bookboon.com

Budgeting and Decision Making Exercises I

Larry M. Walther; Christopher J. Skousen

Download free books at bookboon.com

Larry M. Walther \& Christopher J. Skousen

Budgeting and Decision Making Exercises I

Budgeting and Decision Making Exercises I

© 2011 Larry M. Walther, Christopher J. Skousen \& Ventus Publishing ApS. All material in this publication is copyrighted, and the exclusive property of Larry M. Walther or his licensors (all rights reserved).
ISBN 978-87-7681-880-7

Contents

Problem 1 6
Worksheet 1 6
Solution 1 7
Problem 2 8
Worksheet 2 8
Solution 2 9
Problem 3 10
Worksheet 3 10
Solution 3 11
Problem 4 12
Worksheet 4 13
Solution 4 14
Problem 5 15
Worksheet 5 15
Solution 5 16

Fascinating lighting offers an infinite spectrum of possibilities: Innovative technologies and new markets provide both opportunities and challenges. An environment in which your expertise is in high demand. Enjoy the supportive working atmosphere within our global group and benefit from international career paths. Implement sustainable ideas in close cooperation with other specialists and contribute to influencing our future. Come and join us in reinventing light every day.

Light is OSRAM

OSRAM SYLVANIA
 θ

Problem 6 17
Worksheet 6 17
Solution 6 18
Problem 7 19
Worksheet 7 19
Solution 7 20
Problem 8 21
Worksheet 8 21
Solution 8 22

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across disciplines ranging from engineering, IT, procurement and finance, to strategy, customer support, marketing and sales. Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also find out more on our EADS Careers Facebook page.
We welcome more than 5,000 interns every year across

EADS unites a leading aircraft manufacturer, the world's largest
 worldwide leader in global security solutions and systems to form Europe's largest defence and aerospace group. More than 140,000 people work at Airbus, Astrium, Cassidian and Eurocopter, in 90 locations globally, to deliver some of the industry's most exciting projects.

An EADS internship offers the chance to use your theoretical knowledge and apply it first-hand to real situations and assignments during your studies. Given a high level of responsibility, plenty of

Problem 1

Providence City acquired its power plant from a private company on June 1. No receivables were acquired with the purchase. Therefore, total accounts receivable on June 1 had a zero balance.

Providence plans to bill customers in the month following the month of sale, and 80% of the resulting billings will be collected during the billing month. 90% of the remaining balance should be collectable in the next following month. The remaining uncollectible amounts will relate to citizens who have moved away. Such amounts are never expected to be collected and will be written off.

Electricity sales during June are estimated at $\$ 4,500,000$, and expected to increase 25% in July. August sales will be 5% less than July sales.
a) For each dollar of sales, now much is expected to be collected?
b) Estimate the monthly cash collections for June, July, August, and September.
c) As of the end of August, how much will be the estimated amount of receivables for which future cash flows are anticipated?

Worksheet 1

a)
b)
June
July \quad August
c)

$\underline{\text { June }} \quad$| July |
| :--- |
| August |
| Total
 Receivables |

Solution 1

a) For each dollar of sales, $98 \$$ will be collected ($80 \$$ cents in the month following the month of sale, and $18 \$$ in the next month (90% of the remaining 20Φ balance)).
b)

	June		July		August		September	
Estimated Sales	\$	4,500,000	\$	5,625,000	\$	5,343,750		
Collections:								
Prior month (80\%)			\$	3,600,000	\$	4,500,000	\$	4,275,000
Two months prior (18\%)				-		810,000		1,012,500
Cash collections			\$	3,600,000	\$	5,310,000		5,287,500

c)

	June		July		August		Total Receivables	
Estimated Sales	\$	4,500,000	\$	5,625,000	\$	5,343,750	\$	15,468,750
Less:								
Collected in July	\$	3,600,000	\$	-	\$	-	\$	3,600,000
Collected in August		810,000		4,500,000		-		5,310,000
To be written off (3\%)		90,000		112,500		106,875		309,375
	\$	4,500,000	\$	4,612,500	\$	106,875	\$	9,219,375
Remaining balance	\$	-	\$	1,012,500	\$	5,236,875	\$	6,249,375

Problem 2

Global GPS Systems manufactures rugged handheld GPS computers for use in adverse working environments. Global tries to maintain inventory at 30% of the following month's expected unit sales. Global began the year with 15,000 units in stock, based on the following unit sales projections prepared by the sales manager:

January	30,000
February	37,500
March	27,000
April	33,000

Prepare a schedule of planned unit production budget for January through March.

Worksheet 2

Planned production in units:

> January

Estimated units sold

Solution 2

Planned production in units:

	January	February	March
Estimated units sold	30,000	37,500	27,000
Desired ending finished goods*	9,000	11,250	8,100
Total units needed	39,000	48,750	35,100
Less: Beginning finished goods inventory	15,000	9,000	11,250
Scheduled production	24,000	39,750	23,850

Problem 3

Prepare a direct materials purchasing plan for January, February, and March, based on the following facts.

Global GPS Systems assembles its GPS systems with the following costs. Each GPS requires one computer system and four bateries. Computer Systems cost $\$ 140$ each, and batteries are $\$ 2.50$ each. Global is able to reliably obtain computers as needed, and does not maintain them in inventory. However, bateries are stocked in inventory sufficient to produce 20% of the following month's expected production. Planned production is as follows:

January	24,000
February	39,750
March	23,850
April	25,000

In accordance with the stocking plan, January's beginning inventory included 20,000 batteries.

Worksheet 3

Direct materials purchasing plan:

Raw materials needed:
Computers (1 per unit) as needed

Batteries (4 per unit)

Solution 3

Direct materials purchasing plan:

		January		February		March
Scheduled production		24,000		39,750		23,850
Raw materials needed:						
Motors (1 per unit)		24,000		39,750		23,850
Estimated cost per motor	\$	140.00	\$	140.00	\$	140.00
Total estimated motor cost	\$	3,360,000	\$	5,565,000	\$	3,339,000
Batteries (4 per unit)		96,000		159,000		95,400
Plus: Target ending raw material*		31,800		19,080		20,000
Batteries needed		127,800		178,080		115,400
Less: Target beginning raw material		20,000		31,800		19,080
Fan battery purchases		107,800		146,280		96,320
Estimated cost per battery	\$	2.50	\$	2.50		\$2.50
Total estimated motor battery	\$	269,500	\$	365,700	\$	240,800
Total estimated costs (computers + batteries)	\$	3,629,500	\$	5,930,700	\$	3,579,800

* 20% of following month's anticipated needs

Download free eBooks at bookboon.com

Problem 4

Clinton Summerhayes is CFO for a newly formed golf club manufacturing company. Below is the anticipated monthly production for the first year of operation, and beyond. Clinton is interested in learning which of the first twelve months will require cash outlays of more than $\$ 25,000$ toward the purchase of composite shafts. Each unit requires 4 board feet of composite material at $\$ 15.70$ per board foot. All composite material is purchased in the month prior to its expected use. Composite shaft purchases are paid for 15% in the month of purchase, 80% in the month following the month of purchase, and 5% in the second month following the month of purchase.

Month	Units	
January	0	
February	320	
March	200	
April	300	
May		520
June	520	
July	400	
August	350	
September	320	
October	220	
November	160	
December	160	
January	240	

Which months will require cash outlays in excess of the $\$ 25,000$ amount? Does the production in any given month necessarily correspond to the cash flow for that same month? What are the business implications of your observation?

Worksheet 4

Anticipated cash payments

		Purchasing Activity	Total Board Feet (4 per unit)	Total Cost of Composite Shafts (\$15.70 per foot)	CASH PAYMENTS			
	Units				Paid in Month (15\%)	Paid in Month Relating to Prior Month (80\%)	Paid in Month Relating to Two Months Prior (5\%)	Total
January	0							
February	320							
March	200							
April	300							
May	520							
June	520							
July	400							
August	350							
September	320							
October	220							
November	160							
December	160							
January	240							

Download free eBooks at bookboon.com

Solution 4

Anticipated cash payments

	Units	Purchasing Activity	Total Cost of Composite Total Board Feet Shafts (4 per unit) (15.70 per foot)			CASH PAYMENTS						
							Paid in Month (15\%)		Paid in Month Relating to Prior Month (80\%)		in th ting wo ths or	Total
January	0	320	1,280	\$	20,096	\$	3,014	\$	-	\$	-	\$3,014
February	320	200	800	\$	12,560	\$	1,884		16,077		-	17,961
March	200	300	1,200	\$	18,840	\$	2,826		10,048		1,005	13,879
April	300	520	2,080	\$	32,656	\$	4,898		15,072		628	20,598
May	520	520	2,080	\$	32,656	\$	4,898		26,125		942	31,965
June	520	400	1,600	\$	25,120	\$	3,768		26,125		1,633	31,526
July	400	350	1,400	\$	21,980	\$	3,297		20,096		1,633	25,026
August	350	320	1,280	\$	20,096	\$	3,014		7,584		1,256	21,854
September	320	220	880	\$	13,816	\$	2,072		16,077		1,099	19,248
October	220	160	640	\$	10,048	\$	1,507		11,053		1,005	13,565
November	160	160	640	\$	10,048	\$	1,507		8,038		691	10,236
December	160	240	960	\$	15,072		\$2,261		8,038		502	10,802
January	240											

Total payments exceed \$30,000 in May and June.

Problem 5

Scott Logan Equipment produces exercise equipment. The following schedule reveals anticipated monthly production of bicycles for the first three months of the year:

January	9,500
February	10,000
March	11,000

Scott budgets for 1.5 direct labor hours per bicycle, at an average cost of $\$ 18.00$ per hour. Variable factory overhead is applied at the rate of $\$ 7.75$ per direct labor hour. Fixed overhead is expected to run $\$ 70,000$ per month, which includes $\$ 9,000$ per month of noncash expenses related to depreciation.

Determine the total expected monthly cash outflow for labor and overhead.

Worksheet 5

Estimated monthly cash outflows for direct labor and factory overhead:

	January		February		March	
Estimated bicycles produced		9,500		10,000		11,000
Direct labor hours per bicycle	X	1.5	X	1.5	X	1.5

Solution 5

Estimated monthly cash outflows for direct labor and factory overhead:

	January		February		March	
Estimated bicycles produced		9,500		10,000		11,000
Direct labor hours per bicycle	X	1.5	X	1.5	X	1.5
Total estimated labor hours		14,250		15,000		16,500
Cost per direct labor hour	X	\$18.00	X	\$18.00	X	\$18.00
Cost of direct labor	\$	256,500	\$	270,000	\$	297,000
Total estimated labor hours		14,250		15,000		16,500
Variable factory overhead rate	X	\$7.75	X	\$7.75	X	\$7.75
Total variable factory overhead	\$	110,438	\$	116,250	\$	127,875
Fixed factory overhead		70,000		70,000		70,000
Total factory overhead	\$	180,438	\$	186,250	\$	197,875
Less: Depreciation		$(9,000)$		$(9,000)$		$(9,000)$
Cash paid for factory overhead	\$	171,438	\$	177,250	\$	$\underline{\text { 188,875 }}$
Cost of direct labor	\$	256,500	\$	270,000	\$	297,000
Cash paid for factory overhead		171,438		177,250		188,875
Expected cash outflow for labor/overhead	\$	427,938	\$	447,250	\$	485,875

Problem 6

The chief financial officer for Backyard Playground products had previously established a line of credit with a local bank that enables Backyard to borrow 60% of the company's inventory balance. The company currently has 2,000 units in stock, and is performing "on budget." The budget anticipated that direct labor cost would be $\$ 16.50$ per hour, and factory overhead is applied to production based on $\$ 9.20$ per direct labor hour. Each unit requires 4.5 labor hours and 700 pounds of direct material. The direct material costs $\$ 0.15$ per pound.

Determine the amount of credit available under the borrowing agreement.

Worksheet 6

Amount available under line of credit:

Solution 6

Amount available under line of credit:

Direct material

Direct labor
Applied factory overhead

X Units in finished goods inventory
Finished goods inventory
X Portion available for line of credit
Total available under line of credit

Units	Per Unit Cost		Per Unit Total	
700 pounds	\$	0.15	\$	105.00
4.5 hours	\$	16.50		74.25
4.5 hours	\$	9.20		41.40
			\$	220.65
			X	2,000
			\$	441,300.00
			X	60\%
				264,780.00

"I studied English for 16 years but... ...I finally learned to speak it in just six lessons" Jane, Chinese architect

ENGLISH OUT THERE

Click to hear me talking before and after my unique course download

Problem 7

Review the following SG\&A budget that was prepared at the beginning of the current year. The economy appears to be slowing, and sales are now expected to run only 80% of plan. How much can now be expected to result for total SG\&A?

The only fixed cost that can be reduced relates to the advertising campaign. What are the possible impacts of attempting to save money by cutting a portion of the advertising budget?

Selling, General, and Administrative Budget
For the Year Ending December 31, 20X7

Estimated units sold		85,000
X Per unit variable SG\&A	X	\$ 5.00
Total variable SG\&A	\$	425,000
Fixed SG\&A		
Salaries	\$	467,500
Office		102,000
Advertising		297,500
Other		42,500
Total fixed SG\&A	\$	909,500
Total budgeted SG\&A	\$	1,334,500

Worksheet 7

The following revised budget reflects only $68,000(80 \%$ of the volume included in the original plan) units:

> Selling, General, and Administrative Budget
> \quad For the Year Ending December 31, 20X7
> Estimated units sold
> X Per unit variable SG\&A
> Total variable SG\&A
> Fixed SG\&A
> Salaries
> Office
> Advertising
> Other
> Total fixed SG\&A
> Total budgeted SG\&A

Solution 7

The following revised budget reflects only 68,000 (80% of the volume included in the original plan) units:

> Selling, General, and Administrative Budget

For the Year Ending December 31, 20X7

Estimated units sold		68,000
X Per unit variable SG\&A	X	\$ 5.00
Total variable SG\&A	\$	340,000
Fixed SG\&A		
Salaries	\$	467,500
Office		102,000
Advertising		297,500
Other		42,500
Total fixed SG\&A	\$	909,500
Total budgeted SG\&A	\$	1,249,500

Reducing advertising would be a "tricky" decision. While it will immediately reduce costs, it might also impact sales and corporate brand value.

Download free eBooks at bookboon.com

Problem 8

Scott Logan Equipment's board of directors was presented with the following information about operations for an upcoming three-month period. The board desires to declare a dividend at the end of June, but still maintain cash on hand of $\$ 150,000$. Scott began April with $\$ 175,000$ of cash on hand. Prepare a cash budget, and determine how much cash will be available for the dividend? Is there any apparent risk associated with the dividend plan?

	April		May		June	
Customer receipts	\$	1,260,000	\$	1,350,000	\$	1,440,000
Cash paid for direct materials		360,000		399,600		477,000
Cash paid for direct labor		441,000		477,000		540,000
Factory overhead*		252,000		261,000		277,200
SG\&A**		154,800		160,200		149,400
Taxes		27,000		32,400		28,800
Equipment purchase***						600,000

* Includes depreciation of $\$ 80,000$
** Includes depreciation of $\$ 45,000$
*** Equipment purchase to be paid for in July

Worksheet 8

Beginning cash balance
Customer receipts
Available cash
Less: Disbursements

April	May June
\$ 175,000	
1,260,000	
\$ 1,435,000	

Ending cash balance

Solution 8

As the following cash budget reveals, $\$ 412,600$ will be available for a cash dividend at the end of June (the amount by which ending estimated cash exceeds $\$ 150,000$). The danger associated with this plan is that the $\$ 600,000$ equipment purchase must be paid for in July. Paying the dividend will leave the company significantly constrained and potentially unable to make the requisite equipment payment.

	April		May		June	
Beginning cash balance	\$	175,000	\$	325,200	\$	470,000
Customer receipts		1,260,000		1,350,000		1,440,000
Available cash	\$	1,435,000	\$	1,675,200	\$	1,910,000
Less: Disbursements						
Direct materials	\$	360,000	\$	399,600	\$	477,000
Direct labor		441,000		477,000		540,000
Factory overhead		172,000		181,000		197,200
SG\&A		109,800		115,200		104,400
Taxes		27,000		32,400		28,800
Total disbursements	\$	1,109,800	\$	1,205,200	\$	1,347,400
Ending cash balance	\$	325,200	\$	470,000	\$	562,600

