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Foreword

At the dawn of the new millennium, robotics is undergoing a major transfor-
mation in scope and dimension. From a largely dominant industrial focus, ro-
botics is rapidly expanding into the challenges of unstructured environments.
Interacting with, assisting, serving, and exploring with humans, the emerging
robots will increasingly touch people and their lives.

The goal of the new series of Springer Tracts in Advanced Robotics (STAR)
is to bring, in a timely fashion, the latest advances and developments in ro-
botics on the basis of their significance and quality. It is our hope that the
wider dissemination of research developments will stimulate more exchanges
and collaborations among the research community and contribute to further
advancement of this rapidly growing field.

The monograph written by Cristian Secchi, Stefano Stramigioli and Ces-
are Fantuzzi is focused on the role of energy in controlling physical systems.
The port-Hamiltonian formalism is adopted which provides a framework for
modeling physical systems based on the concepts of energy, interconnection
and power ports describing the phenomena of energy storage, energy exchange
and external interaction respectively. The potential of the work is to be found
in the modelling and control of interactive robotic interfaces, such as haptic
devices and telemanipulation systems.

Remarkably, the doctoral thesis at the basis of this monograph was a
finalist for the Fifth EURON Georges Giralt PhD Award devoted to the best
PhD thesis in Robotics in Europe. A fine addition to the series!

Naples, Italy, Bruno Siciliano
September 2006 STAR Editor



Preface

The role of energy in modeling physical system is very well established and
several modeling frameworks, such as Euler-Lagrange and Hamiltonian for-
malisms, are very well known since basic courses of physics. Despite its im-
portance in modeling, the role of energy in controlling physical systems is not
always recognized.

The port-Hamiltonian formalism provides a framework for modeling phy-
sical systems based on the concepts of energy, interconnection and power ports
which model the phenomena of energy storage, energy exchange and external
interaction respectively. Thus, within this framework the energetic properties
of physical systems are very evident and it is possible to exploit them to build
energy based controllers.

This work is based on the Ph.D. thesis of the first author which he defen-
ded at the University of Modena and Reggio Emilia (I) in 2004 and it deals
with energy based control of interactive robotic interfaces. When two physical
physical systems interact they exchange energy and in order to control the
interaction in a sensible way, it is necessary to control this energy exchange.
In this book, port-Hamiltonian framework is exploited both for modeling and
controlling interactive robotic interfaces.

Starting from the port-Hamiltonian model, it is possible to identify the
energetic properties that have to be controlled in order to achieve a desired
interactive behavior and it is possible to build a port-Hamiltonian control-
ler that properly regulates the robotic interface. Due to its generality, port-
Hamiltonian formalism allows to deal also with complex interactive systems,
such as haptic interfaces and telemanipulation systems, both linear and non
linear, in a very intuitive way.

Many people contributed to the results presented in this book. In parti-
cular, the authors would like to thank Bernhard Maschke and Arjan van der
Schaft whose remarks have always been very valuable. Furthermore, we would
like to thank Alessandro Macchelli, Claudio Melchiorri and Nicola Diolaiti for
the very pleasant and profitable collaborations and discussions.

A brief outline of the book is given in the following.



XII Preface

In Chapter 1, starting from the so-called behavioral approach for modeling,
it is shown that the energy and the energetic interconnections, along which
the internal power exchange takes place, and, the ports through which power
is exchanged with the external world, are the essential ingredients to model
the behavior of physical systems; the mathematical object of Dirac structure
is introduced and both implicit and explicit port-Hamiltonian systems are
introduced.

In Chapter 2 energy is exploited for control purpose and it is shown how to
exploit the energetic properties of port-Hamiltonian systems to build energy-
based controllers that allow to solve the regulation problem for physical sy-
stems. The basics of passivity theory are presented and the link between
stability of a certain configuration and the shape of the energy of the physi-
cal system is illustrated. The energy shaping regulation technique for port-
Hamiltonian systems is presented both from an energy balancing and an in-
terconnection an damping assignment perspective. A control strategy that
embeds variable structure techniques in energy based control is illustrated.
The resulting control scheme allows to enhance robustness and performan-
ces in regulation tasks and it is the result of a collaboration with Alessandro
Macchelli and Claudio Melchiorri from the University of Bologna.

In Chapter 3 the problem of controlling interactive robotic interfaces is in-
troduced. An energetic analysis of interaction is provided and an intrinsically
passive control strategy for interactive systems is presented; port-Hamiltonian
controllers are used to shape the energetic properties of the robotic inter-
face and, therefore, to achieve the desired kind of contact behavior. A port-
Hamiltonian impedance controller (also called IPC) is introduced and some
new developments that allow to deal also with defective anthropomorphic
robots and with complex robotic interfaces as robotic hands are illustrated.
Furthermore, an energetic model of a generic haptic interface is presented and
the port-Hamiltonian formalism is used for building an intrinsically passive
control scheme for haptic interfaces which allows a stable interaction with ge-
neric, both linear and nonlinear, virtual environments. Finally, exploiting the
port-Hamiltonian formalism, some typical problems related to haptic interfa-
ces as that of delayed virtual environments and of force scaling are analyzed
and solved.

In Chapter 4 bilateral telemanipulation systems, that allows to interact
with remote environment, are introduced and an energy based analysis is pro-
vided. Port-Hamiltonian formalism together with scattering theory are used
to achieve an intrinsically passive port-Hamiltonian based bilateral telemani-
pulation scheme which exhibits a stable behavior both in case of contact with
the remote environment and of free motion, independently of any delay. It is
shown how to extend the scheme in order to passively deal with the discrete
nature of the controllers and with variable delay packet switching communi-
cation channels (e.g. Internet). Finally, a passivity preserving interpolation
algorithm is introduced in order to improve performances of the telemanipu-
lation scheme in case of loss of packets in the communication.



Preface XIII

In Chapter 5 the problem of transparency in bilateral telemanipulation is
illustrated. A framework, based on the behavioral approach, for the evalua-
tion of transparency is presented and used to evaluate transparency of port-
Hamiltonian based intrinsically passive bilateral telemanipulation schemes.
Extended port-Hamiltonian systems are introduced to allow a passivity pre-
serving variation of physical parameters characterizing the port-Hamiltonian
controllers used to control master and slave robots. These results are the out-
come of a collaboration with Nicola Diolaiti from the University of Bologna. A
novel scheme that allows to increase transparency in port-Hamiltonian based
bilateral telemanipulation is proposed using the variable parameters IPC.

Finally, in Appendix A, some background on the mathematical tools used
in the book is provided.

Reggio Emilia (Ttaly), Cristian Secchi
Enschede (The Netherlands), Stefano Stramigioli
August 2006 Cesare Fantuzzi
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1

Physical Modeling and Port-Hamiltonian
Systems

1.1 Introduction

Interaction between physical systems is determined by an exchange of energy
and, therefore, a first step towards the control of interaction is to explicitly
model the energetic properties of physical systems.

First of all, what is a mathematical model in general? Let a phenomenon
to model be given. The phenomenon produces outcomes (events) and the mo-
del has to represent the outcomes that can occur. For example, the principles
of thermodynamics limit the amount of heat that can be transformed into
mechanical work and relativity theory tells that a body cannot travel faster
than the speed of light. In general, a mathematical model selects a certain
subset from a universe of possibilities; this subset contains the outcomes that
are declared possible by the model, the behavior of the model. Equations are
a very suitable tool to select a certain subset from a universe of possibilities:
a certain occurrence of the phenomenon is forbidden if a certain constitutive
equation is not satisfied. The behavior of the model, thus, is given by those oc-
currences that satisfy a certain set of constitutive equations, called behavioral
equations. A model has to represent certain variables of main interest which
are called manifest variables. On the other hand, very often a mathematical
model involves the use of other auxiliary variables, called latent variables to
model the behavior of the phenomenon.

Behavior, behavioral equations, manifest and latent variables are the three
main ingredients of a modeling language called behavioral approach that has
been introduced in [330, 243]. This approach allows to describe phenomena in
a very general way without any necessary a priori distinction between inputs
and outputs (which is not always clear: when modeling a linear resistor, the
voltage has to be considered as an input and the current as an output or
vice versa?) which is instead very common when using standard modeling
techniques as, for example, transfer functions or transfer matrixes.

Because of its generality, the behavioral approach is a suitable framework
for describing physical systems; these systems have a very particular structure
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that yields a lot of information that can be used in the modeling process. In
particular it is possible to define energy and to model a system by means of
variables that are related to energy storage and by the way energy is exchanged
among the constitutive parts of the system. Furthermore it is possible to define
the concept of power port, namely the medium through which the system
exchanges energy with the rest of the world.

In this chapter we will show how it is possible to embed the physical na-
ture of the system into the behavioral framework. We will first provide an
introduction, based on [330, 243, 295], of the behavioral approach for mo-
deling a dynamical system. Once we have a general framework for modeling
any phenomenon, we will focus on physical system and we will introduce
the concepts of energy, energy variable and power port that are fundamental
for describing the phenomena of energy storage and of energy exchange. We
will then present the port-Hamiltonian formalism that has been introduced
in [189, 323, 322, 318, 319] and that allows to model any physical system
by taking explicitly into account its energetic behavior and its internal inter-
connection structure and we will show how physics naturally determines the
kind of behavior of any physical system. Finally, we will present the scattering
representation of power ports and the concept of scattering variables, based
on the treatment reported in [299], that will be very useful when dealing with
complex interacting systems with delay.

1.2 The Behavioral Paradigm for Modeling Dynamical
Systems

1.2.1 Universe, Behavior and Behavioral Equations

Each phenomenon produces outcomes (events) which take value in a set U,
called Universe. Usually not all the elements of the universe are possible
outcomes for the given phenomenon; to define a model means to determine
whether certain outcomes are possible or not. A model, therefore, selects a
certain subset B, which represents the possible outcomes, of the universe U}
B is called the behavior of the mathematical model[243].

Definition 1.1 (Mathematical Model). A mathematical model is a pair
(U,B). U is a set, called the universe, whose elements are called outcomes
and B is a subset of U, called the behavior.

Ezample 1.2 (Willems 1991). Tt is well known that HoO can appear, depen-
ding on the temperature, as ice, liquid water or steam. The universe is given,
with the temperature expressed in Celsius, by the set

U = {ice, water, steam} x [—273, 00)
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and the behavior by the subset
B = (({ice} x [-273,0]) U ({water} x [0,100]) U ({steam} x [100, c0)))

A certain behavior can be selected from a universe in several ways: by simple
enumeration (as in Example 1.2), by the fact of having certain properties, etc.
A very effective way to describe a phenomenon is by means of equations: an
outcome of the universe is part of the behavior if and only if it satisfies certain
constitutive equations.

Definition 1.3 (Behavioral equations). Let U be a universe, £ a set and
fi, fo : U — &€ two maps. The mathematical model (U, B) with B = {u € U |
fi(u) = fo(u)} is said to be described by behavioral equations and is deno-
ted by (U,E, f1, f2). The set € is called the equating space. The quadruple
(U, &, f1, f2) is also called a behavioral equation representation of (U, B).

Ezample 1.4. Consider a linear resistor. It is well known that the relation
between the current I flowing through the wire and the voltage V' across the
terminals is determined by Ohm’s law:

V =RI

The system can be modeled by considering as universe i = R?, as equating
space £ = R. Consider:

fi: (V) =V fo:(V.I) = RI
the behavior of the resistor can be given as

B={(V,I)eU| (V.I)= f2(V,])}
which means nothing else that

B={(V,I)€R?|V = RI}

1.2.2 Manifest and Latent Variables

Given a certain phenomenon to describe, a mathematical model can be built
in two steps: first identify the variables to model and their domain of existence,
the universe U, second identify all the possible outcomes, the behavior B C U.
The behavior can be specified by requiring that some behavioral equations
are satisfied. In order to express the model in a convenient way, it can be
necessary to introduce some auxiliary variables in addition to those that have
to be modeled. These extra variables are called latent variables and live in a
certain domain ¢/ while the variables that have to be explicitly modeled are
called manifest variables and live in the universe U.
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Fig. 1.1. A simple resistive network

Ezxample 1.5. Consider the simple resistive network represented in Fig. 1.1
and assume that the behaviors of the current I and of the voltage V at the
external port have to be modeled. The physical principles to use to model
the port behavior are Kirchhoff’s laws and Ohm’s law. V and [ are manifest
variables while I, I, V1 and V5 are latent variables. The behavioral equations
are:

R =V Vi=Ve=V

(1.1)
Rolr = V3 L+L=1

It is now possible to give the following:

Definition 1.6 (Mathematical model with latent variables). A ma-
thematical model with latent variables is defined as a triple (U,U;, By) where
U is the universe of manifest variables, U; is the universe of latent variables
and By C U x U is the full behavior. The manifest mathematical model (U, B)
is then defined by:

B ={uel|3lelsuch that(u,l) € By} (1.2)

B is called the manifest behavior or, simply, behavior and the triple (U,U;, By)
is called a latent variable representation of the manifest mathematical model

U,B).

1.2.3 Dynamical Systems

Dynamical systems are characterized by a time evolution and are of crucial
importance in control theory. It is possible to describe these systems in the
context of Def. 1.1: the variables of interests are function of time and, there-
fore, the universe is a function space.
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Definition 1.7 (Dynamical system). A dynamical system is defined by a
triple (T, W, B) where T is the time axis, W is a set called signal space and
B c W7 s called the behavior. Here, WT indicates the set of maps from T
to W.

The time axis represents the ordered set of time instants of interest, the signal
space W represents the set where the outcomes of the system evolve and W7
represents the universe, namely the set of all trajectories taking value in the
signal space. Analogously to mathematical models, the behavior B is nothing
else than a subset of the universe which selects a family of time trajectories
that are compatible with the system.

Definition 1.8 (Time invariance). A dynamical system X = (T , W, B) is
said to be time invariant if o'B = B for all t € T, where o' is the t-shift
operator defined as:

(@' f)(r) = f(r+1) (1.3)

The time invariance property says that the behavior of the dynamical system
does not depend explicitly by the time, as well known from system theory
[128, 284].

In this chapter we aim at modeling physical systems and, therefore, the
behavioral framework will be illustrated for continuous dynamical systems
and thus 7 = R. Furthermore we will assume that the signal space is a
differentiable manifold (this is not restrictive for the modeling purposes and
it is an essential technical assumption for many definitions) and we will assume
that the dynamical systems under consideration are time invariant. The results
illustrated in this section can be easily extended to discrete time dynamical
systems, as shown in [330].

It is possible to describe the behavior of a dynamical system by means
of differential equations and this can be formalized by using the concept of
jet space [221]. Consider a differentiable manifold G and take as time axis R.
Consider a sufficiently smooth map g(-) € GR, i.e. such that its n'" derivative
with respect to t is defined. Let G; be the set of all possible instantaneous i
time derivative for any possible g(-) € G®. It is then possible to define the set
G =G x Gy x -+ x Gy; points in G are indicated with ¢(™). The induced
map g™ (-) = pr(™Mg(t), called the n'* prolongation of g(-), is given by:

g™ () = (g(t), g1(t), -+, gn(t)) (1.4)
where
gilt) = 2 (15)

Thus pr(™g(-) is a map from the time axis R to the space G(™).
Consider a dynamical system X = (R, W, B):
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Fig. 1.2. An LC circuit

Definition 1.9 (Jet space). The n'"* order jet space of R x W is defined as
the space R x W and it will be indicated as J*(R x W).

An element in the signal space VW can be considered as the value taken by
a map w € W= in a certain point ¢ € R. Thus, an element of J"(R x W) is
given by an element of the signal space w(t) € W together with its derivatives
calculated in t up to order n.

Definition 1.10 (Dynamical behavioral equations). Let W be a diffe-
rentiable manifold which represents the signal space, R be the time axis, n
be a nonnegative integer(the order of the differential equation) and & be the
equating space. Consider two maps:

fl,fQZJn(RXW)*)E (16)
The dynamical system X = (R, W, B) with

d dr d d
d%’,... ’Wlﬁ)) :fg(w(t),d—w, D))

PIRERE
is said to be described by differential equations and is denoted by (R, W, &, f1, f2)

B={w:R—=WI[fi(w(d),

Example 1.11. Consider the simple LC circuit represented in Fig. 1.2. Suppose
that a model of the behavior of the port variables V' and I is needed. In this
case the time axis is R and the signal space is R%. From the constitutive
equations of the inductor and of the capacitor and from Kirchhoff’s laws it
follows that:

V="+1
dI

Lo =W (1.8)
dvs

C——==1
dt
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Consider now the following maps:

. 2 (2) _ dQI
fi: JR xR =R fi(pr (V’I))—Lﬁ
(1.9)
f2 JRXR?) =R folpr® (V1)) = % - éf

By straightforward calculations, it follows that the behavior of the system is
governed by the differential equation:

FilprP(vV.D) = fo(pr® (V1)) (1.10)
namely by:
2V av 1
TE - dr 51 (1.11)

It is straightforward to generalize the notion of latent and manifest variables
for dynamical systems.

Definition 1.12 (Dynamical system with latent variables). A dynami-
cal system with latent variables is defined as X, = (R,W, L, By) where R is
the time axis, W is the manifest signal space, L is the latent variables space
and By C (W x L)® is the full behavior. It defines a latent variable repre-
sentation of the manifest dynamical system X = (R, W, B) with the following
manifest behavior:

B={w:R—W | 31:R — Lsuch that(w,l) € By} (1.12)

Latent variables can appear in modeling dynamical systems for various rea-
sons. First, they can be used simply for mathematical reasons, in order to ob-
tain a particular form of the behavioral equations. Second, they can be used to
express internal laws governing the behavior of the system. A few examples are
internal current and voltages to express the behavior of an electrical circuit at
external ports and momentum in classical Hamiltonian mechanics to express
the evolution of position. Furthermore, latent variables appear when modeling
a system which is composed by the interconnection of several subsystems; in
this case latent variables will express the interconnection constraints. A very
important class of latent variables in system theory are state variables whose
role is to represent the internal memory of the system.

Definition 1.13 (State space dynamical system). A state space dyna-
mical system is a dynamical system with latent variables X1, = (R, W, X, By)
in which the full behavior satisfies the axiom of state. The axiom of state re-
quires what follows:

Given (w1, 1), (w2, xz2) € By and t € R, if z1(t) = x2(t) then (w,z) € By,
where:

(wi(7),21(7)) forT <t
(w(r), (7)) =

(wa(7), 22(T)) forT >t
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The axiom of state requires that any possible trajectory if the full behavior
B¢ ending in a particular state can be concatenated with any other trajectory
starting from that state. In other words, it asserts that once that the initial
state is known, there is enough information to determine the future behavior
and there is no need of further information of the past trajectory. The axiom of
state formalizes a concept very well known since basic system theory courses:
the state of a dynamical system contains sufficient information about the past
in order to determine the future behavior.

A question that arises very naturally at this point is: How can state space
dynamical systems be represented by differential behavioral equations?
The following theorem holds:

Theorem 1.14 (Willems 1991). Let ¥, = (R, W, X, By) be a dynamical
system with latent variables and let X be a differentiable manifold and T X
its tangent bundle. Consider two maps f1, fo : TX x W — &€ where £ is the
equating space . The differential equation:

fl((xajj>7w) = f2((x>$.>7w)

defines a state space system (R,W, X, By) with

Bf = {(w,z) : R — WxX | x is absolutely continuous and f1(z(t),z(t), w(t)) =
fo(z(t), z(t), w(t)) for almost all t € R}

Theorem 1.14 shows that the fundamental condition for a state space dyna-
mical system is that the behavioral differential equations are of first order in
z and of zero order in w. The theorem does NOT state that the behavioral
differential equations must be necessarily explicit, i.e. of the form:

&= f(z,w) (1.13)

The representation given for state space dynamical system is therefore able
to represent both explicit and implicit systems.

1.2.4 Inputs and Outputs

So far no distinction has been made between inputs and outputs. This is not a
weak point of the behavioral approach, as it could be stated at a first glance,
rather its strength. Inputs and outputs should be deduced from the mathema-
tical model of a certain phenomenon and not imposed on the model. In fact,
for example, in physical systems it is not always clear which variable should
be chosen as input and which as output. Considering an electrical resistor, it
is not clear whether voltage has to be taken as input and current as an output
or vice versa. Furthermore, the choice of input and output could depend on
the operating point of the system. Finally, the choice of inputs and outputs
could also depend on the specific task the system has to accomplish. It is
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then clear that in order to get a general mathematical model, it is better to
use the concept of outcome rather than specify a priori inputs and outputs.
However it is important to be able to include inputs and outputs in the beha-
vioral framework because of several reasons (e.g. for control purposes) it can
be necessary to act on some inputs in order to get a desired output.

In the following we explain how it is possible to give an input/output
representation of a dynamical system:

Definition 1.15 (I/O dynamical system). Consider a behavior B on a
signal space W =Ux Y. An 1/O dynamical system is defined as the quadruple
Y10 = (RU,Y,B), where R represents the time axis, U the input signal
space, ) the output signal space and B C (U xY)® the behavior. The following
properties have to be satisfied:

1. u € UR is free; i.e. for allu € U, there exists ay € Y* such that (u,y) € B.
2.u € UR is maximally free; i.e. none of the components of y € VX can be
chosen freely.

The definition states that an input/output partition of the signal space is sen-
sible only if the input u can be chosen freely (property 1) and if it determines
univocally, once fixed the initial conditions, the output (property 2). In con-
trol theory a very essential and logical feature an I/O dynamical system must
have is non anticipation. This property requires that the values of the output
at a certain time does not depend on the future values of the input. An I/O
dynamical system which enjoys this property is called non anticipating 1/0
dynamical system.

It is possible to combine the notions of input and output with the concept
of state and to obtain a very useful representation of dynamical systems:

Definition 1.16 (I/S/O dynamical system). An I/S/0 dynamical sy-
stem is defined as a 5-tuple X,5,0 = (R,U, Y, X,By) where R represents the
time axis, U the input signal space, Y the output signal space, X the state
space and By C (U x Y, X)® the full behavior. The following azioms must be
satisfied:

1. (R,U x Y, X,By) is a state space dynamical system
2. (R,U,Y x X,By) is a non anticipating 1/O dynamical system
3. (R,Z/{,X,B}) is a non anticipating I/0O dynamical system. B’f represents
the input/state behavior:
P={wz) : R->UxX|3y:R— Vst (uy )€ By

An I/S/0O dynamical system is nothing else than a state space dynamical
system (property 1) where an input output partition has been made on the
signal space. Furthermore neither the output nor the state depend on future
information of the input variable (properties 2 and 3).

Given an I/S/O dynamical system X;,5/,0 = (R,U,Y,X,By) it is always
possible to obtain an I/O dynamical system X7,0 = (R,U,), B) with:
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B={(uy) e UxY)|TzecXst.(uy,z)c By}

It is possible to prove that the behavioral equations that represent an I/S/O
dynamical system are composed by state evolution law and by an output map
and can be written in the form:

fl(x) = f(x,u)

(1.14)
hl(y) = h(.’IJ,U)
which includes the well known form [128]:
(1.15)
y = h(z,u)

1.3 Physical Modeling

The framework introduced so far is very general and allows to model every
phenomenon. However, in order to get a workable framework, it is necessary to
add some structure to the models. Considering a certain class of phenomena, it
is possible to obtain a class of models with a particular structure which can be
exploited for various purposes: analysis of certain properties (e.g. observability,
reachability), design of a suitable controller, etc.

Ezxample 1.17. A very important class of dynamical systems is the one of linear
systems. These systems can be modeled as I/S/O dynamical systems where
both the state space and the input signal space and the output signal space
are vector spaces and, furthermore, where the state evolution law and the
output law are linear in the state and in the input. This leads to the following
very well known equations:

&= Az + Bu
(1.16)
y=Cz+ Du

where A, B, C' and D are matrices of proper dimensions.

In the previous example, a mathematical property, the linearity, determines
the kind of behavior of the system and gives a well defined structure to the
behavioral equations. In this book, we are interested to modeling physical
systems and, therefore, physics will determine the kind of behavior of the
system. It is possible to describe physical system within the behavioral frame-
work described in Sec. 1.2 and, furthermore, to exploit the features common
to all physical system to determine their kind of behavior and to bring into
evidence a lot of physical information into the behavioral equations.
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Fig. 1.3. A mass-spring system

The most important feature characterizing physical systems is the concept
of energy and that it is possible to describe their dynamical behavior by
means of energy variables, namely variables that are related to energy storage
phenomena. A physical system has a dynamical behavior if and only if some
energy exchange takes place either among the various parts that compose it
or with the external world [237, 36, 141, 290] and, therefore, it is natural that
energy must play a central role in the modeling process.

Consider the simple linear oscillator represented in Fig. 1.3 made up of a
linear spring and of a mass characterized by stiffness k and inertia m respec-
tively. Let x be the displacement of the spring and p = mwv; be the momentum
of the mass. It is well known from physics that the system is characterized by
the following energy function:

1 p?
E=-kz*+ — 1.17
2" T om (1.17)
1
Energy can be split in two contributes: F, = 514;332, which represents the
potential energy stored by the spring, and Fj = %, which represents the

kinetic energy stored in the mass. Suppose that the system is oscillating,
where does the motion derive from? The oscillator is the interconnection of
two simpler subsystems: the mass and the spring. The situation is illustrated
in Fig. 1.4.

The equations governing each subsystem are:

pZFl Zi?ZUQ
(1.18)
v = % F2 = kx

It is well known that P = Fv represents mechanical power, namely the va-
riation of mechanical energy, and thus, each subsystem can exchange energy
with the rest of the world through a port defined by two variables: force and
velocity. In fact, acting on force and velocity we can act on the power injec-
ted into (extracted from) the system and, therefore, on the amount of energy
that is stored into (released by) the system. The interconnection, namely the
exchange of information, takes place through force and velocity: the mass ta-
kes force as input and gives velocity as output while the spring takes a velocity
as input and gives force as output. In other words, the interconnection deter-
mines the way in which energy is exchanged between the mass and the spring
by imposing the following constraints on the port variables of each subsystem:
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spring

Fig. 1.4. Oscillator as the interconnection of mass and spring

V1 = V2
(1.19)
P =—F,
Referring to Eq.(1.18) and to Eq.(1.19) it is possible to see that:
dE E
—= = Mﬁ = £Fl = —Fhyu = —Fhvy = —-P
dt dp m
(1.20)
dE, OE, .

W = EI = kd?’UQ = F2U2 = PQ
The amount of energy injected into the spring is exactly equal to the amount
of energy extracted from the mass meaning that energy is simply transferred
along the interconnection (or, in other words, that the interconnection is po-
wer preserving) and that, as well known from physics, the total energy E is
constant.

Summarizing, each subsystem (mass and spring) is characterized by a va-
riable (energy variable or energy state), that represents an energy storage
phenomenon, and interacts with the rest of the world by exchanging energy
through two variables (power variables) that represent force and velocity. By
interconnecting the two subsystems, it is possible to obtain a new physical sy-
stem (the oscillator) whose energy is the sum of the energy stored in the sub-
systems and whose dynamic behavior is determined by the mutual exchange
of energy between the subsystems. The way in which energy is exchanged is
given by the constraints imposed on the power variables of the interacting
systems by the interconnection.

From the simple example of the oscillator, it is clear that in order to build
an energy-based model for physical systems, it is useful to formally define the
port through which a system can exchange energy with the rest of the world;
this leads to the very important notion of power port.

To this aim, we need to introduce the concepts of dual space and of duality
product:

Definition 1.18 (Dual Space). Let V be a vector space, its dual space V*
is the set of linear maps from V to R, i.e.:
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Table 1.1. Efforts and flows for various physical domains

HDomain ‘ Effort ‘ Flow H
Mechanics (translational) Force F Velocity v
Mechanics (rotational) Torque 7 Angular Velocity w
Electric Voltage v Current ¢
Hydraulic Pressure p Volume Flow @
Thermodynamical Temperature T'| Entropy flow F

V* ={f:V—=R|Vou, v € Vai,az € Rf(a1v1 + agvy) = a1 f(v1) + az f(v2)}
(1.21)

It is possible to show that V* is a vector space and that if V is finite dimen-
sional, then V* has the same dimension of V [117]. Elements of ¥ and V* are
said to be dual one with respect to the other. Furthermore elements of V are
called vectors while elements of V* are called covectors.

Definition 1.19 (Duality Product). Givenv € V and v* € V*, the duality
product is defined as:

(Y:VxV" =R (v,v") =0v"(v) (1.22)

The duality product is intrinsically defined for any vector space and it is
NOT an extra structure that can be associated to it. Once coordinates have
been fixed, vectors and covectors are represented as column vectors and row
vectors respectively. The duality product is simply given by the usual product
between row and column vectors.

In each physical domain there is a pair of dual variables, called power
conjugated variables, whose duality product represents power. These variables
are generically called flows and efforts and live in dual vector spaces, the space
of flows F and the space of efforts £ = F*. In Tab. 1.1 effort and flow variables
for various physical domains are reported.

We are now ready to introduce power ports.

Definition 1.20 (Power port). Let F and £ = F* be the flow and effort
vector spaces. A power port is defined as P =F x E. Given f € F and e € &,
the product (e, f) is called the power (traversing the power port), where {,) is
the intrinsic duality product defined in Def. 1.19.

Power ports are the medium through which a physical system can exchange
energy with the rest of the world and, in particular, through which it can
be interconnected with other physical systems. In the simple example of the
oscillator, the power ports of the mass and of the spring are the pairs (Fy,v1)
and (Fy, vq) respectively and they are used to interconnect the two systems.

The fact that power conjugated variables are independent of the configura-
tion of the physical system and that the duality product is defined intrinsically
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Fig. 1.5. Network model of a physical system

is of crucial importance. This allows to uniquely define the energy exchange
without any additional structure on the port and to use power ports to inter-
connect physical systems characterized by different configuration spaces and
even by different physical domains. Roughly speaking, a power port is an in-
terface through which energy flows and this flow is expressed in an intrinsic
way, independently of the physical domain and of the particular configuration
of the system the power port is associated to.

1.4 Implicit Port-Hamiltonian Systems

From the very simple example proposed in the previous section, it is evident
that three concepts are fundamental for building the model of the oscillator
reported in Fig. 1.3: the state space, whose components model the energy
storage phenomena associated to the constitutive parts of the system, the
power port, the medium through which each physical subsystem can exchange
energy, and the interconnection structure, namely the way by which all the
subsystems are joined through their power ports and, consequently, by which
they exchange energy.

The behavior of any physical system can be described in terms of energy
storage and energy flows. The aim of this section is to describe the port-
Hamiltonian formalism, introduced in [189, 323, 322, 318, 319], which allows to
describe a physical system in terms of energy exchange and of interconnection
of basic elements and to give it a behavioral interpretation.

Following the network paradigm [237, 36, 141], a physical system can be
described by a set of elements storing kinetic energy, a set of elements sto-
ring potential energy, a set of elements dissipating free energy and a set of
power ports (by means of which interaction with the external environment or
interconnection with other systems can take place) interconnected with each
other by means of power preserving interconnections, as illustrated in Fig. 1.5.
The fact that the various elements are joined with a power preserving inter-
connection means that along the interconnections there can only be energy
transfer and NOT energy production. This allows the presence of power pre-
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serving elements such as transformers and gyrators in the interconnection. As-
sociated to the energy storing elements there are energy variables x1, ..., x,,
being coordinates for some n-dimensional smooth manifold X, and a func-
tion H : X — R representing the total stored energy. Keeping in mind the
network modeling point of view, it is possible to introduce what is called an
implicit port-Hamiltonian system, which is the mathematical formalization of
a network model of a physical system.

Four ingredients are needed to define an implicit port-Hamiltonian system:

1. A state space X

2. A space of flow variables, assumed to be a vector space, denoted by V.
The dual space of effort variables, denoted by V*.

3. A geometric structure D, called Dirac structure, which represents the
“energetic topology” of the system, i.e. how the energy flows among the
various parts of the system.

4. A smooth function H, called Hamiltonian function, defined on the state
space and expressing the total energy of the system corresponding to a
certain state.

The state space X is a smooth manifold whose elements are energy variables
which represent the amount of total energy stored into the system. The dual
spaces of flow and effort variables are used to define, with their intrinsically
defined duality product, power ports by means of which it is possible to in-
teract with the system or to interconnect it with other systems. These vector
spaces are independent of the configuration in order to allow interconnection
between systems with different configuration spaces. The Dirac structure is
the mathematical object used to describe the internal power preserving in-
terconnections between the various elements composing the system. Finally,
the Hamiltonian function expresses the energy of the system given a certain
configuration in the state manifold.

Consider the state manifold X and its tangent and cotangent bundles,
denoted by T'X and T* X respectively. Given a point x € X, the tangent space
in z, T, X (whose elements are vectors ), and the cotangent space, T* X' (whose
elements are covectors ), are dual vector spaces by definition and, therefore,
there exists an intrinsic duality product on X', denoted by (, ), being a bilinear
map from TX x T*X to R, defined by

(v, v) = v*(v) vel, X v el X, xekX (1.23)

Summarizing, the vector spaces V and V* are used to define the power ports,
the way by which the port-Hamiltonian system can interact, by exchanging
energy, with other systems. The tangent and cotangent bundles TX and T*X
of the state manifold X are used to define the way by which internal energy
exchange takes place (a kind of internal, and, therefore, state dependent,
power ports). The Dirac structure describes how this energy exchange takes
place.
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Consider the following vector bundle over the manifold X’ (see Sec. A.1):
Q=TXdT* XV V" (1.24)

The fibers of the bundle Q define the space of vectors, covectors, flows and
efforts:

Qz) =T, X xT; X xV xV* (1.25)

There exists a symmetric bilinear non degenerate form on @, called the +
pairing, defined by:

(), : Q) x Q) = R
(1.26)

((v,v*,f,e)7(w,w*,f,é))+ = (v*,w} + (w*,v} + (e, f) + <évf>

where (’Uav*afa 6), (wvw*v.fa é) € Q({E)

Definition 1.21 (Dirac structure). A Dirac structure on the bundle Q
is a smooth vector sub-bundle D C Q such that for every x € X, the fiber
D(x) C Q(x) satisfies the condition D(z) = D*(x), where:

Di(z) = ) }
= {(w,w*, f, &) € Qz) | ((v,v", f,e), (w,w", f,€)) , = 0,V(v,v", f,e) € D(z)}
(1.27)

It follows directly from the definition that:

(0,0%) + (e, f) = 20,0, f6), (0,07, )y =0 ¥w,0°, fre) € D)
(1.28)

Thus a Dirac structure represents a power preserving relation between the in-
ternal and external power variables and therefore it can be profitably used to
describe the topology, i.e. the internal interconnection structure, of any phy-
sical system. Loosely speaking, the set of power preserving interconnections
along which the elements constituting the physical system exchange energy is
represented by the Dirac structure.

It is now possible to introduce implicit port-Hamiltonian systems. Assume,
for the moment, that there is no dissipation in the system.

Definition 1.22 (Implicit port-Hamiltonian system). Consider a state
space X, a space of flow variables V and, dually, the space of effort variables
V*, a Dirac structure D and a Hamiltonian function H. Then, the implicit
port-Hamiltonian system corresponding to the 4-tuple (X, V,D,H) is defined
by setting:

v=—& and v*= %(z) (1.29)
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That is it is defined by the equations
OH
—&, — D 1.
(5% fe) € Dla) (130

The property reported in Eq.(1.28) immediately yields the following power
balance:

H(z(t) = <%(x(t)),i(t)> = (e(t), (1)) (1.31)

that is implicit port-Hamiltonian systems are lossless, i.e. all the energy that
is supplied through the power ports ({e(t), f(¢))) is stored into the system. It
is possible to include dissipation in the implicit port-Hamiltonian framework
by simply terminating some of the power ports with dissipating elements,
namely elements that always extract energy from those ports. Such a kind of
element can be described by the following constitutive relation

er = off,) where o:F — Esuch that (e, fr) <0 (1.32)

These elements supply always a negative power to the system through the
power port they are connected to and, therefore, they always extract energy
from the system.

An implicit port-Hamiltonian system where some of the power ports
are terminated with energy absorbing elements is called an implicit port-
Hamiltonian system with dissipation and for these systems the power balance
of Eq.(1.31) becomes:

H(a(t)) = (e(t), f(1)) + (er(t), £ (1)) < {e(t), F(1) (1.33)

that is, an implicit port-Hamiltonian system with dissipation is passive, na-
mely the energy supplied through the power ports is either stored or dissipa-
ted.

A very clear interpretation of implicit port-Hamiltonian systems can be
given in terms of the behavioral approach. Energy plays a central role in mo-
deling physical systems and energy exchange determines their evolution in
time. Because of their evolution in time, physical systems can be modeled as
a state space dynamical systems, defined in Def. 1.13. Considering lumped
parameters continuous systems, R can be chosen as time axis. It is very natu-
ral to choose as manifest variables those characterizing the external interface
of the system with the rest of the world, that is those representing the power
ports. Thus, the manifest signal space can be chosen as W =V x V*, where
V and V* represent the space of flows and the space of efforts respectively.
The memory of a physical system is represented by the evolution of the sto-
rage of energy, and, therefore, it is described by the energy variables which
live on a smooth manifold X and by the energy function H. The last, and
most crucial point, is the definition of the behavior. To define the behavior
means to define a relation between the state evolution, the state itself and
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the manifest variables. For physical systems, this relation is given by their
network structure: the behavior must represent an energy exchange through
power preserving interconnection. It is necessary then to define a function
representing the energy of the system and a Dirac structure representing the
internal power preserving interconnections. The relation that expresses the
behavior of a physical system is the one reported in Eq.(1.30).

As linearity on the manifest variables signal space and on the state space
was the structure to impose to obtain the class of linear systems, as shown in
Example 1.17, the energy function, the Dirac structure and the power port are
the entities to consider to model the class of physical systems. Nevertheless,
energy, despite of linearity, is a property shared by all physical systems and,
therefore, the port-Hamiltonian framework allows to describe physical systems
independently of their complexity.

In implicit port-Hamiltonian models the physics of the system, that is
energy flows and interconnection structure, is not hidden but it is explicitly
shown. Furthermore this formalism allows to describe both differential relati-
ons, arising because of the system evolution, and algebraic relations, arising
because of the network structure of any physical system. Finally, no causa-
lity has been fixed. This is very important since, as already pointed out, very
often the input/output selection depends on the particular task a system is
executing.

1.4.1 A Coordinate Based Representation

The definition of Dirac structure and of implicit port-Hamiltonian systems
have been given in a coordinate free way. This has been possible since these
concepts relies on intrinsic and coordinate independent properties that are
common to all physical systems. On the other hand, it is often very useful to
represent the dynamic behavior of a system by means of differential equations.

There are several ways of representing a Dirac structure and consequently
of writing equations to model an implicit port-Hamiltonian system. Each re-
presentation has its own advantages and describes in a particular way the
power preserving interconnection of a physical system. In this section it will
be illustrated the so-called Kernel representation [319] which will be used
through the whole book. For other representations, see [66, 25, 319].

Consider an n-dimensional smooth manifold X and an m-dimensional vec-
tor space V. Each Dirac structure D defined on the bundle @ = TX & T*X &
V @ V* as in Def. 1.21 defines the smooth distributions:

GO:{(v,f)GTX@V|(v,O,f,O)GD}

G ={(v,f)eTX @V |3I(v*,e) € T*X @ V*such that (v,v*, f,e) € D}
(1.34)

and the smooth codistributions:
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Py={(v*,e) e T*X & V* | (0,0*,0,¢) € D}

Py ={(v*e) eT*X ®V* | I(v, f) € TX & Vsuch that (v,v*, f,e) € D}
(1.35)

It is possible to define for any smooth distribution G the smooth codistri-
bution ann G as:

ann G ={(v*,e) e T"X o V* | (v*,0) + (e, f) =0V(v, f) e G}  (1.36)
and for any smooth codistribution P the smooth distribution ker P as:
kerP={(v,f) e TX @V | v*,v) + (e, f) =0 VY(v*, f) € P} (1.37)
The following proposition holds [322]:

Proposition 1.23. Let D be a Dirac structure on Q and Gy, G1, Py and Py
defined as in Eq.(1.34) and Eq.(1.35). Then:

1. Gy = ker P;, Py = ann G4
2. P C ann Gy, Gy C ker Py, with equality if G1, respectively Py is constant
dimensional.

Proof.
1. (v, f) € Gy if and only if (v,0, f,0) € D which means that:

0, w) 4+ (w*,v) + (0, ) + (& f) =0 Y(w,w*, f,é) € D (1.38)
or, equivalently
(w* )+ (&, f) =0 Y(w* é) e P (1.39)

Thus Gy = ker P;. Similarly, (v*,e) € Py if and only if (0,v*,0,e) € D
which means that:

W, w) + (w*,0) + (e, f) + (6,0 =0 Y(w,w*, f,é) € D (1.40)

or, equivalently

(W w) + (e, fy =0 Y(w, f) e Gy (1.41)
Thus Py = ann G1.
2. This follows from property 1 and from the inequalities P C ann ker P,
G C ker ann G, that hold for any smooth distribution and codistribution
P and G, with equality if P and G are constant-dimensional [219]

The distribution G; and the codistribution P; have a very clear interpreta-
tion when considering the implicit port-Hamiltonian system represented in
Eq.(1.30) and corresponding to the Dirac structure D and to an energy fun-
ction H. In this case the distribution 1 describe the set of admissible flows
(z, f) and, dually, the codistribution P; describe the set of algebraic con-

straints of the system, i.e.

OH
(%76) S P1
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Definition 1.24 (Regular point for a Dirac structure). A point z € X
is a regular point for a Dirac structure D on Q if the dimension of G1 and
Py (and, consequently, thanks to Proposition 1.23, of Go and Py) is constant
in a neighborhood of

The following proposition can be proven [322]:

Proposition 1.25. For each regular point x € X, dimD(x) = dim X +dim V

Proof. Since X is a smooth manifold Vo € X, dimT, X = dimT;X = dim X
and, furthermore, dimV = dim V*. It follows that for each fiber K (x) of the
bundle Q:

dim K (z) = dim(T, X x Tj X xV x V*) =dim T, X + dim T} X'+
(1.42)
+dimV +dimV* =2dim X + 2dim VY

Since the +-pairing is a non degenerate bilinear form at any regular point, if
S CT,X xTrX xV x V*, then dim S + dim S+ = 2dim & + 2dim V. Since,
by definition, D(z) = D+ (z) it is possible to write:

dim D(z) + dim D+ (z) = 2dim D = 2dim X + 2dim V (1.43)
and thus:
dimD(z) = dim X 4+ dim V (1.44)

Since the set of regular points is open and dense in & and D is a vector
sub-bundle, it follows that:

dimD(z) =dimX +dimV=n+m Ve X (1.45)

Furthermore, since D is a smooth vector sub-bundle, it is possible to find
locally about every point x € X two (n + m) x (n + m) matrices F(z) and
E(x) that depends smoothly on = and such that, locally:

D(@) = {(v, 0, f, ) € ToX x T*X x V x V* | F(x) (;j) + E() (";) —0)

rank[F(x): E(x)]=n+m
(1.46)

Moreover, since D = D+, the following relation necessarily holds:
E(z)FT(z) + F(z)ET (z) =0 (1.47)

Matrices E(x) and F(x) such that Eq.(1.46) and Eq.(1.47) holds are com-
monly called a Kernel representation of a Dirac structure D. Considering the
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definition of an implicit port-Hamiltonian system given in Eq.(1.30), it is pos-
sible to find a kernel representation of an implicit port-Hamiltonian system,
that can be written as:

F(z) (‘f) + E(x) <%§> —0 (1.48)

where the matrices E(x) and F(z) satisfies Eq.(1.46) and Eq.(1.47) for the
Dirac structure corresponding to the implicit port-Hamiltonian system.

Remark 1.26. The crucial requirement for the formulation of the kernel repre-
sentation is the existence of a regular point on the state manifold X. This
requirement is very often satisfied in practice.

In order to include dissipation, some ports have to be terminated by dissipative
elements. Thus it is possible to split the power conjugated variable in two
parts:

f=(fp,fr) e=(ep,er) (1.49)

where the subscript P denotes the part of power variables associated to power
ports for the interaction with the external world, while the subscript R denotes
the part of power variables associated to a dissipative elements. It is possible
to partition matrices E(x) and F'(x) in order to make explicit the presence of
dissipation and to get a kernel representation of an implicit port-Hamiltonian
system with dissipation:

— OH
(Fs(z) Fp(z) Fr(z)) | fp | + (Es(z) Ep(z) Eg(z)) 3;; =0 (1.50)
F(z) fr E(x) R

where the matrices F'(x) and F(z) have been partitioned in a part relative to
the energy storage, a part relative to the power ports for the interaction with
the external world and a part relative to energy dissipation.

In case there are no algebraic constraints on the state variables, it is possi-
ble to see [319] that the matrices F'(z) and E(x) assume the following special
form:

I g(x) gr(x)
Fs(z)=10 Fp(z)=1| 0 | Fr(z)= 0
0 0 0
(1.51)
J(x) 0 0
Es(z)= | —gk(z) | Ep(x)= {0 Er=|1TI
—g7(x) I 0
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where J(z) is a skew-symmetric matrix and I represents the identity matrix
of proper dimension.

Very often it is possible to model dissipation with elements characterized
by the relation

fr=—R(x)er (1.52)

where R(z) is a symmetric positive semidefinite matrix. Thus, substituting
Eq.(1.52) in Eq.(1.51), the following equations can be obtained:

—i -+ g(@)fp + gn@)fr + (@) =0 (1.53)
—gg(x)% +ep=0 (1.54)
_gT(x)aaiz +e,=0 (1.55)

By substituting Eq.(1.54) and Eq.(1.52) in Eq.(1.53), we obtain the following
equation:
OH ~ OH
T = J(m)% — gr()R(x)gr(x) o 9(@)fp (1.56)
R(x)

where R(z) = g% (z)R(2)gr(z) is a symmetric positive semidefinite matrix re-
presenting the dissipation of the system. It is now possible to give the following
definition:

Definition 1.27 (Explicit port-Hamiltonian systems). An explicit port-
Hamiltonian system is an I1/S/0 continuous time dynamical system defined
by the 5-tuple (R,U x Y, X, B;) where:

e X is an n dimensional manifold representing the state space; the states are
energy variables

e U is the input vector space; the input is a power conjugated variable.
Y = U* is the output vector space; the output is a power variable dual to
the input.

o By is the full behavior of the system.

The full behavior is represented by the following equations:

& = [J(z) = R(2)] G + g(x)u

(1.57)

OH

y=9"(2)F,
where J(x) is a skew symmetric matriz representing the internal power pre-
serving interconnections, R(x) is a symmetric positive semidefinite matriz
representing the dissipation of the system and g(x) is a matriz describing the
way that power coming from the external world is distributed into the system.
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OO

«—— b

Fig. 1.6. Schematic representation of a DC motor

Notice that the representation in Eq.(1.57) satisfies Theorem 1.14 and thus,
it properly defines an I/S/O dynamical system.

Remark 1.28. Through the book with port-Hamiltonian system is meant ezpli-
cit port-Hamiltonian system. When referring to non explicit port-Hamiltonian
systems the word implicit will be always used.

Ezxample 1.29 (DCMotor). Consider the schematic representation of a DC mo-
tor given in Fig. 1.6. The energy variables are the flux ¢ on the inductor and
the momentum p of the load; thus the state space is R?. The energy function
is given by:
2 ¢72 p2
H:R*—>R H=—"—+—
2L 2m
where L and m represents the inductance of the circuit and the inertia of the
load respectively. The dissipative elements can be modeled by the following

constitutive law:
~ ~ RO
frR=—-Rep R= (0 b)

where R and b represent the resistance of the circuit and the damping on the
load respectively. The port (manifest) variables are the input voltage (which
is an effort) and the relative port current (which is a flow).

Defining;:
T = ( >
P

and letting k represent the electro-mechanical coupling, a kernel representa-
tion of the port-Hamiltonian model of the system is the following:

10010 0 k100

01001 | /—& k 0000]| /[-92

00000 | fp]|+]|-10010f[ ep (1.58)
00100 \fr 0 —1001[ \ er

00010 -1 0 000



24 1 Physical Modeling and Port-Hamiltonian Systems

Fig. 1.7. Schematic representation of a n-DOF anthropomorphic robot

The model of the DC motor does not contain constraints on the state variables
and, thus, it is possible to give an explicit port-Hamiltonian model of the

O -EE)- 0

0—k RO
=37 m@=(gp)
The matrix J(z) is constant and represents the energetic interconnection due
to the coupling between the electrical and the mechanical part. The matrix
R(z) is positive definite and represents the dissipation present on the system.

The port effort e represents the input voltage and the output flow f is the
related current.

(1.59)

where:

Ezample 1.30 (n-DOF robot). Consider an n-DOF fully-actuated mechanical
system with generalized coordinates ¢ € Q; in Fig. 1.7 an example of a 3-DOF
robot is reported. If p = M(q)q € T;Q are the generalized momenta, with
M (q) the inertia matrix, an explicit port-Hamiltonian representation of this
system can be obtained by assuming in dim X = 2n and m = n, then defining

z = (g p)T7 H(q,p) := 3p" M~ (q)p + V(q), where V(q) is the potential

energy, and, finally,
0 I 0 0 0
J _ n R — G —
(In 0) (0 D(q,p)) (B(q)>

with D(q,p) = DT (g, p) > 0 taking into account the dissipation effects. Moreo-
ver, assume rank G = n, since the mechanical system is fully actuated. Finally
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the input is an effort representing the input torques and the output is a flow
representing the joint velocity. These considerations lead to the following mo-

(=[5 5) - o)) () (5)-

f=(0B7) (82)

9p

(1.60)

1.5 Geometric Scattering

In Sec. 1.3 it has been shown that in any physical domain there exists two
power conjugated variables whose intrinsically defined dual product gives po-
wer. This observation led to the definition of power port, the medium through
which each physical system can exchange energy with the rest of the world.

The exchange of energy through the power port can be split in two contri-
butions: an incoming power flow and an outgoing power flow that represent
the power that is supplied to the system and the power that is extracted from
the system respectively ; this splitting is not intrinsic but it depends on some
parameters representing an impedance. This observation leads to a very useful
and interesting representation of power port: the scattering representation.

Consider a power port P = (V x V*) where the V and V* are dual vector
spaces representing the space of efforts and the space of flow respectively.
Suppose that dimV = dim V* = n. It is possible to define, analogously to
what has been done in Eq.(1.26) on a vector bundle, a 4+ pairing, namely a
symmetric bilinear non degenerate form, on ¥V x V*. This operator is defined
by the following relations:

Gy (WX V) x (VxV) =R
(1.61)
((f1.e1), (fo,€2)) . = (e2, [1) + (e1, f2) (fi.e1),(f2,e2) €V x V*

Consider a basis {e1,...,e,} of V and consider its corresponding repre-
senting matrix:

B=(e1...ep) (1.62)
The dual basis, a basis of V*, {ef,..., e} is represented by the matrix:
B, =(ei...€}) (1.63)

such that BEB = BTB, = I. It is thus possible to define a basis matrix for
the space V x V* by the following:
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. B 0
B= <0 B*) (1.64)
Finally, it is possible to define the dual matrix of B:
_ B, 0
5.~ (%3) (1.65)

Using the basis matrices introduced so far, a representation of the + pairing
defined in Eq.(1.61) is given by:

1= (7) B (1.66)

The two indexes indicate that T is a (0, 2) tensor (see Sec. A.2). In order to de-
fine geometric scattering in a coordinate free way it is necessary to introduce
a metric on the vector space V. This metric corresponds to the characteri-
stic impedance of the scattering decomposition and it is symmetric. Once a
symmetric metric Z on V has been introduced, it is possible to define a (2, 0)
tensor:

(gt _
Yi=p (ZO g) BT (1.67)

Making the tensorial product between tensors T and Y, it is possible to obtain
a (1,1) tensor as illustrated in the following equation where Einstein’s notation
(i.e. summation over repeated indexes) has been adopted:

_ _ -1\
Ly =Y"T; =B (g ZO > BT (1.68)

Since L is a (1,1) tensor, it does make sense to talk about its eigenvalues
[72]. Consider a numerical expression with respect to the chosen basis of an
elements of YV x V*. A is an eigenvalue of L if and only if there exists an element
(f,e) different from zero such that:

(0)-(7)0)

Notice that the basis matrices disappeared in Eq.(1.69) because a numerical
expression of elements of V x V* has been used.
If X is an eigenvalue of L it directly follows from Eq.(1.69) that:

NN =Z7te (1.70a)

Xe=Zf (1.70b)
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but, substituting Eq.(1.70a) in Eq.(1.70b) and Eq.(1.70b) in Eq.(1.70a) it
directly follows that:

Nf=2712f = f
(1.71)
Ne=2ZZle=¢

Thus, Eq.(1.71) implies that the eigenvalues of the tensor L are A = +1 and
A = —1, both with multiplicity n(= dim V) . It is then possible to calculate
two n-dimensional eigenspaces, corresponding to the eigenvalues 1 and —1
respectively, which depend on the choice of the metric Z on V. This is indicated
by:

Vx V' =8,as, (1.72)

where @ denotes the direct sum operator. This decomposition implies that,
for each Z, there is a unique way to decompose a pair of power conjugated
variables (f,e) in the sum of two elements st € S} and s~ € S,. The
following linear algebra result holds [117]:

Theorem 1.31. Given any symmetric, positive semidefinite matriz Z, there
ezists always a symmetric matriz N such that

Z=N"N=NN = N?
N is called the symmetric square root of Z

Thus it is always possible to express the matrix representation of the metric
as the square of a symmetric matrix.

It is possible to give a representation of the eigenspaces corresponding to the
eigenvalues +1 both in kernel form and in image form:

_1\ B s (271
sgzker(lzl)B*T:ImB( )&g

1
(1.73)
_ — _ (-1 -1
S, ker(ZI)BfImB(Z) J\\[/E

where N is the symmetric square root of Z.

Proposition 1.32. The eigenspaces S'Z" and S, are orthogonal with respect
to the + pairing defined in Eq.(1.61)

Proof. S}’ and &, are orthogonal if and only if their image representations
reported in Eq.(1.73) are orthogonal with respect to the representation of the
+ pairing given by Eq.(1.66). Thus the following matrix:
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N-T m ot (01 5 (Z Y\ N
ﬁ(—IZ)B (IO)B(I>\/§ (1.74)
should be zero. Recalling the definition of the basis matrix B, by simple
calculations it is possible to show that Eq.(1.74) can be reduced to:

N-T 0r1\,,_
— (-1 27) (1 O) (Z' )N (1.75)
which is equal to:
1
§N*T(ZTZ*1 —~ )N (1.76)

Since Z has been chosen symmetric, Z7 = Z and the expression Eq.(1.76) is
equal to zero.

The restriction of the + pairing (,)  on VxV* to the eigenspace Sg defines an
inner product on Sg. Analogously, the restriction of —(,)_ to the eigenspace
S, defines an inner product on S, . It is possible to choose as basis for S

and S, the columns of
_(7-1\ N
B( I ) 7 (1.77)

and

_(—I\ N7!
B — 1.78
() L
Proposition 1.33. Consider as a basis of S; the columns of the matriz gi-
ven in Eq.(1.77). This basis is orthonormal with respect to the inner product
induced by the + pairing on Sg.
Consider as a basis of S, the columns of the matriz given in Eq.(1.78). This

basis is orthonormal with respect to the inner product induced by the + pairing
on S, .

Proof. Consider the basis defined by Eq.(1.77) for S}'. The following relation
holds:

NT (per AT (O (27" N _

N (7T ) B (IO>B( -

) @ é) (ZI_1> - (1.79)

1
GNT(Z T+ Z)N=NZ7IN =1

S

S
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Thus the basis chosen for S}' is orthonormal with respect to the induced
inner product. Analogously, consider the basis defined in Eq.(1.78) for S;.
The following relation holds:

e (70)5(5) % -
~N (1 27) <? é) (;) Nl (1.80)

1
SN Z+ 2N =1

Thus the basis chosen for S, is orthonormal with respect to the induced inner
product.

Remark 1.34. The proposition explains the presence of the factor v/2 in the
choice of the basis. This factor has the role of a normalization factor to obtain
an orthonormal basis.

It is now possible to state the main result concerning scattering theory:

Theorem 1.35 (Scattering power decomposition). Given any (f,e) €
YV x V* and any symmetric metric Z, the following relation holds:

1 1, _
(e, £) = 3lIs 13 = 5 llsz ]2 (181)

where s}, €SS, s, €Sy, (fie) =s}+s, and || ||+ and |- || are the norms
determined by the induced inner products on S}r and S respectively

Proof. Because of Eq.(1.72) it is possible to write, using the image represen-
tation of the eigenspaces:

O-H(E (@) o

By straightforward calculation, it is possible to obtain:

1 1
(e, f) = §(s£s+ —sls_ —sls_+sTsy) = §(SIS+ —sTs) (1.83)

which proves the result using the results in Proposition 1.33

The elements of S} and S, are called scattering variables. The result of
Theorem 1.35 is fundamental since it allows to algebraically decompose the
power in an incoming power wave, which can be interpreted as supplied power,
and an outgoing power wave, which can be interpreted as extracted power.
The way the decomposition is done depends on the choice of the metric Z.
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_
(&
V4
f N
R

Fig. 1.8. Scattering power decomposition

A representation of the scattering power decomposition is given in Fig. 1.8;
the half-arrow is associated to the pair (e, f) € V x V* and represents the
power flow in bond-graph notation [237, 36]. It is possible to calculate the
mapping between efforts flows and scattering variables in a given basis, i.e.
with a numerical representation. In this case, using Eq.(1.82), it is possible to
obtain:

-1 _
f= N\/§ (s% —52)
(1.84)
e= %(S'ZIr +55)
and
—1
sy =" (e+2))
(1.85)

s, = NT;(G —-Zf)
Notice that the matrix B has now disappeared since numerical representation
in the basis represented by B are considered.

The importance of the metric Z is twofold: geometric and physical. Since
it does not make sense to talk about eigenvalues of a (0, 2) tensor (see [72]), it
is geometrically necessary to introduce a metric on V to be able to decompose
Y x V* in eigenspaces in a coordinate free way. Furthermore, the metric Z
has a very clear physical interpretation. While it was possible to talk about
power without introducing any structure on V, the introduction of the metric
provide an extra information, namely the sense of propagation of the power,
which is the basis of the scattering power decomposition. In fact, without a
metric, it wouldn’t be possible to talk about an incoming and an outgoing
power wave.

Scattering variables will play a key role when considering communication
delays in interactive robotic system as it will be shown in Chap. 3 and in
Chap. 4.

1.6 Conclusions

Energy exchange plays a key role both for the description and for the control
of the physical interaction. The port-Hamiltonian framework is a very use-
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ful tool for tackling the problem of controlling interactive robotic interfaces.
In fact, the port-Hamiltonian description of physical systems puts into evi-
dence all the energetic properties of the system: the amount of energy stored,
through the state energy variables, the energy dissipation, through the dis-
sipative elements, the interfaces with the external world, through the power
ports, and the interconnection structure along which the parts of the system
exchange energy. All these features can be fruitfully exploited during the con-
trol design. Furthermore, the port-Hamiltonian formalism allows to model any
lumped parameters physical system. Thus, using this framework for modeling
and controlling interactive robotic systems, allows to describe and to design
control strategies also for complex (i.e. nonlinear) interactive interfaces.

There is still a lot of ongoing research about port-Hamiltonian systems.
Recently, the concepts of Dirac structure and of power port have been ex-
tended for modeling distributed parameters physical systems, see for example
[193, 190, 324, 247, 325, 103, 174, 173, 176]. The problem of the discretization
of distributed port-Hamiltonian systems is also receiving considerable atten-
tion because of its importance for simulation, see [104, 105] and references
therein.

The port-Hamiltonian framework is being exploited in the description of
complex physical systems, possibly consisting of subsystems from different
physical domains. For example, in [79, 80] it is possible to find applications in
the domain of thermodynamics and in [64] the port-Hamiltonian framework
is used for modeling a chemical reactor. In [238, 18] port-Hamiltonian systems
are exploited for modeling and controlling electrical machines and in [77, 78,
75] they are used to model the dynamics of walking machines.

The scattering framework presented in this section is a generalization of
the work reported in [7, 215] where scalar quantities where considered and no
geometry was present. In the framework presented in this section, it is possi-
ble to make the scattering decomposition of Eq.(1.72) both in case that power
variables are scalar and that are more complex geometric entities (e.g. twists
and wrenches [272, 290]). The geometric framework for scattering has been
recently extended to infinite dimensional systems, see [179, 173]. For some
comments on the role of non symmetric metrics in the scattering representa-
tion, see [299, 319].
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Control of Port-Hamiltonian Systems

2.1 Introduction

Energy plays a central role in the control of physical systems since the “shape”
of the energy is related to the stability properties of the system. In fact, it is
well known from physics, that every configuration characterized by a (local)
minimum of the energy exhibits a (locally) stable behavior. Unfortunately the
configuration that naturally corresponds to a minimum of the energy is very
seldom the desired configuration for the system.

One of the main strategies behind the control of physical systems is the
so-called energy shaping. The controller is interpreted as a device that exchan-
ges energy with the plant and it has to be designed in such a way that the
controlled system can still be interpreted as a physical system which has an
energy function whose minimum corresponds to the desired configuration for
the plant.

The idea of energy shaping has been used for the first time in [306] for the
control of a robotic manipulator and has led to the very well-know PD plus
gravity compensation control. Energy shaping techniques have been fruitfully
applied to systems described in the Euler-Lagrange formalism, for a reference
see for example [226].

In Chap. 1 it has been shown that the port-Hamiltonian framework is very
well suited for modeling physical systems and, therefore, it is possible to cast
the problem of regulation of a physical system into the problem of regulation of
a port-Hamiltonian system without loss of generality. The biggest advantage
brought by the port-Hamiltonian formalism is that all the energetic properties
(the stored energy but also the interconnection structure and the inherent
dissipation) of the system are very evident and thus they can be very easily
exploited for regulation purposes, shedding a new light on energy shaping
techniques and allowing to develop new energy-based control algorithms.

In this chapter we introduce the main energy based control techniques for
port-Hamiltonian systems. The link between stability and energetic properties
of a physical system can be formalized by means of passivity theory. Thus, the
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basic concepts of passivity theory and the relation between port-Hamiltonian
systems and passive systems are reported in Sec. 2.2. In Sec. 2.3 we present the
energy shaping control strategy for port-Hamiltonian systems, following the
geometric interpretation proposed in [188, 228, 186, 227, 319], and we show
what are the limitations of this control strategy which are particularly evident
when considering electrical machines. In Sec. 2.4 we show that the limitations
of the energy shaping can be overcome by exploiting the port-Hamiltonian
structure for assigning not only the shape of the energy function of the closed
loop but also the interconnection structure and the inherent dissipation and
we shortly introduce the Interconnection and Damping Assignment Passivity
Based Control (IDA-PBC) strategy proposed in [227]. Finally, in Sec. 2.5, we
show how it is possible to embed variable structure techniques into energy
shaping, as proposed in [178, 177, 256], in order to achieve perfect regulation
also in the case in which the physical parameters of the port-Hamiltonian
plant are unknown.

2.2 Basic Concepts of Passivity Theory

2.2.1 Definitions and Properties

Consider an I/S/O dynamical system (see Def. 1.16) represented by the fol-
lowing nonlinear differential equations (affine system):

&= f(z) +g(x)u

y = h(z)

where x € X is the state variable and X is the state space, u € U is the input,
y € Y is the output and U and ) are m dimensional input and output spaces
respectively. Furthermore f and g are smooth vector fields and h is a smooth
mapping. Assume that the system has at least one equilibrium configuration;
without loss of generality, z = 0 can be taken as the equilibrium point. In
the following, x¢ will denote the initial state and ¢ = 0 will denote the initial
instant of time. Furthermore, &(¢, xg,u) will denote the value of the state
trajectory at time ¢ > 0 when the system starts from an initial state x(0) = xg
and the input w« is given.

Let w be a real valued map defined on U x Y

(2.1)

w:UxY—R (2.2)
called supply rate and let RT denote the set of positive real numbers.

Definition 2.1 (Dissipative system). A system of the form Eq.(2.1) is said
to be dissipative with respect to the supply rate w if there exists a continuous
function V : X — R™, called storage function, such that for allu € U, xg € X
and t > 0, the following relation, called dissipation inequality holds:
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Vix(t)) — V(xo) < /0 w(r)dr (2.3)

An important concept related to dissipative systems is the notion of available
storage which can be defined as follows:

Definition 2.2 (Available Storage). The available storage, denoted with
V. of a system with supply rate w is the function V, : X — R defined by:

Va(@)=  sup {—/Otw(r)dT} (2.4)

ro=x,ucU,t>0

It is important to note that the available storage, when defined, is non negative
since it is the supremum over a set of number that contains the zero element
(obtained when ¢ = 0). The available storage can be used to check whether a
system is dissipative or not. The following result holds:

Proposition 2.3 (Willems 1972). If a system is dissipative with respect to
a supply rate w, the available storage V,(x) is finite for each x € X. Further-
more, any possible storage function V satisfies

0 < Valw) < V(a) (2.5)

for each x € X and if V, is continuous, then V, itself is a storage function.
Conversely, if V,(x) is finite for each © € X and it is continuous, then the
system is dissipative.

It is possible to give an energetic interpretation of dissipative systems. In fact
the supply rate w and the storage function V' can be thought as generalized
power and a generalized energy respectively. The dissipation inequality expres-
ses the fact that a system is dissipative if and only if the stored generalized
energy at time ¢, V(z(t)), is at most equal to the sum of the initially stored
generalized energy V (zg) and the total externally supplied generalized energy
fg w(u(T),y(7))dr in the interval [0,¢]. This means that there cannot be any
internal production of generalized energy but only dissipation is possible. The
pair (u,y) represents, through the supply rate function, the medium through
which the system can exchange generalized energy. Furthermore, since the
storage function is nonnegative, the following inequality directly follows from
Eq.(2.3):

- [ wlu(r).p()ar < Vi) < o0 (2.6)

which expresses the fact that the total amount of generalized energy that
can be extracted from a dissipative system is bounded by the amount that is
initially stored.

An important class of dissipative systems is that for which the generalized
power coincides with power, generalized energy coincides with energy and the
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medium through which the system exchanges energy is a power port. Thus,
an important choice of the supply rate can be made when I/ and Y are dual
spaces and it is given by:

w(u(r),y(r)) = (u(7),y(r)) veld yey=U" (2.7)

In this case the supply rate represents a power flow, u and y a flow and effort
pair and (U x Y, w) a power port. The storage function V represents the energy
stored into the system.

It is possible to represent the m dimensional input and output spaces U
and Y = U* with R™. Within this representation both u € U and y € ) are
represented by m dimensional column vectors and the intrinsically defined
duality product between U and ) is expressed as follows:

(w,y) =y u (2.8)

Definition 2.4 (Passive system). A system is passive if it is dissipative
with respect to the supply rate w(u,y) = (u,y) =y  u.

For any passive system the dissipation inequality turns out to be:

V(z(t)) — V(zg) < /0 y  (T)u(r)dr (2.9)

Two important properties follow from the fact that the storage function is
decreasing along the trajectories. In fact, if u = 0 then:

V() <y"(ult) <0 Vi (2.10)
Thus, if V(z) is positive definite, the equilibrium point = 0 is Lyapunov
stable. Furthermore, if y = 0 Eq.(2.10) keeps on holding. Thus, if V' is positive
definite, the zero dynamics [128] of the system is Lyapunov stable.

Remark 2.5. 1t can be easily shown that any strict local minimum x,, of
the storage function is Lyapunov stable by considering as Lyapunov function
V(z) — V(2 ). The proof is immediate by considering Eq.(2.9).

It is often useful to distinguish passive systems for which the dissipation ine-
quality becomes either an equality or a strict inequality.

Definition 2.6 (Lossless system). A passive system with storage function
V' s lossless if for all w € U and for all zg € X andt > 0

V(z(t)) — V(zo) = /0 yT (T)u(r)dr (2.11)
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Definition 2.7 (Strictly passive system). A passive system with storage
function V' is strictly passive if there exists a positive definite function S :
X — RT such that for allu €U, zg € X and t > 0:

V(z(t)) — V(o) :/0 yT(T)u(T)dT—/O S(x(1))dr (2.12)

Remark 2.8. A lossless system stores all the energy provided through the po-
wer port while a strictly passive system dissipates part of it and the amount
of energy that is dissipated is given by fot S(x(r))dr.

In the following we will indicate with LV (z) and with L,V (z) the Lie de-
rivative of V(z) with respect to the vector fields f and g respectively, see
Sec. A.1.

It is possible to establish a link between passive systems and the nonlinear
version of Kalman-Yakubovitch-Popov (KYP) lemma which will be useful for
relating passivity and port-Hamiltonian systems.

Definition 2.9 (KYP property). A non linear system described by Eq.(2.1)
enjoys the KYP property if there exists a non negative C* function V : X — R
with V(0) = 0 such that:

LiV(z) <0 (2.13a)

L,V(x) = h' () (2.13b)
for each z € X.
The following proposition holds:

Proposition 2.10 (Byrnes et al. 1991). If a system enjoys the KYP pro-
perty then it is passive. Conversely, if a system is passive with a C' storage
function then it enjoys the KYP property.

Proof. If the system enjoys the KYP property then:

O = 9o = O () + T g(e(t)u(t) = LV (1) + LoV ((0)ult) <
< L,V (0)ult) =y (0)ult)
(2.14)

Thus the system is passive with V' (x) as storage function.
Conversely, if a system is passive with a C' storage function, the following
inequalities holds:

dv v

W @)+ 2 gfau <y (Ot (2.15)

which clearly implies Eq.(2.13a) and Eq.(2.13b)
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It directly follows from definitions that for a lossless system LV (x(¢)) =0
and that for a strictly passive system LV (z(t)) = —S(z). Thus, if a system
is strictly passive and its storage function is positive definite in its equilibrium
point z = 0, then the equilibrium point is Lyapunov stable.

The term L;V (x(t)) represents the dissipation present in the system and
the term L,V (z(t))u(t) = y* (t)u(t) represents the power flowing through the
power port. In fact, in a lossless system LV (z(t)) = 0, namely there is not
dissipation and all the energy supplied is stored. It is then possible to exploit
the KYP property to give an alternative differential definition of a passive
system:

Definition 2.11. A system is passive if the power supplied is either stored or
dissipated, i.e. if:
dV
P =— + Pyss 2.16
at + g (2.16)
where V(z) is the storage function, P = LgV (x(t))u = yTu is the supplied
power and Pyiss = —LV (x(t)) > 0 is the power dissipated by the system.

For lossless systems all the power supplied is stored while for strictly dissi-
pative systems a portion of the supplied power is dissipated while the rest is
stored. If the relation Eq.(2.16) is satisfied with Pyss < 0 it means that the
system is not passive since a negative dissipation represents an extra power
injection into the system.

2.2.2 Output Feedback Stabilization of Passive Systems

Passive systems have been and are very much studied because of the appealing
link between passivity and Lyapunov stability, shown in Sec. 2.2.1. The aim
of this subsection is to show how it is possible to asymptotically stabilize a
passive system in its equilibrium point (which is again supposed to exist and
to be z = 0) using very well established techniques [41, 129, 319, 170].

Definition 2.12 (zero state detectability and observability). A sy-
stem described by Fq.(2.1) is locally zero state detectable if there exists a
neighborhood U C X of 0 such that, for all x € U

If h(P(t,x,0)) =0 Vi>0 then tlim &(t,z,0) =0 (2.17)

If U = X then the system is said zero state detectable.
A system is locally zero state observable if there exists a neighborhood U C X
of 0 such that, for all x € U

If h(P(t,xz,0))=0 Vt>0 then xz=0 (2.18)

If U = X the the system is said zero state observable
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Definition 2.13 (proper function). A nonnegative function V : X — R is
proper if for each a > 0 the set

VH[0,a]) ={xr € X |0<V(z) <a} (2.19)
18 compact.

Remark 2.14. Proper functions are sometimes called radially unbounded fun-
ctions [143].

It is now possible to prove the following theorem [41]:

Theorem 2.15 (Output feedback asymptotic stabilization). Consider
a system described by FEq.(2.1) that is passive with a positive definite storage
function V', that is locally zero state detectable and that admits x = 0 as
an equilibrium configuration. Let ¢ : Y — U be a smooth function such that
#(0) = 0 and yT¢(y) > 0 for each non zero y. The control law:

u = —o(y) (2.20)

asymptotically stabilizes the equilibrium point. If the system is zero state de-
tectable and V' is proper, then the control law given by Eq.(2.20) globally asym-
ptotically stabilizes the system.

Proof. Since the system is passive the dissipation inequality holds and there-
fore, considering u = —¢(y):

V(@(t) - V(o) < — / yT (r)py(r))dr < 0 (2.21)

Thus the storage function is non decreasing along the trajectories of the clo-
sed loop system. Since V' is positive definite, the equilibrium point x = 0 is
Lyapunov stable. Choose a sufficiently small neighborhood of the equilibrium
(i.e. such that the stability property holds) and consider an initial condition
20 in that neighborhood. Denote with °(¢) and 4° the state trajectory corre-
sponding to 2° and the correspondent positive limit set (which is non-empty,
compact and invariant). Since limy o, V(2°(¢)) = ag > 0, by the continuity of
V follows that V (z) = ag for all € 4°. Let € 4" and Z(t) the corresponding
trajectory. Since z(t) € 4° for all t > 0 then

0=V((t) - V(z) < - / yT (1) (y(r))dr <0 (2.22)

implies y = 0 for all ¢ > 0. By detectability lim;_, Z(¢t) = 0 and therefore
ag = 0. Thus lim;_o, V(2°()) = 0, i.e. lim;_, o 2°(¢) = 0. This proves local
asymptotic stability of the equilibrium point = 0. If V' is proper and the
system is zero state detectable, then the equilibrium point is globally asym-
ptotically stable.
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Remark 2.16. It can be shown by a change of coordinate that any strict mi-
nimum of the storage function can be (locally) asymptotically stabilized by
static output feedback.

There are many corollaries of Theorem 2.15. One of the most important is the
following:

Corollary 2.17. Suppose that a system, which admits x = 0 as an equilibrium
configuration, is lossless with an at least C' proper positive definite storage
function V. If the system is zero state observable then for each k > 0 the
control law uw = —ky globally asymptotically stabilizes the equilibrium point
z=0.

A lot of results on stabilization of nonlinear systems can be reinterpreted in
the light of passivity theory and of Theorem 2.15. For example, a very well
known result about the stabilization of affine systems obtained in [137] using
nonlinear geometric control techniques states that if there exists a function
V(z) with only one minimum point in = 0 and such that

LiV(z(t))=0 (2.23)
then the control law
uw=—(LgV (1)) (2.24)

globally asymptotically stabilizes the equilibrium point. This is equivalent to
state that if the system is lossless with storage function V it is possible to
apply Corollary 2.17 with £ = 1 to stabilize the equilibrium point z = 0.

2.2.3 Port-Hamiltonian Systems and Passivity

It has already been pointed out from an energetic point of view that the
behavior of a port-Hamiltonian system is either lossless (Eq.(1.31)), in case
no dissipation is present in the system, or passive, in case some dissipation is
present into the system (Eq.(1.33)).

In this section a formal proof of the passivity properties of port-Hamiltonian
system using a coordinate-based approach will be given and, for the sake of
clearness, explicit port-Hamiltonian systems will be considered; the obtained
results can be easily extended to implicit port-Hamiltonian systems. Consider
a port-Hamiltonian system with dissipation:

i = (J(&) - B@) 5 + g(z)u
(2.25)
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where x € X is the state of the system and H : X — R is the Hamilto-
nian function which represents the energy stored and is non negative. The
input signal space U and the output signal spaces ) are dual m-dimensional
vector spaces, i.e. Y = U*. Furthermore, J(z) is a skew symmetric matrix
representing the internal power preserving interconnections, R(z) is a sym-
metric positive semidefinite matrix representing the dissipation of the system
and g(z) is a matrix describing the way that power coming from the external
world is distributed into the system.

The link between passivity and port-Hamiltonian systems is stated in the
following:

Proposition 2.18. A port-Hamiltonian system with dissipation is a passive
system and the storage function is the Hamiltonian function.

Proof. A port-Hamiltonian system with dissipation (Eq.(2.25))can be inter-
preted as an affine system (Eq.(2.1)) where:

o [f(z)=(J(x) - R(z)) %L
o g(x) =g(z)
o (@)= g"(x)2L
The following relation holds:
o'H OH  9TH _ OH
Liya)-reay g H (@) = =5 =(J(2) = R(@)) 5— = =——R(z) 5— <0
(2.26)

where the skew symmetry of J(z) has been exploited and the inequality follows
from the fact that R(z) is positive semidefinite. Furthermore:

on
ox

L) = 2 g0) = (47 (@)

o )z (2.27)

Thus a port-Hamiltonian system with dissipation enjoys the KYP property
and consequently, applying Proposition 2.10, a port-Hamiltonian system with
dissipation is a passive system.

If R(z) = 0, namely if there is no dissipation in the system, then

L(3(@)-Reyau (@) =0 (2.28)

Therefore, a port-Hamiltonian system without dissipation is a lossless sy-
stem. Furthermore if R(x) is positive definite, the port-Hamiltonian system
is strictly passive. Thus, losslessness, passivity and strict passivity of a port-
Hamiltonian system can be determined by simply checking the sign of the
matrix R(x). This can be very clearly interpreted using Def. 2.11. In fact, by
straightforward calculations, the following relation can be obtained:
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dH 0TH OH
P — T = —_— —_— —_— .
yu=—-+ 5 R(x) 5 (2.29)

Paiss

The sign of the dissipated power depends on R(x). If R(z) is positive definite,
Pjiss > 0 which means that some power is always dissipated by the system and
that consequently the system is strictly passive. If R(x) = 0 then Py = 0
which means that there is no dissipation and that consequently the system is
lossless. If R(x) were negative definite, Py;ss < 0 which means that the system
is not passive since there is some internal production of energy.

Remark 2.19. In general, port-Hamiltonian systems are characterized by a
lower bounded, non necessarily non negative, Hamiltonian function, namely
we have that there is a finite positive constant ¢ € R™ such that:

H(z) > ¢

In this case it is still possible to prove that a port-Hamiltonian system is a
passive system by considering H*(z) = H(x) + ¢ as a storage function.

Thus, port-Hamiltonian systems inherit all the properties of passive systems.
It is then possible to asymptotically stabilize an equilibrium configuration
corresponding to a (local) minimum point of the Hamiltonian function by the
control law u = —ky. This kind of control is called stabilization by damping
injection. The name follows from the fact that the control action can be
physically interpreted as the addition of some damping to the plant. In fact,
consider a port-Hamiltonian system with dissipation where v = —ky and
k > 0. The controlled system is represented by the following equations:

= ()~ R DL~ kg()g" ()2 = [7(0) — (R(@) + Kola)g” ()] 2
(2.30)

The damping injection adds to the system some extra power dissipation which
is modeled by the symmetric positive semidefinite matrix kg(z)g” ().

Remark 2.20. In presence of damping, the state of the system evolves towards
a configuration corresponding to a minimum of the Hamiltonian function. The
rate of convergence is determined by the amount of energy that is extracted
from the system. Thus, introducing further dissipation into the system (e.g.
by damping injection) allows to increase the rate by which the system evolves
towards a minimum energy configuration.

Remark 2.21. Recalling Remark 2.5 and Remark 2.16, it can be deduced that
any strict minimum of the Hamiltonian function corresponds to a Lyapunov
stable configuration that can be asymptotically stabilized by damping injec-
tion.
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Ezample 2.22 (Linear Oscillator). Consider the linear oscillator composed by
a mass and a linear spring represented in Fig. 1.3. The port-Hamiltonian
model of the system is:

(-G H) -0

where x and p are energy variables that denote the elongation of the spring
and the momentum of the mass respectively. The input w is the force that acts
on the mass and the output y is the velocity of the mass. The Hamiltonian fun-
ction is the sum of the kinetic energy stored by the mass and of the potential
(elastic) energy stored by the spring and has the following expression:

(2.31)

2
=2 4 k 2 (2.32)
where m is the inertia of the mass and k is the stiffness of the spring.
It is easy to see that the point (0,0) is an equilibrium point and, thus, that it
is a global minimum point of the Hamiltonian function. It is possible to make
a stability analysis of the equilibrium point. Taking as candidate Lyapunov
function the Hamiltonian of the system, the following relations hold:

H(x,p) >0 Yz #0,Vp#0 H(0,0)=0

d7H  (oTH oTH 01 g —0 (2.33)
dt ( oz " dp ) -10 )
Thus, it follows that the equilibrium point is Lyapunov stable but NOT asym-

ptotically stable. It is possible to asymptotically stabilize the equilibrium point
by damping injection. Consider the following control law:

u=—ky=-k(01) (%) (2.34)

The controlled system is still a port-Hamiltonian system and is represented
by the following equations:

0)-[4)<C @)+ )-
()

(2.35)
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k

m

™

b
Fig. 2.1. The physical equivalent of the oscillator controlled by damping injection

The state (0, 0) is still an equilibrium point. Consider as a candidate Lyapunov
function for the controlled system the Hamiltonian function; the following
relations hold:

H(x,p) >0 VYx#0,Vp#0 H(0,0)=0
Ty T 01\ (& tyoora (00) (22

U = (%%? am?) (10) <§g) _'(Q%? gﬁg) (01) (%ﬁ) T (2.36)
T T 00 9H

= (5252 (1) (&) =0

Thus the Lyapunov function is negative semidefinite. But the set where the
time derivative of the Hamiltonian is equal to zero is:

Z ={(z,p) | p=0} (2.37)

and the biggest invariant subset of Z is {(0, 0)}. Therefore, by LaSalle’s inva-
riance principle [143], the equilibrium point is asymptotically stable.

The control by damping injection has a nice physical interpretation. In
fact, since the main aim of the damping injection is to introduce some dissi-
pation into the system, the controller can be interpreted as a “virtual” damper
that is added to the mass that is composing the oscillator, as represented in
Fig. 2.1.

2.3 Energy Shaping of Port-Hamiltonian Systems

In Sec. 2.2.3 it has been shown that the strict minima of the energy function
(i.e. of the Hamiltonian function) correspond to Lyapunov stable equilibrium
configurations that can be asymptotically stabilized via damping injection.
Unfortunately it is very often required to stabilize a port-Hamiltonian
system in a configuration that does not correspond to a strict minimum of the
energy function. Therefore it is necessary to introduce a controller whose task
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is to change the shape of the energy function of the controlled system in order
to have a strict minimum in the configuration of interest. It is then possible
to asymptotically stabilize the new minimum energy configuration by means
of damping injection. This control strategy is the so-called energy shaping +
damping injection perspective of control. Loosely speaking, it consists of two
steps:

1. Energy Shaping: Shape the energy of the plant by means of a proper
control law in order to assign a strict minimum in the desired configura-
tion.

2. Damping Injection: Add dissipation to the system via damping injec-
tion in order to asymptotically stabilize the desired configuration

Consider the port-Hamiltonian system represented by Eq.(2.25). The fol-
lowing energy balance follows by the integration of Eq.(2.29):

"oTH OH
o ax R(l’)%dT =

H(x(t) — H(x(0)) = / uT (r)y(r)dr —
(2.38)

:/0 UT(T)y(T)de d(t)

where x is the state of the system and H () is the total energy function. Input
and output are power conjugated variables and d(¢) is a non negative function
that represents the natural dissipation that is present into the system.

The control problem of energy shaping plus damping injection can be
formalized in terms of state feedback as follows:
Let z* be a desired equilibrium configuration. Select a control action v =
B(x) 4+ v such that the closed loop dynamics satisfies the new energy balance
equation:

Hy(x(t)) — Ha(x(0)) = /0 o1 (7)2(7)dT — dy(t) (2.39)

where H, is the desired energy function with a strict minimum in z, and z
(which may be equal to y) is the new power conjugated output. Furthermore
dg(t) is the desired dissipation of the closed loop system which can be assigned
by damping injection.

2.3.1 Stabilization by Energy Balancing

There is a wide class of systems (which includes mechanical systems) for which
the solution of the energy shaping problem is quite simple, [227].

Proposition 2.23. If it is possible to find a function B(x) such that:

—/0 BT (2(7))y(r)dr = Hu(z(t)) + k (2.40)
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where k is a positive constant, then the control law u = 3(x) 4+ v is such that
the energy balance

Ha(z(t)) — Ha(z(0)) = /O vt (r)y(r)dr —d(t) (2.41)

is satisfied with Hq(x) = H(x) + H,(x)

Proof. By replacing the control law u = §(z) + v into Eq.(2.38), we get:

H(a(t)) — H(x(0)) = / BT (a(r))y(r)dr + / o (r)y(r)dr — d(t)  (2.42)

Substituting Eq.(2.40) into Eq.(2.42), the following equation holds:

H(z(t)) — H(z(0)) = —Hy(z(t)) — k+ /0 vT(T)y(T)dT —d(t) (2.43)
from which it follows that:
H(x(t)) + Ho(x(t)) — H(xz(0)) + k = /0 o (T)y(T)dr + d(t) (2.44)

From Eq.(2.40) it follows that necessarily H,(x(0)) = —k and thus Eq.(2.44)
can be rewritten as:

H{(x(t)) + Ho(2(t)) — H(2(0)) — Ha(2(0)) = /0 v (T)y(r)dr +d(t) (2.45)

Finally, setting Hq(x(t)) = H(x(t)) + H,(x(t)) the balance of Eq.(2.41) fol-

lows.

Remark 2.24. The term fot BT (x(7))y(T)dr can be interpreted as the energy
supplied by the controller to the plant. Therefore the condition of Eq.(2.40)
expresses the fact that the energy supplied by the controller can be expressed
as a function of the state.

The energy of the closed loop system is the difference between the energy
stored by the plant and the energy supplied by the controller; therefore
this energy shaping strategy is called energy balancing passivity based con-
trol (energy balancing PBC).

If the closed loop energy Hgy(x) has a strict minimum in the desired con-
figuration x*, then, setting v = 0, z* is stable and the Lyapunov function is
represented by the difference between the energy stored by the system and
the energy supplied by the controller.

Example 2.25. Consider an n-DOF fully-actuated mechanical system with ge-
neralized coordinates ¢ € Q. The port-Hamiltonian model of this system has
been obtained in Example 1.30 and is:
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() [05.5) - G o)) () (st
P ~1, 0 0D(q,p)) | \ 52 B(q)

oH
y = (0 BT(q)) (%)

(2.46)

1
with H(q,p) = ipTM_l(q)p + V(q), where V(q) is the potential energy,

and where D(q) is a positive definite matrix representing the viscous friction
present in the system. Suppose that gz € Q is a desired configuration in the
joint space. A possible function §(-) that satisfies Eq.(2.40) is:

oV oH,

fa) = B~ @l - 5.

] (2.47)

where H,(q) is a function with a strict minimum in ¢4. A simple choice of the
functionf(+) is given by:

ov

Blq) = B_l(q)[afq — Kp(q— qaq)] (2.48)

where Kp = KL is a positive definite proportional gain matrix. In fact, sub-
stituting Eq.(2.48) in Eq.(2.40) and recalling that

OH

— BTN — BT ()
y (9) o (9)q
the following relation follows:
b or LoV T -7 TN\
- [ B = = [ 155~ = " Kol B (@B (@yidr -
0 0

(2.49)

Thus the closed loop energy function is given by:

Ha(g. ) = Hia.p) + Hala) = 3p" M7 @p+ 30— a0)" Kp(a — aa) (2:50)

which has a minimum in (0, g4) as desired. The point (0, g4) is asymptotically
stable because of the presence of some inherent dissipation, modeled by the
positive definite matrix D(q), in the system. It is possible to add some further
dissipation into the system by damping injection.

The main obstacle of the energy balancing control technique relies in finding
B(x) and H,(x) such that Eq.(2.40) is satisfied. In order to bring in evidence
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the main drawback of this control technique, it is more convenient to write
Eq.(2.40) in its differential equivalent form, namely:

Ho(a(t)) = =87 (x(1))y(t) (2.51)

Considering as a plant the port-Hamiltonian system represented by Eq.(2.25),
Eq.(2.51) can be expanded as:

T
T [00)) ~ BG) A2+ ga)B(a (1)) = ~B7 (e()ut) =
(2.52)
= BT )" (1)

A necessary condition for the solvability of Eq.(2.52) is that 87 (z(¢))y(t)
vanishes in correspondence of all the zeros of

0H

(J(z(t)) = R(x(t) 5~ + 9(2)5(x(t) (2.53)

Equilibrium configurations are obviously zeros of Eq.(2.53) and thus at every
equilibrium point Z it must be:

s (@)y(t) =0 (2.54)

Recalling that —37 (z(¢))y(t) is the power extracted by the controller, the
condition of Eq.(2.54) states that there must not be any power extraction at
the equilibrium. This means that energy balancing PBC is applicable only
if the energy dissipated by the system is bounded and, consequently, if it
can be stabilized by extracting a finite amount of energy. This condition is
satisfied for mechanical systems where the system has to be regulated at a
configuration characterized by zero velocity. In the case of electrical circuits
and electrical machines this is not always the case and thus energy-balancing
PBC can fail. This drawback is known as the dissipation obstacle.

Example 2.26. Consider the series RLC circuit shown in Fig. 2.2. The energy
variables are the charge ¢ in the capacitor and the flux ¢ in the inductance;
thus the state of the system can be chosen as z = (¢,¢)? = (z1,22)". The
total energy function of the system is

1
H(z) = —=a? + —a3 (2.55)
and the port-Hamiltonian model of the system is:

= (- 13- 60l (8-

(2.56)
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Fig. 2.2. Series RLC circuit

The system satisfies Eq.(2.38) with d(t) = R fg[(l/L)azg]Q(T)dT7 i.e. the energy
dissipated by the resistor. It is clear from the constitutive equations that
the admissible equilibrium configuration of the system are of the form z* =
(x%,0)T. Notice that in correspondence of the equilibrium configuration there
is no dissipation. In order to apply the energy-balancing PBC, Eq.(2.52) has
to be solved. In this case ((z) is a real valued function and the equation
becomes:

1 O0H, 1 R oOH 1
596‘2 o, (x) — 6331 + fxz — B(x) 87562(33) = —23025(35) (2.57)

The energy function admits already as minima states where x5 = 0 and thus it
is enough to shape only the part of the energy that depends on z;. Therefore,
it can be considered a function H, = H,(x1). In this case Eq.(2.57) reduces
to:

0H,

~ G (2.58)

B(w1) =

which, for any H,(z1) defines a control law u = ((z1). To shape the closed
loop energy function in order to have a strict minimum in the configurationz =
(z%,0)T it is enough to consider

1 1 1

+ =)z +k (2.59)

Hy(71) = f% - (5

The closed loop energy is the given by

—_
—_

1
—)(z1 — x’{)2 + —x% +k (2.60)

Hy(z) = H(z) + Ha(z) = %(5+ - 2L
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O

L
Fig. 2.3. Parallel RLC circuit

H,(z) has a minimum in the configuration (7, 0) for all gains C, > —C. Thus
the control law:

8Ha Iy 1 1

- = (=4 ) 2.61
o o tetem (2.61)

stabilizes the configuration z* and the Lyapunov function is given by the

difference between the energy stored into the system and the energy supplied

by the controller.

u =

The energy-balance PBC works fine for the electrical example in Example 2.26
since the equilibrium configuration is characterized by no dissipation of energy
and, therefore, the system can be stabilized by extracting a finite amount of
power. On the other hand it is possible that some electrical circuits are not
stabilizable with energy-balance PBC, as illustrated in the following example.

Example 2.27. Consider the parallel RLC circuit shown in Fig. 2.3. The energy
variables are the charge ¢ in the capacitor and the flux ¢ in the inductance;
thus the state of the system can be chosen as x = (¢, ¢)T = (z1,22)T. The

total energy function of the system is

1 1
H(z) = %z% + Ez% (2.62)
and the port-Hamiltonian model of the system is:
(@ _[[0 1\ [(RO\](E 0
= (@)= 1) - Gl () + ()
(2.63)

y=(01) (%g)

6902

The system satisfies Eq.(2.38) with d(t) = Rfot[(]./C)l'%(T)]QdT, i.e. the
energy dissipated by the resistor. It is clear from the constitutive equations
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that the admissible equilibrium configuration of the system are of the form
r* = (Cu*, (L/R)u*)T. Notice that in correspondence of the equilibrium con-
figuration there is dissipation and therefore infinite power should be extracted
to stabilize the system. For this class of systems the energy-balance PBC is
not working.

The energy-balance PBC can also be formulated for generic passive systems
but the main drawback of this control technique, the dissipation obstacle, is
present also in this more general framework; for further details see [227].

We have seen in Sec. 2.2.3 that the control by damping injection has a
very clear physical interpretation since its action is physically equivalent to
the presence of a dissipative element which, for example, in the mechanical
domain can be modeled as a damper. The energy-based PBC changes, through
a state feedback, the energy of the plant by giving it the desired shape. It is
possible to give a physical interpretation to the energy-balance PBC control
and to relate the dissipation obstacle to the physical properties of the plant. To
this aim, it is necessary to give a more geometric interpretation of the control
strategy and this can be done by using Willems’ control as interconnection.

2.3.2 The Control as Interconnection Paradigm

In control theory, controllers are very often seen as signal processors. The
controller receives from a set of sensors a set of information relative to the
plant, processes them obeying to a certain control law and transmits them to
a set of actuators that drive the plant. The energy-balance PBC described in
Sec. 2.3.1 fits very well in this description: the controller receives the state x
and processes it to obtain a control law u = §(z) + v to stabilize the system
at the desired admissible equilibrium configuration.

A novel way of looking at control and control problems is the so called
control as interconnection which is based on the behavioral approach of mo-
deling systems and that has been introduced in [330, 243]. In the following
this control paradigm will be described for dynamical systems, which is the
framework needed for the control of port-Hamiltonian systems, but it can be
generalized for generic mathematical models; for further details see [330].

Definition 2.28 (Interconnection of dynamical systems). Consider
two continuous time dynamical systems X1 = (R, W, By) and X5 = (R, W, By)
with the same signal space WW. The interconnection of Yy and X5 is denoted
by X1 A Xy and is a dynamical system defined as X1 A Yo = (R, W, B1 N By)

Thus, given two dynamical systems Xy = (R,W,B;) and Yy = (R, W, Bs)
with the same signal space VW the behavior of their interconnection consists
of those trajectories w : R — W that are allowed both for X (i.e. w € By)
and for X5 (i.e. w € By). Consequently, the trajectories of the interconnected
systems must be acceptable for both systems and, thus, the interconnection
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Interconnection

Plant Controller

Fig. 2.4. Control as interconnection

limits the behaviors of both the interconnected systems to those trajectories
that are compatible for both systems.

Consider a dynamical system X, = (R, W, B,) which represents the plant.
Consider the set of all dynamical systems with R as time axis and with signal
space W; this set is called the family of admissible controllers and is denoted
by €. An element X, € € is called admissible controller. The interconnected
system X, A X, is called the controlled system. Thus, give a plant Y, the
problem of control can thus be articulated in three steps:

1. Describe the set of admissible controllers €

2. Describe the properties that the controlled systems should have

3. Find an admissible controller 2. € € such that the system X, A X has
the desired properties.

Within the control as interconnection approach, controllers are no more sig-
nal processors but dynamical systems that are interconnected to the plant,
as shown in Fig. 2.4. The behavior of the controlled system (i.e. of the inter-
connection between the plant and the controller) has to be obey to the laws
imposed both by the plant and by the controller. The controller has to be
designed in such a way that the undesired behaviors of the plant are no more
allowed for the interconnected system, namely that the behavior of the plant
when the controller is connected is exactly the desired one.

Sometimes it is more appropriate to see controllers as dynamical systems
interconnected to the plant rather than simply signal processor. In this way
the structural properties of the systems (geometric structures, invariants, etc.)
can be fruitfully exploited to constrain the behavior of the plant to a desired
subset and, concerning the control of port-Hamiltonian systems, it is possible
to give a clear physical interpretation to the controller and to the dissipation
obstacle.

Port-Hamiltonian systems interact with the external world by means of
a power port and thus, the interconnection between port-Hamiltonian sy-
stems takes place through the respective power ports. Obviously, the energy
exchange is fundamental in the design of passivity based controllers and, the-
refore, it is useful to consider a particular class of interconnections, namely the
power preserving interconnections that allow, as shown in Sec. 1.4, to establish
an energy transfer between the power ports interconnected. The situation is
illustrated in Fig. 2.5.
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Fig. 2.5. Power preserving interconnection of port-Hamiltonian systems

The most general way to represent a set of power preserving interconnec-
tions is a Dirac structure, as shown in Sec. 1.4. On the other hand, for the
control purposes that we are presenting, a power preserving interconnection
can be represented with a skew-symmetric matrix J;,:(z1, z2), where z1 and
To represent the states of the system 1 and of the system 2 respectively, which
relates the inputs and the outputs of the interconnected systems:

(Z;) = Jint (21, 22) @;) (2.64)

It is immediate to prove that J;,; represents a power preserving interconnec-
tion. In fact, recalling that in coordinates (u,y) = uly:

T
u?yl + U2Ty2 = [Jint (ylﬂ (y1> = - (ZU1T sz) Jint(T1, 22) (zl) =0

Y2 Y2 2
(2.65)

which expresses the fact that there is a transfer of energy through the inter-
connection, namely, that the energy extracted from one system is supplied to
the other without any loss or production of extra energy. The classic negative
feedback interconnection
{U1 = Y2
U2 =

is an example of a power preserving interconnection where:

0-1

Let
&1 = (Ji(z1) — Ri(71)) 3 + g(z1)uy
3 =
OH
Y1 g{(zl)ﬁll
(2.66)
OH
tg = (Ja(z2) — R2(72)) 6x22 + g2(z2)us
Sy =
OH
Y2 gg(xZ)W;
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be two port-Hamiltonian systems. x; € X} and x5 € A5 represent the state
variables, Hy(z1) and Hy(x2) are the energy functions, Jy(z1) and Ja(z2) are
skew symmetric matrices representing the internal power preserving inter-
connections, Ry (z1) and Ra(z2) are symmetric positive semidefinite matrices
representing the dissipation of the system. Furthermore (u1,y1) € U x Y1 and
(u2,y2) € Uy x Yo are pair of power conjugated variables which describe the
power ports by means of which each system can interact with the rest of the
world. Let J;: (21, x2) be a skew symmetric matrix and consider the following
power preserving interconnection:

(1) =t () = () 2o

between the power ports (u1,y1) and (ug, y2).

Proposition 2.29. The power preserving interconnection between the two
port-Hamiltonian systems X and Xy yields another port-Hamiltonian system
with state space given by the product space X1 X Xy and with Hamiltonian
function Hy(x1) + Ha(z2).

Proof. The matrix J;,; can be partitioned in the following way:
Jii (w1, 22) J12(3317!E2)>
(@1, 22) (J21(9€1,$2) Joz (w1, 72) ( )

where Jy1, J12, Jo1 and Jog are matrices of proper dimensions. From the skew
symmetry of J;,; it follows that the Ji; and Joo are skew symmetric and that
JiI = —Jo1. By straightforward calculations it follows that the interconnected
system takes the form:

_ [<J1 (1) + g1(x1)Ju1 (w1, 2)gT (1) g1(x1)J12(21,2)g3 ) _
g2(2) o1 (21, 22) g1 (1) Ja(x2) + ga(22) Jaa(z1, 22)g3 (2)

(Rléxl) Rz(()M))] (%%) * (91(0331) 92(0332)> (2)
() = (" grtem) (?)

Since J11 and Jay are skew symmetric the terms g (z1)J11 (21, 22)g1(21) and
g2(x2)J22(x1, 2)ga(x2) are also skew symmetric. Thus Eq.(2.69) represents a
port-Hamiltonian system with state space X = &} x X» and with total energy
function H(x1,x9) = Hy(x1) + Ha(x2).

(2.69)
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2.3.3 Energy Shaping as Control by Interconnection

In this section it is shown how to shape the energy of a plant, modeled as a
port-Hamiltonian system, by interconnecting to it in a power preserving way,
another port-Hamiltonian system, properly designed, which plays the role of
the controller.

Consider a port-Hamiltonian system with dissipation:

i = (J(z) - B@) G + gle)u
Yp = reX dimX=n (2.70)
y= gT(w)%

Definition 2.30 (Casimir function). A Casimir function for a port-
Hamiltonian system with dissipation in the form of Eq.(2.70) is a function
C: X — R, where X is the state space of the port-Hamiltonian system, that
satisfies the following relation:

orc
Ox
Casimir functions are constant along the trajectories of the unforced port-

Hamiltonian system. In fact, letting u = 0 in Eq.(2.70), the following relation
holds:

[J(z) — R(z)]=0 ze€X (2.71)

. T
Clz) = %[J(m) - R(x)]%[ =0 (2.72)

Thus Casimir functions are conserved quantities for the port-Hamiltonian sy-
stems. Nevertheless they are a very particular kind of conserved quantities
since their variation along the trajectories of the unforced system is 0 in-
dependently of the Hamiltonian of the system. Thus, Casimir functions are
conserved quantities that are determined only by the geometry of the sy-
stem, namely by the interconnection structure (J(z)) and by the dissipation
structure (R(x)).
Consider a port-Hamiltonian system with dissipation

T = [Jc(zc) - RC(IEC)] %fcc + gC(IEC)Uc

z. € X, dimX.=n. (2.73)
Ye = gZ(xC) %I;:

regarded as a controller to interconnect to the plant described in Eq.(2.70)
via the standard feedback interconnection:

O-GE-) e

Jint
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In Sec. 2.3.2 it has been shown that the the standard feedback interconnection
is a power preserving interconnection and, furthermore, it has been proven
that any power preserving interconnection between port-Hamiltonian systems
with dissipation yields to another port-Hamiltonian system with dissipation.
Therefore the closed loop port-Hamiltonian system deriving by the standard
feedback interconnection between the plant and the controller is given by:

(:f> - [(gcmigﬁ;(x) ‘9{,%)(%)) - (Rém) R?M (%%;’) "
- (g<0x) gc((;:c)) <Z;)
(1) = (757 grten) ()

The state space of the closed loop system is X x X, and dim(X + X,) = n+n,
and the total energy is H(z) + H.(x.)

The Hamiltonian H(z) of the plant is given while the Hamiltonian H.(x.)
of the plant can be freely assigned for control purposes. However, it is not very
clear how a particular choice of the controller energy function can shape the
total energy in such a way that the plant in stabilized in a certain configura-
tion. The main idea of the energy shaping as a control by interconnection is
to relate the state of the controller and the state of the plant through Casimir
functions of the closed loop port-Hamiltonian system. In particular, Casimir
functions of the following form are considered:

(2.75)

Ci(z,x.) = xe; — Fi(x) i=1,...,n (2.76)

where F; : X — R and z.; denotes the i** component of z.. Thus, each
Casimir function relates a component of x. to x.

By the definition of Casimir function and of the closed loop system, it fol-
lows that, for each function C;(z,x.), the following partial differential equa-
tions have to hold:

DL (2)[J(@) - R()] - giec)g"(2) =0 _
%g(x)g?(xc) +Ji(2e) — Ri(zs) = 0 L. (2.77)

where g%, J¢ and R’ denote the i*" row of g., J. and R, respectively. In order
to relate z. to x, n, Casimir functions have to be found and thus the following
set of partial differential equations has to be found:

oTF

5, (@ (2) = R(z)] - ge(ze)g™(z) =0 (2.78a)
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oTF
oz 7

where F' = (Fy,...,F,.)7T.
The post-multiplication of Eq.(2.78a) by 88—1; and using Eq.(2.78b) yields:

orF OF
ox [‘](m) - R(x)}aix = Jc(xc) + Rc(xC) (279)
In general, given two skew symmetric matrices J; and Ja, and two symmetric
matrices Ry and Ro, J1 + Ry = Ja + R implies J; = Jo and Ry = Ry [117].
Therefore Eq.(2.79) can be rewritten as:

()97 (xe) + Jo(we) = Re(e) =0 (2.78b)

oTF oF
@) = g (2.80)
2 rw 2 - Ruw) 2.81)
dz g T re\Te '

Since R.(z.) and R(x) are symmetric positive semidefinite, Eq.(2.81) can be
rewritten as:

orF OF
- 2.82
5 @) g =0 (2.82)
Rc(xc) =0 (283)
Since R(x) is symmetric positive semidefinite, Eq.(2.82) is equivalent to
OF
R(x)— =0 2.84
0% (2.8)
Finally, using Eq.(2.84), it is possible to rewrite Eq.(2.78a) as:
oTF
OL (@)0(@) = gelwe)g™ () (2.85)

Therefore the following result has been just proven [227]:
Proposition 2.31. The functions C;(z,x.) = x¢ — Fi(x), 1 = 1,...,n. are
Casimir functions for the closed loop port-Hamiltonian system in Eq.(2.75) if
and only if F(z) = (Fy(),...,F, (2)T) satisfies the following partial diffe-
rential equations:
oTF OF
T ()= =
oz (z) ox
oF
[T
r (2.86)
R.(z:.) =0

Je(ze)

R(x)
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The Casimir functions are conserved along the trajectories of the unforced
closed loop port-Hamiltonian system which is therefore constrained to evolve
on the set:

Lo ={(z,z) | ®ei = Fi(x) + ¢y i =1,...n.} (2.87)

where ¢; is the constant value that each Casimir function C; assumes.
The dynamics of the plant in the unforced closed loop controlled system
represented in Eq.(2.75) is give by:

o
ox

0H,
0z,

i =[J(z) = R(x)]|5—(z) — g(x)gs (vc) 7 (xc) (2.88)

which, using the second and the fourth relation of Eq.(2.86), can be rewritten
as

0H OF , \0H,

i = () = R @)+ 5 (@) (a) (289)
But:
z.=F(x)+c (2.90)
where ¢ = (c1,...,c,,)T. Using the chain rule for differentiation:
OH.(F(x)+c) OF, O0H.
— 5~ (x) o2, (F(z) +¢) (2.91)
Thus the dynamics of the controlled plant is given by:
. 0H,
# = ()~ R@)| 5 (1) (292)
where
H, () = H(z) + H(F(z) + o) (2.93)

Therefore, the feedback interconnection of the plant in Eq.(2.70) with the
controller in Eq.(2.73) such that there exist n. Casimir functions of the form
of Eq.(2.76) is again a port-Hamiltonian system with dissipation with the
same interconnection and dissipation structure but with a shaped Hamiltonian
function given by Eq.(2.93).

The energy of the controlled plant can be shaped by a proper selection
of the Hamiltonian function of the controller that has to be chosen in such
a way that Hy(x) has a strict minimum in the desired configuration. It is
straightforward to give an energy-balance PBC interpretation to the energy
shaping control algorithm just illustrated. Since R.(z.) has to be zero by
Eq.(2.83)
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dH. T
g = e (2.94)
and thus, since u = —y. and y = u,

dH, dH  dH. dH
At dt a ar Y (2.95)

which yields:

H,(x(t)) = H(x(t)) - / o (r)y(r)dr (2.96)

namely, the shaped energy is the difference between the energy stored in the
plant and the energy supplied by the controller.

Facing the problem of energy shaping for port-Hamiltonian systems with
dissipation as a control by interconnection problem has several advantages.
First, it is possible to give a nice physical interpretation to the controller. In
fact it can be thought as a physical extension of the plant designed in such
a way that the behavior of the plant is constrained to the desired one. Se-
cond, the geometric structures characterizing port-Hamiltonian systems can
be explicitly exploited for the design of the controller. In other words, all
the energetic properties characterizing physical plants are explicitly used for
building the control law and, therefore, physics plays a very active role in the
determination of control which is no more reduced to a mere mathematical
problem. Third, the drawbacks and the major advantages of the control algo-
rithm admit a nice physical interpretation which cannot always be made clear
in a state feedback framework.

The energy-shaping implemented by means of Casimir functions is equi-
valent to the control algorithm illustrated in Sec. 2.3.1 and therefore the dis-
sipation obstacle is still the main drawback of the control strategy. On the
other hand, it is now possible to characterize the admissible dissipation; in
fact, since Eq.(2.84) must hold, the following relation holds as well:

OH.(F)

R(x) pe

(£)=0 (2.97)
Thus, a port-Hamiltonian system is stabilizable by means of energy-balancing
PBC if and only if the dissipation structure of the plant and the Hamiltonian
of the controller satisfies Eq.(2.97). Loosely speaking, energy balance PBC is
possible only when H,. does not depend on the coordinates where there is dis-
sipation; in other words,the coordinates on which there is natural dissipation
need not to be shaped. In fact it is possible to stabilize mechanical systems
in a determined configuration since the coordinate that need to be shaped is
the position while dissipation in mechanical systems is present on momenta.
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2.4 Interconnection and Damping Assignment Passivity
Based Control

In Sec. 2.3.3 it has been shown that to shape the energy of the plant it is
necessary that the closed loop system admits Casimir functions. While this is
not a problem for the regulation of mechanical systems, it can become a con-
cern when dealing with the control of electrical machines and, consequently,
when explicitly considering the electric actuation system of a robot. The exi-
stence of Casimir functions imposes several conditions which are reported in
Eq.(2.86). The main limitation imposed by these condition is on the admissible
dissipation of the plant.

The dissipation obstacle expresses the fact that a port-Hamiltonian sy-
stem cannot be stabilized in an admissible equilibrium configuration charac-
terized by an infinite amount of dissipation by supplying a finite amount of
energy. Thus, to stabilize a system in equilibrium points with infinite dissi-
pation, controllers being able to supply an infinite amount of energy have to
be considered. The controller can be describe by a port-Hamiltonian system
characterized by a lower unbounded energy function as:

Te = Ue
.= (2.98)
Ye = %I;f (SL‘C)

with energy function
Hc(xc) = —Z¢ (299)

Furthermore, it has been shown in Sec. 2.3.3 that the standard feedback inter-
connection implies very strict conditions, related to the existence of Casimir
functions, expressed by Eq.(2.86). It is possible to get rid of these restricting
conditions by embedding the plant state information into the interconnection.
Thus the following power preserving interconnection can be considered:

(5((?)) B (ﬁTO(x) _%(x)> (j ((tt))) (2.100)
—_—

J’int (I)

The system resulting from the coupling of the systems in Eq.(2.70) and in
Eq.(2.98) through the interconnection represented by Eq.(2.100) is clearly a
port-Hamiltonian system with dissipation, because of Proposition 2.29, and
has the form:

()= [(rcsiben ) - ()] (gs))  aom

It is possible to shape the energy of the closed loop system without the gene-
ration on Casimir functions and thus without the restrictions imposed by the
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necessary conditions reported in Eq.(2.86), in particular without the dissipa-
tion obstacle. In fact, if it is possible to solve the following partial differential
equation:

0H,
Ox

[J(z) = R(z)|——(2) = g(z)B(x) (2.102)

for some 3(x) the plant dynamics will be:

i = [J(z) — R(x)]%(x) (2.103)

where Hy(x) = H(x) + Hy(x). If it is possible to choose H,(x) such that
Hy(x) as a minimum in the desired configuration, then the interconnection of
Eq.(2.70) with Eq.(2.98) through Eq.(2.100) will be asymptotically stabilized
in the desired configuration. Notice that there are not conditions to fulfill
and, in particular, no dissipation obstacle. Thus, this new control scheme is
applicable also for the stabilization of infinite dissipation systems.

Notice that controlling the plant through the interconnection of the con-
troller in Eq.(2.98) by means of Eq.(2.100) is equivalent to control it by means
of the static feedback u = 3(z). In fact, from Eq.(2.101) it follows that:

b= (@) - R)) 5 (o) — 9(a)B(0) 5 (2.104)

OH,.
oz,

which, since = —1, is equivalent to:

i = (@) ~ R@) 5 () + 9(2)6(2) (2.10)
Ezample 2.32. Consider again the parallel RLC circuit represented in Fig. 2.3.
The system can be modeled as a port-Hamiltonian system with dissipa-
tion, as reported in Eq.(2.63), with energy function reported in Eq.(2.62).
The admissible equilibrium configurations of the system are of the form
r* = (Cu*,(L/R)u*)T and the system is characterized by an infinite dis-
sipation as shown in Example 2.27. The partial differential equation reported
in Eq.(2.102) applied to this system becomes:

1 0H, 0H,
~F o (z) + T (x)=0 (2.106a)
0H,, .
s () = B(x) (2.106b)

A solution of Eq.(2.106a) is:

H,(z) = &(Rx1 + x2) (2.107)
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where @ : R — R is an arbitrary differentiable function. Then, once H,(z)
has been determined, Eq.(2.106b) defines the interconnection. The system has
to be stabilized in an admissible equilibrium configuration and thus @ has to
be chosen in such a way that Hy(z) = H(x) + H,(x) has a minimum in the
configuration z* = (Cu*, (L/R)u*)T. A possible solution is:

K,
D(Rxy +x2) = 7’)[(1%901 +29) — (Ra} + 23)]? — Ru*(Ray +29)  (2.108)
which renders z* a minimum of Hy(x) for any

1

Ko>_——~
»” T (LYCR?
The energy function Hg(x) is:

1 2

=+ R°‘K, RK
H x:x—x*T<C p p)x—x*
(o) = o =) (SR IS ) )

which has a global minimum in the desired configuration.

(2.109)

It has been shown that it is possible to shape the energy of the closed loop
port-Hamiltonian system with dissipation without the generation of Casimir
functions and, therefore, also for systems with infinite dissipation. On the
other hand, the implementation of the control strategy relies on the solution
of Eq.(2.102) and it is well known that it is not easy to solve, in general,
partial differential equations. It is possible to simplify Eq.(2.102) using the
extra degrees of freedom provided by the port-Hamiltonian structures of the
plant and of the controller. In fact, for the stabilization of an admissible
equilibrium configuration, it is only required to shape the energy of the closed
loop port-Hamiltonian system in such a way that the desired configuration is
a strict minimum for the new energy function. Using the techniques illustrated
so far the closed loop dynamics of the plant is:

= [J(z) — R(a:)]%(z) (2.110)

where the interconnection and damping matrices are exactly those of the plant
and Hgy(z) is the properly shaped energy function. From an energy shaping
point of view nothing changes if the following closed loop dynamics is obtained:

O0H,
or

where Jy(x) and R4(x) are the desired interconnection and damping matrix
and Hgy(x) is the shaped energy function. Thus it is possible to freely assign
an interconnection matrix and a damping matrix for the closed loop system
without affecting the stability properties of the desired configuration. This
extra degrees of freedom lead to the so-called Interconnection and Damping

& = [Ja(z) — Ra()] (2.111)
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Assignment Passivity Based Controllers (IDA-PBC) [227, 229]. In this case
Eq.(2.102) becomes:

0H, OH

(@) 4+ Jalw) = R(@) = Ra(@)] 5 (2) = = [Ja(@) = Ra(w)) 5

(z) + 9(2)B(x)
(2.112)

where
Jo(z) = Jg(z) — J(z), Ru(x)= Ra(xz)— R(x)

Thus it is possible to choose a desired closed loop interconnection matrix and a
desired closed loop damping matrix in order to simplify Eq.(2.112) and to get
a solution for the controller design. The following proposition can be proven
[229]:

Proposition 2.33. Consider a port-Hamiltonian system with dissipation cha-
racterized by the matrices J(x), R(x), g(x) and by the energy function H(x).
Let * be a configuration to be stabilized and assume that it is possible to find
functions B(x), Rq(x) and Jo(x) such that:

J(@) + Ja(z) = =[J(2) + Jo(2)]"
R(z) + Ro(z) = [R(x) + R (x)]T  positive semidefinite

and a vector function K(x) such that:

OK (1) = —ale) — Ra(@) 22 (2) + g(2)B(x)

(@) + Jalw) = R@) = Ra(@)] 5 (@) -
(2.113)

and such that the following conditions are satisfied:

1. (Integrability)
0K OTK
%(f) = Ton (z)

2. (Equilibrium Assignment)

OH
K(o*) = — 22 (o
@)= -2 ae)
3. (Lyapunov Stability)
oK 0*H

%(x*) > *W(ﬂﬁ*)

Under these conditions, the static feedback u = [(x) is a port-Hamiltonian
system with dissipation and the dynamic of the plant is:

0Hy4

& = [Ja(r) — Ra()] e
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where Hg(x) = H(x) + H,(z) and

0H,
or

(z) = K(x)
Furthermore, x* is a (locally) stable equilibrium of the closed loop.

The IDA-PBC control technique generalizes the energy-balancing control
strategy and allows to shape the energy for a much broader set of port-
Hamiltonian systems with dissipation exploiting all the degrees of freedom
given by the port-Hamiltonian formalism. This strategy is useful for regula-
ting the behavior of non fully actuated robots, see for example [2].

2.5 A Variable Structure Approach to Energy-Based
Control

A possible drawback of the energy shaping technique is that an exact know-
ledge of the system physical parameters is needed to correctly shape the energy
function: this is not always true in practical applications. A consequence is
that the energy function does not assume its minimum in the desired confi-
guration and some regulation errors are introduced.

In this section, it is shown how to overcome this drawback by introducing
a variable structure controller that properly shapes the total energy of the
system while keeping on guaranteeing that the minimum of the total energy
is in the desired configuration despite of possible parametric uncertainties.
Furthermore, the passivity (and therefore the stable behavior) of the overall
system will be preserved, [177]. We will illustrate the control strategy for the
control of robot manipulators and we will provide simulation results on a 2-
DOF planar manipulator, also taking into account a possible saturation of
the actuators. With a very little effort, all the results obtained in this section
can be generalized to the control of generic port-Hamiltonian systems, see for
example [178, 256].
Consider again the n-DOF fully actuated mechanical system described in
Example 2.25 and represented by Eq.(2.46).
Suppose that g; € Q is a desired configuration in the joint space. Following the
steps reported in Example 2.25 and by introducing some further dissipation
by damping injection, it is possible to design the following control action:

[0V 8H, . 0H

u=B 5 " e Krg,

(2.114)

where H.(-) is the desired potential energy for the closed loop system. The
state feedback law (2.114) shapes the total energy by compensating the effect
of the potential V(g) and by introducing a new potential H.(q). If H, is
characterized by a minimum in the desired configuration ¢4, by introducing a
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dissipative effect with the controller this new minimum is made asymptotically
stable.
If we consider

Hela) = 50— 40 Kpla — a2 (.11

with Kp = KL > 0 the feedback law becomes

1[0V .
u(g,p) = B~ | 5~ = Kp(g—a4) = Kng
q
that is the well-known PD plus gravity compensation (PD + g(q)) controller,
[12, 164]. Moreover, the closed-loop energy function becomes

Helq,p) = %pTM‘l(q)p + %(q —qa)" Kp(q— qa) (2.116)

The PD + g(q) controller can be interpreted as a set on n linear springs acting

in the joint space with minimum in ¢4. In order to extend this controller to take

into account the saturation of each actuator, a non-linearity in the behavior
of the springs has to be introduced.

It is well known that a spring is an element storing potential energy and its

behavior can be described as shown in Fig. 2.6. The input u is the deformation

v v o8 | Y
—f SI

Fig. 2.6. Energy storing element behavior.

rate of the extreme of the spring, x is the state associated to the spring and
E(x) is a lower bounded function representing the stored energy. The output
y is the force applied by the spring. The simplest springs are the linear ones,
i.e. springs whose energy function is quadratic:
1

E(z) = §xTKx (2.117)
where K = KT > 0 represents the stiffness. The force applied by the springs
turns out to be:

oF
=— =Kz

! or
In the case of mechanical systems (e.g. robots), each component of the force
is applied to the plant by means of an actuator. Intuitively speaking, if the
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(a) Energy (b) Force

Fig. 2.7. Energy and force of non saturated (regular) and saturated (bold) spring.

amount of stored energy increases too much, then the force generated by the
springs, that is the force that the actuators should apply, can be greater than
the physical limits of the actuators themselves. If the robot is controlled by
means of the PD + g(q) controller, this situation can happen e.g. if the initial
error is sufficiently high.

Consider K = diag(ky,...,k;,), that is the spring energy in (2.117) can be
written as

i=1

i=1
Then, suppose that each actuator is limited, i.e. fi;m < fi < fim, i =1,...,n.
Consider xpr = (T1,M- -+, To,mr) a0d Ty, = (T1,m, - - ., Tp,m) Such that f; pr =

kixi v and f; = k;x;m. The saturation of each actuator can be taken into
account if the following energy function is introduced:

Ey(z)=Eis+ + Eps (2.118)
where
fim [xz - %xzm] Ti < Tim
E; s(x;) = skiz?, Tim S Ti S Ti,M (2.119)

)

finr [@i — 3i0m] @i > @m0

Note that the passivity properties of the spring are preserved since the pro-
posed energy function is C! and bounded from below.

The energy function of a 1-dimensional spring and the relative force in
function of the state are represented in Fig. 2.7, both for the non-saturated
and saturated case. Clearly, the energy functions are different in the saturation
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zone: when the stored energy becomes infinite, the force generated by a non-
saturated spring increases to infinity, while it is limited for the saturated case.

The saturation of each actuator can be taken into account in the (passive)
control of a robot if, instead of the energy function (2.115), we consider it is
assumed

Ho(q) = Z Ei s(g; — gi,a) (2.120)

where E; 5(-) is defined as in (2.119), k; > 0 can be freely assigned, and
fi.m, fim depend on the characteristics of the i-th actuator. Since H.(-) is
characterized by a (global) minimum in gg, the control action (2.114) still
assures the (global) stability of this configuration.

From Eq.(2.116), it follows that

dH. 78THCl
dt Op

0H,
(DJrKD)Tl

<0 (2.121)
for % = ¢ # 0. Since H.; is bounded from below, we have that, for every
e > 0, it is possible to find t. such that ¢(¢) < € for every t > t.. Moreover,

the possible configurations in which the robot stops are clearly given by the
solutions of:

OH,
dq

(¢.p)) =0 (2.122)

or, in the case of perfect compensation of the potential V' (q), of:

0H,
dq

(q) =0 (2.123)

Therefore, if H. is characterized by a global minimum in ¢ = ¢4, e.g. as in
(2.115) or in (2.120), the robot reaches the desired configuration g4. The key
point is that a perfect compensation of the original potential energy of the
robot has to be implemented. If this is not the case, then some regulation
errors will be present.

Suppose that V(g) is an estimate of the potential term in H(q,p). Then,
(2.114) becomes

|0V 0H, . OH

=B |+ - Kp— 2.124
B dqg  Oq P ap ( )
and H; is now given by
1 _
He(q,p) = sp" M~ (q)p + He(q) — AV (q) (2.125)

2
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where AV (q) = V(q) — V(q). Since (2.121) holds, the final configurations the
robot can assume are still solutions of (2.122), or, equivalently, of

OH. 0AV
dqg g

(2.126)

Even if H,. is characterized by a (global) minimum in ¢4, it is not sure that
this configuration can be reached.

In order to make the control law (2.124) robust also in terms of perfor-
mances with respect to unknown parameters, H., which is freely assignable,
can be chosen with a variable structure. For example, assume

1 . _
He(q) = 5 > kilgi — gia + sign(g — ¢i.4) @) (2.127)
=1

where k; > 0 and q; > 0, with ¢ = 1,... n. It is possible to prove that, if

0AV

<M 2.128
S| <M < (2.128)

and if @;, ¢ = 1,...,n, are properly chosen, then the control law (2.124) with
H, given by (2.127), can drive the system in ¢ = ¢4. The proof is immediate
in the case that a perfect compensation of the potential V(q) is possible, that
is if AV (q) = 0: in fact, in this situation, H. is characterized by a global
minimum in (gg4,0).

Suppose, then, that AV (g) # 0 and, in particular, that (2.128) holds and
consider a generic initial condition (qo,po). Define ¢ := [o1,...,0y,], where

1 ifgo—q,a>0
g; = .
—lif g0 —¢,a <0

only depends on the initial condition. Then, assume that the control input «
is given by (2.124), but with H. given by:

1 & ~
He(q) =5 > ki(gi — ¢ia + 0:1G:)° (2.129)
=1

If, with a proper choice of g, this continuous control input can drive the robot
in a final configuration ¢* such that

¢ — ¢i,a <0if o —qia >0 (05 =1)
v ’ o ’ 2.130
{qi —qi,a > 01if gi0 — qig <0 (05 = —1) ( )

then an instant # such that q(f) — gz = 0 has to exists. Consequently, the
variable structure controller resulting from (2.124) and (2.127) makes the
configuration g = ¢4 globally attractive and, clearly, globally stable.

The possible final configurations ¢* are solution of (2.126), that is
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Ha()
qi,0
g; = -1
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Fig. 2.8. Behavior of the proposed controller.

1 0AV
Y G+ oG = —— (" 2.131
6 = @at 0 = -5 (q") (2.131)
Since the values @;, ¢ = 1,...,n have to be chosen according to (2.130), it
should be
M
> i=1..n (2.132)

With this choice, the configuration ¢ = g4 is globally attractive and stable. In
Fig. 2.8, the behavior of the proposed controller is illustrated: the initial error
Gi,0 — gi,a is greater than 0, but g; is chosen in such a way that all the possible
steady state configurations ¢* satisfy ¢ — ¢; ¢ < 0 if H, is given by (2.129). If
the variable structure of the controller deriving from (2.127) is adopted, then
the system is constrained in qq4.

The actuator saturation can be taken into account by introducing the sa-
turated springs. If E;  is the energy function of a saturated spring as reported
in (2.119), suppose that

n
Hc(q) = Z Ei slgi — ¢i,a + sign(q; — gi,a)qi] (2.133)
i=1

Then, the final configurations the robot can assume if u is given by (2.124)
are the solutions of (2.126). If

oAV
|maX(f7;,7n, fl7M)| > M (Z 8(]) (2134)
i =1,...,n, then in the steady state configuration none of the actuators is in
saturation. A consequence is that, if ¢;, ¢ = 1,...,n, are chosen according to

(2.132), then the controller is able to regulate the robot in ¢4 that will be an
asymptotically stable configuration.
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Table 2.1. Parameters of the considered manipulator.

Li =Lz =1m |Links lengths

Lg1 = Lg2 = 0.5 m |Center of mass

M, = M = 20 Kg |Links mass

I, = I, = 5 Kg m? |Links inertia

Dy = D2 = 0 N m s|Viscous friction
g=981m/ s? |Gravity acceleration

In conclusion, even in presence of modeling uncertainties, a variable struc-
ture passive controller (2.124), with H, given by (2.127) or (2.133), if the
saturation of the actuators is taken into account, is able to drive the system
in the desired configuration.

In order to test the control proposed algorithm, a 2-DOF planar manipu-
lator has been considered, as shown in Fig. 2.9. The main parameters of the
manipulator are reported in Tab. 2.1. Note that the manipulator is subject
to gravity force active in the negative y direction. In the following, simulation
results are reported in order to show the features of the proposed controller
in comparison with the classical PD + gravity compensation regulator. As a
reference case, in Fig. 2.10 a simulation with the PD + g(q) compensation con-
troller is reported. A fixed set point (x4,yq4) = (1.75, 0.1) has been assigned
as desired goal for the tip of the manipulator, corresponding to joint positions
q1 = —25.57,g2 = 57.57 (deg). In this case, the dynamic parameters are suppo-
sed to be perfectly known. As expected, the errors nicely tend to zero, as shown
in Fig. 2.10. In this case, the control parameters are K, = diag(6000,6000),
Kq = diag(1100,1100). The final errors are e, = —0.0001, e, = 0.000064
(m) corresponding to e, = 0.0047, e,, = —0.0141 (deg). Results obtai-
ned with the proposed controller are reported in Fig. 2.11 and Fig. 2.12,
with the same control parameters as in the previous case for the PD part,

Fig. 2.9. A planar 2-DOF manipulator
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Fig. 2.10. Simulation results with PD+g(q).

ie. K, = diag(6000,6000), K4 = diag(1100,1100) while § = diag(0.1,0.1).
Also in this case, the desired configuration is reached without errors. Note
the behavior of the torques: after a transient, when the errors are null, a
switching behavior takes place in order to constrain the state on the desired
configuration (corresponding to the minimum of H.). The final errors in this
case are e; = 1.1433e — 005, e, = —1.9248¢ — 006 (m), corresponding to
eq, = —0.0006, eq, = 0.0013 (deg). If the robot parameters are not perfectly
known, the PD + gravity compensation scheme is not able to reach the desi-
red configuration. This case is shown in Fig. 2.13, where, as limit case, it is
assumed that the parameters my and mgy are not known at all (i.e. the values
my = mg = 0 are assumed). As expected, the robot reaches a different final
configuration and the final errors are not null: e, = —0.0098, e, = 0.1134 (m)
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Fig. 2.11. Simulation results: errors, torques and velocities

eq, = —3.2861, €4, = —0.84212 (deg). The corresponding simulation with
the proposed controller is shown in Fig. 2.14. Note that in this case the de-
sired configuration is reached without errors. In this case, the final errors are
e; = —1.2406e — 006, e, = 0.000017 (m) and ¢; = —0.0005, ¢ = —0.00003
(deg).

Finally, the case of saturation has been considered. A saturation value
of 800Nm has been considered for the actuators. Results obtained with the
proposed controller (and no knowledge of the parameters m; and ms) are
reported in Fig. 2.15. Errors in this case are e, = —9.0561e — 006, e, =
1.2897¢ — 005 (m) g3 = 0.000056, g2 = —0.00098 (deg).
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Fig. 2.12. Simulation results: energy.
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Fig. 2.14. Simulation results with partial knowledge of mass parameters: errors.

2.6 Conclusions

The energetic behavior of a physical plant can (and should) be fruitfully ex-
ploited for the design of the controller. In fact, the shape of the energy function
and the amount of inherent dissipation present in the system can be related
to the stability characteristics of the plant. The port-Hamiltonian framework
is a very good candidate language for modeling and controlling physical sy-
stems since it puts into evidence ALL the energetic properties of a physical
system and it easily allows to exploit them for control purposes. Currently,
there are two main energy based control strategies for the regulation of port-
Hamiltonian systems: the energy shaping and the interconnection and dam-
ping assignment passivity based control (IDA-PBC).

In the first case the regulation is achieved by means of the interconnec-
tion of a port-Hamiltonian controller whose role is to shape the energy of
the controlled system, in such a way it has a strict minimum in the desired
configuration, and to add further dissipation, in such a way that the desired
configuration becomes asymptotically stable. Some recent applications of the
energy shaping control can be found in [44, 321], where the implications of the
composition of Dirac structures with the control by interconnection are inve-
stigated, in [110, 136], where the problem of controlling switched and hybrid
control systems is considered, in [76, 75], where the port-Hamiltonian frame-
work and energy shaping techniques are exploited for modeling and controlling
walking robots.
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Fig. 2.15. Simulation results with partial knowledge of mass parameters and sa-
turation.
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In the second case, the regulation is achieved by shaping not only the
energy of the controlled system but also the interconnection structure and
the damping matrix. There is still a lot of research on the IDA-PBC in se-
veral fields as, for example, in the control of electrical machines [240, 17, 99],
in the control of underactuated mechanical systems [2] and also from a me-
thodological point of view [98].

The energy shaping technique has been recently extended for the con-
trol of distributed port-Hamiltonian systems [174, 176] and of mixed port-
Hamiltonian systems (namely, consisting of the interconnection of distributed
and non distributed port-Hamiltonian systems) [175] by generalizing the no-
tion of Casimir function to the infinite dimensional case.



3

A Port-Hamiltonian Approach to the Control
of Interaction

3.1 Introduction

In many applications, a robot has to interact with the surrounding environ-
ment in order to perform some useful task. When a manipulator interacts
with an object a very profound change occurs. In fact, before the contact, the
controller has to control only the motion of the robot; after the contact, the
manipulator dynamically interacts with the environment and the controller
has to manage a new dynamical system made up by the robot coupled with
the environment. It has been proven in [328] that even if the controlled robot
is stable in case of free motion, its behavior could become unstable when there
is a contact with the environment.

Many methodologies for the control of interaction have been developed
and a lot of control algorithms have been proposed. A very successful stra-
tegy is the so called impedance control [122, 123] which is the starting point
for the development of a port-Hamiltonian based intrinsically passive control
of interaction. The main idea in impedance control is that the environment
cannot be simply treated as a signal generator and, consequently, the effect
of the contact of the manipulator with the environment cannot be interpreted
as an exogenous disturbance. In fact, interaction is a bidirectional physical
phenomenon where both the interacting systems reciprocally influence each
other. For example, consider a robot touching a soft obstacle: the obstacle
stops the motion of the robot and the robot deforms the obstacle. Further-
more, treating interaction as a disturbance can be very misleading for control
purposes; in fact the way the robot reacts to the environment is as important
as its response to a particular reference trajectory and thus, the dynamics of
the contact has to be explicitly taken into account.

In robotics, and, in general, in the mechanical domain, contact takes place
through localized ports through which the interacting systems influence each
other. The information exchanged through the interaction ports concerns ve-
locities and forces, by means of which the systems dynamically interact. Con-
sider a mechanical system that may interact through its end-effector with the
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environment. What variable should be controlled: the velocity or the force
at the end-effector? Following the impedance control paradigm, the answer
is: none of them. In fact velocity and force at the interaction port depend
both on the dynamics of the mechanical system, which is known, and on the
dynamics of the environment, which is often very poorly characterized. The
only thing that is independent of the dynamics of the environment is the dy-
namical relation between the force and the velocity at the interaction port.
The controller, therefore, should rather control the behavior at the interaction
port variables instead of a single variable. For further details on impedance
control, see [122].

Port-Hamiltonian formalism can be fruitfully exploited to control the in-
teraction of robotic systems with external, possibly unknown, environments.
In this chapter it is shown how to achieve a passive interaction between a ro-
bot and any passive environment by using the Intrinsically Passive Controllers
(IPC) [290] that can be modeled as port-Hamiltonian system; it is then repor-
ted how to extend the standard IPC structure used for fully actuated robots
in order to increase performances when dealing with defective manipulators
[271].

Furthermore a novel scheme for haptic interfaces, which allow a human
operator to interact with virtual environments, is proposed. Firstly it is illu-
strated how to build an intrinsically passive haptic scheme which allows to
interact with any virtual physical system, as reported in [297, 298]. Secondly
the scheme is extended in order to take into account delayed virtual envi-
ronments and the possibility of scaling the force transmitted to the user, as
reported in [262, 298, 267]. Moreover the effect of quantization on sensors is
taken into account and the scheme is modified in order to guarantee passivity
independently of quantization errors, as illustrated in [261].

3.2 Intrinsically Passive Control of Interaction

When two systems are interacting, they can be modeled as exchanging force
and velocity information through a localized port. Thus, it is possible to mo-
del the interaction port by means of a power port (see Sec. 1.3) and the re-
ciprocal influence between the interacting systems as an exchange of energy.
Furthermore, since the only thing that can be intrinsically controlled is the
relationship between force and velocity at the interaction port, it is necessary
to build a controller that is able to modify the behavior (or, in other words,
the way in which energy is exchanged) of the system at the port instead of
regulating only one variable.

Consider a dynamical system which can interact with the external envi-
ronment through an interaction port which is characterized by a pair of power
conjugated variables (e, f) (e.g. twists and wrenches for a robot). It is pos-
sible to model e and f as manifest variables of the system whose behavior
depends on the particular dynamics of the system. The aim of the control
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of interaction is to regulate the relationship between the manifest variables,
namely to control the (manifest) behavior of the system. Thus, the control
by interconnection paradigm (see Sec. 2.3.2) can be fruitfully exploited. In
fact, it is possible to regulate the behavior of the system by interconnecting
to it another dynamical system, the controller, whose task is to constrain the
behavior of the plant at the power port through which it is interacting with
the environment (e.g. the end-effector for a robotic manipulator) to a desired
subset. In this way, the relationship between the manifest variables that the
system can present at the interacting port is regulated independently of the
environment the system is in contact with.

Since the interaction between physical systems consists of an exchange of
energy through a power port, if two passive systems are interacting, passi-
vity, and consequently a stable behavior, is preserved even if discontinuous
contacts, bouncing and other effects are present. A lot of physical systems
(e.g. an n-DOF mechanism) are passive and they can be modeled as port-
Hamiltonian systems. Thus a non controlled physical system preserves a pas-
sive behavior both in case of contact and non contact with any passive envi-
ronment.

It is very often necessary to control the way in which the physical plant
interacts (e.g. for setting a stiff or a soft interaction). In order to maintain a
passive behavior it is useful to interconnect to plant a passive controller in
a power preserving way. In this way the controlled plant is still passive and,
therefore, passivity in the interaction with ANY, possibly unknown, passive
environment is preserved. This particular kind of controller is called Intrinsi-
cally Passive Controller or, shortly, IPC [290] and it can be interpreted as a
physical system that compensates some unwanted properties of the plant and
that sets the desired behavior for the interaction.

The coupling between the TPC and the plant guarantees that the con-
trolled system behaves in the desired way when interacting with any passive
environment. In order to perform some useful tasks, it is necessary to be able
to inject some energy into the controlled system. It is then necessary to endow
the IPC with an additional power port through which it is possible to supply
energy to the controlled plant. This leads us to the general scheme for the
control of interaction that is represented in Fig. 3.1 [290].

The half-arrows indicate an energy flow in a bond-graph notation. The
plant can interact, i.e. to exchange energy, with the environment. The behavior
of the interaction is regulated by an intrinsically passive controller, IPC, which
is connected in a power preserving way to the plant. The TPC is endowed
with an extra power port through which a supervisory system can provide the
energy necessary to perform a certain task to the controlled system. The port
through which the supervisory system supplies energy is called supervisory
port or, when considering the mechanical equivalent of the controller, as we
will do in the following, virtual point.

The intrinsically passive control of interaction can be elegantly described
within the port-Hamiltonian framework. In fact, the physical plant can be mo-
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Fig. 3.1. The general form of an intrinsically passive control scheme

deled as a port-Hamiltonian system and it is interconnected to another port-
Hamiltonian system, the IPC, whose role is to shape the energetic properties
of the plant in such a way that the controlled system, while interacting with
a passive environment, behaves as desired. Thus the design of the IPC can be
done using the techniques presented in Sec. 2.3. Since the IPC is intrinsically
passive, any error in the model of the plant can influence the performances
of the controlled system but never its passivity. Thus, the controlled system
will stay stable in any situation, both in case of contact and non contact with
any passive, possibly unknown, environment. Performances can be increased
using the variable structure energy shaping technique presented in Sec. 2.5.

3.3 Intrinsically Passive Control of Robotic Systems

The aim of this section is to illustrate two very useful applications of the IPC:
the control of interaction of anthropomorphic robotic arms and the control of
robotic hands.

The configuration of a robot is commonly represented by an homogeneous
matrix h, a 4 X 4 matrix that incorporates both translational and rotational
information. The set of the homogeneous matrices is the special Euclidean
group, denoted by SE(3) and it has the structure of a Lie group . Twists and
wrenches are geometric entities that generalizes the concepts of velocity and
force; in particular, twists represent a screw motion, namely an instantaneous
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Fig. 3.2. The IPC for anthropomorphic robots

translation and an instantaneous rotation along a certain instantaneous axis in
space, while wrenches represent the action of a force along a certain direction
and of a moment along the same direction. This concepts are very well known
in robotics; a short background on Lie groups, twists and wrenches in provided
in Appendix A. Further details can be found in [212, 164, 272, 290]. Twists
and wrenches are power conjugated variables, they can be modeled as flows
and efforts respectively, and constitute the power port through which a robot
interacts with the environment.
The following notation is used in this section:

U;: i-th orthonormal reference frame.
hl: Homogeneous matrix representing the configuration of ¥; with respect
¥ |

o TH = (WP)T, (F)T)T: Twist of ¥; with respect to ¥; expressed in
Y.

e Ady;: Adjoint matrix to change the representation of a twist from ¥; to
v

Wik: Wrench applied to a mass attached to ¥; expressed in ¥y.

Wi’fj: Wrench applied by a spring element connecting ¥; to ¥;, on the side

of ¥, expressed in ¥y.

3.3.1 TPC for Anthropomorphic Robotic Arms

The IPC can be represented as a virtual physical system and a very well
suited structure for an IPC controlling an anthropomorphic robot is the one
represented in Fig. 3.2. The IPC is interconnected virtually to the end-effector
of the robot and can be represented as a physical system made up of several
components: a mass (called wvirtual object) and two springs, energy storing
elements, and a damper, an energy dissipating element. Energy can be sup-
plied to the system in order to perform some useful tasks and, by the IPC, we
can obtain, independently of the energy supplied, a desired behavior of the
interaction; in particular, we can obtain a desired compliance by means of the
stiffness of the springs. Furthermore, the presence of the virtual object allows
to dissipate energy by means of the damper and this leads to a strictly passive
and, therefore, as reported in Sec. 2.2.3, asymptotically stable behavior of the
system.
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Remark 3.1. Notice that the virtual object is part of the controller and thus
energy dissipation is achieved without velocity measurements but only with
position measurements of the end-effector. Thus, damping injection is obtai-
ned by using only position sensors (e.g. encoders).

The wvirtual object is a rigid body free to move in the work space. It is an
element storing kinetic energy and is therefore characterized by a function
E} expressing the stored energy. Such an element can be seen like a port-
Hamiltonian system of the following form:

: OE;, (P}
P = Jbia’“](gbb) + W
b 3.1
THO — 0L (Fy) 31)
P

where Pé’ is the generalized momentum of the body b expressed in a reference
frame ¥, posed in the center of the body, Wé’ is the wrench applied on the
body b expressed in ¥, Té’ 0 is the twist of the body b respect to the inertial
frame Wy expressed in ¥,. Ei(P?) is the kinetic energy function and .Jj is the
skew-symmetric structure matrix of the body representing gyroscopic effects.

The damper is an element which dissipates free energy and which is cha-
racterized by the following equation:

W = RT)° (3.2)

where R is a symmetric positive semidefinite dissipation matrix in ¥,. This
element is not characterized by a state since it doesn’t store energy.

The springs used in the IPC are spatial springs, namely springs which act

on SE(3) (see Appendix A) and that, therefore, can apply both torques and
forces along all the directions.
A spring stores potential energy. It is characterized by a function V; ; represen-
ting the stored energy. This function depends on the relative position between
the two bodies ¢ and j connected by the spring. We can schematically describe
a spatial spring (in 3D) as:

K2

hi = RyT)’
i _pr Vi (3.3)

;= pr 9V
T on

where hf is a local coordinate of SFE(3), representing the relative position
between the bodies i and j, and R,; is the Lie group right translation in

the coordinates h{ (see Appendix A); the pair (Tf g Wf ;) is the power port
associated to the deformation of the spatial spring. It is sometimes useful to
consider a more general type of spatial spring: the variable rest length spring.

This kind of spring has an additional power port by means of which it is
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Fig. 3.3. The 1-DOF variable length spring.

possible to change its rest length and its schematic representation in the one
dimensional case is illustrated in Fig. 3.3. In order to describe analytically
this element, we can add to Eq.(3.3) a power port that can be used to change
its rest length. For this reason, we can describe the twist associated to this
spring as:

T} =T} + Ady 17" (34)
where the first element is the usual term deriving from the deformation of the
spring, while the second one takes into account the modification of the rest

length. From Eq.(3.3) and Eq.(3.4), the port-Hamiltonian description of the
variable rest length spring is:

bl = (Rh-{ Ry Adhi) <§é1>

7

; T
<sz}j ) = };hg T LVZ-’»J-
Wi Adhg Rhg' Oh;

Note that this port-Hamiltonian system has two power ports: the port
(T}, Wy ;) as a normal spring, and the additional port (Tib’b, Wiljb), that can

(3.5)

be used to modify the rest length; setting Tib’b = 0, the rest length remains con-
stant and the spring behaves normally. For further details on spatial springs,
see [168, 290].

The basic idea of the IPC, as shown in Fig. 3.2, is that the robot’s end-
effector is “attached” by means of a spatial spring to the virtual object which,
on its turn, is “attached” to another spatial spring by means of whose power
ports a supervisor can change the state of the whole system by introducing
energy in it as described in Sec. 3.2. The supervisor, by injecting energy into
the IPC, moves the virtual object and the end effector of the robot, thanks
to the coupling introduced by the spatial spring, follows the motions of the
virtual objects and, in case of contact with the environment, the interaction
is implicitly controlled in a passive manner by the IPC.

In manipulation tasks, it may happen that the kinematic configuration of
a robot does not permit mobility in the whole 6-dimensional workspace, or
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also that some movements are not allowed, due to constrains (e.g. during ma-
nipulation with articulated hands) [22]. Under these circumstances the robot
cannot move in every direction and therefore it cannot follow the virtual ob-
ject which, on the other hand, can freely rotate and translate in the workspace
under the action of the supervisor.

The final result is that the system reaches a minimum of the potential energy,
minimum that in general is a ‘trade-off’ between the translational and rota-
tional energies stored in the springs of the IPC. This implies that the desired
motion is not tracked neither in the linear nor in the rotational part.

To solve this problem the rest length of the IPC springs can be chan-
ged in such a way that, for example, the orientation constraints of the robot
are directly compensated by the controller, and only the translational move-
ments are followed. This correction can be implemented passively within the
IPC by defining a proper internal interconnection between the rotational and
translational springs, [271]. For this purpose, let us consider the two frames
connected by the spatial spring as a frame attached to the robot (¥.) and
a frame attached to the virtual object (¥,). Moreover, we introduce a third
reference frame (¥,) attached at the point ¢ to take into account the varia-
bility of the spring rest length, see Fig. 3.3. With reference to these frames,
a motion of the virtual object is described by the twist T[? ’0, where ¥ is an
inertial frame.

Given a desired twist TS0 of the robot, it is well known that the following

relationship holds
wg’o c.0 . Jv (q) .
<’Ug’0) - Tc - J(Q)q - (Jv(q) q

being ¢, ¢ the joint position and velocity vectors, J(g) the Jacobian matrix
and J¥(q), JV(q) the sub-matrices related to the rotational and linear velocity
respectively.

Given a twist T, l? 0 imposed to the virtual object, in which in general wg,o #0,
we would like the controller to generate only a translational velocity of the
end-effector computed as:

0,0 _ 0,0
vy =QT,

where @ = [03, I3], where O3 and I3 represent the 3 x 3 zero matrix and
identity matrix respectively, is used to extract the translational velocity from
the twist. Since

v = RYJVG = Kq

being RY the rotational matrix from ¥, to ¥y, we obtain the joint velocity
required for tracking vg’o as:

© 7400 _ 7ot 0,0
Gg=Kvy =K"QT,
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Fig. 3.4. A two DOF defective robot

where KT is the pseudo-inverse of matrix K, defined if proper metrics are
given in the joint and task spaces. Then, the resulting twist is computed as

70 = JK+ QT

We want to act on the length port of the spring (therefore on 7*) in order
to have TSV = TS0 i.e. the twist of the frame on the length port must be
achievable by the robot. Since in general

TP = Adyy TS° — Ady T,)"°
by imposing T = TS we can write
TY" = (Adyy JK+Q — Adyy )T,

which is the input to be given to the power port of the spring in order to
compensate for the rotational velocity of the virtual object.

By using an IPC with standard springs, the energy deriving from the motion
of the virtual object goes into the springs and changes both the position and
the orientation of W, of the robot. The spring, since it is a 3D spring, tries to
align the two frames from both the rotational and the translational point of
view. By using a variable spring, part of the energy deriving from the motion
of the virtual object is deviated towards the length port, and the desired
translational motion can be followed by the robot.

As a simple case study, the above technique has been applied to the control
of a two DOF defective robot, shown in Fig. 3.4. The desired task is a motion in
the vertical direction, imposed by applying a vertical force W to the virtual
mass. For the sake of clearness, in Fig. 3.4 both the uncompensated and
compensated case are shown. In the first case the robot tries to follow the
vertical motion of the virtual object and to maintain the initial orientation.
Since this is not possible, the rotational part of the spring is compressed and
the final configuration is not the desired one. In the second case, the change of
orientation is taken into account directly by the IPC and the robot may reach
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Fig. 3.6. Desired motion of the planar robot.

the desired position. This result is shown also in Fig. 3.5, where the rotational
velocity and the resulting angular displacement (proportional to the torque
generated in the uncompensated case) are reported. The motion of the robot
is shown in Fig. 3.6.

3.3.2 TPC for Grasping

Robotic hands have to interact with the environment in order to grasp objects
and to manipulate them. The IPC, therefore, can be profitably applied to these
devices in order to control the interaction of the fingers with the objects to
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Fig. 3.7. The grasping system

be grasped. On the other hand it is necessary also to freely move the fingers
in the workspace in order to approach the object to be manipulated. It is
possible to build an IPC that can both regulate the contact of the fingers
with an object and allow the motion of the fingers. The control scheme is
represented in Fig. 3.7 for the simple case of an hand with two fingers.

The arrows on the springs express the fact that they are variable rest
length springs. Each fingertip is connected to the virtual object by a variable
rest length spring and the virtual object is connected to the virtual point by
means of a spatial spring. The supervisory system can inject energy into the
system both through the virtual point and through the rest length ports of the
spatial springs that connects the fingertips to the virtual object. When some
energy is supplied through the rest length port of the robotic hand, the rest
lengths of the spatial springs connecting the fingertips to the virtual object
change and, therefore, the relative position of the fingers with respect to the
virtual object changes. In this way it is possible to change the relative position
of the fingers in the space. When some energy is provided through the virtual
point, the position of the virtual object changes and, therefore, the position
of all the fingers in space changes.

A simple grasping strategy can be implemented by using the proposed
IPC:

1. Supply energy through the rest length ports in order to open the fingers

2. Move the virtual object in the proximity of the object to be grasped
moving the virtual point

3. Change the rest length ports in order to close the fingers to grasp the
object

The contact is controlled by means of the IPC which allows, through a
proper choice of the stiffness of the spatial springs connecting the fingertips
to the virtual object, to choose the compliance of the contact. Furthermore
the presence of the virtual object allows to dissipate energy, and, therefore,
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to obtain a strictly passive (i.e. asymptotically stable) behavior of the robotic
hand by dissipating energy without measuring the velocity of the fingertips.
Further details on the use of the IPC for controlling robotic hands can be
found in [290].

3.4 Interaction with Virtual Environments: Haptic
Interfaces

An haptic interface is basically a system which allows a human operator to
interact, by means of some robotic device, with a virtual environment simu-
lated at a certain sampling rate. As in the implementation of every control
algorithm for interaction tasks, stability is a key issue since either oscillations
or unstable behaviors can lead to an unnatural feedback from the virtual en-
vironment or even to harmful situations for the human operator. The stability
analysis of the haptic device is not a trivial task and is hardly solvable with
parameter based tools of non-linear control. As a matter of fact, interesting
virtual environments are very often non-linear and the dynamic of the human
operator, which has a non-negligible role in the haptic chain, is difficult to
model. A very suitable tool to ensure the stability of the haptic display is
passivity theory. In fact, since an haptic system is nothing else than an inter-
active robotic interface, it is sufficient to guarantee the passivity of a system
in order to have a stable behavior [319]. Furthermore, Hogan [123] has shown
that the behavior of the human operator is passive in the range of frequencies
of interest in haptics and, finally, in a passivity based analysis we can consider
both linear and nonlinear virtual environments and haptic devices.

A rigorous examination of the stability of an haptic display has been made
in [59] where it is shown which is the necessary amount of damping to en-
sure the passivity of the system, once a model of the virtual environment
and the sampling time are given; recently, this kind of stability analysis has
been extended and improved in [71]. Colgate introduced the idea of wvirtual
coupling[60] that makes possible to guarantee passivity for arbitrary passive
operators and environments and even for a class of non passive environments
[202]. Roughly speaking, the virtual coupling is a virtual mechanical system
which is interposed as a layer between the haptic interface and the virtual
environment to limit the maximum or the minimum impedance presented by
the virtual environment in such a way to guarantee stability. Adams [5, 3, 4]
developed a method based on two-port theory and Llewellyn’s criterion for
absolute stability to design the virtual coupling for both impedance and ad-
mittance causalities of the haptic display.

A possible drawback of the fixed parameters virtual coupling lies in perfor-
mance decreasing, which is related to an excessive energy dissipation in some
working condition. In [114, 115, 250] Hannaford introduced a virtual coupling
strategy with variable parameters, called PO/PC. This strategy implements,
loosely speaking, a variable damper that is activated only when an energy
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Fig. 3.8. Energetic representation of a haptic display

increment is detected and therefore the presence of this variable virtual layer
affects the performances of the haptic interface as little as possible.

An haptic interface consists of a human operator that exploits an haptic
device by means of which he can interact with a discrete-time virtual environ-
ment. Thus, we can model the haptic display as an energetic interconnection
of systems as shown in Fig. 3.8. This scheme shows the energetic exchange
among the system components by means of the bond-graph formalism [237].
The bond with the double vertical bar indicates an exchange of energy which
occurs in discrete-time, i.e. a virtual exchange of energy. The element denoted
with SH represents the Sample & Hold component, which implements the
gate between the continuous and discrete domains. The continuous output
power variable is sampled and it becomes the discrete input of the discrete
virtual environment. The discrete power conjugated output of the virtual en-
vironment is held and given as an input to the haptic device.

In the scheme there are some points in which we can have energy generation
instead of simple energy exchange. This phenomenon leads to a non passive
behavior and, therefore, to a possibly unstable behavior of the haptic device.
The factors which contribute to the production of extra energy have been
called “energy leaks” [102] and two main energy leaks can be distinguished in
an haptic interface:

e Zero Order Hold

e Discrete Virtual Environment

The zero order hold can represent an energy leak because it keeps a power
variable to a constant value during the sample period, regardless of the ac-
tual value of its conjugate variable whose behavior could be such to introduce
extra energy into the system. The implementation of the virtual environment
can also represent a problem. In fact, passivity is not preserved by standard
discretization algorithms and, therefore, it can very likely happen that a vir-
tual environment, obtained by discretizing its continuous passive counterpart,
is not passive.

Example 3.2. An ideal physical linear spring is a lossless system and, there-
fore, if some energy is stored into the spring by squeezing it, then the same
amount of energy will be removed by releasing it.

Consider a virtual spring implemented using Euler integration method, na-
mely:

2(k + 1) = 2(k) + Tf(k) (3.6)



90 3 A Port-Hamiltonian Approach to the Control of Interaction

25

Releasing
Spring

Force

/S'queezing

Spring

Displacement
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where x represents the displacement of the virtual spring, T the sampling
period and f(k) the discrete flow.

Since the spring is implemented in discrete time, the force does not increase
smoothly but it is “held” at a constant value at each sample period. In Fig. 3.9
it is illustrated the behavior of a virtual spring for a squeeze /release operation.
The solid and the dashed lines represent the force provided by the virtual
spring versus the displacement in case of squeezing and of releasing the spring.
While in case of continuous springs the two lines would coincide, for the virtual
spring the average force during release is slightly greater. Thus, the virtual
spring is not lossless anymore but some extra energy is generated during the
release process.

Thus, the discretization of a passive system can lead to a non passive vir-
tual system and, therefore, the discrete virtual environment must be designed
carefully in order to avoid non passive behaviors in the haptic interface.

The aim of this section is to develop an intrinsically passive haptic interface
based on port-Hamiltonian systems. In this way, we can model very generic
haptic interfaces; in fact we can describe any kind of physical haptic device and
any kind of environment to be simulated, both linear and nonlinear, as port-
Hamiltonian systems. Furthermore, the port-Hamiltonian structure allows to
make a very accurate energetic analysis of the haptic interface and of its energy
leaks. In order to obtain an intrinsically passive haptic interface, we want to
implement each possible source of extra energy passively. Thus, we firstly
seek for a discretization method for port-Hamiltonian systems that preserves
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their passivity property. In this way, we will be able to simulate any kind of
passive environment without introducing extra energy into the haptic interface
[297, 298]. Secondly, we make an energetic analysis of the Sample & Hold
device and we develop an energetically consistent (and therefore without any
extra energy production) interconnection between continuous and discrete
port-Hamiltonians [297, 298]. In this way it is possible to interconnect the
haptic device with the virtual environment without violating passivity. Once
every energy leak has been implemented passively, the overall haptic interface
is intrinsically passive and, therefore, characterized by a stable behavior. This
method minimizes the need of acting on the system through extra dissipating
dynamics, increasing thus the transparency of the haptic interface and the
reliability of the feedback perceived by the user.

In the following, we will consider the case in which the virtual environment
has an impedance causality (flow in/effort out). This case is very common
in practice since usually the human operator moves a virtual pointer and
perceives the virtual world through a force feedback. Nevertheless, all the
results that will be presented can be straightforwardly extended to the case
of virtual environments with an admittance causality (effort in/flow out).

3.4.1 Sampled Port-Hamiltonian Systems

Consider a generic implicit port-Hamiltonian system. Once a coordinate frame
has been fixed on the state manifold, it can be represented (see Sec. 1.4.1) as:

fC ec
Fz)|fr]| +E@) |[er] =0 (3.7
f1 er

where subscript I indicates the power ports by means of which the system
interacts with the rest of the world, with the subscript C the power ports
associated with the storage of energy and with the subscript R the power
ports relative to the dissipative part. If F(z) is invertible we represent a port-
Hamiltonian system by

ec fc fc
er | = —E*2)F(z) | fr | = D(z) | fr (3.8)
er I I1

D(x) is a skew-symmetric matrix. In fact, since the matrices F(z) and F(x)
are a Kernel representation of a Dirac structure, we have that Eq.(1.47) holds
and that, therefore

F'(z) = —E~ (2)F(2)E" (x)

Consequently
D (z) = [-E~Ya)F(2)]" = —F(z)E~"(z) =
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Thus, we have that the port-Hamiltonian system can be represented by

ec ( ) Gi(z) Ga(z)\ [fc
er | = | —G1 (z) R( ) Gs(z) | | fr (3.9)
er G3 (z) =G% () Dr(z)) \ fr

D(z)

where Dy(z), Do(z), Dr(x) are skew-symmetric; the dependency of the sub-
matrices from x will be omitted to lighten the notation. Due to the power
continuity of the Dirac structure associated to the port-Hamiltonian system,
we clearly have, using coordinates:

P+ Po+Pr=clfi+ebfo+ehfr=0 (3.10)

which is a power balance meaning that the total power coming out of the
network structure should be always equal to zero. Furthermore the following
relations hold:

OH
ox
where H : X — R is the lower bounded Hamiltonian function. The inherent
dissipation present in the system can be modeled using

er = R(z)fr (3.12)

fe=i ec= (3.11)

as characteristic equation, with R(x) positive semidefinite matrix.

Remark 3.5. All the consideration of this subsection keep on holding even
considering more general dissipation structure and if the matrix E(z) is not
invertible but the computations would be much more tedious.

After having included Eq.(3.12) in Eq.(3.7), it is possible to see, after very
lengthy but straightforward calculations, that it is possible to represent the
port-Hamiltonian system with dissipation with the following equations:

(ﬁé) N @Ei; é((f:D (cﬁ) (3.13)

= —[GJ + G5 (Dr — R)"'G{][Dc + G1(Dr — R)~'G]]™*

where

B =GY(Dr - R)"'G3 + D; — [GY + GT(Dr — R)~1GT)x
*[DC + Gl(DR — R)ilG{]il[Gl(DR — R)ing — GQ}

C = [DC + Gl(DR — R)_lGT}_l[Gl(DR — R)_ng — GQ]

D = [DC + G1(DR — R)_lG{}_l
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Recalling Eq.(3.11) and Eq.(3.12), the power balance in Eq.(3.10) can be
rewritten as: )
H(x)+ fiR(x)fr = —€] f1 = P

which clearly says that the supplied power —e? f; equals the increase of in-
ternal energy plus the dissipated one!.

We can describe a discrete time port-Hamiltonian system as a continuous
time port-Hamiltonian system in which the port variables are frozen for a
sample interval T. In what follows we indicate with v(k) the value of the
discrete variable v(t) corresponding to the interval ¢ € [KT, (k + 1)T]. If we
rewrite Eq.(3.10) for the discrete case, we have:

e1 (k) f1(k) + el (k) fo (k) + e (k) fr(k) = 0 (3.14)

Furthermore, during the interval k, we have to consider a constant state x(k)
corresponding to the continuous time state x(¢). This implies that during the
interval k, the dissipated energy will be equal to T'f% (k) R(x(k)) fr(k) and the
supplied energy will be equal to —TeT (k) f;(k). In order to be consistent with
the energy flows, and as a consequence conserve passivity, we need a jump in
internal energy AH (k) from instant k7T to instant (k + 1)T such that:

AH(k) = =T fg (k) R(x(k)) fr (k) — Tef (k) f1(k)

This implies that the new discrete state x(k+ 1) should belong to an energetic
level such that:
H(x(k +1)) = H(z(k)) + AH(k)

We can indicate the set of possible energetically consistent states as
Iy :={xeX st H(z)=H(xk))+AH(k)}.
Furthermore, from the discrete equivalent of Eq.(3.13), we have that:
fo(k) = C(x(k)) fr(k) + D(z(k))ec (k) (3.15)
and therefore, for consistency with the continuous dynamics in which fo(t) =

z(t), the next state x(k + 1) should be such that:

fo(k) = lim x(k+1) —x(k)

lim 7 (3.16)

where we considered the definition of the right derivative.

Remark 3.4. It is important to notice that the choice of the next discrete state,
which is taken right after sampling instant k + 1, can be done causally based
on the energy exchange that has taken place in the last interval between the
sampling instants k and k + 1.

! eIT f1 represents the power supplied by the system and, therefore, —e? f1 represents
the power supplied to the system
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Fig. 3.10. The passivity-preserving energetic behavior of a discrete port-
Hamiltonian system

The set I;41 can be either empty or have more solutions.

Case in which I 1 # 0

This situation is the most common and corresponds to the usual one. A gra-
phical representation is shown in Fig. 3.10 where two energy levels correspon-
ding to the plotted energy function are given. In this case a choice should be
made among the possible states of I ;. Clearly, the state should be in some
sense ‘close’ to the current state z(k) and such that the condition of Eq.(3.16)
is satisfied. A picture which shows graphically the basic idea is reported in
Fig. 3.11. The possible curves going through z(k) and having as a tangent
fo(k) € Ty X, could be characterized as geodesics once an affine connec-
tion would be defined on X which are indicated as dotted lines in the figure.
These lines intersect the locus of states corresponding to the consistent energy
set in different possible points which depend on the connection chosen. We
have considered Euclidean coordinates and an Euclidean connection, which
is a meaningful choice in many cases. In this case, the next state x(k + 1) is

chosen as the intersection of I with the straight line passing from x(k) and
directed along fo (k).

Case in which I;;; = ) and energy leap

This can happen in two situations: a) required decrease of energy close to a
local minimum b) required increase of energy close to a local maximum. The
case b) does not preclude passivity and therefore it will not be analyzed. In
the situation a) let us indicate with ,,;, one of the states for which the energy
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Fig. 3.11. The various possible connections for the state jump

has locally a minimum close to x(k) and equal to H (). This situation is
therefore obtained if:

AH(k) < H(Tmin) — H(z(k)).

In this situation, it is clearly not possible to find a state x(k + 1) compatible
with the energy change AH (k) since Ix11 = 0. If we chose z(k + 1) = Znin
we would implement the smallest error in the energy change, but this would
not be a good choice for two main reasons: first, this could create a ‘dynamic
dead-lock’ since, in this situation the effort generated by the energy function
and equal to ec = %—f would be equal to zero and in case no damping would
be present, it would be possible to see that this would prevent any further
supply of energy from the interconnection port (ey, fr) since ey could be equal
to zero and therefore any further change of the state would be impossible.
Second it would not help the system to behave in such a way that its dynamic
makes possible to correct the energetic discrepancy due to the fact that the
required AH (k) cannot be performed. A solution to these two problems can
be found in what we call energy leap, which is illustrated in Fig. 3.12. Instead
of choosing as a new state ,;,, we choose as a state z(k + 1), a state with
the same energy level, but “symmetrically positioned” with respect to the
point of minimum energy x,,;,. This rather fuzzy statement could be made
precise once an affine connection would be defined on the state manifold. As
already said, considering Euclidean coordinates, it is possible to define the
next state as the state having the same energy and lying on a straight line
passing through ,;, and z(k).

Clearly, by construction, we obtain an error in the energy change equal
to AH (k) which corresponds to the amount of energy which we supplied to
the “rest of the world” through the power port (er, f7). On the other hand,
by the change of sign in the gradient of the energy function, we practically
passed through the minimum in one go and the system will therefore now
try to absorb energy from the port (e, fr). In order to recover passivity it is
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Fig. 3.12. The energy leap strategy

necessary to dissipate the extra energy introduced through the energy leap.
Since we know EXACTLY the amount of energy produced we can keep track
of the extra energy introduced into the system. To recover passivity we have to
dissipate the extra energy produced in a finite number of steps; furthermore,
usually, there is energy production only for one step. At each step the system
makes an energy jump and most of them are passive jumps, namely:

H(e(k+1)) = H(x(k) + Te" (k) f(k) = H@(k) +3(k)  (3.17)

Suppose that Te” (k)f(k) > 0, we can act on the magnitude of the jump in
order to dissipate the energy produced: we won’t, therefore,update the state in
order to satisfy (3.17) but we’ll introduce some dissipation by modulating the
jump. The situation is illustrated in figure 3.13: Instead of jumping from H (k)
to H(k+ 1) we constrain the system to jump only a fraction 0 < a < 1 of the
jump j(k). We reach, therefore, the energy level Hy(k + 1) = H(k) + aj(k) <
H(k+1) = H(k) + j(k) and we dissipate the quantity H(k + 1) — H(k) =
(1 — @)j(k). The major point is that it is possible to keep track exactly of the
error in the energy values in such a way that they can be then compensated.
The closer is « to 1 the slower the “passivity recovery” is and the less influence
will have the dynamics. Similar reasonings can be made in case j(k) < 0. This
strategy for recovering passivity is called energy book-keeping [297, 256, 298|.

As a summary of the procedure just outlined, we hereafter algorithmically
explain the way the discrete system can be integrated

1. Given an initial state z(k), we set ec(k) = %—Iz(x(k))
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Fig. 3.13. Energy Booking for a Forward Jump

2. Using the value of the system input fr(k) and the previously calculated
ec(k), we can calculate er(k), the output of the interaction port, and
fo (k) using the discrete representation of Eq.(3.13)

3. fc(k) is then used to calculate the next state z(k+1) using the procedure
explained at the beginning of this subsection.

3.4.2 Energy Consistent Sampled Passivity

Consider the port interconnection of a continuous time port Hamiltonian sy-
stem H¢e and a discrete port Hamiltonian system Hp through a sampler and
zero-order hold as shown in Fig. 3.14. Suppose that H¢ has an admittance
causality (effort in/flow out) and therefore Hp has an impedance causality
(flow in/effort out).

During the dynamic evolution of the two systems between time k7 and
(k4 1)T, where T is the sampling time and k is a positive integer, the effort
supplied to H¢e by Hp will be constant due to the zero-order hold assumption.
We will indicate this value as eq(k + 1). If we indicate the power port at the
continuous side with (e(t), f(t)), we clearly have:

e(t)=eq(k+1) te€[kT,(k+1)T]

By looking at the energy flow toward the continuous system, we can see that,
if we indicate with AH,.(k+1) the energy which flows through the continuous
power port from time k7" up to time (k + 1)T, we obtain:

(k+1)T (k+1)T

el (k+1)f(s)ds = el (k + 1)/ f(s)ds =

kT

AH,(k +1) :/

kT

= ey (k+1) (a((k +1)T) — q(kT))
(3.18)

where we indicated with ¢(-) the integral of the continuous time flow f(¢).
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Fig. 3.14. The interconnection of discrete and continuous port-Hamiltonian systems

Remark 3.5. It is important to realize that, in most of useful mechanical appli-
cations like haptics, eq(k) will correspond to forces/torques that a controller
would apply to an inertial element. In this case, ¢(-) would be nothing else
than a position measurement of the masses the controller pushes on.

It is now straightforward to state the following theorem [297, 256, 298]:

Theorem 3.6 (Sampled Data passivity). If in the situation sketched be-
fore, we define for the interconnection port of Hp

q((k +1)T) — q((F)T)

fd(k+1) = T ’

(3.19)

we obtain an equivalence between the continuous time and discrete time energy
flow in the sense that for each n:

nT
Z eT(i+1)fa(i + )T = /U el (s)f(s)ds (3.20)

=0

Remark 3.7. It is important to notice that the exact equivalence is achieved
only by the definition of Eq.(3.19) in which ¢(+) is usually the easiest variable
to be measured in real applications. The negative sign appearing in Eq.(3.20)
is consistent with the fact that the power flowing into the continuous system
is minus the power flowing into the discrete side.

It may happen that during the inter-sample, passivity of the controller is
lost without that the controller would find this out. This could be due to a
sequence of a very high flow of energy toward the plant followed by the same
amount of energy back to the controller. This would be a problem because
the net energy flow towards the plant after one sample would be zero, but
between the first and the second peak, there would be a moment in which the
controller would have provided more energy that it had available. This “loss of
passivity” between the two spikes would never be seen by the controller since
this situation takes place between two samples. This situation is unavoidable
because of the intrinsic loss of information due to sampling if no hypothesis is
made on continuity or bandwidth, but at each sample instant the controller
would adjust the energy balance as explained in the previous subsection.

It is now possible to propose the algorithm which can be used to integrate
the discrete system on line. We consider to reach time (k+1)T" after a sample
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period in which the effort held on the device has been eq(k+1). After ¢(k+1)
has been measured, fq(k+1) can be calculated using Eq.(3.19). If we consider
the situation at the previous time k and define f7(k) := fq(k + 1), we are
able to calculate the state x(k + 1) by exactly following the algorithm of the
previous subsection and the value e; (k) that the system should have provided,
but that couldn’t provide because future information, only available at time
(k + 1)T, was necessary to compute ej(k) using Eq.(3.13), through the hold
instead of e4(k + 1) in the last interval. It is important to realize that the
calculated state x(k + 1) is EXACTLY compatible with the energy balance
by construction using the result of Eq.(3.20). The only problem is the fact
that the held value eq(k + 1) is not equal to the value e;(k) which would have
been expected by the use of discrete representation of Eq.(3.13) at the sample
instant kT. On the other hand, we can set eq(k + 2) = ej(k) and use the
correct value with a delay T'. This operation does NOT break the passivity of
the algorithm and it is possible to see that it will have little influence on the
dynamics for reasonably small T since the acceleration profile will be roughly
shifted by T" and the inertial properties of the robotic device will behave like
a low pass filter. It is then possible to calculate ec(k + 1) using the value of
x(k+ 1) and then, when time (k + 2)T is reached, to start over the algorithm
for computing the next state.

The presented strategy works fine in all situations in which the state x(k)
is not on a minimum of the storage function H(-). Problems arise instead, if
at any moment of time the state z(k) is indeed in a minimum. To see this,
consider the simulation of a pure 1D, linear, elastic element with internal
energy H(z) = %K 22 connected to a simple mass. Suppose a starting unloaded
rest situation (x(0) = 0) and e4(1) = 0. Due to the fact that z(0) is in
a minimum, ec(0) = 0. Consider that a user would apply a motion to the
robotic device in such a way that at time 1, f4(1) would result different than
zero. Due to the fact that the supplied effort ey(1) = 0, the exchanged power
between the mass and the port-Hamiltonian controller is equal to zero and
this would result again in (1) = 0. The problem arises due to the fact that
in this example, er(0) = ec(0) = 0 and this implies that e;(2) will again be
zero. This would result in a constant zero force applied to the robotics device
which is clearly not what we wanted. This seemingly critical shortcoming of
the algorithm can be nevertheless easily corrected, by modifying the choice of
eq for the next step:

er(k) +er(k)

eq(k+2) = 5

(3.21)

where é;(k) can be taken as the value of the port effort calculated with a first
order Euler approximation of the continuous time system which we want to
display in the haptic interface. In the case of the spring, this would be:

éalk+1)=Kfq(k+1).
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This addition can be easily generalized for the extended structure of a general
physical system. This operation would introduce some extra energy into the
system but the amount of energy injected is known and it can be compensated
using the techniques presented in the previous subsection.

3.4.3 Passive Coupled Behavior

From the previous considerations, it is possible to understand that at each
sampling time, we have an EXACT matching between the physical energy
going to the continuous time system and the virtual energy coming from
the discrete time port independently of the sample time T of the discrete
system. It is remarkable that the choice reported in Eq.(3.19) which is very
simple and at the same time attractive due to the fact that it corresponds
to position measurements, in practice gives such a powerful and at the same
trivial result. This means that we can passively interconnect the two systems
in such a way that independently of the sampling time and its relation with
the characteristics of the interconnected systems, the two systems would be
energetically consistent at each sampling time and no energy would be created
by the sampling and hold procedure. The only energy leak is due to the fact
that the discrete time system has no way whatsoever to predict the value
of the continuous time system at the interconnection port and this implies
that only at the end of the sample period will have an exact measure of
the energy it supplied to the continuous time system. This gives rise to the
problems reported in Sec. 3.4.1. These are structural problems, due to the
fact that the data obtained by sampling can never give enough information
in order to causally reconstruct the physical behavior of the interconnection
as it would happen with an acausal Shannon reconstructor. They can be
either compensated by book-keeping of the energy in excess supplied to the
continuous time system or by a continuous time damping circuit which can
be easily built with a couple of operational amplifiers directly connected to
the power amplifiers used to drive the continuous time system.

Summarizing, using the strategy illustrated in this section it is possible
to sample a continuous port-Hamiltonian system preserving passivity in its
discrete counterpart. Furthermore it is possible to interconnect the discrete
passive virtual environment to the continuous haptic device through a Sam-
ple & Hold algorithm that does not introduce ANY extra energy. It is therefore
possible to build an haptic interface that is intrinsically passive independently
of the sample period that is used to implement the virtual environment. Fur-
thermore, exploiting the port-Hamiltonian formalism, it is possible to imple-
ment a very wide class of physical systems, both linear and non linear, as
virtual environments. Notice that no extra layer has been added to the haptic
interface to preserve passivity and that no limitation to the impedance that
can be achieved has been introduced. Each potential source of extra energy
has been simply implemented in a passive way, improving the transparency
of the haptic interface.
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3.4.4 Dealing with Quantization Errors

In Sec. 3.4.2 it has been shown that in order to perform a passive interconnec-
tion between a discrete and a continuous port-Hamiltonian system position
measurements are needed. Position information is very often obtained by me-
ans of encoders. In this section we will show that the quantization error as-
sociated with the encoders leads to the production of some extra energy into
the system and, therefore, to a loss of passivity. We will propose a strategy,
introduced in [261], to interconnect continuous and discrete port-Hamiltonian
systems without the production of any extra energy even in case of unreliable
position information.

Encoders are affected by quantization errors that cause a position measu-
rement error which can be modeled by an additive bounded disturbance w(t).
Let

[w(t)]| <W vt

where W is a finite positive constant. We have that:

a(t) = (1) + w(?) (3.22)

where ¢(t) and ¢(t) represent the real value of the position and the measure
respectively.
If we use the output of the encoders to calculate fq(kT) as in Eq.(3.19),
we obtain:
q(k + 1% q(k) k1) — w(k + 1} w(k) _
(3.23)

= fa(k+1)+6(k+1)

fak+1)=—

Because of the quantization error the discrete flow in Eq.(3.23) is the sum of
two terms: the ideal flow (fg(k 4+ 1)) and a spurious term (6(k + 1)). Since
w(+) is bounded, the spurious term is bounded as well and we have:

2W
S(k)|| < — Vk
l6(k) < =
Let us investigate the energetic behavior of the interconnection during a sam-
ple period [kT,(k + 1)T]. We have that, referring to Fig. 3.14, the energy
AH.(k + 1) flowing into H, is:
(k+1)T
AH.(k+1) = H.(k+1) — H.(k) = / el (1) f(r)dr =
kT (3.24)

= —el(k+1)fa(k +1)T = Hy(k) — Hg(k + 1) = —AHg(k + 1)

On the other hand, the discrete energy increment AHy(k + 1) is equal to:
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AHq(k+1) = Hy(k +1) — Ha(k) = e (k + 1) fa(k + 1)T =

=el(k+1)falk+ )T +el(k+1)6(k+1)T = AHy(k + 1) + AH (k + 1)
(3.25)

Comparing Eq.(3.24) and Eq.(3.25), we can see that:
AH (k+1)=—-AHy(k+1)+ AH (k + 1)

We have an additional term (AH,(k)) due to the spurious term in fy(k)
and, therefore, there is no more energetic consistency between continuous and
discrete domains, namely it is no more true that the amount of energy supplied
to the continuous system is exactly equal to the amount of energy extracted
from the discrete one. This term can lead to production of extra energy in the
interconnection and, therefore, to the loss of passivity.

In order to recover passivity in the interconnection, we need to somehow
dissipate the extra energy produced during the sampling. We will, therefore,
consider the scheme represented in Fig. 3.15 (in a bond graph notation) where
we endowed the interconnection with a dissipative element which must be
properly designed. Since the spurious term 6(-) is bounded, we can dissipate
the maximum amount of energy introduced because of quantization error.
Since:

AH (k4 1) = el (k+1)6(k + 1)T
we have that in the worst case

AH(k+1) = [ (k + 1) 20T = €]k + )2

We can design the dissipative element such that it dissipates AHg,, at each
sample period. We have that some energy can be produced, because of quan-
tization error, in the energetic flow between the port (e, f) and the port
(ed1, fa)- On the other hand, the maximum amount of energy that can be
produced is dissipated through the port (e, f4) and, therefore, the energy flo-
wing through the port (eq, f4) will be lower or equal than that flowing through
the port (e, f). This means that the behavior of the interconnection between

the continuous port (e, f) and the discrete port (eq, fq) is passive.
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This approach is working fine but it is somehow over conservative and
it could lead to poor performances. In fact, the quantization error on the
encoders does not always cause production of energy but it can also cause
dissipation. It is clear that the latter behavior does not affect the passivity
of the interconnection. With the proposed approach, instead, the worst case
produced energy is always dissipated, disregarding the contribution introdu-
ced by the disturbances. A less conservative scheme for the interconnection
can be obtained if we have a measure of the continuous flow f; we can get
this measure by means of analogic flow sensors (e.g. tachometric dynamos) or
of some estimation algorithms such as a state variable filter.

By means of flow measure/estimation we can compute:

(k+1)T
AH (k+1) = / el (7)f(r)dr

kT

and compare it with
—AHy(k+1) = —eq(k + 1)" fo(k + 1)T

If AH.(k+ 1) > —AH4(k + 1), then the quantization error produced some
extra energy and the amount AHy(k + 1) + AH.(k + 1) must be dissipated.
If AH.(k+1) < —AH4(k + 1) the quantization error led to to some energy
dissipation and, therefore, there is no need to activate the dissipative element
of the interconnection. The main advantage of this approach with respect to
the previous one, is that now we know exactly when there is need of dissipa-
tion and the exact amount of energy we need to dissipate and, therefore, we
minimally act on the system degrading the performances as less as possible.

On the other hand, even the measure/estimation of the flow can be im-
precise and therefore we will have:

f(t) = f(t) +n(t)

where n(t) represents the error on the measure/estimation and f.(t) the real
flow. We can assume that the error is bounded:

()|l < N

where N is a finite positive constant. In this case we have that:

(k41T ) (k+1)T
/ T () f(r)dr = ARk + 1) + eIk +1) / n(t) =
kT kT (3.26)

= AH.(k+1)+ AH,(k+1)
where AH.(k + 1) is the energy increment due to the real flow. We have a

spurious term AH,(k + 1) due to the error on the measurement of the flow.
This term is bounded and, similarly to AH4(k + 1), depends on the effort:
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|AH, (k+ 1)l < lleg (k + 1)NT|| := AHyq (k + 1)

Because of the uncertainty introduced on the measure of AH.(k + 1) we can
not any longer exactly predict when there has been production of energy. We
can write the following algorithm for the design of the dissipative element in
the interconnection:

If AHy(k+1)+ AH.(k+1) > 0 then

dissipate AHg(k+ 1)+ AH.(k+ 1)+ AHp,(k+ 1)
else

dissipate AH,,(k+1)

We always need to dissipate AH,,,, to be assured that there is no production
of energy.

Remark 3.8. The algorithm gets less and less conservative the more the flow
measure is reliable. Notice that if AH,,, is bigger than AH,,,, the propo-
sed algorithm is over conservative with respect to the constant dissipation of
AHg,,. We have to choose which algorithm to use depending on the reliability
of flow measure/estimation.

3.5 Delayed Virtual Environments

It can happen that the virtual environment dynamics are very complex and
that the computation time needed to run its simulation exceeds the sample
period. In these cases we speak of delayed virtual environment. Several resear-
chers addressed this problem and various methodologies have been proposed:
in [201] an extension of the virtual coupling technique, based on input and
output strict passivity has been proposed, and in [13] a wave-model based
approach has been proposed.

Consider the energetic representation of an haptic interface reported in
Fig. 3.8, where the virtual environment is given by a passively discretized port-
Hamiltonian system which is interconnected in a passive way to the continuous
haptic device using the techniques reported in Sec. 3.4. It is possible to extend
this scheme in order to be able to implement an haptic interface that preserves
passivity also in case of delayed virtual environments.

3.5.1 The Effect of Delayed Output

As illustrated in Sec. 2.2.3, a port-Hamiltonian system is a passive system
in case there is no delay on the output. Let us consider a port-Hamiltonian
represented by Eq.(3.13) where the power port by means of which the sy-
stem energetically interacts with the rest of the world is represented by an
effort/flow pair (e, fr). Assume, furthermore, that the system has impedance
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causality (i.e. flow in / effort out). In case of delay we have that the output
power variable at the interaction port is:

615(f) = e[(ﬁ — (5)

The non delayed system would be passive with respect to the input/output
pair (e, fr). It can be easily proven that delay in the output destroys passivity
of the port-Hamiltonian system. In fact:

P(t) = —ess(t) fr(t) = —(er(t) + ers(t) — er(t) T f1(t) =
N—————

a(t)
3.27
dH (3.27)

= —ef () f1(t) — " (t) f1(t) = o T frRWOR(z) fr(t) — " (t) f1(t)

Pyiss

Specific choices of the input variable can lead to a negative value of Py;ss and
therefore to a production of extra energy and to a loss of passivity. We can
therefore conclude that when there is a certain delay in the computation of the
output (i.e. in case of delayed virtual environment), port-Hamiltonian systems
with an interaction power port represented by an effort/flow pair cannot be
safely used to implement an haptic interface because they are not passive.
Consider a power port (e, f) where e and f represent an effort and a flow
respectively. As illustrated in Sec. 1.5, it is possible to define the scattering

waves as: N1
st = e+ 7
7 ( f)

_ N
s = \/i(e_Zf)

where
Z =NN

is a positive definite matrix representing the impedance of the scattering trans-
formation.
The following power balance holds:

P) = T @S0) = 5l O ~ 3502 (3.29)

and we can interpret s*(t) as an incoming power wave and s () as an out-
going power wave. A power port represents an exchange of energy between the
system and the rest of the world and Eq.(3.28) shows that this exchange can
be equally represented both by an effort/flow pair and by scattering variables
as proven in Theorem 1.35. A definition of passivity based on scattering va-
riables can be given. If (e, f) is the power port by means of which a system
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Fig. 3.16. Codification of power variables

interacts with the rest of the world and if (s*, s™) is its corresponding scatte-
ring representation, we have that a system is passive if and only if there exists
a finite positive constant 3 such that:

"1 b1
| 3@k < [ St @lrar+ (3.29)

Loosely speaking, a system is passive if and only if the outgoing energy is
bounded by the incoming energy, namely if and only if there is no internal
production of energy.

One could think to deal with delayed virtual environment by simply di-
scretizing a port-Hamiltonian system with power variables as input/output
and then to treat the delay in the same way as in telemanipulation (see next
chapter for many more details). In Fig. 3.16 we can see how the problem can
be tackled in telemanipulation. The power variables of the port of the port-
Hamiltonian system are coded into scattering variables and then sent through
the communication channel. The port-Hamiltonian system is passive and it
has a passive behavior at the power port. By using the scattering represen-
tation of the power port and by transmitting scattering waves, this passive
behavior is simply conserved during the communication, independently of any
delay. Unfortunately, when dealing with delayed virtual environments, the po-
wer variables at the power port are not consistent (in the sense that they refer
to different instants of time) and this causes, as shown in Eq.(3.27), a non pas-
sive behavior of the system at the port. If we used the scheme in Fig. 3.16,
the scattering waves would simply replicate the non passive behavior of the
systems, leaving the problem unsolved. The delay has to be treated therefore
in a different way in case of delayed virtual environment. The reason of this
discrepancy is that while in telemanipulation the problem concerning delay is
in the transmission of power variables and, therefore, something external to
the system, in case of delayed port-Hamiltonian systems the delay is intrinsic
into the dynamics of the system, internal to the system, and in this case the
scattering framework has to be embedded in the model of the system.

In order to deal with this internal delay we will model a port Hamiltonian
system modeling the power port (er, f7), by means of which it interacts with
the rest of the world, by the corresponding equivalent scattering representation
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(sf,s7 ). Since Eq.(3.28) holds, we can write:
Pr+Po+ Pr= gt = Sllsy P+ ebfo+ehfn=0  (330)
which represents the power balance reported in Eq.(3.10) when the interac-

tion port is represented by a pair of scattering variables. By straightforward
calculation starting from Eq.(3.13) we can get:

() = (25 () eR

where:
S;=(BN'+N)"'(BN!'-N)! (3.32)
Sy =V2(BN'4+N)'4 (3.33)
5= N (BN 4 N)UBN - W) (3.34)
3 = \/§ .
Sy=D—-CN Y(BN'+N) A (3.35)
and now

. 1 1
H(z) + fr R(z)fr = *(§||51+||2 - 5||51_||2) =r

Consider now a port-Hamiltonian system in the form of Eq.(3.31) and suppose
that there is a delay in the computation of the output. We have that:

s7s(t) =0 t<é
s (t) = s7(t—6) > 5

where we reasonably assumed that when the output is not yet available be-
cause of the delay, the virtual environment presents 0 on the output buffer.

Proposition 3.9. Port-Hamiltonian systems whose interaction port is repre-
sented by a pair of scattering variables are passive independently of any delay
6 > 0 on the output.

Proof. Since the non delayed system is passive we have that condition (3.29)
holds and therefore that:

t 1 t 1
[ 5lsi@iar < [ SlsiPar+pwso0 (330
0 0

Let us now consider the delayed output, s,,(t) = s; (t — ). We have that:

s75(t) =0Vt €[0,0]
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We can write:

‘1 ‘1 ‘1
[ glsmliar < [ Slsr@lPar < [ SlstriPar+5
0 0 0

which implies:

t t
1, _ 1
| 3lsumiar < [ Slst @l + 5
0 0
and therefore the delayed system is passive.

Thus, considering the scattering representation of the interaction power port,
passivity is preserved even in case of delay on the output.

3.5.2 Passive Discretization of Port-Hamiltonian Systems in
Scattering Representation

The aim of this subsection is to modify the passivity preserving discretization
algorithm proposed in Sec. 3.4.1 in order to provide a passive discretization
for port-Hamiltonian systems in scattering form.

If we rewrite Eq.(3.30) for the discrete case, we have:

SIsERI? = Zllst RIP + B feh) + R m() =0 (337

Furthermore, during the interval k, we have to consider a constant state
z(k) corresponding to the continuous time state z(t). This implies that during
the interval k, the dissipated energy will be equal to T'f% (k) R(z(k)) fr(k) and

1
the supplied energy will be equal to fT(i 7 (k)||2— §Hsl_(k) [12). In order to

be consistent with the energy flows, and as a consequence conserve passivity,
we need therefore a jump in internal energy AH (k) from instant kT to instant
(k4 1)T such that:

AH(k) = ~TFE(R)R((R) fa(k) — T( IsF W2~ 3 lls7 (R)]2)

This implies that the new discrete state x(k+1) should belong to an energetic
level such that:

H(x(k+1)) = H(z(k)) + AH(k)

We can indicate the set of possible energetically consistent states, which can
be found solving the previous equation in z(k + 1), again as

Iiy1:={xeX st H(x)=H(z(k)+AHk)}.
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Fig. 3.17. The final scheme

Furthermore, from the discrete equivalent of Eq.(3.31), we have that:
fo(k) = Sast (k) + Ssec (k) (3.38)

and therefore, for consistency with the continuous dynamics in which fo(t) =
z(t), the next state x(k + 1) should be such that:

fo(k) = lim M

Jim, 7 (3.39)

where we considered the definition of the right derivative. The set I} 41 can be
either empty or have more solutions. These two situation are treated exactly
in the same way as in Sec. 3.4.1.

As a summary of the procedure just outlined, we hereafter algorithmically
explain the way the discrete system can be integrated

1. Given an initial state z(k), we set ec(k) = Bz (1),

2. Using the value of the system input s}'(k) and the previously calculated
ec(k), we can calculate s (k), the output of the interaction port, and
fo (k) using the discrete representation of Eq.(3.31)

3. fc(k) is then used to calculate the next state z(k+1) using the procedure
explained at the beginning of this subsection.

In Fig. 3.17 is represented the general scheme for an intrinsically passive port-
Hamiltonian based haptic interface.

The user exchanges energy with the haptic device which is energetically
coupled to the virtual environment. Since Proposition 3.9 holds, the discrete
system is passive (in a discrete sense) even if the output power wave is delayed
because of computational delay. The interconnection between continuous and
discrete domain is made through the element SH which is the passive Sample
& Hold described in Sec. 3.4.2. Since the interaction of the human operator
with the virtual environment will have place through power variables (i.e.
effort and flow) we endowed the scheme with a coding block which is used
to interface the power variables based port with the scattering based port.
In case (very frequent in haptics) that the virtual environment has an impe-
dance causality, we have that from f4(k + 1) and s; (k) we compute s} (k)
and eq(k + 1). Notice that now the coding procedure is safe. In fact the co-
ding/decoding procedure is, by definition, such that the energetic behavior
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at the port (sf,s;) and the one at the port (eq, f4) are exactly the same
(there is energetic synchronism); since Proposition 3.9 holds we have that the
behavior at the port (s},s} ) is passive and therefore we will have a passive
behavior at the port (eq, f4) independently of any computational delay.

The scheme provides a passive haptics scheme for delayed virtual environ-
ment without any extra layer to dissipate extra energy produced by the delay.
The scheme is based on natural and intuitive energetic consideration and it
has the advantage that transparency of the virtual environment is affected
only by the unavoidable dynamical effect associated to the delay and it is not
perturbed by any extra dynamics.

Remark 3.10. In case there is no computational delay on the output, we have
that using either power variables or scattering waves leads to the same beha-
vior of the system. The scheme in Fig. 3.17 can be, therefore, considered a
generalization of the scheme proposed in Sec. 3.4.

Remark 3.11. Since the scheme proposed in Sec. 3.4 is passive independently
of the sample period, one could think to avoid the delayed output problem
by simply increasing the sample period. This is true but performances of the
system are affected by the sample period used: the higher is the sampling
rate, the more realistic will be the simulation. In order to have an efficient
haptic interface, therefore, it is necessary to keep the sample period as small as
possible taking into account, in the implementation, possible computational
delays .

3.6 Force Scaling in Port-Hamiltonian Based Haptic
Interfaces

Haptic interfaces can be successfully used for assisting the user in the execu-
tion of a given task. In several applications (e.g. surgery) it is requested that
the user moves a tool along a certain path with a high degree of precision;
if the trajectory to track is implemented as a virtual environment, the user
can feel the path he has to track and therefore he/she can precisely follow
it. Virtual fiztures, introduced in [248], are perceptual overlays that help the
human operator to execute a task with the required degree of precision. In
other words, a virtual fixture is a simulated constraint that guides the user
over a preferred path enhancing its tracking performance. They have been
used for increasing the precision and/or the speed in path following and in
positioning tasks [21], for training [236] and for improving performances in
telemanipulation tasks [248, 1].

Virtual fixtures can be interpreted as virtual environments, characterized
by a certain stiffness with which the user is interacting during the execution
of a task. Their role is to influence the operator’s natural behavior by assi-
sting him /her. Nevertheless, as pointed out in [220], by constraining the user’s
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motion, a virtual fixture also limits the user’s control over a given task. Thus,
because of an error in the design phase, it is possible that the fixture is mis-
placed and that therefore it may have a negative effect on the task execution.
Furthermore, it may happen that there are certain regions where the user
wants to defy the virtual fixture in order either to avoid an area or to reach
a position that is not on the path marked by the fixture. It is then necessary
to be able to scale the force imposed by the virtual constraint on the user in
order to increase the level of user’s control over the task and in order to allow
him/her to reach off-fixture targets. In [220] impedance fixtures are conside-
red and the force scaling issue is addressed by changing the stiffness of the
virtual constraint; several algorithms for varying the stiffness are considered
and compared experimentally.

When using an intrinsically passive haptic interface any non passive ope-
ration during the execution of the task should be avoided in order to preserve
a stable behavior. Thus, while a virtual fixture characterized by a certain
stiffness can be passively implemented, changing the stiffness of a virtual en-
vironment is a non-passive operation as detailed in Sec. 5.5. In [220], it is
reported that the users have some difficulties in using the system when they
have to go back to the virtual constraint from the off fixture target, namely
when the stiffness of the virtual environment they are interacting with in-
creases; we think that this is related to the regenerative, non passive, effect
associated to the stiffness increase.

In this section we replace the Sample & Hold strategy proposed in Sec. 3.4,
that allows a lossless energy transfer between the haptic device and the vir-
tual environment, with the power scaled interconnection. We will prove that
in this way it is possible to scale both the velocity imposed by the user and the
force transmitted by the virtual environment without affecting the passivity
of the overall scheme. In fact, in this way force scaling doesn’t derive from an
alteration of the physical properties of the virtual environment but from the
interposition of a tunable layer, whose behavior doesn’t affect the passivity
of the overall system, between the haptic device and the virtual environment.
Using the proposed strategy it is possible to scale the feeling perceived by the
user while preserving a stable behavior of the system; in particular, it is pos-
sible to scale the constraining effect of a virtual fixture in a safe, intrinsically
stable way.

We will use the following notation for the discrete derivative and the discrete
integral:

k—1
dgth) = LEEDZIE ey =N gtayr
i=h

where g is a generic sequence.
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(1) eclt) ealk+1)

fu(t) fe(t) fa(k +1)
Fig. 3.18. Energetic representation of a haptic display

3.6.1 Power Scaling in Port-Hamiltonian Based Haptic Interfaces

Consider the haptic interface represented in Fig. 3.18, where the haptic de-
vice and the virtual environment are represented as a passive and a passively
discretized port-Hamiltonian systems respectively which are passively inter-
connected using the Sample & Hold technique reported in Sec. 3.4.

Since the haptic device and the virtual environment are passive systems the
following energy balances hold:

nT
/0 (s (7) frr (1) + €2 (1) fe(r))dT = He(we(nT)) — He(2(0)) + Egios (nT)
(3.40)

and
I7el (k+1)fa(k + 1) = Hy(zg(nT)) — Hy(x4(0)) + E%,..(nT) (3.41)

where x. and x4 are the states of the haptic device and of the virtual environ-
ment respectively, H. and H,y are lower bounded functions representing the
energy stored in the continuous haptic device and in the virtual environment
and Ej, . and Efllis . are nonnegative functions representing the energy dissi-
pated by the systems; we assumed that ES,, (0) = 0 and that E4,_ (0) = 0,
namely that at the beginning the haptic device is at rest and that the virtual
environment is at equilibrium. Furthermore, when using the interconnection

strategy reported in Sec. 3.4 we have that the following balance holds:

nT
e (i 1) fali 4 1) = —/O T(D)fu(r)dr  Yn €N (3.42)

which says that at any sampling instant the energy extracted by the con-
tinuous haptic device is supplied to the virtual environment and viceversa
and,therefore, that no extra energy is produced in the interconnection. Sca-
ling the interaction means to scale the exchange of energy between the haptic
device and the virtual environment which, on its turn, means scaling the ef-
fort and the flow exchanged between the device and the virtual environment.
Thus, we propose to use the following power scaled Sample € Hold strategy:

fd(k + 1) _ _aq(k+1%—Q(k)
a,BeRT (3.43)
ec(t) = %hold(ed(kz +1))
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where o and (3 are factors that allow to scale the interaction of the user with
the environment. If we are interested in scaling only the force transmitted to
the user (as in the case of virtual fixtures studied in [220]) we can set o =1
and tune (3 for achieving the desired force scaling. Using this interconnection,
we have that

nT
1610 T+ 1) fali+ 1) = / [T()ee(r)dr  WneN  (344)
0
which means that the energy extracted by the virtual environment is scaled
and supplied to the haptic device. Thus, the exchange of energy with the
virtual environment is perceived by the user scaled by a factor 1/af. Thus
the interconnection strategy reported in Eq.(3.43) is not passivity preserving
because, in general, the power extracted from one side can be amplified and
supplied to the other side, leading to a production of energy. Nevertheless,
the following result can be proven:

Proposition 3.12. If the haptic device is a passive system, if the virtual en-
vironment is rendered as a discrete passive system and if the interconnection
between the continuous and the discrete part is made through the Sample and
Hold strategy reported in Eq.(3.43), then the overall haptic interface is passive.

Proof. Since the haptic device and the virtual environment are passive sy-
stems, both Eq.(3.40) and Eq.(3.41) hold and, consequently, for each sampling
instant we have that:

aﬁ/ ) fu (T dT—!—aﬁ/ fe(m)dr + geg(z—i-l)fd(i—!—l):

= af[H.(z.(nT)) — H.(x.(0))] + Hy(xq(nT)) — Hq(x4(0))+

+aﬁE§iss (TLT) + Egiss (TLT)
(3.45)

Since the interconnection between the haptic device and the virtual environ-
ment is made through Eq.(3.43) we have that, using Eq.(3.44):

el (i + 1) fa(i+1) = —aﬁ/ T)fe(T)dT (3.46)

Using Eq.(3.46) in Eq.(3.45) and taking into account that aSES, () and
Ed..(-) are nonnegative functions, it follows that:

af / (1)dr > aB[Ho (o (nT)) — Ho(o(0))]+
(3.47)

+Ha(za(nT)) — Ha(w4(0))
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whence

/0" e (1) (T)dr > He(we(nT)) — He(we(0)) + i[Hd(ﬂfd(v”tT)) — Ha(24(0))]

af
(3.48)
which proves that the system is passive with respect to the storage function

1
Hc() + OéﬁHd(.)

The scaled interconnection is NOT a passive element but, nevertheless, it can
be safely used in the implementation of an haptic interface. This happens
because the effect of the scaling is to “mask” the virtual environment and
to make it appear to the human operator as if it acted at a different power
scale transmitting, in particular, to him/her a scaled force. However, this
amplification/attenuation of the power transmitted does NOT modify the
kind of dynamic behavior of the virtual environment which keeps on being
passive. Changing the stiffness of the virtual environment, instead, deeply
influence the kind of dynamic behavior of the virtual environment and the
passivity of the overall haptic interface cannot be guaranteed anymore.

3.6.2 Variable Scaling

An abrupt change in the perception of the virtual environment can disturb the
user and therefore, as suggested in [220] for virtual fixtures, a gradual attenua-
tion of the scaling has to be preferred. Thus, it is necessary to consider variable
factors that gradually scale the interaction with the virtual environment. In
other words, we should use the following variable power scaled Sample € Hold
interconnection:

falk +1) = —a(k) 3108

(3.49)
ec(t) = ﬁk)hold(ed(k +1))
where a(k) and G(k) are the bounded scaling factors and
a<alk)<a a,acR"
(3.50)

B<Bk)<B B,BeRT

In this case, the effect of the power scaling interconnection is no more static
and, therefore, the variation of @ and 3 can introduce some dynamic effects
which could destroy the intrinsic passivity of the haptic interface. Luckily, if
some not very restrictive conditions on the kind of virtual environment are
satisfied, we can still preserve the passivity of the overall scheme.

The following lemma will be useful in the following:
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Lemma 3.13. Let f : R — R be a real function such that
t
/ f(rydr > -5 vt §eR",§< 0 (3.51)
0

and let v : R — RY be a scaling function such that
y<A@t) <7y YVt oy, 7eRT (3.52)

Suppose that the function f(-) has a finite number of critical points, namely
that its derivative changes sign a finite number of times. Then

t
/ y(r)f(r)dr (3.53)
0
is lower bounded.

Proof. Let sign(-) indicate the sign function. Consider an interval [to,?;] such

that sign(f(t)) = const. ¥Vt € [to,t;]. We can distinguish three cases. If
sign(f(t)) =1 then

| A rr = 1(5(t) = ft0)) = 1(F0) = F0) +2(7(0) ~ F(t0)) =

> =76 +7(f(0) — f(to))
(3.54)

If sign(f(t)) = 0 then

/ () f()dr =0 (3.55)

If sign(f(t)) = —1 then

/ M =T (0) — F0)) +TFO) — F(to)) > —T6 +A(F(0) — f(t))

to
(3.56)
Every interval [0,¢] can be split up in the following way
[O’t] = [O’tl] quzllpi UU?:IITLJ' UUZ:].IZIC (3'57)
where
L, = [ti,ti] &>t sign(f(t)) =1Vt € I,
Lo, = [ty 8] &5 >t; sign(f(t)) = =1Vt € I, (3.58)

Izk = [tkw{k] t_k >t Sign(f(t)) =0vi e ITLk
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and where sign(f(t)) = const. Vt € [0,t1]. Let I" be defined as:

7 if sign(f(t)) = —1Vt € [0, 4]

=14 0if sign(f()) = 0Vt € [0, 1] (3.59)

v if sign(f(t)) = 1Vt € [0,t4]

Thus we can write

/0 )iy > T / " ey + ; / A(r) f(r)dr+

t

LY t.Jy(T)f(T)de—r5+2<—16+1<f<0>—f(ti>>>+ (3.60)

=0
+ 000 (=78 +7(f(0) = £(t)))) = —1'6 — py6 — n78+

+y 2o (£(0) = f(ta)) +7 2250 (£(0) = f(25))

f(t;) and f(t;) are finite since they are critical points. Furthermore, because
of the hypothesis, p < co and n < co and therefore the sums are finite and
consequently the integral is lower bounded.

Thanks to Lemma 3.13 it is possible to build interfaces where the haptic flow
can be variably scaled. In fact we can prove the following result:

Proposition 3.14. Consider the scheme reported in Fig. 3.8 and suppose that
the Sample € Hold strategy is implemented through the strategy reported in
Eq.(3.49). Suppose that the energy function that characterizes the virtual envi-
ronment has a finite number of critical points. Then the overall haptic interface
18 passive.

Proof. Set a(k)B(k) = v(k), a3 = v and &3 = 7. We have that

(+1)T
NG /T () fulr)dr = —eF G+ D fali+ DT (3.61)

Furthermore we have that

(i+1)T (i+1)T
/ A (0)E5 () fr (P + / V(@) () fulr)dr + €5+ 1) fali + 1)T =
T T

(i+1)T

(i+1)T
=7(i)[/ 8 () i (P)dr + / €T (7) fo(r)dr) + €3 (i + 1) fali + 1)T =

T T

(3.62)
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where
AH (i) = He(xo((i + 1)T)) — He(2z:(iT))

and
AHg(i) = Hq(xq((1 + 1)T)) — Hg(xq(iT))

Using Eq.(3.61) in Eq.(3.62) we have that:

(i-‘rl)T 1
/ T (1) fur ()dr > AHL(i) + ——(AHa()) (3.63)
iT (%)
Summing over i = 0,1,...,n — 1 we have that
nT n—1
| e (e > HoanD) = Holoo0) + 30— A0 =
= D (364)

= He(wc(nT)) — He((0)) + Hy(nT) — Ha(0)

H, is a lower bounded function and, since Hy(-) has a finite number of cri-
tical points and since ~(4) is a bounded positive function, a straightforward
application of the discrete version of Lemma 3.13 allows to conclude that also
Hy4(+) is lower bounded. Thus, the energy balance reported in Eq.(3.64) proves
that the overall system is passive.

Remark 3.15. The assumptions made by the lemma are not very restrictive
and they are satisfied by the majority of energy functions associated to the
virtual environments that are simulated in haptic interfaces. Nevertheless,
they are necessary. In fact, we can passively simulate a physical environment
characterized by an energy function H(x) = sin(z) but in case of variable
scaling, this virtual environment would lead to an unstable interaction.

If the conditions reported in Proposition 3.14 are satisfied, it is possible to
use the interconnection reported in Eq.(3.49) for changing the perception of
the virtual environment at each instant while preserving passivity, and con-
sequently a stable behavior, of the haptic interface.

3.7 Simulations

In this section some simulations validating the results obtained in Sec. 3.4,
Sec. 3.5 and Sec. 3.6 are proposed.

The first set of simulations is intended to validate the results obtained in
Sec. 3.4.2 about the algorithm proposed to achieve a passive interconnection
between continuous and discrete time domains and the algorithm proposed in
Sec. 3.4.4 in order to deal with possible quantization error on the encoders.
We connected a simple mass with an initial state pg = 1 Kgm/sec connected
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(a) Ideal energetic behavior (b) Energetic behavior with quan-
tization noise

Fig. 3.19. Energetic behavior in the ideal and in the noisy case. Continuous Energy
(solid) and Discrete Energy (dashed)

to a discrete spring, obtained by discretizing a continuous spring by means
of the algorithm proposed in Sec. 3.4.1; the sample period is T = 0.1 sec.
In Fig. 3.19 we can see the energetic behavior at the interconnection both in
case of ideal encoder and when there is a quantization error with maximum
amplitude of 0.05. In picture (a) we can notice that, using the Sample & Hold
strategy proposed in Sec. 3.4.2, continuous and discrete energy exactly match
at the sampling time and, thus, a lossless transfer of energy between conti-
nuous and discrete time domains is achieved. In picture (b) we can notice that
the quantization on the encoder introduces a mismatch between continuous
and discrete energy, as reported in Sec. 3.4.4, and the discrete energy can
be greater that the continuous one meaning that the quantization leads to
production of extra energy when going from the continuous to the discrete
domain, leading thus to a loss of passivity in the interconnection. In Fig. 3.20
we can see the energetic behaviors in case compensated interconnection is
activated. Picture (a) shows the energetic behavior in case the worst case
produced energy is dissipated. We can see that discrete energy is always lo-
wer than continuous one and, therefore, passivity has been recovered despite
of quantization noise on the encoders. Nonetheless, the energetic behavior
is quite different from the ideal one. In picture (b) we can see the energetic
behavior in the compensated interconnection in case the information of flow
sensors (or estimation algorithms) is unreliable (we simulated an unreliability
with maximum amplitude of 0.01). We can see that the behavior is passive
and closer to the ideal case than the one we have in case we dissipate the
worst case produced energy.

The next set of simulations shows that the behavior of a coupled con-
tinuous/discrete system is passive (and, therefore, stable) according to the
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Fig. 3.21. Position of the mass

results obtained in Sec. 3.4.3. We first simulated a mass-spring system where
the mass is a continuous system and the spring is implemented as a discrete
port-Hamiltonian system obtained as described in Sec. 3.4.1. The mass and the
spring are connected as illustrated in Sec. 3.4.2 and the energy booking proce-
dure shown in Sec. 3.4.1 is used. The mass has an initial state pg = 1 Kgm/sec
and, therefore, it oscillates around the equilibrium point of the discrete spring.
In a first simulation the sample time is set to 7' = 0.5 sec and we can see in
Fig. 3.21 the position of the mass. We can notice that the behavior of the
system is quite different from the one we would have if we used a continuous
spring. In the next simulation we set the sample time at 7' = 0.1 sec and we
can see from Fig. 3.22 that in this case the behavior of the system is much
more similar to the one of its continuous counterpart. Decreasing the sample
time, the behavior of the system gets closer and closer to the one of its con-
tinuous counterpart but we can always guarantee the stability of the overall
system disregarding the sample time.
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Fig. 3.23. Energetic behavior of the spring-mass system

The next simulation is a simple haptic application of our scheme. We have
a mass, a continuous haptic device, and a discrete virtual environment, a
virtual wall. We implemented the virtual wall as a discrete port-Hamiltonian
made up of a parallel of a very stiff spring (K = 100000 N/m) and of a
damper (b = 30 Nsec/m). The simulation is one-dimensional: the wall is at the
position 0 and the haptic device is at an initial position ¢y < 0 and is pushed
by a constant force towards the wall; the sample frequency is f = 25 Hz. We
can see from Fig. 3.23 that the position of the haptic device increases until it
meets the wall; when the haptic device gets in touch with the virtual wall it
stops when the force applied by the virtual wall balances the force applied to
the system by the human operator. A stable behavior is achieved even if the
sampling frequency is quite low.

The following set of simulations aims to validate the results obtained in
Sec. 3.5 on the effect of delayed output on passivity and on the use of scattering
variables to achieve a passive behavior independently of the output delay.
Consider a simple mass, with an initial state pg = 1 mKg/sec, connected
with a discrete spring. The spring is implemented with the strategy depicted
in Sec. 3.4.1 and the interconnection between continuous and discrete time is
made by the passive sample and hold algorithm proposed in Sec. 3.4.2. The
sample period is T' = 10 ms. In Fig. 3.24 we introduced a computational delay
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Fig. 3.25. Position of the mass in case of computational delay § = 0.05sec: scatte-
ring representation

6 = 0.05 sec and we can see that passivity is lost and an unstable behavior
is introduced. In the next simulation we represented the discrete spring by
the scattering formalism and we can see that the computational delay doesn’t
change passivity properties and that a passive, and therefore stable, behavior
is preserved. The simulation results are reported in Fig. 3.25. The shift with
respect to the normal behavior of a mass-spring system is due to the dynamical
effect deriving from the output delay.

The next simulation implements a virtual wall. The operator pushes the
haptic device (a mass) with a constant force and, at x = 0.3 m the system
meets a virtual wall (implemented with a very stiff spring and a high damper).
We can see in Fig. 3.26 that, even if the operator keeps on pushing, the mass
stands still at z = 0.3 m because of the action of the virtual wall. The virtual
wall is simulated with T" = 0.01 sec and there is a computational delay of 3
sample periods. The behavior of the overall system is passive despite of the
delayed output of the virtual wall.

The last set of simulations aims at validating the results obtained in
Sec. 3.6. We consider a 1-DOF intrinsically passive haptic interface. The hap-
tic device is a simple mass of 1 Kg characterized by some friction that is
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modeled as a viscous friction with coefficient b = 0.1 Ns/m. The virtual en-
vironment is the discrete equivalent of a spring that is joined to the haptic
device through the interconnection strategy reported in Eq.(3.49). The overall
system is passive and, therefore, it is characterized by a stable behavior.

We suppose that the virtual environment plays the role of a very simple 1-
DOF virtual fixture that constrains the user at z = 0 m and that the stiffness
of the virtual fixture has been set to a small value (10 N/m) to allow the user
to easily reach off-fixture configurations. In order to take back the user to the
fixture position, it is necessary to scale the force transmitted to the user. In
order to show its effectiveness, we will compare the scaling strategy proposed
in Sec. 3.6 with the effect that would be obtained by directly changing the
stiffness of the virtual environment. Thus, suppose that the the user is keeping
the haptic device at the position g = 1 m applying the relatively small
force F = 10 N. At time ¢t = 10 s, the user has to be taken back to the
fixture position (x = 0 m) and, therefore, the force applied from the virtual
environment has to be scaled.

In order to test the effect of the change of stiffness, we don’t introduce any
scaling between the haptic device and the virtual environment and, therefore,
we use the lossless interconnection described in Sec. 3.4.

In Fig. 3.27 the effect of an abrupt change of stiffness is shown. The stiffness
of the virtual environment is taken instantaneously from a value of 10 N/m
to a value of 400 N/m; this corresponds to scaling the force perceived by
the user of a factor 40. Nevertheless, as explained in Sec. 5.5, this operation
corresponds to an introduction of energy into the system and, therefore, to a
loss of passivity and this leads to an unstable behavior. The loss of passivity
due to the change of stiffness is not related to the way in which the change
takes place. In fact, we can see in Fig. 3.28, where the stiffness is changed
linearly from 10 N/m to 400 N/m, that the overall behavior is still unstable.
The instability is related to the variation of the stiffness, which introduces
energy into the system and which consequently breaks the passivity, and not
to the way in which it is changed.
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Fig. 3.27. An abrupt change of stiffness
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Fig. 3.28. A gradual change of stiffness

In the next simulation we don’t change the stiffness of the virtual fixture
but we scale the force transmitted to the human using the proposed strategy.
Since we are interested in scaling only the force, we set « = 1 and we let
0 changing linearly from the value 1 to the value 1000. The results of the
simulation are shown in Fig. 3.29.

We can see that, even if the force scaling factor is much bigger than that
implemented with the stiffness variation, the behavior of the overall system is
stable. This happens because the force scaling is achieved without violating
the passivity and the conditions of Proposition 3.14 are satisfied.
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Fig. 3.29. The proposed scaling strategy

3.8 Conclusions

When two physical systems get into contact they exchange energy and, there-
fore, in order to properly manage the way in which they interact it is necessary
to model and to control this exchange of energy.

The port-Hamiltonian formalism allows to model both the internal and
the input-output energetic behavior of any physical system and it provides a
general framework where to treat the control of interaction. In fact, a physical
interacting systems can be modeled as a port-Hamiltonian system and it is
possible to control the behavior during the interaction by interconnecting
to the plant a port-Hamiltonian controller whose role is to properly shape
the energetic properties of the system. Thus, thanks to the port-Hamiltonian
framework, it is possible to impose any kind of interacting behavior, both
linear and non linear, to any kind of physical interacting system, despite of its
complexity. Furthermore, it is possible to describe the controller as a virtual
physical system “attached” to the plant and this gives a clear interpretation
of the kind of interacting behavior imposed to the plant. A very interesting
application of control of interacting systems from a port-Hamiltonian point
of view can be found in [76, 75] where the problem of controlling a walking
robot is addressed.

The port-Hamiltonian formalism allows to deal, in very general terms,
with the control of interaction with virtual environments, namely with the
development of haptic interfaces. Thanks to the port-Hamiltonian structure
and to an energetic analysis, it is possible to implement all the energy leaks of
an haptic interface in a passive way and, therefore, it is possible to achieve an
intrinsically passive, and therefore, characterized by a stable behavior, hap-
tic interface without inserting any spurious dynamic effect due to passivating
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controllers and without limiting the impedance that can be perceived by the
user. Furthermore, due to their generality, port-Hamiltonian based haptic in-
terfaces allow to consider any kind of haptic device and to simulate any kind
of virtual environment and not only linear ones. Furthermore, using the scat-
tering formalism and power scaled interconnections, it is possible to passively
deal with the problems of delayed virtual environments and of the scaling of
the feeling transmitted to the user. In the PO/PC method introduced in [115]
the energy leak due to the hold device was not taken into account and some
assumptions on the sampling rate had to be made in order to ensure passivity.
Using the concepts introduced in Sec. 3.4.2, Ryu and Hannaford improved the
PO/PC strategy considering the energy that could be produced by the hold
device [254].



4

Port-Hamiltonian Based Bilateral
Telemanipulation

4.1 Introduction

Telemanipulation is one of the first fields of application of robotics (see [326]
for an early history) and still one of the most challenging. In teleoperation
a human operator has to perform a certain task on a remote environment.
The human operator commands a local robotic interface (called master). The
motion of the master is transmitted through a communication channel to
a remote robot (called slave) which should replicate the motion of the ma-
ster and perform a desired task on the remote environment. It is possible to
improve performances providing to the human operator some real-time infor-
mation about the interaction of the slave with the remote environment. This
feedback information can be achieved in several ways (e.g. through visual dis-
plays, [146]) but the best way to improve the operator’s ability is to feedback
the contact force between the slave and the environment to the master side.
When the force at the slave side is reflected back to the human operator, it is
said that the telemanipulation is controlled bilaterally, or, more simply, that
we have a bilateral telemanipulation system. When teleoperation is performed
over a great distance, such as in undersea or in space applications, or over
packet switching network, such as the Internet, the communication delay as-
sociated to the transmission of information from master side to slave side and
vice-versa becomes non negligible and it can therefore destabilize the whole
system. There are two main problems in the implementation of a bilateral te-
lemanipulation system. Firstly, when performing long distance teleoperation
or when using packets switching networks as Internet for the transmission of
information, the non negligible time delay in the control loop can destabi-
lize the whole system. Secondly, in most useful application the slave has to
interact with a non structured remote environment (e.g. spatial exploration)
and therefore it is necessary to control master and slave in such a way to
guarantee that a stable behavior is achieved both in case of interaction and
non interaction with the environment.
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A lot of work has been done in the field of telemanipulation and several
control schemes can be found in the literature. The first work dealing with
time delay in telemanipulation is [90] but, since force feedback was not used,
no stability problems due to transmission delay were present. In [91] the force
reflection scheme was proposed and force feedback was used for the first time
in presence of non negligible time delay. The scheme is very intuitive: the
master transmits to the slave the position information and the slave feeds
back to the master the force information. The instability due to the time de-
lay was evident: delays of the order of 0.1 sec were shown to destabilize the
overall system. In [145] the position error scheme is proposed: master and
slave exchange position information along the communication channel and
the forces applied to the robots depend on the difference between the exchan-
ged positions. Also in this case even a small communication delay destabilizes
the overall scheme. In [273] some predictive control strategies are used. In
particular, the well known Smith predictor is used at the master side to pre-
dict the slave response and a simple PD controller is used at the slave side.
Nonetheless, in order to use the Smith predictor, a perfect knowledge of the
delay is needed and instability can arise in case the amount of time delay is
not perfectly known; moreover, the fact that the slave has to interact with
the environment introduces some further limitations in the scheme. In [155]
the four-channel architecture was proposed. This is a very general telemani-
pulation scheme in which both force and velocity information is exchanged
between master and slave. This scheme is very good since the slave perfectly
tracks the master and the contact force between the slave and the environ-
ment is perfectly reflected at the master side in case there is no delay in the
communication. On the other hand, when some delay is present in the trans-
mission of information between master and slave sides, performances of the
system dramatically decrease and instability can arise. In [235] some sliding
mode techniques were adopted to deal with uncertainties and with the non
negligible time delay. The scheme works very fine in case the slave is not in-
teracting with the environment: a good tracking is achieved and the scheme
is stable independently of the time delay. On the other hand, when the slave
interacts with the remote environment instability can arise. In [343] both ma-
ster and slave are driven by an adaptive motion/force controller and position
and force setpoints are exchanged. The performances of the scheme are very
good in case there is no communication delay. When a non negligible delay is
present, the system is still stable in case there is no interaction between the
slave and the remote environment but, in case of interaction, the telemanipu-
lation scheme can turn to instability.

A bilateral telemanipulation system is basically a robotic system for interac-
tion where, in addition to the usual problems related to control of interaction,
there is another problem related to the presence of a communication delay
between master and slave sides. Passivity theory has been exploited to tackle
the destabilizing effect of the delay. In [7] scattering theory has been used to
achieve a lossless communication channel independently of any constant trans-
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mission delay. In [215] this strategy has been further developed, the concept
of wave variable has been introduced and the problem of wave reflection ari-
sing in scattering based communication channels has been addressed. Several
control schemes based on passivity and on wave variables have been proposed
in the literature; in [210] wave variables are coupled with predictive control
in order to improve performances while preserving a passive behavior in pre-
sence of communication delay and in [52] a passivity based control scheme to
guarantee position tracking is developed. In [249] the PO/PC strategy is ap-
plied to bilateral telemanipulation and in [309, 310, 311] a construction, based
on wave variables, to extend the perception that can be achieved through a
telemanipulation system is presented. For a deeper overview of the literature
and a comparison of the various telemanipulation schemes see, for instance,
[124, 10, 197].

In Chap. 3 it has been shown that passivity theory and port-Hamiltonian
formalism can be profitably used for the control of interacting systems. In this
chapter it will be illustrated how to use the geometric scattering introduced
in Sec. 1.5 and the port-Hamiltonian based control of interaction in order
to achieve an telemanipulation scheme which is intrinsically passive indepen-
dently of any communication delay and of the interaction with any passive,
possibly unknown, remote environment [299]. Port-Hamiltonian based telema-
nipulation allows to describe a very huge class of telerobotic systems where
master and slave can be any kind of mechanical systems, as robotic hands
[271]. Furthermore it is shown how to use the techniques reported in Chap. 3
in order to consider digital controllers and discrete communication channels
like the Internet. A discrete scattering based communication channel is defined
and a communication strategy such that passivity is preserved independently
of communication delays and packets losses is developed [263, 298]. Even-
tually, a passivity preserving interpolation algorithm to rebuild lost packets
proposed in [261] is illustrated.

4.2 Port-Hamiltonian Based Bilateral Telemanipulation

4.2.1 An Energetic Analysis of a Bilateral Telemanipulation
System

A bilateral telemanipulation system is a robotic system for interaction. It con-
sists of a robotic interface that allows a human operator to interact, namely
to exchange energy, with the environment. A schematic representation of a bi-
lateral telemanipulation system is given in Fig. 4.1. As usual, the half arrows
represent energy exchange in bond-graph formalism [237, 141]. The human
operator interacts, through a robotic interface, the master, with a, possibly
unknown, remote environment and the interaction is regulated by the teleo-
perator. In Chap. 3 it has been shown that a stable control of interaction
with any passive environment can be achieved if the controller is an intrin-
sically passive system and it is connected in a power preserving way to the
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Fig. 4.1. A schematic representation of a telemanipulation scheme
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Fig. 4.2. A detailed representation of a generic bilateral telemanipulation scheme

local robotic interface. Furthermore, it has been shown that port-Hamiltonian
formalism allows to take into account also possible nonlinearities of the robo-
tic interface very easily and provides a unique framework for modeling and
controlling interacting systems. Since intrinsic passivity guarantees a stable
behavior both in case of free motion and interaction with unknown environ-
ments, we would like to build a telemanipulation scheme that enjoys this
appealing property and therefore we would like to apply the same techniques
used in Chap. 3 to the implementation of a bilateral telerobotic scheme. Since
the human operator can be considered as a passive system during interacting
tasks [123] and since the master device is a passive mechanical system, it is
sufficient to implement the teleoperator as an intrinsically passive system and
to connect it in a power preserving way (e.g. standard negative feedback, see
Sec. 2.3.2) to the master robot.

The teleoperator can be decomposed in four main subsystems: two control-
lers, a communication channel and a robot. A more detailed representation of
a generic bilateral telemanipulation scheme is given in Fig. 4.2.

In bilateral telemanipulation systems the interaction between the master
and the remote environment takes place through the communication channel.
In energetic terms, the master does not exchange energy directly with the
environment but energy reaches the remote side through the communication
channel. When the energy arrives to the remote side, it is delivered to the
slave, which uses it to perform the desired task and which directly interacts
with the remote environment. Thus the master receives the energy by the
human operator and it exchanges energy with the communication channel
while the slave receives the energy by the communication channel and it in-
teracts with the remote environment. It is then necessary to control both the
interaction between the master and the communication channel and between
the slave and the remote environment and, therefore, it is necessary to en-
dow master and slave sides with controllers that regulate the interactions of
the robots. The human operator interacts with the remote environment by
exchanging energy with it through all the subsystems in Fig. 4.2. The feeling
perceived by the user can be deteriorated in several ways (see the next chapter
for more details) the most critical of which is the rise of unstable behaviors
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of the telemanipulation system. Instability can be avoided by implementing
an intrinsically passive scheme. Since master and slave are passive mechani-
cal systems, in order to implement an intrinsically passive telemanipulation
system, it is sufficient to passively implement the controllers for the robotic
interfaces and the communication channel through which energy is exchanged
and to interconnect in a power preserving way all the components.

4.2.2 Passive Control of Interaction

In Sec. 3.2 it has been shown a very effective control architecture to achieve
an intrinsically passive control of interaction: the IPC. This control strategy
can be successfully adopted in the implementation of a bilateral telemanipu-
lation scheme and, therefore, the local controllers for master and slave will be
implemented as IPCs and the control structure both at master and slave side
is the one represented in Fig. 3.1. At the master side the plant is the robot
and the human operator plays the role of the supervisory system since it in-
jects the energy required to perform a certain task while the communication
channel plays the role of the environment since the IPC controls the exchange
of energy between the master and the transmission line. At the slave side,
instead, the plant is the robot while the supervisory system is the communi-
cation channel, since the slave side receives the energy necessary to perform
a certain task from the master side through the communication channel. The
remote environment plays the role of the environment since the IPC controls
the interaction, i.e. the energy exchange, between the robot and the remote
environment. Summarizing, by using the IPC as local controllers it is possi-
ble to guarantee a stable behavior in the interaction between the master and
the communication channel and between the slave and the remote environ-
ment. The port-Hamiltonian framework can be exploited to model master and
slave sides. In fact, the robots are mechanical systems that can be modeled
as port-Hamiltonian systems and the IPCs, as shown in Sec. 3.2, can be in-
terpreted as virtual physical systems and, therefore, they can be modeled as
port-Hamiltonian systems interconnected in a power preserving way to the
robots that they control. Thus, since Proposition 2.29 holds, both master and
slave sides can be represented as port-Hamiltonian systems and, consequently,
they are passive and they can be described by:

& = (J(x) = R(x))5E + g(x)u
(4.1)

where
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Fig. 4.3. A possible implementation of a communication channel for force reflection

the power ports (uep, yer) and (ur, yr) are used to exchange energy with the
communication channel and either with the human (for the master side) or
the environment (for the slave side) respectively.

Remark 4.1. We model master and slave sides as explicit port-Hamiltonian
systems because this is sufficient for considering the most commonly used
telemanipulation setups and because this allows to keep the computations
reasonably simple. Nevertheless all the results provided in this chapter can be
straightforwardly generalized to the case where master and slave sides needs
to be modeled as implicit port-Hamiltonian systems.

4.2.3 Passive Communication Channel

Since in bilateral telemanipulation the slave has to track the master motion
and the master has to feel the contact force between the slave and the remote
environment, one of the first communication strategy used was to transmit
velocity information from the master to the slave and force information from
the slave to the master. This kind of communication channel is represented
in Fig. 4.3; 6,5 and b, represent the constant communication delays in the
transmission from master to slave and from slave to master respectively, v,y (t)
and v,(t) represent the velocity at the master and at the slave side respec-
tively and F,,,(t) and F(t) represent the force at the master and at the slave
side respectively. Unfortunately when using this kind of transmission line,
even some small delay in the communication between master and slave can
destabilize the system [91]. This destabilizing behavior can be attributed to
the communication channel and it is not dependent on the particular kind
of controller used to command master and slave. Making a passivity analysis
of this kind of communication strategy, it is possible to understand whence
instability comes. We will slightly generalize the communication strategy re-
ported in Fig. 4.3 and we will assume that the master and slave exchange m
dimensional power variables: the master transmits to the slave a flow while
the slave transmits back to the master an effort. Thus:
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fs(t) = fm(t - 6ms)
(4.2)
em(t) = es(t — bsm)

where 6,,s and s, are the delays relative to the communication between
master and slave and the other way around. Suppose that the communication
channel connects two dissipative, and therefore strictly passive, elements that
are modeled by

e; = Bf; i=m,Ss

where B is a m X m positive definite matrix.

Proposition 4.2. The communication strategy reported in Eq.(4.2) leads to
a non passive communication channel.

Proof. The power flowing in the communication channel is given by:
P = eﬁ(t)fm(t) - ez(t)fs(t)

By simple algebraic manipulations it follows that:

P = SehOem(t) + 5 A BT Bhn(t) + ()T ~ B)fn(t)-
5 (Emlt) = B (®)7 (em(®) =~ Bfn(t)) + 3l (Bhes(t) + 3 F7 (0BT B 1)+

FT()(B ~ D)1 (1) — 5(ea(t) + BA() (ealt) + BED)
(4.3)

where I represent the m x m identity matrix. Since Eq.(4.2) holds, Eq.(4.3)
can be rewritten as:

P = eq,(tem(t) + fT(0)BTBLs(t) + e, () = B) fin(t) + €5 (£)(B — 1) f(t)—

3 em®) = Bl (em(t) = Bfn(t)) = 5(es(t) + B (es(t) + BLO)

t

a1
sa| [ sm@s B [

t_ésm

e )en(r)r

- 67715

(4.4)

Defining the lower bounded stored energy function H and the power dissipa-
tion Py;ss as:

t t
H=2| [ OB B+ [ e etryar
at Ji—s,,. 2 t—8um 2

and
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Puiss = e3,(t)em (t) + fT ()BT Bfo(t) + ef,(t)(I = B) fin(t) + X (8)(B — I) fu(t) -

5 (Emlt) = B0 (em(0) = Bfn(t)) = 5(es(t) + BLE) (es(t) + B (1)
the following relation follows:

p=" . (4.5)
which expresses the energetic behavior of the system. Recalling Def. 2.11,
a system is passive if and only if the incoming power P is either stored or
dissipated. However, specific choices of the input variables f,(t) and es(t)
can lead to negative values of Py;ss and this means that the communication
channel can produce energy and that therefore it is not passive

Thus the communication channel implemented using the strategy reported in
Eq.(4.2) leads to an active and, therefore, potentially destabilizing subsystem.
Even if the master and the slave side are passive, the communication chan-
nel can introduce, in presence of non negligible communication delays, extra
energy into the system and destabilize it. On the other hand, it is still possible
to use this kind of channel in bilateral telemanipulation. In fact, it is sufficient
to insert a sufficient amount of damping at master and slave side in order to
be able to dissipate the energy that can be introduced by the transmission
line, as reported in [215]. However, this is not a good solution since it leads to
over damped systems which can achieve very limited velocities and very poor
performances.

In Sec. 4.2.1 it has been shown that a bilateral telemanipulation system
is nothing else than a robotic interface that allows the human operator to
interact with a remote environment. Furthermore, in Chap. 3 it has been ex-
plained that interaction in nothing else than exchange of energy. The aim of
the communication channel is to transfer energy from the master side to the
slave side. A logic consequence of a delay in the transfer of energy is that the
interaction between the human operator and the remote environment will be
delayed. However, it is not clear why a delay in the delivery of energy should
cause production of energy and an unstable behavior. Why, then, the commu-
nication strategy reported in Eq.(4.2) leads to a mon passive communication
channel from a physical point of view?

In the communication channel represented in Fig. 4.3 each side transmits
to the other side a power variable. The power delivered at the master side,
therefore, is equal to the product of the power variables at the slave side.
Assume, for simplicity, that ,,s = 85, = 6. Since the master transmits energy
to the slave, we expect that the power at time ¢ at the slave side is equal to
the power injected into the communication channel at time ¢ — ¢ at the master
side, namely:

eg@(t - 6)fm(t - 6) = eZ(t)fs(t) (46)
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Fig. 4.4. The scattering based communication channel

but, since Eq.(4.2) holds

el (t)fs(t) = ef (t+ ) fn (t — 6) (4.7)

Thus, transmitting power variables, leads to the product of efforts and flows
referred to different time instants and therefore to a loss of power consistency
which can cause, as formally proven in Proposition 4.2, production of extra
energy.

It is possible to use scattering theory to implement a passive scattering
based communication channel . It has been proven in Theorem 1.35 that the
power flow can be split into two scattering variables that represent an inco-
ming and an outgoing power wave. The main idea behind the implementation
of a scattering based communication channel is to split the power flows at
master and slave sides into scattering variables and to transmit through the
communication channel these power waves instead of power variables. In this
way, the transmission line is use to transfer directly power and not power
variables that have to be processed in order to get power. The scattering ba-
sed communication channel is represented in Fig. 4.4. where Z = NN is the
symmetric positive defined characteristic impedance of the scattering trans-
formation and it is used to get scattering variables from power conjugated
variables. The following relations hold:

1

() = X (e (t) + ZEnlt) [ s5(0) = X (ealt) + Z1u(1))

(4.8)
5m0) = X en(®) — Z0n(0) | 57(0) = 5 (ea(t) — Z£,0)
and
(1) fn(0) = 5 (5 () 55(1) — 5 (5m(0) 5 (0) = SO - ilsaéwﬁ)
4.9a

(57 (1) (1) = 5llsT O — 37 ()]
(4.9b)
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The communication strategy becomes:

sT(8) = s (t — Sims)
sh(t) = 57 (t = bsm) (4.10)

It is possible to prove the following:

Proposition 4.3. The scattering based communication channel is lossless in-
dependently of any constant communication delay.

Proof. There are two power waves injecting energy into the communication
channel and two power waves extracting energy from the communication chan-
nel; therefore, the power flowing into the communication channel is given by:

1, _ 1, _ 1 1
P = Zllsm @I + Sllss 0N = 5llsm @I = 5 lls3 )11 (4.11)
2 2 2 2
but, since Eq.(4.10) holds, Eq.(4.11) can be rewritten as:
L Ly - o Ly e Ly 2
P = Sllsm@I7 = 5llsm(t = 6ms)I” + llss N7 = 5lls (¢ = bsm)[” (4.12)
Defining as energy of the transmission line:
H= [ Slsa@Pr+ [ Sls(n)Par
t—6ms t—b6sm
it follows that:
dH
P=— 4.13
o (4.13)

which means that the power flowing through the communication channel is
stored, namely that the system is lossless.

Thus, using the scattering variables as transmission variables, it is possible to
implement the transmission as a lossless, and therefore passive, system. The
losslessness of the scattering based communication channel proves the intuitive
fact that a certain delay in transferring energy from one side to the other does
not lead to production of energy. The power is simply transferred from one
side to the other; before reaching the target side, the energy associated to the
scattering variables is in the communication channel, which stores it before
releasing it.

Summarizing, the transfer of energetic information from one side to the
other can be done safely if and only if energy is transmitted directly, as in the
case of scattering based communication channels. Power variables or other va-
riables that yield power after that have been processed, cannot be safely trans-
mitted because the communication delay destroys the relation between the
transmitted power and the received power, as shown in Eq.(4.6) and Eq.(4.7).
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Fig. 4.5. The port-Hamiltonian Telemanipulation Scheme

4.2.4 The Intrinsically Passive Telemanipulation Scheme

Now, all the ingredients to build an intrinsically passive bilateral telemani-
pulation system have been introduced. The scheme is represented in Fig. 4.5
in a bond-graph notation where D;, € and IR represent the interconnection
structure, the energy storage and the energy dissipation of a port-Hamiltonian
system.

Both master and slave are modeled as port-Hamiltonian systems that
are interconnected in a power preserving way to intrinsically passive port-
Hamiltonian impedance controllers (IPC) that allow to regulate the interac-
tive behavior of the robots. Thus, both master and slave sides can be modeled
as passive port-Hamiltonian systems. Furthermore, information is exchanged
through a the lossless scattering based communication channel described in
the previous section. There are two ways to connect the controllers to the
communication channel in a power preserving manner:

1. Computing the effort e and s~ as a function of the flow f and of the
incoming power wave s

2. Computing the flow f and s~ as a function of the effort e and of the
incoming power wave s+

We choose the second option and, therefore, we use IPCs whose power
port interconnected to the communication channel has an impedance causa-
lity (flow in, effort out). In this way we can use the controllers proposed in
Sec. 3.3 when master and slave are anthropomorphic robots or robotic hands.
Nevertheless, all the considerations developed in the following can be genera-
lized to the case in which controllers are interconnected to the communication
channel using the first option.

Using the first option, the interconnection between the IPC and the com-
munication channel consists of computing the input flow f and the outgoing
power wave s~ using the output effort e and the incoming power wave sT.
Thus, at each side, the input of the IPC and the power wave to transmit are
obtained by the following relations:

f(t) = V2N"1sT(t) —e(t) (4.14a)
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s7(t) = V2N ~te — sT(t) (4.14b)

The whole telemanipulation scheme is passive independently of any con-
stant transmission delay. Passivity is sufficient to ensure a stable behavior of
the telemanipulation scheme both in case of free motion and of interaction
with the environment. The use of scattering variables to implement a lossless
communication channel allows to obtain an intrinsically passive bilateral te-
lemanipulation scheme but, on the other hand, gives rise to another problem
that has to be handled: wave reflection. In physics, waves are reflected at jun-
ctions and terminations, that is at points where the impedance of the wave
carrier changes. Since scattering variables represent power waves, this problem
arises when using scattering based communication channels in telemanipula-
tion. The wave reflection does not affect passivity of the overall scheme since
it does not lead to production of energy but simply to a “bouncing” of the
energy between master and slave side. On the other hand, this phenomenon
corrupts the useful information flow and leads to an oscillatory behavior that
can greatly decrease the performances of the overall system. It is therefore ne-
cessary to address the problem of matching the impedance along the overall
system; this can be done either by a proper choice of the parameters of the
controllers or adding additional elements.

In Sec. 4.2.2 it has been shown that master and slave sides can be repre-
sented as port-Hamiltonian systems. The IPCs are chosen with an impedance
causality (flow in, effort out) at the port connected to the communication
channel and, therefore, master and slave sides can be represented by a port-
Hamiltonian system of the form:

i = [J(z) = R(x)] G + g(x) f
(4.15)

OH

T(m)g

e=yg
where f and e are the power variables representing the power exchange bet-
ween the controller and the communication channel and where, in order to
keep the notation simple, we have omitted to indicate the power port rela-
tive to the interaction with the environment (or with the human) since it
doesn’t play any role in the wave reflection phenomenon. From the scattering
transformation reported in Eq.(4.8) it is possible to express power conjugated
variables as a function of scattering variables:

e= (st 4+57)
(4.16)

Thus, replacing Eq.(4.16) in Eq.(4.15), it is possible to obtain the port-
Hamiltonian model of either master or slave side in terms of scattering varia-
bles:
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i = [J(2) — R()]GF + J59(@)N~ (st —s7)

(4.17)
LN(s+57) = g ()22
By simple calculations, Eq.(4.17) can be rewritten as:
& = [J(z) = R(z) — g(z)N"'N~'g" ()] GF + V2N~ g(z)s*
(4.18)

s™=V2N 1T ()% — sF

It can be directly seen from Eq.(4.18) that the incoming power wave s™ is
directly fed through the output s~ ; this means that the incoming power wave
is reflected back on the communication channel. In order to eliminate the
problem of wave reflection, it is necessary to match the impedances of the
physical media crossed by the scattering waves. To this aim, we modify the
IPC and to add a feedthrough term on the output of the controlled system.
In this way, the robots controlled by this new IPC can be represented by the
following extended port-Hamiltonian system:

& = [J(z) = R(x)| % + g(2)f
(4.19)
e = g7 (2) 2 + B(a)f

where B(z) is a positive semidefinite matrix that represents a newly added
dissipative term. In this case, using Eq.(4.16) and Eq.(4.19) it follows that:

N N1 H
5 = (G5 + B ) g @) 5+ (N BN ) BN - N)sh)
(4.20)
In order to avoid the wave reflection, it is sufficient to set:
B(x)=2Z (4.21)

that is, the newly added feedthrough term has to be set equal to the impedance
of the communication channel. In this way, Eq.(4.20) becomes:

orr
ox

Nfl

In this way, there is no power reflection along the communication line since the
impedances of master and slave side match the impedance of the scattering
based transmission line.

It is possible to give a very intuitive physical interpretation of the im-
pedance matching procedure. The feedthrough term added in Eq.(4.19) is a
dissipative element that dissipates all the power that the system would try
to reflect. If B(z) = Z then all the power that the system tries to reflect is

T(z) (4.22)
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Master/Slave IPC Transmission Line

Fig. 4.6. Teleoperator with anthropomorphic robotic arms

absorbed, while if B(x) # Z, only a part of the power that the system tries to
reflect is absorbed. This intuition appears even clearer, if some specific IPC
is considered. In bilateral telemanipulation schemes, it happens quite often
that master and slave robots are anthropomorphic robotic arms and, there-
fore, the IPC structure proposed in Sec. 3.3.1 can be fruitfully adopted. The
impedance matching problem can be solved by adding a damper between the
virtual object and the transmission line, as shown in Fig. 4.6. The spatial
springs allow to assign to the interaction a desired compliance and the virtual
object allows to inject some damping into the system without the need of ve-
locity measurements. Finally, the damper inserted between the virtual object
(usually called line damper) and the communication line has to be tuned in
order to get perfect impedance matching.

In order to check the validity of the intrinsically passive port-Hamiltonian
based bilateral telemanipulation scheme, some simulations are shown. Consi-
der a one-dimensional teleoperator. Each robot is a 1 DOF system, a simple
mass, and it is controlled by means of the IPC proposed in Sec. 3.3.1. The
communication channel is implemented by using the scattering variables, as
illustrated in Sec. 4.2.3. The communication delay is equal to 1 sec in both
senses of transmission. In the first simulation, the human operator applies an
impulsive force to the master which, because of the damping injected through
the IPC, stops at a certain position. In Fig. 4.7 the behavior of the systems is
shown. In figure (a) the positions of master and slave in case no line damper
has been added to the IPC are shown. The behavior of the system is stable
even if the communication delay is quite big and the slave reaches, after a
certain delay, the position of the master. However, the performances of the
system are quite bad since both master and slave are characterized by an
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Fig. 4.7. Free motion with and without impedance matching. Positions of the ma-
ster (solid) and of the slave (dashed)

tie s}

Fig. 4.8. Interaction task. Positions of the master (solid) and of the slave (dashed)

oscillatory behavior; this is due to the wave reflection phenomenon associated
to the scattering based communication channel. In figure (b) the behavior of
the overall system is shown in case the line damper has been added to the
controllers. In this case the oscillations disappear, and performances are much
better, since wave reflection has been removed . The next simulation is imple-
ments an interaction task. The master is pushed with a constant force and the
slave interacts with a wall (implemented as the parallel of a stiff spring and
of a damper) posed at the position = 0.3; positions of master and slave are
shown in Fig. 4.8. The slave stops when it meets the wall and the interaction
takes place in a stable way because the robot is controlled by the IPC. The
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Fig. 4.9. Position of the fingers

force of interaction is reflected back to the master side and compensates the
force applied to the master. In fact, the position of the master gets constant
even if the operator is keeping on applying a force. The mismatch between
master and slave position is due to the communication delay. In fact, it takes
some time for the contact force information to travel from the slave to the
master side and during this period the operator keeps on moving the master.
Nevertheless, the behavior of the overall system is stable due to the intrinsic
passivity of the telemanipulation scheme.

4.3 Complex Telemanipulation Systems: Telegrasping

The intrinsically passive telemanipulation scheme illustrated in the previous
section works very well in systems where master and slave are anthropomor-
phic robot. However the scheme is much more general and can be applied also
to complex telemanipulation systems. The aim of this section is to illustrate
the application of the concepts reported in Sec. 4.2 to a complex telerobotic
system: a telegrasping system. In this kind of telemanipulation systems, ma-
ster and slave are grippers; the slave gripper has to follow the behavior of the
master gripper and it has to reflect to the master the contact force due to the
grasping of an object. In Sec. 3.3.2, it has been show a possible IPC structure
for the control of interaction of multi fingered robotic hands. In the controller
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Fig. 4.10. The power at master side

proposed, illustrated in Fig. 3.7, there are n + 1 power ports: one of them is
the relative to the virtual point and the others are the power ports we can use
to vary the rest length of the variable springs that connect the n fingers to
the virtual object. The length ports of the variable springs are used to vary
the relative position of the fingers and the virtual port is used in order to vary
the position of the whole gripper.

The main idea in the implementation of the telegrasping system is to
transmit not only the power relative to the port of the virtual point but
also that associated to the ports of the springs rest length. In such a way all
the actions made on the master gripper, namely a variation of the relative
position of the fingers or a variation of the position of the whole system, can
be transmitted to the slave side and each force applied to the fingers of the
slave gripper, can be reflected to the master side. Thus, in order to implement
a telegrasping system, n + 1 scattering based communication channels have
to be used: one for the virtual point, similarly to what has been done in
the previous section, and n for the ports associated to the rest length of the
spatial springs that connect the fingertips to the virtual object. The problem
of wave reflection arising with the use of scattering based communication
channels has to be solved and this is done as shown in Sec. 4.2, namely adding
feedthrough dissipative terms that match the impedances of the scattering
based transmission lines. Consider a simple gripper with two fingers controlled
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Fig. 4.11. The power at slave side

by the IPC proposed in Sec. 3.3.2. A port-Hamiltonian model of the controlled

system is given by:

i =[J(z) — R(z)]
e g7 0
e, | =120 ng1
€l, 0 0

OH

ox

g0 0 f
+10g, O i
00 g, fis
(4.23)
9H
Ox

The power port (e, f) is associated to the virtual point of the IPC and it allows
to inject energy to move the whole gripper, while the power ports (e;,, fi,)
and (e, fi,) are associated to the rest lengths of the fingers and allow to
inject energy in order to change the relative position of the fingers. In order
to be able to use this controlled gripper in a bilateral telemanipulation scheme
it is necessary to add the feedthrough terms that allow to remove the wave
reflection phenomenon. Thus, the new controlled gripper turns out to be:
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g0 0 f
z=[J(x)— R(x)}aa—H +(0g, O n
T\00 g, \fi
(4.24)
e gT B(z) 0 0 f
€ | = 921" 6371: + 0 Bll(x) 0 fll
€ly g?: 0 0 By (l‘) Jiz

If the impedance of the scattering based communication channels used to
transmit the power of the virtual point, and of the springs rest length ports
are Z, Z;, and Z, respectively, the power reflection phenomenon is removed
if and only if B(z) = Z, By, (x) = Z;, and By, (x) = Zj,.

In order to validate the telegrasping scheme proposed, some simulations
are provided. Consider a simple telegrasping system in which each gripper has
two fingers with one DOF. Energy relative to the rest lengths and virtual point
power ports is transmitted through scattering based communication channels
and line dampers have been added to the IPCs controlling each gripper. The
mass of each finger is m = 1 Kg; both the stiffness of the two variable springs
and the one of the interaction spring is equal to 1 N/m. The mass of the virtual
object is m, = 0.1 Kg and the damper is b = 1 Nsec/m. The transmission
line has got a delay of 1 sec and the line impedance is equal to 1. The first
simulation deals with a finger opening task. Some force has been applied to
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Fig. 4.13. The power at master side

the fingers of the master gripper in order to open the hand. All the energy
flowing through the master power ports is transmitted to the slave side. The
situation is illustrated in Fig. 4.9. Performances are very good and the slave
follows exactly what the master does. Furthermore, the behavior of the overall
system is stable, despite of the non negligible transmission delay. It is very
interesting analyze the power graphs relative to the system. From Fig. 4.10
and Fig. 4.11 we can see that all the energy supplied by the supervisor is
used to change the rest length of the variable spring opening in this way the
two grippers. In the next simulation the master gripper has been first opened
and then moved in the workspace. The situation is illustrated in Fig. 4.12.
Analyzing the power flow in the system it can be seen that, when the master
gripper is moved in the workspace, there is also a flow of energy through the
virtual point power port. The situation is illustrated in figure Fig. 4.13 and
figure Fig. 4.14. The last simulation is shown in Fig. 4.15. In this case the
master gripper is opened and then closed but, while the master gripper is
being closed, the slave touches an obstacle, placed at a distance do = 0.02 m
from finger 2, and at distance d; = —0.05 m from finger 1. It is possible to
see that there is a good force reflection since the master, on which a force is
applied to close the fingers, stops after the obstacle is touched at the remote
side. It is also possible to see that, when a zero force is applied at the master,
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the two devices assume the same configuration because of the energy reflected
from the slave side.

4.4 A Digital Scheme for Intrinsically Passive
Telemanipulation

The intrinsically passive port-Hamiltonian based telemanipulation scheme
proposed in Sec. 4.2 considers continuous time port-Hamiltonian controllers
and communication channels characterized by a constant delay. In this section
we show how to extend the scheme in order to take into account the digital
nature of controllers. Furthermore, since a very appealing and cheap commu-
nication channel is the Internet, the energetic behavior of a packet switching
transmission line is studied. There are two main problems to address: the
strongly variable time delay and the possible unreliability due to the loss of
packets associated with the channel.

The sampled data nature of the controllers can be considered by using the
concepts described in Sec. 3.4. In fact, we can use the discretization algorithm
reported in Sec. 3.4.1 in order to obtain a discrete port-Hamiltonian controller
and to interconnect it by means of the energetic consistent Sample & Hold
strategy described in Sec. 3.4.2 to the continuous plant. Since now the con-
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Fig. 4.15. Position of the fingers in a grasp.

trollers connected to the transmission line are discrete we have to consider
a digital transmission line (e.g. Internet) through which master and slave si-
des will exchange energy. The proposed scheme is illustrated in Fig. 4.16 in
a bond-graph notation. The symbols € and IR represent the energy storing
and energy dissipating part of each port-Hamiltonian system, both for the
continuous plant and for the discrete controller. The barred bonds represent
a discrete energy exchange.

Since we want to consider an Internet-like communication line, we have
to consider a discrete communication channel and we will implement it by
using scattering theory. It is possible to define a discrete time scattering. Each
discrete time power port (either the master or the slave one) of the discrete
communication channel illustrated in Fig. 4.17 is characterized by an effort
e(k) and by a flow f(k). The energy flowing into the system from each port
in one sample period is equal to:

Te' (k) f(k)

We can always decompose the power flow into an incoming power wave and an
outgoing power wave as shown in Theorem 1.35 and, by discrete integration,
the energy flowing during one sample period from each power port is:

H(k) = T (B)1(F) = 5 15" ()] — 5 s~ (R}
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Fig. 4.16. The Passive Sampled Data Telemanipulation Scheme.

where T is the sample period. Thus we can interpret Z ||s* (k)||? and Z ||s~ (k)|
as incoming and an outgoing energy packets respectively.

The discrete port-Hamiltonian controller is interconnected to the discrete
scattering based communication channel as described in Sec. 4.2.4: at each
sample time the system will acquire the incoming energy quantum %s* (k) and
the discrete effort e(k) and will calculate the discrete flow f(k) and the discrete
energy quantum %s_(k) to transmit through the communication channel. It
is possible to compute s~ (k) and f(k) from s*(k) and e(k) using Eq.(4.14a)
and Eq.(4.14b).

We will use the following notation for the discrete derivative and the discrete
integral:

k—1
dg() = SEFD =IO g 3 g(iyr (4.25)
i=h

where g is a generic sequence. By trivial computations it can be shown that,
in general:

dIf g =g(k) — g(k — h) (4.26)

In the following considerations we will assume that the protocol (e.g. the
Internet protocol) used to implement the communication line doesn’t change
the order of the packets, such as the Internet TCP/IP protocol.

Let 6,5 and &gy, be the delays associated to the communication between
master and slave and slave and master respectively. The following result can
be proven:

Proposition 4.4. In case of fixed transmission delays and no loss of packets,
the discrete communication channel is lossless in a discrete sense.
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Proof. The power flow into the communication channel is:
P(k) = 3llsmB)I1P + 3llss ()2 = 5lls5 (0)I? = 5lls3 ()12 (4.27)
but
5H(k) = sk — 6ms) 5 (k) = 7 (k = Som) (4.28)
Using Eq.(4.26), we can write

P(k) = 5lls5m (B)I* = 5ll55 (k = 8ms) I + 355 (W)I1* = 355 (k — 8sm) |

(4.29)
We can, therefore, write:
1. 1., _
P(k) = dlIi_s,,, (51 (s)l?) + Ts,,,, (G (s)11P)] (4.30)
Defining as energy function of the communication channel
1, _ 1, _
H(k) = I s,,, (Gllsml®) + s, (51155 1) (4.31)
we have that:
P(k) =dH (k) (4.32)

which means that all the power flowing through the communication channel is
stored and that, therefore, the communication channel is lossless in a discrete
sense.

In Internet-like communication channels some packets could be lost during
transmission because of some traffic problems or some troubles in the servers
each packet has to cross. Let us investigate the energetic behavior of the
communication channel in the case one packet is lost in the transmission
between master and slave. We propose to adopt the following Replace with
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a Null packet (RNP) strategy: when a packet is not delivered on time, it is
replaced by a null packet. Thus, in case a packet is lost, we have that a 0 signal
is received at the slave side instead of the correct value, namely s (k — 6,5)
and that, therefore:

PR) = llsm B + 5llss (B)IP — Sllsh (R)I? (43)

‘We can write:

P(k) = llsm(B)I1* + 3lls5 (R)I* = 5llsk (R)I1* = 5lsn (R)II* + 51155 (k)1 —
—3lls5 (k= 8sm)lI” = 3l (k = 6ms) 1> + 3lls70 (k = 8ms)II* =

= dH (k) + 355 (k — 6ms)|1?
(4.34)

We have an additional term which is positive definite and which represents
a dissipated power. When a packet is lost in the transmission the channel
dissipates an energy quantum corresponding to the value that it should have
received from the master side. The behavior of the system, nonetheless, keeps
on being passive.

Let, now, P,,s and Py, be the set of time instants in which a packet in the
communication between master and slave is lost and the set of time instants
in which a packet in the communication between slave and master is lost
respectively. The energetic behavior of the channel is:

P(k) = dH (k) + a(3|sm(k — 6ms)|1?) + B(2Is5 (k — 6sm)]1?) (4.35)

_ 0k¢7’msﬁ_ 0k ¢ Pom
CTV1kePn, P T 1kE P

where a and 3 are coefficients that activate a power dissipation of the channel
when a packet is lost.

Let us now consider the case in which the delay between master and slave
is variable. Suppose that h is the minimum delay of the transmission between
master and slave. Because of the variable delay, it can happen that one packet
is so much delayed that the receiving queue is empty for some sample periods.
In this case we can always write:

P(k) = 3lls (B)I* + 35 (R)II? = glls:h, (R)|* =
= 3llsm(B)I* + 3llss (B)I* = 5lls5 (k — ) I* = 5llsm (k — B[P+ (4.36)
+glls (k= 1)|1> = dH (k) + 5ls;,,(k — h)[|? = dH (k) + Pa(k)

where now we define:
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HR) = [T (5 (5)%) + T, (5 (55)7) (4.37

as the energy function. We dissipate the energy quantum corresponding to
the packet we were expecting. At a time k + j the system receives the packet
whose corresponding energy quantum was dissipated at time k. In this case
it will be:

P(k+j) = dH(k +j) = 5llsm(k = W) + 5llsi (k +j = h)||* = (4.38)
=dH(k +j) + Pp(k + j) + Pa(k + j) |

At sampling period k + j, the delayed incoming packet injects an extra
energy TP,(k + j), on the other hand the missed packet 1||s..(k +j — h)]|?,
since we are assuming that only one packet can be transmitted per each sample
period, causes the dissipation of T P;(k + j) energy. We can see that the delay
of a packet first implies a dissipation of an energy quantum and then an energy
injection of the same amount of energy. It is, then, clear that

o0

> Py(n) + Pa(n) =0

n=0

and, therefore, there is no global production of extra energy.

Both in case of fixed and variable delay the discrete scattering based com-
munication channel is lossless; the main difference is that when we have a
constant delay energy is neither produced nor dissipated but simply stored,
while when we have a variable delay the energy quanta associated to the de-
layed packets are first dissipated and then injected back to the system. Since
the variable delay introduces a finite extra-delay on the packets, passivity
is preserved. One could expect that the energy injection leads to some non
passive (and therefore potentially unstable) behavior but this is not the case
since before being injected the extra energy has already been dissipated. In
case some packets are lost the behavior of the communication channel is dis-
sipative since we do not have any energy injection to recover the dissipated
energy packets. It is now straightforward to state the following

Proposition 4.5. Using the RNP strategy, the discrete scattering based com-
munication channel is passive even in case of variable time delay and of loss
of packets.

Another possible way for dealing with unreliable networks, is the so called
Hold the Last Sample (HLS) strategy, where, in case a packet is not received
on time, it is replaced by the value of the packet that has been previously
received. This strategy is not suitable for being used in port-Hamiltonian
based telemanipulation because it can render the communication channel non
passive in case of packet loss. In fact, suppose again that a packet is lost in
the communication between master and slave sides. Using the HLS strategy,
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we have that at time k the non received packet s, (k — 65) is replaced with
the previously received one, namely s, (k — 6,5 — 1) and that, therefore:

1, 1, _ 1, 1, _
P) = 550 + 555 I = S5y (k= B> = S 1570k = b = D

(4.39)

we can always write

1 1 1 1
P = 5 lsa ) + 55z (0 = 5153 0k = bamll? = 5 llsi (b = )|+

1 1
5 50 = o) = S 157, (s — s — DI =

= AH(R) + (5 s (5 = Bone) |2 = 555 (6 — Brne = D))

(4.40)

where H (k) is defined as in Eq.(4.37).

The term term between brackets can be negative if the energy content of
the lost packet is lower than that of the last packet received and, in this,
case there is production of extra energy and, therefore, the communication
channel has a non passive behavior. The passivity destructive behavior of the
HLS strategy is magnified in case more packets are lost in the communication
between master and slave and viceversa and in case of variable delay.

In order to illustrate the validity of the results obtained in this section, some
simulations are proposed on a simple one degree of freedom telemanipulation
system. Each robot (master and slave) is a 1 DOF system, a simple mass and
is controlled by a sampled IPC, connected in a power consistent way to the
continuous robot. The communication channel is implemented by means of
the digital scattering strategy and the RNP strategy is used for dealing with
packets loss and variable delay. In the first simulation we applied an impulsive
force to the master and we plotted the positions of master and slave; the delay
is constant and it is equal to 0.5 seconds. The results of this simulation are
shown in Fig. 4.18. We can see that the smaller is the sample period, the
closer is the behavior of the digital scheme to the continuous one, meaning
that the discretization algorithm is well posed. Moreover, we can notice that
the bigger is the sample time the worse are the performances. This is because
the information we are transmitting gets worse; nevertheless the behavior of
the overall system is passive independently of the value of the sample period.
In the next simulation we are considering a communication channel which
represents the Internet. The delay in the communication between master and
slave and between slave and master is variable (with a mean of 0.5 s.) and
in the communication between master and slave every 2 seconds 10 packets
are lost while in the communication between slave and master each 3 seconds
20 packets are lost. Once again we applied an impulsive force to the master
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(a) Continuouscase (b) T = 1ms

(¢) T =10ms (d) T'= 100ms

Fig. 4.18. Free motion with different sample times. Position of the master (conti-
nuous) and of the slave (dashed)

and we plotted the positions of master and slave. The results are shown in
figure Fig. 4.19. The dashed line represents the position of master and slave
in case of constant delay (0.5 seconds) and of no loss of packets. The sample
time is 10 ms. We can notice that the performances decrease but the stability
is maintained because of the intrinsic passivity of the overall scheme. In the
next simulation we implemented an interaction task. The master is pushed
with a constant force and the slave interacts with a wall (implemented with a
spring-damper system) posed at position x = 0.1 m. There is variable delay
and loss of packets in the communication channel in both senses. The position
of master and slave are shown in figure Fig. 4.20. We can see that when the
slave stops when it touches the wall. The force of interaction is reflected back
to the master side and compensates the force applied to the master. In fact
we can see that the position of the master is constant even if the operator is
keeping on applying a force.



4.5 Improving Performances in Intrinsically Passive Digital Telemanipulation 155

(a) Position of the Master (b) Position of the Slave

Fig. 4.19. Variable delay and loss of packets

0 5 0 1 2 > EY » o
o

Fig. 4.20. Position of the master (continuous) ad of the slave (dashed)

4.5 Improving Performances in Intrinsically Passive
Digital Telemanipulation

When using the RNP strategy, loss of packets in the discrete scattering ba-
sed communication channels doesn’t affect the passivity of the overall system
but, nevertheless, it degrades the performances of the telemanipulation scheme
since part of the energy necessary to complete a certain task is not transmitted
but dissipated. Since in scattering based transmission lines the transmitted
information represents a power wave, the packets are not totally uncorrela-
ted and it does make sense to obtain the missed packets by interpolating
the received ones. In this section we introduce a control scheme that is able
to interpolate the received packets for reconstructing the missing ones, and,
consequently, improving performances. Owing to keep the method simple, we
focus on linear interpolation algorithm in our control strategy.
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When we produce an interpolated packet we replace the energy content
of the missing packet with the one of the interpolated one. If the energy as-
sociated to the interpolated packet is greater than the one associated to the
lost one, the interpolation process introduces some extra energy in the com-
munication line, similarly to what can happen when using the HLS strategy.
The interpolation process, therefore, must be carefully addressed in order to
preserve the passivity. By means of loss rate and other statistical indicators
deriving from an analysis of the communication channel, we know which is, in
average, the maximum number of consecutive packets that can be lost in the
transmission and, consequently, the maximum number of consecutive packets
that have to be interpolated; assume that this number is n. To the aim of per-
forming a passive interpolation process, we need to endow the communication
channel with transmission and receiving buffers.

In order to avoid energy production in the interpolation process, we need
to know the maximum amount of energy that can be used to perform the
possible interpolation of missed packets. The aim of the transmission buffer
is to endow each packet with this extra information: the total energy H* of
the next n packets that will be subsequently transmitted. The transmission
buffer, therefore, will introduce an extra delay on n+1 sample periods in order
to endow each packet with the extra information required. The interpolation
process will be performed in the receiving buffer and, since the maximum
number of packets to be interpolated is n, its dimension will be, therefore,
n + 2 and it will introduce a delay of n + 2 sample periods. Assume that
we lose n packets, namely we receive nothing between ¢t = (k — n — 1)T and
t = (k—1)T. At t = kT we can perform the interpolation between the received
packets st (k—n—2) and sT (k) (both present in the receiving buffer) to obtain
the lost packets. In order to avoid any extra energy production, we use the
information H*(k—n—2) embedded in the packet received in t = (k—n—2)T.
We calculate the maximum energetic content € that each packet can have by:

HYk—n—-2
€= ¥ (4.41)
n
Then we tune each interpolated packet in order to meet the energetic con-
straints.

Remark 4.6. Since there is not any information on the distribution of the
energy among the lost packets, we fix the same energy bound for each packet
to interpolate.

We can write the following algorithm:

1. Read H*(k — n — 2), the energy available for the interpolation

2. Calculate the energetic content of each interpolated energy quantum: e =
H%(k—n—2)
n
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3. By linear interpolation between s*(k) and s*(k —n — 2) obtain 57 (i),

withie[k—n—1,k—1].
4. Obtain the packets to replace the missed ones, keeping into account ener-
getic constraints:

L1 4 \12 _ 2e
a) if 5”31 (2)|[]°T > € then choose o = ST
else
a=1
end

b) s} (i) = asf (i)

The total amount of energy H; of the interpolated packets is:

k—1 1 k—1 1
Hi= Y SOl <HE = Y SISt
j=k—m—1 j=k—m—1

The energy introduced in the communication channel by the interpolation
process is bounded by the energy content of the lost packets; no extra energy
is introduced and, therefore, passivity is, intuitively, preserved.

Remark 4.7. If m < n packets get lost it is possible to recover from the energy
content of the m —n received packets the energy available for the interpolation
of the missed packets. If p > n packets get lost, the interpolation algorithm
fails and nothing is done to replace the lost packets; nevertheless, passivity is
preserved and, in this case, the communication channel dissipates the energy
associated to the missed packets.

The communication channel we are using for reliable telemanipulation is re-
presented in Fig. 4.21. TX,, and T X, represents the transmission buffers at
master and slave side respectively and RX,, and RX the receiving buffers at

| PART 1 | PART 2 | PART 3 |

- | s | | 52‘1 ) | Sj

st sti ] N/ | sq | s5
| | Line | |

Fig. 4.21. The Communication Channel
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master and slave side respectively. Let §,,s and 6, the transmission delays
between master and slave and slave and master respectively. Moreover, let
érm and 675 be the delays introduced by the transmission buffer at master
and slave side respectively and 6r,, and 6rs the delays introduced by the
receiving buffer at master and slave side respectively. We now formally prove
that the reliable channel proposed is passive.

Suppose that 1 packet is lost in the transmission between master and slave.
We will use the same notation reported in Eq.(4.25) for the discrete derivative
and the discrete integral. The communication channel can be divided in three
parts as shown in Fig. 4.21. Consider the first part of the communication
channel; we have that the power flow is:

1 1, _ 1 1
Pi(k) = Sllsm®)I? = Sllsm (B)I? + SllsmB)I? — Sllsh(B)1* - (4.42)

Since there is no loss of packets between slave an master, we have:

81 (k) = s, (k — 61m)

5. (k) = 5ty (k= Srm)
and, therefore, if we pose:
k Loty k Lo~
Hi(k) = Ti—sp,, (SN (5m)I7) + Lizsy,, (S (53)[17)]

we have that:
Py (k) = dH, (k)

and therefore the first part of the communication channel is lossless.
Let us now consider the second part of the communication channel; we
have that:

1, 1 1, 1
Po(k) = Sl (R)I* = S1sa (N2 + Sl (RIS llsm (R)IZ - (4.43)

As proven in Proposition 4.5, when a packet is lost and strategy RNP is
adopted, the channel becomes dissipative instead of lossless. Suppose that we
do not receive anything at the slave side at time ¢ = kT. Defining

1

Hy(k) = (s, G I sm0)IP) + s, (5 155 IP)]

we have that
Py(k) = dHs(k) + Py (k)

We have a dissipative behavior and

I
P (k) = 5llsp1 (k = 6ms)[|* > 0



4.5 Improving Performances in Intrinsically Passive Digital Telemanipulation 159

and we dissipate an energy amount equal to:
L, - 2
Has (k) = §H5m1(k — bms)|I°T

Let us now consider the third part of the communication channel. Since one
packet is lost in the transmission between master and slave, suppose nothing
is received at t = kT at the slave side. We have that the power Ps(k) flowing

in the third part of the communication channel is:
Lo+ 2 Ly 2 L, - 2
Py(k) = =5 lIsT W)+ S5 (B)IP = 555 ()]

‘We can write:
L4 o 1.4 9, 1, 2
Po(h) = 5lIsh )P = S lsE (I + 555 ()]~

1, _ 1 1
Sl )7 = S st ()7 = (k) = Sl ()12

where

Hy(k) = dlTE_ g, (ST + Ty, 51T IP)

We will have, therefore, an energy production at ¢t = kT":
1
Hys = Pps(k)T = gHS;rl(k)HQT

At time t = (k+ 6gs)T = hT the lost packet is replaced with the interpolated
one and, therefore, instead of delivering s} = 0 for the missed packet, it will
be delivered sf = sf,. When s} is replaced with an interpolated packet, we
have that:

1 1 1 1
Py(h) = SlIs WP = S lsH0IP + 5 llss I = 5l ()]

We can always write:

Psy(h) =

_ L4 o Ly roviz s Ly 2 Lo Loz - Lyt 2
= SIsEMIP = SIsT @I+ S s I = SIs )+ 5lst B = 5t )]
and, therefore,
1 1
Ps(h) = dHs(h) + 5lls3 (W)]* = 5lls & (A)* = dHs(h) + Pas(h)

By construction Py3 > 0 and, therefore, the interpolation algorithm introduces
dissipation into the system. Now, we will put all the parts of the communi-
cation channel together in order to prove the overall passivity. We have that
the power flowing through the communication channel is:
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P(R) = gllsm B2 = SIsF R + 5llss (B)2] — st (B2 = i

= Py(k) + P2(k) + P3(k)

When a packet is lost in the communication between master and slave, we
have that:

P(k) = d(Hy (k) + Hy(k) + Hs(k)) + Paa(k) — Pya(k) =
= dH (k) + Pas(k) — Pps(k)
Since Py (k) = Po3(k) we have that
P(k) = dH (k)

and therefore the channel has a lossless behavior. At time t = hT = (k+6gs)T
we have that:
P(h) = dH(h) + Pys(h)

We can therefore conclude that the loss of a packet in the transmission line
introduces a dissipative behavior in the communication channel. This result
can be easily generalized both in case more than one packet is lost and in case
the loss is in the communication between slave and master. We can therefore
state the following:

Proposition 4.8. If the RNP strategy is adopted and and the proposed inter-
polation algorithm is used, then the communication channel is passive.

Remark 4.9. Both in case of interpolated and non interpolated communication
channels, we obtain a dissipative communication channel. The improvement
of performances obtained by means of the interpolation relies in the fact that
the dissipated energy is much lower. This leads to a communication channel
closer to the ideal case (i.e. losslessness) and therefore to better performances.

Remark 4.10. Both transmission and reception buffers introduce some extra
delays necessary to endow packets with energetic information and to imple-
ment the interpolation. If the maximum number of possibly consecutive missed
packet is quite small, the delay introduced is not so big and performances im-
provement is worth of it. In case bigger delays have to be introduced, it could
be better, depending on the application, to maintain the dissipative behavior
due to loss of packets rather than introducing a big extra delay.

In order to show the effectiveness of the interpolation algorithm, we simu-
lated a simple 1-DOF telemanipulation system. The master and the slave are
simple masses which are controlled by a discrete port-Hamiltonian controller
and which communicate by means of a packet switching communication chan-
nel. The transmission delay is 0.5 seconds and the sample time is T' = dmsec.



4.5 Improving Performances in Intrinsically Passive Digital Telemanipulation 161
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(a) Master Position (b) Slave Position

Fig. 4.22. Positions of Master and Slave
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(a) Master Position (b) Slave Position

Fig. 4.23. Positions of Master and Slave in case of loss of packets

In Fig. 4.22 is represented the behavior of the system in case there is no loss of
packets during the transmission. We can see that the slave follows the master
after a certain delay.

Next we simulated a loss of packets in the communication between master and
slave. The loss rate is 30%, namely one packet is lost per each three packets
transmitted.

In Fig. 4.23 the behavior of the system is shown. We notice that the beha-
vior of the system is stable since the loss of packets implies a dissipation of
energy within the communication channel and, therefore, the passivity of the
overall system is not compromised, as proven in Sec. 4.4. Nevertheless the
performances are affected by unreliability of the transmission line. In fact, we
can see that the slave position is quite different from the master one. This
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(a) Master Position (b) Slave Position

Fig. 4.24. Positions of Master and Slave in case of loss of packets and interpolation
algorithm enabled

happens because a lot packets are not delivered to the slave and, therefore,
the remote robot does not receive enough energy to perform the desired task.
We can improve the performances of the telemanipulation system by introdu-
cing the interpolation scheme illustrated. In Fig. 4.24 we can see the behavior
of the system in case there is loss of packets in the communication between
master and slave and the interpolation algorithm is enabled. We can see that
the performances of the systems increase and that the position of the slave
is much closer than in the case no interpolation was performed. Furthermore,
the behavior of the overall telemanipulation scheme keeps on being passive
since the interpolation process in implemented in a passivity preserving way,
as proven in Proposition 4.8.

4.6 Conclusions

A bilateral telemanipulation system is a robotic system that allows a human
operator to interact with a remote environment. Passivity theory and the
port-Hamiltonian formalism provide a framework for modeling and control-
ling complex, possibly nonlinear, telemanipulators. In fact, it is possible to
model master and slave robots as port-Hamiltonian systems and to design in-
trinsically passive port-Hamiltonian regulators for controlling the behavior of
the robots. The destabilizing effect of the delay in the communication between
master and slave sides is solved by using the geometric scattering theory that
allows to implement a communication channel which is lossless independently
of any constant communication delay and that allows to transmit geometric
quantities such as flows and efforts in a coordinate free way rather than simple
scalars. The recent work on port-Hamiltonian based telemanipulation focuses
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on position tracking [269], force and velocity scaling [264, 265, 270] and on
the use of predictive control techniques for improving performances [43].
Using the techniques reported in Chap. 3 it is possible to passively di-
scretize the port-Hamiltonian controllers and to consider digital transmission
lines as packet-switching networks (e.g. Internet). A discrete scattering based
communication channel has been defined and a strategy for passively dealing
with packets loss and variable delay has been developed. This allows to safely
use Internet as a medium to interconnect master and slave sides. In [171],
the HLS strategy is used for dealing with variable communication delay and
a compensation algorithm for re-establishing passivity of the communication
channel is developed. In [20] the methods proposed in [171] and in Sec. 4.4 are
compared and a passivity preserving algorithm, alternative to that presented
in Sec. 4.5, is proposed. In [48] the discrete scattering framework has been used
for developing stable haptic display for slowly updated virtual environments.



5

Transparency in Port-Hamiltonian Based
Telemanipulation

5.1 Introduction

Stability is a key issue in the implementation of a bilateral telemanipula-
tion system since both the non-negligible time delay in the communication
between master and slave and the interaction with unknown environments
can destabilize the whole system. In Chap. 4 it has been shown that passivity
theory and port-Hamiltonian systems can be fruitfully used to build an intrin-
sically passive telemanipulation scheme which, therefore, has a stable behavior
both in case of free motion and in case of contact with any passive, possibly
unknown, environment. Scattering theory has been used to build a commu-
nication channel which is lossless independently of any constant transmission
delay and the problem of wave reflection arising when coupling master and
slave side through scattering based communication channels has been solved.
The scheme has been extended in order to take into account the sampled data
nature of controllers in a passive way. Moreover discrete scattering has been
defined and packet-switching transmission lines have been considered. A com-
munication strategy that allows to preserve passivity even in case of loss of
packets and of variable transmission delay has been proposed. Finally, a pas-
sivity preserving algorithm that allows to rebuild lost packets by interpolation
has been proposed.

Intrinsic passivity, and, therefore, a stable behavior, is only a first step
towards the implementation of a telemanipulation system. In fact performan-
ces have to be taken into account to make a telerobotic system effective and
useful for real applications. After stability, transparency is the major goal in
teleoperation systems design. A telemanipulator behaves as better as much
the operator at the master side feels to interact directly with the remote en-
vironment. The whole telemanipulation system (robots, controllers and com-
munication channel) should ideally be transparent and the operator should
not feel its presence at all.

Several researches addressed the problem of transparency. In [339] trans-
parency is defined as a correspondence between master and slave positions and
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forces while in [155] as a match between the impedance perceived by the ope-
rator and the environment impedance. Furthermore, several telemanipulation
schemes that optimize transparency have been proposed. In [47] linear telema-
nipulators characterized by a negligible communication delay are considered
and a generalized control configuration, merging a position feedback and a
force feedback scheme, is developed to provide ideal transparency in terms of
impedances match. In [94] a four channel teleoperator system is considered
and the nonlinear dynamics of the master /human system is approximated by
a linear dynamic model with varying parameters; a control strategy that op-
timizes the transparency of the overall approximated system is proposed. In
[116] telemanipulators characterized by a non negligible time delay are consi-
dered and the effect of local force feedback on the transparency of the overall
system is analyzed. In [93] frequency-domain loop-shaping techniques are used
to provide transparency and stability in a bilateral telemanipulation system.
Transparency analysis is carried on using linear control tools (e.g. Llewellyn’s
criterion for absolute stability) and linear or linearized telemanipulators are
considered.

The aim of this chapter is to enhance transparency of the port-Hamiltonian
based telemanipulation scheme proposed in Chap. 4. In order to be able to
reproduce the remote environment behavior at the master side, it is crucial
to choose a suitable way for representing the dynamics of the contact and, for
the reasons explained in the next section, we will choose the Hunt-Crossley
model.

The port-Hamiltonian framework allows to consider both linear and non-
linear bilateral telemanipulation systems and, therefore, in order to maintain
this advantage, we need a definition and an evaluation method for transpa-
rency that is general enough and that does not rely on linear analysis tools.
Thus, we introduce a general framework for the analysis of transparency ba-
sed on behavioral approach [330, 295] and on the concept of jet space (see
Sec. 1.2.3). The tools used for the definition of this framework are very general
and can be used for the analysis of both linear and nonlinear telemanipulators.
We then present a transparency analysis of the scattering based communica-
tion channel used in port-Hamiltonian based telemanipulation; we highlight
the influence of packets loss and of the transmission delay on transparency
and we propose a way to minimize it.

The impedance controller at master side strongly contributes to the feeling
perceived by the human operator and, therefore, its virtual physical structure
should mimic that of the remote environment the slave is interacting with and
it should be possible to change the parameters of the controller to adapt it to
the various kind of environment the slave can interact with. Thus, finally, we
show how to “shape” the port-Hamiltonian controllers in order to optimize
transparency while preserving passivity of the overall scheme.
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5.2 A Model for the Contact Impedance

A transparent telemanipulation system has to reproduce at the master side
exactly the same interactive behavior taking place between the slave and
the remote environment which depends on the contact dynamics. In order to
maximize the transparency of port-Hamiltonian telemanipulation systems, it
is first of all necessary to have a target dynamics to reproduce at the master
side or, in other words, to model the contact impedance.

Several ways for describing viscoelastic materials have been proposed in the
literature, see [101] for a survey. The simplest way to represent a visco-elastic
contact is the Kelvin-Voigt model, where the environment is represented as
a parallel interconnection of a spring and a damper. This kind of model,
because of its linearity, is not suitable for describing the behavior of soft
materials, such as human tissues, where viscous effects are nonlinear [70, 294,
126]. In [126] a nonlinear model of the contact where the damping coefficient
depends on the relative penetration of the contacting bodies is proposed.
This description, known as the Hunt-Crossley model, gives a more accurate
representation of the contact dynamics than the Kelvin-Voigt model and it
is consistent with the notion of coefficient of restitution, used to characterize
the energy loss during the contact [69, 70]. Thus, in order to preserve a proper
degree of generality and to encompass a large class of environments, we model
the contact impedance between the slave and the environment using the Hunt-
Crossley model.

We will illustrate the Hunt-Crossley model for the one dimensional case
to keep the notation simple; the generalization to the multidimensional case
is straightforward. Consider the interaction of the slave robot with a remote
environment posed in a certain position .. The environment can be modeled
with an impedance causality, namely, it receives a velocity and provides a
force. When using the Hunt-Crossley model, the impedance exhibited by the
environment can be expressed by:

0 T < T,
F(t) = (5.1)
—kx®(t) — bax*(t) x > x.

where F'(t) is the force provided by the environment, x is the penetration
into the object and & is the velocity of penetration; k and b are the elastic
and the damping coefficients that characterize the contact respectively. The
nonlinear dependence of the damping on the position is needed to faithfully
model the force behavior when the robot is abandoning the contact. Finally,
the coefficient «, which is usually close to one, models the dependence of the
contact from the geometric properties of the interacting systems.

Thus, the contact behavior is completely known once the coefficients «, k
and b are determined. These parameters can either be known a priori or they
can be identified starting from force and position measurements. In particular,
if the coefficient « is approximately known, since the contact model is linear
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with respect k and b, it is possible to estimate the elastic and the damping
coefficients by means of the least squares method[138]. For a recent efficient
contact impedance estimation algorithm see [69, 70].

5.3 A Behavioral Framework for Evaluating
Transparency

In Chap. 1 we have seen that the behavioral approach introduced in [330, 243]
is a very powerful tool for modeling and it has been shown that port-
Hamiltonian framework fits very well into this modeling philosophy. Furt-
hermore the behavioral approach has been very useful also from a control
point of view, as illustrated in Chap. 2 where the control as interconnection
paradigm allowed to have many more insights in the energy shaping problem.

In Chap. 3 it has been shown that interaction between physical systems
takes place through localized power ports through which the systems exchange
energy. Thus, in order to understand the way in which the human operator
perceives the remote environment, it is necessary to describe the behavior of
the system at these ports. The aim of this section is to exploit the behavioral
paradigm to describe the behavior at the interaction power port and, hence,
to develop a general framework for the study of transparency in bilateral
telemanipulation systems, both linear and nonlinear.

5.3.1 Analysis of the Port Behavior

For a spatial manipulator with n links interacting with the environment, the
configuration manifold X can be represented with the Cartesian product of
the six-dimensional Lie group SE(3); each Lie group represents the space of
homogeneous matrices expressing the spatial configuration of each interacting
link. Thus:

X =SE®3) x - x SE(3) (5.2)

n times

In case there is only one end effector interacting with the environment, X =
SE(3).

The set of interaction flows for a robotic system interacting with n links is
the following vector space:

F =se(3) x -+ x se(3) (5.3)

n times

where se(3) is the Lie algebra associated to SE(3) and represents the set of
twists at the interaction power ports of the robots. The set of interaction
efforts is given by:
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E =se"(3) x --- x se*(3) (5.4)

n times

where se*(3) is the dual space of the Lie algebra associated to SE(3) and
represents the set of wrenches that can be applied to the interacting part of
the robot (see Sec. A.3). We can now define the Port outcome space as the
product of the interaction flows and efforts spaces, namely:

W=FxE (5.5)

Both the space of interaction flows (twists) and the space of interaction efforts
(wrenches) are independent of the configuration for the reasons illustrated in
Sec. 1.3 and, therefore, the port outcomes space is a vector space independent
of the configuration. In order to take into account configurations, an extended
port outcomes space can be defined:

Definition 5.1 (Extended port outcome space). The extended port ou-
tcomes space s the space:

W=WxX (5.6)

The extended port outcomes space depends on the configuration and it is
NOT a vector space. Since F' and E are given by the Cartesian product of
dual vector spaces, they are obviously dual vector spaces and therefore it is
possible to intrinsically define the instantaneous power of a port outcome;.
Given w = (f,e) € W, the instantaneous power of @, II(w), is the dual
product between e and f.

(@) = (e, ) = S (i, i) fi € se(3), e € se*(3) (5.7)

s
Il
i

The definition of power is independent of the configuration and represents the
power the robot exchanges with the environment it is interacting with.

Let R be the time set and let M® indicate the set of maps form R to the
space M. It is possible to define the integral of a flow given an initial instant
to € R and the corresponding initial configuration z(ty) € X.

Definition 5.2 (Temporal integral of a flow). The temporal integral of a
flow F(-) € F® over the time set R and with initial configuration xq, denoted
bywaD F(7)dr, is the end-effector configuration x(-) € X® such that

Ry (2(1), 2(1)) = (e, F'(1))

and z(tg) = o, where R™1(-) denotes the Lie group right translation and e
denotes the identity element of the Lie group SE(3) x --- x SE(3).

Using the right translation, the configuration results expressed in an inertial
frame, while, if we used the left translation, the configuration would have been
expressed in a frame rigidly connected to the power port. We have now all
the elements necessary for giving the following:
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Definition 5.3. The universe of port-outcomes is the set

U={(z.fe) € WHRy1)(a(t),2(t)) = (e, f(t))Vt € T} (5.8)

The universe of port-outcomes represent all the outcomes that are compatible
with the structure of the system under consideration. The port behavior can
be then defined as B C U, namely as a subset of compatible port-outcomes.
The behavior of a dynamical system can be represented through dynamical
behavioral equations using the concept of jet space, see Sec. 1.2.3. In fact, it
is possible to define the following

Definition 5.4 (extended n'’-order port jet space). The extended n*"
order port jet space is defined to be the space R x W™ where W) = X x W(")
and W™ s the n' prolongation of W, defined as in Eq.(1.4).

Let B be a behavior defined as a subset of the universe of port outcomes. It
is possible to express a particular behavior by means of a set of differential
equations by using the extended n'”* order jet space.

Definition 5.5 (Behavior representable by a differential equation).
The behavior B C U can be represented by a differential equation if there exists
a continuous function AB : R x W™ — RY, called an associated differential
equation to B, such that the subset of R x W ) defined by:

Sas = {(t,w™) | AF(t,w™)=10"} (5.9)
is equal to B.

The previous definition allows to express a behavior, a subset of the universe
of port outcomes, as the kernel of a properly defined map on the n'’-order
extended jet space of the port outcomes.

Both for verification of performances and for control purposes it is useful
to define the distance between two port behaviors. Suppose that a certain
behavior is described by AB and that w,, () is the measured port outcome at
time ¢.

Definition 5.6 (Behavioral deviation). The behavioral deviation at time
t, e(t), of wy(-) from a the behavior expressed by AP is defined to be

e(t) = | ATt prwn (1) (5.10)
where || || is the Euclidean norm of R”

Very often a behavior depends on a certain set of parameters which can be
time varying. In the sequel, this set of parameters will be indicated as:

p(t) = (p1(t), - ,pa(t)) teR (5.11)

and the dependence of a certain behavior on a set of parameters will be made

explicit, when needed, by the following notation: ASP (t)( ).
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Fig. 5.1. A generic teleoperator.

5.3.2 Transparency in Telemanipulation

A port-Hamiltonian based telemanipulation system can be represented by the
scheme in Fig. 5.1. Two ports can be distinguished: the power port (eg, f&) by
means of which the teleoperator interacts with the environment and the power
port (eq, fg) by means of which the human interacts with the telemanipu-
lation system. Both ports are used to describe the interaction between some
mechanical linkages (master and slave robots) and some external systems (the
human operator and the environment). The human operator interacts with
the links of the master robot which correspond to the links of the slave ro-
bots that interact with the remote environment. Thus, the two ports have the
same extended port outcomes space (W, defined as in Eq.(5.6)) and the same
universe of port outcomes (U, defined in Eq.(5.8)).

A telemanipulation system is perfectly transparent if the behavior at the
port (em, fi) is the same as the behavior at the port (eg, fg); in fact, if this
happened, it would mean that the feeling deriving by the interaction between
the slave robot and the environment (determined by the dynamic relation
between eg and fg) is exactly reproduced at the port (ey, fr) and, therefore,
the operator would have the feeling of interacting with the environment as if
he/she were directly doing that. Let B. € U be the port behavior of the
environment and Afﬁ’e(t) :Rx W™ — R be the set of differential equations
representing the port-behavior B, depending on the set of parameters e(t).
Let, furthermore, wy(t) € W be the port outcome at the human port at
time ¢.

Definition 5.7 (Transparency). A telemanipulation system is transparent

if:
AB D wy (1) = 0, (5.12)

Thus perfect transparency is achieved if the port-outcome perceived by the
human exactly reproduces the behavior at the environment port. A measure
of non transparency is given by the deviation of the human port from the
behavior B.. The following transparency deviation index can be defined.

Definition 5.8 (Transparency deviation index). The transparency de-
viation index € is defined by the following relation:

e(t) = 1 AT<O (t pr™wn (1)) (5.13)
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In case of perfect transparency ¢ = 0. To require a certain degree of transpa-
rency, it is possible to fix a bound a € RT and design a telemanipulator such
that:

e(t)<a VteR (5.14)

Transparency and transparency deviation index as defined in Def. 5.7 and
Def. 5.8 are very general concepts valid for both linear and nonlinear systems
and, therefore, very suitable for the analysis of complex telemanipulators.

5.3.3 Transparent Telemanipulation as a Behavioral Control
Problem

It follows from the given definitions that in order to evaluate the transparency
of a telemanipulation system a model of the environment is required. For
the reasons discussed in Sec. 5.1, the Hunt-Crossly model is adopted. Free
motion of the slave can be interpreted as the interaction of the slave with
a particular environment whose Hunt-Crossley model has all the coefficients
equal to 0. The dynamic structure of the model of the environment, therefore,
will be always the same and what will change, depending on the kind of
environment, will be the parameters characterizing the model. Master and
slave controllers have to be designed in such a way that a certain degree of
transparency is guaranteed. This control problem can be formulated in the
behavioral framework:

Behavioral Control Problem 1 Given an environment with a certain
port-behavior B. C U represented by AB=¢ and a bound a € Rt representing
the desired degree of transparency, find a controller such that the transparency
deviation index € = | AB¢(pr(™wy)|| is such that e(t) <a Vt€R

A possible guideline for the determination of the transparency bound is the
communication delay. In fact the transmission delay between master and slave
side deteriorates transparency and the transparency degree that can be obtai-
ned is bounded by the communication delay. Furthermore, another fundamen-
tal factor to take into account in the design of the controller is that stability
of the overall telemanipulation system MUST be guaranteed in all working
conditions.

A telemanipulation system has to interact with several kinds of environ-
ment and, therefore, to keep on guaranteeing the same degree of transparency,
the controllers have to change. Using Hunt-Crossley model, the model struc-
ture for the contact is the same; contacts with different environments have the
same model but different parameters. Thus, in order to keep the same degree
of transparency when interacting with different environment, it is sufficient to
change the parameters of the controllers designed to solve Behavioral control
Problem 1 according with the Hunt-Crossley model of the new environment.
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Remark 5.9. In case of free motion of the slave, the controllers parameters
can be chosen in order to optimize tracking performances according with any
desired control technique (e.g. optimal control).

Assume that the controller port behavior is described by ABe¢) where c is
the set of parameters characterizing the controller, and that a generic en-
vironment, using Hunt-Crossley model for the contact, is described by the
differential structure ABe¢ where e is the set of parameters characterizing
the environment. The generic problem to solve to have teleoperators with a
certain degree of transparency when interacting with several environments is:

Behavioral Control Problem 2 Given a € Rt and m kind of environ-
ments that can be described by the Hunt-Crossley model and that are charac-
terized by the following sets of respective parameters

{e1,...,em} (5.15)

find m sets of controller parameters:
{c1,.. . em} (5.16)

such that e = || AS¢ (pr(™ (wy (t),t)|| satisfies transparency requirements, that
18

et)<a VteT i=1,...,m (5.17)

Let ¢ and j two kind of remote environments. When the teleoperator stops
interacting with the environment ¢ and start interacting with the environment
j the parameters of the controller have to change form the set ¢; to the set
¢; in order to preserve the transparency degree. This operation of parameters
adaptation has to be carefully addressed in order to avoid any unstable beha-
vior in the transient. This behavioral control problem expresses the intuitive
fact that to preserve a certain degree of transparency when interacting with
different environments, it is necessary to change controller. Relying on the
fact that contact with different environments can be modeled with the same
model (Hunt-Crossley) characterized by different parameters, the change of
controller is reduced to a parameter adaptation.

5.4 Transparency in Port-Hamiltonian Based
Telemanipulation

The aim of this section is to apply the concepts developed so far to the port-
Hamiltonian based intrinsically passive bilateral telemanipulation scheme di-
scussed in Sec. 4.2. The considered telemanipulation scheme is reported in
Fig. 4.5. Master and slave are represented as port-Hamiltonian systems and
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Virtual Point
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Robot

Fig. 5.2. The role of IPC.

the controllers are IPCs, which can be modeled as port-Hamiltonian systems
and whose characterizing parameters have a direct physical meaning. The
communication channel is implemented by means of scattering theory in order
to have an intrinsically passive behavior independently of any communication
delay.

Focus on the master side. The port-Hamiltonian controller can be interpre-
ted as an interconnection of energy storing and of energy dissipating elements
which connect the end-effector of the master with a virtual point in correspon-
dence of which scattering transformation is performed as shown in Fig. 5.2
for an anthropomorphic robot. The virtual point represents the image of what
happens at the slave side reported, by means of the communication channel,
at the master side. The feeling the operator at master side gets of the interac-
tion is that of the interaction between the master end-effector and the virtual
point which is determined by the physical structure of the IPC as noted in
[288]. Furthermore, also the impedance of the slave controller is perceived by
the user as a part of the remote side and therefore its structure should be
considered as well. Transparency can be deteriorated in two ways:

1. The structure of the IPCs does not allow to reproduce the port behavior
of the remote environment.

2. The image of the slave side transmitted to the master side is deteriorated
by the communication channel that introduces further spurious effects
beyond the instantaneous power exchange.

5.4.1 Tuning the IPC

The Hunt-Crossley model can be physically interpreted as a mechanical paral-
lel of a non linear spring and a non linear damper, that is the interconnection
between an energy storing and an energy dissipating element. This inter-
connection can be modeled as a port-Hamiltonian system and it is an int-
rinsically passive system. Since the feeling the operator gets depends on the
physical structure of the controllers and since the contact can be modeled by
means of Hunt-Crossley model, which has a well determined physical struc-
ture, in order to improve the transparency of the telemanipulation scheme,
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port-Hamiltonian controllers with a Hunt-Crossley structure should be used.
In this way the operator feels a compliant contact whose kind of behavior
mimics that of the environment the slave is interacting with. Either by direct
knowledge or by means of some identification algorithms proposed in the li-
terature (e.g. [70]), the parameters of the Hunt-Crossley model of the remote
environment can be estimated and used to modulate the controllers. Once the
parameters of the IPCs have been modulated, it will represent a model of the
remote environment and the operator will have a much more realistic feedback
of the interaction of the slave with the virtual environment. Summarizing, the
transparency-based IPCs design is composed of two steps:

1. Use an IPC with Hunt-Crossley structure. This addresses the Beha-
vioral control Problem 1. The sensation that the operator feels depends on
the kind of impedance controller used and therefore the port-Hamiltonian
controller has to reflect the physical structure of the remote environment.

2. Vary IPC parameters when interacting with different environ-
ments. This addresses the Behavioral control Problem 2. Assuming that
the remote environments can be represented by the Hunt-Crossley model,
it is sufficient to change the parameters of the controller when interac-
ting with different environments in order to guarantee a given degree of
transparency.

Remark 5.10. Passivity of the controllers has to be always guaranteed. In
Sec. 5.5 it will be shown how to change parameters of a port-Hamiltonian
system while preserving passivity.

Remark 5.11. In order to avoid the phenomenon of wave reflection arising
with scattering based communication channels, the line damper has to be
embedded in the port-Hamiltonian controllers. This extra dynamics has to be
taken into account when performing transparency analysis of the system.

5.4.2 Transparency Analysis of a Scattering Based Packet
Switching Communication Channel

In the port-Hamiltonian based telemanipulation systems over packet switching
networks, see Sec. 4.4, master and slave sides exchange energy through the
communication channel to which they are connected by means of the discrete
power ports (e, (k), fm(k)) and (es(k), fs(k)) respectively. In case of negligible
communication delay, the interconnection between local and remote sides can
be made through the so called common effort interconnection, which is given
by

em(k) = es(k)
(5.18)
fs(k) = = fu(k)

and which implies that
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Py(k) = ef (k) fs(k) = —ep, (k) fin (k) = P (k) (5.19)

namely that the energy provided at the slave side at the time k is equal to
that extracted from the master side at the same instant. Thus, in this ideal
case, master and slave would directly exchange energy without any delay and
without any loss of information. In case of non negligible communication delay,
the strategy reported in Eq.(5.18) cannot be used since it would destabilize
the overall telemanipulation system, as proven in Proposition 4.2.

The power ports (e, (k), fm(k)) and es(k), fs(k)) can be represented as
pairs of discrete scattering variables (st (k), s, (k)) and (sT(k),s; (k)) res-
pectively, where:

st(k) = 5N~ (ex(k) + Z (k)
) S (5.20)
57 (k) = 2N (eu (k) — Z£.(k))
Combining Eq.(5.20) with Eq.(5.18), the common effort interconnection can
be equivalently restated in terms of scattering variables as:

s (k) = s (k)
(5.21)
st (k) = s, (k)

As proven in Sec. 4.4 this communication strategy can be safely used also in
case of non negligible delay leading to the following interconnection:
sm(k) = s5 (k= 0)
(5.22)
s3 (k) = s, (k = 6)

where ¢ is the communication delay between master and slave sides and vice-
versa.

Remark 5.12. The results of this subsection can be easily generalized in case
the communication delays between master and slave sides and viceversa are
different.

Thus scattering theory can be used to allow a non destabilizing exchange of
energy between master and slave; nonetheless, both transmission delay and the
scattering coding/decoding procedure, necessary to compute f(k) and s* (k)
from e(k) and s~ (k) as described in Sec. 4.2.4, introduce some deleterious
effects on transparency of the communication channel.

Remark 5.13. In telemanipulation schemes where the communication channel
has an admittance causality (effort in/flow out) both at master and slave sides,
the absence of delay leads to causality problems, as reported in [299, 215].
The transparency analysis that follows can be adapted in order to include
this case by simply considering an infinitesimal delay at the corresponding
power interconnection as an ideal case.
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The aim of this subsection is to provide a transparency analysis of the di-
screte scattering implementation of switched packets communication channel
for port-Hamiltonian based telemanipulation described in Sec. 4.4 using the
framework proposed in Sec. 5.3. This kind of communication channel can be
also used for interconnecting master and slave sides of generic passivity based
telerobotic systems and, therefore, the following considerations are useful also
for non port-Hamiltonian based telemanipulation schemes.

The ideal port behavior Z which guarantees a completely transparent inter-
connection between the master and the slave sides is given by the common
effort interconnection. Using Eq.(5.18), the ideal port behavior can be repre-
sented as the kernel of the following operator:

Fn (k) + fs(k)
ALk, fn(K), fs(K), em(R), fm(K)) = (5.23)
es(k) — em (k)

where the port outcome reduces to

(fm(k), fs(k), em(k), es(k))

since the interconnection is not characterized by a configuration. Notice that
this is a degenerate case of port behavior since it is simply represented by
an algebraic relation between the power variables. It is possible to evaluate
the transparency of the transmission line as the behavioral deviation from the
ideal behavior Z when the communication delay is present. Using Eq.(5.20) in
Eq.(5.22), by lengthy but straightforward computations, the communication
strategy can be equivalently restated in terms of efforts and flows as:

fs(k) = = fin (k) + (fim(k) = fin(k = 6)) + Z_l(em(k —0) —es(k))

em (k) = es(k) — (es(k) — es(k = 6)) = Z(fm(k) + fs(k = 6))

Thus, using Eq.(5.24) in Eq.(5.23) and applying Def. 5.8, the transparency
deviation index evaluated for the delayed scattering based communication
channel is given by:

(5.24)

c = || (fm(k)ffm(kf‘s))‘kz_l(em(kf‘s)*@s(k’)) || <
(s (k) —s (k—6))+Z (fm (k) +F+ (k—6)) =

(fm (k)= fm (k=8)) Z7 (em(k—6)—es(k))
(o "I (5.25)
(es(k)—es(k—9)) Z(fm (K)+fs(k=6))

€1 £o

The transparency deviation index is bounded by a sum of sub-indexes. Each of
these indexes represents the effect on transparency of a particular phenomenon
occurring in the implementation of the transmission. The term ¢; describes
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the effect on transparency of the communication delay and it does not depend
on the scattering implementation of the interconnection. The term &5, instead,
depends on the scattering based nature of the channel and it derives from the
coding/decoding procedure that is used for going from scattering variables to
power variables ad viceversa.

If we used the simpler communication strategy

fs(k) = 7fm(k - 6)

em(k) = es(k —6)

(5.26)

the transparency deviation index would exhibit only the term e; and, the-
refore, the only factor affecting transparency would be the communication
delay. Thus, why the communication strategy reported in Eq.(5.26) shouldn’t
be used instead of that reported in Eq.(5.22)? The answer depends on the
use of the transmission line. If the line has to be used simply to transmit
two signals from one side to another and viceversa, the communication stra-
tegy reported in Eq.(5.26) gives better performances than the one reported
in Eq.(5.22). On the other hand if, as in telemanipulation, the channel is
used to interconnect dynamical systems it is necessary to keep into account
the dynamic evolution of the overall system. The communication strategy in
Eq.(5.26) leads to a non passive interconnection and to a possibly unstable
system which is unacceptable. The communication strategy in Eq.(5.22) leads
to a lossless interconnection and to a stable behavior of the overall system.

Thus, €5 represents the price we have to pay in terms of transparency of
the communication channel in order to achieve a lossless interconnection and
proves that transparency and passivity (together with robustness with respect
to time delay and intrinsic stability) are conflicting targets as informally stated
in [155] for linear telemanipulators.
During the communication over an packet switching networks, it is possible
that some packets get lost. Using the RNP strategy proposed in Sec. 4.4 for
preserving passivity of the communication channel in case of loss of packets
transmission lines, when a packet is not received, it is replaced with a null
packet. Thus, let £,,s and L, be the set of instants at which a packet is
not received in the communication between master and slave and viceversa
respectively. The transmission line is described by:

s3(k) = (1= a)s;, (k= 0)

(5.27)
sh(k) = (1—B)s; (k—9)

where

1k € Lops 1ke Ly,
a= B = (5.28)
0k ¢ Lons 0k¢ Lom
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Once again, using Eq.(5.20) in Eq.(5.27), by straightforward calculations , it
is possible to restate the communication strategy in terms of power variables
as

) = —Jmlk) + (Fm (k) = fn(k — 6))+

fu(k) =
+Z Hem(k —68) —es(k)) — aZ s, (k—6)

(5.29)
em(k) = es(k) — (es(k) —es(k —6))—
_Z(fm<k) + fs(k - 6)) - 6Ss_<k - 6)

whence, using Eq.(5.23), it is possible to calculate the transparency deviation
index which results

e<ertert| (azﬁ;:s(;k(k ,}f”) [ (5.30)

€3

Thus, in case of packets loss, transparency decreases and the contribution to
transparency deviation is proportional to the norm of the lost energy packets.
This is again linked to the fact that transparency and passivity are conflicting
targets. In fact, when packets are lost and the RNP strategy is used, it means
that their power content is dissipated; thus, packet loss introduces dissipa-
tion in the communication channel rendering it a strictly passive instead of a
lossless system. This increase of passivity leads to a decrease of transparency
and the term e3 is as more significant as greater is the power associated to the
lost packets. In other words the more the communication channel gets passive
the less it gets transparent.

Several strategies have been developed to recover the packets lost in communi-
cation. In case a lost packet is replaced by a packet obtained by interpolation,
the transmission is described by

sT(k)=(1-a)s,,(k—06)+as, (k—25)
(5.31)
sp(k) = (1= B)s; (k—06) + Bsy(k — )

where s, and 5;"[ are the interpolated packets that replace the master and
slave lost packets respectively. In this case, following the same procedure used
to get Eq.(5.30), we have that the transparency deviation index is given by:

e<ertex+ H (aZ[;(ltsz:;g(k;)(S) SI,(,;;(/C(S);S))) || (5-32)

€3

Now the term related to packets loss depends on the error introduced by the
interpolation process.

In Sec. 4.5 a passivity preserving interpolation technique, which replaces
a sequence of lost packets with an opportunely weighted linear interpolation
of the received packets, has been proposed.
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This algorithm requires a receiving and a transmitting buffer in order to
replace lost packets with the interpolated ones and, therefore, it leads to an
increase of the communication delay and, in general, to a possible increase
of the terms e; and e5. Thus the interpolation reduces the term relative to
the packet loss in the transparency deviation index but the price to pay is a
possible increase of the terms relative to the delayed communication. There-
fore, before enabling any interpolation algorithm, it is necessary to check if
the beneficial effect introduced by the interpolation is not overwhelmed by
the effect introduced by the increase of delay. This can be done by performing
a worst case analysis (e.g. through the Monte Carlo method) on the value
of the signal exchanged and on their variation rate; in fact,loosely speaking,
the faster are the dynamics of master and slave sides the more an increase
in communication delay deteriorates transparency of the overall system and
thus, in this case, the interpolation should be disabled in order to keep the
delay as small as possible.

Suppose now that the communication delay is variable as often happens
when using switching packet networks. The communication strategy, in case
of variable delay, becomes

s3 (k) = sy, (k — 6 +n(k))
(5.33)
st (k) =s;(k—6+n(k))

where n(k) € Z represents the variability of the delay; we suppose that the
delay has the same variability both in the communication between master and
slave and viceversa in order to keep the notation simple in the computations.
The results obtained can be easily extended to the general case. We suppose
that the variable delay is an undesired effect and that the communication
channel is supposed to be characterized by a constant delay 6 in both direc-
tions. Suppose that the delay is increasing, namely that n(k + 1) > n(k) and
that the packets st (k) = s;,,(k— &6+ n(k)) and s} (k) = s; (k—6+n(k)) have
just been received; we then have:

sth+i)=0 i=1,....[n(k+1) —n(k) — 1]

st(k+ (n(k+1)—n(k))) =s,,(k—6+n(k)+1)
(5.34)
stk+i)=0 i=1,....[n(k+1)—n(k) —1]

st(k+(nk+1)—n(k))) =s;(k—56+n(k)+1)

where the RNP strategy is used and, when a packet is late, it is replaced with
0 in order to preserve passivity. Assuming that there is no packet loss to keep
the notation simple and proceeding in the same way as done for computing
the previous sub-indexes, we have that:

e<el+egtey (5.35)
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where
ea(k+1) =
I Z7 s (k—6+n(k)+i) I
55 (k—6+n(k)+4)
t=1,...,[n(k+1) —n(k) — 1] (5.36)
H (z—l(s;(k5+n(k)+1)s;(k5+n(k)+n(k+1)n(k))

(s5 (k=6+n(k)+1)—s; (k—=6+n(k)+n(k+1)—n(k)) ) |
i = [n(k+1) — n(k)]

The effect on transparency of an increase of delay is twofold: for n(k + 1) —
n(k) — 1 samples it brings the same effect brought by a packet loss since,
because of the increasing delay, the expected packet is not delivered on time
and it is replaced by 0. Furthermore there is a second effect due to the fact
that when finally the packet is delivered it is not the packet that is expected
at that instant. Unlike for the case of packets loss, it is not possible to replace
the “holes” due to the increase of delay by interpolation since finally the
transmitted packets arrive. If we filled the holes with new packets we would
introduce extra energy into the system leading to an active communication
channel. Thus while preserving passivity is not a constraint for the recovery
process for lost packets it is a constraint for the compensation of the effects due
to variable delay. Suppose now that the communication delay is decreasing,
namely that n(k) > n(k + 1). In order to avoid very long delays (that would
take place in case of retransmission techniques were adopted) that would
make a telemanipulation system quite useless, and to avoid wave distortion
(due to the fact that packets does not arrive in the correct order) that would
tremendously decrease the performances of the system, the most used strategy
to handle decreasing delay is the Use Freshest Sample (UFS) strategy. A time
stamp is attached to each transmitted packet and if a packet older than the
last received packet arrives, it is simply discarded. Thus the effect of a decrease
of delay on the transparency is the same as that given by a packet loss.
Summarizing, the framework for the analysis of transparency introduced
in Sec. 5.3 allowed analyzing the scattering based switching packets commu-
nication strategy used for the interconnection of master and slave sides in
port-Hamiltonian based telemanipulation. It has been possible to recognize
various factors affecting transparency and to formally prove that transpa-
rency and passivity are conflicting targets. The transparency deviation index
of the communication channel is bounded by the sum of four terms: ¢; that
takes into account the communication delay, €5 that considers the scattering
coding/decoding procedure. The possible decrease in transparency due to the
scattering based implementation is the price to pay in order to achieve a los-
sless transmission. The term e3 encodes the effect of packets loss and it can
be optimally minimized in a passive way by replacing the lost packets by
interpolated packets. Finally, the term ¢4 encodes the effects due to the varia-
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bility of the time delay; these are the most critical effects since they cannot be
compensated without affecting the passivity of the communication channel.
In conclusion, in order to maximize the transparency of the interconnection
between master and slave sides, it is necessary to choose a communication
channel that, even if characterized by quite a big loss rate, has a little varia-
ble delay. In this way the unrecoverable transparency deviation due to variable
delay is minimized and it is possible to passively reduce the effects of packet
loss through the interpolation algorithm proposed in Sec. 4.5

5.4.3 Simulations

Consider a simple one degree of freedom telemanipulation scheme where ma-
ster and slave robots are simple masses, the environment the system is in-
teracting with is a parallel of a spring and a damper with known damping
factor and the IPCs are implemented as the equivalent of a parallel between
a spring and a damper. The communication channel is implemented by me-
ans of scattering theory. Simulations are performed in the following situation.
Master and slave have a mass equal to 1 K¢ and the characteristic impedance
of the scattering based communication channel is Z = 1 Nsec/m and the
telemanipulation system is interacting with an environment made up with a
parallel of a spring with stiffness k. = 100 N/m and a damper whose damping
coefficient is b, = 10 Nsec/m. The human operator pushes the master with a
force with sinusoidal profile, as if he/she were probing the environment. The
communication delay is 6 = 0.5 sec.

The goal of the simulation is to show the effect of a proper tuning of the
IPCs. Two sets of IPCs parameters have been considered

1. Set 1: b=1 Nsec/m and k=1 N/m
2. Set 2: b =10 Nsec/m and k = 100 N/m

The results have been plotted in Fig. 5.3. It can be seen that when the para-
meters of the IPC match the parameters of the environment, the transparency
index gets much lower.

Suppose now that master and slave sides are interconnected by means of a
packet switched communication channel with nominal delay 6 = 0.2 sec and
that the operator applies an impulsive force on the master. The goal of the next
set of simulations is to show the effect of the phenomena characterizing the
packet switching networks on the transparency of the communication channel.
In the first simulation we implemented a packet loss, with loss rate of 50% in
both senses of communication. The terms relative to transparency deviation
and the position of master and slave are reported in Fig. 5.4.

We can see that all the transparency sub-indexes tends to zero. This is due
to the fact that after a certain transient the system stops and, therefore, zero
efforts and zero flows are exchanged along the communication channel that,
therefore, appears completely transparent. During the motion the transpa-
rency deviation terms are different form zero meaning that the communication
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(a) Set 1 (b) Set 2

Fig. 5.3. ¢(t): effect of controllers parameters

channel is not transparent; in particular, €3 exhibits peaks that correspond
to the packets lost in the communication. A non transparent communication
channel leads to a non transparent telemanipulation system as can be noticed
by the positions of master and slave that are quite different.

In Fig. 5.5 the behavior of the communication channel is reported when

the interpolation algorithm proposed in Sec. 4.5 is enabled. We can see that
the term e; slightly increases because of the increase of delay induced by
the receiving buffer. Nevertheless, this slight increase is greatly repaid by the
decrease of the term €3 because of the optimal recovery of the sequences of lost
packets. The overall decrease of transparency deviation of the communication
channel can be observed in an increase of performances in the positioning
task; in fact, now, the position of the slave is closer to that of the master.
In the last simulation we implement a variable communication delay where
the UFS strategy is adopted. The simulation results are reported in Fig. 5.6.
We can see that both e; and ey increase because of the variability of the
delay. Furthermore the term &4, which encodes the effect of variable delay,
is the most significant transparency deviation term. The effect of variable
delay is the most deleterious since no action can be taken to compensate it
without affecting the passivity of the communication. The performances of
the telemanipulation system are quite bad, as it can be noticed by looking at
the positions of master and slave, but, nevertheless, the system keeps on being
stable because the communication channel keeps on being passive as proven
in Sec. 4.4.
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Fig. 5.4. Effect on transparency of loss of packets in the communication

5.5 A Passivity Preserving Tuning of Port-Hamiltonian
Systems

A port-Hamiltonian system can be thought as a modulated interconnection

of energy storing and energy dissipating elements. From this point of view
parameters can appear in:

e [FEnergy storing elements: these parameters have a direct physical meaning
(e.g. stiffness in springs) and play a role in the energy storage.

e FEnergy dissipating elements: these parameters have a clear physical mea-
ning (e.g. damping coefficient in Colombian friction) and play a role in the
energy dissipation.
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Fig. 5.5. Effect on transparency of loss of packets in the communication when
interpolation is enabled

e Interconnection: these parameters play a role in the interconnection mo-
dulation and, therefore, in the way energy flows among all the elements
(e.g. electro-mechanical coupling in DC motors).

When port-Hamiltonian systems are used as controllers (e.g. in telema-
nipulation) it can be very useful to change physical parameters to improve
performances (e.g. to improve transparency in bilateral telemanipulation); ho-
wever, parameters play an explicit role in the energetic behavior of the system
and a regardless parametric variation can introduce extra energy.

Ezample 5.14. Consider a linear spring with stiffness £ = 1 N/m and with
length fixed at x = 1 m. The energy stored in the spring is given by the well
known formula:
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B(t) = gha(t) =05 ]

Assume now to change k from 1 N/m to 2 N/m while keeping the elongation
fixed. The energy stored in the spring is now:

E(t) = %ka(t) =1J

It can be clearly seen that 0.5 J have been produced by changing the stiffness.

As shown in Example 5.14, parameters variation must be carefully addressed
in order to avoid extra energy production and, therefore, loss of passivity.
The main idea for changing parameters while preserving passivity is to con-
sider parameters as states instead of constants and to use part of the energy
flowing through the system to change their value. In this way no extra energy
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is introduced and passivity is preserved. We will start from a fixed parame-
ters port-Hamiltonian system and we will obtain what we call extended port-
Hamiltonian system: we will extend the four basic ingredients (X,V, D, H)
necessary to define a fixed parameters port-Hamiltonian system, namely the
state manifold, the Dirac structure, the Hamiltonian function and the spaces
of flows and effort variables (see Sec. 1.4), to obtain a variable parameters
port-Hamiltonian system where passivity is preserved.

5.5.1 Parameters Associated to Energy Storage

In port-Hamiltonian systems energy storage is represented by the state z € X
AND fixed physical parameters (e.g. stiffnesses). The storage of a certain
amount of energy causes a variation in the state of the system. Modeling each
physical parameter as a state instead of a constant value, we obtain that in
front of some energy storage physical parameters can be changed as well. In
the latter case it is necessary to find a new Dirac structure that models the flow
of energy which is stored in the “new” states. We call this new Dirac structure
an extended Dirac structure; furthermore, the part of the state variables that
represents physical parameters is called parametric part of the state, while the
part of the state which does not represent physical parameters is called non
parametric part of the state.

Remark 5.15. We do NOT want to replace the Dirac structure of the fixed
parameters port-Hamiltonian system with a brand new one since we want the
internal energetic interconnection, and, therefore, the kind of behavior of the
system, to be preserved. We rather speak of extension since we just want to
add some new interconnections which allow to deviate a part of the internal
energy towards states representing physical parameters enabling, thus, their
variation.

Assume to have a fixed parameters port-Hamiltonian system where X’ is an
n-dimensional manifold representing the state space, V is a m-dimensional
vector space that, with its dual m-dimensional vector space V*, represents
the power port structure, D is the Dirac structure modeling the internal in-
terconnection and H : X — R is the Hamiltonian function representing the
energy of the system. In order to allow passive parametric variation we need
to model parameters as additional states. Let K be a k-dimensional manifold
representing the parameters space. In the extended formulation, the n + k-
dimensional manifold X, = & x K represents the extended state space; once
local coordinates have been fixed , an element z. € X, can be represented
by the n + k-tuple z. = (z, k) where x and k represent the non parametric
and the parametric part of the state respectively. The following differential
structures are well defined:

o T, X, =T,X xT,K: tangent space at the point z. € X..
o TX,=Ug cx Ty X.: tangent bundle of X..
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o Ty X, =T;X xT;K: cotangent space at the point z. € X..
T X, = Uz, ex, T, Xe: cotangent bundle of X,.

Hence, there exists an intrinsic duality product on X, denoted by (,), being
a bilinear map from TX, x T*X, to R defined as:

(Z,ve) = v} (ve) Ve € Ty Xeyv; € T Xeyxe € X (5.37)

Since we want to use part of the internal energy to change parameters, there
is no need to change the power port structure. The power port structure,
therefore, is still represented by the same m-dimensional vector space V and
its dual V* and their intrinsically defined duality product. We can, therefore,
consider the following vector bundle (see Sec. A.l)over the extended space
manifold X,.

Qe=TX. 0T "X, VO V" (5.38)

The fibers of the bundle Q. define the space of extended vectors, extended
covectors, flows and efforts.

Qxe) = Ty Xe X Ty Xo XV X V" (5.39)

A Dirac structure can, thus, be defined on the extended state space manifold
as a vector sub-bundle D, C Q. using Def. 1.21 after having introduced +-
pairing on Q. analogously to what done in Sec. 1.4.

It can be easily shown that:

dimD(z.) = dim X, + dimV = dim X + dim L +dimV =n+k +m (5.40)

Furthermore, being D, a Dirac structure we have that:

(v 02) + (e ) = 500, £€), (w2, fre)) =0 wes 7, £ €) € Do)
(5.41)

Both in fixed and variable parameters port-Hamiltonian systems the energy
is a function is the same. The difference is that in the first case physical
parameters are constant while in the second case parameters can change.
Thus, the Hamiltonian function for the extended case has the same structure
of the Hamiltonian function for the fixed parameters case.

Definition 5.16. Consider the extended state space X, the space of flow va-
riables V and, dually, the space of effort variables V*, the extended Dirac struc-
ture D, and the Hamiltonian function H. Then the extended port-Hamiltonian
system corresponding to the 4-tuple (X.,V, D, H) is defined by setting:
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that is by the equations:
(_iev%va 6) € De(xe) (543)

The property reported in Eq.(5.41) immediately yields the following power
balance:

oH .. OH L

Feve) = (o) + (G k) = (e ) (541

H(t) =

that is an extended port-Hamiltonian system is lossless.
In the fixed parameters case (see Eq.(1.31)) the energy balance doesn’t involve
explicitly parameters , now (see Eq.(5.44)) part of the energy is stored in the
parametric part of the state allowing thus variation of physical parameters.
Deviating part of the energy to be stored towards parameters allows to vary
parameters and to preserve losslessness of port-Hamiltonian systems.

Analogously to the fixed parameters case, we can consider dissipation by
terminating some ports with energy absorbing elements. We have seen that it
is possible to extend a fixed parameters port-Hamiltonian system by simply
considering physical parameters as states. Considering the extended state ma-
nifold it is still possible to define a (extended) port-Hamiltonian system with
the same energy function and the same power-port structure as the original
system. Using the extended state space is possible to build Dirac structures
which take into account the possibility of storing some energy in the parame-
tric part of the state allowing, therefore, variations of physical parameters.

According to Remark 5.15 we would like to build a Dirac structure D,
on X, which is an extension of the Dirac structure D of the fixed parameters
system on X'. Until now we have shown that there exist Dirac structures on X,
that allow energy storage in the parametric part of the state. We will show, in
a coordinate based approach for the sake of clearness, how to choose, among
the extended Dirac structures, the ones which are extensions D.

Remark 5.17. There is not, in principle, a unique way to design the extension
of the Dirac structure. The choice of a particular extension depends on the
task to be performed and on the kind of parametric variation needed.

Choosing local coordinates, it is possible to find a representation of extended
Dirac structures, analogously to what done in Eq.(1.46), and consequently
of extended port-Hamiltonian systems with dissipation, analogously to what
done in Eq.(1.50). A representation of an extended port-Hamiltonian system
with dissipation is given by:
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. OH
—Te Ox,

(Fse(l‘e) Fpe(me) Fre(xe)) f + (Ese(xe) Epe(xe) Ere(xe)) e =0
Fe(ze) fr Bo(xe) o

(5.45)

where i, = (i, k) and F.(z.) and E.(z.) are (n+k+m+r) x (n+k+m+r)
matrices for which:

Fe(xe)E«z(xe) + Ee(xe)FeT(xe) =0

(5.46)

rank[F.(z.) : Bo(z)] =n—+k+m+r

and Fie(z.), Ese(x.) are a (n+k) X (n+k+m+r) matrices, Fpe(z.), Epe(ze)
are m X (m+k+m+r) matrices and Fy..(x.), Ere(ze) are r x (n+k+m+r)
matrices.
Assume to have a fixed parameters port-Hamiltonian system represented by
the following matrices:

F) = (Fu(@) Fy(@) Fo(@))  B() = (Bu(x) By(@) Bv@))  (5.47)
where
Fss(f) Fps(x) FTS(‘T)
Fy(z) = | Fyp(a) | Fp(z) = | Fpp(a) | Fr(z) = | Frp()
Fs(x) Fpr(x) F..(x)
(5.48)
Egs (’1}) Eps (x) Es (1’)
Es(x) = | Esp(z) | Ep(x) = | Epp(x) | Er(z) = | Erp(z)
Eg () Epr(2) Ey(2)
Since F(z) and E(z) represent a port-Hamiltonian system we have that:
F(z)ET(z)+ E(x)FT(z) =0 (5.49a)
rank[F(z): E(z)]=n+m+r (5.49b)

Proposition 5.18. Fized parameters port-Hamiltonian systems are a parti-
cular case of extended port-Hamiltonian systems.

Proof. Consider the following matrices:

FSB(I) ?— Fps (I) FTS (I’)
v = | ey o | B = | By | Frele) = | )
Fsr($> 0 Fpr(x) FTT(LE) (5 50)
Ess(z) 8 Eps(x) Ers(l‘) .
Boelee) = @y 0 | B0 = By a) | Bl = o)
Es(2) 0 E, (x) E..(x)
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and build matrices Fe(aze) and Ee(me) representing an extended port-Hamil-
tonian system as:

(5.51)

By straightforward calculations, using Eq.(5.51) with Eq.(5.45), we obtain the
following relations.

—Fys(x)® + Fsgv(x)f + For(z) fr + Ess% + Esp(x) + Esr(z)e, =0
—Fps ()& + Fpp(2) f + Fpr(2) fr + Eps 22 + Epp(z) + Egp(z)e, =0

—Frs(x)i + Frp(x) f + Frr(z) fr + Ers%—? + E.p(z)+ Ep(x)e, =0
(5.52a)

i=0 (5.52b)

The dynamic relations between x, flows and effort represented in Eq.(5.52a)
are exactly the same as the one represented by the fixed parameter port-
Hamiltonian system (use Eq.(5.47) with Eq.(1.50)). The behaviors of fixed and
extended port-Hamiltonian systems could be different if the parametric part
of the extended case were not constant, but Eq.(5.52b) says that parameters
are constant. We can, therefore, conclude that the extended port-Hamiltonian
system given by Eq.(5.51) represents the fixed parameter port-Hamiltonian
system given in Eq.(5.47).

We need to prove that Ee(xe) and Fe(xe) represent a Dirac structure,
namely that Eq.(5.46) is satisfied. Since E(z) and F(z) represent a Dirac
structure Eq.(5.49a) holds and by lengthy but straightforward calculations it
follows that:

EE(xe)FeT(xe) + Fe(xe)EZ(me) =0
Furthermore we have that:

rcmk:[Ee(xe) : Fe(%)] =

Ess(z) 0 Eps(z) Ers(x) Fos(z) 0 Fps(z) Frs(x)
rank 0 0 O 0 0o I 0 0

Egp(x) 0 Epp(x) Erp(x) Fop(x) 0 Fpp(z) Frp()

Es(z) 0 Ep(2) Erp(x) For(z) 0 By () Erp(2)

Since E(z) and F(z) represent a Dirac structure, Eq.(5.49b) holds and, the-
refore, the sub-matrix:

Ess(x) 0 Eps(z)

S ETS
S = ESP(QU) 0 Epp(x) Erp
Eo(z) 0 Epr(z) Ery
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has rank n 4+ m + r. The matrix [E.(z.) : Fe(z.)] is obtained by adding k
independent rows to the sub-matrix S and, therefore, we can conclude that
rank[Ee(z.) : Fe(ze) =n+k+m+r.

The proposed extension is, therefore, well posed since fixed parameters port-
Hamiltonian systems can be expressed as a particular case of extended port-
Hamiltonian systems.

In order to extend a fixed parameters port-Hamiltonian system to add the
capability of changing physical parameters, we need to extend the fixed pa-
rameters port-Hamiltonian representation given in Eq.(5.51). The main idea
is to build the extended Dirac structure in such a way that the extended
system allows a passive variation of physical parameters while preserving a
physical behavior as close as possible to the one of the fixed parameters port-
Hamiltonian system; loosely speaking, we want to preserve the same kind
physical behavior and to be able change physical parameters that characte-
rize it. A simple approach to solve the problem is to add some dynamical
relations in order to allow to store some energy in the parametric part of
the state leaving existing relations, determined by the original system Dirac
structure, unchanged. In coordinate based terms, the idea is to replace the
zeros in Eq.(5.47) by proper terms that allow parameters variation preserving
the Dirac structure and, thus, passivity. Two meaningful choices can be done.
A first one is:

Fyo(x) ? Fps(@) Frs(x)
Fe(ze) = Fs‘p(x) 0 Fpp(z FTP(“T)
For(2) 0 Fyr(z) Frr(2)
(5.53)
Ess(x) 0 Eps(x) ETS(J;)
. 0
Be(ze) = Eg(x) =27 Epp(w) Erp(2)
Eq(z) 0 Ep() Epp(x)
and a second one is:
Fis(z) ? FPB(CU) Frso(m)
Fe(x(i) - Fsp(q;) 0 Fpp(l') Frp(x)
Fo(x) 0 Fyr(2) Frr(2)
(5.54)
Ess(x) —Fss(l')Z Eps(l') ETS(:E)
) 77 0o 0
Ee@e) = | g, (@) ~Fopl@)Z Epp(@) Erpl)
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In the choice made in Eq.(5.53), part of the energy that comes from the in-
terconnection and that has to be stored in the non-parametric part of the
state is intercepted and deviated towards the parametric part of the state.
In the choice made in Eq.(5.54) the energy needed for parametric variation
is taken from the energy already stored in the non parametric part of the state.

Remark 5.19. The presence of Fys, Fsp and Fy, in Eq.(5.54) is due to the
fact that the interaction between parametric and non parametric part of the
extended state has to take into account the algebraic constraints in the non
parametric part of the extended state, the non parametric part of the state
and port-flows and the non parametric part of the state and the resistive flows.

Proposition 5.20. Matrices E.(z.) and F.(x.) reported in Eq.(5.53) and
Eq.(5.54) represent Dirac structures.

Proof. The proof follows from direct verification of the conditions reported in
Eq.(5.46).

We imposed an energetic interaction between the parametric and non para-
metric parts of the state. This “energy sharing” allows parameters to change
either when there is energy storage or when there is an energy flow to store.
Usually the matrix Z, regulating the variation of physical parameters, has the
following form:

Z =07 oe{0,1} (5.55)

The scalar o plays the role of a switch that enables/disables the parametric
variation. In several application (e.g. telemanipulation) when a certain set
of physical parameters is reached, it has to be kept constant despite of any
internal energy flows. Thus, when it is necessary to change the parameters, o
is set equal to 1 and when a set of parameters has to e kept constant o is set
t 0.

Remark 5.21. Notice that when o = 0 the Dirac structures given in Eq.(5.54)
and Eq.(5.53) are the same as the one given in Eq.(5.51) meaning that when
o = 0 the extended port-Hamiltonian system behaves as a fixed parameters
port-Hamiltonian system.

Remark 5.22. Some extra dissipating element can be added to dissipate energy
stored in the parametric part of the state. In fact if we connect to the para-
metric power ports a dissipative element, the energy absorption leads to a
decrease of the parametric part of the state. This strategy can be used to
decrease parametric states independently of the energy flowing along the ex-
tended Dirac structure.
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5.5.2 Parameters Associated to Energy Dissipation and
Interconnection

Parameters relative to energy dissipation play the role of modulating energy
absorption. Changing values of these parameters is safe since different va-
lues would imply only a different rate of absorption. There is only one thing
to be aware of: as reported in Sec. 1.4, the power flow towards dissipative
elements must always be positive and, therefore, we cannot take a set of pa-
rameters which makes this power flow negative. If this happened dissipative
elements would be transformed in power injecting elements which, therefore,
would destroy passivity of the port-Hamiltonian system. This constraint in
the choice of dissipative parameters is not very restrictive. In fact, in several
applications (e.g. telemanipulation), port-Hamiltonian controllers are used to
reproduce their physical equivalent and modulating physical parameter has
the aim to obtain the same kind of behavior but characterized by different
physical properties. Transforming, by a certain choice of parameters, dissipa-
tion in energy production we obtain a totally different kind of behavior which
is always an undesired feature.

Parameters relative to the interconnection modulation can be freely chan-
ged since they modulate transformations which are lossless independently of
their modulation constant.

5.5.3 Simulations

The aim of this section is to provide some simulations in order to validate
the obtained results. Consider the system shown in Fig. 5.7, where the hu-
man operator interacts with a device, modeled as a mass m, controlled by an
port-Hamiltonian impedance controller equivalent to the mechanical parallel
of a linear spring, characterized by a stiffness k, and of a damper, with dam-
ping coefficient b. In this simplified scheme, we assume that the value of the
damping coefficient b is fixed, while the stiffness k£ can be adapted in order to
change the sensation rendered to the human operator.

Suppose that we want to change the value of the stiffness of the impedance
controller and to drive it to the value k,..s. The energy storage function of the
controller is:

1
H(k,x) = §kx2 (5.56)

where the rest length of the spring is supposed to be zero. The power port
expressing the elongation:

(‘981;[,_3;«) = (kwy =) = (cus fo) (5.57)

The following parametric port describes the power flow related to the stiffness
variation:
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Fig. 5.7. A 1-DOF variable parameters port-Hamiltonian impedance controller

(%’Z—k) _ (g_k> = e i) (5.58)

Notice that the effort ey, is always positive and the sign of the power exchanged
through the parametric port is determined only by the flow fi. Finally, the
impedance felt by the user is described by the external power port (e, f), and
the goal of the stiffness adaptation is to compute an external effort e as close
as possible to that generated by a real spring of stiffness k.:

f:jf‘a €= krefx (559)

We choose to deviate part of the energy that is flowing towards the elon-
gation port to the parametric port in order to passively change the stiffness
of the spring; therefore, we extend the Dirac structure of the fixed parameters
port-Hamiltonian system in the way reported in Eq.(5.53). This leads to:

f=42 and k=o(t)f (5.60)

where o(t) is the modulation law that has to be computed in order to achieve
the desired behavior on the external port. Notice that the stiffness variation
k is proportional to the external flow f and it takes place only when o(t) #
0. This choice satisfies the first equation of Eq.(5.59) and straightforward
computations show that the elongation perceived externally is equal to =x.
By expressing the Dirac structure in kernel form, we obtain the following
equations:

101\ [~ 00 0\ (ea
0lo| [—k| + (000 | [ex] =0 (5.61)
000/ \ f 1o-1) \e

First of all, consider the situation when the user is extracting power from the
external port, namely P = (e, f) < 0, while a stiffness increase is required
(k(t) < kpeg). If o(t) # 0, a fraction of P would be extracted from the
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parametric port; since ey is .always positive, power can be extracted from
the parametric port only if £ < 0, thus increasing the deviation from the
requested stiffness level. Therefore in this case o(t) should be set to zero. On
the other side, a stiffness increase (k > 0) can be achieved only if the power P
flowing through the parametric port is positive, and this requires, the external
power to be positive (P > 0). In particular, from the second and the third
row of Eq.(5.61), under the hypothesis that:

t
[ #oiar =) - 2(0)
0
where z(0) is the initial elongation of the spring, we obtain:

o(t) = Qw (5.62)
(t)
Straightforward computations show that this modulation law preserves not
only the elongations of the springs but also their rest positions. Therefore, the
equilibrium position of the system of Fig. 5.8 is not altered by the stiffness
adaptation. However the choice of having k proportional to the external flow
f causes the stiffness adaptation to take place only in dynamic conditions. In
other words, when the user slowly moves the master device and then stops,
it may happen that f is not sufficient to achieve the desired stiffness k... In
addition, there are no degrees of freedom to increase the convergence ratio of
k to kref~
In order to test the proposed algorithm, simulations have been performed
on the scheme of Fig. 5.7 where the communication channel has been disabled;
in other words, the system behaves as a mass interconnected to a fixed frame
by a parallel of a spring and a damper. In Fig. 5.8 it is shown how the stiffness
set-point is tracked and how this affects the behavior of the master device,
whose initial momentum is non null. The stiffness set-point ks periodically
switches from a low value (10 N/m) to an higher one (100 N/m) and after an
initial transient due to the fact that the energy available is not enough, k()
tracks the reference value. Moreover, this affects the oscillation frequency of
the mass, that is higher for higher stiffness values (see Fig. 5.8(b)) .

5.6 A Scheme for Transparent Port-Hamiltonian Based
Telemanipulation

In this section we will use the concepts developed so far to design a trans-
parency optimized intrinsically passive telemanipulation scheme for port-
Hamiltonian systems. The scheme is illustrated in Fig. 5.9

The scheme is represented in bond-graph notation. The half arrows, € ele-
ments and IR elements represent energy exchange, energy storage and energy
dissipation respectively. The arrows barred elements are variable elements. In
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(a) kres (dotted line) and k(t) (b) spring elongation

Fig. 5.8. Stiffness tracking and spring elongation

the scheme we have that master and slave robots are represented as port-
Hamiltonian systems with fixed dissipations and fixed Dirac structures (de-
pending on the physical structure of the systems) D,,, and D, respectively. The
robots are controlled by means of variable parameters IPCs that are imple-
mented by extended port-Hamiltonian systems. The communication between
master and slave side is implemented by means of scattering variables and the
characteristic impedance of the transmission line is Z. When the slave is in-
teracting with the environment (which is assumed to be representable by the
Hunt-Crossley model), the estimator derives the parameters characterizing the
environment either by direct knowledge of using an identification algorithm.
The estimated parameters are then transmitted to two signal processing sub-
systems which play the role of supervisors of the parametric part of state of
the controllers. Given the parameters characterizing the remote environment,
an optimal (i.e. maximizing transparency) set of parametric values is calcu-
lated for the IPCs. Then, in order to change the parameters, the supervisors
enable some energy to flow towards the parametric ports and change the dis-
sipation coefficients. The parametric variation is done preserving passivity as
described in Sec. 5.5 and is stopped when the IPCs parameters have reached
the desired set.

Remark 5.23. Since the estimator is at the slave side, there is some delay in
the communication of the estimated parameters at the master side. Nevert-
heless, since we are transmitting signals and not power variables, no energy
is produced and passivity is preserved. The only effect of delay is that the
parametric modulation of the master IPC starts after the one of the slave
IPC.
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Fig. 5.9. Transparency optimized intrinsically passive telemanipulation scheme

5.7 Conclusions

It has been shown in Chap. 4 that the passivity theory and the port-
Hamiltonian framework are very suitable for implementing bilateral telema-
nipulation systems which are characterized by a stable behavior both in case
of free motion and in case of contact with any passive, possibly unknown,
remote environment.

A stable behavior is just a first step for the implementation of a useful
telerobotic system; the controllers and the communication channel should
be designed in order to make the overall system as transparent as possible,
namely to transmit to the user the feeling of directly interacting with the
remote environment. In order to evaluate the kind of behavior that has to be
reproduced at the master side, we have described the contact dynamics using
the nonlinear Hunt-Crossley model.

One of the advantages of the port-Hamiltonian formalism is that it al-
lows to consider general, possibly nonlinear, telemanipulators and, therefore,
in order to preserve this degree of generality, we have exploited the behavi-
oral approach to develop a framework for evaluating transparency, namely the
match between the feeling perceived by the user and the real interaction ta-
king place between the slave and the environment. The behavioral approach
coupled with the port-Hamiltonian formalism, has provided a guideline for
the analysis and the transparency based design of complex, possibly non li-
near, bilateral telemanipulation systems. The proposed framework allowed us
to formally analyze the effect on transparency of the delay, of the packets loss
and of the packets interpolation in scattering based packet switching commu-
nication channels.

Exploiting the port-Hamiltonian framework, we have designed nonlinear
impedance controllers that mimic the behavior of the Hunt-Crossley model of
the estimated environment, improving in this way the feeling of the remote
interaction perceived by the user.

Since the slave can interact with several remote environments, it is ne-
cessary to be able to change the parameters characterizing the nonlinear
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impedance controllers. Exploiting the interconnection structure of the port-
Hamiltonian systems, we have proposed a passivity preserving algorithm for
tuning the controllers. This algorithm highlights the importance of the inter-
connection structure of port-Hamiltonian systems for the design of controllers.
Some recent applications of port-Hamiltonian based telemanipulation where
the Dirac structure of the controllers has been modified for improving perfor-
mances can be found in [268, 269].



A

Mathematical Background

This appendix gives the necessary background on the mathematical objects
used in the book. In particular, the concepts of manifold, tangent and cotan-
gent bundles, tensors and Lie groups are defined and some of their properties
are reported.

A.1 Manifolds and Vector Bundles

In this section the concepts of manifolds, tangent and cotangent bundle and
vector bundle are introduced. For a more complete treatment the reader is
addressed to [185, 73].

Roughly speaking, manifolds are abstract surfaces that locally look like (i.e.
are locally diffeomorphic with) R™.

Definition A.1 (Coordinate Chart). Given a set M, a chart on M is a
subset U of M together with a bijective map ¢ : U — ¢(U) C R™. Usually
#(m) is denoted by (x',...,2") and x* are called the coordinatesof the point
meU C M. A chart will be indicated as (U, ¢).

A coordinate chart allows to identify a subset of M with R™. Consider two
coordinate charts (U, ¢) and (U’,¢’) where U NU’ # 0. All the points of
U N U’ are described by two coordinate charts, namely the two coordinate
charts overlap.

Definition A.2 (Compatible Charts). Two charts (U,¢) and (U’,¢")
such that U NU" # 0 are called compatible if ¢(U NU’) and ¢pH(U N U’)
are open subsets of R™ and the maps:

and
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Fig. A.1. Compatible charts

po(d) !

oo OUNT) = oUNT) (A.2)

are smooth.

In Fig. A.1 the concept of compatible charts is illustrated. It is now possible
to define a particular collection of charts:

Definition A.3 (Atlas). An atlas on a set M is a family of charts A =
{(Ui,¢;) | €I}, wherel is an index set, such that:

o M =UerU
e Foranyi,j €I the charts (Ui, ¢;) and (Uj, ¢;) are compatible.

Definition A.4 (Differentiable manifold). Two atlases A; and Az are
equivalent if Ay U As is an atlas. A differentiable structure D on M is an
equivalence class of atlases on M. The union of all the atlases in D,

Ap = J{A| A€ D}

is the mazimal atlas of D and a chart (U,¢) € Ap is an admissible chart.
A differentiable manifold M is a pair (M, D), where M is a set and D is a
differentiable structure on M.

The set M defines the set of points of the manifold, while the atlas, namely
the way used to map the points to R™ | defines the differential structure
and allows differential calculus over the manifold. Atlases belonging to diffe-
rent equivalence classes define different differentiable structures which yield
to completely different manifolds.

Definition A.5 (Dimension of a differentiable manifold). The dimen-
sion of a manifold M around a point p € U; C M is the dimension of the
linear space which is the co-domain of the map ¢; of the chart (U, ¢;). If the
dimension around each point of the manifold is the same, for instance n, then
n 1s said to be the dimension of the manifold.
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Consider two curves c1, co that takes value over a manifold M, namely:
c1,c0 : R— M
The curves are said to be equivalent if
c1(0) =c2(0) =m and (poec1)'(0) = (doca)(0) (A.3)

in some chart ¢; the prime indicates the usual derivative in R™. It is possible
to prove that this definition of equivalence is chart independent and that it
defines an equivalence relation. All the curves in the same equivalence class
have the same tangent, calculated using the differential structure of M, at
the point m.

Definition A.6 (Tangent vector). A tangent vector v to a manifold M
in a point m € M is an equivalence class of curves at m. The components of
v are the numbers v',... v™ defined by:

d ,
o= 2000y, (A.4)

where i = 1...n and c is a representative curve of the equivalence class defi-
ning v and ¢ is a chart of M.

It is possible to prove that the set of tangent vectors at a point m € M forms
a vector space.

Definition A.7 (Tangent space). The vector space formed by all the tan-
gent vectors at a point m € M 1is called tangent space to M at m and is
indicated by T,, M.

Definition A.8 (Tangent bundle). The tangent bundle of M, denoted by
TM, is the set given by the union of all the tangent spaces to M at the points
m € M, that is:

TM= |J TaM (A.5)
meM

Thus a point of TM is a vector that is tangent to M in some point m € M.
It is possible to define the dual concepts of tangent space and tangent bundle:

Definition A.9 (Cotangent space). The vector space formed by the set of
linear operators from T,, M to R, where m € M, is called cotangent space to
M at m and is indicated by T, M.

An element v* € T M is called cotangent vector or simply covector.
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Definition A.10 (Cotangent bundle). The cotangent bundle of M, de-
noted by T* M, is the set given by the union of all the cotangent spaces to M
at the points m € M, that is:

T*"M= | J TmM (A.6)
meM

Thus a point of TM is a linear operator on a tangent space of M at some
point m € M.

Once the concepts of tangent space and cotangent space have been defined,
it is possible to define operators that associate to the points of a manifold,
element in the tangent or in the cotangent space.

Definition A.11 (Vector field). A vector field X on a manifold M is a
map X : M — T M that assigns a tangent vector X(m) € T,, M at the point
m € M. An integral curve with initial condition mg att = 0 is a differentiable
map ¢ : (a,b) — M such that (a,b) is an open interval containing 0, ¢(0) = mq
and

¢ (t) = X(c(t)) Ve (a,b) (A7)

Thus, it is possible to interpret a vector field as an operator that associates to
each point of the manifold a “velocity vector”. The integral curve of a vector
field is a curve whose velocity at each point is that associated by the vector
field to that point. The dual concept of a vector field is that of covector field
and it is defined as:

Definition A.12 (Covector field). A covector field X* on a manifold M
is a map X* : M — T* M that assigns a covector X*(m) € Tx M at the point
m e M.

Consider a smooth map f defined on a manifold M, i.e.:
fiM—=R

and let X be a vector field defined over M. It is possible to consider the
variation of the map f along the direction determined by X, i.e. along the
integral curves of X.

Definition A.13 (Lie derivative). The derivative of the function f along
the vector field X is a map defined on M and it is defined by:

T
L0

foSMHR fo((L') o

(z) zeM (A.8)

where
of _0f 0
dx Oz’ Oz,
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Given two vector fields X and Y on a manifold M, it is possible to define a
third vector field through the Jacobi-Lie brackets.

Definition A.14 (Jacobi-Lie brackets). Given two vector field X and Y
on a manifold M and a map f : R — M, it is possible to define a third
vector field, which is called the Jacobi-Lie brackets of X and Y and which is
indicated with [X,Y] and which is unique, such that:

Lixy)f=LxLyf—LyLxf (A.9)

The Jacobi-Lie brackets of two vector fields depends on the commutativity
of the starting vector fields. In fact it is not said that moving forward along
an integral curve of X and then moving forward along an integral curve of Y’
and then moving backward along an integral curve of X and finally moving
backward along an integral curve of Y the starting position is reached again.
The Jacobi-Lie brackets of X and Y express this non commutativity.

Definition A.15 (Tangent map). Given two manifolds M and N and a
smooth map f: M — N, it is possible to define a linear map:

constructed in the following way. For v € T,, M, choose a curve c: (—¢,€) —
M with ¢(0) = m and velocity vector dc/dt|i—o = v. Then T, f(v) is the
velocity vector at t = 0 of the curve foc: R — N, that is,

T f(0) = S F(e®)] g (A1)

The vector Ty, f(v) does not depend on the curve ¢ but only on the vector v.
The tangent map of f is the map:

Tf:TM —TN (m,v) — (f(m),Tnf(v)) (A.12)

A generalization of the concepts of vector and covector fields are the concept
of distribution and codistribution.

Definition A.16 (Distribution). A distribution A on a n-dimensional dif-
ferentiable manifold M is a smooth map that assigns to each point m € M
a subspace A(m) C T,, M. A distribution is called smooth if and only if the
subspaces that it determines on the tangent space of each point can be spanned
by a set of smooth vector fields, i.e. there exist p(< n) smooth vector fields X;
such that:

A(m) = span{X;(m)} i=1,...,p

The distribution is called constant dimensional if and only if, for each m € M,
A(m) has the same dimension.
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Definition A.17 (Codistribution). A codistribution A* on a n-dimension-
al differentiable manifold M is a smooth map that assigns to each point
m € M a subspace A*(m) C TrM. A codistribution is called smooth if
and only if the subspaces that it determines on the cotangent space of each
point can be spanned by a set of smooth covector fields, i.e. there exist p(< n)
smooth vector fields X} such that:

A*(m) = span{X;(m)} i=1,...,p

The codistribution is called constant dimensional if and only if, for each m €
M, A(m) has the same dimension.

Another concept relative to differentiable manifolds that is used in the book
is that of (smooth) vector bundle. Roughly speaking, a vector bundle is a
manifold with a vector space attached to each point. Tangent and cotangent
bundles to a manifold are examples of vector bundles. More formally, let M
be a manifold:

Definition A.18 (Vector bundle). A vector bundle £ over M consists of:

1. A manifold £, called the total space
2. A smooth map 7 : £ — M, called projection map
3. For each m € M, the set m=1(m) has the structure of a vector space.

Furthermore, the following condition of local triviality, must be satisfied: for
each m € M there exists a neighborhood U € M, an integer n > 0 and a
diffeomorphism

h:UxR" — 7 Y1)

such that, for each m € U, the correspondence x — h(m,x) defines an iso-
morphism between the vector space R™ and the vector space m=*(m). The pair
(U, h) is called a local coordinate system for €. The vector space 7~1(m) is
called fiber over m for any m € M.

For a very complete treatment of vector bundles see [204].

A.2 Tensors

Tensors are the generalization of the concepts of vector and matrix and, in
fact, once a coordinate frame has been defined, they can be represented as
multidimensional matrices. For a complete treatment see, for example, [185].

Definition A.19 (Multilinear map). Consider n+1 vector spaces V1, ...,
V., W. A multilinear map is a map:

L:Vix - xV,—W (A.13)
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such that, for each i =1,...,n, the maps:
Li(vi, ..., 0i—1,0i41,-«-50n) : Vi =W v; — L(vy,...,0,) (A.14)
are linear for each vy, ...,0;—1,Vit1, .-+, Un-
The set of multilinear operators defined on V;,...,V,, W is indicated as
L"(Vi,.. o, Vs W)

and it can be proven that it is a vector space.
Consider a vector space V and denote its dual space, namely the vector space
formed by the linear operators on V, by V*.

Definition A.20 (Tensors). Given a vector space V, the set of tensors of
order p + q of type (p,q), namely p contravariant and q covariant, is defined

by:

TP(V) = LPH(V,... Y, V5, VS R) (A.15)
——— ———
qtimes ptimes

Notice that 73 (V) =V and that 7,°(V) = V*.

It is possible to define tensors over a differentiable manifold. In Sec. A.1 it has
been shown that it is possible to define a vector space (the tangent space) at
each point of a manifold; this vector space can be used as the linear space over
which to define a tensor. More formally, it is possible to give the following:

Definition A.21 (Tensor field). A p contravariant q covariant tensor field
is a map that smoothly assigns to each point m of a manifold M a tensor in

TP (T M)

It is then possible to associate to each point m of a manifold M the vector
space of (p, q) tensors on T,, M; this vector space is indicated with T} ,M.,,.

Definition A.22 (Tensor bundle). The q contravariant and p covariant
tensor bundle over a manifold M is defined as:

TopM = |J TypMm (A.16)
meM

The concepts of vector and covector fields and of tangent and cotangent bund-
les are special cases of the concepts of tensor field and tensor bundle.

A.3 Lie Groups and Rigid Motions

The concept of Lie group is very useful in robotics and, in general, in mecha-
nics, because it allows to describe the motion of rigid bodies and mechanisms
in a very elegant and coordinate free way. For an excellent and complete tre-
atment of Lie groups and their applications see [221].
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Definition A.23 (Lie group). A Lie group is a manifold G that is also a
group. The group structure must be compatible with the differential structure
of manifold, that is, the group multiplication

p:GxG—G (g,h) — gh
is a smooth map.

Since the manifold G is a group it is possible to identify the identity element
which is indicated with e. Furthermore, since the group G is a manifold, it is
possible to define tangent and cotangent spaces at each point g € G.

There are two important mappings of Lie groups:

Definition A.24 (Left and right translations). Given a Lie group G, for
each g € G the left translation by g is defined by:

Ly:G—G h—gh (A.17)
and the right translation by g is defined by:
Ry:G—G h—hg (A.18)

Definition A.25 (Lie algebra). A Lie algebra g is a vector space together
with a bilinear antisymmetric bracket satisfying Jacobi’s identity, that is, for

each &,n.C € g

[[&;ml, €] + (¢, &l ml + [, €], €] = 0 (A.19)

For each ¢ € T, G, it is possible to define a vector field X¢ on G by letting:

Xe(g) = TeLy(8) (A.20)

Definition A.26 (Lie algebra associated to a Lie group). Fach Lie
group G is associated to an unique Lie algebra g. The vector space relative
to g is T.G and the commutator of the algebra is given by the Lie brackets,
defined as follows: Y&, € T.G

[§7 7’} = [X§7 Xn]

where [X¢, Xy is the Jacobi-Lie brackets (Def. A.14) between vector fields on
a manifold.

A.3.1 An Example: The Special Euclidean Group SE(3)

The special Euclidean group SE(3) is an example of Lie group that is also
very useful in the study of the motion of rigid bodies and mechanisms.
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It is well known that the configuration of a rigid body in the space can be
described, using homogeneous coordinates, by the homogeneous matrix:

h= (01(1)20 Zf) (A.21)

where R is a 3 x 3 orthogonal matrix with determinant equal to 1 which
represents the orientation of the rigid body while p is a vector that represent
its position. The set of matrices of this form is called special Euclidean group
in R? and is denoted by SE(3). It can be easily seen that the set SE(3) has
the structure of manifold. The structure of group can be checked taking as
operation the matrix multiplication. Thus, SE(3) is both a manifold and a
group and, therefore, it is a Lie group.

Consider two rigid bodies 7 and j, the relative configuration of i and j
is represented by an homogeneous matrix h]. The Lie algebra of SE(3) is
denoted by se(3) and it is the set of matrices of the form

(ogo g) (A.22)

where w is 3 x 3 skew-symmetric matrix and v € R3. The Lie brackets of the
Lie algebra are given by:

[A,B] = AB— BA VA,B € se(3) (A.23)

An element of se(3) is called a twist. The vector space se(3) has dimension 6
and is isomorphic to R®. ‘
The relative motion of two rigid bodies can be described by a curve h}(t) on
SE(3). The generalized relative velocity is b/ € Ty, 1y SE(3).

The most general instantaneous motion of a figid body in the space is
a screw motion (Chasles’ theorem, [290, 272]), i.e. a rototranslation around
an instantaneous axis in the space. Thanks to the tangent maps of the left
(or right) translation map it is possible to describe the generalized velocity
through a twist. In particular ¢! € se(3) represents the instantaneous velocity
of the motion, the skew symmetric matrix w represent the rotation around
the instantaneous axis and v the velocity along the instantaneous axis.
Dually, the most general instantaneous system of forces that can be applied
to a rigid body is given by a pure momentum and a pure translation around
an instantaneous spatial axis (Poinsot’s theorem, [290, 272]). Using duality
concepts, it is possible to express such an instantaneous system of forces by
an element of se*(3), the vector space given by the linear operators acting on
s¢(3). Elements of se*(3) are called wrenches and w; represents the wrench
applied to the body i. For further details see [290, 272, 212].
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