
two. These new excitations would then have a number of peculiar properties, as
discussed in the chapter by V.M. Agranovich, V.I. Yudson and P. Reineker.

For this effect to occur, the magnitude of the Coulomb coupling (typically, sev-
eral meV) should be large compared to the broadenings of the excitonic states in
both materials. However, for many organic materials the width of the excitonic
resonances can be larger than the coupling. In such a situation the coherent super-
position of excitonic states is destroyed by dissipative processes; instead, incoher-
ent Förster-like energy transfer has to be considered. As the energy relaxation in
the organics is assumed to be fast, it makes sense to think about energy transfer
from the semiconductor part of the structure (donor, which is initially excited) to
the organic material (acceptor).

The physical picture is analogous to that considered in the chapter on energy
transfer in a microcavity. Here we will consider distances which are small com-
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pared to the resonant light wavelength, correspondingly retardation effects can be
neglected, the electromagnetic interaction between donor and acceptor is domi-
nated by the Coulomb part, and the transfer is purely nonradiative. Our purpose
will be to give predictions for the Coulomb transfer in different structures, to look
at the effect of the geometry on the transfer, to consider its dependence on the
character of excited states, etc.

The overall scenario can be described as follows. Suppose, the semiconductor
is excited. Then excitation transfer to the organics immediately starts with the
characteristic time τ . As a result, an excitation is created in the organics with
the energy equal to the Wannier–Mott exciton energy in the semiconductor (as
prescribed by Fermi Golden Rule). Then the competition starts between the back
transfer to the semiconductor (with the same time constant τ ) and the vibronic re-
laxation in the organics (the characteristic time τvib). If the excitation has relaxed
in the organics, then it will never return to the semiconductor, since its energy is
already low, lying deep in the semiconductor gap. Thus, if τvib � τ , there will be
no back transfer. In the opposite limit the populations will equilibrate. Another
relevant time scale is, of course, the excitation lifetime in the semiconductor τsem
(without the transfer to organics). If τsem � τ , then the efficiency of the transfer
is low.

The typical values are τsem ∼ 1 ns, τvib ∼ 1 ps. The estimation of τ for differ-
ent configurations, as it was done in Refs. [1–6], is the focus of the present chap-
ter. To anticipate the main result, in several configurations with realistic material
and geometry parameters the transfer time from the Wannier exciton is τ ∼ 10–
100 ps, which allows to say that (i) the transfer to organic is efficient, compared
to the semiconductor intrinsic relaxation channels, and (ii) the back transfer to
the semiconductor is suppressed. A possible application of this phenomenon, as
discussed in Section 5, is to use the semiconductor part of the nanostructure for
the electrical pumping of Wannier excitons, which, in turn, would pump organ-
ics via the transfer, described above. The organics, pumped in such indirect way
(which, however, may be quite efficient), may be used as the active medium in a
light-emitting device. Such pumping eliminates the problem of providing a good
electric contact to the organic medium, which is one of the main problems in the
technology of organic LEDs. This indirect way of pumping eliminates also the
singlet–triplet problem in the organics, since only singlet states may participate in
the Förster transfer, and all the energy, transferred to the organics, is transferred to
singlets. Such a hybrid device might be advantageous also with respect to semi-
conductor LEDs, since the Förster transfer may compete with other nonradiative
relaxation processes in the semiconductor, and the quantum efficiency of such a
device would be larger than that of a single semiconductor, if the luminescence
quantum yield in the organics is high.

The rest of the chapter is organized as follows. In Section 2 we describe the
general scheme of calculation of the transfer rate, and in particular the input of



ENERGY TRANSFER FROM A SEMICONDUCTOR NANOSTRUCTURE 449

the theory: models for the semiconductor and the organic parts of the structure.
Sections 3, 4 are dedicated to the calculations of the transfer rate in two spe-
cific configurations: planar (semiconductor quantum well covered by an organic
material overlayer) and spherical (semiconductor quantum dot surrounded by the
organic material). Finally, in Section 5 we discuss possible application of the de-
scribed phenomenon for light-emitting devices.

2. The General Calculation Scheme for the Energy Transfer

This section is dedicated to the description of the general calculation scheme of
the rate of energy transfer from an inorganic semiconductor to an organic mate-
rial due to Coulomb interaction. The appropriate point to start from is classical
electrostatics. Consider two spatially separated systems of charges a and b with
the charge densities ρa(r) and ρb(r) respectively. Then the interaction energy is
given by

(2.1)V =
∫
ρa(r)G

(
r, r′)ρb(r′)d3rd3r′,

where G(r, r′) is the Green’s function of the Poisson equation. In vacuum it is
the usual 1/|r − r′|, in an inhomogeneous anisotropic medium with the dielectric
constant εij (r) it satisfies the equation

(2.2)
∂

∂xi
εij (r)

∂

∂xj
G

(
r, r′) = −4πδ

(
r − r′).

If the total charges of the systems a and b are zero, one may introduce the po-
larizations, vanishing outside the regions of space, occupied by the systems [7],
such that

(2.3)ρa(r)= − div P a(r), ρb(r)= − div P b(r).

Then the energy may be rewritten as

(2.4)V =
∫
Pai (r)P

b
j

(
r′)∂2G(r, r′)

∂xi∂x
′
j

d3rd3r′ = −
∫

P a(r) · Eb(r) d3r,

where Eb(r) is the electric field, produced by the system b:

(2.5)Ebi (r)=
∫
χ̄ij

(
r, r′)Pbj (

r′)d3r′, χ̄ij
(
r, r′) ≡ − ∂

∂xi

∂

∂x ′
j

G
(
r, r′).

The Coulomb response function χ̄ij (r, r′) gives the ith component of the electric
field at the point r, produced by the j th component of a point dipole, situated at
the point r′. It is very simply related to the electromagnetic field response function
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χij (r, r′,ω) considered in Chapter 8 of the present book where energy transfer in
a microcavity was studied. χ̄ij (r, r′) is nothing else but the limit of χij (r, r′,ω) at
ω→ 0 (electrostatics) or, equivalently, c→ ∞ (no retardation). Working in this
limit is justified if the characteristic distances in the problem are much shorter
than the resonant light wave length, which is equivalent to k� ω/c.

In quantum mechanics the expression (2.1) acquires the sense of the interaction
Hamiltonian Ĥint, the charge densities and the polarizations become operators
ρ̂a,b(r) and P̂ a,b(r). The explicit form of these operators is determined by the
microscopic structure of the systems considered and the approximations made (so
far all the relations of this section have been exact). In principle, the polarizations
contain the contributions both from electrons and nuclei, but usually the nuclear
dipole moment may be neglected since the characteristic displacements of nuclei
are much smaller than those of electrons due to large mass difference. One should
keep in mind that speaking of two different electron densities for the systems
a and b already completely disregards the exchange effects, which is justified if
the wave function overlap between the systems a and b is negligible.

Generally, the input parameters of the theory for calculation of the energy trans-
fer rate should be (i) the model for the energy levels, the dissipation, and the exci-
tonic polarization in the semiconductor (donor), (ii) the same for the organics (ac-
ceptor), and (iii) the Coulomb response function χ̄ij (r, r′) for the structure under
consideration. In what follows we are going to describe the microscopic models
for the semiconductor and the organic parts of the structure and the procedure of
calculation of the transfer rate.

2.1. THE MODEL FOR SEMICONDUCTOR POLARIZATION

In this section we discuss in detail the explicit form of the polarization P̂(r) in
semiconductor nanostructures. In the subsequent considerations just the final ex-
pression (2.13) is used, and if the reader does not want to go into details, he may
actually skip this section.

In inorganic semiconductors the electron–phonon interaction is weak and one
may completely neglect vibronic transitions, focusing on the electronic states.
The most interesting for us will be the zinc-blende semiconductors formed by el-
ements of the groups III and V or groups II and VI of the periodic table (like GaAs
or ZnSe). Taking into account the spin degeneracy, in these materials the lowest
conduction band is twice degenerate, and the highest valence band is fourfold de-
generate at k = 0 due to the symmetry of the crystal, both bands having extrema
at k = 0 (the � point). At wave vectors k �= 0 the four-dimensional manifold splits
into two bands (each of them being twice degenerate), having different effective
masses. They are called light hole and heavy hole bands [8–10]. For our purposes
it will be sufficient to consider first one nondegenerate conduction band and one
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nondegenerate valence band, summing the contributions of different bands at the
end, when needed.

A system of many identical particles is most conveniently described by the
ψ̂ field operators [11]. The generic form of the electronic charge density operator
in a semiconductor is

(2.6)ρ̂sem(r)= −e ψ̂†(r)ψ̂(r).

Taking into account only two nondegenerate bands, one can split the electronic
ψ-operator into two parts, corresponding to the conduction and valence bands:

(2.7)ψ̂(r)= ψ̂c(r)+ ψ̂v(r)≡ ψ̂e(r)+ ψ̂†
h(r),

where we introduced a hole creation operator as a valence electron destruction
operator. In the operator of electron density

ψ̂†(r)ψ̂(r)= ψ̂†
v (r)ψ̂c(r)+ ψ̂†

c (r)ψ̂v(r)+ ψ̂†
c (r)ψ̂c(r)

(2.8)+ ψ̂†
v (r)ψ̂v(r),

the first two terms correspond to the interband transitions, the last two – to the
intraband transitions.

Consider the first term (the second one being just its hermitian conjugate). The
matrix element of the operator ψ̂†

v (r
′)ψ̂c(r) between the ground state |0〉 and some

eigenstate |s〉 of a single electron–hole pair is

〈0|ψ̂†
v

(
r′)ψ̂c(r)|s〉 = v0

∫
d3k
(2π)3

d3k′

(2π)3
 s

(
k,k′)uc,k(r) u∗

v,−k′
(
r′)eikr+ik′r′

(2.9)≈ v0 uc(r) u∗
v

(
r′) s(r, r′).

Here v0 is the unit cell volume, uc(r) and uv(r) are the conduction and valence
band extrema Bloch functions,1  s(re, rh) is the envelope wave function of the
electron–hole pair state |s〉, normalized to the unit integral∫ ∣∣ s(re, rh)∣∣2

d3re d3rh = 1.

Now consider the interband matrix element of the charge density, correspond-
ing to the first term in the expression (2.8). One is interested in the long-
wavelength Fourier components of the density, given by

ρ0s (q)≡ 〈0|ρ̂sem(q)|s〉

(2.10)= −e
∫

d3k
(2π)3

 s(k,q − k)
∫
u.c.

uc,k(r) u
∗
v,k−q(r) d

3r,

1We adopt the term “Bloch function” for the cell-periodic part of the full electron wave function in
the crystal.
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which is obtained from the first line of (2.9) using the periodicity of the Bloch
functions. More specifically, due to the periodicity the product uc,k(r) u∗

v,k−q(r)
contains plane waves with the wave vectors equal to either zero or a reciprocal lat-
tice vector. Being interested only in the long-wavelength part of ρ0s , one should
pick up only the zero wave vector contribution, which corresponds to the integra-
tion over the unit cell, as done in (2.10).

If one simply approximates the Bloch functions in (2.10) by those for the band
extrema, the result will be zero due to the orthogonality∫

u.c.

uc(r) u∗
v(r) d

3r = 0.

Hence one has to expand the Bloch functions using the k · p perturbation the-
ory [8–10], to find the admixture to the function uc,k(r) of the Bloch func-
tions ub(r) of all the other bands b:

uc,k(r)≈ uc(r)− ikj h̄
2

m0

∑
b

〈b|∂/∂xj |c〉
Ec(0)−Eb(0) ub(r)

(2.11)= uc(r)− ikj
∑
b

〈b|xj |c〉ub(r),

where the symbol 〈b|O|c〉 denotes∫
u.c.

u∗
b(r)O uc(r) d3r.

In the transition from the first to the second line of (2.11) the quantum-mechanical
relation ṙ = −i(h̄/m0)∇ for the bare electron in the crystal was used, ṙ being
related to the commutator of r with the crystal Hamiltonian. Expanding u∗

v,k−q(r)
analogously, and substituting them into (2.10), one obtains

ρ0s(q)= −iq · dvc
∫

d3k
(2π)3

 s(k,q − k),

(2.12)ρ0s(r)= − div
(
dvc  s(r, r)

)
,

where dvc = 〈v|(−er)|c〉 is the transition dipole moment of the unit cell. The
contributions of all the bands different from the conduction and valence bands
vanish due to the orthogonality. According to (2.3), the obtained charge density
corresponds to the interband polarization

(2.13)〈0|P̂(r)|s〉 = dvc  s(r, r).

The expression (2.13) is the basic one to be used in the present work. The Carte-
sian components of the dipole moments dvci (i = x, y, z) may be expressed in
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terms of the Kane’s energy E0 [9] as

(2.14)
∣∣dvci ∣∣2 = e2h̄2E0c

2
i

2m0E2
g

= c2
i (ea0)

2 E0 Ry0

E2
g

≡ c2
i

∣∣dvc∣∣2
,

where a0 and Ry0 are the hydrogen atom Bohr radius and Rydberg constant, and
ci are the appropriate symmetry coefficients. In semiconductors with the zinc-
blend structure chhx = chhy = 1, chhz = 0 (heavy holes), clhx = clhy = 1/

√
3, chhz =√

4/3 (light holes).
For an intraband transition between the states |s〉 and |s′〉 of the electron–hole

pair one may simply average ψ̂†
c (r)ψ̂c(r) and ψ̂†

v (r)ψ̂v(r) over the unit cell using
the Bloch functions at the band extrema, since the principal term does not vanish
already. As a result, the corresponding matrix element of the charge density is
given by the sum of electron and hole contributions:

〈s|ρ̂sem(r)|s′〉 = −e
∫
 ∗
s (r, rh) s ′(r, rh) d

3rh

(2.15)+ e
∫
 ∗
s (re, r) s ′(re, r) d

3re.

2.2. THE MODEL FOR ORGANICS

The way of describing the organic material should be chosen according to two
principal points. First, one expects it to have some general properties:

• The material has broad absorption band around the frequency ωD of the
Wannier–Mott exciton.

• The wave vector is not expected to be a good quantum number, e.g., because the
plane waves are completely destroyed by scattering on phonons or disorder, or
the material may consist simply of the acceptor molecules randomly distributed
in a matrix in which case introducing the wave vector makes no sense at all. In
brief terms, the spatial dispersion is neglected.

• The microscopic and the macroscopic length scales are assumed to be well-
separated, which means that one can average the properties of the material over
a volume, small enough compared to “long” scales of the problem (the char-
acteristic structure size, the characteristic length of the electric field variation,
etc.) on one hand, but on the other hand this volume should be large enough
for this average not to vary strongly from point to point. If it is not so, the re-
sults would strongly depend on the specific realization. The slow variation of
the parameters is allowed (e.g., such as the concentration of the impurity ac-
ceptor molecules). In other words, the material is assumed to be “statistically
smooth”, which allows to describe it as a continuous medium.
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The second point is that once a rigorous microscopic description of the organics
is strongly dependent on the specific material, and may be necessarily statistical
because of the disorder, a justified thing to do is to introduce the simplest model,
reproducing the general properties of the material and relevant averaged quanti-
tative characteristics. As will become clear from the following discussion, these
relevant characteristics are the optical ones, i.e., the dielectric function, which is
directly available from experiments.

We assume that the excitations in the organic medium are localized, corre-
sponding to the excited states of a molecule or a group of strongly coupled mole-
cules. Thus, the organic subsystem may be described by the ground state |gA〉, and
the excited states |r, ν〉, where r is the continuous position of the excited state and
ν is a continuous quantum number, labelling the excited states at the point r. As
we restrict ourselves to the linear regime, only “one-particle” excited states are
considered, which means that two excitations |r, ν〉 and |r′, ν′〉 are not allowed
to exist simultaneously. The particular dissipation mechanism, determining the
structure of these states need not be specified here, according to the above-said.
We use the following normalization of the states

(2.16)〈gA|gA〉 = 1,

(2.17)〈gA|r, ν〉 = 0,

(2.18)〈r, ν|r′, ν′〉 = δ(ν − ν′)δ(r − r′),
(2.19)1̂A = |gA〉〈gA| +

∫
d3r

∫
dν |r, ν〉〈r, ν|,

where 1̂A is the unit operator for the organic subsystem. The Hamiltonian and the
polarization of the organic medium are written as

(2.20)ĤA = |gA〉0〈gA| +
∫
d3r

∫
dν|r, ν〉Eν(r)〈r, ν|,

(2.21)P̂A(r)=
∫
dν|r, ν〉dν(r)〈gA| + h.c.,

where the Eν(r) is the energy of the corresponding state and dν(r) is the matrix
element of the dipole moment between the excited and the ground state:

(2.22)dν(r)= 〈r, ν|
(∑

i

ei r̂i

)
|gA〉,

where ei and r̂i are the charge and the position operator of the ith charge in the
medium and the sum is taken over all charges, constituting the medium. Both
Eν(r) and dν(r) are assumed to be slow varying in space.
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2.3. CALCULATION OF THE TRANSFER RATE

Typically the broadening of the Wannier–Mott exciton resonance (several meV) is
negligible compared to the width of the absorption spectrum of organics (several
hundred meV). Thus, one may consider the excited state in the semiconductor to
be discrete with the energy h̄ωD . The excited state | 〉 of the semiconductor is
an electron–hole pair described by the two-particle envelope function  (re, rh),
assumed to be normalized to unity:

(2.23)
∫ ∣∣ s(re, rh)∣∣2

d3re d3rh = 1.

The effective Hamiltonian and the polarization for the semiconductor are simply
given by

(2.24)ĤD = | 〉h̄ωD〈 | + |gD〉0〈gD |,
(2.25)P̂D(r)= dvc  (r, r)|gD〉〈 | + h.c.,

where |gD〉 is the semiconductor ground state, dvc was defined in Section 2.1.
The Hamiltonian of the Coulomb interaction between the semiconductor and

the organics is given by Eqs. (2.4), (2.5):

(2.26)

Ĥint = −
∫

P̂A(r) · ÊD(r) d3r, ÊDi (r)=
∫
χ̄ij

(
r, r′) P̂ Dj (

r′)d3r′,

where ÊD(r) is the operator of the electric field, produced by the semiconductor
polarization P̂D(r) in the organics. The Förster transfer rate � (determining the
partial electron–hole pair lifetime τ due to the transfer) is given by the Fermi
Golden Rule:

(2.27)� ≡ 1

τ
= 2π

h̄

∫
d3r

∫
dν

∣∣dν(r) ·Evc(r)∣∣2
δ
(
Eν(r)− h̄ωD

)
,

where Evc(r) = 〈gD |ÊD(r)| 〉. Considering the general expression for the di-
electric function [12], which in our normalization of states may be written as

(2.28)εij (r,ω)= δij − 8π
∫
dν

Eν(r) dνi (r) (d
ν
j (r))

∗

(h̄ω)2 − (Eν(r))2 + iηω,
where the infinitesimal η→ +0 prescribes the position of the poles in the ω com-
plex plane, the expression (2.27) may be identically rewritten as

(2.29)� = 1

2πh̄

∫
Im εij (r,ωD)Evci (r)

(
Evcj (r)

)∗
d3r,

where εij (r,ωD) is the dielectric function of the organic medium at the frequency
of the Wannier exciton frequency.



456 D.M. BASKO

It is interesting to compare the expression (2.29) to the original Förster for-
mula [13,14]. First, in Eq. (2.29) there is no integral over frequencies present in
the Förster formula, since we assumed the luminescence spectrum of the semicon-
ductor to be a sharp line (actually, a δ-peak). Instead of the acceptor absorption
coefficient µ(ω) in the Förster formula, in Eq. (2.29) one has the imaginary part
of the dielectric function, which is physically equivalent, since for the isotropic
case εij = εδij the two are connected by a simple relation [7]:

µ(ω)= 2ω

c

√
(|ε(ω)| − Re ε(ω))/2 ≈ ω

c

Im ε̃(ω)√
Re ε̃(ω)

.

Analogously to the discussion of the Förster formula [14], the phenomenologi-
cal quantity εij (r,ω) already takes into account the local field effects. Finally,
the geometrical factor 1/R6 appearing in the Förster formula (where R is the
donor-acceptor distance) is no longer present in (2.29), since the geometry of the
structure is completely different.

An interesting feature is that Eq. (2.29), multiplied by the energy of the exci-
tation h̄ωD , coincides with the expression for the power dissipated in the organic
medium in the presence of classical external electric field of the frequency ωD
and the amplitude, equal to E(r) [7]. This is related to the general fact that a
quantum mechanical system in the linear regime is equivalent to a classical oscil-
lator, producing a real electric field (instead of the off-diagonal matrix element for
the quantum description) in the organics. This equivalence was used in Chapter 8
to calculate the rates of different dissipative processes in a microcavity.

Summarizing, we can give the following recipe for calculating the energy trans-
fer rate. Suppose that inside the semiconductor one has the classical macroscopic
polarization, oscillating with the frequency ωD :

(2.30)P(r, t)= dvc  (r, r) e−iωDt + c.c.

Then, solve the electrostatic problem (i.e., neglecting retardation) and find the
corresponding electric field

E(r, t)=E(r) e−iωDt + c.c.

The latter, substituted into (2.29), will give the correct quantum mechanical decay
rate if the complex dielectric function of the organics is known (independently
of its microscopic structure). The expression (2.29) will be the basic one to be
applied to specific configurations in the following sections.

3. Transfer in the Planar Geometry: Quantum Wells

In this section the Förster transfer in the planar geometry is studied, the donor be-
ing a semiconductor quantum well (QW), while the surrounding organic material
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Fig. 1. A sketch of the planar structure under study.

plays the role of acceptor [1,2]. Three different possibilities are considered, cor-
responding to the initial excited state in the semiconductor being a free Wannier–
Mott exciton, a localized Wannier–Mott exciton, or a dissociated electron–hole
pair.

The geometry of the problem is the following (Figure 1). We consider a sym-
metric structure, consisting of a semiconductor QW of thickness Lw between
two barriers of thickness Lb each, the whole semiconductor structure being sur-
rounded by thick slabs of an organic material (actually, we assume each slab to be
semi-infinite). We assume that in the frequency region here considered the semi-
conductor background dielectric constant ε is real (including only the contribution
of higher resonances with respect to the exciton resonance under consideration)
and the same for the well and the barrier, while that of the organic material ε̃ is
complex. For simplicity we assume the organic material to be isotropic (general-
ization to the anisotropic case is straightforward). So, the dielectric constant to be
used in Eq. (2.29) as well as in the Poisson equation below, is

(3.1)εij (r)=
{
ε δij , |z|<Lw/2 +Lb,
ε̃ δij , |z|>Lw/2 +Lb,

where the z-axis is chosen to be along the growth direction, z= 0 corresponding
to the center of the QW.

3.1. FREE EXCITONS

We adopt a simplified microscopic quantum mechanical model of a 2D Wan-
nier–Mott exciton, in which the polarization (Eq. (2.25)) can be taken to vanish
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for |z| > Lw/2 and inside the well to be given by the product of the 1s-wave
function of the relative motion of the electron and hole at the origin, with the
lowest subband envelope functions for the electron and hole in the approximation
of the infinitely deep well and finally with the wave function of the center-of-mass
motion, all of them normalized according to Eq. (2.23). Thus, we have

(3.2)P(r)= dvc
√

2

πa2
B2

2

Lw
cos2

(
πz

Lw

)
eikr‖
√
S
,

where S is the in-plane normalization area, k is the in-plane wave vector of the
center-of-mass motion, r‖ ≡ (x, y) – the in-plane component of r and aB2 is the
2D 1s-exciton Bohr radius, which is twice smaller than the bulk Bohr radius [15].
We choose as x the direction of the in-plane component of the exciton dipole
moment dvc, preferring to consider the polarization not with respect to the wave
vector, but to some fixed frame. This little complication is justified since next to
the free exciton we intend to study the case of the localized exciton, i.e., a sys-
tem with broken 2D translational symmetry. Evidently, we need to consider two
cases: dvc being parallel and perpendicular to the QW plane. We will refer to
them as X and Z polarizations respectively. When dealing only with free excitons
in a single well, three modes of different symmetry would be identified: longitu-
dinal (L), transverse (T) and perpendicular (Z). The L and Z modes correspond
to the X and Z polarizations above (their energies are split by the depolarization
shift, but this is immaterial for the following). For the T mode the dipole–dipole
interaction here considered vanishes [16].

The corresponding electric field E(r)≡ −∇φ(r) can be obtained from the so-
lution of the Poisson equation for the potential φ(r) (the charge density being
ρ(r)≡ −∇ · P(r))

(3.3)ε(z)∇2φ(r)= 4π ∇ · P(r),

with the appropriate boundary conditions at z = ±Lw/2 and at z = ±(Lw/2 +
Lb), i.e., continuity of the tangential component of the electric field E(r) and
of the normal component of the electric displacement D(r)= ε(z)E(r). Writing
φ(r)= φ(z) eikr‖ , we have the equation for φ(z):

(3.4)

[
d2

dz2 − k2
]
φ(z)=

{
4πρ(z)/ε, |z|<Lw/2,
0, |z|>Lw/2,

where

(3.5)ρ(X)(z)= ikxLw ρ0(1 + cosqz),

(3.6)ρ(Z)(z)= −qLw ρ0 sinqz,

(3.7)ρ0 =
√

2

πa2
B2

dvc√
SL2

w

, q ≡ 2π/Lw
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with the boundary conditions that φ(z) and ε(z) dφ(z)/dz should be continuous
at the four interfaces. The corresponding solution in the organic material (for z >
Lw/2 +Lb) is given by

(3.8)φ(z)= ρ0Ck e
−k(z−Lb−Lw/2),

(3.9)

C
(X)
k = − ikx

k

8π2 q

k (k2 + q2)

sinh (kLw/2)

ε sinh (kLb + kLw/2)+ ε̃ cosh (kLb + kLw/2) ,

(3.10)

C
(Z)
k = 8π2 q

k (k2 + q2)

sinh (kLw/2)

ε cosh (kLb + kLw/2)+ ε̃ sinh (kLb + kLw/2) .

Thus, the electric field penetrating the organic material is given by

(3.11)E(r)= [−ik + kez]φ(z) eikr‖ .

Now we simply substitute this electric field into (2.29) and get the decay rate:

� ≡ 1

τ
= S

2πh̄
Im ε̃

∫ +∞

Lb+Lw/2
2k2 |φ(z)|2 dz

(3.12)= Im ε̃

π2h̄

|dvc|2
a2
B2

k |Ck|2
L4
w

,

where we have considered the absorption only at z > Lw/2 + Lb (considering
also the organic material in z <−Lw/2 −Lb , τ would be twice shorter).

For the numerical estimations we use the parameters, typical for II–VI semi-
conductor (e.g., ZnSe/ZnCdSe) quantum wells [17]: ε ≈ 6, dvc ≈ 0.1 eaB2 (about
12 Debye, the Bohr radius is taken to be 25 Å). For the organic part one needs
to know only the dielectric constant, taken to be ε̃ = 4 + 3i . This value is not
even the most optimistic one: for PTCDA one has ε̃ ≈ 3.6 + 4.5i [18]. Two cases
should be considered: dvc lying in the QW plane, k‖dvc (L-exciton) and dvc per-
pendicular to the QW plane (Z-exciton). Taking Lw = 60 Å, Lb = 40 Å, we plot
τL and τZ as functions of K for ε = 6, ε̃ = 4 + 3i and ε = 4, ε̃ = 6 + 3i on Fig-
ures 2(a), (b). It is seen from the plot, that the lifetime does not depend drastically
on the polarization and the real parts of dielectric constants. Figure 3(a) shows
that the dependence on Lw is also weak (though at large k, kLw � 2π , τ ∝ L6

w

from (3.10)), while Lb (Figure 3(b)), when grows, gives an obvious exponential
factor (clearly seen from the hyperbolic functions in the denominators of (3.9),
(3.10)). The most interesting dependence is that on k. We see, that τ exhibits a
minimum at kmin ∼ 1/Lb. This dependence may be easily understood if one re-
calls that the dipole–dipole interaction between two planes behaves like

(3.13)V (k, z)∝ k e−kz,
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Fig. 2. Free L-exciton (solid line) and Z-exciton (dashed line) lifetime τ (ns) versus the in-plane
wave vector k (cm−1). dvc = 0.1eaB2 , Lw = 60 Å, Lb = 40 Å, εb = 6, ε̃ = 4 + 3i (a); the same, but
εb = 4, ε̃= 6 + 3i (b).

Fig. 3. (a) Free L-exciton lifetime τ (ns) versus the in-plane wave vector k (cm−1) for three well
widths: Lw = 20 Å (dotted line), Lw = 40 Å (dashed line), Lw = 60 Å (solid line), other parameters
being Lb = 40 Å, εb = 6, ε̃ = 4 + 3i. (b) Free L-exciton (solid line) and Z-exciton (dashed line)
lifetime τ (ns) versus the barrier width Lb (Å). k = 106 cm−1, Lw = 60 Å, εb = 6, ε̃ = 4 + 3i.

which, when substituted into the Fermi Golden Rule, gives the correct asymptotics
τ ∼ 1/k at k→ 0 and exponential growth at k→ ∞.
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Considering at first a quasi-thermalized exciton distribution, typical values of k
at a temperature ∼ 100 K are ∼ 3 · 106 cm−1. The corresponding energy transfer
lifetime (tens of picoseconds) is much less than the exciton recombination life-
time which is about 200 ps in II–VI semiconductor QWs, as reported by different
authors (Ref. [17] and references therein, Ref. [19]). We remark that for the case
of free excitons in a quantum well, the effective radiative lifetime (which, assum-
ing a thermal distribution, increases linearly with temperature) is determined by
the population transfer from nonradiative excitons with large k to small k excitons
undergoing a fast radiative decay [20,21]. Thus, the dipole–dipole energy trans-
fer mechanism considered here proves to be efficient enough to quench a large
fraction of the semiconductor excitons, thereby activating the organic medium lu-
minescence. Moreover, the intraband relaxation of excitons due to the acoustic
phonon scattering occurs at time scales of the order of 20–30 ps at 10 K [19],
which is larger than the minimal transfer lifetime, obtained here (less then 10 ps
for kmin ∼ 106 cm−1). This makes it possible to excite the QW in a way to pro-
duce the initial nonequilibrium distribution of excitons with k = kmin, tuning the
frequency of the excitation pulse to exceed the energy h̄ωexc(kmin) of the exciton
with k = kmin by one LO-phonon frequency9LO (since in II–VI semiconductors
the free-carrier-to-exciton relaxation is governed mainly by LO-phonon scatter-
ing and happens at times of about 1 ps [19–24]), or an integer multiple of 9LO,
if the exciton binding energy is larger than h̄9LO. A numerical estimate for ZnSe
gives h̄ωexc(kmin)− h̄ωexc(k = 0)∼ 1 meV, while h̄9LO ≈ 31 meV [19], so that
the following kinetics of excitons at k ∼ kmin is governed mainly by the acoustic
phonons. Finally, another possibility would be to resonantly pump excitons with
the appropriate k by using a coupling grating configuration [25].

Analogous calculations may be performed for the case of III–V semiconductor
materials. We take ε ≈ 11, dvc ≈ 0.05 eaB2 and plot the L-exciton lifetime versus
the wave vector k for several values of Lw (Figure 4, analogous to Figure 3(a)
for II–VI materials). All other parameters are the same as on Figure 3(a). We
see that the lifetime is longer compared to that on Figure 3(a) by about an order
of magnitude, which is due to the larger values of aB2 and ε. However, the en-
ergy transfer discussed here is still efficient enough because the effective exciton
recombination time in III–V materials is also larger (about 1 ns [26]).

3.2. LOCALIZED EXCITONS

Now we turn to the situation when the QW width fluctuations, alloy disor-
der or impurities localize the 2D exciton (such a situation is more frequent for
II–VI semiconductor quantum wells than for III–V ones). Then, the wave func-
tion of the center-of-mass exciton motion :(r‖) is no longer just a plane wave,
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Fig. 4. The same as on Figure 3, but for the III–V semiconductor compounds (εb = 11,
dvc = 0.05eaB2 ), all other parameters being the same as on Figure 3(a).

and the corresponding polarization is given by

(3.14)P(r)= dvc
√

2

πa2
B2

2

Lw
cos2

(
πz

Lw

)
:(r‖),

which implies that :(r‖) is normalized according to

(3.15)
∫
d2r‖

∣∣:(r‖)
∣∣2 = 1.

The solution of the Schrödinger equation for a particle in the random potential,
caused by the QW width fluctuations and the alloy disorder is beyond the scope
of the present paper (much work has been done in this field, e.g., see [27] and ref-
erences therein). We can mention only some general properties that :(r‖) should
have: (i) it should be localized within some distance L � Lw , (ii) it should be
smooth and without nodes. As a consequence, its spatial Fourier expansion should
contain mainly the components with wave vectors k � 1/L.

It is convenient to expand the wave function:(r‖) into plane waves:

(3.16):(r‖)=
∫

d2k
(2π)2

:k e
ikr‖,

and analogously the charge density ρ(r) and the potential φ(r). Then one again
obtains Eq. (3.4), but the charge density is now given by

(3.17)ρ
(X)
k (z)= ikxLw ρ̃0L:k(1 + cosqz),
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(3.18)ρ
(Z)
k (z)= −qLw ρ̃0L:k sin qz,

(3.19)ρ̃0 =
√

2

πa2
B2

dvc

LL2
w

.

The solution is

(3.20)φk(z)= ρ̃0L:kCk e
−k(z−Lb−Lw/2),

with the same Ck, given by (3.9), (3.10). For the decay rate we obtain:

(3.21)� = 1

τ
= Im ε̃

2πh̄

∫ +∞

Lb+Lw/2
dz

∫
d2k
(2π)2

2k2
∣∣φk(z)

∣∣2

(3.22)= Im ε̃

π2h̄

|dvc|2
a2
B2

1

L4
w

∫
d2k
(2π)2

k|:k|2|Ck|2.

It is possible to get some information about the decay rate (3.22) based only on
general properties of the wave function, mentioned above. We have three length
scales in our problem: Lw , Lb and L. First, we have the condition Lw � L. Since
wave vectors with kL� 1, being cut off by |:k|2, do not contribute to the integral,
we may set kLw → 0. The subsequent analysis depends on the relation between
Lb and L.

If Lb � L, we may put kLb → 0 as well. Then we have

(3.23)
C
(X)
k

L2
w

→ −2πi

ε̃

kx

k
,

C
(Z)
k

L2
w

→ 2π

ε

and the integral may be estimated as

(3.24)
1

τX
=A 2

h̄

Im ε̃

|ε̃|2
|dvc|2
a2
B2

1

L
,

1

τZ
=A 4

h̄

Im ε̃

ε2

|dvc|2
a2
B2

1

L

up to a numerical factor A ∼ 1, determined by the detailed shape of :k. We
have set the average value of k over the wave function :k to be A/L and, if for
the X polarization we assume :k to be cylindrically symmetric (which may be
considered as the average over the realizations of disorder), then the numerical
factor A is the same for both cases.

In the opposite limit, Lb � L (which also implies Lb � Lw), we may set:k =
:k=0 since the values of k, contributing to the integral, are determined by Ck,
(namely, k � 1/Lb) which in this limit takes the form

(3.25)
C
(X)
k

L2
w

→ − ikx
k

4π

(ε̃+ ε) ekLb + (ε̃− ε) e−kLb ,

(3.26)
C
(Z)
k

L2
w

→ 4π

(ε̃+ ε) ekLb − (ε̃− ε) e−kLb .
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Estimating the integral, we have

(3.27)
1

τX
= A 1

πh̄

Im ε̃

|ε̃+ ε|2
|dvc|2
a2
B2

|:k=0|2
L3
b

,

where |:k=0|2 ∼ L2, which follows from the normalization condition. The ex-
pression for 1/τZ differs from this by an additional factor of 2 and the factor A
may be different in the two cases. It is determined by the values of ε̃, ε:

(3.28)A=
∫ ∞

0

4ξ2 dξ

| ε̃+ε|ε̃+ε| eξ ± ε̃−ε
|ε̃+ε| e−ξ |2 ,

and is bounded by

(3.29)
π2

12
=

∫ ∞

0

ξ2 dξ

cosh2 ξ
< A<

∫ ∞

0

ξ2 dξ

sinh2 ξ
= π2

6
.

So we see that at L � Lb the decay rate is proportional to L2, at L � Lb
– to L−1, therefore it has a maximum at some L ∼ Lb . This is in agreement
with the results of the previous section, since the plane waves, giving the largest
contribution to the wave function:(r‖) and thus determining the decay rate, have
the values of wave vector of the order of k ∼ 1/L and we have seen that wave
vectors, corresponding to the shortest lifetimes were kmin ∼ 1/Lb .

To illustrate these considerations, we choose a specific example of the localized
wave function – that of the ground state in the isotropic parabolic potential:

(3.30):k = √
4π Le−k2L2/2,

which obviously has all the necessary features mentioned in the beginning of this
section. For this wave function the integral in (3.22) may be evaluated numerically
for arbitrary parameters L, Lw , Lb (we remind that only physically relevant are
L� Lw). The results of the calculation (τ versus L) are plotted in Figure 5 along
with the asymptotic dependencies for Lb = 40 Å, ε = 6, ε̃ = 4 + 3i (we have
set Lw → 0 for the plots on Figure 5(a), but a more specific value Lw = 10 Å
was chosen for Figure 5(b)). In the limit L� Lb the coefficient A= √

π/2, the
coefficient for L� Lb , given by (3.28) was calculated numerically.

We also plot the dependence, analogous to that on Figure 5(b), for parame-
ters typical of III–V semiconductors: dvc/eaB2 = 0.05 and ε = 11 (Figure 6);
analogously to the previous section, we obtain larger lifetimes, than those for
II–VI semiconductors.

3.3. FREE CARRIERS

Finally, we consider the situation, when the carriers are not bound into excitons,
thus forming a 2D plasma. We assume electrons and holes to be quasi-thermalized
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Fig. 5. (a) Localized X-exciton lifetime τ (ns) versus the localization length L (Å) (solid line) along
with the limiting cases L�Lb and L� Lb (dashed lines), Lw � L, Lb = 40 Å, εb = 6, ε̃ = 4 + 3i.
(b) Localized X-exciton (solid line) and Z-exciton (dashed line) lifetime τ (ns) versus the localization
length L (Å), Lw = 10 Å, Lb = 40 Å, εb = 6, ε̃ = 4 + 3i.

Fig. 6. The same as on Figure 5(b), but for the III–V semiconductor compounds, other parameters
being the same as on Figure 5(b).

within corresponding bands (considering only one subband for each band), dis-
tributed according to the ideal Fermi gas law with the temperature T and the
chemical potentials µe and µh for electrons and holes respectively (we set the
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Boltzmann constant equal to unity everywhere in this section, measuring the tem-
perature in the units of energy). For an ideal 2D Fermi gas the chemical potential
µ is related to the concentration n via

(3.31)eµ(n,T )/T = eµ0(n)/T − 1, µ0(n)= 2πh̄2 n

m
,

where µ0 is the chemical potential at the zero temperature, m is the correspond-
ing (electron or hole) mass, spin degeneracy is not taken into account (i.e., all
concentrations are those of particles with a given spin).

If Ne (Nh) is the total number of electrons (holes) in the system, then the total
recombination rate due to the energy transfer here considered can be written as

(3.32)−dNe
dt

= −dNh
dt

=
∑
k,k′

f eke
f hkh

τ (ke + kh)
,

where f eke , f
h
kh

are the Fermi occupation numbers and τ (ke + kh) is the corre-
sponding recombination time for a single electron–hole pair with 2D wave vectors
ke and kh. It depends only on the total momentum k = ke + kh since the wave
function of the pair is simply

(3.33) (r, r)= 2

Lw
cos2

(
πz

Lw

)
ei(ke+kh)r‖

S = 2

Lw
cos2

(
πz

Lw

)
eikr‖

S ,

the in-plane motion being described by a direct product of two plane waves. The

corresponding polarization is given by (3.2), where the factor
√

2/(πa2
B2) must

be replaced by 1/
√
S . For the pair recombination rate we obtain the expression

(3.12), multiplied by the factor πa2
B2/2S:

(3.34)
1

τ (k)
= 1

2πh̄

|dvc|2
SL4

w

Im ε̃ k|Ck|2,

which depends on the normalization area. Such a dependence is however imma-
terial: rewriting (3.32) for the 2D densities ne,h = Ne,h/S and transforming the
sum into an integral, the total recombination rate becomes:

(3.35)−dne
dt

= −dnh
dt

=
∫
d2ke d2kh
(2π)4

Sf eke f
h
kh

τ (ke + kh)
.

In the general case this integral cannot be calculated analytically, but the situ-
ation simplifies significantly in the classical limit (T � µe0,µ

h
0). The occupation

numbers then reduce to the Boltzmann distribution:

(3.36)f
e,h
ke,h

= exp

(
− h̄2k2

e,h

2me,hT
+ µe,h(ne,h, T )

T

)
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and, if we perform the change of the integration variables with the unit Jacobian:

(3.37)ke, kh → k = ke + kh, k̃ = mh ke −me kh
me +mh

(k̃ being the momentum of the relative motion) and use the fact that τ does not
depend on k̃, the integral is factorized. The Gaussian integral over k̃ gives a nor-
malization factor and finally we obtain

(3.38)

−dne,h
dt

= h̄ nenh Im ε̃

(me +mh)T
|dvc|2
L4
w

∫
d2k
(2π)2

k|Ck|2 exp

(
− h̄2k2

2(me +mh)T
)
.

If we introduce the “thermal length” LT defined by

(3.39)L2
T ≡ h̄2

2(me +mh)T ,
the integral in (3.38) formally coincides with that in (3.22) for the Gaussian wave
function. Then the recombination rate may be written as

(3.40)−dne,h
dt

= nenhS
∫

d2k
(2π)2

4πL2
T

τ (k)
e−k2L2

T = π a2
B2

2

nenh

τloc
,

where τloc is the lifetime of the exciton from the previous section with the
Gaussian wave function (3.30), localized at the length LT . Of course, the recom-
bination rate of free carriers cannot depend on the exciton Bohr radius and a2

B2 in
the numerator (3.40) just cancels the analogous factor in τloc.

The process under consideration is a bimolecular decay rather then a mono-
molecular one. To determine the appropriate characteristic time we write down
the kinetic equations (3.35) in the form:

(3.41)
dne

dt
= dnh

dt
= −nenh g(ne, nh,T ).

In the classical limit g = g(T ) does not depend on the concentrations at all. Sup-
pose for a while that this situation takes place. If the concentrations are not equal
initially, their difference will preserve in time and the solution of the kinetic equa-
tions is

(3.42)

ne(t)= nh(0)− ne(0)
(nh(0)/ne(0)) exp[(nh(0)− ne(0))gt] − 1

, nh(t)= (e↔ h).

If the concentrations are equal, ne = nh = n (e.g., this is the case for an optically
pumped undoped well), then the solution for n(t) has a different character and is
given by

(3.43)n(t)= n(0)

1 + gn(0) t .
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This latter case is more relevant for the present problem since the carriers in ex-
cess do not participate in the transfer. So, the transfer rate may be defined as ng
in the classical case and in the situation when the degeneracy of the plasma be-
comes significant, ng(n) has the meaning of the instantaneous transfer rate. In
the following we analyze the behaviour of the inverse recombination rate con-
stant g(n,T )−1 whose dependence on n is then a measure of degeneracy of the
electron–hole gas, and which, divided by n, gives the effective lifetime.

The results of the numerical integration of (3.35) for the II–VI parameters
(ε = 6, me = 0.16m0, heavy holes with mh = 0.6m0, X-polarization), 60 Å well,
40 Å barrier, ε̃ = 4 + 3i , are shown in Figure 7. We plot g(n,T )−1 as a func-
tion of temperature in the range 3 K � T � 300 K for several values of the con-
centrations 1011 cm−2, 3 · 1011 cm−2, 1012 cm−2 along with the limiting case
(3.40), which is reached even at low temperatures for concentrations lower than
n0 = 1010 cm−2 (actually, the curve for n= n0 is indistiguishable from the clas-
sical curve in all the temperature range). This is in agreement with the fact that
the corresponding “Fermi energies” for electrons and holes are µe0(n0)= 3.5 K,
µh0(n0)= 0.93 K. The “thermal length” at T = 3 K is LT = 140 Å (correspond-
ingly, for T = 300 K, LT = 14 Å), which explains the monotony of the classical

Fig. 7. The inverse recombination rate constant g(n,T )−1 (cm−2 s) versus temperature T (K) for
different carrier concentrations ne = nh = n = 10n0, 30n0, 100n0 (solid lines, n0 ≡ 1010 cm−2).
The dashed line (n= n0) also represents the classical limit, which is concentration independent. The
parameters are ε = 6, me = 0.16m0, mh = 0.6m0, Lw = 60 Å, Lb = 40 Å, ε̃= 4 + 3i.
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dependence on T : it is nothing different, but the left part of the plot on Figure 5(a),
properly renormalized to the case of free carriers.

We see that the corresponding effective lifetime (τ = 1/(ng), according to
the above considerations) is of the order of 1 ns. The relaxation to excitons by
means of LO-phonon emission, as already has been mentioned, takes about 1 ps
in II–VI materials [24], if the density is not too high (n� 1/a2

B2). This means
that the carriers actually do not even reach the thermal quasi-equilibrium, quickly
binding into excitons; the results of the two previous sections are thus much
more relevant. However, at higher densities, n � 1/a2

B2, when the plasma phase
is favoured with respect to the excitonic phase [28,29] and, on the other hand, the
effective energy transfer rate itself is increased (1/τ ∝ n, for arbitrary momentum
distribution, not necessarily equilibrium), the rate of the dipole energy transfer
from the free carriers may be comparable with rates of other processes, giving
some information on the carrier kinetics as well.

Calculations were also performed for the case of III–V-type materials. We do
not present them on a separate figure since they have no significantly different
features with respect to what has already been mentioned in the previous sections.

4. Transfer in the Spherical Geometry: Quantum Dots

This section is dedicated to the estimation of the Förster transfer rate in the spheri-
cal geometry [4,5]. The donor is a semiconductor quantum dot (QD), the acceptor
is the organic material, surrounding it. The explicit analytical expression for a
wave function of an electron–hole pair in a QD is not known for an arbitrary re-
lation between the dot radius R and the Bohr radius aB . To calculate the wave
function numerically would not be a justified effort, since the structure itself has
yet not been realized experimentally, and what one needs is just a simple es-
timate aimed at understanding the general tendencies. Thus in this section, after
the derivation of the general expression for the transfer rate in the spherical geom-
etry, the two limiting cases of strong and weak confinement (when R � aB and
R � aB respectively) are considered, and then a simple variational interpolation
between these limiting cases is made.

The issue of the electron/hole relaxation in quantum dots deserves some at-
tention, since it happens in a way qualitatively different from that in higher-
dimensionality nanostructures due to the discreteness of states in a QD. In par-
ticular, under certain circumstances this relaxation may be suppressed as pre-
dicted [30] and observed [31]. Thus the problem of the energy transfer not only
from the lowest excited state, but also from higher levels of the dot is relevant. We
also show that the carrier relaxation itself may be affected by Förster transfer.
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4.1. THE ELECTRIC FIELD IN THE ORGANICS IN THE SPHERICAL

GEOMETRY

The nanostructure considered here (Figure 8) consists of a spherical QD of ra-
dius R with dielectric constant ε, surrounded by a concentric semiconductor bar-
rier with the thickness Lb and the same dielectric constant. The barrier is assumed
to be infinitely high, thus carriers cannot penetrate it. The space outside the barrier
is filled with the organic substance with dielectric constant ε̃. As in Section 3, ε is
real, ε̃ is complex. The radius R is considered to be large enough (as compared to
the semiconductor lattice constant) for the envelope function approximation to be
valid.

In the spherical geometry the states of the electron–hole pair may be classi-
fied by the total angular momentum quantum numbers l,m, which determine the
angular dependence of the electron–hole pair wave function

 (r, r)∝ Ylm(θ,ϕ),
where Ylm(θ,ϕ) are the spherical harmonic functions. Putting the z-axis along the
vector dvc, for the polarization we may write

(4.1)Pz(r)= P (r)(r) Ylm(θ,ϕ),
which corresponds to the charge density:

(4.2)ρ(r)= − div P(r)= −∂P
∂z

= ρ(r)l−1(r) Yl−1,m + ρ(r)l+1(r) Yl+1,m.

Fig. 8. A sketch of the spherical structure under study.



ENERGY TRANSFER FROM A SEMICONDUCTOR NANOSTRUCTURE 471

After some algebra the functions ρ(r)l∓1(r) may be related to P (r)(r):

(4.3)i ρ
(r)
l−1(r)=

√
l2 −m2

4l2 − 1

[
dP (r)

dr
+ (l + 1)

P (r)

r

]
,

(4.4)i ρ
(r)
l+1(r)=

√
(l + 1)2 −m2

4(l + 1)2 − 1

[
−dP

(r)

dr
+ l P

(r)

r

]
.

The electrostatic potential φ(r), satisfying the Poisson equation, may be also
decomposed into the spherical components analogously to Eq. (4.2). The terms
with Yl−1,m and Yl+1,m separate in the Poisson equation and one has two equa-
tions for the radial parts of the potential φ(r)λ (r) with λ= l − 1, l + 1:

(4.5)
1

r2

d

dr

(
r2 dφ

(r)
λ

dr

)
− λ(λ+ 1)

r2
φ
(r)
λ = −4π ρ(r)λ (r),

where ρ(r)λ (r) vanishes at r > R (as P(r) does). A general solution in a region,
free of charges, corresponds to the 2λ-pole potential [32]:

(4.6)φ
(r)
λ (R < r < R+Lb)=

√
4π

2λ+ 1

[
Qexc
λ

εrλ+1 +Qsurf
λ rλ

]
,

(4.7)φ
(r)
λ (r > R+Lb)=

√
4π

2λ+ 1

Qeff
λ

rλ+1 ,

with some constantsQλ. The coefficientQexc
λ is just the bare 2λ-pole moment of

the exciton polarization:

(4.8)Qexc
l+1 = −i

√
(l + 1)2 −m2

√
4π

2l + 1

∫ R

0
rlP (r)(r) r2 dr,

while the contribution of the moment λ = l − 1 turns out to be identically zero
when integrated over the dot volume, due to the fact that P (r)(r) vanishes at
r = R. The background dielectric screening by the polarization charges inside
the dot leads to the correctionQexc

l+1 →Qexc
l+1/ε, taken into account in the expres-

sion (4.6). The coefficientQsurf
l+1 is determined by the surface polarization charges

at the interface r =R + Lb between the media with different dielectric constants
ε and ε̃. The coefficientQeff

l+1 is the effective multipole, which determines the field
outside the dot. One may relate Qsurf

l+1 and Qeff
l+1 to Qexc

l+1 requiring the continuity

of φ(r)l+1(r) and ε(r) dφ(r)l+1(r)/dr at r = R + Lb , analogously to the procedure of
Ref. [14], which gives

(4.9)Qeff
l+1 = 2l + 3

(l + 1)ε+ (l + 2)ε̃
Qexc
l+1.
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Having calculated the potential, one obtains the decay rate2:

� = 1

τ
= Im ε̃

2πh̄

∫
|r|>R+Lb

(∇φ∗ · ∇φ)
d3r

(4.10)= 2l + 4

2l + 3

Im ε̃

h̄

|Qeff
l+1|2

(R +Lb)2l+3
.

It is interesting to compare this expression with that for the radiative lifetime
of a multipole. In vacuum it is given by [33]:

�(rad) = 2l + 4

(l + 1)(2l + 3)[(2l+ 1)!!]2

(
ωD

c

)2l+3 |Ql+1|2
h̄

,

where Ql+1 is the transition multipole matrix element. The same expression for
the multipole in a medium with the real dielectric constant ε̄ may be obtained by
rescaling c→ c/

√
ε̄, |Ql+1|2 → |Ql+1|2/ε̄, and reads as3:

�(rad) = 2l + 4

(l + 1)(2l + 3)[(2l+ 1)!!]2

(√
ε̄ ωD

c

)2l+3 |Ql+1|2
h̄ε̄

,

where ε̄ is real (otherwise the radiative decay cannot be separated from the Förster
transfer). In our configuration one should substitute there Ql+1 = ε̄Q̄eff

l+1, where
Q̄eff
l+1 is obtained from the same expression (4.9) using ε̄ instead of ε̃ (as long as√
ε̄ωDR/c � 1), which follows from comparison of the Coulomb fields. Thus,

we obtain

(4.11)

� = �(rad)(l + 1)[(2l+ 1)!!]2 Im ε̃

ε̄

[
c√

ε̄ωD(R +Lb)
]2l+3 |Qeff

l+1|2
|Q̄eff
l+1|2 .

2The easy way of calculation is to reduce the bulk integral in (4.10) to a surface one employing the
formula ∫

O
∇f (r) · ∇g(r) dV +

∫
O
f (r)∇2g(r) dV =

∫
∂O
f (r)∇g(r) · ds

for two arbitrary functions f (r) and g(r), where the integrals on the l.h.s. are performed over some
regionO in space (the volume element dV ), and the integral in the r.h.s. is over the boundary ∂O with
the element of the surface ds, oriented outside. This formula is just the Gauss–Ostrogradsky theorem
for the vector field f∇g. In our case the region O is defined by |r| > R + Lb , consequently ds is
directed to the center r = 0.

3The latter substitution may be understood if one thinks of the radiative decay as a result of the
interaction of the multipole with the electric field produced by itself: in the medium the amplitude of
the electric field, produced by a distribution of charges, is ε̄ times less than in vacuum.
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For l = 0 (the dipole transition) it gives simply

(4.12)� = �(rad) Im ε̃

ε̄

[
c√

ε̄ ωD(R +Lb)
]3 |Qeff

1 |2
|Q̄eff

1 |2 .

If one takes the light wavelength corresponding to the frequency ωD in vacuum
to be 314 nm, R+Lb = 5 nm, ε̄ = 4, then the coefficient in the square brackets is
equal to 5, which gives two orders of magnitude for the dipole transition. Thus, if
the radiative relaxation is the dominant electron–hole pair decay mechanism in the
absence of the Förster transfer, it will be completely suppressed by the transfer.
However, it is not necessarily the case, so one has to perform numerical estimates.

One may want to average (4.10) over m, which makes sense since the energy
does not depend on the magnetic quantum number m. This is certainly relevant
for the case when the dot is pumped electrically, while for the case of excitation
by polarized light one should choose the state, corresponding to the given polar-
ization. Such averaging corresponds just to the substitution in (4.8):

(4.13)
√
(l + 1)2 −m2 → √

(l + 1)(2l/3 + 1),

since the radial part of the polarization cannot depend on the quantum numberm.

4.2. THE WAVE FUNCTION: LIMITING CASES

The exciton wave function  (re, rh) is determined by two interactions: (i) the
confinement potential, which we consider to be infinite for r > R and zero at r <
R, and (ii) the Coulomb attraction of the electron and the hole. The characteristic
length scales corresponding to these interactions are R—the quantum dot radius,
and aB—the exciton bulk Bohr radius. Solution of the Schrödinger equation for
arbitrary R and aB is quite a complicated problem (see, e.g., [34,35]), but the
situation becomes much simpler in two limiting cases.

If R � aB (strong confinement), Coulomb interaction may be completely ne-
glected and the electron–hole pair wave function will be simply the product of two
one-particle wave functions. Each one-particle state is labeled by three quantum
numbers: the orbital quantum number l = 0,1, . . . , the magnetic quantum number
m= −l, . . . , l, and the principal quantum number n= 1,2, . . . [11]. Denoting this
set by a single symbol ν, one may write

(4.14) νe,νh(re, rh)= χνe(re) χνh(rh),
where the single-particle wave function is given by [11]

(4.15)χnlm(r)≡ χν(r)=
√

2

R3

jl(αlnr/R)

jl+1(αln)
Ylm(θ,ϕ),

where jl(x) is the lth spherical Bessel function, αln is its nth zero (n = 1,2,
3, . . .).
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However, to apply the results of the previous section, we have to form the lin-
ear combinations corresponding to states with definite total angular momentum.
The new set of quantum numbers is {le, ne, lh, nh, l,m} and the radial part of the
corresponding wave function is expressed in terms of Wigner 3j -symbols as

ψ
(r)
lm (r)= 2 · (−1)(le+lh+l)/2

R3

×
(
le lh l

0 0 0

)√
(2le + 1)(2lh + 1)

4π

(4.16)× jle (αlene r/R)

jle+1(αlene )

jlh(αlhnhr/R)

jlh+1(αlhnh )
.

For le = lh = l = 0 this expression gives the dipole moment and the transfer rate

(4.17)Qeff
1 = 3dvc

ε+ 2ε̃
,

1

τ
= 12 Im ε̃

|ε+ 2ε̃|2
1

h̄

|dvc|2
(R+Lb)3 .

If R � aB (weak confinement), then the distance between the single-particle
levels in the spherical potential well (even for the lighter particle) is much less
than the bulk exciton binding energy. In this case the exciton may be considered
a rigid particle moving in a spherical well. The relative motion of the electron
and the hole and the center-of-mass motion are effectively separated and the wave
function is factorized. For 1s-exciton state

(4.18)ψν,1s(r, r)= 1√
πa3

B

χν(r).

For l = 0 one obtains

Qeff
1 = 1

π

(
2R

aB

)3/2 3dvc

ε+ 2ε̃
,

(4.19)
1

τ
= 96 Im ε̃

π2|ε+ 2ε̃|2
1

h̄

|dvc|2
a3
B

(
R

R +Lb
)3

.

One may note the similarity of the expressions (4.17), (4.19) to those for localized
excitons in a quantum well (3.24), (3.27), taking into account that in Section 3.2
the confinement was strong in one dimension and weak in two dimensions (there
it was assumed that the well width was Lw � aB , while the 2D localization length
was L� aB ).

As in Section 3, for the numerical estimations we use the parameters, typical
for II–VI semiconductors: aB $ 50 Å, dvc $ 12 D, ε $ 6, ε̃ $ 4 + 3i for the
organics. Having fixed Lb = 30 Å, in Figure 9(a) we plot the transfer times for
several strongly confined states, averaged over the magnetic quantum number, as
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Fig. 9. The Förster transfer time corresponding to the interband transition for II–VI semiconductors:
(a) in the strong confinement limit from the states {0,1,0,1} (solid line), {0,1,1,1} (long-dashed
line), {0,1,2,1} (short-dashed line), {1,1,1,1} (l = 0, dash-dotted line) versus the dot radius R,
Lb = 30 Å, the vertical arrows show schematically the intraband transition times (see the text for the
details); (b) in the weak confinement limit from the states {0,1} (1s—the lower solid line, 2s—the
upper solid line), and 1s states {1,1} (long-dashed line), {2,1} (short-dashed line), {0,2} (dash-dotted
line) versus the dot radius R, Lb = 30 Å.

mentioned in the end of Section 4.1, as a function of the dot radius R. These
states are {le = 0, ne = 1, lh = 0, nh = 1} (dipole transition, solid line), {0,1,1,1}
(quadrupole transition, long-dashed line), {0,1,2,1} (octupole transition, short-
dashed line)—the lowest ones, and we take also the l = 0 component of {1,1,1,1}
(the seventh level), the next one after the lowest state, possessing a nonzero dipole
moment (dash-dotted line). The upper limit of R is taken to be aB , since for
R > aB the strong-confinement approximation definitely breaks down. The lower
limit of R is different for each state and is taken to be the radius, at which the
confinement energy of the state reaches 1 eV, since higher confinement energies
are not realistic. We see that for the lowest state the transfer time is quite short – of
the order of 10 ps. The states with larger l have longer times, one may roughly say
that every unit of l “costs” about an order of magnitude of τ . This fact, however,
might even not spoil the efficiency of the energy transfer since the carrier radiative
recombination time will also increase for higher multipole transitions, provided
that other relaxation channels are quenched.

We have already mentioned in the beginning of this section that the carrier
relaxation in quantum dots may be strongly inhibited due to the discreteness of
states. In this situation, any material, not necessarily an organic one, with nonzero
absorption at the frequency of an intraband transition may affect the intraband re-
laxation of carriers. The estimation of the relaxation time due to the Förster trans-
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fer may be performed along the same lines as for the interband transition, starting
from the point that the matrix element of the charge density for the electron (hole)
transition from the state {l1,m1, n1} to {l2,m2, n2} is given by Eq. (2.15):

(4.20)ρexc(r)= ∓e χ∗
l2m2n2

(r) χl1m1n1(r).

This expression should be expanded into spherical harmonics Ylm with l =
|l1 − l2|, . . . , l1 + l2, m = m1 − m2. The intraband transfer rate is given by the
same formulas (4.9), (4.10) with l + 1 substituted by l (since there is no differen-
tiation ∂/∂z), but the bare exciton multipole moment, corresponding to the tran-
sition rate, averaged over m1 and summed over m2 (see the end of the previous
section), is given by

Q̄exc
l = 2eRl

√
2l2 + 1

2l + 1

(
l1 l2 l

0 0 0

)

(4.21)×
∫ 1

0
dx xl+2 jl1(αl1n1x)

jl1+1(αl1n1)

jl2(αl2n2x)

jl2+1(αl2n2)
.

The intraband transitions correspond to the infrared spectral range, where the
absorption is usually much weaker than in the visible range. Hence, we set
ε̃ = 4 + 0.3 i and evaluate the intraband transition times for the transitions
{l1 = 1, n1 = 1} → {l2 = 0, n2 = 1} (dipole transition—19 ps), {2,1} → {1,1}
(dipole transition—12 ps), {2,1} → {0,1} (quadrupole transition—610 ps) for
R = 30 Å, Lb = 30 Å, shown by the vertical arrows in Figure 9(a) (in our model
the times are the same for electrons and holes). As we see, dipole transitions are
much more intensive than higher multipole ones and the times may be relatively
short (a few tens of ps). Thus, if other relaxation processes are quenched, the
Förster transfer may play some role.

In this connection one may also consider a single-carrier relaxation process,
related both to the above considered Förster transfer and to the Auger relaxation,
dealt in Ref. [36]. If one considers an array of quantum dots of characteristic
size R, separated by distance r from each other on the wetting layer of thick-
ness Lw (no surrounding organics is assumed), then the following process may
occur. Two carriers in the neighbouring dots interact via Coulomb interaction (the
first nonvanishing multipole component is the dipole–dipole one), then as a result
of this interaction, one of the carrier relaxes to a lower state in the dot, while the
other is promoted to the wetting layer continuum. This process is adequately de-
scribed by the Fermi Golden Rule and a simple estimate gives the corresponding
time of the order of

(4.22)τ $ h̄3ε2

me4

r6

R5Lw
.
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Estimating the first fraction as 10–100 fs, one may obtain numbers of the order of
10–100 ps in a favorable geometry. However, a detailed treatment is beyond the
scope of this chapter.

Now we return to the energy transfer when the electron–hole pair is annihilated
(interband transition), considering the case R � aB . In Figure 9(b) we plot the
transfer times for several weakly confined 1s-exciton states, the lowest ones—
{l = 0, n= 1} (the lower solid line), {1,1} (long-dashed line), {2,1} (short-dashed
line), {0,2} (dash-dotted line), and the 2s-state with {l = 0, n= 1} (the upper solid
line) as a function of R at fixed Lb = 30 Å. The lower limit of R is taken to be aB ,
as the upper limit we choose 150 Å, since at larger dot radii the times do not
change significantly. From the plots we see that (i) the transfer from the 2s-state
is less rapid than that from the 1s (by a factor of 8), (ii) the difference between
dipole, quadrupole and octupole transitions is not very large (due to the fact that
the ratio R/(R+Lb) is not much smaller than 1) and (iii) the dipole transfer from
higher excited states with l = 0 is slower due to a partial cancellation in the radial
integrals.

We have also performed similar transfer rate calculations for parameters typical
for III–V materials (e.g., InGaAs): aB $ 160 Å, dvc $ 50 D, ε $ 9. Figure 10(a)
shows the transfer times for the same states as in Figure 9(a) as a function of R
for Lb = 30 Å for the strong-confinement limit. The times are shorter than those
for II–VI semiconductors since the latter have smaller dipole moments dvc. We
also plot the transfer time as a function of the barrier thickness Lb for R = 100 Å
in Figure 10(b). As one may expect, the higher multipoles, whose electric field

Fig. 10. The Förster transfer time corresponding to the interband transition for III–V semiconduc-
tors in the strong confinement limit from the states {0,1,0,1} (solid line), {0,1,1,1} (long-dashed
line), {0,1,2,1} (short-dashed line), {1,1,1,1} (l = 0, dash-dotted line): (a) versus the dot radius R,
Lb = 30 Å (analogously to Figure 9(a)); (b) versus the barrier thickness Lb , for R = 100 Å.
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decreases more rapidly in space, are more sensitive to the barrier thickness than
the lower ones.

At this stage it is worth mentioning an experiment where the evidence was
found for the Förster transfer from porous silicon to an organic dye that was put
into the pores [37]. The silicon was pumped optically, then its luminescence was
quenched on the time scale of several ten nanoseconds. One can roughly esti-
mate the transfer rate using the expression (4.12). Setting R ∼ 20 Å, h̄ωD ∼ 2 eV,
τrad ∼ 10−4 s−1 [38], Im ε̃ ∼ 1, one obtains τ ∼ 1 ns. It is shorter then that ob-
served, which may be attributed to the simple fact that the pores occupied only
65% of the material, thus the expressions for the decay rate for a single dot im-
mersed into an infinite organic matrix certainly overestimate it.

4.3. THE WAVE FUNCTION: VARIATIONAL CALCULATION

To investigate the crossover region between the two limiting cases, that is R ∼ aB ,
we take a simple variational wave function for the lowest excited state:

ψa,b(re, rh)=A(a,be, bh) χ0(re)√
χ0(re)+ be

χ0(rh)√
χ0(rh)+ bh

(4.23)× exp

[
−|re − rh|

a

]
,

where a, be, and bh are positive variational parameters, A(a,be, bh) is the nor-
malization coefficient. The wave function χ0(r) is the one given by the equa-
tion (4.15) for l =m= 0, n= 1:

(4.24)χ0(r)= 1√
2πR

sin(πr/R)

r
.

The wave function (4.23) is slightly more general than one proposed long ago
by Kayanuma [39]. The latter function did not contain the denominators with the
square roots as in the function (4.23) and depended on the single parameter a.
We have chosen the wave function (4.23) since it reproduces correctly the shape
of the polarization ψ(r, r) in both limiting cases: for R � aB both a and b’s be-
come large and one obtains the wave function (4.14), while for R � aB we have
a $ aB (the Wannier exciton “is formed”), be, bh ∼ aB/R5/2 (the surface correc-
tions to the exciton wave function) and one gets the same polarization as for the
wave function (4.18). The exponential factor is very important since it enhances
the probability of finding the electron and hole at the same point, which affects
the polarization. The variable “exciton radius” a measures the role of Coulomb
correlations between the electron and the hole. The Hamiltonian we consider is
given by

(4.25)Ĥ = p̂2
e

2me
+ p̂2

h

2mh
+ V (re)+ V (rh)− e2

ε0|re − rh| ,
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where V (r) is zero for r < R and infinity for r > R, ε0 is the semiconductor
background dielectric constant at low frequencies.

To test the wave function (4.23), we compare the energies obtained from it
for different values of R/aB with those obtained by the exact diagonalization
(Ref. [34]) for me = mh. The discrepancy is quite small (less than 10% of the
excitonic Rydberg). We were not able to repeat the calculation for the value
me/mh = 0.01 to compare it with the results of Ref. [34], due to computational
problems (for strongly different masses the energy to minimize becomes a very
inconvenient function to treat by standard methods). However, having performed
the calculations for me/mh = 0.29 (the case of CdSe, heavy holes), we see that
though the energy is sensitive to the mass ratio, the dipole moment is not (the two
corresponding curves in Figure 9 would merge). Thus, we may hope that the wave
function (4.23) reproduces the dipole moment of the dot reasonably well.

Figure 11 shows the transfer times from the lowest state of e–h pair (discon-
tinuous solid line) and the second excited state (discontinuous dashed line) in
both limiting cases versus the dot radius for the same parameters as in Figure 9.
The lowest state is the {0,1,0,1} state for the strong confinement and the {0,1}
state of 1s-exciton for the weak confinement, while the second excited state is
{0,1,1,1} and {1,1} respectively. The continuous solid line represents the result
of the variational calculation for the lowest state. For R ∼ aB it gives even a more
optimistic result. The behaviour of the variational curve at R > 2aB is somewhat
unexpected, however, the detailed inspection of the numbers shows that this curve

Fig. 11. The transfer times from the lowest state of e–h pair (discontinuous solid line) and the second
excited state (discontinuous dashed line) in both limiting cases versus the dot radius for the same
parameters as in Figure 9. The continuous solid line represents the result of the variational calculation
for the lowest state.
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has a maximum at R $ 3aB and then converges to the limiting curve. We cannot
be sure whether this feature is indeed present in the exact solution, or is just due to
the poorness of the chosen function. In any case, the discrepancy is not very large
(the factor is about 1.3). So, one can say that the estimations using the limiting
expressions for the strong and weak confinement describe the situation reasonably
well (within a factor of 3).

5. Application to Light-Emitting Devices

In this section we discuss potential application of the considered phenomenon of
energy transfer to light-emitting devices (LEDs) [6]. The progress in the devel-
opment of organic light-emitting devices was considerable in the past few years.
In all such devices the fundamental role is played by electroluminescence, the
generation of light by electric excitations. Already in early studies [40] it was
established that the process responsible for the electroluminescence requires in-
jection of electrons from one electrode and of holes from the other, transport of
one or both charges, capture of oppositely charged carriers on the same molecule
(or recombination center), and radiative decay of the resulting excited electron–
hole state. For inorganic semiconductors, where the recombining electron–hole
state may be a Wannier–Mott exciton, all the above mentioned processes are in-
vestigated and well documented [41]. In organics, in contrast to inorganic semi-
conductors, scientists have met many problems in the use of electroluminescence
for the creation of devices conceptually similar to what was done with the use
of semiconductor materials. The main reasons are the small mobility of carriers
and strong chemical interaction between organics and metals which prevents the
injection of charges into organics. Due to the small mobility of charge carriers in
organic materials the current flow is bulk-limited, principally through the built-up
of a space charge.

In principle, one may think of circumventing these problems by combining
comparatively good transport properties of semiconductors (e.g., pumped electri-
cally) and good light-emitting properties of organic substances in a single hybrid
nanostructure. In a semiconductor, as a result of electrical pumping, electron–hole
pairs appear which transform very rapidly into free and localized 2D Wannier–
Mott excitons. As discussed in the previous sections, the resonant Coulomb in-
teraction between the semiconductor and the organics in combination with the
fast dephasing, common for many organic substances (e.g., due to the scattering
by phonons) will result in the nonradiative transfer of the semiconductor exci-
tation energy to the organics. The key parameter, determining the efficiency of
this transfer, is its characteristic time, as compared to other decay channels of
the semiconductor excitation. As the results of the previous sections show, the
energy transfer mechanism we consider will be fast enough to efficiently quench
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Fig. 12. The schematic view of the hybrid light-emitting device proposed. The carriers are injected
from p- and n-doped regions into the semiconductor part of the structure, where they form excitons.
The latter are transferred nonradiatively to the organic light-emitting medium, where they eventually
recombine radiatively.

the Wannier–Mott exciton luminescence and to turn on the organic molecule light
emission, assuming that the luminescence quantum yield of the organic is high.
Usually, the relaxation of the electronic excited states in the organics is much
faster then the back transfer rate.

A possible configuration for such a device based on a semiconductor quantum
well is sketched in Figure 12. Electrons and holes are injected into the QW from
n- and p-doped regions respectively. In the QW they quickly form excitons (the
transfer rate from uncorrelated electrons and holes is low, as shown in Section 3).
The energy transfer from excitons is efficient in a rather wide region of wave vec-
tors, determined by the geometry of the structure. In particular, for a thermalized
exciton population with the temperature of about 100 K the typical wave vector
would be several 10−6 cm−1, e.g., for II–VI semiconductors the corresponding
transfer time is several tens of picoseconds. Another important point is that the
localization of excitons does not have any dramatic effect on the energy trans-
fer time. Since the typical lifetime of Wannier–Mott excitons in the absence of
the nonradiative (Förster) transfer is of the order of several hundreds picosec-
onds in II–VI materials, the most part of the excitations in the semiconductor may
be transferred to the organics. The energy transfer rate decreases with increas-
ing thickness of the barrier. It means that in order to optimize energy transfer the
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barrier should be taken as thin as possible, limited only by the requirement of
providing the carrier confinement and good structural quality.

The model used throughout this chapter was quite general, giving the possibil-
ity to estimate the magnitude of the effect for a wide class of materials. However,
it was simplified, and, if one wants to make a more accurate calculation for a
specific structure, the model should be improved and adapted for the particular
materials used. Especially, care should be taken of the semiconductor part of the
structure, as the transfer is sensitive to the nature of the excited states (as one can
see from the comparison of the results for excitons and free electrons and holes).
The organic part may still be described by the phenomenological dielectric func-
tion, however, specific properties of the organic material (e.g., such as anisotropy)
may also affect the result. Such developments only make sense, of course, when
related to a specific experimental work.

One of the promising materials for optoelectronic applications is gallium ni-
tride and the alloy Ga1−xAlxN. The energy gap of GaN is about Eg ≈ 3.5 eV,
corresponding to the near ultraviolet, for AlN it is about 6.2 eV. Combined with
the organics having the Stokes shift of a fraction of eV, GaN may be used to pro-
duce violet or blue light. A peculiar feature of nitrides is large spontaneous po-
larization (permitted by the symmetry for the wurtzite crystal structure) and large
piezoelectric coupling constants [42]. For quantum wells it results in the constant
electric field inside the well, appearing due to the spontaneous polarization gra-
dients at the interfaces and to the strain of the well material. Consequently, the
electric field tends to separate the electron and the hole spatially (in the growth
direction), which decreases the oscillator strength of the excitonic transition. The
electric field E0 ∼ 400 kV/cm [43] is too strong to treat the problem perturba-
tively (for a QW of the width Lw = 25 Å it gives E0Lw = 100 mV). Alternative
approaches are to use a variational function [9] or to impose a fictitious periodicity
as proposed by Singh [44], which works for quantum wells thicker than 15 Å [43].

Wide band-gap II–VI semiconductors are also frequently used [17]. If one is
interested in the nearest ultraviolet range, ZnS (Eg $ 3.7 eV) and its alloys, such
as Zn1−xCdxS, ZnS1−xSex , ZnS1−xTex may be useful (all having smaller gaps).
Each of the materials has its individual features. For example, ZnS has two modi-
fications – cubic (the usual one) and hexagonal, while CdS has hexagonal lattice.
This fact, as well as the properties of the substrate, should be taken into account
when considering the properties of the alloy. The characteristic feature of the
ZnS1−xSex is the small conduction band offset (5% of the gap difference [17]).
This makes the electron confinement weak and the Coulomb attraction between
the electron and the hole is very important in determining the exciton properties
also in the growth direction (which was totally neglected in the considerations
of Section 3). A peculiar property of ZnS1−xTex alloy is strong intrinsic self-
trapping of excitons due to the lattice distortion they induce around Te atoms.
This results in large Stokes shift between the energy gap, seen in the absorption,
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and the luminescence energy [45] (in the latter work Stokes shifts > 100 meV
for ZnSe0.99Te0.01 were observed). An analogous phenomenon was observed in
ZnS1−xSex [46], and even at low Te concentrations the luminescence energy was
not higher than 2.5 eV (i.e., the Stokes shift exceeded 1 eV). In principle, this
process may affect the relative motion of the electron and the hole, thus the effect
of the self-trapping on the oscillator strength cannot be neglected a priori either.
The self-trapping introduces also an extra time scale—that of the lattice relaxation
in the semiconductor, which should be compared with the Förster transfer time.

Silicon is the second most widespread chemical element on Earth (after oxy-
gen) and the most important material for high technology. Silicon technology is
quite cheap and well-developed. However, the crystalline silicon is an extremely
bad light-emitter due to the indirect gap, which prohibits the radiative recombi-
nation of carriers, relaxed to the band edges, by the momentum conservation (if
the process is not accompanied by the emission/absorption of a phonon). A rem-
edy for this obstacle is to “spoil” the crystalline structure of the material, e.g.,
by electro-chemical etching or by other techniques [47], which results in the
porous structure with the characteristic size of the pores being several nanome-
ters. In such a structure the momentum conservation restriction is relaxed and
light-emitting diodes based on the porous silicon microcavities have already been
constructed [48,49].

The experiment of Ref. [37] was already mentioned in Section 4. In this work
organic dye molecules were introduced into the pores, and the evidence for the
Förster transfer has been found. Thus, developing the theory for such a system is a
relevant problem. This task is, however, complicated since the theoretical descrip-
tion of luminescence from porous silicon is not yet fully satisfactory [47]. Thus,
apart from the obvious technological interest, studying this phenomenon from
both theoretical and experimental point of view may help to the basic understand-
ing of the processes occurring in such systems. The technological advantages with
respect to III–V- or II–VI-semiconductor-based structures would be small spatial
separation of the semiconductor and organic components (which is important for
the transfer efficiency) as well as much easier production technology.

6. Summary

In the present chapter we have done a theoretical study of effects arising in hybrid
organic-inorganic systems due to the resonant Coulomb interaction in the weak
coupling regime. The main objective was to describe incoherent energy transfer
from excited inorganic semiconductor nanostructure (the donor) to an organic ma-
terial (acceptor), whose electronic excitation energy is close to that of the donor.
This work may be viewed as the extension of Förster’s picture of the transfer
between two point molecules to systems, whose wave functions are essentially
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delocalized in space. The main physical ingredients, however, remain the same:
the interaction is assumed to be weak in comparison to the characteristic broaden-
ing of the acceptor excited level (which ensures the validity of the Fermi Golden
Rule, as in the Förster theory), and the result may be expressed via the spectral
overlap of the donor luminescence and the acceptor absorption spectra – the quan-
tities that represent the basic optical properties of the constituting materials, and
may be measured independently. The acceptors were treated in the continuous
medium approximation, which is valid as long as the electric field, produced by
the donor, varies slowly on the molecular scale. Once the properties of the mate-
rials are known, the problem is reduced to the problem of classical electrostatics:
finding the electric field, produced by a given distribution of charges in an inho-
mogeneous dielectric medium.

This theoretical scheme was applied to two possible system configurations: a
plane semiconductor quantum well, sandwiched between two organic acceptor
layers [2,3], and a spherical quantum dot surrounded by the acceptor medium [4,
5]. The energy transfer rate depends on the actual initial state of the donor. If it is a
freely moving Wannier exciton with the 2D wave vector k in a quantum well, the
transfer rate vanishes for small, as well as for large k, reaching the maximum for
the k, corresponding to the characteristic size of the structure (the donor-acceptor
separation). For realistic values of several tens of angstroms and parameters typi-
cal for II–VI semiconductors and organic luminescent materials, the transfer rate
obtained was as fast as several tens of picoseconds, which is much shorter than
the intrinsic lifetime of the Wannier exciton in quantum wells. The corresponding
values of the wave vectors are of the same order as those typical for a thermal
distribution at temperatures of the order of 100 K, which eliminates the prob-
lem of the relaxation bottleneck, well known in the technology of semiconductor
light-emitting devices.

For a quantum well Wannier–Mott exciton, localized due to the interface rough-
ness or alloy disorder, the transfer rate depends on the characteristic localization
length L. It is determined by the plane-wave Fourier components, corresponding
to the given localization length, and may be also short. We have also considered
the case of the unbound electron–hole pairs in the quantum well. The transfer rate
depends strongly on the carrier density and degree of degeneracy, but even for
high enough densities the transfer from unbound carriers is much less efficient
than that from excitons.

The calculations for quantum dots show that the Förster energy transfer from
the lowest state of the electron–hole pair in the dot is also fast enough compared
to the carrier recombination time (with the characteristic numbers similar to those
for the quantum well). The transfer times from higher excited states may be longer
if the corresponding transition is dipole-forbidden. The presence of the acceptor
substance may also affect the carrier intraband relaxation in the case when the
organics has a nonzero absorption coefficient at the frequency, corresponding to
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the given intraband transition. Unlike intradot Auger processes, such relaxation
mechanism does not require more than one carrier inside each dot. Of course, such
a process may occur in the presence of any absorbing substance, not necessarily
organic.

A possible application of this phenomenon would be a light-emitting de-
vice combining comparatively good transport properties of semiconductors (e.g.,
pumped electrically) and good light-emitting properties of organic substances in
a single hybrid nanostructure. The main goal would be to inject carriers into the
inorganic part of the structure (which is quite efficient due to the good transport
properties), where they are quickly bound into excitons. Then the excitation would
be transferred to the organic part. The excitation in the organics would then re-
combinate, emitting light. Such an “indirect” pumping of organics might prove
to be more efficient than the direct electrical pumping, on one hand, and than
the direct use of the semiconductor for light emission, on the other. In particular,
one of the important problems in the technology of organic LEDs, is to provide a
good electric contact between the electrodes and the active medium, which would
be circumvented in the hybrid device, since the direct contact between the semi-
conductor and the organic parts of the structure is not necessary for the energy
transfer, considered here, to occur. Also if such a transfer is competitive with the
nonradiative decay channels in the semiconductor, the efficiency of the hybrid
device may be higher than that of a purely inorganic LED.
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